The

GENSTAT

Newsletter

NNNNNNNNN
AAAAAAAAAA
GGGGG

Editors

R W Payne

Rothamsted Experimental Station
Harpenden

Hertfordshire

AL52JQ

M G Richardson
NAG Central Office
Mayfield House
Oxford

0X2 7DE

Printed and produced by the Numerical Algorithms Group

®NAG Limited 1985
All rights reserved.

NAG isa trademark of the Numerical Algorithms Group.

The views expressed in contributed articles are not necessarily those of the publishers.

GENSTAT NEWSLETTER
Issue No. 15

NP1050 1985 March

Genstat Newsletter No. 15

Page 2

Contents

b

COVRPNAAW

1.

Editorial

Corrigenda

Letter to the Editor

Fitting Exponential or Weibull Distributions
toSurvival Data

Genstat by Post

Understanding Common Error Messages in Genstat

Drawing Bar Charts

Linking Fortran Subprograms into Genstat

An Implementation of the Genstat’OWN’ Directive

Some Uses of the ’'OWN?’ Directive:
Interfaces between Genstat and Other Packages and
Interruption of Genstat Sessions

Efficient Performance of Genstat ona VAX

Enclosures

Genstat Newsletter Order Form

Published Twice Yearly by
Rothamsted Experimental Station Statistics Department
and the Numerical Algorithms Group Limited

Printed 1985 October

Genstat Newsletter No. 15

Editorial

The number of Genstat sites continues to grow more or less linearly with time — there are now well
over 300sites outside of the ARC. With this growth has come concomitant growth in NAG staff in
thestatistical packages area: over a twelve month period these will have increased from one to four.

Allfirst-line support of Genstat for non-ARC sites now comes from NAG and thesesites should not
normally contact the package developers at Rothamsted or the various machine range
implementors, except through NAG. The developers and implementors are, of course, still
available to provide back-up to NAG when necessary.

This issue of the Newsletter contains articles from a geographically wide range of authors, most of
whom submitted material in machine-readable form, for which we are extremely grateful. Our
need for submissions continues to be as great as ever: very few articles describing Genstat
applications have been submitted recently and we urge readers to consider whether their own
application might not be of general interest.

When this Newsletter appears, the Genstat Conference will probably have come and gone. We
hope that many of our readers will have been able to attend and will have enjoyed the Conference.
Asusual, many of the papers presented will also appear in future issues of the Newslettes.

Corrigenda

14.6 Dendrograms and Ziggurats

References to ‘the previous article’, ‘the previous program’, etc. should be to ‘the following article’,
etc.

Onp. 14,line4,2"! shouldread 2™ !.

14.7 Drawing Pretty Dendrograms

Thereferencestatement for the program on p. 20should read
‘refe’ dendrograms_on_the_sigma

In some copies of Newsletter 14 the punctuation marks in the programs are very faint. Readers
needing clarification of the programs may obtain listings from NAG Central Office.

Page 3

Genstat Newsletter No. 15

Letter to the Editor

B.L.Shea

NAG Central Office
Mayfield House

256 Banbury Road
Oxford 0X2 7DE
United Kingdom

The Role of a Subroutine Library for Statisticians

Anyone whohas carried out a statistical analysis of some kind will almost certainly have used one of
the many widely available statistical packages. Indeed, there are a great many such packages
designed to relieve the user of unnecessary programming effort whilst enabling him to perform an
analysis of some sort. Whilst there can be little doubt that data analysis is most easily done using
such packages, there are perhaps occasions when having access to a subroutine library would be
advantageous. Users in academic institutions generally have easy access to packages such as
Genstat. Hence the only data analysis routines in a subroutine library which would be of interest to
them are those which carry out non-standard analyses not generally available in package form,
such as robust statistics. Obviously, doing statistical analysis using library routines is much more
time consuming and seems a rather alien approach toadopt.

One should not perhaps be over-concerned with the academic statistician who is so richly endowed
with packages. Consider instead the average statistician working for a small company which
subscribes to a subroutine library for mathematicians and scientists. If statistical packages are
deemed too expensive the statistician may not be too badly handicapped if statistical routines are
availablein the library.

Many packages may not present the results to the user’s satisfaction. There may be an advantage in
being able to write in-house programs which call library routines and interact with local graph
plotting facilities. The user then has complete control over output and can produce high quality
graphics.

Clearly there would be advantages in having arguments to a library routine call which allowed the
user the option of whether or not to display (on the line printer) some or all of the results.

As new methodologies become available these might be more speedily passed on to users if they are
distributed in subroutine rather than package form.

A subroutine llbrary obvnously has a key role to play in provndmg the basic linear algebra routines
such as matrix inversion and function minimization.

What statistical routines should be in a subroutine library and who will the users be? I would be
grateful to hear from anyone who has views on this.

Page 4

Genstat Newsletter No. 15

Fitting Exponential or Weibull Distributions to Survival Data

AW.A. Murray

Statistics Department
Rothamsted Experimental Station
Harpenden

Hertfordshire AL5S 2JQ
United Kingdom

Survival data consist of observed times of death (failure in the case of inanimate objects) or times of
loss of an individual from the study for other causes; these latter are called censored observations.
We may wish to fit an appropriate distribution to these data and estimate its parameters. The
exponential and Weibull distributions are often suitable probability models for survival data. This
article describes a simple diagnostic procedure to aid in the choice of distribution and shows how
these distributions, or binary mixtures of them, may be fitted.

The diagnostic procedures make use of the empirical product-limit or Kaplan-Meier estimate of
the survivor function. This is essentially a 1-sample cumulative distribution function but allows the
inclusion of censored data. The formula is given by

.—d.
Soy= 11 u

i<t W

ey

where S is the product-limit or Kaplan-Meier estimate of the survivor function, n, is the number of
individuals at risk at time 2 and d,. is the number of observed deaths at time ;. The survivor
function, S, for exponentially distributed data, is given by

S(1) = exp[—\] (2)

for some parameter A. The diagnostic procedure is to plot /n(S(¢)) against ¢, which should give a
straight line of slope A if the data are distributed in this fashion. The survivor function for a Weibull
distribution is given by

S(1) = exp[—(\)"] 3
for some parameters \,w2F3. The identity
In[—In(S())] = w(in(t) +In(\)) “4)

shows that a plot of In[— In(S(¢))] against In(z) should give a straight line of slope w and intercept
win()\).

Program 1 calculates and displays the Kaplan-Meier survivor function, together with 95%
confidence limits according to Greenwood’s formula as modified by Kalbfleisch and Prentice
(1980). Diagnostic plots for exponential and Weibull distributions are performed. There is an
option to select plotter output for the graphs, which will provide very much better detail than the
line-printer style of output. The necessary data, to be provided on a secondary input stream, are the
times, T, of death or censorship and an indicator variable, C, which is # where an observation is
censored and 1if a death has been observed. An example data set is shown below. A heading, HONG,
must be provided to identify the data
' Example data set '

"' random times from an exponential distribution with theoretical mean 109 '’
62 184 23 151 50 4 143 162 14 88 126 20 27 52 124 203 190 18 25 26

21 258 130 164 135 56 16 46 79 59 1 157 6 28 3 283 29 79 29 230

7 127 60 210 1 146 112 69 98 124 68 27 26 82 59 32 42 19 223 164

Page 5

Genstat Newsletter No. 15

75 276 117 37 44 256 28 281 45 127 97 105 64 53 218 41
4 145 176 5 93 116 94 60 63 85 17 19 134 'EOD’ times
1

[QT N S A
[~ QK TN
-

=2

11
11
11
11

-_ ek - -

111
111
111
111

-_—emd -

11
11
11
11

[~ I U
—

£

-— -

censored at random
If plotter output is desired then the line
"SET’ PLOTTER = YES

should be included in the program and a secondary output file made available when Genstat is run.
"REFE’ PROGRAM (1)

Analysis of survival data (lifetimes in days, including censored
observations)

calculation of Kaplan-Meier (product-limit) estimate of survivor function

also gives upper and lower 95% confidence bounds using Greenwood's
formula as modified by Kalbfleisch J D and Prentice R L (1980),
The Statistical Analysis of Failure Time Data. New York: Wiley

diagnostic test for fit of Exponential distribution
diagnostic test for fit of Weibull distribution

"SET' PLOTTER=YES
"HEAD' HDNG
'INPUT" 2
"READ" HDNG
"PRINT' HDNG
"READ/S,NUN=V" T,C
"INPUT® 1
"RUN’
"INTE' YES=1 : NO=2
"NAME’ YESNO=yes,no
"FACTOR’ REMOVED$YESNO, T
"GROUP' REMOVED=RANK(C)
"TABLE/M' HOW_MANY$REMOVED
"TABU' T; ASSCT=HOW_MANY
"SCAL' NT,T_NTP1,NO,FIRST,TAIL_TIME,RH_TAIL
"EQUA’ N@=HOW_MANY$2X, 1
"VARI' TXC$T
"CALC" TXC=T+C/C

TXC=REPMV (MIN(TXC))
'GROUP' DTIMES=INTPT(TXC)
"CALC’ NT=NLEV(DTIMES)

T_NTP1=2sNT+1
"RUN’

Page 6

"UNIT’$NT
"TABLE' TAB_DTIMESDTIMES
"TABU" TXC; MEAN=TAB_DTIME
"EQUA’ TIME=TAB_DTIME
"CALC’ LOG_TIME=LOG(TIME)

"GROUP’

"RUN’

"RESTR’
"TABLE"’

: S_T=EXP(LOG_S_T)

"HEAD’

TIMES=

LIMITS(T;TIME)

T$REMOVED=NO

TAB_TIMESTIMES

"TABU' T;ASSCT=TAB_TIME

"EQUA’ DEATHS=TAB_TIME

: LAGDEATHS=0,DEATHS

"RESTR' TS$REMOVED=YES

"TABU' T;ASSCT=TAB_TIME

"EQUA’ CENSORED=TAB_TIME

"CALC" NJ_DJ=NB-CUM(CENSORED)-CUM(DEATHS)
NJ=N@-CUM(CENSORED)-CUM(LAGDEATHS)
: TERM=NJ_DJ/NJ

"'log Kaplan-Meier estimate of survivor fn'’
: LOG_S_T=CUM(LOG(TERM+@.00001+(TERM.EQ.0)))

Genstat Newsletter No. 15

S_T++(EXP(1.96+SE_S_T)) '’ lower confidence bound '’

S_T+x(EXP(-1.96sSE_S T)) **

ELEM(LO_LIM,HI_LIM;NT)=0.000

W_TEST=

LOG(-LOG_S T)

0BS_FREQ=1.80-S_T
FIRST=ELEM(0BS_FREQ; 1)
0BS_FREQ=DIFF(0BS_FREQ; 1)
ELEM(0BS_FREQ: 1)=FIRST
TAIL_TIME=ELEM(TIME;NT)
RH_TAIL=1-SUM(0BS_FREQ)
FIRST=ELEM(LO_LIM; 1)

HTAIL=
HY= *°
HY(1)=

L] >C'
Value of survivor function'’

upper confidence bound '’

log Kaplan Meier survivor function’’

HY(2)= ""log (-log Kaplan Meier survivor function)'’

HX(1)=
HX(2)=
HT= "

HT(1)=

HT(2)=
L=’ 'th

" time (days)'’
"' log(time)’’

Graph of empirical (Kaplan-Meier) survivor function'’

LPP=""LPP" "’

DASH=""

LLL=""L2L1Le "’

Graph to test possible fit of Exponential distribution '’
"' Graph to test possible fit of Weibull distribution '’

"'Kaplan-Meier (product-limit) estimate of survivor fn'’
"'corrected formula for variance function, Kalbfleisch & Prentice p.15"’

: SE_S_J=SQRT(CUM(DEATHS/(NJ:(NJ_DJ+(N4_DJ.E0.0))))/(LOQ_S_]“2))
LO_LIM=
HI_LIM=

Page 7

Genstat Newsletter No. 15

"LINE® 5

"PRINT' HONG

"PRINT/MARG=TOTAL' HOW_MANY$10

"PRIN/P’ TIME,DEATHS,CENSORED,0BS FREQ,S_T,LO_LIM,HI_LIN$ 3(10),4(10.3)

"JUMP' NO_TAIL +(RH_TAIL.EQ.0)

