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Introduction

Analysis of variance is one of the most widely used statistical techniques, with
application areas that include biology, medicine, industry and finance. Genstat has a very
powerful set of ANOVA techniques, that are nevertheless very straightforward and easy to
use.

This book is designed to introduce you to these techniques, and give you the underlying
knowledge and confidence to use them correctly and effectively. It also covers the basic
principles of experimental design to help you plan effective experiments and
investigations. It was written to provide the notes for VSN’s course on anova and design
in Genstat, but it can be used equally well as a self-learning tool.

Starting with the simplest situation, where two different treatments are compared by
the standard t-test, straightforward examples will be used to introduce the following
concepts.

• Analysis ! covering simple to sophisticated situations, explaining ideas such as
balance, and introducing advanced features like the use of REML for unbalanced
designs

• Interpretation ! explaining the results, producing relevant tables, graphs and
figures for publication in reports and papers.

• Design ! a range of experimental designs will be described, to cover the situations
encountered by most Genstat users.

• Blocking ! how to increase the accuracy of an experiment by forming the basic
units (e.g. plots or subjects) into groups with similar properties.

• Randomization ! how to avoid bias in the allocation of units to treatments, so that
you can ensure that your results are reliable and unaffected by any systematic
patterns in the units.

• Replication ! determining how many replicates you need.
• Treatments ! comparing several types of treatment in the same experiment
• Covariates ! to improve precision by using additional background information

about the experimental units, that was not used for blocking.



1 From t-test to one-way anova

In this chapter you will learn
• how to use the t-test to compare two treatments
• the mathematical equations that lie behind the t-test Ú
• how to calculate a t-test by hand Ú
• the T-Test menu
• how to use one-way analysis of variance to compare several treatments
• the model fitted in one-way anova
• the mathematical equations that lie behind one-way anova Ú
• the statistical philosophy behind one-way anova
• the relationship between one-way anova and the t-test for two treatments
• how to use the One- and two-way ANOVA menu for one-way anova
• how to plot the means from one-way anova
• how to fit polynomial contrasts to quantitative treatments Ú
• how to do multiple-comparison tests Ú
• how to do equivalence tests Ú

Note: the topics marked Ú are optional.
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standard 23

new 24

new 21

standard 22

new 22

standard 19

standard 21

new 20

new 25

standard 20

standard 17

new 26

standard 18

new 24

new 22

standard 20

Example 1.1

standard: ( 23 + 22 + 19 + 21 + 20 + 17 + 18 + 20 ) / 8  = 20

new: ( 24 + 21 + 22 + 20 + 25 + 26 + 24 + 22 ) / 8  = 23

1.1 Comparing two treatments: the two-sample t-test

Suppose we have two sets of units, each of which
has received a different treatment. For example,
they might be animals that have been fed two
different diets, or plots that have been given
different fertilisers, or subjects with different
drugs, or plants with different fungicides, or
widgets that have been formed by different
manufacturing methods, and so on.

In this first section, we assume that the units do
not have any special structure ! for example that
the animals are all of the same breed, or that the
plots are in a fairly uniform field, or that the
subjects are of similar ages, weights and heights,
and so on. So we have two sets of observations
(one for each treatment), and we want to know if
they differ by more than random variation.

The table shows data from an (unstructured)
experiment to study yields from two different
manufacturing methods.

We want to know whether the yields of the two
methods differ by more than we would expect
from the random variability in the experiment. We
would also like to estimate the likely yields from
each method. Data like this are often analysed
using a two-sample t-test.

The assumption for the t-test is that each group
has a Normal distribution. It is generally assumed
that the distributions both have the same variance
(this can be checked) and that they may have different means.

We estimate the means by the averages of the observations with each treatment.

If you'd like to see this in mathematical notation, the mean of the distribution of the data
{yij : j = 1...ni } in group i is estimated by

(If not, please ignore this and the later equations!) This calculation is usually written as
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where the 3 symbol represents summation from the lower value 1 to the upper value ni.
If the treatments have the same effect, the difference between the means, then

d  =  m1 ! m2

should be zero. However, we have only an estimate of the difference. So, we need to
know how variable this estimate might be. We can estimate the standard error of the
distributions by the sum of the squares of the differences between each observation and
the mean for the variety involved, divided by the degrees of freedom (essentially the
number of "spare parameters" that we have left from our n1 + n2 observations after fitting
the 2 means).

{  32  +  22  +  (!1)2  +  12  +  02  +  (!3)2  +  (!2)2  +  02 

 + 12  +  (!2)2  +  (!1)2  +  (!3)2  +  22  +  32  +  12  +  (!1)2 }  /  {16 ! 2}
or, in mathematical notation,

The standard error of the difference of the two means is
s^ d  =  s^   ×  %{(n1 + n2) / (n1 × n2)}.

The t-statistic is simply the estimate of the difference divided by its standard error. So,
to make a t-test for the hypothesis that there is no difference between the means, we just
need to calculate  ( m^ 1 ! m^ 2 ) / s

^
d   or, in mathematical notation,

We can then compare this with the appropriate value of the t-distribution for n1+n2!2
degrees of freedom.

To summarise, to do a t-test by hand:
• calculate the average of the observations in group 1  ( m^ 1 )
• calculate the average of the observations in group 2  ( m^ 2 )
• subtract the smaller from the larger   ( d^  = m^ 1 ! m^ 2 )
• subtract the averages from the data values in the respective groups
• square the values (after subtracting the averages), add them up, divide by

{ (n1 + n2 ! 2) × n1 × n2 / (n1 + n2) }
and take the square root (this gives s^ d )

• finally, divide d^  by s^ d and compare with the t distribution for n1+n2!2 degrees of
freedom.

As in much experimental design, this is very much simpler if we have the same
replication (that is, number of observations) for each treatment. Then n1=n2=n, and the
t-statistic is
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Figure 1.1

Figure 1.2 Figure 1.3

Complicated equations are less of a problem on a course like this, as we can use Genstat
to do the calculations. However, another important consideration is that, with equal
replication, we are estimating each mean with the same precision, and this may be
important for example in drug and variety trials where we may need to show the
originators of each drug or variety that it has been assessed fairly in comparison with the
other drug or variety.

It is much simpler to analyse the experiment
using Genstat. The data sets that are used in the
examples and practicals in this Guide can be all
be accessed from within Genstat. Click on File

on the menu bar, and select the Open Example

Data Sets option, as shown in Figure 1.1.

This opens the Example Data Sets menu, shown in Figure 1.2. It is easier to find the
relevant file if you set the Filter by topic drop-down list to A Guide to Anova and Design. The
data for the example in this section is available in the Genstat spreadsheet file
Manufacture.gsh.  So we select that file, and click on the Open data button.

The file is shown in Figure 1.3. There are two columns of data: the name method is in
italics, showing that this column is a factor, and yield is a variate.
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Figure 1.4

Figure 1.5

We can check some of our
arithmetic by using the Summary

Statistics menu, which you can open
by clicking on the Summary Statistics

sub-option of the Summary Statistics

option of the Stats menu on the menu
bar. The summary produced by the
menu in Figure 1.4 is shown below.

 

Summary statistics for yield: method new
 

Number of observations =  8
Mean =  23

Standard deviation =  2.070
Variance =  4.286

Summary statistics for yield: method standard
 

Number of observations =  8
Mean =  20

Standard deviation =  2
Variance =  4

To calculate the t-test directly, we
open the T-Tests menu (Figure 1.5)
by clicking on the One- and two-

sample t-test sub-option of the
Statistical-tests option of the Stats

option on the menu bar. We select
Two-sample in the Test drop-down
list box, and One variate with group

factor as the Data arrangement. We
can then enter yield as the Data

variate, and method as the Group

factor defining the two groups.
Clicking Run generates the output
below.
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Two-sample t-test
 
Variate: yield
Group factor: method
 
 

Test for equality of sample variances
 
 
Test statistic F = 1.07 on 7 and 7 d.f.
 
Probability (under null hypothesis of equal variances) = 0.93
 
 

Summary
 

    Standard  Standard error
Sample  Size  Mean  Variance  deviation  of mean
new  8  23.00  4.286  2.070  0.7319
standard  8  20.00  4.000  2.000  0.7071
 
Difference of means:  3.000
Standard error of difference:  1.018
 
95% confidence interval for difference in means: (0.8173, 5.183)
 
 

Test of null hypothesis that mean of yield with method = new is equal
to mean with method = standard
 
Test statistic t = 2.95 on 14 d.f.
 
Probability = 0.011

The t-statistic is 2.95 on 14 degrees of freedom. Under the "null hypothesis" that there
is no difference between the means, this would have a probability of 0.011. We can
conclude that this is unlikely. So there is evidence that the manufacturing methods do
differ.
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Figure 1.6

1.2 Practical

Seven plants of wheat grown in pots and given no
fertilizer treatment yield 8.4, 4.5, 7.8, 6.1, 4.7, 11.2 and
9.6g dry weight of seed. A further eight plants from the
same source are grown in similar conditions but given
a fertilizer treatment. These plants yield 11.6, 7.5, 10.4,
8.4, 13.0, 9.6, 13.2 and 9.9g dry weight respectively. 
The data are held in file Pots.gsh as two columns: the
first holds the seed weights (variate seed) and the
second holds factor treat indicating whether or not
there was any fertilizer (control/fertilizer). 

Read the data into Genstat, then look to see whether
the fertilizer has an effect on seed production by
carrying out a two-sample t-test using the T-Test menu.

1.3 One-way analysis of variance

Another way of representing the
situation, is that we have a linear
model

yij  =  ì  +  ai  +  åij

where each observation is
represented by its mean mi

(which we have chosen to write
as ì + ai ) plus a residual åij

which represents the random
variation in the situation.

For our example, it represents
the data as follows:
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standard 23 22
19 21
20 17
18 20

= 21.5 + standard !1.5 + standard  3  2
!1  1
 0 !3
-2  0

new 24 21
22 20
25 26
24 22

new 1.5 new  1 !2
!1 !3
 2  3
 1 !1

yij ì^ a^ i åij

The residual variation can arise from many different causes, for example:
• the units may not be absolutely identical (and we shall discuss later how units should

be allocated to treatments to take account of this),
• they may then experience slightly different conditions during the experiment,
• there may be measurement errors,
• they may be being dealt with by different people during the experiment.

The form of the model suggests another approach. If we were to assume that the
treatments are both identical, then their effects a1 and a2 would be zero. Our model would
simply be

yij =  ì  +  åij

and we would estimate the grand mean ì by the average of all the data values: that is

One way of measuring how well this model fits is to take the sum of squares of the
residuals from this model (that is, to add up the squares of our estimates of the random
variation on each observation for this model).

This has n1 + n2 ! 1 degrees of freedom as we have fitted just one parameter, ì.
Now compare this with the full model above, in which the treatments are assumed to

have different effects: we can estimate ai by the mean of the observations that received
treatment i, minus the overall mean, that is

and the residual sum of squares is given by
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with n1 + n2 ! 2 degrees of freedom. This takes a little thought as it may appear as though
we have fitted three parameters but, in fact, there are really just the two means m^ 1 and m^ 2.
Our use of the treatment effects a1 and a2 makes it easy to move from one model to the
other (by setting them both to zero) but you can easily see that

ì^  =  ( m^ 1 × n1 + m^ 2 × n2 ) / ( n1 + n2 )

= {( ì^  + a^ 1 ) × n1 + ( ì^  + a^ 2 ) × n2 }/( n1 + n2 )

and so
a^ 1 × n1  =  !a^ 2 × n2.

The difference between these two sums of squares is known as the sum of squares due

to the treatments. This measures the effect of allowing for two different means, and has
one degree of freedom. We can assess whether this exceeds the underlying level of
variability by comparing it with RSS1, but first we need to divide each one by its degrees
of freedom to give the treatment and residual mean squares; this takes account of the
different number of parameters that each one represents. By dividing the treatment mean
square by the residual mean square, we obtain a statistic known as the variance ratio. If
we assume that the residuals follow a Normal distribution, the variance ratio will have
an F distribution on 1 and (n1 + n2 ! 2) degrees of freedom. (The degrees of freedom are
the degrees of freedom for the nominator ! that is the sum of squares due to treatments
! and those for the denominator ! that is the residual sum of squares.) The variance ratio
is

It is interesting to note that, when there are only two treatments, the variance ratio is the
square of the t-statistic. You can verify this in the example below, or see the proof in the
following equations:

and so
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The variance ratio, however, can be used if there are more than two treatments. Usually,
the information is all laid out in an analysis of variance table. For our example this is:

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
method 1  36.000  36.000  8.69  0.011
Residual 14  58.000  4.143   
Total 15  94.000  

Mathematically, when there are t treatments, the one-way analysis of variance can be
calculated as follows:

Source Sums of squares Degrees
of
freedom

Mean square Variance
ratio

Treatments 3i ni a
^

i
2  =

3i ni m
^

i
2 ! (3i ni) ì

^ 2

t ! 1 (3i ni a
^

i
2 ) / (t ! 1) treatment

mean
square       
/ residual
mean
square

Residual 3i3j (yij ! ì^  ! a^ i)
2

or as 
Total SS ! Treat SS

3i ni ! t {3i3j (yij - ì
^  - a^ i)

2}
 / ( 3i ni ! t )

Total 3i3j (yij - ì
^ )2

= 3i3j yij
2 - (3i ni)ì

^ 2

3i ni ! 1 {3i3j (yij - ì
^ )2 } 

 / ( 3i ni ! 1 )

Notice that the total sum of squares in the table is RSS0. Usually there is no interest in
assessing whether the observations have a non-zero overall mean, and so the table
contains the total sum of squares "corrected for the grand mean". Also notice that two
possible formulae are given for the Treatment and Total sums of squares. The second
may be more convenient to calculate, but the first will be much more accurate if the
accuracy of the representation is limited, as on computers or calculators.
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Figure 1.7

Figure 1.8

Figure 1.9

Alternatively, we can ignore all
this mathematics and use Genstat.
The Analysis of Variance section of
the Stats menu on the menu bar
(Figure 1.7) offers two possibilities.
One-way analysis of variance is
easiest with the One- and two-way

Analysis of Variance menu  (Figure
1.8). Later in the Course, we will
introduce the general Analysis of Variance menu, which accesses the full power of GenSat's
analysis of variance facilities.

We select One-way as the Design,
enter the name of the Y-variate

(yield) and of the factor defining
the Treatments (method), and then
click on Run.

The output from the analysis is
controlled by the ANOVA Options

menu (Figure 1.9), obtained by
clicking on the Options  button on
the One- and two-way Analysis of

Variance menu.
With the analysis-of-variance

table, we usually also present tables
of means with associated standard
errors or (more usefully) standard
errors for differences between pairs
of means (s.e.d's): for two means
with replication n1 and n2, 

s.e.d. = %{ (residual-mean-square) × (1/n1 + 1/n2) }
= %{ (residual-mean-square) × (n1 + n2) / (n1 × n2) }

You may recognise this as the denominator of the t-statistic from Section 1.1. In fact
differences between means from analysis of variance, divided by their s.e.d., also follow
t distributions (with degrees of freedom given by the residual d.f.).

Genstat can also produce least significant differences. These are s.e.d.'s multiplied by
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Figure 1.10

the relevant t value, allowing a direct comparison with the difference between the means.

Tables of means
 
Variate: yield
 
Grand mean  21.50 
 

method  new  standard
 23.00  20.00

 
 

Standard errors of differences of means
 
Table method  
rep.  8  
d.f.  14  
s.e.d.  1.018  
 
 
 

Least significant differences of means (5% level)
 
Table method  
rep.  8  
d.f.  14  
l.s.d.  2.183  

The philosophy then is that you first
look at the variance ratio to assess
whether there is any evidence of
differences anywhere amongst the
treatments; if so, the s.e.d. or the
l.s.d. provides the necessary
yardstick for comparing pairs of
means. In published papers and
reports, the analysis-of-variance
table is usually omitted ! although
you would report that differences
have been reported between the
treatments (if they have!). Tables of
means are presented, with their s.e's
or s.e.d's.

You do not need to decide on all
your output before you do the
analysis. You can obtain additional
output by using the ANOVA Further

Output menu (Figure 1.10), obtained
by clicking on the Further output  button on the One- and two-way Analysis of Variance menu.
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Figure 1.11

Figure 1.12

You can click on the Means plots

button to open the Means Plot menu.
This allows you to choose how you
want to plot the means, and how
you want to represent their standard
errors. In Figure 1.11 we have
chosen to plot points for the means,
with a bar to show the s.e.d. (see
Figure 1.12). You would plot lines
if the treatments represented
different amounts of some quantity
such as a fertilizer, a drug or a dietary supplement. Plotting the data values (as well as the
means) can provide a visual confirmation of the significance (or non-significance) of the
treatment effects reported in the analysis-of-variance table. The final possibility is to plot
the means as a bar chart.
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Figure 1.13

Figure 1.14

Figure 1.15

You can cut and paste results of the analysis,
from the Output window to word processing
systems like Microsoft Word. You can also
save it into Genstat data structures or to external
spreadsheet files. To do this, click on the Save

button on the main the One- and two-way Analysis

of Variance menu (Figure 1.8) to open the
ANOVA Save Options menu, as shown in Figure
1.13. Section 4.5 shows how to use this menu to
save a table of means in a Genstat spreadsheet
(see Figure 4.10).

Alternatively, you can click on the
Export to file button to open the Save
ANOVA Results in a Spreadsheet File

menu, which allows you to save  the
output to a spreadsheet file on your
computer. Figure 1.14, shows the menu
with the default output components
selected in the check boxes, and the
Save in file box filled in to save them in
the Excel file ManufactureResults.xlsx.

E a c h  o u t p u t
component is saved
on a separate page in
the spreadsheet file.
Figure 1.15 shows
the page with the
treatment means.

1.4 Practical

Do a one-way analysis of variance for the data in Pots.gsh and compare the results with
those from the t-test. Plot the means, and also plot the data values. Does the plot with the
data values confirm what you have found in the analysis of variance? Save the results to
an Excel file. Open the file and compare them with the output in the Output window.
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Diet Weight

a 81.5  80.7  80.3  79.8

b 81.6  81.9  80.4  80.4

c 83.5  81.6  82.2  81.3

d 82.4  83.1  82.8  81.8

e 83.2  82.8  82.1  82.1

1.5 One-way analysis of variance with several treatments

The advantages of analysis of variance
become clearer when there are more than
two treatments.

Spreadsheet file Rat.gsh contains data
from an experiment to study the effect of
a dietary supplement on the gain in weight
of animals. There were five different
treatments (representing different amounts
of the supplement) and twenty animals
were allocated at random, four to each
treatment. The data be analysed and we

can plot the means, using the One- and two-way Analysis of Variance menu as before.

Analysis of variance
 
Variate: weight
 
Source of variation d.f. s.s. m.s. v.r. F pr.
diet 4  12.7930  3.1982  6.32  0.003
Residual 15  7.5925  0.5062   
Total 19  20.3855    
 
 

Tables of means
 
Variate: weight
 
Grand mean  81.76 
 

diet  a  b  c  d  e
 80.58  81.08  82.10  82.53  82.55

 
 

Standard errors of differences of means
 
Table diet  
rep.  4  
d.f.  15  
s.e.d.  0.503  
  
 

Least significant differences of means (5% level)
 
Table diet  
rep.  4  
d.f.  15  
l.s.d.  1.072  
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Figure 1.16

Figure 1.17

Figure 1.18

1.6 Polynomial contrasts

Suppose the treatments represent
amounts 0, 1, 2, 3 and 4 of
supplement. We might now be
interested to see how linear the
relationship is. The general Analysis

of Variance menu (Figure 1.17)
extends the facilities in  the
specialized One- and two-way

Analysis of Variance menu, to allow
you to estimate contrasts amongst
the treatments.

The menu is obtained by selecting
the General sub-option of the
Analysis of Variance option of the
Stats menu on the menu bar, instead
of the One- and Two-way sub-option
(Figure 1.7). Setting One-way

ANOVA (no blocking) for the Design

provides similar controls to those in
the One- and two-way Analysis of

Variance menu  (Figure 1.8), with
the addition of a Contrasts button.
This button generates the Anova Contrasts menu (Figure 1.18), in which we have asked
Genstat to fit two polynomial contrasts (i.e. linear and quadratic) between diet. The
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Figure 1.19

analysis is now extended to examine the linear and quadratic effects of supplement.

Analysis of variance
 
Variate: weight
 
Source of variation d.f. s.s. m.s. v.r. F pr.
diet 4  12.7930  3.1982  6.32  0.003
  Lin 1  11.6640  11.6640  23.04 <.001
  Quad 1  0.6864  0.6864  1.36  0.262
  Deviations 2  0.4426  0.2213  0.44  0.654
Residual 15  7.5925  0.5062   
Total 19  20.3855  

In the analysis of variance, the sum of squares for diet is partitioned into the amount
that can be explained by a linear relationship of the yields with amount of supplement
(the line marked Lin), the extra amount that can be explained if the relationship is
quadratic (the line Quad), and the amount represented by deviations from a quadratic
polynomial. A cubic term would be labelled as Cub, and a quartic as Quart. You are not
allowed to fit more than fourth-order polynomials. 

The analysis shows that there is a
strong linear effect, but no evidence
of any curvature (as assessed by the
quadratic contrast).

To fit polynomial contrasts,
Genstat calculates orthogonal
polynomials and does a multiple
regression of the effects of factor
using the polynomials as x-variates
(see Guide to the Genstat Command
Language, Part 2, Section 4.5 for
details).

We can obtain additional output,
as before, by using the ANOVA

Further Output menu. When the menu
is opened from the general Analysis of

Variance menu it has some additional
boxes. In Figure 1.19 we use the
menu to print the regression
coefficients of the polynomial contrasts, and the equation of the polynomial. 
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Figure 1.20

Tables of contrasts
 
Variate: weight
 

diet contrasts
 
Lin   0.54,  s.e. 0.112,  ss.div. 40.0
 
Quad  -0.111,  s.e. 0.0951,  ss.div. 56.0
 
Deviations,  e.s.e. 0.356,  ss.div. 4.00
 

diet  a  b  c  d  e
 0.11  -0.26  0.11  0.11  -0.07

 
 

Equation of the polynomial for diet
 
 80.46  + 0.98 * diet   - 0.11 * diet**2 
 

The orthogonal polynomials cannot be printed from the menu, but they can be saved by
the AKEEP directive, and printed by the PRINT directive; see Chapter 9 for more details. 

