
Issue No. 15 ^ March

The

GENSTAT
Newsletter

NkS
NUMERICAL
AIGORITHMS
G R OU P

Editors

R W Payne
Rothamsted Experimental Station
Harpenden
Hertfordshire

AL52JQ

M G Richardson

NAG Central Office

Mayfield House
Oxford

OX2 7DE

Printed and produced by the Numerical Algorithms Group

®NAG Limited 1985

All rights reserved.

NAG isa trademark of theNumerical Algorithms Group.

The views expressed in contributed articles are not necessarily those of the publishers.

GENSTAT NEWSLETTER

Issue No. 15

NP1050 1985 March

Genstat Newsletter No. 15

Contents

Page

1. Editorial 3

2. Corrigenda 3
3. Letter to the Editor 4

4. Fitting Exponential or Weibull Distributions
to Survival Data 5

5. Genstat by Post 14
6. Understanding Common Error Messages in Genstat 20
7. Drawing Bar Charts 22
8. Linking Fortran Subprograms into Genstat 25
9. An Implementation of the Genstat 'OWN' Directive 34
10. Some Uses of the 'OWN' Directive:

Interfaces between Genstat and Other Packages and
Interruption of Genstat Sessions 43

11. Efficient Performance of Genstat on a VAX 47

Enclosures

Genstat Newsletter Order Form

Published Twice Yearly by
Rothamsted Experimental Station Statistics Department

and the Numerical Algorithms Group Limited

Printed 1985 October

Page 2

Genstat Newsletter No. 15

Editorial

The number of Genstat sites continues to grow more or less linearly with time - there are now well
over 300 sites outside of the ARC. With this growth has come concomitant growth in NAG staff in
the statistical packages area: over a twelve month period these will have increased from one to four.

All first-line support of Genstat for non-ARC sites now comes from NAG and these sites should not
normally contact the package developers at Rothamsted or the various machine range
implementors, except through NAG. The developers and implementors are, of course, still
available to provide back-up to NAG when necessary.

This issue of the Newsletter contains articles from a geographically wide range of authors, most of
whom submitted material in machine-readable form, for which we are extremely grateful. Our
need for submissions continues to be as great as ever: very few articles describing Genstat
applications have been submitted recently and we urge readers to consider whether their own
application might not be of general interest.

When this Newsletter appears, the Genstat Conference will probably have come and gone. We
hope that many of our readers will have been able to attend and will have enjoyed the Conference.
As usual, many of the papers presented will also appear in future issues of the Newsletter.

Corrigenda

14.6 Dendrograms and Ziggurats

References to 'the previous article', 'the previous program', etc. should be to 'the following article',
etc.

On p. 14, line 4,2""^* should read 2 .

14.7 Drawing Pretty Dendrograms

The reference statement for the program on p. 20 should read

'refe' denclrograms_on_the_signia

In some copies of Newsletter 14 the punctuation marks in the programs are very faint. Readers
needing clarification of the programs may obtain listings from NAG Central Office.

Page 3

Genstat Newsletter No. 15

Letter to the Editor

B. L. Shea

NAG Central Office
Mayjleld House
256 Banbury Road
Oxford 0X2 7DE
United Kingdom

The Role of a Subroutine Library for Statisticians

Anyone who has carried out a statistical analysis of some kind will almost certainly have used one of
the many widely available statistical packages. Indeed, there are a great many such packages
designed to relieve the user of unnecessary programming effort whilst enabling him to perform an
analysis of some sort. Whilst there can be little doubt that data analysis is most easily done using
such packages, there are perhaps occasions when having access to a subroutine library would be
advantageous. Users in academic institutions generally have easy access to packages such as
Genstat. Hence the only data analysis routines in a subroutine library which would be of interest to
them are those which carry out non-standard analyses not generally available in package form,
such as robust statistics. Obviously, doing statistical analysis using library routines is much more
time consuming and seems a rather alien approach to adopt.

One should not perhaps be over-concerned with the academic statistician who is so richly endowed
with packages. Consider instead the average statistician working for a small company which
subscribes to a subroutine library for mathematicians and scientists. If statistical packages are
deemed too expensive the statistician may not be too badly handicapped if statistical routines are
available in the librarv.

Many packages may not present the results to the user's satisfaction. There may be an advantage in
being able to write in-house programs which call library routines and interact with local graph
plotting facilities. The user then has complete control over output and can produce high quality
graphics.

Clearly there would be advantages in having arguments to a library routine call which allowed the
user the option of whether or not to display (on the line printer) some or all of the results.

As new methodologies become available these might be more speedily passed on to users if they are
distributed in subroutine rather than package form.

A subroutine library obviously has a key role to play in providing the basic linear algebra routines
such as matrix inversion and function minimization.

What statistical routines should be in a subroutine library and who will the users be? I would be
grateful to hear from anyone who has views on this.

Page 4

Genstat Newsletter No. 15

Fitting Exponential or Weibull Distributions to Survival Data

A.W.A. Murray
Statistics Department
Rothamsted Experimental Station
Harpenden
Hertfordshire AL5 2JQ
United Kingdom

Survival data consist of observed times of death (failure in the case of inanimate objects) or times of
loss of an individual from the study for other causes; these latter are called censored observations.
We may wish to fit an appropriate distribution to these data and estimate its parameters. The
exponential and Weibull distributions are often suitable probability models for survival data. This
article describes a simple diagnostic procedure to aid in the choice of distribution and shows how
these distributions, or binary mixtures of them, may be fitted.

The diagnostic procedures make use of the empirical product-limit or Kaplan-Meier estimate of
the survivor function. This is essentially a 1 -samplecumulative distribution function but allows the
inclusion of censored data. The formula is given by

nijt; d.)
— ^ (1)

i|f.</ n.

where S is the product-limit or Kaplan-Meier estimate of the survivor function, n. is the number of
individuals at risk at time t. and d. is the number of observed deaths at time t.. The survivor

function, 5, for exponentially distributed data, is given by

S{t) = exp[—\t] (2)

for some parameter X. The diagnostic procedure is to plot ln{S{t)) against /, which should give a
straight line of slope X if the data are distributed in this fashion. The survivor function for a Weibull
distribution is given by

S{t) = exp[-{\tr] (3)

for some parameters\w2F3. The identity

ln[-ln(S{t))] = m;(/«(0+//i(X)) (4)

shows that a plot of /«[—/n(.S(0)] against ln{t) should give a straight line of slope w and intercept
wln{\).

Program 1 calculates and displays the Kaplan-Meier survivor function, together with 95%
confidence limits according to Greenwood's formula as modified by Kalbfleisch and Prentice
(1980). Diagnostic plots for exponential and Weibull distributions are performed. There is an
option to select plotter output for the graphs, which will provide very much better detail than the
line-printer style of output. The necessary data, to be provided on a secondary input stream, are the
times, T, of death or censorship and an indicator variable, C, which is 0 where an observation is
censored and 1 if a death has been observed. An example data set is shown below. A heading, HDNG,
must be provided to identify the data
'' Example data set ''

*' random times from an exponential distribution with theoretical mean

62 184 23 151 50 4 143 162 14 88 126 20 27 52 124 203 100 18 25 26

21 250 130 164 135 56 16 46 79 59 1 157 6 28 3 283 29 79 29 230

7 127 60 210 1 146 112 69 98 124 68 27 26 82 59 32 42 19 223 164

Page 5

Genstat Newsletter No. 15

90 32 55 18 75 276 117 37 44 256 28 281 45 127 97 105 64 53 218 41
32 62 88 36 156 76 85 24 145 176 5 93 116 94 60 63 85 17 19 134 'EOD' times

0 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

10 1 1 1 1 0 1 1 1 1 1 1 1 1 101 1 1 1 1 1 1 1

01 1 0 1 1 1 0 1 1 1 1 1 1 01 1 1 1 1 0 1 1 1 1

'EOD* 10X censored at random

If plotter output is desired then the line

•SET' PLOTTER = YES

should be included in the program and a secondary output file made available when Genstat is run.

•REFE' PROGRAM (1)

Analysis of survival data (lifetimes in days, including censored
observations)

calculation of Kaplan-Meier (product-limit) estimate of survivor function

also gives upper and lower 95X confidence bounds using Greenwood's
formula as modified by Kalbfleisch J 0 and Prentice R L (1980),
The Statistical Analysis of Failure Time Data. New York: Wiley

diagnostic test for fit of Exponential distribution

diagnostic test for fit of Weibull distribution

'SET' PLOTTER=YES

'HEAD' HDNG

'INPUT* 2

'READ' HDNG

'PRINT* HDNG

•READ/S,NUN=V' T,C

'INPUT' 1

'RUN'

'INTE' YES=1 : NQ=2

•NAME' YESNO=yes,no
'FACTOR' REMOVED$YESNO,T

•GROUP' REMOVED=RANK(C)
'TABLE/M' HOWJIANY$REMOVED
'TABU' T; ASSCT=HOW_MANY

'SCAL' NT,T_NTP1,N0,FIRST,TAIL_TIME,RH_TAIL

'EQUA' N0=HOW_MANY$2X,1

'VARI' TXC$T

'CALC TXC=T»C/C

TXC=REPMV(MIN(TXC))
'GROUP' DTIMES=INTPT(TXC)
'CALC NT=NLEV(DTIMES)

T_NTP1=2*NT+1

'RUN'

Page 6

Genstat Newsletter No. 15

'UNIT'$NT

'TABLE' TAB_DTIME$DTIMES

•TABU' TXC; MEAN=TAB_DTIiyiE

'EQUA' TIME=TAB_DTIME

'CALC LOG_TIME=LOG(TIME)
'GROUP' TIMES=LIMITS(T:TIME)
'RUN'

'RESTR' T$REMOVED=NO

'TABLE' TAB_TIME$TIMES

•TABU' T;ASSCT=TAB_JIME

'EQUA' DEATHS=TAB__TIME

: LAGDEATHS=0,DEATHS

'RESTR' T$REMOVED=YES

'TABU' T;ASSCT=TAB_TIME

'EQUA' CENSORED=TAB_TIME

'CALC NJ_DJ=N0-CUM(CENSORED)-CUM(DEATHS)

NJ=N0-CUM(CENSORED)-CUM(LAGDEATHS)
: TERM=NJ_DJ/NJ

''log Kaplan-Meier estimate of survivor fn''

: LOG_Sjr=CUM(LOG(TERM+0.0000n(TERM.EQ.0)))

■ S_T=EXP(LOG_S_T) ''Kaplan-Meier (product-limit) estimate of survivor fn''
'corrected formula for variance function, Kalbfleisch & Prentice p.15''

SE_S_T=SQRT(CUM(DEATHS/(NJ#(NJ_DJ+(NJ.DJ.EQ.0))))/(LOG_S_T«»2))
L0__LIM=S_T**(EXP(1.96*SE_S__T)) '' lower confidence bound ''
HI__LIM=S_T*«(EXP(-1 .96*SE_S_T)) '' upper confidence bound ''
ELEM(LO_LIM,HI_LIM;NT)=0.000

W_TEST=LOG(-LOG_S_T)
OBS_FREQ=1.00-S_T

FIRST=ELEM(0BS_FREQ;1)

DBS__FREQ=DIFF(0B§^FREQ;1)
ELEM(aBS_FREQ;1)=FIRST

TAIL__TIME=ELEM(TIME;NT)

ROAIL=1-SUM(OBS_FREQ)
FIRST=ELEM(L0_LIM:1)

HEAD' HTAIL= " > "

HY= '' Value of survivor function''

HY(1)= '' log Kaplan Meier survivor function"

HY(2)= ''log (-log Kaplan Meier survivor function)*'
HX(1)= '' time (days)''
HX(2)= '' log(time)''

HT= " Graph of empirical (Kaplan-Meier) survivor function"
HT(1)= " Graph to test possible fit of Exponential distribution "

HT(2)= " Graph to test possible fit of Weibull distribution "

L=' 'L"

LPP=' 'LPP"

DASH="-"

LLL=' 'L2L1L2"

Page 7

Genstat Newsletter No. 15

•LINE' 5

'PRINT' HDNG

'PRINT/MARG=TOTAL' HOW__MANY$10
'PRIN/P' TIME,DEATHS,CENSORED,OBS__FREQ,S_T.LQ_LI!yi,HI_LIM$ 3(10) ,4(10.3)
'JUMP' NO__TAIL *(RH_JAIL.EQ.0)
'PRINT/C,LABR=1,VAR=1' HTAIL.TAIL_TIME,RH_TAIL$ 2X,1,4.30.3
'LABEL' NQ^TAIL
' VARI' GTIME, G__S_T, G_LO, G__HI$T_NTP1