"PRINT/C,LABR=1,VAR=1" HTAIL,TAIL_TIME,RH_TAIL$ 2X.1,4,30.3

"LABEL' NO_TAIL

"VARI' GTIME,G_S_T,G_LO,G_HI$ST_NTP1

: YXSCALE=0,1.0,s,+

"EQUA’ GTIME,GTIMES$1,(1,X)NT,2X,(1,X)NT=8, TINE, TIME

: G_S_T.G6_S_T$(1,X)NT, (1.X),(1.X)NT=1,5_T,1,5_T
G_HI.G_HI$(1.X)NT,(1,X),(1,X)NT=1,HI_LIM,1,HL_LIM

: G_LO,G_LO$(1,XINT,(1,X),(1,X)NT=FIRST,LO_LIM, FIRST,LO_LIN

"GRAPH/HY HX(1),TITL=HT ,BV=YXSCALE’ G_S_T,LO_LIM,HI_LIM;GTIME, TIME, TIME

$LPP; +,DASH,DASH

'VARI' ZERO=0.00082

'FACTOR’ EXCLUDE$2,NT

"GROUP’ EXCLUDE=LIMITS(TERM;ZERO)

"RESTRICT' LOG_S T,TIMEW TEST,LOG_TIME$ EXCLUDE=NO

"GRAPH/HY (1), HX(1), TITL=HT(1)’ LOG_S_T;TIMES L

"GRAPH/HY(2),HX(2),TITL=HT(2)" W_TEST;LOG_TINE$ L

'JUMP’ NO_PLOT «PLOTTER.ISNT.YES

'OUTPUT' 2

"GRAPH/HY ,HX(1),TITL=HT,BV=YXSCALE, BUFF=N,DEVICE=1"
6_LO,G_S_T,G_HI;GTIME$ LLL

"GRAPH/HY(1) ,HX(1),TITL=HT(1),BUFF=N,DEVICE=1" LOG_S_T:TIME$ L

"GRAPH/HY(2),HX(2),TITL=HT(2),BUFF=N,DEVICE=1" W_TEST;LOG_TIMES L

"OUTP/RECL=132" 1

"LABEL' NO_PLOT

"RUN"

"CLOSE’

*STOP"

The diagnostic plot produced by program 1 may suggest that it might be worth fitting either an
exponential or a Weibull survivor function to the data. Program 2 will fit an exponential
distribution and estimate the parameter A (L in the program) by means of direct minimization of the
negativelog-likelihood function using ' OPTIMISE '. Thelikelihood, L, for nobserved deathsat times
t,ty,....t, and m censored observations at times Uy ,uy,..u, isgiven by

n m
Lty sty sty thy sty sty = 11 g1ty 11 S(u) (5)

i=1 i=1
where S is given by equation (2) and f, the probability density function, by
S = = Bl = dexp[—r ©)
The initial value of X is found by taking the reciprocal of the mean of observed times of death.
Steplengths are set to 2% of the initial value. The mean of the fitted distribution is printed and the

program could easily be expanded to provide graphical output of the fitted survivor function for
comparison with the Kaplan-Meier plot.

Page 8

Genstat Newsletter No. 15

"REFE/NUNN=200,PRIN=IPF" PROGRAM_(2)

Analysis of survival data (lifetimes in days, including censored
observations)

fit of exponential survivor function

direct minimization of negative loglikelihood function

"HEAD’ HDNG

"INPUT" 2

"READ’ HDNG

"PRINT' HDNG

"READ/S,NUN=V' T,C

*INPUT® 1

"RUN’

"INTE® NO=2

"NAME' YESNO=yes,no

"FACTOR' REMOVEDS$YESNO,T

"GROUP* REMOVED=RANK(C)

"SCAL' MEAN_,L,LO0G_LIKELIHOOD

"VARI' EXP_S$T

"VARI® STEPL$1

"RESTRICT' T$ REMOVED= NO

"CALC" L=1/MEAN(T)

"RESTRICT" T

"CALC’ STEPL=L«8.02

"MODEL' EXPON$ EXP_=EXP(-L=T)
$LOG_LIKELIHOOD=-(SUM(C+LOG(L+EXP_))+SUM((1-C)«LOG(EXP_}))

"CAPT’

ssexs Fit of exponential distribution. sasss’’

"OPTI/PRIN=PSM,LIK=1,NPAR=1" EXPON; FMIN=LOG_LIKELIHOOD; PARAM=L;

STEPS=STEPL

"CALC’ MEAN_=1/L

"CAPT’

»sss+ Mean of fitted exponential distribution ssss«'’

"PRINT/LABR=1" MEAN_$25.1

"RUN’

'CLOSE’

"STOP’

Program 3 will fita Weibull distribution to the survival times. It is necessary to guessan initial value
for the parameter w(¥ in the program). If the mortality rate, or hazard, is thought to decrease with
time then w should be in the range 0 to 1 and a guess of 0.5 should be satisfactory. If the hazard is
increasing with time then w > 1.0 and a suitable first-try initial value might be 1.5; this could be
increased if there is no convergence to a solution. The program calculates the mean of the
uncensored data and uses this to find an initial value for A (L in the program). The mean, median and
mode of the fitted distribution are printed.

Page 9

Genstat Newsletter No. 15

"REFE/NUNN=200 ,PRIN=IPF' PROGRAM_(3)
Analysis of survival data (lifetimes in days, including censored
observations)

fit of Weibull survivor function

direct minimization of negative loglikelihood function

"MACRO' LGAMS

Macro to calculate log(complete gamma function)

"LOCAL® XX

"SCAL® XX

"CALC’ XX=X+3+(X.LT.3)

"CALC’

LOGGAMMA=(XX-0.5)+L0OG(XX)-XX+0.9189385+(0.0833333-0.08277778/(XX+XX))/XX
LOGGAMMA=LOGGAMMA-(X.LT.3)sLOG(Xs(X+1)s(X+2))

*ENDMACRO/LOCAL=DESTROY"

"HEAD' HDNG

"INPUT" 2

"READ’ HDNG

"PRINT' HDNG

"READ/S,NUN=V" T,C

"INPUT" 1

"RUN’

"INTE' NO=2

"NAME' YESNO=yes,no

"FACTOR' REMOVED$YESNO,T

"GROUP* REMOVED=RANK(C)

"SCAL" X,MEAN_,MEDIAN_,MODE_,L,W,LOGGAMMA,LOG_LIKELIHOOD
"VARI' WEIB_$T

'VARI' STEPLW$2

Set initial value of parameter W
suggest 1.5 if hazard rate thought to increase with age
suggest 0.5 if hazard rate thought to decrease with age

"CALC" W=1.5

X=(W+1)/W
"USE/R’ LGAMS
'RESTRICT" T$ REMOVED= NO
"CALC’ L=EXP(LOGGAMMA)/MEAN(T)
"RESTRICT" T
"CALC' ELEM(STEPLW;1)=Ls0.02

Page 10

Genstat Newsletter No. 15

ELEM(STEPLW;2)=W+0.02
"MODEL' WEIBULL$ WEIB =EXP(-((L+T)s+¥))
$ LOG_LIKELIHOOD=-(SUM(C+LOG(LsWs((LaT)»»(W-1))+WEIB))
+SUM((1-C)+LOG(WEIB)))
"CAPT’
sssss F1t of Weibull distribution sssxs'’
"OPTI/PRIN=PSM,LIK=1,NPAR=2' WEIBULL; FMIN=LOG_LIKELIHOOD; PARAM=L,W;
STEPS=STEPLW
"LINE'2
"CAPT™ *°
s++s+ Mean of fitted Weibull distribution sssss'’
"CALC’ X=(W+1)/W
"USE/R’' LGAMS$
"CALC’ MEAN_=EXP(LOGGAMMA)/L
MEDIAN =(LOG(2)++(1/W))/L
MODE_=(((W-1)/W)ssW)/L
"PRINT/LABR=1" MEAN_$20.1
"CAPT" "
+ses+ Median of fitted Weibull distribution ssxss’’
"PRINT/LABR=1" MEDIAN_$ 20.1
"CAPT" **
«xsx+ Mode of fitted Weibull distribution sssss’’
"PRINT/LABR=1' MODE_$ 20.1
"RUN’
"CLOSE’
"STOP'

Somedata may require a more complex probability model. If thediagnostic plot hastheappearance
of two intersecting straight lines, like a ‘dog-leg’ or ‘broken stick’, then a model involving mixtures
of distributions could be appropriate. This could be a mixture of two exponential components, two
Weibull components or an exponential and a Weibull. We can write this situationas

S@)=pS,; () +(1—p)S,(1))
where p is a mixture parameter 0 < p < 1,and S| and S, are the component survivor functions.
For a mixture of two exponential distributions we would have

S(t) = pexp[—A 1] + (1—p) exp[—A,1] @®)

Inorder toobtain initial parameter values for optimization, we assume that in the time up to the first
death S, (1) = 1sothat

S(1) = pexp[—\t] + (1—p) 9)
Thevalue for A, is given by
_ (n[3(t,) — 1+p) — In[p])

1 : (10)

1

where S (¢,) is the Kaplan-Meier estimate at time ¢, calculated by equation (1) and we guess the
value of p either from prior knowledge or as 0.5. We also assume that, for large values of S,

S, =0
sothat

Page 11

Genstat Newsletter No. 15

S0 = (1=p)expl — Ay1] (1n)
Then the value for A, is given by

_ In[S’(tj)] — In[1—p]

4

where S(z j) is the Kaplan-Meier estimate for some large value of time, ¢, . It may be better to take

an average of three values from the latter part of the sample distribution. The values of S can be
obtained by running program 1. It is possible to make a reasonable guess at a suitable value of pby
studying the Kaplan-Meier plot and diagnostic plots. Initial values for A, and), are calculated as

above and edited into the program. Program 4 fits a double exponential model to survival data.
"REFE/NUNN=200,PRIN=IPF' PROGRAM (4)

’

2

Analysis of survival data (lifetimes in days, including censored
observations)

fit of binary mixture of exponential distributions
direct minimization of negative loglikelihood function

"HEAD" HDNG
"INPUT" 2

"READ" HDNG
"PRINT" HDNG
"READ/S ,NUN=V' T,C
"INPUT" 1

"RUN’

set initial values for parameters

" e

"SCAL’ P=8.25 '’ guess value for mixture parameter '’
: L(1)=0.0492 ' L(1)=-(LOG(S_T=1+P)-LOG(P))/t1 for time t1 '’
L(2)=0.08584 ' L(2)=-(LOG(S_T)-LOG(1-P))/tj for some large time tj '

: LOG_LIKELIHOOD,MEAN_
"VARI' STEPPLL$3
: UP_LIMS=1.0,1.0,1.0
LO_LINS=0.0001,0.0001,0.0001
. EXP_1,EXP_2,F. T $ T
"CALC" ELEM(STEPPLL;1)=P+0.02
: ELEM(STEPPLL;2)=L(1)+0.082
: ELEM(STEPPLL;3)=L(2)+0.02
"MODEL" DEXPON$ EXP_1=P+EXP(-L(1)+T)
$ EXP_2=(1-P)+EXP(-L(2)+T)
$ F_T=L(1)+EXP 1+L(2)+EXP_2
$ LOG_LIKELIHOOD=~(SUM(C+LOG(F_T))
+SUM((1-C)+LOG(EXP_1+EXP_2)))
"CAPT®
sxx+x F1t of double exponential distribution sssss'’

Page 12

Genstat Newsletter No. 15

"OPTI/PRIN=PSM,LIK=1,NPAR=3' DEXPON; FMIN=LOG_LIKELIHOOD;
PARAM=P,L(1,2); STEPS=STEPPLL; UPPER=UP_LIMS; LOWER=LO_LIMS
"CALC’ MEAN_=P/L(1)+(1-P)/L(2)

"CAPT "

+xs++ Mean of fitted double exponentlal distribution sxs+ss’’
"PRINT/LABR=1" MEAN_$25.1

"RUN’

'CLOSE’

*STOP’

A double Weibull or mixed exponential and Weibull could be fitted in a similar way. Elandt-
Johnson and Johnson (1980), chapter 7 provides a good discussion of fitting mixtures.

Grids of likelihood can be obtained using the GRID optionof *OPTIMISE ', and thesecan be plotted in
one dimension by 'GRAPH' or two dimensions by 'CONTOUR’. In addition to the parameter
estimates, Genstat provides the square root of the second derivatives and a matrix of scaled second
derivatives of the log-likelihood function, with respect to the parameters, at the optimum. These
are, asymptotically, the standard errors and correlations among the parameter estimates but it may
be necessary to have a fairly large sample, perhaps some hundreds of observations, before the
second derivatives can be expected to behave well as standard errors and correlations.

In this article I have attempted to sketch some of the theory involved in fitting exponential and
Weibull distributions to survival data. The reader is referred to Kalbfleisch and Prentice (1980)
and Elandt-Johnson and Johnson (1980) for a full discussion of the relevant theory. The programs
should provide at least a basic ‘tool-kit’ for analysis of survival data.

References

[1] Elandt-Johnson, R.C.and Johnson, N.L.
Survival Models and Data Analysis.
John Wiley & Sons Inc., New York, 1980.

