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Editorial

It is with deepest regret that the editors must report the death of Pete Digby following a fall at his home in
Harpenden. Pete joined Rothamsted in 1979 from the AFRC Unit of Statistics at Edinburgh to take over the
development of the multivariate section of Genstat. He also contributed to the design of Genstat 5 and to its
Procedure Library. Pete was involved in the general scientific research programme at Rothamsted and will be
remembered for his innovative use of multivariate techniques, for example in the analysis of oil-seed data and
in his book "Multivariate Analysis of Ecological Communities” (with Rob Kempton). His friends will also
remember his out-of-work interests in photography and cricket. In recent years Pete suffered from epilepsy and
this may have been a factor in his fall. Pete’s lively contributions at Genstat conferences will be greatly missed,
as will his contribution to Genstat generally.

This issue of the Newsletter is the second from the new editorial team, and the editors would like at this point
to describe once again the kind of articles accepted for publication in Genstat Newsletters. Many Newsletter
articles are written by the Genstat developers, to describe the uses of new Genstat facilities and procedures, but
the editors are also keen to receive papers from users who have found interesting and innovative applications
for the Genstat system. The Genstat Newsletter is for all Genstat users, hence papers are welcomed from any
users who have ideas and / or procedures they wish to share. In the first instance, papers should be directed to
Sue Welham of Rothamsted Experimental Station.

Included with this issue is the first call for papers for the Ninth International Conference of Genstat Users, which
is to be held in Dublin in July 1995. Full details and addresses can be found on the enclosed flyer. A convenient
index of directives and associated manual reference pages is also enclosed, which is designed to fit inside the
Genstat Manual cover, to provide a quick user reference.

Another helping of Genstat Talk is provided, together with the usual details on how to join the Genstat
electronic discussion list. A broad selection of topics are dealt with by the articles in this issue, beginning in
earnest with an overview of some of the recent developments in descriptive multivariate analysis, followed by
a paper concerning the use of Genstat in developing a taxonomic classification from ribosomal DNA sequences.

Next comes a discussion of how the new Genstat procedures JACKNIFE and BOOTSRAP can be used in forming
jacknife and bootstrap estimates for any statistic that can be calculated in Genstat. Two involved articles then
follow, dealing firstly with the superimposition of Youden squares and efficiency factors, and secondly with the
solving of the depletion equation in Genstat using inverse nonlinear regression and the FITNONLINEAR directive.

Continuing from a topic introduced in Newsletter 30, this issue describes two new interfaces for the Genstat
system. The first, RUNGEN, provides a user-friendly interface to writing Genstat programs for non-statisticians
and also offers facilities which simplify the input of spreadsheet data. The second discusses an interface between
Genstat and the Brief editor on a PC.

The final article in this issue introduces a Genstat procedure to calculate a kappa coefficient of agreement for
nominally scaled data. As usual, the code for this and any other procedure appearing in any Genstat Newsletter
will be posted on the NAG bulletin board.
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April 1994, summarized and edited

" SUBSCRIBE Genstat firs
‘to the address:’ LISTSERV@IB RLAC.UK S ’ o '
“The opinions expressed here are not necessarily endorsed by. enher NAG ‘or: Rothamsted and statements

" may- not have ‘been checked: for ‘accuracy. ' However, members ﬂxe Genstat development team and of -
+NAG’s Statxsucs Secnon are. contnbutors to the d:scussxon

largest value in a symmelnc matnx" o
' tjcl @phoemx. cambndge ac ulc :

'convertmg to ‘row and oolumn,
: followmg soluuon 1s not

code ‘were: supphed to. ptov:de
“row and-column index vectors
“rod@tui.marc.cri.nz;.anon; and s
: mth butler@aﬁc.ac uk

: zan.wakelmg@aﬁ'c.ac uk R
“Reply: T have. transferred both PostSenpt and
'HPGL files from Genstat to' WordPerfect on a'PC :
with no problems. You probably: need to transfer -
them as binary or data files (not as textor ASCID). | | ; :
Usually I use one file per diagram otherwise the In Release 3.2 space-saving measures will be
‘wordprocessor gets confused. ‘I ‘prefer ' HPGL "unplemuted 10 avoid including unnecessary rows -
‘because I can see them when mside WordPerfect ] in the mixed model equations.

peteb @pmspect.anprod csiro.au . o | | Sue We’h“"‘ @“f" c.ac.uk




Genstat Newsletter 31

f%leverage in a. GLM."
: peter lane @afrc ac.uk

shspated@readmg -ac. uk
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Predlctlons from ordmal models

' Query° 1 have applied the- ORDINALLOGISTIC
procedure to a data set on the. reproductive success .
“of ‘swifts, but I .cannot interpretthe. resulting

parameter estimates. How do 1 get the predicted -

__probabilities for each category derived: from the
- model? -
David Thomson

- Reply: We-have written. up an mterpretauon of 1"
- the procedure output mcludmg both'the equatxons .

i relatmg the cumulative : probablhues

“covariates:and: the ‘probabilities of belonging to:a -
»:; partwular category We would be happy to fax -

_youacopy. .
consstat@dunus.anu.edu.au L =

 Estimates for ARIMA models

Query B & have used Genstat and another package :

. results are suffxctently dxﬂ’erent 1o make me :

g wonder which results ‘to’ use. For- example,

-autoregression: coefﬁcxent -of 0.88 :with:s.e. 0. 098
‘from Genstat.compared with 0.70:from:the other -
P ackage The :other package uses Yule-Walker -
uations for ‘the fitting, .and in"‘Genstat: 1-have -
-used the-exact setting. Is:the. dxfferenoe in ﬁtung;"

~methods enough to expl

i Jeff@canopy.biom.csiro.au.

“Reply: The dtfferenoe between the -exact .
“likelihood estimate of (.88 and the Yule—Walker
‘estimate -of 0.70 is.almost. oertamly due to ‘the

there other differences I néed to: take account Of"j

el ‘.:,Co‘mbi‘nek.fﬁ'om N

Query: I'am looking for a fast Genstat program, -
preferably with few loops, to generate all subsets
. of 'size R from N things. - : : 1

pW. goedhart@glw.agro nl

evaluates all combinations of size R from the set -
{1..N). Tt:is very fast, but uses:a lot of space for
large. ‘R (order N®). This is OK for small R but
:may be prohibxuve For ‘suitable N and R this
- method may be preferable to an algorithm- whnch;
" runs:in less ‘space but :more time. :

=PROC:* combnr’:

~ PARAM *N',"R’,10UT’; \

TYPE=’: ecal' rgcal’,'poin’
~CALC nr ‘= N**R &1 = R=1

. .“PACTOR [nr, LEVRN] f(1...R]
. :GENERATE £[)
?CALC 1t[1...r1] AN\

£l ..r1]<£[2...Rl
-~ "RESTRICT:£(); \ - I
LTV SOM{1t) JEQ.xT; SAVEI:BB
MATRIX {ss; ‘R) x -
‘:CALC x$[{*; 1...Rl = \
V.. RIS e8] '

‘& nout: = NVAL(ss)

" 'VARIATE: [R] OUT[1...nout]

. EQUATE x; -0UT
' zm)pnoo

qnon

e Reply 2 Here is a2 less ‘demanding, but less
:general solution -to- the -procedure, usmg loops.
Thls example solves for N=6.and. R—3 e

" SCALAR [VALH:H ‘ i

FOR'K1=1..:4"

"CALC k11 = k1+1
'FOR k2=k11...5
CALC k21 = k2+1
"POR k3=k21...6
- "CALC %[1i) = 1(k1,k2,k3)

-difference ‘in ‘method. Genstat .should give you & do= it
“Yule-Walker estimates: if you use ‘the 'FTsSM | | ENDFOR & & .
“directive to form - preliminary -estimates of the «ﬁ”’f"?f!’?ﬁ?‘”"%‘?é’@“'
# | parameters: 'Ihedtfferencels usuallynotsoj: o R
. great:unless the series is short. ' £
maa016@centrall. ancasterac.uk

Covanate for lognt analysls

" Query: I’m modelhng a set of bmomnal data with a logxt model. Some of the mtetacuons looked a blt

funny, and:someone pomted out that the data have a rough trend:in:them,: roughly: exponential. If 1
estimate this trend with' FITCURVE, how can I then use it in the logit analysis? If T just subtract the fitted |
-values from the actual counts or proportions, 1 won't be able to do a logit-analysis on:the resxduals some
* will be negative, and what'is the oorrespondmg NBIN?

-duncan. hedderley@afrc.ac.uk

Reply ‘I'think’ you want 10 use an. offset. If f is the fntted propomon

‘CALC o = LOGIT(f) -
 MODEL [DIST=bin; OFFSET=0] ...

This will effectively remove the effect of .£:on the scale: of the linear predictor.

: 'rod@maths.marc.cri ns
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Elements of tables .

Query: Is it possible fo get at the numbers in'a
say using -element

(one-dimensional).- . -table, .
~ operators?-1.know you can with EQUATE, “but' I

-:would :like a:more direct method.” (Normally to -
this kind of queshon T'd say ‘RTFM, but the latest -
'version of the manual seems to be. at the pnnters‘)j;

duncan.hedderley @afrc.ac uk
Reply: Unforlunately, it «is not possxble in
" Releases -2 or 3 to use the '${] ‘notation ‘or the

ELEMENTS function to access individual values of -
tables. The qmckest way for a me-dtmensxmal*

‘tableis probably 0. put the values in
:v-thenuse $03:
'TABLE . (CLASS f.
_CALC:82,85" l*:.(#t)fsfiZ;;:.S]r o
BTW, the Relea S 3 manual isnow: avmlable ,
Translauon for bew:ldened readers
BTW = By The Way
RTFM = Read The Forgotten Manual
’ (censored translation)
IMHO (one that had me puzzled for months)
- = In My Humble/Honest Opinion -
OUP = Oxford’ University Press .~
peterlane@qﬁ'c.ac.uk i

Query Does anyone ot there have experience of -
._domg three-way (or three-mode) ‘PCA; 'in other-

We have someone who
» relatxonsh:p ‘between: toplcs and aspects, based on

* by-aspect: combination over the 300 and doing an

way dxscards-‘ all ‘the - information about the3

Agncultural Research. zz' 245—260
‘Several people mentioned - Peter Kroonenberg

papets mcludmg Krooneabetg &DeLeeuw (1980) :

Query° I ve had twi in‘here.
with what feels like the' same problem.“

if anyone can suggest a technique to solve it
one case we have a number of treatment groups,
each consisting of about 30 people. They were':

.asked to: rate how easy:they found certam .dxetaxy

 analysis we can ‘do that will tell us something -
- about both the numbers in each group and the

strength: of ‘their feelings?.
duncan.hedderley @afrc.ac.uk

‘Reply: Turn'the problem round, and;: rather than,'
treating the: ratings ‘as being’ somethmg ‘that they:
..are not, analyse: the frequencies: of each rating.
‘This leads ‘to.. McCullagh’s -ordinal. :logistic:
regression model ‘as_:one: possibility. ‘Within
library procedure ' ORDINAL- -
‘I.OGISTIC is available ‘in .Release 2, and the
- MODEL directive has new options to fit: this-model :

- Genstat, -

in Release 3.
lefkovi@ccs.carleton.ca

Three-way PCA

ts: to' get a map of the

the answers. from a’ ‘survey “of 300" people. At
present, she is averaging the scores for each topic-

‘ordinary PCA on that. Tt seems: to- ‘me - that this

(Leiden University) ‘to me. He has written several

“Query: 1 need 'to print smgle stnngs extracted -
-from a text: dunng successive passes through.a

‘Reply: There“is - n'o‘ sunple soluuon because
~‘Genstat's .syntax -for referring to -elements is
desngned for numerical structures and has not yet

'v peter Iane@afrc ac.uk

‘Manipulation of strin gs

oopy I have a*.‘solut:on ‘_usmg “RESTRICT that

john@mamcn.nz i

.been extended toztexts One sohmon 840" usek:
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Counting runs of zeroes -
. Query: I wishto find :the .frequency'disu'ibutim .
of consecutive runs of zeroes in a long variate. All -
-the data are non-negative. Does anyone have some
. slick ‘code to'do this- sort ‘of thing? - :
“sassjm @scri.sari.ac.uk -
‘Reply 1: Here is a solution, stamng from variate -
‘v, using the fact that: 0/0 gives a missing value.
- CALC cumv .= CUM(v)+0/(v.EQ.0)
‘SORT [INDEX=cumv; GROUP=dist] -
. 'TABULATE ' [COUNT=runs; CI.ASS-d:.st]
“SORT [INDEX=) {#xruns); -\
. 'GROUP=fruns; LEV=lruns)
',_jiTABULhTE [count, cmsscfruns]

.. /SORT [INDEX=2 ; “GROUP=£; LEV=1]
- TABULATE [CLASS-'Bf] ‘z; NOBS=n e
CALC: 21 = | (#n)-1
: - &:2]'= MVINSERT (21; z1='-=0)
““SORT - [INDEX=z1; \
GROUP=fruns; LEV=lruns]
‘TABULATE [nobs; CLASSnfrunal 21
d.c.van. der werj@zbn agro nl S

ftmcnon 1o store them T've: tnecl but cant see
“how:it.can’be done.

callmanl@mst.agvzc.govau ‘ =
Reply: The answer is. simple if you. understand
“:that :an" SSPM-structure is .a:compound :structure
- 'made up “of - three. simple su'ucunes“'.-the sumsl;
(symmetric: matrix), the: means: (vana d the
- number-of units (scalar),

SSPM ['I'ERMSz:x,y,z] ssp
- FSSPM: 8Sp ik
. CALC ‘cori=: CORRMAT(sspH
j .currall @compserv gla.ac.uk

“Query: A colleague has analysed an experiment

- We need region means as well as orchard means,
.‘but néither RE )

Aliased effects in ANOVA
‘carried out at.several orchards in several regions.

or:ANOVA seem 'to be .ableito

cope. ‘Does the problem occur only ‘when one

‘factor'is completely aliased with'the other? Has it -

been fixed in the latest:release?

