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Editorial

This issue contains more articles from the Fifth Genstat Conference. There may be further articles
from the Conference still to come, but we hope to see new material as well: perhaps you have an
item that would be of interest to other Genstat users? You do not have to write a long article in
the style of the Conference-based articles in order to contribute. The editors are just as keen to see
short pieces about any aspect of Genstat: particular applications, practical details of individual
commands, comparisons of Genstat with other systems or between versions of Genstat. Following
the redesign of the command language, we do not expect that there will be many articles about
the special tricks needed to get Genstat to do some operations, as appeared in early issues of the
Newsletter. Nevertheless, there are bound to be useful combinations of options, parameters or
statements that are worth bringing to the attention of other users, particularly in the context of
writing procedures.

The issue concludes with a complete index of all Genstat Newsletter articles from Issue No. 1
onward, with articles classified by author and subject All macros and procedures which have
been described in articles are also listed. It is hoped that this wiQ provide a useful reference guide
and it will be updated periodically for future issues of the Newsletter. We would like to thank Sue
Welham for bringing this material together.

Implementations of Genstat 5 are steadily being released; the systems on which Genstat 5 is now
available are VAX VMS, Prime and IBM compatible PC's, with a number of other
implementations close to release. Demand for the IBM compatible PC version, perhaps not
surprisingly, is already proving to be considerable, even with little opportunity for promotion, as

^  yet. The system requirements are 640 Kb memory (of which Genstat uses about 582 Kb), a
mathematical coprocessor, a hard disk with about 4 Mb of free space and PC-DOS or MS-DOS
3.1 or higher. Regrettably, it is impractical to provide the Fortran extension facilities in the PC
version and the high resolution graphics facility has also been omitted at this stage, although this
will be incorporated as soon as possible.

hi addition to the implementation becoming available, a much extended Genstat Procedure
m  Library has been formed. The new version of the Library has 51 procedures, covering many of

the ares in the Genstat 4 Macro Library.

hi order to improve the Genstat service for users, one-day conferences and courses have been
introduced. The first of the one-day conferences was on 28th April 1988 at Rothamsted. The
subject was 'Extending Genstat in Fortran' and it was very well attended. The next will be on 6th
October 1988, again at Rothamsted, and the topic will be 'The Analysis of Repeated Measures in

i«i Genstat'. Further information can be obtained from Roger Payne at Rothamsted or Keith TMnder
at NAG. Any suggestions of topics for future meetings are welcomed. Note that the next fiill
Genstat Conference will be in Edinburgh, from llth-15th September 1989. Also, two types of
training course are being run; a three day 'Introduction to Genstat 5' course and a two day
Conversion from Genstat 4 to Genstat 5' course. Each of these have been run once and the next
wiU be an introductory course which it is intended wiU be held in December 1988 at Birmingham

^  (U.K.); further details will be sent to sites when available. Tailored on-site courses can also be
arranged, both in the United Kingdom and elsewhere; please contact NAG for more information.
Finahy, Oxford University Press report that the Genstat 5 Reference Manual has sold out ifs firxt
printing and has been reprinted (with corrections) in paperback, price £22.50, as well as in
hardback. 'Genstat 5: an Introduction' is also available, and 'Genstat 5: a Second Course' is in
the last stages of production.
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The Use of Genstat in Estimating the Expected Numbers of Cases of AIDS
Adjusted for Reporting Delays
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This pap^ is the result of a collaboration between The National Institute of Public Health and
Environmental Protection, the WHO Collaborating Centre on AIDS and the University of H
Nijmegen. It was made possible by a grant from the European Economic Community.

1. Introduction

This paper is mainly concerned with the use of Genstat in the estimation of numbers of AIDS
cases, but first we have to clarify the ideas of the estimation procedure we propose. The problem
with data from the AIDS epidemic, and probably with all data concerning new epidemics which ^
are of public interest, is that they are rarely up-to-date. However, decision makers want to have
the data as soon as they are available. They need the data for three things: to describe the past, to
describe the present status of the epidemic, and even worse, to predict the future.

One of the main problems is the fact that there is a delay between the date of reporting and the
date of diagnosis of the AIDS cases. This is usually the case with epidemiological data, but as
decision makers want to act on the most recent data, it is in this case worthwhile to try to ^
overcome this problem. Data received from various sources in twelve European countries
sometimes show delays of two or three years. In a study by Brookmeyer et al. [3] this problem
was solved by deletion of the last reported cases. Downs et al. [5,6] and Morgan and Curran [14]
adjusted the incidence for reporting delays, though without stating an explicit statistical model.
As we reported earlier [9], it is possible to formulate an explicit model which is flexible enough
to make use of existing epidemiological models. w

Our first aim is to give - as accurately as possible - a description of the past and present numbers
of cases, and secondly to provide short-term predictions by means of extrapolation of a past trend.
Description of the epidemic is also needed for the development and evaluation of
mathematical-epidemiological models, which is done in collaboration with the University of
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Nijmegen. It is clear that long-term prediction can only be achieved by means of sound
epidemiological models. However, as long as there are many uncertainties about the underlying
mechanism of the epidemic and the parameters involved, short-term predictions by means of
extrapolation of fitted curves are necessary, but should be treated with caution.

2. The Data

hi what follows we explain how we make use of the reported cases, classified according to both
period of diagnosis and period of first reporting, in order to estimate the essentially unobserved
numbers of AIDS cases, the so-called 'adjusted numbers'. Once this is done, one could proceed
by fitting some curve to those adjusted cases, ignoring the statistical dependency. However,
making use of the optimize directive in Genstat 4.04, we directly estimated the appropriate
trend parameters from our original model, and in doing so, we circumvented the need to estimate
the adjusted numbers of cases. We fitted the exponential model and found that it still fits very
well. The data seem to indicate that the three-parameter logistic model is, although theoretically
better, as yet somewhat premature.

Tables 1(a)—1(c) display data for The Netherlands, the United Kingdom and Italy respectively.
Each row represents the reporting period of six months, and each column the period of diagnosis.
The figures represent the numbers of cases being reported for the first time for a certain period of
diagnosis, with the exception of the first row of each table. Reporting to the WHO collaborating
centre started in the first six months of 1984 and the exact reporting period of data before this
time was unknown (in Paris). This was another problem to solve.

Diagnosis Period

1 2 3 4 5 6 7 8 9 10 11

5 1 2 6 7 5

6 0 0 0 1 1 19

7 0 0 0 1 0 4 19

Reporting 8 0 0 0 0 0 0 6 26

Period 9 0 0 0 0 0 1 3 4 39

10 0 0 0 0 0 0 0 0 11 62

11 0 0 0 0 1 0 0 1 0 13 75

Total 1 2 6 9 7 24 28 31 50 75 75

Table 1(a)

Cases in The Netherlands, reported by June 30 1987
tmt)
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Diagnosis Period

1 2 3 4 5 6 7 8 9 10 11

9 3 2 8 8 18 29 31 43 20

Reporting 10 0 0 1 1 3 0 2 19 39 32

Period 11 0 0 0 1 2 0 3 2 17 23 37

Total 3 2 9 10 23 29 36 64 76 55 37

Table 1(b)

Cases in The United Kingdom, reported from June 1985 until June 1986

Diagnosis Period

1 2 3 4 5 6 7 8 9 10 11

5 0 0 2 2 3

6 0 0 0 0 1 6

7 1 0 0 0 0 5 32

Reporting 8 0 0 0 0 2 1 29 56

Period 9 0 0 0 0 2 1 6 41 110

10 0 0 0 0 0 2 4 0 48 169

11 0 0 0 0 0 0 3 3 14 54 273

Total 1 0 2 2 8 15 74 97 172 223 273

Table 1(c)

Cases in Italy, reported from June 1984 until June 1987

3. Basic Mode!

In this section we describe the estimators for the expected numbers of AIDS cases from reported
incidence without assumptions about a trend in time. The problem addressed here is related to
estimation of the number of missing values in a multinomial distribution [2] or estimating the
number of unseen species [8]. The difference is that we have such a missing-value problem for
each period of diagnosis. Rather than looking at the total reported incidences, thus disregarding
the cases not yet reported, we find it more useful to look at the patterns of how cases are reported
in the past. The easiest way is to think about the reporting delay as constant over time, e.g. 75%
of the 'real' cases are reported without any delay, 20% are reported with a delay of six months,
and so on. This is in fact what we assumed, and something more as will be explained below.

We consider an observation as the number of cases first reported at period i for the period of
diagnosis j. We assume that for each period of diagnosis the total numbers of AIDS cases,
denoted by Af j, are fixed, but not observable. We will refer to them throughout the
paper as the expected incidence of AIDS, as opposed to the reported incidence of AIDS, which
we denote as ri j, for each period of diagnosis y, up to the given reporting time t. Our basic
assumptions will be that in principle all the cases could be known, i.e. we define our sources as
the ultimate, although incomplete, truth. We also assume that all reported cases are correcfiy
diagnosed, i.e. a false diagnosis or a recording error with respect to time period is supposed to be
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m

non-existent. Furthennore we assume that reporting proportions are the same, given a similar
delay between date of report and date of diagnosis. However, this assumption is not really
essential for the model, although it would slightly complicate the manner of estimation. One
could argue, for example, that directives from decision makers could change the delay time
between diagnosis and reporting negatively or positively, depending on the effect of the
measures. In principle it is not impossible to adapt the estimation procedure for such changes. As
for the probabilistic assumptions, we assume /i,y ~ Poisson(0,y) and independent. According to
our basic assumptions, which will be modihed later on, the parameters d^j have the following
relations to each othen

= ̂ijPk with k = i -j, j ̂i<ty \ <j ̂ r. i>tQ Pjk > 0
We also assumed that after a fixed period of time, r, no new cases would be reported. So:

E p* = 1
iM)

fixed T

(1)

(2)

Note that at the start of the reporting, t^^ only the reported incidences are available for each
period of diagnosis. We therefore assumed that the delay proportions remained unchanged in the
period before rg* and moreover were the same as after t^. According to the original assumptions
the incidence at tQ, now independently Poisson distributed with parameters
given in (3).

B(mj) =Nj'Zpit,
k=0

I — l,2,...,rQ—1 (3)

In Table 2 the expected numbers of reported cases for an arbitrarily chosen range of time are
given, together with the expected numbers of AIDS cases, in which we are primarily interested.

F^riod of Diagnosis

83b 84a 84b 8Sa 85b 86a

84a Po^.7

84b P\^.l Po^.»

Reporting time 85a Pl^.6 Pi^ n Pl^A P0N9

85b P4W.6 Pz^.i Pl Â P\f^9 Po^.io
86a PiN^ Plf^A P 1^.10 Po^M

Expected incidence N.6 N.1 Na W.9 N.io N.n

Table 2

Expected numbers of first reported cases in the basic model
(Expected incidence is not observed)

Although it is not necessary for Genstat that the actual solutions of the maximum likelihood
equations are known, it would of course be much better to have them, and it could be of great
help to supply starting values to optimize. The solution of the equations seems somewhat
tiresome but is in fact very straightforward, if one changes the order in which the equations are
to be solved.

First compute the N, ...Nj_j expected cases (5), which are simply the reported ones. After that,
compute pj with (6), and Nj_f^i by noting that the sum in the denominator in (4) is simply one
minus pj-, and proceed with pj_i (6). Cycle through these steps and note that the denominator in
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(4) is just one minus the sum of the proportions Pj^ computed so far. Finally, compute pg ̂
minus the sum of the reporting proportions.

= 3— j = '-r+1 t (4)
2- p

I'o = max(/,Jo) while ntj s j i tafoTt - T> 0
t

Nj = I n,j J = 1 ... t-T (5) r
«0

t-k

Z n.
Pu =

Z  - Z i + I

H)

k = 0,1,^..r-l /g = max(l,rg-^+l) if it = 0 /g = rg

^min = min(rg-^rg-l) = max(rg+l,r+l)

4. Implementation of the Basic Model in Genstat 4

Although the basic model could easily be programmed with the linear regression directives, we
chose to use the optimize directive, mainly because we were thinking about computing a
nonlinear model for the expected number of AIDS cases as well. We discovered, by the way, that
direct optimization, with the lik=i option, does not woik with more than five parameters, in
spile of the use of the option method=gn.

The problem for Genstat is basically this: the model directive (still referring to Genstat 4.04)
only accepts relatively simple computations, and one is not allowed to use for loops, as would be
convenient with factor structures. However, the solution is rather simple. Suppose the
observations are in variate y of length n, n = (r(r+l)-rg(rg-l))/2. The expected numbers of
reported cases are supposed to be in a variate mu of length /i, which are calculated in the model
statement. The parameters to be estimated are scalar arrays: p{O...T), for the reporting
proportions, and n (i—t) for the expected numbers of cases.

We now define some dummy variates each of length n. Declare variates nn(i...t),
corresponding to the t columns of Table 2. Each individual element of variate nnCy), y = l...t
contains the value 1 at the appropriate position referring to column y, and the value 0 otherwise.
Possible lines of the model statement are then:

'MODEL' basic $ auxl(l...t) = nn(l...t)*N(l...t)
$ mul = VSUM(auxl(l. . .t) )

where auxi{i.. .t) and mul are also variates of length n. The last line compresses the t
variates, containing the value 0 or parameter values N(y), in one variate, with the value of N(y)
at the appropriate position, and for loops are not actually necessary.