[2] Kalbfleish, J.D. and Prentice, R.L.
The Statistical Analysis of Failure Time Data.
John Wiley & Sons Inc., New York, 1980.

Page 13

Genstat Newsletter No. 15

Genstat by Post

J. Riley

Overseas Development Administration Biometrician
Statistics Department

Rothamsted Experimental Station

Harpenden

Hertfordshire AL5 2JQ

United Kingdom

I am one of the members of the Overseas Unit of Rothamsted Statistics Department. Here I
describe some of the difficulties of collaboration by post and how they affect efficient programming
techniques. I also describe some typical analyses, peculiar to overseas work, which can be
programmed in Genstat.

Much of the data which I receive for analysis arrives in a form far from the ideal one that I
constantly suggest to my clients. The reasons for this are several: (1) I have often been introduced to
anoverseas research team long after the data were collected; (2) the fast turn-over of contract staff
in overseas teams means that a team will need continual training in data collection - training which
is difficult to arrange over many thousands of miles; (3) because of limited numbers of trained staff
in the area, a research team may often depend upon untrained local people to help at harvest time;
and (4) as experiments from a great variety of countries can rarely follow any typical layout, it is
difficult to influence a researcher thousands of miles away before he begins recording data from a
trial.

To render the data into a form suitable for analysis may take more time than the analysis itself.
Here, I give a few examples of the sort of data organisation required and one or two typical features
of analyses that I have carried out, using Genstat, for such distant research teams.

Organisation of Data

Untidy, and oftenillegible, data sheets are returned totheir originsif they really are so bad that data
processor and statistician find them too difficult to work with. On one occasion, however, I knew
that the very untidy data sheets were the only ones available, the originals having been destroyed
through no fault of the researchers. The experiment involved different age-groups containing about
50 sheep, which were weighed and scored for condition seven times a year, while fleece weights and
lamb data were recorded once. Unfortunately, the data, collected long before a statistician arrived
on the scene, were recorded by a different person and on different sheets of paper at each date. The
seven weights and condition scores for any one group of sheep could not be aligned sufficiently well
topermita parallel 'READ ' statement for all the variatesand sothedata had tobeinputonedateata
time and a program written to form a new data file holding all the variates in parallel for each group
of sheep. This less cumbersome file was much easier to handle at the analysis stage and a print-out of
the file enabled the researcher to follow the progress of any one sheep throughout the whole year.

The next aim was to present the lamb variates in parallel with the sheep variates. This should have
involved the simplestep of reading the lamb data and printing themin parallel with the parent sheep
data. However, the researchers had recorded the data in the order in which the lambs had arrived
for weighing, which was not the same order as their parents’ data. Furthermore, a lamb’s number
had no connection with its parent’s number. Thus, for example, sheep number 12 had lamb number
123, while sheep number 13 had lamb number 105. Hence it was necessary to read in an extra
variate of sheep numbers, with the lamb numbers, to allocate the correct offspring to their parents.
The ORDER function could then be used tosort all the lambdata according to the sheep numbering so
that the lamb data could be printed in parallel with the parents’ weights and condition scores. Thus

Page 14

Genstat Newsletter No. 15

the randomised sheep numbers (SHEEP) could be read in parallel with the lamb numbers (LAMB)and
lamb variates (V(1,2, 3)) tolink up a lamb with its mother as follows:

"Read’ LAMB, V(1), V(2), V(3), SHEEP 'Run’

101 8 8.1 10 5
100 2 0.6 11 2
105 3 8.9 12 6
103 9 8.2 13 1
102 6 0.4 14 4
104 4 8.5 15 3

'EOD’
Then a few Genstat statements of the form:

'SET' LAMBVARS = LAMB, V(1, 2, 3)
"CALC’ LAMBVARS = ORDER (LAMBVARS: SHEEP)
SHEEP = ORDER (SHEEP)

"PRIN/P’ SHEEP, LAMBVARS $ 3(18), 18.1, 10
would produce the lamb data in the same order as the ordered sheep data:
SHEEP LAMB V(1) V(2) V(3)

1 183 9 8.2 13
2 100 2 0.6 11
3 104 4 8.5 15
4 182 6 0.4 14
5 101 8.1 10
6 105 3 0.9 12

Thus, short and simple programming is all that is required to deal with what would otherwise be a
formidable task of data organisation.

Intercropping Experiments

Experimentsin tropical countries areoften performed to investigate intercrops, that is, a mixture of
two completely different species. A typical intercropping experiment consists of a number of
intercropped plots, on which species 1 and species 2 are grown together, each plot receiving one of
the treatments under study. To provide a comparison between the yields of species 1 and 2 when
intercropped and the yields that could be obtained when the species are grown sole, the experiment
may also contain plots of species 1 alone and plots of species 2 alone. These sole-cropped plots may
be positioned next to the intercropped plots or they may be randomised amongst the intercropped
plots. When analysing data from such a trial, it is important to distinguish between the sole and
intercropped plots and to deal with them separately, since variation within the data for the two
individual systems of planting can be expected to be quite different. The ideal way to present such
data, then, is to give all the yields of the sole plots of species 1, separate from the yields of the sole
plots of species 2, with both of these blocks of data followed by all the yields from the intercropped
plots. A suitable layout may be of the following form:

Page 15

Genstat Newsletter No. 15

sole
plot
yields
plot species 1
numbers
and
treatment
levels
sole
plot
ylelds
species 2

intercrop plot
yields

species 1 and
species 2

More often than not, the sole plots have been randomised amongst the intercrop plots and the data,
recorded in plot order, consist of variates whose length is the total number of plots in the experiment.
Thus, for a sesame/sorghum intercropping trial, the plant heights in centimetres were recorded as
follows for one of the four replicates.

Plot Treatment Sorghum height Sesame height
1 1 159 189
2 sole sesame x 176
3 2 162 184
4 9 181 171
5 3 166 170
6 7 162 165
7 8 182 170
8 5 161 183
9 solesesame * 180

10 sole sorghum 163 *

11 4 167 187

12 sole sesame * 174

13 6 158 156

Page 16

Genstat Newsletter No. 15

The setting-up of a factor REST to distinguish between the sole and mixed plots and the use of
"RESTRICT ' permit calculations to be done on the mixed plots as follows:

"FACTOR' REST $ 2 = 2, 1, 6(2), 2(1), 2, 1, 2
"RESTRICT' SORGHUM, SESAME $ REST = 2

However, the accurate use of ' EQUATE " is preferred to produce the shorter variates for the separate
cropping systems so that the usual range of analyses for such data can be applied effortlessly and
efficiently. Thus,

"VARIATE' SOLESES $ 3
: SORGHT, SESHT § 9

"EQUATE’ SOLESES = SESAME §$ 1X, 1, 6X, 1, 2X, 1, 1X
: SORGHT, SESHT = SORGHUM, SESAME $ 1, 1X, 6, 2X, 1, 11X, 1

The variate SOLESES will then hold the three sole sesame values and the variates SORGHT and SESHT
will hold the nine sorghum and sesame heights respectively: these can then be used for the usual
range of analyses for intercropping data.

One of the recognised analyses for two correlated variates V1 and V2 from intercropped plots is the
Bivariate method (Pearce and Gilliver, 1978). The error variances of the yields X and X, of thetwo

cropsare V|, and V,, andtheir error covarianceis V|, . After eachvariate has beenadjusted for the

other, as in analysis of covariance, the variances become V; 1 and V2'2 where

4

— _ 2
Vn - Vn VIZ/VZZ
and
r _ 12
V22 - sz Vl 2/ Vl 1
Two new variates, y; and y,, whose means can be plotted with rectangular axes, are defined as

n =x/V"
and
¥y =y = Vigx MDYV,
having error variances equal to 1 and error covariance equal to 0, i.e. y, and y, are independent.

Noting that the covariance of x| and x, is one quarter of the variance of (V1+ V2) minus one
quarter of the variance of (V1 —V2), to program this method is very easy using the "EXTRACT’
directive in Genstat. For an experiment involving four millet genotypes (WILLET) and four sorghum
genotypes (SORGHUM) grown in all sixteen combinations in four replicate blocks of sixteen whole
plots (¥P), the Genstat instructions would be:
"CALC’ TOTAL = X1 + X2
: DIF = X1 - X2

"BLOCK' BLOCK/WP
"TREA® MILLET =+ SORGHUM

"ANOV' X1; OUT = MOUT

: Xe; oUT = SoUT
: TOTAL; OUT = TOUT

Page 17

Genstat Newsletter No. 15

: DIF; OUT = DOUT

"EXTRACT' MOUT; MILLET « SORGHUM $ VAR = V11
: SOUT; MILLET « SORGHUM $ VAR = V22
: TOUT; MILLET » SORGHUM $ VAR = VT2
: DOUT; MILLET s SORGHUM $ VAR = VD2

"SCALAR" V12, SvV11, Tv22, sv22

"CALC’ V12 = (VT2
: TV = V11
: TV22 = V22
. SV11, sv22
: Y1 = X1/SV11
: Y2 = (X2 - V12 « X1/V11)/5V22

VD2)/4
(V12 « V12/V22)
(V12 « V12/V11)
SQRT(TV11, TV22)

]

"ANOV' Y1 $ out
: Y2 $ out

Y 10Ut
Ya0ut

"EXTRACT’ Y10UT; MILLET » SORGHUM $ MEAN = MM1, MS1, MY1
: Y20UT; MILLET » SORGHUM $ MEAN = MM2, MS2, MY2

"VARI' VMY1, VMY2 $ 16

i

MY 1
HY2

"EQUATE" VMY1
: VMY2

"GRAPH' VMY2; VMY1

Thus the mean values for the sixteen genotype combinations can be calculated and plotted for the
new independent variates, Y, jandY,.

Residuals in Field Layout

Experiments done in developing countries are often on land which is being cultivated for the first
time; little is known of its past history and the experimental area is likely to be very variable in
quality. Accurate positioning of the plots is thus necessary to ensure homogeneity within a block
and this can lead to very irregularly-shaped experiments. The printing in field layout of plot
residuals from an analysis is a useful step that can often indicate trends and extreme values which,
in turn, may suggest that a further, modified, analysis is necessary. A table with factors whose
numbers of levels equals the number of rows and columns of plots in the design can be used to hold
the residuals; printing the table, with row and column labels suppressed, will provide a presentation
of the residuals in field layout. For regularly laid-out experiments with contiguous or parallel
blocks, this procedure is very simple. For the irregularly laid-out trials with which I am often
concerned, the setting-up of the table is not difficult but requires a little more care to ensure that the
output given truly represents the field layout. One such set of data which I received from a trial on
different grass species consisted of three blocks of twenty plots arranged in the following way:

Page 18

Genstat Newsletter No. 15

Block 1

11 2 3| 4 51 6 7] 8] 91011} 12|13 |14|15|16 |17]18]|19] 20

Block 2 Block 2
21 e2|23 |24 25] 26| 27| 28] 29|30 |31]32]33] 34
Block 2 Block 3

35|36 (137]|38| 39|48 41| 42 |43 |44 45] 46 | 47

Block 3

48 | 49 | 50| 51) 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60

withplots 1 to 20 in Block 1,21 to 40 in Block 2 and 41 to 60 in Block 3. The Genstat instructions to
form a table to hold the residuals and then to print them out are as follows:

"FACT' X § 4 = 20(1). 14(2). 13(3, 4)
Y$20=1...208, 3, (8,9, ... 20)3

"TABL' TAB $ X, Y

"ANOV" DATA:; RES = RR

"TABU’ RR; TAB

"PRIN/LABR = 1, LABC = 1' TAB § 6.1

One point which should be made about the presentation of results of analyses to clients overseas is
that results need to be very clear so that parts of an analysis can be referred to easily in a covering
letter. Toachieve this, I use plenty of headings and comments in the program; to make a point more
clearly I may also use graphs and histograms. These may illustrate something fairly obvious in the
data but, by doing so, may make the results clearer to a client who is not very comfortable with
statistical analysis or jargon. I hope that with careful use of the Genstat output facilities I get my
message across; if not, then I simply write some more on the computer output!

Acknowledgement
The author is funded by the U.K. Overseas Development Administration.
Reference

[1] Pearce,S.C.and Gilliver, B.
The statistical analysis of data from intercropping experiments.

J. Agric. Sci.,Camb., 91, 625-632, 1978.

Page 19

Genstat Newsletter No. 15

Understanding Common Error Messages in Genstat

R.Gough

East Malling Research Station
East Malling

Maidstone

Kent MEI9 6BJ

United Kingdom

‘Theerror messages generated by the system provide users whoare learning it with many problems.
What they need is a fuller explanation with more examples’, said Helen Talbot of Edinburgh
Regional Computing Centre, at the 1983 Genstat Conference in Paris. A J Weeks, of the University
of York, was of a similar opinion and saw the beginner’s difficulty as “...deciding exactly what has
caused a message such as:

Line 10 Statement @ Fault VA 4

Both were expressing the feelings of many new and experienced Genstat users who know the
problem of finding their program errors.

