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Editorial

It is with deepest regret that the editors must report the death of Pete Digby following a fall at his home in
Harpenden. Pete joined Rothamsted in 1979 from the AFRC Unit of Statistics at Edinburgh to take over the
development of the multivariate section of Genstat. He also contributed to the design of Genstat 5 and to its
Procedure Library. Pete was involved in the general scientific research programme at Rothamsted and will be
remembered for his innovative use of multivariate techniques, for example in the analysis of oil-seed data and
in his book "Multivariate Analysis of Ecological Communities" (with Rob Kempton). His friends will also
remember his out-of-work interests in photography and cricket. In recent years Pete suffered from epilepsy and
this may have been a factor in his fall. Pete's lively contributions at Genstat conferences will be greatly missed,
as will his contribution to Grastat generally.

This issue of the Newsletter is the second from the new editorial team, and the editors would like at this point
to describe (xice again the kind of articles accepted for publicatiw in Genstat Newsletters. Many Newsletter
articles are written by the Genstat developers, to describe the uses of new Genstat facilities and procedures, but
the editors are also keen to receive papers from users who have found interesting and innovative applications
for the Genstat system. The Genstat Newsletter is for all Genstat users, h^ce papers are welcomed from any
users who have ideas and / or procedures they wish to share. In the first instance, papers should be directed to
Sue Welham of Rothamsted Exp^imental StaticMi.

Included with this issue is the first call for papers for the Ninth International Conference of Genstat Users, which
is to be held in Dublin in July 1995. Full details and addresses can be found on the enclosed flya*. A conveoitot
index of directives and associated manual reference pages is also enclosed, which is designed to fit inside the
Genstat Manual cover, to provide a quick user referoice.

Another helping of Genstat Talk is provided, together with the usual details on how to join the Genstat
electronic discussion list. A broad selection of topics are dealt with by the articles in this issue, beginning in
earnest with an overview of some of the recent developments in descriptive multivariate analysis, followed by
a paper concerning the use of Genstat in developing a taxonomic classification from riboscnnal DNA sequraces.

Next comes a discussion of how the new Genstat procedures jacknife and BOOTSRAP can be used in forming
jacknife and bootstrap estimates for any statistic that can be calculated in Genstat. Two involved articles then
follow, dealing firstly with the superimposition of Youden squares and efficiency factors, and secondly with the
solving of the depletitxi equation in Genstat using invo^ ncxilinear regression and the fitnonlinear directive.

Continuing from a topic introduced in Newsletter 30, this issue describes two new interfaces for the Grastat
system. The first, RUNGEN, provides a user-friendly interface to writing Genstat programs for non-statisticians
and also offers facilities ̂ ^diich simplify the input of spreadsheet data. The second discusses an interface between
Genstat and the Brief editor on a PC.

The final article in this issue introduces a Genstat procedure to calculate a kappa coefficient of agreement for
nominally scaled data. As usual, the code for this and any other procedure appearing in any Genstat Newsletter
will be posted on the NAG bulletin board.
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Genstat Talk

Extracts from the Genstat electronic discussion list, November 1993 to April 1994, summarized and edited
by Peter Lane, Rothamsted To join the discussion, , send the message;
SUBSCRIBE Genstat first-name last-name

to the address: LISTSERV@IB.RL.AC.UK

The opinions esqness^ h^ are not necessarily endorsed by either NAG or Rothamsted, and statem^ts
may not have b^ checked for accuracy. However, membas of the Genstat development team and of
NAG's Statistics Section are contributors to the discussion.

Maxima of matrices
Query: \\^at is the most elegant way
ident^^g the row and coltimn cmitaiiung the
largest value in a symmetric matrix?
tjcl@phoenix.cambridge.acMk
Reply 1: The POSITION function can be used to
find the elemental position, but this needs
converting to row and column numbers. The
following solution is not necessarily the most
elegant, and does not find multiple solutions, but
it is fast and efficient.

SYMMETRIC dists ...
CALC n s NROH(dists)
& index » CUM(1(1...n)) - \
POSITION (MAX (dists); I (tifdists))

& row » POSITION(1; index.GE.O)
& col = row - index$[row]

simon.harding@afrc.ac. uk
Further replies: Successively briefer pieces of
code were supplied to {xovide : all solutions and
row and column index vectors for the matrix, by
rod@tuLmarc.crlnz\ anon; and

ruth.butler@afrc.ac.uk

PostScript graphics
Query: Does anyone have any experience of
transferring a PostScript file g^erated by Genstat
into a wordprocessor package? I use Genstat (xi
a Vax and Word on a Macintosh.

ian. wakeling@afrc.ac.uk
Reply: 1 have transferred both PostScript and
HPGL files from Genstat to WcxdPerfect on a PG

with no problems. You probably need to transfw
them as binary or data files (not as text (X' ASCTl).
Usually I use cxie file per diagram otherwise the
wordprocessor gets confused. I; prefer HPGL
because I can see them when inside WordPerfect.

peteb@prdspect.anprod.csiro.au

REML and ANOVA

Query: I recently posted a query about differraces
between output frxun REML and regressuxi. It
turned out that I asked the wrong question and I
should have been asking about the differences
betwe^ ANOVA and REML. I want to use a fixed

effects structure area/region/family, but get
Space problems with REML so have used
area'fregion'ffaxaiXy. Why does REHL give
different answers to ANOVA? (Program attached.)
feff@canopy.biom.csiro.au
Reply: The model you want to fit is:
area + area.region -f area.region.fam
3 levs 3x9=27 levs 27x210=5670 levs

ANOVA isdev^ enou^ to realize that : you have
only three regions for each area, and so on, but
REML sets up the full matrix with 6000 rows
before finding this out, hence your space
problems. If you use redefined factcM-s, numbering
regions witto areas, iot example, this problem
will be much less severe.

To get means, REML forms a full table of
[xedicted iiieans for each factcMr ccxribinatkxi and
thai takes marginal means to get the tables of
jxedicted means that it wants. So if you fit
area/region/family your means are fctrmed as
you would expect (assuming no missing cells).
But with area+region+f ami ly, : the means for

area 1, for example, are formed using an
average ovet all regions, not just the ones in area
1. The difference betwem ANOVA and REML output
is really just this question of actual versus
predicted means - you need to be awareof how
a diffarentmodel specification can affect the way
in which the mearis are frxmed.

In Release 3.2 space-saving measures will be
implemented to avoid including utmecessary rows
in the mixed model equations.
sue.welham@afrc.ac.uk
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Restructuring input data
Query; I have some count data classified by two
factors, but excluding cconbinations of levels widi
zero counts. I would like to have the full set <rf

combinations in Genstat. I can define the full set
of levels fw the factors and gena*ate their values,
thai set up a variate with all zeroes; how do I
insot the non-zeroes?

na.reese @ucc. hullac.uk

Discussion: Several suggestions were made, and
deep thoughts expressed about conditioning caused
by di^erent packages' approadies. The final rqily
seemed to answer the questitxi, and advotized a
little known feature of Genstat's approach.
Reply; Hiere is a feature in Genstat diat allows
you to read numbers indexed by a key (the units
structure) and it will fill out the design. Here is an
example, reading seven non-zoo counts and filling
the other eight combinations with zeroes.
VARIATE [VAL«1..,15] unit
ONIT 115] unit
FACTOR [LEV«3] f1
& [LEV»5] f2
GENERATE £1,£2
VARIATE count
READ unit,count
1  10
2 11

11 24
4 10

3  5
7 15

15 3 ;

CALC count MVREP(count; 0)
fillmore @nsrske.agr. ca

Variance of linear predictor
Query: Does anyone know how to get the
variances of linear predictors after fitting a GLM?
alastair@sass.san.ac.uk

Reply: Hie linear predictor is Xfe where is the
design matrix and i> is the vector of estimates. So
its variance is XVX' where V is the covariance
matrix of the estimates.

RXEEP VCOVvV; DESI6N»X

CALC vlinpred « QPRODUCT(X; V)
In the linear model, the variance is simply
leveragc^disposion, but I'm not sure whether
thae is a simple relationship involving: the
leverage in a GLM.
peter.lane@afrc.ac.uk

Simulating binomial
Query: Does anyone know how to simulate an *n-
units^ binomial variate (I have an algorithm that is
very slow)?
alastair@sass.san.ac.uk

Reply 1: The new GRANOOH procedure in Library
3[1] does this, along with many otho*
distributions. The code used for the binomial
B(tt,/;) is as follows:
CALC t(1...n3 « BRAND(0; seed)<=p
& random » VSUM(t)

peter. lane@afrc.ac. uk
Reply 2: This solution is OK for fixed n and p,
but it would be useful for regressi(»i (X'oblems to
be ̂ le to generate variates of binomial random
variables in which n and/or p vary from unit to
unit. The solution above would be slow; does
anyone know of a better approach?
martin.ridout@aJrc.ac.uk

Forming variates by replication
Query: I have a list of values and a list of the
numbers of repeats of each value. How can I
convert this into a variate or factcn* ccmtaining
each value repeated right number of times?
ruth:butler@ajrc.ac.uk
Reply 1: The following will form a factor ces
from variates reps and vals:
CALC nv s SQM(reps)
& nl « NVAL(vals)-1
VARIATE [VAL«#reps$C1..,nl]] lim
& CVAL=1.,,nv] vfac
CALC lira « COM(lim)+0.5
SORT [INDEXsvf; GRODPSsres; \
LIHITSalim]

FACTOR (MODIFYsy; LEV=vals] res
p. w.goedh^@glw.agroml
Reply 2: In the above solution, the FACTOR

■ Statement gives an error if one of the variate
values is missing. I have modified the solution to
cope with this, and have a procedure called
REPEAT.

tod@maths.marc.cri.nz

Reply 3: Here is another way to do the repetitirm,
perhaps a bit simplo*, but not mudi! It works for
missing values in vals, and forms a variate.
CALC a s! CUM (reps) ~reps+1
& p s SUM(reps)
VARIATE {VAL=:#p(0)l b
CALC b$Ca] a 1
& b a Ctnf(b)
& res a valsSIb]

peter, lane @afrc.ac. uk
Reply 4: Hie EXPAND function simplifies this job.
CALC n a NVALfreps)
CALC w[1...n] a \

Otexpand(ilreps; #reps)+#vals
VARIATE (VAL»#w] res

snspated@reading.acMk
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Fractions from ordinal models
I have applied the ORDINALL06ISTXC

procedure to a data set on the reproductive success
of swihs, hut I cannot intopret the resulting
parameter estimates. How do I get the predicted
probabilities for eadi categ(»y derived from the
model?

David Thomson

Reply: We have written up an interpretation of
the procedure output including both the equaticMis
relating the cumulative probabilities to the
covariates and the probabilities of belonging to a
particular category. We would be happy to fax
you a copy.

consstat@duTTas,amuedu,au

Estimates for ARIMA models

Query: I have used G^stat and another package
to fit autoregressive processes of order 1. The
results are sufficiently different to make me
wonder ivdiich results to use. For example, an
autcM^^gressi(»i coeifk:i^t of 0.88 with s.e. 0.098
hx»n Genstat compared with 0.70 from the other
package. The other package uses Yule-Walker
equatkms for die fitting, and in Genstat I have
used die exact setting. Is the difference in fitting
methods enough to explain the differences or are
there other differences I need to take accotmt of?

jeJf@canopy.biom.csiro.au
Reply: Ibe di^erence between the exact
likelihood estimate of 0.88 and die Yule-Walker

estimate of 0.70 is almost certainly due to the
ditference in method Genstat should give you
Yule^Walker estimates if you use the FTSM
directive to form preliminary estimates of the
model parameta:s. The differoice is usually not so
great unless the series is short.
maa016 @centrall.lancaster.ac.uk

Combine from N

Query: I am looking for a fast Genstat program,
preferably with few loops, to generate all subsets
of size R from things:
p.w.goedhart@glw.agro.nl
Repb^ 1:1 have a procedure cal^ CX)MBNR wbich
evaluates all combinations of size R from the set

(1..JV). It is very fast, but uses a lot of space for
large R (wder A^). This is OK for small R but
may be iHohibitive. For suitable N and R this
method may be preferable to an algorithm vdiich
runs in less space but more time.
PROC ' cornbnr'
PARAM 'N','R','OOT'; \

TYPE**'seal' ,rscal poin'
CALC nr « N**R & rl « R-1

FACTOR Cnr; LEV«N] fC1...R3
GENERATE f[]
CALC ltCl...r1] = \
f [1...rT]<f [2...R3

RESTRICT £[3; A
VSOM(1t).EQ.r1; SAVE«as

MATRIX Cast R3 x
CALC x$[*; 1...R3 « \

£[1 •• >113$ [sal
& nout » NVAL(ss)
VARIATE [R3 0UTC1...nout3
EQUATE x; OUT
ENDPROC

anon

Reply 2: Here is a less demanding, but less
general, solution to the procedure, using loops.
This example solves for A^=:6 and
SCALAR (VAL«13 i
F0Rk1«1...4

CALC k11 « k1+1
FOR k2»k11...5
CALC k21 « k2+1

FOR k3ak21...6
CALC x[i3 « I(k1,k2,k3)
& i = i+1

ENDFOR & &

Jillmore@nsrske.agr.ca

Covariate for logit analysis
Query: I'm modelling a set of binomial data with a logit model. Some of the interacticms looked a bit
fuimy, and someore pointed out that the data have a rough treid in thein: roughly e^^
estimate this trend with FITCORVE, how can I then use it in the logit analysis? If 1 just subtract the fitted
values from the actual counts or proportirxis, I wcai't be able to do a logit analysis on the residuals: some
vdll be negative, and \ibat is the corr^^
duncan.hedderley@ajrc.ac.uk
Reply: I think you want to use an offset. If £ is the fitted proportion;
CALC o = LOGIT(£)
MODEL [DIST«bin; 0FFSET«o3 ...

This w^l effectively remove the effect of f on the scale of the linear predicts
rod@maths.marc.crLnz
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Elements of tables
Query: Is it possible to get at the numbers in a
(one-dimensional) table, say using element
operators? I know you can with EQUATE, but I
would like a more direct method. (Normally to
this kind of question I'd say RTFM, but the latest
version of the manual seems to be at the printo-s!)
duncan.hedderley@afrc.ac.uk
Reply: Unfortunately, it is not possible in
Releases 2 or 3 to use the $ {] notatitm (x* the
ELEMENTS function to access individual values of

tables. The quickest way for a one-dimensioial
table is probably to put the values in a variate and
then use $[]:
TABLE CCLASS«f; VALUES^...] t
CALC s2,s5 s 1(#t)$I2,5]
BTW, die Release 3 manual is now available from

OUP.