YXSCALE~0,1.0,*.*
'EQUA' GTIME,GTIME$1,(1,X)NT,2X,(1,X)NT=0,TIME,TIME

G_S_T ,G_S_T$(1,X)NT,(1,X),(1,X)NT=1, S_T,1, S_T

G_^HI,G_HI$(1,X)NT,(1,X),(1,X)NT=1,HI_LIM,1,HI_LIM
G_LO, G_LO$(1, X)NT, (1, X), (1, X)NT=FIRST,LO__LIM.FIRST, LQ_LIM

'GRAPH/HY,HX(1),TITL=HT,BV=YXSCALE' G_S__T,LO_LIM,HI_LIM;GTIME,TIME,TIME
$LPP: *,DASH,DASH

'VARI' ZERO=0.00002

'FACTOR' EXCLUDE$2,NT

'GROUP' EXCLUDE=LIMITS(TERM;ZERO)
'RESTRICT' LOG_S_T,TIMEW TEST,LOG_TIME$ EXCLUDE=NO

'GRAPH/HY(1),HX(1),TITL=HT(1)' LOG_S_T;TIME$ L
•GRAPH/HY(2).HX(2),TITL=HT(2)' W_TEST;LOG_TIME$ L
'JUMP' NO_PLOT ♦PLOTTER.ISNT.YES
'OUTPUT*2

'GRAPH/HY,HX(1),TITL=HT,BV=YXSCALE,BUFF=N,DEVICE=1'
G^LO,G_S_T,G_HI;GTIME$ LLL

'GRAPH/HY(1),HX(1),TITL=HT(1),BUFF=N,DEVICE=1' LOG_S_T;TIME$ L
'GRAPH/HY(2),HX(2),TITL=HT(2),BUFF=N,DEVICE=1' W_TEST;LOG TIME$ L
'0UTP/RECL=132'1
'LABEL' N0_PL0T
'RUN'

'CLOSE'

'STOP'

The diagnostic plot produced by program 1 may suggest that it might be worth fitting either an
exponential or a Weibull survivor function to the data. Program 2 will fit an exponential
distribution and estimate the parameter X (L in the program) by means of direct minimization of the
negativelog-likelihood function using ' OPTIMISE' .The likelihood, L, for/i observed deaths at times
/j ,/2» and w censored observations at times ,^2 »•••»";„ is given by

n m

'^2 '"2 ~ n/(/.) n s{u.) (5)
1=1 1=1

where S is given by equation (2) and/, the probability density function, by

At) = - = Xex/7[-X/] (6)

The initial value of X is found by taking the reciprocal of the mean of observed times of death.
Steplengths are set to 2% of the initial value. The mean of the fitted distribution is printed and the
program could easily be expanded to provide graphical output of the fitted survivor function for
comparison with the Kaplan-Meier plot.

Page 8

Genstat Newsletter No. 15

•REFE/NUNN=200,PRIN=IPF* PR0GRAM_(2)

Analysis of survival data (lifetimes in days, including censored
observations)

fit of exponential survivor function

direct minimization of negative loglikelihood function

'HEAD' HONG

'INPUT' 2

'READ' HDNG

'PRINT' HDNG

'READ/S.NUN=V' T.C

'INPUT' 1

'RUN'

'INTE' ND=2

'NAME' YESNO=yes.no

•FACTOR' REMOVEDSYESNO.T

'GROUP' REMOVED^RANKCC)

'SCAL' MEAN_.L,LOG__LIKELIHOOD
'VARI' EXP_$T
'VARI' STEPL$1

'RESTRICT' T$ REMOVED= NO

'CALC L=1/MEAN(T)

■RESTRICT' T

•CALC STEPL=L*0.02

'MODEL' EXPONS EXP__=EXP(-L*T)
$LOG_LIKELIHOOD=-(SUM(C*LOG(L*EX^))+SUM((1-C)*L0G(EXP_)))

•CAPT' "

***** Fit of exponential distribution- *****"
*0PTI/PRIN=PSM.LIK=1.NPAR=1' EXPON; FMIN=LOG_LIKELIHOOD; PARAM=L;
STEPS=STEPL

'CALC MEAN_=1/L
'CAPT' "

***** Mean of fitted exponential distribution *****"
'PRINT/LABR=1' MEAN_$25.1
'RUN'

'CLOSE'

'STOP'

Program 3 will fita Weibull distribution to the survival times. It is necessary to guess an initial value
for the parameter >v(W in the program). If the mortality rate, or hazard, is thought to decrease with
time then w should be in the range 0 to 1 and a guess of 0.5 should be satisfactory. If the hazard is
increasing with time then w > 1.0 and a suitable first-try initial value might be 1.5; this could be
increased if there is no convergence to a solution. The program calculates the mean of the
uncensored data and uses this to find an initial value for X (L in the program). The mean, median and
mode of the fi tted distribution are printed.

Page 9

Genstat Newsletter No. 15

'REFE/NUNN=200.PRIN=IPF' PR0GRAM_(3)

Analysis of survival data (lifetimes in days, including censored
observations)

fit of Weibull survivor function

direct minimization of negative loglikelihood function

MACRO' LGAM$

Macro to calculate log(complete gamma function)

LOCAL* XX

SCAL* XX

CALC XX=X+3*(X.LT.3)

CALC

LOGGAMMA=(XX-0.5)*L0G(XX)-XX+0.9189385+(0.0833333-0.00277778/(XX*XX))/XX
L0GGAMMA=L0GGAMMA-(X.LT.3)a0G(X*(X+1)*(X+2))

ENDMACRO/LOCAL=DESTROY'

HEAD' HDNG

INPUT' 2

READ' HDNG

PRINT' HDNG

READ/S,NUN=V' T.C

INPUT' 1

RUN'

INTE' N0=2

NAME' YESNO=yes,no

FACTOR' REMOVED$YESNO.T

GROUP' REMOVED=RANK(C)

SCAL' X.MEAN_.MEDIAN_. MODE_.L.W.LOGGAMMA,LOG_LIKELIHOOD
VARI' WEIB_$T

VARI' STEPLW$2

Set initial value of parameter W

suggest 1.5 if hazard rate thought to increase with age

suggest 0.5 if hazard rate thought to decrease with age

'CALC' W=1.5

X=(W+1)/W

'USE/R' LGAM$

'RESTRICT' T$ REMOVED= NO

'CALC L=EXP(LOGGAMMA)/MEAN(T)
'RESTRICT' T

'CALC' ELEM(STEPLW;1)=L*0.02

Page 10

Genstat Newsletter No. 15

ELEM(STEPLW;2)=W*0.02

•MODEL' WEIBULLS WEIBL=EXP(-((L*T)**W))
$ LaG_LIKELIH0GD=-(SUM(Ci.LQG(L^W*((L*T)*»(W-1))»WEIB_))

+SUM((1-C)»L0G(WEIB_)))

'CAPT' • •

♦»♦♦♦ Fit Of Weibull distribution
•0PTI/PRIN=PSM,LIK=1.NPAR=2' WEIBULL; FMIN=LOG_LIKELIHGOD; PARAM=L.W;

STEPS=STEPLW

•LINE'2

•CAPT' "
***** Mean of fitted Weibull distribution *****' '
•CALC X=(W+1)/W
•USE/R' LGAM$
'CALC MEAN_=EXP(LGGGAMMA)/L

MEDIAN_=(LGG(2)**(1/W))/L
MGDE_=(((W-1)/W)**W)/L

•PRINT/LABR=1' MEAN_$20.1
'CAPT' "

♦♦♦•• Median of fitted Weibull distribution
'PRINT/LABR=1' MEDIAN_$ 20.1
'CAPT' "

Mode of fitted Weibull distribution
'PRINT/LABR=r MGDE_$ 20.1
'RUN'
'CLOSE'

'STOP'

Some data may require a more complex probability model. If the diagnostic plot has the appearance
of two intersecting straight lines, like a Mog-leg' or ̂ broken stick', then a model involving mixtures
of distributions could be appropriate. This could be a mixture of two exponential components, two
Weibull components or an exponential and a Weibull. We can write this situation as

S'(0=p5,(0+(l-p)S2(')
where p is a mixture parameter 0 < p < 1, and and iSj are the component survivor functions.
For a mixture of two exponential distributions we would have

S{t) = p ejcp[-Xj /] + (1 —p) exp[—\2t] (8)
In order to obtain initial parameter values for optimization, we assume that in the time up to the first
death 5*2 (0 = 1 so that

Sit) = p exp[-\t] + (1 -p) (9)
The value for XI is given by

X, = (10)

where S j) is the Kaplan-Meier estimate at time calculated by equation (1) and we guess the
value of p either from prior knowledge or as 0.5. We also assume that, for large values of iS,

5,(0 = 0
so that

Page 11

Genstat Newsletter No. 15

S{t) = {\-p)exp{ - X^t] (11)

Then the value for Xj is given by

^ ^ l/t[S(tj)] -/n[l-p]
'2

'j
where S(tj) is the Kaplan-Meier estimate for some large value of time, tj . It may be better to take
an average of three values from the latter part of the sample distribution. The values of S can be
obtained by running program 1. It is possible to make a reasonable guess at a suitable value of p by
studying the Kaplan-Meier plot and diagnostic plots. Initial values for Xj and Xj are calculated as
above and edited into the program. Program 4 fits a double exponential model to survival data.

•REFE/NUNN=200.PRIN=IPF' PROGRAM (4)

Analysis of survival data (lifetimes in days, including censored
observations)

fit of binary mixture of exponential distributions

direct minimization of negative loglikelihood function

'HEAD' HONG

'INPUT' 2

'READ' HDNG

'PRINT' HDNG

'READ/S.NUN=V' T.C

'INPUT' 1

'RUN'

set initial values for parameters

SCAL' P=0.25 '' guess value for mixture parameter ''

L(1)=0.0492 " L(1)=-(LDG(S_T-'1+P)-LDG(P))/t1 for time t1 "
L(2)=0.00584 " L(2)=-(LDG(S_T)-LDG(1-P))/tj for some large time tj "
LDG_LIKELIHDDD.MEAN_

VARI' STEPPLL$3

U^LIMS=1.0,1.0.1.0

LD_LIMS=0.0001.0.0001.0.0001

EXP_1.EXP_2.F_T $ T
CALC ELEM(STEPPLL;1)=P^0.02

ELEM(STEPPLL;2)=L(1)*0.02
ELEM(STEPPLL;3)=L(2)*0.02

'MODEL' DEXPDN$ EXP_1=P*EXP(-L(1)#T)
$ EXP_2=(1-P)*EXP(-L(2)*T)
$ F_T=L(1)*EXP 1+L(2)*EXP_2
$ LDG_LIKELIHDDD=-(SUM(C*LDGCF_T))

+SUM((1-C)*LDG(EXP_1+EXIL_2)))
'CAPT' "

♦♦♦♦♦ Fit of double exponential distribution **♦**' '

Page 12

Genstat Newsletter No. 15

•0PTI/PRIN=PSM.LIK=1.NPAR=3' DEXPON; FMIN=LOG_LIKELIHOOD;

PARAM=P.1(1,2); STEPS=STEPPLL: UPPER=UP_LIMS; LOWER=LO_LIMS

•CALC MEAN_=P/L(1)+(1-P)/L(2)

•CAPT' • •

***** Mean of fitted double exponential distribution *****"

'PRINT/LABR=1' MEAN_$25.1
'RUN*

•CLOSE'

'STOP'

A double Weibull or mixed exponential and Weibull could be fitted in a similar way. Elandt-
Johnson and Johnson (1980), chapter 7 provides a good discussion of fitting mixtures.

Grids of likelihood can be obtained using the GRID option of'OPTIMISE', and these can be plotted in
one dimension by GRAPH' or two dimensions by 'CONTOUR'. In addition to the parameter
estimates, Genstat provides the square root of the second derivatives and a matrix of scaled second
derivatives of the log-likelihood function, with respect to the parameters, at the optimum. These
are, asymptotically, the standard errors and correlations among the parameter estimates but it may
be necessary to have a fairly large sample, perhaps some hundreds of observations, before the
second derivatives can be expected to behave well as standard errors and correlations.

In this article I have attempted to sketch some of the theory involved in fitting exponential and
Weibull distributions to survival data. The reader is referred to Kalbfieisch and Prentice (1980)
and Elandt-Johnson and Johnson (1980) for a full discussion of the relevant theory. The programs
should provide at least a basic Hool-kit' for analysis of survival data.

References

[1] Elandt-Johnson, R.C. and Johnson, N.L.
Survival Models and Data Analysis.
John Wiley & Sons Inc., New York, 1980.