1.7 Practical

Spreadsheet Octane.gsh contains data from an
experiment to study the effect of different additives on the
octane level of gasoline (P.W.M. John, Statistical Design
and Analysis of Experiments, page 46). There were 5 types
of gasoline (A-E), and 4 observations on each. Use analysis
of variance to assess whether there are differences in octane
level between the gasolines.

Suppose that gasolines A-E contain 0, 1, 2, 3 and 4
cc/gallon of additive, respectively (but are otherwise
identical). Estimate the linear and quadratic effects of the
additive.
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Figure 1.21

Figure 1.22

1.8 Multiple comparisons

Multiple-comparison tests are designed to take account of the fact that there may be many
possible comparisons between pairs of treatment means in an analysis of variance (with
t treatments there are t × (t!1) / 2). So, some researchers feel that their significance levels
should be adjusted to take account of all the tests that they might make ! and this can be
achieved by use of a multiple-comparison test. Conversely, it has been pointed out that
multiple-comparisons are unnecessary if you have only a small number of comparisons
to make ! either because there are few treatments, or because you should have identified
beforehand the comparisons that you feel are likely to be of interest. Also, they are
inappropriate if the treatments have any sort of structure. For example, the levels of a
treatment factor may represent different amounts of a substance like a fertiliser or a drug.
It would then be more sensible to assess the treatment effect over all its levels by fitting
some sort of trend (like the polynomial contrasts that we fitted in Section 1.6), and
illogical to assume that only some of the amounts might have an effect.

However, Genstat does have menus
if you do need to use multiple-
comparison tests. Because some
organisations may want to
discourage their use, these can be
enabled and disabled through the
Options menu. You open the menu
by clicking on the Options option of
the Tools menu on the menu bar
(Figure 1.21). In the menu  (Figure 1.22), you need to select the Menus tab, and check the
box Show multiple comparisons on ANOVA menus.
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Figure 1.23

There will then be a Multiple

comparisons button on the ANOVA

Options and Further Output menus,
which you can use to open the
Multiple Comparisons menu. The
menu provides all the standard tests,
ranging from Fisher's LSD tests
(which simply compare the means
using their least significant
differences) to e.g. Duncan's,
Scheffe's and Tukey's tests.

Genstat will not let us do a
multiple comparison test on a
treatment term where we have fitted
contrasts, as this implies that we
have more informative comparisons
to make. So we also need to redo
the analysis without the polynomial
for diet.

In Figure 1.23, we have selected Bonferroni test. If we now click on Run in the Further

Output menu, we obtain the output below.

Bonferroni test
 

diet
 
Comparison-wise error rate = 0.0050
 

Mean  
a  80.58  a
b  81.08  ab
c  82.10  ab
d  82.53  b
e  82.55  b

1.9 Practical

Do a Bonferroni multiple-comparison test to compare the types of gasoline in Practical
1.7.
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1.10 Equivalence tests

It is generally accepted that you can use a statistical test to provide evidence that the
means of two treatments differ, but it cannot prove that they are identical. A non-
significant probability simply means that the results could have been obtained under the
null-hypothesis that they have the same means. It does not mean that they must have the
same means ! there will be a range of differences between the means that could also
provide non-significant probabilities for the results. This presents difficulties for
investigations where you want to show that a new treatment can be used instead of a
standard one without causing adverse effects. For example, you might want to show that
the side-effects of a new drug are no worse than the current drug, or that your weight will
be unaffected by switching to a new diet. The solution is to do an equivalence test. There
are three types of test.

In the full equivalence test, you specify a lower and an upper limit for the difference
between the mean of the new treatment and the mean of the control. These define the
zone within which the new treatment can be regarded as equivalent to the control. The
null hypothesis is that the treatment is not equivalent to the control i.e. that the difference
in means lies outside that zone. The test calculates t-statistics for the distance of the
difference above the lower limit, and its distance below the upper limit. Their
probabilities provide the evidence to assess whether the difference lies within the
equivalence zone, at the lower and upper end respectively. Genstat reports the larger (i.e.
the less significant) of the two probabilities together with its t-statistic. You can also
check the tests by printing or plotting the confidence limits. Both tests need to be
significant, and thus both ends of the confidence interval must be within the zone, to
conclude that the treatments are equivalent.

In the non-inferiority test, the difference between the mean of the treatment and the
mean of the control must not be less than a (negative) limit. Any positive difference is
acceptable, and a negative difference must be greater than the limit. The null hypothesis
is that the treatment is inferior to the control i.e. that the difference is less than the limit.
There is just one t-statistic, assessing whether the difference is greater than the limit, and
the confidence interval is unbounded at the positive end.

Similarly, in the non-superiority test, the difference between the mean of the treatment
and the mean of the control must not be greater than a (positive) limit. Any negative
difference is acceptable, and a positive difference must be less than the limit. The null
hypothesis is that the treatment is superior to the control i.e. that the difference greater
than the limit. There is just one t-statistic, assessing whether the difference is less than
the limit, and the confidence interval is unbounded at the negative end.

To illustrate how this works, we might assume that the diets b - e in the Rat example
represent different delicious "treats" added to the control diet a, and we want to check
that these will not lead to an undue amount of extra weight. To open the menu we click
on the Equivalence tests button on the ANOVA Further Output menu (Figure 1.19).
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Figure 1.24

We have selected non-superiority  as
the Type of test, and decided that an
increase of up to 2 would be acceptable.
We are comparing diet means, and the
control treatment is a.

The output shows that the difference
of 0.5 between the estimated mean of
treatment b and that of the control a is
significantly less than the limit. So it
can be concluded that treatment b is not
superior to the control. Alternatively,
although the difference between the
estimated mean of treatment c and that
of control is less than 2, there is a
probability of 0.18 under the null
hypothesis that the difference is greater
than 2. So we cannot come to the same
conclusion for c (nor for the other two
treatments). The confidence limits are plotted in Figure 1.25.

 

Test for non-superiority
 
Control: diet a.
Control mean:  80.58
Bound for equivalence:  2.00
 
 

t statistic Probability
diet  

a Control ...
b 2.982 0.0047
c 0.944 0.1800
d 0.099 0.4611
e 0.050 0.4805

 
 
 
 

95% confidence intervals for difference from control
 

Difference Lower 95% Upper 95%
diet  

a Control ... ...
b 0.50 ... 1.382
c 1.52 ... 2.407
d 1.95 ... 2.832
e 1.97 ... 2.857
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Figure 1.25

1.11 Practical

For the types of gasoline in Practical 1.7, do a non-inferiority test to assess whether
gasolines A - D can be regarded as acceptably similar to gasoline E, assuming that we are
willing to accept a difference of up to 1.5. (Hint: remember that, for a non-inferiority test,
the limit must be negative.)

1.12 Completely randomized designs

The examples in this Chapter are analysed as though the data has come from a completely
randomized design. In these designs, the units are assumed to have no special structure,
and they are allocated at random to the sets to receive each treatment. This can be done,
for example, using tables of randomized numbers: select 3ni random numbers, allocate
units with the n1 smallest values to the first treatment, the units with the next n2 smallest
to treatment 2, and so on.

When considering how many replicates to use, it is useful to remember the formula for
the standard error for the difference between two means:

s.e.d.  =  %{ (residual-mean-square) × (n1 + n2) / (n1 × n2) }
Usually it will be appropriate to have the same replication for each treatment. The main
exception to this is that extra replicates are usually added for control treatments when the
main interest is in comparing the other treatments with the control.

We explain later how to use Genstat's design and randomization menus to assess how
many replicates are needed, and set up the design automatically.



2 Blocking structures

The blocking structure of an experiment is used to describe the underlying structure of
the "experimental units", which are the smallest items on which the experiment is done.
For example, the experimental units might be the subjects in a medical experiment, the
plots of a field experiment, or the individual plants in a glasshouse experiment.

In this chapter you will learn
• how to improve the precision of an experiment by grouping the units into similar

sets called "blocks"
• how randomization can avoid bias by guarding against unforeseen differences

amongst the units
• how to design and analyse a complete randomized block design
• how to recognise situations that may require more than one type of blocking
• how to design and analyse a Latin square design Ú

Note: the topics marked Ú are optional.
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2.1 Completely randomized designs

In the simplest case, no formal structure is imposed on the units and treatments are just
allocated to units at random (we will look later at how this is done in practice). This is
called a completely randomized design.

One of the assumptions behind a completely randomized design is that the set of units
to which the treatments are applied are effectively identical.  For example:

• in a field experiment, that there are no systematic differences in the underlying
fertility, drainage etc. of the plots;

• in a glasshouse, it assumes that the light and temperature are the same for each row
of pots;

• in a factory, that the workforce behaves in essentially the same way at different
times of day, days of the week and so on;

• in educational studies, that children in different schools are approximately the
same, or students studying different subjects at Universities, or in different year
groups etc.

Many of the designs that people use in practice are of this type. However, as we shall see,
we can often obtain substantial improvements in precision and efficiency by studying the
structure of the experimental units, and defining the block structure accordingly.

2.2 Randomized block designs

There are some situations where it is obvious that the units are non-uniform. For
example, if a field experiment is laid out on a slope, plots at the top of the slope may be
"better" than plots at the bottom. Several problems can then arise.
1. The random allocation of treatments to plots may not seem "fair". For example, all

the replicates of treatment A may be allocated to "good" plots whilst all replicates
of treatment B might be allocated to "bad" plots. If there was no difference between
A and B, this allocation of plots could lead to treatment A appearing to be much
better than treatment B.

2. The differences between plots will increase the residual sum of squares, and hence
the estimate of the random variability (the variance ó2). This means that the
treatment differences must be larger to give a significant F-test and standard errors
of differences between treatments will be larger, i.e. the experiment will give less
precise results.

When you know that there are differences between units, you can avoid bias and improve
precision by grouping (or blocking) the units into homogenous groups i.e. groups of units
that are effectively identical. The simplest situation is the complete randomized-block
design. Here

• there is a single grouping factor, usually known as blocks;
• each block has the same number of units, usually one for each treatment;
• within each block, the treatments are allocated randomly to the units.

Consider the field experiment described above. Suppose this experiment is designed to
test the effect of four treatments A, B, C and D on the yield of winter wheat. The
experiment is laid out in three rows along the side of a hill. 
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Figure 2.1
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The treatment occurs exactly once in each block. So, provided the units within each block
genuinely are similar, the allocation of treatments to units will be fair overall. Here the
need for blocking seems clear: the yields from plots at the top of the slope can reasonably
be expected to be larger than the yields from plots at the bottom of the slope.

Other situations may require more thought, while
others may be more under your own control. For
example you might decide to run an industrial
experiment on several days, and use blocking to
remove any systematic differences between days.
You do not need to know exactly what these
differences might be (temperature? humidity?
motivation of the workforce?), merely that they are
likely to occur ! and be greater than those that
occur within a day. As we shall see later, the
analysis will show whether you have selected the
criteria for blocking successfully.

The easiest situation is when the grouping is an
innate characteristic of the experimental units.
Spreadsheet file Ratlitters.gsh contains data from
another rat-feeding experiment (John & Quenouille,
1977, Experiments Design and Analysis, page 32).
This has eight litters, each with five rats. Rats from the same litter can reasonably be
assumed to be more similar than rats from different litters. So the experiment was set up
with litters acting as blocks i.e. the five diets (A-E) were allocated at random to the five
rats within each litter.



28 2  Blocking structures

Figure 2.2

The advantage of the blocking can
be demonstrated by comparing the
analysis taking blocks into account
with the analysis ignoring blocks.
First we analyse the experiment
ignoring blocks, and analyse the
data as if the experiment were
completely randomized (Figure 2.2).

Analysis of variance
 
Variate: Gain
 
Source of variation d.f. s.s. m.s. v.r. F pr.
Diet 4  346.9  86.7  0.42  0.794
Residual 35  7237.2  206.8   
Total 39  7584.1    
 
 

Tables of means
 
Variate: Gain
 
Grand mean  65.3 
 

Diet  A  B  C  D  E
 62.6  65.4  64.2  63.3  70.9

 
 

Standard errors of differences of means
 
Table Diet  
rep.  8  
d.f.  35  
s.e.d.  7.19  
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Figure 2.3

Now we repeat the analysis,
checking the Blocks box to show
that there is a block factor, and
entering specifying Litter  in the
box alongside.

Analysis of variance
 
Variate: Gain
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
Litter stratum 7  6099.47  871.35  21.44  
 
Litter.*Units* stratum
Diet 4  346.87  86.72  2.13  0.103
Residual 28  1137.73  40.63   
 
Total 39  7584.07    
 
 

Tables of means
 
Variate: Gain
 
Grand mean  65.3 
 

Diet  A  B  C  D  E
 62.6  65.4  64.2  63.3  70.9

 
 

Standard errors of differences of means
 
Table Diet  
rep.  8  
d.f.  28  
s.e.d.  3.19  

The analysis of variance now has an additional line "Litter stratum" that records the
variation between the complete litters of rats. (Diets are now estimated in the
Litter.*Units* stratum, which represents the variation within litters.) The between-
litter sum of squares (6099.47) has been subtracted from the original residual sum of
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squares. So the residual sum of squares is now 7237.2 !6099.47 = 1137.73. As a result,
the residual mean square has decreased from 206.8 to 40.63, and the standard error for
differences between the diet means has decreased from 7.19 to  3.19. This increase in
precision means that we have a better chance of detecting differences between the diets.
In fact, as you can see, the probability for the variance ratio of diet has decreased from
0.794 to 0.103 (still not significant, but getting closer!). You can see that the precision
has improved from the fact that the variance ratio for the Litter stratum is greater than
one ! this indicates that the degrees of freedom that we have taken out of the original
residual have more variability than those that are left.

Informally, blocking can be seen as a sort of insurance against large variation between
groups of units which could increase your estimate of background variability, making it
harder to detect treatment differences. In general, you don't have to know for certain that
differences between groups will exist before you use blocks. If you suspect that certain
groups of units may differ from each other, you should use those groups as a blocking
factor. If the differences do appear, your estimated treatment effects will be more precise
than if you had not used the blocks; if they don't, then generally you will be no worse off.
Blocks most commonly correspond to position: units situated together will be subject to
the same conditions and are therefore put into the same blocks.

You should also use your blocks to guard against differences introduced by the
experimental procedure or husbandry of a field experiment. For example, you should
make sure that the harvesting of a field experiment is done by blocks so that any
differences due to harvesting time (or different machines) are accounted for by
differences between blocks. Similarly, if subjective data (e.g disease scores) are to be
collected by several observers, you should make sure that each observer collects data
from a whole block so that differences between observers are accounted for by
differences between blocks.

You will be at a disadvantage from using blocking only if you have got the blocks
wrong, so that units within blocks are dissimilar. For example, if the field experiment
discussed above had used blocks running down the hill rather than across the hill, units
within blocks could not be considered identical. For this reason, care should be taken
when forming blocks. If no obvious groups of similar units exist, a completely
randomized design may be the best solution.

To generate a randomized-block design, you must first decide how many treatments
are to be used in the experiment and then how many blocks, or replicates, are to be used
for each treatment. Sometimes the size of your blocks may restrict the number of
treatments you can test. You must use enough replicates to give a reasonable number of
residual degrees of freedom, this ensures that you have a good estimate of the random
error and your estimates of treatment effects will be more precise as replication increases.
As a general rule, between 10 to 20 residual degrees of freedom is adequate.

Once you have decided on the number of blocks and treatments to be used, you must
randomize the experiment. This means that for each block separately, you must generate
a random ordering of the treatments to be applied to the units within each block. This
randomization within blocks guards against any unsuspected sources of bias in the
experiment. For example, for a medical experiment, it means that an experimenter could
not introduce bias by giving the placebo treatment to the subjects who appeared to be
least sick. If an unsuspected fertility trend ran across the hill in the field experiment we
analysed earlier, then an unrandomized experiment with all blocks in order A, B, C, D
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Figure 2.4

would give some treatments an unfair advantage. Randomization guards against this.
However, remember that randomization should only be used to guard against unsuspected
bias ! if you have further information about differences between units within blocks, you
should use this information to construct extra blocking factors.

Chapter 6 shows how this can all be done using the Genstat design menus.

2.3 Practical

Spreadsheet file Wheatstrains.gsh contains the
results from a randomized block design to assess four
strains of wheat (Snedecor, Statistical Methods, page
209). Analyse the experiment, and give your assessment
of whether the blocking was worthwhile.

2.4 Blocking in two directions: Latin square designs

In some situations, we may need to consider blocking in two directions at once. Suppose
that we want to run an experiment on pot plants in a glasshouse where there is a door in
the east wall which may give rise to temperature differences. The experiment is arranged
in rows facing the door. Suppose also that the glasshouse runs east-west, so that sunlight
appears mainly from one side, the south.

|   DOOR   |

9 9 Temperature gradient 9 9

North 6

S E A D B F C
6 B F C E A D
U F B E C D A
6 A D B F C E
N C E A D B F
6 D C F A E B

The pots on the south side of the glasshouse may receive more direct light than pots on
the north side. So we need to have blocking in two directions: north-south and east-west.
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Figure 2.5

Figure 2.6

One possibility here would be to use a Latin square design. This is
• a design for t treatments 
• arranged in t rows and t columns (giving t2 units)
• each treatment occurs exactly once in each row and once in each column
(You can check that the design above has these properties.)

Position effects that run in opposite directions are only one example of a situation
where a Latin Square design is useful. Other situations include blocking for

• weekday × time-of-day,
• school × year-group,
• factory × weekday,
• time × location, 

and so on.
Spreadsheet file CC122.gsh in Figure 2.5

contains data from an example on page 122 of 
Cochran & Cox (1957) Experimental Designs
(second edition). In this experiment, six samplers
were asked to assess the height of plants of wheat.
The first blocking factor came about because there
were six different areas to assess. The second was
set up because it was felt that the accuracy of the
samplers might vary during the experiment. So, the
row factor of the square is Areas, and the column
factor is Orders. The treatment factor is
Samplers, and the variate for analysis Height is
the difference between the sampler's assessment and
the true mean height of the plants in the area
concerned.

The analysis can be produced by
selecting the Latin square option for
the Design drop-down list in the
general Analysis of Variance menu
(Figure 2.6). In the analysis of
variance below, you can see that the
variation between areas and
between times of assessment have
both been removed, thus increasing
the precision with which the
sampler effects are estimated.
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Analysis of variance
 
Variate: Height
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
Areas stratum 5  78.869  15.774  4.74  
 
Orders stratum 5  28.599  5.720  1.72  
 
Areas.Orders stratum
Samplers 5  155.596  31.119  9.35 <.001
Residual 20  66.563  3.328   
 
Total 35  329.627    
 
 

Message: the following units have large residuals.
 
Areas 5 Orders 6    3.40  s.e.   1.36
 
 

Tables of means
 
Variate: Height
 
Grand mean  4.76 
 

Samplers  1  2  3  4  5  6
 6.07  5.58  6.12  6.92  2.67  1.20

 
 

Standard errors of differences of means
 
Table Samplers  
rep.  6  
d.f.  20  
s.e.d.  1.053  

The advantages of a Latin square design are similar to those of a randomized-block
design, namely, you are able to estimate treatment effects more precisely by removing
variation between blocking factors, while the structure of the design ensures that
treatments are spread fairly over the different units. The difference is firstly that a Latin
Square design allows you to take two independent blocking factors into account, and
secondly, that the number of treatments is constrained to be the same as the numbers of
rows and columns.
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Figure 2.7

2.5 Practical

Spreadsheet file Fabric.gsh contains the
results from an experiment that used a Latin
square design to assess the wear characteristics
of four different rubber-covered fabrics. The
column factor of the square corresponds to four
different runs, and the row factor corresponds to
four positions on the testing machine used to
generate wear under simulated natural
conditions. (data from page 164 of Davies 1954,
Design and Analysis of Industrial Experiments.)
Analyse the results.

The variate Wear has a description "of
material" associated with it. (You can see how
to define one of these, by putting the cursor into
the Wear column of the spreadsheet, and
clicking on Spread on the menu bar, followed
by Column and then Rename.) Notice how the
description is appended to the variate name in the output, to provide additional
annotation.



3 Treatment structure

So far we have considered only very straightforward situations, where the treatments do
not have any special structure. More interesting investigations may have several different
types of treatment. For example, we may have several different drugs to study, and we
may also want to try a range of different doses; or we may want to try the effect of
varying the amounts of several different types of fertiliser; or we may wish to study
different varieties of wheat using a range of different types of fungicide to control
eyespot. Each of these types of treatment should be represented by a different treatment
factor, with levels defined to represent the various possibilities. For example:

Drug ! levels Morphine, Amidone, Phenadoxone, Pethidine;
Dose ! levels 2.5, 5, 10, 15;
Nitrogen ! levels 0, 50, 100, 150;
Phosphate ! levels 50, 100;
Fungicide ! levels Carbendazim, Prochloraz;
Amount ! levels 2, 3, 4.

In this chapter you will learn
• how to recognise the need for more than one treatment factor
• how to analyse designs with two treatment factors using the One- and two-way

Analysis of Variance menu
• how to define and interpret interactions between factors
• how to analyse designs with two treatment factors using the general Analysis of

Variance menu Ú
• how to use the Anova Contrasts menu Ú
• how to estimate comparisons between the levels of a treatment factor Ú
• how to interpret interactions between treatment contrasts Ú
• the use of model formulae to define the treatment terms to be fitted
• how to include control treatments in a factorial experiment Ú
• the use of covariates to improve precision by using additional background

information about the experimental units, that was not used for blocking Ú
Note: the topics marked Ú are optional.
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Figure 3.1

Figure 3.2

3.1 Factorial designs with two treatment factors

One of the great advantages of analysis of
variance is that it allows you to examine
several different treatment factors at once.
Suppose that we have an experiment on
canola (oil-seed rape) with two treatment
factors, N (nitrogen) and S (sulphur), in a
randomized-block design (factor block)
with three blocks and twelve plots (factor
plot) per block. The data are available in
Genstat spreadsheet file Canola.gsh

(Figure 3.1).

This is a two-way analysis of
variance in randomized blocks,
which can be analysed by the One-

and two-way Analysis of Variance

menu. Figure 3.2 shows the menu
with all the relevant fields filled in,
and the resulting output is shown
below.