A similar trick was carried out to transfer the values p(0.. .t). Define an array of variates
np( 0.. .T) of length n. Each element of the variate np(A:) now corresponds with an entry in
Table 2 parallel to the main diagonal (corresponding with np( 0)). So each element of np{Jk) is
1 or 0 depending on whether a value of the parameter is to be used or not. Note that for the
positions of the elements of np(^) coinciding with the first row of Table 1,1 also had to be put
in, in order to get the summation right for cases reported before June 1984. As only T-l
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parameters are free, we constrain T by 1 minus the sum of the remaining parameters. The
corresponding lines in the model statement are:

$ p{T) = 1.0-SUM(VSUM(p(0. . .T_l)) )
m  $ aux2(0...T) = np(0...T)*p(0...T)

$ mu2 = VSUM(aux2(0...T))
$ mu = mul * mu2

The last line calculates the expected numbers of reported cases which must be used in the actual
OPTIMIZE statement, as in

'0PTIMIZE/LIK=4,METH0D=GN' MODEL=basic;
PARAM=N(1...t),p(0...T_l); Y=y/ Z=mu

where t_i is short for t minus 1. Of course the last line could be, or rather should be, extended
with nameable lists for residuals, variance covariance matrix and so on, and the option list should
be extended with proper settings for printed output

Implementation in Genstat turns out to be rather straightforward, the only real trouble in fact
being with initialising the dummy variables to 1 and 0. This was done with nested for loops, and,
as the dummy variables of the inner loop depend on the outer loop variables, this could only be
achieved with the use of macros for the inner loops. Initialising the variables actually took most
of the computer time: at least that is our impression.

In the foregoing lines of the model statement, the values for p (o... t ) were not constrained to
lie between 0 and 1. Making use of the nameable lists in optimize for upper and lower bounds
for the parameters does not produce the wanted results: the program just terminates if the upper
or lower bounds are reached by accident. We therefore used the (anti-)logit transfomiation for
the parameters p(0—t), i.e. the actual parameters used in optimize were the logits of
p (0... T), with no constraints, and in the model statement a back-transformation was performed
in order to compute the expected values mu. For reasons of clarity those statements are not
included here. As starting values for optimize, we used the values computed according to the
explicit equations above, which were also computed with Genstat. The same comment with

^  regard to the use of loops for initialising applies for the computation of the starting values.

5. Model with Trend Parameters

Decision makers are interested in future developments, but it is not easy making predictions,
especially those concerning the future! If a function can be used to predict future trends, it is in
fact quite easy to plug this function into the maximum likelihood equations, i.e. to use Genstat to

^  compute the relevant parameters. Instead of using the estimated expected numbers of AIDS cases
to fit a curve, with all the complicated problems of correlation and unequal variance of the
estimators which should be accounted for, it is much more elegant to use direct estimators of the
parameters of the prediction function. Instead of the use of the t parameters Nj, we substitute the
function Nj = fiOytj), where 6 = result in a drastic reduction of the
numbers of parameters. In fact we used the e3q)onential model with parameters cc and jS, or

^  alternatively oc and y, the latter being the doubling time. Solutions for the total system of
equations are now no longer explicifly computable as they involve nonlinear equations. The
model used was/(r,a,/?) = OBexp(fit) or fityOyfi) = aexp((log(2)/7)0 if the doubling time is
the parameter of interest. We also tried to fit the logistic model, which gave no success at all, as
the epidemic is still in its first stages.

6. Implementation of the Nonlinear Model in Genstat

Considering the above lines of the model statement, the implementation of a nonlinear model in
Genstat is easy enough. For example, a model for the exponential curve can be made by inserting
a new line before the first line of the basic model:
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'MODEL' exponential $ N(l...t) = a * EXP{b * tiine(l...t))
$ auxl (1... t) = etc.

where time (i... t) is an array of scalars containing the time of report, and with a and b being
the estimates for a and The optimize statement is changed with regard to the model name
and parameter list accordingly. Starting values for a and b were computed by ordinary regression
of log{N( 1.. .t)) on time, and the estimates N(i...t) from the basic model. The
calculations in the model statement should protect against exponential overflow (error message:
invalid value of a function), by restricting the exponent to the largest number for the
Vax 750 (something like 80). These lines have been omitted here for reasons of simplicity.

r-7. Some Implementation Problems and Their Solutions

Although the implementation was rather straightforward, we encountered some problems in the
actual process of computing the estimates for the reporting proportions, using the Genstat
OPTIMIZE directive. Note that, if in some period of diagnosis no cases were reported — this
occurs especially at the start of the epidemic — N ̂ will be estimated as zero by the maximum
likelihood equations, the Poisson distribution being degenerate. For optimize this is a problem,
as the minimum of the deviance is then attained at the border of the parameter space, and at least ^
one error occurs as the variance covariance matrix is not semi-positive. The same holds if for
some 'delay' periods no cases are reported, i.e. if the sum of one or more of the observed
diagonals in Table 2 is 0, which happens for example in the case of extremely long delays. This
problem was overcome by using the set directive to provide a reference to those parameters for
each country that were not zero, subsequently used in the optimize and model statements. This,
in our opinion, again demonstrates the flexibility of Genstat, as for each country both data and the ^
program code concerning the set directive for these parameters were read from one file.

8. Results and Discussion

In the above section we used a reporting model based on the rather rigid assumption concerning
the time T after which no case could be reported. In actual data it seems that after some time a ^
rare event of the report of one patient takes place, which is not related to the model of the
reporting proportions. Insisting on that model will produce strange results, i.e. the expected
numbers of cases are much inflated for the last periods as compared with data without the 'one'
rare reported patient The model does not seem very robust against this kind of aberration. A
much more robust model is achieved if one allows for rare events after some delay time T-l say.
We introduced an extra parameter, A, which represents the proportion of cases to be reported after pn
time r-1 which is the same for each period of diagnosis. The effect is that the numbers of cases
to be reported after some time T-l are spread over the whole lower triangle of Table 2. It actually
means that in Genstat the values of 1 in dummy variable np(T) were replaced by weights
l/(r-y), and that of course also some values of 0 were replaced by those weights, in the
appropriate places where new observations were allowed to occur.

Tables 3(a) and 3(b) show the results of fitting the basic model and the exponential model to ^
data fiom The Netherlands.

Tables 4 and 5 show the results for the exponential model fitted to data from the United Kingdom ^
and Italy. The data for the United Kingdom were not updated for June 1986, as it seemed that
problems in the definition of AIDS resulted in a totally new set of data, i.e. Iq is actually June
1987 for the U.K., and the model was not applicable for this new set, as only the top row of
Table 2 was reported.
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Reporting proportions

P 0.76 0.17 0.03 0.03 0.01

m
se 0.057 0.034 0.014 0.023 0.013

Expected Incidences with confidence intervals calculated by log transformation

N 1.0 2.0 6.0 9.0 7.0 24.0 28.0 31.4 52.2 80.5 98.9

se 0.52 0.93 2.15 3.19 2.15 4.71 5.15 5.68 7.43 9.46 13.45

upper 2.78 4.98 12.13 18.05 12.79 35.26 40.17 44.78 68.97 101.33 129.13

lower 0.36 0.80 2.97 4.49 3.83 16.33 19.52 22.03 39.45 63.90 75.79

Expected reported incidences from the basic model

1 2 3 4 5 6 7 8 9 10 11

5 1.0 2.0 5.8 8.4 5.3

6 0.0 0.0 0.2 0.2 1.2 18.2

7 0.0 0.0 0.0 0.3 0.2 4.2 21.2

8 0.0 0.0 0.0 0.0 0.2 0.6 4.9 23.8

9 0.0 0.0 0.0 0.0 0.0 0.7 0.7 5.5 39.5

10 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.8 9.1 61.0

11 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.9 1.4 14.0 75.0

The deviance is 23.93 with 41 degrees of freedom and Pearson's Chi-square is 49.72

Table 3(a)

Results from Dutch data, fitting the basic model
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Parameters

p 0.75 0.18 0.03 0.03 0.01

se 0.02 0.01 0.01 0.01 0.01

a 2.566

se 0.396

doubling time (months) 11.093

se 0.551 F«s»

Expected reported incidences from the exponential model

1 2 3 4 5 6 7 8 9 10 11

5 2.5 3.7 5.2 7.4 8.6

6 0.0 0.0 0.2 0.2 2.1 12.6

7 0.0 0.0 0.0 0.2 0.3 3.0 18.3

8 0.0 0.0 0.0 0.0 0.3 0.4 4.4 26.6

9 0.0 0.0 0.0 0.0 0.0 0.5 0.6 6.4 38.7

10 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.9 9.2 56.3

11 0.0 0.0 0.0 0.0 0.0 0.1 0.3 1.0 1.4 13.5 81.9

The deviance is 33.22 with 50 degrees of freedom and Pearson's Chi-square is 47.29

Table 3(b)

Results from Dutch data, fitting the exponential model

Parameters

P 0.26 0.34 0.25 0.04 0.11

se 0.03 0.03 0.03 0.02 0.03

a 4.374

se 0.737

doubling time (months) 11.453

se 0.754

Expected reported incidences from the exponential model

1 2 3 4 5 6 7 8 9 10 11

9 4.2 6.1 8.6 12.3 17.3 23.8 32.7 32.9 20.4

10 0.0 0.1 0.2 0.4 0.7 1.5 1.6 14.1 26.9 29.3

11 0.0 0.1 0.2 0.4 0.7 1.5 4.4 2.3 20.3 38.7 42.1

The deviance is 41.63 with 24 degrees of freedom and Pearson's Chi-square is 43.21

Table 4

Results from United Kingdom data, fitting the exponential model
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Parameters

p 0.54 0.27 0.06 0.05 0.07

se 0.00 0.04 0.02 0.01 0.02

a 1.347

se 0.253

doubling time (months) 6.936

se 0.260

Expected reported incidences from the exponential model

1 2 3 4 5 6 7 8 9 10 11

5 1.3 2.3 3.9 6.6 8.1

6 0.0 0.0 0.2 0.5 4.0 14.7

7 0.0 0.0 0.0 0.4 0.9 7.4 26.7

8 0.0 0.0 0.0 0.2 0.8 1.6 13.4 48.7

9 0.0 0.0 0.0 0.2 0.4 1.4 2.9 24.4 88.7

10 0.0 0.0 0.0 0.2 0.4 1.0 2.5 5.3 44.5 161.5

11 0.0 0.0 0.0 0.2 0.4 1.0 3.7 4.5 9.6 81.1 294.3

The deviance is 108.46 with 50 degrees of freedom and Pearson's Qii-square is 162.39

Table 5

Results from Italian data, fitting the exponential model

We present here the results of the computations of the model with one extra parameter. Note that
the degrees of freedom for the deviance now equal exactly the numbers of observations minus the
numbers of parameters. This is not the case for the model where no observations are allowed after
some delay time T; the numbers of cells of Table 2 that are 'structural zeros' must then be
subtracted from the degrees of freedom. This must be done by 'hand': the optimize directive
naturally does not recognise this. The approximate confidence limits for the expectation of the
number of cases are constructed with the delta-method; however, as we think it more appropriate
to assume Normality on the log-scale, we constructed the limits on that scale, and transformed
back. This prevented awkward things such as negative limits, and produced of course skew
intervals. The limits are given for the expectations only, and not for new observations, which we
think is less appropriate since what we observe are reported incidences. It is possible to construct
approximate confidence limits for future reported incidence, which we hope to do in the near
future. The exponential models are displayed in Figures 1(a) to (c).

One could argue that the model, complicated as it is, is still over-simplifying the real-world
problem by considering the reporting as some independent Poisson process, and disregarding
dependencies between the expected incidences. The model could be made somewhat more
realistic, and still manageable, by assuming e.g. a gamma distribution for NThis is not entirely
without foundation, as one could, for example, regard the expected incidence as a result from
some mechanistic stochastic process, described by a stochastic logistic equation ([10]). It can be
proved that the stationary distribution is a gamma distribution.
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Figure 1(a)

Dutch data new cases reported by 30 June 1987
Exponential mode a 2.57 1 11.09 last 11 data
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United Kingdom new cases from 1985a onwards u
Exponential mode a 4.36 1 11.45 last 11 data
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Italy new cases from 1984a onwards until 1987a
Exponential mode a 1.35 t 6.94 last 11 data
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9. Conclusions

We think that 'adjusted incidence* is useful for describing an epidemic where a considerable
delay occurs between reporting and diagnosis. For short-term predictions a model, provided that
it exists, can be fitted directly to the data, without making use of the adjusted cases.

Genstat is an extremely efficient and flexible tool for fitting such a baroque model as we propose
here. The effort in programming such a model in Genstat is much less than in achieving the same
result in, for example, Fortran, which as a matter of fact we did recently on a Personal Computer
(just before we received Genstat 4.03E). This applies to the output and to the ease of changing
the model as well. In fact, one can easily imagine that such a model would not be constructed if
a language such as Genstat did not exist. Our plans for the future are: addressing the problem of
confidence limits more thoroughly, refining the procedure by allowing for over-reporting,
splitting the data in order to study sub-groups, and eventually replacing the function used for
short-term prediction by mechanistic models for long-term prediction. The latter seems rather
difficult in Genstat 4.04; but Genstat 5, with the new pass directive, might be more suitable for
that.
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A Procedure for Robust Pairwise Comparisons Between Means

D Brown

R W Marrs

D E Walters

Statistics and Computing Group
AFRC Institute of Animal Physiology
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Cambridge
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1. Introduction

In some animal experimentation within the area of basic science rather than applied research or
development, simple expeiimental designs in which the unit is an individual animal occur
frequently. Even though the set of treatments applied, one to each of these animals, might have a
factorial structure, many biologically significant questions hinge on pairwise comparisons of the
treatments, and sometimes on contrasts between Ae mean response of these treatments.

A typical example concerns the amount of hormone secreted by the pituitary gland of
experimental rats under electrical stimulation. The gland is surgically removed firom the animal
and impaled on a stimulating electrode, and the ratio of amount of hormone released during a
control stimulation and the amount when the gland is kept in a medium containing the substances
of interest is the response variable. The treatments are application of Yohimbine (Y) and of
Propanolol (P) in a 2x2 factorial arrangement: 0, Y, P, YP. The questions asked were:

(1) whether there is a non-specific effect of Y, i.e. an effect of Y in the absence of P;

(2) whether there is an effect of Y in the presence of P; and

(3) whether Y and P interact.

The data from this experiment, itself one of a much longer series, are given in Table 1.

