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Editorial

The editors would like to take the opportunity to apologise to Genstat users for the delay in producing Newsletter
33; the arrival of Genstat for Windows and the Second Edition of Genstat for Windows placed additional
demands on the editors' time, resulting in a much later release date than desired. We are pleased to report
however that the new Windows™ interface has been very well received and for those of you who have not yet
been introduced to the new system, an on-line demonstration can be viewed on the internet at

http://www.nag.co.uk/stats/TT/g532demo/win2ed.html.

Such a delay is unlikely to be repeated and in fact the editors are pleased to aimounce that the production of
Genstat Newsletter 34 is already well advanced. The future of the Newsletter beyond issue 34 is currently under
discussion. It is likely that the Newsletter of present will continue in a similar vein as a once yearly technical
journal, offering the user shared experiences, interesting applications and helpful user code that have become
the hallmark of the current Genstat Newsletter. As is the norm, supporting material will continue to be placed
on the NAG website. In order to cater for the full range of Genstat users, the technical journal will be
supplemented by a more lively and more frequently occurring statistical bulletin from NAG. The purpose of this
bulletin will be to help present Genstat news, facilities, user stories and applications in a less technical, and more
readable fashion.

As for this issue, the articles include one of the papers and conference report from the Genstat 96 conference
in Adelaide, an interesting application of Genstat within industry, and various articles centring on the modelling
of different kinds of data. As usual, the code for any procedure listed in any of the articles, may be found on
the NAG bulletin board.
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Genstat 96, December 4—6, Adelaide

Bronwyn March
Biometrics Unit

CSIRO Mathematical and Information Sciences
PMB No. 2

GLEN OSMOND, SA 5064, Australia

Genstat 96, the Australasian meeting of Genstat users, was held at the Waite Agricultural Institute, Urrbrae,
Australia (a campus of The University of Adelaide). The Genstat 96 conference organising committee included
Chris Brien (The University of South Australia), Ray Correll (CSIRO), Trevor Hancock (The University of
Adelaide), Rita Middleberg (The University of Adelaide), Angela Reid (CSIRO) and Jeff Wood (CSIRO).

Eighty Genstat users, including statisticians/biometricians and biological scientists, came mostly from the
Australasian region (Australia and New Zealand), but the current developers of the statistics package travelled
from lACR-Rothamsted, Harpenden, UK and other participants from Belgium, Brasil and the UK. The theme
of the conference was the use of Genstat for spatial statistics and longitudinal data. Invited speakers included
Roger Payne and Peter Lane from lACR-Rothamsted (UK), Granville tunnicIiffe-Wilson from Lancaster
University (UK), Jeff Wood from CSIRO (Canberra), David Baird from AgResearch (New Zealand) and Brian
CuIIis from NSW Department of Agriculture (Wagga Wagga). Their talks generally focused on the use of
Genstat for specific statistical applications, for example, the design of experiments, spatial analysis, generalized
linear models, time series, generalized additive models, spreadsheets in Genstat and repeated measures. Most
contributed papers gave some form of reference to Genstat, but mainly provided interesting insights into various
biometrical projects that the speaker had been involved with.

There were three particular highlights of the conference:
• Whilst opening the conference, Graham Wilkinson gave insights into how he and John Nelder came to develop

the first module of Genstat.

• The conference dinner at Warrawong Sanctuary in the Adelaide Hills was truly an event to remember. Af^er
a BBQ dinner, the founder of the wildlife sanctuary, the controversial Dr John Wamsley, took the group on
a dusk walk to hear and see Australia's native wildlife. Besides learning about Australian native flora and
fauna, the group were also given a very serious but amusing spiel on Dr Wamsley's attitude to the
conservation of wildlife in Australia. This included not only his very negative attitude towards cats, but also
his very highly developed theory about platypus sightings and their apparent significant correlation to the
"vibes" visitors to the sanctuary emit. We didn't see any platypus!?!

• The demonstration of defining a random event by Jeff Wood was also a great "Wake up call to himself and
the audience. Being the Chair of the session, Jeff somehow managed to select a chair in fiill view of the
audience which was poised to collapse during the session. Thankfully Jeff reports he is OK.

The other main highlights included the three separate workshops held prior to the conference. On Friday 29
November, Peter Lane started the proceedings with a Genstat for Windows Introductory Course. Up until earlier
this year, Genstat had only been available as a command line language, but now Genstat is largely available in
a "menu driven environment". New users to Genstat will certainly appreciate this new version of Genstat
because it makes the learning curve less steep! Granville Tunnicliffe-Wilson delivered a workshop about
Modelling Dependence between Time Series on Monday 2 December. Granville provided not only the
information needed to understand time series and forecasting methods, but also illustrated the basic directives
and usage of procedures within Genstat. Wednesday 3 December dawned with Roger Payne giving insight into
the analysis of repeated measurements in Genstat. The methodology and accompanying Genstat facilities were
introduced from a wide range of applications. The practical sessions for all three of the workshops were
extremely valuable, enabling the participants to explore real examples or investigate their own data. Course
manuals and conference abstracts are available for a small cost from Ray Corxell.

Overall, Genstat 96 was a successful meeting of Australasian Genstat users providing a great environment to gain
further statistical knowledge, exchange ideas, meet and maintain friendships and provide future Genstat
conference organisers with a tough social program to top.
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Using Genstat to fit continuous actuarial distributions

DA Preece

Institute of Mathematics and Statistics
Comwallis Building
The University
CANTERBURY, Kent CT2 7NF. UK

G J S Ross

Statistics Department
lA CR Rothamsted

HARPENDEN, Herts AL5 2JQ. UK

1. Introduction

In a previous paper in the Genstat Newsletter, Preece and Ross (1995) described the use of Genstat 5 Release
3 for fitting the negative binomial distribution to data. That paper discussed in detail the sort of output that
Genstat produces when the directive DISTRIBUTION is used for fitting discrete non-negative univariate
distributions. We now turn our attention to the use of DISTRIBUTION for fitting continuous non-negative
univariate distributions, especially long-tailed distributions that feature in the actuarial statistics component of
the examination syllabuses of the Institute of Actuaries. Once again we aim to show how easily DISTRIBUTION
can be used, even by someone who knows little of Genstat.

The distributions that we consider in this paper are the exponential, the Weibull (of which the exponential is a
special case), the gamma (again having the exponential as a special case), and the log—Normal, each of these
being defined in such a way as to have the entire positive jc-axis as its support (i.e., defined without a location
parameter).

The only Genstat directives used in this paper are units, read, print, calculate, scalar, variate,
FACTOR, TABLE and DISTRIBUTION.

Our illustrative example is that used by Currie (1993, Section 1.3, Table 1), the data being the values of 96
individual insurance claims, as in the following output from the first part of a Genstat run for dealing with them:

1 JOB •ACTUARIAL'

3
A

OUTPUT [WIDTH=:76] 1
%

5
-fi

"Genstat analyses of data of Currie (1993
D

7

8 "Read and print the valuesi of the 96 indi

9 UNITS [96]
10 READ [PRINT=suzciiaazy, data] Claim

11 24 26 73 84 102 115

12 132 159 207 240 241 254

13 268 272 282 300 302 329
14 346 359 367 375 378 384

15

16 452 475 495 503 531 543

17 563 594 609 671 687 691

18 716 757 821 829 885 893

19 968 1053 1081 1083 1150 1205

20

21 1262 1270 1351 1385 1498 1546

22 1565 1635 1671 1706 1820 1829

23 1855 1873 1914 2030 2066 2240

24 2413 2421 2521 2586 2727 2797

25

26 2850 2989 3110 3166 3383 3443
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27 3512 3515 3531 4068 4527 5006
28 5065 5481 6046 7003 7245 7477
29 8738 9197 16370 17605 25318 58524 :

Identifier Minimum Mean Maximum Values Missing Skew
Claim 24 2990 58524 96 0

30

31 "Calculate and print the mean and variance of the 96 claim-values."
32 CALCULATE MnClaim = MEAN (Claim)
33 CALCULATE VClaim = VAR(Claim)
34 PRINT MnClaim,VClaim; 12,12; 2,0

MnClaim VClaim
2989.83 47006240

The above output shows that input of the data was immediately followed by calculation of the sample mean and
variance; these give

mean = 2990

standard deviation = 6856

As Currie (1993, p. 11) pointed out, the fact that the standard deviation (S.D.) is so much larger than the mean
"suggests that there are more very large claims than the exponential distribution would predict". Accordingly,
our approach in this paper is to fit the exponential distribution first, and then to see how much better a fit is
provided by each of the Weibull, the gamma, and the log—Normal. Each distribution is fitted first to the raw,
i.e., ungrouped, data. Currie (1993, p. 12) also grouped his data for the purpose of making chi-squared tests; we
use his grouping to show additionally how Genstat can be used for fitting distributions to grouped data. For an
example such as Currie's, which has just 96 units, anybody who has the raw data should, of course, use them
ungrouped for the fitting. However, if an example has very many more units (e.g., the 200,000 units in a certain
example from the literature), an attempt to use the raw data would come up against serious problems of
data-entry and statistical computing (e.g., a long run-time, and rounding and truncation errors); grouping will
then be indicated.

2. Notation

The notations used by Genstat differ, sometimes confusingly, from those used by the Institute of Actuaries
(1980). We therefore set them out now, with x > 0 throughout (with "Institute of Actuaries" herinafter referred
to as loA).

The exponential distribution

This has a single parameter, which is a scale parameter. In Genstat, this parameter is denoted as 6, so the
probability density function (PDF) is taken as

b exp(-6x) for 6 > 0,

and the mean and the standard deviation of the distribution are both equal to Mb. loA writes the parameter b
as lower-case Greek lambda. Some authors, including Currie (1993, p. 9), use 1 /6 in place of b, so that the mean
and the standard deviation of the distribution are then both equal to b .

The Weibull distribution

This has two parameters. The Genstat form for the PDF is

cb" exp(-(frx)'^ ) for 6 > 0, c > 0

where 6 is a scale parameter and c is a shape parameter. loA and Currie (1993, p. 20) have a different use for
c, with
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c (Genstat) = y (loA)

and (Genstat) = c (loA)

Some authors use the Genstat parameterisation except that, again, they use 1 lb in place of b.

If we take the Genstat c to be 1, we obtain the exponential distribution.

For the Weibull distribution to have its standard deviation greater than its mean, the Genstat c must be less than
1, so that the mode of the distribution must be an infinite mode at x = 0.

Some values of the Weibull's coefficients of skewness and kurtosis are as follows; here and elsewhere in this
paper, the formula for calculating kurtosis from the fourth central moment includes the term -3, and thus gives
zero, not +3, as the theoretical value for the Normal distribution.

c (Genstat) 0.50 0.75 0.90 1.00 2.00 3.00 4.00
skewness 6.62 3.12 2.34 2.00 0.63 0.17 -0.09
kurtosis 84.72 15.99 8.53 6.00 0.25 -0.27 -0.25

The gamma distribution

Genstat's form for the PDF is

6* x*"'exp(-6x)/r(A:), b>0, k>0

where b is sl scale parameter and ̂  is a shape parameter. The loA form, also used by Currie (1993, p. 34), is
the same save that b is replaced by lower-case Greek lambda, and k is replaced by lower-case Greek alpha.
Again, some authors use 1 / 6 in place of b .

If we take k= 1, we are again back to the exponential.

For the gamma distribution the mean, in Genstat notation, is kib and the standard deviation is {4k) lb ;
accordingly, for the standard deviation to be greater than the mean we must have k<\, and so must have a
distribution whose mode is an infinite mode at x = 0 .

The skewness of the gamma distribution is2l4k, and the kurtosis is 6/^, so neither coefficient can be negative.
Some values of these coefficients are as follows:

k  0.10 0.20 0.25 0.50 1.00 2.00 4.00

skewness 6.32 4.47 4.00 2.83 2.00 1.41 1.00

kurtosis 60.00 30.00 24.00 12.00 6.00 3.00 1.50

The log—Normal distribution

No notational problems arise so long as we recall that the statement "X has a log—Normal distribution" means
that the natural logarithm of X has a Normal (i.e., Gaussian) distribution, and that the two parameters of a log-
Normal distribution are those of the corresponding Normal distribution.

If we take the mean and standard deviation of the corresponding Normal distribution to be m and s respectively,
and we write

b = exp(OT), k = exp(j^),

then 6 is a scale parameter of the log—Normal distribution and ̂  is a shape parameter. In this notation, the
log—Normal distribution has
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mean = b^k, S.D. = b^ky/(k-\);

accordingly, for the standard deviation to be greater than the mean, we need A: > 2 , i.e. the variance of the
corresponding Normal distribution has to be greater than ln(2).

The skewness of the log—Normal distribution is
(^+2) /(M)

and the kurtosis is

k' +2^ +3A^-6,

so neither coefficient can be negative. Some values of these coefficients are as follows where, for ease of
comparison with preceding tables of values, we now tabulate decreasing values of k'.

k  2.50 2.25 2.00 1.75 1.50 1.25 1.10
skewness 5.51 4.75 4.00 3.25 2.47 1.62 0.98
kurtosis 83.06 57.60 38.00 23.29 12.56 5.04 1.76

3. Using DISTRIBUTION to fit continuous non-negative univariate distributions

If ungrouped data are to be used, these should be supplied to the directive distribution as a variate; the
identifier of the variate is specified as the first parameter of DISTRIBUTION, as in the following, where Claim
is the variate:

DISTRIBUTION [DISTRIBUTION=exponential] Claim

If only grouped data are available, they should similarly be supplied as a one-way table of counts (frequencies),
e.g.,

DISTRIBUTION [DISTRIBUTIONSexponential] ObsFreqs

For this latter alternative, the levels of the factor that classifies the table must be, in ascending order, the
uppermost values for the classes created by the grouping, except that the last level, which is not used in
calculations, can be any arbitrary large value. To illustrate this, we use Currie's grouping (Currie, 1993, p. 12)
of the insurance claims in his example. His classes for the grouping were

0 - 260 , 260 - 545 , 545 - 860 , ... , 5357 - 7430 , 7430 - «>,

so the required factor-levels can be specified as

260 , 545 , 860 , ... , 7430 , 100000 .

