Summary
Genstat® Reference Manual (Release 23)

Part 1: Summary

Genstat Release 23 was developed by VSN International Ltd, in collaboration with practising statisticians at Rothamsted and other organisations in Britain, Australia, New Zealand and The Netherlands.

Published by: VSN International, 2 Amberside, Wood Lane, Hemel Hempstead, Hertfordshire HP2 4TP, UK
E-mail: info@genstat.co.uk
Website: http://www.genstat.co.uk/

First published 1989, as the Genstat 5 Release 2 Reference Summary
This edition published 2023, for Genstat Release 23

Genstat is a registered trade of VSN International. All rights reserved.

© 2023 VSN International
Contents
1 The Genstat language 1
 1.1 Syntax of the command language 1
 1.2 Glossary of terminology 2
 1.3 Data structures 11
 1.4 Program control 12
2 Data handling 15
 2.1 Input and output 15
 2.2 Calculations and manipulation 16
 2.3 Graphics 21
3 Statistical analyses 24
 3.1 Basic and nonparametric statistics 24
 3.2 Regression and generalized linear models 25
 3.3 Analysis of variance 29
 3.4 Design of experiments 31
 3.5 REML analysis of linear mixed models 34
 3.6 Multivariate and cluster analysis 36
 3.7 Time series 38
 3.8 Repeated measurements 39
 3.9 Survival analysis 40
 3.10 Bayesian methods 40
 3.11 Spatial statistics 40
 3.12 Six sigma 41
 3.13 Survey analysis 42
 3.14 Data mining 43
 3.15 Statistical genetics and QTL estimation 44
 3.16 Microarray data 45
 3.17 Ecological data 46
4 Syntax summary 47
 4.1 Commands 47
 4.2 Functions for calculations 502
 4.3 Functions for model formulae 518
5 List of commands 520

Conventions
Genstat system words are shown in the Courier typeface e.g. CALCULATE. In the syntax summary, elements of the language to be substituted by the user are in italics, e.g. variate. New directives, procedures or functions in Release 23, or options and parameters of existing directives or procedures that have been modified in Release 23, are marked by the symbol †.
1 The Genstat language

Genstat has a clear but powerful command language which provides access to the very wide set of facilities summarized in Sections 2 and 3. Alternatively, many standard operations and analyses can be run using the menus in Genstat's Windows interface.

1.1 Syntax of the command language

Input to Genstat is known as a Genstat program. This is made up of statements each of which may use one of the standard Genstat commands (known as directives); alternatively, it may use a Genstat procedure, that is, a subprogram of statements. You can write your own procedures, or use those in the Library distributed with Genstat, or in the library provided at your site.

Whether the statement uses a directive or a procedure, the syntax is identical. First you give the name of the directive (or procedure), then options, and then parameters. Finally, you indicate the end of the statement, either by typing a colon or by ending the line (by typing <RETURN>). Long statements can be continued onto succeeding lines by typing the continuation character (\) before <RETURN>.

Some statements will have neither options nor parameters: for example

```plaintext
PAGE
```
to start a new page in output. Others may have no options: for example

```plaintext
PRINT STRUCTURE=X,Y; DECIMALS=0,2
```
prints the contents of data structures \(X \) and \(Y \) with zero and two decimal places respectively. In this statement, there are two parameter settings defining two lists running in parallel. Parameter settings are always in parallel like this, and are separated from one another by semicolons. Options are enclosed in square brackets, and set aspects that apply to all the (parallel) parameter values. They are also separated from one another by semicolons. For example

```plaintext
PRINT [CHANNEL=2; INDENTATION=5] STRUCTURE=X,Y; DECIMALS=0,2
```
prints \(X \) and \(Y \) to output channel 2 with a five-character indentation at the start of each line. Nearly all options, and some parameters, have default values chosen to be those required most often, and so will usually not need to be set.

Settings of options and parameters can be lists (as above), expressions or formulae. Lists may be of numbers (as with DECIMALS above), or identifiers (as with STRUCTURE) or strings. An identifier is the name that you give to a Genstat data structure (for example \(X \) or \(Y \)), and which you then use to refer to it in the program. They must start with a letter (for Genstat this means the alphabetic characters \(A \) to \(Z \), in capitals or lower case, as well as the percent and underline characters) and then contain either letters or digits (the numerical characters \(0 \) to \(9 \)); Genstat takes notice of only the first 32 characters. (This is the default in Releases 4.2 onwards, but you can use the SET directive to request that Genstat take notice of only the first eight characters as in earlier releases.) Where a list of identifiers provides input to a directive or procedure, you can put an expression instead; this will then be evaluated (to give a list of identifiers containing the results) before the directive or procedure is used. A string is a list of characters. Usually the start and end of the string must be marked by a single quote ('). Strings occur within the Text data structure. Also, the settings of some options and parameters are lists of string "tokens" that can be chosen from a defined list; these do not need to start and end with single quotes. The separator between items in lists is comma; spaces can be included anywhere between items but do not act as separators. Formal definitions of expressions, formulae, and all the other concepts of the Genstat language are in the Guide to the Genstat Command Language, Part 1, Section 1.2.

Names of directives, procedures, options and parameters are examples of Genstat system words. They can be given in capital or small letters (or in mixtures of both) and, provided you are only using directives and official Genstat Library procedures, they can always be abbreviated to four characters. The same rules apply to string tokens in directives and Library procedures. However, if you or your site have defined your own procedures, you may have chosen names that differ only in the fifth or subsequent characters. If you supply more characters, Genstat will check the name up to the 32nd character, and ignore any characters after that. (You can, however, use the SET directive to request that Genstat also ignores the ninth and subsequent characters, as in releases before 4.2.)

Names of directives, procedures, options and parameters are examples of Genstat system words. They can be given in capital or small letters (or in mixtures of both) and, provided you are only using directives and official Genstat Library procedures, they can always be abbreviated to four characters. The same rules apply to string tokens in directives and Library procedures. However, if you or your site have defined your own procedures, you may have chosen names that differ only in the fifth or subsequent characters. If you supply more characters, Genstat will check the name up to the 32nd character, and ignore any characters after that. (You can, however, use the SET directive to request that Genstat also ignores the ninth and subsequent characters, as in releases before 4.2.)

Names of options and parameters can often be abbreviated to fewer than four characters, and there are also rules by which the option or parameter name, with its accompanying equals character, can be omitted altogether. The most useful of these is that, if the first parameter of the directive is the one that comes first in the statement, then the name of the parameter can be omitted: for example

```plaintext
PRINT [CHANNEL=2; INDENTATION=5] X,Y; DECIMALS=0,2
```
as `STRUCTURE` is the first parameter of `PRINT`. The same rule holds for options:

```
PRINT [2; INDENTATION=5] X,Y; DECIMALS=0,2
```

as `CHANNEL` is the first option of `PRINT`. Full details of the rules are in the *Guide to the Genstat Command Language*, Part 1, Section 1.2.

A final point about the first parameter is that its setting determines the length of the parallel lists. The lists for other parameters will be repeated (or recycled) if they are shorter. (If they are longer, Genstat gives an error diagnostic.) For example

```
PRINT A,B,C,D; DECIMALS=0,2
```

prints `A` with zero decimal places, `B` with two, and then (recycling the `DECIMALS` list), `C` with zero and `D` with two.

1.2 Glossary of terminology

Backing store is a system provided by Genstat for the convenient storage of data structures and procedures. The `OPEN` directive allows you to open a backing-store file, the `STORE` directive stores information and `RETRIEVE` allows you to access it later on (perhaps in a subsequent run of Genstat). When a data structure is stored, Genstat keeps not only the data values but also all the other associated information (for example level and label definitions of factors, sub-structures of pointers and so on).

Bracket

- **Round brackets** `()` are used to enclose a list of numbers to be pre- or post-multiplied or to enclose the arguments of a function; they also occur in expressions.
- **Square brackets** `[]` are used to enclose a list of option settings or to enclose the suffix list of a pointer; also, when preceded by `$`, they enclose lists of unit names or numbers for a qualified identifier.
- **Curly brackets** `{}` are each synonymous with the corresponding square bracket.

Channel Genstat accesses the files on the computer via *channels*. For each type of file, there is a set of numbered channels that can be used to reference different files in the various input/output directives. For example, there are five input channels, numbered 1 up to 5. Likewise, there are five output channels. Genstat distinguishes between the different types of channel, so you can have one file attached to input channel 3 and a different file simultaneously attached to output channel 3. (See the `OPEN` directive.)

Character The characters used to form Genstat statements are a subset of those available on most computers. For the Genstat language they are classified as brackets, digits, letters, punctuation symbols, simple operators, or special symbols.

Comment A comment consists of any series of characters that the computer can represent, enclosed by double quotes (`"`); comments are ignored and can appear anywhere in a Genstat program.

Data structure These are used to store information within Genstat, such as numbers, character strings or even identifiers of other data structures. Directives known as declarations are available to form each of the available types.

Device is a type of plotter selected by the `DEVICE` directive for use by
1.2 Glossary of Terminology

Genstat's high-resolution graphics commands.

Diagonal matrix

is a data structure that stores the diagonal elements of a square matrix whose other values are all zero. Diagonal matrices can be declared using the `DIAGONALMATRIX` directive.

Digit

The numerical characters 0 to 9 are known as digits in Genstat.

Directive

is a standard form of instruction in the Genstat language requesting a particular action or analysis. All Genstat directives have the same syntax.

Directive name

is a system word used to request a particular action or analysis from Genstat. Directive names may be abbreviated to four characters; if characters 5-8 are given, they must match the standard form, e.g. `TREATMENTSTRUCTURE` can be written as `TREA`, `TREAT`, `TREATM`, and so on, but not as `TREATS`. (Also see procedure.)

Expression

is an arithmetic expression consisting of lists and functions separated by operators. An expression data structure stores a Genstat expression, and can be declared using the `EXPRESSION` directive.

Factor

is a data structure that specifies an allocation of the units into groups. It is thus a vector that, unlike the variate or the text, takes only a limited set of values, one for each group. The groups are referred to by numbers known as levels; you can also define textual labels. Factors can be declared using the `FACTOR` directive.

Fixed format

In fixed format, data values are arranged in specific fields on each line of the file. Each field consists of a fixed number of characters. There is no need for separating spaces. When data are read in fixed format in Genstat (by the `READ` directive), the tab character is not permitted, nor are comments.

Formula

is a model formula of lists and operators defining the list of model terms involved in an analysis. A formula data structure stores a Genstat formula, and can be defined using the `FORMULA` directive.

Frame

In Genstat graphics, `frame` refers to the available plotting area. (See the `FRAME` and `GRAPH` directives.)

Free format

In free format, the data values are separated by one or more spaces (or tabs), and can otherwise be arranged any way you like, on one or more lines, so long as the correct order is maintained. The `SEPARATOR` option of the `READ` directive allows separators other than spaces to be requested.

Function

denotes a standard operation in an expression or formula, with the form "function-name (sequence of lists and/or expressions separated by ;)". The function-name is a system word and may be abbreviated to four characters; if characters 5-8 are given, they must match the standard form. A wide range of functions are available, for operations ranging from transformations to the
calculation of summary statistics.

Identifier

is the name given to a particular data structure within a Genstat program. The first character of an identifier must be a letter; any others can be either letters or digits. Only the first 32 characters are significant; subsequent characters are ignored. The directive `SET` allows you to specify whether or not the case of the letters (small or capital) is to be significant, e.g. whether `LENGTH` is the same as `Length`, or whether only the first eight characters should be significant (as in Releases before 4.2).

Inconsistent structure

Genstat data structures that depend on other structures can be left in an inconsistent form if these other structures are deleted. For example, a table depends on its classifying factors.

Item

is a number, a string, an identifier, a system word, a missing value, or an operator.

Justification

is the process of ensuring that columns of information line up down the left-hand side (left justification) or down the right-hand side (right justification).

Label

of a factor is one of the possible textual values that the factor can store.

Letter

Letters in Genstat are the upper-case (capital) letters `A` to `Z`, the lower-case letters `a` to `z`, the underline symbol `_`, and the percent character `%`.

Level

of a factor is one of the possible (numerical) values that the factor can store.

Line printer

is the general term used to denote a character-based graphics device.

List

is a sequence of items separated by commas. In an identifier list, each item is an identifier or an unnamed structure, while number or string lists contain numbers or strings respectively. Lists can contain pre- or post-multipliers. Identifier and number lists can contain progressions.

Loop

is a series of Genstat commands that is repeated several times, possibly operating on different data structures each time. (See the `FOR` directive.)

LRV structure

is a compound data structure storing latent roots and vectors, mainly used in multivariate analysis. They can be declared using the `LRV` directive.

Macro

is a Genstat text structure containing a section of a Genstat program. The text must have an unsuffixed identifier. It can be substituted into the program, by giving its identifier, preceded by a contiguous pair of substitution symbols (`##`). The substitution takes place as soon as Genstat reads the pair of hashes. (However, Genstat also has the `EXECUTE` directive, which allows a text containing a list of statements to be executed for example within a loop or procedure.)
1.2 Glossary of Terminology

Margin
The margin of a Genstat table is a section of the table that contains summaries over the values of one or more of the classifying factors. A marginal term of a term T in a statistical model is a term composed of factors or variates that are a subset of those of T.

Matrix
is a data structure that stores a rectangular array of numbers. Matrices can be declared using the `MATRIX` directive.

Missing value
is denoted within a Genstat program by one asterisk (*). When reading data, a series of contiguous asterisks or an asterisk followed by letters or digits is treated as a missing value too, and other characters can also be defined to represent missing values.

Multiplier
allows repetitive lists to be specified concisely. A multiplier may be a number, or the substitution symbol (#) followed by a single-valued numerical data structure.

Post-multiplier
is given immediately after the second of a pair of round brackets enclosing a list of identifiers, numbers, or strings, and has the effect of repeating the entire list, as a whole, the specified number of times.

Pre-multiplier
occurs immediately before the initial (round) bracket of a pair enclosing a list of identifiers, numbers, or strings and has the effect of repeating each item, in turn, the specified number of times.

Number
is a sequence of digits, optionally containing a decimal point (.). The sequence can be preceded by a sign (+ or −) and can be followed by an exponent: i.e. the letter E or D (in upper or lower case) optionally followed by spaces, then a sequence of digits optionally preceded by a sign.

Operator
is a symbol or symbols denoting an operation in an expression or formula:

Simple
+ (addition), − (subtraction), * (multiplication or product), / (division or nesting), . (interaction), = (assignment), < (less than), > (greater than)

Compound
** (exponentiation), + (matrix multiplication), −* (crossed deletion), −/ (nested deletion), // (pseudo-term linkage), .EQ. or == (equality), .NE. or /= or <> (non-equality), .LE. or <= (less than or equal to), .GE. or >= (greater than or equal to), .LT. (less than), .GT. (greater than), .EGS. (string equality), .NES. (string non-equality), .IN. (set inclusion), .NI. (set non-inclusion), .IS. (identifier equivalence), .ISNT. (identifier non-equivalence), .AND. (logical and), .OR. (logical or), .EOR. (logical either or), .NOT. (logical not).

Only + − * / . −* / − and // may occur in formulae, while . −* −/ and // cannot occur (as operators) in expressions.

Precedence
The list below shows the order in which the operators are evaluated when they are used in expressions, if brackets are not used to make the order explicit:

(1) .NOT. Monadic −
(2) .IS. .ISNT. .IN. .NI. *.+
1 The Genstat Language

** Dyadic -

**

* \/

\+ \-

< > \= \<\> \>= \=/ \.LT. \.GT. \.EQ. \.IE.

\.GE. \.NE. \.NES.

\.AND. \.OR. \.EOR.

(Monadic minus means the use of the minus sign in a negative number: for example, \(-1\).) Within each class, operations are done from left to right within a expression, unless brackets are used to indicate some other order.

Option

Options specify arguments that are global within a Genstat statement: i.e. they apply to all the items in the parameter list(s). Often, but not always, options have default values and so need not be specified.