The users at East Malling were no exception and I realised that illustrations were needed of
situations where errors can occur. As a result, a simple method of collating these illustrations was
introduced some five years ago, recording examples of error messages in a loose-leaf folder — one
error message per page. The next step was, for several months, to advertise, within the research
station, for users to supply me with their error messages. The response was good, despite the fact
that noteveryonelikesto admit to having an error.Soon I hadcollected examples of likely situations
for the occurrence of 43 of the more common Genstat errors. Reference to these examples has saved
much time in the search for the causes of errors.

In 1984 we had a new challenge—a VAX 11/750 running Genstat 4.04. The immediate problem of
discovering the meaning of a fault such as

VA4 |, SX 6

had now been overcome by a one-line explanation following the fault message in the output file.
However, there is still a need to refer to Chapter 11 of the Genstat Manual Part I for a fuller
explanation, or to the loose-leaf folder of examples.

The next obvious step was to transfer the information from the loose-leaf folder to individual VAX
computer files, one file per error message. This enabled the users to display, on the vdu screen, not
only the one-line message but also the fuller version, followed by further examples —where available
—of likely situations. (Of the possible 192 errors, 125 have now been entered in computer files.)

A print-out of the 43 more common error messages will be available at the 1985 Genstat
Conferenceat York. If any reader whois unable to attend the conference would like a copy, I should
be pleased to supply one.

I'should also be pleased to receive examples of situations causing Genstat errors, so that I may add
these to my collection. Toillustrate these common error messages [havelisted three below, namely
I0 11,SP 1andSX 10.

IO 11 Errors in data values
This comment introduces the detailed list of error reports on individual items.

Page 20

Genstat Newsletter No. 15

Examples
(1) The following has been extracted from an output file where fault 10 11 had been reported.
ssxesxax + LINE 20 STATEMENT 1 FAULT 10 1

UNIT V/SN NCH
4 1" 0 FAULT SX 8

Inthisexample theerror wasin the 11th variate ina parallel READ statement and the 4th unit of
the 11th variate contained a letter 0 instead of a zero.

(2) 'READ/P' V(1...30) $ S 10 11 reported
solutioneither:— "READ/P' V(1...308) $ S ,30
or:—'READ/P' V(1...30) (omit S altogether)

SP 1 Directory full
Too many named or unnamed structures—change REFE options.

The number of named or unnamed structures has exceeded the limits set (or implied) by the
REFERENCE statement [Genstat manual, Pt I1:2.1].

The appropriate limit should be increased, judiciously, or DEVALUE used to remove unnamed
structures no longer needed in the current block.

Default:—= Number of IDentifiers NID = 100
Number of UNknowN identifiers NUNN 50

To find how many NIDs or NUNNs have been used, look in the output file for the string:—
+2x STRUCTURES

]

1]

or
NAMED
The area you need appears as follows:—

»+» STRUCTURES

NAMED UNNAMED
NO. USED 99 5
MAXIMUM 1008 50

In the above example, the default number of NIDs is about to be exceeded, but only 5 out of 50 NUNNs
have been used. Therefore, before the job is run again, the REFE line should be amended to:—-

"REFE/NID=200"' PROG
SX 10 Incompatible adjacent elements
This very common message has a variety of causes. For example:

(a) twoidentifiers not separated by acomma
(b) identifier beginning with a number

(c) first number missing from a progression
(d) directive name missing.

Examples
(1) Check factor names; you cannot have parentheses () or dashes - ina factor name.
(2) 'NAME' NL= -,s,’ (factor levels to define symbols for plotting)

Page 21

Genstat Newsletter No. 15

(3)

4
(5)
(6)

A prime cannot be used in a name list.
"EQUAT V4(1...3)=V(4) $ ((7.1 4X)3,7X)3

Space within an item (the integer 14) is not allowed.

Check that you are not using a reserved word, e.g. MAX, DIFF. Seethe Genstat manual, Pt II
Appendix 4, for a complete list of reserved words.

Identifiers must begin with an ‘alphabetic’ character (A to Z, %, —_);e.g. "REFE’ 1985BUDS is
not allowed, but BUDS 1985 is permissible. -

"SET/F' F(1)=4,28X

"EQUA" V(1...7) = DATA $ F(1)

F. Sand Xcannot beused asidentifiersina SET/F directive, norcan any subscripted version be
used,e.g.F(1), S(44), X(2).

Drawing Bar Charts

N.G. Alvey

23 Tuffnells Way
Harpenden

Hertfordshire AL5 3HJ
United Kingdom

Outline of the Problem

Up to release 4.04 of Genstat, it was possible to use the GRAPH directive to draw histograms as bar
charts. As it is now possible to draw histograms using the HISTOGRAM directive, the additional code
for drawing histograms using GRAPH was omitted in release 4.04. This macro has been written for
those still wishing to produce bar charts.

Method of Use

The user must create a factor F with boundary values in a variate L. This could be done using the
LIMITS function of the GROUP directive. He must alsoset up 3 scalars:

NL = number of levels of F which is the number of values of L plus 1.
(This may be CALCULATEd using the function NLEV.)

NL1 = NL-1

NL2 = NL-2

Two headings YTITLE and XTITLE must be declared as titles for the Yand X axes respectively. After
a RUNstatement the statement

"USE’ BARCHART $

must appear in a separate block of instructions.

Page 22

Genstat Newsletter No. 15

Global Identifiers

FACTOR F input : factoridentifier
VARIATE L input : variateof group limits
SCALAR NL input : no.oflevelsof F
SCALAR NL1 input : NL-1

SCALAR NL2 input. : NL-2

HEADING YTITLE input : Y-axistitle
HEADING XTITLE input : X-axistitle

The macro uses another macro called APPEND at run-time.

Print of BARCHART and APPEND

‘MACRO’ BARCHART $

'LOCAL’ S(1...NL),T(1...NL).R(1...NL),1,J,DUMR,DUNS,DUMT, IREST,BVAL,
X,Y,XAPP,YAPP,STEP, MAXY

'START’

"SCALAR® S{1...NL) : T(1...NL) : R(1...NL) : STEP,MAXY

"CALC’ S(1) = ELEM(L;1) - (ELEM(L;2) - ELEM(L;1)) / 2

"FOR’ DUMS = S(2...NL1) ; I = 2...NL1 ; J = 1...NL2

"CALC" DUMS = (ELEM(L;I) + ELEM(L:;J)) / 2

'REPEAT’

'CALC* S(NL) = ELEM(L:NL1) + (ELEM(L;NL1) - ELEM(L;NL2)) / 2
"FOR’ I=1...NL ; DUMT = T(1...NL)

"RESTRICT' F $ F=I ; IREST
"CALC' DUMT = NVAL(F)

"REPEAT"

"RUN’

"START’

"VARIATE' T =T(1...NL)

"CALCULATE’ MAXY = MAX(T)
STEP = MAXY/40

"RUN’
"VARIATE' Y = @8,STEP...T(1)
"CALC’ R(1) = NVAL(Y)

"RUN’

"VARIATE' X = (S(1))R(1)

"FOR’ DUMS = S(2...NL) ; DUMT = T(2...NL) ; DUMR = R(2...NL)
"USE/R’ APPEND $

'REPEAT’

"VARI' BVAL=O,+,+,s
'GRAPH/ATY=YTITLE,ATX=XTITLE,BV=BVAL ,NRF=41" ¥ ; X

"ENDMACRO’

Page 23

Genstat Newsletter No. 15

"MACRO’ APPEND $

"START'
"VARIATE' YAPP = @,STEP...DUMT
"CALC’ DUMR = NVAL(YAPP)
"RUN’

"VARIATE' XAPP = (DUMS)DUMR

"VARIATE' Y=Y ,YAPP : X=X,XAPP
'ENDMACRO’

Test Program

"REFE/NUNN=3D" HISTO
"HEAD’ YTITLE=""Y AXIS TITLE'' : XTITLE=''X AXIS TITLE'’
"SCALAR" NL,NL1,NL2

"VARIATE' V=(1...5)10.8(6...18),(11...19)18,5(16...208) : L=4,6...

"GROUPS’ F=LIMITS(V:L)

"CALC"’ NL=NLEV(F) : NL1=NL-1 : NL2=NL-2
"RUN’

"USE’ BARCHART $

"RUN"’

"CLOSE’

"STOP'

Page 24

18

Genstat Newsletter No. 15

Linking Fortran Subprograms into Genstat

P.W. Lane

P.G.N. Digby

Statistics Department
Rothamsted Experimental Station
Harpenden

Hertfordshire ~AL5 2JQ
United Kingdom

Thisarticleis intended to help people who want to link specialised programs written in Fortran into
Genstat release 4.04. It provides the details about the internal workings of Genstat necessary for
straightforward applications. For more complicated tasks, it may be necessary to refer to the
Genstat Implementor’s Manual, but this is designed primarily for the people responsible for
maintaining the original Genstat source code. The Manual can be obtained by writing to the
Genstat Secretary, at the above address.

We assume here that you are familiar with writing programs in Fortran and with the Genstat
command language. You will also need to know how to link Fortran programs, using the operating
system on your computer: the process isillustrated here for VAX/VMS only.

A Directive for Special Tasks

Adirectivecalled ' OWN' is provided in Genstat toallow users tocall their own Fortran subprograms.
In the distributed form of Genstat, an ’'0WN’ command will cause no action, since its use invokes a
call toa null subprogram:

SUBROUTINE OWN
RETURN
END

You can replace this subroutine with one which calls your own subprograms; the Genstat system
must then be relinked, including all the subprograms you need. You can use the resulting modified
Genstat system in the same way as the standard system, except that whenever you give it an ' OWN’
command, it will do whatever operations are specified by your OWN subroutine.

The Syntax of the 'OWN’ Directive

In Genstat 4.04, the ' OWN’ directive has no options and you may specify only one list. (In the
article by Bouvier in this Newsletter, the Genstat compiler has been modified to provide
options for the directive ' OWN'.) The list may include non-negative numbers, identifiers and
missing values.
Examples

"OWN’

"OWN' 2

"OWN’ Series, Result

"OWN’ 4, Series, s, Out(1...3)

Do not include negative numbers, as these will be confused with structure references. All
numbers are rounded to integers, so use identifiers of scalar structures if you want individual
real numbers or negative integers.

You canarrange for the ' OWN’ directive to be able to do many different things if you want. The
easiest way is to reserve the first value in the list as a switch, used internally to control which
subprograms are invoked. Then

"OWN' 1, .. causesonetypeofaction,

Page 25

Genstat Newsletter No. 15

"OWN' 2, ... causesanother,andsoon.

You can put 'OWN’ statements anywhere in a Genstat program, but remember that the OWN
subroutine will not be called until execution time, i.e. all statements after an ' OWN* statement
but before the next ' RUN' statement will be compiled before the ' OWN' statement is executed.

Relinking Genstat

The method of relinking Genstat depends on the operating system but the following example
shows what is involved. We illustrate the process for the VMS operating system for VAX
computers, in which the linking instructions are particularly simple.

The Genstat system as distributed includes the object code (produced by the Fortran
compiler) in an object library. Say this library has the filename:

[GENSTAT]GNLIB.OLB

The main module of Genstat and the block data module will be separate from this library; say
they have filenames:

[GENSTAT] MAIN.0BJ and BD.OBJ

Assume that your version of subroutine OWN calls a single subroutine called WORK and the
compiled versions (object modules) of these subroutines have filenames:

[MYFILES] OWN.0BJ and WORK.0BJ

Then, working in the directory MYFILES, you can form a new version of Genstat, called
MYGENSTAT.EXE say, by giving the following DCL command:

$ LINK/EXEC=MYGENSTAT OWN, WORK, [GENSTAT]MAIN, BD, GNLIB/LIBRARY

You should run the new system by setting up a ‘foreign’ command. Assuming that the
directory MYFILES is on device DRAB1,a command MYGEN can be defined as follows:

$ MYGEN :== '$DRAB1:[MYFILES]MYGENSTAT.EXE’
You can then use the command MYGEN in precisely the same way as the usual command
GENSTAT.

Storage in the Genstat System

Before you can implement the ' OWN " directive you will probably need to know some details of the
internal workings of Genstat. Genstat release 4.04 is written in Fortran 66, but is generally
compiled by Fortran 77 compilers. Some extensions to the ISO standard are used: refer to the
Implementor’s Manual, Section 1.1, if you need details.