[2] Kalbfleish, J.D. and Prentice, R.L.
The Statistical Analysis of Failure Time Data.
John Wiley & Sons Inc., New York, 1980.

Page 13

Genstat Newsletter No. 15

Genstat by Post

J. Riley
Overseas Development Administration Biometrician
Statistics Department
Rothamsted Experimental Station
Harpenden
Hertfordshire AL5 2JQ
United Kingdom

1 am one of the members of the Overseas Unit of Rothamsted Statistics Department. Here I
describe some of the diff^culties of collaboration by post and how they affect efficient programming
techniques. I also describe some typical analyses, peculiar to overseas work, which can be
programmed in Genstat.

Much of the data which 1 receive for analysis arrives in a form far from the ideal one that I
constantly suggest to my clients. The reasons for this are several: (1)1 have often been introduced to
an overseas research team long after the data were collected; (2) the fast turn-over of contract staff
in overseas teams means that a team will need continual training in data collection - training which
is difficult to arrange over many thousands of miles; (3) because of limited numbers of trained staff
in the area, a research team may often depend upon untrained local people to help at harvest time;
and (4) as experiments from a great variety of countries can rarely follow any typical layout, it is
difficult to influence a researcher thousands of miles away before he begins recording data from a
trial.

To render the data into a form suitable for analysis may take more time than the analysis itself.
Here, I give a few examples of the sort of data organisation required and one or two typical features
of analyses that I have carried out, using Genstat, for such distant research teams.

Organisation of Data

Untidy, and often illegible, data sheets are returned to their origins if they really are so bad that data
processor and statistician find them too difficult to work with. On one occasion, however, I knew
that the very untidy data sheets were the only ones available, the originals having been destroyed
through no fault of the researchers. The experiment involved different age-groups containing about
50 sheep, which were weighed and scored for condition seven times a year, while fleece weights and
lamb data were recorded once. Unfortunately, the data, collected long before a statistician arrived
on the scene, were recorded by a different person and on different sheets of paper at each date. The
seven weights and condition scores for any one group of sheep could not be aligned sufficiently well
to permit a parallel 'READ' statement for all the variates and so the data had to be input one date at a
time and a program written to form a new data file holding all the variates in parallel for each group
of sheep. This less cumbersome file was much easier to handle at the analysis stage and a print-out of
the file enabled the researcher to follow the progress of any one sheep throughout the whole year.

The next aim was to present the lamb variates in parallel with the sheep variates. This should have
involved the simple step of reading the lamb data and printing them in parallel with the parent sheep
data. However, the researchers had recorded the data in the order in which the lambs had arrived
for weighing, which was not the same order as their parents' data. Furthermore, a lamb's number
had no connection with its parent's number. Thus, for example, sheep number 12 had lamb number
123, while sheep number 13 had lamb number 105. Hence it was necessary to read in an extra
variateof sheep numbers, with the lamb numbers, to allocate the correct offspring to their parents.
The ORDER function could then be used to sort all the lamb data according to the sheep numbering so
that the lamb data could be printed in parallel with the parents' weights and condition scores. Thus

Page 14

Genstat Newsletter No. 15

the randomised sheep numbers (SHEEP) could be read in parallel with the lamb numbers (LAMB)and
lamb variates (V (1,2,3)) to link up a lamb with its mother as follows:

'Run'•Read' LAMB, V(1). V(2). VC3). SHEEP

101 8 0.1 10 5

100 2 0.6 11 2

105 3 0.9 12 6

103 9 0.2 13 1

102 6 0.4 14 4

104 4 0.5 15 3

•EOD'

Then a few Genstat statements of the form:

'SET' LAMBVARS = LAMB. V(1. 2. 3)
•CALC LAMBVARS = ORDER (LAMBVARS; SHEEP)

SHEEP = ORDER (SHEEP)

'PRIN/P • SHEEP. LAMBVARS $ 3(10). 10.1. 10

would produce the lamb data in the same order as the ordered sheep data:

SHEEP LAMB V(1) V(2) V(3)

1 103 9 0.2 13

2 100 2 0.6 11

3 104 4 0.5 15

4 102 6 0.4 14

5 101 8 0.1 10

6 105 3 0.9 12

Thus, short and simple programming is all that is required to deal with what would otherwise be a
formidable task of data organisation.

Intercropping Experiments

Experiments in tropical countries areoften performed to investigate intercrops, that is, a mixtureof
two completely different species. A typical intercropping experiment consists of a number of
intercropped plots, on which species 1 and species 2 are grown together, each plot receiving one of
the treatments under study. To provide a comparison between the yields of species 1 and 2 when
intercropped and the yields that could be obtained when the species are grown sole, the experiment
may also contain plots of species 1 alone and plots of species 2 alone. These sole-cropped plots may
be positioned next to the intercropped plots or they may be randomised amongst the intercropped
plots. When analysing data from such a trial, it is important to distinguish between the sole and
intercropped plots and to deal with them separately, since variation within the data for the two
individual systems of planting can be expected to be quite different. The ideal way to present such
data, then, is to give all the yields of the sole plots of species 1, separate from the yields of the sole
plots of species 2, with both of these blocks of data followed by all the yields from the intercropped
plots. A suitable layout may be of the following form:

Page 15

Genstat Newsletter No. 15

plot

numbers

and

treatment

levels

yields

species 1

yields

species 2

intercrop plot

yields

species 1 and

species 2

More often than not, the sole plots have been randomised amongst the intercrop plots and the data,
recorded in plot order, consist of variates whose length is the total number of plots in the experiment.
Thus, for a sesame/sorghum intercropping trial, the plant heights in centimetres were recorded as
follows for one of the four replicates.

Plot Treatment Sorghum height Sesame height

1 1 159 189

2 sole sesame ♦ 176
3 2 162 184
4 9 181 171
5 3 166 170
6 7 162 165
7 8 182 170
8 5 161 183
9 sole sesame ♦ 180

10 sole sorghum 163 «

11 4 167 187

12 sole sesame * 174

13 6 158 156

Page 16

Genstat Newsletter No. 15

The setting-up of a factor REST to distinguish between the sole and mixed plots and the use of
'RESTRICT' permit calculations to be done on the mixed plots as follows:

'FACTOR' REST $2=2. 1, 6(2). 2(1). 2. 1. 2
'RESTRICT' SORGHUM. SESAME $ REST = 2

However, the accurate use of' E Q U A T E' is preferred to produce the shorter variates for the separate
cropping systems so that the usual range of analyses for such data can be applied effortlessly and
efficiently. Thus,

'VARIATE' SOLESES $ 3

: SORGHT. SESHT $ 9

'EQUATE' SOLESES = SESAME $ IX. 1. 6X. 1, 2X. 1. IX

: SORGHT. SESHT = SORGHUM. SESAME $ 1. IX. 6. 2X. 1. IX. 1

Thevariate SOLESES will then hold the three sole sesame values and the variates SORGHT and SESHT

will hold the nine sorghum and sesame heights respectively: these can then be used for the usual
range of analyses for intercropping data.

One of the recognised analyses for two correlated variates VI and V2 from intercropped plots is the
Bivariate method (PearceandGilliver, 1978).Theerrorvariances of the yields .Xj andjC2 of the two
crops are Kj j and ̂ 22 and their error covariance is Kj 2. After each variate has been adjusted for the

/ /

other, as in analysis of covariance, the variances become and ̂ 22 where

Ki = ''11 - ̂h/^22
and

K2 = >^22 -
Two new variates, j'j andy2»whose means can be plotted with rectangular axes, are defined as

yt

and

yi ̂ ̂̂2 ~~

having error variances equal to 1 and error covariance equal to 0, i.e. and>'2 are independent.
Noting that the covariance of and X2 is one quarter of the variance of (K1 + V2) minus one
quarter of the variance of (F1 — F2), to program this method is very easy using the ' EXTRACT'
directive in Genstat. For an experiment involving four millet genotypes (MILLET) and four sorghum
genotypes (SORGHUM) grown in all sixteen combinations in four replicate blocks of sixteen whole
plots (WP), the Genstat instructions would be:

'CALC TOTAL = XI + X2

: OIF = XI - X2

•BLOCK' BLOCK/WP

TREA' MILLET ♦ SORGHUM

'ANOV X1: OUT = MOUT

: X2; OUT = SOUT

: TOTAL: OUT = TOUT

Page 17

Genstat Newsletter No. 15

: DIF; OUT = DOUT

EXTRACT' MOUT; MILLET » SORGHUM $ VAR = V11
SOUT; MILLET ♦ SORGHUM $ VAR = V22
TOUT; MILLET ♦ SORGHUM $ VAR = VT2
DOUT; MILLET * SORGHUM $ VAR = VD2

SCALAR* V12. SV11, TV22, SV22

CALC V12 = (VT2 - VD2)/4
TV11 = V11 - (V12 * V12/V22)
TV22 = V22 - (V12 * V12/V11)
SV11. SV22 = SQRT(TV11, TV22)
Y1 = X1/SV11

Y2 = (X2 - V12 ♦ X1/V11)/SV22

'ANOV Y1 $ OUT = Y10UT

: Y2 $ OUT = Y20UT

'EXTRACT' Y10UT; MILLET » SORGHUM $ MEAN = MM1. MS1, MY1
: Y20UT: MILLET ♦ SORGHUM $ MEAN = MM2, MS2, MY2

'VARI' VMY1. VMY2 $ 16

'EQUATE' VMY1 = MY1

: VMY2 = MY2

'GRAPH' VMY2; VMY1

Thus the mean values for the sixteen genotype combinations can be calculated and plotted for the
new independent variates,K, andT2.

Residuals in Field Layout

Experiments done in developing countries are often on land which is being cultivated for the first
time, little is known of its past history and the experimental area is likely to be very variable in
quality. Accurate positioning of the plots is thus necessary to ensure homogeneity within a block
and this can lead to very irregularly-shaped experiments. The printing in field layout of plot
residuals from an analysis is a useful step that can often indicate trends and extreme values which,
in turn, may suggest that a further, m^ified, analysis is necessary. A table with factors whose
numbers of levels equals the number of rows and columns of plots in the design can be used to hold
the residuals; printing the table, with row and column labels suppressed, will provide a presentation
of the residuals in field layout. For regularly laid-out experiments with contiguous or parallel
blocks, this procedure is very simple. For the irregularly laid-out trials with which I am often
concerned, the setting-up of the table is not difficult but requires a little more care to ensure that the
output given truly represents the field layout. One such set of data which I received from a trial on
different grass species consisted of three blocks of twenty plots arranged in the following way:

Page 18

Genstat Newsletter No. 15

Block 1

10 11 12 13 14 15 16 17 18 19 20

Block 2 Block 2

21 22 23 24 25 26 27 28 29 30 31 32 33 34

Block 2 Block 3

35 36 37 38 39 40 41 42 43 44 45 46 47

Block 3

48 49 50 51 52 53 54 55 56 57 58 59 60

with plots 1 to 20 in Block 1,21 to 40 in Block 2 and 41 to 60 in Block 3. The Genstat instructions to
form a table to hold the residuals and then to print them out are as follows:

•FACT' X $ 4 = 20(1). 14(2). 13(3. 4)
:Y $ 20 = 1 ... 20. 3. (8. 9. ... 20)3

•TABL' TAB $ X. Y

•ANOV DATA; RES = RR

•TABU' RR; TAB

•PRIN/LABR = 1. LABC = 1* TAB $ 6.1

One point which should be made about the presentation of results of analyses to clients overseas is
that results need to be very clear so that parts of an analysis can be referred to easily in a covering
letter. To achieve this, I use plenty of headings and comments in the program; to make a point more
clearly I may also use graphs and histograms. These may illustrate something fairly obvious in the
data but, by doing so, may make the results clearer to a client who is not very comfortable with
statistical analysis or jargon. I hope that with careful use of the Genstat output facilities I get my
message across; if not, then I simply write some more on the computer output!

Acknowledgement

The author is funded by the U.K. Overseas Development Administration.

Reference

[1] Pearce, S.C. and Gilliver, B.
The statistical analysis of data from intercropping experiments.

J. Agric. Sci., Camb., 91,625-632,1978.

Page 19

Genstat Newsletter No. 15

Understanding Common Error Messages in Genstat

R. Gough
East Mailing Research Station
East Mailing
Maidstone

Kent MEI9 6BJ

United Kingdom
The error messages generated by the system provide users who are learning it with many problems.
What they need is a fuller explanation with more examples', said Helen Talbot of Edinburgh
Regional Computing Centre, at the 1983 Genstat Conference in P^ris. A J Weeks, of the University
of York, was of a similar opinion and saw the beginner's difficulty as .deciding exactly what has
caused a message such as;

Line 10 Statement 0 Fault VA 4

Both were expressing the feelings of many new and experienced Genstat users who know the
problem of Ending their program errors.