Translation for bewildered readers:

BTW = By The Way
RTFM = Read The Forgotten Manual

(censored translation)

IMHO (one that had me puzzled for months)
=: In My Humble/Honest Opinion

OUP = Oxford University Press
peter, lane @afrc.ac.tjk

All-in>one analysis
Query: I've had two people in here this morning
with what feels like the same problem; I wonder
if anyone can suggest a technique to solve it In
one case we have a number of treatment groups,
each consisting of about 30 people. They were
asked to rate how easy they found certain dietary
changes on a scale 1 to 9. We want to see if the
dietary changes that were seen as difficult differed
between groups. We could do ANOVA on the
scores, or use a chi-squared test to compare
propcxticxis of people who found the change a
problem. What I'm wondering is, is there a single
analysis we can do that will tell us somethirig
about both the numbers in each group and the
strength of their feelings?
duncan.hedderley@afrc.aCiUk
Reply: Turn the (xoblem round, and, rather than
treating the ratings as being something that they
are not, analyse the frequencies of each rating.
This leads to McCuUa^'s ordinal logistic
regression model as one possibility. I^thin
Genstat, the library ixrocedure okdinal-
LOGISTIC is available in Release 2, and the
MODEL directive has new optirxis to fit this model
in Release 3.

llefkovi@ccs.carletx)n.ca

Three-way PCA
Query: Does anyone out there have experience of
doing diree-way (or three-mode) PGA; in other
words> a principal components analysis when the
data can be classified by three different factors?
We have someone who wants to get a map of the
relationship between topics and aspects, based cm
the answers from a survey of 300 people. At
present, she is averaging the sccx'es for each topic-
by-aspect combination over the 300 and doing an
(xdinary PCAon that. It seems to me that this
way ^scards all the infmmaticm about the
different people.
duncan.hedderley@afhi.ac.uk
Summary: Thanks to evaycme who sent
suggestions. I'm still following them up, but in the
meantime, here are the references I was given.
Williams & Gillard (1971) Pattmi analysis of a
grazing experiment. Australian Journal of
Aghcultural Research 22,245-260.
Several people menticmed Peter Kroonenberg
(Leidoi University) to me. He has written several
papers, including Knxmenberg & DeLeeuw (1980)
Principal component analysis for three-mode data
by means of alternating least-squares algorithms.
Psychometrika 45, 69-97; also a PhD thesis, and
a PC program.
duncan.hedderley@afrc.ac.uk

Manipulation of strings
Query: I need to print single strings extracted
from a text during successive passes thiou^ a
loop. I have a solution using EESTRICT that
seems too complicated; does anyone have a better
solution?
VARIATE (VALDESbI...nv] subs
FOR i«1..,nv

RESTRICT text; subs.EQ.i
PRINT text

john@marCiCri.nz
Reply: There is no simple solution because
Genstat's syntax for referring to elements is
designed fcM* numerical structures and has not yet
been extended to texts. One soluticm is to use

READ:

TEXT [1] lab
FOR iBs1,..nv

READ [4^; CHANatext; ENDa*] lab
PRINT lab

A second uses EQUATE, but is messy.
peter.lane@afrc.acuk
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Counting runs of zeroes
Query: I wish to find the frequency distribution
of consecutive runs of zeroes in a long variate. All
the data are non-negative. Does anyone have some
slick code to do this sort of thing?
sassjm @scrlsarL ac. uk
Reply 1: Here is a solution, starting fr^ variate
V, using the fact that 0/0 gives a missing value.
CALC ctimv « CDM(v)+0/(v.EQ^0)
SORT [INDEXacumv; 6R0DP=dist]
TABULATE tCOUNTsruns; CLASSsdist]
SORT [IMDEXsl(#runs); \

GROUPsfruns; LEVslruns]
TABULATE [count; CLASSafruns]

anon

Reply 2: Here is another soluticxi. I assume that
missing values can be regarded as non-zero.
VARIATE [VAL«1,#v] z
CALC Z » CUM(HVREP(ABS(2); 1))
SORT [INDEXsz; GROUPsf; LEVsl]
TABULATE [CLASSaf] z; NOBS»n
CALC 2l =
& zV s HVINSERT(z1; zIbsQ)
SORT iINDEX«z1; \
6R0U]^fruns; L^slruns]

TABUiJtTE [nobs; CLASS«fruns] z1
d.c.vanMenwerf@ibn.agro.nl

Storing correlation coefficients
Query: On Page 535„the 1987 Manual states that
CORRELATE can only display the conrelatitxis; you
have to use the fsspm directive and the CORRHAT

function to store them. I've tried, but can't see

how it can be done.

callmanl@ntst.agvic.gov.au
Reply: The answer is simple if you understand
that an SSPM structure is a C(»npound structure
made up of three simple structures: the sums
(symmetric matrix), the means (variate) and the
number of units (scalar).
SSPN [TERMSBX,y,z] ssp
FSSPH ssp
CALC cor B C0RRHAT(ssp[1])

J.curmll@compserv.gla.ac.uk

Aliased effects in ANOVA

Query: A colleague has analysed an e?q)eriment
carried out at several orchards in several re^ons.
We need regitm means as well as orchard means,
but neither REHL nor ANOVA seem to be able to

cope. Does the problem occur only when one
factor is completely aliased with the other? Has it
been fixed in the latest release?

VARIATE [VAL«1...10,0.5,1.5...9.5) y
FACTOR [LEV=5; VALb2 (1.. .5) 2] orchard
FACTOR [LEVa3; VALb(4(1,2),2(3))2] \
region
TREAT region+orchard
ANOVA [PRINTs^aean] y

gives means fw region: 2.25, 6.25, 9.25
and for orchard: 4.25,6.25, 4.25, 6.25, 525

whirii are nonsense. If we use

TREAT orchard+region

then no means are produced for region at all.
John@marc.crLnz
Reply 1: I havoi't actually checked on the
computer, but I would imagine that vhat you want
is the nesting operator (/), so that you can specify
VCOMP [FIXEDBregion/orchard)

to get the region; effect and the interaction.
duncan.hedderley@ajraac.uk
Reply 2: The problem occurs because there is
partial aliasing betwe^ the two treatment terms,
so peihaps die specification isn't particularly
sensiblel In fact, orchards are nested within
regi(»is, so if you use
TREAT region/orchard

all will be well It's actually more efficient if you
number the orchards within the regions (Manu^,
Page 413). Th^ is nothing wrong widi the means
reported above: the formula region-t-orchard is
expected to give means of orchards eliminating
regions, which is what appears. However, in
Release 3.1 you wUl get a warning about partial
aliasing in cases like this, at which point your
colleague will be prcHnpted to come and see you
so that you can explain the difi^nce between
facttxial and nested designs.
roger.payne@afrc.acMk

Convex hull

Quny: Does anyotie know how to determine whether a point falls within a ctxivex hull, found using the
GK»IV£XHULL procedure? I understand that this might be a problem best solved by linear programming.
mojths@vdxd.nerc-monkswood.ac.uk
Reply 1: A Icng time ago I wrote a procedure called INSIDE that determines which elements of a variate
lie within a specified polygon. I wrote it for use with DREAD but it will obviously work with
CCnivEXHULL as well. It seems to fml occasionally; feel fiee to try it out and send imnedies to me so I
can sort out bugs and submit it to the Procedure Library! (Procedure attached.)
simon.harding@aJrx:.ac.uk
Reply 2: The INSIDE procedure works only if the origin is an outside point of the polygon. A small
amendment to the code makes it work. (Amradment attached.) anon
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Some recent developments in descriptive multivariate analysis

W J Krzanowski

Department of Mathematical Statistics and Operational Research
University of Exeter
Laver Buildings North Park Road
EXETER EX4 4QE, UK

Abstract

Principal component analysis, principal coordinate analysis, and canonical variate analysis are popular descriptive
multivariate analysis features of Genstat. Various extensions, developments and generalisations of these
techniques have been proposed in recent years, giving the user potentially much more scope at the expense of
relatively little extra effort. This article gives a brief (and selective) ovoview of some of these developments.

1. Introduction

The starting point for many descriptive multivariate techniques is often an n x p data matrix X, the (i, j)th
element giving the response for theyth observed variable on the ith sample individual (/ = 1,...,r;
y = The most useful summary statistics for such a sample of data are the mean vector

and the pxp covariance matrix S containing the variances of the p variables down the leading diagonal and die
p(p - l)/2 covariances betweai pairs of variables in the off-diagonal positions. If X has been mean-centred (by
subtracting the mean vector hom eadi row) then

S ̂ — X'X ,
«-l

while if the variables have been standardised (by dividing each elemrat of the mean-centred X by the ̂ propriate
standard deviaticxi) then 5 is the correlation matrix R. We assume in the following that X has been mean-centred
but not necessarily standardised.

If the data are continuous (or, at least, numoical), a convenient geometrical model of the sample identifies the
n individuals as n points and the p variables as p orthogonal axes in /7-dimensional space, the coordinates of the
idi point on these axes being given by the values in the ith row of X. Since X is assumed to be mean-centred,
the origin of the axes is at the centroid of the points. Inspection of the data swarm in this space will reveal any
interesting features diat might be presoit, for example groupings of the points or outlying individuals or obvious
relaticmships among them. Sudi a model cannot in gen^ be viewed directly, however, as in most applications
p is greater than 3. The objective of many descriptive multivariate methods is therefore to effect a reduction into
a small numb^ of dimensions in ̂ fviiicfa the data swarm may be inspected for these int^sting features. It will
be convenioit in the following to refer to the original space as die X-space, and to the reduced-thmensional space
as the F-space. Three techniques in particular are very pqnilar for deriving an appropriate F-space in di^erent
circumstances, so we first describe toem briefly.

Principal component analysis produces a projection of the original points into a low-dimensional subspace of
given dimensionality k, the diosen subspace being the one in whidi the overall scatter of points is maximised.
Let Pi a = l..ji) denote the « points in the X-space, P/ denote their projectims in the F-space, and O denote
the origin of axes in both spaces. The requirements of maximising scatter whatever the value of k imply that the
variance of the projectitxis decreases along successive axes in the F-space, and that the F-space is the k-
dimensional subspace in whidi = 2^ (OPiY is maximised. Simple geometric arguments establish readily that
it is also the subspace projection in which Fj = and Fj = 2^ - (P/P/)^ 1 are both minimised
(projection implying that P/P/ < P/y V ij). Moreover, from Fj we see that the Euclidean distances between
points in the F-space approximate the corresponding Euclidean distances in the X-space. The fundamental
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algebraic operation underlying principal component analysis is the decomposition of S into its eigenvalues
(elements of the diag(xial matrix D) and eigenvectors (columns of the <x1hogonal matrix L).

If the rows of X have come from g a priori groups, a F-space in which overall scatter of points is maximised
may not be the most useful space in which to view the data. More appropriate may be a space in which the
separation between groups is maximised in some way, and canonical variate analysis provides the subspace in
which the ratio of between-group to within-group scatter is maximised. The fundamental algebraic operation here
is extraction of eigenvalues and eigenvectors of W^B, where W is the covariance matrix pooled within groups
^ile B is the covariance matrix between groups. Euclidean distances between group means in the F-space now
approximate the Mahalanobis distances between the corresponding means in the X-space.

Principal coordinate analysis is ostensibly a di^erent sort of technique hxnn eitha- of the above, as it does not
start from a high-dimensional model from which a low-dimoisional approximati(xi is to be dmved. Rather, it
starts h^m a matrix of inter-point distances (or inter-object dissimilarities) and thai constructs a low-dimaisional
configuration in which the distances between points are approximated, or die dissimilarities between objects are
reix^sented, as well as possible. By 'as well as possible' is meant in the sense of above. However, in spite
of these tqiparent differences, the techni^e has much in common with the two previous ones: its algebraic basis
is very similar to theirs (extraction of eigenvalues and eigenvectors of a simple transformation of the input
distance/dissimilarity matrix), and it produces the same results in certain special cases. If the input matrix is the
n X /I matrix of Euclidean distances computed from X then principal coordinate analysis yields the same F-space
as does principal component analj^is of X, while if the input is the matrix of Mahalanobis distances between
group means in a grouped data set then an equivalent of canonical variate analysis is achieved. (Strictly, this
latter technique yields the same result as the canonical variate analysis derived from the unweighted
between-groups matrix

= _i_ ( X. -X )( X. - X )',
g-l M

B

8

where Je, is the mean of the fth group of individuals, whereas standard canonical variate analysis is based on the
weighted between-groups matrix

B = -J_ 53 rif iXf -xWi 'xV,
^-1 M

where /}, is the number of individuals in the /th group. However, in many circumstances the weighted and
unweighted analyses do not differ materially. Also, Ashton, Healy and Upton (1957) have argued that the
unweighted analysis is better for descriptive purposes, so in such a case the principal coordinate approach is
appropriate.) The extra benefit afforded by principal coordinate analysis is that ncm-numerical variates can be
catered for, as distances/dissimilarities can be defined and thus calculated for such variates. Hrace geometric
representations can be obtained in low dim^sions even though no original model exists for such data.

All die above is familiar, and the three multivariate techniques outlined are very popular among users of Genstat.
More detail on the basic techniques can be obtained hx>m the Genstat manual or from a variety of multivariate
texts (see, e.g., Digby and Kempton, 1987). Our purpose in die next diree sections is to bring to the attention
of such users a number of areas of development of &ese techniques, in the hope that a wider set of potential
applications might thereby be opened up. Although none of these areas is curr»itly catered for explicitly in
Genstat, some can be adapted fairly easily from existing facilities. By disseminating the ideas m(x« widely, it
is also hoped that the facilities might be incorporated in future releases of the system.

2. Common principal components

Consider optimality criterion Fj of the previous section as one of die possible characterisations of principal
components. This criterion lay at the heart of one of the earliest doivations of principal components (Pearson,
1901), in terms of lines and planes of closest fit to a set of points. Such a derivation highlights connections
between principal component analysis and regression analysis: the former fits lines by minimising orthogonal
deviations, the latter by minimising 'vertical' or 'horizontal' deviations. Let us pursue these connections a little
further. In regression analysis, the data are often grouped and comparisons of regressions between the groups
are of interest. Such comparisons are conducted by constraining some or all of the regression coefricients to be

10
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equal in the groups, and then testing whether the fit of the resulting relationships is significantly worse than if
the regression coefficients had been free to vary separately in each group. Arranging the constraints in a
hierarchic structure assists in the testing process.

A parallel analysis can be envisaged for principal compoients. Suppose that the n individuals in the sample are
divided a priori into g groups, with individuals in the /th group, each group has been described separately by
its principal compon^ts, and we wish to see whether these comp<xients have common features amcxig the
groups. To effect the analysis, we first need to foimulate suitable models for the populations from whidi the
groups have been obtained, and then to impose a hierarchic system of constraints on the populaticMi parameters
corresponding to the features of interest.

Let the (population) dispersion matrix for the /th group be Q, and its estimate from the sample be Sf (/ = 1..^).
Total homogeneity between groups is expressed by the null hypothesis

V/,

which can be tested against the gmeral alternative that at least one Si/ is different from the rest (assuming
normal data) by means of the likelihood ratio test statistic

Ti = «ln|TF| -

\^ich has a chi-squared distribution onp(p + l)(g - l)/2 degrees of heedom if is true.

A good intermediate between equal dispersions and arbitrary dispo^ion, is the common principal component
model

= LD, L '.

In this model the individual dispersion matrices have the same principal components, but these compoients may
have different variances (and hence diff^:ent orderings) in the different groups. Considerable heterogeneity of
disp^ion matrices can be accommodated within this structure, and hence the model can cater for many practical
situations. Theoretical aspects of the model have been studied in a series of papers by Flury, a tmifi^ account
of which can be found in Flury (1988). Estimates oi L and D, can be found either by maximum likelihood
(assuming normality) or least squares, and likelihood ratio tests exist with statistics (for versus
and Ty (for versus satisfying 7i = ̂2 + Ty Algorithms for die estimation are given by Fluiy and
Constantine (1985), Flury and Gautsdii (1986), and Clarkson (1988); the likelihood ratio tests are dwived by
Flury (1988), uiiile some simple ad hoc and intuitive versions of these estimates and tests have been suggested
by Krzanowski (1984). Proportional dispersion matrices are obtained as a special case of this model (Z>,- = 0^
D), and additional possibilities are partial common principal components (Rury, 1988) or common jxincipal
component spaces (Sdiott, 1991).