Option name

is a system word that identifies a particular option setting. It can be abbreviated to the minimum number of characters required to distinguish it from the options that precede it in the prescribed order for the directive or procedure concerned; for directives, four characters are always sufficient.

Option sequence

is a series of option settings separated by semi-colons (\;).

Option setting

has the form

\[
\text{option-name} = \text{list, expression or formula}
\]

"option-name =" can be omitted if the settings are given in the prescribed order for the directive or procedure concerned: i.e. the name may be omitted for the first setting if this is for the first prescribed option, and for subsequent settings if the previous setting was for the option immediately before the current one in the prescribed order.

Parameter

Parameters specify parallel lists of arguments for a statement: i.e. the statement (with its option settings) operates for the first item in each list, then the second, and so on. The number of times that this happens is determined by the length of the parameter list that is first in the prescribed order for the directive or procedure concerned. Subsequent lists are recycled if they are shorter than the first list.

Parameter name

is a system word that identifies which parameter is being set. It may be abbreviated to the minimum number of characters required to distinguish it from the parameters that precede it in the prescribed order for the directive or procedure concerned; for directives, four characters are always sufficient.

Parameter sequence

is a series of parameter settings separated by semi-colons (\;).

Parameter setting

has the form

\[
\text{parameter-name} = \text{list, expression or formula}
\]

"parameter-name =" can be omitted if the settings are given in the prescribed order for the directive or procedure concerned: i.e. the name may be omitted for the first setting if this is for the first prescribed parameter, and for subsequent settings if the previous setting was for the parameter immediately before the current one in the prescribed order. For directives or procedures with only a single parameter, no parameter name is defined.
1.2 Glossary of Terminology

Pen

All the elements of a high-resolution graph, such as symbols, lines, axes, titles, labels, annotation, and filled polygons are drawn by pens, which have associated definitions covering various attributes, like colour, font, and symbol type. The pen also indicates the plotting method, that is, what kind of plot is to be drawn. See the PEN directive.

Pointer

is a data structure that stores a series of identifiers, pointing to other data structures. Pointers can be declared using the POINTER directive.

Procedure

This is a structure that contains Genstat statements, and fulfils the role of the subroutine in the Genstat language. The use of a procedure looks just like the use of a Genstat directive. All data structures within the procedure are local (i.e. they cannot be referenced, or confused, with data structures outside the procedure); input and output structures for the procedure are defined by option and parameter settings in the procedure call. Procedure name is a letter followed by letters and/or digits. Procedure names can be defined with up to 32 characters; if more than 32 are given, characters 33 onwards are ignored. The case of the letters (small or capital) is also ignored. When using a procedure, the name can be abbreviated to as few as four characters, provided there is no ambiguity with the names of directives or other procedures. Directives and procedures in the official Genstat library are all defined to have names that are distinct within the first four characters so there should be no problem unless you (or your site) have defined procedures with ambiguous names. If so, Genstat selects the command to use according to the following order of priority: directives, user-defined procedures, procedures in libraries attached by the user (in order of channel number), procedures in the site library, and procedures in the official library.

Procedure Library

The Genstat Procedure Library contains procedures contributed not only by the writers of Genstat but also by knowledgeable Genstat users from many application areas and countries. The Library is controlled by an Editorial Board, who check that the procedures are useful and reliable, and maintain standards for the documentation. It is regularly extended and updated, independently to the releases of Genstat itself, and these revised versions are distributed automatically to all supported Genstat sites. Information about the Library is available using procedures in the help module of the Library. Other modules cover, for example, manipulation, graphics and various types of statistical analysis. These procedures are all accessed automatically by Genstat, when required. Instructions for authors of procedures can be obtained using procedure NOTICE. You can also form your own procedure libraries using the STORE directive.

Program

is a series of statements, ending with the statement STOP.

Progression

Lists of numbers ascending or descending with equal increments can be specified succinctly using the form "number, number . . . number" where the first two numbers define the first two elements in the list (and thus the increment) and the list ends with
the value beyond which the third number would be passed. For lists with an increment of plus or minus one, the second number can be omitted, to give the form "number . . . number".

Punctuation symbol

- **colon (:)** indicates the end of a statement;
- **comma (,)** separates items;
- **double quote ("")** is used to show the beginning and end of a comment;
- **equals (=)** separates an option name or parameter name from its setting;
- **newline** is synonymous with colon, by default, but directive *SET* can request that it be ignored;
- **semi-colon (;)** separates lists;
- **single quote (')** is used to show the beginning and end of a string (left single quote (`) is synonymous with single quote);
- **space** can appear between items or can be omitted altogether if the items are already separated by another punctuation symbol, a bracket, an operator, or an ampersand;
- **tab** the tab character is treated as a synonym of space everywhere except within texts and comments or if reading in fixed format (when it is treated as a fault).

Qualified identifier

These may occur in a list of identifiers to define subsets of the values of a data structure (i.e. sub-structures). The form is "identifier $ qualifier", where the qualifier is a sequence of identifier lists enclosed in square brackets. For factors, variates, and texts, the qualifier has a single list, each element of which defines a subset of the vector concerned. For matrices there are two lists running in parallel, one for each dimension. For a symmetric matrix, there can be either one or two lists, depending on whether or not its two dimensions are to be subset in the same way; one list forms a symmetric matrix, and two lists forms a rectangular matrix, For a diagonal matrix there is a single list. Tables cannot be qualified. The elements of the qualifier lists can be scalars, numbers, variates, quoted strings, or texts. The set of units defined by an element in the qualification list is built up, by taking its values one at a time. Positive numbers (or texts or strings) add units to the set, while negative numbers delete the corresponding units from the set (if already there). A missing value can be used to include all the units, and one of these will be included implicitly at the start of the qualification list if the first element of the list is negative. More details, and examples, are given in Section 4.1.6 of the *Guide to the Genstat Command Language: Part 1 Syntax and Data Management*.

Save structure

is a special-purpose structure defined within Genstat for saving information, for example from an analysis, so that further output can be obtained without repeating all the calculations.

Scalar

is a data structure that stores a single number. Scalars can be declared using the *SCALAR* directive.

Special symbol

- **ampersand (&)** repeats the previous statement name (unless that statement contained a syntax error) and any option settings that are not
1.2 Glossary of Terminology

Explicitly changed;

asterisk (*) denotes a missing value (and is also used as an operator);

backslash (\) is the continuation symbol, typed at the end of a line to indicate that the current statement continues onto the next line (this is unnecessary when directive \texttt{set} has been used to specify that newline is to be ignored);

dollar ($) precedes a list of unit names or numbers (enclosed in square brackets) that define subsets of a factor, variate, matrix, symmetric matrix, diagonal matrix, or text;

exclamation mark (!) indicates an unnamed structure (vertical bar (|) is synonymous with exclamation mark);

hash (#) is the substitution symbol; when used on its own (i.e. followed just by a punctuation symbol) it represents the default setting of an option; alternatively, it can be followed by the identifier of a data structure whose values are to be inserted at that point in a Genstat statement (the substitution takes place immediately before the statement is executed). A pair of contiguous substitution symbols (##) is used to introduce a macro.

SSPM structure is a compound data structure storing sums of squares and products, means and ancillary information for use in regression and multivariate analysis. SSPMs can be declared using the \texttt{sspm} directive.

Standard order The values of a set of factors are said to be in standard order if their units are arranged so that the levels of the first factor occur in the same order as in its levels vector then, within each level of the first factor, the levels of the second factor are arranged similarly, and so on. (See the \texttt{generate} directive.)

Statement is an instruction in the Genstat language; it has the form

\begin{verbatim}
statement-name [option-sequence]
parameter-sequence terminator
\end{verbatim}

If no option settings are given, the square brackets can be omitted. The terminator is colon (:), ampersand ($) or newline (unless directive \texttt{set} has indicated that this is to be ignored).

Statement name is the name of either a directive or a procedure.

String is a sequence of characters forming one unit (or line) of a Genstat text structure. In most contexts, the string must be quoted: i.e. enclosed in single quotes ('). Quoted strings may contain any of the characters available on the computer. However, if single quote ('), double quote ("), or the continuation symbol (\) are required as characters within a quoted string, they must each be typed twice to distinguish this use from their action in, respectively, terminating the string, introducing a comment within the string, or indicating continuation. Newline within a quoted string is taken to terminate the current (quoted) string and begin another one, unless the newline is within a comment or preceded by an (unduplicated) continuation symbol (\), or unless directive \texttt{set} has specified that newline is to be ignored. Unquoted strings can occur in unnamed texts, or in option or parameter settings where you have to specify a particular string from a prescribed set of alternatives; an unquoted string must have a letter as its first character and contain only letters or digits.
1 The Genstat Language

Subfile

Back ing store files are partitioned into subfiles. These are self-contained, and can be used completely independently of each other.

Subset selection

An identifier list can contain qualified identifiers, each defining a list of subsets of the values of the data structure concerned.

Suffix

Elements of pointers can be referred to by suffixes. Each suffix takes the form of an identifier list enclosed in square brackets; the list can contain numbers, scalars, or variates to reference an element or elements by number, or texts or quoted strings to reference by label. A null list within the brackets is taken to mean all the elements of the pointer in turn. Where a pointer has other pointers as its elements, their elements can be referred to in the same way, and so the original identifier may be followed by several suffix lists each contained in its own pair of square brackets; these define a list of elements, one for each combination of an element from each suffix list, taking the combinations in an order in which the last list cycles through its elements fastest, then the next to last list, and so on.

Symmetric matrix

is a data structure that stores the lower triangle (including the diagonal) of a symmetric square matrix.

System word

is a letter followed by letters and/or digits with a special meaning within the Genstat language, e.g. directive, option, parameter, or function names. The case of the letters (small/capital) is not significant; the abbreviation rules vary according to context.

Table

is a data structure that stores a multi-dimensional array of numbers, each dimension classified by a factor. Thus a table can be used to hold a summary of data that are classified (by the factors) into groups. Tables can be declared using the TABLE directive.

Text

is a data structure that stores a series of strings, each one representing a line of textual information. Texts can be declared using the TEXT directive.

Tree

is a data structure that represents hierarchical structures like classification trees, identification keys and regression trees. Trees can be declared using the TREE directive.

TSM structure

is a compound data structure storing a model for use in Box-Jenkins modelling of time series. TSMs can be declared using the TSM directive.

Unknown cell

of a table is used to store the relevant summary of all the observations for which any of the classifying factors of the table has a missing value; these observations cannot be assigned to any cell of the table itself. (See TABLE.)

Unnamed structure

An identifier list may contain unnamed variates, scalars, texts, pointers, expressions, or formulae. An unnamed structure consists of an exclamation mark, followed by the type code, and then the values contained in round brackets. The type code is E for expression, F for formula, P for pointer, S for scalar, T for
1.3 Data structures

Data structures store the information on which a Genstat program operates. Structures can be defined, or declared, by a Genstat statement known as a declaration. The directive for declaring each type of structure has the same name as given to that type of structure, for example \texttt{SCALAR} to declare a scalar (or single-valued numerical structure), and so on. These are the directives, with details of their corresponding data structures:

\begin{verbatim}
SCALAR single number
VARIATE series of numbers
TEXT series of character strings (or lines of text)
FACTOR series of group allocations (using a pre-defined set of numbers or strings to indicate the groups)
MATRIX rectangular matrix
SYMMETRICMATRIX symmetric matrix
DIAGONALMATRIX diagonal matrix
TABLE table (to store tabular summaries like means, totals etc)
DUMMY single identifier
POINTER series of identifiers (e.g. to represent a set of structures)
EXPRESSION arithmetic expression
FORMULA model formula (to be fitted in a statistical analysis)
LKV latent roots and vectors
SSPM sums of squares and products with associated information such as means
TREE tree (as used to represent classification trees, identification keys and regression trees)
TSM model for Box-Jenkins modelling of time series
\end{verbatim}

You can rename a data structure, or create a new one with attributes the same as those of an existing structure.

\begin{verbatim}
RENAM\texttt{E} renames a data structure, to give it a new identifier
DUPLICATE forms new data structures with attributes taken from an existing structure
PD\texttt{O}UT\texttt{I}C\texttt{A}TE duplicates a pointer, with all its components
SETNAME sets the identifier of a data structure to be one specified in a text
\end{verbatim}

You can also define data structures whose contents are customized for particular tasks.

\begin{verbatim}
STRUCTURE defines a customized data structure
DECLARE declares one or more customized data structures
\end{verbatim}
There are commands to access and display the attributes of data structures, and to work out the best formats for printing their values.

- **DUMP** prints attributes of data structures and other internal information
- **DECIMALS** sets the number of decimals for a structure, using its round-off
- **GETATTRIBUTE** accesses attributes of data structures
- **LIST** lists details of the data structures that currently exist in your program
- **MINFIELDWIDTH** calculates minimum field widths for printing data structures

1.4 Program control

A Genstat program consists of a sequence of one or more *jobs*. The first job starts automatically at the start of the program. Subsequent jobs can be initialized by the **JOB** and **ENDJOB** directives:

- **JOB** starts a Genstat job (ending the previous one if necessary)
- **ENDJOB** ends a job

The whole program is terminated by a **STOP** directive:

- **STOP** ends a Genstat program

Statements within a program can be repeated using a **FOR** loop. The loop is introduced by a **FOR** statement. This is followed by the series of statements that is to be repeated (that is, the contents of the loop), and the end of the loop is marked by an **ENDFOR** statement. Parameters of the **FOR** directive allow lists of data structures to be specified so that the statements in the loop operate on different structures each time that it is executed.

- **FOR** indicates the start of a loop
- **ENDFOR** marks the end of a loop

Genstat has two ways of choosing between sets of statements. The block-if structure consists of one or more alternative sets of statements. The first set is introduced by an **IF** statement. There may then be further sets introduced by **ELSIF** statements. Then there may be a final set introduced by an **ELSE** statement, and the whole structure is terminated by an **ENDIF** structure. The **IF** statement, and each **ELSIF** statement, contains a single-valued logical expression. Genstat evaluates each one in turn and executes the statements following the first **TRUE** logical found; if none of them is true, Genstat executes the statements following the **ELSE** statement (if any).

- **IF** introduces a block-if structure
- **ELSIF** introduces an alternative set of statements in a block-if structure
- **ELSE** introduces a default set of statements for a block-if structure
- **ENDIF** marks the end of a block-if structure

The multiple-selection structure consists of several sets of statements. The first is introduced by a **CASE** statement. Subsequent sets are introduced by **OR** statements. There can then be a final, default, set introduced by an **ELSE** statement, and the end of the structure is indicated by an **ENDCASE** statement. The parameter of the **CASE** statement is an expression which must produce a single number. Genstat rounds this to the nearest integer, \(n \) say, and then executes the \(n \)th set of statements. If there is no \(n \)th set, the statements following the **ELSE** statement are executed (if any).

- **CASE** introduces a multiple-selection structure
- **OR** introduces an alternative set of statements for a multiple-selection structure
- **ELSE** introduces a default set of statements for a multiple-selection structure
- **ENDCASE** marks the end of a multiple-selection structure
1.4 Program control

Sequences of statements can be formed into Genstat procedures for convenient future use. The use of a procedure looks just like one of the Genstat directives, with its own options and parameters, which transfer information to and from the procedure. Otherwise the procedure is completely self-contained. The start of a procedure is indicated by a **PROCEDURE** statement. Then **OPTION** and **PARAMETER** statements can be given to define the arguments of the procedure. These are followed by the statements to be executed when the procedure is called, terminated by an **ENDPROCEDURE** statement.

PROCEDURE introduces a procedure, and defines its name
OPTION defines the options of a procedure
PARAMETER defines the parameters of a procedure
CALLS lists library procedures called by a procedure
ENDPROCEDURE indicates the end of a procedure
WORKSPACE accesses "private" data structures for use in procedures

Any control structure (job, block-if structure, loop, multiple-selection structure or procedure) can be abandoned using an **EXIT** statement. Also, execution of any of these structures can be interrupted explicitly with a **BREAK** statement, or implicitly by using **DEBUG**. Once **DEBUG** has been entered, Genstat will produce breaks automatically at regular intervals, until it meets an **ENDDEBUG** statement. You can also issue a faults, warnings or messages.