The major area for storage is in blank common and consists of six arrays which are equivalenced to
eachother:

DATA, CDATA, RDATA, IDATA, ISDATA, TABLE

They are used for storing long reals, words (i.e. 8 characters stored in a long real), reals, integers,
short integers, and again short integers, respectively. These arrays are usually given the dummy
dimension of 1: the full dimension is set in the main routine of Genstat.

COMMON DATA(1)

DIMENSION CDATA(1),RDATA(1),IDATA(1),ISDATA(1),TABLE(1)
DOUBLE PRECISION DATA,CDATA

REAL RDATA

INTEGER IDATA

INTEGER 2 ISDATA,TABLE

Page 26

Genstat Newsletter No. 15

EQUIVALENCE (DATA(1),CDATA(1),RDATA(1),IDATA(1),
1 ISDATA(1),TABLE(1))

Onsome computers, short integers are not supported and so the arrays ISDATA and TABLE should be
declared as INTEGER, like IDATA; also, it may not be allowed to use a dummy dimension. You can
copy the correct version of the common from the Genstat code, module MAIN.

Communication between different parts of the Genstat system is done via a series of named
common blocks. Two of these are /DATAC/, for data accessing, and /SYSCON/, which holds system
constants, e.g. the value used in Genstat to represent missing values in variates. You will almost
certainly need to use these commons so you must include them in the 0WN subroutine. You can copy
these two commons from the block data module called BD, but they are also listed below.

COMMON/DATAC/ IDENT(3),ATTOR(3),TYPE(3),VALOR(3),NVAL(3),MODE(3).

1 VECNO(3),DESC(3),MVPTR(3),ACC(3),SET(3),UNIVEC(3),STAVEC(3).

2 SUBCLS(3),NIND(3).NUN(3),NSV(3),SPEC1(3),SPEC2(3),SPEC3(3),

3 IDSUF(3).ENDDAT,LATT,LSTDAT,MAXDAT,PCI

DOUBLE PRECISION IDENT

INTEGER ACC,ADDPTR(3),ATT(57),ATTOR, BMINW(3),DESC,DIAVEC(3),
ENDDAT,FSET(3),IDIV(3),IDSUF,KROOTS(3),LATT,LNVEC(3),LSTDAT,
MARG(3).MATVEC(3),MAXDAT,MODE,MVPTR,NCOL(3),NIND,NLEV(3),
NRC(3).NROW(3),NSV,NUMEX(3),NUN,NVAL,NVAR(3),PCI,SCALNO(3),
SOMVEC(3),SET,SETC(3),SETR(3),SPEC1, SPEC2, SPEC3, STAVEC, SUBCLS,
TABVEC(3), TYPE,UNIVEC,USET(3),VALOR, VECND,VSET(3),VTYPE(3),
WTVAR(3)

COMMON/SYSCON/DBLANK,DEPS,DMV,DTOL ,EPS,MRSI RNV, TOL,

1 IMV,MASK, N8B,
2 ISMV,ISZERO,MSI,NBI ,NBV(5),NVDR(5),NIR,NSII,NSIR
DOUBLE PRECISION DBLANK,DEPS,DMV,DTOL

REAL BLANK,EPS,MRSI,RMV,TOL

INTEGER IBLANK, IMV,MASK,NBB

INTEGER 2 ISBLNK,ISMV,ISZERO,MSI,NBI,NIR NSII,NSIR,

1 NBV,NVDR,NIDR,NRDR,NSIDR,NSWDR

DLW

EQUIVALENCE (ATT(1),ATTOR(1)),
(SET(1),LNVEC(1),NUMEX(1),SDMVEC(1),SETR(1),VTYPE(1),WTVAR(1)).
(UNIVEC(1),NLEV(1),NVAR(1),SETC(1),TABVEC(1)),
(STAVEC(1),IDIV(1),KROOTS(1),NRC(1)).
(SUBCLS(1).ADDPTR(1),BHINW(1),MARG(1),NRON(1),VSET(1)),
(NIND(1),FSET(1),MATVEC(1),NCOL(1),USET(1)).
(NUN(1),DIAVEC(1)),(NSV(1),SCALNO(1))

DN LW

EQUIVALENCE (DBLANK,BLANK, IBLANK, ISBLNK),
1 (NSWDR,NSIDR,NVDR(4)), (NIDR,NVDR(3)), (NRDR,NVOR(2))

You may also need to access some of the other system commons, e.g. /DIAGPK/ which holds
information about Genstat diagnostics, and /WSP/ which contains details of the allocation of
workspace. These are mentioned below, under Some Extra Details.

On some computers, the Fortran compiler insists that all common blocks are described before any
equivalences. If that s the case on your computer, you will have to put all the COMMON statements first
and then their respective EQUIVALENCE statements; this has been done with /DATAC/ and /SYSCON/,
above.

Page 27

Genstat Newsletter No. 15

Writing an Interpreter for 'OWN’

As well as including the standard common blocks described above, your OWN subroutine must be
able to interpret the compiled form of the *OWN' statement. This may well involve accessing and
storing values in Genstat structures, such as variates: it is probably easiest if you put all the
accessing etc. in the OWN subroutine.

Page 28

Compiled Form of an ’OWN’ Statement

The Genstat interpreter compiles an ' OWN' statement into a coded form. This is stored in the
array ISDATA, inblank common, and the first value of the coded formisin ISDATA(PCI), where
PCI is a variable in common /DATAC/ . This first value is the number of options: it is therefore
always 8. Thesecond value is the number of lists: it is therefore 1. The third value is the length
of thelist, i.e. the number of items in the ' 0WN ' statement. Following the length, if it is not zero,
are the coded forms of each item in the list: numbers are replaced by the nearest integer, * is
replaced by a large negative value, which is equal to variable ISMV in common /SYSCON/, and
identifiers are replaced by negative integers which are reference numbers in the directory of
identifiers.

Examples
ISDATA(PCI)
‘OWN’ 0,1,8
'OWN® 2 8,1,1,2
"OWN’ Series, Result 8,1,2,-2,-7
"OWN’ 4, Series, », Out(1...3) 0,1,6,4,-2,ISMV,-8,-9,-10

Accessing Data Structures

If you want to include identifiers in an 'OWN’ directive, you must be able to access the
structures they identify and pass the relevant information on to your Fortran subprograms. To
access all the information about a structure with reference number N (negative), give the
following statement in the OWN subroutine:

I = GETATT(1, N)
GETATT is a Fortran short integer function, included in the Genstat source code. You must

declare the type of this function in your 0¥N subroutine (leave out the «2 if your computer does
not have short integers):

INTEGER +2 GETATT

The function GETATT returns the value @ unless thereisaninvalid value in one of the arguments,
e.g. Nis not a current reference number. Therefore, you should test the value of I after the call
above and take some action if it is non-zero, e.g.

IF (I .NE. @) RETURN
In the standard Genstat code, this operation is usually done in one step:
IF (GETATT(1, N) .NE. @) RETURN

Instead of just exiting from subroutine OWN after such a mistake, you may want to print a
diagnostic message: see below for more details.

GETATT hastwoarguments: the first must be 1, 2or 3and specifiesin which ‘bank’GETATTisto
store the attributes of that structure whose reference number is given in the second argument.
The banks are a series of arrays in common /DATAC/; each array is of length 3 and holds a
particular attribute of each of three structures. You can visualise the ‘banks’ as an array of
information as pictured below:

Genstat Newsletter No. 15

Example

Bank Structure TYPE VALOR NVAL MODE NLEV NROW NCOL
1 variate with 15 values 4 1026 15 2) 0
2 undeclared identifier ISMV 9 0 8
3 4 X3 matrix with novalues 11 p 12 2 8 4 3

Thus you can, if you want to, invoke GETATT three times, increasing the first parameter from 1
to 3, and thus make available the attributes of three structures at the same time. If you then
want to refer to a fourth structure, you will have to lose the information on one of the previous

ones.

The attributes and corresponding arrays in common /DATAC/ which you will need most are as

follows:
TYPE

VALOR

NVAL

MODE

NLEV
MVPTR
NROW
NCoL

The coded type of the structure. A list of codes is given in the Genstat Manual, Part I1
6.2.3, but the commonest are:

-4 Scalar 7 Symmat
1 Integer 11 Matrix

4 Variate 12 Diagmat
13 Factor

If the structure has not been declared when GETATT is called, it will automatically be
set up as a variate, i.e. its TYPE will be set to 4. This automatic declaration can be
suppressed (see below), in which case the TYPE wil be missing, equal to ISMV .

The origin of values in the appropriate data array in blank common. If there are no
values yet, then VALOR is zero.

The number of values. This is zero if values have not been assigned and the length of
the structure has not beendeclared. However, if thereisa *UNIT’ statementinforcein
your Genstat program when 'OWN’ is used, then when GETATT is called for a vector
(e.g. a variate, integer or factor) whose length has not already been defined, it will
automatically declare the structure to have as many values as defined by the 'UNIT’
statement.

The mode of storage of the values. If the mode is 2 and values are present, they are in
RDATA(VALOR+1) up to RDATA(VALOR+NVAL), where RDATA is the array in blank
common. Mode 2 corresponds to real numbers, so is used for scalars, variates and
matrices. If themodeis 4, valuesarein ISDATA(VALOR+1) upto ISDATA(VALOR+NVAL).
This mode corresponds to short integers and is used for integers and factors: factor
values are stored in coded formas @, 1,..., NLEV- 1: thus level 3 is represented as 2, for
example.

The number of levels of a factor, or number of rows (or columns) of a symmat.

The number of missing values of a structure.

The number of rows of a matrix.

The number of columns of a matrix.

Thereare many other attributes but most are set only for more complicated structures
such as tables. All are listed in the Implementor’s Manual, Chapter 4.

Example

Suppose you want toaccess one variatestructure, whose values should be present,and you
want to pass the array of values and its length to a prepared Fortran subroutine called
WORK .

Page 29

Genstat Newsletter No. 15

SUBROUTINE OWN

(Commons)
INTEGER +2 GETATT
IF (ISDATA(PCI + 2) .NE. 1) RETURN
IVAR = ISDATA(PCI + 3)
IF (GETATT(1, IVAR) .NE. @) RETURN
IF (TYPE(1).NE.4 .OR. VALOR(1).EQ.®) RETURN
IFIRST = VALOR(1) + 1
CALL WORK (RDATA(IFIRST), NVAL(1))
RETURN
END

SUBROUTINE WORK(X, N)
REAL X(N)
(Statements)
RETURN
END

Defining Data Structures

As well as passing information from previous Genstat statements to your Fortran subprograms,
youmay well want todo the reverse. If so, you must include, in the ' OWN ' statement, identifiers to be
used to store the information. If you know the type and length of these structures, then you can
declare them in your Genstat program before giving the ' OWN' statement; however if the type or
length is determined by calculations within the OWN subroutine, you will have to define the
structures in full in that subroutine.

Whenastructure intended tostore results has no values on entry tosubroutine 0WN, you must set up
a block of values for it. This is done by using the standard short integer function SVALOR, e.g.

IF (SVALOR(1) .NE. @) RETURN

This sets up a values block for the structure currently in bank 1 and sets the origin of the block in
VALOR(1); thevaluesareallinitialised to the missing value. The function SVALOR returns the value @
unless the parameter is invalid or there is not enough workspace for the values block. However, the
structureitselfis not modified by SVALOR(1). Tostore the value originin the directory of structures,
you must call the standard function PUTATT, e.g.

IF= (PUTATT(1, N) .NE. @) RETURN

This takes all the attributes currently in bank 1 and assigns them to the structure with reference
number N. In the example above, only the value origin will be changed (from @ to whatever value
SVALOR assigned).

After your subprograms have assigned values to the structure, there may be some values which are
still missing. If so, you must use the short integer functions CNMV and PUTATT to count the number of
missing values and store the count in the attribute MVPTR:

IF (CNMV(1) .NE.) RETURN

IF (PUTATT(1. N) .NE. 8) RETURN
Whenastructureintended tostore results has not been defined at all onentry tosubroutine 0WN, you
must define all the necessary attributes and then invoke PUTATT to store them all.

Example
Suppose you want to set up one variate, whose length and identifier are supplied by OWN,
tostore results from a prepared Fortran subroutine.