(As we shall see, the class-limits here were chosen so that the expected class-frequencies will be equal when
an exponential distribution is fitted.) If the table is named ObsFreqs (Observed Frequencies), we are then led
to the following Genstat input and output for the grouping; the reason for also forming a variate named Limits,
whose values are the successive factor-levels except the last, is given below.

35 , .
36 "Enter class-boundaries for grouping the claims."
37 SCALAR Limit [1. . .13]; \
38 VALUE=0,260,545,860,1212,1612,2073,2618,3285,4145,5357,7430,100000
39 . . .
40 "Put class-boundaries, except the first and last, into a variate"
41 VARIATE [VALUES=Limit[2...12]] Limits
42
43 "Find observed frequency f for each of the 12 classes of claims."
44 CALCULATE f[1...12] = \ , . , . . ̂ r.. , .
45 SUM(Claim<Limit[2.. .13] .AND. Claim>=Limit [1.. .12])
46

47 "Prepeire and print table of observed frequencies for the 12 classes."
48 FACTOR [LEVELS=!(Limit[2...13])] UpLimits; DECIMALS=0
49 TABLE (CLASSIFICATION=UpLimits; VALUES=f[1...12]] ObsFreqs; DECIMALS=0
50 PRINT [ACROSS=UpLimits] ObsFreqs; FIELDWIDTH=9

8
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ObsFreqs
UpLimits

UpLimits

260 545 860 1212

12 18 10 8

3285 4145 5357 7430

6 6 3 4

1612

7

100000
7

2073

10

2618

5

With Claim as the name of the variate containing the ungrouped data, and ObsFreqs as the name of the table
of grouped data, we could now fit the exponential distribution to the ungrouped and grouped data by,
respectively, the commands

DISTRIBUTION [DISTRIBUTION=exponentiall Claim

and

DISTRIBUTION [DISTRIBUTION=exponential] ObsFreqs

However, the output for ungrouped data, like that for grouped data, includes a table of observed and fitted values
(the latter being expected frequencies), and a grouping into classes is required for this. By default, this table is
formed for ungrouped data by dividing the data into m groups of approximately equal observed frequency, where
m = \n with n as the number of data-values. Alternatively, the LIMITS option of the directive DISTRIBUTION
may be used to supply the uppermost values for each class except the last. This facility being available, we
decided to carry Currie's grouping over to the output table for the ungrouped data. This is why we prepared the
variate named Limits in the above Genstat output, and then used

DISTRIBUTION [DISTRIBUTION=exponential; LIMITS=Limits] Claim

to fit the exponential distribution to the ungrouped data. Notwithstanding the equal expected class-frequencies
for the exponential distribution fitted to Currie's data, this grouping produces observed class-frequencies that
range from 3 to 18 and that are therefore perhaps more variable than might be thought desirable, especially as
we shall be fitting distributions other than the exponential. However, we stick to Currie's grouping, to facilitate
comparison with his own results, and we leave the reader to explore other groupings, as an exercise.

4. How Genstat fits continuous non-negative univariate distributions

When the directive DISTRIBUTION is used, the specified distribution is fitted to the data by maximum-likelihood
methodology. If the data are entered ungrouped, the full log-likelihood is used in the optimization algorithm.
But when the fit is to grouped data, the computed log-likelihood is only an approximation to the full
log-likelihood and the solution obtained will depend partly on where the class-limits fall. For grouped data, the
fitting process uses (a) the log-likelihood based on the observed frequency in each class, and (b) the probability
that an observation falls within the class-limits, this probability being computed from the difference between the
values of the cumulative distribution function (CDF) at the upper and lower limits. The CDF has minimum value
0 at the lower end of the range (i.e., usually at zero for positive variables) and maximum value 1 at the upper
end (usually infinity). The minimised log-likelihood is used in calculating the residual deviance, and is therefore
the minimum deviance achievable for any set of values of the parameters; this minimum value will always be
less than the deviance given when the hill data and log-likelihood are used.

For some distributions, stable "working parameters" have to be used in the optimization algorithm (Ross, 1990,
pp. 165-168), and the "defining parameters" are then evaluated by a simple transformation. An iterative
Gauss-Newton method of optimization is used. Options and parameters of the DISTRIBUTION directive are
available for dealing with convergence problems that may arise for particular data-sets, but these facilities are
not dealt with in this paper.

The output from distribution first gives sample statistics, including mean and variance, coefficients of
skewness and kurtosis, and cpproximate sample quartiles. When the fitting is to ungrouped data, the moments
and the coefficients of skewness and kurtosis are calculated from the raw data-values. When grouped data are
to be fitted, the sample statistics are all estimated from the frequencies and mid-points for each class, with no
corrections for grouping. As this estimation is independent of the distribution that is subsequently to be fitted,
it incorporates no requirement that the variate values should be non-negative or otherwise restricted in magnitude,
so it proceeds as if the first and last of the classes are for lower and upper tails of a distribution; the values used
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as notional mid-points for these two classes are extrapolated from the mid-points of the adjoining classes. For
example, the notional mid-point for the right-hand tail is taken to be as far above the previous class-limit as the
previous mid-point was below it. This procedure, which is not always appropriate, tends to underestimate the
moments if there are large values in the upper tail.

The formula for calculating the printed kurtosis coefficient includes the term -3 (as above), and is thus equivalent
to the kurtosis formula that gives zero, not +3 , as the theoretical value for the Normal distribution. The printed
values of sample skewness and kurtosis are of little use in determining which long-tailed distributions should
be fitted. The population values of skewness and kurtosis given in the above tables are strongly influenced by
the extreme values in the upper tail, which are very infrequent but very large, and which may not be included
in finite samples. The sample distributions of skewness and kurtosis are biased downwards, and for sample-sizes
usually encountered in practical work the theoretical values are seldom achieved. This is illustrated in the
following table pertaining to skewness and kurtosis in random samples. The table was obtained by simulations
generated from rectangular random numbers, and is for Weibull distributions where the Genstat parameter c
takes the values c = 2, 1 and 0.5 respectively (where c = 1 produces the exponential distribution), with
progressively longer tails; sample entries in the table are based on 1000 samples of sizes 10000, 1000 and 100
respectively.

c = 2.0 c=1.0 c=0.5

Theoretical skewness 0.62 2.00 6.62

Median skewness (and percentage of samples with skewness less than theoretical
skewness);

n = 10000 0.62 (52%) 1.97 (60%) 6.00 (74%)
n = 1000 0.61 (53%) 1.94 (61%) 5.30 (80%)
n = 100 0.58 (57%) 1.70 (73%) 3.64 (96%)

Theoretical kurtosis 0.25 6.00 84.72

Median kurtosis (and percentage of samples with kurtosis less than theoretical
kurtosis):

n = 10000 0.23 (60%) 5.70 (65%) 65.00 (75%)
n = 1000 0.20 (58%) 5.15 (66%) 40.20 (87%)
n = 100 -0.02 (66%) 3.20 (81%) 15.40 (99%)

Whether the data are supplied to Genstat ungrouped or grouped, the approximate sample quartiles are calculated
using grouped data; when the fitting is to ungrouped data, the grouping used for calculating the quartiles is that
provided, whether actually or by default, by the limits option of the distribution directive. As with the
printed coefficients of skewness and kurtosis, the printed approximate quartiles are intended for diagnostic
purposes only; if exact quartiles are needed for a set of ungrouped data, they should be obtained, not via the
DISTRIBUTION directive, but using Genstat calculating statements such as median(x) or the directive sort.

After the sample statistics, the output from distribution gives a summary of the fit, followed by parameter
estimates printed with their standard errors and correlations. The deviance and the corresponding number of
degrees of freedom are printed as part of the model summary and are based on the table of fitted values; they
thus depend on the choice of class-limits. The computed residuals, labelled on the output as "weighted
residuals", are "deviance residuals", whose sum of squares is the printed deviance.

5. Fitting the exponential distribution to Curriers data

For fitting the exponential distribution to ungrouped sample data, the maximum likelihood estimator of lib is
the sample mean (Currie, 1993, p. 10). The parameter b is therefore estimated by the reciprocal of the sample

10
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mean. Accordingly, if we use

DISTRIBUTION [DISTRIBUTION=exponential; LIMITS=Limits] Claim

to fit the exponential distribution to the ungrouped data of Cunie s example, and
DISTRIBUTION [DISTRIBUTION=exponential] ObsFreqs

to fit it to the grouped data, we obtain output as follows:

51
52 "Fit exponential distribution to the UNGROUPED claxm-values,
-53 but with

-54 observed and expected frequencies calculated for classes as above,
55 DISTRIBUTION [DISTRIBUTION=exponential; LIMITS=Limits] Claim

55

***** Fit continuous distribution *****

*** San5)le Statistics ***

Sanple Size 96
Mean 2989.83 Variance 47006240.00
Skewness 6.13 Kurtosis 43.89

Quartiles: 25% 50% 75%
450.0 1212.0 2840.3

*** Summary of analysis ***

Observations: Claim
Parameter estimates from individual data values.

Distribution: Exponential
f{x) = b.exp{-bx), x>0, b>0

Deviance: 21.07 on 10 d.f.

*** Estimates of parameters ***

estimate s.e.

b  0.0003 0.0000

*** Fitted quartiles ***

25% 50% 75%

860.109 2072.364 4144.728

*** Fitted values (expected frequencies) and residuals ***

X Number Number Weighted
Observed Esqpected Residual

< 260.0 12 8.00 1.32

< 545.0 18 8.00 3.03
< 860.0 10 8.00 0.68

< 1212.0 8 8.00 0.00
< 1612.0 7 8.02 -0.37

< 2073.0 10 8.00 0.68

< 2618.0 5 8.00 -1.14

< 3285.0 6 8.00 -0.74

< 4145.0 6 8.00 -0.74

< 5357.0 3 8.00 -2.03

< 7430.0 4 8.00 -1.57

> 7430.0 7 8.00 -0.36

56

57 "Fit exponential distribution to the GROUPED c 1 aim-values.
58 DISTRIBUTION [DISTRIBUTION=exponential] ObsFreqs

58

***** Pit continuous distribution **••*

*** Sample Statistics ***

Sanple Size 96
Mean 2115.58 Variance 5583347.50

11
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Skewness 1.57 Kurtosis 1.50

Quartiles; 25% 50% 75%
450.0 1212.0 2840.3

*** Summary of analysis ***

Observations: ObsFreqs
Parameter estimates from tabulated data values.
Distribution: Exponential

f(x) = b.exp(-bx), x>0, b>0
Deviance: 13.24 on 10 d.f.

*** Estimates of parameters ***

estimate s.e.

b  0.0005 0.0000

*** Fitted quartiles ***

25% 50% 75%
628.904 1515.294 3030.587

*** Fitted values (expected frequencies) and residuals ***

X Number Number Weighted
Observed Expected Residual

< 260.0 12 10.76 0.37

< 545.0 18 10.42 2.13

< 860.0 10 10.04 -0.01

< 1212.0 8 9.63 -0.54

< 1612.0 7 9.22 -0.76

< 2073.0 10 8.73 0.42

< 2618.0 5 8.21 -1.21

< 3285.0 6 7.62 -0.61

< 4145.0 6 6.95 -0.37

< 5357.0 3 6.13 -1.41

< 7430.0 4 5.07 -0.49

> 7430.0 7 3.21 1.83

A quick glance at the output for either the ungrouped or grouped data shows that the estimate of b and its
standard error (s.e.) are printed with insufficient significant figures, being curtailed at 4 decimal places. This
suggests that we would have done well to scale the data before the fitting, say by dividing all claims by 1000.
(As the original data were in "pounds sterling", the scaling would merely change the units to "thousands of
pounds sterling".) However, the output otherwise provides all that we might wish for, so we here overlook the
undesirable curtailment and continue working with the unsealed data.

The analysis of the ungrouped data is essentially the same as the analysis given by Currie (1993, pp. 10-12);
when the ungrouped data are fitted by Genstat, the expected frequency for each of Currie's classes is 8.0,
confirming the basis of his grouping.

Use of the ungrouped data clearly indicates that an exponential distribution provides a bad fit, as Currie (1993,
p. 12) showed. (He used chi-squared, not deviance, to test for goodness-of-fit, and his chi-squared value 23.0,
on 10 d.f., naturally differs little from the Genstat deviance 21.07.) As Currie pointed out, the claims up to about
500 pounds are under-fitted by the fitting to the ungrouped data, whereas claims from about 2000 to 7000 pounds
are over-fitted.

The difference between the deviances for the Genstat fits to the ungrouped and grouped data is particularly
striking. The deviance for the grouped data is 13.24, on 10 d.f., and is the minimum achievable when the data
are assumed to have an exponential distribution. For the ungrouped data, the deviance is as large as 21.07
because parameter b is estimated by the reciprocal of the sample mean, which depends heavily on two extremely
large values in the tail, which are not evident in the grouped data. Omission of the largest value reduces the
mean from 2990 to 2405, which would alter the fit considerably. The difference between the two values of the
deviance is an indication of the information lost by grouping when the model does not fit the data.
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6. Fitting the Weibull distribution to Carrie's data

When Genstat fits the Weibull distribution, with PDF

c b' x"' exp( -(bxY ) , b>0 , c> 0 ,

the stable working parameters are c and the distribution's median, namely

(In 2)'" / b,

this latter being estimated initially by the sample median. Genstat expects c to take a value in the range 0.1 to
5.0, and takes c = 1 (the value that gives an exponential distribution) as an initial estimate.