" VARIATE. [VAL=1...10,0.5,1.5...9.5]) ¥y
FACTOR [LEV=5; VAL=2(1...5)2) orchard,
FACTOR [LEV=3, VAL=(4(1 2), 2(3))2] \
region

TREAT reuxon-i-orchard

ANOVA [PRI

Reply 1: I haven’ t actually checked on the:
computer, but I would i imagine that what you want:
is the nesting operator {/), so that you can Specnfy :
VGOHP [FIXBDBreq:.on/ orchard] :

number the omhaids wntlnn the reglons (Manual .
"Page 413) k’Ihere is: nothmg wrong with the means

Convex

hull

“Query: Does anyone know how:to determme ‘whether a point falls within a convex hull, found.using the -
.CONVEXHULL procedure? I understand: that tlns mlght be:a problem best solved by lmear pfogrammmg :
- mo ths @vaxa.nerc-monkswood.ac.uk : 4
Reply 1:A long time ago I wrote a procedure: called INSIDE that detemunes whxch elements of a variate -
- lie -within “a. specified polygon. 1 wrote:it for use with 'DREAD “but it will - obviously work with
CONVEXEULL as well. It seems to fail occasionally; feel free to try it out: and send remedies to me 5o 1
can sort out bugs and submit it to the Procedure Library! (Procedure.attached.) :
simon.harding @afrc.ac.uk ' '
Reply 2: The INSIDE procedure works only if the origin is an outside point of the polygon. A small
amendment to the code makes it work. (Amendment attached.) anon
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Some recent developments in descriptive multivariate analysis

W J Krzanowski

Department of Mathematical Statistics and Operational Research
University of Exeter

Laver Building, North Park Road

EXETER EX4 4QFE, UK

Abstract

Principal component analysis, principal coordinate analysis, and canonical variate analysis are popular descriptive
multivariate analysis features of Genstat. Various extensions, developments and generalisations of these
techniques have been proposed in recent years, giving the user potentially much more scope at the expense of
relatively little extra effort. This article gives a brief (and selective) overview of some of these developments.

1. Introduction

The starting point for many descriptive multivariate techniques is often an n x p data matrix X, the (; /th
element x; giving the response for the jth observed variable on the ith sample individual (7 = 1,...,n;
J = 1,....p). The most useful summary statistics for such a sample of data are the mean vector

X = (il, xz,...,fp) ’

and the pXp covariance matrix § containing the variances of the p variables down the leading diagonal and the
pp — 1)/2 covariances between pairs of variables in the off-diagonal positions. If X has been mean-centred (by
subtracting the mean vector from each row) then
s=21_x'x,
n-1
while if the variables have been standardised (by dividing each element of the mean-centred X by the appropriate

standard deviation) then § is the correlation matrix R. We assume in the following that X has been mean-centred
but not necessarily standardised.

If the data are continuous (or, at least, numerical), a convenient geometrical model of the sample identifies the
n individuals as » points and the p variables as p orthogonal axes in p-dimensional space, the coordinates of the
ith point on these axes being given by the values in the ith row of X. Since X is assumed to be mean-centred,
the origin of the axes is at the centroid of the points. Inspection of the data swarm in this space will reveal any
interesting features that might be present, for example groupings of the points or outlying individuals or obvious
relationships among them. Such a model cannot in general be viewed directly, however, as in most applications
p is greater than 3. The objective of many descriptive multivariate methods is therefore to effect a reduction into
a small number of dimensions in which the data swarm may be inspected for these interesting features. It will
be convenient in the following to refer to the original space as the X-space, and to the reduced-dimensional space
as the ¥-space. Three techniques in particular are very popular for deriving an appropriate ¥-space in different
circumstances, so we first describe them briefly.

Principal component analysis produces a projection of the original points into a low-dimensional subspace of
given dimensionality k, the chosen subspace being the one in which the overall scatter of points is maximised.
Let P, (i = 1..n) denote the n points in the X-space, P, denote their projections in the ¥-space, and O denote
the origin of axes in both spaces. The requirements of maximising scatter whatever the value of k¥ imply that the
variance of the projections decreases along successive axes in the ¥-space, and that the ¥-space is the k-
dimensional subspace in which V, = 3, (OP;)? is maximised. Simple geometric arguments establish readily that
it is also the subspace projection in which V, =3, (P.P/)* and V, = 5 3, [ (P,P)* - (P/P/)?] are both minimised
(projection implying that P/P; < PP, V ij). Moreover, from V, we see that the Euclidean distances between
points in the Y-space approximate the corresponding Euclidean distances in the X-space. The fundamental
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algebraic operation underlying principal component analysis is the decomposition of § into its eigenvalues
(elements of the diagonal matrix D) and eigenvectors (columns of the orthogonal matrix L).

If the rows of X have come from g a priori groups, a ¥Y-space in which overall scatter of points is maximised
may not be the most useful space in which to view the data. More appropriate may be a space in which the
separation between groups is maximised in some way, and canonical variate analysis provides the subspace in
which the ratio of between-group to within-group scatter is maximised. The fundamental algebraic operation here
is extraction of eigenvalues and eigenvectors of W'B, where W is the covariance matrix pooled within groups
while B is the covariance matrix between groups. Euclidean distances between group means in the ¥-space now
approximate the Mahalanobis distances between the corresponding means in the X-space.

Principal coordinate analysis is ostensibly a different sort of technique from either of the above, as it does not
start from a high-dimensional model from which a low-dimensional approximation is to be derived. Rather, it
starts from a matrix of inter-point distances (or inter-object dissimilarities) and then constructs a low-dimensional
configuration in which the distances between points are approximated, or the dissimilarities between objects are
represented, as well as possible. By ‘as well as possible’ is meant in the sense of V; above. However, in spite
of these apparent differences, the technique has much in common with the two previous ones: its algebraic basis
is very similar to theirs (extraction of eigenvalues and eigenvectors of a simple transformation of the input
distance/dissimilarity matrix), and it produces the same results in certain special cases. If the input matrix is the
n x n matrix of Euclidean distances computed from X then principal coordinate analysis yields the same Y-space
as does principal component analysis of X, while if the input is the matrix of Mahalanobis distances between
group means in a grouped data set then an equivalent of canonical variate analysis is achieved. (Strictly, this
latter technique yields the same result as the canonical variate analysis derived from the unweighted
between-groups matrix

8
B=_L Y (5-FNF-F),
g-1 =
where X, is the mean of the ith group of individuals, whereas standard canonical variate analysis is based on the
weighted between-groups matrix

8
B=_L ¥ n(5-5)&-7),
g-1 i

where #, is the number of individuals in the ith group. However, in many circumstances the weighted and
unweighted analyses do not differ materially. Also, Ashton, Healy and Lipton (1957) have argued that the
unweighted analysis is better for descriptive purposes, so in such a case the principal coordinate approach is
appropriate.) The extra benefit afforded by principal coordinate analysis is that non-numerical variates can be
catered for, as distances/dissimilarities can be defined and thus calculated for such variates. Hence geometric
representations can be obtained in low dimensions even though no original model exists for such data.

All the above is familiar, and the three multivariate techniques outlined are very popular among users of Genstat.
More detail on the basic techniques can be obtained from the Genstat manual or from a variety of multivariate
texts (see, e.g., Digby and Kempton, 1987). Our purpose in the next three sections is to bring to the attention
of such users a number of areas of development of these techniques, in the hope that a wider set of potential
applications might thereby be opened up. Although none of these areas is currently catered for explicitly in
Genstat, some can be adapted fairly easily from existing facilities. By disseminating the ideas more widely, it
is also hoped that the facilities might be incorporated in future releases of the system.

2. Common principal components

Consider optimality criterion V, of the previous section as one of the possible characterisations of principal
components. This criterion lay at the heart of one of the earliest derivations of principal components (Pearson,
1901), in terms of lines and planes of closest fit to a set of points. Such a derivation highlights connections
between principal component analysis and regression analysis: the former fits lines by minimising orthogonal
deviations, the latter by minimising ‘vertical’ or ‘horizontal’ deviations. Let us pursue these connections a little
further. In regression analysis, the data are often grouped and comparisons of regressions between the groups
are of interest. Such comparisons are conducted by constraining some or all of the regression coefficients to be

10
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equal in the groups, and then testing whether the fit of the resulting relationships is significantly worse than if
the regression coefficients had been free to vary separately in each group. Arranging the constraints in a
hierarchic structure assists in the testing process.

A parallel analysis can be envisaged for principal components. Suppose that the # individuals in the sample are
divided a priori into g groups, with », individuals in the ith group, each group has been described separately by
its principal components, and we wish to see whether these components have common features among the
groups. To effect the analysis, we first need to formulate suitable models for the populations from which the
groups have been obtained, and then to impose a hierarchic system of constraints on the population parameters
corresponding to the features of interest.

Let the (population) dispersion matrix for the ith group be &, and its estimate from the sample be S, (i = 1..,2).
Total homogeneity between groups is expressed by the null hypothesis

H:Q=2 Vi

which can be tested against the general alternative H,, that at least one &; is different from the rest (assuming
normal data) by means of the likelihood ratio test statistic

8
T, = nln|W| - Y nn|s,|

i=]

which has a chi-squared distribution on p(p + 1)(g — 1)/2 degrees of freedom if H, is true.

A good intermediate between equal dispersions and arbitrary dispersion, is the common principal component
model

H :Q=LD,L.

In this model the individual dispersion matrices have the same principal components, but these components may
have different variances (and hence different orderings) in the different groups. Considerable heterogeneity of
dispersion matrices can be accommodated within this structure, and hence the model can cater for many practical
situations. Theoretical aspects of the model have been studied in a series of papers by Flury, a unified account
of which can be found in Flury (1988). Estimates of L and D, can be found either by maximum likelihood
(assuming normality) or by least squares, and likelihood ratio tests exist with statistics T, (for H, versus H,)
and T, (for H, versus H,) satisfying T, = T, + T,. Algorithms for the estimation are given by Flury and
Constantine (1985), Flury and Gautschi (1986), and Clarkson (1988); the likelihood ratio tests are derived by
Flury (1988), while some simple ad hoc and intuitive versions of these estimates and tests have been suggested
by Krzanowski (1984). Proportional dispersion matrices are obtained as a special case of this model (D; = o
D), and additional possibilities are partial common principal components (Flury, 1988) or common principal
component spaces (Schott, 1991).

In addition to the direct purpose of investigating principal component structure between groups, the common
principal component model has played a part in generalising some familiar multivariate techniques. The first such
generalisation is that of canonical variates. Recall from Section 1 that the technique requires the eigenvalues and
eigenvectors of W'B. Campbell and Atchley (1981) have shown that these quantities can be found equivalently
by the following steps.

1. Find the eigenvalues (diagonal elements of the diagonal matrix E) and eigenvectors (columns of the
orthogonal matrix U) of W: W = U EU'.

2. Transform the data: v; = E"2U’x, where x| is the ith row of X.

3. Find the eigenvalues F and eigenvectors A* of
4
C = Y n(-9@F-v
=]

where 9, is the mean of group i and 9 the grand mean with respect to variables v: C = A* F A%,
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4. The required eigenvalues and eigenvectors are then given by F and A4 = U E™'? A%,

This analysis requires homogeneity of population dispersion matrices, i.e., hypothesis H, above needs to be true.
If H,is not true but H, can be assumed, then Krzanowski (1990) has suggested the following generalisation of
the above technique.

1. Conduct a within-group common principal component analysis: §, = LDL'.
2. Transform the data: v = DL'x

where %, is the mean of the ith group with respect to the original variables.

3. Find the eigenvalues and eigenvectors of C (defined as above), and display the group means on these
eigenvectors as axes.

A second application of the common principal component model is in two-group discriminant analysis. Often,
a linear discriminant function is not appropriate because dispersion matrices are not equal in the populations, but
sample sizes may be small and a quadratic discriminant function may not be reasonable either. Intermediate
discriminant functions, obtained by assuming either the common principal model or proportional dispersion
matrices have been studied by Flury and Schmid (1992) and Flury et al (1994). In general it appears that
assuming proportional dispersion matrices produces good results, but the common principal component model
only provides marginal advantages in some special cases.

Finally, Flury and Neuenschwander (1995) explore the implications of assuming common principal components
in the context of canonical correlation analysis, and thereby propose a generalisation of canonical correlation
analysis to more than two sets of variables.

3. Distance-based methods

We saw above that problems encountered in canonical variate analysis when dispersion matrices are
heterogeneous can be overcome if the common principal component model is appropriate. Problems also arise
if not all variables are continuous, as between- and within-group matrices B and W are no longer obtainable.
Recollect from Section 1, however, that applying principal coordinate analysis to the matrix of pairwise
Mahalanobis distances between groups will yield the equivalent of a canonical variate plot of group means.
Individuals can then be superimposed on this plot, if desired, by using Gower’s (1968) technique for adding
points to an existing configuration. This method only requires the additional distances between each added point
and the: group means of the configuration to be specified, and can be implemented using the ADDPOINTS
directive in Genstat.

To generalise canonical variate analysis to any types of variables, we could therefore use the principal coordinate
approach providing we were able to define suitable distances between groups and also between individual points
and group means. Now distance between two individuals is a very familiar concept (e.g., in cluster analysis),
and many distance functions are available to the user. For a mixture of any variable types, distance based on
Gower’s (1971) general coefficient of similarity is the most flexible possibility, and is the one implemented in
Genstat. If we denote the distance between individuals / and j by d; and if the sample is divided a priori into
g groups x,..x, with n; individuals in &, (/ = 1..g) then Rao (1982) suggests defining the squared distance
between m; and x; by

Yy ad:.

1
2n rex, sex,

1 1
Di/? = —22“’5 - 722345 -
j"lﬂ’ ﬂ’

n,nj res, sex,

To obtain the squared distance Dzw between an individual x; and the group =, we simply need to set 7, = 1 in
the above expression to give

1
Dy = & - Y ¥l

j rea, %] res, uul
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Krzanowski (1994) discusses this approach to generalised canonical variates, and provides some illustrative
examples. The same basic idea has been used for discrimination and classification with mixed-mode data
(Cuadras, 1989, 1991, 1992) and for regression with mixed data (Cuadras and Arenas, 1990).

4. Nonlinear generalisations

Most classical multivariate descriptive techniques are concerned with seeking optimal /inear combinations of the
observed variables, use methods of linear algebra, and look for configurations of points in l/inear spaces and
subspaces. Attention has turned increasingly, however, to nonlinear generalisations of these techniques. An early
attempt in this direction was the suggestion of Gnanadesikan (1977) to augment the list of variables by including
their squares and cross-products, and then to do a principal component analysis on the covariance matrix of the
augmented set in the hope of detecting any nonlinear structure that may be present. Gnanadesikan illustrated this
idea on an artificial example in which an exactly circular structure was detected, but Flury (personal
communication) showed the solution to be extremely unstable under slight perturbations. This lack of stability
perhaps explains why the technique has been so little used in practice.