 

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
block stratum 2  0.30850  0.15425  3.44  
 
block.*Units* stratum
N 2  4.59223  2.29611  51.22 <.001
S 3  0.97720  0.32573  7.27  0.001
N.S 6  0.64851  0.10808  2.41  0.061
Residual 22  0.98625  0.04483   
 
Total 35  7.51269    
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Tables of means
 
Variate: yield
 
Grand mean  1.104 
 

N  0  180  230
 0.601  1.313  1.398

 
S  0  10  20  40

 0.829  1.155  1.167  1.266
 

N S  0  10  20  40
 0  0.560  0.770  0.524  0.552

 180  0.894  1.289  1.525  1.545
 230  1.032  1.404  1.454  1.700

 
 

Standard errors of differences of means
 
Table N S N  

S  
rep.  12  9  3  
d.f.  22  22  22  
s.e.d.  0.0864  0.0998  0.1729  

Genstat has represented the grain yield y, recorded on the experimental plots, by the
model

yijk  =  ì  +  âi  +  nj  +  sk  +  nsjk  +  åijk

This model is an extension of the one-way analysis discussed earlier except that now we
have a term
âi to represent the effect of blocks (block stratum in the aov table),
and three terms to represent the effects of the treatments. The parameters
nj represent the main effect of nitrogen (N)
sk represent the main effect of sulphur (S), and 
nsjk represent the interaction between nitrogen and sulphur (N.S).

Just as in the one-way analysis, the analysis of variance essentially fits each term in
turn, to allow you decide how complicated a model is required to describe the results of
the experiment. The analysis-of-variance table has a line for each of these, to allow you
to assess whether the corresponding parameters are needed in the model. The full model,
above, will estimate the fitted values for sulphur and nitrogen (the values predicted by the
model) as
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S×N
means

N0 N180 N230

S0 0.560 0.894 1.032

S10 0.770 1.289 1.404

S20 0.524 1.525 1.454

S40 0.552 1.545 1.700

=

ì + S + N:  N0 N180 N230 + N.S N0 N180 N230

1.104 S0 !0.276 !0.503 0.209 0.294 S0 0.234 !0.144 !0.090

S10 0.051 S10 0.118 !0.075 !0.044

S20 0.063 S20 !0.141 0.148 !0.007

S40 0.162 S40 !0.211 0.071 0.141

A model like this, where you are fitting factors and their interactions, is called a factorial
model. Here we have a 4×3 factorial.

It will be much easier to describe what is happening if there is no interaction. The
model will then be 

yijk  =  ì  +  âi  +  nj  +  sk  +  åijk

leading to fitted values

N×S
means

N0 N180 N230 = ì + S + N:  N0 N180 N230

S0 0.326 1.038 1.122 1.104 S0 !0.276 !0.503 0.209 0.294

S10 0.652 1.364 1.448 S10 0.051

S20 0.665 1.377 1.461 S20 0.063

S40 0.763 1.475 1.559 S40 0.162

and you will see that we can decide on the best level of nitrogen without needing to
consider how much sulphur is to be applied, and on the best level of sulphur without
needing to think about the level of nitrogen on the plot. This is what we mean by saying
that the two factors do not interact: the interaction assesses the way in which the changes
in yield caused by the various levels of nitrogen differ according to the amount of sulphur
or, equivalently, the way in which the response to amount of sulphur differs according
to the level of nitrogen. Figure 3.3 plots the means for the model with an interaction, and
Figure 3.4 plots those for the model with no interaction. When there is no interaction the
lines are "parallel".
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Figure 3.3 Figure 3.4

Figure 3.5

This affects the way the conclusions of the experiment are described in a resulting paper
or report: if there was an interaction you might need to write, for example "for low and
high levels of sulphur, the yields improved linearly with increasing levels of nitrogen,
whereas for sulphur at 10kg they seemed to level off above 180kg of nitrogen". If there
was no interaction this might become "application of 10kg sulphur improved yields but
there seemed to be no further benefit from higher amounts; yields increased linearly with
nitrogen, irrespective of the amount of sulphur". It also affects the tables or figures that
should be presented. If there is an interaction, you will need to present the two-way table
of means (nitrogen × sulphur); that is, you will need to present their effects jointly. If
there is no interaction, you can simply present the one-way table for each of the main
effects that is needed in the model.

A plot like Figure 3.3 may help to explain the interaction, or even suggest a way of
modelling it. We shall explore these ideas further in the next section.

3.2 Fitting contrasts

Sometimes there may be
comparisons between the levels of a
treatment factor that you are
particularly keen to assess. For
example, you might have had an
initial suspicion that there would be
little difference between the 180 and
230 levels of nitrogen in the
previous section, but similar (and
larger) differences between 0 and
180, and between 0 and 230. You
might then want to fit a single mean for the 180 and 230 levels of nitrogen, and assess the
contrast between this value and the mean for level 0.
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Figure 3.6

Figure 3.7

Figure 3.8

As we have already seen, in
Section 1.6, you can do this by
using the general Analysis of Variance

menu (Figure 3.5), instead of the
One- and two-way Analysis of Variance

menu.
To define the contrasts, you click

on the Contrasts button to open the
ANOVA Contrasts menu. The Contrast

factor and Contrast type fields in the
menu shown in Figure 3.6,  indicate
that we want to assess comparisons
between the levels of the factor N, and the Number of contrasts field indicates that we want
to fit one contrast.

When we click on OK, a Genstat
spreadsheet appears (Figure 3.7)
containing the contrast matrix Cont
whose name was specified in the
Contrast matrix field; this name was
selected automatically by the
ANOVA Contrasts menu, but you can
specify your own name if you prefer, or if you have already formed a suitable matrix. You
use the spreadsheet to specify the coefficients that define the comparison. In Figure 3.7,
the matrix defines the comparison:

(N180 + N230) / 2  !  N0

Notice that you can also define
names for the contrasts, using the
Rows column.

Back in the Analysis of Variance

menu (Figure 3.8) you can see that
the Treatment 1 field now contains a
f u n c t i o n  o f  N ,  n a m e l y
COMP(N;1;Cont). The syntax of
these functions is described in
Section 3.4.
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Figure 3.9

There is a box controlling the
printing of contrasts in the Display

section of the ANOVA options menu
(obtained as usual by clicking on the
Options button in the main Analysis

of Variance menu). In Figure 3.9, we
have checked this together with the
AOV table and F-probabilities boxes.
These request the output below.

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
block stratum 2  0.30850  0.15425  3.44  
 
block.*Units* stratum
N 2  4.59223  2.29611  51.22 <.001
  0 versus 180 and 230 1  4.54954  4.54954  101.48 <.001
S 3  0.97720  0.32573  7.27  0.001
N.S 6  0.64851  0.10808  2.41  0.061
  0 versus 180 and 230.S

3  0.59907  0.19969  4.45  0.014
Residual 22  0.98625  0.04483   
 
Total 35  7.51269    
 
 

Tables of contrasts
 
Variate: yield
 

block.*Units* stratum
 

N contrasts
 
0 versus 180 and 230  0.754,  s.e. 0.0749,  ss.div. 8.00
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Figure 3.10

N.S contrasts
 
0 versus 180 and 230.S,  e.s.e. 0.150,  ss.div. 2.00
 

S  0  10  20  40
 -0.35  -0.18  0.21  0.32

Notice that, in the analysis-of-variance table, the line for the main effect N is now
accompanied by a line entitled "0 versus 180 and 230" giving the degrees of
freedom, sum of squares and so on for that comparison. In addition the N.S interaction
is accompanied by a line "0 versus 180 and 230.S" which represents the
interaction between the comparison and the factor S (that is, it measures how the size of
the comparison varies according to the level of S).

The section headed "Tables of contrasts" then shows the estimate of the
contrast, 0.754, with standard error 0.0749. The "ss. div" value is analogous to the
replication of a table of means or effects: it is the divisor used in calculating the estimated
values of the contrasts. This is useful mainly where there is a range of e.s.e.'s for a table
of contrasts: the contrasts with the smallest values of the ss. div. are those with the largest
e.s.e., and vice versa. (The ss. div. of each estimated contrast is in fact the sum of squares
of the values of the coefficients used to calculate it, weighted according to the
replication.) The N.S contrasts table shows how the overall value of the contrast varies
according to the level of S. So, at level 0 of S, the estimated contrast is 0.754!0.35.

When a factor like sulphur (or nitrogen) has quantitative levels, you might want to
investigate whether the yield increases linearly with the amount of sulphur (or nitrogen);
you could also include a quadratic term to check for curvature in the response.

Put the cursor into the Treatment 2

box of the Analysis of Variance menu,
and click on the Contrasts button to
produce the Anova Contrasts menu
again. To fit polynomial contrasts of
sulphur, we select Polynomial within
the Contrast type box in the ANOVA

Contrasts menu, set the Contrast

factor to S, and (for a quadratic
polynomial) set the Number of

contrasts to 2; see Figure 3.10. After
we click on OK, the Treatment 2 box
of the Analysis of Variance menu will contain the function POL(S;2). If we change the
setting of the Treatment 1 box back to N, and then click on Run,  we obtain the output
below.

Analysis of variance
 
Variate: yield
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Source of variation d.f. s.s. m.s. v.r. F pr.
 
block stratum 2  0.30850  0.15425  3.44  
 
block.*Units* stratum
N 2  4.59223  2.29611  51.22 <.001
S 3  0.97720  0.32573  7.27  0.001
  Lin 1  0.69741  0.69741  15.56 <.001
  Quad 1  0.19577  0.19577  4.37  0.048
  Deviations 1  0.08403  0.08403  1.87  0.185
N.S 6  0.64851  0.10808  2.41  0.061
  N.Lin 2  0.52294  0.26147  5.83  0.009
  N.Quad 2  0.07788  0.03894  0.87  0.433
  Deviations 2  0.04769  0.02385  0.53  0.595
Residual 22  0.98625  0.04483   
 
Total 35  7.51269    
 
 

Tables of contrasts
 
Variate: yield
 

block.*Units* stratum
 

S contrasts
 
Lin   0.0094,  s.e. 0.00239,  ss.div. 7875.
 
Quad -0.00042,  s.e. 0.000199,  ss.div. 1131429.
 
Deviations,  e.s.e. 0.0706,  ss.div. 9.00
 

S  0  10  20  40
 -0.028  0.074  -0.055  0.009

 

N.S contrasts
 
N.Lin,  e.s.e. 0.00413,  ss.div. 2625.
 

N  0  180  230
 -0.0115  0.0058  0.0058

 
N.Quad,  e.s.e. 0.000345,  ss.div. 377143.
 

N  0  180  230
 0.00028  -0.00035  0.00007

 
Deviations,  e.s.e. 0.122,  ss.div. 3.00
 

N S  0  10  20  40
 0  -0.02  0.06  -0.05  0.01

 180  0.03  -0.07  0.05  -0.01
 230  0.00  0.01  -0.01  0.00
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Equation of the polynomial for S
 
 0.8561  + 0.0266 * S  - 0.0004 * S**2
 
 

Equations of the polynomials for N.S
 
 

N  
0  0.6112 + 0.0035 * S - 0.0001 * S**2

180  0.8944 + 0.0469 * S - 0.0008 * S**2
230  1.0629 + 0.0295 * S - 0.0003 * S**2

In the analysis of variance, the sum of squares for sulphur is partitioned into the amount
that can be explained by a linear relationship of the yields with sulphur (the line marked
Lin), the extra amount that can be explained if the relationship is quadratic (the line
Quad), and the amount represented by deviations from a quadratic polynomial. A cubic
term would be labelled as Cub, and a quartic as Quart. You are not allowed to fit more
than fourth-order polynomials. The interaction of nitrogen and sulphur is also partitioned:
N.Lin lets you assess the effect of fitting three different linear relationships, one for each
level of nitrogen; N.Quad assesses the effect of fitting a different quadratic contrast for
each level of N; and the deviations line represents deviations from these quadratic
polynomials. So, the analysis shows strong evidence for linear and quadratic effects of
sulphur, and for interactions between these contrasts and nitrogen (as we would have
expected from the plot in Figure 3.3). The tables of contrasts again provide estimates of
the parameters of the contrasts. For example, the overall linear effect is 0.0094, and the
effect for level 0 of nitrogen is 0.0094!0.0115

You can fit more than one set of contrasts at a time. If we had retained the nitrogen
comparison, we would have obtained the output below.

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
block stratum 2  0.30850  0.15425  3.44  
 
block.*Units* stratum
N 2  4.59223  2.29611  51.22 <.001
  0 versus 180 and 230 1  4.54954  4.54954  101.48 <.001
S 3  0.97720  0.32573  7.27  0.001
  Lin 1  0.69741  0.69741  15.56 <.001
  Quad 1  0.19577  0.19577  4.37  0.048
  Deviations 1  0.08403  0.08403  1.87  0.185
N.S 6  0.64851  0.10808  2.41  0.061
  0 versus 180 and 230.Lin 1  0.52294  0.52294  11.67  0.002
  0 versus 180 and 230.Quad 1  0.04448  0.04448  0.99  0.330
Residual 22  0.98625  0.04483   
 
Total 35  7.51269    



3.2  Fitting contrasts 45

Tables of contrasts
 
Variate: yield
 

block.*Units* stratum
 

N contrasts
 
0 versus 180 and 230  0.754,  s.e. 0.0749,  ss.div. 8.00
 

S contrasts
 
Lin   0.0094,  s.e. 0.00239,  ss.div. 7875.
 
Quad -0.00042,  s.e. 0.000199,  ss.div. 1131429.
 
Deviations,  e.s.e. 0.0706,  ss.div. 9.00
 

S  0  10  20  40
 -0.028  0.074  -0.055  0.009

 

N.S contrasts
 
0 versus 180 and 230.Lin   0.0173,  s.e. 0.00506,  ss.div. 1750.
 
0 versus 180 and 230.Quad -0.00042,  s.e. 0.000422,  ss.div. 251429.

The interaction between  nitrogen and sulphur is now partitioned according to the
nitrogen comparison. The line "0 versus 180 and 230.Lin" assesses the effect of
fitting two different linear relationships, one for each level 0 of nitrogen, and one for
levels 180 and 230 of nitrogen, instead of a single overall linear contrast. Similarly, the
line "0 versus 180 and 230.Quad" represents the difference between the two
quadratic contrasts. So you can define contrasts on any treatment factor, and Genstat will
automatically estimate their interactions.

As explained in Section 1.6, to fit polynomial contrasts, Genstat calculates orthogonal
polynomials and does a multiple regression of the effects of factor using the polynomials
as x-variates. Regression contrasts are similar to polynomial contrasts, except that here
you can supply your own matrix of x-variates. Genstat orthogonalizes the x-variates for
you, so that each one represents the effect adding this x-variable to a model containing
all the earlier ones.
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Figure 3.11

3.3 Practical

Spreadsheet file Ratfactorial.gsh contains
data from an experiment to study the effect of 6
different diets on the gain in weight of rats (data
from Snedecor and Cochran, Statistical Methods
p.305). Each diet was at either High or Low protein
(factor Amount), and the protein was derived from
either Beef, Cereal or Pork (factor Source).

Analyse the data as a 3×2 factorial, and assess
whether there is evidence for an interaction between
Amount and Source.

Fit two comparison contrasts between levels of
the Source factor: Animal vs Vegetable, and Beef
vs Pork.

3.4 Syntax of model formulae

The structure of the design and the treatment terms to be fitted in a Genstat analysis of
variance are specified by model formulae. In the simpler menus, like those we have used
earlier in this chapter, the formulae are constructed automatically behind the scenes.
However, for the more advanced menus and analyses you will need to specify your own
formulae.

Several of the menus allow you to specify any number of treatment factors, interactions
and so on. So, for example, the General analysis of variance, the General treatment structure

(no blocking) and the General treatment structure (in randomized blocks) menus all have a box
entitled Treatment structure into which a formula (known as the treatment formula) needs
to be entered.

The general Analysis of Variance menu also allows you to define any underlying
structure for the design (for example completely randomized, randomized-block, split-
plot, split-split-plot, and so on). This is specified by a model formula (the block formula)
which is entered into the Block structure box; this can be left blank with unstructured
(completely randomized) designs. This formula defines the strata and thus the error terms
for the analysis.

In its simplest form, a model formula is a list of model terms, linked by the operator
"+". For example,

A + B

is a formula containing two terms, A and B, representing the main effects of factors A and
B respectively. Higher-order terms (like interactions) are specified as series of factors
separated by dots, but their precise meaning depends on which other terms the formula
contains, as we explain below. The other operators provide ways of specifying a formula
more succinctly, and of representing its structure more clearly.

The crossing operator * is used to specify factorial structures. The formula
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N * S

was used by Genstat to specify the two-way analysis of variance introduced in Section
3.1. This is expanded to become the formula

N + S + N.S

which has three terms: N for the nitrogen main effect, S for the main effect of sulphur,
and N.S for the nitrogen by sulphur interaction. Higher-order terms like N.S represent
all the joint effects of the factors N and S that have not been removed by earlier terms in
the formula. Thus here it represents the interaction between nitrogen and sulphur as both
main effects have been removed.

The other most-commonly used operator is the nesting operator (/). This occurs most
often in block formulae. For example, the formula

block /  plot

is expanded to become the formula

block + block.plot

This specification assumes that there is no special similarity between the plot numbered
1, for example, in block 1 and plot 1 in any other block. So the  formula contains no
"main effect" for plot, and the term block.plot thus represents plot-within-block
effects (that is the differences between individual plots after removing any overall
similarity between plots that belong to the same block). This is similar to the block model
for the randomized design in Section 2.2 except that we have the factor plot instead of
*Units*.

Treatments can be nested too. For example, in a study of potential energy crops, we
may want to study two varieties of Miscanthus (M1 ... M2) and three of Reed Canary
Grass (R1 ... R3). We will certainly be interested in assessing overall differences between
Miscanthus and Reed Canary Grass. We may also be interested in how much variation
there is between Mp1 and Mp2, and amongst {R1, R2 and R3}; that is whether there is
variability of the varieties beyond the variability of the individual plants of each variety.
The model of interest (assuming that there is no blocking) would then be 

yijk  =  ì  +  si  +  svij  +  åijk

where parameters
si represent the effects of the species (i = 1, 2), and

svij represent the variety within species effects (j = 1,2 for i=1, j = 1...3 for i=2).

Notice that we do not have any term for a variety main effect ! the actual number
allocated to each variety does imply any special similarity for example between the strain
numbered 2 for Miscanthus and the strain numbered 2 for Reed Canary Grass.

A formula can contain more than one of these operators. The three-factor factorial
model

A * B * C

becomes

A + B + C + A.B + A.C + B.C + A.B.C

The interaction A.B.C then assesses whether the joint effects of factors A and B differ
according to the level of C (or, equivalently, whether the joint effects of A and C differ
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according to the level of B, and so on). 
The nested structure

block / wplot / subplot

which occurs as the block model of a split-plot design (Section 5.1) becomes

block + block.wplot + block.wplot.subplot

The crossing and nesting operators can also be mixed in the same formula. For example,
the factorial-plus-added-control study in Section 3.5 has treatment structure

Control / (Drug * Dose)

which expands to

Control + Control.Drug + Control.Dose + Control.Drug.Dose

In general, if l and m are two model formulae:

l * m  =  l + m + l.m

l / m  =  l + fac(l).m

(where l.m is the sum of all pairwise dot products of a term in l and a term in m, and
fac(l) is the dot product of all factors in l). For example:

(A + B) * (C + D) = (A + B) + (C + D) + (A + B).(C + D)

                  = A + B + C + D + A.C + A.D + B.C + B.D

(A + B)/C = A + B + fac(A + B).C  =  A + B + A.B.C

Terms in the treatment formula can be partitioned into contrasts by specifying a
function of the factor.
COMPARISON(factor; scalar; matrix) partitions the factor into the comparisons

specified by the matrix. There is a row of the matrix for each comparison, and the scalar
specifies how many of them are to be fitted.
POL(factor; scalar; variate) partitions the factor into polynomial contrasts (linear,

quadratic and so on). The scalar gives the maximum order of contrast (1 for linear only,
2 for linear and quadratic, and so on) and the variate gives a numerical value for each
level of the factor. If the variate is omitted, the levels defined when the factor was
declared will be used.
REG(factor; scalar; matrix) partitions the factor into the (user-defined) regression

contrasts specified by the coefficients in each row of the matrix. The scalar defines the
number of contrasts to be fitted.

3.5 Factorial plus added control

One important model that includes crossing and nesting is the factorial plus added
control structure. For example, suppose we have four different fumigants used to control
nematodes (CN, CS, CM and CK), which we wish to try at two levels (single and double),
and that we also want to include a control treatment (none = no fumigant at any dose).
The control represents a "zero" level for both factors, and the factorial structure of Type
× Amount operates only when some sort of fumigant has been applied. The table below
indicates which combinations of Type and Amount are feasible, and also shows the extra
factor Fumigant that is necessary to define the model.
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Figure 3.12

Fumigant Amount Type none CN CS CM CK

not fumigated none U Y Y Y Y

fumigated single Y U U U U

fumigated double Y U U U U

In Genstat terms, we need a model

Fumigant / ( Amount * Type )

in which the factorial structure Amount * Type is nested within the factor Fumigant
(in fact Amount and Type have their factorial structure only within the fumigated level
of Fumigant). The model expands to

Fumigant + Fumigant.Amount + Fumigant.Type +
Fumigant.Amount.Type

in which
Fumigant represents the overall effect of any fumigant at any

(non-zero) dose,
Fumigant.Amount represents the comparison between single and

double doses (averaged over the different types),
Fumigant.Type represents overall differences between types

(averaged over single and double doses), and
Fumigant.Amount.Type represents the interaction between Amount and

Type (given that some sort of fumigant has been
applied).

Results of the experiment, a classic
study carried out at Rothamsted in
1935, are available in spreadsheet
file Nematode.gsh (also see
Cochran & Cox 1957, Experimental
Designs, page 46). As it is thought
that effects will proportionate the
Calculate menu (Figure 3.12) is used
to transform the counts to
logarithms. Transformations are
discussed further in Chapter 4.
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Figure 3.13

The analysis can be done by
selecting the General treatment

structure (in randomized blocks)

setting of the Design drop-down list
box in the general Analysis of

Variance menu (Figure 3.13). There
is now a Treatment structure box, in
which we can define any treatment
model, using the syntax explained in
Section 3.4).

The resulting output is shown
below.