Control Y P YP

0.8 0.9 0.9 0.9

1.0 1.1 1.1 1.1 1.1

1.3 1.3 1.2 1.3 1.3 1.3 1.2 1.2 1.3 1.3

1.5 1.4 1.4

1.7 1.7 1.7

1.9 1.8

2.1 2.0

2.3

2.6

3.7

4.2

Table 1

Data for an example from neurophysiology.
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Though these experiments are planned as balanced experiments in which the replication of each
treatment is equal, circumstances often make this extremely difficult to achieve. For example, for
some treatment combinations it might be very difficult to ensure that the gland responds to
stimulation at all. Necessarily the replication of the experiments is kept to a minimal level both
because of ethical considerations, and of cost Common features of the responses are
non-Normality and inequality of variance which cannot be removed by a simple transfomiation.
Thus there are four aspects which together render almost valueless the usual parametric pairwise
comparison tests and estimation procedures: unequal and low replication, non-Normality and
inequality of variance.

2. Requirements for a Genstat 5 Procedure

The advent of Genstat 5 provided us with the opportunity to write a procedure for analysing data
such as these quickly and conveniently. Our requirements were that the procedure should be as
easy to use as a oneway ANOVA directive, and it should provide a reasonably complete analysis
in a compact printed and graphical fonn. The writing of reports and presentation of results for
awkward experimental results such as these can be very time-consuming; equally difficult
sometimes is the job of the scientist (or the statistician returning to the woric months, or even
years, later) in appreciating and comparing the various approaches. A standardised and compact
presentation would be a great help.

3. Analysis Performed

The procedure eventually written incorporated the following analyses:

(1) for each pair of treatments, the following significance test results:

(a) the usual t-test using the pooled variance fiom the anova;

(b) the approximate version of the Welch test, [5], using only the variances of the pair of
treatments in question, which is highly robust to inequality of variance; Best and
Rayner [1] concluded that this simple test is approximately equal in power to a range of
tests for the Behrens-Fisher problem;

(c) an observation randomisation test using the difference of the treatment means as the
test statistic (an exact version [2]), and one involving sampling the randomisation
distribution [4]); and

(d) a rank randomisation test, or Mann-Whitney U-test, which uses the difference of the
medians as the test statistic;

(2) for each pair of treatments, the difference between the means, its standard error using the
Welch approach, and its effective degrees of freedom;

(3) for each treatment, an individual mean and median and 95% confidence intervals on both,
standard deviation and standard error, and inter-quartile range;

(4) for each specified contrast between treatment means a robust test and interval estimate; this
was achieved - providing only a partial solution to the robustness problem - using the
modification of the Welch analysis by Satterthwaite [3] in which the estimated variance of
the contrast is assumed to be distributed as a scaled chi-squared variable.

4. A Graphical Representation of the Results

A further need was a graphical representation of as much of this information as possible. The
printed and graphical output is given for the above example in Table 2 and Figure 1(a)
respectively. The annotated printed output is self-explanatory, but the graph might require some
justification and explanation. The axes of the box at the lower and lefthand edges give the scale
of measurement; these are not repeated elsewhere to prevent the graphs becoming cluttered. At
the top of the figure is a schematic plot of the standard deviation of each treatment, the length of
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each arm being proportional to the standard deviation within that treatment. Below this are
plotted the treatment means with attached lines representing 95% confidence intervals on the
means. Immediately above the box two character treatment labels - the labels given to the levels
of the treatment factor - are given, together with the treatment replication. The left hand edge of
these labels is positioned at the treatment mean except where two means are so close together that
their labels would overlap. If necessary, these labels are automatically spread out by the
procedure, in order of increasing mean, just sufficiently to prevent overlap. This is repeated at the
right of the figure for the medians, 95% confidence intervals on the medians, and the interquartile
ranges centred on the median (this last plot is of some help in detecting assymmetry in the
distribution, and more robustly comparing the treatment variances).

TABLE OF MEANS, STANDARD DEVIATIONS & STANDARD ERRORS.

NV Number of values for each treatment level

MN Treatment means

SDR Standard Deviation

SER Standard Error (Mean)

L95CI Lower 95% Confidence Limit

U95CI Upper 95% Confidence Limit

All the above are calculated for each treatment level separately

SEP Standard Error of Mean calculated from Residual M.S. in ANOVA

RATIO Ratio of SER to SEP

This gives an indication of whether the variance in that

particular treatment level is above or below average.

TABLE OF MEDIANS & QUARTILES

MD Median

IQR Interquartile range
LCI, UCI Lower and upper conservative 95% CI s on median - exact

confidence given by CONF
LQ, UQ Lower & upper quartiles

RESDF

29

RESV

0.28092

Name NV MN SDR L95CI U95CI SER SEP RATIO

_P 10 1.139 0.216 0.984 1.294 0.068 0.168 0.408

YP 6 1.325 0.207 1.108 1.542 0.085 0.216 0.391

10 1.498 0.368 1.235 1.761 0.116 0.168 0.694

7 2.571 1.024 1.624 3.519 0.387 0.200 1.932

Name NV MD IQR LCI UCI CONF LQ UQ

_P 10 1.195 0.390 0.890 1.340 97.860 0.920 1.31

YP 6 1.255 0.180 1.130 1.710 96.880 1.210 1.39

10 1.455 0.570 1.160 1.860 97.860 1.180 1.75

Y_ 7 2.300 1.900 1.400 4.200 98.440 1.800 3.70

DIFFERENCES OF treatment MEANS, STANDARD ERRORS OF DIFFERENCES,

T-TESTS & SIGNIFICANCES

In the square matrices below,the lower right triangle gives
Standard Errors, T—Values, and levels of significance using the
Residual Mean Square from the ANOVA above as the Error Mean Square
in each comparison.

The upper left triangle of the matrix gives Standard Errors etc using
only the within treatment variances of the 2 factor levels in question.

Table 2

(continued on next page)
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DFM

X  _P

y

YP

Y_ 7 6 8 1000
15 13 1000 29

YP 13 1000 29 29

P 1000 29 29 29

YP

P

MDIFF

_P

-1.4324

-0.3590

-0.1860

0.0000

YP

-1.2464

-0.1730

0.0000

0.1860

-1.0734

0.0000

0.1730

0.3590

0.0000

1.0734

1.2464

1.4324

YP

P

SEDIFF

_P

0.3931

0.1349

0.1088

YP

0.3963

0.1438

*

0.2737

0.4042

*

0.2737

0.2370

0.2612

0.2949

0.2612

YP

P

T

_P

-3.64

-2.66

-1.71

YP

-3.15

-1.20

*

0.68

-2.66

*

0.63

.  1.51

11

23

48

SIG

P YP

Y_ 1.1 2.0
1.9 25.1

YP 11.2 *

P  * 50.3

3.3

*

53.3

14.1

0.1

0.1

0.1

! Non-Parametric Tests

! Above diagonal - obsn randomization

!  below - rank randomization

NPARMAT

X  _P YP

y

5

1

0

Y_ 0
2

YP 12

1.1

32.5

P * 28.0

0.8

*

44.8

4.6

1.2

0.7

0.5

Contrasts I**

-1.00

Y_

1.00

_P

1.00

YP CONTEST

-1.00 -0.8874

SEC

0.4186

DFC

8.130

TC

2.120

SIGC

6.732

Table 2

The printer output from the procedure applied to the data in Table 1. The initial analysis of
variance which is usually output has been suppressed.
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Figure 1(a)

Unlogged

The main part of the figure is split into two diagonally: the top left represents the treatment
comparisons based on means and Welch tests; the lower right on medians and rank randomisation
test. Consider just the top left Each point in this half represents a pair of means; which pair is
given by the labels on the top and left axes. Faint lines are drawn f^m these labels through the
treatment mean points to aid identification of the points. When the plot is done in colour, these
are usually drawn in a light colour which can easily be disregarded by the eye when necessary. It
can easily be seen that the size of the treatment differences corresponding to a given point is
equal to the distance from the point to the diagonal in a direction parallel to the y-axis. Lines
representing all these differences could be drawn on the figure but the problem then would be that
the lines for a number of treatment differences would necessarily lie on top of each other. To
avoid this, the lines are rotated anticlockwise through 45 degrees, thus producing 'treatment-
difference-lines' which join each 'treatment-pair-point' to the diagonal, in a direction
perpendicular to the diagonal. The length of these lines is thus reduced by a factor of ̂|2. In this
form the lines representing treatment differences would only occasionally overlap. The base of
each peipendicular is positioned along the diagonal a distance from a zero origin equal to the
average of the means in question divided by All that has been done is to rotate the axes
through 45 degrees. The new coordinates relative to the diagonal axes, if we assume for the
moment that the origins of our main axes are at zero, are then

y - X

In order to facilitate an understanding of the treatment differences, the lines corresponding to
non-significant differences according to the Welch test are plotted as dashed lines, and the
'significant' differences are plotted as solid lines, colour coded according to the level of
significance, necessarily discretely, with black denoting 5%, red denoting 1% and blue denoting
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0.1%. Additionally the symbol representing the treatment mean pair is plotted differently
depending on the level of significance; no symbol implying non-significant, a star for a result
significant at 5%, a circle at 1%, and a cross and circle at 0.1%. This would enable the diagram
to be photocopied without losing infonnation.

95ZCI

lOR

Figure 1(b)

Log{Y) + 1

It should be stressed that the object of the representation of the levels of significance in the figure
is to aid interpretation: a preliminary filter enabling us to give less weight to differences for
which there is not strong evidence in the present data. The intention is not to facilitate a screening
of all pairwise differences; in pilot experimentation with totally unstructured treatments, a
multiple comparison procedure could perhaps be used, although we do not favour such an
approach. Our aim is to present a picture of the relationship between the means which can be
compared with expectations established a priori^ and - if those expectations are not fulfilled — to
aid the process of interpretation and formation of new hypotheses which could then be assessed
by further experimentation.

Significance tests by themselves are of little value: it is important when assessing the results of
the tests to consider the standard errors of the differences of the means and these are plotted,
appropriately scaled by 1/V2, up from the diagonal, along each *treatment-difference-line' with
the symbol e. The common baseline of the diagonal enables the viewer to see directly which
comparisons have the greatest uncertainty attached to them.

The lower right hand half of the box gives the same results but based on medians and on
rank-randomisation tests. Standard errors are not given. Thus the rank based comparisons of the
medians can be contrasted with the parametric comparisons of the means. The medians and
means can also be directly compared by considering their relative positions on the right and left,
or bottom and top margins of the box, respectively.
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Figure 1 (b) is the graphical output resulting from a le-analysis after a log transformation of the
data, which was suggested by the standard deviation plot at the top of Figure 1(a). Log
transformation removes most of the heteroscedasticity, but the pairwise comparisons of the
treatments have not changed in essence as a result of the transformation. This illustrates the value
of a graphical summarisation for easy comparison of the results of a transformation.

5. The Structure of the Procedure

The procedure is written in Genstat 5 with the exception of the code for the randomisation tests.
This illustrates the great value of being able to move outside Genstat for those calculations which
can be performed more efficiently in other languages or for which code in another language
already exists. Fortran 77 programs for these analyses had been written by us and used for a
number of years and were thus available for incoiporation into the procedure using the PASS
directive (which unfortunately might only be available on certain computers and certain
operating systems). The same code is used for the rank and the observation randomisation tests,
thus obviating the need to tabulate or calculate the percentage points of the Mann-Whitney
U-statistic.

The Genstat code alone is about 600 lines long. We originally envisaged a modular approach to
the procedure in which the main procedure called further procedures but avoided this for much of
the development as early in the project we discovered that there could be considerable overheads
both in time and space requirements when using procedures (see Section 6), and we wished to
minimize these. In the end, with more understanding of the efficiency of Genstat, we returned to
the modular form of a procedure calling a number of sub-procedures.

Enabling the procedure to deal with restricted vaiiates in parameter list and still preserving the
labelling of the variates and the factors caused us some initial headaches. The solution we found
was to copy the original unrestricted versions of the variates and factors into temporary variates
and factors, and to replace all restricted out individuals by missing values in the original variates,
and then to proceed being careful to make proper allowance for missing values, which in some
cases necessitated further copying into structures of reduced size. At the end of the procedure the
original variates and factors are copied from their temporary accommodation back to their
original homes.

It seemed that it would be convenient to re-order the levels of the treatment factor in any tables
produced so that they are in order of increasing mean. This greatly eases interpretation of
matrices of significance levels etc. This was done initially and necessitated a further copying of
the variates and factors.

The randomisation tests were performed by two separate Fortran 77 programs, one deteimining
an exact significance level by summing the probability in the tail of the randomisation
distribution, the other obtaining an estimate by sampling the randomisation distribution (written
by R W Marrs and D E Walters respectively). TTie exact randomisation program produced
estimates very quickly when sample sizes were small (typically under a tenth of a second on a
VAX 750 under VMS for two samples of size 6 and 6). The procedure deteimines automatically
whether to use the 'sampling* or the 'exact' subprogram, on the basis of the two sample sizes.
The precision required in the estimated significance level when using the sampling routine was
dependent on the true significance level; there is little point in accurately determining a
significance level of 25%, for example, but if the value is nearer 5% or 1% then conventionally
greater accuracy is required. A two stage sampling scheme ensuring appropriate accuracy for our
needs was incorporated into the procedure.

6. Computing Resources

The procedure is expensive to use in resources of both space and CPU time — at least in the form
we implemented it on the VAX 750. We tried to improve the efficiency by eliminating
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unnecessary code, and by considering various forms of performing the analysis such as running
the code in the form of a procedure and a program. We used exactly the same code in various
different forms:

(1) as a single very long procedure with no sub-procedure calls;

(2) as a procedure with sections of the code put into sub-procedures and called hnom the main
procedure, which is probably the most convenient and reliable way of writing procedures;
checking and compiling of the code of these sub-procedures can be done as they are written;

(3) substituted in the main program like a macro, still calling the sub-procedures;

(4) substituted in the main program with all sub-procedures inserted directly into the code of the
main program. The results of this exercise are given in Table 3. It should be noted that all the
comparisons were performed on a VAX 750 operating under VMS, using Release 1.2 of
Genstat 5 as mounted on the AFRC's network of computers. The results might be quite
different for a different computer or operating system.