Page 30

Genstat Newsletter No. 15

SUBROUTINE OWN
(Commons)
INTEGER +2 CNMV, GETATT, SVALOR, PUTATT
IF (ISDATA(PCI + 2) .NE. 2) RETURN
IVAR = ISDATA(PC1 + 3)
LVAR = ISDATA(PC1 + 4)
IF (GETATT(1, IVAR) .NE. @) RETURN

c Check that the structure is a variate, or was not defined
c before GETATT was called

IF (TYPE(1) .NE. 4) RETURN
c Set the length of the variate

NVAL(1) = LVAR
IF (SVALOR(1) .NE. @) RETURN
IFIRST = VALOR(1) + 1

CALL WORK (RDATA(IFIRST), LVAR)

IF (CNMV(1) .NE. @) RETURN

IF (PUTATT(1, IVAR) .NE. @) RETURN
RETURN

END

Some Extra Details

Diagnostics

Intheexamples above, any mistakesin the input resulted inanimmediate exit from subroutine
OWN. If this happens, for example if there was no free space toset up a variate, the routine which
calls subroutine OWN will print a standard Genstat diagnostic to the current output file. The
diagnosticis controlled by the coded variable DIAG in common /DIAGPK/, which isusually zero
but is set toa positive integer when a fault is found.

COMMON/DIAGPK/SPN(18),DIAG,MAXSP NSP,STATNO,NDIAG
DOUBLE PRECISION SPN
INTEGER «2 DIAG,MAXSP,NSP,STATNO,NDIAG

In fact, the result of the standard functions GETATT, SVALOR, etc. is set equal to the value of
DIAG.

You can therefore set up your own diagnostics, if you want, by referring to DIAG and printing
messages or by using some coded value to represent some particular error. If DIAG has a
non-zero value when control returns from your OWN subroutine, a standard diagnostic message
will be printed. You should refer to the Implementor’s Manual, Section 2.3, for information
about all the codes. Typically, you may want to have one of the VA diagnostics printed, e.g.
VA 4 Values not set. A VA message will be printed if the value of DIAG is 170 plus the
relevant VA diagnostic number (maximum 20); thus VA 4 corresponds to DIAG=174.

If DIAG may be non-zero, you should include a call to subroutine DIAGUP before exiting from
subroutine OWN. This will include a reference to the 0¥N subroutine in the diagnostic trace and
will help to show that the failure has occurred through use of ' 0WN'. For example, the end of
your OWN subroutine may look like the following.

IF (PUTATT(1, IVAR) .NE. 8) GO TO 1001

RETURN

1001 CALL DIAGUP(8H OWN)
RETURN

Page 31

Genstat Newsletter No. 15

Page 32

Workspace

In the examples above, it was assumed that all calculations in the Fortran subprogram would
be done with local variables or with values of standard structures. However, you can make use
of the free workspace available in large blank common arrays if you want to. This is advisable
particularly if you need variable amounts of workspace, ¢.g. depending on the size of input
structures.

Toset aside a block of workspace, you must invoke the standard function 6¥SP and include the
common /WSP/ in subroutine OWN (this common is not available in the block data module).

COMMON/WSP/ ENDWSP,LSTWSP,WSPOR
INTEGER ENDWSP ,LSTWSP,WSPOR

Function GWSP has twoarguments: the number of values required and their mode. The value of
the function is the diagnostic code, which is non-zero if the parameters are invalid or there is
not enough free space available. After invoking GWSP, the variable WSPOR in common /WSP/
holds the origin of the block of values in the relevant array in blank common, so that the first
location of the workspace used is RDATA(WSPOR+1) inmode 2, or ISDATA(WSPOR+1) in mode 4.

If you want workspace for double length reals or long integers, use modes 1and 3, and arrays
DATA and IDATA, respectively.
Example
To pass an array of M real values to be used as workspace in a prepared Fortran
subprogram.

IF (GWSP(M, 2) .NE. @) RETURN
IFIRST = WSPOR+1
CALL WORK(RDATA(IFIRST), M)

Output

Output from your Fortran subprogram can be produced by Fortran WRITE statements. Such
output may get mixed up with standard Genstat output because the latter is handled with a
buffer;if thisis a problem, there are standard routines in Genstat for outputting values and text
through the buffer, described in the Implementor’s Manual. You should use the correct unit
numbers for output: these vary between implementations of Genstat. You can find out the unit
numbers by running the standard version of Genstat and giving the command:

"ENVIRONMENT/PRINT=P’

The current output unit number is available in variable QWW in common /PERIPH/. (The
current unit can be changed by giving ' OUTPUT ' statements in your Genstat program.)

COMMON/PERIPH/BSHF , MAXBSN, NLRPR,QRL(4),QRR, QWL (4),QWW, SQR(4).

1 LINE(4),MAXNLP,NCOPR(4),NINCH
INTEGER BSWF,MAXBSN,NLRPR,QRL, QRR,QWL, QWWw, SQR,
INTEGER «2 LINE, MAXNLP ,NCOPR, NINCH

Example

WRITE(QWW, 23) (RDATA(I), I = J1, J2)
23 FORMAT(' Results:' / (18F12.4))

Avoiding the Default Declaration

When you want to set up your own structures in subroutine OWN, it can be inconvenient if
GETATT automaticaily sets them up as variates of standard length before you can specify their
attributes. The automatic declaration by GETATT can be suppressed by setting variable ACCSW

Genstat Newsletter No. 15

in common /MAINAC/ to @ before invoking GETATT. You must reset ACCSW to 1 after calling
GETATT.

COMMON/MAINAC/IORATT,IORID, IORSUF,IORTAG, IORTYP, IORVAL,

1 ACCSW,INDTYP(30),LATTBL(30),MAXID,MAXUNN, NID
INTEGER IORATT,IORID,IORSUF,IORTAG, IORTYP,IORVAL
INTEGER +2 ACCSW,INDTYP LLATTBL ,MAXID,MAXUNN,NID

Example

To set up a previously undeclared identifier as a matrix with NR rows and NC columns.

ACCSH = 0
IF (GETATT(1, N) .NE. @) RETURN
ACCSH = 1
c Check that N refers to a new structure
IF (TYPE(1) .NE. ISMV) RETURN
TYPE(1) = 11
MODE(1) = 2
NVAL(1) = NR«NC
NROW(1) = NR
NCOL(1) = NC

IF (SVALOR(1) .NE. 8) RETURN
IF (PUTATT(1) .NE. @) RETURN

Caution

You must be careful not to cause confusion with the standard version of Genstat. The names of your
Fortran subprograms and any common blocks in them must not clash with names in the Genstat
code: for safety, use names of the form OWN... for all of these.

We also suggest you make it clear in all Genstat output that your version of Genstat has been
modified. You can do this by editing the Fortran subprogram STARTJ in module CPC of the Genstat
code. There is a call to the subroutine ENCAPB there which prints the header message output at the
start of each Genstat job. Please insert another call to ENCAPB after this call, to print a message
giving your name, as in the following:

CALL ENCAPB(1,0,26HGENSTAT V RELEASE 4.04B,26)
CALL ENCAPB(1,8,46H MODIFIED BY P.W. LANE & P.G.N. DIGBY 10-4-85,46)

Page 33

Genstat Newsletter No. 15

An Implementation of the Genstat ’'OWN’ Directive

L.G. Underhill

Department of Mathematics and Statistics
University of Cape Town

Rondebosch 7700

South Africa

This article should be read in conjunction with that of Lane and Digby earlier in this issue. It
describes a specific application of the '0WN' directive, and follows their procedure in detail. The
particular Fortran program to be linked into Genstat is a nonmetric regression subroutine. Thisis a
first step towards the inclusion within Genstat of a nonmetric scaling directive, of which nonmetric
regression is an integral part (Kruskal 1964, Greenacre and Underhill 1982). Given an ordered set
of numbersd 1 d2 yees d ' andasetof weightsw,, w,, .., w,, the problem in nonmetric regression

is toobtain

fd)), fd,), ... fd,,)
such that

fd)) =fd,) <..=fd,)
and

m
'El (d,—f4,)) 2 jsaminimum.
=

Nonmetric regression is described in some detail in both of the references. The full listing of the
subroutine which interprets the *OWN® directive is given, to serve as a model for other users. The
nonmetric regression subroutines are alsoincluded.

The Fortran subroutine to be included in Genstat is called FITWT and has five formal parameters:

M :integer the length of the arrays (m above)

DHAT :realarray on input the vector of distances, d, in the required order;
on output, the vector of monotonically ordered ‘pseudo-
distances’, f(d)

WT :realarray a vector of weights

WHAT :realarray working space

DOTHER :shortintegerarray workingspace

The OWN subroutine listed below is documented so that, apart from the COMMONS and EQUIVALANCES,
each line of code is explained by the preceding comment. Read in conjunction with Lane and
Dibgy’s article, the subroutine should prove straightforward to follow. The diagnostic codes at the
end of the subroutine have been obtained from Section 2.3 of the Implementors Manual. The
subroutine has been written so that up to ten different Fortran subroutines can be linked into
Genstat simultaneously. The syntax of the ' 0WN' directive permits only one list:

"OWN" ilist
The syntax of my ' OWN' directiveis

"OWN' I,variatel variate2?
The first item in the list is used as an index to the particular subroutine wanted. (So far I have only
implemented 'OWN' 1.) Variatel is the ordered vector dl s d2, e, and variate?2 is the set of
weights w,, w,, ..., w, . The nonmetric regression f(d,), f(d,), ..., fld,,) is returned through
variatel ,and variate2 is unchanged.

Page 34

Genstat Newsletter No. 15

The output of a Genstat programme which uses the ' OWN ' directive for monotonic regression is also
included. It demonstrates, firstly, that the method works, secondly, that the linking in of the
diagnostics works (the program failed on the fourth call to 'OWN’ because the variates were of
unequal length) and, thirdly, that the list of items for the * OWN ' directive need not be thesame as the
list of formal parameters in the Fortran subroutine. As a Fortran programmer I took a long time to
realise that only two of the five parameters for my subroutine needed to gointo the ' OWN’ item-list.
The length of the arrays could be determined within the interpreter and two of the arrays were
working space which did not require formally declared variates.

I recommend that future versions of Genstat include, in the standard ’ OWN’ interpreter subroutine,
all the necessary COMMONs and EQUIVALENCESs, as detailed by Lane and Digby. This will make the
linkage of user subroutines simpler. The ability to incorporate specialised Fortran programs could
become a feature of Genstat.

Incidentally, working from the draft version of Lane and Digby’s paper, it took me about six hours
to write and debug the interpreter for the 'OWN' directive to include the monotonic regression
subroutine. With the experience gained, I could probably add other subroutines in under an hour.

The Fortran Code
SUBROUTINE OWN

c
c LES UNDERHILL MARCH 1985
c
c ___
c
COMMON DATA(1)
DIMENSION CDATA(1),RDATA(1),IDATA(1),ISDATA(1),TABLE(1)
DOUBLE PRECISION DATA,CDATA
REAL RDATA
INTEGER IDATA
INTEGER +«2 ISDATA
c
EQUIVALENCE (DATA(1),CDATA(1),RDATA(1),IDATA(1),
1 ISDATA(1).TABLE(1))
c
COMMON/DATAC/IDENT(3),ATTOR(3).TYPE(3),VALOR(3),NVAL(3),MODE(3).
1 VECNO(3).DESC(3).MVPTR(3),ACC(3),SET(3),UNIVEC(3),STAVEC(3),
2 SUBCLS(3).NIND(3),NUN(3).NSV(3),SPEC1(3),SPEC2(3).SPEC3(3).
3 IDSUF(3),ENDDAT,LATT,LSTDAT,MAXDAT,PCI
DOUBLE PRECISION IDENT
INTEGER ACC.ADDPTR(3),ATT(57),ATTOR, BMINW(3),DESC,DIAVEC(3),
1 ENDDAT.FSET(3).IDIV(3),IDSUF,KROOTS(3),LATT,LNVEC(3),LSTDAT,
2 MARG(3).MATVEC(3).MAXDAT,MODE,MVPTR,NCOL(3),NIND, NLEV(3),
3 NRC(3).NROW(3),NSV,NUMEX(3),NUN,NVAL,NVAR(3),PCI,SCALNO(3),
4 SDMVEC(3).SET,SETC(3),SETR(3).SPEC1,SPEC2,SPEC3,STAVEC, SUBCLS,
5 TABVEC(3).TYPE,UNIVEC,USET(3),VALOR,VECNO,VSET(3),VTYPE(3),
6 WIVAR(3)
c

Page 35

Genstat Newsletter No. 15

Page 36

1

1

1

D WM A

1

1

COMMON/SYSCON/DBLANK,DEPS,DMV,DTOL,EPS,MRSI ,RMV,TOL,
IMV,MASK,NBB,
ISMV,ISZERO,MSI ,NBI,NBV(5),NVDR(5),NIR,NSII, NSIR
DOUBLE PRECISION