EXIT exits from a control structure
BREAK suspends the execution of a control structure
ENDBREAK continues execution of a control structure, following a break
DEBUG can cause a break to take place after the current statement (and at specified intervals thereafter), or immediately after the next fault
ENDDEBUG cancels **DEBUG**
FAULT evaluates a logical expression to decide whether to issue a diagnostic, i.e. a fault, warning or message
DISPLAY prints, or reprints, diagnostic messages

Macros within a procedure are substituted as soon as they are met during the definition of the procedure. However, it is also possible to execute a set of statements (contained in a text) during execution of the procedure. This can also be useful within loops.

EXECUTE executes the statements contained within a text

Other commands that may be useful in programs and procedures include the following:

CAPTION prints captions in standardized formats
COMMANDINFORMATION provides information about whether (and how) a command has been implemented
COUNTER increments a multi-digit counter using non base-10 arithmetic
GET accesses details of the "environment" of a Genstat job
GETTEMPFOLDER gets the name of the Genstat temporary folder
SET sets details of the "environment" of a Genstat job
ENQUIRE provides details about files opened by Genstat
GETATTRIBUTE accesses attributes of structures
CHECKARGUMENT checks the arguments of a procedure
LIBEXAMPLE accesses examples and source code of library procedures
SETCALCULATE performs Boolean set calculations on the contents of vectors or pointers
SETRELATE compares the sets of values in two data structures
SPSYNTAX puts details about the syntax of commands into a spreadsheet
SYNTAX obtains details of the syntax of a command and the source code of a procedure
ASSIGN sets elements of pointers and dummies
DELETE deletes the attributes and values of structures
DUPLICATE forms new data structures with attributes taken from an existing structure
%CD changes the current directory
%LOG adds text into the Input Log window in the Genstat client
%MESSAGEBOX displays text in a dialog in the Genstat client
%OPEN open a binary file for use with %WRITE
%FLUSH flushes server output immediately to the client Output window
%FPOSITION returns the current position in the binary file opened by %OPEN
%WRITE writes values of data structures to a binary file opened by %OPEN
%CLEAR clears the client Output window
%CLOSE closes the binary file opened by %OPEN
%SLEEP pauses execution of the server for a time specified in seconds
%TEMPFILE creates a unique temporary file in the Genstat temporary folder

In some implementations of Genstat, it is possible to suspend the execution of Genstat and return to the operating system of the computer to execute commands, for example to list or edit files on the computer. You can also execute code within an external DLL using the EXTERNAL directive and the OWN function. Likewise, it may be possible to halt the execution of Genstat to execute some other computer program. The OWN directive provides another way of running a user's program from within Genstat. The OWN subroutine, within the Fortran code of Genstat, needs to be modified to call the program. The new code must then be recompiled and linked into a new version of Genstat.

SUSPEND suspends the execution of Genstat to carry out operating-system commands
PASS runs another computer program, taking data from Genstat and transferring results back
SHELLEXECUTE launches executables or opens files in another application using their file extension
EXTERNAL declares an external function in a DLL for use by the OWN function
OWN executes the user's own code linked into Genstat
BGXGENSTAT runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts
RXGENSTAT submits a set of commands externally to R and reads the output
2 Data handling

2.1 Input and output

Data can be read into Genstat data structures using the \texttt{READ} and \texttt{SPLOAD} directives or the \texttt{FILEREAD} and \texttt{TX2VARIATE} procedures:

\begin{itemize}
 \item \texttt{READ} reads data from an input file, an unformatted file or a text
 \item \texttt{FILEREAD} reads data from a text file, assumed to be in a rectangular array
 \item \texttt{SPLOAD} loads data from a Genstat spreadsheet file
 \item \texttt{TX2VARIATE} reads values into a variate from a text structure
\end{itemize}

Files can be connected to input, output or other channels during execution of a Genstat program. Channels can also be closed, terminating the connection, so that they can be attached to other files.

\begin{itemize}
 \item \texttt{OPEN} opens files and connects them to Genstat input/output channels
 \item \texttt{CLOSE} closes files, freeing the channels to which they were attached
\end{itemize}

The channel from which input statements are taken can be changed, as can the channel to which output is sent. It is also possible to send a transcript (or copy) of input and/or output to output files, to skip sections of input or output files, and to obtain information about the files connected to each channel.

\begin{itemize}
 \item \texttt{INPUT} specifies the channel from which subsequent statements should be read
 \item \texttt{RETURN} returns to the previous input channel
 \item \texttt{OUTPUT} specifies the channel to which future output should be sent
 \item \texttt{COPY} requests a transcript of subsequent input and/or output
 \item \texttt{SKIP} skips lines of input or output files
 \item \texttt{ENQUIRE} provides details about files opened by Genstat
\end{itemize}

The following commands allow you to generate output.

\begin{itemize}
 \item \texttt{PRINT} prints data in tabular form to an output file or text
 \item \texttt{CAPTION} prints captions and titles in standardized formats
 \item \texttt{LIST} lists details of the data structures that currently exist in your program
 \item \texttt{PAGE} moves to the top of the next page of an output file
 \item \texttt{PFACLEVELS} prints levels and labels of factors
 \item \texttt{PLINK} prints a link to a graphics file into an HTML file
 \item \texttt{DISPLAY} repeats the last Genstat diagnostic
 \item \texttt{DUMP} prints attributes of data structures and other internal information
 \item \texttt{MINFIELDWIDTH} calculates minimum field widths for printing data structures
\end{itemize}

You can copy, delete and rename files:

\begin{itemize}
 \item \texttt{FCOPY} makes copies of files
 \item \texttt{FDELETE} deletes files
 \item \texttt{FRENAME} renames files
\end{itemize}

You can define menus:

\begin{itemize}
 \item \texttt{QDIALOG} produces a modal dialog box to obtain a response from the user
 \item \texttt{QUESTION} obtains a response using a Genstat menu (formed using \texttt{QDIALOG})
 \item \texttt{QFACTOR} allows the user to decide to convert texts or variates to factors
 \item \texttt{QLIST} presents a sequence of menus to obtain a response from a list
\end{itemize}

The values of a data structure, with all its defining information, can be stored in a sub-file of a "backing-
store" file. It can then be retrieved in a later job, without the need to repeat the definitions. The current state of the whole job can also be dumped to an unformatted file, so that it can be picked up and continued on a later occasion.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORE</td>
<td>stores data structures in a backing-store file</td>
</tr>
<tr>
<td>RETRIEVE</td>
<td>retrieves data structures from a backing-store file</td>
</tr>
<tr>
<td>CATALOGUE</td>
<td>displays the contents of a backing-store file</td>
</tr>
<tr>
<td>MERGE</td>
<td>copies sub-files of backing-store files into a single file</td>
</tr>
<tr>
<td>RECORD</td>
<td>dumps the complete details of a job</td>
</tr>
<tr>
<td>RESUME</td>
<td>reads and restarts a recorded job</td>
</tr>
</tbody>
</table>

Genstat has several additional commands for accessing data from spreadsheets, databases and other systems. However, these may be unavailable in some implementations.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSPRO</td>
<td>reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file</td>
</tr>
<tr>
<td>EXPORT</td>
<td>outputs data structures in foreign file formats, or as plain or comma-delimited text</td>
</tr>
<tr>
<td>IMPORT</td>
<td>reads data in a foreign file format, and loads it or converts it to a spreadsheet file</td>
</tr>
<tr>
<td>DBCOMMAND</td>
<td>runs an SQL command on an ODBC database</td>
</tr>
<tr>
<td>DBEXPORT</td>
<td>update an ODBC database table using data from Genstat</td>
</tr>
<tr>
<td>DBIMPORT</td>
<td>loads data into Genstat from an ODBC database</td>
</tr>
<tr>
<td>DBINFORMATION</td>
<td>loads information on the tables and columns in an ODBC database</td>
</tr>
<tr>
<td>DDEEXPORT</td>
<td>sends data or commands to a Dynamic Data Exchange server</td>
</tr>
<tr>
<td>DDEIMPORT</td>
<td>gets data from a Dynamic Data Exchange (DDE) server</td>
</tr>
<tr>
<td>GRIBIMPORT</td>
<td>reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file</td>
</tr>
<tr>
<td>SPCOMBINE</td>
<td>combines spreadsheet and data files, without reading them into Genstat</td>
</tr>
</tbody>
</table>

2.2 Calculations and manipulation

The directive **CALCULATE** allows arithmetic calculations on the values of any numeric data structure; logical tests can also be done on numerical and textual values. Functions and operators are available for a very wide range of calculations on matrices and tables. Another general directive is **EQUATE**, which allows values to be copied from one set of data structures to another; the structures must store values of the same mode (for example, numbers or text), but need not be of the same type. Structure values can be deleted to save space within Genstat; attributes can also be deleted so that the structure can be redefined, for example as another type. Contents of data structures can be compared, to see if they contain the same distinct items, or whether the distinct values in one structure are a subset of those in another. You can also find all the locations where a number, identifier or string occurs within a data structure.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCULATE</td>
<td>performs arithmetic and logical calculations</td>
</tr>
<tr>
<td>DELETE</td>
<td>allows values and attributes of data structures to be deleted</td>
</tr>
<tr>
<td>EQUATE</td>
<td>copies values between sets of data structures</td>
</tr>
<tr>
<td>SETRELATE</td>
<td>compares the sets of values in two data structures</td>
</tr>
<tr>
<td>GETLOCATIONS</td>
<td>finds locations of an identifier within a pointer, or a string within a factor or text, or a number within any numerical data structure</td>
</tr>
</tbody>
</table>

There are several general directives for manipulating vectors (variates, factors or texts). Units of vectors can be sorted into systematic order or into random order. Boolean arithmetic can be performed on their contents, or you can form all the ways of partitioning them into subsets. A "restriction" can be associated with a vector, so that subsequent statements operate on only a subset of its units. A default length and labelling can be defined for vectors formed later in the job. Facilities for specific types of vector allow
interpolation of values for variates, monotonic regression, calculation of regression quantiles, generation of factor values, and concatenation, editing and searching of text.

SORT sorts units of vectors into alphabetic or numerical order of an index vector, or forms a factor from a variate or text
SETCALCULATE performs Boolean set calculations on the contents of vectors and pointers
SETALLOCATIONS runs through all ways of allocating a set of objects to subsets
RESTRICT defines a "restriction" on the units of a vector
UNITS defines default length or labelling for vectors defined subsequently in the job
INTERPOLATE calculates variates of interpolated values
FRQUANTILES forms regression quantiles
MONOTONIC fits an increasing monotonic regression
GROUPS forms a factor (or grouping variable) from a variate or text, together with the set of distinct values that occur
CONCATENATE concatenates together lines of text vectors
EDIT line editor for units of text vectors
TXBREAK breaks a text structure into individual words
TXCONSTRUCT forms a text structure by appending or concatenating values of scalars, variates, texts, factors or pointers; allows the case of letters to be changed or values to be truncated and reversed
TXFIND finds a subtext within a text structure
TXINTEGERCODES converts textual characters to and from their corresponding integer codes
TXPOSITION locates strings within the lines of a text structure
TXREPLACE replaces a subtext within a text structure

Another general directive allows you to run many algorithms from the Numerical Algorithms Group Library, for example to build mathematical models.

NAG calls an algorithm from the NAG Library

Other facilities for vectors are provided by the procedures in the Genstat Procedure Library, including

APPEND appends a list of vectors of compatible types
FACAMEND permutes the levels and labels of a factor
FACCOMBINATIONS forms a factor to indicate observations with identical values of a set of variates, texts or factors
FACDIVIDE represents a factor by factorial combinations of a set of factors
FACEXCLUDEUNUSED redefines the levels and labels of a factor to exclude those that are unused
FACGETLABELS obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise
FACMERGE merges levels of factors
FACPRODUCT forms a factor with a level for every combination of other factors
FACSORT sorts the levels of a factor according to an index vector
FACLEVSTANDARDIZE redefines a list of factors so that they have the same levels or labels
FACUNIQUE redefines a factor so that its levels and labels are unique
FBEETWEENGROUPVECTORS forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis
FDISTINCTFACTORS checks sets of factors to remove any that define duplicate classifications
FMFACTORS forms a pointer of factors representing a multiple-response
FFREERESPONSEFACTOR forms multiple-response factors from free-response data
Data handling

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREGULAR</td>
<td>expands vectors onto a regular two-dimensional grid</td>
</tr>
<tr>
<td>FREstrictedSet</td>
<td>forms vectors with the restricted subset of a list of vectors</td>
</tr>
<tr>
<td>FROWCANONICALMATRIX</td>
<td>puts a matrix into row canonical, or reduced row echelon, form</td>
</tr>
<tr>
<td>FSTRING</td>
<td>forms a single string from a list of strings in a text</td>
</tr>
<tr>
<td>FTEXT</td>
<td>forms a text structure from a variate</td>
</tr>
<tr>
<td>FUNIQUEVALUES</td>
<td>redefines a variate or text so that its values are unique</td>
</tr>
<tr>
<td>FWITHTERMS</td>
<td>forms factors to define terms representing the effects of one factor within another factor</td>
</tr>
<tr>
<td>FVSTRING</td>
<td>forms a string listing the identifiers of a set of data structures</td>
</tr>
<tr>
<td>GRAND</td>
<td>generates pseudo-random numbers from probability distributions</td>
</tr>
<tr>
<td>GRMnomial</td>
<td>generates multinomial pseudo-random numbers</td>
</tr>
<tr>
<td>GRMULTINORMAL</td>
<td>generates multivariate normal pseudo-random numbers</td>
</tr>
<tr>
<td>JOIN</td>
<td>joins or merges two sets of vectors together, based on classifying keys</td>
</tr>
<tr>
<td>MVFILL</td>
<td>replaces missing values in a vector with the previous non-missing value</td>
</tr>
<tr>
<td>ORTHPOLYNOMIAL</td>
<td>calculates orthogonal polynomials</td>
</tr>
<tr>
<td>QUANTILE</td>
<td>calculates quantiles of the values in a variate</td>
</tr>
<tr>
<td>RANK</td>
<td>produces ranks, from the values in a variate, allowing for ties</td>
</tr>
<tr>
<td>RESHAPE</td>
<td>reshares a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>samples from a set of units, possibly stratified by factors</td>
</tr>
<tr>
<td>SVSAMPLE</td>
<td>constructs stratified random samples</td>
</tr>
<tr>
<td>STACK</td>
<td>combines several data sets by "stacking" the corresponding vectors</td>
</tr>
<tr>
<td>STANDARDIZE</td>
<td>standardizes columns of a data matrix to have mean 0 and variance 1</td>
</tr>
<tr>
<td>SUBSET</td>
<td>forms vectors containing subsets of the values in other vectors</td>
</tr>
<tr>
<td>TXPAD</td>
<td>pads strings of a text structure with extra characters so that their lengths are equal</td>
</tr>
<tr>
<td>TXPROGRESSION</td>
<td>forms a text containing a progression of strings</td>
</tr>
<tr>
<td>TXSPLIT</td>
<td>splits a text into individual texts, at positions on each line marked by separator character(s)</td>
</tr>
<tr>
<td>TXZVARIATE</td>
<td>converts text structures to variates</td>
</tr>
<tr>
<td>UNSTACK</td>
<td>splits vectors into individual vectors according to levels of a factor</td>
</tr>
<tr>
<td>VEQUATE</td>
<td>equates values across a set of data structures</td>
</tr>
<tr>
<td>VINTERPOLATE</td>
<td>performs linear and inverse linear interpolation between variates</td>
</tr>
<tr>
<td>VREPLACE</td>
<td>replaces values of vectors and pointers</td>
</tr>
</tbody>
</table>

There are several procedures for calculating or fitting splines, and for manipulating series of observations of a theoretical curve.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPLINE</td>
<td>calculates a set of basis functions for M-, B- or I-splines</td>
</tr>
<tr>
<td>LSPLINE</td>
<td>calculates design matrices to fit a natural polynomial or trigonometric L-spline as a linear mixed model</td>
</tr>
<tr>
<td>NCSPLINE</td>
<td>calculates natural cubic spline basis functions (for use e.g. in REML)</td>
</tr>
<tr>
<td>PENSPLINE</td>
<td>calculates design matrices to fit a penalized spline as a linear mixed model</td>
</tr>
<tr>
<td>PSPLINE</td>
<td>calculates design matrices to fit a P-spline as a linear mixed model</td>
</tr>
<tr>
<td>RADIALSPLINE</td>
<td>calculates design matrices to fit a radial-spline surface as a linear mixed model</td>
</tr>
<tr>
<td>TENSORSPLINE</td>
<td>calculates design matrices to fit a tensor-spline surface as a linear mixed model</td>
</tr>
</tbody>
</table>
2.2 Calculations and manipulation

ALIGNCURVE forms an optimal warping to align an observed series of observations with a standard series.