More systematic attempts at nonlinear descriptive methods have been made in the past ten years by a variety
of researchers. Gower and Harding (1988) propose a technique for nonlinear biplotting, Hastie and Steutzle
(1989) consider the idea of principal curves as a generalisation of principal components, while Gifi (1990) and
Meulman (1986, 1992) build general nonlinear multivariate systems encompassing a variety of descriptive
techniques. These latter two approaches start from the same premis, namely that all classical descriptive
multivariate methods can be derived by finding the low-dimensional configuration of points which minimises
a suitable loss function, but differ in the types of function considered. Gifi bases loss functions on the concept
of homogeneity of variables, while Meulman bases loss functions on the concept of distances between points.
The nonlinear generalisations then follow the same patterns in both systems: an optimal nonlinear transformation
of each variable is sought in conjunction with minimisation of the appropriate loss function in terms of the
transformed data. Various restrictions are needed to ensure uniqueness, and in general one ends up requiring to
conduct a double optimisation. Alternating least squares can generally be employed to solve the problem, but
the computing involved is usually rather heavy.

5. Comment

We have briefly sketched three recent strands of development of the most popular descriptive multivariate
methods. All have already proved their worth in a variety of substantive applications; see Airoldi and Flury
(1988) for a common principal components application in zoology, Tyteca and Dufréne (1993) for some
distance-based analyses in botany, Banfield and Raftery (1992) for an interesting application of nonlinear
principal components in image analysis, and Gifi (1990) and Meulman (1986) for a variety of other nonlinear
applications. The potential scope of descriptive multivariate analysis has thus been considerably widened. Ease
of implementation, however, varies somewhat between the three strands at present. The algorithms referenced
in Section 2 bring the methods involving common principal components within relatively easy reach of the user;
the distance methods of Section 3 all involve familiar concepts such as between-individual distances, principal
coordinates and ADDPOINTS, all of which are available in Genstat and hence easily implementable; but the
various nonlinear methods of Section 4 involve more elaborate iterative numerical schemes which require
individually-tailored software, so at present are not readily accessible to the Genstat user. If that user is prepared
to consider other systems, however, then many of the techniques in Gifi (1990) can be accessed readily within
SPSS!
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Using Genstat to develop a taxonomic classification from ribosomal DNA
sequences

G M Arnold, J A Bailey, C Sherriff and M J Whelan
Department of Agricultural Sciences

University of Bristol

Institute of Arable Crops Research

Long Ashton Research Station

BRISTOL BS18 9AF, UK

1. Introduction

Colletotrichum is a ubiquitous pathogenic genus of fungi which infect a wide range of plants. Their taxonomy
has traditionally been derived from morphological characters, such as conidia shape and size, and the identity
of the host plant. This is unsatisfactory as some forms of the pathogen with identical morphologies have been
isolated from many different hosts and attack different plant species. A new approach to developing a taxonomy
for Colletotrichum has used ribosomal DNA sequencing. This is described in detail in Sherriff et al. (1994),
where the relatedness of a range of isolates (27 in all) selected to represent the major morphological forms of
the genus is studied.

2. The data

In this study, the data constitute rDNA sequences of 886 base positions in length for each of the 27 isolates.
Each base is either a purine (G - guanine, A — adenine) or a pyrimidine (C - cytosine, T — thymine); thus,
each isolate record comprises a textual string of length 886 where each individual unit is one of G, A, C and
T. In order for comparisons to be made between isolates these individual sequences need to be aligned. This
was a relatively simple process because the structure of the ribosomal gene is well established and, hence,
approximate alignments were already known. The sequences were stored in a data file in the following format:

009 (3-digit isolate code number)
GCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCACCGCTTGGCGTTGGGGCTTCCACG

ceee (13 further lines of length 60)
g"g'ls\TA'I'GCGAGTGTTCGGGTGTCAAACCCCTACGCGTAATGAMGT

GCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCCCTGCTTGGTGTTGGGGCOCCTACG

TTATGTGCGAGTGTTTGGGTGTTAAACCCCTACGCGTAATGAAAGT
and so on.

Two other characters also appear in some sequences; O denotes a base deletion which is required to maintain
alignment and X a base which is present but unknown. To check the alignment, a program was written to read
in the sequences from the file described above, to compare each sequence with a chosen standard and then to
print all sequences in parallel showing where any differences occur. The following Genstat commands are
extracted from this program:

SCAL nbase; 886 “no. of bases in each seqguence"
CALC line=INT (nbase/60) “no. of full lines (width 60)

& last=((nbase/60)-line)*60 “no. of bases on last line"

& n1=INT (nbase/10) "no. of sets of 10 bases"

& ri=nbase- (10*n1) “bases left in last set"

TEXT space;it(’ ’) "blank to insert after 10 bases"
SCAL i

READ ([channel=2;end=*] i

READ [end=*;ch=2;layout=£fix;form=1(((1)60,*)€line, (1)Elast,*)] seqlil
“putting in blank every 10 bases"

TEXT edit;1t(’L+10 F/space/’)En1,’:’)

EDIT [channel=edit] seq[il

“changing label to three digits where necessary"

IF i.1lt.10
PRINT (ch=t[i);iprint=*;squash=yes] ’'00’,i;field=2,1;dec=0;skip=*,0
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ELSIF (i.ge.10).and.(i.1t.100)

PRINT (ch=t(i]);iprint=*;squash=yes] ’0’,i;field=1,2;dec=0;skip=*,0
ELSIF i.ge.100

PRINT ([ch=t(i];iprint=*;squash=y] i;field=3;dec=0

ENDIF

CALC nlin=line+2 "calculating no. of lines for output”
VARI [values=1...nlin] nline
TEXT (values=(’ ’)Enlin]) blank

“adding labels to sequences" (note - within a FOR loop indexed by j)

TEXT temp(j])

PRINT ([(ch=temp(j];iprint=*;orient=across;width=66] seql[jl); \
field=1;8kip=0;dec=0

CONCAT [newt=temp[jl] ’ ’,temp(j]

CONCAT (newt=temp[jl] £t[j],temp(3]

"testing for equality of sequence with standard (here using 009)"

CALC dum=seq[£stan].eqgs.seq(j)

TEXT [value=((’-')10,’ ’)en1,(’-’)Exr1] compl(j]

RESTRICT comp(j]l,seqlj);dum.eq.0

CONCAT [newt=conmp(j]]) seql3)

RESTRICT comp(jl,seql3]

"adding label numbers to comparisons & setting up printing blocks"

PRINT [ch=temp(j];iprint=*;orient=across;width=66) comp(j]; \
field=1;s8kip=0;dec=0

CONCAT (newt=temp(jl] ’ ’,temp(J]

CONCAT [newt=temp(j]] £t{j],templ]]

"printing comparisons, excluding last line (blank except for labell)"

RESTRICT templ[£seqno],blank;nline.lt.nlin

PRINT [iprint=*;orient=across) temp([£seqno),blank;just=left

This program produces comparisons printed in the following format:

009 GCATGCCTGT TCGAGCGTCA TTTCAACCCT CAAGCACCGC TTGGCGTTGG GGCTTCCACS
M -
(17 P ——— - — -
D S — -—- S —

074 —--A--=-uc -- Ammmmmmm —meeee R e
L I — P —
079 —---—-mm- — e U S
083 ———mmmm oo m e e e e e
091 —=mmmcmmmm e el
093 ——-——mmmmm —meeee - e
120 ---A---=== -=A- —
138 ——mmmmmmm —mee ———— - -——
141 —mmmmemeee e e ——
L -—
164 ——mmmmmmme e e
165 R -

167 —-rA-=-=mm -- Ammmmmom —mmem G RRRES W -
168 ~=c=- e e e
171 ——--- S S -

[~]

The layout, with matches indicated by - and differences given explicitly by code letter, enables any minor
misalignment to be picked up easily, as well as possible transcription errors which can then be checked against
the original sequence gels and amended if necessary.

3. Comparing sequences
A natural measure of the distance between two isolates based on the rDNA sequences is the proportion of base
positions which show changes, p, say. Alternative measures that have been proposed, in which evolutionary

changes over time are considered such that more than one change at a given base position may have occurred,
include the Jukes and Cantor (1969) distance and the Kimura (1980) distance. The Jukes and Cantor distance
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is given by -0.75 log(1-4p/3) and assumes a constant rate of change from one base to another. Kimura considers
different rates for transversions (changes between purines and pyrimidines) and transitions (changes within
purines or pyrimidines); if the proportion of transversions and transitions are ¢ and ¢, respectively, the distance
is given by —0.5log{(1-2¢-)(1-29)*}. Expanding each of these gives, to first order approximation, a distance
of p, identical to the simple measure. For this particular data set, the proportion p for most pairs is less than
0.10 as the sequences are highly conserved so use of this simple measure is adequate. The following extract
from a Genstat program shows the steps needed to construct a similarity matrix based on this distance measure,
where deletions count as differences and pairwise comparisons exclude positions where one or both bases are
unknowns X.

“calculate pairwise similarities, storing in symmetric matrix"
TEXT slab;values=it (£t[Eseqno])

SYMM [rows=slab) seqsim

DIAG ([slab;values=£b(100)] diag

CALC seqgsim=diag

FOR k=f£seqno;dumk=1...b

CALC dumn=seq[k].ni.lt(X)

& ncomp=SUM (dumn )

ENDFOR

FOR i=fseqno;dumi=1l...b

FOR j=seqno;dumj=1...b

EXIT dumi.eq.dumj

CALC dum=seq(i).eqs.seq[j]

RESTRICT dum; (seg{i).ni.lt(X)).and. (seq[:j] ni.lt(X))

CALC num=SUM (dum) 'number of matches"
& ncomp=NOBS (dum) "total number of comparisons"
& £sim=100*num/ncomp .

& seqgsim$ [ Edumi; £dumj ) =¥8im

RESTRICT dum

ENDFOR

ENDFOR

4. Cluster analysis

Having calculated the appropriate similarity matrix, relationships between isolates can be illustrated by a cluster
analysis. Using the HCLUSTER directive with option method=groupaverage gives the unweighted pair group
method using arithmetic means (UPGMA) with similarity between group (;/) (formed by amalgamation of
isolates i and j) and group k given by

Sy = s, ¢ g
P e M Y

where s, are distances between groups i and ;. I_L—:' ﬁ:
%1
The clustering information may be saved using 3‘7";:
the amalgamations parameter for HCLUSTER Loy
and entered into the procedure DDENDROGRAM 075:
(here a personally customised version) to i
obtain a high resolution dendrogram (Figure 1). — %
From this figure, clear groupings are apparent, 056
some of which confirm traditional taxonomic -|—_::|: Pl
groupings and qthers' vivluch have allo.wed new g?:
species to be identified (see Sherriff es al rl_E 0744
(1994) for further details). LT: bl
1)
1631
A T T L L T i “1 3

o 8 % 9 % ] 100

Percentage similarity

Figure 1. Dendrogram showing relatedness of 27 Colletotrichum
isolates, from sequences of full length (886 base positions).
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5. Subregion comparisons

It was also of interest to see if smaller defined subregions of the sequence could be used to obtain similar
groupings. Three such regions within this sequence were ITS2 (161 bases), Domain 1 (133 bases) and Domain
2 (206 bases). Similarity matrices were constructed for the isolate sequences restricted to these regions and
clustering carried out as above. Very similar patterns of groupings were apparent for both ITS2 and Domain
2. Figure 2 shows the pairwise similarities for each subregion plotted against those for the whole region,
indicating that ITS2 in particular gives very similar information to the whole sequence. Correlation coefficients
between the pairwise similarities for subregions and the full sequence are given in Table 1, along with those
between the cophenetic distances from the equivalent dendrograms. These clearly show that the ITS2 region,
and, to a slightly lesser extent, the Domain 2 region both provide information on the relatedness of the isolates
which is essentially the same as from the full sequences, and can therefore provide a practically simpler and less
time-consuming procedure for further similar studies.

Table 1: Correlations between measures for subregions and full sequences

Subregion Similarities =~ Cophonetic distances

from dendrograms
ITS2 +0.982 +0.993
Domain 1 +0.712 +0.671
Domain 2 +0.969 +0.985
1 @ f 1o e —
. * " EWE W e
".'.. T -

i e S
T o e -
-— W

lw© -~
[ 3
(a)  ITS2 region .o
1 " *
- W
el
o nr *
(b)  Domain 1 - e
-
it W e
- -
(] Domain 2 i Py
e
=

Figure 2: Plots of pairwise similarities for subregions (a) ~ (c) against full sequence
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6. Conclusions

Genstat has proved to be a flexible tool for handling text manipulations, calculations and visual displays required
in using rDNA sequence data for taxonomic investigations and gave results similar to specifically written
software for sequence analysis (see Sherriff et al., 1994).
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The jackknife and the bootstrap

P W Lane and R W Payne
BBSRC IACR Rothamsted Experimental Station
HARPENDEN, Herts AL5 2JQ, UK

Summary

Bootstrapping is a general method for estimating properties of statistics, particularly their precision. It is
computer intensive, but is increasingly being considered as an alternative to classical methods. In particular, it
avoids distributional assumptions, and is applicable when the complexity of a model makes analytical methods
intractable. Jackknifing is a similar but simpler technique. Procedures have been developed to provide a general
facility to form bootstrap or jackknife estimates for any statistic that can be calculated in Genstat.

1. The jackknife

The jackknife was introduced by Quenouille (1949) to reduce bias in estimation. The name was coined by Tukey
(1958), who suggested its use for estimation of variance. Its main properties are:
* it removes bias of order 1/N for estimation from a sample of size N;
it can form standard errors of estimates even when these are difficult to form by other methods;
it is often a more robust method than alternative classical methods;
it needs a lot of computation: of the order of (N+1) times what is required for simple estimation;
it has proved useful in many situations, such as maximum-likelihood estimation and variance estimation,
but is not useful in others, such as the estimation of order statistics.

e o o o

The jackknife works by repeating some estimation process based on a sample, leaving out each observation in
the sample in tumn. Suppose that we want to estimate parameter 0 from a sample X,,....Xy by some method,
possibly biased, yielding an estimate 8. Then we repeat the estimation N times by the same method, omitting
each of the observations X, in turn, yielding estimates é,, Jj=1,...,N. These estimates are combined to form the
pseudo-values:

6; = N6 - W-1§;, j=1.N

From the pseudo-values, the jackknife estimates themselves can be formed:

0" = Mean(6")
V" = Variance(6°)/N

The oriéinal papers describing the jackknife technique are by Quenouille (1949, 1956) and by Tukey (1958).
Good expository accounts are provided by Hinkley (1983) or Bissell and Ferguson (1975).