Analysis of variance
 
Variate: Lncount
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
Blocks stratum 3  5.5727  1.8576  7.80  
 
Blocks.*Units* stratum
Fumigant 1  1.0186  1.0186  4.28  0.046
Fumigant.Amount 1  0.0028  0.0028  0.01  0.915
Fumigant.Type 3  1.5153  0.5051  2.12  0.114
Fumigant.Amount.Type 3  0.2471  0.0824  0.35  0.792
Residual 36  8.5688  0.2380   
 
Total 47  16.9253    
 
 

Tables of means
 
Variate: Lncount
 
Grand mean  5.582 
 

Fumigant  Not fumigated  Fumigated
 5.788  5.479

 rep.   16  32
 

Fumigant Amount  None  Single  Double
Not fumigated  5.788

Fumigated  5.488  5.469
 

Fumigant Type  None  CN  CS  CM  CK
Not fumigated  5.788

 rep.   16
Fumigated  5.529  5.153  5.763  5.470

 rep.   8  8  8  8
 

Fumigant Amount Type  None  CN  CS  CM  CK
Not fumigated None  5.788

 rep.   16
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Fumigated Single  5.483  5.280  5.818  5.371
 rep.   4  4  4  4

Double  5.575  5.026  5.707  5.570
 rep.   4  4  4  4

 
 

Standard errors of differences of means
 
Table Fumigant Fumigant Fumigant Fumigant  

Amount Type Amount  
Type  

rep. unequal  16 unequal unequal  
d.f.  36  36  36  36  
s.e.d.  0.2439  0.3450  min.rep

 0.1494  0.1725  0.2113  0.2727  max-min
 0.1725X  0.1725X  max.rep

 
(No comparisons in categories where s.e.d. marked with an X)

Notice that, when tables of means have unequal replication, the general Analysis of

Variance menu provides three standard errors of difference for each table:
• to compare a pair of means each with the minimum replication of those in the table,
• to compare a mean with minimum replication with one with maximum replication, 
• and to compare a pair of means that both have the maximum replication.

The "X" beside the standard errors of difference for maximum replication indicates that
there is actually only one mean in the table with the maximum replication. So this is an
unavailable comparison.

3.6 Covariates

Covariates incorporate additional quantitative information into an analysis. Sometimes
you may have measurements made on the units before the experiment was carried out.
This can be used to allocate the units to blocks but, even after this grouping, they may
contain additional useful information. Analysis of covariance incorporates quantitative
information of this sort into the analysis ! providing a further way of decreasing
variability.

In the example in Section 3.5, nematode counts were done prior to the experiment as
well as afterwards. Analysis of covariance includes the (transformed) initial counts as a
linear term in the model, rather like a regression analysis except that here we have the
factors for blocks and treatments as well.

yijkl  =  ì  +  âi  +  fj  +  ftjk  +  fljl  +  ftljkl  +  b × (xijkl ! x!)  +  åijkl

where yijkl and xijkl are the logarithms of the counts.
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Figure 3.14

To do an analysis of covariance,
you simply need to check the
Covariates box in the Analysis of

Variance menu, and enter the
covariate in the box immediately to
the right, as shown in Figure 3.14. If
you have several covariates, you can
enter them as a list (separated by
commas). You can even enter a
model formula: for example, you
could put Lnpriorcount.Blocks
to fit a different regression
coefficient in each block.

Clicking on Run in Figure 3.14 produces an analysis-of-variance table that contains
extra lines to assess how much the final (log) counts depend on the initial counts, after
removing the effects of treatments. The treatment effects (and s.s.) are also adjusted to
take account of the fact that the plots with the various treatments had different numbers
of nematodes before the experiment. This adjustment causes some loss of efficiency in
the treatment estimation. The remaining efficiency is measured by the covariance
efficiency factor, shown for each treatment term in the "cov. ef." column of the
analysis-of-variance table. The values are in the range zero to one. A value of zero
indicates that the treatment contrasts are completely correlated with the covariates: after
the covariates have been fitted there is no information left about the treatments. A value
of one indicates that the covariates and the treatment term are orthogonal. Usually the
values will be around 0.8 to 0.9. A low value should be taken as a warning: either the
measurements used as covariates have been affected by the treatments, which can occur
when the measurements on covariates are taken after instead of before the experiment;
or the random allocation of treatments has been unfortunate in that some treatments are
on units with generally low values of the covariates while others are on generally high
ones.

For a residual line in the analysis of variance, the value in the "cov. ef." column
measures how much the covariates have improved the precision of the experiment. This
is calculated by dividing the residual mean square in the unadjusted analysis (which
excludes the covariates) by its value in the adjusted analysis.

To assess the full effect of the covariate on the estimation of a treatment term, you
should multiply its covariance efficiency factor by the covariance efficiency factor of the
residual with which it is to be compared. For Fumigant.Amount in the example, the
calculation would be 0.99 × 2.48. So fitting the covariate has improved the precision with
which Fumigant.Amount is estimated. You can see this in its sed (0.1097), which is
equal to the earlier sed (0.1725), divided by %(0.99 × 2.48). 

Analysis of variance (adjusted for covariate)
 
Variate: Lncount
Covariate: Lnpriorcount
 
Source of variation d.f. s.s. m.s. v.r. cov.ef. F pr.
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Blocks stratum
Covariate 1  4.76145  4.76145  11.74   0.076
Residual 2  0.81127  0.40563  4.23  4.58  
 
Blocks.*Units* stratum
Fumigant 1  1.16420  1.16420  12.13  1.00  0.001
Fumigant.Amount 1  0.03514  0.03514  0.37  0.99  0.549
Fumigant.Type 3  2.09342  0.69781  7.27  0.92 <.001
Fumigant.Amount.Type 3  0.31977  0.10659  1.11  1.00  0.358
Covariate 1  5.21084  5.21084  54.31  <.001
Residual 35  3.35793  0.09594   2.48  
 
Total 47  16.92526     
 
 

Covariate regressions
 
Variate: Lncount
 
Covariate coefficient s.e.
Blocks stratum
Lnpriorcount 0.54  0.157
Blocks.*Units* stratum
Lnpriorcount 0.585  0.0794
Combined estimates
Lnpriorcount 0.573  0.0684
 
 

Tables of means (adjusted for covariate)
 
Variate: Lncount
Covariate: Lnpriorcount
 
Grand mean  5.582 
 

Fumigant  Not fumigated  Fumigated
 5.805  5.470

 rep.   16  32
 

Fumigant Amount  None  Single  Double
Not fumigated  5.805

Fumigated  5.508  5.432
 

Fumigant Type  None  CN  CS  CM  CK
Not fumigated  5.805

 rep.   16
Fumigated  5.798  5.220  5.667  5.195

 rep.   8  8  8  8
 

Fumigant Amount Type  None  CN  CS  CM  CK
Not fumigated None  5.805

 rep.   16
Fumigated Single  5.713  5.399  5.745  5.174

 rep.   4  4  4  4
Double  5.882  5.041  5.589  5.216

 rep.   4  4  4  4
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Figure 3.15

 
 

Standard errors of differences of means
 
Table Fumigant Fumigant Fumigant Fumigant  

Amount Type Amount  
Type  

rep. unequal  16 unequal unequal  
d.f.  35  35  35  35  
s.e.d.  0.1596  0.2226  min.rep

 0.0949  0.1097  0.1382  0.1760  max-min
 0.1129X  0.1113X  max.rep

 
(No comparisons in categories where s.e.d. marked with an X)

You can find more information about analysis of covariance in Genstat in the Guide to
the Genstat Command Language, Part 2, Section 4.3.

3.7 Practical

Spreadsheet file Ratmuscles.gsh
contains data from an experiment to
study the effect of electrical
stimulation in preventing the
wasting away of denervated
muscles, using rats as the subjects
(Solandt, DeLury & Hunter, 1943,
Archives of Neurology &
Psychiatry, 49, 802-807; also see
C o c h r a n  &  C o x ,  1 9 5 7 ,
Experimental Designs 2nd Edition,
page 176). There were three
treatment factors: length of each
treatment, number of treatment
periods per day and the type of
current. The experiment used a
complete randomized block design
with two blocks. The denervated
muscles were the gastrocnemius
muscles on one side of the rat. To
improve precision, the normal
muscle on the other side of each rat
was also measured, for use as a covariate in the analysis.

Analyse the experiment. Has the covariate improved the precision of the estimates?
Which tables of means would you present in the report?
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Figure 3.16

3.8 Summaries of results

When you have a complicated
experiment, it may be difficult to
decide what to report. The Summary

of results box in the ANOVA Further

Output menu provides a summary of
the analysis, containing information
useful for a report. It prints the
name of the y-variate, the block and
treatment models and any
covariates. It lists the significant
terms, and then it prints the relevant
tables of means. These tables are
those that contain significant
treatment effects. Also, the tables
are formed so that each one contains
all the significant effects involving
any of its factors.

In the example in Section 3.6,
Fumigant and Fumigant.Type
are significant. Fumigant is
included in the two-way classified by Fumigant and Type, and so Genstat does not print
the one-way table for Fumigant. (As the effect of Fumigant depends on the Type, it
does not make sense to consider Fumigant on its own.)

The standard errors for differences between means in a table are not all the same.
Genstat then prints them all in a triangular array, which may be easier to use than the
summary usually provided with the tables of means.

Results from analysis of variance
 
Variate: Lncount
Treatment structure: Fumigant/Amount*Type
Block structure: Blocks
Covariates: Lnpriorcount, Priorcount
Factorial: 3
 
 

Significant treatment terms
 
Fumigant  1%  (pr. 0.001)
Fumigant.Type  <0.1%  (pr. <.001)
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Predicted means for Fumigant.Type
 
 

Type None CN CS CM CK
Fumigant  

Not fumigated 5.806 * * * *
Fumigated * 5.794 5.219 5.670 5.194

Standard errors of differences between means
 
     

Not fumigated, None 1  *
Not fumigated, CN 2  *  *
Not fumigated, CS 3  *  *  *
Not fumigated, CM 4  *  *  *  *
Not fumigated, CK 5  *  *  *  *
Fumigated, None 6  *  *  *  *

Fumigated, CN 7  0.1408  *  *  *
Fumigated, CS 8  0.1408  *  *  *
Fumigated, CM 9  0.1408  *  *  *
Fumigated, CK 10  0.1408  *  *  *

 1 2 3 4
 

     
Not fumigated, CK 5  *
Fumigated, None 6  *  *

Fumigated, CN 7  *  *  *
Fumigated, CS 8  *  *  0.1641  *
Fumigated, CM 9  *  *  0.1641  0.1641
Fumigated, CK 10  *  *  0.1641  0.1641

 5 6 7 8
 

   
Fumigated, CM 9  *
Fumigated, CK 10  0.1641  *

 9 10
 
Rows and columns are labelled by the labels/levels of the factors: Fumigant and Type.

3.9 Practical

Produce a summary of the results from the analysis in Practical 3.7.



4 Checking the assumptions

In this chapter you will learn
• what assumptions are needed to ensure the validity of an analysis of variance
• why the variance must be homogeneous (for example the variability of the

residuals should be the same at high values of the response variable as at low
values)

• how to assess whether the variance is homogeneous
• that the residuals should come from identical and independent Normal distributions
• how to assess the Normality of the residuals
• why the model must be additive (that is, differences between treatment effects must

remain the same however large or small the underlying size of the variable
measured)

• how to identify outliers
• how transforming the response variate may correct for failures in the assumptions

Ú
• how to print back-transformed tables of means Ú
• how to do a permutation or exact test Ú

Note: the topics marked Ú are optional.
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Figure 4.1 Figure 4.2

4.1 Homogeneity of variance

It is assumed that the variance is homogeneous, that is, the size of the random variation
is similar over all the units. Homogeneity of variance can easily be assessed by plotting
the residuals (estimates of the random error) against the fitted values: if the variance is
homogeneous, the residuals should lie within a uniform band as in Figure 4.1 below.

It is quite common, especially with count data, to find that the variation of the residuals
increases as the value of the response increases, as in Figure 4.2. In this case, the standard
errors of differences between treatments will be over-estimated for differences between
treatments with low means, and under-estimated for differences between larger means,
causing incorrect conclusions to be drawn. If a plot of residuals against fitted values
indicates non-homogeneity of variances, a transformation of the data should be
considered, as we show in Section 4.5.

One situation where unequal variances can occur, but where a transformation may not
help, is when analyses are performed on data collected in different years or at different
locations. It is then important to check that the variances within the years (or at each
location) are homogeneous. Otherwise a weighted analysis will be required, with the data
from each year being weighted by the reciprocal of the variance at that year. (This can be
done automatically by using the Multiple Experiments / Meta Analysis (REML) menu,
although we do not cover that here.)
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Figure 4.3

Figure 4.4 Figure 4.5

4.2 Normality and independence of the residuals

Analysis of variance assumes that the
data contains random error (estimated
by the residuals) that is independent and
Normally distributed for each data
value. Non-Normality of the residuals is
usually also associated with
non-homogeneity of variances and can
be examined graphically in several
ways. First the residuals can be plotted
as a histogram ! this should look
approximately like a normal
distribution, a non-skew bell-shaped
distribution. Alternatively a Normal plot
(or half-Normal plot) can be used. This
plots the ordered residuals (or their
absolute values) against the quantiles of a Normal distribution. If the residuals have a
Normal distribution, these graphs should be straight lines. 

These graphs, together with the plot of residuals against fitted values, can be produced
by the ANOVA Residual Plots menu . This is obtained by clicking the Further output button
on the Analysis of Variance menu, and then the Residual plots button on the ANOVA Further

Output menu. The menu  allows you to select the plots that you would like to see. The
plots in Figures 4.4 and 4.5 were produced by the default settings, shown in Figure 4.3.
Added variable plots can be used to plot the residuals against a potential covariate, to
assess whether its relationship with the response variate is linear, and whether it may be
worth including in an analysis of covariance (Section 3.6).



60 4  Checking the assumptions

The plots in Figures 4.4 and 4.5 are from analyses of artificial data. The data on the left
(Figure 4.4) was generated from a Normal distribution, the data on the right (Figure 4.5)
is from a non-Normal distribution where the variance increases with the size of the
response variable. Note that the histogram of residuals in Figure 4.5 is slightly skew, but
there is a relatively small difference between the Normal and half-Normal plots. The
difference between the two data sets is clearest in the plot of residuals against fitted
values.

4.3 Additivity of the model

If you fit an additive model to your data, you are assuming that differences between
treatment effects remain the same however large or small the underlying size of the
variable measured. For example, in a randomized-block design, the assumption is that the
theoretical value of the difference between two treatments remains the same within a
block where the recorded values are generally low, as in one where the values are
generally high. An example of non-additivity occurs where treatments give a
proportionate increase or decrease to data values. In an additive model, the effect of a
treatment is a constant increase or decrease. 

If you fit an additive model where non-additivity is present this will often lead to the
detection of interactions in the analysis. Of course, genuine interactions between
treatment terms may also occur, for example associated with one treatment modifying the
mode of action of another. However, the additive model assumes that interactions
between blocks and treatments do not occur and so examining these interactions is a good
way to look for evidence of non-additivity. You will usually find that data which shows
signs of non-additivity also violates other assumptions.

4.4 Outliers

An outlier is an extreme observation, which leads to a unit with a very large residual.
Genstat ANOVA will produce warnings if any units have large residuals compared to the
standard error of the units. You can also use the diagnostic plots produced by the ANOVA

Residual Plots menu to detect outliers in your data. Outliers will appear as extreme
observations in the graph of residuals against fitted values, or in a histogram of residuals.
They will also appear as single values away from the line in a normal or half-normal plot. 

Outliers may arise from an error in recording or punching data, if the wrong treatment
has been applied to a unit, or where something else has gone wrong in the experimental
procedure. When outliers are present, they can distort treatment means as well as inflating
the error variance so that the precision of estimates is decreased. If any observation
appears to be an outlier, you should investigate the observation to try and find out if an
error has occurred. If you can uncover an error and use the correct data value, then you
should do so. If you find an error but cannot recover the correct data value, then you
should replace the incorrect value by a missing value. If you cannot track down any
possible source of error, you should consider whether the outlier might be a true data
value, and whether your model for the data is wrong!
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4.5 Transformations

Failures of the assumptions can often be corrected by transforming the data, using the
Calculate menu. Different transformations are appropriate for different types of data. The
most common types of data requiring transformations are counts, percentages and
proportions. Some transformations are used only to stabilize the variance (i.e. to make
it homogeneous), but it is equally important to consider the additivity of the model. In
some situations a transformation can be chosen both to provide additivity and to stabilise
the variance. If this proves to be impossible, you should consider using a generalized
linear model; see the Guide to the Genstat Command Language, Part 2, Section 3.5.

Count data occur where an experiment counts the occurrences of some event with no
preset upper limit, for example, the number of accidents occurring on a section of road,
numbers of hits on a web site, numbers of weed plants in a plot, and so on. Conventional
wisdom  is to stabilize the variance, using a square-root transformation. However, this
will usually not provide an additive model ! the treatments generally take the effect of
a proportionate increase (or decrease). A  logarithmic transformation would then give an
additive scale for the treatments, and will often be found also to give adequate stability
for the variance. To guard against zero counts it is usual to add a small constant to the
response y before taking the logarithms: for example to use LOG10(y+1) or
LOG(y+0.5).

Proportion or percentage data can arise in several ways. Sometimes, the data value is
a natural continuous percentage measure, for example, the percentage area of a plot that
has been infected by a disease. Treatment effects are often then found to be
approximately proportional to the amount infected for low percentages, while for
percentages near to 100% they tend to be proportional to the amount uninfected. If the
percentages are obtained by visual assessment of areas such as infected parts of leaves,
the same pattern is found: for low percentages the eye tends to examine the amount
infected, while nearer to 100% it is the amount uninfected that is assessed. In this
situation, a logit transformation, log(p/(100!p)), would both stabilize the variance and
give an additive model.

Alternatively, the data may count the number of occurrences (r) of some event in a
population of fixed size n (binomial data), for example, the number of children to have
been vaccinated out of a class of 30, or the number of infected plants out of a sample of
40. Binomial data can be converted to percentages (p=100×r/n) for analysis.
Conventional wisdom is to stabilize the variance of binomial data by taking an angular
transformation, arcsin(%(p/100)). However, this will generally not give an additive model,
so it may be worth considering a logit transformation instead. To guard against 0 or 100%
values, you can then calculate the percentage as p=100×(r+0.5)/(n+1).

Finally, where data values span a very large range, for example, where the range of the
data is more than two or three times the mean value, the treatment effects and the
variance are often both found to be proportional to the size of response. It would then be
appropriate to take a logarithmic transformation.
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Figure 4.6 Figure 4.7

Spreadsheet Plankton.gsh contains data from a study of plankton numbers (Snedecor
& Cochran 1967, Statistical Methods, 6th Edition, page 329). Four types of plankton
were sampled in 12 hauls. In the analysis, hauls are treated as blocks, and types of
plankton as treatments (Figure 4.7). The first analysis is of the untransformed counts. 

Analysis of variance
 
Variate: Number
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
Haul stratum 11  2.153E+08  1.957E+07  1.91  
 
Haul.*Units* stratum
Type 3  7.035E+09  2.345E+09  228.71 <.001
Residual 33  3.384E+08  1.025E+07   
 
Total 47  7.589E+09    
 
 

Tables of means
 
Variate: Number
 
Grand mean  10636. 
 

Type  1  2  3  4
 671.  1701.  30775.  9396.

 
 

Standard errors of differences of means
 
Table Type  
rep.  12  
d.f.  33  
s.e.d.  1307.2
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Figure 4.8 Figure 4.9

Figure 4.8 shows the residual plot from the untransformed analysis, and Figure 4.9 shows
the residual plot from the analysis of the log-transformed numbers. The output from the
transformed is shown below. The untransformed fitted-value plot shows clear evidence
that the variance is increasing with the size of the number ! which is corrected in the
transformed analysis.

Analysis of variance
 
Variate: Log10number
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
Haul stratum 11  0.337442  0.030677  4.41  
 
Haul.*Units* stratum
Type 3  20.169765  6.723255  965.74 <.001
Residual 33  0.229737  0.006962   
 
Total 47  20.736944    
 
 

Tables of means
 
Variate: Log10number
 
Grand mean  3.616 
 

Type  1  2  3  4
 2.803  3.221  4.478  3.962

 
 

Standard errors of differences of means
 
Table Type  
rep.  12  
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Figure 4.10

Figure 4.11

Figure 4.12

d.f.  33  
s.e.d.  0.0341

If you are analysing transformed data, it is
important to remember that the statistical
properties of the analysis apply only on the
transformed scale. So, for example,
comparisons between means must be assessed
on the transformed scale (i.e. using the tables of
means and s.e.d.'s, or l.s.d.'s, from the analysis
of the transformed data). For interpretation,
though, it is often helpful also to present the
tables of means back-transformed to the
original scale. These values are often given in
brackets under the transformed values. To save
the means, you click on the Save button on the
Analysis of Variance menu, to open the ANOVA

Save Options menu. Check the Means box, and
then fill in an identifier for the table (here Meanlogplankton) to store the means.

You can calculate the back-
transform the means by using the
Calculate menu (accessible from the
Data menu on the menu bar); see
Figure 4.11.

To display the
tables click on
the Display Data

in Output option
of the Data menu
on the menu bar.
In the resulting
Display Data in

Output  menu
(Figure 4.12),
use the arrow to
put the two
tables into the
right-hand box.
Highlight each
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Figure 4.13

Figure 4.14

table in that box, enter the number of Decimals and Field width and click on Apply. Then
click on Run to produce the output below.

 Meanlogplankton Meanplankton
Type  

1 2.8026 634.80
2 3.2213 1664.39
3 4.4783 30084.69
4 3.9621 9164.54

4.6 Automatic testing of the assumptions

In addition to the visual checks of
the assumptions, described earlier in
this chapter, you can also make
automatic checks when using the
general Analysis of Variance menu.
We can illustrate these using the
plankton data, analysed above..

First we set up the menu to
specify the analysis, as shown in 
Figure 4.13.

Then we open the ANOVA Options

menu, and check the Assumptions

box, as shown on Figure 4.14. To
avoid duplication, we will not print
any other output this time.

Genstat now performs three types
of check. Firstly, it performs Levene
tests to check whether the residual
variance seems to be affected by any
of the terms in the analysis (here
Type and Haul). Then it performs
a Shapiro-Wilk test to check for
evidence that the residuals do not
come from a Normal distribution.
Finally, it performs two Levine tests
to check whether the residual
variance differs according to the
size of the response. The data are divided into three groups (small, intermediate and
large) according to the sizes of their fitted values. The tests compare the variance of the
residuals in the first (small) group with those in the third (large) group, and the variance
of the second (intermediate) group with the variance of other two groups combined.
Warning messages are given if any of the tests generates a test probability less than or
equal to 0.025. This is the same as the value used for the similar messages that may occur
with the summary of analysis in regression. It is important to realise that the estimated
residuals (from either regression or analysis of variance) will be correlated. The Levene
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Figure 4.15

and Shapiro-Wilk tests assume that the residuals are independent Normally-distributed
observations. Their test probabilities may therefore be too low ! and generate too many
significant results. So the use of a smaller critical probability value provides some
protection against spurious messages.