In addition to the direct purpose of investigating principal component structure between groups, the common
principal component model has played a part in generalising some familiar multivariate techniques. The first such
generalisation is that of canonical variates. Recall from Section 1 that the tedmique requires the eigenvalues and
eigenvectors of W^B. Campbell and Atdiley (1981) have shown that these quantities can be found equivalently
by the following steps.

1. Find the eigenvalues (diagonal elements of the diagonal matrix E) and eigenvectors (columns of the
orthogonal matrix U) of W:W = U EU'.

2. Transform the data: v,- = E'^'^UXi, whwe xj is the /th row of X.

3. Find the eigenvalues F and eigenvectors A* of

^ ° 5^ «,(^-v)(v;-v)'
i-J

where is the mean of group / and P the grand mean with respect to variables v:C = A* F A*'.

11
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4. The required eigenvalues and eigenvectors are th«i given by F and A = IJ E'^'^ i4*.

This analysis requires homogeneity of population dispersion matrices, i.e., hypothesis above needs to be true.
If H^is not true but can be assumed, then Krzanowski (1990) has suggested the following generalisation of
the above technique.

1. Conduct a within-group common principal component analysis: S, - LDL .

2. Transform the data: v = D L'

where is the mean of the ith group with respect to the original variables.

3. Find the eigenvalues and eigenvectors of C (defined as above), and display the group means on //lesc
eigenvectors as axes.

A second application of the common principal compcxient model is in two-group discriminant analysis. Often,
a linear discriminant function is not appropriate because dispersicxi matrices are not equal in the populations, but
sample sizes may be small and a quadratic discriminant function may not be reasonable either. Intermediate
discriminant functions, obtained assuming eith^ the common principal model or proporticHial dispersion
matrices have been studied by Flury and Schmid (1992) and Rury et at (1994). In general it appears that
assuming proportional dispersion matrices produces good results, but the common principal component model
only provides marginal advantages in some special cases.

Finally, Rury and Neuenschwander (1995) explore the implicaticxis of assuming ctmunon principal components
in the context of canonical correlation analysis, and thereby propose a gaieralisation of canonical correlation
analysis to more than two sets of variables.

3. Distance-based methods

We saw above that (N'oblems encountered in canonical variate analysis when dispersion matrices are
heterogeneous can be overcome if the common principal component model is appropriate. Problems also arise
if not all variables are continuous, as between- and within-group matrices B and IT are no longer obtainable.
Recollect frcnn Section 1, however, that applying principal coodinate analysis to the matrix of pairwise
Mahalanobis distances between groups will yield die equivalent of a canonical variate plot of group means.
Individuals can then be sup^imposed on this plot, if desired, by using Gower's (1968) tedmique for adding
points to an existing ccmfiguration. This method only requires the additional distances between eadi added point
and the- group means of the configuration to be specified, and can be implemented using the addpoznts
directive in Genstat.

To generalise canonical variate analysis to any types of variables, we could therefore use the principal coordinate
approadi providing we were able to define suitable distances between groups and also between individual points
and group means. Now distance betweoi two individuals is a very familiar concept (e.g., in cluster analysis),
and many distance functions are available to the user. For a mixture of any variable types, distance based on
Gower's (1971) general coefficient of similarity is the most flexible possibility, and is the one implemrated in
Genstat. If we denote the distance between individuals i and j by d^ and if the sample is divided a priori into
g groups with n^ individuals in re, {i = 1..^) then Rao (1982) suggests defining the squared distance
between re, and sty by

d! - - ̂ EE''^
"Pj ren, sen^ 2Wy seXj id/I, nx, sen,

To obtain the squared distance /^(/y between an individual re, and the group rey, we simply need to set /i, = 1 in
the above expression to give

- ̂ EE'^^
"y rexj Zttj

12
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Krzanowski (1994) discusses this approach to generalised canonical variates, and provides some illustrative
examples. The same basic idea has been used for discrimination and classification with mixed-mode data
(Cuadras, 1989, 1991, 1992) and for regression with mixed data (Cuadras and Arenas, 1990).

4. Nonlinear generalisations

Most classical multivariate descriptive techniques are concerned with seeking optimal linear combinations of the
observed variables, use methods of linear algebra, and look for crxifigurations of points in linear spaces and
subspaces. Att^tion has turned increasingly, however, to nonlinear generalisatiois of these techniques. An early
attempt in this directicm was the suggestion of Gnanadesikan (1977) to augment the list of variables by including
their squares and cross-products, and then to do a principal ccnnponent analysis on the covariance matrix of the
augmented set in the hope of detecting any nonlinear structure that may be preset. Gnanadesikan illustrated this
idea on an artificial example in which an exactly circular structure was detected, but Flury (personal
commtmication) showed the solution to be extremely unstable tmder slight perturbations. This lack of stability
perhaps explains why the technique has been so little used in practice.

More systematic attempts at nonlinear descriptive methods have been made in the past ten years by a variety
of researchers. Gower and Harding (1988) propose a technique for nonlinear biplotting, Hastie and Steutzle
(1989) consider the idea of principal curves as a generalisation of principal components, while Giri (1990) and
Meulman (1986, 1992) buUd general nonlinear multivariate systems encompassing a variety of descriptive
techniques. These latter two approaches start from the same premis, namely that all classical descriptive
multivariate methcxis can be dmved by finding the low-dimensional configuration of points which minimises
a suitable loss Junction, but differ in the types of function considered. Gifi bases loss functions on the concept
of homogmeity of variables, while Meulman bases loss functions on the concept of distances between points.
The nonlinear generalisations then follow the same patterns in both systems: an optimal nonlinear transformation
of each variable is sought in conjunction with minimisation of the q>propriate loss function in terms of the
transformed data. Various restricrticxis are needed to ensure uniqueness, and in general one ends up requiring to
conduct a double optimisation. Alternating least squares can g^erally be employed to solve the problem, but
the cx>mputing involved is usually raher heavy.

3. Comment

We have briefly sketched three recent strands of development of the most popular descriptive multivariate
methods. All have already proved their worth in a variety of substantive applicaticms; see Airoldi and Flury
(1988) for a common principal components ̂ plication in zoology, Tyteca and Dufr^e (1993) for some
distance-based analyses in botany, Banfield and Raftery (1992) fcx* an interesting applicaticxi of nonlinear
principal components in image analysis, and Gifi (1990) and Meulman (1986) fcx a variety of other nonlinear
applications. Ihe potential scope of descriptive multivariate analysis has thus been considerably widened. Ease
of implementation, howevo*, varies somewhat between the three strands at preset. The algorithms referoiced
in Section 2 bring the methods involving common principal components within relatively easy reach of the user;
the distance methods of Sec:tion 3 all involve familiar concepts such as between-individual distances, principal
cocxdinates and ADDPOINTS, all of which are available in Genstat and hence easily implementable; but the
various nonlinear methods of Section 4 involve more elaborate iterative numerical schemes which require
individually-tailored software, so at present are not readily accessible to the Genstat user. If that user is prepared
to consider other systems, however, then many of the technic]ues in Gifi (1990) can be accessed readily within
SPSS!
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Using Genstat to develop a taxonomic classification from ribosomal DNA
sequences

G M Arnold, J A Bailey, C Sherriff and M J Whelan
Department of Agricultural Sciences
University of Bristol
Institute of Arable Crops Research
Long Ashton Research Station
BRISTOL BS18 9AF, UK

1. Introduction

Colletotrichum is a ubiquitous pathogenic graus of fungi which infect a wide range of plants. Their taxonomy
has traditioially been dmved from morphological characters, sudi as conidia sh^ and size, and the identity
of the host plant. This is unsatisfactory as some forms of the pathogen with idratical morphologies have been
isolated from many different hosts and attack different plant species. A new approach to developing a taxonomy
for Colletotrichum has used ribosomal DNA sequencing. This is described in detail in Sherriff et al. (1994),
where the relatedness of a range of isolates (27 in all) selected to represent the major morphological forms of
the genus is studied.

2. The data

In this study, the data constitute rDNA sequences of 886 base positions in length for eadi of the 27 isolates.
Each base is either a purine (G - guanine, A - adenine) or a pyrimidine (C - cytosine, T - thymine); thus,
each isolate record comprises a textual string of length 886 where each individual unit is one of 0, A, C and
T. In order for comparisons to be made between isolates these individual sequaices need to be aligned. This
was a relatively simple process because the structure of the ribosomal gene is well established and, hence,
approximate alignments were already known. The sequences were stored in a data file in the following format:

009 (3-digit isolate code number)
6CATGCCT6TTC6A6C6TCATTTCAACCCTCAAGCACCGCTT6GCGTTGGG6CTTCCACG

.... (13 Jurther lines of length 60)
TTATAT6CX;A6T6TTC6G6T6TCAAACCCCTAC6C6TAATGAAA6T

056

GCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCCCTGCTTGGT6TTGGGGC0CCTAC6

TTATCTGCGAGTGTTTGGGTGTTAAACCCCTACGCGTAATGAAAGT

and so on.

Two other characters also appear in some sequmces; 0 denotes a base deletion which is required to maintain
alignment and X a base which is preset but unknown. To check the alignment, a program was written to read
in the sequences from the file described above, to compare eadi sequence with a diosen standard and then to
print all sequences in parallel showing where any differences occur. The following G^stat commands are
extracted from this program:

SCAL nbase;886 "no. of bases in each sequence"
CALC line>=INT(nbase/60) "no. of full lines (width 60)
&  lasts((nbase/60)-line)*60 "no. of bases on last line"
&  n1sZNT(nbase/10) "no. of sets of 10 bases"
&  r1=nbase-(10*n1) "bases left in last set"
TEXT space;It(' ') "blank to insert after 10 bases"
SCAL i

READ [channels2;ends*] i
READ [ends*;chs2;layoutsfix;fonnsl (((1) 60,*) Eline, (1) Elast,*) ] seq[i]
"putting in blank every 10 bases"
TEXT edit;lt('L+10 F/space/')En1,';')
EDIT [channelsedit] seq[i]

"changing label to three digits where necessary"
IF i.lt.10

PRINT [ch=t[i];iprints*;squashsyes] '00',i;fields2,1;dec^O;skip=*,0
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ELSIF (i.ge.10).and.(i.lt.100)
PRINT [ch=t[i];iprints*;squashsyes] '0',i;field=1,2;dec=0;skip=*,0
ELSIF i.ge.100
PRINT [chstti];iprint=*;sguashay] i;£ield=3;decs0
ENDIF

CALC nlin=line+2 "calculating no. of lines for output"
VARI [values=1...nlin] nline
TEXT [values^(' ')Enlin] blank

"adding labels to sequences" (note - within a FOR loop indexed by j)
TEXT temptj]
PRINT [ch°temp[j];iprint=*;orient=across;widths66 ] seq[j]; \

fieldsl ;skipB0;dec°:0
CONCAT [newt=teinp [ j ] ] ' *, temp [ j)
CONCAT [newt=temp[j]] £t[j],temp[j]
"testing for equality of sequence with standard (here using 009)"
CALC dums3seq[£stan] .egs.seq[j]
TEXT [value=(('-')10,' ')£n1 £r1] comp[j)
RESTRICT compij],seq[j];dum.eq.O
CONCAT [newtBcomp[j]] seq[j]
RESTRICT comp[j],seq[j]
"adding label numbers to comparisons & setting up printing blocks"
PRINT [ chstemp [ j ]; ipr in to*; orientsacross; widthaSS ] comp [ j ]; \
field«1 ;skips:0;decsO

CONCAT [newtstemp[j]] ' ',temp[j]
CONCAT [newtstemp[j]] £t[j],temp[j]
"printing comparisons, excluding last line (blank except for label1)"
RESTRICT temp[£seqno],blank;nline.It.nlin
PRINT [iprint8*;orient=across] temp[Eseqno],blank; justs=left

This program produces comparis(xis printed in the following format:

009 GCAT6CCT6T TCGAGCGTCA TTTCAACCCT CAAGCACCGC TTGGCGTTGG GGCTTCCACG
056

058
060
073

074 A A G
076 A
079

083

091

093 CT
120 A A G A
138
141

16 3
16 4
16 5

167 —rA A G A

16 8

171

189 A A G A
216
414
465

503 A A G A
507

The layout, with matches indicated by - and diff^nces given explicitly by code letter, enables any minor
misalignment to be picked up easily, as well as possible transcription arors ̂ ch can then be diecked against
the original sequence gels and amended if necessary.

3. Comparing sequences

A natural measure of the distance between two isolates based (xi the rDNA sequences is the proporticwi of base
positions which show changes, p, say. Alternative measures that have been proposed, in which evolutionary
changes over time are considered such that more than one change at a given base position may have occurred,
include the Jukes and Cantor (1969) distance and die Kimura (1980) distance. The Jukes and Cantcx- distance

16



Genstat Newsletter 31

is given by -0.75 log(l-4/;/3) and assumes a constant rate of change from one base to another. Kimura considers
different rates fcM* transversions (changes between purines and pyrimidines) and transitions (changes within
purines or pyrimidines); if the proportion of transversions and transitions are q and t, respectively, the distance
is giv«i by -0.51og{(l-2/-^)(l-2^)*^}. Expanding each of these gives, to first ordw approximation, a distance
of p, identical to the simple measure. For this particular data set, the proportion p for most pairs is less than
0.10 as the sequences are highly conserved so use of this simple measure is adequate. The following extract
from a Genstat program shows the steps needed to construct a similarity matrix based on this distance measure,
where deletitxis count as differences and pairwise comparisons exclude positions where one or both bases are
unknowns X.

"calculate pairwise similarities, storing in symmetric matrix"
TEXT slab;valuesBit(£t[Esegno])
SYHM [rowssslab] seqsim
DIA6 [slab;values=:Eb(100) ] diag
CALC seqsimadiag
FOR k=Eseqno;du^s1.. .b
CALC duronsseqlk] .ni. It(X)
&  ncompsSUM(dumn)
ENDFOR
FOR isEseqnojdumisi...b
FOR js:seqno;d\imjBl.. .b
EXIT dumi.eq.dumj
CALC dumsseqii].eqs.seq[j]
RESTRICT dvim; (seq[i] .ni. 11(X)) .and. (seq[j] .ni. 11(X))
CALC niimsSnM(dum) "number of matches"
&  ncompsNOBS (dum) "total niimber of compaorisons"
&  %simsBl 00*num/ncomp
&  seqsim$[Edumi;Ediimj]s%sim
RESTRICT dum

ENDFOR

ENDFOR

4. Cluster analysis

Having calculated the appropriate similarity matrix, relationships between isolates can be illustrated by a cluster
analysis. Using the HCLUSTER directive with option methodsgroupaverage gives the tmweighted pair group
method using aridunetic means (UPGMA) with similarity between group {ij) (formed by amalgamation of
isolates / and j) and group k given by

where Sy are distances between groups i and j.

The clustering information may be saved using
the amalgamati(xis parameter for HCLUSTER
and ̂ tered into the procedure DDENDROGRAM
(here a personally customised version) to
obtain a high resolution dendrogram (Figure 1).
From this figure, clear groupings are {q)parent,
some of which ccmfirm traditional taxonomic

groupings and others whidi have allowed new
species to be identified (see Sherriff et aL
(1994) for further details).