The calculations can be carried out in Genstat using the procedure JACKKNIFE. It requires as input a data matrix
consisting of a list of variates, factors and texts all of the same length. Each unit of these vectors will be omitted
in tum during the calculations. The procedure can arrange to calculate several statistics simultaneously, and
produce jackknife estimates for all of them. You need to supply a procedure called RESAMPLE that calculates
the statistics, based on a data matrix reduced by one unit. In addition, you can supply further data to the
procedure if required to calculate the statistics, using the ANCILLARY option. The procedure produces as output
the jackknife mean and standard for each statistic, and you can extract the pseudo-values.

For example, consider the estimation of the correlation coefficient. This statistics can be calculated easily in
Genstat by the CORRELATE directive, but there is no estimation of the variance of the estimate. Here is a
procedure in the form required by JACKKNIFE that calculates the correlation.

PROCEDURE (PARAMETER=pointer) ‘RESAMPLE’
OPTION ’‘DATA’, " (I: variates, factors or texts) data vectors from which to
calculate the statistics; no default"\
*AUXILIARY’, " (I: pointers) auxiliary sets of data vectors, each of which is
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to be resampled independently"\
‘ANCILLARY’; " (I: any type of structure) other relevant information needed to
calculate the statistics"\
MODE=p; TYPE=l!t (variate,factor,text),’pointer’,*; SET=yes,no,no; LIST=yes;\
DECLARED=yes; PRESENT=yes
PARAMETER ‘STATISTIC’, " (O: scalars) to save the calculated statistics "\
EXIT'; * (0: scalars) to save an exit code to indicate failure (EXIT[i]=1)
or success (EXIT[i)=0) when calculating each STATISTIC[i]"\
MODE=p; TYPE='’scalar’; SET=yes

CALCULATE STATISTIC([1])] = CORRELATION(DATA([1); DATA[2})
& EXIT[1) = STATISTIC(1)==C(’missing’)

ENDPROCEDURE

The OPTION and PARAMETER statements here can be copied from the standard example that accompanies the
JACKKNIFE procedure: the syntax must not be changed. The AUXILIARY parameter is not used by JACKKNIFE,
but is included in the procedure because it can be used with the BOOTSTRAP procedure described below. The
EXIT parameter of the RESAMPLE procedure provides the ability to signal to the JACKRNIFE procedure when
the calculation of the statistic fails for some reason with a particular resamplmg of the units; if this is not
relevant, the parameter does not need to be set.

Here is the result of using the procedure, using an example from Efron (1981).

22 VARIATE (VALUES=576,635,558,578,666,580,555,661, \

23 651,605,653,575,545,572,594]) Y

24 & [VALUES=3.39,3.30,2.81,3.03,3.44,3.07,3.00,3.43, \
25 3.36,3.13,3.12,2.74,2.76,2.88,2.96] 2

26 JACKKNIFE [DATA=Y,Z] ’Correlation’

**xk%* Jackknife estimates **¥*xx

Statistic Estimate from all data Jackknife estimate s.e.
Correlation 0.7764 0.7828 0.1425

Several modifications to the jackknife have been suggested. The second-order and generalized jackknife
techniques are designed to remove bias of higher order than 1/N. The infinitesimal jackknife uses small weights
for points rather than total exclusion, and the trimmed jackknife uses the trimmed mean of the pseudo-values
rather than the simple mean. Alternative methods have also been proposed using subsets smaller than (N-1).
None of these modifications are available in the JACKKNIFE procedure, but it should not be difficult to edit the
procedure to incorporate any of them.

2. The bootstrap

The bootstrap was introduced by Efron (1979) to provide variance estimation. It has the following properties:

* it estimates bias;

¢ it forms standard errors of estimates even when these are difficult to form by other methods;
it estimates the distribution of estimates, giving confidence intervals;
it is non-parametric and robust;

* it needs a lot of computation: 100 times what is required for simple estimation, to get standard errors,
or 1000 times to get confidence intervals;

* it seems more widely applicable than the jackknife.

The bootstrap method works by repeated resampling from the units of a data matrix, generating a series of new
data matrices from which estimates of means and variance can be calculated. Resampling here means making
a new sample of the same size /N as the original sample, by random sampling with replacement from the original
sample. So each new sample contains some of the original units of data, but is unlikely to contain all of them;
several of the original units are likely to be repeated in the new sample.

The statistics to be bootstrapped are calculated for each resampled data matrix, and the bootstrap estimates are
then formed by calculating the mean of these statistics. Other distributional features of the statistics, such as
standard errors or confidence regions, can be estimated from the empirical distribution of the set of calculated
statistics.
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The name bootstrap is seen to be an apt description of what is happening in this process: the distributional
properties of a statistic are derived from the data themselves, without reference to any theoretical model, just
as a magician may attempt to raise himself off the floor by pulling on his own bootstraps. A good introduction

to the bootstrap is given by Efron and Tibshirani (1986); a fuller treatment can be found in Efron and Tibshirani
(1993).

To understand the justification of this as a process of estimation, it helps to consider a simple application: the
estimation of the mean of a sample of measurements x,,...,xy. If each x; has some unknown distribution F, the
mean X has standard error

o =V (w(F)/N)

where y,(F) is the second moment of F. If we do not know F, we do not know ,(F). The classical solution to
this problem is to estimate ¢ by

)

where [, is an unbiased estimate of w,(F), such as Z(x~¥)%/(N-1) if the x, are Normally distributed. The
bootstrap solution to the problem is to estimate o by

& = olf) = ¥ ((F)/N)
where F is an estimate of F, such as the empirical probability distribution of x;.

The bootstrap calculations can be carried out in Genstat using the BOOTSTRAP procedure. It is used in just the
same way as JACKKNIFE, setting the DATA parameter to supply the data matrix, and providing a RESAMPLE
procedure in exactly the same form as for JACKKNIFE. Here is the result of bootstrapping the correlation
coefficient in the example above, using the default of 100 resamplings.

33 BOOTSTRAP [DATA=Y,Z; SEED=77320] ’‘Correlation’

*** Bootstrap estimates, from 100 bootstrap samples #***

95% confidence interval
Label mean 8.e. lower upper

Correlation 0.754 0.154 0.452 0.970

The output includes a confidence interval, by default at the 95% level, derived from the empirical distribution
of the 100 generated estimates of correlation. However, most reports about the behaviour of bootstrap estimates
suggest that 100 resamplings are not enough to get reliable estimates of such confidence intervals. Here is a
repeat of the bootstrapping, carried out 1000 times, and setting the PRINT option of the directive to display the
distribution of the generated estimates.

37 BOOTSTRAP [PRINT=estimates,graph; NTIMES=1000; DATA=Y,Z; SEED=77320] \
38 'Correlation’

*** Bootstrap estimates, from 1000 bootstrap samples ***

95% confidence interval
Label mean s.e. lower upper

Correlation 0.774 0.134 0.475 0.966

The resulting picture, produced in high-resolution by default, is in Figure 1. It shows a histogram of the 1000
generated estimates of correlation, with a smoothed curve superimposed in an attempt to improve the
distributional shape. The curve is produced by fitting a smoothing spline with four degrees of freedom (using
the SSPLINE function in the FIT directive) to the cumulated histogram values on a logistic scale. The smoothing
is not completely successful here because of the limit of 1.0 on the estimates of correlation. Vertical lines are
also displayed on the graph to indicate the bootstrap estimate and the confidence interval.
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Three methods of bootstrapping are provided. By

default, resampling is completely pseudo-random, using B
Genstat's random-number generator. The generator can
be initialized by setting option SEED, thereby producing
reproducible results; otherwise, the initialization uses ®
the system clock. A second alternative is balanced
bootstrapping, requested by setting METHOD=balance.
In this case, the resampling is constrained to ensure that 4
each unit of the data matrix occurs the same number of E
times in the complete set of generated samples. The §
third method, specified by METHOD=permute, is simply e
to permute the units of the data matrix. Note that this
method gives no variation in results if the statistics are
independent of the order of the data, like the sample ¥
mean. However, this method provides permutation tests,

a type of randomization test that can be applied to

grouped data. bt

Boolstrop distribution

RS

RIRNNNNNRN

3. Availability of the procedures

The BOOTSTRAP and JACKKNIFE procedures have both been accepted for inclusion in the Genstat Procedure
Library 3[2]. In the meantime, the procedures can be accessed from the NAG Gopher. Connection details for
this Gopher were published in Genstat Newsletter 30, but most Gopher servers make it easy to find, as long as
you know that NAG is based in the United Kingdom.

Both procedures have been written for Release 3.1 and use several of the new features, such as the new
DUPLICATE directive. It would therefore require some effort to translate them to work with Release 2.2.
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The past 30 years have seen the publication of some surprising results on the efficiency factors for treatment
factors from non-orthogonal experimental designs. Some of these results were discussed and exemplified by
Preece (1988). The present paper takes that earlier discussion further for a class of generally balanced designs
that are obtainable from certain balanced superimpositions of Youden squares.

To introduce the subject, let us consider first the following 4 x 7 row-and-column design for two non-interacting
sets of treatments:

AA BB CC DD EE FF GG
BC CD DE EF FG GA AB
CE DF EG FA GB AC BD (1)
EB FC GD AE BF CG DA

In each cell of this design, the first letter represents a treatment from a set T1, whereas the second represents
a treatment from a set T2. The design comprises 4 rows from a systematically generated 7 x 7 Graeco-Latin
square. , The four rows are chosen so that each of T1 and T2 is balanced with respect to the columns of the
design, the concept of ‘balance’ here being that of a balanced incomplete block design; as the number of
treatments in T1 or T2 is the same as the number of columns in (1), each of T1 and T2 is disposed in (1) in a
Youden square. The superimposition of each Youden square on the other is such that (i) each of T1 and T2 is
balanced with respect to the other, in the same sense of ‘balance’ as has already been used, and (ii) the design
is generally balanced overall, as can be verified by submitting it to Genstat’s ANOVA. By ‘overall’, we here
mean that (a) all estimated differences in effect between two treatments from T2 have the same efficiency factor
when the effects of the other factors in the design (whether block factors or treatment factors) have been
eliminated, and (b) the corresponding result is true for T1. More concisely, we are saying that there is a single
efficiency factor for T1 and a single efficiency factor for T2 when treatment effects are estimated after
elimination of the effects of all other factors in the design. Indeed, if we now change the role of the ‘columns’
factor to that of a treatment factor TO, there is similarly a single efficiency factor for T0. Indeed these efficiency
factors for TO, T1 and T2 are all the same for this design, namely 3/4 = 0.75. Of course, this value is unchanged
if the ‘rows’ factor of the design is ignored, as each of T0, T1 and T2 is orthogonal to rows.

Suppose now that the factor T2 in (1) is replaced by a factor T3 to give the following superimposition of two
4 x 7 Youden squares:
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AA BB CC DD EE FF GG
BD CE DF EG FA GB AC
CG DA EB FC GD AE BF 2)
EF FG GA AB BC CD DE

Design (2) is in every respect as balanced as design (1), and the efficiency factors for T0, T1 and T3, calculated
as before, are again equal to one another. But now the value of this common efficiency factor is 5/8 = 0.625.

Preece (1966) described how designs such as (1) and (2) can be obtained more generally, consisting of 2
superimposed Youden squares of size 2p x (4p-1) or (2p-1) x (4p-1), where (4p-1) is a prime number with
P>1. For each of these sizes, the superimpositions have one or other of just two efficiency factors.

Suppose now that we consider the following superimposition of three Youden squares, with non-interacting
factors TO, T1, T2, and T3 as above:

AAA BBB CCC DDD EEE  FFF GGG
BCD CDE DEF EFG FGA GAB ABC
CEG DFA EGB FAC GBD ACE BDF (3
EBF FCG GDA AEB BFC CGD DAE

As stated by Preece (1968), the efficiency factors for each of TO, T1, T2 and T3, after fitting all the other
factors, are no longer all the same, but are these:

T0 and T3 T1 and T2
7 0292 7 <0350
33 0

Preece (1966) also indicated that just one further similar type of 4 x 7 design exists; it can be obtained
from (3) by replacing set T3 by a set T4 as follows:

AAA BBB CCC DDD EEE FFF GGG
BCE CDF DEG EFA FGB GAC ABD
CEB DFC EGD FAE GBF ACG BDA “)
EBC FCD GDE AEF BFG CGA DAB

For (4), the efficiency factors analogous to those given above for (3) are different from those for (3) and follow
a different pattern:

TO T1, T2 and T4
7 <0700 7 = 0583
10 i

The results just given for balanced superimpositions of three Youden squares of size 4 X 7 may seem strange
enough. But what about analogous balanced superimpositions of three Youden squares of any size 2p x
(4p-1) or (2p-1) x (4p-1) for which (4p-1) is a prime number with p>1 ? We can now reveal that there
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are, in general, for each size, exactly three possibilities, not just the two that are represented above by (3)
and (4). The third of these possibilities has no representative of size 4 x 7, as this size is too small to admit
of the required combinatorial flexibility. We shall now illustrate the three possibilities by turning to the size
6 x 11. As hitherto, we shall use the phrase ‘efficiency factor’ only in reference to efficiency calculated for

a factor after fitting effects for all other factors.