The users at East Mailing were no exception and I realised that illustrations were needed of
situations where errors can occur. As a result, a simple method of collating these illustrations was
introduced some five years ago, recording examples of error messages in a loose-leaf folder - one
error message per page. The next step was, for several months, to advertise, within the research
station, for users to supply me with their error messages. The response was good, despite the fact
that noteveryonelikesto admit to having an error.Soon I hadcollected examples of likely situations
for the occurrence of 43 of the more common Genstat errors. Reference to these examples has saved
much time in the search for the causes of errors.

In 1984 we had a new challenge - a VAX 11/750 running Genstat 4.04. The immediate problem of
discovering the meaning of a fault such as

VA 4 . SX 6

had now been overcome by a one-line explanation following the fault message in the output file.
However, there is still a need to refer to Chapter 11 of the Genstat Manual P&rt I for a fuller
explanation, or to the loose-leaf folder of examples.
The next obvious step was to transfer the information from the loose-leaf folder to individual VAX
computer files, one file per error message. This enabled the users to display, on the vdu screen, not
only the one-line message but also the fuller version, followed by further examples - where available
- of likely situations. (Of the possible 192 errors, 125 have now been entered in computer files.)
A print-out of the 43 more common error messages will be available at the 1985 Genstat
Conference at York. If any reader who is unable to attend the conference would like a copy, I should
be pleased to supply one.

I should also be pleased to receive examples of situations causing Genstat errors, so that I may add
these to my collection. To illustrate these common error messages I have listed three below, namely
10 11,SP landSX 10.

lO 11 Errors in data values

This comment introduces the detailed list of error reports on individual items.

Page 20

Genstat Newsletter No. 15

Examples

(1) The following has been extracted from an output file where fault 10 11 had been reported.

♦ LINE 20 STATEMENT 1 FAULT 10 11

UNIT V/SN NCH

4 11 0 FAULT SX 8

In this example the error was in the 11 th variate in a parallel READ statement and the 4th unit of
the 11th variate contained a letter 0 instead of a zero.

(2) 'READ/P' V(1...30) $ S 10 11 reported

solution either ' READ/P' V(1...30) $ S .30

or:-'READ/P' V(1...30) (omitSaltogether)

SP 1 Directory full

Too many named or unnamed structures - change R E F E options.

The number of named or unnamed structures has exceeded the limits set (or implied) by the
REFERENCE statement [Genstat manual, Pt 11:2.1].

The appropriate limit should be increased, judiciously, or DEVALUE used to remove unnamed
structures no longer needed in the current block.

Default:- Number of IDentifiers NID = 100

Number of UNknowN identifiers NUNN = 50

To find how many NI Ds or NUNNs have been used, look in the output file for the string:-

♦♦♦ STRUCTURES

or

NAMED

The area you need appears as follows:-

STRUCTURES

NAMED UNNAMED

ND. USED 99 5

MAXIMUM 100 50

In the above example, the default number of NI Ds is about to be exceeded, but only 5 out of 50 NUNNs
have been used. Therefore, before the job is run again, the REFE line should be amended to:-

'REFE/NID=200' PRDG

SX 10 Incompatible adjacent elements

This very common message has a variety of causes. For example:

(a) two identifiers not separated by a comma
(b) identifier beginning with a number
(c) first number missing from a progression
(d) directive name missing.

Examples

(1) Check factor names; you cannot have parentheses () or dashes - in a factor name.

(2) NAME' NL= (factor levels to define symbols for plotting)

Page 21

Genstat Newsletter No. 15

A prime cannot be used in a name list.

(3) 'EQUA' V4(1...3)=V(4) $ ((7.1 4X)3,7X)3

Space within an item (the integer 14) is not allowed.
(4) Check that you are not using a reserved word, e.g. MAX. DIFF. See the Genstat manual, Pt II

Appendix 4, for a complete list of reserved words.

(5) Identifiers must begin with an ̂alphabetic' character (A to Z, ?5, __); e.g. ' REFE' 1985BUDS is
not allowed, but BUDS 1985 is permissible. —

(6) 'SET/F' F(1)=4,28X

'EQUA' V(1...7) = DATA $ F(1)

F, S and X cannot be used as identifiers in a S E T / F directive, nor can any subscripted version be
used,e.g.F(1). 3(44), X(2).

Drawing Bar Charts

N.G.Alvey
23 Tuffnells Way
Harpenden
Hertfordshire AL5 3HJ
United Kingdom

Outline of the Problem

Up to release 4.04 of Genstat, it was possible to use the GRAPH directive to draw histograms as bar
charts. As it is now possible to draw histograms using the HI STOGRAM directive, the additional code
for drawing histograms using GRAPH was omitted in release 4.04. This macro has been written for
those still wishing to produce bar charts.

Method of Use

The user must create a factor F with boundary values in a variate L. This could be done using the
LIMITS function of the GROUP directive. He must also set up 3 scalars:

NL = number of levels of F which is the number of values of L plus 1.
(This may be CALCULATEd using the function NLEV.)

Nil = NL-1

NL2 = NL-2

Two headings YTITLE and XT I TIE must be declared as titles for the FandA'axes respectively. After
a RUN statement the statement

'USE' BARCHART $

must appear in a separate block of instructions.

Page 22

Global Identifiers

Genstat Newsletter No, 15

FACTOR F input factor identifier

VARIATE L input variate of group limits
BCALAR NL input no. of levels of F

SCALAR NL1 input NL-1

BCALAR NL2 input NL-2

HEADING YTITLE input Y-axis title

HEADING XTITLE input X-axis title

5(1.

3(1)

DUMB

.NL) : T(1...NL) : R(1...NL) : STEP.MAXY

= ELEM(L;1) - (ELEM(L;2) - ELEM(L;1)) / 2

= S(2..,NL1) ; I = 2...NL1 ; J = 1...NL2

DUMB = (ELEM(L:I) + ELEiyi(L:J)) / 2

B(NL} = ELEM(L;NL1) + (ELEM(L:NL1) - ELEM(L;NL2)) / 2
I = 1...NL ; DUMT = T(1...NL)

The macro uses another macro called APPEND at run-time

Plrint of BARCHART and APPEND

•MACRO' BARCHART $

•LOCAL' S(1...NL).T(1...NL).R(1
X,Y,XAPP.YAPP.BTEP,MAXY

'BTART'

•BCALAR*

'CALC

'FOR'

'CALC

'REPEAT'

'CALC'

'FOR'

•REBTRICT' F $ F=I ; IREBT

'CALC' DUMT = NVAL(F)

'REPEAT'

'RUN'

'BTART'

'VARIATE' T =T(1...NL)

'CALCULATE' MAXY = MAX(T)

BTEP = MAXY/40

'RUN'

'VARIATE'

'CALC'

'RUN'

'VARIATE'

'FOR'

'USE/R'

'REPEAT'

•VARI' BVAL=0.*,*.*

'GRAPH/ATY=YTITLE.ATX=XTITLE.BV=BVAL.NRF=41'

'ENDMACRO'

NL),I.J.DUMR.DU

Y = 0,BTEP...T(1)

R(1) = NVAL(Y)

X = (B(1))R(1)

DUMB = B(2...NL)

APPEND $

DUMT = T(2...NL) ; DUM

MB,DUMT,IREBT,BVAL,

R = R(2...NL)

Page 23

Genstat Newsletter No. 15

'MACRO' APPEND $

'START'

'VARIATE' YAPP = 0,STEP...DUMT

'CALC DUMR = NVAL(yAPP)
'RUN'

'VARIATE' XAPP = (DUMS)DUMR
'VARIATE' y=Y,yAPP : X=X.XAPP
'ENDMACRO'

Test Pl-ogram

'REFE/NUNN=30' HISTO

'HEAD' yTITLE="y AXIS TITLE" : XTITLE="X AXIS TITLE"
'SCALAR' NL.NL1.NL2

'VARIATE' V=(1...5)10.8(6...10).(11...19)10,5(16...20) : L=4.6.. 18
'GROUPS' F=LIMITS(V;L)

'CALC NL=NLEV(F) : NL1=NL-1 : NL2=NL-2
'RUN'

'USE' BARCHART $

'RUN'

'CLOSE*

'STOP'

Page 24

Genstat Newsletter No. 15

Linking Fortran Subprograms into Genstat

p. W. Lane

P.G.N. Digby
Statistics Department
Rothamsted Experimental Station
Harpenden
Hertfordshire AL5 2JQ
United Kingdom

This article is intended to help people who want to link specialised programs written in Fortran into
Genstat release 4.04. It provides the details about the internal workings of Genstat necessary for
straightforward applications. For more complicated tasks, it may be necessary to refer to the
Genstat Implementor's Manual, but this is designed primarily for the people responsible for
maintaining the original Genstat source code. The Manual can be obtained by writing to the
Genstat Secretary, at the above address.

We assume here that you are familiar with writing programs in Fortran and with the Genstat
command language. You will also need to know how to link Fortran programs, using the operating
system on your computer: the process is illustrated here for VAX /VMS only.

A Directive for Special Tasks

A directive called ' 0 W N' is provided in Genstat to allow users to call their own Fortran subprograms.
In the distributed form of Genstat, an ' OWN' command will cause no action, since its use invokes a
call to a null subprogram:

SUBROUTINE OWN

RETURN

END

You can replace this subroutine with one which calls your own subprograms; the Genstat system
must then be relinked, including all the subprograms you need. You can use the resulting modiHed
Genstat system in the same way as the standard system, except that whenever you give it an ' OWN'
command, it will do whatever operations are specified by your OWN subroutine.

The Syntax of the 'OWN' Directive

In Genstat 4.04, the ' OWN' directive has no options and you may specify only one list. (In the
article by Bouvier in this Newsletter, the Genstat compiler has been modified to provide
options for the directive ' OWN'.) The list may include non-negative numbers, identifiers and
missing values.

Examples
•OWN'

'OWN' 2

'OWN' Series, Result

'OWN' 4. Series. ♦. Out(1...3)

Do not include negative numbers, as these will be confused with structure references. All
numbers are rounded to integers, so use identifiers of scalar structures if you want individual
real numbers or negative integers.

You can arrange for the ' 0 WN' directive to be able to do many different things if you want. The
easiest way is to reserve the first value in the list as a switch, used internally to control which
subprograms are invoked. Then

' 0 WN' 1, ... causes one type of action.

Page 25

Genstat Newsletter No. 15

'OWN' 2,... causes another, and so on.

You can put ' OWN' statements anywhere in a Genstat program, but remember that the OWN
subroutine will not be called until execution time, i.e. all statements after an ' OWN' statement
but before the next' RUN' statement will be compiled before the ' OWN' statement is executed.

Relinking Genstat

The method of relinking Genstat depends on the operating system but the following example
shows what is involved. We illustrate the process for the VMS operating system for VAX
computers, in which the linking instructions are particularly simple.

The Genstat system as distributed includes the object code (produced by the Fortran
compiler) in an object library. Say this library has the filename:

[GENSTATJGNLIB.OLB

The main module of Genstat and the block data module will be separate from this library; say
they have filenames:

[GENSTAT] MAIN.OBJ and BD.OBJ

Assume that your version of subroutine OWN calls a single subroutine called WORK and the
compiled versions (object modules) of these subroutines have filenames:

[MYFILES] OWN.OBJ and WORK.OBJ

Then, working in the directory MYFILES, you can form a new version of Genstat, called
MYGENSTAT.EXE say, by giving the following DCL command:

$ LINK/EXEC=MYGENSTAT OWN, WORK, [GENSTAT]MAIN, BO, GNLIB/LIBRARY

You should run the new system by setting up a 'foreign' command. Assuming that the
directory MYFILES is on device DR A01, a command MYGEN can bedeHned as follows:

$ MYGEN :== '$DRA01:[MYFILES]MYGENSTAT.EXE'

You can then use the command MYGEN in precisely the same way as the usual command
GENSTAT.

Storage in the Genstat System

Before you can implement the ' OWN' directive you will probably need to know some details of the
internal workings of Genstat. Genstat release 4.04 is written in Fortran 66, but is generally
compiled by Fortran 77 compilers. Some extensions to the ISO standard are used: refer to the
Implementor's Manual, Section 1.1, if you need details.