BASELINE estimates a baseline for a series of numbers whose minimum value is drifting.

PEAKFINDER finds the locations of peaks in an observed series.

Directives are available for eigenvalue, QR and singular-value decompositions of matrices, and to form the values of SSPM structures.

FLRV calculates latent roots and vectors (that is, eigenvalues and eigenvectors).

QRD calculates QR decompositions of matrices.

SVD calculates singular-value decompositions of matrices.

FSSPM calculates values for SSPM structures (sums of squares and products, means, etc.).

Procedures in the Library for operating on matrices include:

FCORRELATION forms the correlation matrix for a list of variates.

PARTIALCORRELATIONS calculates partial correlations for a list of variates.

FHADAMARDMATRIX forms Hadamard matrices.

FPROJECTIONMATRIX forms a projection matrix for a set of model terms.

FRTPRODUCTDESIGNMATRIX forms summation, or relationship, matrices for model terms.

FVCOVARIANCE forms the variance-covariance matrix for a list of variates.

GINVERSE calculates the generalized inverse of a matrix.

LINDEPENDENCE finds the linear relations associated with matrix singularities.

MPower forms integer powers of a square matrix.

POSSEMIDEFINITE calculates a positive semi-definite approximation of a non-positive semi-definite symmetric matrix.

VMATRIX copies values and row/column labels from a matrix to variates and texts.

Tables can be formed containing summaries of values in variates: totals, minimum and maximum values, quantiles, numbers of missing and non-missing values, means and variances. Manipulations of multi-way structures include the ability to add various types of marginal summaries to tables, and to combine "slices" of tables, of matrices or of variates.

TABULATE forms tables of summaries of the values of a variate.

MARGIN calculates or deletes margins of tables.

COMBINE combines or omits "slices" of tables, matrices or variates.

Procedures in the Library for operating on tables include:

BACKTRANSFORM calculates back-transformed means with approximate standard errors and confidence intervals.

MEDIANTETRAD gives robust identification of multiple outliers in 2-way tables.

MTABULATE tabulates data classified by multiple-response factors.

PERCENT expresses the body of a table as percentages of one of its margins.

SVBOOT bootstraps data from random surveys.

SVCALIBRATE performs generalized calibration of survey data.

SVM performs generalized linear models to survey data.

SVREWEIGHT modifies survey weights adjusting to ensure that their overall sum weights remains unchanged.

SVSAMPLE constructs stratified random samples.

SVSTRATIFIED analyses stratified random surveys by expansion or ratio raising.

SVTABULATE tabulates data from random surveys, including multistage surveys.
2 Data handling

and surveys with unequal probabilities of selection

SVWEIGHT forms survey weights

TABINSERT inserts the contents of a sub-table into a table

TABMODE forms summary tables of modes of values

TABSORT sorts tables so their margins are in ascending or descending order

T%CONTROL expresses tables as percentages of control cells

VTABLE forms a variate and set of classifying factors from a table

Directives are available for adding and removing branches of trees, and to assist in the construction and use of trees.

BASSESS assesses potential splits for regression and classification trees

BCUT cuts a tree at a defined node, discarding nodes and information below it

BIDENTIFY identifies specimens using a tree

BJOIN extends a tree by joining another tree to a terminal node

BGROW adds new branches to a node of a tree

There are also procedures for displaying and pruning trees. These are provide basic utilities for tree-based analysis, and are used by the existing procedures for classification trees, identification keys and regression trees (**BCLASSIFICATION**, **BKEY** and **BREGRESSION**).

BCONSTRUCT constructs a tree

BGRAPH plots a tree

BPRINT displays a tree

BPRUNE prunes a tree using minimal cost complexity

Formulae and expressions can be interpreted, revised or constructed automatically from the contents of pointers.

FARGUMENTS forms lists of arguments involved in an expression

FCLASSIFICATION forms classification sets for the terms in a formula or breaks a formula up into separate formulae (one for each term)

REFORMULATE modifies a formula or an expression to operate on a different set of data structures

SET2FORMULA forms a model formula using structures supplied in a pointer

Values can be assigned to dummies and pointers.

ASSIGN sets values of dummies and pointers

Aspects of the "environment" of the current job can be modified, such as whether or not Genstat starts output from a statistical analysis at the top of a new page, or whether it should pause during interactive output. New defaults can be set for options and parameters. Details of the environmental settings can be copied into Genstat data structures. Attributes of data structures can also be accessed.

SET sets details of the "environment" of a Genstat job

SETOPTION sets or modifies defaults of options of Genstat directives or procedures

SETPARAMETER sets or modifies defaults of parameters of Genstat directives or procedures

GET gets details of the "environment" of a Genstat job

GETATTRIBUTE accesses attributes of data structures

GETNAME forms the name of a structure according to its IPRINT attribute

There are also various specialist mathematical facilities
BPCONVERT converts bit patterns between integers, pointers of set bits and textual descriptions.
FPARETOSET forms the Pareto optimal set of non-dominated groups.
GALOIS forms addition and multiplication tables for a Galois finite field.
NCONVERT converts integers between base 10 and other bases.
PERMUTE forms all possible permutations of the integers 1...n.
PRIMEPOWER decomposes a positive integer into its constituent prime powers.

And there are games:
BINGO can be used to set up and then play a game of bingo.
FRUITMACHINE runs a fruit machine using pop-up menus and Genstat graphics.
LIFE plays John Conway's Game of Life.
NOUGHTSANDCROSSES plays a game of noughts and crosses.

2.3 Graphics

The following directives produce the plots in "line-printer" style, i.e. using the characters of ordinary textual output:

LPCONTOUR produces contour maps of two-way arrays of numbers.
LPGRAPH produces scatter plots and line graphs.
LPHISTOGRAM plots histograms.

Genstat can also produce high-resolution plots. The relevant directives have two main purposes. There are those that define the "graphics environment" for subsequent plots, and those that do the plotting. Often the default environment, set up at the start of a program, will be satisfactory. To change the graphics environment, the following directives can be used:

XAXIS defines the x-axis in each graphical window.
YAXIS defines the y-axis in each graphical window.
ZAXIS defines the z-axis in each graphical window.
AXIS defines an oblique axis for high-resolution graphics.
DEVICE switches between graphics devices.
FRAME defines the positions of the windows within the frame.
PEN defines the properties of the graphics "pens".
DFONT defines the default font for high-resolution graphics.
DKEEP saves information about the graphics environment in Genstat data structures.
DLOAD loads the graphics environment settings from an external file.
DSAVE saves the current graphics environment settings to an external file.
GETRGB provides a standard sequence of colours (defined by the initial defaults of the Genstat pens).

The directives for plotting high-resolution graphs are:

BARCHART plots bar charts.
DGRAPH produces scatter plots and line graphs.
DHISTOGRAM plots histograms.
DPIE produces pie charts.
DCONTORU produces contour maps.
DBITMAP plots a bit map of RGB colours.
DSHADE produces a shade diagram of 3-dimensional data.
DSURFACE draws a perspective plot of a two-way array of numbers.
plots a 3-dimensional graph
produces 3-dimensional histograms
starts a sequence of related plots
ends a sequence of related plots
redraws the current graphical display
clears a graphics screen
closes windows in the Genstat Graphics Viewer
views windows in the Genstat Graphics Viewer

calculates the optimum aspect ratio for a graph
draws box-and-whisker diagrams (schematic plots)
adds arrows to an existing plot
plots bar charts for one or two-way tables
plots a biplot from an analysis by PCP, CVA or PCO
plots circular data
forms a band of graduated colours for graphics
plots 3-part compositional data within a barycentric triangle
plots a correlation matrix
draws a 2-dimensional scatter plot with confidence, prediction
and/or equal-frequency ellipses superimposed
adds error bars to a graph
adds a key to a graph
adds text to a graphics frame
plots a function
plots an h-scattergram
produces diagnostic plots for space-time clustering
plots discrete data like mass spectra, discrete probability
functions
produces a mosaic plot to display a table of counts
produces a scatter-plot matrix for one or two sets of variables
plots dot histograms
produces a dot-plot
creates probability distribution plots
calculates an estimate of the spectrum of a spatial point pattern
plots the results of a genome-wide scan for QTL × E effects in
multiple environments
plots the results of a genome-wide QTL search in a single
environment trial
adds reference lines to a graph
produces model-checking plots of residuals
produces a scatter-plot matrix
displays spider-web and star plots
plots tables
adds text to a graph
produces horizontal bars displaying a continuous time record
produces one-dimensional density (or violin) plots
produces density plots for large data sets
draws two-dimensional graphs with marginal distribution plots
alongside the y- and x-axes
produces polar plots
displays the distribution of groups in a plane using a trellis of bar
or pie charts
forms multiple windows in a plot-matrix for high-resolution
graphics
2.3 Graphics

GGEBI PLOT plots displays to assess genotype+genotype-by-environment variation
INSIDE determines whether points lie within a specified polygon
LORENZ plots the Lorenz curve and calculates the Gini and asymmetry coefficients
PLINK prints a link to a graphics file into an HTML file
RCATENELSON performs a Cate-Nelson graphical analysis of bivariate data
RUGPLOT draws "rugplots" to display the distribution of one or more samples
SETDEVICE opens a graphical file and specifies the device number on basis of its extension
STEM produces a simple stem-and-leaf chart
TRELLIS produces trellis plots for each level of one or more factors
WINDROSE plots rose diagrams of circular data like wind speeds
3 Statistical analyses

3.1 Basic and nonparametric statistics

Many simple statistical operations, including calculation of summary statistics, t-tests, one- and two-way analysis of variance and non-parametric tests are provided by procedures in the Library:

- **DESCRIBE** calculates summary statistics for variates
- **TALLY** forms a simple tally table of the distinct values in a vector
- **VSUMMARY** summarizes a variate, with classifying factors, into a data matrix of variates and factors
- **TTEST** performs a one- or two-sample t-test
- **A2WAY** performs analysis of variance of a balanced or unbalanced design with up to two treatment factors
- **A2DISPLAY** provides further output following an analysis of variance by **A2WAY**
- **A2KEEP** copies information from an **A2WAY** analysis into Genstat data structures
- **AONEWAY** provides one-way analysis of variance
- **BLANDALTMAN** produces Bland-Altman plots to assess the agreement between two variates
- **CHISQUARE** calculates chi-square statistics for one- and two-way tables
- **CHIPERMTEST** performs a random permutation test for a two-dimensional contingency table
- **BNTEST** calculates one- or two-sample binomial tests
- **PNTEST** calculates one- or two-sample Poisson tests
- **FCORRELATION** forms the product moment correlation matrix for a list of variates, and tests whether the correlations are zero
- **PRCORRELATION** calculates probabilities for product moment correlations
- **CDESCRIBE** calculates summary statistics and tests of circular data
- **CASSOCIATION** calculates measures of association for circular data
- **CCOMPARE** tests whether samples from circular distributions have a common mean direction or have identical distributions
- **FRIEDMAN** performs Friedman's nonparametric analysis of variance
- **GSTATISTIC** calculates the gamma statistic of agreement for ordinal data
- **HCOMPAREGROUPINGS** calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factors
- **KAPPA** calculates a kappa coefficient of agreement for nominally scaled data
- **KCONCORDANCE** calculates Kendall's Coefficient of Concordance (synonym **CONCORD**)
- **KOLMOG2** performs a Kolmogorov-Smirnoff two-sample test
- **KRUSKAL** carries out a Kruskal-Wallis one-way analysis of variance
- **KTAU** calculates Kendall's rank correlation coefficient τ
- **LCONCORDANCE** calculates Lin's concordance correlation coefficient
- **MANNWHITNEY** performs a Mann-Whitney U test
- **MCNEMAR** performs McNemar's test for the significance of changes
- **MCOMPARISON** performs pairwise multiple comparison tests within a table of means
- **QCOCHRAN** performs Cochran's Q test for differences between related-samples
- **CATRENDTEST** calculates the Cochran-Armitage chi-square test for trend
- **CMHTEST** performs the Cochran-Mantel-Haenszel test
- **RUNTEST** performs a test of randomness of a sequence of observations
- **SIGNTEST** performs a one or two sample sign test
- **SPEARMAN** calculates Spearman's rank correlation coefficient
- **STEEL** performs Steel's many-one rank test
- **TEQUIVALENCE** performs equivalence, non-inferiority and non-superiority tests
- **WILCOXON** performs a Wilcoxon Matched-Pairs (Signed-Rank) test
3.2 Regression and generalized linear models

Genstat provides directives for carrying out linear and nonlinear regression, also generalized linear, generalized additive and generalized nonlinear models. They are designed to allow easy comparison between models, and comparison between groups of data (specified as factors). The directives for nonlinear regression can also be used for general optimization. There are three preliminary directives for defining the form of model to be fitted, of which the \texttt{MODEL} directive must always be given first:

\begin{verbatim}
MODEL \texttt{defines the response variate(s) and the type of model to be fitted}
TERMS \texttt{specifies a maximal model, containing all terms to be used in subsequent regression models}
RCYCLE \texttt{controls iterative fitting of generalized linear models, generalized additive models and nonlinear models, and specifies parameters and bounds for nonlinear models}
\end{verbatim}

Separate directives carry out the fitting of the various types of model:

\begin{verbatim}
FIT \texttt{fits a linear model, a generalized linear model, a generalized additive model, or a generalized nonlinear model}
FITCURVE \texttt{fits a standard nonlinear regression model}
FITNONLINEAR \texttt{fits a user-defined nonlinear regression model or optimizes a scalar function}
\end{verbatim}
Further directives are provided to allow sequential modification of the set of explanatory variables:

- **ADD** adds extra terms to any type of regression model
- **DROP** drops terms from any type of regression model
- **SWITCH** adds terms to, or drops them from, any type of regression model
- **TRY** displays results of single-term changes to a linear or generalized linear model
- **STEP** selects terms to include in or exclude from a linear or generalized linear model

The results of fitting the models can be displayed or stored in data structures:

- **RDISPLAY** displays the fit of any type of regression model
- **RKEEP** stores the results from any type of regression model
- **RKESTIMATES** saves estimates and other information about individual terms in a regression analysis
- **PREDICT** forms predictions from a linear or generalized linear model
- **RFUNCTION** estimates functions of parameters of a regression model
- **RSPREADSHEET** puts results from a regression, generalized linear or nonlinear model into Genstat spreadsheets

Procedures in the Library relevant to regression analysis include:

- **RCHECK** checks the fit of a regression model
- **RGRAPH** draws a graph to display the fit of a regression model
- **RDESTIMATES** plots one- or two-way tables of regression estimates
- **RPERMTEST** does random permutation and exact tests for regression or generalized-linear-model analyses
- **RPOWER** calculates the power (probability of detection) for regression models
- **RCOMPARISONS** calculates comparison contrasts amongst the levels of a factor classifying a table of regression means
- **RCURVECOMMONNONLINEAR** refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters
- **RMLCONFIDENCE** estimates profile likelihood confidence intervals of predicted group means from a linear or generalized linear model analysis
- **RPLCONFIDENCE** estimates profile likelihood confidence intervals of parameters in a linear or generalized linear model
- **RRETRIEVE** retrieves a regression save structure from an external file
- **RSTORE** stores a regression save structure in an external file
- **RTCOMPARISONS** calculates comparison contrasts within a multi-way table of means
- **RWALD** calculates Wald and F tests for dropping terms from a regression model
- **RYPARALLEL** fits the same regression model to several response variates, and collates the output
- **SED2ESE** calculates effective standard errors that give good approximate sed's
- **SEDLSI** calculates least significant intervals
- **LSIPLLOT** plots least significant intervals
- **MCOMPARISON** performs pairwise multiple comparison tests within a table of predictions
- **BRDISPLAY** displays a regression tree
- **BREGRESSION** constructs a regression tree
- **BRPREDICT** makes predictions using a regression tree
- **BRVALUES** forms values for nodes of a regression tree
- **DILUTION** calculates Most Probable Numbers from dilution series data
3.2 Regression and generalized linear models

DSEPARATIONPLOT creates a separation plot for visualising the fit of a model with a dichotomous (i.e. binary) or polytomous (i.e. multi-categorical) outcome.