DBLANK,DEPS,DMV,DTOL
REAL BLANK,EPS,MRSI,RMV,TOL
INTEGER IBLANK, IMV,MASK,NBB

INTEGER «2 ISBLNK,ISMV,ISZERO,MSI,NBI,NIR,NSII,NSIR,
NBV,NYDR,NIDR,NRDR,NSIDR,NSHDR

EQUIVALENCE (ATT(1).ATTOR(1)).
(SET(1).LNVEC(1).NUMEX(1),SDMVEC(1),SETR(1).VTYPE(1),HTVAR(1)),
(UNIVEC(1),NLEV(1),NVAR(1).SETC(1), TABVEC(1)).
(STAVEC(1).IDIV(1),KROOTS(1),NRC(1)),
(SUBCLS(1).ADDPTR(1),BMINW(1),MARG(1),NROW(1),VSET(1)).
(NIND(1),FSET(1).MATVEC(1),NCOL(1),USET(1)),
(NUN(1).DIAVEC(1)). (NSV(1),SCALNO(1))

EQUIVALENCE (DBLANK,BLANK,IBLANK,ISBLNK),
(NSWDR,NSIDR,NVDR(4)), (NIDR,NVDR(3)), (NRDR,NVDR(2))

COMMON/DIAGPK/SPN(18),DIAG,MAXSP,NSP,STATNO,NDIAG
DOUBLE PRECISION SPN
INTEGER =2 DIAG,MAXSP,NSP,STATNO,NDIAG

COMMON/WSP/ENDWSP ,LSTWSP,WSPOR
INTEGER ENDWSP,LSTWSP,WSPOR

INITIALISED LOCAL

DOUBLE PRECISION
SPNAME

FUNCTIONS

INTEGER +2 GETATT,PUTATT,SVALOR,GWSP
DATA SPNAME /8HOHWN /

NO OF ITEMS IN LIST OF 'OWN' DIRECTIVE
LISLNG=ISDATA(PCI+2) :

FIRST ITEM IN LIST SHOWS WHICH 'OWN' DIRECTIVE, 'OWN' 1 TO 'OWN' 1B

NUMOWN= ISDATA(PCI+3)
GO TO (19,20,30,40,50,60,70,80,90,100) NUMOWN

Genstat Newsletter No. 15

OWN 1 : MONOTONIC REGRESSION OF ORDERED SET DHAT WITH WEIGHTS WT

OWN 1 MUST HAVE 3 ITEMS
® IF(LISLNG.NE.3) GOTO 1029
REFERENCE NUMBERS OF SECOND AND THIRD ITEMS IN LIST
IVAR1=ISDATA(PCI+4)
IVAR2=ISDATA(PCI+5)
c GETATT SHOULD RETURN A ZERO, 2nd & 3rd ITEMS TO "'BANKS'' 1 & 2
IF(GETATT(1,IVAR1).NE.0) GOTO 1000
IF(GETATT(2.IVAR2).NE.0) GOTO 1000

[or 2PN or B o B o J

c CHECKS THAT ITEMS IN BANKS 1 AND 2 ARE VARIATES
IF(TYPE(1).NE.4) GOTO 1181
IF(TYPE(2).NE.4) GOTO 1181

c VALUES FOR THE VARIATES MUST HAVE BEEN SET
IF(VALOR(1).EQ.0) GOTO 1174
IF(VALOR(2).EQ.0) GOTO 1174

c NUMBER OF VALUES IN THE VARIATES MUST BE EQUAL AND NON-ZERO
LENG1=NVAL(1)
LENG2=NVAL(2)
IF(LENG1.NE.LENG2) 60TO 1183
IF(LENG1.EQ.@.0R.LENG2.EQ.8) GOTO 1172

c ORIGINS OF VARIATES IN BANKS 1 & 2

IADR1=VALOR(1) + 1
IADR2=VALOR(2) + 1

c SET ASIDE REAL WORKSPACE OF LENGTH LENG1
IF(GWSP(LENG1,2).NE.8) GOTO 1008
c ORIGIN OF REAL WORKSPACE
IADR3=WSPOR + 1
c SET ASIDE SHORT INTEGER WORKSPACE OF LENGTH LENG1
IF(GWSP(LENG1,4).NE.@) GOTO 1000
c ORIGIN OF SHORT INTEGER WORKSPACE
IADR4=WSPOR + 1
c CALL TO NONMETRIC REGRESSION SUBROUTINE, NORMALLY
» CALL FITWT(M., DIST, WT, WHAT, DOTHER)
CALL FITWT(LENG1,RDATA(IADR1),RDATA(IADR2),RDATA(IADR3),ISDATA(IADRY))
GOTO 200
c PROVISION FOR FURTHER OWN DIRECTIVES, 'OWN' 2...'OWN' 10
20 CONTINUE
GOTO 200
30 CONTINUE
GOTO 2080
40 CONTINUE
GOTO 200
58 CONTINUE
GOTO 200
60 CONTINUE
GOTO 208
70 CONTINUE
GOTO 200

Page 37

Genstat Newsletter No. 15

80 CONTINUE

GOTO 2@0
90 CONTINUE
GOTO 200
100 CONTINUE
GOTO 200
208 RETURN
c DIAGNOSTICS
c NUMERICAL VALUES FOR CODES ARE IN SECTION 2.3 OF IMPLEMENTORS GUIDE
c SX-19 WRONG LIST LENGTH
1029 DIAG=29
GOTO 1000
c VA-2 ATTRIBUTES NO SET
1172 DIAG=172
GOTO 1000
c VA-4 VALUES NOT SET
1174 DIAG=174
GOTO 1000
c VA-11 INVALID TYPE
1181 DIAG=181
GOTC 1000
c VA-13 INCOMPATIBLE NUMBER OF VALUES

1183 DIAG=183

1680 CALL DIAGUP(SPNAME)
GOTO 200
END

SUBROUTINES SATSFY, JOINWT AND FITWT PERFORM THE NONMETRIC REGRESSION

[BN o BN o BE v}

SUBROUTINE SATSFY(DHAT,DOTHER,M,NUPDOW,IACTIV,SATIS, NEXT,
« NEXT1,IACTV1,NOBLOC)
INTEGER +2 DOTHER(5008),SATIS
REAL DHAT(5000)
SATIS = 1
IF (NUPDOW.EQ.-1. AND. IACTIV.EQ.1) RETURN
IF (DOTHER(IACTIV).NE.@) GO TO 2
IACTV1 = IACTIV
NOACBL = 1
60 TO 1
2 IACTVY = IACTIV + 1

NOACBL = DOTHER(IACTIV)

1 IF (NUPDOW .EQ. -1) GO TO 4
NEXT = IACTIV + NOACBL
IF (NEXT.EQ.M+1) RETURN
IF (DOTHER(NEXT) .NE.@) GO TO 3

Page 38

(]

(]

Genstat Newsletter No. 15

5 NEXT1 = NEXT

NOBLOC = NOACBL+1

G0 TO 6

NEXT = IACTIV-1

IF(DOTHER(IACTIV-1).EQ.8) GO TO 5

NEXT = DOTHER(IACTIV-1)

NOBLOC = NOACBL + DOTHER(NEXT)

NEXT1 = NEXT+1

IF ((NUPDOW+DHAT(IACTIV)).GT.(NUPDOW+DHAT(NEXT))) SATIS=-1
RETURN

END

SUBROUTINE JOINWT (DHAT,WHAT,DOTHER,I,J,I1,J1,NOBLOC,M)
INTEGER +«2 DOTHER(5008)

REAL DHAT(5000),WHAT(5000)

II = MINO (I.J)

IEND = II+NOBLOC-1

DHAT(II+1) = DHAT(J1)+DHAT(I1)
WHAT(II) = WHAT(I)+WHAT(J)
DOTHER(II) = NOBLOC

DHAT(II) = DHAT(II+1)/WHAT(II)
DOTHER(IEND) = II

I=11

J=11

RETURN

END

SUBROUTINE FITWT(M,DHAT,WT,WHAT,DOTHER)

REAL DHAT(5008).WT(5000),WHAT(5000)

INTEGER +2 DOTHER(5800),SATIS

D0 1 J=1.M

WHAT(J)=HT(J)

DHAT(J) = DHAT(J) » WHAT(J)

DOTHER(J) = ©

IACTIV = 1

NUPDOW=1

CALL SATSFY(DHAT,DOTHER,M,NUPDOW,IACTIV,SATIS,NEXT,NEXT1,
« IACTV1,NOBLOC)

IF (SATIS.EQ.-1) GO TO 2

NUPDOW = -NUPDOW

CALL SATSFY(DHAT,DOTHER,M,NUPDOW,IACTIV,SATIS,NEXT, NEXT1,
« IACTV1,NOBLOC)

IF(SATIS.EQ.-1) GO TO 2

IF(DOTHER(IACTIV).NE.@) IACTIV = IACTIV+DOTHER(IACTIV)-1
IACTIV = IACTIV+1

Page 39

Genstat Newsletter No. 15

IF(IACTIV.NE.M+1) GO TO 4
J=1
3J = J+1
IF (J.EQ.M+2) RETURN
IF (DOTHER(J-1).EQ.0) GO TQ 3
K = J+DOTHER(J-1)-2
DO 6 KJ=J,K
6 DHAT(KJ) = DHAT(J-1)
J=K+1
GO TO 3
2 CALLJOINWT(DHAT,WHAT,DOTHER, NEXT, IACTIV,NEXT1, IACTV1,NOBLOC, M)
NUPDOW = -NUPDOW
60 TO 5
END

Test Run

GENSTAT V RELEASE 4.04B
MODIFIED BY LES UNDERHILL, MARCH 1985
COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STATION)

1 ‘'refe’ nonmetric
2 ‘'vari' d$5=1,3,2,5,10

3 :w$5=5(1.)
4 :dhat$s

5 ‘'calc’ dhat=d
6 ''find the nonmetric regression of the ordered set d with weights w=1'"’
7 ''note that, apart from the 3 and the 2, d is in ascending order'’
8 ‘own’ 1,dhat.w
9 ‘print/p’ d,w,dhat $ 10.4
18 ‘'run’

d w dhat

1.0000 1.0000 1.0000

3.0000 1.0000 2.5080

2.0000 1.08000 2.5000

5.0000 1.0000 5.0000

10.0000 1.0000 10.0000

11 ‘vari' x$10=18,9.8,7,6,5,4,3,2,1

12 : wt$18=10(1.)

13 : xhat § 10

14 ‘'calc’ xhat=x

15 ' ’'find the nonmetric regression of the ordered set x with weights w=1""
-16 ' ’'note that the vector x 1s in descending order, so that the nonmetric

17 regression xhat 1s the average of the x's’’

18 ‘'own' 1,xhat,wt

18 ’print/p’ x,wt,xhat$ 10.4

28 ‘'run’

Page 40

Genstat Newsletter No. 15

X wt xhat
10.0000 1.0000 5.5000
9.0000 1.0000 5.5000
8.0000 1.0000 5.5000
7.0000 1.0000 5.5000
6.0800 1.0000 5.5000
5.0000 1.0000 5.5000
4.0000 1.0000 5.5000
3.0000 1.0000 5.5000
2.0000 1.0000 5.5000
1.0000 1.0000 5.5000

21 ‘'valu' x=5,4,3,2,1,10,9.,8,7,6

22 'calc’ xhat=x

23 ‘valu’' wt=5(.75),1.5,.5,3(1.)

24 ‘'‘'weights are now not all equal to one’’

25 ‘own' 1,xhat,wt

26 ‘'print/p’ x,wt,xhat $ 10.4

-27 '’'the own directive should now fail - the variates xhat and wt are of
28 different lengths'’

29 ‘own' 1,X,%

30 ‘'run’

X Wt xhat
5.0000 0.7500 3.0000
4.0000 0.7500 3.0000
3.0000 0.7500 3.0000
2.0000 0.7500 3.0000
1.0000 0.7500 3.0000

16.0000 1.5000 8.1000
9.0000 9.5000 8.1000
8.0000 1.0000 8.1000
7.0000 1.0000 8.1000
6.0000 1.0000 8.1000

ssses++x FAULT IN STATEMENT 1 ON LINE 29, CODE VA 13
Invalid or incompatible numbers of values

++ TRACE OWN
sesxs DUMP ssx4s
+++ RECENTLY REFERENCED STRUCTURES
IDENTIFIER TYPE LENGTH VALUES MISSING REF.NO. BANK

x VARIATE 19 PRESENT 2 -5 1
¥ VARIATE 5 PRESENT e -3 2

Page 41

Genstat Newsletter No. 15

s»+« USE OF STORE (DATA UNITS)

TOTAL STORAGE 32768
STRUCTURE DIRECTORY 675
DATA STRUCTURES 149
STATEMENTS 44

USED WORKSPACE 8

FREE WORKSPACE 31900

+«++ STRUCTURES
NAMED UNNAMED

NO. USED 7 4
MAXIMUM 100 50
31 ‘’close’

sxess+++ END OF nonmetri. MAXIMUM OF 892 DATA UNITS USED AT LINE 26 (31876 LEFT)
References

[1] Greenacre, M.J. and Underhill, L.G.
Scaling a data matrix in a low-dimensional Euclidean space.
In ‘Topics in Applied Multivariate Analysis’ (Hawkins, D.M. ed), 183-268, 1982.