Consider first the following design, analogous to design (3):

AAA BBB
CElI DN
IFK JGA
KIJH AKI
HDG IEH
GBC HCD

As in all other designs in this paper, the entries in each row are generated cyclically from the entry in the first
column, the cycle being (ABC ..) with (4p-1) letters in the brackets. Once again, we shall use TO for the
‘blocks’ factor. However, it will now be convenient to generalise our previous labelling of other treatment
factors by basing a factor’s labelling on the treatment that appears for that factor in column 1, row 2. In (5),
we therefore base our remaining labelling on the treatments C, E and I of, respectively, the remaining three
factors. If we code A,B,C,..., as 0, 1, 2,..., these treatments become 2, 4 and 8, so we denote the corresponding

CccC
EGK
KHB
BAJ
JF1
IDE

DDD
FHA
AIC
CBK
KGJ
JEF

EEE FFF
GIB HIC
BID CKE
DCA EDB
AHK BIA
KFG AGH

IKD
DAF
FEC
B
BHI
GGG

HHH
JAE
EBG
GFD
DKC
Cu

factors as T2, T4 and T8. The efficiency factors are then as follows:
TO and T4

1 611
18

Now consider the following design that is analogous to design (4):

AAA
CEK
IFH
KJG
HDC
GBI

BBB
DFA
JGI
AKH
IED
HA

ccc
EGB
KHJ
BAI
JFE
IDK

DDD EEE
FHC GID
AIK BJA
CBJ DCK
KGF AHG
JEA KFB

FFF
HIE
CKB
EDA
BIH
AGC

T2 and T8
35 - 0655
84

GGG HHH

IKF  JAG

DAC EBD

FEB  GFC

gl DK

BHD CIE

I

KBF
FCH
HGE
EAD
DJK

J
ACG
GDI
IHF
FBE
EKA

II1
KBH
FCE
HGD
EAK
DJF

KKK
BDH
HEJ
JIG
GCF
FAB

JJ
ACI
GDF
THE
FBA
EKG

®)

Here, with labelling as before, we have the respective factors T0, T2, T4 and T10, with efficiency factors as

follows:

T10

o786
13

TO, T2 and T4

U 733
15

But finally, amongst designs of size 6 x 11, consider the following design:
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AAA BBB CCC DDD EEE FFF GGG HHH 1 JI KKK

CIK DJIA° EKB FAC GBD HCE |IDF JEG KFH AGI BHJ

IKH JAI KBJ ACK BDA CEB DFC EGD FHE GIF HIG

KHG AIH BJI CKJ DAK EBA FCB GDC HED [IFE JGF @
HGC [IHD JIE KJF AKG BAH CBI DA EDK FEA GFB

GCI HDJ IEK JFA KGB AHC BID CJE DKF EAG FBH

Here we have efficiency factors as follows:

T0, T2, T8 and T10
N 0733
15

Now we are back to the situation that we had for the balanced superimposition of just two Youden squares,
namely that of a design having the same efficiency factor for each of the treatment factors.

Ignoring the ‘rows’ factor, our design (7) is Design 7 from p.29 of Potthoff (1963). We have thus thrown
light on Potthoff’s somewhat cryptic assertion that The efficiency of Design 7 is 11/15. We have, however,
also shown that, in practice, our design (6) might well be preferable to (7), as design (6) provides greater
efficiency for one of the factors.

The numerical values for the efficiency factors for designs (5), (6) and (7) are obtainable by taking p = 3 in
the following general formulae for balanced superimpositions of three Youden squares of size 2px(dp-1)
where (4p-1) is prime:

1-_21;-.27%’2%17 =i_i=o.786;
1-%-5@1,? =:_;=o.733;
1-_21;-5(21,_’;1"5%:3=_:%=o.655;
1-%-%%‘% =%=0.611.

The reader is, however, invited to obtain the numerical values by running designs (5), (6) and (7) through
Genstat’s ANOVA. The only factors that need to be coded are T0, T2, T4, T8 and T10. Then, for example, the
efficiency factor of 0.786 for T10 in (6) can be obtained by specifying the TREATMENTSTRUCTURE for (6) as
T0+T2+T4+T10. :

Each of the designs (5), (6) and (7) remains a balanced superimposition of Youden squares if its first row is
deleted, to give a 5 x 11 superimposition. If we designate the resultant designs as (5'), (6') and (7'), we have
efficiency factors as follows:

(5" TO and T4 T2 and T8
0.629 0.550

6" T10 TO, T2 and T4
0.550 0.629
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7) TO, T2, T8 and T10
0.314

Potthoff (1963) alluded to the existence of design (7), and indeed gave its efficiency as 11/35 = 0.314. But we

can now see that (6") is not only more efficient than (7') for all 4 factors, but indeed twice as efficient for 3 of
the 4 factors.

By this stage in our paper, our reader will wish to know how designs such as (5), (6) and (7) are to be
distinguished from one another so that the pattem of the efficiency factors can be deduced. Elementary, my dear
Watson! — so long as we look carefully at some incidence matrices. For this, only one matrix n need be written
down explicitly. For 6 x 11 designs, 7 is as follows, where the rows and columns have been numbered and
labelled for convenience, and where zero entries have been represented by dots:

4 5 7 8

A B ¢ D E F G H 1 J K
1A |1 1 . 1 1

26 |. 1 1

(=
—
[
.

(%

3C 1 . 1 1 . 1 1 1 . . .

4D . 1 . 1 1 . 1 1 1 . .
5E . . 1 . 1 1 . 1 1 1
n=  6F . . . 1 . 1 1 . 1 1 1
7G 1 . . . 1 . 1 1 . 1 1
8H 1 1 . . . 1 . 1 1 . 1
91 1 1 1 . . . 1. 1 1
10 . 1 1 1 . . . 1 . 1 1

11K 1 . 1 1 1 . . . 1 . 1

This matrix satisfies the equation
n=I+YT, @
Q

where 7 is the 11 x 11 identity matrix, T} is the basic 11 x 11 circulant matrix with the entry 1 in the first
position of column (i + 1) and the entry 0 elsewhere in row 1, and Q is the set of quadratic residues in GF(11),
the Galois field of order 11, i.e.

Q =1{20,22,2¢,26,28} (mod11)
={1,4,5,9,3}.
As the elements of T2 that appear in column 1 of (5), (6) or (7) are A, C, 1, K, H, G, and the non-zero elements
in column 1 of » are in the rows labelled A, C, I, K, H, G, we readily see that  is the incidence matrix for the

incidence of T2 on columns of our designs, i.e. for the incidence of T2 with respect to T0. Writing #, for the
incidence matrix for the incidence of Ti with respect to Tj, we thus have

n=n,.

Proceeding similarly for other pairs of factors (with ‘rows’ ignored as hitherto), we therefore have the following
for designs (5), (6) and (7):
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@: n=ny=ny=n,=ng,=n,=n,
where the suffix ¢ denotes 10.

If we now examine the incidence-matrix equations for (5), we find that they contain two subsets of equations
that can be written in the cyclic form

n,=n, =n,
)

namely ny, =N, =n,

and Ry, =Ny = Ny,

Common to these two subsets is the matrix #,,, relating to the factors T0 and T4, so it is not surprising that the
efficiency factor for T0 and T4 in (5) is different from that for T2 and T8.

Tuming now to the incidence-matrix equations for (6), we find only one cyclic subset of equations of the form
(9), namely

Mo, =Ny = Ny

The matrices in this subset relate to the factors T0, T2 and T4, but not to the other factor in (6), namely T10.
So we need not be surprised that the efficiency factor for T10 differs from that for T0, T2 and T4.

The incidence-matrix equations for (7) contain no subsets of the form (9). This is the condition for there to be
just a single efficiency factor for all treatment factors in the design.

For balanced superimpositions of three Youden squares of any size 2p x (4p - 1) where (4p-1) is prime,
equation (8) needs to be generalised to

n=l+¥Y T, (10)
eQ

where I is the vxv identity matrix, I’; is the basic vxv circulant matrix defined as before, and Q is the set of
quadratic residues in GF(v). The simplicity of the general formulae given earlier for efficiencies for the size
2px(4p-1) derives from the properties of the circulant matrices and the restriction of the summation to the set
Q. For ‘the size (2p - 1) x (4p - 1), similar mathematical results may be obtained by using the matrix

n=3T
uqr

As a final exercise, the reader is invited to use the 7 x 7 matrix n given by (10) to distinguish design (3) from
design (4). For this example we have

Q ={3,33% (mod?)

={1,2,4}.
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Solving the depletion equation; an example of inverse nonlinear regression
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1. Introduction

Regression problems can arise where the independent variable, x, is a function of the independent variable, y,
so that x = f(y;0), where 0 is a vector of unknown parameters to be estimated; an example of this was presented
by Ridout (1993). This article deals with a specific example used in the analysis of experiments which measure
the depletion of a radioactive nutrient by a plant, and was first presented at the 1993 Genstat Conference,
Canterbury, Kent (Brain and Saker, 1993). The depletion technique was discussed by Claassen and Barber
(1974), who presented a theoretically derived equation which related the nutrient concentration in the nutrient
media (C) to time (/). Their equation related the rate of uptake (equivalent to the decay rate of the
concentration) to the concentration in the external solution, and was of the form

ac . _w| LC .

@ VI|K +C
where W is the root weight (known), V is the volume of the solution (known), E is the efflux, I, is the maximum
rate of uptake, and K, is the Michaelis constant. They then fitted this equation to their experimental results by
solving the equation by numerical integration, then fitted to the data using least squares. This method was used
by several authors, including Drew et al (1984), who used a simplified form of the original equation with E=0,
but included a background level of concentration C,,, below which the concentration could not fall. Their
equation is equivalent to the original equation but with E reparameterised in terms of C,;, A further
development of the procedure was introduced by McLachlan ez al (1987), who considered the case when the

original equation was inappropriate, and considered ways of investigating the relationship between dC/dt and C
by fitting various empirical curves to the C versus ¢ time courses.

None of these authors apparently recognised that the basic differential equation can be readily solved to produce
a relationship between C and ¢ in this paper we solve the equation and develop a method for fitting it to
experimental data. The approach does not rely on numerical integration, as in previous approaches, and can be
readily implemented in Genstat. ’

2. The model

As noted above Drew et al (1984) used a modified version of the equation used by Claassen and Barber (1974)
by assuming that E was zero, but the depletion was dependent on the concentration above a natural background
level, C,;,. Their equation was

i __w I (C -C,.)
dt V K + C-C)
This can be rearranged to give
K
dt=-_Y _|_—"__ +1|dC
I |\C-C,
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which can be readily solved to give
14 Co = Coa (1)
t= K In—_2" [+ (C, -
WIM[M [C—len (0 C)

where C, is the initial concentration. It is impossible to rearrange this equation to evaluate C given ¢. This
equation is a more complex version of that derived by Ridout (1993) which modelled plant growth.

Under certain conditions the equation will degenerate to simpler forms; for example when K, is very large, but
(WL)I(VK,) is finite, then 1/K,, is close to zero, and equation (1) reduces to

C = Cmi.n + (Co - th) e-(WI_tIVK,) )

i.e. the concentration decays exponentially with time. This equation is one of those considered by McLachlan
et al (1987). Another special case occurs when K,, = 0, but (WI,)/V is non-zero, when equation (1) reduces to
a straight line:

c=c°-__W";’ &)

3. Fitting the model

Equation (1) can be solved for known values of the parameters to give C for a given ¢ using the iterative
Newton—Raphson method. This can be incorporated into a series of CALCULATE commands, which can be used
with the FITNONLINEAR command, in a similar way to that used by Ridout (1993). (Though as Ridout
comments, there appears to be no way that a test for convergence can be carried out in a series of CALCULATEs
of this form.) However, when this approach was tried using equation (1) the iterative process was unstable, and
could not be relied on to converge. Accordingly equation (1) was rewritten in a more suitable form:

(C - th) e'(C,,'Q/K. = (Co - Cmin) e-W’.lIVK.. (4)

As K,, becomes increasingly large, but (WI,)/(VK,) is constant, equation (4) reduces directly to equation (2).
The case where X, is close to zero is not covered directly by this equation but can be readily fitted using linear
regression. Equation (4) has six parameters, of which only four are identifiable. However W and V are
measured independently, so all parameters can be estimated. For estimation purposes (WI,)/(VK,) was denoted
by 7, and 1/K,, was replaced by I, With this parameterisation equation (4) becomes

C-C e =(,-C)e™ ®)
Equation (4) can be rewritten in the form
A =0
and the Newton—Raphson method can be applied to this to give
C. =C +AC
where ac = 6o~ Cud e« "y, -C) ©)

I+ (Cl - Cmin) I,

This iterative sequence was set up as a series of CALCULATE statements in Genstat which were used with
FITNONLINEAR. The first evaluates the first Ac (denoted by dc) using equation (6), with our initial estimates
Cmin, T, IKM and CO, and estimating the fitted concentrations, C, by our observed values of ¢. (For reasonable
data the observed concentrations are an obvious choice, and in most cases that have been tried out work well.)
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The second expression updates our fitted values, £c, -and our fitted values of concentration, C. Expressions
E{3,5...17) and E[4,6...18) repeat this iteration, but using the fitted concentrations, ¢. The final
expression transforms the fitted values, if necessary, so that a transform-both-sides analysis (Rudemo et al,
1989) can be carried out if required (if a transform was required the MODEL statement would obviously use the
transformed concentrations). The fitted concentrations are stored in € and can be used later if required. The
system as set up uses several iterations; the actual number used can be altered by using more, or less,
expressions. The final increment de is available at the end of the iterative process so can be readily inspected.
The CALCULATE statements are stored in the expressions given below:

express [value = (dc=((C0-Cmin)*exp((CO-c)*IKm-T*t)-(c-Cmin))/ \
(1+{c-Cmin)*IKm))] E[1]

& [value = (fc=(C=c+dc))] E[2]

& [value = (dc=((C0-Cmin)*exp ((CO-C)*IKm-T*t)-(C-Cmin))/ \
(1+(C-Cmin)*IKm))] E[3,5...17])

& (value = (fc=(C=C+dc))] E(4,6...18)

& (value = (fc=log(fc))] E[19]

Various special cases of the equation can be readily fitted; of particular relevance are the cases where C,, is
zero, or when K,, is large (corresponding to /k,, = 0). The increase in the residual sum of squares can then be
used to test whether C,, , or ', , are significantly different from zero.

4. Finding initial parameter estimates
The fitting process outlined above needs good initial estimates of the parameters C,, C_;,, T, and k,. An

obvious initial estimate of C, is the observed concentration at time zero; a reasonable initial estimate of C_,, is
often zero. Given these initial estimates two new variates x, and x, can be calculated where

C,-C.
x,=ln[° mm]

C-C.
and
x, =(C, - C)
Equation (1) can then be rewritten as !
t= % x, + ._7'f_ X,

Initial estimates of the parameters can then be readily obtained by regressing ¢ on x, and x,. The Genstat
statements below carry out this process and store the initial estimates in iCmin, iT, iCO, and iIKm :

scal iC0,iCmin,iT,iIKm

calc iCO=c$(1]
& iCmin=0

calc x1=log((iCO0-iCmin)/(c-iCmin))
& x2=(iC0-c)

model t

terms x1+x2

fit [con=0] x1+x2

rkeep esti=e

calc iIKm=e$([2)/e$[1]
& iT = 1 / e$(1]

5. Example

The procedure was used to analyse twelve sets of data (more detail will be given in Saker and Brain (1994).
The data set presented here was obtained from a 16—-day old B. campestris plant and the concentration of radio-
labelled sulphate present in the nutrient solution (counts per minute per 0.1 ml aliquot) (denoted by c) was

recorded at a series of times (t).
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read [setn=y;ser=y] t,c
0 15 29.5 45 60 75 90 105 120 135 150 165 195 225 255
284 315 375

‘;;2’;7 102%1 9065 8308 7017 6445 5047 4197 3543 3019 2371 1836 1226 810 527 340
8 18

.