009
171
216'
063
138
507
073
164
165
076
414

465
OSB
163
056
060
091
093
501
074
503
120
167
189
166
079
141

94 96 97 99 100

Percentage similarity

Figure 1. Dendrogram showing relatedness of 27 Colletotrichum
isolates, from sequences of full length (886 base positions).
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5. Subregion comparisons

It was also of interest to see if smaller defined subregions of the sequence could be used to obtain similar
groupings. Three such regions within this sequence were ITS2 (161 bases). Domain 1 (133 bases) and Domain
2 (206 bases). Similarity matrices were constructed for the isolate sequences restricted to these regions and
clustering carried out as above. Very similar patterns of groupings were ̂ parent for both 1TS2 and Domain
2. Figure 2 shows the pairwise similarities for each subregion plotted against those for the whole region,
indicating that 1TS2 in particular gives very similar information to the whole sequence. Correlation coefficiaits
between the pairwise similarities for subregions and the full sequence are givai in Table 1, along with those
between the cophenetic distances from the equivalent dendrograms. These clearly show that the 1TS2 region,
and, to a slightly lesser extent, the Domain 2 region both provide information on the relatedness of the isolates
which is essCTtially the same as from the full sequences, and can therefcxe provide a practically simpler and less
time-consuming procedure for further similar studies.

Table 1: Correlations between measures for subregions and full sequences

Subregion Similarities

1TS2

Domain 1

Domain 2

+0.982

+0.712

+0.969

Cophcxietic distances
from dendrograms

+0.993

+0.671

+0.985
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Figure 2: Plots of pairwise similarities for subregions (a) - (c) against full sequence
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6. Conclusions

Genstat has proved to be a flexible tool for handling text manipulatitxis, calculations and visual displays required
in using rDNA sequence data fw taxonomic investigations and gave results similar to specifically written
software for sequence analysis (see Sherriff et al, 1994).
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The jackknife and the bootstrap

P W Lane and R W Payne
BBSRC lACR Rothamsted Experimental Station
HARPENDEN, Herts AL5 2JQ, UK

Summaiy

Bootstrapping is a general method for estimating |x*operties of statistics, particularly their precision. It is
computer intensive, but is increasingly being considered as an alt^ative to classical methods. In particular, it
avoids distributional assumptions, and is applicable when the complexity of a model makes analytical methods
intractable. Jackknifing is a similar but simpler technique. Procedures have been developed to provide a general
facility to fcxm bootstrap or jackknife estimates for any statistic that can be calculated in Genstat.

1. The jackknife

The jackknife was introduced by Quenouille (1949) to reduce bias in estimation. The name was coined by Tukey
(1958), who suggested its use for estimation of variance. Its main properties are:
•  it removes bias of ord^ \IN for estimation from a sample of size N\
•  it can form standard errors of estimates even when these are difficult to form by other methods;
•  it is often a more robust method than alternative classical methods;

•  it needs a lot of computation: of the order of (A^+1) times what is required for simple estimation;
•  it has proved useful in many situatiois, sudi as maximum-likelihood estimation and variance estimation,

but is not useful in others, such as the estimation of order statistics.

The jackknife worics by repeating some estimation process based on a sample, leaving out each observation in
the sample in turn. Suppose that we want to estimate parameter 6 from a sample by scone method,
possibly biased, yielding an estimate 6. Then we repeat the estimation N times by the same method, omitting
each of the observations in turn, yielding estimates These estimates are combined to form the
pseudo-values'.

e; = A^0-(A^-l)0y, 7=1.. JV

From the pseudo-values, the jackknife estimates themselves can be formed:

0* = Mean(0 y)
V = Variance(0 y)/iV

The original papers describing the jackknife technique are by Qu^ouille (1949, 1956) and by Tukey (1958).
Good expository accounts are provided by Hinkley (1983) (x Bissell and Ferguson (1975).

The calculations can be carried out in Grastat using the procedure JACKKNIFE. It requires as input a data matrix
consisting of a list of variates, factors and texts all of the same length. Each unit of these vectors will be omitted
in turn during the calculations. The procedure can arrange to calculate several statistics simultaneously, and
produce jackknife estimates for all of diem. You need to supply a procedure called RESAMPLE that calculates
the statistics, based on a data matrix reduced by one unit. In addtion, you can supply further data to the
procedure if required to calculate the statistics, using the ancillary option. The procedure produces as output
the jackknife mean and standard for each statistic, and you can extract the pseudo-values.

For example, consider the estimation of the correlaticxi coefficient. This statistics can be calculated easily in
Genstat by the correlate directive, but there is no estimation of the variance of the estimate. Here is a
procedure in the form required by JACKKNIFE that calculates the correlation.

PROCEDURE [PARAHETER=pointer] 'RESAHPLE'
OPTION 'DATA', " (I: variates, factors or texts) data vectors from which to

calculate the statistics; no default"\
'AUXILIARY', " (I: pointers) auxiliary sets of data vectors, each of which is
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to be resanpled indep6ndently"\
'ANCILLARY'; " (I: any type of structure) other relevant information needed to

calculate the statistics"\
MODEsp; TYPES1t(variate,factor,text),'pointer',*; SETsyes,no,no; LISTsyes;\
DECLAREDsyes; PRESENTsyes

PARAMETER 'STATISTIC r " (0: scalars) to save the calculated statistics "\
'EXIT'; " (O: scalars) to save an exit code to indicate failure (EXIT[i]s1)

or success (EXIT[i]sO) when calculating each STATISTIC[i]"\
MODEsp; TYPE='scalar'; SET=yes

CALCULATE STATISTIC[1] » CORRELATION(DATA[1]; DATA[2])
&  EXIT[1] = STATISTIC tUssCC missing')

ENDPROCEDURE

The OPTION and PARAMETER statements here can be copied from the standard example that accompanies the
JACKKNIFE procedure: the syntax must not be changed. The AUXILIARY parameter is not used by JACKKNIFE,
but is included in the procedure because it can be used with the bootstrap procedure described below. The
EXIT parameter of the RESAMPLE procedure provides the ability to signal to the JACKXNIFE ptxx:edure when
the calculation of the statistic fails for some reason with a particular resampling of the units; if this is not
relevant, the parameter does not need to be set.

Here is the result of using the procedure, using an example from Efron (1981).

22 VARIATE [VALUES»576,635,558,578,666,580,555,661, \
23 651,605,653,575,545,572,594] Y
24 & [VALUESs3.39,3.30,2.81,3.03,3.44,3.07,3.00,3.43, \
25 3.36,3.13,3.12,2.74,2.76,2.88,2.96] Z
26 JACKKNIFE [DATA=Y,Z] 'Correlation'

***** Jackknife estimates *****

Statistic Estimate from all data Jackknife estimate s.e.
Correlation 0.7764 0.7828 0.1425

Several modifications to the jackknife have been suggested. The second-order and generalized jackknife
techniques are designed to remove bias of higher order than 1/N. The infinitesimal jackknife uses smaU weights
for points rather than total exclusion, and the trimmed Jackknife uses the trimmed mean of the pseudo-values
rather than the simple mean. Alternative methods have also been proposed using subsets smaller dian (M-1).
None of these modifications are available in the JACKKNIFE procedure, but it should not be difficult to edit the
procedure to incorporate any of them.

2. The bootstrap

The bootstrap was introduced by Efron (1979) to provide variance estimatioi. It has the following prop«1ies:
•  it estimates bias;

•  it forms standard errors of estimates even when these are difficult to form by other methods;
•  it estimates the distribution of estimates, giving confidence intervals;
•  it is non-parametric and robust;
•  it needs a lot of computation: 100 times what is required for simple estimation, to get standard errors,

or 1000 times to get confidence intervals;
•  it seems more widely applicable than the jackknife.

The bootstrap method works by repeated resampling from the units of a data matrix, generating a series of new
data matrices from which estimates of means and variance can be calculated. Resampling here means making
a new sample of the same size N as the original sample, by random sampling with replacemoit from the original
sample. So each new sample contains some of the original units of data, but is unlikely to contain all of them;
several of the original units are likely to be repeated in the new sample.

The statistics to be bootstrafq>ed are calculated for each resampled data matrix, and the bootstrap estimates are
then formed by calculating the mean of these statistics. Other distributional features of the statistics, such as
standard errors or confidence regions, can be estimated from the empirical distribution of the set of calculated
statistics.
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The name bootstrap is seen to be an apt description of what is happening in this process: the distributional
properties of a statistic are derived from the data themselves, without reference to any theoretical model, just
as a magician may attempt to raise himself off the floor by pulling on his own bootstraps. A good introduction
to the bootstrap is given by Efron and Tibshirani (1986); a fuller treatment can be fotmd in Efron and Tibshirani
(1993).

To tmderstand the justification of this as a process of estimaticxi, it helps to consider a simple application: the
estimation of the mean of a sample of measurements A;,,...,Xyy. If each Xf has some unknown distribution F, the
mean x has standard error

where P2(/^ is the second moment of F. If we do not know F, we do not know y^iF). The classical solution to
this problem is to estimate o by

0 = /(pa/AO

where pa is an tmbiased estimate of yiiF), such as S(x/-Jc)V(A^-l) if the JC/ are Normally distributed. The
bootstrap solution to the problem is to estimate o by

6=otf) = V(M2tf)/A0

where F is an estimate of F, such as the empirical probability distribution of x,.

The bootstrap calculations can be earned out in Genstat using the BOOTSTRAP procedure. It is used in just the
same way as JACKKNIFE, setting the data parameter to supply the data matrix, and providing a RESAMPLE
procedure in exactly the same form as for JACKKNIFE. Here is the result of bootstrapping the correlation
coefficient in the example above, using the default of 100 resamplings.

33 BOOTSTRAP [DATA^^Y^Z; SEED»77320] 'Correlation'

*** Bootstrap estimates/ from 100 bootstrap samples ***

95% confidence interval

Label mean s.e. lower upper

Correlation 0.754 0.154 0.452 0.970

The output includes a confidence interval, by default at the 95% level, derived from the empirical distribution
of the 100 generated estimates of correlation. However, most reports about die behaviour of bootstrap estimates
suggest that 100 resamplings are not enough to get reliable estimates of such confidence intervals. H^e is a
repeat of the bootstrapping, carried out 1000 times, and setting the print option of die directive to display the
distribution of the generated estimates.

37 BOOTSTRAP [PRINTsestimateS/graph; NTIMESslOOO; DATA^Y/Z; SEED°77320] \
38 'Correlation'

*** Bootstrap estimates/ from 1000 bootstrap samples ***

95% confidence interval

Label mean s.e. lower upper

Correlation 0.774 0.134 0.475 0.966

The resulting picture, produced in high-resolution by default, is in Figure I. It shows a histogram of the 1000
generated estimates of ccxrelation, with a smoothed curve superimposed in an attempt to improve the
distributional shape. The curve is produced by fitting a smoothing spline with four degrees of freedom (using
the SSPLINE function in the FIT directive) to the cumulated histogram values on a logistic scale. The smoothing
is not completely successful here because of the limit of I.O on the estimates of correlation. Vertical lines are
also displayed on the graph to indicate the bootstrap estimate and the confidence interval.
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Three methods of bootstrapping are provided. By
default, resampling is completely pseudo-random, using
Genstat's random-number generator. The generator can
be initialized by setting option SEED, thereby producing
reproducible results; otherwise, the initialization uses
the system clock. A seccmd alternative is balanced
bootstrapping, requested by setting METHODsbalance.
In this case, the resampling is constrained to ensure that
each unit of the data matrix occurs the same number of

times in the complete set of generated samples. The
third method, specified by METHODspermute, is simply
to permute the units of the data matrix. Note that this
method gives no variation in results if the statistics are
independent of the order of the data, like the sample
mean. However, this method provides permutation tests,
a type of randomization test that can be applied to
grouped data.

Bootstrop dsbibufkM

&

01 u

Comldbi

Figure 1

3. Availability of the procedures

The BOOTSTRAP and JACKKNIFE procedures have both been accepted for inclusion in the Grastat Procedure
Library 3[2]. In the meantime, the procedures can be accessed hrom the NAG Gopher. Connection details for
this Gopher were published in Genstat Newsletter 30, but most Gopher servers make it easy to find, as long as
you know that NAG is based in the United Kingdom.

Both procedures have been written for Release 3.1 and use several of the new features, such as die new
DUPLICATE directive. It would therefore require some effort to translate them to work with Release 2.2.
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The past 30 years have seen the publication of some suiprising results on the efficiency factors for treatment
factors from non-orthogonal experimental designs. Some of these results were discussed and exemplified by
Preece (1988). The present paper takes that earlier discussion furth^ for a class of generally balanced designs
that are obtainable from certain balanced supaimpositi(xis of Youden squares.

To introduce the subject, let us consider first the following 4x7 row-and-column design for two non-int«*acting
sets of treatmrats:

AA EE cc DD EE FF GG

EC CD DE EF FG GA AE

CE DF EG FA GE AC ED (1)

EE PC GD AE EF CG DA

In each cell of this design, the first letter represents a treatment from a set Tl, whereas the second represents
a treatment from a set T2. The design comprises 4 rows from a systematically generated 7x7 Graeco-Latin
square., The four rows are chosen so that each of Tl and T2 is balanced with respect to the columns of the
design, the concept of 'balance' here being that of a balanced incomplete block design; as the number of
treatm^ts in Tl <»• T2 is the same as the number of columns in (1), each of Tl and T2 is disposed in (1) in a
Youden square. The superimposition of each Youden square on the other is sudi that (i) each of Tl and T2 is
balanced with respect to the other, in the same sense of 'balance' as has already been used, and (ii) the design
is generally balanced overall, as can be verified by submitting it to Goistat's ANOVA. By 'overall', we here
mean that (a) all estimated differences in effect between two treatmoits from T2 have the same efficiency factor
when the effects of the other factors in the design (whether block factors or treatment factors) have been
eliminated, and (b) the corresponding result is true for Tl. More concisely, we are saying that tha^ is a single
efficiency factOT for Tl and a single efficiency factor for T2 when treatment effects are estimated after
elimination of the effects of all odier factors in the design. Indeed, if we now change the role of the 'columns'
factor to that of a treatment factor TO, there is similarly a single efficiency factor for TO. Indeed these efficiency
factors for TO, Tl and T2 are all the same for this design, namely 3/4 = 0.75. Of course, this value is unchanged
if the 'rows' factor of the design is ignored, as each of TO, Tl and T2 is orthogonal to rows.

Suppose now that the factor T2 in (1) is replaced by a factor T3 to give the following superimposition of two
4x7 Youden squares:
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AA BB CC DD EE FF GG

BD CE DF EG FA GB AC

CG DA EB FC GD AE BF (2)

EF FG GA AB BC CD DE

Design (2) is in eveiy respect as balanced as design (1), and the efficiency factors for TO, T1 and T3, calculated
as before, are again equal to (Mie another. But now the value of this common efficiency factor is 5/8 = 0.625.

Preece (1966) described how designs such as (1) and (2) can be obtained more generally, consisting of 2
superimposed Youden squares of size 2p x {Ap-\) or (2/7-1) x (4/7-1), where (4/7-1) is a prime number with
p>\. For each of these sizes, the superimpositions have one or other of just two efficiency factors.