The major area for storage is in blank common and consists of six arrays which are equivalenced to
each other:

DATA, CDATA, RDATA, IDATA, ISDATA, TABLE

They are used for storing long reals, words (i.e. 8 characters stored in a long real), reals, integers,
short integers, and again short integers, respectively. These arrays are usually given the dummy
dimension of 1: the full dimension is set in the main routine of Genstat.

COMMON DATA(1)

DIMENSION CDATA(1),RDATA(1),IDATA(1),ISDATA(1),TABLE(1)
DOUBLE PRECISION DATA.CDATA

REAL RDATA

INTEGER IDATA

INTEGER »2 ISDATA,TABLE

Page 26

Genstat Newsletter No. 15

EQUIVALENCE (DATA(1),CDATA(1),RDATA(1).IDATA(1),
1 ISDATA(1),TABLE(1))

On some computers, short integers are not supported and so the arrays ISDAT A and T ABLE should be
declared as INTEGER, like IDATA; also, it may not be allowed to use a dummy dimension. You.can
copy the correct version of the common from the Genstat code, module MAIN.

Communication between different parts of the Genstat system is done via a series of named
common blocks. Two of these are /DATAC/, for data accessing, and /SYSCON/, which holds system
constants, e.g. the value used in Genstat to represent missing values in variates. You will almost
certainly need to use these commons so you must include them in the OWN subroutine. You can copy
these two commons from the block data module called BD, but they are also listed below.

COMMON/DATAC/ IDENT(3).ATT0R(3),TYPE(3),VAL0R(3),NVAL(3).MaDE(3),
1 VECN0(3),DESC(3),MVPTR(3).ACC(3).SET(3),UNIVEC(3),STAVEC(3),
2 SUBCLS(3).NIND(3).NUN(3).NSV(3),SPEC1(3).SPEC2(3),SPEC3(3).
3 IDSUF(3).ENDDAT.LATT.LSTDAT,MAXDAT.PCI
DOUBLE PRECISION IDENT

INTEGER ACC,ADDPTR(3),ATT(57).ATT0R,BMINW(3).DESC.DIAVEC(3).
1 ENDDAT,FSET(3),IDIV(3).IDSUF,KR00TS(3).LATT,LNVEC(3).LSTDAT.
2 MARG(3).MATVEC(3),MAXDAT.MODE,MVPTR.NC0L(3),NINO,NLEV(3).
3 NRC(3).NR0W(3),NSV,NUMEX(3),NUN,NVAL,NVAR(3).PCI.SCALN0(3),
4 SDMVEC(3).SET.SETC(3),SETR(3).SPEC1.SPEC2,SPEC3,STAVEC.SUBCLS,
5 TABVEC(3),TYPE.UNIVEC,USET(3),VALOR,VECN0,VSET(3),VTYPE(3).
6 WTVAR(3)

COMMON/SYSCON/DBLANK,DEPS.DMV.DTOL.EPS.MRSI,RMV,TOL.

1 IMV.MASK.NBB,

2 ISMV,ISZER0.MSI,NBI.NBV(5).NVDR(5).NIR,NSII,NSIR
DOUBLE PRECISION DBLANK,DEPS.DMV.DTOL

REAL BLANK.EPS,MRSI.RMV.TOL

INTEGER IBLANK.IMV.MASK.NBB

INTEGER *2 ISBLNK.ISMV.ISZERO.MSI.NBI.NIR.NSII.NSIR.

1 NBV.NVDR.NIDR.NRDR.NSIDR.NSWDR

C

EQUIVALENCE (ATT(1).ATT0R(1)).
1 (SET(1).LNVEC(1).NUMEX(1).SDMVEC(1).SETR(1).VTYPE(1).WTVAR(1)).
2 (UNIVEC(1).NLEV(1).NVAR(1).SETC(1).TABVEC(1)).
3 (STAVEC(1).IDIV(1).KR00TS(1).NRC(1)).
4 (SUBCLS(1).ADDPTR(1).BMINW(1).MARG(1).NR0W(1).VSET(1)).
5 (NIND(1),FSET(1).MATVEC(1).NC0L(1).USET(1)).
6 (NUN(1).DIAVEC(1)).(NSV(1).SCALN0(1))

C

EQUIVALENCE (DBLANK.BLANK.IBLANK.ISBLNK).
1 (NSWDR.NSIDR.NVDR(4)).(NIDR.NVDR(3)).(NRDR.NVDR(2))

You may also need to access some of the other system commons, e.g. /DIAGPK/ which holds
information about Genstat diagnostics, and /WSP/ which contains details of the allocation of
workspace. These are mentioned below, under Some Extra Details.

On some computers, the Fortran compiler insists that all common blocks are described before any
equivalences. If that is the case on your computer, you will have to put all the COMMON statements first
and then their respective EQUIVALENCE statements; this has been done with /DATAC/ and / SYSCON/,
above.

Page 27

Genstat Newsletter No. 15

Writing an Interpreter for 'OWN'

As well as including the standard common blocks described above, your OWN subroutine must be
able to interpret the compiled form of the ' OWN' statement. This may well involve accessing and
storing values in Genstat structures, such as variates: it is probably easiest if you put all the
accessing etc. in the OWN subroutine.

Compiled Form of an 'OWN* Statement

The Genstat interpreter compiles an ' OWN' statement into a coded form. This is stored in the
array IS 0 A T A, in blank common, and the first value of the coded form isinlSDATA(PCI), where
P CI is a variable in common /DATAC/.This first value is the number of options: it is therefore
always 0. The second value is the number of lists: it is therefore 1. The third value is the length
of the list, i.e. the number of items in the ' OWN' statement. Following the length, if it is not zero,
are the coded forms of each item in the list: numbers are replaced by the nearest integer, ♦ is
replaced by a large negative value, which is equal to variable ISMV in common /SYSCON/, and
identifiers are replaced by negative integers which are reference numbers in the directory of
identifiers.

Examples

ISDATA(PCI)

•OWN* 0,1,0

•OWN' 2 0,1.1,2

'OWN* Series, Result 0,1,2,-2,-7

•OWN* 4, Series, ♦, 0ut(1...3) 0,1,6,4,-2,ISMV,-8,-9,-10

Accessing Data Structures

If you want to include identifiers in an ' OWN * directive, you must be able to access the
structures they identify and pass the relevant information on to your Fortran subprograms. To
access all the information about a structure with reference number N (negative), give the
following statement in the OWN subroutine:

I = GETATT(1, N)

GET ATI is a Fortran short integer function, included in the Genstat source code. You must
declare the type of this function in your OWN subroutine (leave out the ♦ 2 if your computer does
not have short integers):

INTEGER *2 GETATT

The function GETATT returns the value 0 unless there is an invalid value in one of the arguments,
e.g. N is not a current reference number. Therefore, you should test the value of I after the call
above and take some action if it is non-zero, e.g.

IF (I .NE. 0) RETURN

In the standard Genstat code, this operation is usually done in one step:

IF (GETATT(1. N) .NE. 0) RETURN

Instead of just exiting from subroutine OWN after such a mistake, you may want to print a
diagnostic message: see below for more details.

GETATT has two arguments: the first must be 1, 2or3andspecifies in which *bank'GETATT is to
store the attributes of that structure whose reference number is given in the second argument.
The banks are a series of arrays in common /DATAC/; each array is of length 3 and holds a
particular attribute of each of three structures. You can visualise the ̂ banks' as an array of
information as pictured below:

Page 28

Genstat Newsletter No. 15

Example
Bank Structure TYPE VALOR NVAL MODE NLEV NROW NCOL

1 variate with 15 values 4 1026 15 2 0 0 0

2 undeclared identifier ISMV 0 0 0 0 0 0

3 4X3 matrix with no values 11 0 12 2 0 4 3

Thus you can, if you want to, invoke GETATT three times, increasing the first parameter from 1
to 3, and thus make available the attributes of three structures at the same time. If you then
want to refer to a fourth structure, you will have to lose the information on one of the previous
ones.

The attributes and corresponding arrays in common / DATAC / which you will need most are as
follows:

TYPE The coded type of the structure. A list of codes is given in the Genstat Manual, Part II
6.2.3, but the commonest are:

-4 Scalar 7 Symmat
1 Integer 11 Matrix

4 Variate 12 Diagmat
13 Factor

If the structure has not been declared when GETATT is called, it will automatically be
set up as a variate, i.e. its TYPE will be set to 4. This automatic declaration can be
suppressed (see below), in which case the TYPE wil be missing, equal to ISMV.

VALOR The origin of values in the appropriate data array in blank common. If there are no
values yet, then VALOR is zero.

NVAL The number of values. This is zero if values have not been assigned and the length of
the structure has not been declared. However, if there is a ' UN IT' statement in force in
your Genstat program when ' OWN' is used, then when GETATT is called for a vector
(e.g. a variate, integer or factor) whose length has not already been defined, it will
automatically declare the structure to have as many values as defined by the ' UNIT'
statement.

MODE The mode of storage of the values. If the mode is 2 and values are present, they are in
RDATA(VAL0R+1) up to RDATA(VALOR+NVAL), where RDATA is the array in blank
common. Mode 2 corresponds to real numbers, so is used for scalars, variates and
matrices.Ifthemodeis4,valuesareinISDATA(VAL0R+1) uptoISDATA(VALOR+NVAL).
This mode corresponds to short integers and is used for integers and factors: factor
values are stored in coded form as 0,1,..., NLEV -1: thus level 3 is represented as 2, for
example.

NLEV The number of levels of a factor, or number of rows (or columns) of asymmat.
M VPTR The number of missing values of a structure.
NROW The number ofrows of a matrix.

NCOL The number of columns of a matrix.

There are many other attributes but most are set only for more complicated structures
such as tables. All are listed in the Implementor's Manual, Chapter 4.

Example
Suppose you want to access one variate structure, whose values should be present, and you
want to pass the array of values and its length to a prepared Fortran subroutine called
WORK.

Page 29

Genstat Newsletter No, 15

SUBROUTINE OWN

(Commons)
INTEGER *Z GETATT

IF (ISDATA(PCI + 2) .NE. 1) RETURN
IVAR = ISDATA(PCI + 3)
IF (GETATT(1, IVAR) .NE. 0) RETURN
IF (TYPE(1).NE.4 .OR. VAL0R(1).EQ.0) RETURN
IFIRST = VAL0R(1) + 1

CALL WORK (RDATA(IFIRST). NVAL(1))
RETURN

END

SUBROUTINE WORK(X. N)
REAL X(N)

(Statements)
RETURN

END

Defining Data Structures

As well as passing information from prtjvious Genstat statements to your Fortran subprograms,
you may well want to do the reverse. If so, you must include, in the ' OWN' statement, identifiers to be
used to store the information. If you know the type and length of these structures, then you can
declare them in your Genstat program before giving the ' OWN' statement; however if the type or
length is determined by calculations within the OWN subroutine, you will have to define the
structures in full in that subroutine.

When a structure intended to store results has no values on entry to subroutine OWN, you must set up
a block of values for it. This is done by using the standard short integer function S VALOR, e.g.

IF (SVAL0R(1) .NE. 0) RETURN

This sets up a values block for the structure currently in bank 1 and sets the origin of the block in
V A L 0 R (1); the values are all initialised to the missing value. The function S V A L 0 R returns the value 0
unless the parameter is invalid or there is not enough workspace for the values block. However, the
structure itself is not modified bySVAL0R(1).To store the value origin in the directory of structures,
you must call the standard function PUT ATT, e.g.

IF= (PUTATT(1. N) .NE. 0) RETURN

This takes all the attributes currently in bank 1 and assigns them to the structure with reference
number N. In the example above, only the value origin will be changed (from 0 to whatever value
SVALOR assigned).

After your subprograms have assigned values to the structure, there may be some values which are
still missing. If so, you must use the short integer functions CNMV and PUT ATT to count the number of
missing values and store the count in the attribute MVPTR:

IF (CNMV(1) .NE. 0) RETURN

IF (PUTATT(1. N) .NE. 0) RETURN

When a structure intended to store results has not been defined at all on entry to subroutine OWN, you
must define all the necessary attributes and then invoke PUTATT to store them all.

Example
Suppose you want to set up one variate, whose length and identifier are supplied by OWN,
to store results from a prepared Fortran subroutine.