When Genstat fits the Weibull distribution to, respectively, Currie's ungrouped and grouped data, we obtain
output as follows:

59

60 "Fit Weibull distribution to the UNGROUPED claim-values,
-61 but with

-62 observed and expected frequencies calculated for classes as above."
63 DISTRIBUTION [DISTRIBUTION=Weibull; LIMITS=Limits] Claim

63

***** Fit continuous distribution *****

*** Sanple Statistics ***

Sample Size 96
Mean 2989.83 Variance 47006240.00
Skewness 6.13 Kurtosis 43.89

Quartiles: 25% 50% 75%
450.0 1212.0 2840.3

*** Summazy of analysis ***

Observations: Claim

Parameter estimates from individual data values.

Distribution: Weibull

f(x) = c.(b**c).(x**(c-1)).e:q>(-(bx)**c), x>0, b,c>0
Deviance: 11.52 on 9 d.f.

*** Estimates of parameters ***

estimate s.e. Correlations
c  0.7132 0.0510 1.0000

b  0.0004 O.OOOl -0.3336 1.0000

*** Fitted cpiartiles ***

25% 50% 75%

391.210 1342.501 3548.203

*** Fitted values (esqpected frequencies) and residuals ***

X Number Number Weighted
Observed Expected Residual

< 260.0 12 18.57 -1.63

< 545.0 18 10.75 2.01

< 860.0 10 8.72 0.42

< 1212.0 8 7.57 0.16

< 1612.0 7 6.82 0.07

< 2073.0 10 6.26 1.37

< 2618.0 5 5.87 -0.37

< 3285.0 6 5.60 0.17

< 4145.0 6 5.45 0.23

< 5357.0 3 5.45 -1.15

< 7430.0 4 5.78 -0.78

> 7430.0 7 9.17 -0.75

13
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64

65 "Fit Weibull distribution to the GROUPED claim-values."
66 DISTRIBUTION [DISTRIBUTION=Weibull] ObsFreqs

66

***** Fit continuous distribution *****

*** Sample Statistics ***

Sample Size 96
Mesui 2115.58 Varicince 5583347.50
Skewness 1.57 Kurtosis 1.50

Quartiles; 25% 50% 75%
450.0 1212.0 2840.3

*** Summary of analysis ***

Observations: ObsFreqs
areimeter estimates from tcibulated data values.
Distribution: Weibull

f(x) = c.(b**c).(x**(c-l)).exp(-{bx)**c), x>0, b,c>0
Deviance: 8.14 on 9 d.f.

*** Estimates of parameters ***

estimate s.e. Correlations
c  0.8235 0.0743 1.0000
b  0.0005 0.0001 -0.2504 1-0000

*** Fitted quartiles ***

25% 50% 75%
446.072 1297.721 3011.186

*** Fitted values (expected frequencies) and residuals ***

X Number Number Weighted
Observed Expected Residual

< 260.0 12 16.17 -1.09

< 545.0 18 11.45 1.78

< 860.0 10 9.80 0.06

< 1212.0 8 8.72 -0.25

< 1612.0 7 7.94 -0.34

< 2073.0 10 7.28 0.95

< 2618.0 5 6.73 -0.70

< 3285.0 6 6.26 -0.10

< 4145.0 6 5.84 0.07

< 5357.0 3 5.47 -1.15

< 7430.0 4 5.15 -0.53

> 7430.0 7 5.20 0.75

Once again, we have a scaling problem, and once again the fit to the ungrouped data is not as good as that to
the grouped data. However, for the ungrouped data, the deviance of 11.52 (9 d.f.) for the Weibull is much better
than that of 21.07 (10 d.f.) for the exponential. The difference between the deviances for the fits to the
ungrouped data and the grouped data is less for the Weibull than for the exponential, as the precise values in
the tail are now less important. The parameter estimates for ungrouped and grouped data are closer when the
model fits well, there then being less information lost from grouping.

Currie (1993, pp. 22-24) fitted the Weibull distribution to his data by the method of percentiles, with the 25%
and 75% sample quartiles taken as the quartiles of the fitted distribution. He obtained these quartiles, not by an
approximate method, as in Genstat, but as, respectively, the "24.25th value" = 401.00 and the "72.75th value"
= 2836.75. His expected values were as in the following table:

14
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Observed Expected

Genstat Genstat Currie

(ungrouped data) (grouped data) (by quartiles)

0 - 260 12 18.6 16.2 17.6

260 - 545 18 10.8 11.4 11.9

545 - 860 10 8.7 9.8 10.0

860 - 1212 8 7.6 8.7 8.8

1212 - 1612 7 6.8 7.9 7.9

1612 - 2073 10 6.3 7.3 7.1

2073 - 2618 5 5.9 6.7 6.5

2618 - 3285 6 5.6 6.3 6.0

3285 - 4145 6 5.4 5.8 5.5

4145 - 5357 3 5.4 5.5 5.1

5357 - 7430 4 5.8 5.2 4.8

7430 - 7 9.2 5.2 4.8

7. Fitting the gamma distribution to Carrie's data

When Genstat fits the gamma distribution, with PDF

b' X*-' exp(-6x) /r(k), b>0, k>0,

the procedure differs little from that for the Weibull distribution. The stable parameters are l/k and the
distribution's median. As the mean and the variance of the distribution satisfy

k = (mean / variance,

an initial estimate of k is provided by

( sample mean f / ( sample variance );

an initial estimate of b can then be obtained by equating the sample median to the approximation (^+1)/^ for
the distribution's median. (For = 1 , the distribution's median is (In 2 ) / 6 .)

When Genstat fits the gamma distribution to, respectively, Currie's ungrouped and grouped data, we obtain output
as follows:

67

68 "Fit gamma distribution to the UNGROUPED claim-values,
-69 but with

-70 observed and es^ected frequencies calculated for classes as above."
71 DISTRIBUTION tDISTRIBUTION=gamma; LIMITS=Limits] Claim

71,

***** Fit continuous distribution

*** Sample Statistics ***

Sample Size 96
Mean 2989.83

Skewness 6.13

Variance 47006240.00

Kurtosis 43.89

25%

450.0

Quartiles:

*** Summary of analysis ***

50%

1212.0

75%

2840.3

Observations: Claim

Parameter estimates from individual data values.
Distribution: Gamma

15
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f(x) = (b**k) . (x** (k-1)) .'exp(-bx)/Gamma (k), x>0
Deviance: 15.40 on 9 d.f.

*** Estimates of parameters

estimate

0.6257

0.0002

*** Fitted quartiles

25%

464.529

s.e.

0.0762

0.0000

50%

1619.854

Correlations

1.0000

0.6862 1.0000

75%

4071.211

Fitted values (expected frequencies) and residuals ***

X Number Number Weighted
Observed Expected Residual

< 260.0 12 16.96 -1.27

< 545.0 18 9.39 2.49

< 860.0 10 7.86 0.73

< 1212-0 8 7.07 0.34

< 1612.0 7 6.60 0.15

< 2073.0 10 6.29 1.36

< 2618.0 5 6.12 -0.47

< 3285.0 6 6.06 -0.02

< 4145.0 6 6.11 -0.05

< 5357.0 3 6.34 -1.48

< 7430.0 4 6.94 -1.21

> 7430.0 7 10.26 -1.08

72

73 "Fit gamma distribution to the GROUPED c1aim-values."
74 DISTRIBUTION [DISTRIBUTION=garamal ObsFreqs

74,

***** Fit continuous distribution *****

*** Sait5)le Statistics ***

San^le Size
Mean

Skevmess

Quartiles:

96

2115.58

1.57

25%

450.0

Variance 5583347.50
Kurtosis 1.50

50%

1212.0

75%

2840.3

*** Summary of analysis ***

Observations: ObsFreqs
Parameter estimates from tabulated data values.
Distribution: Gamma

f(x) = (b**k).(x**(k-l)).exp(-bx)/Gamma(k), x>0
Deviance: 9.65 on 9 d.f.

*** Estimates of parameters ***

estimate

0.7679

0.0003

*** Fitted quartiles

25%

469.942

0.1086

0.0001

50%

1364.846

Correlations
1.0000

0.7772 1.0000

75%

3071.173

*** Fitted values (expected frequencies) and residuals ***

X Number Number Weighted
Observed Expected Residual

< 260.0 12 15.71 -0.98

< 545.0 18 10.89 1.97

< 860.0 10 9.50 0.16

< 1212.0 8 8.64 -0.22
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< 1612.0 7 8.02 -0.37

< 2073.0 10 7.49 0.87

< 2618.0 5 7.04 -0.81

< 3285.0 6 6.63 -0.25

< 4145.0 6 6.24 -0.10

< 5357.0 3 5.84 -1.30

< 7430.0 4 5.38 -0.62

> 7430.0 7 4.62 1.03

The fits of the gamma distribution to the ungrouped and grouped data differ little from the corresponding fits
for the Weibull distribution, but produce slightly larger deviances. The expected frequencies obtained from the
analysis of the ungrouped data are, of course, in very close agreement with those obtained by Currie (1993, pp.
34-37) when he used the method of maximum likelihood to fit the gamma distribution to the data.

8. Fitting the log—Normal distribution to Currie's data

Only if the sample skewness is positive will Genstat fit the log-Normal distribution. If the sample skewness is
negative, an automatic switch is made to the Normal distribution.

When Genstat fits the log—Normal distribution to, respectively, Currie's ungrouped and grouped data, we obtain
output as follows:

75

76 "Fit logNonaal distribution to the UNGROUPED claim-values,
-77 but with

-78 observed and expected frequencies calculated for classes as above."
79 DISTRIBUTION [DISTRIBUTION=logNormal; LIMITS=Limits] Claim

79

***** Fit continuous distribution *****

*** Sample Statistics ***

Sanple Size 96
Mean 2989.83 Variance 47006240.00

Skewness 6.13 Kurtosis 43.89

Quartiles: 25% 50% 75%
450.0 1212.0 2840.3

*** Summary of analysis ***

Observations: Claim

Parameter estimates from individual data values.
Distribution: Lognormal

Log(X) distributed as Normal (m,s**2), X>0
Deviance: 4.57 on 9 d.f.

*** Estimates of parameters ***

estimate s.e. Correlations
m  7.0215 0.1428 1.0000
s  1.3988 0.1010 0.0000 1.0000

*** Fitted quartiles ***

25% 50% 75%

436.162 1120.442 2878.262

*** Fitted values (e:q>ected frequencies) and residuals ***

X Number Number Weighted
Observed Expected Residual

< 260.0 12 14.22 -0.61
< 545.0 18 14.88 0.78

< 860.0 10 11.69 -0.51
< 1212.0 8 9.35 -0.45
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< 1612.0 7 7.70 -0.26

< 2073.0 10 6.47 1.28

< 2618.0 5 5.57 -0.25

< 3285.0 6 4.90 0.48

< 4145.0 6 4.43 0.71

< 5357.0 3 4.15 -0.59

< 7430.0 4 4.18 -0.09

> 7430.0 7 8.46 -0.52

80

81 "Fit logNormal distribution to the GROUPED claim-values.
82 DISTRIBUTION [DISTRIBUTION=logNormal] ObsFreqs

82

***** Fit continuous distribution *****

*** Sample Statistics ***

Sanple Size 96
Mean 2115.58 Variance 5583347.50
Skewness 1.57 Kurtosis 1.50

Quartiles: 25% 50% 75%
450.0 1212.0 2840.3

*** Summary of analysis ***

Obs ervat i ons: ObsFreqs
Parameter estimates from tabulated data values.
Distribution; Lognormal

Log(X) distributed as Normal(m,s**2), X>0
Deviance: 3.94 on 9 d.f.

*** Estimates of parameters ***

estimate s.e. Correlations
m  7.0359 0.1362 1.0000
s  1.3051 0.1121 -0.0404 1,0000

*** Fitted quartiles ***

25% 50% 75%
471.384 1136.773 2741.403

*** Fitted values (expected frequencies) and residuals ***

X Number Niunber Weighted
Observed Expected Residual

< 260.0 12 12.40 -0.11

< 545.0 18 15.12 0.72

< 860.0 10 12.36 -0.69

< 1212.0 8 10.01 -0.66

< 1612.0 7 8.25 -0.45

< 2073.0 10 6.90 1.11

< 2618.0 5 5.88 -0.37

< 3285.0 6 5.11 0.38

< 4145.0 6 4.54 0.65

< 5357.0 3 4.16 -0.60

< 7430.0 4 4.06 -0.03

> 7430.0 7 7.21 -0.08

The fits of the log-Normal distribution to the ungrouped and grouped data are both excellent. Once again, the
expected frequencies obtained from the analysis of the ungrouped data are, of course, in very close agreement
with those obtained by Currie (1993, pp. 39-40) when he fitted the log-Normal distribution by using
log-transformed data.

Of the four distributions fitted in this paper, only the log-Normal came out with a non-zero mode. (This is
because the fitted Weibull and gamma distributions have, respectively, c < 1 and ̂  < 1.) Accordingly, only the
log-Normal could pick up the increase in observed frequency from the first to second class of Currie's data. For
these data, this is the reason for the supremacy of the fit of the log-Normal distribution.

18



Genstat Newsletter 33

Acknowledgements

The authors are grateful for the Actuarial Education Service's willingness for the data of Currie (1993, Section
1.3, Table 1) to be used in this paper. lACR receives grant-aided support from the Biotechnology and Biological
Sciences Research Council of the United Kingdom.

References

Currie I D (1993) Loss Distributions London: Actuarial Education Service.
Institute of Actuaries and Faculty of Actuaries (1980) Formulae and Tables for Actuarial Examinations London.
Preece D A and Ross G J S (1995) Fitting the negative binomial distribution Genstat Newsletter 32 20-30.
Ross G J S (1990) Nonlinear estimation New York: Springer-Verlag.