As expected, Genstat reports evidence of both non-homogeneity of the residual
variance, and of non-Normality.

Message: evidence of non-homogeneity of residual variance for Type and
Haul.
Message: the Shapiro-Wilk test shows evidence of non-Normality.

The ANOVA Options menu does not
print the tests themselves, but these
are given if you use the Assumption

tests box ANOVA Further Output

menu (Figure 4.15). The setting in
the options menu is intended to
allow unobtrusive background
testing, while that in the further
output menu gives further output !
as requested.

Tests of assumptions for ANOVA
 
Variate: Number
 

Levene tests for homogeneity of variance
 
 

Analysis of variance
 
Variate: Absolute residuals
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
Haul stratum 11  13.8440  1.2585  7.17  
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Haul.*Units* stratum
Type 3  6.0333  2.0111  11.45 <.001
Residual 33  5.7949  0.1756   
 
Total 47  25.6721    
 
 

Tables of means
 
Variate: Absolute residuals
 
Grand mean  0.682 
 

Type  1  2  3  4
 0.584  0.594  1.259  0.291

 
 

Standard errors of differences of means
 
Table Type  
rep.  12  
d.f.  33  
s.e.d.  0.1711  
 
 
 

Levene tests for stability of variance
  

Test t-statistic d.f. pr.
Small vs. large responses  2.285  12.703  0.040

Intermediate v.s. small & large responses  1.906  16.762  0.074
 
 

Shapiro-Wilk test for Normality
  
Data variate:  Residuals
Test statistic W:  0.9351
Probability:  0.011
 

Message: evidence of non-homogeneity of residual variance for Type and
Haul.
Message: the Shapiro-Wilk test shows evidence of non-Normality.

The output shows that the type-3 plankton numbers are more variable than the other
types. (This is not surprising as many more of this type of plankton have been recorded
in the experiment than the other types.)

If we repeat the analysis with the log-transformed numbers, there is no evidence that
the assumptions are broken, and no warnings are given.
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Figure 4.16

4.7 Practical

An experiment was conducted to assess the percentage of alcohol by volume of five types
of wine labelled A to E. Three bottles of each type were tested in the laboratory in a
random order, as listed below and stored in file Wine.gsh.

 E  4.931
 D  7.263
 A  4.857
 C  3.361
 B  6.871
 E  4.141
 C  3.164
 B  3.012
 A  5.668
 D 12.185
 B  4.223
 E  3.323
 A  4.668
 C  2.686
 D  7.776

Analyse the experiment and plot a graph of the residuals against the fitted values.
Transform the data using a logit transformation, re-analyse the data and plot another

graph of residuals against fitted values.

4.8 Permutation and exact tests

If the distributional assumptions for the analysis of variance are not satisfied, you might
use a permutation test an alternative way to assess the significance of the terms in the
analysis. You still need the model to be additive for the results to be meaningful, but
there is no longer any need for the residuals to follow Normal distributions with equal
variances.

Clicking on the Permutation test

button in the ANOVA Further Output

menu (Figure 1.10) produces the
menu in Figure 4.16. This asks
Genstat to make 4999 random
permutations of the values of the
response variate (see the Number of

permutations box), and repeat the
analysis with each one. The Seed

box specifies the seed to use for the
random-number generator that is
used to construct the permutations. The value 0 initializes the seed automatically (and
prints the value in the output) if this is the first use of the generator in this run of Genstat;
otherwise the seed is chosen to continue the existing sequence.

The probability for each treatment term is now determined from its distribution over
the randomly permuted data sets. The output below prints a probability value <.001 for
Type, which means that the observed data set was one of the 5 sets with the largest
variance ratios out of the 5000 sets that have been examined (1 observed data set + 4999
randomly permuted data sets).
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Message: Default seed for random number generator used with value 582564

 

Analysis of variance
 
Variate: Log10number
Probabilities determined from 4999 random permutations
 
Source of variation d.f. s.s. m.s. v.r. prob.
Haul stratum  11  0.33744  0.03068  4.41   
Haul.*Units* stratum           
Type  3  20.16976  6.72325  965.74  <.001
Residual  33  0.22974  0.00696     

If you ask for more permutations than the number that are possible for your data,
Genstat will instead do an exact test, which uses each permutation once.

4.9 Practical

Extend the analysis of the logit-transformed percentage of alcohol from Practical 4.6 by
performing a permutation test, and checking whether the assumptions are still broken..



5 Designs with several error terms

The randomized-block design is undoubtedly the most popular of the designs in common
use, but sometimes more sophisticated arrangements may be required involving units of
different sizes. For example, there are sometimes treatments, like plant varieties or
irrigation, that cannot conveniently be applied to the small plots that are feasible for
treatments like levels of fertiliser or types of fungicide. In this chapter you will learn

• how a split-plot design is constructed
• how to analyse a split-plot design, and interpret the output
• why the analysis of variance table for a split-plot design has more than one stratum

(or error term)
• how to define the block structure for other stratified designs Ú
• what happens when the response variate contains missing values Ú

Note: the topics marked Ú are optional.
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V3  N3 V3  N2 V3  N2 V3  N3

V3  N1 V3  N0 V3  N0 V3  N1

V1  N0 V1  N1 V2  N0 V2  N2

V1  N3 V1  N2 V2  N3 V2  N1

V2  N0 V2  N1 V1  N1 V1  N2

V2  N2 V2  N3 V1  N3 V1  N0

V3  N2 V3  N0 V2  N3 V2  N0

V3  N1 V3  N3 V2  N2 V2  N1

V1  N3 V1  N0 V1  N2 V1  N3

V1  N1 V1  N2 V1  N0 V1  N1

V2  N1 V2  N0 V3  N2 V3  N3

V2  N2 V2  N3 V3  N1 V3  N0

V2  N1 V2  N2 V1  N2 V1  N0

V2  N3 V2  N0 V1  N3 V1  N1

V3  N3 V3  N1 V2  N3 V2  N2

V3  N2 V3  N0 V2  N0 V2  N1

V1  N0 V1  N3 V3  N0 V3  N1

V1  N1 V1  N2 V3  N2 V3  N3

Figure 5.1

5.1 Split-plot design

In the split-plot design shown here,
the treatments are three varieties of
oats (Victory, Golden rain and
Marvellous) and four levels of
nitrogen (0, 0.2, 0.4 and 0.6 cwt).
As it is feasible to work with
smaller plots for fertiliser than for
varieties, the six blocks were
initially split into three whole-plots
and then each whole-plot was split
into four subplots. The varieties
were allocated (at random) to the
whole-plots within each block, and
the nitrogen levels (at random) to
the subplots within each
whole-plot. In a randomized-block
design, we have a hierarchical
structure with blocks and then plots
within blocks.

Results from the experiment are
in spreadsheet file Oats.gsh in
the Data folder.

The split-plot is another
design with a customized setting
in the general Analysis of

Variance menu, as shown in
Figure 5.1. The treatment
structure is a factorial with two
factors, and is specified by a
model formula as described in
Chapter 3. The block structure is
set up automatically by Genstat
from the factors specified in the
Blocks, Whole plots and Sub-plots fields.

The analysis-of-variance table shows that we now have three strata in the hierarchy:
blocks, whole-plots within blocks, and subplots within whole plots (within blocks).
Moreover, the analysis has more than one residual: in the split-plot design we need to
consider the random variability of the whole-plots as well as the variability of the



72 5  Designs with several error terms

subplots. The sum of squares for Variety (which was applied to complete whole-plots)
can correctly be compared with a residual which represents the random variability of the
whole-plots. Conversely, Nitrogen (which was applied to subplots) and the
Variety.Nitrogen interaction are compared with the residual for subplots within
whole-plots.

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
blocks stratum 5  15875.3  3175.1  5.28  
 
blocks.wplots stratum
variety 2  1786.4  893.2  1.49  0.272
Residual 10  6013.3  601.3  3.40  
 
blocks.wplots.subplots stratum
nitrogen 3  20020.5  6673.5  37.69 <.001
nitrogen.variety 6  321.8  53.6  0.30  0.932
Residual 45  7968.8  177.1   
 
Total 71  51985.9    
 
 

Tables of means
 
Variate: yield
 
Grand mean  104.0 
 

nitrogen  0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
 79.4  98.9  114.2  123.4

 
variety  Victory  Golden rain  Marvellous

 97.6  104.5  109.8
 

nitrogen variety  Victory  Golden rain  Marvellous
0 cwt  71.5  80.0  86.7

0.2 cwt  89.7  98.5  108.5
0.4 cwt  110.8  114.7  117.2
0.6 cwt  118.5  124.8  126.8

 
 

Standard errors of differences of means
 
Table nitrogen variety nitrogen  

variety  
rep.  18  24  6  
s.e.d.  4.44  7.08  9.72  
d.f.  45  10  30.23  
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Except when comparing means with the same level(s) of
variety  7.68  
d.f.  45  

The standard errors accompanying the tables of means also take account of the stratum
where each treatment term was estimated. The Variety s.e.d. of

7.08 = %(2 × 601.3 / 24)
is based on the residual mean square for Blocks.Wplots, while that for Nitrogen

4.44 = %(2 × 177.1 / 18) 
is based on that for Blocks.Wplots.Subplots. The Variety × Nitrogen table is
more interesting. There are two s.e.d.'s according to whether the two means to be
compared are for the same variety. If they are, then the subplots from which the means
are calculated will all involve the same set of whole-plots, so any whole-plot variability
will cancel out, giving a smaller s.e.d. than for a pair of means involving different
varieties.

Split-plot designs do not only occur in field experiments, but they can occur in animal
trials (where, for example, the same diet may need to be fed to all the animals in a pen
but other treatments may be applied to individual animals), or in industrial experiments
(where different processes may require different sized batches of material), or even in
cookery experiments (see, for example, Cochran & Cox 1957, page 299). There can also
be more than one treatment factor applied to the units of any stratum; to analyse the
results in Genstat, you simply need to specify the blocking factors, as above, and then
whatever treatment structure is appropriate.

Genstat specifies the structure of the design, and thus the different sources of
variability (or strata) in the model, using the BLOCKSTRUCTURE directive (see Chapter
9).  For Figure 5.1, this  was

BLOCKSTRUCTURE  Blocks / Wplots / Subplots

where the operator / indicates that a factor is nested within another factor. So we have
Subplots nested within Wplots (whole-plots) nested within Blocks, as required. The
model formula expands to the list of model terms

Blocks  +  Blocks.Wplots  +  Blocks.Wplots.Subplots

which defines the strata to represent the variation between the blocks, between whole-
plots within blocks, and between subplots within whole plots (within blocks) shown in
the analysis-of-variance table.

The next section shows how you can define your own block structure in the menu, and
specify any stratified design.

5.2 Practical

In an experiment to study the effect of two meat-tenderizing chemicals, the two (back)
legs were taken from four carcasses of beef and one leg was treated with chemical 1 and
the other with chemical 2. Three sections were then cut from each leg and allocated (at
random) to three cooking temperatures, all 24 sections ( 4 carcasses × 2 legs × 3 sections
) being cooked in separate ovens. The table below shows the force required to break a
strip of meat taken from each of the cooked sections (the data are also in the file
Meat.gsh). Analyse the experiment.
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Leg                        1                     2
                  -------------------   -------------------
Carcass Section   Chemical Temp Force   Chemical Temp Force
      1       1          1    2   5.5          2    3   6.3
              2          1    3   6.5          2    1   3.5
              3          1    1   4.3          2    2   4.8

      2       1          2    1   3.2          1    3   6.2
              2          2    3   6.0          1    2   5.0
              3          2    2   4.7          1    1   4.0

      3       1          2    1   2.6          1    2   4.6
              2          2    2   4.3          1    1   3.8
              3          2    3   5.6          1    3   5.8

      4       1          1    3   5.7          2    2   4.1
              2          1    1   3.7          2    3   5.9
              3          1    2   4.9          2    1   2.9

On the assumption that the temperature levels are equally spaced and increasing, use
the polynomial contrast menu to see whether the force increases linearly with
temperature.

5.3 Other stratified designs

The ideas behind the split-plot design can easily be extended to allow for further
subdivisions. For example, in a split-split-plot design if we would split the subplots into
sub-subplots with a further factor, Subsubplot, to obtain a block structure of

Blocks / Wplots / Subplots / Subsubplot

leading to a further term (and thus stratum)

Blocks.Wplots.Subplots.Subsubplot

Designs like this can be specified using the General analysis of variance design setting of
the Analysis of Variance menu. Provided the necessary factors are correctly defined,
Genstat will determine automatically the stratum where each treatment term is estimated,
and calculate appropriate s.e.d's for each table of means.

  D3  N1   D2  N2   D1  N2   D4  N2

  D3  N2   D2  N1   D1  N1   D4  N1

  D1  N1   D4  N1   D3  N1   D2  N2

  D1  N2   D4  N2   D3  N2   D2  N1

  D4  N1   D1  N1   D2  N2   D3  N1

  D4  N2   D1  N2   D2  N1   D3  N2

  D2  N2   D3  N1   D4  N2   D1  N1

  D2  N1   D3  N2   D4  N1   D1  N2

You can also have designs involving both crossing and nesting. The plan above shows
an experiment set up to study the effects of cutting date and a nitrogen treatment on the
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Figure 5.2

yield of a forage crop. The main-plot treatment is Cutdate (D1-4 on the plan), and the
individual plots of the square have been split into pairs to allow for the two Nitrogen
treatments (0 and 0.3). The subplot factor is nested below the usual block formula for a
Latin square

(Rows * Columns) / Subplots
=  Rows  + Columns  + Rows.Columns  + Rows.Columns.Subplots

to give an extra stratum Rows.Columns.Subplots to represent the variation of the 
subplots within the plots of the Latin square.

The data are in spreadsheet
file Forage.gsh, and the
variate to be analysed is the
yield of forage.

Again, the two-way table of
means has two s.e.d's depending
on the level of the factor that
was applied to the plots of the
design.

Analysis of variance
 
Variate: Yield
 
Source of variation d.f. (m.v.) s.s. m.s. v.r. F pr.
 
Rows stratum 3   87.603  29.201  0.81  
 
Columns stratum 3   110.181  36.727  1.02  
 
Rows.Columns stratum
Cutdate 3   23019.485  7673.162  212.53 <.001
Residual 5 (1)  180.515  36.103  17.11  
 
Rows.Columns.Subplots stratum
Nitrogen 1   232.890  232.890  110.37 <.001
Cutdate.Nitrogen 3   27.004  9.001  4.27  0.035
Residual 10 (2)  21.102  2.110   
 
Total 28 (3)  21265.627    
 
 

Tables of means
 
Variate: Yield
 
Grand mean  62.64 
 

Cutdate  Jun11  Jul01  Jul22  Aug12
 20.60  58.95  80.48  90.53
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Nitrogen  0.0  0.3

 59.94  65.34
 

Cutdate Nitrogen  0.0  0.3
Jun11  18.73  22.48
Jul01  56.40  61.50
Jul22  76.25  84.72

Aug12  88.40  92.67
 
 

Standard errors of differences of means
 
Table Cutdate Nitrogen Cutdate  

Nitrogen  
rep.  8  16  4  
s.e.d.  3.004  0.514  3.091  
d.f.  5  10  5.59  
Except when comparing means with the same level(s) of
Cutdate  1.027  
d.f.  10  
 
(Not adjusted for missing values)

This example also shows how the analysis can cope with missing values as may occur if
a unit is damaged or, for some reason, fails to be measured. Here we have lost one
complete plot and half another one. The residual degrees of freedom are adjusted (as
shown in brackets) and the missing values are estimated as part of the analysis. The
analysis involves approximations but, provided only a few units are missing, these should
be acceptable. (See the Guide to the Genstat, Part 2: Statistics, Section 4.4 for more
details.)
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Figure 5.3

5.4 Practical

Spreadsheet file Rice.gsh contains
data from an experiment that studied the
effect of three levels of nitrogen
fertilizer on the yields of six varieties of
rice (Gomez & Gomez, 1984, Statistical
Procedures for Agricultural Research,
page 110).

The experiment used a strip-plot
design. This is a replicated row and
column design. Each replicate had three
columns and six rows. Within each
replicate, the nitrogen levels were
randomized onto the columns, and the
varieties were randomized onto the
rows. So the block structure is

Rep / (Row * Column)

and the treatment structure is

Variety * Nitrogen

Analyse the yields.



6 Design and sample size

In this chapter you will learn
• how to use the Generate a Standard Design menu
• how to decide how many replicates you need, using the Replications Required menu
• how to assess the power of the design i.e. the probability that it will be able to

detect the treatment effects that you expect
• how to include additional control treatments Ú

Note: the topics marked Ú are optional.
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Figure 6.1

6.1 Designing an experiment

The Generate a Standard Design

menu enables you to generate many
standard experimental designs. It is
obtained by clicking Stats on the
menu bar and selecting Design,
followed by Standard Design. The
type of design is selected using the
Design list box. The categories
parallel those in the Analysis of

Variance menu ! again each with its
appropriate boxes and buttons.

The menu in Figure 6.1 generates
a randomized-block design with
four blocks (corresponding to four
different laboratories) to study two
treatment factors: Drug with three
levels, and Dose with two levels.
Checking the Randomize design box
asks Genstat to randomize the
design. Genstat automatically determines the appropriate type of randomization from the
inter-relationships of the blocking factors of the design. For a randomized-block design,
this amounts to randomizing the allocation of the treatments independently within each
block; see Section 6.3.  (However, if you want to do your own randomization, you can
use the Randomize menu, obtained by clicking Stats on the menu bar and selecting Design,
followed by Randomize.) The Randomization seed box supplies a seed used to generate the
random numbers for the randomization. Genstat suggests a seed automatically (at
random), in the same way that it suggests defaults for the other fields in the menu.
However, you can supply your own seed if you prefer, and keeping the same seed will
generate the same randomization if you want to reproduce the exact design in future.
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Figure 6.2

Figure 6.3

The Generate a Standard Design

Options menu (Figure 6.2) provides
further contols. In Figure 6.2, the
Generate plot / unit labels box is
checked to form labels to identify
the units of the design. It is often
more convenient to use a single
numerical code to identify
observations from an experiment,
rather than having to use the levels
of all the blocking factors (here
subjects within laboratories). The
labels will be integer numbers 1, 2
and so on. These will be saved in
the variate Subjcode, specified in
the Column name for labels window.
The Design box is checked to print the design, and the Dummy ANOVA table box is checked
to generate a skeleton analysis-of-variance. We now click on OK to return to the main
menu.

Back in the Generate a Standard

Design menu (Figure 6.1), clicking
on the Replications required button
produces a menu that allows you to
determine the replication (Figure
6.3). For a randomized-block
design, the replication depends on
the number of blocks (here
laboratories). To make the
calculation, Genstat needs to know
which treatment term you are
concerned about (here Drug.Dose)
and the size of the smallest
difference that you need to detect
(here 1.5). You also need to indicate
how large you expect the within-
block variance to be (here we are assuming 0.5). The variance is best obtained from an
earlier analysis of similar data, and is provided by the residual mean square in the
“block.plot” (in this case, Laboratory.Subject) stratum. Other boxes allow you to
set the significance level that you plan to use to detect the difference (i.e. alpha) and the
probability of detection (i.e. the power required for the test).
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Figure 6.4

Clicking OK in Figure 6.3, pops ups the menu shown
in Figure 6.4, which indicates the required number of
replicates. You can then either click Apply to enter that
number automatically into the design menu (Figure
6.1), click Cancel to close the menu with no actions, or
click Change to return to the Replications Required menu
(Figure 6.4). The result here, of 4, matches what we had
hoped to find (and the value that we had already entered
into the main menu!). So we can simple click Cancel.

The Replication and SEDs boxes were checked in Figure 6.3, so Genstat prints a table
giving the power (and the standard errors of differences) for up to 20 replicates, and a
report of the required replication.

Power
 

Number of Residual Residual s.e.d. RESPONSE t-value Power
replicates d.f. m.s. / s.e.d.

2  5  0.5000  0.7071  2.121  2.015  0.572
3  10  0.5000  0.5774  2.598  1.812  0.780
4  15  0.5000  0.5000  3.000  1.753  0.888
5  20  0.5000  0.4472  3.354  1.725  0.944
6  25  0.5000  0.4082  3.674  1.708  0.973
7  30  0.5000  0.3780  3.969  1.697  0.987
8  35  0.5000  0.3536  4.243  1.690  0.994
9  40  0.5000  0.3333  4.500  1.684  0.997

10  45  0.5000  0.3162  4.743  1.679  0.999
11  50  0.5000  0.3015  4.975  1.676  0.999
12  55  0.5000  0.2887  5.196  1.673  1.000
13  60  0.5000  0.2774  5.408  1.671  1.000
14  65  0.5000  0.2673  5.612  1.669  1.000
15  70  0.5000  0.2582  5.809  1.667  1.000
16  75  0.5000  0.2500  6.000  1.665  1.000
17  80  0.5000  0.2425  6.185  1.664  1.000
18  85  0.5000  0.2357  6.364  1.663  1.000
19  90  0.5000  0.2294  6.538  1.662  1.000
20  95  0.5000  0.2236  6.708  1.661  1.000

 
 

Replication
 
To detect a treatment difference of 1.500, at a significance level of 0.050,
with a power of 0.800, using a one-sided test, requires a replication of 4.

The Replications required button is available for any design where the replication can be
modified simply by altering the number of levels of one of the factors (for example split-
plot designs, split-split-plot designs, criss-cross designs and so on), but not e.g. for Latin
squares where the replication cannot be changed without changing the number of levels
of the treatment factor.
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Figure 6.5

The Generate a Standard Design menu (Figure 6.1) will now be back as the active
window. We have set our options and checked that the replication will be sufficient. So
we now click on Run to generate the design, and the output below.

Treatment combinations on each unit of the design
 
 

Laboratory 1 2 3 4
Subject  

1 1 1 3 1 3 2 1 1
2 3 2 2 1 1 1 1 2
3 2 1 3 2 1 2 3 1
4 1 2 1 1 2 2 3 2
5 2 2 1 2 3 1 2 1
6 3 1 2 2 2 1 2 2

 
 
Treatment factors are listed in the order: Drug, Dose.
 

Analysis of variance
 
Source of variation d.f.
 