Suppose now that we consider the following superimposition of three Youden squares, with non-interacting
factors TO, Tl, T2, and T3 as above:

AAA BBB CCC DDD EEE FFF GGG

BCD CDE DEF EFG FGA GAB ABC

CEG DFA EGB FAC GBD ACE BDF (3)

EBF FCG GDA AEB BFC CGD DAE

As stated by Preece (1968), the efficiaicy factors for each of TO, Tl, T2 and T3, after fitting all the other
factors, are no longer all the same, but are these:

TO and T3 Tl and T2

-L = 0.292 _L = 0.350
24 20

Preece (1966) also indicated that just one further similar type of 4x7 design exists; it can be obtained
from (3) by replacing set T3 by a set T4 as follows:

AAA BBB CCC DDD EEE FFF GGG

BCE CDF DEG EFA FGB GAC ABD

CEB DFC EGD FAE GBF ACG BDA (4)

EBC FCD GDE AEF BFG CGA DAB

For (4), the efficiency factors analogous to those given above fcx* (3) are different from those for (3) and follow
a different pattern:

TO Tl, T2 and T4

-Z. = 0.700 -L = 0.583
10 12

The results just given for balanced superimpositions of three Youden squares of size 4x7 may seem strange
enough. But what about analogous balanced superimpositions of three Youden squares of any size 2p x
(4/7-1) or (2p-\) X (4/7-1) fw which (4/7-1) is a prime ntunber with p>\ ? We can now reveal that there
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are, in general, for each size, exactly three possibilities, not just the two that are represented above by (3)
and (4). The third of these possibilities has no representative of size 4 x 7, as this size is too small to admit
of the required combinatorial flexibility. We shall now illustrate the three possibilities by turning to the size
6x11. As hitherto, we shall use the phrase 'efficiency factor' only in reference to efficiency calculated for
a factor after fitting effects for all other factors.

Consider first the following design, analogous to design (3):

AAA BBB CCC DDD EEE FFF IKD HHH m JJJ KKK

CEI DFJ EGK FHA GIB HJC DAF JAE KBF ACG BDH

IFK JGA KHB AIC BID CKE FEC EBG FCH GDI HEJ

KJH AKI BAJ CBK DCA EDB CJB GFD HGE IHF JIG

HDG lEH JFI KGJ AHK BIA BHI DKC EAD FBE GCF

GBC HCD IDE JEF KFG AGH GGG CU DJK EKA FAB

(5)

As in all other designs in this paper, the entries in each row are generated cyclically from the entry in the ̂ t
column, the cycle being (ABC ...) with (4/7-1) letta:^ in the brackets. Once again, we shall use TO fcx* the
'blocks' factor. However, it will now be convenient to generalise our previous labelling of other treatment
factors by basing a factor's labelling on the treatment that appears for diat factor in column 1, row 2. In (5),
we therefore base our remaining lulling on die treatments C, E and I of, respectively, the remaining three
factors. If we code A,B,C,..., as 0,1, 2,..., these treatments become 2,4 and 8, so we denote the corresponding
factors as T2, T4 and T8. The efficiency factors are then as follows:

TO and T4

T2andT8

ii = 0.611 ^ = 0.655
18 84

Now consider the following design that is analogous to design (4):

AAA BBB CCC DDD EEE FFF GGG HHH m JJJ KKK

CEK DFA EGB FHC GID HIE DCF JAG KBH ACI BDJ

IFH JGI KHJ AIK BJA CKB DAC EBD FCE GDF HEG

KJG AKH BAI CBJ DCK EDA FEB GFC HGD IHE JIF

HDC lED JFE KGF AHG BIH CJI DKJ EAK FBA GCB

GBI HO IDK JEA KFB AGC BHD cm DJF EKG FAH

Here, with labelling as before, we have the respective factors TO, T2, T4 and TIO, with efficiency factors as
follows:

TIO TO, T2 and T4

ii = 0.786 il = 0.733
14 15

But finally, amcxigst designs of size 6x11, consider the following design:

(6)
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AAA BBB CCC DDD EEE FFF GGG HHH III JJJ KKK

CIK DJA EKB FAC GBD HCE IDF JEG KFH AGI BHJ

IKH JAI KBJ ACK BDA CEB DFC EGD FHE GIF HJG

KHG AIM BJI CKJ DAK EBA FCB GDC HED IFE JGF

HGC IHD JIE KJF AKG BAH CBI Da EDK FEA GFB

GCI HDJ lEK JFA KGB AHC BID CJE DKF EAG FBH

Here we have efficiency factors as follows:

(7)

TO, T2, T8 and TIG

il = 0.733
15

Now we are back to the situation that we had for die balanced siqierimposition of just two Youden squares,
namely that of a design having the same efficiency factor for eadi of the treatment factors.

Ignoring the 'rows' factor, our design (7) is Design 7 from p.29 of Potthoff (1963). We have thus thrown
light on Potthoff's somewhat cryptic assertion that The efficiency of Design 7 is 11/15. We have, however,
also shown that, in practice, our design (6) might well be preferable to (7), as design (6) provides greater
efficiency for one of the factors.

The numerical values for the efficioicy factors for designs (5), (6) and (7) are obtainable by taking /7 = 3 in
the following general formtdae for balanced superimposititxis of three Youden squares of size 2px(Ap-\)
where (4jp-l) is prime:

1 - , = il = 0.786;
2p 2p(2p^\) 14

1 - i ^ , = 11 = 0.733;
2p 2(^-1) 15

1 - ^ = n
^ 2{2p^\)ip-\) 84 '

1, 1 , =11 = 0.611.
2p 2p^{2p-\) 18

The reader is, however, invited to obtain the numerical values by running designs (5), (6) and (7) through
Genstat's ANOVA. The only factors that need to be coded are TO, T2, T4, T8 and TIO. Then, for example, the
efficiency factor of 0.786 for TIO in (6) can be obtained by specifying the treatmentstructuse for (6) as
T0+T2+T4+T10.

Each of the designs (5), (6) and (7) remains a balanced superimposition of Youden squares if its first row is
deleted, to give a 5 x 11 superimposition. If we designate the resultant designs as (5')» (6') and (7'), we have
efficiency factors as follows:

(5') TO and T4 T2 and T8

0.629 0.550

(6') TIO TO, T2 and T4

0.550 0.629
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(7) TO. T2. T8 and TIG

0.314

Potthoff (1963) alluded to the existence of design (7'), and indeed gave its efficiency as 11/35 = 0.314. But we
can now see that (6') is not only more efficient than (7) for all 4 factors, but indeed twice as efficient for 3 of
the 4 factors.

By this stage in our paper, our reader will wish to know how designs such as (5). (6) and (7) are to be
distinguished from one another so that the pattern of the efficiency factors can be deduced. Elementary, my dear
Watson! - so long as we look carefully at some incidence matrices. For this, only one matrix n need be written
down explicitly. For 6 x 11 designs, n is as follows, where the rows and columns have been numbered and
labelled for convenience, and where zero entries have been represented by dots:

1  2 3 4 5 6 7 8 9 10 11

A  B C D E F G H I J  K

lA 1  1 1 1 1
• • . 1

2B 1 1
•

1 1 1 •
•

1

3C 1 1 • 1 1 1
•

•  •

4D 1 ♦ 1 1 • 1 1 1 •  •

5E
•

1
•

1 1
•

1 1 1

«= 6F • 1 • 1 1
•

1 1  1

7G •
1

•
1 1

•
1  1

8H 1  1 •
• 1 •

1 1 1

91 1  1 1 •
•

• 1 •
1 1

lOJ 1 1 1
• •

• 1
•

1  1

IIK 1 1 1
•

•
• 1 1

This matrix satisfies the equation

n = / +Er. (8)

where / is the 11 x 11 identity matrix. F, is the basic 11 x 11 circulant matrix with the entry 1 in the first
position of column (/ + 1) and the entry 0 elsewhere in row 1, and Q is the set of quadratic residues in GF(ll).
the Galois field of order 11. i.e.

Q = ( 2®.2^2'.2®.2») (modll)

= {1,4.5.9.3).

As the elements of T2 that appear in colunui 1 of (5). (6) or (7) are A. C. I. K. H. G. and the ncxi-zero elements
in column 1 of n are in the rows labelled A. C. I. K. H. G, we readily see that n is the incidence matrix for the
incidence of T2 on columns of our designs, i.e. for the incidence of T2 with respect to TO. Writing /i,y for the
incidence matrix for the incidence of T/ with respect to 1^', we thus have

« = «
20*

Proceeding similarly for other pairs of factors (with 'rows' ignored as hitherto), we therefore have the following
for designs (5). (6) and (7):
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(5). n — WjQ - - n^2 ~ ~ ̂4^

(6): « = = «t? = «/4

(7): n = «2o = «8o = = «82 =

where the suffix t denotes 10.

If we now examine the incidence-matrix equatitxis for (5), we find that they contain two subsets of equations
that can be written in the cyclic fcxmwritten in the cyclic fcxm

~ ̂Jk ~ ̂U>
(9)

namely = «2o

and = n^.

Common to these two subsets is the matrix relating to the factors TO and T4, so it is not surprising that die
efficiency factor for TO and T4 in (5) is differmt from that for T2 and T8.

Turning now to the incidence-matrix equations for (6), we find only one cyclic subset of equations of the form
(9), namely

*^04 ~ ~ "20'

The matrices in this subset relate to the factors TO, T2 and T4, but not to the other factor in (6), namely TIO.
So we need not be surprised that the efficiency factor for TIO differs from that for TO, T2 and T4.

The incidence-matrix equations for (7) contain no subsets of the foim (9). This is the condition for there to be
just a single efficiency factcx' for all treatment factors in the design.

For balanced superimpositions of three Youden squares of any size 2p x iAp - 1) where (4/7-1) is prime,
equation (8) nee^ to be generalised to

« = ̂ + E r; (10)
<eQ

where I is the vxv identity matrix, is the basic vxv circulant matrix defined as before, and Q is the set of
quadratic residues in GF(v). The simplicity of the general formulae given earlier for efficiracies for the size
Tp'xiAp-l) derives from the properties of the circulant matrices and the restricticxi of the summation to the set
Q. For the size {2p - 1) x (4/7 - 1), similar mathematical results may be obtained by using the matrix

« = 2 r,.
&Q

As a final exercise, the reader is invited to use the 7 x 7 matrix n given by (10) to distinguish design (3) from
design (4). For this example we have

Q = { 3°,32,3l (mod7)

= {1,2,4}.
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Solving the depletion equation; an example of inverse nonlinear r^ression

P Brain and L R Saker

Department of Agricultural Sciences
University of Bristol
Institute of Arable Crops Research
Long Ashton Research Station
BRISTOL BSI8 9AF, UK

1. Introduction

Regression problems can arise where the ind^ndent variable, jc, is a function of the independent variable, y,
so that X = fty'3), wh^e 6 is a vector of unknown parameters to be estimated; an example of this was presented
by Ridout (1993). This article deals with a specific example used in the analysis of experiments which measure
the depletion of a radioactive nutriait by a plant, and was first presented at the 1993 Genstat Conference,
Canterbury, Kent (Brain and Saker, 1993). The depletioi technique was discussed by Claassen and Barber
(1974), who presented a theoretically derived equation which related the nutrient concentration in the nutrient
media (O to time (r). Their equation relat^ the rate of uptake (equivaloit to the decay rate of the
concentration) to the conc^tration in the external solution, and was of the form

dt "v

f  \

/_ C
-E

K*C

where is the root weight (known), V is the volume of the soluticxi (known), E is the efflux, /„ is the maximum
rate of uptake, and is the Midiaelis ccxistant. They then fitted this equation to their experimental results by
solving the equation by nummcal integratioi, then fitted to the data using least squares. This method was used
by several authors, including Drew et al (1984), who used a simplified form of the original equation with ̂ =0,
but included a background level of concentratitxi 0^^^ below 'nliich the concentration could not fall. Their
equation is equivalent to the original equation but with E reparameterised in terms of A further
development of the procedure was introduced by McLachlan et al (1987), who considered the case vdien the
original equation was inappropriate, and coisidered ways of investigating the relationship betwe^ dC/dt and C
by fitting various empirical curves to the C versus t time courses.

None of these authors apparently recognised that the basic differential equation can be readily solved to produce
a relationship between C and t, in this p^)er we solve the equation and develop a method for fitting it to
experimaital data. The approach does not rely on numerical integration, as in previous approaches, and can be
readily implemented in Genstat.

2. The model

As noted above Drew et al (1984) used a mcxiified version of the equation used by Claassen and Barber (1974)
by assuming that E was zero, but the depletion was dependent on the concentration above a natural background
level, Their equation was

dC ̂  W (C - C J
dt ' V MC -

This can be rearranged to give

dt^--JL
W I

K_
+ 1 dC
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whidi can be readily solved to give

In

c  \

Co - C,.

C
V  mta ̂

+ (C - O

Genstat Newsletter 31

(1)

where Cg is the initial concentration. It is impossible to reairange this equation to evaluate C given t. This
equation is a more complex version of ttiat doived by Ridout (1993) whi<^ modelled plant growth.

Under certain conditions the equation will degenerate to simpler forms; for example when K„ is very large, but
(WIJKVKJ is finite, then 1IK„ is close to zero, and equation (1) reduces to

C ' - CJ! (2)

i.e. the concentration decays exponentially with time. This equation is (me of those ccmsideied by McLachlan
et al (1987). Another special case occnirs when = 0, but (WIJIV is non-zero, when equaticm (1) reduces to
a strai^t line:

C = Co - (3)

3. Fitting the model

Equation (1) can be solved for known values of the parametm to give C for a given t using the iterative
Newtcxi—Raphson method. This cjan be incorporated into a s^es of CALCULATE commands, wiiich can be used
with the FITNONLINEAR command, in a similar way to that used by Ridout (1993). (Though as Ridout
comments, there appears to be no way that a test for convergence can be carried out in a series of CALCULATES
of this fcxm.) However, when this approach was tried using equaticm (1) the iterative process was unstable, and
could not be relied on to converge. Accordingly equation (1) was rewrittm in a more suitable form:

(c (4)

As K„ becomes increasingly large, but (WIJKVKJ is (mnstant, equation (4) reduces directly to ecpjation (2).
The case where is close to zero is not covered directly by this equation but can be readily fitted using linear
regression. Equation (4) has six parameters, of which cmly four are identifiable. However W and V are
measured indep^dratly, so all parameters can be estimated. For estimaticm purposes (WIJKVKJ was denoted
by T, and VK^ was replaced by I^^ With this parameterisation equation (4) becomes

Equation (4) can be rewritten in the form
/(O = 0

and the Newtcxi-Raphson method can be applied to this to give

^i*\ ~

where

. <Co - e - "-(C, - (g)
1 ♦ - C^)

This iterative sequence was set up as a series of CALCULATE statements in Genstat which were used with
FITNONLINEAR. The first evaluates the first Ac (denoted by do) using equation (6), widi our initial estimates
Cmin, T, IKM and CO, and estimating the fitted concentrations, C, by our observed values of c. (For reasonable
data the observed ccmcentrations are an obvious choice, and in most cases that have been tried out work well.)
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The seccmd expression updates our fitted values, f c, and our fitted values of c(xicentration, C. Expressions
E[3/5 —17] and E[4,6...18] repeat this iteration, but using the fitted concentrati(xis, C. The final
exixession transforms the fitted values, if necessary, so that a transform-both-sides analysis (Rudemo et al,
1989) can be carried out if required (if a transform was required the MODEL statement would obviously use the
transfonned concentrations). The fitted concentrations are stored in C and can be used later if required. The
system as set up uses sevo-al iterations; the actual number used can be alta:^ by using more, or less,
expressions. The final increment dc is available at the end of the iterative process so can be readily inspected.
The CALCULATE Statements are stored in the expressions given below:

express [value = (dc=( (CO-Cmin)*exp( (CO-c)*IKm-T*t)-(c-Cniin))/ \
(1 + (c-Cmin)*IKm))] E[1]

&  [value B (£c=(Csc-Mc)) ] £[2]
&  [value = (dc=((CO-Cmin)*exp((CO-C)*IKm-T*t)-(C-Cmin))/ \

(1 + (C-Cinin)*IKm))] E[3,5...17]
&  [value B (£css(CsC-^c))] E[4,6... 18]
&  [value B (£cBlog(£c))] E[19]

Various special cases of the equation can be readily fitted; of particular relevance are the cases where is
zero, or when K„ is large (corresponding to - 0). The increase in the residual sum of squares can then be
used to test whether C„i„ are significantly different from zero.