EXTRABINOMIAL fits models to overdispersed proportions.

FIELLER calculates effective doses or relative potencies.

FITINDIVIDUALLY fits regression models one term at a time (useful for obtaining an accumulated analysis of deviance table containing the contributions of individual terms in a generalized linear model).

FITMULTINOMIAL fits generalized linear models with multinomial distribution.

GEE fits models to longitudinal data by generalized estimating equations.

GLM analyses non-standard generalized linear models.

GLMM fits a generalized linear mixed model.

GLDISPLAY displays further output from a GLMM analysis.

GLKEEP saves results from a GLMM analysis.

GLPERMTEST does random permutation tests for generalized linear mixed models.

GLPLOT plots residuals from a GLMM analysis.

GLPREDICT forms predictions from a GLMM analysis.

GLRTEST calculates likelihood tests to assess random terms in a generalized linear mixed model.

GLTOBITPOISSON uses the Tobit method to fit a generalized linear mixed model with censored Poisson data.

HGDISPLAY displays results from an HGLM or DHGLM analysis.

HGDRANDOMMODEL adds random terms into the dispersion models of an HGLM, so that the whole model becomes a DHGLM.

HGFIXEDMODEL defines the fixed model for an HGLM or DHGLM.

HGGRAPH draws a graph to display the fit of an HGLM or DHGLM analysis.

HGKEEP saves information from an HGLM or DHGLM analysis.

HGNONLINEAR defines nonlinear parameters for the fixed model of an HGLM.

HGPLOT produces model-checking plots for an HGLM or DHGLM analysis.

HGPREDICT forms predictions from an HGLM or DHGLM analysis.

HGRANDOMMODEL defines the random model for an HGLM.

HGRTEST calculates likelihood tests for random terms in a hierarchical generalized linear model.

HGSTATUS displays the current HGLM model definitions.

HGTOBITPOISSON uses the Tobit method to fit a hierarchical generalized linear model with censored Poisson data.

HGWALD prints or saves Wald tests for fixed terms in an HGLM analysis.

IFUNCTION estimates implicit and/or explicit functions of parameters.

MAREGRESSION does regressions for single-channel microarray data.

MINIMIZE finds the minimum of a function calculated by a procedure.

MIN1DIMENSION finds the minimum of a function in one dimension.

MICHAELISMENTEN fits the Michaelis-Menten equation for substrate concentration versus time data.

MMMPREDICT predicts the Michaelis-Menten curve for a particular set of parameter values.

NLAR1 fits curves with an AR1 or a power-distance correlation model.

PAIRTEST performs t-tests for pairwise differences.

PPAIR displays results of t-tests for pairwise differences in compact
3 Statistical analyses

diagrams

PROBITANALYSIS fits probit models allowing for natural mortality and immunity
R0INFLATED fits zero-inflated regression models to count data with excess zeros
R0KEEP saves information from models fitted by R0INFLATED
RAR1 fits regressions with an AR1 or a power-distance correlation model
RBRADLEYTERRY fits the Bradley-Terry model for paired-comparison preference tests
RCATENELSON performs a Cate-Nelson graphical analysis of bivariate data
does circular regression of mean direction for an angular response
RFINLAYWILKINSON performs Finlay and Wilkinson's joint regression analysis of genotype-by-environment data
RIDGEPRODUCT RESSPRODUCT fits locally weighted regression models (loess) to data with
groups
RDLOESSGROUPS displays results from a locally weighted regression model (loess) fitted to data with groups
RKLOESSGROUPS stores results from a locally weighted regression (loess) with
groups model fitted to data with groups
LRIDGE does logistic ridge regression
RLASSO performs lasso using iteratively reweighted least-squares
RQLINEAR fits and plots quantile regressions for linear models
RQNONLINEAR fits and plots quantile regressions for nonlinear models
RQSMOOTH fits and plots quantile regressions for loess or spline models
RLFUNCTIONAL fits a linear functional relationship model
RMGLM fits a model where different units follow different generalized linear models
RNNEG BINOMIAL fits a negative binomial generalized linear model estimating the
aggregation parameter
RNONNEGATIVE fits a generalized linear model with nonnegativity constraints
(synonym FITNONNEGATIVE)
RPAIR gives t-tests for all pairwise differences of means from linear or
generalized linear models
RPARALLEL carries out analysis of parallelism for nonlinear functions
(synonym FITPARALLEL)
RQUADRATIC fits a quadratic surface and estimates its stationary point
RSCHNUTE fits a general four-parameter growth model to a non-decreasing
response variate (synonym FITSCHNUTE)
RSCEEN performs screening tests for generalized or multivariate linear models
RSEARCH searches through models for a regression or generalized linear
model (with methods including all-subsets, forward and
backward stepwise regression)
RTORBITPOISSON uses the Tobit method to fit models to censored Poisson data
RVALIDATE fits regression models to validate predictions, for example from
a deterministic model, against observed data
R2LINES fits two-straight-line (broken-stick) models to data
SIMPLEX searches for the minimum of a function using the Nelder-Mead
algorithm
SVGLM fits generalized linear models to survey data
WADLEY fits models for Wadley's problem, allowing alternative links and errors
XOCATEGORIES performs analyses of categorical data from crossover trials
estimates the parameter lambda of a single parameter transformation

3.3 Analysis of variance

Genstat has a comprehensive set of commands to do an analysis of variance. These directives define the models to be fitted:

- **BLOCKSTRUCTURE** defines the blocking structure of the design, and hence the strata and error terms
- **COVARIATE** specifies covariates for analysis of covariance
- **TREATMENTSTRUCTURE** defines the treatment (or systematic) terms

For unstructured designs with a single error term, **BLOCKSTRUCTURE** need not be specified, and **COVARIATE** is needed only for analysis of covariance. Balanced designs can be analysed using the **ANOVA** directive.

ANOVA performs analysis of variance

Directives and procedures are available to produce plots, checks and further output from an **ANOVA** analysis, or to save information in Genstat data structures:

- **ADISPLAY** displays further output from analyses produced by **ANOVA**
- **AGRAPH** plots tables of means from **ANOVA**
- **APLOT** plots residuals from an **ANOVA** analysis
- **AFIELDRESIDUALS** display residuals in field layout
- **ABLUPS** calculates BLUPs for block terms in an **ANOVA** analysis
- **ACHECK** checks assumptions for an **ANOVA** analysis
- **AMCOMPARISON** performs pairwise multiple comparison tests for **ANOVA** means
- **AKEEP** copies information from an **ANOVA** analysis into Genstat data structures
- **ARESULTSUMMARY** provides a summary of results from an **ANOVA** analysis
- **ASPREADSHEET** saves results from an analysis of variance in a spreadsheet
- **A%VARIANCE** calculates the percentage variance and sum of squares accounted for in the strata of an **ANOVA** analysis

Unbalanced designs with a single error term can be be analysed using the **AUNBALANCED** procedure. (Unbalanced designs with several error terms should be analysed using the commands for REML analysis of linear mixed models.)

- **AUNBALANCED** performs analysis of variance for unbalanced designs
- **AUDISPLAY** produces further output for an unbalanced design (after **AUNBALANCED**)
- **AUGRAPH** plots tables of means from **AUNBALANCED**
- **AUPREDICT** forms predictions from an unbalanced design (after **AUNBALANCED**)
- **AUSPREADSHEET** Saves results from an analysis of an unbalanced design (by **AUNBALANCED**) in a spreadsheet
- **AUMCOMPARISON** performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by **AUNBALANCED**
- **AUKEEP** saves output from analysis of an unbalanced design (by **AUNBALANCED**)

There are also specialized procedures for designs (balanced or unbalanced) with a single error term and
one or two treatment factors.

A2WAY performs analysis of variance of a balanced or unbalanced design with up to two treatment factors
A2DISPLAY provides further output following an analysis of variance by A2WAY
A2KEEP copies information from an A2WAY analysis into Genstat data structures
A2RESULTSUMMARY provides a summary of results from an analysis by A2WAY

If you are unsure what method to use, you can use the AOVANYHOW procedure to see which method is most appropriate.

AOVANYHOW performs analysis of variance using ANOVA, AUNBALANCED, A2WAY or REML as appropriate
AOVDISPLAY provides further output from an analysis by AOVANYHOW

Other procedures relevant to analysis of variance include:

ABOXCOX estimates the power λ in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA
AFCOVARIATES defines covariates from a model formula for ANOVA
AFMEANS forms tables of means classified by ANOVA treatment factors
ASTATUS provides information about the settings of ANOVA models and variates
APERMTEST does random permutation tests for analysis-of-variance tables
ABIVARIATE produces graphs and statistics for bivariate analysis of variance
ACONFIDENCE calculates simultaneous confidence intervals
AMDUNNETT forms Dunnett's simultaneous confidence interval around a control
AMTIER analyses a multitiered design by analysis of variance specified by up to 3 model formulae
AMTDISPLAY displays further output for multitiered designs analysed by AMTIER
AMTKEEP saves information from the analysis of a multitiered design by AMTIER
ACANONICAL determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae
ACDISPLAY provides further output from an analysis by ACANONICAL
ACKEEP saves information from an analysis by ACANONICAL
VSPECTRALCHECK forms the spectral components from the canonical components of a multitiered design, and constrains any negative spectral components to zero
ANIADVICE aims to give useful advice if a design that is thought to be balanced fails to be analysed by ANOVA
APAPADAKIS analysis of variance with an added Papadakis covariate, formed from neighbouring residuals
APOLYNOMIAL forms the equation for a polynomial contrast fitted by ANOVA
ADPOLYNOMIAL plots single-factor polynomial contrasts fitted by ANOVA
AREPMEASURES produces an analysis of variance for repeated measurements
ARETRIEVE retrieves an ANOVA save structure from an external file
ASTORE stores an ANOVA save structure in an external file
ASCREEN performs screening tests for designs with orthogonal block structure
AYPARALLEL does the same analysis of variance for several y-variates, and collates the output
3.4 Design of experiments

Genstat has a comprehensive set of facilities for design of experiments. Collectively, these are known as the Genstat Design System. Many different design types are covered, each with a procedure that allows you to view and choose from the available possibilities. Other procedure allow designs and data forms to be displayed. There is also a general procedure DESIGN that can be used interactively to provide a single point of access to all the design types. DESIGN and the AG... procedures that it calls provide the Select Design facilities in Genstat for Windows, while the alternative Standard Design menu uses AGHIERARCHICAL, AGLATIN and AGSQLATTICE to generate completely randomized designs, randomized blocks, Latin and Graeco-Latin squares, split-plots, strip-plots (or criss-cross designs) and lattices.

DESIGN provides a menu-driven interface for selecting and generating experimental designs

AGALPHA forms alpha designs for up to 100 treatments
AGBIB generates balanced-incomplete-block designs
AGBOXBEHNKEN generates Box-Behnken designs
AGCENTRALCOMPOSITE generates central composite designs
AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects
AGCYCLIC generates cyclic designs from standard generators
AGDESIGN generates generally balanced designs -- factorial designs with blocking, fractional factorial designs, Lattice squares etc.
AGFACTORIAL generates minimum aberration complete and fractional factorial designs
AGFRACTION generates fractional factorial designs
AGHIERARCHICAL generates orthogonal hierarchical designs
AGINDUSTRIAL provides a menu-driven interface for selecting and generating designs for industrial experiments.

AGLATIN generates mutually orthogonal Latin squares.

AGLOOP generates loop designs e.g. for time-course microarray experiments.

AGMAINEFFECT generates designs to estimate main effects of two-level factors.

AGNEIGHBOUR generates neighbour-balanced designs.

AGQLATIN generates complete and quasi-complete Latin squares.

AGREFERENCE generates reference-level designs e.g. for microarray experiments.

AGSEMILATIN generates semi-Latin squares.

AGSQLATTICE generates square lattice and lattice square designs.

AGYOUDENSQUARE generates a Youden square.

PDESIGN prints treatment combinations tabulated by the block factors.

DDesign plots the plan of a design.

ADSPREADSHEET puts the data and plan of an experimental design into Genstat spreadsheets.

There are also procedures that you can use to determine the sample size (i.e. replication) required for experiments that are to be analysed by analysis of variance, t-test or various non-parametric tests. You can also calculate the power (or probability of detection) for terms in analysis of variance or regression analyses.

APower calculates the power (probability of detection) for terms in an analysis of variance.

RPOWER calculates the power (probability of detection) for regression models.

VPOWER uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis.

ASAMPLESIZE finds the replication (sample size) to detect a treatment effect or contrast.

VSAMPLESIZE estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap.

ADETECTION calculates the minimum size of effect or contrast detectable in an analysis of variance.

SBNTEST calculates the sample size for binomial tests.

SCORRELATION calculates the sample size to detect specified correlations.

SLCONCORDANCE calculates the sample size for Lin's concordance coefficient.

SMANNWHITNEY calculates the sample size for the Mann-Whitney test.

SMCNEMAR calculates the sample size for McNemar's test.

SPNTEST calculates the sample size for a Poisson test.

SPRECISION calculates the sample size to obtain a specified precision.

SSIGNTTEST calculates the sample size for a sign test.

STTEST calculates the sample size for t-tests, including equivalence tests and tests for non-inferiority.

DSTTEST plots power and significance for t-tests, including equivalence tests and tests for non-inferiority.