19



Genstat Newsletter 33

Cheese making with Genstat: a case study in design of industrial
experiments

Eric D Schoen

TNO Dept. of A pplied Statistics
PO Box 155

2600 AD, DELFT

The Netherlands

schoen@tpd. tno.nl

1. Introduction

Industrial food production often involves a stagewise reduction of the scale on which the amount of material is
processed as a whole. In cheese making for example, the contents of a milk storage tank is used to fill several
curds production tanks, each curds production giving rise to the production of many individual cheeses.

A typical cheese making experiment has factors associated with whole milk storage tanks, with curds production
tanks and with the production and maintenance of individual cheeses respectively. So these experiments generally
have a nested error structure. By their error structures and the division of their factors over various error strata,
they are split—split—plot in nature.

As an additional feature of industrial cheese making experiments, the number of factors to be investigated may
be quite large. Therefore, fractional factorials are often used in this context. The combination of these factorials
with split—plot experimentation poses some interesting problems, which have not received much attention in the
literature. More particularly, to design a fractional experiment with three error-strata, it may be necessary to
design two experiments with two enor strata each. The designs are to be linked subsequently, but how to do this
is not straightforward.

The use of Genstat in split—plot experimentation is well established. Applications of Genstat in fractional
factorial designs appear to be less common, let alone applications in fractional split—plot designs. This paper
is a case study on the latter type of experimental design. It is on a cheese making experiment carried out in 1992
in a European cheese making factory. The paper is organized as follows. In Section 2, the requirements for the
particular design are formulated. Section 3 presents the construction of the design and Section 4 gives the
analysis of a coded compositional characteristic of the cheeses. The analysis is based on the halfhormal plotting
of Yates effects as proposed by Daniel (1959). This technique has been implemented in a procedure submitted
to the Genstat procedure library. The code of the procedure is presently available on request. General information
about the procedure is given in the Appendix.

2. Requirements

The most important raw material of cheese is milk. A cheese making factory needs a constant stream of milk
from the farms. Upon entering the factory, the milk is stored in huge milk storage tanks. Our experiment has
two factors which work on whole milk supplies.

At an appropriate time, the contents of a milk storage tank is transported to several smaller tanks in which the
curds is made. Curds is a white spongy mass somewhere between solid and fluid from which cheeses are made
by pressing amounts of curd together in cheese presses. Five factors of the experiment work on whole curds
productions. There were three factors working on individual cheeses. This makes a total of ten factors.. For
economical reasons, nine of these were to be investigated at two levels only. The tenth one, a cheese factor, was
considered of such an importance that four levels were required. We will temporarily ignore this complication
by acting as if we have to deal with a total of 11 two—level factors.
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From the above description it is clear that the error structure of the experiment is a nested one: we have milk
supplies, curds productions nested within milk supplies, and cheeses nested within curds productions. We will
refer to the corresponding error—strata as milk, curds, and cheese stratum, respectively.

Due to its error structure the experiment strongly resembles a split-split—plot experiment with two whole plot
factors, five split-plot factors and four split-split-plot factors. The only difference is in the absence of
replication. This is quite common in industrial experiments. In the analysis section we will see that it is still
possible to make estimates of the various errors.

One of the requirements common to all experiments in industrial production is to keep the size of the
investigation limited. There are lower limits on the number of milk supplies, curds productions and cheeses,
however. Firstly, it is no good to try to investigate two milk factors with only four milk supplies while at the
same time trying to get an estimate of error between milk supplies. This implies a lower limit of eight milk
supplies.

A second lower limit concerns the number of cheeses to be studied within one curds production. In view of the
four—level cheese factor, four cheeses are needed to keep the main effect of this factor wholly within the cheese
stratum.

The lower limit on the number of curds productions within one milk supply is two. This implies a total of 64
cheeses. The investigators of the factory indicated that a total of 128 cheeses was still acceptable. We will
therefore consider designs with four curds productions as well as with two productions. Table 1 gives the total
degrees of freedom and the expected mean square for errors for the various error strata for both potential
numbers of curds productions. Designs with more cheeses were not considered in view of an excessive number
of degrees of freedom in the lower stratum; designs with more than eight production tanks had too large a
financial risk to be run.

For a 128—run experiment we have to use a one—sixteenth fraction of a two—level design with 11 factors, or
a 2"*^ design. In this design each effect is aliased with fifteen other effects. Box et al. (1978) give a design with
a resolution of V. The worst aliasing to occur is of first—order interactions with second—order ones. The design,
however, is not compatible with the blocking structure of the cheese making experiment, because the resolution
V design is a full factorial design in each subset of 7 factors, while we have to study the 7 milk and curds
factors in a total of 32 curds productions. A similar constraint holds for the design with 64 runs.

In view of the above requirements and incompatibilities, we have to design the experiment in four stages: (1)
design a 2^ experiment with 8 milk supplies of 4 or 2 curds productions, (2) design an experiment to study 4
cheese—factors in 16 or 32 blocks of 4 cheeses, (3) link the designs, and (4) choose 2 two—level cheese factors
to construct a four—level factor.

Table 1: Total degrees of freedom and expected error mean squares for each stratum in two blocking options
of the cheese—making experiment'

error—stratum

2 curds productions 4 curds productions

df EMS (error) df EMS (error)

milk 7 & +4<t/ +2(T„' 7 + 4o^

curds 8 24 + 40^

cheese 48 & 96 <f

' (7^, (t/, (7„^ : variance components between cheeses, between curds productions, and between milk supplies,
respectively.
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3. Design

Milk—and—curds design
The problem to investigate 2 milk factor and 5 curds factors in 8 milk supplies of 2 or 4 curds productions is
fairly easy to solve. For the 4—curds case, we write down a full 2^ design in factors A, B, C, D, and E, say, with
levels -1 or +1. We calculate factor F as F=ABCD, and factor G as G=ABDE. The blocking generators A, B,
and ACE yield a division of effects over the two error strata as given in Table 2.

We note that the main effects of the five factors to be varied between curds productions are all estimated in the
curds stratum. It can be shown that this is not possible for the design with 2 curds productions per milk supply.
We therefore no longer consider this option.

Cheese design
Four cheese factors are to be investigated in 32 blocks of 4 cheeses each. This amounts to four replicates of a
design confounded in 4 blocks of 4 cheeses. Denoting the cheese factors with H, J K, and L, say, it is standard
to confound the effects HJK, JKL, and HL with the blocks. It is required to link these effects with effects of the
milk—and—curds design. Therefore, it is not sensible to use partial confounding.

Table 2: Effects between milk supplies and between curds productions in a design for 7 factors, and 8 milk
supplies of 4 curds productions each

milk curds

A, B C, D. E, F, G

AB AC ... AG

CE + FG BC ... BG

ACE + AFG CD, DE ... DG

CDG + DEF CG + EF

BCE + BFG CF + EG

CDE + DFG

ACG + AEF

BCG + BEF

Linkage of designs
It is required to construct a 2""^ fractional factorial. Such a design needs four generators and two of them were
already obtained in the milk-and-curds design. The remaining two generators must be obtained by linking two
blocking generators of the cheese design with effects in the milk-and-curds design. These effects should be
preferably effects from the curds stratum, in view of their expected precision. From Table 2, we see that there
are three second—order interactions not being aliased with lower-order effects. We have also to consider the
products of these interactions, because these too must be aliased with cheese effects. ACG and BCG have AB
as their product. The other two subsets of second—order interactions yield main effects for products. So {ACG,
BCG, AB} is the best set of milk-and-curds effects to be linked with {HJK, JKL, HL}.

It still remains to decide which of the effects in the first of the above sets is to be linked with which of the

effects in the second set. It is best here to make the resulting words as long as possible. More in particular, it
is not optimal to link AB with HL, because this gives a confounding of potentially important interactions. In the
final design, we linked ACG with HL and AB with JKL This choice yields the required two additional generators
for the design, namely, ACGHL and AB JKL. Together with their product, BCGHJK, they define the introduction
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of the cheese effects in the milk-and-curds design. The products of each of these words with the words in the
defining relation of the milk-and-curds design can be shown to have a length of at least five. This implies that
the cheese effects do not greatly disturb the estimation of milk or curds effects.

Four—level cheese factor

A four-level factor can easily be introduced in a two-level experiment by the method of grouping (Wu, 1989).
This amounts to selecting two two-level factors for use as pseudofactors (Monod and Bailey, 1992). Their
product is a part of the main effect. Therefore, Wu and Zhang (1993) advise to use a single letter for this product
when studying the aliasing pattern of the effects. Denoting the pseudofactors and their product as p„ pj, and pj,
respectively the choice of H and J as pseudo-factors gives the division of cheese-effects over the error strata
as given in Table 3.

Table 3: Division of the 15 effects between the cheese—factors over the error strata

milk cheese

AB + p^KL p„ p2, p3, K, L

PjL, P3L

curds P|K, p^K

p,L + ACG + AEF KL

PjK + BCG + BEF p,KL, pjKL

4. Analysis

A classical tool for analysing the effects in unreplicated two—level experiments is the halihormal plotting of
Yates effects (Daniel, 1959). Yates effects of one and the same stratum have a common variance. The inactive
effects are i.i.d. random variables with expectation zero and common variance. When plotted halfhormally they
are on a straight line through the origin. The active effects are off—line.

The author has written Genstat procedure ayplot to produce the required plots, one for each error-stratum.
General information on the procedure is given in the Appendix. When applied to a coded compositional
characteristic of the cheeses, the procedure gives the halfhormal plots shown in Figure 1.

In Figure 1 we see three active effects, one for each stratum. These are the main effects A {milk stratum), and
C {curds stratum), and the four-level main effect component J {cheese stratum). The halfhormal plots when these
effects are omitted can be produced using an option of the above procedure. These plots (not shown) do not
show further effects being active.

An analysis of variance was carried out using the active effects plus the two additional main effect components
of the four—level factor (see Table 4). The ANOVA clearly shows decreasing error mean squares for lower strata.
The error between milk supplies, for example, is about eight times as large as the error between cheeses. So
keeping track of the various error strata prevents one from declaring too many effects of the milk stratum
"significant".

Using the expected mean squares from Table 1, we may calculate added components of variance between milk
supplies and between curds productions, respectively. Both are statistically significant. We conclude that keqjing
track of the various error strata pays off in additional information on the random variation.

23



Gens tat Newsletter 33

milk curds

1.5-

1.0-

E
o

^  0.5-1

X

X

X

X

X

2.0-
<L>

"c
O
3 1.5-
cr

"5
E 1.0-

c

"5 0.5-
JZ.

0.0-

X
X
X

.X

10 20 30 40

abs (effect)

cheese

1  2 3

abs (effect)

2.5-
O)

"c 2.0-

ear

1.5-
"o
E
o 1.0-
c:

"o
.c 0.5-

0.0-

2  3

obs (effect)

Figure 1: Halfiiormal plots of the Yates effects in each error stratum

Table 4: Analysis of variance for coded compositional characteristic of the cheeses

source of variation df mean square added component of
variance

A 1 62419

error between milk supplies 6 165 27.25

C 1 387

error between curds 23 56 8.25

HI 3 329

error between cheeses 93 23 23
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Appendix: Genstat procedure ayplot

Daniel (1959) shows how contrasts from two-level experiments in single or fractional replication can be
evaluated through half-normal plotting. Box et al. (1978) emphasize normal plotting of the Yates effects. They
suggest making separate plots for each error stratum.

Yates effects of one and the same error stratum have a common variance. When there is sparsity of effects and
normality of error, most effects will come from a normal distribution with zero mean and unknown variance.
Making (half)normal plots will separate the few active effects from the inactive ones.

AYPLOT calculates Yates effects from a two—level experiment. The effects to be extracted are specified through
a TREATMENTSTRUCTURE setting given in advance. They are grouped according to the error strata as given by
a previous blockstructure setting. Normal or halfnormal plots, according to option PLOT, are made in either
line—printer or high—resolution quality (option GRAPHICS). Through option LAST the number of largest effects
to be omitted from halfhormal plots can be specified (the option does not work with normal plots). Alternatively,
option STRATUM can be set to those strata the Yates effects of which we wish to be plotted. The titles of the
plots can be provided with option TITLE. There are three other options, factorial, print, and channel,
which are as for adisplay. Note, however, that effects are printed as Yates effects, and that channel also bears
on the line—printer graphics.

The data variates are specified with the Y parameter. Parameter EFFECT holds one variate of effects, sorted from
small to large, for each error stratum. Effects are either the usual Yates effects (PLOT=normal) or their absolute
values (PLOT=halfnormal).

Options: STRATUM, FACTORIAL, PRINT, PLOT, GRAPHICS, TITLE, CHANNEL, LAST
Parameters: Y, effect

Options
STRATUM = formula Error strata the Yates effects of which are to be plotted. If unset, plots for

all strata are made

FACTORIAL = scdar Limit for factorial expansion of treatment formula; default 3
PRINT = strings Which anova output to print, as in ANOVA; default aovtable, effects
PLOT = string Whether to make halfhormal or normal plots (halfnormal, normal);

default half normal

GRAPHICS = String What type of graphics (highresolution, lineprinter); default highr-
esolution

TITLE = strings Separate titles for each of the plots
CHANNEL = scalar What channel to use for anova and line-printer output; default 1, i.e., the

current output channel
LAST = scalars How many of the largest effects to withold from each of the halfhormal

plots; default 0

Parameters

Y = variates Data to be analysed
EFFECT = pointers To save one variate with sorted Yates effects for each error stratum

Description of the method
AYPLOT accesses the current blockstructure and treatmentstructure settings. If the stratum option is
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unset, its task is to produce plots or effects of each of the strata. It therefore checks whether all strata are set
explicitly. If this is not the case it augments the current blockstructure with a bottom stratum using
procedure AFUNITS. If no BLOCKSTRUCTURE is set, it generates an explicit Units stratum and sets the
BLOCKSTRUCTURE and STRATUM Options to this stratum.