4. Finding initial parameter estimates

The fitting process outlined above needs good initial estimates of the parameters Q, C„i„, T, and . An
obvious initial estimate of Cq is the observed concentration at time zero; a reasonable initial estimate of is
often zero. Given these initial estimates two new variates x^ and Xj can be calculated where

jCj = In

f  \

- C .
0  mm

c - c.

and

Equation (1) can then be rewritten as

jCj = (Cq - O.

,  1 ./ = — x, + 1 X,.yi 1 tjp i

Initial estimates of the parameters can then be readily obtained by regressing t on Xi and X2. The Genstat
statements below carry out this process and store the initial estimates in iCmin, iT, ico, and ilKm :

seal iCO#iCmin,iT,iIKm
calc ICQbcS[1]
&  iCminBO

calc x1slog((iCO-iCmin)/(c-iCrain))
&  x2B(iC0-c)
model t

terms x1-fx2
fit [conBo] x1-i'x2
rkeep estise
calc iIKmBe$[2]/e$[1]
&  IT B 1 / e$[1]

5. Example

The procedure was used to analyse twelve sets of data (m(xe detail will be given in Saker and Brain (1994).
The data set presented here was obtained from a 16-day old B. campestris plant and the concentration of radio-
labelled sulphate present in the nutrioit solution (counts per minute per 0.1 ml aliquot) (denoted by c) was
recorded at a series of times (t).
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read [setnBy;ser=sy] t^c
0  15 29.5 45 60 75 90 105 120 135 150 165 195 225 255

284 315 375

11277 10221 9065 8308 7017 6445 5047 4197 3543 3019 2371 1836 1226 810 527 340
282 182

In the example below no transform was used; if a log transform had been needed c would have been replaced
by Ic in the MODEL statement, and expressions E(1.. .19) would have been used in the fitnonlinear
statement. The equation can be readily fitted with Cmin cm* IKm ((X" both) set to zero.

model c;£ittsfc
rcyc [methsnjmaxcsSO] CO,Gniin,T,IKm ; initsiCO,iCmin,iT,iIKm
fitn [calcsE[1...18];printsmon,m,s,er£]

This approach was used to fit to both log-transformed data (using the transform-both-sides technique), and
untransformed data; there was slight evidence that the log-transform gave a better residual plot. There was also
some doubt as to whether Cmin was different from z^o, so the equation was fitted both with, and without, Cmin.

(a) No transform; Cmin=0 [b) No transform; CminOO

toooo-l

0000

GOOO-i

4000

2000-1

0

CT>

0  100 200 300

Time (min)

(c) Log transform; Cmin=0

100 200 300

Time (min)

10000

8000

GoaoH

4000

2000

o  6

100 200 300

Time (min)

d) Log transform; CminOO

0  100 200 300

Time (min)

Figure 1. Observed and fitted concentrations (measured as counts per minute) fcx* untransformed - (a)
and (b) - and log transformed - (c) and (d) - counts, with constrained to zero - (a) and (c) - and
unconstrained - (b) and (d) - for the example set of data.

Figure 1 presents the results of the four combinations (with or without log transform; with and widiout Cmin).
The residual sums of squares from the analysis of log-transformed data for with-, and without-, Cmin were
0.01959 (on 14 d.f.) and 0.2536 (on 15 d.f.) respectively, giving an approximate F-statistic for comparing the
constrained and unconstrained model of (0.2536-0.01959)/(0.01959/14) = 167.24 on 1 and 14 d.f.

There is thus clear evidence that Crain is significantly different from zero. The final parameter estimates (with
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standard errors on 14 d.f. in parentheses) are:

CO (cpm per 0.1 ml aliquot) = 11621 (238); Cmin (qim per 0.1 ml aliquot) = 149 (10);
T = 0.01970 (0.00076); IKm = 0.000143 (0.000017)

For this experiment the root weight W) was 0.56 g, the volume of solution (F) was 50 ml, and the specific
activity 3729.3 counts/ min/ nmol. This gives K„ and Cq to be 0.40, 18.75 and 31.16 pMol respectively
(for example Q = 11621 / 3729.3 nmol/ 0.1 ml = 3.116*10^ / 10^ pMol). The parameter I„ can be calculated
from the estimated values of K„ and T to be 1.98 pmol/ g/ hr (0.01970 * 0.05 * 18.75 / 0.56 pmol/ g/ min).
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RUNGEN - a user-friendly Genstat interface

D Kilpatrick
Biometrics Division

Department of Agriculture for N Ireland
Newforge Lane, BELFAST BT9 5PX
N Ireland

L Easson

Agricultural Research Institute
Department of Agriculture for N Ireland
HILLSBOROUGH, Co Down, BT26 6DP
N Ireland

1. Introduction

Agricultural and food research scientists in the Department of Agriculture for N Ireland carry out a wide range
of experiments, some of which, while maybe not very sophisticated in terms of statistical design, tend to gen^te
vast amoimts of data. In this they are supported by technical staff, with minimal statistical expertise, \dio usually
accumulate these data onto PC spreadsheets either manually or from direct capture data loggers. Consultant
statisticians in Biometrics Division provide a statistical analysis service for these experiments but, in common
with other similar divisions, can quickly be overwhelmed by the demands for their services. There is thus a need
for a system, which can be easily used by support staff, to provide intermediate summaries and statistical analysis
of experimental data. One of the main requirements for ease of use is the ability to readily acc^t large amounts
of ASCII data in a typical spreadsheet rows and columns layout without the need for additional formatting. While
Genstat undoubtedly has the necessary summary and analysis facilities, its command driven language proves an
obstacle for most technical support staff. The Menu procedure developed by Pet^ Lane is a recent attempt to
address this problem. An alternative method has been developed over a numb«" of years within Biometrics
Division. This article describes a Fortran program RUNGEN which provides a user-friendly interface to writing
Genstat programs and which has special facilities to ease the input of spreadsheet data. There are two versions
of the interface program. One is specifically intended for VAXA^S usage as it makes use of its supplied screen
management routines, while the other is for general use.

2. Features

RUNGEN operates via a series of menus from which the user specifies the form of the data and the type of
summary/analysis required. On accessing RUNGEN the user is presented with the following main menu:

Main menu: Input Calculate Display Analysis Modify Exit

The user selects the required action by typing the unique cq>ital letter associated with eadi opticxi. Additionally
on the VMS va^ion, the arrow keys can be used to highlight the required action.

1. Input provides the following features:

•  inputs data either from a file or via the k^board;

•  if from file, RUNGEN reads the data file and prompts the user to specify the type of information in the
file;

•  automatic incorporation of column headings, typically used in spreadsheets, into the Genstat jx'ogram
either as extra text for variates or as names fcr factors;

•  automatic intapretation of data structures as either text, variate factor with provision for the user to
change if required.
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2. Calculate provides prompts for the calculation of additional variate and factor structures.

3. Display and Analysis provide access to a range of pre-defined techniques which RUNGEN reads from a
start-up file. The displays and analyses specified can be for either standard Genstat directives as in:

TABULATE [ CLASSIFICATIONS#?; MAItGINs#h (Yes/no);

PRINTs#h (cotmt, total, Mean,Nobs / total,minimum,maximum) ] DATAs#V

or local procedures as in:

REGRESSION [CONSTANTs#h (Estimate/omit);

METHODs#h (Linear/asymptotic/sigmoidal/multiple/sTepwise) ] Xs#v; ys#V

For both forms the following conventions apply:

•  the # symbol generates a prompt for input;

•  the letter immediately following # indicates the type of input, i.e. F for factors. V for variates, T for
text, S for structures, H for options;

*  a capital letter indicates that the input is compulsory, a lower-case letter that it is opti(xial;

*  valid options are enclosed by round brackets and are separated by eidier forward slashes if only one
option is allowed or by commas if several are allowed;

•  options with an initial upper-case letter indicate the default, e.g. Mean and Nobs for Tabulate Print
options;

*  options are toggled on/off typing the {q}propriate initial or capital letter, e.g. C for count and I foe
minimum Tabulate Print options.

When eNaoT Display or Analysis is selected, RUNGEN presents a menu showing the pre-defined techniques
from whidi the user selects the required one. RUNGEN then automatically generates (X'ompts for the
compulsory input followed by a prompt to allow the user to modify both the option settings and the
compulsory inputs. For example, fcM* the Tabulate directive selected from the Display menu:

Type of Display? Print Tabulate Graph Histogram Barchart Quit

Enter Tabulate Classification-factors:
Enter Tabulate Data-variates:

Modify Tabulate? Classification-factors Data-variates Print Margin Quit Zap

Selection of Quit completes the specification for the display/analysis while Zap deletes it.

4. Modify allows the usa* to modify and/or delete previously defined display and analysis operations. On
specifying the type of technique to be modified, the user is presented with the ctxresponding modify menu
as for Modify Tabulate in the previous paragraph.

5. Exit exits the interface program resulting in the creation of two files. The first is a file of G«istat statements
to carry out the specified input, display and analysis operations, while the second is a control file of user
input which can replayed at a later session and the analyses specified modified and/or extended.

3. Example

To illustrate the operation of RUNGEN consider a 2 x 2 + 1 factorial experiment with 2 replicates and the data
laid out in a file XYZ .DAT as shown in Figure 1. This layout is typical of spreadsheet data with titles at the top
describing the experiment and supplying names for the data columns.
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Figure 1. Example data file XYZDAT

Experiment XYZ
Stage I measurements

Diet Milk Fat

Rep Type Meal Yield (1/d) %

1 A 2 25.8 3.13

1 B 4 29.3 2.97

1 C 0 212 3.18

1 A 4 30.0 2.85

1 B 2 24.5 3.44

2 C 0 27.6 2.71

2 B 2 28.1 3.10

2 A 2 29.9 3.28

2 A 4 23.9 4.01

2 B 4 23.6 3.54

The dialogue between user and program to specify the type of informaticxi in this file is illustrated in Figure 2.

Figure 2. Example dialogue to read data file

(Program output is shown in italics, user input in bold and menu selections underlined)

Enter number of experimental units: 10
Main menu: Input Calculate Display Analyse Modify Exit
Input from: File Keyboard
Enter name of file: XYZJ)AT
File contents? Data-only Titles-plus-data
Read options: Continue Missing-value-indicator End-of-data-marker

program reads and displays each line in data file and prompts user to identify the type of information

Experiment XYZ
Type of information: General-title Sub-title Names Data lenore Quit

Stage I measurements
Type of information: General-title Sub-title Names Data Isnore Undo Quit

Diet Milk Fat

Tvpe of information: General-title Sub-title Names Data Ignore Undo Quit

Rep Type Meal Yield (Ud) %
Type of information: General-title Sub-title Names Data lenore Undo Quit

1  A 2 25.8 3.13

Type of information: General-title Sub-title Names Data Ignore
Read options: Continue Options Undo Quit

Undo Quit

program reads to end-of-data marker, displays current infcxmation and provides user with opportunity to make
modifications

37



Genstat Newsletter 31

General Title: Experiment XYZ
Sub-title: Stage I measurements

Number Name Type Levels First Last

1 Rep Factor 2 Formal 1 2

2 Diettype Factor 3 Text A B

3 Meal Factor 3 Numeric 2 4

4 Milk Yield (lid) Variate

5 Fat% Variate

Modify: Continue General-title Sub-title structure-Names Types

program returns to main menu since end of data file reached

The main feature is that RUNGEN reads the data file line by line and prompts the user to specify the type of
inf(xmation contained on each line. After the user identifies the first data line, RUNGEN reads to the end of data

marker and automatically detomines both the number and the types of structures. Any factor names are
automatically edited to be unique and obey the rules for such names. Ilie user then has the opportunity to modify
this if necessary. RUNGEN reads as many sets of data as are on the file and returns the user to the main menu
\^en the end of file is encountered.

From the main menu, the user can select options to input additional data, calculate new structures, and display
and analyse the data. As previously described the displays and analyses available are defined in a file read by
RUNGEN at start-up. Dialogue corresponding to the Tabulate display directive is shown in Figure 3.

Figure 3. Example dialogue for Tabulate directive

Main menu: Input Calculate Display Analyse Modify Exit

Type of display? Print Histogram Graph Tabulate Barchart Quit

program prcnnpts the user for the compulscay input displaying lists of factors and variates, identified by number
and name, as appropriate

Num Structure name Num Structure name

1  Rep 2 Diettype
3  Meal

Enter Tabulate Classification-factors: 2,3

Num Structure name Num Structure name

4  Milk yield Old) 5 Fat%

Enter Tabulate Data-variates: 4,5

program shows current settings and prompts the user to make modifications

Classification-factors: Diettype,Meal
Data-variates: VK5]
Print: Nobs, Mean

Margin: Yes

Modify Tabulate? Classification-factors Data-variates Print Margin Quit Zap

Edit Tabulate Print-options: count total Nobs Mean min maX var Quit
(the user selects/deselects options as required)
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An additional feature wOTth mentioning is the automatic definition of a control factor to deal with the factorial
plus added control design in this example. This is illustrated in Figure 4.

Figure 4. Example dialogue for Analysis of Variance

Main maiu: Input Calculate Display Analyse Modify Exit
Type of analysis? Analvsis-of-variance Regression Variate-regression
Type of design? Completely-randomised Randomised-block Latin-square Split-plot

Ntun Structure name Num Structure name

1  Rep 2 Diettype
3  Meal

Enter treatments fact(x^: 23

Factorial plus control: No Yes

Diettype: 1-A 2=B 3-C
Enter number of control level for Diettype: 3

Meal: 1^0 2=2 3=4

Enter number of control level for Meal: 1

Num Structure name Num Structure name
4  MiUc yield (Ifd) 5 Fat %

Enter Analysis-of-variance Y-variates: 4,5
Modify Analysis-of-variance: Y-variates SE Covariates Quit Zap

4. A user's vicMpoint

A cmtre at which RUNGEN has been used for some time is the Agricultural Research Institute of Northern
Ireland, Hillsborough. In agricultural, as in all research, the rapid statistical analysis of experimental data is of
great importance in maintaining progress and research workers found that, in spite of good computer
communications between centres, ineyitable delays were taking place ̂niiile numax)us data sets were sent to the
Biometrics seryice for analysis. Attempting to come to grips with this problem with the writing of Genstat
programs indiyidual scientists or support staff at the Institute would haye been an unwanted diyersion frcnn
their main research activities and so the deyelopment of RUNGEN as a method of preparing statistical analyses
without coming into direct contact with Genstat commands has been a yery yalu^le seryice. The ease of use
of RUNGEN has also reduced die need to perfonm intermediate calculation of means and other yalues as the full
analysis of any data set can be achieyed in minutes. The range of facilities in RUNGEN including the analysis
of split-plot designs, the use of co-yariates, factorials plus ctxitrols, correlations and regressions is adequate to
meet most standard experimental designs at the Institute and other needs can be met by straightforward
modification of the resulting Genstat program file. RUNGEN is made particularly user-friendly by the system
of prompts, hints and menu choices so that relatiyely little training is required, provided users are familiar with
the computer system and with the preparation of data. There haye been few problems with acceptance of
RUNGEN by scientific staff, experienced technicians and research assistants with sufficient computer experience
and it has become the standard procedure for the analysis of about 60% of the research data ffom the Institute.