In the example below no transform was used; if a log transform had been needed c would have been replaced
by lc in the MODEL statement, and expressions E(1...19) would have been used in the FITNONLINEAR
statement. The equation can be readily fitted with Cmin or IKm (or both) set to zero.

model c;fitt=fc
rcyc [meth=n;maxc=50] CO,Cmin,T,IKm ; init=iC0,iCmin,iT,iIKm
fitn [calc=E(1...18]);print=mon,n,s,e,f]

This approach was used to fit to both log-transformed data (using the transform-both-sides technique), and
untransformed data; there was slight evidence that the log-transform gave a better residual plot. There was also
some doubt as to whether Cmin was different from zero, so the equation was fitted both with, and without, Cmin.

(0) No tronsform; Cmin=0 (b) No transform; Cmin<>0
= =
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Figure 1. Observed and fitted concentrations (measured as counts per minute) for untransformed — (a)
and (b) — and log transformed — (c) and (d) — counts, with C,, constrained to zero — (a) and (c) — and
unconstrained — (b) and (d) — for the example set of data.

Figure 1 presents the results of the four combinations (with or without log transform; with and without Cmin).
The residual sums of squares from the analysis of log-transformed data for with-, and without-, Cmin were
0.01959 (on 14 d.f.) and 0.2536 (on 15 d.f.) respectively, giving an approximate F-statistic for comparing the
constrained and unconstrained model of (0.2536-0.01959)/(0.01959/14) = 167.24 on 1 and 14 d.f.

There is thus clear evidence that Cmin is significantly different from zero. The final parameter estimates (with
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standard errors on 14 d.f. in parentheses) are:

€0 (cpm per 0.1 ml aliquot) = 11621 (238); Cmin (cpm per 0.1 ml aliquot) = 149 (10);
T = 0.01970 (0.00076); © IKm = 0.000143 (0.000017)

For this experiment the root weight (W) was 0.56 g, the volume of solution (V) was 50 ml, and the specific
activity 3729.3 counts/ min/ nmol. This gives C,;,, K,, and C, to be 0.40, 18.75 and 31.16 pMol respectively
(for example C, = 11621 / 3729.3 nmoV/ 0.1 ml = 3.116*10* / 10° uMol ). The parameter /,, can be calculated
from the estimated values of K, and T to be 1.98 pumol/ g/ hr (0.01970 * 0.05 * 18.75 / 0.56 pmol/ g/ min).

References

Brain P and Saker L R (1993) Using GENSTAT for inverse non-linear regression. Abstract for 8th Intemational
Genstat Conference, Canterbury, July 1993,

Claassen N and Barber S A (1974) A method for characterizing the relation between nutrient concentration and
flux into roots of intact plants. Plant Physiol. 54 564-568.

Drew M C, Saker L R, Barber S A and Jenkins W (1984) Changes in the kinetics of phosphate and potassium
absorption in nutrient-deficient barley roots measured by a solution-depletion technique. Planta 160 490-499.

McLachlan K D, Kuang Yan-hua and Muller W J (1987) An assessment of the depletion technique for
comparative measurement of phosphorus uptake in plants. Aust. J. Agric. Res. 38 263-277.

Ridout M S (1993) A note on fitting a growth-curve model. Genstat Newsletter 29 6-8

Rudemo M, Ruppert D and Streibig J C (1989) Random-effect models in non-linear regression with applications
to bioassay. Biometrics 45 349-362.



Genstat Newsletter 31
RUNGEN - a user-friendly Genstat interface

D Kilpatrick

Biometrics Division

Department of Agriculture for N Ireland
Newforge Lane, BELFAST BT9 5PX

N Ireland

L Easson

Agricultural Research Institute
Department of Agriculture for N Ireland
HILLSBOROUGH, Co Down, BT26 6DP
N Ireland

1. Introduction

Agricultural and food research scientists in the Department of Agriculture for N Ireland carry out a wide range
of experiments, some of which, while maybe not very sophisticated in terms of statistical design, tend to generate
vast amounts of data. In this they are supported by technical staff, with minimal statistical expertise, who usually
accumulate these data onto PC spreadsheets either manually or from direct capture data loggers. Consultant
statisticians in Biometrics Division provide a statistical analysis service for these experiments but, in common
with other similar divisions, can quickly be overwhelmed by the demands for their services. There is thus a need
for a system, which can be easily used by support staff, to provide intermediate summaries and statistical analysis
of experimental data. One of the main requirements for ease of use is the ability to readily accept large amounts
of ASCII data in a typical spreadsheet rows and columns layout without the need for additional formatting. While
Genstat undoubtedly has the necessary summary and analysis facilities, its command driven language proves an
obstacle for most technical support staff. The Menu procedure developed by Peter Lane is a recent attempt to
address this problem. An alternative method has been developed over a number of years within Biometrics
Division. This article describes a Fortran program RUNGEN which provides a user-friendly interface to writing
Genstat programs and which has special facilities to ease the input of spreadsheet data. There are two versions
of the interface program. One is specifically intended for VAX/VMS usage as it makes use of its supplied screen
management routines, while the other is for general use.

2. Features

RUNGEN operates via a series of menus from which the user specifies the form of the data and the type of
summary/analysis required. On accessing RUNGEN the user is presented with the following main menu:

Main menu: Input Calculate Display Analysis Modify Exit

The user selects the required action by typing the unique capital letter associated with each option. Additionally
on the VMS version, the arrow keys can be used to highlight the required action.

1. Input provides the following features:
* inputs data either from a file or via the keyboard;

* if from file, RUNGEN reads the data file and prompts the user to specify the type of information in the
file;

* automatic incorporation of column headings, typically used in spreadsheets, into the Genstat program
either as extra text for variates or as names for factors;

¢ automatic interpretation of data structures as either text, variate or factor with provision for the user to
change if required.
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2. Calculate provides prompts for the calculation of additional variate and factor structures.

3. Display and Analysis provide access to a range of pre-defined techniques which RUNGEN reads from a
start-up file. The displays and analyses specified can be for either standard Genstat directives as in:

TABULATE [CLASSIFICATION=#F ; MARGIN=#h (Yes/no);
PRINT=#h (count, total,Mean,Nobs, total,mInimum,maXimum) ) DATA=#V

or local procedures as in:

REGRESSION[CONSTANT=#h(Estimate/omit) ;
METHOD=#h (Linear/asymptotic/sigmoidal/multiple/sTepwise) ] X=#V;Y=#V

For both forms the following conventions apply:
¢ the # symbol generates a prompt for input;

e the letter immediately following # indicates the type of input, i.e. F for factors, V for variates, 7 for
text, S for structures, H for options;

* a capital letter indicates that the input is compulsory, a lower-case letter that it is optional;

* valid options are enclosed by round brackets and are separated by either forward slashes if only one
option is allowed or by commas if several are allowed;

» options with an initial upper-case letter indicate the default, e.g. Mean and Nobs for Tabulate Print
options;

 options are toggled on/off by typing the appropriate initial or capital letter, e.g. C for count and I for
minimum Tabulate Print options.

When either Display or Analysis is selected, RUNGEN presents a menu showing the pre-defined techniques
from which the user selects the required one. RUNGEN then automatically generates prompts for the
compulsory input followed by a prompt to allow the user to modify both the option settings and the
compulsory inputs. For example, for the Tabulate directive selected from the Display menu:

Type of Display? Print Tabulate Graph Histogram Barchart Quit

Enter Tabulate Classification-factors:
Enter Tabulate Data-variates:

Modify Tabulate? Classification-factors Data-variates Print Margin Quit Zap
Selection of Quit completes the specification for the display/analysis while Zap deletes it.

4. Modify allows the user to modify and/or delete previously defined display and analysis operations. On
specifying the type of technique to be modified, the user is presented with the corresponding modify menu
as for Modify Tabulate in the previous paragraph.

5. Exit exits the interface program resulting in the creation of two files. The first is a file of Genstat statements

to carry out the specified input, display and analysis operations, while the second is a control file of user
input which can be replayed at a later session and the analyses specified modified and/or extended.

3. Example

To illustrate the operation of RUNGEN consider a 2 x 2 + 1 factorial experiment with 2 replicates and the data
laid out in a file XYZ .DAT as shown in Figure 1. This layout is typical of spreadsheet data with titles at the top
describing the experiment and supplying names for the data columns.
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Figure 1. Example data file XYZ.DAT

Experiment XYZ
Stage I measurements
Diet Milk Fat
Rep Type Meal Yield (1/d) %
1 A 2 258 3.13
1 B 4 29.3 297
1 C 0 21.2 3.18
1 A 4 30.0 285
1 B 2 245 344
2 C 0 276 271
2 B 2 28.1 3.10
2 A 2 299 3.28
2 A 4 239 4.01
2 B 4 23.6 3.54

The dialogue between user and program to specify the type of information in this file is illustrated in Figure 2.

Figure 2. Example dialogue to read data file

(Program output is shown in italics, user input in bold and menu selections underlined)

Enter number of experimental units: 10

Main menu: Input Calculate Display Analyse Modify Exit

Input from: File Keyboard

Enter name of file: XYZ.DAT

File contents? Data-only Titles-plus-data

Read options: Continue Missing-value-indicator End-of-data-marker

program reads and displays each line in data file and prompts user to identify the type of information

Experiment XYZ
Dype of information: General-title Sub-title Names Data Ignore Quit

Stage I measurements
Dype of information: General-title Sub-title Names Data Ignore Undo Quit

Diet Milk Fat
Type of information: General-title Sub-title Names Data Ignore Undo Quit

Rep Type Meal Yield (I/d) %
Type of information: General-title Sub-title Names Data Ignore Undo Quit

1 A 2 258 313
Type of information: General-title Sub-title Names Data Ignore Undo Quit
Read options: Continue Options Undo Quit

program reads to end-of-data marker, displays current information and provides user with opportunity to make
modifications
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General Title: Experiment XYZ
Sub-title: Stage I measurements

Number Name Dype Levels First Last
1 Rep Factor 2 Formal 1 2

2 Diettype Factor 3 Text A B

3 Meal Factor 3 Numeric 2 4

4 Milk Yield (Iid)  Variate

5 Fat % Variate

Modify: Continue General-title Sub-title structure-Names Types

program returns to main menu since end of data file reached

The main feature is that RUNGEN reads the data file line by line and prompts the user to specify the type of
information contained on each line. After the user identifies the first data line, RUNGEN reads to the end of data
marker and automatically determines both the number and the types of structures. Any factor names are
automatically edited to be unique and obey the rules for such names. The user then has the opportunity to modify
this if necessary. RUNGEN reads as many sets of data as are on the file and returns the user to the main menu
when the end of file is encountered. '

From the main menu, the user can select options to input additional data, calculate new structures, and display

and analyse the data. As previously described the displays and analyses available are defined in a file read by
RUNGEN at start-up. Dialogue corresponding to the Tabulate display directive is shown in Figure 3.

Figure 3. Example dialogue for Tabulate directive

Main menu: Input Calculate Display Analyse Modify Exit
Dype of display? Print Histogram Graph Tabulate Barchart Quit

program prompts the user for the compulsory input displaying lists of factors and variates, identified by number
and name, as appropriate

Num Structure name Num Structure name
1 Rep 2 Diettype

3 Meal

Enter Tabulate Classification-factors: 2,3

Num Structure name Num Structure name
4 Milk yield (ld) 5 Fat %

Enter Tabulate Data-variates: 4,5

program shows current settings and prompts the user to make modifications

Classification-factors: Diettype,Meal
Data-variates: V{4,5]

Print: Nobs, Mean
Margin: Yes

Modify Tabulate? Classification-factors Data-variates Print Margin Quit Zap

Edit Tabulate Print-options: count total Nobs Mean min maX var Quit
(the user selects/deselects options as required)
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An additional feature worth mentioning is the automatic definition of a control factor to deal with the factorial
plus added control design in this example. This is illustrated in Figure 4.

Figure 4. Example dialogue for Analysis of Variance

Main menu: Input Calculate Display Analyse Modify Exit
Type of analysis? Analysis-of-variance Regression Variate-regression
Type of design? Completely-randomised Randomised-block Latin-square Split-plot

Num Structure name Num Structure name
1 Rep 2 Diettype
3 Meal

Enter treatments factors: 2,3

Factorial plus control: No Yes

Diettype: 1=A 2=B 3=C

Enter number of control level for Diettype: 3
Meal: I=0 2=2 3=4
Enter number of control level for Meal: 1

Num Structure name Num Structure name
4 Milk yield (lid) 5 Fat %

Enter Analysis-of-variance Y-variates: 4,5
Modify Analysis-of-variance: Y-variates SE Covariates Quit Zap

4. A user’s viewpoint

A centre at which RUNGEN has been used for some time is the Agricultural Research Institute of Northem
Ireland, Hillsborough. In agricultural, as in all research, the rapid statistical analysis of experimental data is of
great importance in maintaining progress and research workers found that, in spite of good computer
communications between centres, inevitable delays were taking place while numerous data sets were sent to the
Biometrics service for analysis. Attempting to come to grips with this problem with the writing of Genstat
programs by individual scientists or support staff at the Institute would have been an unwanted diversion from
their main research activities and so the development of RUNGEN as a method of preparing statistical analyses
without coming into direct contact with Genstat commands has been a very valuable service. The ease of use
of RUNGEN has also reduced the need to perform intermediate calculation of means and other values as the full
analysis of any data set can be achieved in minutes. The range of facilities in RUNGEN including the analysis
of split-plot designs, the use of co-variates, factorials plus controls, correlations and regressions is adequate to
meet most standard experimental designs at the Institute and other needs can be met by straightforward
modification of the resulting Genstat program file. RUNGEN is made particularly user-friendly by the system
of prompts, hints and menu choices so that relatively little training is required, provided users are familiar with
the computer system and with the preparation of data. There have been few problems with acceptance of
RUNGEN by scientific staff, experienced technicians and research assistants with sufficient computer experience
and it has become the standard procedure for the analysis of about 60% of the research data from the Institute.