Yates effects for each stratum are saved with AKEEP. They are ordered and plotted against either normal or
halfnormal quantiles. Normal quantiles are calculated as

qi = NED((/-0.375)/(«+0.25)) /=! ...n

Halfnormal quantiles are calculated as

= NED(0.5+(/-0.375)/(«+0.25)x2>=l.../i

Code of procedure

PROCEDURE tRESTORE=blockstructure,treatmentstructure,asave]'AYPLOT'

If

Eric D. Schcen,
TNO Dept. of Applied Statistics,
PO Box 155,
2600 AD Delft,
the Netherlands

email schoen@tpd.tno.nl

July 7, 1995.

Makes halfnormal or normal plots of Yates effects for all error strata
or a single one in a two-level e3q)eriment.Option LAST specifies the number of
largest values to be left out in halfnormal plots. The ordered effects ceui be saved
with parameter EFFECTS.
H

OPTION NAME=\

'STRATUM*, "(I: formula, default all) error strata the Yates effects of
which are to be plotted" \

'FACTORITUj', "(I: scalar, default 3) limit for factorial expansion of
TREATMENT formula." \

•PRINT', "(I:string, default !T(aov,effect)) which anova output to
print, as in ANOVA" \

'PLOT', "(I: string {halfnormal, normal) default halfnormal) whether
to make halfnormal or normal plots" \

'GRAPHICS', "(I:\ string {highresolution, lineprinter) default highreso)
which type of graphical device to use" \

'TITLE', "(I: text) separate titles for each of the plots" \
'CHANNEL', "(I; scalar, default 1) what channel to use for anova and

line-printer output" \
'LAST'; "(I: scalar, default 0) to remove LAST greatest effecst from

halfnormal plots; does nothing for normal plots" \
MODE=f,v,4(t),2(v);\
NVAL=1,1,!(1...9),2(1),*,1,*;\
VALD=2(*) , !T(AOVTABLE,INFORMAT,COVARIAT,EFFECTS,RESIDUAL,CONTRAST,MEANS,\

%CV,MISSIN6V) , !T(HALFNORM,NORMAL) , \
!T(LINEPRIN,HIGHRESO),*,!(1...5) ,*;\

DEFADLT=*,3,!T(aov,eff),'HALFNORM','HIGHRESO' 1,0;\
LIST=no,no,yes,no,no,yes,no,yes

PARAMETER NAME=\

'Y', "(I:variate) data" \
'EFFECT'; "(O:pointer) holds variate(s) with ordered Yates effects for

specified strata"\
MODE=p;\
SET=yes,no;\
DECLARED=yes,no;\
TYPE=!T(VARIATE),!T(POINTER);\
PRESENT=yes,no
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assess details of STRATUM option and BLOCKSTRUCTURE setting
■

GET [SPECIAL=special]
GETATT [ATT=present] STRUCT=special['blockstructure']; P
CALC T = UNSET(STRATUM)
CALC index=2*P['present']+T+1

CASE index

EXIT [CONTROL=procedure ; EXPLANATIONS!T(\
'*** cuiy setting of the STRATUM option is incompatible with \

an unset BLOCKSTRUCTXJRE') ]
OR
■

generation of a Units stratum if BLOCKSTRUCTURE directive and
STRATUM option are both unset; equating Units to BLOCKS and STRATUM
u

DUPLICATE OLD=Y; NEW=dup
REST dup
CALC nval=NVAL(dup)
FACT [LEVsnval; VAL=1...nval] Units
FORMULA [VALsUnits] form
ASSIGN form; STRATUM
FORMULA [VAL=Units; MOD=yes] specialt'blockstructure']

OR
■

if BLOCKSTRUCTURE eUid STRATUM both are set no extra measures are
needed
II

EXIT [CONTROL=case]
OR
m

check whether all strata are set explicitly; if not:
generation of bottom stratum, modification of BLOCKS,
and setting of STRATUM
n

AFUNITS [BLOCKSTRUCTURE=#special['blockstructure']] Units
IF NLEV(Units).GT.l
FORMULA [VAL=(#special['blockstructure'])/Units] form
ASSIGN form; STRATUM
FORMULA [MOD=yes; VAL=#form] special['blockstructure']

ENDIF

ENDCASE

making separate formulas for the error strata
■

FCLASS [NTERMS=nstrat] TERMS=#STRATDM
FCLASS #STRATUM; OUTTERMS=blterm[l...nstrat]

calculating # df for the various error strata
m

BLOCK #special['blockstructure']
TREAT

ANOVA [PRIN=*] Y
AKEEP #STRATUM; DF=df3[1...nstrat]

TREAT #special['treatmentstructure']
ANOVA [PRIN=*; FACT=FACTORIAL; TWOLEV=Yates] Y

printing anova results
m

CALC i=NOBS(PRINT)
IF i.GT.O

ADISPLAY [PRIN=#PRINT; TWOLEV=Yates]
ENDIF

calculating # effects in each stratum
•

AKEEP #STRATUM; DF=df4[1...nstrat]
CALC neff [1.. .nstrat] =df3 []-df4[]
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creating temporary variate to hold saved effects
variate has conservative length equal to number of treatmentterms
m

FCLASS [NTERMS=ntterms; FACTORIAL=FACTORIAL] #specialt'treatmentstructure']
VARI tNVAL=ntterms] temp

ASSIGN [METHOD=preserve] Effect; EFFECT
CALC meth=l+MAX(PLOT.IN.!T(HALFNORM))+2*MAX(PLOT.IN.!T(NORMAL))

■

saving effects in ten^orary variate, transposing non missing
elements to variate of correct length, ordering of effects,
creating (half)normal quantiles, saving of ordered effects
II

FOR n=l...nstrat; str=blterm[]; nn=neff[]; lst=#LAST
AKEEP [FACT=FACTORIAL; STRATUM=#str; SUPPRESS=yes; TWOLEV=Yates]\

#special['treatmentstructure'];\
EFFECTS=eff[1...ntterms]

EQUA OLD=eff; NEW=ten5>
REST tenp; tenp.NE.C('*'); SAVE=savedum
VARI [NVAL=nn] effct
CALC effct=ten^$[savedum]
REST temp

IF meth.EQ.2
CALC nn=nn-lst

CALC effct=ABS(effct)
CALC Quantile[n]=NED(0.5+(!(1...nn)-0.375)/(2*(nn+0.25)))
SORT effct

VARI [NVAL=nn] EFFECT[n]
CALC EFFECT[n]$[l...nn]=effct$[1...nn]

ELSIF meth.EQ.3
CALC Quantile[n]=NED((!(1...nn)-0.375)/((nn+0.25)))
SORT effct

VARI [NVAL=nn] EFFECT[n]
CALC EFFECT[n]=effct

ENDIF

DELETE [REDE=yes] effct
ENDFOR

CALC plt=l+MAX(GRAPHICS.IN.!T(HIGHRESO))+2*MAX(GRAPHICS.IN.!T(LINEPRIN))

CT^C index=2* (plt-2) + (meth-1)
IF (plt.EQ.l).OR.(meth.EQ.l)

EXIT [CONTROL=procedure ;\
EXPLANATIONS'*** no proper setting of PLOT or GRAPHICS option ***•]
ENDIF

IF UNSET(TITLE)
TEXT [VAL=#nstrat(' ')] title
ASSIGN title; TITLE
ENDIF

IF NVAL(TITLE).NE.nstrat
EXIT [EXPL='*** number of separate titles does not equal number of\
strata'; CONTROL=procedure]
ENDIF

m

plotting of halfnormal/normal plots in line-printer/highresolution
quality
■

CASE index
IF nstrat.EQ.l

AXES 4; XTITLEs'abs (effect)'; YTITLE='halfnormal quantile'
DGRAPH [TITLE=#TITLE; KEYWINDOW=0; \

WINDOW=4] Quantile[l]; EFFECT[1]
ELSE

axes 5 8; XTITLEs'abs (effect)'; YTITLE='halfnormal quantile'
FOR yvar=Quantile [ ]; xvsa:=EFFECT [ ]; win=5 — 8; \

tit=#TITLE; scm=' clear', 3 (• keep')
DGRA (TITLE=tit; KEY=0; WINDOW=win; SCREEN=#scm] yvax; xvar

ENDFOR

ENDIF

OR
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IF nstrat.EQ.l
AXES 4; XTITLE='effect'; yTITLE='normal quantile'
DGRAPH [TITLE=#TITLE; KEYWINDOW=0;\

WIND0W=4] Quantile[l]; EFFECT[1]
ELSE

AXES 5...8; XTITLE='effect'; YTITLE='normal quantile'
FOR yvar=Quantile[]; xvar=EFFECT[]; win=5...8;\

tit=#TITLE; scm='clear' ,3 ('keep')
DGRA [TITLE=tit; KEY=0; WINDOW=win; SCREEN=#scm] yvar; xvar

ENDFOR

ENDIF

OR

FOR yvar=Quantile[]; xvar=EFFECT[]
GRAPH [CHAN=CHANNEL; TITLE=#TITLE; YTITLE='halfnormal quantile';\

XTITLE='abs (effect)'] yvar; xvar; DESC=' '
ENDFOR

OR

FOR yvar=Quantile[]; xvar=EFFECT(]; tit=#TITLE
GRAPH [CHAN=CHANNEL; YTITLE='normal quantile';\

XTITLE='effect'; TITLE=tit] yvar; xvar; DESC=' '
ENDFOR

ENDCASE

ENDPROCEDURE

Example Program

PRINT IT('Example of how to use procedure AYPLOT;',\
'a half-fraction of a 2**5 design;',\
'data from Box, Hunter, and Hunter (1978)
'''Statistics for Experimenters'', p. 379',\
'(normal plot on p. 380).');\
JUSTIFICATION=left

UNITS [NVALUES=16]
FACTOR [LEVELS=I(-1,1)] feedrt,catalyst,agitrt,ten?),cone
GENE ten?), agitrt, catalyst, feedrt
CALC conc=feedrt*catalyst*agitrt*ten?)

56 53 63 65 53 55 67 61 69 45 78 93 49 60 95 82:
TREATMENT feedrt*catalyst*agitrt*ten?)*conc
AYPLOT [TITLE='% reacted'; PLOT=normal; PRIN=eff] Y=%react
PRINT IT('to demonstrate handling of various error strata',\

' interactions teinp x agitrt and tenqp x catalyst', \
'are used to define four blocks'); JOSTIFICATION=left

FACTOR [LEVELS=!(-1,1)] ED,CD
CALC ED,CD=catalyst,agitrt*teinp
FACTOR [LEVELS=I(-3,-1,1,3)] Blocks
CALC Blocks=2*BD+CD

BLOCKS Blocks

TREATMENT feedrt*catalyst*agitrt*ten?)*conc
AYPLOT [TITLE='between blocks','within blocks';PRIN=eff] Y=%react; EFFECT=eff
PRIN eff[]
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Fitting an ordinal regression model with random effects using composite
link functions and reml

Steven Candy and Graham Wilkinson
Forestry Tasmania
Box 207B HOBART 7001

Tasmania, Australia

1. Introduction

As part of a study of genetic variation in Eucalyptus obliqua, open-pollinated seed collected from 12 mother trees
in each of 4 populations (gully, midslope, plain, ridge) was planted in a randomized block experiment at each
of the 4 sites from which seed was collected (= populations). At each site, the 4 blocks each contained 48 plots.
Each plot consisted of six trees which were progeny of the same mother tree (called a family here). The location
of the 12 family plots from each population were randomized within each block. Considering here just a single
site (=midslope) the amount of leaf spot caused by the fungus Mycosphaerella cryptica on each tree was
classified into 5 ordinal classes: 0-10%, 10-20%, 20-30%, 30-75%, >75%. These classes represent an ocular
estimate of the percentage of leaf lamina for the whole tree covered by necrotic tissue which appears as small
spots. The response variable is the number of trees on a plot in each of the above classes. Population (popn)
and block (block) are considered fixed effects while family (family) within population as a random effect. The
main interest is in the effect of population on the prevalence of leaf spot. Also the amoimt of between compared
to within family variability in prevalence of leaf spot is of interest.

These data were analysed in three ways. First and most simply, the class mid-points were used in a weighted
linear mixed model analysis using the reml directive and weights equal to the 960 (=5x48x4) counts of trees
across ordinal classes by plots within blocks by blocks. Second, the counts were considered a multinomial
response with class probabilities determined from a logistic distribution for percentage leaf spot with the nominal
class intervals dividing up this percentage scale (i.e., cut-points of 10, 20, 30, 75). The mean of the logistic was
determined by the fixed and random effect models. To fit this model in Genstat, the method of composite link
functions (Thompson and Baker (1981), Roger (1983)) is combined with the reml directive in a similar way to
the implementation of SchalTs algorithm (Schall 1991) for the generalized linear mixed model used in Genstat's
GLMM procedure. Apart from the parameters for fixed and random effects, a single parameter, P, is estimated with
the variance of the logistic distribution given by 7i:^/(3P^). The third method, described here in detail, is a
generalisation of the second method whereby the nominal cut-points are used as initial values in the estimation
of cut-point parameters. This method corresponds to fitting a random effects, proportional-odds ordinal regression
model to the class tree counts. The general outline of the algorithm for this last model is given in Candy (1997)
so here the Genstat procedures and some extra detail on practical considerations in model fitting, such as
aliasing, are given. Unfortunately the Genstat procedures described are not completely general since they allow
only a single random effect and are set up for 5 ordinal classes.