The Design System is based on a range of standard generators. Some of these, such as the Galois fields used to generate Latin squares, can be formed when required – and so there is no limitation on the available designs. Repertoires of others, such as design keys, are stored in backing-store files which are scanned by the design generation procedures to form menus listing the available possibilities. Algorithms are available to form generators for new designs, and these can then be added to the design files to become an integral part of the system. Other design utilities include procedures for combining simple designs into more complicated arrangements, for forming augmented designs, and for determining how many replicates are needed. There are also directives for constructing response-surface designs and doubly resolvable row-column designs. The relevant commands include the directives.
3.4 Design of experiments

AFMINABERRATION forms minimum aberration factorial or fractional-factorial designs
AFRESPONSESURFACE uses the BLKL algorithm to construct designs for estimating response surfaces
AGRCRESOLVABLE forms doubly resolvable row-column designs
GENERATE generates values of factors in systematic order or as defined by a design key, or forms values of pseudo-factors
RANDOMIZE puts units of vectors into random order, or randomizes units of an experimental design
FKEY forms design keys for multi-stratum experimental designs, allowing for confounding and aliasing of treatments
FPSEUDOFACTORS determines patterns of confounding and aliasing from design keys, and extends the treatment formula to incorporate the necessary pseudo-factors
SET2FORMULA forms a model formula using structures supplied in a pointer

and the procedures

AEFFICIENCY calculates efficiency factors for experimental designs
AFAUGMENTED forms an augmented design
AFLABELS forms a variate of unit labels for a design
AFRCRESOLVABLE forms doubly resolvable row-column designs, with output
AFUNITS forms a factor to index the units of the final stratum of a design
AKEY generates values for treatment factors using the design key method
AMERGE merges extra units into an experimental design
AFNONLINEAR forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model
APREP searches for an efficient partially-replicated design
APRODUCT forms a new experimental design from the product of two designs
AGNATURALBLOCK generates 1- and 2-dimensional designs with blocks of natural size
AGNONORTHOGONALDESIGN generates non-orthogonal multi-stratum designs
AGSPACEFILLINGDESIGN generates space filling designs
ARCSPLITPLOT adds extra treatments onto the replicates of a resolvable row-column design, and generates factors giving the row and column locations of the plots within the design
ARANDOMIZE randomizes and prints an experimental design
CDNAUGMENTEDDESIGN constructs an augmented block design, using CycDesigN if the controls are in an incomplete-block design
CDNBLOCKDESIGN constructs a block design using CycDesigN
CDNPREP constructs a multi-location partially-replicated design using CycDesigN
CDNROWCOLUMNDESIGN constructs a row-column design using CycDesigN
COVDESIGN produces experimental designs efficient under analysis of covariance
FACCOMBINATIONS forms a factor to indicate observations with identical combinations of values of a set of variates, texts or factors
FACDIVIDE represents a factor by factorial combinations of a set of factors
FACPRODUCT forms a factor with a level for every combination of other factors
FACPRODUCT forms the basic contrasts of a model term
FCCOMPLEMENT forms the complement of an incomplete block design
FDESIGNFILE forms a backing-store file of information for AGDESIGN
FHADAMARDMATRIX forms Hadamard matrices
FOCCURRENCES forms a "concurrence" matrix recording how often each pair of treatments occurs in the same block of a design
forms plot numbers for a row-by-column design
forms a projection matrix for a set of model terms
calculates the efficiency for estimating effects in cross-over designs
estimates the power of contrasts in cross-over designs

3.5 REML analysis of linear mixed models

The REML algorithm allows you to analyse linear mixed models i.e. linear models that can contain both fixed and random effects. In some applications these are known as "multi-level" models. It can thus be used to analyse unbalanced designs with several error terms (which cannot be analysed by ANOVA). It can also fit random correlation models to describe the covariances between random effects as can arise, for example, in the analysis of repeated measurements or spatial data.

REML
fits a variance-component model by residual (or restricted) maximum likelihood
VCOMPONENTS
defines the model for REML
VCYCLE
controls advanced aspects of the REML algorithm
VDISPLAY
displays further output from a REML analysis
VKEEP
copies information from a REML analysis into Genstat data structures
VSTRUCTURE
defines a variance structure for random effects in a REML model
VPEDIGREE
generates an inverse relationship matrix for use when fitting animal or plant breeding models by REML
VPREDICT
forms predictions from a REML model
VRESIDUAL
defines the residual term for a REML model
VSTATUS
prints the current model settings for REML

There are several procedures that may be useful, for example, to define the model, to produce additional output or for other REML-based analyses.

FCONTRASTS
modifies a model formula to contain contrasts of factors
FDIALLEL
forms the components of a diallel model for REML or regression
F2DRESIDUALVARIOGRA
calculates and plots a 2-dimensional variogram from a 2-dimensional array of residuals
TOBIT
linear mixed model analysis of data with fixed-threshold censoring
VAIC
calculates the Akaike and Schwarz (Bayesian) information coefficients for REML
VALLSUBSETS
fits all subsets of the fixed terms in a REML analysis
VAYPARALLEL
does the same REML analysis for several y-variates, and collates the output
VBOOTSTRAP
performs a parametric bootstrap of the fixed effects in a REML analysis
VCritical
uses a parametric bootstrap to estimate critical values for a fixed term in a REML analysis
VCHECK
checks standardized residuals from a REML analysis
VDEFFECTS
plots one- or two-way tables of effects estimated in a REML analysis
VFIELDRESIDUALS
display residuals from a REML analysis in field layout
VFIXEDTESTS
saves fixed tests from a REML analysis
VFCL
performs an F-test of random effects in a linear mixed model based on linear combinations of the responses, i.e. an FLC test
VFPEDEIGREE
checks and prepares pedigree information from several factors, for use by VPEDIGREE and REML
3.5 REML analysis of linear mixed models

VFRESIDUALS obtains residuals, fitted values and their standard errors from a REML analysis
VFUNCTION calculates functions of variance components from a REML analysis
VGRAPH plots tables of means from REML
VHERITABILITY calculates generalized heritability for a random term in a REML analysis
VLSD prints approximate least significant differences for REML means
VMCOMPARISON performs pairwise comparisons between REML means
VMETA performs a multi-treatment meta analysis using summary results from individual experiments
VPERMTEST does random permutation tests for the fixed effects in a REML analysis
VPLOT plots residuals from a REML analysis
VPOWER uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis
VRACCUMULATE forms a summary accumulating the results of a sequence of REML random models
VRCHECK checks effects of a random term in a REML analysis
VRFIT fits terms from a REML fixed model in a Genstat regression
VRADD adds terms from a REML fixed model into a Genstat regression
VRDISPLAY displays output for a REML fixed model fitted in a Genstat regression
VRDROP drops terms in a REML fixed model from a Genstat regression
VRKEEP saves output for a REML fixed model fitted in a Genstat regression
VRSETUP sets up Genstat regression to assess terms from a REML fixed model
VRSWITCH adds or drops terms from a REML fixed model in a Genstat regression
VRTRY tries the effect of adding and dropping individual terms from a REML fixed model in a Genstat regression
VSAMPLESIZE estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap
VSCREEN performs screening tests for fixed terms in a REML analysis
VSO Xanalyses a simple REML variance components model for outliers using a variance shift outlier model
VSPREADSHEET saves results from a REML analysis in a spreadsheet
VSURFACE fits a 2-dimensional spline surface using REML, and estimates its extreme point
VTCOMPARISONS calculates comparison contrasts within a multi-way table of predicted means from a REML analysis
VUVCOVARIANCE forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model

There is also a suite of procedures to provide automatic selection of REML random models for single trials, series of trials and meta analysis.

VABLOCKDESIGN analyses an incomplete-block design by REML, allowing automatic selection of random and spatial covariance models
VAROWCOLUMNDESIGN analyses a row-and-column design by REML, with automatic selection of the best random and spatial covariance model
VALINEBYTESTER provides combinabilities and deviances for a line-by-tester trial analysed by VABLOCKDESIGN or VAROWCOLUMNDESIGN
3.6 Multivariate and cluster analysis

Several standard multivariate methods are provided by Genstat directives. These include methods that analyse data in the form of units-by-variates, and methods that use a similarity or distance matrix.

The following directives carry out standard multivariate analyses:

- CVA: canonical variates analysis
- FCA: factor analysis
- MDS: non-metric multidimensional scaling
- PCP: principal components analysis
- PCO: principal coordinates analysis
- ROTATE: Procrustes rotation

Other directives and procedures are available to process results from multivariate analyses:

- ADDPOINTS: adds points for new objects to a PCO
- CVAPLOT: plots the mean and unit scores from a canonical variates analysis
- CVASCORES: calculates scores for individual units in canonical variates analysis
- CVATRELLIS: displays the distribution of groups over 2 dimensions from a CVA analysis using a trellis of bar or pie charts
- DBIPILOT: plots a biplot from an analysis by PCP, CVA or PCO
- DMST: gives a high resolution plot of an ordination with minimum spanning tree
- FACROTATE: rotates factor loadings from a PCP, CVA or FCA
- LRVSCREE: prints a scree diagram and/or a difference table of latent roots
- PCORELATE: relates principal coordinates to original data variables

The following commands carry out hierarchical and non-hierarchical cluster analysis:

- CLUSTER: non-hierarchical clustering from a data matrix
- FSIMILARITY: forms a similarity matrix or a between-group similarity matrix
3.6 Multivariate and cluster analysis

from a units-by-variates data matrix

HREDUCE
forms a reduced similarity matrix (by groups)

HCLUSTER
hierarchical cluster analysis from a similarity matrix

PCPCLUSTER
forms groups of units using the densities of their PCP scores

PTFCLUSTERS
forms clusters of points from their densities in multi-dimensional space

Other directives and procedures that process the results from cluster analyses are:

DDENDROGRAM
draws dendrograms with control over structure and style

DCLUSTERLABELS
labels clusters in a single-page dendrogram plotted by DDENDROGRAM

HBOOTSTRAP
performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis

HCOMPAREGROUPINGS
compares groupings generated, for example, from cluster analyses

HDISPLAY
displays results associated with hierarchical clustering

HFAMALGAMATIONS
forms an amalgamations matrix from a minimum spanning tree

HCLUSTERS
forms a set of clusters from an amalgamations matrix

HLIST
lists a data matrix in abbreviated form

HPCLUSTERS
prints a set of clusters

HSUMMARIZE
summarizes data variates by clusters

PTFILLCLUSTERS
fills holes within clusters of points in multi-dimensional space

Other multivariate techniques are provided by procedures in the Library:

AMMI
allows exploratory analysis of genotype × environment interactions

BCLASSIFICATION
constructs a classification tree

BCDISPLAY
displays a classification tree

BCIDENTIFY
identifies specimens using a classification tree

BCKEEP
saves information from a classification tree

BCVALUES
forms values for nodes of a classification tree

BCFOREST
constructs a random classification forest

BCDISPLAY
displays information about a random classification forest

BCIDENTIFY
identifies specimens using a random classification forest

BIPLOT
produces a biplot from a set of variates

BKEY
constructs an identification key

BKDISPLAY
displays an identification key

BKIDENTIFY
identifies specimens using a key

BKKEEP
saves information from an identification key

CANCORRELATION
does canonical correlation analysis

CCA
performs canonical correspondence analysis

CRBIPILOT
plots correlation or distance biplots after CCA or RDA

CTRIPLOT
plots ordination biplots or triplots after CCA or RDA

CINTERACTION
clusters rows and columns of a two-way interaction table

CLASSIFY
obtains a starting classification for non-hierarchical clustering

CONVEXHULL
finds the points of a single or a full peel of convex-hulls

CORANALYSIS
does correspondence analysis, or reciprocal averaging

MCORANALYSIS
does multiple correspondence analysis

CABIPILOT
plots results from correspondence analysis or multiple correspondence analysis

DISCRIMINATE
performs discriminant analysis

SDISCRIMINATE
selects the best set of variates to discriminate between groups

QDISCRIMINATE
performs quadratic discrimination between groups i.e. allowing for different variance-covariance matrices

DPARALLEL
displays multivariate data using parallel coordinates
3.7 Time series

Genstat provides several methods for examining and analysing time series. Sample correlation functions are produced by the directive CORRELATE:

CORRELATE
forms correlations between variates, autocorrelations of variates, and lagged cross-correlations between variates

The analysis of Box-Jenkins models is specified by several directives:

FTSM
forms preliminary estimates of parameters in time-series models
TRANSFERFUNCTION
specifies input series and transfer-function models for subsequent estimation of a model for an output series
TFIT
estimates parameters in Box-Jenkins models for time series (renamed version of ESTIMATE, which is retained as a synonym)

Information can be saved in Genstat data structures, or further output can be produced:

TDISPLAY
displays further output after an analysis by TFIT
TKEEP
saves results after an analysis by TFIT
TFORECAST
forecasts future values of a time series (renamed version of FORECAST, which is retained as a synonym)
TSUMMARIZE
displays characteristics of a time series model

It is also possible to filter a time series, or perform spectral analysis via the Fourier transform of a time series using the directives:

TFILTER
filters time series by time-series models (renamed version of
3.8 Repeated measurements

A repeated-measurements study is one in which subjects (animals, people, plots, etc) are observed on several occasions. Each subject usually receives some randomly allocated treatment, either at the outset or repeatedly through the investigation, and is then observed at successive occasions to see how the treatment effects develop. One way to analyse data sets like this is to use Genstat’s REML facilities to model the correlation structure over time.

- **REML** fits a variance-component model by residual (or restricted) maximum likelihood
- **VCOMPONENTS** defines the model for REML
- **VSTRUCTURE** defines a variance structure for random effects in a REML model

Alternatively, Genstat has procedures for customized plotting of the observations (or profiles) against time, repeated measures analysis of variance, analyses based on ante-dependence structure or generalized estimating equations, and regression or nonlinear modelling of data where the residuals follow an AR1 or power-distance correlation model.

- **ANTORDER** assesses order of ante-dependence for repeated measures data
- **ANTTEST** calculates overall tests based on a specified order of ante-dependence
- **AREPMEASURES** produces an analysis of variance for repeated measurements
- **CUMDISTRIBUTION** fits frequency distributions to accumulated counts
- **DREPMEASURES** plots profiles and differences of profiles for repeated measurements
- **GEE** fits models to longitudinal data by generalized estimating equations
- **NLAR1** fits curves with an AR1 or a power-distance correlation model
- **RAR1** fits regressions with an AR1 or a power-distance correlation model
- **VORTHPOLYNOMIAL** calculates orthogonal polynomial time-contrasts for repeated measurements
3.9 Survival analysis

In survival data the response variate is the survival time of an individual like a medical patient or an industrial component. The responses are often censored, i.e. some individuals survive beyond the end of the study, and so their survival times are unknown. Genstat provides various ways of estimating the survivor function (i.e. the probability that an individual is still surviving at each time). You can do nonparametric tests to compare different survival distributions. Finally, you can model the survival times, by assuming that they follow exponential, Weibull or extreme-value distributions, or by fitting a proportional hazards model.

- **KAPLANMEIER** calculates the Kaplan-Meier estimate of the survivor function
- **RLIFETABLE** calculates the life-table estimate of the survivor function
- **RPHFIT** fits the proportional hazards model to survival data as a generalized linear model
- **RPHCHANGE** modifies a proportional hazards model fitted by RPHFIT
- **RPHDISPLAY** prints output for a proportional hazards model fitted by RPHFIT
- **RPHKEEP** saves information from a proportional hazards model fitted by RPHFIT
- **RPROPORTIONAL** fits a proportional hazards model by a direct maximization of the likelihood (this will be more efficient than RPHFIT for large data sets)
- **RSTEST** compares groups of right-censored survival data by nonparametric tests
- **RSURVIVAL** models survival times of exponential, Weibull or extreme-value distributions

3.10 Bayesian methods

Genstat provides convenient ways to define and run Bayesian analyses using WinBUGS or OpenBUGS. It also supports Bayesian computing using the Differential Evolution Markov Chain algorithm.

- **BGIMPORT** imports MCMC output in CODA format produced by WinBUGS or OpenBUGS.
- **BGPLOT** produces plots for output and diagnostics from MCMC simulations.
- **BGXGENSTAT** runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts.
- **DEMC** performs Bayesian computing using the Differential Evolution Markov Chain algorithm

3.11 Spatial statistics

Commands are available for forming variograms and for producing kriged estimates.