Page 30

Genstat Newsletter No. 15

SUBROUTINE OWN

{Commons}
INTEGER *Z CNMV. GETATT, SVALOR, PUTATT

IF (ISDATA(PCI + 2) .NE. 2) RETURN
IVAR = ISDATA(PC1 + 3)
LVAR = ISDATA(PC1 + 4)

IF (GETATT(1. IVAR) .NE. 0) RETURN
C Check that the structure Is a varlate, or was not defined

C before GETATT was called

IF (TYPE(1) .NE. 4) RETURN
C Set the length of the variate

NVAL(1) = LVAR

IF (SVAL0R(1) .NE. 0) RETURN
IFIRST = VAL0R(1) + 1

CALL WORK (RDATA(IFIRST). LVAR)
IF (CNMV(1) .NE. 0) RETURN
IF (PUTATT(1, IVAR) .NE. 0) RETURN
RETURN

END

Some Extra Details

Diagnostics

In the examples above, any mistakes in the input resulted in an immediate exit from subroutine
OWN. If this happens, for example if there was no free space to set up a variate, the routine which
calls subroutine OWN will print a standard Genstat diagnostic to the current output file. The
diagnostic is controlled by the coded variable DIA G in common / DIAGPK/, which is usually zero
but is set to a positive integer when a fault is found.

COMMON/DIAGPK/SPN(10),DIAG.MAXSP.NSP,STATNO.NDIAG

DOUBLE PRECISION SPN

INTEGER *Z DIAG.MAXSP.NSP.STATNO.NDIAG

In fact, the result of the standard functions GETATT, SVALOR, etc. is set equal to the value of
DIAG.

You can therefore set up your own diagnostics, if you want, by referring to DIAG and printing
messages or by using some coded value to represent some particular error. If DIAG has a
non-zero value when control returns from your OWN subroutine, a standard diagnostic message
will be printed. You should refer to the Implementor's Manual, Section 2.3, for information
about all the codes. Typically, you may want to have one of the VA diagnostics printed, e.g.
VA 4 Values not set. A VA message will be printed if the value of DIAG is 170 plus the
relevant V A diagnostic number (maximum 20); thus V A 4 corresponds toDIAG=174.

If DIAG may be non-zero, you should include a call to subroutine DIAGUP before exiting from
subroutine OWN. This will include a reference to the OWN subroutine in the diagnostic trace and
will help to show that the failure has occurred through use of' OWN'. For example, the end of
your OWN subroutine may look like the following.

IF (PUTATT(1, IVAR) .NE. 0) GO TO 1001
RETURN

1001 CALL DIAGUP(8H OWN)
RETURN

Page 31

Genstat Newsletter No. 15

Workspace

In the examples above, it was assumed that all calculations in the Fortran subprogram would
be done with local variables or with values of standard structures. However, you can make use
of the free workspace available in large blank common arrays if you want to. This is advisable
particularly if you need variable amounts of workspace, e.g. depending on the size of input
structures.

To set aside a block of workspace, you must invoke the standard function G W S P and include the
common /WSP/ in subroutine OWN (this common is not available in the block data module).

COMMON/WSP/ ENDWSP.LSTWSP.WSPOR

INTEGER ENDWSP.LSTWSP.WSPOR

Function G W S P has two arguments: the number of values required and their mode. The value of
the function is the diagnostic code, which is non-zero if the parameters are invalid or there is
not enough free space available. After invoking GWSP, the variable WSPOR in common /WSP/
holds the origin of the block of values in the relevant array in blank common, so that the first
location of the workspace used is RDAT A (WSPOR+1) in mode 2, or ISD AT A (WSPOR+1) in mode 4.

If you want workspace for double length reals or long integers, use modes 1 and 3, and arrays
DATA and I DAT A, respectively.

Example
To pass an array of M real values to be used as workspace in a prepared Fortran
subprogram.

IF (GWSP(M. 2) .NE. 0) RETURN
IFIRST = WSPOR+1

CALL WORK(RDATA(IFIRST). M)

Output

Output from your Fortran subprogram can be produced by Fortran WRITE statements. Such
output may get mixed up with standard Genstat output because the latter is handled with a
buffer; if this is a problem, there are standard routines in Genstat for outputting values and text
through the buffer, described in the Implementor's Manual. You should use the correct unit
numbers for output: these vary between implementations of Genstat. You can find out the unit
numbers by running the standard version of Genstat and giving the command:

•ENVIRGNMENT/PRINT=P'

The current output unit number is available in variable QWW in common /PERIPH/. (The
current unit can be changed by giving 'OUTPUT' statements in your Genstat program.)

C0MM0N/PERIPH/BSWF.MAXBSN.NLRPR.QRL(4).QRR.QWL(4).QWW.SQR(4).

1 LINE(4).MAXNLP.NC0PR(4).NINCH

INTEGER BSWF.MAXBSN.NLRPR.QRL. QRR.QWL. QWW.SQR,

INTEGER LINE. MAXNLP.NCOPR, NINCH

Example
WRITE(QWW, 23) (RDATA(I). I = J1. J2)

23 FGRMATC Results:' / (10F12.4))

Avoiding the Default Declaration

When you want to set up your own structures in subroutine OWN, it can be inconvenient if
GET ATT automatically sets them up as variates of standard length before you can specify their
attributes. The automatic declaration by GET ATT can be suppressed by setting variable ACCSW

Page 32

Genstat Newsletter No. 15

in common /MAINAC/ to 0 before invoking GETATT. You must reset ACCSW to 1 after calling
GETATT.

COMMGN/MAINAC/IORATT.lORID.lORSUF.lORTAG.lORTYP.lORVAL.

1 ACCSW.INDTYP(30).LATTBL(30),MAXID.MAXUNN,NID
INTEGER lORATT,lORID.lORSUF,lORTAG.lORTYP.IGRVAL

INTEGER *2 ACCSW,INDTYP .LATTBL .MAXID.MAXUNN.NID

Example
To set up a previously undeclared identifier as a matrix with NR rows and NC columns.

ACCSW = 0

IF (GETATT(1, N) .NE. 0) RETURN
ACCSW = 1

C Check that N refers to a new structure

IF (TYPE(1) .NE. ISMV) RETURN
TYPE(1) = 11

MGDE(1) = 2

NVAL(1) = NR*NC

NRGW(1) = NR

NCGL(1) = NC

IF (SVALGR(I) .NE. 0) RETURN
IF (PUTATT(I) .NE. 0) RETURN

Caution

You must be careful not to cause confusion with the standard version of Genstat. The names of your
Fortran subprograms and any common blocks in them must not clash with names in the Genstat
code; for safety, use names of the form GWN... for all of these.

We also suggest you make it clear in all Genstat output that your version of Genstat has been
modified. You can do this by editing the Fortran subprogram ST ART J in module CPC of the Genstat
code. There is a call to the subroutine ENCAPB there which prints the header message output at the
start of each Genstat job. Please insert another call to ENCAPB after this call, to print a message
giving your name, as in the following:

CALL ENCAPB(1.0.26HGENSTAT V RELEASE 4.04B.26)
CALL ENCAPB(1,0.46H MGDIFIED BY P.W. LANE & P.G.N. DIGBY 10-4-85,46)

Page 33

Genstat Newsletter No. 15

An Implementation of the Genstat 'OWN' Directive
L.G. Underhill

Department of Mathematics and Statistics
University of Cape Town
Rondebosch 7700

South Africa

This article should be read in conjunction with that of Lane and Digby earlier in this issue. It
describes a specific application of the ' OWN' directive, and follows their procedure in detail. The
particular Fortran program to be linked into Genstat is a nonmetric regression subroutine. This is a
first step towards the inclusion within Genstat of a nonmetric scaling directive, of which nonmetric
regression is an integral part (Kruskal 1964, Greenacreand Underhill 1982). Given an ordered set
of numbers rfj, d^, d^ and a set of weights Wj, Wj,..., w^,theproblem in nonmetric regression
is to obtain

Ad^\Ad^).AdJ

such that

Ad^)^Ad2)^-^AdJ

and

m -

S {d. —Ad;)) is a minimum.
1=1 '

Nonmetric regression is described in some detail in both of the references. The full listing of the
subroutine which interprets the ' OWN' directive is given, to serve as a model for other users. The
nonmetric regression subroutines are also included.

The Fortran subroutine to be included in Genstat is called FITWT and has five formal parameters:

M : integer the length of the arrays (m above)
D H A T : real array on input the vector of distances, d, in the required order;

on output, the vector of monotonically ordered *pseudo-
distances',y(^/)

W T : real array a vector of weights
WHAT : real array working space
D 0 T H E R : short integer array working space

The OWN subroutine listed below is documented so that, apart from the COMMONS and EQUI VALANCES,
each line of code is explained by the preceding comment. Read in conjunction with Lane and
Dibgy's article, the subroutine should prove straightforward to follow. The diagnostic codes at the
end of the subroutine have been obtained from Section 2.3 of the Implementors Manual. The
subroutine has been written so that up to ten different Fortran subroutines can be linked into
Genstat simultaneously. The syntax of the ' OWN' directive permits only one list:

•OWN' Hist

The syntax of my ' OWN' directive is

' 0WN' I ,variatel ,variate2

The first item in the list is used as an index to the particular subroutine wanted. (So far I have only
implemented ' OWN' 1.) Variatel is the ordered vector •' variate2 is the set of
weights >^1,^2,...,^^. The nonmetric regression),y(^2)' returned through
variatel y and variate2 is unchanged.

Page 34

Genstat Newsletter No. 15

The output of a Genstat programme which uses the ' OWN' directive for monotonic regression is also
included. It demonstrates, firstly, that the method works, secondly, that the linking in of the
diagnostics works (the program failed on the fourth call to 'OWN' because the variates were of
unequal length) and, thirdly, that the list of items for the' OWN' directive need not be the same as the
list of formal parameters in the Fortran subroutine. As a Fortran programmer I took a long time to
realise that only two of the five parameters for my subroutine needed to go into the ' 0 WN' item-list.
The length of the arrays could be determined within the interpreter and two of the arrays were
working space which did not require formally declared variates.

I recommend that future versions of Genstat include, in the standard ' OWN' interpreter subroutine,
all the necessary COMMONS and EQUIVALENCES, as detailed by Lane and Digby. This will make the
linkage of user subroutines simpler. The ability to incorporate specialised Fortran programs could
become a feature of Genstat.

Incidentally, working from the draft version of Lane and Digby's paper, it took me about six hours
to write and debug the interpreter for the ' OWN' directive to include the monotonic regression
subroutine. With the experience gained, I could probably add other subroutines in under an hour.

The Fortran Code

SUBROUTINE OWN

C

C LES UNDERHILL MARCH 1985

C

COMMON DATA(1)

DIMENSION CDATA(1).RDATA(1).IDATA(1),ISDATA(1),TABLE(1)

DOUBLE PRECISION DATA.CDATA

REAL RDATA

INTEGER IDATA

INTEGER *Z ISDATA

EQUIVALENCE (DATA(1).CDATA(1).RDATA(1),IDATA(1),

1 ISDATA(1).TABLE(1))

C0MM0N/DATAC/IDENT(3).ATT0R(3).TYPE(3),VAL0R(3).NVAL(3).M0DE(3).

1 VECN0(3).DESC(3).MVPTR(3).ACC(3),SET(3).UNIVEC(3),STAVEC(3).

2 SUBCLS(3).NIND(3).NUN(3),NSV(3).SPEC1(3).SPEC2(3).SPEC3(3).

3 IDSUF(3).ENDDAT,LATT.LSTDAT.MAXDAT,PCI

DOUBLE PRECISION IDENT

INTEGER ACC.ADDPTR(3),ATT(57),ATT0R,BMINW(3).DESC.DIAVEC(3)

1 ENDDAT.FSET(3).IDIV(3).IDSUF,KR00TS(3).LATT.LNVEC(3).LSTDAT.

2 MARG(3).MATVEC(3).MAXDAT.MODE.MVPTR.NC0L(3),NINO,NLEV(3),

3 NRC(3).NR0W(3).NSV.NUMEX(3),NUN.NVAL,NVAR(3),PCI.SCALN0(3),

4 SDMVEC(3).SET.SETC(3).SETR(3).SPEC1.SPEC2.SPEC3,STAVEC.SUBCLS,

5 TABVEC(3).TYPE.UNIVEC.USET(3),VAL0R.VECN0,VSET(3).VTYPE(3).

6 WTVAR(3)

Page 35

Genstat Newsletter No. 15

COMMON/SYSCON/OBLANK,DEPS.DMV.DTOL.EPS.MRSI.RMV,TOL.

1 IMV.MASK.NBB,

2 ISMV.ISZER0.MSI.NBI.NBV(5).NVDR(5).NIR,NSII.NSIR

DOUBLE PRECISION

1 DBLANK,DEPS.DMV.DTOL

REAL BLANK.EPS.MRSI.RMV.TOL

INTEGER IBLANK.IMV.MASK.NBB

INTEGER *2 ISBLNK.ISMV.ISZERO.MSI.NBI.NIR.NSII.NSIR.