A fully general procedure called class, by Keen, is given in the GLW-DLO Procedure Library (Goedhart and
Tissen (1996)). The method used in CLASS (Keen and Engel 1997) is very similar to that used here. CLASS
estimates the cut-points as nonlinear parameters using a Gauss—Newton mediod with die respective derivatives
included as random effects covariates widi very large fixed variances (e.g. 1000) in the REML step with the
estimated random effects then used to update the cut-point parameter estimates. Here the derivatives are included
as fixed effects in die REML step (Canady 1997). Also, we estimate die 'hmits" variance component in reml
whereas class fixes diis at 1. When we fixed this conqionent at 1, the results were within rounding error,
identical to those obtained in class, with the exception of reml's deviance, which was different and had its
degrees of fireedom reduced by 3 in our method due to die estimation of the cut-points as fixed effects.
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2. The fitting algorithm

The model for the class probabilty; is given by

n / / _-U exp(p^-m)) _ exp(p..,^Ti))
l+exp(P^..,+Ti)) l+exp(p..,+Ti)) '

7=2,...,4

where the cut-points are for the 5 classes are given by P'=(Pi, P:, p3>p4) (where 0<p,<p2<p3<P4 ) and Tj
comprises fixed and random effects. Calculation of the tail probabilities (/=1,5) for the first and last classes is
discussed below.

The method of fitting composite link function generalized linear models involves constructing a "working"
response variable, "working" linear predictor, and iterative weights in the same way as those for the standard
GLM iteratively weighted least squares (IWLS) algorithm (McCullagh and Nelder 1989). The adaption of this
algorithm for the case of composite link functions simply involves constructing "working" predictor variables
for both fixed and random effects. Further simplification is achieved if the adaption given by Roger (1983) is
used whereby the "working" versions of the predictor variables do not have to be constructed if they do not
change across link functions, for example r\ here. For the leaf spot data, "working" values of the fnced terms
in POPN*BLOCK and random term popn. family are not required to calculate the working linear predictor using
a method described by Candy (1985). A pair of dummy variables, corresponding to upper and lower class limits,
is used to reference each cut-point. Since the upper limit dummy variable occurs in the fust logit link and the
lower in the second link, "working" predictor variables corresponding to each pair of dummy variables are
required.

One cut-point parameter is aliased with the grand mean in T], so the pair of dummy variables for the first cut-
point is replaced here by a vector of ones (i.e., explicity fitting the grand mean) and the remaining cut-points
are redefined as

P'^=( p2*. p4*) where ^2=Mu ̂ 3=^3-^1; P4 =p4-Pi-

The deviance (conditional on the estimated random effects) for the multinomial response can be calculated using
the Poisson deviance as long as the estimated probabilities sum to unity. To do this the tails of the logistic
distribution must be calculated. This is done using one of the dummy predictor variables for the cut-point
parameters which is given a negative value corresponding to the first class so that a cumulative probability of
zero (or numerically very close to zero) is obtained and a positive value for the last class ensures this probability
is numerically very close to unity. Care must be taken to give these arbitrary negative and positive values large
enough absolute values (taking into account die scaling by the corresponding p) to calculate the tails of the
distribution but no so large as to cause numeric overflow.

In Genstat version 5.3 the option in the vcomp directive not to automatically adjust covariates (here working
predictor variables) for their mean should be used, ie., CADJUST=no.

3. Analysis of leaf spot data

The 960 counts (N) in the 5 percentage classes and plot totals (nt) were obtained (note that there were some
migging values SO NT may be less than 6) from the original data. The factors for block, family, and class
were generated using the order in n.

The values for factor popn were obtained using the relationship between families and populations in the original
data set (Genstat code not shown).

Job 'leaf spot at midslope site'
open 'iaidgroup.dat' ; 2
units[960]
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* grouped data "

FACTOR[levels=48] FAMILY
FACTOR[levels=4] BLOCK
FACTOR[1evels=4 ; LABELS=!t{gully,mid,plain,ridge)] POPN
FACTOR[levels=5] CLASS

READ[CHAN=2 ; SKIP=* ; END=*] N,NT,POPN ; frep=*,*,lev

GENERATE BLOCK,FAMILY,CLASS

"  set Up for Procedure GLMORL to fit mixed ordinal (proportional odds) regression
model "

" set up initial values for GLMORL"

"  (Note: some redundancies in data structures e.g. CL[1] and CU[1] are not used here
but conversion to the method which does not estimate cut-point parameters but uses the
nominal values is then made easier)
m

VARIATE WXS[1...5],CU[1...5],CL[1...5],REFFECT,WT,GM
CALC GM=!(960(1))
EXPRESSION LIN[1...5] ; \

VALUE=!E(LP1=REFFECT+A[2]*CU[2]+A[3]*CU[3]+A[4]*CU[4]+CU[5]), \
!E(LP2=REFFECT+A[2]*CL[2]+A[3]*CL[3]+A[4]*CL[4]+CU[5]), \
!E(LP1=LP1*(LP1.LE.20)+21*(LP1.GT.20)) , \
!E(LP2=LP2*(LP2.LE.20)+20*(LP2.GT.20)), \
!E(FITTEDVALDES=NT*(EXP(LP1)/(1+EXP(LP1))-EXP(LP2)/(l+EXP(LP2))) \

+(NT.EQ.O))

variate PAR ; values=1(1.0,2.0,3.0,7.5)
SCALAR A[l...4]
EQUATE OLD=PAR ; NEW=!P(A[l...4])
" set up CU, CL "
" use CU[5] to store the fixed effect terms in the linear predictor"
CALC CU[5]=!(960(-3)) & REFFECT=!(960(0)) & WT=(NT.GT.O) & \

CU[1]=!((1,0,0,0,0)192) & CU[2]=!((0,1,0,0,0)192) &\
CU[3]=!((0,0,1,0,0)192) & CU[41=!((0,0,0,1,3)192) & \
CL[1]=!((0,1,0,0,0)192) & CL(2]=CU[3] t CL[3]=!((0,0,0,1,0)192) &\
CL[4]=!((-3,0,0,0,1)192)

CALC #LIN[1] & #LIN[2] & #LIN[3] & #LIN[4] & #LIN[5]
CALC FD1=EXP(LP1)/(1+EXP(LP1))**2 & FD2=EXP(LP2)/(1+EXP(LP2))**2
CALC WXS[1]=(NT*(NT.GT.0)+(NT.EQ.0))*(FD1-FD2) & DERIVATIVE=1/WXS[1]
CALC WXS[2]=(FD1*CU[1]-FD2*CL[1])/(FD1-FD2)
CALC WXS[3]=(FD1*CU[2]-FD2*CL[2])/(FD1-FD2)
CALC WXS[4]=(FD1*CU[3]-FD2*CL[3])/(FD1-FD2)
CALC WXS(5]=(FD1*CU[4]-FD2*CL[4])/(FDl-FD2)
CALC LINEARPREDICTOR=REFFECT+A[2]*WXS[3]+A[3]*WXS[4] \

+A[4]*WXS[5]+CU[5]

• run procedure GLMORL for main effects"

GLMORL [ABSORB=FAMILY ; FIXED=BLOCK+POPN ; RANDOM=FAMILY] Y=N ; CU=CU ; \
CL=CL ; WEIGHTS=WT ; NT=NT ; ILP=LINEARPREDICTOR ; \
IFV=FITTEDVALUES; WXS=WXS ; PAR=PAR ; A=A ; Z=Z

"STOT checks that the sum of the fitted values is correct "

ITER TDEV PDEV STOT

1.000 1347 0 933.0
2.000 836.0 37.92 933.0
3.000 722.8 13.54 933.0
4.000 708.9 1.916 933.0
5.000 709.3 -0.05207 933.0

"cut-point parameter estimates (PAR) and their standard error (SEPV)"
PAR SEPV

-3.583985 0.268667

2.255788 0.122405
4.449117 0.148875

6.952624 0.228215

Summary statistics for FAM_R

Number of values = 48
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Number of missing values = 0
Mean = 0.000

Median = 0.020

Minimum = -1.390
Maximum = 0.864
Range = 2.255

Lower quartile = -0.404
Upper quartile = 0.417

Variance = 0.264

Standard deviation = 0.514
Standard error of mean = 0.074

*** Estimated Con^onents of Variance ***

FAMILY

*units*

0.3949

0.8590

s.e.

0.1179

0.0404

*** Approximate stratum variances

FAMILY

♦units"
3.03385
0.858971

Effective d.f.
43.91

906.09

* Matrix of coefficients of components for each stratum *

FAMILY
♦units'"

5.502
0.000

1.000
1.000

*** Deviance: -2^Log-Likelihood ♦♦♦

Deviance d.f.
2607. 948

♦♦♦ Table of effects for GM ♦♦♦

1
-2.940

Table has only one entry: stcuidard error 0.2644

♦♦♦ Table of effects for WXS[3] ♦♦♦

1
2.256

Table has only one entry: standard error 0.1224

♦♦♦ Table of effects for WXS[4] ♦♦♦

1
4.449

Table has only one entry: standard error 0.1489

*** Table of effects for WXS[5] ♦♦♦

1
6.953

Table has only one entry: standard error 0.2282

*** Table of effects for BLOCK ♦♦♦

BLOCK 1 2
0.5035 0.7899

3
0.5496 0.0000
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standard error of differences: Average 0.1615
Maximum 0.1652

Minimum 0.1583

Average variance of differences: 0.02607

*** Table of effects for POPN ***

POPN gully mid plain ridge
0.0000 0.2479 -1.7216 -0.6442

Stcindard error of differences: Average 0.3057
Maximum 0.3095

Minimum 0.3028

Average variance of differences: 0.09345

" run GLMORL including interaction of BLOCK and POPN "

GLMORL[ABSORB=FAMILY ; FIXED=BLOCK*POPN ; RANDOM=FAMILY] Y=N ; CU=CU ; \
CL=CL ; WEIGHTS=WT ; NT=NT ; ILP=LINEARPREDICTOR ; \
IFV=FITTEDVALUES; WXS=WXS ; PAR=PAR ; A=A ; Z=Z

" some output deleted "
ITER TDEV PDEV STOT

1.000 831.0 60.60 933.0

4.000 698.1 -0.03136 933.0

PAR SEPV

-3.470686 0.321218

2.268054 0.125045

4.476767 0.152260

7.001664 0.235980

4. Discussion

There appears to be no significant interaction between population and blocks. The populations appear to differ
significantly with the greatest to least prevalence of leaf spot in the order plain, ridge, gully, mid(slope).
Note that the signs of the parameter effects for POPN and block should be reversed to specify effects on the
mean of the logistic distribution. There are also significant differences between blocks. The between family
variance is significant with an inter-quartile range for the estimated random effects of 0.82 on the linear predictor
scale compared to class intervals which are generally around 2. Using Method 2 where cut-points are not
estimated but taken as the nominal values scaled by dividing by 10 (i.e., 1.0, 2.0, 3.0, 7.5), the conditional
deviance was 1075.0, which is substantially greater than the corresponding value of 709.3 obtained by estimating
the cut-points. The estimate of P using the nominal cut-point method was 1.593 (s.e. 0.263). If we scale up the
nominal cut-points by 1.593, die class interval is 1.593 for classes 1, 2, and 3 but 7.2 for class 4. From the
intervals obtained from the estimates of the cut-point parameters it appears that the nominal class intervals are
underestimated for classes 2 and 3 while diey are considerably overestimated for class 4. Note diat we cannot
make similar inferences for the first and last classes using the estimated cut-points. When the 'hinits" variance
was fixed at 1, the estimate of the family variance was decsreased to 0.364 and the multinomial deviance

increased by 4.3 to 713.6. This deviance change and the estimated '\uiits'' variance of 0.86, with standard error
0.04, do not support the assumption of a 'hinits" variance of 1.
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Appendix

Procedure glmorl calls two other procedures glmlink and glmdistribution.