5. Discussion

RUNGEN has been used extensiyely by the ncMi-specialist staff for whom it was intended and it has undoubtedly
proyed beneficial. The most commonly employed technique is analysis of yariance of designed experiments and
here it is emphasised that a statistician should always be consulted if tha'e is any doubt oyer the design.
Typically this is sorted out in the initial stages of data analysis, leaving the non-specialist staff to include extra
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data for analysis as they become available. RUNGEN has also been of benefit to e?q)erienced Genstat users
particularly regarding its ability to quickly input large numbers of structures with corresponding column headings.
The file of Genstat statements can th«i be edited to carry out more complex operatirxis. Alternatively the file
containing pre-defined display and analysis operations can be easily extended to include other operations as
required.

The major remaining sttunbling block for usa^ seems to be the detection and correction of coding errors when
inputting data from files. To overcome this it is intended that a later versitxi will include the detection of

•  incomplete lines of data;
•  possible typing errcx^ e.g. "o" and "i" for the numbas zao and one;
•  mis-coding of factor levels leading to tmequal replication for a balanced design.

The fact that RUNGEN, unlike the Menu procedure, does not allow interactive Genstat use is more of a
limitation to the expaienced user than the non-specialist staff for whom RUNGEN was originally intended.
Future developments may include the use of the Genstat Own directive to ovacome this limitation.
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An interface between Genstat and the Brief editor on PC

P W Goedhart

DLO Agricultural Mathematics Group
P.O. Box 100

6700 AC WAGENINGEN

The Netherlands

1. Introduction

Brief (Borland International, 1992) is a jxofessional program editor for DOS PCs providing editing of multiple
files in multiple windows, extensive seardi and translate capabilities, the ability to undo most commands,
template editing, multiple keystroke macros, a completely reconfigurable keyboard, a flexible macro language,
compilation of programs from within the editor and mouse support.

Brief's macro language gives the ability to extend and diange the editing environment. Its syntax resembles the
C language. I have written several Brief macros \\1iich allows you to:

*  use an extended EDT-style keyboard, where EDT is the VAXA^S editor EDIT/EDT;

*  execute a DOS command from within Brief and automatically return to the editor when the DOS
command is completed. This interface to DOS can be fully customized to your own needs. You can, for
example, run a Genstat program from within Brief and automatically view/edit the output file after the
Genstat run has been completed. You can also compile and link Fortran or C programs, for example, from
within Brief with diffo^t options or you can said files to a printer;

*  view the Genstat reference summary for every directive and procedure in a separate window and to
automatically insert directives, options and parameters in the Gaistat program file. You can also view the
directive/procedure index and the directive/procedure modules.

The Genstat help macros and the interface to DOS are most easily explained by an example session, whidi is
given in the next section. The macros and a full descriptioi are available from the author.

2. Example session

Suppose you are using Brief to edit a file TOMATO.GEN, which contains a Genstat program to calculate the
weight of a tomato (Hi different days. The PC screen then Icxiks as follows; the (Xirsor position is denoted by

tomato.gen
VARIATE [VALUES= 21, 25, 30, 35, 39] day
VARIATE [VALUES" 2, 5, 15, 22, 28] diameter
CALCULATE pi = CONSTANTS('pi')
CALC:ULATE weight = 4/3 * pi * (diameter/2)**3 / 1000
PRINT day, weight*
STOP

BRIEF v3.1 - Copyright (c) 1991 Borland Internat Line: 5 Col: 22 # 12 40

Suppose that you want to print the day and weight variates serially across the page with no decimal places for
the day variate. Help on the PRINT directive can be obtained by pressing key F11. Help on the PRINT directive
is retrieved because the cnirsor is located on a line with a PRINT directive. The PC screen then displays two
windows: a top window with the Genstat program file and a bottom window with reference help on PRINT.
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VARIATE [VALUES® 21 , 25
VARIATE [VALUES® 2, 5
CALCULATE pi = CONSTANTS(
CALCULATE weight =4/3
PRINT day, weighty
STOP

tomato.gen
,  30, 35, 39] day
,  15, 22, 28] diameter
'pi')
pi * (diameter/2)**3 / 1000

PRINT

PRINT

► Prints data in tabular
*■ text.
Options

CHANNEL = identifier

SERIAL = string

IPRINT = String

format in an output file, unformatted file, or

Channel nxamber of file, or identifier of a
text to store output; default current
output file
Whether structures are to be printed in
serial order, i.e. all values of the first
structure, then all of the second, and so
on (yes, no); default no, i.e. values in
parallel
What identifier (if any) to print for the
structure (identifier, extra,
associatedidentifier), for a table

Insert Directive PRINT Line: 5 Col: 22 # 12 40

The index of the PRINT directive is highlighted by means of the > character. Key PageDown moves the
highli^t down to the next option (x* parameters in the help window, while PageUp moves the highlight up. So
pressing PageDown twice moves the highlight to the SERIAL option. Key Insert then inserts the highlighted
option in die Genstat file, as is shown on the PC screen below. Note that the cursor has moved to the position
after the inserted option, so that the option setting (yes) can be typed conveniently.

VARIATE
VARIATE
CALCULATE
CALCULATE
PRINT
STOP

= tomato.gen
35, 39] day
22, 28] diameter

[VALUES" 21, 25, 30,
[VALUES" 2, 5, 15,
pi = CONSTANTS('pi')
weight - 4/3 * pi * (diameter/2)**3 / 1000
[SERIAL"^] day, weight

Options
CHANNEL

SERIAL

» identifier

string

IPRINT " string

PRINT

Channel number of file, or identifier of a
text to store output; default current
output file
Whether structures are to be printed in
serial order, i.e. all values of the first
structure, then all of the second, and so
on (yes, no); default no, i.e. values in
parallel
What identifier (if any) to print for the
structure (identifier, extra,
associatedidentifier), for a table
associatedidentifier prints the identifier
of the variate from which the table was
formed (e.g. by TABULATE), IPRINT"*

Insert Option SERIAL Line: 5 Col: 19 # 12 40

The ORIENTATION Option is inserted in the same way, i.e. PageDown is pressed until the ORIENTATION option
is highlighted and the Insert key is thai used to insert the ORIENTATION option. The setting across is
subsequently typed. In cxder to insert the DECIMALS parameter, PageDown can be pressed until the DECIMALS
parameter is highlighted. Alternatively, ctrl-P can be pressed to move the highlight to the first parameter.
The key sequoice PageDown, PageDown, Insert thai inserts the DECIMALS parameter and the PC screoi looks
as follows:
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tomato.gen
VARIATE [VALUES- 21, 25, 30, 35, 39] day
VARIATE [VALUES- 2, 5, 15, 22, 28] diameter
CALCULATE pi - CONSTANTS('pi')
CALCULATE weight - 4/3 * pi * (diameter/2)**3 / 1000
PRINT [SERIAL-yes ; ORIENTATION-across] day, weight ; DECIMALS*
STOP

PRINT

omitted, a default is determined (for
niunbers, this is usually 12; for text, the
width is one more character than the

longest line)
*■ DECIMALS = scalars Number of decimal places for numbers; if

omitted, a default is determined which
►  prints the mean absolute value to 4
►  significant figures

CHARACTERS - scalars Number of characters to print in strings
SKIP - scalars or variates Number of spaces to leave before each value

of a structure (* means newline before
structure)

FREPRESENTATION = strings How to represent factor values (labels,
levels, ordinals); default is to use labels
if available, otherwise levels

Insert Parameter DECIMALS Line: 5 Col: 68 # 12 41

The DECIMALS parameter is then set to 0,*. When you want to run this Genstat program and edit the output
file afterwards, you normally have to exit the editor, run the DOS command

GENSTAT TOMATO.GEM,TOMATO.LIS

and edit the resulting output file tomato.Lis after Genstat has stopped. The interface to DOS allows you to
combine these actions in key F12. Assuming the interface has been set up correctly, pressing F12 runs the
Genstat program and edits the output file, giving the following PC screen:

tomato.lis
■Genstat 5 Release 3.1 (IBM-PC 80386/DOS) 10 Jiine 1994
Copyright 1993, Lawes Agricultural Trust (Rothamsted Experimental Station)

1  VARIATE [VALUES- 21, 25, 30, 35, 39] day
2  VARIATE [VALUES- 2, 5, 15, 22, 28] diameter
3  CALCULATE pi - CONSTANTS('pi')
4  CALCULATE weight - 4/3 * pi * (diameter/2)**3 / 1000
5  PRINT [SERIAL-yes ; ORIENTATION-across] day, weight ; DECIMALS-0,*

day 21 25 30 35 39

weight 0.004 0.065 1.767 5.575 11.494

6  STOP

******** End of job. Maximum of 2350 data units used at line 5 (6533944 left)

BRIEF v3.1 - Copyright (c) 1991 Borland Internat Line: 1 Col: 1 # 12 41

The contents of the Genstat program, i.e. the file tomato.GEN, can be viewed by using Brief's facilities to
switch between files (Alt-n would be suffici^t for this sessi(xi). Extonal datafiles can also be edited
simultaneously and modified if necessary. Moreover, Brief has the ability to edit files in multiple windows, so
the Genstat program file can be edited in one window and the Genstat output file in another window. Running
Genstat ffCHn inside Brief, by means of key F12, automatically updates the output file window with the new
Genstat output file.
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There is also help available on the directive/procedure modules and on the directive/procedure index. For
example, the key sequence Alt-F11, 1, Enter displays the AOV directive module with the first line highlighted:

= z.gen =

Modules
AOV dixecttves
The following directives analyse balanced experiments:

BLOCKSTRUCTURE

TREATMENTSTRUCTURE, COVARIATE
ANOVA

ADISPLAY, AKEEP

Defines the design
Specifies effects
Carries out the analysis
Displays or saves results

and unbalanced experiments can be analysed using:

REML

VCOMPONENTS

VDISPLAY, VKEEP

Fits a variance-components model
Specifies a variance-components model
Displays or saves results

COMMUNICATION directives

The following directives control input and output of data:

File handling
Switching between files
Reading data

ti, PgUp, PgDn, End, Home

OPEN, CLOSE, ENQUIRE
INPUT, OUTPUT, RETURN
READ, DREAD, SPREADSHEET

Enter to select Esc to exit =

Search for index of directive: Line: 31 Col: 1 # 12:42

The bottom of this screen indicates that you can search for the index of directives (and procedures). Typing an
switches to the index help screen in which the ANOVA directive is highlighted:

z.gen

Index
AKEEP (d)
Copies information frc»n an ANOVA analysis into Genstat data structures.

AKEY (p)
generates values for treatment factors using the design key method

ALIAS (p)
finds out information about aliased model terms in analysis of variance

AMOVA (d)
Analyses y«variates by analysis of variance according tc the model defined
by earlier BLOCKSTROCmE, COVARiATE, and TREATMEtWlSTRUerURE statements ♦

ANTORDER (p)
assesses order of ante-dependence for repeated measures data

ANTTEST (p)
calculates overall tests based on a specified order of ante-dependence

AONEWAY (p)
provides one-way einalysis of variance for inexperienced users

APLOT (p)
plots residuals from an ANOVA analysis

ASSIGN (d)
Sets elements of pointers and dummies.

ASWEEP (p)
=  ti, PoUd, PctDn, End, Home Enter to select Esc to exit =

Search for index of directive: AN Line: 34 Col: 1 # 12 42

The letter (d) indicates that ANOVA is a directive, not a procedure. Pressing Enter would now exit the index
help and display reference help on the anova directive in a separate window, in the same way as reference help
on the PRINT directive was displayed earlier in this section. The directive/procedure index is also directly
available by means of Shif t-Fl 1. Cursor keys can be used to scroll in the index and module help.

Reference

Borland International (1992) Brief for DOS and 0SI2, Version 3.1 1800 Green Hills Road, P O Box 660001,
Scotts Valley, CA 95067-0001, USA.
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A Genstat procedure to calculate a kappa coefficient of agreement for
nominally scaled data

A J. Rook

AFRC Institute of Grassland and Environmental Research
North Wyke, Okehampton
Devon EX20 2SB

UK

Consider an experiment in which eadi of k judges assigns each of N objects or subjects (e.g. patients) to (xie
of m categories (e.g. response to drug). The results of die experiment can be formed into an x m table in
whidi the elements rejxesent the numbo- of judges assigning object / to category j. The judges may show
complete agreemrat, partial agreement or no agreem^t (otfier than due to diance).

The degree of agreement betwem judges can be measured using the statistic

^ ̂  P04) - Pirn
1 'Pirn

where PiE) is the expected proportion of times that the judges agree by chance and PiA) is the actual proportion
of times they agree. K is thus the ratio of the proportion of times the judges agree to the maximum proportion
of times they could agree, both corrected for chance agreement. /T = 1 when there is perfect agreement and 0
if assignment is at random.

The e;q>ected prop(x1ion of times the judges agree is calculated as

P(£) = E
/-»

and the actual proportion of times they agree as

PiA) =

N

M *

I  J

N m

1

"FT

The sampling distribution of K is asymptotically normal with mean 0 and variance

.nrtr\ « 2 PiE) ' i2k'Z)[PiJE)Y + 2ik-2)Jlp/
Nkik-l) [1-P(£)P

Therefore, for lai^ge N, the statistic

z =
K

yJvariK)

can be used to test the hypothesis Hj,: /r=0 against Hi: /r>0. For further details of the method see Siegel and
Castellan (1988).

A Procedure (kappa) has been written to carry out this analysis in Genstat. A single parameter NASSIGNED is
set to the A' X m table described above. An example of the output is shown below. For A^ < 20 a warning that
the hypothesis testing may not valid is printed.
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*** Measures of agreement for nominally scaled data ***

Proportion of times judges agree

Actual Expected Kappa coefficient of agreement Variance
0.580 0.288 0.410 0.00271

*** Test of significance of Kappa ***

Z  P

7.887 0.000

Reference

Siegel S and Castellan N J (1988) Nonpammetric Statistics for the Behavioral Sciences. 2nd Edn. McGraw-Hill,
Singapore.

Appendix: Genstat Procedure

PROCEDDKE 'KAPPA'
•I

A. J. Rook,
AFRC Institute of Grassland and Environmental Research,
North Hyke, Okehampton
Devon EX20 2SB

Version 1.2 4/12/92

Procedure to calculate a kappa coefficient of agreement for nominally scaled
data. Input is a N x m table with N objects to be classified and m categories.
Each entry n(ij) in the table is the nu^er of judges assigning the ith object
to the jth category.