1 NBV.NVDR.NIDR.NRDR.NSIDR.NSWDR

C

EQUIVALENCE (ATT(1).ATT0R(1)).

1 (SET(1).LNVEC(1).NUMEX(1).SDMVEC(1),SETR(1).VTYPE(1).WTVAR(1)),

2 (UNIVEC(1).NLEV(1).NVAR(1).SETC(1).TABVEC(1)).

3 (STAVEC(1).IDIV(1).KR00TS(1).NRC(1)).

4 (SUBCLS(1).ADDPTR(1).BMINW(1).MARG(1).NR0W(1).VSET(1)).

5 (NIND(1).FSET(1),MATVEC(1).NC0L(1).USET(1)).

6 (NUN(1).DIAVEC(1)). (NSV(1).SCALN0(1))

C

EQUIVALENCE (DBLANK.BLANK.IBLANK.ISBLNK).

1 (NSWDR.NSIDR.NVDR(4)). (NIDR.NVDR(3)). (NRDR.NVDR(2))

C

COMMON/DIAGPK/SPN(10).DIAG.MAXSP.NSP.STATNO.NDIAG

DOUBLE PRECISION SPN

INTEGER *2 DIAG.MAXSP.NSP.STATNO.NDIAG

C

COMMON/WSP/ENDWSP.LSTWSP.WSPOR

INTEGER ENDWSP.LSTWSP.WSPOR

C

C INITIALISED LOCAL

C

DOUBLE PRECISION

1 SPNAME

C

C FUNCTIONS

C

INTEGER »2 GETATT,PUTATT.SVALOR.GWSP

DATA SPNAME /SHOWN /

C

C

c

C NO OF ITEMS IN LIST OF 'OWN' DIRECTIVE

LISLNG=ISDATA(PCI+2)

C FIRST ITEM IN LIST SHOWS WHICH 'OWN* DIRECTIVE. 'OWN* 1 TO 'OWN* 10

NUMOWN= ISDATA(PCI+3)

GO TO (10.20.30.40,50.60.70.80.90.100) NUMOWN

Page 36

Genstat Newsletter No. 15

C OWN 1 : MONOTONIC REGRESSION OF ORDERED SET DHAT WITH WEIGHTS WT

C

C OWN 1 MUST HAVE 3 ITEMS

10 IF(LISLNG.NE.3) GOTO 1029
C REFERENCE NUMBERS OF SECOND AND THIRD ITEMS IN LIST

IVAR1=ISDATA(PCI+4)

IVAR2=ISDATA(PCI+5)

C GETATT SHOULD RETURN A ZERO. 2nd & 3rd ITEMS TO "BANKS" 1 & 2

IF(GETATT(1.IVAR1).NE.0) GOTO 1000
IF(GETATT(2.IVAR2).NE.0) GOTO 1000

C CHECKS THAT ITEMS IN BANKS 1 AND 2 ARE VARIATES

IF(TYPE(1).NE.4) GOTO 1181
IF(TYPE(2).NE.4) GOTO 1181

C VALUES FOR THE VARIATES MUST HAVE BEEN SET

IF(VALOR(1).EQ.0) GOTO 1174
IF(VALOR(2).EQ.0) GOTO 1174

C NUMBER OF VALUES IN THE VARIATES MUST BE EQUAL AND NON-ZERO

LENG1=NVAL(1)

LENG2=NVAL(2)

IF(LENG1.NE.LENG2) GOTO 1183
IF(LENG1.EQ.0.OR.LENG2.EQ.0) GOTO 1172

C ORIGINS OF VARIATES IN BANKS 1 & 2

IADR1=VAL0R(1) + 1

IADR2=VAL0R(2) + 1

C SET ASIOE REAL WORKSPACE OF LENGTH LENG1

IF(GWSP(LENG1,2).NE.0) GOTO 1000

C ORIGIN OF REAL WORKSPACE

IADR3=WSP0R + 1

C SET ASIDE SHORT INTEGER WORKSPACE OF LENGTH LENG1

IF(GWSP(LENG1.4).NE.0) GOTO 1000
C ORIGIN OF SHORT INTEGER WORKSPACE

IADR4=WSP0R + 1

C CALL TO NONMETRIC REGRESSION SUBROUTINE. NORMALLY

C CALL FITWT(M. DIST. WT. WHAT. BOTHER)
CALL FITWT(LENG1.RDATA(IADR1).RDATA(IADR2).RDATA(IADR3).ISDATA(IADR4))
GOTO 200

C PROVISION FOR FURTHER OWN DIRECTIVES. 'OWN* 2...'OWN* 10

20 CONTINUE

GOTO 200

30 CONTINUE

GOTO 200

40 CONTINUE

GOTO 200

50 CONTINUE

GOTO 200

60 CONTINUE

GOTO 200

70 CONTINUE

GOTO 200

Page 37

Genstat Newsletter No. 15

80 CONTINUE

GOTO 200

90 CONTINUE

GOTO 200

100 CONTINUE

GOTO 200

200 RETURN

C DIAGNOSTICS

C NUMERICAL VALUES FOR CODES ARE IN SECTION 2.3 OF IMPLEMENTORS GUIDE

C SX-19 WRONG LIST LENGTH

1029 DIAG=29

GOTO 1000

C VA-2 ATTRIBUTES NO SET

1172 DIAG=172

GOTO 1000

C VA-4 VALUES NOT SET

1174 DIAG=174

GOTO 1000

C VA-11 INVALID TYPE

1181 DIAG=181

GOTO 1000

C VA-13 INCOMPATIBLE NUMBER OF VALUES

1183 DIAG=183

1000 CALL DIAGUP(SPNAME)

GOTO 200

END

C

C

C SUBROUTINES SATSFY, JOINWT AND FITWT PERFORM THE NONMETRIC REGRESSION

C

C

SUBROUTINE SATSFY(DHAT.BOTHER.M.NUPDOW,lACTIV,SATIS,NEXT.

♦ NEXT1.IACTV1.N0BL0C)
INTEGER *Z DOTHER(5000),SATIS

REAL DHAT(5000)

SATIS = 1

IF (NUPDOW.EQ.-1. AND. IACTIV.EQ.1) RETURN

IF (DOTHER(IACTIV).NE.0) GO TO 2

IACTV1 = lACTIV

NOACBL = 1

GO TO 1

2 IACTV1 = lACTIV + 1

NOACBL = DOTHER(IACTIV)

1 IF (NUPDOW .EQ. -1) GO TO 4

NEXT = lACTIV + NOACBL

IF (NEXT.EQ.M+1) RETURN

IF (DOTHER(NEXT) .NE.0) GO TO 3

Page 38

Genstat Newsletter No. 15

5 NEXT1 = NEXT

NOBLOC = NOACBL+1

GO TO 6

4 NEXT = IACTIV-1

IF(D0THER(IACTIV-1).EQ.0) GO TO 5

NEXT = DOTHER(IACTIV-I)

3 NOBLOC = NOACBL + DOTHER(NEXT)

NEXT1 = NEXT+1

6 IF ((NUPDOW*DHAT(IACTIV)).GT.(NUPDOW*DHAT(NEXT))) SATIS=-1
RETURN

END

C

C

C

SUBROUTINE JOINWT (DHAT,WHAT,DOTHER,I,J.11.J1.NOBLOC.M)
INTEGER *2 DOTHER(5000)

REAL DHAT(5000).WHAT(5000)

II = MIN0 (I.J)

lEND = II+NOBLOC-1

DHAT(II+1) = DHAT(J1)+DHAT(I1)
WHAT(II) = WHAT(I)+WHAT(J)

OOTHER(II) = NOBLOC

DHAT(II) = DHAT(II+1)/WHAT(II)
DOTHER(IENO) = II

I = II

J=II

RETURN

END

C

C

C

SUBROUTINE FITWT(M.DHAT.WT,WHAT.DOTHER)

REAL DHAT(5000).WT(5000).WHAT(5000)

INTEGER *2 OOTHER(5000).SATIS

00 1 J=1.M

WHAT(J)=WT(J)

DHAT(J) = DHAT(J) ♦ WHAT(J)
1 DOTHER(J) = 0

lACTIV = 1

4 NUPD0W=1

5 CALL SATSFY(DHAT.OOTHER.M.NUPDOW.IACTIV.SATIS.NEXT.NEXT1.
♦ IACTV1.NOBLOC)
IF (SATIS.EQ.-1) GO TO 2

NUPDOW = -NUPDOW

CALL SATSFY(DHAT.DOTHER.M.NUPDOW.lACTIV.SATIS.NEXT.NEXT1.
♦ IACTV1.NOBLOC)
IF(SATIS.EQ.-I) GO TO 2

IF(DOTHER(IACTIV).NE.0) lACTIV = IACTIV+D0THER(IACTIV)-1
lACTIV = IACTIV+1

Page 39

Genstat Newsletter No. 15

IF(IACTIV.NE.M+1) GO TO 4

J = 1

3 J = J+1

IF (J.EQ.M+2) RETURN

IF (DOTHER(J-1).EQ.0) GO TQ 3

K = J+D0THER(J-1)-2

DO 6 KJ=J.K

6 OHAT(KJ) = 0HAT(J-1)

J=K+1

GO TO 3

2 CALLJOINWT(OHAT.WHAT,DOTHER,NEXT,IACTIV,NEXT1,IACTV1,N0BL0C.M)

NUPDOW = -NUPDOW

GO TO 5

END

Test Run

GENSTAT V RELEASE 4.04B

MODIFIED BY LES UNDERHILL, MARCH 1985

COPYRIGHT 1984 LAWES AGRICULTURAL TRUST (ROTHAMSTED EXPERIMENTAL STATION)

1 'refe' nonmetrlc

2 'varl' d$5=1.3.2,5,10

3 :W$5=5(1.)
4 :dhat$5

5 'calc' dhat=d

6 ''find the nonmetrlc regression of the ordered set d with weights w=1

7 ''note that, apart from the 3 and the 2, d is in ascending order''

8 'own' 1,dhat.w

9 'print/p' d,w,dhat $ 10.4

10 'run'

d w dhat

1.0000 1.0000 1.0000

3.0000 1.0000 2.5000

2.0000 1.0000 2.5000

5.0000 1.0000 5.0000

10.0000 1.0000 10.0000

11 'vari' x$10=10,9,8,7,6,5,4,3,2,1

12 : wt$10=10(1.)
13 : xhat $ 10

14 'calc' xhat=x

15 "'find the nonmetric regression of the ordered set x with weights w=1

16 "'note that the vector x is in descending order, so that the nonmetric

17 regression xhat is the average of the x's'*

18 'own' 1,xhat,wt

19 'print/p' x,wt,xhat$ 10.4

20 'run'

Page 40

Genstat Newsletter No. 15

X wt Xhat

10.0000 1.0000 5.5000

9.0000 1.0000 5.5000

8.0000 1.0000 5.5000

7.0000 1.0000 5.5000

6.0000 1.0000 5.5000

5.0000 1.0000 5.5000

4.0000 1.0000 5.5000

3.0000 1.0000 5.5000

2.0000 1.0000 5.5000

1.0000 1.0000 5.5000

21 'valu' x=5.4.3,2.1,10.9.8.7,6

22 'calc' xhat=x

23 'valu' wt=5(.75).1.5..5,3(1.)
24 ''weights are now not all equal to one"

25 'own' 1,xhat,wt

26 'print/p' x,wt,xhat $ 10.4
•27 ''the own directive should now fail - the variates xhat and wt are of

28 different lengths''

29 'own' 1,x,w

30 'run'

X wt Xhat

5.0000 0.7500 3.0000

4.0000 0.7500 3.0000

3.0000 0.7500 3.0000

2.0000 0.7500- 3.0000

1.0000 0.7500 3.0000

10.0000 •■ 1.5000 8.1000

9.0000 0.5000 8.1000

8.0000 1.0000 8.1000

7.0000 1.0000 8.1000

6.0000 1.0000 8.1000

♦♦♦♦♦*♦* fault in statement 1 ON LINE 29, CODE VA 13

Invalid or incompatible numbers of values

♦♦ TRACE OWN

««*** DUMP *****

*** RECENTLY REFERENCED STRUCTURES

IDENTIFIER TYPE LENGTH VALUES MISSING REF.ND. BANK
X VARIATE 10 PRESENT 0 -5 1
w VARIATE 5 PRESENT 0 -3 2

Page 41

Genstat Newsletter No. 15

*** USE OF STORE (DATA UNITS)

TOTAL STORAGE 32768

STRUCTURE DIRECTORY 675

DATA STRUCTURES 149

STATEMENTS 44

USED WORKSPACE 0

FREE WORKSPACE 31900

STRUCTURES

NAMED UNNAMED

NO. USED 7 4

MAXIMUM 100 50

31 'Close'

******** END OF nonmetrl. MAXIMUM OF 892 DATA UNITS USED AT LINE 26 (31876 LEFT)

References

[1] Greenacre, M.J. and Underbill, L.G.
Scaling a data matrix in a low-dimensional Euclidean space.
In 'Topics in Applied Multivariate Analysis' (H2iV/ldnSjD.M.ed)y 183-268,1982.