[2] Kruskal, J.B.
Multidimensional scaling by optimizing goodness-of-fit to a non-metric hypothesis.
Psychometrika29,1-27 & 115-129, 1964.

Page 42

Genstat Newsletter No. 15

Some Uses of the ‘OWN’ Directive : Interfaces between Genstat and
other Packages and Interruption of Genstat Sessions

A. Bouvier

INRA, Laboratoire de Biometrie

Institut National de la Recherche Agronomique
Domaine de Vilvert

78350 Jouy-en-Josas

France

Abstract

The Genstat OWN directive is intended for testing or implementing local facilities at a site. In
Genstat as distributed, an OWN statement has no effect, because the Fortran subroutine which is
invoked by the statement merely returns without doing anything. Any user with access to the
Fortran source code of Genstat can replace this null subroutine with one designed for his own
needs (as described in the preceding article by Lane and Digby). We show here how we used the
OWN directive:

(1) totransfer data structures between Genstat and another package;

(2) tointerrupt a Genstat session, allowing commands to be given to the local operating system
before resuming the session.

Transferring Data Structures between Genstat and another Package

The Interfaced Package

Aninterface between Genstat and the data base management system Socrate has already been
programmed on an IRIS-80 computer, system SIRIS8 (Bouvier, 1984). Another interface is
now available on a DPS8 computer, running Multics, between Genstat and the interactive
data manipulation and analysis system ‘Consistent System’ (or CS) which includes a
relational data base management sub-system called Janus. (CS is produced commercially by
RCI, Cambridge, Massachusetts, USA.)

The Syntax of the OWN Directive

The OWN directive manages the transfer of data structures. We have added options to the OWN
directive by modifying the arrays in the Genstat code which are used by the compiler. Option
OUTPUT indicates thedirection of the transfer; the setting OUTPUT=Y means that a data structure
is to be transferred from Genstat to CS. The default setting of the option OUTPUT (OUTPUT=N)
means that the transfer is directed from CS to Genstat. When the option DIAG=Y is set, if CS
structures already exist with the same name as those to be created, a diagnosticis printed and
no transfer takes place. If the option PRINT=Y is set, the transferred values are printed. The
option COMP=Y (COMP standing for ‘complete’) means that CS labels must also be transferred
(every CSstructurecan havelabels, i.e. alphanumeric names which identify the dimensions or
the elements).

The arguments of the OWN directive are the identifiers of the structures to be transferred; the
structures created have the same names, or derived names when several structures are created
tostore all the information originally contained in a single structure.

Matching Data Types

The types of data structures in CS and Genstat are not the same and equivalences had to be
found. Forexample, totransfer CS labels,a Genstat NAME structureis created inaddition to the
structure which stores the numerical values.

Page 43

Genstat Newsletter No. 15

CS structures of more than two dimensions are not transferred into multi-way tables because
the structures have a precise meaning in Genstat which does not always correspond to the
user’s intention. They are transferred into VARIATE structures, which are more flexible, and
FACTOR structures are generated to store the dimensional indices.

In the other direction, Genstat structures may be labelled by other structures; these are not
transferred into CS structures but their values are used to form CS labels.

Error Messages

Sixteen new diagnostic messages have been introduced with codes beginning with the two
letters ‘CS’. .

For example, CS 5 means ‘the data structure to be transferred cannot be found’.
Programming Details

We wrote the OWN subroutine (which manages the OWN directive) in the language PL/1, because
it is the basic language of Multics and CS. This subroutine calls the Genstat Fortran
subroutines which access and create Genstat data structures and print diagnostic messages

(FINDIN, GETATT, DIAGUP) and it calls CS PL/1 subroutines to access and create CS data
structures.

Some values in Genstat arrays were also modified, to introduce the options and the new error
codes.

Example: transferringa vector and a scalar from CS to Genstat.

ec cs «x Open the CS session

R «« 'R’ is the CS ready-message

print struct «x Print the vector to be transferred:

ident +«+ an integer vector, with a dimension
i3l ++ label, 'ident’, and element labels
1 23 4 e 1, 0020, 0130, 140,

R

print iscal ++ Print the second CS structure:
999 ++ an integer scalar.

R

exmul genstat +«+ 0Open the Genstat session:

«s ‘'exmul’ allows the execution of a
«+x Multics command from CS.

++« Genstat program.
"HEADING' gen="struct” s« Declaration of the HEADING

++ structures which contain the names
"HEADING' g=""iscal” «x 0f the structure to be

+s transferred.

"OWN/COMP=Y" gen,g ++ The 'OWN' directive asks for the
«+ transfer of the CS files into Genstat
+«+ structures. The option COMP means

Genstat Newsletter No. 15

»+ that the labels must be transferred.

«» The system prints the name, type and size of the created Genstat
structures.

s«*+ CREATION D'UNE STRUCTURE NAME +#x '’'ldent’'’ contains the element
DE NOM struct DE 4 ELEMENTS *+ labels. The name of this
++ Structure is the dimension
«* label.

*x» CREATION D'UNE STRUCTURE INTE «+ The CS file named ''struct’’ has
DE NOM struct DE 4 ELEMENTS ++ been transferred into an
+«» ldentically named Genstat
«+ Structure.

sssx CREATION D'UNE STRUCTURE SCAL s+ The scalar ''iscal’’ has also
DE NOM iscal DE 1 ELEMENT +«+ been transferred into an
++» 1dentically named Genstat
«+ Structure.

Interrupting a Genstat Session

Why Interrupt a Genstat Session?

The other use we have made of the 0WN directive is to interrupt a Genstat session temporarily.
This has been done for two reasons:

(1) in the Genstat-CS interface system, interruptions are necessary when consulting CS
structures;

(2) interruptions are necessary for adding new input, output or user files; the correspondence
between the names of those files and the numbers used in the Genstat Fortran subroutines
(and therefore the numbers indicated in the INPUT, OUTPUT or FILE directives) must be
made outside the Genstat session.

The Syntax of the OWN Directive

To interrupt the session, the OWN directive is used without any arguments; so no ambiguity
exists between this and the previous use of 0WN (for Genstat-CS data structure transfers).

Programming Details

Genstat has been implemented in such a way that all data structures and working areas are
kept. In the Multics system, the correspondence between the file numbers and the associated
Fortran numbers is set up in an introductory PL/1 program written by D Clark of the
University of Bathand heavily altered by A Blackman of Bristol University.

We modified this program so that new file names can be introduced after an interruption, with
execution restarting where it was left.

Page 45

Genstat Newsletter No. 15

Example: interrupting a Genstat session
++ GENSTAT PROGRAM

"OWN’ «+ 'OWN' asks to interrupt the session.
++ This interruption is taken into
++ account at the first 'RUN’ that
‘RUN’ +» follows the 'OWN’ statement.

r 16:44 0.212 1. ++ We are back at the Multics level:
«+ this is the Multics ready-message.

genstat -in2 data +«+ Re-open the Genstat session with a new
++ option, ''-in2’'' which introduces the name of
+«+ @ file to be read: (data in this file will
s+« be read by a 'READ’ statement in the
+«+ Genstat program).
"HEADING' h='"suite’’

+«+ Subsequent Genstat program.

Conclusion

We created this interface between CS and Genstat for local needs. CS is our basic package: it is very
interactive, easy to learn, and very convenient for formatting data, making simple statistical
analysis and piloting other packages. Genstat is used as a second level package: it is more powerful
in elaborate statistical analysis.

The possibility of the local implementor ‘opening’ Genstat to other software is certainly an
important improvement in the package’s facilities.

Reference

[1] Bouvier, A.
Interfacing Genstat and a database management system.
Genstat Newsletter,13, 6-8, 1984,

Page 46

Genstat Newsletter No. 15

Efficient Performance of Genstat on a VAX

J. Sherington

D. Gilson

Statistics Department
The Agricultural Institute
19 Sandymount Avenue
Dublin4

Eire

Introduction

A VAX computer running under VMS is a virtual memory machine. Memory is divided into pages
each512bytesinsize. When an image isactivated, the system allocates a section of memory known
as a working set. There are three parameters which determine set size for each process,
WSDEFAULT, WSQUOTA and WSEXTENT.

The system initially gives the process WSDEFAULT pages; if more pages are required, the system will
allow the process to grow up to WSQUOTA. If at this stage the process requires more memory, the
system will give a loan of some more pages up to WSEXTENT. The memory in this loan region (pages
between WSQUOTA and WSEXTENT) can be taken back at any time when the system requiresit to give to
some other process. Whenever referenceis made toa page which is not in the working set, it is known
as a page fault. We noticed when running Genstat that a large number of page faults occurred,
which had a detrimental effect on the overall performance of the system. We therefore conducted a
small experiment to determine the effect of altering the working set size.

The Experiment

The computer wasa VAX 11/750 with two megabytes of memory, used for a mixture of statistical
and administrative work. Four different Genstat (version 4.04A) programs were run with the
working set size (both WSQUOTA and WSEXTENT) given the values 200, 300 ,..., 1600 (and no loan
region). They were run overnight when no other work was being done on the computer.

The Genstat programs were chosen to give a range of CPU time (approximately 1 to 10 minutes), a
range of quantity of data and a variety of common statistical procedures (analysis of variance,
tabulation, regression and correlation).

Brief descriptions of the programs follow. The numbers given are generally only approximate.

A. — One minute CPU time.
— 120 variates were read, and 7 more were calculated using VSUM. There were 100
observations.
- A three-factor analysis of variance was carried out on seven variates.

B. - Five minutes CPU time.
— 30variates were read for 500 observations.
— For each variate, two tables of means were produced (TABULATE directive) and a
completely randomised analysis of variance was performed.

C. - Fiveminutes CPU time.
- Thedataspace option S=2 was used todouble the space available. 250 variates were read
and 350 variates were calculated. There were 28 observations.
— 30 8X8correlation matrices were calculated and a two-factor analysis of variance was
carried out on all 600 variates.

D. — Ten minutes CPU time.
— 2variates and 3 factors were read for 700 observations.

Page 47

Genstat Newsletter No. 15

— An unbalanced analysis of variance using the FIT, ADD and PREDICT/S directives was
performed for both variates.

The CPU time and number of page faults were recorded for each run.
Results

Theincrease in working set size had a dramaticeffect on the number of page faults, ascanbeseenin
Figure 1. For job A, there appeared to be little benefit in increasing above 300 pages, while for job D,
400 pages seemed to be the optimum. For both jobs Band C the number of page faults kept reducing
up to working set sizes of about 600-700 pages, but there was no further reduction at greater sizes.
These were the two jobs with the largest amounts of data.

35

30

25+

204

Page Faults (,000)

154

10

0 200 400 600 800 1000
Working Set Size (Pages)
Graph of Page Faults against Working Set Size
for Four Genstat Programs
Figure 1
Page 48

Genstat Newsletter No. 15

The reduction in CPU time was less dramatic, but nevertheless worthwhile, for jobs A, B and C
which had reductions of at least 12%.

Thefollowing table gives the number of page faultsand CPU time for the default working set size of
200 pages and for an ‘optimum’ working set size of 700 pages.

Page Faults CPU Time
seconds
Workingset 200 700 200 700 Reduction
JobA 17700 1300+ 85 73+ 14%
JobB 36800 1600 316 268 15%
JobC 58100 1500 327 288 12%
JobD 11200 1200 603 597 1%

(= Working Set size = 600 rather than 700)
Conclusion

Although this experiment is obviously limited in scope, the range of programs used in this
experiment covers a large proportion of the type of work we do on Genstat.

The standard working set size (WSQUOTA) of 200 pages in the VAX/VMS operating system would
appear to be toosmall for most uses of Genstat. Also, jobs with large amounts of data would seem to
benefit more than those with small amounts in terms of page faults. A working set size of 700 pages
should be sufficient for all users except those regularly processing very large data sets, who may
benefit from an even larger working set. It is not desirable to give all users very large working set
quotas, as this would limit the number of processes in memory, thus downgrading the system.

As a result of this experiment we increased the working set sizes of all Genstat users in the
Agricultural Institute. The working set quota (WSQUOTA) was increased to 700 pages and the
working set extent (NSEXTENT) to 1024 (0.5 MB). This had a noticeable effect in increasing the
overall efficiency of the system in terms of process through-put. The individual users also benefit by
using less CPU time and system resources to complete the same amount of work. These
modifications should help the performance of all similar VAX /VMS installations.

Page 49