- **FVARIOGRAM** forms experimental variograms
- **MVARIOGRAM** fits models to an experimental variogram
- **DVARIOGRAM** plots fitted models to an experimental variogram
- **KRIGE** calculates kriged estimates using a model fitted to a sample variogram
- **FCOVARIGRAM** forms a covariogram structure containing auto-variograms of individual variates and cross-variograms for pairs from a list of variates
- **MCOVARIGRAM** fits models to sets of variograms and cross-variograms
- **DCOVARIOMGRAM** plots 2-dimensional auto- and cross-variograms
3.12 Six sigma

Genstat has a wide range of facilities to support the six-sigma approach to quality improvement. It can...
display many different types of control chart.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCCHEART</td>
<td>plots c or u charts representing numbers of defective items</td>
</tr>
<tr>
<td>SPCUSUM</td>
<td>prints CUSUM tables for controlling a process mean</td>
</tr>
<tr>
<td>SPSCENUM</td>
<td>prints CUSUM tables for controlling a process mean</td>
</tr>
<tr>
<td>SPCSCENTRAL</td>
<td>prints CUSUM tables for controlling a process mean</td>
</tr>
<tr>
<td>SPSCENTRAL</td>
<td>prints CUSUM tables for controlling a process mean</td>
</tr>
<tr>
<td>SPSHEWMA</td>
<td>plots exponentially weighted moving-average control charts</td>
</tr>
<tr>
<td>SPPCHART</td>
<td>plots p or np charts for binomial testing for defective items</td>
</tr>
<tr>
<td>SPSHEWART</td>
<td>plots control charts for mean and standard deviation or range</td>
</tr>
</tbody>
</table>

It can test for Normality, display Pareto charts and calculate capability statistics.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMTEST</td>
<td>performs tests of univariate and/or multivariate normality</td>
</tr>
<tr>
<td>SPCAPABILITY</td>
<td>calculates capability statistics</td>
</tr>
<tr>
<td>TABSORT</td>
<td>sorts tables to put margins are in ascending or descending order</td>
</tr>
</tbody>
</table>

It also provides full statistical backup for wider-ranging investigations. The list below highlights some of the commands that may be useful.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRESPONSESURFACE</td>
<td>uses the BLKL algorithm to construct response-surface designs</td>
</tr>
<tr>
<td>AGBOXBEHNKEN</td>
<td>generates Box-Behnken designs</td>
</tr>
<tr>
<td>AGCENTRALCOMPOSITE</td>
<td>generates central composite designs</td>
</tr>
<tr>
<td>AGDESIGN</td>
<td>selects from a set of standard designs including factorials with interactions confounded with blocks</td>
</tr>
<tr>
<td>AGFRACTION</td>
<td>generates fractional factorial designs</td>
</tr>
<tr>
<td>AGMAINEFFECT</td>
<td>generates designs to estimate main effects of two-level factors (Plackett-Burman designs)</td>
</tr>
<tr>
<td>A2WAY</td>
<td>performs analysis of variance of a balanced or unbalanced design with up to two treatment factors</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analyses y-variates by analysis of variance according to the model defined by earlier blocking, covariate, and treatment structure statements</td>
</tr>
<tr>
<td>AGRAPH</td>
<td>plots one- or two-way tables of means from ANOVA</td>
</tr>
<tr>
<td>APLLOT</td>
<td>plots residuals from an ANOVA analysis</td>
</tr>
<tr>
<td>AMCOMPARISON</td>
<td>performs pairwise multiple comparison tests for ANOVA means</td>
</tr>
<tr>
<td>AUNBALANCED</td>
<td>performs analysis of variance for unbalanced designs</td>
</tr>
<tr>
<td>AGRAPH</td>
<td>plots tables of means from AUNBALANCED</td>
</tr>
<tr>
<td>FIT</td>
<td>fits a linear, generalized linear, generalized additive, or generalized nonlinear model</td>
</tr>
<tr>
<td>FITCURVE</td>
<td>fits a standard nonlinear regression model</td>
</tr>
<tr>
<td>FITNONLINEAR</td>
<td>fits a nonlinear regression model or optimizes a function</td>
</tr>
<tr>
<td>FKEY</td>
<td>forms design keys for balanced designs with several error terms, allowing for confounded and aliased treatments</td>
</tr>
<tr>
<td>REMEL</td>
<td>fits an unbalanced linear mixed model and estimates variance components</td>
</tr>
<tr>
<td>RQUADRATIC</td>
<td>fits a quadratic surface and estimates its stationary point</td>
</tr>
<tr>
<td>YTRANSFORM</td>
<td>estimates the parameter lambda from various single-parameter transformations, including power (Box-Cox), modulus, folded power, Guerrero-Johnson, Aranda-Ordaz and power logit</td>
</tr>
</tbody>
</table>

3.13 Survey analysis

Genstat has several commands for the analysis of simple or complex surveys, including facilities for modelling, imputation, calculations and manipulation. (For further details, see the Guide to Survey Analysis in Genstat.)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABULATE</td>
<td>forms tables of summaries of the values of variates classified by</td>
</tr>
</tbody>
</table>
3.14 Data mining

Genstat has many conventional statistical techniques such as generalized linear models (e.g. log-linear models and logistic regression) and multivariate analysis (e.g. canonical variates analysis and cluster analysis) that are very useful for data mining. It also provides various more specialized techniques such as association rules, classification and regression trees, random forests, k-nearest-neighbours classification, self-organizing maps, neural networks and radial basis functions.

Software Tools

- **MTABULATE**: forms tables of summaries of variates classified by multiple-response factors
- **SVBOOT**: bootstraps data from random surveys
- **SVCALIBRATE**: performs generalized calibration of survey data
- **SVGLM**: fits generalized linear models to survey data
- **SVHOTDECK**: performs hot-deck and model-based imputation for survey data
- **SVMERGE**: merges strata prior to survey analysis
- **SVREWEIGHT**: modifies survey weights adjusting to ensure that their overall sum weights remains unchanged
- **SVSTRATIFIED**: analyses stratified random surveys by expansion or ratio raising
- **SVTABULATE**: tabulates data from random surveys, including multistage surveys and surveys with unequal probabilities of selection
- **SVWEIGHT**: forms survey weights
- **COMBINE**: combines or omits "slices" of tables, matrices or variates
- **CSPRO**: reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file
- **DTABLE**: plots tables
- **MARGIN**: calculates or deletes margins of tables
- **PERCENT**: expresses the body of a table as percentages of one of its margins
- **TABMODE**: forms summary tables of modes of values
- **TASORT**: sorts tables so their margins are in ascending or descending order
- **T%CONTROL**: expresses tables as percentages of control cells
- **VSUMMARY**: Summarizes a variate, with classifying factors, into a data matrix of variates and factors
- **ASRULES**: derives association rules from transaction data
- **BCLASSIFICATION**: constructs a classification tree
- **BCDISPLAY**: displays a classification tree
- **BCIDENTIFY**: identifies specimens using a classification tree
- **BCKEEP**: saves information from a classification tree
- **BCVALUES**: forms values for nodes of a classification tree
- **BCFOREST**: constructs a random classification forest
- **BCDISPLAY**: displays information about a random classification forest
- **BCIDENTIFY**: identifies specimens using a random classification forest
- **BREGRESSION**: constructs a regression tree
- **BRDISPLAY**: displays a regression tree
- **BRKEEP**: saves information from a regression tree
- **BRPREDICT**: makes predictions using a regression tree
- **BRVALUES**: forms values for nodes of a regression tree
- **BFOREST**: constructs a random regression forest
- **BRDISPLAY**: displays information about a random regression forest
- **BRPREDICT**: makes predictions using a random regression forest
- **KNEARESTNEIGHBOURS**: classifies items or predicts their responses by examining their k nearest neighbours
- **KNNTRAIN**: evaluates and optimizes the k-nearest-neighbour algorithm using cross-validation
3 Statistical analyses

NNFIT
fits a multi-layer perceptron neural network

NNDISPLAY
displays output from a multi-layer perceptron neural network fitted by **NNFIT**

NNPREDICT
forms predictions from a multi-layer perceptron neural network fitted by **NNFIT**

RBFIT
fits a radial basis function model

RBDISPLAY
displays output from a radial basis function model fitted by **RBFIT**

RBPREDICT
forms predictions from a radial basis function model fitted by **RBFIT**

SOM
declares a self-organizing map

SOMADJUST
performs adjustments to the weights of a self-organizing map

SOMDESCRIBE
summarizes values of variables at nodes of a self-organizing map

SOMESTIMATE
estimates the weights for self-organizing maps

SOMIDENTIFY
allocates samples to nodes of a self-organizing map

SOMPREDICT
makes predictions using a self-organizing map

SVMFIT
fits a support vector machine

SVMPREDICT
forms the predictions using a support vector machine

3.15 Statistical genetics and QTL estimation

Genstat has a suite of procedures for statistical genetics. Several of these make use of Genstat's **REML** facilities to estimate QTLs from single environment, multi-environment and multi-trait trials.

DQMAP
displays a genetic map

DQMKSCORES
plots a grid of marker scores for genotypes and indicates missing data

DQMQTSLSCAN
plots the results of a genome-wide scan for QTL effects in multi-environment trials

DQRECOMBINATIONS
plots a matrix of recombination frequencies between markers

DQSQTSLSCAN
plots the results of a genome-wide scan for QTL effects in single-environment trials

GPREDICTION
produces genomic predictions (breeding values) using phenotypic and molecular marker information

QCANDIDATES
selects QTLs on the basis of a test statistic profile along the genome

QDESCRIBE
prints summary statistics of genotypes

QEIGENANALYSIS
uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables

QEXPORT
exports genotypic data for QTL analysis

QFLAPJACK
creates a Flapjack project file from genotypic and phenotypic data

QGSELECT
obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization

QIBDPROBABILITIES
reads molecular marker data and calculates IBD probabilities

QIMPORT
imports genotypic and phenotypic data for QTL analysis

QKINSH1PMATRIX
forms a kinship matrix from molecular markers

QLDDECAY
estimates linkage disequilibrium (LD) decay along a chromosome

QLINKAGEGROUPS
forms linkage groups using marker data from experimental populations

QMAP
constructs genetic linkage maps using marker data from experimental populations

QMASSOCIATION
performs multi-environment marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic
3.16 Microarray data

There is a suite of procedures for the design, analysis and visualization of two-colour and Affymetrix microarray data. These are used by the Microarray menus in Genstat for Windows.

AGBIB
AGLOOP
AGREFERENCE
BAFFYMETRIX
MADESIGN
MACALCULATE

generates balanced incomplete block designs
generates loop designs e.g. for time-course microarray experiments
generates reference-level designs e.g. for microarray experiments
Estimates expression values from an Affymetrix CED and CDF file
assesses the efficiency of a two-colour microarray design
corrects and transforms two-colour microarray differential expressions
3 Statistical analyses

MNORMALIZE normalizes two-colour microarray data
MAESTIMATE estimates treatment effects from a two-colour microarray design
AFFYMETRIX estimates expression values for Affymetrix slides
MABGCORRECT performs background correction of Affymetrix slides
MAROBUSTMEANS does a robust means analysis for Affymetrix slides
MARMA calculates Affymetrix expression values
MAVDIFFERENCE applies the average difference algorithm to Affymetrix data
DMADENSITY plots the empirical CDF or PDF (kernel smoothed) by groups
MAHISTOGRAM plots histograms of microarray data
MAANOVA does analysis of variance of single-channel microarray data
MAREGRESSION does regressions for single-channel microarray data
MASHADE produces shade plots to display spatial variation of microarray data
MAVOLCANO produces volcano plots of microarray data
MAPCLUSTER clusters probes or genes with microarray data
MASCLUSTER clusters microarray slides
MA2CLUSTER performs a two-way clustering of microarray data by probes (or genes) and slides
FDRBONFERRONI estimates false discovery rates by a Bonferroni-type procedure
FDRMIXTURE estimates false discovery rates using mixture distributions
MAEBAYES modifies t-values by an empirical Bayes method
MPOLISH performs a median polish of two-way data
QNORMALIZE performs quantile normalization
THINPLATE calculates the basis functions for thin-plate splines
TUKEYBIWEIGHT estimates means using the Tukey biweight algorithm

3.17 Ecological data

The procedures listed below allow you to display, summarize and model ecological data.

ECABUNDANCEPLOT produces rank/abundance, ABC and k-dominance plots
ECACCUMULATION plots species accumulation curves for samples or individuals
ECANOSIM performs an analysis of similarities (ANOSIM)
ECDIVERSITY calculates measures of diversity with jackknife or bootstrap estimates
ECFIT fits models to species abundance data
ECNICHE generates relative abundance of species for niche-based models
ECNPESTIMATE calculates nonparametric estimates of species richness
ECRAREFACTION calculates individual or sample-based rarefaction
LORENZ plots the Lorenz curve and calculates the Gini and asymmetry coefficients
4 Syntax summary

4.1 Commands

ABIVARIATE procedure

Produces graphs and statistics for bivariate analysis of variance (R.F.A. Poultney).

Options

- **PRINT = string tokens**
 - Controls printing of statistics from the bivariate analysis (error, treatment); default erro, trea
- **APRINT = string tokens**
 - Controls output from the (univariate) ANOVAs of Y1 and Y2 (usual ANOVA print options); default aovt
- **TREATMENTSTRUCTURE = formula**
 - Treatment terms to be fitted in the analysis of variance; this option must be set
- **BLOCKSTRUCTURE = formula**
 - Block model defining the error terms in the analysis of variance; if unset, the design is assumed to be unstratified (i.e. to have a single error term)
- **TERM = formula**
 - Single model term identifying the treatment term whose means are to be plotted
- **STRATUM = formula**
 - Stratum from which to extract treatment information; default is to take the bottom stratum
- **FACTORIAL = scalar**
 - Limit on number of factors in a treatment term; default 3
- **PROBABILITY = scalar**
 - Significance level to use in the calculation of the radius of the confidence region and the region of non-significance; default 0.95
- **GRAPHICS = string token**
 - Type of graphical output (lineprinter, highresolution); default high
- **STYLE = string token**
 - controls the style of axes in a high-resolution graph (xy, none); default xy
- **LABELS = factor or text**
 - Plotting symbols for the means; default is to take the letters A to Z, then a to z

Parameters

- **Y1 = variates**
 - First variate for the bivariate analysis
- **Y2 = variates**
 - Second variate for the bivariate analysis
- **TITLE = texts**
 - Title for the graph

ABLUPS procedure

Calculates BLUPs for block terms in an ANOVA analysis (R.W. Payne).

Options

- **PRINT = string token**
 - Controls printed output (blups); default blup
- **TERMS = formula**
 - Specifies the block terms whose BLUPs are to be printed; default is to print them all
- **PSE = string tokens**
 - Types of standard errors to be printed with the BLUPs (differences, alldifferences, blups, allblups); default diff, blup
- **SAVE = identifier**
 - Save structure for the ANOVA analysis; default is to take the most recent ANOVA analysis

Parameters

- **TERMS = formula**
 - Block terms whose BLUPs etc are to be saved
- **BLUPS = table or pointer to tables**
 - Saves the BLUPs
- **SEBLUPS = table or pointer to tables**
 - Standard errors for the BLUPs of each term
- **SEDEMEANS = symmetric matrix or pointer to symmetric matrices**
 - Standard errors of differences between the BLUPs of each term
ABOXCOX procedure

Estimates the power \(\lambda \) in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA (W. van den Berg).

Options

- **PRINT = string tokens**
 - Controls printed output (aovtable, lambda, monitoring);
 - default: aovt, lamb

- **TREATMENTSTRUCTURE = formula**
 - Defines the treatment model; if this is not set, the default is taken from any existing setting defined by the TREATMENTSTRUCTURE directive

- **BLOCKSTRUCTURE = formula**
 - Defines any block model; if this is not set, the default is taken from any existing setting defined by the BLOCKSTRUCTURE directive

- **COVARIATE = variates**
 - Specifies any covariates; if this is not set, the default is taken from any existing setting defined by the COVARIATE directive

- **FACTORIAL = scalar**
 - Limit in the number of factors in the terms generated from the TREATMENTSTRUCTURE formula; default 3

- **CONTRASTS = scalar**
 - Limit on the order of a contrast of a treatment term; default 4

- **DEVIATIONS = scalar**
 - Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9

- **PLOT = string token**
 - Whether to plot the partial log-likelihood (partialloglikelihood); default: part

- **CIPROBABILITY = scalar**
 - Probability level for the confidence interval for lambda; default 0.95, i.e. a 95% confidence interval

- **TRIALVALUES = variate**
 - Values of \(\lambda \) for which the partial log-likelihood is to be calculated; default: \((-4, -3.75 \ldots 4)\)

- **TRANSFORM = string token**
 - How to transform the \(y \)-variate (estimate, trialvalue); default: tria

- **STEPLENGTH = scalar**
 - Steplength for estimating \(\lambda \); default 0.01

- **MAXCYCLE = scalar**
 - Maximum number of iterations; default 100

- **TOLERANCE = scalar**
 - Tolerance for convergence; default 0.00001

- **ASAVE = identifier**
 - Saves the ANOVA save structure from the analysis of variance

Parameters

- **Y = variates**
 - Response variate

- **NEWY = variates**
 - Saves the transformed response variate

- **LAMBDA = scalars**
 - Saves the estimated value of \(\lambda \)

- **LOWER = scalars**
 - Saves the lower confidence limit for \(\lambda \)

- **UPPER = scalars**
 - Saves the upper confidence limit for \(\lambda \)

ACANONICAL procedure

Determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae (C.J. Brien).