PROCEDURE 'GLMORL*

OPTION 'ABSORB','FIXED','RANDOM * ; MODE=p,f,f
PARAMETER 'Y* CU* CL 'WEIGHTS*,'NT ILP' IFV','WXS PAR','A' Z' ; MODE=p

GETATTRIBUTE[ATT=nlevels] ABSORB ; SAVE=NLEV
PRINT NLEV[1]
VARIATE[NVAL=#NLEV[1]] FAWLR ; VALUE=!(#NLEV[11(0))
VARIATE FAMLV
VARIATE[NVAL=4] SEPV
CALC FAN_V = FAICR $ [ABSORB]
CALC Z=ILP+(Y-IFV)/WXS[1]
GLMDISTRIBUTION Y=Y ; FITTEDVALUES=IFV ; VARIANCE=VAR ; DEVIANCE=DEV
CALC TDEVI=SUM(DEV*WEIGHTS)
CALC IW = WEIGHTS/(VAR/WXS[1]**2)
MODEL[WEIGHT=IW] Z
FIT[PR=*1 WXS[3,4,5]+#FIXED
CALC ITER=0 & GM=!(960(1))
FOR[NTIMES=20]

CALC ITER=ITER+1
GLMLINK LINEARPREDICTOR=LP; FITTEDVALUES=FV ; DERIVATIVE=DER ; \

CU=CU ; CL=CL ; NT=NT ; WXS=WXS ; PAR=PAR ; A=A ; REFFECT=FAM_V
GLMDISTRIBUTION Y=Y ; FITTEDVALUES=FV ; VARIANCE=VAR ; \

DEVIANCE=DEV

CALC TDEV=SUM(DEV*WEIGHTS) & PDEV=100* (TDEVI-TDEV)/TDEVI & \
STOT=SUM(FV*WEIGHTS)

PRINT ITER,TDEV,PDEV,STOT
EXIT ((PDEV.LT.-IO).OR.((PDEV.GT.-0.1).AND.(PDEV.LT.0.1)).AND.(ITER.GT.l))
CALC IW = WEIGHTS/(VAR*DER**2)
CALC Z=(LP+(Y-FV)*DER)
• USE REML "

VCOMP[fixed=GM+WXS[3,4,5]+#FIXED ; absorb=ABSORB ; \
CONST=omit ; CADJUST=none] randont=#RANDOM

REML[pr=* ; weight=IW] Z ; SAVE=RSAVE

' extract fixed amd random effects "
VKEEP[FITTEDVALUES=FV_R] terms=GM,WXS[3,4,5] ; \

effects=PARR[l...4] ; SEDEFFECTS=SEP[1...4]
VKEEP tenns=#RANDOM ; effectS=FAICT

EQUATE 0LD=PARR,SEP,FAMLT ; NEW=PAR,SEPV,FA1CR
CALC FAtCV = FAMLR $ [ABSORB]

CALC TDEVI=TDEV

EQUATE OLD=PAR ; NEW=!P(A[1...4] )
■ use CU[5] to store the fixed effect terms in the linear predictor"
CALC CU[5]=FV_R-FAH_V-(A[2]*WXS[3]+A[3]*WXS[4]+A[4]*WXS[5] )

ENDFOR

PRINT PAR,SEPV ; FIELD=10 ; DEC=6
DESCRIBE[SELECT=nval,nmv,mean,median,min,max,range,var,sd,sem,] FAMLR
VDISPLAY[PR=c,s,e,dev] RSAVE
ENDPROCEDURE

PROCEDURE 'GLMLINK'

PARAMETER ' LINEARPREDICTOR' , ' FITTEDVALUES' , ' DERIVATIVE' , ' CU' , ' CL' , \
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'NT',•WXS','PAR•,•A','REFFECT' ; MODE=p
SCALAR A[l...4]
EQUATE OLD=PAR ; NEW=!P(A[1...4])
EXPRESSION LIN[1...5] ; \
VALUE=!E{LPl=REFFECT+A[2]*CU[2]+At3]*CU[3]+A[4]*CU[4]+CU[5]), \

!E(LP2=REFFECT+A[2]*CL[2]+A[3]*CL[3]+A[4]*CL[4]+CU[5]), \
!E(LP1=LP1*(LP1.LE.20)+21*(LP1.GT.20)), \
!E(LP2=LP2*(LP2.LE.20)+20*(LP2.GT.20)), \
!E(FITTEDVALUES=NT*(EXP(LPl)/(l+EXP(LPl))-EXP(LP2)/(1+EXP(LP2))) \

+(NT.EQ.O))
CALC #LIN[1] & #LIN[2] & #LIN[3] & #LIN[4] & #LIN[5]
CALC FD1=EXP(LP1)/(1+EXP{LP1))**2 & FD2=EXP(LP2)/(1+EXP(LP2))**2
CALC WXS[1]=(NT*(NT.GT.O)+{NT.EQ.O))*(FD1-FD2) & DERIVATIVE=1/WXS[1]
CALC WXS[2]=(FD1*CU[1]-FD2*CL[1])/(FDl-FD2)
CALC WXS[3]=(FD1*CU[2]-FD2*CL[2])/{FD1-FD2)
CALC WXS[4]=(FD1*CU[3]-FD2*CL[3])/(FDl-FD2)
CALC WXS[5]=(FD1*CU[4]-FD2*CL[4])/(FD1-FD2)
CALC LINEARPREDICTOR=REFFECT+A 12]*WXS[3]+A[3]*WXS[4]+A[4]*WXS[51+CU[51

ENDPROC

PROCEDURE 'GLMDISTRIBUTION'

PARAMETER 'Y','FITTEDVALUES','VARIANCE','DEVIANCE' ; MODE=p
EXPRESSION VFNtl...2] ; VALUE= \

!E(DEVIANCE=2 *(Y*LOG(Y*(Y,GT.O)/(FITTEDVALUES*{FITTEDVALUES.GT.0) \
+(FITTEDVALUES.LE.0))+(Y.EQ.O)) - (Y-FITTEDVALUES))), \

!E(VARIANCE=FITTEDVALUES)
CALC #VFN[1] & #VFN[2]

ENDPROC
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A suite of Genstat procedures for the analysis of circular data

A J Rook

Institute of Grassland and Environmental Research
North Wyke
OKEHAMPTON

Devon EX20 2SB, UK

1. Introduction

Directional data, that is, data measured as angles, occur in a wide variety of situations. Examples of two-
dimensional or circular data include wind direction and direction of animal movements. Time modulo some
period may also be expressed as angles for example, the number of animals engaging in some activity in each
hour of the day. Circular data cannot be analysed using standard linear methods as the algebraic structure of the
circle is different from that of the line. Considerable progress has been made in deriving appropriate statistical
methods for circular data, many of which are analogs of common linear methods, (see Mardia 1972; Fisher
1993). In this article, a suite of procedures is described which implements some of the simpler methods for
circular data in Genstat.

2. Common input conventions

The procedures all share a common option: UNITS=radians, degrees, hours, days. This allows the angular
data to be input using different units. By default radians are assumed. All calculations are carried out in radians
after transformation. Results are back transformed and presented in terms of the original units. The settings
hours and days allow for a 24-hour day and a 365-day year respectively.

The procedures also share a common input parameter: DATA=variates. This is used to enter the angular data
as variates. Data are checked for compatibility with the setting of the units option. No provision is made at
present for the input of axial data, that is, data in which the angles represent undirected lines or axes and which
are thus defined on a semi-circle. However, this can easily be dealt with using calculate before calling the
procedure and by appropriate interpretation of the output.

3. Procedure drose

This procedure draws a rose diagram using high quality graphics. The rose diagram is analogous to the histogram
for linear data. An example, the vanishing direction of mallards from the Slimbridge wildfowl reserve (Mardia
1972) is shown in Figure 1. Each sector of the diagram represents a class interval of 20°.

The form of the procedure is

DROSE [UNITS=string; TITLE=text; WIND0W=8calar; SCREEN=string; \
ZERODIR=scalar; SENSE=string] DATA=variates; LIHITSsvariates

Option UNITS has already been described. Options title, window and screen have the same form and
flmction as for the dhistogram directive. Option zerodir supplies the angle of the zero direction from the
positive jc-axis in degrees, while option sense, which has settings clockwise and anticlockwise, determines the
direction in which the angles are measured from the zero direction. In pure mathematics, angles are usually
defined anticlockwise from the positive x-axis and this is the default setting. However, in many applications the
angles will be measured clockwise from North, i.e., zerodir=270.

Parameter data has already been described. Parameter limits defines the class limits and is directly analogous
with the limits option of dhistogram. The setting of limits must be consistent with the units option.
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As implemented here, the radius of the sectors is proportional to the class frequency. However, it is generally
thought to be easier to interpret the diagram if the area of the sector is proportional to the frequency; that is, the
radius is equal to the square root of the frequency. It is intended to include an option for this equiareal rose
diagram in future.

rose diagram of mcllord dota
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Figure 1: Rose diagram produced by DROSE procedure

4. Procedure cdescribe

This procedure calculates simple summary statistics for circular data and is thus analogous to the library
procedure describe for linear data. The procedure has the form

CDESCRIBE [DNITS=string; SELECTION= string] DATA=variates

The parameter data and the option units have already been described. Option selection has settings cmean,
cmedian, cvar, csd and crange. These are used to request the mean direction, median direction, circular
variance, circular standard deviation and circular range, respectively.

By treating the data as vectors on a unit circle, the mean direction is defined as the direction of the resultant of
these vectors. This is calculated using standard trigonometric formulae. The length of the resultant is used as a
measure of the dispersion about the mean direction. If the data are closely clustered it will approach N, the
number of data points, but if widely scattered it will approach 0. It should be noted however that a value of 0
does not necessarily imply maximal dispersion. The mean resultant length is obtained by dividing the resultant
length by N. The circular variance is defined as (1- mean resultant length) and thus shares with the variance of
linear data, the property of increasing with increasing dispersion. It also has a similar minimization property in
that the variance is minimised about the mean direction. However, unlike the linear variance, the circular
variance is a dimensionless quantity defined on the interval (0,1).

The circular variance is difficult to interpret. It can be transformed to the circular standard deviation which is
defined on (0,«>). This is effectively a transformation to the linear scale and is analogous to the standard
deviation on the line. It is expressed in the appropriate angular units defined by the units option. The circular
median is defined as a point P on the unit circle such that half the sample points lie on each side of the diameter
PQ and the majority of the sample are nearer P than Q. The circular median is unique only for imimodal
distributions. The procedure checks for uniqueness and prints a warning if non-uniqueness is detected. The
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circular range is defined as the length of the smallest arc which encompasses all the sample observations. Again
it is unique only for unimodal distributions and this is checked for by the procedure. It is intended to extend
CDESCRIBE to include other descriptive statistics such as measures of skewness and kurtosis and the
trigonometric moments.

5. Procedure cruns

This procedure carries out a simple non-parametric test for the equality of two distributions. It is based on cutting
the circle at some arbitrary point and counting the number of runs on the resulting line. A small number of runs
indicates separation of the samples while a large number indicates that the samples are mixed together. For total
sample size greater than 40, a normal approximation is used to test the hypothesis. For values between 8 and
40, a look—up table (Mardia 1972) is used. The method used is printed in the output. If there are fewer than 8
samples, the test is not carried out and a warning is printed.

The form of the procedure is

CRUNS [UNITS=string; GROUPS=factor] DATA= variate

UNITS and data are as already described, while GROUPS is a factor defining the two samples. The data are
ordered from the zero direction and the number of runs counted. The number of runs is invariant under rotation.

Since the number of runs on a circle must be even, the (number of runs-1) is used if it is odd; that is, if the cut
point is in the middle of a run.

6. Future Developments

It is hoped to develop this suite of procedures further by including a number of one— and two-sample parametric
tests. This will also require the provision of a procedure to calculate the cumulative distribution functions for
circular distribution, in particular the von Mises distribution. It is also hoped to produce some procedures for
the analysis of spherical data.
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The Procedure

PROCEDURE [RESTORE=dsave] 'DROSE'
■

A. J. Rook, Institute of Grassland and Environmental Research,
North Wyke, Okehampton, Devon EX20 2SB

Version 1.2 12/9/94

Procedure to draw a rose diagram for a circular frequency distribution.

References.
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m

Declaration of options"
OPTION NAME= \

■WINDOW, "(I; scalar {1...8) \
default 1) window ntunber for high quality graph" \

'SCREEN', "(I: string {clear,keep) \
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default clear) whether to clear screen before plotting or not"\
'UNITS', "(I: string {degrees,radians,hours,days} \

default radicins) unit of eingular measurement to be used for input" \
'ZERODIR', "(I: scalar {0...359} \

default 0) angle in degrees of zero direction of data as \
measured clockwise from positive y axis" \

'SENSE', "(I: string {clockwise,anticlockwise) \
default clockwise) whether to treat angles as measured in a \
clockwise or anticlockwise direction from the zero direction" \

'TITLE'; "(I: text default *) overall title for graph" \
MODE=v,t,t,v,t,t; NVALUES=6(1); \
VALUES= !(1...8),\

!T(CLEAR,KEEP), \
!T(DEGREES,RADIANS,HOURS,DAYS), \
!(0...359), \
!T(CLOCKWISE,ANTICLOCKWISE), \

*; \
DEFAULT= 1, 'CLEAR', 'RADIANS', 0, 'CLOCKWISE', *; \
SET= 6(no); LIST=6(no)

II

Declaration of parameters"
PARAMETER NAME= \

'DATA', "(I: variate) Contains directions (angles) expressed as degrees, \
radians,hours of day (24 h clock),or days of year (sequential)" \

'LIMITS'; "(I: variate default *) Contains limits for groups of rose \
diagram" \

DEFAULTS *,*; SET= yes,no; DECLARED= yes,yes; \
TYPEs !T(variate),!T(variate); PRESENT= yes,yes

m

Convert data and limits to radians if not entered as such. Also check that
ranges of data and limits are con5)atible with setting of units option"
IF •DEGREES'.EQS.UNITS

EXIT [CONTROL=procedure; EXPLANATIONS \
'*** ERROR - Data entered as degrees include values outside 0-360 ***■] \
SUM(DATA.LT.0.OR.DATA.GT.360) .NE.O
EXIT [CONTROLsprocedure; EXPLANATIONS \
'*** ERROR - Limits entered as degrees include values outside 0-360 ***■] \
SUM (LIMITS. LT.O. OR. LIMITS. GT. 3 60) .NE.O
CALC data,limits=DATA,LIMITS*CONSTANTS('pi')/ISO

ELSIF 'HOURS' .EQS.UNITS
EXIT [CONTROLsprocedure; EXPLANATIONS \
'*** ERROR - Data entered as hours include values outside 0-24 ***•] \
SUM(DATA.LT.O.OR.DATA.GT.24).NE.O
EXIT [CONTROLsprocedure; EXPLANATIONS \
•*** ERROR - Limits entered as hours include values outside 0-24 ***'] \
SUM (LIMITS. LT.O. OR. LIMITS. GT. 24) .NE.O

CALC data, limitssDATA, LIMITS*!5*CONSTANTS ('pi') /ISO
ELSIF 'DAYS' .EQS.UNITS

EXIT [CONTROLsprocedure; EXPLANATIONS \
'*** ERROR - Data entered as days include values outside 0-365 ***•] \
SUM (DATA. LT.O. OR. DATA. GT. 3 65) .NE.O
EXIT [CONTROLsprocedure; EXPLANATIONS \
'*** ERROR - Limits entered as days include values outside 0-365 ***•] \
SUM (LIMITS. LT.O. OR. LIMITS. GT. 3 60) .NE.O
CALC data,limitssDATA,LIMITS*360/365*CONSTANTS('pi')/ISO