Form of Program/Procedure

(1) (2) (3) (4)
Procedure without Procedure calling Program calling Program without
sub-procedures sub-procedures sub-procedures sub-procedures

Data set 1: four treatments (n=10,10,7,6)

9.0 7.7 5.5 3.7

(243%) (208%) (149%)

Data set 2: six treatments (n=13,12,10,5,4,4)

10.0 8.3 5.6 3.8

(263%) (218%) (147%)

Data set 3: eight treatments (n=13,10,10,7,6,6,5,5)

11.7 9.6 7.0 4.7

(249%) (204%) (149%)

Table 3

CPU Time (in minutes) required for running the ONEWAY procedure on three different datasets
on a VAX 750 operating under VMS. The bracketed figures give the CPU time as a percentage

of the time required for the most efficient version (4).

It is clear that there are substantial overheads in actually using a procedure as opposed to a macro.
This applies to a large procedure; i.e. one which uses a few large structures or many small ones,
and performs a large number of manipulations (hundreds of lines of Genstat) of these structures.
The CPU time of our 600 line procedure was 150% higher than the equivalent straight through
program, but this was reduced by 50% by breaking the large procedure into modules
(sub-procedures) of about 100 lines and calling these from the procedure. On the other hand
calling these subprocedures from the main program increased the CPU time of the main program
version by about 50%. It is more difficult to generalise about the storage requirements, but it does
appear that using a procedure can increase the store required, but in general by much smaller
amounts than the CPU time, typically in our case by about 20%.

The part of the program dealing with the graphical output was rather long, and involved many
structures partly because many separate lines needed plotting. It would be useful if a plot
directive were available in Genstat which connected all points - in a specified or increasing order
of X or y - which had the same level of a factor. Such a facility might have reduced the space
requirements of the procedure appreciably.
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The CPU time required by the Fortran part of the procedure has been virtually negligible for most
of the cases we have considered, a matter of fractions of a second for the exact randomisation test

on small samples, or a few seconds for the sampling version with 1000 samples generated,
compared to minutes for the rest of the procedure. When we attempted to code the same
calculations in Genstat, using the randomise directive, we found that one randomisation test using
the sampling method to determine the significance level for two treatments was slower by a factor
of about 100-1000. This illustrates the considerable value of being able to call Fortran code for
those calculations for which it is more efficient.

m  7. Conclusions

We feel that the extra facilities which came with Genstat 5 are of great value to statisticians and
other users, most particularly the facilities for extension of the language: the use of procedures,
and the ability to call code written in other languages. It is pity that there are considerable
overheads in die use of procedures in some cases, for example, the CPU time was doubled in the
most efficient version of the procedure we could produce; a pity too that the method - even the
possibility - of invoking code in other languages might vary from one make of computer to
another. More tuning of the Genstat method for calling procedures might reduce the first
problem. Greater standardisation on the part of computer and operating system manufacturers
about how different processes can interact might solve the second.

A further important change is the introduction of plotter graphics. The integration of a powerful
calculating facility and flexible graphics is very valuable: to statisticians, when investigating a
complex problem, detailed graphs can facilitate the appreciation of a large volume of numerical
results; to statisticians and their clients, the presentation of data and fitted models helps
understanding and gives an immediate opportunity for verification that the analysis presented is at
least plausible.

Our procedure provides a simple example of what can be done with the new facilities. This
procedure makes a fairly comprehensive analysis quickly available, so that different approaches,
e.g. different transformations of the response variable, the use of different contrasts between the
means, can be easily and efficiently compared.
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Using Genstat to Fit Regression Models to Ordinal Data

H Jansen

Institute of Horticultural Plant Breeding
P.O. Box 16

6700 AA Wageningen
The Netherlands

1. Introduction

Regression models for ordered categorical or ordinal data (McCullagh [1]), have proved useful
in many practical applications. This paper is concemed with computational methods for fitting
such models to data. Basic properties of McCuUagh's models are presented in Section 2.

Thompson and Baker [2] mentioned that regression models for ordinal data can be embedded into
the framework of generalised linear models by using composite link functions. Consequently,
regression models for ordinal data can be fitted by iterative weighted least-squares. In Section 3
the method of Thomson and Baker is considered in detail

Genstat provides excellent facilities for iterative weighted least-squares. Thompson and Baker's
method can be implemented in a Genstat procedure using these facilities. In Section 4,
implementation of the method in a Genstat procedure is discussed. Section 5 contains an example
of the use of the procedure.

2. Regression Models for Ordinal Data

Suppose T is a non-observable continuous random variable with mean T| and scale parameter a.
Topical distributions for Y are the Normal disribution and the Logistic distribution, of which the
distribution functions are given by

(y-ri)/a

F(y) = -4^ j e-'''^dz

and

F{y) =
1 + e-(y-ri)f<T

respectively. In practice, the aim is to compare different treatments with respect to their values of
T|. The scale parameter a is set to unity, i.e. a is the unit of measurement on the y-scale.

The model assumes that the y-axis can be divided in k non-overlapping intervals by ik-l)
cut-points Furthermore, = -oo and 6^ = «>. See Figure 1. Since the random
variable Y cannot be observed, the cut-points ^ unknown parameters.

A data set involving ordinal data can be presented by an mxk matrix N, of which the r'* rx)w
refers to treatment i (= l,2...m) and the column to category j (= l,2.../t). It is assumed that
the rows of N are independent and follow a multinomial distribution with parameters n^ and

probabilities TCij are given by

^ij = Fidj-rii) - F(0^i-77i).
In practice the parameter vector ̂  = (t/j ,772 ^ linear model H ^ &
where X is the rnxp design matrix for treatments and g is the vector of unknown parameters. The
main problem is to obtain the maximum likelihood estimate of the parameter vector g.

The log-likelihood function / can be written as
m k

/ = c + S S rty ln{7tij)
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where c is a function not involving unknown parameters. The likelihood equations for g read
^ rt..;

{q = l,2,...p)
^Pq i=l >=1 ^ij

where - AO and/is the first derivative of F. It should be noted that
maximum likelihood estimation involves both g and 0. In order to obtain estimates one restriction
on the parameters has to be imposed, e.g. 6^ = 0.

<— treatment 2treatment 1 —>

m

Figure 1
Graphical Presentation of a Regression Model for Ordinal Data

3. Thompson and Baker's Method

The Newton-Raphson method for solving the likelihood equations required first and second
derivatives of the log-likelihood. Rsher's scoring technique uses expected second derivatives.
The general form of step s (= 1,2,... ) of the iteration process is given by

1-1 L
= « + As-l Hs-l

where g is the vector of parameters, b is the vector of first derivatives and A is the matrix of
expected second derivatives of the log-likelihood. A direct advantage of Rsher's scoring
technique is that at convergence it provides directly an estimate of the covariance matrix of the
vector of parameters. The foim of the vector b and the matrix A will now be considered in detail.

The probabilites tvij can be written as

;r,y=F(T,.,)
7C: = n^ij) - (J = 2...^-l)

m
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(j =

where

- iJS
+ xJS

In matrix notation the above results are

Hi = = C.F(5i)

li = Z.a

For example, for k = 5 the matrices C,- and Z,- are given by

' 1

-1

0  0 0 01

1  0 0 0

'100 0 xj'
0 10 0 xJ

Qi = Ni 0 -1 10 0 Zi = 0 0 1 Ox]
0

0

0-1 10

0  0 0 1
0 0 0 I xJ
0 0 0 -1 i T

Furthermore, let Hi and Wi be diagonal matrices with diagonal elements given by

h"^ij and Wii =

respectively. The first and expected second derivatives of the log-likelihood can be written as
m

b=lzj H; cj Wi (nrHi)
hi

A = tzJ H; Cj Wi C,. ff; Z,..
t=l

By writing Z' = [Zj ... zj,], H = diag[ff, ... C = diag[C, ... CJ, W = diag
m WJ. = [5T ... „Tj_ ^ [^T ^ ^T]
the iteration process becomes

«j = «j-i + C'''W C H Z)-^ [Z' H C'''W (n-ti)]
=  Q^W Q H z)"' z^H c^w c [z

Since C is not a diagonal matrix (it is block-diagonal), solving the above equation requires a
generalised least-squares program. However, it can be modified to fit in a weighted least-squares
framework by writing

a, = (.Z^H Q^W C H Z)-' Z^H c'^W IQHZ a^.,+(«-//)]
Thus, a step of the iteration process may be carried out by a weighted least-squares regression
with

- working dependent variate: C Hr\ + (n-ti)
- weights: W
- regression variates: CHX

Starting values can be obtained easily for the iteration process described above. An initial value
for ̂ i is obtained by taking = n,-. It then follows that

1? =
In order to avoid the complication of zeros in the data matrix, n-. has to be replaced by
rt,(rt,y-4)/(/i,+/n/2). It can be shown easily that form = 5:
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C.-1 _= rii

1 0 0 0 0

1 10 0 0

1 1 10 0

1 1 1 10

0 0 0 0 1

5.

Procedure ordinal

The computations described above have been implemented in a Genstat procedure, called
ORDINAL. An example of the use of ordinal is given in Section 6. A listing of a preliminary
version of the procedure is available on request hom the author. The final version of the
procedure will be submitted to the Genstat Procedure Library.

The procedure ordinal uses the Genstat regression facilities to carry out the computations
described above. It appeared that it is able to cope with data sets of considerable size, and that if
the model fits the data reasonably well, convergence is attained in a few iteration steps. Initial
values are calculated fiom the data by the method described in Section 4.

As the procedure uses variates of length rrcxk {m = number of rows of the data matrix;
k = number of response categories), use of the procedure requires a fair amount of computer
space and time.

A disadvantage of the procedure is that linear models for treatment effects have to be supplied as
variates; no use can be made of the Genstat model formulae.

Example

The example concerns a small part of a larger experiment concerning vascular wilt disease
(caused by Fasarium oxyspomm ssp Dianthi) in camation (Dianthus cariophyllus L.). In this
example two isolates of fasarium have been applied on four genotypes of camation. In the
experiment there were about 35 plants with each combination of isolate and genotype. At the end
of the experiment plants were assigned to one of four categories:

category 1: plant not affected,
category 2: plant showed discolouration of the vessels,
category 3: plant showed discolouration of the vessels, and also wilting symptoms,
category 4: plant has died.

The data are shown in Table 1:

Isolate Genotype y[i] y[2] y[3] y[4] x[l] x[2] x[3] x[4] x[5] x[6] x[7] x[8]

1 1 1 3 12 19 1  0 0 0 0 0 0 0
1 2 0 6 23 6 1  0 1 0 0 0 0 0

1 3 0 13 20 2 1  0 0 1 0 0 0 0
1 4 20 12 0 0 1  0 0 0 1 0 0 0
2 1 1 12 18 4 1  1 0 0 0 0 0 0
2 2 1 16 17 1 1  1 1 0 0 1 0 0
2 3 16 19 0 0 1  1 0 1 0 0 1 0

2 4 27 8 0 0 1  1 0 0 1 0 0 1

Table

Data from the fasarium experiment and explanatory variates
representing main effects and interactions
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Also shown in Table 1 are the explanatory variates, representing the main effects of isolates and
genotypes and their interaction. Unfortunately, the procedure does not allow the user to specify
main effects and interactions using Genstat model formulae. A Genstat program for fitting a
regression model for ordinal data to the data given in Table 1 could be of a foim shown below:

JOB "Fasarium experiment"

UNITS [8]

FACTOR [LEVELS=2; VALUES=4(1,2)] isolate

FACTOR [LEVELS=4; VALUES=(1 4)2] genotype

READ y[l...4]

data

VARIATE [VALUES=8(1)] x[l] ^

CALCULATE x[2]=isolate.EQ.2

&  X[3... 5]=genotype.EQ.2...4
ORDINAL NCATEG0RIES=4; Y=y; X=x

"default options; PRINT=SUMMARY,ESTIMATES; LINK=LOGIT"
STOP

The default output form the procedure ordinal after fitting the main effects of isolates and
genotypes is given below:

*** Regression analysis of ordinal data ***

Link function: logit

*** Summary of analysis ***
Dispersion parameter is 1

Residual diviance: 33.84

Degrees of freedom: 17

*** Estimates of regression coefficients ***

Estimate s .e.

Theta_ 2 2.970 0.3461 ]
Theta_ 3 5.817 0.4792 J
Beta_ 1 5.743 0.5489 '
Beta__ 2 -2.079 0.3192

Beta_ 3 -0.986 0.3824

Beta_ 4 -2.929 0.4376

Beta 5 -5.786 0.5885 .

estimates of ^
cut-points (01=0)

estimates of »
regression coefficients
corresponding with
x[1...5]

An analysis of deviance table is easily constructed from the output of the procedure.
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Genstat Analyses for Complex Balanced Designs with Non-interacting
Factors

D A Preece

Institute of Horticultural Research
East Mailing
Maidstone

Kent

United Kingdom ME19 6BJ

1. Introduction

Some Genstat users have reported puzzlement and misunderstanding in connection with
non-orthogonality amongst treatment factors in ANOVA. Indeed such non-orthogonality can
provide pitfalls for the unwary. It therefore seems worthwhile to illustrate the points at issue by
examining analyses for some designs of a general type used in orchard experimentation at East
Mailing. Genstat 5 notation is used throughout The reproduced computer-output is as obtained
from the version of Genstat 5 that was in use at East Mailing in the summer of 1987.

In orchard experimentation, a set of trees must often be used in successive years to test successive
sets of treatments. So designs are needed where a new set of treatments is superimposed on a
previous set. Often, residual effects of the previous treatments must be allowed for in designing
the superimposition, even though they may be assiuned not to interact with the effects of the new
treatments. If each of the two sets of treatments is non-factorial, the design will then have one
factor for the new set, one for the old, and possibly one or more blocking factors from the original
design. As the residual effects may be of little or no interest in themselves, the old treatments may
sometimes be most conveniently viewed as the levels of a blocking factor, not a treatment factor.
But whichever choice is made, the design is a so-called main-^ectplan, i.e. a multi-factor design
for factors assumed not to interact. Such designs, although important in orchard experimentation,
have non-agricultural uses too, usually with all factors present from the outset.