Laboratory stratum 3
 
Laboratory.Subject stratum
Drug 2
Dose 1
Drug.Dose 2
Residual 15
 
Total 23

The Display design in spreadsheet

box was checked in the Generate a

Standard Design menu in Figure 6.1.
So the design factors are loaded into
a new spreadsheet as shown in
Figure 6.5. Genstat's spreadsheet
facilities can now be used to
redefine the factor levels or to
specify labels. To do this, you click
Spread on the menu bar, followed by
Factor and then either Edit Levels or
Edit Labels as required.
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Figure 6.6

Figure 6.7

Figure 6.8

The Generate a Standard Design menu has a Check power button, which you can press once
you have generated the design. This pops up the Power for Design menu, which allows you
to calculate the power, or probability with which various sizes of treatment responses will
be detected. In Figure 6.6 we have set the treatment term to be Drug.Dose, and the size
of difference to be 1.75. When we click OK Genstat pops up the menu shown in Figure
6.7, telling us that the power would be 0.95.

6.2 Practical

Construct a randomized block design for three factors Additive, Timing and Amount
with three, two and two levels, respectively. (Hint: select the design setting General

Treatment structure (in randomized blocks) in the Generate a Standard Design menu. Set the
number of replicates so that the design has a 90% chance (or power) to detect a difference
of 1.5 in the effects of the 3-way interaction, assuming a variance within blocks (residual
mean square) of 0.5 and using the F ratio with a significance level of 5%.

Your client now tells you that he cannot manage more than five replicates. What will
the power now be for the detection of the interaction?

6.3 Control treatments

We now look at some of the other
possibilities in the Standard Design

Options menu. The Extra check box
enables you to add extra replicates
to the first level of any of the
treatment factors. This could be
useful if the first level is a control
treatment against which the other
levels are to be compared. When
you check Extra box, the two other
boxes in the top line of the menu
become accessible, for you to select
the factor of interest (in the right-
hand box), and specify the number
of extra replications. In Figure 6.8
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Figure 6.9

Figure 6.10

we have asked for one extra replicate for the first  drug (making two replicates
altogether).

The Added control to factorial

treatments in box is relevant if you
want to add a control treatment that
is relevant to more than one
treatment factor. Suppose we want
to include a placebo drug in the
example above. We shall now have
seven treatment combinations: the
six existing treatments (three drugs
at two doses), and the additional
placebo treatment (no drug at any
dose). To set up the design, we need
to revise the main menu as in Figure
6.9, to show One-way design (in

randomized blocks) in the Design box,
and to give a name (here Treat) for
the factor representing the full set of
treatment combinations. You do not
need to set the number of levels for
Treat, as this will be determined automatically by the options menu.

Then, in the Standard Design

Options menu (Figure 6.10), we need
to check the box Added control to

factorial treatments in, select the
factor to be subdivided into the
added control plus factorial
structure (here Treat), and specify
names for the factors to represent
the substructure within Treat. The
factor Control represents the
comparison between the placebo
and any sort of drug or dose; Drug
represents the three drugs as before,
and Dose the doses.
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Figure 6.11

Figure 6.11 shows the spreadsheet
containing the design factors, and the
skeleton analysis-of-variance table is
shown below. The  Control line in the
analysis of variance represents the
overall effect of any drug at any (non-
zero) dose, Control.Drug represents
overall differences between the drugs
(averaged over the two doses),
Control.Dose  represents the
comparison between the two doses
(averaged over the different drugs), and
Control.Drug.Dose represents the
interaction between Drug and Dose (assuming that some sort of drug has been taken).

Analysis of variance
 
Source of variation d.f.
 
Laboratory stratum 3
 
Laboratory.Subject stratum
Control 1
Control.Drug 2
Control.Dose 1
Control.Drug.Dose 2
Residual 18
 
Total 27

The "factorial plus added control" treatment structure is not one of the constructs covered
directly by the Analysis of Variance menu, although the necessary model formula can be
typed explicitly into the Treatment structure box that appears when General analysis of

variance or any of the General treatment structure settings are selected in the Design box
(see Section 3.5). However, the spreadsheet also contains commands to analyse the
design, which can be used as an alternative to the Analysis of Variance menus, when the
data values have been collected and entered as extra columns in the spreadsheet. The
menu to run these commands is obtained by clicking Spread on the menu bar and
selecting Sheet, followed by Analysis.

Genstat provides several more-specialized types of design. These are obtained by
selecting Design from the Stats menu and then clicking on Select Design.

6.4 Practical

Modify the design that you set up in Practical 6.2 so that the first additive has twice as
many replicates as the second and third additives.



7 Balance and non-orthogonality

In this chapter you will learn
• how treatment terms can be confounded with block terms Ú
• the meaning of the efficiency factor, which measures how much information on a

treatment term is contained in each stratum Ú
• how means are formed when treatments are estimated in several strata Ú
• the conditions for a design to be balanced, and analysable by the Genstat ANOVA

directive Ú
• how to analyse unbalanced designs with two treatment factors, using the One- and

two-way Analysis of Variance menu
• how to analyse unbalanced designs with several  treatment factors, using the

Unbalanced ANOVA menu
Note: the topics marked Ú are optional.
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Figure 7.1

7.1 Confounding and efficiency factors

In the split-plot design it is the main effect of one of the treatment factors that is
estimated in the higher stratum. Statistically, we would say that this main effect is
confounded with whole plots within blocks. For the factor Variety in Section 5.1, this
is completely acceptable; the main interest in the trial was to look at the Nitrogen factor
and the interaction between Nitrogen and Variety. However, on other occasions, we
may want all the main effects to be estimated with the extra precision that should be
available in the bottom stratum, and so we may want the interactions to be estimated in
the higher strata instead.

  n  0   0  k   n  0   0  k   0  0   0  0   n  k   n  k

The plan above shows a design in which the interaction between the factors N and K is
confounded with blocks. The definition of the N × K interaction is that it is the difference
between the effect of N estimated at the different levels of K. Here we have factors at two
levels 0 and n for N, and 0 and k for K. For the 0 level of K, the effect of adding N is given
by the mean of the plots with the combination (n, 0) minus the mean of the plots with
(0, 0); while for K at level k, it is given by the mean of the plots with (n, k) minus the
mean of the plots with (0, k). So the difference between the two estimates (which gives
the interaction contrast) is 

{ mean of plots with (n, 0) + mean of plots with (0, k) }
 !  { mean of plots with (0, 0) + mean of plots (n, k) }

The left-hand block above contains only combinations (n, 0) and (0, k), while the right-
hand block contains only combinations (0, 0) and (n, k). Consequently the difference
between the means of the plots in the two blocks also estimates the interaction: that is,
the N × K interaction is confounded with blocks.

Usually, in a situation like this, you
would have more than two blocks. In
fact, the two blocks above are part of a
design with eight blocks, each with four
plots, that was used to study factors N, K
and D (see Yates, 1937, Design and
Analysis of Factorial Experiments, page
21; also John, 1972, Statistical Design
and Analysis of Experiments, page 135).
The left-hand block in the plan is block
3 of the design, and the right-hand block
is block 4. If we analyse just those two
blocks with treatment model N*K, the
analysis of variance table below
confirms that the interaction is
estimated in the Blocks stratum (and,
as we have analysed only these two blocks, there are no degrees of freedom left over for
the residual).
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Analysis of variance
 
Variate: Yield of potatoes in tons/acre
 
Source of variation d.f. s.s. m.s. v.r.
 
Blocks stratum
N.K 1  0.56  0.56  
 
Blocks.*Units* stratum
N 1  0.48  0.48  0.04
K 1  29.86  29.86  2.25
Residual 4  53.17  13.29  
 
Total 7  84.06  

 0 0 0  n k 0  n 0 d  0 k d  n 0 0  0 k 0  0 0 d  n k d

 n 0 0  0 k 0  n 0 d  0 k d  0 0 0  0 0 d  n k 0  n k d

 n 0 0  0 0 d  n k 0  0 k d  0 0 0  0 k 0  n 0 d  n k d

 0 k 0  0 0 d  n k 0  n 0 d  0 0 0  n 0 0  0 k d  n k d

The plan for the whole design,  above, illustrates some further sophistication. It is set up
so that N.K.D is confounded in blocks 1 and 2, N.K in blocks 3 and 4, N.D in blocks 5
and 6, and K.D in blocks 7 and 8. Thus, for example, N.K is estimated between blocks
3 and 4, and within blocks 1, 2, 5, 6, 7 and 8. So 6/8 of the information about N.K is in
the Blocks.Plots stratum, and 2/8 is in the Blocks.Plots stratum. The main effects
of  N, K and D can be estimated in every block: they are orthogonal to blocks and all their
information is in the Blocks.Plots stratum. 

The amount of information available about a term in a particular stratum is known as
its efficiency factor. The efficiency factors of non-orthogonal terms (i.e. those whose
efficiency is less than one) are listed in the Information Summary, which can be obtained
by checking the Information box in the ANOVA Options menu.

The whole design can be analysed using the general Analysis of Variance menu, with the
Design drop-down list box set to General analysis of variance, the Block structure set to
Blocks/Plots, and the Treatment structure set to N*K*D. The analysis is shown below.
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Analysis of variance
 
Variate: Yield of potatoes in tons/acre
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
Blocks stratum
N.K 1  0.5597  0.5597  3.02  0.180
N.D 1  0.1981  0.1981  1.07  0.377
K.D 1  1.8340  1.8340  9.91  0.051
N.K.D 1  0.0807  0.0807  0.44  0.556
Residual 3  0.5554  0.1851  0.81  
 
Blocks.Plots stratum
N 1  2.4863  2.4863  10.86  0.004
K 1  115.6375  115.6375  505.21 <.001
D 1  200.0482  200.0482  873.99 <.001
N.K 1  0.0202  0.0202  0.09  0.770
N.D 1  1.2934  1.2934  5.65  0.029
K.D 1  8.2713  8.2713  36.14 <.001
N.K.D 1  0.0326  0.0326  0.14  0.711
Residual 17  3.8911  0.2289   
 
Total 31  334.9085    
 
 

Tables of means
 
Variate: Yield of potatoes in tons/acre
 
Grand mean  7.81 
 

N  O  N
 7.53  8.09

 
K  O  K

 5.91  9.71
 

D  O  D
 5.31  10.31

 
N K  O  K
O  5.66  9.40
N  6.16  10.02

 
N D  O  D
O  5.26  9.80
N  5.36  10.82

 
K D  O  D
O  2.82  9.00
K  7.80  11.62

 



90 7  Balance and non-orthogonality

K  O  K
N D  O  D  O  D
O  2.84  8.48  7.69  11.12
N  2.80  9.52  7.91  12.13

 
 

Standard errors of differences of means
 
Table N K D N  

K  
rep.  16  16  16  8  
d.f.  17  17  17  17  
s.e.d.  0.169  0.169  0.169  0.239  
Except when comparing means with the same level(s) of
N  0.258  
K  0.258  
 
Table N K N   

D D K   
D   

rep.  8  8  4   
d.f.  17  17  17   
s.e.d.  0.239  0.239  0.352   
Except when comparing means with the same level(s) of
N  0.258  0.365   
K  0.258  0.365   
D  0.258  0.258  0.365   
N.K  0.378   
N.D  0.378   
K.D  0.378   

As in Practical 2.2, the y-variate (Yield) has a description "of potatoes in tons/acre"
associated with it. (You can see how to define one of these, by putting the cursor into the
Wear column of the spreadsheet, and clicking on Spread on the menu bar, followed by
Column and then Rename.) Notice how the description is appended to the variate name
in the output, to provide additional annotation.

The means produced by ANOVA take the effects of each term only from the lowest
stratum where it is estimated. Thus the effects for N.K are taken from the
Blocks.Plots stratum. The different efficiency factors for the component terms of the
two-way and three-way tables of means in the example lead to different standard errors
for some comparisons. For example, the s.e.d. for the N.K.D table is 13.15 when
comparing means with different levels of all three factors, it is 13.64 if the level of one
of the factors is identical for both means, and it is 14.12 if two of the factors are at
identical levels.
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Figure 7.2

The effects from the lowest
stratum are usually those that are
estimated most precisely; the lower
strata generally have smaller mean
squares and, in most designs, terms
will have higher efficiency factors in
the lower strata. Moreover, under the
usual assumptions of Normality of
residuals, differences between the
means can be tested by the usual t-
statistics. Nevertheless, for
prediction you will often want to
present means and effects that
combine the information about each
term from all the strata where it is
estimated. Provided the design is a
generally-balanced design, these can
be requested using the ANOVA

Options menu or the ANOVA Further

Output menu (Figure 7.2). Payne & Tobias (1992, Scandinavian Journal of Statistics, 19,
3-23) give a full definition of the method and of the design properties. However, you do
not need to know the details ! Genstat checks the design automatically and will let you
know if it is not generally balanced.

The combined means for the potato example are shown below.

Tables of combined means
 
Variate: Yield of potatoes in tons/acre
 

N  O  N
 7.53  8.09

 
K  O  K

 5.91  9.71
 

D  O  D
 5.31  10.31

 
N K  O  K
O  5.71  9.35
N  6.11  10.07

 
N D  O  D
O  5.18  9.89
N  5.44  10.73

 
K D  O  D
O  2.85  8.97
K  7.77  11.65
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K  O  K
N D  O  D  O  D
O  2.85  8.58  7.51  11.20
N  2.85  9.36  8.04  12.10

 
 

Standard errors of differences of combined means
 
Table N K D N  

K  
rep.  16  16  16  8  
s.e.d.  0.170  0.170  0.170  0.241  
effective d.f.  17.90  17.90  17.90  17.90  
Except when comparing means with the same level(s) of
N  0.243  
effective d.f.  21.76  
K  0.243  
effective d.f.  21.76  
 
Table N K N   

D D K   
D   

rep.  8  8  4   
s.e.d.  0.241  0.241  0.342   
effective d.f.  17.90  17.90  19.94   
Except when comparing means with the same level(s) of
N  0.243  0.344   
effective d.f.  21.76  21.76   
K  0.243  0.344   
effective d.f.  21.76  21.76   
D  0.243  0.243  0.344   
effective d.f.  21.76  21.76  21.76   
N.K  0.345   
effective d.f.  23.14   
N.D  0.345   
effective d.f.  23.14   
K.D  0.345   
effective d.f.  23.14   

The effective d.f. are calculated by an algorithm based on Satterthwaite's method (Payne
2004, COMPSTAT 2004 Proceedings in Computational Statistics, 1629-1636), and can
be used for approximate t-tests for differences between means. For further information,
see the Guide to the Genstat Command Language, Part 2, Section 4.7.1.

7.2 Balance

The designs that are analysable by the ANOVA directive must have the property of first-
order balance.  Essentially this requires the contrasts of each term to all have a single
efficiency factor, wherever the term is estimated. In the example in Section 7.1, all the
terms have only one degree of freedom, and so represent only one contrast. So it is clear
that the design is balanced.

Suppose instead that the treatment combinations were represented by a single factor
T with eight levels:
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Figure 7.3

FACTOR [LABELS=!T('OOO','OOD','OKO','OKD',\
                'NOO','NOD','NKO','NKD')] T

The main effect of T would not be balanced: the comparison of levels
{'OOO' 'OOD' 'OKO' 'OKD'}

with {'NOO' 'NOD' 'NKO' 'NKD'}
has efficiency factor one in the Blocks.Plots stratum and zero in the Blocks stratum
(this contrast is equivalent to the main effect of N in the original specification); but the
comparison of levels

{'NOO' 'NOD' 'OKO' 'OKD'}
with {'OOO' 'OOD' 'NKO' 'NKD'}
has efficiency 0.25 in the Blocks stratum and 0.75 in the Blocks.Plots stratum (this
is equivalent to N.K in the original specification). Thus the main effect of T is not
balanced, since in the Block.Plots stratum some of its contrasts have efficiency factor
one, while others have efficiency factor 0.75. Genstat can detect unbalanced designs like
this, and will give you an error diagnostic.

Fault 23, code AN 1, statement 1 on line 78
 
Command: ANOVA
Design unbalanced - cannot be analysed by ANOVA.
Model term T (non-orthogonal to term Blocks) is unbalanced, in the Blocks.Plots stratum. 

It is still possible to analyse this particular design by ANOVA, by defining pseudo-factors
(see Guide to the Genstat Command Language, Part 2, Section 4.7.3). However, this
requires extra skill for the specification, and it may not be feasible in many cases. So, if
you have a single error term, you can use the Unbalanced ANOVA menu (Section 7.4).
Alternatively, if you have several error terms you can use the REML menus (Chapter 8).

7.3 Practical

Factorial designs with interactions
confounded with blocks can be
constructed using the Generate

Factorial Designs in Blocks menu,
which can be opened by clicking on
the Generate a Factorial Design in

Blocks sub-option of the Design

option of the Stats menu (Figure
7.3).



94 7  Balance and non-orthogonality

Figure 7.4

Figure 7.5

Use the menu, as shown in Figure
7.4, to construct a design for a
single replicate of a 2×2×2×2 design
in blocks of size 8.

7.4 Unbalanced designs with two treatment factors

Most of the designs covered by the Analysis of Variance menus are balanced and, in fact,
all of those discussed so far in the earlier chapters have been orthogonal. Essentially this
means that the order in which the treatment terms are fitted is unimportant (other than
that each main effect must be fitted before any of its interactions). So we could have
specified sulphur as the first treatment factor and nitrogen as the second treatment factor
in the menus in Figures 3.2 and 3.5, and still have
obtained the same sums of squares and effects. This
contrasts with the situation in multiple linear
regression (see e.g. Section 5.2 of the Introduction
to Genstat for Windows), where the x-variates are
usually correlated (i.e. non-orthogonal), and so
different regression coefficients are obtained for
each x-variate according to which other x-variates
had been fitted beforehand.

Genstat spreadsheet file Foster.gsh (Figure
7.5) contains the results of an experiment to study
the effect of foster feeding of rats (Scheffe, 1959,
The Analysis of Variance; also see McConway,
Jones & Taylor, 1999, Statistical Modelling using
GENSTAT, Example 7.6). The rats were from four
different genotypes (A, B, I or J), the experimental
unit was a litter of four rats, and the response
variate was the weight of the litter after a period of
feeding. The interest was in whether the genotype
of a foster mother would affect the weight. So there
are two treatment factors, each with four levels, the



7.4  Unbalanced designs with two treatment factors 95

Figure 7.6

genotype of the mother and the genotype of the foster mother. It was impossible to
balance the numbers of litters  over the two factors, and so the design is unbalanced.

The One- and two-way Analysis of

Variance menu (Figure 7.6)
automatically detects that a design is
unbalanced, and calculates the
analysis instead by using the
Genstat regression commands.

The analysis-of-variance table is
modified so that it shows the effect
of fitting each of the factors either
before or after the other one. So the
line "mother ignoring litter"
fits the effect of mother first. The
alternative line "mother elimining litter" fits the effect of mother after fitting
the litter effect. So it looks to see if there are any effects of the foster mother that
cannot be explained by the genotype of the litter itself. (Remember, though, that
interactions are always fitted after their main effects.)

Notice that the means are now predicted means (from the Genstat PREDICT directive).
These are accompanied by a summary of the standard errors of difference over the pair
of means within the table. You can print s.e.d.'s for every possible comparison of pairs
of means within the table, by using the Unbalanced ANOVA menu, as shown in Section 7.6.

Analysis of variance
 
 
Source d.f. s.s. m.s. v.r. F pr.
mother ignoring litter  3  771.61  257.20  4.74  0.006
mother eliminating litter  3  775.08  258.36  4.76  0.006
litter ignoring mother  3  60.16  20.05  0.37  0.775
litter eliminating mother  3  63.63  21.21  0.39  0.760
mother.litter  9  824.07  91.56  1.69  0.120
Residual  45  2440.82  54.24    
Total  60  4100.13  68.34    
 
 

Grand mean
 
53.97
 
 

Predictions from regression model
 
Response variate: littwt
 

Prediction
mother  

A 54.79
B 58.08
I 53.60
J 48.34
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Figure 7.7

Minimum standard error of difference  2.641
Average standard error of difference  2.753
Maximum standard error of difference  2.863
 
 

Predictions from regression model
 
Response variate: littwt
 

Prediction
litter  

A 54.97
B 53.07
I 52.82
J 53.50

 
Minimum standard error of difference  2.659
Average standard error of difference  2.755
Maximum standard error of difference  2.848
 
 

Predictions from regression model
 
Response variate: littwt
 

Prediction
litter A B I J

mother  
A 63.68 52.3 47.10 54.35
B 52.40 60.64 64.37 56.10
I 54.13 53.93 51.60 54.53
J 48.96 45.90 49.43 49.06

 
Minimum standard error of difference  4.658
Average standard error of difference  5.499
Maximum standard error of difference  6.723

7.5 Practical

Spreadsheet file Unbalanced2way.gsh

(Figure 7.7) contains results from an experiment
with two factors A and B. Analyse the response
variate Y using the  One- and two-way Analysis of

Variance menu.
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Figure 7.8

Figure 7.9

Figure 7.10

7.6 Unbalanced designs with several treatment factors

Genstat spreadsheet file Product.gsh, displayed in
Figure 7.8 contains the results of an experiment to study
the effects of factors A, B and C on the yield Y of a
production process. The intention was originally to run
the experiment in two separate days, and to have two

observations of each treatment combination on each day. However, due to time
constraints, there were several combinations (chosen at random) in each of the days that
could only be performed once.

If the design had been constructed with equal replication, as planned, it could have
been analysed using the General treatment structure (in randomized blocks) design setting.
The block factor would be day, and the treatment structure would be a factorial with
three factors: A*B*C, as shown in Figure 7.9. However, this generates a fault message
(below) reporting that the design is unbalanced.

Fault 27, code AN 1, statement 1 on line 37
 
Command: ANOVA [PRINT=aovtable,information,means; FACT=32; CONTRASTS=7;
PCONTRAS
Design unbalanced - cannot be analysed by ANOVA.
Model term A.B (non-orthogonal to term day) is unbalanced, in the day.*Units* stratum. 

Instead we need to use the
Unbalanced ANOVA menu,  setting,
obtained by clicking on the
Unbalanced Designs line in the
Analysis of Variance section of the
Stats menu (see Figure 1.7). The
menu, in Figure 7.10, is not
customized for any particular
design, but merely has two boxes to
define the model to be fitted. The
Blocking (nuisance terms) box contains the main effect of days as we are not interested in
testing for day effects, we simply want to remove any day differences before assessing
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Figure 7.11

the treatments. The Treatment structure box contains a factorial model with treatment
factors A, B and C.