It is assumed that all judges assign all items. Therefore all row totals must
be equal to the numbers of judges. Missing values in the table are not allowed.

Reference: Siegel, S. and Castellan, N. J. (1988) Nonparametric Statistics for the
Behavioral Sciences. 2nd Edn. McGraw-Hill, Singapore.
ft

PARAMETER NAHEs \
'NASSIGNED'; "(I: table) table of N objects (rows) x m categories (coliunns)" \

"with each entry being the number of judges assigning the ith "\
"object to the jth category" \

SET=yes; DECLARED=yes; TYPE='table'; PRESENTssyes
II

Obtain the number of rows and columns in the table. Check that the table
contains no missing values. If it does print error message and abort procedure
19

GETATTRIBDTE [ATTRIBUTE=TOnv,classification] NASSIGNED; SAVEsp
&  [ATTRIBDTE=nlevels] p['classification'][1,2]; save=row,col

EXIT [CONTROL=procedure; EXPLANATIONS \
'*** ERROR - Input table to procedure KAPPA contains missing values ***'] \
p['nmv'].GT.O

91

Add margins to table and save in new table internal to procedure
99

MARGIN NASSIGNED; NEHTABLEsnassign; METHODst
••

Check that all row totals are equal
19

SCALAR rmarg[1...#row['nlevels']],cols,pe,sumnass2,pa
CALC cols=-#col['nlevels')
EQUATE [OLDFORMATsi((#cols,1)#row['nlevels'))] nassign; rmarg
FOR i=2...#row['nlevels']

CALC j=i-1
EXIT [CONTROLsprocedure; EXPLANATIONs\
'*** ERROR - Row totals of input table for procedure KAPPA are not equal ***')\
rmargCi].NE.rmargtj]

ENDFOR
99

Calculate expected proportion of times that the k judges agree by chance
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TABLE [CIiASS=p[ 'classification' ] [2] ] cmarg
CALC cmargsTSUMS(NASSI6NED)
PERCENT [HUNDREDs^es; METHODstotals] OLDscmarg; NEH=:%pj
MARGIN OLDTABLEs%pj; METHODsdeletion
CALC pe=SOM((%pj/100)**2)
11

Calculate actual proportion of time that k judges agree (ks=rmarg[1 ])

& stiinnass2sSDM(NASSIGNED*NASSIGNED)
& pa=((1/(#row['nlevels']*rmarg[1]*(rmarg[1]-1)))*sumnass2)-(1/(rmarg[1]-1))

Calculate kappa coefficient of agreement
ft

& Ks(pa-pe)/(1-pe)
II

Calculate approximate variance of kappa coefficient
II

& varK5!(2/(#row['nlevels')*rmarg[1]*(rmargt1]-1))) * \
((pe-({(2*rmarg[1])-3)*(pe**2))+(2*(rmarg[1]-2)*(sum((*pj/100)**3)))) / \
((1-pe)**2))

II

Calculate z statistic
11

& z=K/sqrt(varK)
11

Obtain P value for z statistic
If

& P»1-NORMAL(z)
II

Print results
II

PRINT '*** Meas\xres of agreement for nominally scaled data ***'
&  [SQUASH^yes] 'Proportion of times judges agree'
&  ' Actual Expected'f\
'  Kappa coefficient of agreement Variance'

&  [IPRINT»*] pa,pe,K,varK; FIELDsll,16,26,24; DECIs3(3),5
&  [SQUASHsoio] '*** Test of significance of Kappa ***'
&  [SQUASH^yes] ' Z P'
&  z,P; FIELDs11,18; DECIs2(3)

II

If ntunber of objects judged is small print warning that test is not valid

IF #row['nlevels'] .LE.20
PRINT '*** WARNING ***'

&  [SQUASHsyes] 'LESS THAN 20 OBJECTS RATED - TEST NOT VALID'
ENDIF

ENDPROCEDURE

RETURN
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Analysis of unbalanced multi-stratum trials using ANOVA and REML

Rosie Poultney
Rothamsted Ejq)erimental Station
Harpenden
Herts AL52JQ

1. Introduction

Trials carried out in less developed countries tend to have more missing values than are usual in agricultural
research in UK. There are many reasons for these missing values, some of ̂ ch will be very familiar, others
may not be. In addition, there are situations where modifications to trials have resulted in imbalanced designs.

The main causes of lack of balance in woik I have received can be categorised into three groups; initial design
problems, difficulties with treatments and difficulties with experimental material. Research^ are often in
situations where it is difficult to consult a statistician and this can reflect in inappropriate initial designs or
modifications of designs. Even with a well-designed trial, lack of balance can occur when the treatments are
incorrectly applied or when the researcher cannot obtain sufficient quantities of the treatments. Finally there are
problems associated with the experimental materials. This can range from insufficirat seed to high mortality in
crops, from crop pilfering to fires and floods. I recently heard from a colleague who, (xi returning to Malaysia,
found that a herd of elephants had rampaged through one of her plots.

Lack of balance usually {X'esents no major (xoblems of analysis, except where the trial contains more than (xie
error stratum. Before REML was implemented into Genstat, I would analyse these trials using a mixture of
ANOVA and Regression techniques which required a great deal of explanation to clients without providing a
satisfactory analysis.

2. What did I expect from REML ?

I wanted all of the facilities that I was already using in ANOVA and Regression, namely: 1) easy specification
of the model; 2) clear output including means and standard orors, tests fcx* the significance of treatments and
estimates of variation in the different strata; and 3) model validation via residuals and fitted values. Since REML
is equivalent to ANOVA for balanced datasets, I was also concerned to know where REML was analogous to
ANOVA and where direct comparisons between the techniques could not be made for unbalanced data. Table
1 summarises similarities and differences between ANOVA and REML with regard to these criteria, assuming
a designed experiment where the treatments are fixed effects and the blocks are random effects. Theoretically,
REML could ix*ovide all of the things whidi I want from an analysis, but how simple was it in practice ?

Table 1: Comparison of Genstat REML and ANOVA

REML ANOVA

1: model specification vcomponents [fixed=a*b]
random=rep/block

block r^/block
treatment a*b

2: output
- means

- s.e.d.'s

- tests for treatment terms

- stratum variances

predicted means
s.e.d.'s (unaffected by wder of fit)
Wald Statistics tested against
(fitted sequentially)
estimated variance components
plus approximate stratum variances

means

s.e.d.'s

variance ratios

residual mean squares
(caivert to variance components)

3: model validation residuals and fitted values residuals and fitted values
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3. An Example

Cloves are a spice which in Europe are used most often in cooking. They are the dried unop^ed flower bud of
the clove tree iSyzygium aromaticum). Cloves are indigenous to IndcHiesia and were introduced to Zanzibar in
the 19th Century. A major constraint on the stability and expansion of the clove industry in Zanzibar has been
the hostile environment (two dry seasons) \\iiich makes establishment of new trees difficult. Two of the many
methods which have been used to aid establishment are cover crops and fertilisers.

4 (hintd $ 7 tlumed 8

10 11 12 13 Mfhionad 15 16 17 Mnnad

19 20 21 thinned 22 23 24 25 28 27 thinned

bonono cover crop

bonono f 2 yrs fertliser

banano 4- 3 yrs fertlissr

locol 9ross cover

gross 4- 2 yis ferl&er

gross 4- 3 yis ferlHiser

Figure 1. Field plan detailing treatment structure

The e?q)erimmt described here began as a trial investigating the importance of cover crops. The trial was laid
out as a randomised block design with three replicates, each of eight plots. Eadi plot comprised 36 clove trees
with the inn^ 16 being mcxiitored as part of the trial. Within each replicate, four plots had bananas grown as
a shade, crop whilst the remaining four had the natural vegetation. In addition, an extra banana plot was
mcxiitored in each replicate. The trial is described in detail as experiment 4 in Martin and Poultney (1992).

In 1988, the trial was modified to include fertiliser on two banana and two grass plots in each rep. Unfortunately
there was insufficient fertiliser available during the first year and so it was only applied to half of each plot. In
subsequent years fertiliser was applied to the whole plot. At this stage, one of the 'extra* plots was included in
the trial. Also in 1988, banana plants on two of the banana plots in each replicate were thinned to examine the
effect of increased light on the seedlings.

The experimental layout, as it stood in 1990, is shown in Figure 1. Early mortality in the trial was about 22%
and is shown in Figure 2. The tree symbols represent live trees (although they bear no resemblance to clove
trees, which are cylindrical in shape and can grow up to about 10 metres in height) and the crosses represent
dead trees. Mortality was independent of treatment.

The variate of interest was the natural logarithm of canopy surface area of individual trees in 1990. Canopy
surface area is related to yield and is a good indicator of future yields in trees of this age.
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Figure 2: Field plan showing tree mortality

4. Results

4.1 Specification of Analyses

The Genstat code for the specification of each analysis is given below. Use of a general fert factor to define
fertiliser levels nil, 2 years or 3 years in ANOVA led to warnings of partial aliasing, since the two contrasts
nil versus treated and 2 years vs 3 years are estimated in different strata. This problem is avoided by
partitioning the factor into two nested two-level factors fcontrol and f ert23 as below, or via a pseudo-factor.
Thus in this example, specification of the model appeared easier using REML than ANOVA, since the ANOVA
specification required more understanding of the structure of die design. Also, in order to keep the design
balanced, one randomly selected plot which had treatment combination 'intercropped with bananas, no fertiliser,
not thinned' had to be dropped f^om each replicate.

REML analysis specification:
vcoinponents [ fixed^ (crop/thinned) *fert; absorbsmainplot] \

randomsrep/mainplot/subplot
reml [print^odel,component meansrwaldtests,stratumvariance] canopy90;\

residualssresid; fittedsfitted

ANOVA analysis specification:
fact [levelB2] fcontrol»£ert23
calc fcontrol « newlevels(fert; t (1/2,2))
&  fert23 =: newlevels (fert; 1(1,1,2))

rest canopy90; plot.ni.I(1,18,26)
block rep/raainplot/subplot
treat (crop/thinned) * (fcontrol/fert23)
anova [facts4] canopy90; resid; fitted

nil vs fertiliser applied "
2 years vs 3 years fertiliser

4.2 Output

In order to make the results comparable, the REML analysis used the same restricted set of data as the ANOVA
although REML could have been used to analyse the full data set. The summary ANOVA table is given below
(Table 2) to illustrate the structure of the design. As stated above, there are a very large number of missing
values in the data. However, these missing values are all in the lowest stratum where no treatment effects are
estimated, so missing values will be estimated by sub-plot means and the treatment estimates will be equivalent
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to those from an unweighted ANOVA of sub-plot means. Note that as trees are missing at random, analysis of
weighted sub-plot means would lead to an tmbalanced dataset so a weighted ANOVA could not be us^.

Table 2: Analysis of variance table for the example

Source df Mean Square Expected Mean Square

rep stratum

Residual 2 28.33 o^ + 8a^^ + 16a„p^ + 1280,^

rep.mainplot stratum
crc^ 1 85.01

fcontrol 1 20.33

crop.thiimed 1 0.32

crop.fcontrol 1 8.81

crop.thiimed.fc(xitrol 1 5.91

Residual 16 4.16 o^ + + 16a„p2

rep.mainplot.subplot stratum
fc(xitrol.fert23 1 0.072

crop.fcontrol.fat23 1 0.029

crop.thinned.fc(xitrol.fert23 1 0218

Residual 21 1.895 + 8a,p^

rep.mainplot.subplot.units stratiun 244(92) 0.377 o^

Total 291 (92)

The means from the REML and ANOVA analyses were very similar (Figure 3). Since REML does not weight
predicted means by the number of units in a sub-plot, we would e;q>ect the REML means to be similar to the
unweighted ANOVA means. If the f ert factcx* was not partitioned, then partial aliasing would mean ANOVA
was tmable to estimate the treatment means corectly.
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Figure 3: Comparison of treatment means from ANOVA and
REML
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Comparison of the standard errors of differences (SEDs) between pairs of means showed that the SEDs produced
by ANOVA were higher than those produced by REML. This difference seemed stuprising given the similarity
in estimates of treatment means. To investigate this further, variance components were estimated from the
expected values of residual mean squares in ANOVA (see Table 2) for comparison with REML estimates: both
sets of estimates are shown in Table 3.

Table 3: variance components

Stratum REML ANOVA

rep 0.169 0.189

rep.mainplot 0.137 0.141

rep.mainplot.subplot 0.091 0.190

units 0.385 0.377

Although the estimates of the residual (units) variance are similar from the two techniques, the ANOVA
estimates are consistently higher than the REML estimates, particularly in the subplots stratum. The
difference is due to the estimation of missing values in the units stratum by ANOVA: once these values have
been estimated, they are treated as genuine data values when forming subplot means. This means that the
variation due to these estimated values is added into the sul^lot variation alcmg with variation from true data
values, leading to over-estimation of the sul^lots stratum variance. Similarly, the estimated values are used
to construct the treatment sum of squares hence this will also be an overestimate, as stated in the Genstat
Manual.

F-tests from the summaiy ANOVA table indicated that model toms crop and fcontrol (the difference between
treated and nil fertilise' plots) were significant (p<0.001, p=0.042). Thore was no evidence to suggest that any
other significant treatment effects were presoit. lb the REML analysis, the probability levels for terms crop and
fert were p<0.001 and p=0.082 respectively. However, when fert was split up into two separate factors, the
probability level for tmns fcontrol and fert23 w^ p=0.025 and p=0.999 respectively. Other terms were
again not significant. In general, Wald statistics tend to be less conservative than F-tests from ANOVA.

4.3 Model validation

The residuals and fitted values from the two techniques are shown in Figures 4 and 5. By default, both ANOVA
and REML give residuals from the residual stratum only.
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The two sets of residuals are very similar ^ait from the outlying points on the left of the gr^h. These points
are from a sub-plot where only two out of the eight trees survived. For this subplot, the REML estimate seems
more plausible than the ANOVA estimate. The procedures aplot and VPLOT can also be used to examine the
residuals for signs of departures from a normal distribution.

5. Conclusions

Despite the large number of missing values, overall the two approadies gave similar results because the data
were still reasonably balanced: the missing values were all in the lowest stratum whareas treatments were applied
in higher strata. The major difference was that estimates of variance componmts and SEDs for means were
larger from the ANOVA than from the REML analysis due to estimation of missing values in lower strata
inflating the ANOVA sums of squares. The Genstat 5 Ref^nce Manual warns about this - along with the
suggestion that you should not use ANOVA when there are many missing values. At first, the REML analysis
appeared simpler to specify, since the factor defining fertiliser levels had to be partitioned in order to make the
dataset balanced for ANOVA. However, the benefits of using this slightly more complex structure became clear
as ANOVA could produce separate tests for the individual components of f ert, whereas REML gave an overall
but less informative test.

On balance, the REML analysis using the partitioned fert factor is preferred since it gives an exact analysis.
In particular, where information about plot variability is required, die REML estimates ignore units with missing
values to give the correct estimate. This type of sli^tly unbalanced multi-stratum example \\iiere the data can
be analysed by REML or (with trickery) by ANOVA is useful to demonstrate that the techniques give similar
answers, but that the exact REML estimates are more appropriate.
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All of the figures were produced using Genstat ̂ a[^ics.
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