[2] Kruskal, J.B.
Multidimensional scaling by optimizing goodness-of-fit to a non-metric hypothesis.
Psychometrika 29y 1-27 & 115-129,1964.

Page 42

Genstat Newsletter No. 15

Some Uses of the 'OWN' Directive: Interfaces between Genstat and

other Packages and Interruption of Genstat Sessions

A. Bouvier

INRA, Laboratoire de Biometrie

Institut National de la Recherche Agronomique
Domainede Vilvert

78350 Jouy-en-Josas
France

Abstract

The Genstat OWN directive is intended for testing or implementing local facilities at a site. In
Genstat as distributed, an OWN statement has no effect, because the Fortran subroutine which is
invoked by the statement merely returns without doing anything. Any user with access to the
Fortran source code of Genstat can replace this null subroutine with one designed for his own
needs (as described in the preceding article by Lane and Digby). We show here how we used the
OWN directive:

(1) to transfer data structures between Genstat and another package;

(2) to interrupt a Genstat session, allowing commands to be given to the local operating system
before resuming the session.

Transferring Data Structures between Genstat and another Package

The Interfaced Package

An interface between Genstat and the data base management system Socrate has already been
programmed on an IRIS-80 computer, system SIRIS8 (Bouvier, 1984). Another interfece is
now available on a DPS8 computer, running Multics, between Genstat and the interactive
data manipulation and analysis system ^Consistent System' (or CS) which includes a
relational data base management sub-system called Janus. (CS is produced commercially by
RCI, Cambridge, Massachusetts, USA.)

The Syntax of the OWN Directive

The OWN directive manages the transfer of data structures. We have added options to the OWN
directive by modifying the arrays in the Genstat code which are used by the compiler. Option
OUTPUT indicates the direction of the transfer; the setting OUTPUT=Y means that a data structure
is to be transferred from Genstat to CS. The default setting of the option OUTPUT (OUTPUT=N)
means that the transfer is directed from CS to Genstat. When the option 01 AG=Y is set, if CS
structures already exist with the same name as those to be created, a diagnostic is printed and
no transfer takes place. If the option PRINT=Yis set, the transferred values are printed. The
option COMP=Y(COMP standing for 'complete') means that CS labels must also be transferred
(every CS structure can have labels, i.e. alphanumeric names which identify the dimensions or
the elements).

The arguments of the OWN directive are the identifiers of the structures to be transferred; the
structures created have the same names, or derived names when several structures are created
to store all the information originally contained in a single structure.

Matching Data Types

The types of data structures in CS and Genstat are not the same and equivalences had to be
found. For example, to transfer CS labels, a Genstat NAME structure is created in addition to the
structure which stores the numerical values.

Page 43

Genstat Newsletter No. 15

CS structures of more than two dimensions are not transferred into multi-way tables because
the structures have a precise meaning in Genstat which does not always correspond to the
user's intention. They are transferred into VARIATE structures, which are more flexible, and
FACTOR structures are generated to store the dimensional indices.

In the other direction, Genstat structures may be labelled by other structures; these are not
transferred into CS structures but their values are used to form CS labels.

Error Messages

Sixteen new diagnostic messages have been introduced with codes beginning with the two
letters 'CS'.

For example, CS 5 means 'the data structure to be transferred cannot be found'.

Programming Details

We wrote the OWN subroutine (which manages the OWN directive) in the language PL/1, because
it is the basic language of Multics and CS. This subroutine calls the Genstat Fortran
subroutines which access and create Genstat data structures and print diagnostic messages
(FINDIN. GETATT, DIAGUP) and it calls CS PL/1 subroutines to access and create CS data
structures.

Some values in Genstat arrays were also modified, to introduce the options and the new error
codes.

Example: transferring a vector and a scalar from CS to Genstat.

ec CS

R

print struct

Ident

n 12 13 14

1 2 3 4

print iscal

999

exmul genstat

HEADING' gen="struct'

HEADING' g="iscal"

OWN/COMP=Y' gen.g

Open the CS session

'R' is the CS ready-message

Print the vector to be transferred:

an integer vector, with a dimension

label, 'ident', and element labels

'/I', '/2', '/3', '14'.

Print the second CS structure

an integer scalar.

Open the Genstat session:

'exmul' allows the execution of a

Multics command from CS.

Genstat program.

Declaration of the HEADING

structures which contain the names

of the structure to be

transferred.

The 'OWN' directive asks for the

transfer of the CS files into Genstat

structures. The option COMP means

Page 44

Genstat Newsletter No. 15

** that the labels must be transferred.

♦♦ The system prints the name, type and size of the created Genstat
structures.

♦♦♦ CREATION D'UNE STRUCTURE NAME

DE NOM struct DE 4 ELEMENTS

♦»» CREATION D'UNE STRUCTURE INTE
DE NOM struct DE 4 ELEMENTS

CREATION D'UNE STRUCTURE SCAL
DE NOM iscal DE 1 ELEMENT

Interrupting a Genstat Session

Why Interrupt a Genstat Session?

' 'idenf' contains the element
labels. The name of this
structure is the dimension
label.

The CS file named ' 'struct* ' has
been transferred into an
identically named Genstat
structure.

The scalar ' 'iscal' ' has also
been transferred into an
identically named Genstat
structure.

The other use we have made of the OWN directive is to interrupt a Genstat session temporarily.
This has been done for two reasons:

(1) in the Genstat-CS interface system, interruptions are necessary when consulting CS
structures;

(2) interruptions are necessary for adding new input, output or user files; the correspondence
between the names of those files and the numbers used in the Genstat Fortran subroutines
(and therefore the numbers indicated in the INPUT, OUTPUT or FILE directives) must be
made outside the Genstat session.

The Syntax of the OWN Directive
To interrupt the session, the OWN directive is used without any arguments; so no ambiguity
exists between this and the previous use of OWN (for Genstat-CS data structure transfers).
Programming Details
Genstat has been implemented in such a way that all data structures and working areas are
kept. In the Multics system, the correspondence between the file numbers and the associated
Fortran numbers is set up in an introductory PL/1 program written by D Clark of the
University of Bath and heavily altered by A Blackman of Bristol University.
We modified this program so that new file names can be introduced after an interruption, with
execution restarting where it was left.

Page 45

Genstat Newsletter No. 15

Example: interrupting a Genstat session

** GENSTAT PROGRAM

•OWN'

•RUN'

r 16:44 0.212 1

genstat -ln2 data

'HEADING' h="suite

'OWN' asks to interrupt the session.

This interruption is taken into

account at the first 'RUN' that

follows the 'OWN' statement.

We are back at the Multics level:

this is the Multics ready-message.

Re-open the Genstat session with a new

option, ''-in2'' which introduces the name of
a file to be read: (data in this file will
be read by a 'READ' statement in the
Genstat program).

** Subsequent Genstat program.

Conclusion

We created this interface between CS and Genstat for local needs. CS is our basic package: it is very
interactive, easy to learn, and very convenient for formatting data, making simple statistical
analysis and piloting other packages. Genstat is used as a second level package: it is more powerful
in elaborate statistical analysis.

The possibility of the local implementor 'opening' Genstat to other software is certainly an
important improvement in the package's facilities.

Reference

[1] Bouvier, A.
Interfacing Genstat and a database management system.
Genstat Newsletter^ 13,6-8,1984.

Page 46

Efficient Performance of Genstat on a VAX

Genstat Newsletter No. 15

J. Sherington
D. Gilson

Statistics Department
The Agricultural Institute
19 Sandymount Avenue
Dublin 4

Eire

Introduction

^ VAX computer running under VMS is a virtual memory machine. Memory is divided into pages
each 512 bytes in size. When an image is activated, the system allocates a section of memory known
as a working set. There are three parameters which determine set size for each process,
WSDEFAULT, WSQUOTA and WSEXTENT.

The system initially gives the process WSDEFAULT pages; if more pages are required, the system will
allow the process to grow up to WSQUOTA. If at this stage the process requires more memory, the
system will give a loan of some more pages up to WSEXTENT. The memory in this loan region (pages
between WSQUOTAand WSEXTENT) can be taken back at any time when the system requires it to give to
some other process. Whenever reference is made to a page which is not in the working set, it is known
as a page fault. We noticed when running Genstat that a large number of page faults occurred,
which had a detrimental effect on the overall performance of the system. We therefore conducted a
small experiment to determine the effect of altering the working set size.

The Experiment

The computer was a VAX 11 /750 with two megabytes of memory, used for a mixture of statistical
and administrative work. Four different Genstat (version 4.04A) programs were run with the
working set size (both WSQUOTA and WSEXTENT) given the values 200, 300 ,..., 1000 (and no loan
region). They were run overnight when no other work was being done on the computer.
The Genstat programs were chosen to give a range of CPU time (approximately 1 to 10 minutes), a
range of quantity of data and a variety of common statistical procedures (analysis of variance,
tabulation, regression and correlation).

Brief descriptions of the programs follow. The numbers given are generally only approximate.
A. - One minute CPU time.

- 120 variates were read, and 7 more were calculated using VSUM. There were 100
observations.

- A three-factor analysis of variance was carried out on seven variates.

B. - Five minutes CPU time.

- 30 variates were read for 500 observations.

- For each variate, two tables of means were produced (TABULATE directive) and a
completely randomised analysis of variance was performed.

C. - Five minutes CPU time.

- The data space option S=2 was used to double the space available. 250 variates were read
and 350 variates were calculated. There were 28 observations.

- 30 8X8 correlation matrices were calculated and a two-factor analysis of variance was
carried out on all 600 variates.

D. - Ten minutes CPU time.

- 2 variates and 3 factors were read for 700 observations.

Page 47

Genstat Newsletter No. 15

- An unbalanced analysis of variance using the FIT, ADD and PREDICT/S directives was
performed for both variates.

The CPU time and number of page faults were recorded for each run.

Results

The increase in working set size had a dramatic effect on the number of page faults, as can be seen in
Figure 1. For job A, there appeared to be little benefit in increasing above 300 pages, while for job D,
400 pages seemed to be the optimum. For both jobs B and C the number of page faults kept reducing
up to working set sizes of about 600-700 pages, but there was no further reduction at greater sizes.
These were the two jobs with the largest amounts of data.

u.

&

35-

30-

25-

20-

15

10-

200 400 600 800

Working Set Size (Pages)

1000

Page 48

Graph of Page Faults against Working Set Size
for Four Genstat Programs

Figure 1

Genstat Newsletter No. 15

The reduction in CPU time was less dramatic, but nevertheless worthwhile, for jobs A, B and C
which had reductions of at least 12%.

The following table gives the number of page faults and CPU time for the default working set size of
200 pages and for an 'optimum' working set size of700 pages.

Page Faults CPU Time

seconds

Working set 200 700 200 700 Reduction

Job A 17700 1300* 85 73 ♦ 14%
JobB 36800 1600 316 268 15%

JobC 58100 1500 327 288 12%

JobD 11200 1200 603 597 1%

(♦ Working Set size =600 rather than 700)

Conclusion

Although this experiment is obviously limited in scope, the range of programs used in this
experiment covers a large proportion of the type of work we do on Genstat.

The standard working set size (WSQUOTA) of 200 pages in the VAX/VMS operating system would
appear to be too small for most uses of Genstat. Also, jobs with large amounts of data would seem to
benefit more than those with small amounts in terms of page faults. A working set size of700 pages
should be sufficient for all users except those regularly processing very large data sets, who may
benefit from an even larger working set. It is not desirable to give all users very large working set
quotas, as this would limit the number of processes in memory, thus downgrading the system.

As a result of this experiment we increased the working set sizes of all Genstat users in the
Agricultural Institute. The working set quota (WSQUOTA) was increased to 700 pages and the
working set extent (WSEXTENT) to 1024 (0.5 MB). This had a noticeable effect in increasing the
overall efficiency of the system in terms of process through-put. The individual users also benefit by
using less CPU time and system resources to complete the same amount of work. These
modifications should help the performance of all similar VAX/VMS installations.

Page 49

' A'

.rl