One of the simplest such multi-factor designs is a Graeco-Latin square, with the rows and
columns used for blocking factors, the Roman letters used for an initial set of treatments, and the
Greek letters used for a superimposed set. However, the complete orthogonality of the
Graeco-Latin square is usually unattainable in practice. Instead, the experimenter may have to use
a non-orthogonal design that may or may not be balanced in the sense recognized by Genstat

2. Three-factor Designs Where Two Mutually Orthogonal Factors are Each Balanced
With Respect to a Third

This article is concerned with balanced multi-factor designs that can be analysed by Genstat's
ANOVA without the use of pseudo-factors. However, recognising such a design is not as simple as
the novice might suppose. Consider, for example, the following block design (unrandomized) for
two non-interacting sets of treatments (say T1 and T2, denoted by upper- and lower-case letters

Block

1 2 3 4 5 6 7 8 9 10

Af Bf Cf Df Ef Aa Bb Cc Dd Ee

Bd Ce Da Eb Ac Cd De Ea Ab Be

Ec Ad Be Ca Db Dc Ed Ae Ba Cb

(1)

m
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Inspection shows that this design has the following properties:

(1) the allocation of the upper-case letters to blocks constitutes a balanced incomplete block
design;

(2) the allocation of the lower-case letters to blocks constitutes a balanced incomplete block
design;

(3) the two sets of letters are mutually orthogonal, as each letter of each set is paired the same
munber of times (once) with each letter of the other set.

So, if we are interested in one set of treatments and ignore the other, we have a balanced analysis.
This may lead us to suppose that the analysis will remain balanced after introduction of the other
set, this being itself orthogonal or balanced with respect to each of the other factors. So, with the
block factor and treatment factors appropriately defined, we may try specifying the analysis as
follows:

BLOCKS Block

TREATMENTS T1+T2

ANOVA

However, this ANOVA statement will rightly reject the design as unbalanced (Fault Code AN 1).
The reason is that, in the blocks containing any one particular treatment from either set, the
treatments of the other set are unequally replicated. (For example, treatment e occurs in blocks 2,
3, 7, 8, 10, and these blocks have A and D twice each, B and C four times each, and E three

times.) Examination of the normal equations quickly shows that such unequal replication
unbalances the design.

Consider now, however, this alternative (again unrandomized):

Block

1 2 3 4 5 6 7 8 9 10

Af Bf Cf Df Ef Aa Bb Cc Dd Ee

Cd De Ea. Ab Be Bd Ce Da Eb Ac

Dc Ed Ae Ba Cb Ec Ad Be Ca Db

(2)

Not only does this second design have properties 1, 2 and 3 as before, it also satisfies the
following:

4) In the blocks containing any particular letter from either set, the letters of the other set are
equally replicated.

So ANOVA with block and treatment factors as before will accept this as a balanced design.
Indeed, the four properties together have the further valuable consequence that the efficiency
factor (e.f.) for each set of treatments (5/6 = 0.833 for the upper-case treatments and 4/5 = 0.800
for the lower-case) is the same as if the other set were absent. Another way of saying this is that,
because of property 4, the blocks do not induce any non-orthogonality between the two mutually
orthogonal sets of treatments. In the tenninology of Eccleston and Russell [3,4], the two sets have
adjusted orthogonality as well as pairwise orthogonality, when adjustment is made for blocks.

2.1. Example 1

The balanced design (2) was quoted because of the fairly systematic way in which it can be
generated (from blocks 1 and 6). A combinatorially different design with the same statistical
properties was given, with data, by Potthoff [6, p. 201]. In the notation of the present article they
were as follows, where the variate values are square roots of counts; as POtthoff worked with the
square roots rounded to two decimal places, they are used and presented in the same form here:
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Block

1 2 3 4 5 6 7 8 9 10

Aa Ba Ac Ad Be Ab Cc Ac Be Af

8.49 7.00 7.68 7.28 6.16 10.05 7.00 3.16 9.90 8.83

Bb Cd Ca Cf Df De Db Bf Ce Bd

7.07 7.07 7.87 7.35 8.19 6.78 5.92 3.46 8.54 9.59

Dc Eb Be Da Ea Ed Ef Cb Dd Ec

9.43 7.42 5.82 7.21 7.55 6.78 6.93 3.61 9.06 10.00

(3)

PotthofTs paper should be consulted for details of the experiment For present puiposes we need
no more than the following details of the factors:

Blocks 1, 2...., 10 = Locations 1,2,..., 10

Treatments A, B, C, D, E = Days: Mon, Hies, Wed, Thurs, Fri
Treatments a, b, c, d, e, f = Times, a.m.: 8:00, 8:10, 8:20, 8:30, 8:40, 8:50

With Genstat factors defined in the obvious way, and the variate identified as Sqrtninbr, we can
specify an analysis as follows:

BLOCKS Location

TREATMENTS Day + Time
ANOVA Sqrtnmbr

This produces the following analysis of variance and tables of means:

***** Analysis of variance *****

Variate: Sqrtninbr

Source of variation d.f. s.s. m.s. v.r.

Location stratum

Day

Time

4

5

20.1277

55.4349

5.0319

11.0870

Location.*Units* stratum

Day

Time

Residual

4

5

11

1.6614

8.3513

7.2266

0.4153 0.63

1.6703 2.54

0.6570

Total 29 92.8019

***** Information summary *****

Model term e. f. non-orthogonal terms

Location stratum

Day

Time

0.167

0.200

Location.*Units* stratum

Day

Time

0.833

0.800

Location

Location
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***** Tables of means *****

Variate; Sqrtnmbr

Grand mean 7.37

Day Mon Tues Wed Thurs Fri

7.77 7.04 7.51 7.38 7.17

Time 8:00 8:10 8:20 8:30 8:40 8:50

7.60 7.54 8.20 7.08 6.27 7.54

*** Standard errors of differences of means ***

Table Day Time

rep. 6 5

s.e.d. 0.513 0.573

Because the effects of the factors Day and Time remain mutually orthogonal after allowance for
difterences between Locations, no difficulty of inteipretation arises over the sums of squares in
the second stratum of the analysis: the sum of squares for Day is that for *Days after fitting
Locations' (sometimes called 'Days eliminating Locations'), and that for Time is for Times
after fitting Locations'. The means in the one-way tables for the factors Day and Time are
adjusted means (adjusted for Locations, but without recovery of inter-Location information) and
agree with the Day and Time effects calculated by Potthoff.

For this example, it may be questioned whether Location should truly have been a block factor
rather than a treatment factor. Indeed the following specification is plausible:

BLOCKS

TREATMENTS Location + Day + Time
ANOVA Sqrtnmbr

This produces the following:

***** Analysis of variance *****

Variate: Sqrtnmbr

Source of variation d.f. s.s. m. s. V. r.

Location 9 75.5626 8.3958 12.78

Day 4 1.6614 0.4153 0.63

Time 5 8.3513 1.6703 2.54

Residual 11 7.2266 0.6570

Total 29 92.8019

***** Information summary *****

Model term

Day

Time

e.f. non-orthogonal terms

0.833 Location

0.800 Location
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***** Tables of means *****

Variate; Sqrtnmbr

Grand mean 7.37

Location 1 2 3 4 5 6

8.33 7.16 7.13 7.28 7.30 7.87

8 9 10

3.41 9.17 9.47

Day Mon Tues Wed Thurs Fri

7.77 7.04 7.51 7.38 7.17

Time 8:00 8:10 8:20 8:30 8:40 8:50

7.60 7.54 8.20 7.08 6.27 7.54

*** standard errors of differences of means ***

Table Location Day Time

rep. 3 6 5

s.e.d. 0.662 0.513 0.573

7

6.62

Here the sums of squares for Day and Time are as before, as are the means for these two factors.
However, we must now note that the analysis of variance reports sequential fitting of the terms.
(If the analysis of variance table is to be published without risk of ambiguity, the symbol +
should perhaps be inserted at the start of each of the three treatment lines, as in accumulated
analyses of variance from the regression part of Genstat.) Thus the Location sum of squares is
for 'Locations before fitting Days and Times' (sometimes called 'Locations ignoring Days and
Times'). Likewise, the one-way table of means for the factor Location consists of unadjusted
means (i.e. unadjusted for Days and Times); great care must be taken to remember this. The key
to the interpretation of the output here is the Information Summary, with its identification of the
non-orthogonality.

Having reached this point, the user may well try writing

BLOCKS

TREATMENTS Day + Time + Location
ANOVA Sqrtnmbr

in the hope of thereby obtaining adjusted Location means and also a sum of squares for
Location after fitting Day and Time. However, this fails (Fault Code AN 1) and prints the
message

Model term Location (non-orthogonal to term Day) is unbalanced.

The point here is that balance is not, in general, a symmetric relationship. Although Day (or
Time) is balanced with respect to Location, Location is not balanced with respect to Day
(or Time). Consequently, the differences between pairs of adjusted Location means do not all
have the same standard error. To proceed, the user should use Genstat's regression facilities:

MODEL Sqrtnmbr

FIT Day, Time, Location
PREDICT [PRINT=description,prediction, se; VCOVAR=VCovLoc] Location
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This produces:

***** Regression Analysis *****

Y variate: Sqrtnmbr
Fitted terms: Constant, Day, Time, Location

*** Accumulated analysis of variance ***

Change d.f. s.s. m.s. v.r.

+ Day 4 2.6869 0.6717 1.02

+ Time 5 22.8525 4.5705 6.96

+ Location 9 60.0359 6.6707 10.15

Residual 11 7.2266 0.6570

Total 29 92.8019 3.2001

and

*** Predictions from regression model *** "

The predictions have been standardized by averaging fitted values
over the levels of some factors with the stated weighting policy:

Factor Weighting policy Status of weights
Time Marginal weights Constant over levels of other factors
Day Marginal weights Constant over levels of other factors

Y variate: Sqrtnmbr

Location

1 7.898 0.514

2 7.263 0.514

3 7.033 0.514

4 7.064 0.514

5 7.712 0.514

6 8.212 0.514

7 6.251 0.514

8 3.596 0.514

9 9.421 0.514

10 9.287 0.514

These predictions are the adjusted Location means (adjusted for Day and TdLme) as obtained
by POtthoff; standard errors of differences between these predictions can be calculated from the
variance-covariance matrix VCovLoc obtained by use of the VCOVAR option of predict. (All
the covariances are very small. To two decimal places, every s.e.d. is 0.73.) In the accumulated
analysis of variance, the sums of squares are for 'Days before fitting Locations', 'Times before
fitting Locations', and 'Locations after fitting Days and Times'. Using the last of these, we can
now complete Potthoff s non-sequential analysis of variance table [6, p. 204]:
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Source of variation d.f. S.S. m.s.

Days after fitting Locations 4 1.661 0.415

Times after fitting Locations 5 8.351 1.670

Locations after fitting Days and Times 9 60.036 6.671

Residual 11 7.227 0.657

Here, of course, the four sums of squares do not add up to the total sum of squares.

3. Block Designs with 2v Blocks and Two or More Sets of v Treatments, Each Set
Being Balanced with Respect to Blocks and to the Other (s)

Akin to design (2) are the following two further three-factor designs, chosen from many similar
examples given by Preece [8]:

Block

1 2 3 4 5 6 7 8 9 10

Aa Bb Cc Dd Ee Aa Bb Cc Dd Ee

Cb Dc Ed Ae Ba Bd Ce Da Eb Ac

De Ea Ab Be Cd Ec Ad Be Ca Db

(4)

and

Block

1 2 3 4 5 6 7 8 9 10

Aa Bb Cc Dd Ee Aa Bb Cc Dd Ee

Cd De Ea Ab Be Be Ca Db Ec Ad

Dc Ed Ae Ba Cb Eb Ac Bd Ce Da

(5)

Each of these two designs has the same number of treatments (five) in each set, but satisfies
properties 1 and 2 as before. Also, with A and a (or B and b, etc.) described as ̂ corresponding'
letters from the two sets, designs (4) and (5) satisfy modified properties 3 and 4 as follows:

3b) Each set of letters is balanced with respect to the other, as each letter of each set is paired
equally often (once) with each non-corresponding letter of the other set.

4b) In the blocks containing any particular letter from either set, the non-corresponding letters of
the other set are equally replicated, namely four times in (4) and three times in (5).

As a result of satisfying properties 1,2, 3b and 4b, each of designs (4) and (5) is recognized as
balanced by an analysis of variance with a single block factor and the two treatment factors.
However, the difference between (4) and (5) that was noted in property 4b has the consequence
that the two designs differ in their efficiency factors.

Each set of letters in (4) and (5) is arranged in a balanced incomplete block design whose e.f.
is 5/6 = 0.833. In (4), the e.f. for either set drops to 20/27 = 0.741 when the effects of the other
set are fitted as well as block effects. In (5), however, the e.f. for either set remains 5/6 = 0.833.
In other words, design (5) has the striking property that the two sets of treatment effects become
mutually orthogonal when each is adjusted for blocks. In the terminology of Eccleston and
Russell [3,4], the two sets have 'adjusted orthogonality' but not 'pairwise orthogonality'.

Let us denote the two sets of treatments in (4) as T1 and T2, respectively, and those in (5) as T1
and T3. Then an analysis of (4) can be specified by:

BLOCKS Block

TREATMENTS Tl + T2
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The Infonnation summary then obtained from ANOVA will be:

***** Information summary *****

Model term

Block stratum

T1

T2

Block.*Onits* stratum

T1

T2

e.f. non-orthogonal terms

0.167

0.093 T1

0.833 Block

0.741 Block T1

The value of 0.833 given for T1 in the bottom stratum is the e.f. for T1 before fitting T2; to
confirm that the e.f. for T1 after fitting T2 is 0.741, the analysis can be repeated with the
treatment terms fitted in the opposite order. Once again, too, the tables of means obtainable from
ANOVA arise from sequential fitting of the treatment terms. Thus, with T1 fitted before T2, the
T1 means are unadjusted for T2.