5. Discussion

RUNGEN has been used extensively by the non-specialist staff for whom it was intended and it has undoubtedly
proved beneficial. The most commonly employed technique is analysis of variance of designed experiments and
here it is emphasised that a statistician should always be consulted if there is any doubt over the design.
Typically this is sorted out in the initial stages of data analysis, leaving the non-specialist staff to include extra
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data for analysis as they become available. RUNGEN has also been of benefit to experienced Genstat users
particularly regarding its ability to quickly input large numbers of structures with corresponding column headings.
The file of Genstat statements can then be edited to carry out more complex operations. Alternatively the file
containing pre-defined display and analysis operations can be easily extended to include other operations as
required.

The major remaining stumbling block for users seems to be the detection and correction of coding errors when
inputting data from files. To overcome this it is intended that a later version will include the detection of

* incomplete lines of data;
* possible typing errors e.g. "o" and "i" for the numbers zero and one;
*  mis-coding of factor levels leading to unequal replication for a balanced design.

The fact that RUNGEN, unlike the Menu procedure, does not allow interactive Genstat use is more of a

limitation to the experienced user than the non-specialist staff for whom RUNGEN was originally intended.
Future developments may include the use of the Genstat Own directive to overcome this limitation.
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An interface between Genstat and the Brief editor on PC

P W Goedhart

DLO Agricultural Mathematics Group
P.O. Box 100

6700 AC WAGENINGEN

The Netherlands

1. Introduction

Brief (Borland International, 1992) is a professional program editor for DOS PCs providing editing of multiple
files in multiple windows, extensive search and translate capabilities, the ability to undo most commands,
template editing, multiple keystroke macros, a completely reconfigurable keyboard, a flexible macro language,
compilation of programs from within the editor and mouse support.

Brief’s macro language gives the ability to extend and change the editing environment. Its syntax resembles the
C language. I have written several Brief macros which allows you to:

*  use an extended EDT-style keyboard, where EDT is the VAX/VMS editor EDIT/EDT;

e execute a DOS command from within Brief and automatically return to the editor when the DOS
command is completed. This interface to DOS can be fully customized to your own needs. You can, for
example, run a Genstat program from within Brief and automatically view/edit the output file after the
Genstat run has been completed. You can also compile and link Fortran or C programs, for example, from
within Brief with different options or you can send files to a printer;

*  view the Genstat reference summary for every directive and procedure in a separate window and to
automatically insert directives, options and parameters in the Genstat program file. You can also view the
directive/procedure index and the directive/procedure modules.

The Genstat help macros and the interface to DOS are most easily explained by an example session, which is
given in the next section. The macros and a full description are available from the author.

2. Example session
Suppose you are using Brief to edit a file TOMATO.GEN, which contains a Genstat program to calculate the

weight of a tomato on different days. The PC screen then looks as follows; the cursor position is denoted by
-

tomato.gen
VARTIATE [VALUES= 21, 25, 30, 35, 39] day
VARIATE [VALUES= 2, 5, 15, 22, 28) diameter
CALCULATE pi = CONSTANTS(’pi’)

CALCULATE weight = 4/3 * pi * (diameter/2)**3 / 1000
PRINT day, weightm

STOP

BRIEF v3.1 - Copyright (c) 1991 Borland Internat Line: 5 Col: 22 # 12 40

Suppose that you want to print the day and weight variates serially across the page with no decimal places for
the day variate. Help on the PRINT directive can be obtained by pressing key F11. Help on the PRINT directive
is retrieved because the cursor is located on a line with a PRINT directive. The PC screen then displays two
windows: a top window with the Genstat program file and a bottom window with reference help on PRINT.
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tomato.gen
VARIATE [VALUES= 21, 25, 30, 35, 39) day
VARIATE [vaALUEBS= 2, S, 15, 22, 28} diameter
CALCULATE pi = CONSTANTS(‘pi’)

CALCULATE weight = 4/3 * pi * (diameter/2)**3 / 1000
PRINT day, weightm

STOP

PRINT

PRINT
> iriﬁts data in tabular format in an output file, unformatted file, or
» text.
Options
CHANNEL = identifier Channel number of file, or identifier of a
text to store output; default current
output file
SERIAL = string Whether structures are to be printed in
serial order, i.e. all values of the first
structure, then all of the second, and so
on (yes, no); default no, i.e. values in
parallel
IPRINT = string What identifier (if any) to print for the
structure (identifier, extra,
associatedidentifier), for a table

Insert Directive PRINT Line: 5 Col: 22 # 12 40

The index of the PRINT directive is highlighted by means of the » character. Key PageDown moves the
highlight down to the next option or parameters in the help window, while PageUp moves the highlight up. So
pressing PageDown twice moves the highlight to the SERIAL option. Key Insert then inserts the highlighted
option in the Genstat file, as is shown on the PC screen below. Note that the cursor has moved to the position

after the inserted option, so that the option setting (yes) can be typed conveniently.

tomato.gen
VARIATE (VALUES= 21, 25, 30, 35, 39] day
VARIATE [VALUES= 2, 5, 15, 22, 28] diameter
CALCULATE pi = CONSTANTS(’pi‘)

CALCULATE weight = 4/3 * pi * (diameter/2)**3 / 1000

PRINT [SERIAL=g] day, weight
STOP
PRINT
Options
CHANNEL = identifier Channel number of file, or identifier of a

text to store output; default current
output file

» SERIAL = string Whether structures are to be printed in

> : serial order, i.e. all values of the first

> structure, then all of the second, and so

> on (yes, no); default no, i.e. values in

> parallel

IPRINT = string What identifier (if any) to print for the

structure (identifier, extra,
associatedidentifier), for a table
associatedidentifier prints the identifier
of the variate from which the table was
formed (e.g. by TABULATE), IPRINT=*

Insert Option SERIAL Line: 5 Col: 19 # 12 40

The ORIENTATION option is inserted in the same way, i.e. PageDown is pressed until the ORIENTATION option
is highlighted and the Insert key is then used to insert the ORIENTATION option. The setting across is
subsequently typed. In order to insert the DECIMALS parameter, PageDown can be pressed until the DECIMALS
parameter is highlighted. Altematively, Ctrl-P can be pressed to move the highlight to the first parameter.
The key sequence PageDown, PageDown, Insert then inserts the DECIMALS parameter and the PC screen looks

as follows:
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tomato.gen
VARIATE [VALUES= 21, 25, 30, 35, 39] day
VARIATE [VALUES= 2, 5, 15, 22, 28] diameter

CALCULATE pi = CONSTANTS(’pi’)

CALCULATE weight = 4/3 * pi * (diameter/2)**3 / 1000

PRINT [SERIAL=yes ; ORIENTATION=across] day, weight ; DECIMALS=g
STOP

PRINT
omitted, a default is determined (for
numbers, this is usually 12; for text, the
width is one more character than the
longest line)

» DECIMALS = scalars Number of decimal places for numbers; if
> omitted, a default is determined which

> prints the mean absolute value to 4

> significant figures

CHARACTERS = scalars Number of characters to print in strings

SKIP = scalars or variates Number of spaces to leave before each value
of a structure (* means newline before
structure)

FREPRESENTATION = strings How to represent factor values (labels,
levels, ordinals); default is to use labels
if available, otherwise levels

Insert Parameter DECIMALS Line: S Col: 68 #12 41

The DECIMALS parameter is then set to 0,*. When you want to run this Genstat program and edit the output
file afterwards, you normally have to exit the editor, run the DOS command

GENSTAT TOMATO.GEN,TOMATO.LIS
and edit the resulting output file TOMATO.LIS after Genstat has stopped. The interface to DOS allows you to

combine these actions in key F12. Assuming the interface has been set up correctly, pressing F12 runs the
Genstat program and edits the output file, giving the following PC screen:

tomato.lis
mGenstat 5 Release 3.1 (IBM-PC 80386/D0S) 10 June 1994
Copyright 1993, Lawes Agricultural Trust (Rothamsted Experimental Station)

1 VARIATE {VALUES= 21, 25, 30, 35, 39] day

2 VARIATE (vaLuES= 2, 5, 15, 22, 28] diameter

3 CALCULATE pi = CONSTANTS(’pi‘)

4 CALCULATE weight = 4/3 * pi * (diameter/2)**3 / 1000

5 PRINT (SERIAL=yes ; ORIENTATION=across]) day, weight ; DECIMALS=Q,*

day 21 25 30 35 39

weight 0.004 0.065 1.767 5.575 11.494

6 STOP

**kxxxkk* End of job. Maximum of 2350 data units used at line 5 (6533944 left)

BRIEF v3.1 - Copyright (c) 1991 Borland Internat Line: 1 Col: 1 # 12 M

The contents of the Genstat program, i.e. the file TOMATO.GEN, can be viewed by using Brief’s facilities to
switch between files (Alt-n would be sufficient for this session). External datafiles can also be edited
simultaneously and modified if necessary. Moreover, Brief has the ability to edit files in multiple windows, so
the Genstat program file can be edited in one window and the Genstat output file in another window. Running
Genstat from inside Brief, by means of key F12, automatically updates the output file window with the new
Genstat output file.
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There is also help available on the directive/procedure modules and on the directive/procedure index. For
example, the key sequence A1t-F11, I, Enter displays the AOV directive module with the first line highlighted:

z.gen
Modules

BLOCKSTRUCTURE Defines the design
TREATMENTSTRUCTURE, COVARIATE Specifies effects
ANOVA Carries out the analysis
ADISPLAY, AKEEP Displays or saves results

and unbalanced experiments can be analysed using:

REML Fits a variance-components model
VCOMPONENTS Specifies a variance-components model
VDISPLAY, VKEEP Displays or saves results

COMMUNICATION directives
The following directives control input and output of data:

File handling OPEN, CLOSE, ENQUIRE

Switching between files INPUT, OUTPUT, RETURN

Reading data READ, DREAD, SPREADSHEET
—=——=—= 1], PgUp, PgDn, End, Home Enter to select Esc to exit

Search for index of directive: Line: 31 Col: 1 # 12:42

The bottom of this screen indicates that you can search for the index of directives (and procedures). Typing AN
switches to the index help screen in which the ANOVA directive is highlighted:

z.gen
Index
AKEEP (d)
Copies information from an ANOVA analysis into Genstat data structures.
AKEY (p)
generates values for treatment factors using the design key method
ALIAS (p)

finds out information about aliased model terms in analysis of variance

ANTORDER

assesses order of ante-dependence for repeated measures data

ANTTEST (p)
calculates overall tests based on a specified order of ante-dependence

AONEWAY (p)
provides one-way analysis of variance for inexperienced users

APLOT : (p)
plots residuals from an ANOVA analysis

ASSIGN (a)

Sets elements of pointers and dummies.
ASWEEP

PgDn, End, Home Enter to select Esc to exit

Search for index of directive: AN Line: 34 Col: 1 # 12 42

The letter (d) indicates that ANOVA is a directive, not a procedure. Pressing Enter would now exit the index
help and display reference help on the ANOVA directive in a separate window, in the same way as reference help
on the PRINT directive was displayed earlier in this section. The directive/procedure index is also directly
available by means of Shift-F11. Cursor keys can be used to scroll in the index and module help.

Reference

Borland International (1992) Brief for DOS and OS/2, Version 3.1 1800 Green Hills Road, P O Box 660001,
Scotts Valley, CA 95067-0001, USA.
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A Genstat procedure to calculate a kappa coefficient of agreement for
nominally scaled data

A. J. Rook

AFRC Institute of Grassland and Environmental Research
North Wyke, Okehampton

Devon EX20 2SB

UK

Consider an experiment in which each of & judges assigns each of N objects or subjects (e.g. patients) to one
of m categories (e.g. response to drug). The results of the experiment can be formed into an N x m table in
which the elements n;, represent the number of judges assigning object i to category j. The judges may show
complete agreement, partial agreement or no agreement (other than due to chance).

The degree of agreement between judges can be measured using the statistic

x - P& -PE
1 - PE)

where P(E) is the expected proportion of times that the judges agree by chance and P(4) is the actual proportion
of times they agree. K is thus the ratio of the proportion of times the judges agree to the maximum proportion
of times they could agree, both corrected for chance agreement. K = 1 when there is perfect agreement and 0
if assignment is at random.

The expected proportion of times the judges agree is calculated as

2

N

= z
P{E) = 2 i-lny
"\

and the actual proportion of times they agree as

P@) =

1 e 2 1
n -
Me®e-1) ,2,: ,z,: >
The sampling distribution of K is asymptotically normal with mean 0 and variance

2 PE) - (2%-3)[PE)] + 26-2Zp;

varlK) = __
Nk(k-1) [1-P(E)P
Therefore, for large N, the statistic
z = K
\/var(K)

can be used to test the hypothesis Hy: K=0 against H,: K>0. For further details of the method see Siegel and
Castellan (1988).

A Procedure (KAPPA) has been written to carry out this analysis in Genstat. A single parameter NASSIGNED is

set to the N x m table described above. An example of the output is shown below. For N < 20 a waming that
the hypothesis testing may not valid is printed.
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**%* Measures of agreement for nominally scaled data ***
Proportion of times judges agree

Actual Expected Kappa coefficient of agreement Variance
0.580 0.288 0.410 0.00271

*** Test of significance of Kappa ***

4 P
7.887 0.000

Reference

Siegel S and Castellan N J (1988) Nonparametric Statistics for the Behavioral Sciences. 2nd Edn. McGraw-Hill,
Singapore.

Appendix: Genstat Procedure

gROCEDURE KAPPA’

A. J. Rook,

AFRC Institute of Grassland and Environmental Research,
North Wyke, Okehampton

Devon EX20 2SB

Version 1.2 4/12/92

Procedure to calculate a kappa coefficient of agreement for nominally scaled
data. Input is a N x m table with N objects to be classified and m categories.
Each entry n(ij) in the table is the number of judges assigning the ith object
to the jth category.

It is assumed that éll judges assign all items. Therefore all row totals must
be equal to the numbers of judges. Missing values in the table are not allowed.

Reference: Siegel, S. and Castellan, N. J. (1988) Nonparametric Statistics for the
Eehavioral Sciences. 2nd Edn. McGraw-Hill, Singapore.