ELSE
CALC maxrad=2*C0NSTANTS('pi')
EXIT (CONTROLsprocedure; EXPLANATIONS \
•*** ERROR - Data entered as radians includes values outside 0-2pi ***•] \
SUM (DATA. LT. 0. OR. DATA. GT. maxrad). NE. 0
EXIT [CONTROLsprocedure; EXPLANATIONS \
'*** ERROR - Limits entered as radians include values outside 0-2pi ***'] \
SUM (LIMITS. LT.O. OR. LIMITS. GT. maxrad) .NE.O
CALC data,limitssDATA,LIMITS

ENDIF

Calculate functions of number of limits for later use"
CALC nlimsNOBS(limits)
CALC nlimmlsnlim-1
CALC nlimplsnlim+l
m

Use groups directive to form classes as defined by limits parameter"
GROUPS [LMETHODsgiven] data; FACTORsclasses; LIMITSslimits; \
LEVELSs! (1...nlimpl)
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Use tabulate directive to obtain n\imber (frequency) in each class"
TABULATE [CLASS=classes] data; NOBS=tfreql
COMBINE [OLD=tfreql; NEW=tfreq] OLDDIM=classes; NEWDIM=classes; \
OLDPOS=! (1.. .nlimpl,l,nlin®>l); NEWPOS=! (1. . .nlinpl,nlimpl, 1)
m

Calculate x and y coordinates of arcs defining each class. Include these
with O's to provide continuous line for drawing rose."
CALC iiinliinml=-nlimml

CALC npoints= (12*nliin)+1
VARIATE [NVAL=nlim; val=#nlim(0)] zero
VARIATE [NVAL=npoints] freq,cmin
CALC diff=CIRC(DIFF{limits);-l)
CALC diff$[nlim]=limits$[ll+2*C0NSTANTS('pi')-limits$[nlim]
FOR i=l.. .9

CALC inter[i]=limits+(diff/10)*i
ENDFOR

EQUATE [old=! ((l,mnlimml, -1,1, ({mnliminl,-l)2,1) 10,mnlimml, -1) tnliraml, \
l,mnlimml,-1,1, ((mnlimml,-1)2,1) 10,mnlixnml, 1) ] \
!P(zero,tfreq); freq
EQUATE [OLD=! (((1,raniiiratil) 11,raniimml, -2,1, (ranliraral, -1) 9,ranliraral) #nliraral, \
{l,ranlimral)ll,-1, l,ranlimral, (ranlimral,-1) 9,1) ] \
!P(zero,limits,inter[1...9]); crain
II

Adjust angles so that zero direction (as given by zerodir option) is plotted
correctly"
CALC crain=crain+(ZERODIR*CONSTANTS('pi *)/180)
11

Calculate x and y values for plotting according to whether angles are
measured clockwise or anticlocJcwise"
IF 'CLOCKWIS'.EQS.SENSE
CALC y=freq*COS(crain)
CALC x=freq*SIN(crain)

ELSIF 'ANTICLOC'.EQS.SENSE
CALC y=freq*COS(crain)
CALC x=-freq*SIN(crain)

ENDIF

Draw high quality graph"
CALC raax=MAX(freq)
CTUjC raraax=-raax

AXES WINDOW=WINDOW; YORIGIN=0; XORIGIN=0; \
STYLE=3<y; PENAXES=2; YDP=raax; YLO=raraax; XLO=raraax; XUP=raax
PEN NUMB=1; LINE=1; METHOD=line; JOIN=given; SYMBOLS=0
PEN NDMB=2; LINE=1; C0L0UR=3
DGRAPH [TITLE=TITLE; WINDOW=WINDOW; KEYWINDOW=*; SCREEN=#SCREEN] \
Y=y; X=x; PEN=1
ENDPROCEDURE

RETURN
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Structure of a Genstat userfile

A D Todd

lA CR Rothamsted

HARPENDEN

Hertfordshire A L5 2JQ, UK

1. Introduction

Genstat has facilities for storing data structures in binary files called backing-store files. Backing-store files fall
into two categories: temporary files used by the program within a Genstat job, called workfiles, and permanent
files created by users to transfer structures between Genstat jobs, called useifiles. Data structures stored in a
userfile are arranged in sets called subfiles. Each subfile must have a unique name for easy access of data. The
definition of some data structures will create links to other structures: for example, a factor with labels stored
in a text vector. When Genstat creates a subfile, it will include both the structures requested by the user and all
other structures linked to these (e.g., the labels of a factor, or the data structures pointed to by a pointer).
Backing-store is the most efficient way of transferring data between Genstat jobs, since the complete definition
of the structures is retained. Other directives can be used (read and PRINT directives) but a user would have
to go to the trouble of redefining data structures.

This article outlines the basic structure of a userfile in the simplest case, for those users who may wish to use
programs other than Genstat to read or write userfiles. Note that Genstat data structures may be very complex,
resulting in a complex structure for the userfile. However, here a simple example is considered, namely a userfile
containing one subfile holding a few straightforward data structures.

2. Basic description of a userflle

A userfile is a self-contained file, named by the user when the file is opened using the open directive, so that
any run of Genstat is capable of accessing structures stored in it. To make this possible, each userfile and every
subfile within it contains a catalogue. The catalogues are based on the catalogues for Genstat data structures and
are only simple for the basic data structures. For this reason, we restrict discussion to userfiles containing
subfiles whose names are not suffixed, and to the storing of three data structures types: scalar, variate and factor.
In addition, we only discuss these structures when their definition does not depend on any other structures (e.g.,
no labels for the factor), and assume that the names of these data structures do not use suffixes.

Every userfile starts with some binary unformatted records (the userfile catalogue) that give a catalogue of the
subfiles. The userfile catalogue contains information such as names of subfiles, type of subfile (ordinary or
procedure) and number of records in the userfile catalogue and in each subfile. After the userfile catalogue there
are records for every subfile in the userfile.

Each subfile starts with some records giving a catalogue of structures stored. This catalogue contains information
such as the names of the structures stored, type of structure (scalar, text, etc), whether the structure has values,
number of records used to store each structure, plus information about pointers and how structures depend on
each other. Then each structure is stored, normally in two records: one for its attributes (number of values, etc)
and the other for its values.

3. Format of records on backing-store

Each record is a binary record. A record starts with an integer (4 bytes; all word sizes given are for VAX
computer range) giving the number of items in the record, followed by the items. There are five modes of item:
Long Real (8 bytes); Real (4 bytes); Integer (4 bytes); Character (1 byte characters) or Word (8 bytes characters).
So a record containing 6 double reals has 52 bytes: 4 for the initial integer containing the value 6 and 48 bytes

42



Genstat Newsletter 33

for the 6 long reals. There is also a maximum record size (including the initial integer) of maxbpr bytes (usually
4096). The exact value can be found in common G5KICH and can be displayed for a version of Genstat using
the command

DUMP [COMMON=ICH]

For mode character, the number of characters in a record can not exceed NCHBFF (usually 200). When backing-
store is required to store more data than a record can hold, several records are written and all but the last record
will be of maximum size.

The Fortran code for reading and writing data of mode integer and character of length LK (mode real, long real
and word are similar to mode integer) is illustrated below.

CHARACTER*(200) STR
INTEGER IDATA(IOOO)
READ (DSN) LK,(IDATA(I),I=1,LK)
READ (DSN) LK,STR(1:LK)
WRITE (DSN) LK,(IDATA(I),I=1,LK)
WRITE (DSN) LK,STR(1:LK)

DSN is the Fortran channel number for a binary file (not to be confused with the Genstat channel number as
given in the open directive).

For Genstat development purposes, there is a special directive DBUG (not to be confused with DEBUG) that prints
monitoring information. Output from this directive may be large, and unreadable to the uninitiated. However,
if you wish to see the records read or written by backing-store you can do so by using the command

DBUG [BSI0=2]

before backing-store commands. For the STORE directive, the output will be most easily understood when storing
to a new userfile. For the CATALOGUE directive, only records in the catalogues accessed will be displayed.

4. Example showing contents of a userfile

In this section, the contents of the backing-store file generated by the following program (run on VAX, release
3.2) are described, record by record.

VARIATE v; VALDES=!(1...9); DECIMALS=0
SCALAR s; VALUE=3; DECIMALS=2
FACTOR [LEVEL=3] f; VALUES=!(3(1...3))
STORE [SUBFILE=subfile; CHANNEL=1] STOREDIDENTIFIER=v,s,f

In the following, note that

1) data in word mode always has 8 characters and leading spaces are not displayed
2) * (missing value) takes a value that varies according to data mode: for integer, * = -2147483647; for real,

* = -1.0E37 (on VAX). For other machines you can see the values by displaying common G5KUSY using
the DUMP directive, the values are stored as IMY (integer) and rmv (real).

Within userfiles, all catalogues start with a record containing 20 integers. Below, record numbers are relative
to the contents of the whole userfile and item numbers refer to items within records.

4.1 Userfile catalogue

Record 1: Initial record in userfile catalogue of mode integer, length 20.

item value meaning

1  1 number of subfiles in userfile

2  1 number of subfiles in userfile

3  1 number of subfiles in userfile

4  0 always 0 for userfile catalogue
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5  0 length of userfile password (not described)
6  12 number of records in the userfile catalogue

7  532 Genstat version number; value for current release given by markno in common G5KJRT (use
DUMP directive)

8  0 number of pointer type structures if suffixed subfile name used (not described)
9  0 always 0 for userfile catalogue
10 8 backing-store type (value for release 3.2). This value only changes when the definition of

structures changes between releases. If different to the current value in program, Genstat will
sort out the problems if it can, or fail the program (rarely)

11 0 number of lines in password
12 2 number of records of mode word in this catalogue
13 0 number of procedures in userfile (used for procedure libraries)
14-19 0 currently not used, always 0
20 702 value for backing-store file, always the same (701 if RECORD/RESUME file)

There then follows the remaining 11 records of the userfile catalogue, all of length 1 (since only one subfile is
stored here):

record mode value meaning

2 integer ♦ number of procedures in each subfile (* means none)
3 integer 1 type of subfile (2 = procedure subfile)
4 integer 15 number of records in subfile

5 word subfile name of subfile

6 word subfile name of subfile

7 integer -1 structure number of subfile, always negative
8 integer 1 position of subfile name in record 5
9 integer * feature not described in this document

10 integer 10 maximum length of record in subfile of mode real, long real or integer in long real
units (minimum value 10 in Release 3.2)

11 integer 0 maximum length of record in subfile of mode character
12 integer 3 maximum length of record in subfile of mode word (number of named structures

stored in subfile)

End of userfile catalogue.

4.2 Subfile catalogue

Record number 13 is the initial record of the subfile catalogue, of mode integer, length 20.

meaning

number of structures stored in subfile (including unnamed if present)
number of named identifiers (not including procedures)
number of named identifiers (would include procedures if stored)
number of procedures in subfile
always 0 (only used by userfile catalogue)
number of records in subfile catalogue
Genstat version number, description same as userfile catalogue
number of pointer type structures
this item is used to link structures together, a feature not described in this document
backing-store type (value for release 3.2)
not used by subfile catalogue
number of records of mode word in this catalogue
not used by subfile catalogue
currently not used, always 0
value always the same

item value

1 3

2 3

3 3

4 0

5 0

6 9

7 532

8 0

9 0

10 8

11 0

12 2

13 0

14-19 0

20 702
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There then follow the remaining 8 records of the subfile catalogue, all of length 3, ie. one value per structure
in each record.

record mode values meaning

14 integer 4,1,2 type of stored structures (1 = scalar; 2 = factor; 4 = variate)
15 integer 2,2,2 number of records used to store each structure (note: attributes and values are

stored as separate records)
16 word v,s,f names of stored structures

17 word v,s,f in this case same as record 16

18 integer -1,-2,-3 structure numbers of the stored structures, always negative
19 integer 1,2,3 position of named structures in record 18 in record 16
20 integer >|e if: a|e

1  y
always * (no pointers stored)

21 integer 0,0,0 number of structures that the structure being stored directly depend on (does not

item value

1 10846

2 9

3 9

4 1

5 0

6 *

7 *

8 0

9 ♦

10 *

11 *

include pointer values).
End of subfile catalogue

4.3 Attributes and values of data structures stored within the subfile

Record 22, mode integer length 11, holds the attributes of the first structure stored, variate v:

meaning

values present
number of storage units
number of values (usually the same as item 2 above, main exception is type text)
mode of structure (l=long real)
number of missing values
unit labels vector number (not discussed here); * = not present
associated heading vector number (not discussed here); * = not present
default decimal places to print; ♦ = unset
structure number for minimum and maximum of a structure; * = not present
currently always set to *
structure number for restriction set; * = unset

Record 23 (mode long real, length 9) holds the values for variate v: values 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
9.0.

Record 24 (mode integer, length 10), holds the attributes of the scalar s and takes values: 10912, 1,1, 1, 0, *,
*, 2, *, *. The definition of these attributes is the same as for the variate attributes 1-10 given above.

Record 25 (mode long real, length 1), holds the value of scalar s, value = 3.0.

Record 26 (mode integer, length 13), holds the attributes of factor f, and takes the values 11020, 9, 9, 3, 0, *,
*, *. *, *, *, *, 3, *. Attributes 1 to 8, 10 and 11 are similar to variates, except the structure is of mode integer
(attribute 4). The remaining attributes (items) are defined as follows:

item meaning

9  Structure number of variate holding actual values of the factor level; ♦ = not present
12 The default number of character to print level names; ♦ = unset
13 Number of levels

14 The number of the level names text vector (if any) which holds the list of level names; ♦ = unset

Record 27 (mode integer, length 9), holds the values of factor f: 1, 1, 1, 2, 2, 2, 3, 3, 3 .
End of attributes and values in subfile and end of userfile.
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