An analysis of (5) can be specified by:

BLOCKS Block

TREATMENTS T1 + T3

The treatment ternis here need be fitted in one order only, as each is orthogonal to the other after
adjustment for blocks. In the Block stratum, the information on T3 is aliased with that on Tl,
and the only treatment information that Genstat records for that stratum is for Tl. The user must
deduce for him- or herself where the 'missing' information on T3 is hidden, and why the Block
stratum of the analysis of variance seems to have no d.f. for T3.

To obtain greater insight into designs (4) and (5), we can view them as parts of the following
five-factor design for four sets of treatments Tl, T2, T3 and T4:

Block

1 2 3 4 5 6 1 8 9 10

hdAa BhBb CcCc D6Dd Ee£g A^Aa BbBb CcCc DdDd EeEe

CbDe DcEa PAAb AeBc BdCd BdEc CtAd DaBe EbCa AcDb F"

DeCb EaDc AbEd BcAe CdBa BcBd AdCe BcDa CaEb DbAc

(6)

If any two treatment-sets are omitted from (6), the resultant design is equivalent to either (4) or
(5).

If three of the treatment-sets of (6) are retained, or indeed all four, the design remains balanced
for all its treatment-sets. As all designs with just three of the sets are equivalent, we can restrict
attention to the block design with Tl, T2 and T3. Although (as we have already seen) the effects
of Tl and T3 become mutually orthogonal after fitting blocks, they are not mutually orthogonal
after fitting T2 as well as blocks. Accordingly, if adjusted means are needed for all three sets of
treatments, each set of means being adjusted for all other factors, at least three TREATMENTS
specifications must be used, each having a different treatment-factor last. Analyses so specified
show that the efficiency factors for each treatment-set after fitting all other factors are these:

Tl and T3 T2

35/48 = 0.729 35/54 = 0.648
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4.

So far as I am aware, the literature of balanced designs does not indicate that different e.f.s can
apply to different sets of equally replicated treatments when each set has the same number of
treatments; this phenomenon can however readily arise when there are three sets of treatments.

For amusement and completeness, we may as well record that if all factors in (6) are retained,
the e.f. for each treatment-set, after fitting all other factors, is 25/42 = 0.595. Intuition might weU
have suggested a worse value.

Block Designs with v Blocks and Two or More Sets of v Treatments, Each Set Being
Balanced with Respect to Blocks and to the Other (s)

Hoblyn, Pearce and Freeman [5] gave versions of the following design for seven blocks each of
four units:

Block

1 2 3 4 5 6 7

Ag Be Cb Dc Ec Fb Ge

Dd Eb Fa Gb Ad Bf a

Ff Gg Af Bg Ce De Eg

Ga Aa Be Cd Da Ed Fc

(7)

In this three-factor design, each of the two sets of treatments is arranged in a balanced incomplete
block design, each set of treatments is 'balanced' with respect to the other, and the blocks are
'balanced' with respect to each set of treatments. (Here, as in similar contexts below, 'balanced'
connotes the same sort of balance as that of a balanced incomplete block design.) The easiest
way of seeing that, for example, blocks and T1 are balanced with respect to T2 is to rewrite the
design like this:

a b c d e f g

IG 2E 3B 4C 5C 6B 7E

2A 3C 4D 5A 6D 7C lA

3F 4G 5E 6E 7G IF 2G

5D 6F 7F ID 2B 3A 4B

(8)

Here, the entry IG in the column headed 'a' indicates that block 1 of the original design had G
paired with treatment a; and so on. The sets of upper-case letters and of digits in the columns of
(8) each constitute the blocks of a balanced incomplete block design, which conhrms that T1 and
the blocks of (7) are balanced with respect to T2.

With each factor of (7) being balanced with respect to any other, the design might well be
expected to have balance overall. But, like design (1), it does not However, the nature of the
unbalance is not apparent from cursory inspection.

For a design that is balanced overall and in other respects similar to (7), sets of letters must be
taken from the following:

Block

1 2 3 4 5 6 1

Pi^AaAa BbBbBb CcCcCc DdDdDd EtEeEe FfF/Ff GgGgGg

'BcDeFg CdE/Ga DcFgAb EfGoBc FgAbCd GzBcDe AbCdEf

CQGbDf DiAcEg EgBdFa EsiCeGb GbDfAc AcEgBd BdFaCe

EbFcGd FcGdAe GdAeBf AeBfCg EfCgDa CgPaEb DaE/?Fc
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(9)

As shown by Dall'Aglio [2] and Pireece [7], efficiency depends once again on which two sets of
letters are chosen. Discussion of this and related matters is peihaps easiest if we regard the first
factor of the design as a treatment-set TO rather than as a blocking factor. Then we have seven
possible seven-level factors TO, Tl,..., T6.

Two distinct three-factor designs are obtainable ftom (9). Firstly there is the design with factors
TO, Tl and T2; as can be checked by anova, its e.f. for each factor after fitting the other two
is 3/4 = 0.750. Secondly we can use the factors TO, Tl and T3; then the e.f. for each factor after
fitting the others is 5/8 = 0.625.

One further factor finm (9) can be squeezed into a design if we are prepared to drop to 3 d.f. for
error. Indeed, the distinct four-factor designs obtainable from (9) are again two in number.
(These are obtainable as the complements of the two three-factor designs, but can alternatively be
given as follows.) Firstly there is the design with factors TO, Tl, T2 and T3; its efficiency factors
for each treatment-set after fitting the others are these:

TO and T3 Tl and T2

7/24 = 0.292 7/20 = 0.350

Secondly there is the design with TO, Tl, T2 and T4, with the following efficiency factors:

TO Tl, T2 and T4

7/10 = 0.700 7/12 = 0.583

The reader is invited to obtain these values too by ANOVA.

4.1. Example 2

Potthoff [6, p. 205] gave data for the former of the above two designs for three factors. His levels
of TO were 'individuals' (people), those of Tl were 'shapes', and those of T2 were 'colours'.
The original data were the individuals' estimates of the areas of some geometric figures of the
designated shapes and colours. The variate analysed was the logarithm (to the base 10) of the
ratio of estimated area to actual area, the logarithms being rounded to three decimal places:

Individual

1 2 3 4 5 6 7

Aa Bb Cc Dd Ee Ff Gg
-0.113 -0.083 -0.182 0.076 -0.057 0.046 -0.297

Be Cd De Ef Fg Ga Ab

-0.153 -0.246 -0.100 -0.137 -0.109 0.305 -0.414

Ce Df Eg Fa Gb Ac Bd

-O.085 -0.255 -0.191 0.074 -0.290 0.268 -0.384

Eb Fc Gd Ae Bf Cg Da

-0.045 -0.255 -0.063 0.118 -0.129 0.170 -0.360

(10)
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Readers may like to use three sequential ANOVAs to obtain Potthoff's non-sequential analysis of
variance table as follows:

Source of variation d.f. s.s. m.s.

Individuals after fitting Shapes and Colours 6 0.68296 0.11383

Shapes after fttting Individuals and Colours 6 0.02450 0.00408

Colours after fitting Individuals and Shapes 6 0.06593 0.01099
Residual 9 0.07533 0.00837

5. Superimposed Youden squares, etc.

Arrangements such as (4), (5), (6) and (10) above can also be used as low-and-column
designs, i.e. their rows (as printed) can be used as the blocks of a further blocking system. As all
other factors are orthogonal to the rows, no new complication is introduced into the analysis by
the rows; the d.f. for rows arc merely removed from the Residual d.f. to a Row stratum of their
own.

If (9) is regarded as a low-and-colunm array, then each set of letters there is disposed in a
so-called * Youden square' (a design which is not square, where each treatment occurs exactly
once in each row, and where the columns are the blocks of a balanced incomplete block design
with as many blocks as treatments). A row-and-column design formed with different sets of
letters from (9) can thus be described as a balanced superimposition of Youden squares one upon
another. Other such supeiimpositions can be obtained by deleting one row from a complete set of
mutually orthogonal vxv Latin squares; an example with v = 5 is as follows:

BcDf C6Ea DeAb EaBc AbCd

CtBd DaCe EbDa AcEb B6Ac

DbEc EcAd A6Be BeCfl C2Db

EdCb AqDc Ba£d CbAe DcBa

(11)

In general for such vx( v-1) designs, the e.f. for any factor other than the Row factor, after fitting
i other such factors, is

v(v-l-/)

(v-Div-iy

In particular, the e.f. for the treatments of a simple vx(v-l) Youden square (no
superimpositions) is obtained by taking i = 1 (for the Column factor).

6. Balanced Four-factor Designs with Two Independent Non-orthogonalities
Youden squares feature also in some row-and-column designs such as the following, due to
Qarice [1]:

Aa Bb Cc Dd Ea

Bd Ac Eb Ca Db

Cb Da Ad Ec Be

Dc Ed Ba Ab Cd

(12)

Let the two sets of treatments be T1 and T2 respectively. As the treatments of T1 are disposed in
a Youden square, T1 and the columns are balanced with respect to one another. Additionally, T2
and the rows are balanced with respect to one another. Otherwise, the factors are orthogonal to
one another. The design can thus be said to have *two independent non-orthogonalities' (one
involving T1 and columns, the other involving T2 and rows). Thus, to obtain fully adjusted
means for both T1 and T2, only one analysis sequence is needed, the order of fitting the two sets
of treatments being immaterial; the following specification will suffice:
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BLOCKS Row * Column

TREATMENTS T1 + T2

7. Implications for Genstat Users and for Genstat Itself

Before writing this paper, I had not explored the use of ANOVA for the designs that I have been
discussing, was uncertain of its suitability for them, and - despite much experience of ANOVA -
was still hazy about its handling of non-orthogonality amongst treatment factors. Now that the
computing is complete, I find that ANOVA is an effective tool for providing the required analyses,
and that the designs in question are very useful for illustrating how ANOVA handles balanced
non-orthogonalities. There are, however, implications for Genstat users and for Genstat itself.
(Almost identical considerations apply to the analysis of balanced change-over designs for the
estimation of direct and residual effects.)

The implications all arise from the sequential fitting of the treatment terms in ANOVA. Except
where there is adjusted orthogonality between these terms, recognition of the sequential fitting is
crucial to correct interpretation of (a) the analysis of variance table, (b) the infonnation
summary, and (c) the tables of means. Of these three components of the output (as obtained
from the version of Genstat 5 that I was using in the surmner of 1987), only the information
summary provides an implicit warning of problems of interpretation. This warning may well pass
imrecognized by a user who is not well trained in statistics, and it does not indicate how the sums
of squares and tables of means are calculated; the unsophisticated user may well be unaware of
how a sum of squares depends on the sequence of fitting. So further annotation of the ANOVA
output is needed to provide reasonable precautions against misinterpretation. (The Genstat 5
Manual indicates with great clarity that the fitting is sequential, but output is often used
independently of the Manual.)

When I considered the analogous problem with non-orthogonal multiple-regression analyses
[9, p. 37], I suggested printing messages such as

EACH SUM OF SQUARES CALCULATED

AFTER FITTING ALL TERMS ABOVE IT

with all analysis of variance tables to which they apply. Any modified such wording for analyses
with more than one stratum would however be cumbersome, and the best expedient might be
merely to print the symbol + at the start of each treatment line in the analysis, as in accumulated
analyses of variance from the regression part of GenstaL This special printing could be triggered
easily whenever the calculations for the information summary detect non-orthogonality between
any treatment terms. An additional desirable feature would be a printed indication of any
within-stratum aliasing such as occurs in the Block stratum of the analysis of design (5) above.

The correspondence of the printed efficiency factors and tabulated means to steps of a sequential
process could perhaps best be signalled by the amplified headings:

***** Information summary (model terms fitted secpaentially) *****

and

***** Tables of means (model terms fitted sequentially) *****

These precautions apart, a user who regularly analyses designs of the types in question might well
be best served by a Genstat Procedure whose output is assembled from ANOVA having the
required different sequences for the treatment terms. The Procedure could then print (a) an
analysis of variance table where each sum of squares for a treatment terai was calculated after
fitting all other treatment terms, (b) an information summary where each efficiency factor is for
the corresponding term when fitted last, and (c) tables of means that are all adjusted for all other
treatment factors.
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An Index for Genstat Newsletters 1-21

SJWelham

Rothamsted Experimental Station
Harpenden
Hertfordshire
United Kingdom AL5 2JQ

Introduction

The following index includes all articles (excepting editorials) running from the first issue of the
Genstat Newsletter in December 1975 up to the presem. It is written in three parts:
- the first section indexes all articles by author,
- the second categorises articles by subject, and
- the third lists all macros and procedures discussed in the Newsletter.

Specifically, the first section orders articles alphabetically by authors, and chronologically within
authors. Any piece produced by joint authors appears under each author. There are also two
columns of numbers associated with the articles: the first column numbers articles from 1 to 188,
and thus identifies articles for use with the other parts of the index. In order that each piece has
a unique number, those articles with more than one author are numbered under the main author
(as credited in the Newsletter). The second column indicates the situation of the article in the
series: [x.y] labels a piece as Newsletter x. Article y.

The second section lists the identifying numbers of articles under certain subject areas, and so
indicates where articles in specific areas may be found.

The third section lists alphabetically all macros and procedures mentioned by name in any article,
together with the identifying number(s) of the piece(s). It should be noted that not all of these
articles include a listing of the procedure (although many do), and some give only a general
description.

1. Index by Author

1  [19.03] Ainsley, A.E., Digby, P.G.N., Harding, S.A., Lane, P.W., Payne, R.W. and
Simpson, H.R.
Conversion fiom Genstat 4 to Genstat 5.

2  [18.04] Altham, P.M.E.

Graphical Representations of Multivariate Binary Data.
3  [1.03] Alvey, N.