PARAMETER NAME= \
'NASSIGNED’; "(I: table) table of N objects (rows) x m categories (columns)” \
“with each entry being the number of judges assigning the ith "\
"object to the jth category” \
" SET=yes; DECLARED=yes; TYPE='table’; PRESENT=yes

Obtain the number of rows and columns in the table. Check that the table
contains no missing values. If it does print error message and abort procedure
"

GETATTRIBUTE [ATTRIBUTE=nmv,classification] NASSIGNED; SAVE=p

& [ATTRIBUTE=nlevels] pl[’classification’]([1,2]; save=row,col
EXIT [CONTROL=procedure; EXPLANATION= \

s%%*%* ERROR - Input table to procedure KAPPA contains missing values ***’] \
" pl(’nmv’].GT.0

Add margins to table and save in new table internal to procedure
L1}

MARGIN NASSIGNED; NEWTABLE=nassign; METHOD=t

"

Check that all row totals are equal

"

SCALAR rmarg(i...#row([’nlevels’]],cols,pe,sumnass2,pa
CALC cols=-#col[’nlevels’])
EQUATE [OLDFORMAT=| ((#cols,1)#row([’nlevels’]))] nassign; rmarg
FOR i=2...#row['nlevels’]
CALC j=i-1
EXIT [CONTROL=procedure; EXPLANATION=\
s%%* ERROR - Row totals of input table for procedure KAPPA are not equal ***7]\
rmarg(i) .NE.rmarg(j)
ENDFOR
1)

Calculate expected proportion of times that the k judges agree by chance
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TABLE [CLASS=p[‘’classification’])[2]) cmarg

CALC cmarg=TSUMS (NASSIGNED)

PERCENT [HUNDRED=yes; METHOD=totals] OLD=cmarg; NEW=%pj
MARGIN OLDTABLE=%pj; METHOD=deletion

SALC pe=SUM( ($p3/100) **2)

salculate actual proportion of time that k judges agree (k=rmarg(1])

& sumnass2=SUM(NASSIGNED*NASSIGNED)
. & pa=((1/(#row[’nlevels’) *rmarg(1]* (rmarg[1]1-1)))*sumnass2)-(1/ (rmarg[1]-1))

Salculate kappa coefficient of agreement

, & K=(pa-pe)/(1-pe)

salculate approximate variance of kappa coefficient

& varK=(2/(#row[’nlevels’)*rmarg{1]*(rmarg[1)-1))) * \

((pe-(((2*rmarg(1])=~3)*(pe**2))+(2* (rmarg(1]-2) * (sum( (3p3/100)**3)))) / \
((1-pe) **2))

galculate z statistic

" & z=K/sqrt (vark)

gbtain P value for z statistic

, & P=1-NORMAL(z)

Print results
(1]

PRINT ‘*** Measures of agreement for nominally scaled data *%*’/

[SQUASH=yes] ’Proportion of times judges agree’
4 Actual Expected’,\
! Kappa coefficient of agreement Variance’

{IPRINT=*] pa,pe,K,varK; FIELD=11,16,26,24; DECI=3(3),5
[SQUASH=no] ’*** Tesgt of sanxficance of Rappa hkk s
[SQUASH=yes] ‘

z,P; FIELD=11,18; DECI=2(3)

R PR

sf number of objects judged is small print warning that test is not wvalid

IF #row([’nlevels’].LE.20
PRINT ’*%** WARNING *#**’
& [SQUASH=yes] ’‘LESS THAN 20 OBJECTS RATED - TEST NOT VALID’
ENDIF
ENDPROCEDURE
RETURN

47



Genstat Newsletter 31

Analysis of unbalanced multi-stratum trials using ANOVA and REML

Rosie Poultney

Rothamsted Experimental Station
Harpenden

Herts AL5 2JQ

1. Introduction

Trials carried out in less developed countries tend to have more missing values than are usual in agricultural
research in UK. There are many reasons for these missing values, some of which will be very familiar, others
may not be. In addition, there are situations where modifications to trials have resulted in unbalanced designs.

The main causes of lack of balance in work I have received can be categorised into three groups; initial design
problems, difficulties with treatments and difficulties with experimental material. Researchers are often in
situations where it is difficult to consult a statistician and this can reflect in inappropriate initial designs or
modifications of designs. Even with a well-designed trial, lack of balance can occur when the treatments are
incorrectly applied or when the researcher cannot obtain sufficient quantities of the treatments. Finally there are
problems associated with the experimental materials. This can range from insufficient seed to high mortality in
crops, from crop pilfering to fires and floods. I recently heard from a colleague who, on returning to Malaysia,
found that a herd of elephants had rampaged through one of her plots.

Lack of balance usually presents no major problems of analysis, except where the trial contains more than one
error stratum. Before REML was implemented into Genstat, I would analyse these trials using a mixture of
ANOVA and Regression techniques which required a great deal of explanation to clients without providing a
satisfactory analysis.

2. What did I expect from REML ?

I wanted all of the facilities that I was already using in ANOVA and Regression, namely: 1) easy specification
of the model; 2) clear output including means and standard errors, tests for the significance of treatments and
estimates of variation in the different strata; and 3) model validation via residuals and fitted values. Since REML
is equivalent to ANOVA for balanced datasets, I was also concemned to know where REML was analogous to
ANOVA and where direct comparisons between the techniques could not be made for unbalanced data. Table
1 summarises similarities and differences between ANOVA and REML with regard to these criteria, assuming
a designed experiment where the treatments are fixed effects and the blocks are random effects. Theoretically,
REML could provide all of the things which I want from an analysis, but how simple was it in practice ?

Table 1: Comparison of Genstat REML and ANOVA

- tests for treatment terms

- stratum variances

Wald Statistics tested against x°
(fitted sequentially)

estimated variance components
plus approximate stratum variances

REML ANOVA
1: model specification vcomponents [fixed=a*b] block rep/block
random=rep/block treatment a*b
2: output
- means predicted means means
- sed.’s s.e.d.’s (unaffected by order of fit) s.ed.’s

variance ratios

residual mean squares
(convert to variance components)

3: model validation

residuals and fitted values

residuals and fitted values
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3. An Example

Cloves are a spice which in Europe are used most often in cooking. They are the dried unopened flower bud of
the clove tree (Syzygium aromaticum). Cloves are indigenous to Indonesia and were introduced to Zanzibar in
the 19th Century. A major constraint on the stability and expansion of the clove industry in Zanzibar has been
the hostile environment (two dry seasons) which makes establishment of new trees difficult. Two of the many
methods which have been used to aid establishment are cover crops and fertilisers.
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Figure 1. Field plan detailing treatment structure

The experiment described here began as a trial investigating the importance of cover crops. The trial was laid
out as a randomised block design with three replicates, each of eight plots. Each plot comprised 36 clove trees
with the inner 16 being monitored as part of the trial. Within each replicate, four plots had bananas grown as
a shade. crop whilst the remaining four had the natural vegetation. In addition, an extra banana plot was
monitored in each replicate. The trial is described in detail as experiment 4 in Martin and Poultney (1992).

In 1988, the trial was modified to include fertiliser on two banana and two grass plots in each rep. Unfortunately
there was insufficient fertiliser available during the first year and so it was only applied to half of each plot. In
subsequent years fertiliser was applied to the whole plot. At this stage, one of the ‘extra’ plots was included in
the trial. Also in 1988, banana plants on two of the banana plots in each replicate were thinned to examine the
effect of increased light on the seedlings.

The experimental layout, as it stood in 1990, is shown in Figure 1. Early mortality in the trial was about 22%
and is shown in Figure 2. The tree symbols represent live trees (although they bear no resemblance to clove
trees, which are cylindrical in shape and can grow up to about 10 metres in height) and the crosses represent
dead trees. Mortality was independent of treatment.

The variate of interest was the natural logarithm of canopy surface area of individual trees in 1990. Canopy
surface area is related to yield and is a good indicator of future yields in trees of this age.

49



Genstat Newsletter 31

3 B AR O GARD A EAEH GRS
1 3 4 thinned  § 6 7 thinned 8 9
i) i A £ BARD (LD D HHE
10 " 12 13 14 thinned 15 16 17 thinned | 18
A R Gah B0 D R RAR R
19 20 21 thinned 22 3 1] 5 % 27 thinned

&  ve tree, September 19%0

X dead fres, September 1990

Figure 2: Field plan showing tree mortality
4. Results

4.1 Specification of Analyses

The Genstat code for the specification of each analysis is given below. Use of a general £ert factor to define
fertiliser levels nil, 2 years or 3 years in ANOVA led to warnings of partial aliasing, since the two contrasts
nil versus treated and 2 years vs 3 years are estimated in different strata. This problem is avoided by
partitioning the factor into two nested two-level factors £control and £ert23 as below, or via a pseudo-factor.
Thus in this example, specification of the model appeared easier using REML than ANOVA, since the ANOVA
specification required more understanding of the structure of the design. Also, in order to keep the design
balanced, one randomly selected plot which had treatment combination ‘intercropped with bananas, no fertiliser,
not thinned’ had to be dropped from each replicate.

REML analysis specification:
vcomponents [fixed=(crop/thinned)*fert; absorb=mainplot]\
random=rep/mainplot/subplot
reml [print=model,components,means,waldtests,stratumvariance] canopy90;\
residuals=resid; fitted=fitted

ANOVA analysis specification:
fact [level=2] fcontrol,fert23
calc fcontrol = newlevels(fert; 1(1,2,2)) ® nil vs fertiliser applied "
& fert23 = newlevels(fert; 1(1,1,2)) " 2 years vs 3 years fertiliser “

rest canopy90; plot.ni.!1(1,18,26)

block rep/mainplot/subplot

treat (crop/thinned) * (fcontrol/fert23)
anova [fact=4) canopy90; resid; fitted

4.2 Output

In order to make the results comparable, the REML analysis used the same restricted set of data as the ANOVA
although REML could have been used to analyse the full data set. The summary ANOVA table is given below
(Table 2) to illustrate the structure of the design. As stated above, there are a very large number of missing
values in the data. However, these missing values are all in the lowest stratum where no treatment effects are
estimated, so missing values will be estimated by sub-plot means and the treatment estimates will be equivalent
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to those from an unweighted ANOVA of sub-plot means. Note that as trees are missing at random, analysis of
weighted sub-plot means would lead to an unbalanced dataset so a weighted ANOVA could not be used.

Table 2: Analysis of variance table for the example

Source df Mean Square | Expected Mean Square
rep stratum

Residual 2 28.33 o’ + 80, + 160, + 1280}
rep.mainplot stratum

crop 1 85.01

fcontrol 1 20.33

crop.thinned 1 0.32

crop.fcontrol 1 8.81

crop.thinned.fcontrol 1 591

Residual 16 4.16 o’ + 8g,% + 160}
rep.mainplot.subplot stratum

fcontrol.fert23 1 0.072

crop.fcontrol.fert23 1 0.029

crop.thinned.fcontrol.fert23 1 0.218

Residual 21 1.895 o’ + 8o,
rep.mainplot.subplot.units stratum | 244 (92) 0.377 o?

Total 291 (92)

The means from the REML and ANOVA analyses were very similar (Figure 3). Since REML does not weight
predicted means by the number of units in a sub-plot, we would expect the REML means to be similar to the
unweighted ANOVA means. If the fert factor was not partitioned, then partial aliasing would mean ANOVA
was unable to estimate the treatment means correctly.
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Figure 3: Comparison of treatment means from ANOVA and
REML
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Comparison of the standard errors of differences (SEDs) between pairs of means showed that the SEDs produced
by ANOVA were higher than those produced by REML. This difference seemed surprising given the similarity
in estimates of treatment means. To investigate this further, variance components were estimated from the
expected values of residual mean squares in ANOVA (see Table 2) for comparison with REML estimates: both
. sets of estimates are shown in Table 3.

Table 3: variance components

Stratum REML ANOVA
rep 0.169 0.189
rep.mainplot 0.137 0.141
rep.mainplot.subplot 0.091 0.190
units 0.385 0.377

Although the estimates of the residual (units) variance are similar from the two techniques, the ANOVA
estimates are consistently higher than the REML estimates, particularly in the subplots stratum, The
difference is due to the estimation of missing values in the units stratum by ANOVA: once these values have
been estimated, they are treated as genuine data values when forming subplot means. This means that the
variation due to these estimated values is added into the subplot variation along with variation from true data
values, leading to over-estimation of the subplots stratum variance. Similarly, the estimated values are used
to construct the treatment sum of squares hence this will also be an overestimate, as stated in the Genstat
Manual.

F-tests from the summary ANOVA table indicated that model terms crop and fcontrol (the difference between
treated and nil fertiliser plots) were significant (p<0.001, p=0.042). There was no evidence to suggest that any
other significant treatment effects were present. In the REML analysis, the probability levels for terms cxop and
fert were p<0.001 and p=0.082 respectively. However, when fert was split up into two separate factors, the
probability level for terms £control and fert23 were p=0.025 and p=0.999 respectively. Other terms were
again not significant. In general, Wald statistics tend to be less conservative than F-tests from ANOVA.

4.3 Model validation

The residuals and fitted values from the two techniques are shown in Figures 4 and 5. By default, both ANOVA
and REML give residuals from the residual stratum only.
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The two sets of residuals are very similar apart from the outlying points on the left of the graph. These points
are from a sub-plot where only two out of the eight trees survived. For this subplot, the REML estimate seems
more plausible than the ANOVA estimate. The procedures APLOT and VPLOT can also be used to examine the
residuals for signs of departures from a normal distribution,

5. Conclusions

Despite the large number of missing values, overall the two approaches gave similar results because the data
were still reasonably balanced: the missing values were all in the lowest stratum whereas treatments were applied
in higher strata. The major difference was that estimates of variance components and SEDs for means were
larger from the ANOVA than from the REML analysis due to estimation of missing values in lower strata
inflating the ANOVA sums of squares. The Genstat 5 Reference Manual warns about this - along with the
suggestion that you should not use ANOVA when there are many missing values. At first, the REML analysis
appeared simpler to specify, since the factor defining fertiliser levels had to be partitioned in order to make the
dataset balanced for ANOVA. However, the benefits of using this slightly more complex structure became clear
as ANOVA could produce separate tests for the individual components of £fert, whereas REML gave an overall
but less informative test.

On balance, the REML analysis using the partitioned £ert factor is preferred since it gives an exact analysis.
In particular, where information about plot variability is required, the REML estimates ignore units with missing
values to give the correct estimate. This type of slightly unbalanced multi-stratum example where the data can
be analysed by REML or (with trickery) by ANOVA is useful to demonstrate that the techniques give similar
answers, but that the exact REML estimates are more appropriate.
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Postscript
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All of the figures were produced using Genstat graphics.