The commands that are generated by this setting of the menu use the Genstat regression
facilities (via procedure AUNBALANCED) rather than the analysis-of-variance facilities. So
Genstat produces an accumulated analysis-of-variance, indicating the order in which the
terms were fitted. The term day is fitted first because this is a nuisance term, reflecting
random variability which we want to eliminate before we assess the treatments. The +A
line then gives the (main) effect of A after eliminating day. The +B line gives the main
effect of B, eliminating day and A, and so on. Each line in the table presents the effect of
a particular term, eliminating the terms in the lines above, but ignoring the terms in the
lines below. This is technically true also in the examples presented in earlier chapters but 
there the designs were orthogonal and so the ordering of the treatment terms was
unimportant. Here if we had specified C*A*B, the sums of squares for A, B and C would
have been 1699.1, 429.4 and 1063.0 respectively, and there would also have been
changes to the sums of squares for the interactions. The results would have led to the
same conclusions to those from the earlier order (namely that there are main effects of
A and C, and an A by C interaction), but in a design with a greater degree of non-
orthogonality you would be well advised to investigate several orderings.

Alternatively, the Options menu
for the designs with Unbalanced

Treatment  Structure (Figure 7.11)
contains a check box to allow you to
request screening tests.

In the marginal test (the column
headed “mtest” below) the term is
added to the simplest possible
model. So A.B would be added to a
model containing only the main
effects A and B. This assesses the
effect of the term ignoring as many
other terms as possible, and so it
checks to see if there is any
evidence for the term having an
effect.

In the conditional test (the
column headed “ctest” below) the
term is added to the most complex possible model. So, A would be added to a model
containing B, C and B.C. This checks to see if the term has any effect that cannot be
explained by any other terms.

Ideally (as here) the tests will both lead to the same conclusion. If not, the conclusion
is that there is more than one plausible model for the data, but the design is too
unbalanced to allow you to choose between them.

Screening of terms in an unbalanced design
 
Variate: Y
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Marginal and conditional test statistics, degrees of freedom and
number of observations used
 
 degrees of freedom for denominator (full model):    48
 

term  mtest  mdf  ctest  cdf
A  3.42  2  3.47  2
B  0.76  2  0.84  2
C  4.27  1  4.78  1

 
term  mtest  mdf  ctest  cdf
A.B  1.04  4  1.00  4
A.C  5.25  2  4.81  2
B.C  0.71  2  0.57  2

 
term  mtest  mdf  ctest  cdf

A.B.C  1.40  4  1.40  4
 
 

P-values of marginal and conditional tests
 
 

term  mprob  cprob
A  0.041  0.039
B  0.474  0.439
C  0.044  0.034

 
term  mprob  cprob
A.B  0.395  0.415
A.C  0.009  0.013
B.C  0.498  0.569

 
term  mprob  cprob

A.B.C  0.248  0.248
 
 
 

Analysis of an unbalanced design using Genstat
regression
 
Variate: Y
 

 Accumulated analysis of variance
 
Change d.f. s.s. m.s. v.r. F pr.
+ day  1  914.0  914.0  3.67  0.061
+ A  2  1706.8  853.4  3.42  0.041
+ B  2  418.8  209.4  0.84  0.438
+ C  1  1065.9  1065.9  4.28  0.044
+ A.B  4  1166.0  291.5  1.17  0.336
+ A.C  2  2456.7  1228.3  4.93  0.011
+ B.C  2  284.4  142.2  0.57  0.569
+ A.B.C  4  1397.4  349.4  1.40  0.248
Residual  48  11960.4  249.2   
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Total  66  21370.4  323.8   
 
 

Grand mean
 
106.6
 
 

Predictions from regression model
 
Response variate: Y
 

Prediction
A  
1 113.2
2 101.2
3 105.3

 
Minimum standard error of difference  4.679
Average standard error of difference  4.795
Maximum standard error of difference  4.909
 
 

Predictions from regression model
 
Response variate: Y
 

Prediction
B  
1 103.2
2 108.1
3 108.3

 
 
Minimum standard error of difference  4.724
Average standard error of difference  4.788
Maximum standard error of difference  4.896
 
 

Predictions from regression model
 
Response variate: Y
 

Prediction
C  
1 110.6
2 102.4

 
Standard error of differences between predicted means        3.903
 
 

Predictions from regression model
 
Response variate: Y
 

Prediction
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B 1 2 3
A  
1 115.2 112.3 111.8
2 97.9 99.9 106.4
3 96.7 113.2 106.8

 
Minimum standard error of difference  7.894
Average standard error of difference  8.313
Maximum standard error of difference  9.393
 
 

Predictions from regression model
 
Response variate: Y
 

Prediction
C 1 2
A  
1 125.9 100.9
2 101.7 100.7
3 104.6 105.9

 
Minimum standard error of difference  6.454
Average standard error of difference  6.778
Maximum standard error of difference  7.103
 
 

Predictions from regression model
 
Response variate: Y
 

Prediction
C 1 2
B  
1 110.2 96.5
2 111.9 104.5
3 109.7 106.9

 
Minimum standard error of difference  6.454
Average standard error of difference  6.770
Maximum standard error of difference  7.215
 
 

Predictions from regression model
 
Response variate: Y
 

 Prediction
C 1 2

A B  
1 1 136.1 95.1

2 124.1 100.8
3 116.2 107.6

2 1 102.1 93.8
2 101.8 98.1
3 101.3 111.3

3 1 92.3 101.1
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2 110.6 115.8
3 112.6 101.2

 
Minimum standard error of difference  11.16
Average standard error of difference  11.74
Maximum standard error of difference  14.42

Like the One- and two-way Analysis of Variance menu, the Unbalanced ANOVA menu uses
the PREDICT directive to form the predicted means, but it gives more control over the
way in which they are formed. The first step (A) of the calculation forms the full table of
predictions, classified by every factor in the model. The second step (B) averages the full
table over the factors that do not occur in the table of means. The Factor combination for

means box specifies which cells of the full table are to be formed in Step A. The default
setting, Estimable, fills in all the cells other than those that involve parameters that cannot
be estimated, for example because of aliasing. Alternatively, the setting Present excludes
the cells for factor combinations that do not occur in the data. The Standardization method

box then defines how the averaging is done in Step B. The default setting, Marginal, forms
a table of marginal weights for each factor, containing the proportion of observations
with each of its levels; the full table of weights is then formed from the product of the
marginal tables. The setting Equal weights all the combinations equally. Finally, the
setting Observed uses the WEIGHTS option of PREDICT to weight each factor combination
according to its own individual replication in the data. The One- and two-way Analysis of

Variance menu, always uses the default settings.
In an unbalanced design, there will usually be a different standard error for differences

between each pair of means. Here we have simply printed a summary giving the
minimum, average  and maximum standard errors for differences between pairs of means.
The Options menu (Figure 7.11) allows you to print a symmetric matrix giving the
standard errors for differences between every possible pair of means, but this is omitted
here to save space. In the earlier designs in this chapter, the treatment combinations were
all equally replicated, and so the standard errors were the same for every pair of means.

7.7 Practical

Reanalyse the data in the Spreadsheet file Unbalanced2way.gsh, first analysed in
Section 7.5, using the Unbalanced ANOVA menu. Print the standard errors of differences
for all pairs of means. (Note, you do not have any Blocking or Nuisance terms.)



8 REML analysis of unbalanced designs

The Analysis of Variance menus, described in the earlier chapters, deal mainly with
balanced designs. This ideal situation, however, is not always achievable. The
randomized-block design in Section 2.2 is balanced because every block contained one
of each treatment combination. However, there may sometimes be so many treatments
that the blocks would become unrealistically large. Designs where each block contains
less than the full set of treatments include cyclic designs and Alpha designs (both of
which can be generated within Genstat by clicking Stats on the menu bar, selecting Design

and then Select Design), neither of which tend to be balanced. In experiments on animals,
some subjects may fail to complete the experiment for reasons unconnected with the
treatments. So even an initially balanced experiment may not yield a balanced set of data
for analysis. The Mixed Models (REML) menus, which use the Genstat REML directive, are
designed to handle these situations. They also allow you to fit models to the complex
correlation structures that occur in repeated measurements or in spatially-correlated data
from field experiments.

In this chapter you will learn
• how to use the Linear Mixed Models menu
• what output is given by a Genstat REML analysis, and how it compares to Genstat

ANOVA

• how to assess fixed terms using Wald and F statistics
• how effects and means can be produced by Genstat ANOVA, combining all the

available information when treatment terms that are estimated in several strata Ú
Note: the topics marked Ú are optional.
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Figure 8.1

8.1 Linear mixed models: split-plot design

We start by reanalysing the split-plot data (Oats.gsh) in Section 5.1, to highlight the
differences and similarities between REML and ANOVA.

Figure 8.1 shows the Linear

Mixed Models menu, obtained by
clicking Stats on the menu bar
and selecting Mixed Models

(REML), followed by Linear Mixed

Models. The Fixed model box
corresponds to the Treatment

structure box in the split-plot
menu, and specifies the terms
defining the fixed effects in the
model to be fitted. The Linear

Mixed Models menu provides
general facilities covering any
type of design,  and so the random effects are defined explicitly by the contents of the
Random model box, instead of being defined automatically as in the split-plot menu. The
model is the same though, namely

blocks/wplots/subplots

which expands to give the three (random) terms; see Section 3.4.

block + block.wplot + block.wplot.subplot

 Similarly, the fixed model

variety * nitrogen

expands as before to

variety + nitrogen + nitrogen.variety

to request that Genstat fits the main effects of nitrogen and variety, and their interaction.
(The Interactions box, which operates just like the one in the Analysis of Variance menu, has
requested all interactions in the fixed model to be included.)
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Figure 8.2

The Options button produces
the Linear Mixed Model Options

menu, shown in Figure 8.2. The
standard model options (as
shown in the figure) are fine for
this design, so we need only
select the output to display (and
then click OK).

Returning to the main menu
(Figure 8.1): initial values are
seldom required for simple REML
analyses like this, and the Spline

model box is not relevant (this is
mainly useful with repeated
measurements), so we can click
on Run and generate the output
shown below.

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + variety + nitrogen + variety.nitrogen
Random model: blocks + blocks.wplots + blocks.wplots.subplots
Number of units: 72
 
blocks.wplots.subplots used as residual term
 
Sparse algorithm with AI optimisation
 
 

Estimated variance components
 
Random term component s.e.
blocks  214.5  168.8
blocks.wplots  106.1  67.9
 
 

Residual variance model
 
Term Model(order) Parameter Estimate s.e.
blocks.wplots.subplots Identity Sigma2 177.1  37.3
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 



106 8  REML analysis of unbalanced designs

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 2.97 2 1.49 10.0  0.272
nitrogen 113.06 3 37.69 45.0  <0.001
variety.nitrogen 1.82 6 0.30 45.0  0.932
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety.nitrogen 1.82 6 0.30 45.0  0.932
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The output first lists the terms in the fixed and random model, and indicates the residual
term. The residual term is a random term with a parameter for every unit in the design.
Here we have specified a suitable term, blocks.wplots.subplots, explicitly.
However, if we had specified only blocks and blocks.wplots as the Random Model
(for example by putting blocks/wplots), Genstat would have added an extra term
*units* to act as residual. (*units* would be a private factor with a level for every
unit in the design.)

Genstat estimates a variance component for every term in the random model, apart
from the residual. The variance component measures the inherent variability of the term,
over and above the variability of the sub-units of which it is composed. Generally, this
is positive, indicating that the units become more variable the larger they become. So here
the whole-plots are more variable than the subplots, and the blocks are more variable than
the whole-plots within the blocks. (This is the same conclusion that you would draw from
the analysis-of-variance table in Section 5.1 and, in fact, you can also produce the
variance components as part of the stratum variances output from the Analysis of Variance

menu.) However, the variance component can sometimes be negative, indicating that the
larger units are less variable than you would expect from the contributions of the sub-
units of which they are composed. This could happen if the sub-units were negatively
correlated.

The section of output summarising the residual variance model indicates that we have
not fitted any specialized correlation model on this term (see the column headed Model),
and gives an estimate of the residual variance; this is the same figure as is given by the
mean square in the residual line in the blocks.wplots.subplots stratum in the split-
plot analysis-of-variance table.

The next section, however, illustrates a  major difference between the two analyses.
When the design is balanced, Genstat is able to partition the variation into strata with an
appropriate random error term (or residual) for each treatment term (see Section 5.1). No
such partitioning is feasible for the unbalanced situations that REML is designed to handle.
Instead Genstat produces a Wald statistic to assess each fixed term.

If the design is orthogonal, the Wald statistic is equal to the treatment sum of squares
divided by the stratum residual mean square. So under the usual assumption  that the
residuals come from Normal distributions,  the Wald statistic divided by its degrees of
freedom will have an F distribution, Fm,n, where m is the number of degrees of freedom
of the fixed term, and n is the number of residual degrees of freedom for the fixed term.
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By default, unless the design is large or complicated, Genstat estimates n, and prints it
in the column headed “d.d.f.” (i.e. denominator degrees of freedom); m is shown the
column headed “n.d.f.” (i.e. numerator degrees of freedom). For orthogonal designs,
the F statistics and probabilities are identical to those produced by the  Analysis of Variance

menus, and can be used in exactly the same way. In other situations, the printed F
statistics have approximate F distributions. So you need to be careful if the value is close
to a critical value.

The Linear Mixed Model Options menu (Figure 8.2) has a list box Method for calculating F

statistics to control how and whether to calculate the F statistics. With the default setting,
automatic, Genstat itself decides whether the statistics can be calculated quickly enough
to be useful, and the best method to use. The other settings allow you to select to use
either algebraic or numerical derivatives, or to print just Wald statistics (none).

The Wald statistics themselves would have exact ÷2 distributions if the variance
parameters were known but, as they must be estimated, they are only asymptotically
distributed as ÷2. In practical terms, the ÷2 values will be reliable if the residual degrees
of freedom for a fixed term is large compared to its own degrees of freedom. Otherwise
they tend to give significant results rather too frequently. The F statistics, if available, are
more reliable than the Wald statistics. If they are not calculated, Genstat produces
probabilities for the Wald statistics instead, which should again be used with care
especially when the value is close to a critical value.

In the example, the treatment terms are orthogonal so it makes no difference whether
nitrogen or variety is fitted first. In a non-orthogonal design, however, the ordering
of fitting is important, and you should be aware that each test in the "Sequentially
adding terms to fixed model" section represents the effect of adding the term
concerned to a model containing all the terms in the preceding lines. The next section,
headed "Dropping individual terms from full fixed model" looks at the
effect of removing terms from the complete fixed model: so the lines here allow you to
assess the effects of a term after eliminating all the other fixed terms. This is particularly
useful for seeing how the model might be simplified. Notice that the only relevant term
here is the variety by nitrogen interaction. We cannot remove a main effect (such as
nitrogen or variety) from a model that contains an interaction involving that factor.
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Figure 8.3

The Further output button
generates the Linear Mixed Models

Further Output menu. In Figure 8.3,
we have checked the boxes to
produce tables of predicted means
and standard errors of differences
between means. The Model terms

for effects and means box enables
you to specify the terms for which
you want tables of means (and, if
you had checked the Estimated

effects box, tables of effects). The
default, which is fine here,  is to
produce a table for each term in
the fixed model. Clicking Run then
generates the tables shown below.
Because the fixed terms are
orthogonal, the means are identical
to those produced by the Analysis of

Variance menu (Section 5.1).

Table of predicted means for Constant
 
  104.0    Standard error:  6.64
 
 

Table of predicted means for variety
 
 

variety Victory Golden rain Marvellous
97.6 104.5 109.8

 
 
Standard error of differences: 7.079 
 
 

Table of predicted means for nitrogen
 
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
79.4 98.9 114.2 123.4

 
 
Standard error of differences: 4.436 
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Table of predicted means for variety.nitrogen
 
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
variety  
Victory 71.5 89.7 110.8 118.5

Golden rain 80.0 98.5 114.7 124.8
Marvellous 86.7 108.5 117.2 126.8

 
 
Standard errors of differences
 
Average:  9.161
Maximum:  9.715
Minimum:  7.683
 
Average variance of differences: 84.74 
 
Standard error of differences for same level of factor:
 

variety nitrogen
 

Average:  7.683  9.715
Maximum:  7.683  9.715
Minimum:  7.683  9.715

The REML facilities thus produce the same information as that given by the Analysis of

Variance menu where this is possible in their more general context, but they are not able
to match its more specialized output. The advantage of the REML menus, however, lies
in the fact that they can also analyse unbalanced designs.

8.2 Practical

Use the Linear Mixed Models menu to reanalyse the experiment on meat-tenderizing
chemicals (spreadsheet file Meat.gsh), but without fitting the polynomials to
temperature. Compare the analysis with the split-plot analysis, originally performed in
Section 5.2, using the Analysis of Variance menu.

8.3 Linear mixed models: a non-orthogonal design

We now consider the analysis of a rather more complicated field experiment (at Slate
Hall Farm in 1976), previously analysed by Gilmour et al. (1995). The design was set up
to study 25 varieties of wheat, and contained six replicates (each with one plot for every
variety) laid out in a two by three array. The variety grown on each plot is shown in the
plan below.

Each replicate has a block structure of rows crossed with columns, so the random
model is

replicates / (rows * columns)

(rows crossed with columns, nested within replicates), which expands to give

replicates + replicates.rows + replicates.columns +
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Figure 8.4

replicates.rows.columns

So we have random terms for replicates, rows within replicates, columns within replicates
and, finally, replicates.rows.columns represents the residual variation. The fixed
model contains just the main effect of the factor variety.

1 2 4 3 5 19 23 2 6 15 18 25 9 11 2

6 7 9 8 10 8 12 16 25 4 5 7 16 23 14

21 22 24 23 25 11 20 24 3 7 6 13 22 4 20

11 12 14 13 15 22 1 10 14 18 24 1 15 17 8

16 17 19 18 20 5 9 13 17 21 12 19 3 10 21

3 18 8 13 23 16 24 10 13 2 10 4 17 11 23

1 16 6 11 21 12 20 1 9 23 12 6 24 18 5

5 20 10 15 25 4 7 18 21 15 19 13 1 25 7

2 17 7 12 22 25 3 14 17 6 21 20 8 2 14

4 19 9 14 24 8 11 22 5 19 3 22 15 9 16

Figure 8.4 shows a Genstat
spreadsheet file, stored as
Slatehall.gsh, containing
the data. As well as the
factors already mentioned, the
sheet also contains factors
f i e l d r o w  a n d
fieldcolumn (defining the
row and column positions
within the whole field, rather
than within each replicate).
Chapter 3 of the Guide to
REML in Genstat for
Windows shows  how these
can be used to define spatial
correlation structures.
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Figure 8.5

Figure 8.5 shows the Linear

Mixed Models menu with the
necessary boxes filled in. If we
use the Linear Mixed Model Options

menu (Figure 8.2) to request
predicted means and standard
errors of differences of means (in
addition to the existing Display

options), and then click on Run in
the Linear Mixed Models menu
itself, the following output is
produced.

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + variety
Random model: replicates + replicates.rows + replicates.columns +
replicates.rows.columns
Number of units: 150
 
replicates.rows.columns used as residual term
 
Sparse algorithm with AI optimisation
 
 

Estimated variance components
 
Random term component s.e.
replicates  0.4262  0.6890
replicates.rows  1.5595  0.5091
replicates.columns  1.4812  0.4865
 
 

Residual variance model
 
Term Model(order) Parameter Estimate s.e.
replicates.rows.columns Identity Sigma2 0.806  0.1340
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 212.26 24 8.84 79.3  <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 212.26 24 8.84 79.3  <0.001
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Figure 8.6

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.
 
 

Table of predicted means for Constant
 
  14.70    Standard error:  0.422
 
 

Table of predicted means for variety
 
 

variety 1 2 3 4 5 6 7 8
12.84 15.49 14.21 14.52 15.33 15.27 14.01 14.57

 
 

variety 9 10 11 12 13 14 15 16
12.99 11.93 13.27 14.84 16.19 13.27 14.98 13.46

 
 

variety 17 18 19 20 21 22 23 24
14.98 15.92 16.70 16.40 14.93 16.44 13.29 15.46

 
 

variety 25
16.31

 
 
Standard error of differences: 0.6202 

Unusually for a large variety trial,
this particular design is balanced
(in fact it is a lattice square), and
we can gain additional insights
into the REML analysis by looking
at the output that we could have
obtained from the Analysis of

Variance menu. The menu is not
customized for the design, but we
can use the General analysis of

variance setting in the Design box,
and specify the Treatment structure and Block structure as shown in Figure 8.6. The
standard analysis of variance output (analysis-of-variance table, information summary,
means and standard errors of differences) is shown below.

Analysis of variance
 
Variate: yield
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Source of variation d.f. s.s. m.s. v.r. F pr.
 
replicates stratum 5  133.3273  26.6655   
 
replicates.rows stratum
variety 24  215.9053  8.9961   
 
replicates.columns stratum
variety 24  229.8094  9.5754   
 
replicates.rows.columns stratum
variety 24  166.7675  6.9486  8.58 <.001
Residual 72  58.3011  0.8097   
 
Total 149  804.1105    
 
 

Information summary
 
Model term e.f.   non-orthogonal terms
replicates.rows stratum
  variety  0.167  
replicates.columns stratum
  variety  0.167   replicates.rows
replicates.rows.columns stratum
  variety  0.667   replicates.rows

  replicates.columns
 
 

Message: the following units have large residuals.
 
replicates 6    -1.895  approx. s.e.   0.943

replicates 1 rows 4 columns 3    -1.665  approx. s.e.   0.623
replicates 1 rows 5 columns 2    1.710  approx. s.e.   0.623
 
 

Tables of means
 
Variate: yield
 
Grand mean  14.704 
 

variety  1  2  3  4  5  6  7
 12.962  15.561  14.152  14.560  15.481  15.358  14.008

 
variety  8  9  10  11  12  13  14

 14.428  12.968  11.928  13.222  14.835  16.176  13.187
 

variety  15  16  17  18  19  20  21
 15.067  13.287  14.968  15.881  16.742  16.277  15.048

 
variety  22  23  24  25    

 16.430  13.283  15.464  16.344    
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Figure 8.7

Standard errors of differences of means
 
Table variety  
rep.  6  
d.f.  72  
s.e.d.  0.6363  

Notice that the analysis-of-variance table has three lines for variety. As each row
contains a different set of varieties, the differences between the rows in each replicate
enable us to obtain estimates of the variety effects (which appear in the
replicates.rows stratum). The same is true of the columns. The design is balanced
because the various comparisons between varieties are all estimated with the same
efficiency in the replicates.rows stratum; the Information Summary indicates the
efficiency is in fact 0.167. Similarly, they all have efficiency 0.167 in the
replicates.columns  s t ra tum,  and eff iciency 0.667  in  the
replicates.rows.columns stratum. So, the possible information on variety is split
(1/6 : 1/6 : 2/3 ) between the three strata.