Converting Dates of the Month to Days of the Year.
4  [1.05] Alvey, N. i

Lagging Variates. '
5  [2.02] Alvey, N.

Links with Other Programs.
6  [3.07] Alvey, N. and Tett, P.

New Facilities for Genstat 3.09 - Basic Data Operations.
7  [5.03] Alvey, N. and Payne, R.W.

Hints on the Use of Genstat - Analysis of Covariance for Each Level of a Factor
8  [6.05] Alvey, N.

New Table Functions in calculate.

9  [15.06] Alvey, N.
Drawing Bar Charts.

10 [6.01] Anon.
Changes in Release 4.03.
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11 [12.04] Appleby, P.N.
Savage's Log-Rank Test

12 [18.06] Arnold. G.M.

A Generalised Procrustes Macro for Sensory Analysis.
13 [9.08] Astier, R.

Post-Graduate Use of Genstat.

14 [10.09] Atkinson, J.

Genstat and Prime GPL.

15 [16.02] Atkinson, J.
A SIR/Genstat Interface.

16 [5.03] Baines, C.
Hints on the Use of Genstat — Orthogonal Polynomials.

17 [19.04] Baird, D.B.
A Genstat 5 Procedure for a First Difference Analysis.

18 [3.07] Banfield, C.
New Facilities for Genstat 3.09 - Multivariate Analysis

19 [4.02] Banfield, C.
New Library Macros — Multivariate Analysis of Variance

20 [4.02] Banfield, C.
New Library Macros - Starting Classification.

21 [5.02] Banfield, C.

New Library Macros.
22 [8.11] Barnard,!.

Duncan's Multiple Range Test
23 [10.07] Barnard, J. and Norelli, J.

A Regression Model for Genotypical Stability.
24 [12.05] Barnard, J.

Canonical Analysis of a Response Surface.
[6.06] Bassill, L., Digby, P.G.N. and McLaren, N.

New Library Macros.
[3.01] Bell, G. and MiUer, B.G.

Random Sampling of a Data Matrix.
25 [9.06] van den Bol, M.E.

The Use of Genstat at IWIS-TNO.

26 [20.03] van den Bol, M.E.

The Analysis of a Mixed Model.
27 [13.03] Bouvier, A.

Interfacing Genstat and a Database Management System.
28 [15.09] Bouvier, A.

Some Uses of the own Directive: Interfaces Between Genstat and Other Packages
and Interruption of Gbnstat Sessions.

29 [8.12] ter Braak, C.J.F.
Dummy Covariates in Genstat

30 [21.03] Brown, D., Marrs, R.W. and Walters, D.E.
A Genstat 5 Procedure for Robust Pairwise Comparisons in a One-way Design.

31 [8.08] Bryan-Jones, J.
Simply Reading Data.

32 [9.03] Bryan-Jones, J.
Genstat Macro Library

33 [9.10] Bryan-Jones, J.
A Conversational Approach to Using Genstat.

34 [11.03] Bryan-Jones, J.
The Genstat Macro Library.
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35 [17.08]

36 [17.11]

37 [12.06]

38 [17.10]

39 [13.04]

40 [9.12]

41 [6.06]

42 [7.03]

43 [7.05]

44 [7.09]

45 [8.03]

[8.15]

46 [10.08]

47 [11.09]

48 [11.10]

49 [12.07]

50 [14.06]

51 [14.07]

[15.07]

[19.03]

[20.06]

[11.04]

52 [11.05]

53 [14.04]

[21.02]

Bryan-Jones, J.
Case Study - a Fortran Influence.
Bryan-Jones, J.
The Genstat Macro Library.
Cole, T.J.

Indirect Calorimetry Analysed Using Genstat.
Coursol, J.

Genstat 4.03E.

Derobert, E.

Utilisation de Genstat pour les TYaitment de Statistique de Donnees Fromageres.
Dickson, J. and Hunter, E.A.
Displaying Residuals.
Digby, P.G.N., Bassill, L. and McLaren, N.
New Library Macros.
Digby, P.G.N.
Principal Coordinate Analysis of Grouped Data.
Digby, P.G.N.
Avoiding VA 18.
Digby, P.G.N.
Line Spacing with print.
Digby, P.G.N.
Reply to letter - Problems with pcp in Genstat.
Digby, P.G.N. and Harding, S.A.
The INDSCAL Macro.

Digby, P.G.N.
Non-Hierarchical Classification - classify (and classf).
Digby, P.G.N.
Processing the Results of Multivariate Analysis.
Digby, P.G.N.
Plotting Variables in Pairs.
Digby, P.G.N. and Harding, S.A.
Rationalising the Macros for Multivariate Analysis.
Digby, P.G.N.
Dendograms and Ziggurats.
Digby, P.G.N.
Drawing Pretty Dendograms.
Digby, P.G.N. and Lane, P.W.
Linkhig Fortran Subprograms into Genstat.
Digby, P.G.N., Ainsley, A.E., Harding, S.A., Lane, P.W., Payne, R.W. and
Simpson, H.R. ,
Conversion fijom Geiistat 4 to Genstat 5.

Digby, P.G.N. and Payne, R.W.
Genstat 5 FVocedurc Library: Instructions for Authors.
Dixon, T.J. and Payne, R.W.
The Analysis of Experiments with Repeated Measures.
Dixon, T.J. and Payne, R.W.
Macro repmeas.

Dixon, T.J.

Genstat — An Easier Way to Learn.
Downs, A.M., Heisterkamp, S.H., Jager, J.C. and van Druten, J.A.M.
Use of Genstat in the Estimation of Expected Numbers of AIDS Cases Adjusted
for Reporting Delays.

|C1P|

Page 48



Genstat Newsletter No. 21

[21.02] van Druten, Heisterkamp, S.H., Jager, J.C. and Downs, A.M.
Use of Genstat in the Estimation of Expected Numbers of AIDS Cases Adjusted
for Reporting Delays.

54 [7.10] Edwards, D.G.

The Anderson-Darling Test for Normality.
55 [8.06] Edwards, D.G.

The Analysis of Square Tables.
56 [16.08] Engel, U. and Thomsen, L.K.

An Enquiry into the Relation of Accident Numbers to Traffic How and Vehicle
Speeds.

57 [13.05] Fenlon, J.

Some Considerations in Choosing a Package for a Multi-Functional Organisation.
58 [20.04] Fenlon, J.

The Use of Genstat as a Data Organiser for Long-Season Data.
[16.07] Fincham, J., Jagger, G. and Whinney, K.A.

The Testing of Anti-Dandruff Shampoos — An Application of Genstat.
59 [14.08] Fingleton, B.

Using Genstat to Fit Complex Association Models to Contingency Tables.
[8.02] Franks, C.R. and Sparrow, P.E.

Letter - Problems with pcp in Genstat.

60 [6.07] Freeman, G.

Report on Genstat Conference, Cambridge, April 1979.
[15.10] Gilson, D. and Sherington, J.

Efficient Performance of Genstat on a VAX.

[12.08] Gough, R. and Martin, K.J.
New facilities for graph in version 4.04.

61 [15.05] Gough, R.
Understanding Common Eiror Messages in Genstat.

62 [5.03] Gower, J.C.

Hints on the Use of Genstat - Controlling Printing in Macros.
63 [6.08] Gower, J.C.

Coimting over TYiangular Arrays.
64 [14.03] Gower, J.C.

Genstat - The Future.

65 [8.15] Harding, S.A. and Digby, P.G.N.
The INDSCAL Macro.

[12.08] Harding, S.A. and Digby, P.G.N.
Rationalising the Macros for Multivariate Analysis.

[19.03] Harding, S.A., Ainsley, A.E., Digby, P.G.N., Lane, P.W., Payne, R.W. and
Simpson, H.R.
Conversion from Genstat 4 to Genstat 5.

66 [6.09] Hardwick, R.

A Smoothing Technique for use with contour.
67 [21.02] Heisterkamp, S.H., Jager, J.C., van Druten, J.A.M. and Downs, A.M.

Use of Genstat in the Estimation of Expected Numbers of AIDS Cases Adjusted
for Reporting Delays.

68 [12.02] House, F.R.
Letter (Comments on Article [11.07]).

69 [13.02] House, F.R.
Letter (Comments on macro repmeas).

70 [8.09] Howes, C.W.
Genstat - A Statistical Program for the General Scientific Community.
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[9.12] Hunter, E.A. and Dickson, J.
Displaying Residuals.

[8.10] Hurley, M. and TYinnicliffe Wilson, G.
Spectral Analysis.

pan

[20.07] lies, R.M.J., Lane, P.W. and Nelder, J.A.
Accessing the NAG Fortran Library from Within Genstat and Other Ways of
Extending Genstat.

[21.02] Jager, J.C., Heisteikamp, S.H., van Druten, J.A.M. and Downs, A.M.
Use of Genstat in the Estimation of Expected Numbers of AIDS Cases Adjusted
for Reporting Delays.

71 [16.07] Jagger, G., Whinney, K.A. and Fincham, J.
pan

The Testing of Anti-Dandruff Shampoos - An Application of Genstat.
72 [21.04] Jansen, J.

Experiences with the Use of Genstat Regression Facilities when Fitting
Extensions of Generalised Linear Models.

73 [9.04] John, J.A.

The Second Genstat Conference, Wageningen 1981 October 7-9. fon

74 [13.11] Keen, B.

Modelling in Genstat
75 [16.06] Kempson, R.E.

A Genstat Program for General Block Designs.
76 [7.04] Keuls, M., Koops, W.J. and Thissen, J.T.N.M.

Hidden Connectedness and Analysis of Variance.
77 [8.13] Kiiby, E.J.M.

Why I Like Genstat
[7.04] Koops, W.J., Keuls, M. and Thissen, J.T.N.M.

Hidden Connectedness and Analysis of Variance.
78 [2.08] Lane, P.W.

New Regression Facilities.
79 [3.07] Lane, P.W.

New Facilities for Genstat 3.09 - Regression. '

80 [4.02] Lane, P.W.

New Library Macros - Generalised Linear Models.
81 [4.02] Lane, P.W.

New Library Macros - Probit Analysis.
82 [4.02] Lane, P.W. pw

New Library Macros - Censored Data.
83 [5.01] Lane, P.W.

Some Changes in Release 4.02 - Changes to Regression Facilities.
84 [5.03] Lane, P.W.

Hints on the Use of Genstat - Using the for Directive.
85 [8.14] Lane, P.W.

New Genstat Books and Foreign Language Manuals.
86 [9.07] Lane, P.W.

Making Predictions from a Regression Model.
87 [9.11] Lane, P.W.

Absorption - A Method for Fitting Models with Many Parameters.
88 [9.13] Lane, P.W. iwn

How to Print Structure Identifiers Without their Values.

89 [10.03] Lane, P.W., Payne, R.W. and Simpson, H.R.
Genstat 4.04.

90 [10.04] Lane, P.W. and Todd, A.D.

Backing Store Changes in Genstat 4.04.
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91 [10.05] Lane, P.W.

The HELP Directive.

92 [12.10] Lane, P.W.

A Conversational Interface for Genstat Mark 5.

93 [15.07] Lane, P.W. and Digby, P.G.N.
Linking Fortran Subprograms into Genstat.

[19.03] Lane, P.W., Ainsley, A.E., Digby, P.G.N., Harding, S.A., Payne, R.W. and
Simpson, H.R.
Conversion from Genstat 4 to Genstat 5.

94 [20.07] Lane, P.W., Res, R.M.J. and Nelder, J.A.

Accessing the NAG Fortran Library from Within Genstat and Other Ways of
Extending Genstat.

95 [2.07] Leech, F.B.

Macros for Regression in Tables (treg and sreg).
96 [6.13] Leech, P.

Some notes on restrict.

97 [13.06] Lesquoy, E.
Teaching Genstat to Non Statisticians.

[21.03] Marrs, R.W., Brown, D. and Walters, D.E.

A Genstat 5 Procedure for Robust Pairwise Comparisons in a One-way Design.
98 [12.08] Martin, K.J. and Gough, R.

New facilities for graph in version 4.04.

99 [11.06] Matthews, J.N.S.
'  1

Regression Diagnostics in Genstat.
100 [17.02] Matthews, J.N.S.

Fitting a WeibuU Distribution and Obtaining Corrected Standard Errors for the
Parameter Estimates.

101 [7.08] Maude, G.H.

Some Notes on the Printing of Data.
102 [3.03] McFie, H.

Plotting Points Relative to Canonical Axes.
103 [3.04] McFie, H.

Avoiding Empty Cells in anova Output.
104 [3.05] McFie, H.

Correcting for Rounding Error when Fonning Generalised Inverses of Symmetric
Matrices.

[6.06] McLaren, N., Digby, P.G.N. and Bassill, L.
New Library Macros.

105 [3.01] Miller, B.G. and Bell, G.

Random Sampling of a Data Matrix.
106 [7.06] Morris, G.E.L.

m Histograms.
107 [13.09] Morris, G.E.L.

Use of the New Genstat Graph Facilities in the Analysis of Data from Plant
Weight-Density Studies.

108 [15.03] Murray, A.W.A.
Fitting Exponential or Weibull Distributions to Survival Data.

f*i
109 [17.04] Murray, A.W.A.

A Program for Routine Analysis of Cereal Nitrogen Response Data.
110 [16.04] Nam, N. Ky

Page 51



Genstat Newsletter No. 21

111 [8.05

112 [14.05

[20.07

[10.07

113 [17.03

114 [1.06

115 [3.07

116 [4.02

[5.03

[10.03

117 [11.04

[11.05

118 [12.09

[19.03

119 [20.06

120 [6.02

121 [1.01

122 [1.02

123 [12.11

[9.05

124 [2.01

125 [13.08

[17.09

126 [2.03

Nelder, J.A.

The Manipulation of Multi-way Tables in Genstat.
Nelder, J.A.

Genstat: Origins and I*rospects.
Nelder, J.A. , Lane, P.W. and lies, R.M.J.

Accessing the NAG Fortran Library from Within Genstat and Other Ways of
Extending Genstat.
Norelli, J. and Barnard, J.

A Regression Model for Genotypical Stability.
Nunn, P.A.

Fitting and Assessing a Non-Linear Response Curve with Genstat.
Payne, R.W.
Partial Aliasing and Confounding.
Payne, R.W.
New Facilities for Genstat 3.09 - Analysis of Designed Experiments.
Payne, R.W.
New Library Macros - Aliased Model Temis in anova.
Payne, R.W. and Alvey, N.
Hints on the Use of Genstat - Analysis of Covariance for Each Level of a Factor.
Payne, R.W., Lane, P.W. and Simpson, H.R.
Genstat 4.04.

Payne, R.W. and Dixon, T.J.
The Analysis of Experiments with Repeated Measures.
Payne, R.W. and Dixon, T.J.
Macro repmeas.

Payne, R.W.
Plans for Genstat Mark 5.

Payne, R.W., Ainsley, A.E., Digby, P.G.N., Harding, S.A., Lane, P.W. and
Simpson, H.R.
Conversion from Genstat 4 to Genstat 5.

Payne, R.W. and Digby, P.G.N.
Genstat 5 Procedure Library: Instructions for Authors.
Pearlman, J.

Addition of Time Series Facility.
Phelps, K.
'Between and Within Groups' Analysis of Variance.
Phelps, K.
The Beauties of join.

Philipe, 0.
Essai de Modelisation des Relations Rendement-Fteuplement Epis de Bles
d'Hiver.

PhiUips, P. and Thompson, R.
Combination of Information from Different Strata.

Pilcher, C.

Genstat at East Mailing Research Station.
Pistone, G. and Repetto, I.
Teaching Genstat to Undergraduate Students in Applied Mathematics in the
University of Genoa, Italy.
Pons, O. and de Hirctheim-Lesquoy, E.
Modelling the Feeding Pattem of Rabbits with Cox's Regression Model.
Potter, F.

Setting Values Missing.
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127 [17.05] Poultney, R.F.A. and Riley, J. .
A Genstat Macro for the Bivariate Analysis of Intercropping Data.

128 [13.10] Preece, D.A.
Genstat Analysis of Variance and the Distant Qient.

129 [17.06] Preece, D.A.

The Use of Pseudo-Factors when Treatments were Superimposed in an Orchard
Experiment.

130 [19.05] Preece, D.A.

The Use of Pseudo-Factors for a Balanced 6x6 Row-and-Column Design for Nine
Treatments.

131 [21.05] Prcece, D.A.
Genstat Analyses for Complex Balanced Designs with Non-interacting Factors.

[13.08] Repetto, I. and Pistone, G.
Teaching Genstat to Undergraduate Students in Applied Mathematics in the
University of Genoa, Italy.

132 [7.02] Richardson, M.G. and Simpson, H.R.
Status Report (March 1981).

133 [8.04] Richardson, M.G. and Simpson, H.R.
Status Report (September 1981).

134 [9.02] Richardson, M.G. and Simpson, H.R.
Status Report (March 1982).

135 [10.02] Richardson, M.G. and Simpson, H.R.
Genstat 4.03 Status Report.

136 [11.02] Richardson, M.G. and Simpson, H.R.
Status Report (March 1983).

137 [14.02] Richardson, M.G. and Simpson, H.R.
Status Report (October 1984).

138 [17.07] Richardson, M.G.

Survey of Genstat Users - Preliminary Report.
139 [18.03] Richardson, M.G.

Survey of Genstat Users.
140 [20.05] Ridout,M.S.

Prediction on the Scale of the Linear Rredictor for Generalised Linear Models.

141 [15.04] RUey,J.
Genstat by Post

142 [16.05] Riley, J.
A Genstat Analysis for Intercropping Stability.

[17.05] Riley, J. and Poulmey, R.F.A.
A Genstat Macro for the Bivariate Analysis of Intercropping Data.

143 [18.07] Rogers, C.A.
A Genstat Macro for Partial Least Squares Analysis with Cross-Validation
Assessment of Model Dimensionality.

144 [4.01] Ross, G.J.S.

Optimisation in Genstat.
145 [11.08] Ross, G.J.S.

Fitting General Models with optimise.
146 [15.02] Shea, B.L.

Letter - The Role of a Subroutine Library for Statisticians.
147 [15.10] Sherington, J. and Gilson, D.

Efficient Performance of Genstat on a VAX.

148 [3.06] Shih, TJM. and Whittaker, J.
A Genstat Program for the Iterative Scaling Algorithm.
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149 [1.04] Simpson, H.R.
The Secondary Output Channel in Genstat.

150 [2.04] Simpson, H.R.
Termination Codes. ^

151 [2.05] Simpson, H.R.
Text Indicator.

152 [2.06] Simpson, H.R.
Restricting the Unrestrictable.

153 [3.02] Simpson, H.R.
Directory Full!

154 [3.07] Simpson, H.R.
New Facilities for Genstat 3.09 — Syntax and Program Structure.

155 [5.03] Simpson, H.R.
Hints on the use of Genstat - Restricting the Unrestrictable - again.

156 [6.11] Simpson, H.R.
Inconsistency - or Things Ain't What They Seem to Be.

[7.02] Simpson, H.R. and Richardson, M.G.
Status Report (March 1981).

157 [7.07] Simpson, H.R.
When READ fails...

[8.04] Simpson, H.R. and Richardson, M.G.
Status Report (September 1981).

158 [8.07] Simpson, H.R.
Comment - Points of General Interest to Macro Writers.

159 [8.16] Simpson, H.R.
Genstat Error Notice S1020.

[9.02] Simpson, H.R. and Richardson, M.G.
Status Report (March 1982).

160 [9.14] Simpson, H.R.
Genstat Error Notice S2010.

[10.02] Simpson, H.R. and Richardson, M.G.
Genstat 4.03 Status Report

[10.03] Simpson, H.R., Lane, P.W. and Payne, R.W.
Genstat 4.04.

161 [10.10] Simpson, H.R.
Genstat Error Notice S3010. ^

[11.02] Simpson, H.R. and Richardson, M.G.
Status Report (March 1983).

162 [11.11] Simpson, H.R.
Genstat Error Notice S4010.

[14.02] Simpson, H.R. and Richardson, M.G.
Status Report (October 1984).

163 [14.09] Simpson, H.R.
Manual and Notice Board Amendments.

164 [16.09] Simpson, H.R.
Macro Library, Manual and Notice Board Amendments.

[19.03] Simpson, H.R., Ainsley, A.E., Digby, P.G.N., Harding, S.A., Lane, P.W. and
Payne, R.W.
Conversion from Genstat 4 to Genstat 5.

165 [8.02] Sparrow, P.E. and Franks, C.R.
Letter - Problems with pcp in Genstat.

166 [11.07] Stevens, G.V.
Box-Cox Transformation.
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168 [12.12]

169 [20.02]

[3.07]

[7.04]

170 [16.03]

171 [9.05]

172 [10.06]

173 [12.13]

174 [13.12]

[16.08]

[13.12]

175 [5.01]

176 [6.10]

177 [6.12]

178 [6.14]

[10.04]

179 [17.12]

180 [8.10]

181 [18.05]

182 [17.09]

183 [15.08]

[21.03]

184 [6.03]

185 [6.04]
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Stevens, G.V.

Reply to letter [12.02].
Talbot, H.

How Steep is the Genstat Learning Curve?
Talbot. H.

Changing from Genstat 4 to Genstat 5.
Tett, P. and Alvey, N.
New Facilities for Genstat 3.09 - Basic Data Operations.
Thissen, J.T.N.M., Keuls, M. and Koops, W.J.
Hidden Connectedness and Analysis of Variance.
Thompson, C.J.
Genstat in New Zealand.

Thompson, R. and Phillips, P.
Combination of Information from Different Strata.

Thompson, R.
Diallel Crosses, Partially Balanced Incomplete Block Designs with Triangular
Association Schemes and Rectangular Lattices.
Thompson, R.
Multiple copies, the Genstat Analysis of Variance and Neighbour Analyses.
Thomsen, L.K. and Thyregod, P.
Poisson Models for the Analysis of Road Traffic Accidents.
Thomsen, L.K. and Engel, U.
An Enquiry into the Relation of Accident Numbers to Traffic Flow and Vehicle
Speeds.
Thyregod, P. and Thomsen, L.K.
Poisson Models for the Analysis of Road Traffic Accidents.
Todd, A.D.

Some Changes in Release 4.02 - Small Userfiles.
Todd, A.D.

Simple TYansfer of Data Structures to Disc and Magnetic Tape.
Todd, A.D.

The Saving of Punching and Programming Time in the Analysis of Experiments.
Todd, A.D.

Suggested Changes to Backing Store.
Todd, A.D. and Lane, P.W.
Backing Store Changes in Genstat 4.04.
Trinder, K.I.

Genstat and Workstations.

Thnnicliffe Wilson, G. and Hurley, M.
Spectral Analysis.
Thnnicliffe Wilson, G.
The Finite Fourier TVansfoim.

de Hirckheim-Lesquoy, E. and Pons, O.
Modelling the Feeding Pattern of Rabbits with Cox's Regression Model.,
Underhill, L.G.

An Implementation of the Genstat own Directive.
Walters, D.E., Brown, D. and Marrs, R.W.
A Genstat 5 Procedure for Robust Pairwise Comparisons in a One-way Design.
Watson, S.

A New Directive for Drawing Histograms.
Watson, S.

Smooth Lines in graph.
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186 [13.07] Weekes, A.J.
Teaching Applied Statistics with Genstat in the University of York.

[16.07] Whinney, K.A., Jagger, G. and Fincham, J.
The Testing of Anti-Dandruff Shampoos - An Application of Genstat. ^

[3.06] Whittaker, J. and Shih, T.M.
A Genstat Program for the Iterative Scaling Algorithm.

187 [9.09] Wilkin, J.
Genstat in a CNAA Degree.

188 [19.02] Williams, E.R.

Genstat 4.03E in China.

2. Index by Subject

The Genstat Language and Syntax:
43, 61, 84, 85, 91, 150, 151, 153, 154, 156, 177

Input and Output:
31, 44, 62, 88, 90, 101, 149, 151, 152, 157, 175, 176, 177, 178

Data Handling:
3, 4, 6, 8, 63, 96, 104, 111, 122, 126, 152, 155

Graphical Display:
2, 9, 48, 50, 51, 66, 98, 102, 106, 107, 184, 185

Regression and General Model Fitting: ^
16, 23, 24, 39, 40, 55, 56, 59, 67, 72, 74, 78, 79, 80, 83, 86, 95, 99, 100, 108, 109, 113,
123, 140, 142, 144, 145, 148, 174, 182

Analysis of Designed Experiments:
7,22, 26,29, 30,40, 52, 69, 71,74, 75,76, 82, 87,103,109, 110,114,115,116,117, 121,
127, 128, 129, 130, 131, 171, 172, 173

Multivariate Analysis: ^
2, 12, 18, 19, 20, 21, 41, 42, 45, 46, 47, 48, 49, 50, 51, 65, 102, 143, 165

Time Series Analysis:
120, 180, 181

Extending Genstat:
28, 93, 94, 183

General Information on Macros and Procedures:

19, 20, 21, 32, 34, 36, 41, 49, 62. 80, 81, 82, 116, 119, 158

Conference Reports:
60, 73

Teaching with Genstat:
13, 53, 97, 125, 168, 186, 187

User Experiences of Genstat:
25, 35, 57, 58, 70, 77, 110, 124, 128, 138, 139, 141, 147, 169, 170, 188

Genstat and Other Programs:
5, 14, 15, 27, 28

Plans for Genstat: ^
33,64,78,92,118,178

prt)
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Information on Genstat Releases:

1, 6, 8, 10, 18, 38, 78, 79, 83, 89, 90, 91, 98, 115, 120, 132, 133, 134, 135, 136, 137, 154,
159, 160, 161, 162, 163, 164, 175, 179, 184, 185

Genstat 5:

1, 17, 30, 72, 92, 94, 118, 119, 130, 131, 140, 169

3. Index of Macros and Procedures

ALIAS 116 GGPLOT 166
ALLOCATE 21 GLMODEL 80

ANOVAR 75 GPA 12

APPEND 9 GPROCLAB 41

ASYMANAL 21 GPROCPLT 41

BARCHART 9 INDSCAL 41,65
BCD1ST 42,49 JACKNIFE 21

BIPLOTV 41 KUIPER 75

BIVAR 127 HISTOG 106

BROWNE 41 LEXPDECL 109

BTRAN 140 LEXPOUT 109

BWGDANAL 49 LGAM 108

CALENV 99 LOGRANK 11

CENSOR 82 MANOVA 19

CLASSF 20,46 MISALLOG 21

CLASSIFY 20,46 MISALLOP 21

CNPPAR 166 MODSET 166

COJACK 99 NAGHELP 94

CONVERT 140 NLR 49

CORRESP 21 NORMAL 54

CVAID 21 NPARMACS 41

CVAOPT 49 ONEWAY 30

CVAPLOT 49 PASSIN 166

CVAPRINT 49 PEARCE 75

CVASCOR 49 PERMLEV 41

D1 55 PLS 143

D23 55 POWERT 166

D3PL0T 21 PRT 100

DECLARE 75 RDISPLAY 40

DESIGN 75 READDATA 31

DIAGNOSE 99 REPMEAS 52, 69

DIFFERENTIATE 94 RESMAT 75

DOREV 123 RSCA 24

DPRIN 166 RYL 166

DSQUARE 21 i SED 140

DMRT 22 ^ SELECT2 37

DMRT2 22 SELECTl 37

EQLSFIT 140 SPECTRUM 180

ERFIT 23 SQUARE 55

ERINDEX 23 SREG 95

ERPLOT 23 SVD3 41, 65
FDIFF 17 TABDIST 49

FIELLER 81 TREG 95

FITFD 17 TWOPAR 166

GENPROC 12 WEIBULL 100

GGNA 166 ZIGORD 50
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