We can see the estimates obtained
in each stratum by checking the
Effects box in the ANOVA Further

Output menu (Figure 8.7) and then
clicking Run, and you can verify that
the standard table of means produced
by ANOVA, above, is calculated using
the estimated effects from the lowest
stratum (replicates.rows.
columns): the mean 12.962 for
variety 1 is the grand mean 14.704 
plus the effect of variety 1 in the
replicates.rows.columns

table, namely !1.742.

Tables of effects
 
Variate: yield
 

replicates.rows stratum
 
variety effects,  e.s.e. *,  rep. 6
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variety  1  2  3  4  5  6  7
 -5.614  1.296  0.604  -1.468  -3.522  2.790  -3.458

 
variety  8  9  10  11  12  13  14

 1.718  0.520  -3.814  -2.718  -2.544  1.020  1.236
 

variety  15  16  17  18  19  20  21
 0.582  5.598  3.786  3.480  3.902  3.530  -1.294

 
variety  22  23  24  25    

 -0.028  1.360  -3.058  -3.894    
 

replicates.columns stratum
 
variety effects,  e.s.e. *,  rep. 6
 

variety  1  2  3  4  5  6  7
 -3.432  -2.588  0.812  -0.650  -1.450  -4.948  1.930

 
variety  8  9  10  11  12  13  14

 4.064  -3.010  -1.584  1.852  2.828  2.540  -0.752
 

variety  15  16  17  18  19  20  21
 -3.536  -0.642  -2.494  0.740  -1.706  4.934  -2.9240

 
variety  22  23  24  25    

 3.990  -3.730  4.434  5.332    
 

replicates.rows.columns stratum
 
variety effects,  e.s.e. 0.4499,  rep. 6
 

variety  1  2  3  4  5  6  7
 -1.742  0.857  -0.553  -0.144  0.777  0.653  -0.697

 
variety  8  9  10  11  12  13  14

 -0.277  -1.736  -2.777  -1.482  0.130  1.471  -1.517
 

variety  15  16  17  18  19  20  21
 0.362  -1.418  0.263  1.176  2.037  1.573  0.343

 
variety  22  23  24  25    

 1.726  -1.421  0.760  1.639    

In contrast, the REML analysis has produced a single set of estimates, and these
automatically combine (with an appropriate weighting) all the separate estimates. In fact
the REML estimates correspond to the combined effects and means in the ANOVA Further

Output menu. Below, we show these tables, together with the output generated by
checking the Stratum variances box which contains the variance components. The
combined means have a smaller standard error of difference than the standard means, but
the complicated structure of their estimation means that we can no longer assume that
differences between them follow t-distributions with a known number of degrees of
freedom. (However, the effective numbers of degrees of freedom printed by ANOVA are
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generally reasonably reliable.)

Tables of combined effects
 
Variate: yield
 
variety effects,  e.s.e. 0.4385,  rep. 6,  effective d.f. 79.99
 

variety  1  2  3  4  5  6  7
 -1.869  0.786  -0.495  -0.186  0.628  0.570  -0.697

 
variety  8  9  10  11  12  13  14

 -0.131  -1.716  -2.772  -1.432  0.133  1.486  -1.438
 

variety  15  16  17  18  19  20  21
 0.276  -1.243  0.277  1.217  1.991  1.695  0.230

 
variety  22  23  24  25    

 1.739  -1.413  0.760  1.602    
 
 

Tables of combined means
 
Variate: yield
 

variety  1  2  3  4  5  6  7
 12.836  15.490  14.209  14.519  15.333  15.274  14.007

 
variety  8  9  10  11  12  13  14

 14.574  12.989  11.932  13.272  14.838  16.190  13.266
 

variety  15  16  17  18  19  20  21
 14.980  13.461  14.982  15.922  16.696  16.399  14.934

 
variety  22  23  24  25    

 16.444  13.291  15.465  16.306    
 
 

Standard errors of differences of combined means
 
Table variety  
rep.  6  
s.e.d.  0.6202  
effective d.f.  79.99  
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Figure 8.8

Estimated stratum variances
 
Variate: yield
 
Stratum variance  effective d.f.  variance component 
replicates  26.6655  5.000  0.4262
replicates.rows  8.6037  23.464  1.5595
replicates.columns  8.2120  23.438  1.4812
replicates.rows.columns  0.8062  73.099  0.8062

The example reinforces the point that the REML output is the same as that given by ANOVA
when both are feasible, but that the generality of the REML method leaves aspects that it
cannot duplicate. More importantly, though, it shows that the REML method makes use
of all the available information about each fixed effect. These aspects indicate the
efficiency and appropriateness of the methodology, and the exercises at the end of the
chapter will illustrate its ability to handle designs that cannot be analysed by ANOVA.
Another important advantage is that REML can fit models to spatial correlation structures.
Details are given in the Guide to the Genstat Command Language, Part 2, Section 5.4,
and the Guide to REML in Genstat, Chapters 3 and 4.

8.4 Practical

Genstat spreadsheet file Vartrial1.gsh contains data from a trial of 35 varieties of
wheat. The design has two replicates each laid out in a five by seven plot array. Assuming
that the same block structure is appropriate as in Section 8.3 (rows crossed with columns
within replicates), analyse the data as a linear mixed model.

8.5 Analysis of variance by ANOVA, regression or REML

In the earlier chapters of this
Guide, you have seen that, if your
design is balanced you can
produce an analysis if variance
using the Analysis of Variance

menu (Figure 1.8), or you may be
able to use the One- and Two-way

Analysis of Variance menu (Figure
3.2) if you have no more than
two treatment factors. Genstat
will tell you if the design is unbalanced. Then, if it has only one error term you can use
the Unbalanced ANOVA menu (Figure 7.9), or if it has several you can use the Linear Mixed

Models menu (Figure 8.1). A small complication is that you might want to use the
Unbalanced ANOVA menu rather than the Linear Mixed Models menu, even when there
several error terms, if the additional error terms contain very little information about the
treatments (and this was why we did not use the Linear Mixed Models menu in Section 7.6).
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Figure 8.9

Figure 8.10

So you could define a set of
rules to decide how to analyse a
complicated design. However,
you might prefer Genstat to do
this for you ! and, in fact, it will
do so if you use the menu for
Analysis of Variance by ANOVA,

Regression or REML. Figure 8.9
shows the use of the menu to
analyse the production data from
Section 7.6.

The Options menu (Figure
8.10) allows you to select only
the types of output that are
available from all the possible
methods of analysis. You can
also say how much information
(i.e. efficiency) you are prepared
to lose on any treatment term
when deciding to use whether to
use the Unbalanced ANOVA menu
(which uses regression) rather
than the Linear Mixed Models

menu (which uses REML). The
Information section will contain
details of the recommended
method, and the amount of
information that may have been lost.

The output, below, confirms that it was acceptable to use Unbalanced ANOVA in Section
7.6: less than 1% of the information has been lost.

Analysis of variance by ANOVA, REML or regression
 
 

Information summary
 
Design unbalanced with weights or more than 2 treatment factors, and no more than 0.801%
of information on any contrast estimated between block terms; analyse by AUNBALANCED.
 
 

Accumulated analysis of variance
 
Change d.f. s.s. m.s. v.r. F pr.
+ day  1  914.0  914.0  3.67  0.061
+ A  2  1706.8  853.4  3.42  0.041
+ B  2  418.8  209.4  0.84  0.438
+ C  1  1065.9  1065.9  4.28  0.044
+ A.B  4  1166.0  291.5  1.17  0.336
+ A.C  2  2456.7  1228.3  4.93  0.011
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+ B.C  2  284.4  142.2  0.57  0.569
+ A.B.C  4  1397.4  349.4  1.40  0.248
Residual  48  11960.4  249.2   
Total  66  21370.4  323.8   

8.6 Practical

Re-analyse the data in Vartrial1.gsh using the menu for Analysis of Variance by

ANOVA, Regression or REML.
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This optional (Ú) chapter introduces the main commands that are used for analysis of
variance in Genstat. The full descriptions, however, are in the Genstat Reference Manual
(Part 2 for directives, or Part 3 for Procedures) or in the Guide to the Genstat Command
Language. These can both be accessed on line, from the Help menu on the Genstat menu
bar.

Most of the menus described in this course use the ANOVA directive, which analyses
generally balanced designs. These include most of the commonly occurring experimental
designs such as randomized blocks, Latin squares, split plots and other orthogonal
designs, as well as designs with balanced confounding, like balanced lattices and
balanced incomplete blocks. Many partially balanced designs can also be handled, using
pseudo factors, so a very wide range of designs can be analysed.

Before using ANOVA we first need to define the model that is to be fitted in the analysis.
Potentially this has three parts. The BLOCKSTRUCTURE directive defines the "underlying
structure" of the design or, equivalently, the error terms for the analysis; in the simple
cases where there is only a single error term this can be omitted. The
TREATMENTSTRUCTURE directive specifies the treatment (or systematic, or fixed) terms
for the analysis. The other directive, COVARIATE, lists the covariates if an analysis of
covariance is required. Alternatively, the AFCOVARIATES procedure can define
covariates from a model formula, for example to fit a different regression coefficient for
every level of a factor like blocks; it calculates the variates required to represent the
covariates and then specifies them as covariates for the analysis using the COVARIATE
directive.

At the start of a job all these model-definition directives have null settings. However,
once any one of them has been used, the defined setting remains in force for all
subsequent analyses in the same job until it is redefined.

For example, the statements below were generated by the One-way ANOVA (no Blocking)

menu to analyse the example in Section 1.5.

"One-way ANOVA (no Blocking)."
BLOCK "No Blocking"
TREATMENTS diet
COVARIATE "No Covariate"
ANOVA [PRINT=aovtable,information,mean; FPROB=yes] weight

The BLOCK (or, in full, BLOCKSTRUCTURE) directive is given a null setting to cancel any
existing setting; so this indicates that the design is unstructured and has a single error
term. Similarly, the COVARIATE statement cancels any covariates that may have been set
in an earlier menu. The TREATMENTS (or, in full, TREATMENTSTRUCTURE) directive is
used to specify that we have a single term in the analysis, the main effect of diet.

The first parameter of the ANOVA directive specifies the y-variate to be analysed. The
PRINT option is set to a list of strings to select the output to be printed. These are similar
to the check boxes of the Further Output menu. The most commonly used settings are:
aovtable analysis-of-variance table,
information details of large residuals, non-orthogonality and

any aliasing in the model,
covariates estimated coefficients and standard errors of any
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covariates,
effects tables of effects,
residuals tables of residuals,
contrasts estimated coefficients of polynomial or other

contrasts,
means tables of means,
%cv coefficient of variation, and
missingvalues estimated missing values.

By default PRINT=aovtable,information,covariates,means,missing.
Probabilities are not printed by default for the variance ratios in the analysis-of-

variance table, but these can be requested by setting the FPROBABILITY option to yes.
ANOVA has a PSE option to control the standard errors printed for tables of means. The
default setting is differences, which gives standard errors of differences of means.
The setting means produces standard errors of means, LSD produces least significant
differences and by setting PSE=* the standard errors can be suppressed altogether. The
LSDLEVEL option allows the significance level for the least significant differences to be
changed from the default of 5%. ANOVA also has a FACTORIAL option which can be used
to specify the maximum order (that is, number of factors) in the treatment terms to be
fitted in the analysis; default 3.

To show a more complicated example, these statements were generated to analyse the
split-plot design in Section 5.1

"Split-Plot Design."
BLOCK blocks/wplots/subplots
TREATMENTS nitrogen*variety
COVARIATE "No Covariate"
ANOVA [PRINT=aovtable,information,mean; FACT=3; FPROB=yes]\
  yield

The block formula

blocks/wplots/subplots

expands, as explained in Section 3.4, to give the three terms

block + block.wplot + block.wplot.subplot

each of which defines a stratum for the analysis. Similarly, the treatment formula

nitrogen*variety

expands to

nitrogen + variety + nitrogen.variety

to request that Genstat fits the main effects of nitrogen and variety, and their interaction.
Again there are no covariates.

The Further Output menu uses the ADISPLAY directive to produce the output, procedure
APLOT to produce the plots of residuals, procedure AGRAPH to plot tables of means,
procedure APERMTEST for permutation tests, and procedure AMCOMPARISON for
multiple-comparison tests. ADISPLAY has options PRINT, FPROBABILITY, PSE and
LSDLEVEL like those of ANOVA. However, with ADISPLAY the default for PRINT is to
print nothing.

The summaries of results are produced by the ARESULTSUMMARY procedure; see part
3 of the Genstat Reference Manual for details.
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Finally, the AKEEP directive is used by the ANOVA Save Options menu to save the
residuals and fitted values after an analysis. This is done by two options called
RESIDUALS and FITTEDVALUES. AKEEP also allows information to be saved for any of
the individual terms in the analysis. The terms are defined by a formula which is specified
using the TERMS parameter. The formula is expanded into a list of model terms, subject
to the limit defined by the FACTORIAL option which operates like the FACTORIAL option
of ANOVA; the other parameters then specify data structures in parallel with this list, to
store the information required. Tables of means are saved using the MEANS parameter.
Other useful parameters of AKEEP are EFFECTS (tables of effects for treatment terms),
REPLICATIONS (replication tables), RESIDUALS (tables of residuals for block terms),
DF (degrees of freedom) and SS (sums of squares).

Below we use AKEEP to save the sum of squares and degrees of freedom for nitrogen
and variety from the analysis of the split-plot design in Section 5.1.

  47  AKEEP nitrogen+variety; SS=N_ss,V_ss; DF=N_df,V_df
  48  PRINT N_ss,N_df,V_ss,V_df; DECIMALS=1,0
 

N_ss  N_df  V_ss  V_df
20020.5  3  1786.4  2

The One and two-way Analysis of Variance menu uses the A2WAY procedure, which uses
the ANOVA directive for balanced designs, and the regression facilities for unbalanced
designs. This has a  Y parameter that supplies a variate containing the data values to be
analysed. The treatment factor or factors are specified by the TREATMENTS option. The
FACTORIAL option sets a limit in the number of factors in each treatment term. So you
can set FACTORIAL=1 to fit only the main effects when there are two treatment factors;
the default FACTORIAL=2 also fits their interaction. The BLOCKS option can supply a
blocking factor, for example to define a randomized-block design. There is also a
COVARIATES option which can supply one or more variates to be used as covariates in
an analysis of covariance.

Printed output from A2WAY is controlled by its PRINT option, with settings aovtable,
information, covariates, effects, means, %cv and  missingvalues, that
operate like those of the ANOVA directive, above.

The PSE option of A2WAY controls the standard errors printed with the tables of means.
The default setting is differences, which gives standard errors of differences of
means. The setting means produces standard errors of means, lsd produces least
significant differences, and by setting PSE=* the standard errors can be suppressed
altogether. The significance level to use in the calculation of least significant differences
can be changed from the default of 5% using the LSDLEVEL option.

For unbalanced designs, the means are produced for A2WAY by the PREDICT directive.
The first step (A) of the calculation forms the full table of predictions, classified by all
the treatment and blocking factors. The second step (B) averages the full table of over the
factors that do not occur in the table of means. The COMBINATIONS option specifies
which cells of the full table are to be formed in Step A. The default setting, estimable,
fills in all the cells other than those that involve parameters that cannot be estimated.
Alternatively, setting COMBINATIONS=present excludes the cells for factor
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combinations that do not occur in the data. The ADJUSTMENT option then defines how
the averaging is done in Step B. The default setting, marginal, forms a table of marginal
weights for each factor, containing the proportion of observations with each of its levels;
the full table of weights is then formed from the product of the marginal tables. The
setting equal weights all the combinations equally. Finally, the setting observed uses
the WEIGHTS option of PREDICT to weight each factor combination according to its own
individual replication in the data.

The PLOT option of A2WAY allows up to four of the following residual plots to be
requested:

fittedvalues for a plot of residuals against fitted values;
normal for a Normal plot;
halfnormal for a half-Normal plot;
histogram for a histogram of residuals; and
absresidual for a plot of the absolute values of the residuals

against the fitted values.
By default the first four are produced. The GRAPHICS option determines the type of
graphics that is used, with settings highresolution (the default) and lineprinter.

The RESIDUALS parameter of A2WAY can save the residuals from the analysis, and the
FITTEDVALUES parameter can save the fitted values. The SAVE parameter can save a
"save" structure that can be used as input to procedure A2DISPLAY to produce further
output, or to procedure A2KEEP to copy output into Genstat data structures.

The Unbalanced ANOVA menu uses procedure AUNBALANCED, which uses the Genstat
regression facilities. The method of use is similar to that for ANOVA. The treatment terms
to be fitted must be specified, before calling the procedure, by the
TREATMENTSTRUCTURE directive. Similarly, any covariates must be indicated by the
COVARIATE directive. The procedure also takes account of any blocking structure
specified by the BLOCKSTRUCTURE directive. However, it cannot produce stratified
analyses like those generated by ANOVA, and is able to estimate treatments and covariates
only in the "bottom stratum". So, for example, the full analysis can be produced for a
randomized block design, where the treatments are all estimated on the plots within
blocks, but it cannot produce the whole-plot analysis in a split-plot design. The
parameters of AUNBALANCED are identical to those of ANOVA, and there are also
FACTORIAL and FPROBABILITY options like those of ANOVA. Printed output is
controlled by the PRINT option, with settings: aovtable to print the analysis-of-
variance table, effects to print the effects (as estimated by Genstat regression), means
to print tables of predicted means with standard errors, residuals to print residuals and
fitted values, screen to print "screening" tests for treatment terms, and %cv to print the
coefficient of variation. The default is to print the analysis-of-variance table and tables
of means.
AUNBALANCED calls procedure RSCREEN to provide the screening tests for the

treatment terms: marginal tests to assess the effect of adding each term to the simplest
possible model (i.e. a model containing any blocks and covariates, and any terms
marginal to the term); conditional tests to assess the effect of adding each term to the
fullest possible model (i.e. a model containing all terms other than those to which the
term is marginal). For example, if we have

BLOCKSTRUCTURE Blocks
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and

TREATMENTSTRUCTURE A + B + A.B

the marginal test for A will show the effect of adding A to a model containing only
Blocks, while the conditional test will show the effect of adding A to a model containing
Blocks and B. (The terms A and B are marginal to A.B.)

Like A2WAY, AUNBALANCED forms tables of means using the PREDICT directive and
again has options COMBINATIONS and ADJUSTMENT to control how this is done. The
PSE option controls the types of standard errors that are produced to accompany the
tables of means, with settings: differences for a summary of the standard errors for
differences between pairs of means, alldifferences for standard errors for differences
between all pairs of means, lsd for a summary of the least significant differences
between pairs of means, alllsd for all the least significant differences between pairs of
means, and means for standard errors of the means (relevant for comparing them with
zero). The default is differences. The NOMESSAGE option allows various warning
messages (produced by the FIT directive) to be suppressed, and the PLOT option allows
various residual plots to be requested: fittedvalues for a plot of residuals against
fitted values, normal for a Normal plot, halfnormal for a half Normal plot, and
histogram for a histogram of residuals.

Procedure AUDISPLAY is used to produce further output for an unbalanced design. It
has options PRINT, FPROBABILITY, COMBINATIONS, ADJUSTMENT, PSE and
LSDLEVEL like those of AUNBALANCED, except that no screening tests are available.

The menus described in Chapter 8 use the REML directive.  Before using REML we first
need to define the model that is to be fitted in the analysis. For straightforward linear
mixed models, the only directive that needs to be specified is VCOMPONENTS. The FIXED
option specifies a model formula defining the fixed model terms to be fitted, and the
RANDOM parameter specifies another model formula defining the random terms. There are
two other parameters. INITIAL provides initial values for the estimation of each variance
component. These are supplied as the ratio of the component to the residual variance, but
the default value of one is usually satisfactory. The CONSTRAINT parameter can be used
to indicate whether each variance component is to be constrained in any way. The default
setting, none, leaves them unconstrained. The positive setting forces a variance
component to be kept positive, the fixrelative fixes the relative value of the
component to be equal to that specified by the INITIAL parameter, and the
fixabsolute setting fixes it to the absolute value specified by INITIAL. The
FACTORIAL option sets a limit on the number of factors and variates allowed in each
fixed term (default 3); any term containing more than that number is deleted from the
model.

Usually, only FIXED and RANDOM need to be set. For example, the statement below
defines the models for the split-plot example in Section 7.1.

VCOMPONENTS [FIXED=variety*nitrogen] \
  RANDOM=blocks/wplots/subplots

Once the models have been defined, the REML directive can be used to perform the
analysis. The first parameter of REML specifies the y-variate to be analysed. The PRINT
option is set to a list of strings to select the output to be printed. These are similar to the
check boxes of the Further Output menu. The most commonly used settings are:

model description of model fitted,
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components estimates of variance components and estimated
parameters of covariance models,

effects estimates of parameters in the fixed and random
models,

means predicted means for factor combinations,
vcovariance variance-covariance matrix of the estimated

components,
deviance deviance of the fitted model,
waldtests Wald tests for all fixed terms in model,
missingvalue estimates of missing values,
covariancemodels estimated covariance models.

The default setting of PRINT=model,components,Wald,cova gives a description of
the model and covariance models that have been fitted, together with estimates of the
variance components and the Wald tests. By default if tables of means and effects are
requested, tables for all terms in the fixed model are given together with a summary of
the standard error of differences between effects/means. Options PTERMS and PSE can
be used to change the terms or obtain different types of standard error. For example,

REML [PRINT=means; PTERMS=nitrogen.variety; \
     PSE=allestimates] 

will produce a nitrogen by variety table of predicted means with a standard error for each
cell.

Further output is produced by the VDISPLAY directive, which has options PRINT,
PTERMS and PSE like those of REML.

Information from the analysis can be saved using the VKEEP directive. For example this
has options RESIDUALS and FITTEDVALUES to save the  residuals and fitted values
respectively. It also has parameters to allow you to save variance components, predicted
means, standard errors and so on. Full details are given in  Section 5.9 of Part 2 of the
Guide to the Genstat Command Language.

The Analysis of variance by ANOVA, regression or REML menu uses the AOVANYHOW
procedure; see part 3 of the Genstat Reference Manual for details.
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