Options

- **PRINT = string tokens**
 - What to print (decomposition, df, ecriteria, efficiencies); default: deco

- **CRITERIA = string tokens**
 - The efficiency criteria to be saved and/or printed (aefficiency, mefficiency, sefficiency, eecfficiency, xefficiency, order, dforth); default: aeff, eeff, orde

- **FACTORIAL = scalar**
 - Limit on the number of factors and variates in each model term default * i.e. no limit

- **TOLERANCE = variate**
 - Tolerances for zero in various contexts; default: \(10^{-8}\) for all of these

Parameters

- **FORMULAE = pointers**
 - Each pointer contains two or more model formulae whose joint decomposition is required
4.1 Commands

ORTHOGONALMETHOD = string tokens
Specifies the method to use for each model formula when orthogonalizing a projection matrix to those for terms that occur earlier in the formula (differencing, eigenmethods, hybrid); default hybr

PROJECTIONSETS = pointers
Saves the projection pointers formed from the formulae

COMBINEDPROJECTIONSET = pointers
Saves the projector pointers that produce the orthogonal decomposition

EFFICIENCYFACTORS = pointers
Saves the canonical efficiency factors

ECRITERIA = pointers
Saves the unadjusted efficiency criteria

ADJECRITERIA = pointers
Saves the adjusted efficiency criteria

ADJDF = pointers
Saves the adjusted degrees of freedom

SAVE = pointers
Saves information about the analysis for use by ACDISPLAY and ACKEEP

ACDISPLAY procedure
Provides further output from an analysis by ACANONICAL (C.J. Brien).

Option
PRINT = string tokens
What to print (decomposition, df, ecriteria, efficiencies); default deco

Parameter
SAVE = pointer
Information saved from ACANONICAL; if this is not set, the information is saved from the most recent ACANONICAL analysis

ACCHECK procedure
Checks assumptions for an ANOVA analysis (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (tests, confirmation); default conf

ASSUMPTION = string tokens
Which assumptions to test (homogeneity, normality, stability); default homo, norm, stab

PROBABILITY = scalar
Critical value for the test probabilities to decide whether to generate warning messages; default 0.025

SAVE = ANOVA save structure
Specifies the analysis to be checked; by default this will be the most recent ANOVA

No parameters

ACKEEP procedure
Saves information from an analysis by ACANONICAL (C.J. Brien).

Options
COMBINEDPROJECTIONSET = pointer
Saves the projector pointers that produce the orthogonal decomposition

EFFICIENCYFACTORS = pointer
Saves the canonical efficiency factors

ECRITERIA = pointer
Saves the unadjusted efficiency criteria

ADJECRITERIA = pointer
Saves the adjusted efficiency criteria

ADJDF = pointer
Saves the adjusted degrees of freedom

SAVE = pointer
Information saved from ACANONICAL; if this is not set, the information is saved from the most recent ACANONICAL analysis

No parameters
ACONFIDENCE procedure

Calculates simultaneous confidence intervals for ANOVA means (D.M. Smith).

Options

PRINT = string token
Controls printed output (intervals); default inte

METHOD = string token
Type of interval (individual, smm, product, Bonferroni, Scheffe); default smm

FACTORIAL = scalar
Limit on the number of factors in each term; default 3

PROBABILITY = scalar
The required significance level; default 0.05

SAVE = ANOVA save structure
Save structure to provide the tables of means and associated information; default uses the save structure from the most recent ANOVA

Parameters

TERMS = formula
Treatment terms whose means are to be required

MEANS = pointer or table
Saves the means

LOWER = pointer or table
Saves the lower limits

UPPER = pointer or table
Saves the upper limits

ADD directive

Adds extra terms to a linear, generalized linear, generalized additive or nonlinear model.

Options

PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti

NONLINEAR = string token
How to treat nonlinear parameters between groups (common, separate, unchanged); default unch

CONSTANT = string token
How to treat the constant (estimate, omit, unchanged, ignore); default unch

FACTORIAL = scalar
Limit for expansion of model terms; default * i.e. that in previous TERMS statement

POOL = string token
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

AOVDESCRIPTION = text
Description for line in accumulated analysis of variance (or deviance) table when POOL=yes

Parameter

formula
List of explanatory variates and factors, or model formula
ADDPOINTS directive

Adds points for new objects to a principal coordinates analysis.

Option

PRINT = string tokens
Printed output required (coordinates, residuals); default
* i.e. no printing

Parameters

NEWDISTANCES = matrices
Squared distances of the new objects from the original points

LRV = LRVs
Latent roots and vectors from the PCO analysis

CENTROID = diagonal matrices
Centroid distances from the PCO analysis

COORDINATES = matrices
Saves the coordinates of the additional points in the space of
the original points

RESIDUALS = matrices or variates
Saves the residuals of the new objects from that space

ADETECTION procedure

Calculates the minimum size of effect or contrast detectable in an analysis of variance (R.W. Payne).

Options

PRINT = string token
Prints the minimum size of response that can be detected
(detected); default dete

TERM = formula
Treatment term to be assessed in the analysis

TREATMENTSTRUCTURE = formula
Treatment structure of the design; determined automatically
from an ANOVA save structure if TREATMENTSTRUCTURE is
unset or if SAVE is set

BLOCKSTRUCTURE = formula
Block structure of the design; determined automatically from
an ANOVA save structure if BLOCKSTRUCTURE is unset or if
SAVE is set

FACTORIAL = scalar
Limit on the number of factors in treatment terms; default 3

PROBABILITY = scalar
Significance level at which the response is required to be
detected (assuming a one-sided test); default 0.05

TMETHOD = string token
Type of test to be made (onesided, twosided, equivalence, noninferiority); default ones

XCONTRASTS = variate
X-variate defining a contrast to be detected

CONTRASTTYPE = string token
Type of contrast (regression, comparison); default rege

TOLERANCE = scalar
Tolerance for the iterations to calculate the detectable response

SAVE = ANOVA save structure
Save structure to provide the information about the design

Parameters

POWER = scalars or variates
Specifies the power i.e. probability with which the response
should be detected

RMS = scalars
Anticipated residual mean square corresponding to TERM; can
be omitted if a SAVE structure is available

DETECTED = scalars or variates
Minimum size of difference or contrast between the effects of
TERM that is to be detected

ADDISPLAY directive

Displays further output from analyses produced by ANOVA.

Options

PRINT = string tokens
Output from the analyses of the y-variates, adjusted for any
covariates (aovtable, information, covariates, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, %cv, missingvalues); default
* i.e. no printing

UPRINT = string tokens
Output from the unadjusted analyses of the y-variates
(aovtable, information, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, %cv, missingvalues); default * i.e. no printing

CPRINT = string tokens
Output from the analyses of the covariates, if any (aovtable,
4 Syntax summary

information, effects, residuals, contrasts, means, \%cv, missing values); default * i.e. no printing

CHANNEL = identifier
Channel number of file, or identifier of a text to store output; default current output file

PFATORIAL = scalar
Limit on number of factors in printed tables of means or effects; default 9

PCONTRASTS = scalar
Limit on order of printed contrasts; default 9

PDEVIATIONS = scalar
Limit on number of factors in a treatment term whose deviations from the fitted contrasts are to be printed; default 9

FPROBABILITY = string token
Printing of probabilities for variance ratios in the aov table (yes, no); default no

PSE = string tokens
Standard errors to be printed with tables of means, PSE=* requests s.e.'s to be omitted (differences, lsd, means); default diff

TWOLEVEL = string token
Representation of effects in 2^n experiments (responses, Yates, effects); default resp

NOMESSAGE = string tokens
Which warning messages to suppress (nonorthogonal, residual); default *

LSDLEVEL = scalar
Significance level (%) to use in the calculation of least significant differences; default 5

Parameter
identifiers
Save structure (from ANOVA) to provide details of each analysis from which information is to be displayed; if omitted, output is from the most recent ANOVA

'ADJACENTCELLS procedure
Finds cells adjacent to other cells in a multi-dimensional array (R.W. Payne).

Options
ADJACENTINDEXES = pointer
Pointer containing a variate for each cell, giving the indexes of its adjacent cells

DIAGONALS = string token
Whether to include diagonal cells (include, exclude); default incl

DISTANCE = scalar
Maximum distance between cells and adjacent cells; default 1

Parameters
DIMENSION = scalars
Dimensions of the array

CELLS = variates
Locations of the cells in each dimension

ADJACENTCELLS = pointers
The pointer for each DIMENSION contains a variate for each cell with the locations of its adjacent cells in that dimension

ADPOLYNOMIAL procedure
Plots single-factor polynomial contrasts fitted by ANOVA (R.W. Payne).

Option
SAVE = ANOVA save structure
Save structure (from ANOVA) to provide details of the analysis from which the polynomials are to be plotted; default uses the save structure from the most recent ANOVA

Parameters
XFACTOR = factors
Factor over which the polynomial contrasts have been formed

GROUPS = factors or pointers
Factor(s) for which different polynomial coefficients should be plotted in the same graph

TRELLISGROUPS = factors or pointers
Factor or factors for which different polynomial coefficients should be plotted in a trellis plot

TITLE = texts
Title for the graph; default defines a title automatically

YTITLE = texts
Title for the y-axis; default '\'

XTITLE = texts
Title for the x-axis; default is to use the identifier of the XFACTOR

PENS = variates
Defines the pen to use to plot the points and/or line for each
group defined by the GROUPS factors

ADSPREADSHEET procedure

Puts the data and plan of an experimental design into a spreadsheet (R.W. Payne).

Options

- **DATA** = factors or variates
 - Data variables (e.g. design factors and covariates) to put into the data spreadsheet; default takes the factors defined by previous BLOCKSTRUCTURE and TREATMENTSTRUCTURE directives

- **NEWDATA** = variates
 - New variates (e.g. measurements to be taken during the experiment) to create and put into the data spreadsheet; default * i.e. none

- **Y** = variate or factor
 - Specifies the y-coordinates of the plots for the plan spreadsheet

- **X** = variate or factor
 - Specifies the x-coordinates of the plots for the plan spreadsheet

- **CONSTANTFACTORS** = string tokens
 - Whether to put factors whose levels are constant in the y or x direction in a separate row or column of the Plan spreadsheet (y, x); default * i.e. neither

- **SEPARATOR** = text
 - Separator for factor values in the plan spreadsheet; default '; '

- **OMITGAPS** = string token
 - Whether to omit gaps when the plots in the plan are equally spaced (yes, no); default no

- **FOREGROUND** = scalar, variate or text
 - Foreground colours to use for the plots in the experiment; default 'Black'

- **BACKGROUND** = scalar, variate or text
 - Background colours to use for the plots in the experiment; default 'BlanchedAlmond'

- **CFACTORS** = factors
 - Factors to determine the colour to use for each plot; default uses the first block factor or no colouring otherwise

- **GAPFOREGROUND** = text or scalar
 - Foreground colour for gaps and surrounding plots; default 'Black'

- **GAPBACKGROUND** = text or scalar
 - Background colour for gaps and surrounding plots; default 'LightGreen'

- **YFOREGROUND** = text or scalar
 - Foreground colour for factors constant in y-direction; default 'Black'

- **YBACKGROUND** = text or scalar
 - Background colour for factors constant in y-direction; default 'PaleTurquoise'

- **XFOREGROUND** = text or scalar
 - Foreground colour for factors constant in x-direction; default 'Black'

- **XBACKGROUND** = text or scalar
 - Background colour for factors constant in x-direction; default 'LightCyan'

- **SPREADSHEET** = string tokens
 - Which spreadsheets to form (data, plan); default data

- **OUTFILENAME** = texts
 - Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

Parameters

- **FACTOR** = factors
 - Factors to include in the plan spreadsheet; if unset, includes the factors defined by a previous TREATMENTSTRUCTURE directive

- **LABELS** = texts
 - Labels to be used for each factor if its own levels or labels are inappropriate

AEFFICIENCY procedure

Calculates efficiency factors for experimental designs (R.W. Payne).

Options

- **FACTORIAL** = scalar
 - Limit on the number of factors in each treatment term generated from TERMS; default 3

- **METHOD** = string token
 - Whether to eliminate or ignore earlier model terms from the
Syntax summary

FORCED = formula
Terms formula (eliminate, ignore); default elim
Terms to be eliminated before fitting TERMS; default * i.e. none

Parameters

TERMS = formula
Model terms

DF = pointer or scalar
Saves the degrees of freedom of the terms

EFFICIENCY = pointer or variate
Saves the efficiency factors of the terms

DFALIASED = pointer or scalar
Saves the number of aliased degrees of freedom of the terms

AFALPHA procedure

Generates alpha designs (R.W. Payne).

Option

PRINT = string token
Whether to print the design (design); default * i.e. no printing

Parameters

GENERATOR = matrices
genrating array (of size number-of-plots-per-block by number-of-reps)

LEVELS = scalars or variates
Defines the levels of each treatment factor; if this is omitted, the levels of the TREATMENT factor are used, if available, otherwise LEVELS is determined from the generating array on the assumption that the blocks are to be of equal size

SEED = scalar
Seed to be used to randomize the design, if required

TREATMENTS = factors
Specifies the treatment factor for each design

REPLICATES = factors
Specifies the replicate factor

BLOCKS = factors
Specifies the block factor

UNITS = factors
Specifies the factor to index the units within each block

AFAUGMENTED procedure

Forms an augmented design (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (design); default * i.e. none

TREATMENTSTRUCTURE = formula
Treatment terms, other than GENOTYPES, to be included in the analysis

BLOCKSTRUCTURE = formula
Defines the block structure of the basic design

COVARIATE = variates
Specifies any covariates to be included in the analysis

LEVTEST = variate
Levels to represent the test genotypes in the augmented GENOTYPES factor

LEVCONTROL = scalar or variate
Levels to represent the control genotype(s) if these are not already in the GENOTYPES factor

GENOTYPES = factor
Genotype factor

CONTROLS = factor
Factor identifying the controls

TESTVSCONTROL = factor
Factor representing the comparison between test and control genotypes

SUBPLOTS = factor
Factor to represent the subplots to be created for the test genotypes in the basic design

NSUBPLOTS = scalar
Number of subplots to create within each plot of the basic design

SUBCONTROLS = scalar or variate
Subplots to be used for control genotypes, if not already pre-allocated in the GENOTYPES and SUBPLOTS factors; default selects subplots for the controls at random within each whole-plot

NREPTST = scalar or variate
Number of times to replicate the test genotypes; default 1

SEED = scalar
Seed for the random numbers used to randomize the allocation of the genotypes (a negative value implies no randomization); default 0

No parameters
4.1 Commands

AFCARRYOVER procedure

Forms factors to represent carry-over effects in cross-over trials (R.W. Payne).

Option

NONELEVEL = scalar or text

Parameters

TREATMENTS = factors

SUBJECTS = factors

PERIODS = factors

CARRYOVERFACTOR = factors

NOCARRYOVER = factors

Level or label to use for the units with no carry-over

Factors identifying the (direct) effects of the treatments

Factors identifying the subjects

Factors identifying the periods

Factors to represent the carry-over effect of the treatments in the period immediately after the period in which they were applied

Factors to represent the comparison between none and any carry-over effect of the treatments

AFCOVARIATES procedure

Defines covariates from a model formula for ANOVA (R.W. Payne).

Options

COVARIATES = pointer

COVGROUPS = pointer

FACTORIAL = scalar

Saves the covariates

Saves the pointers defined to contain the covariates formed for each term in TERMS

Limit on number of factors in the model terms formed from TERMS; default 3

Parameters

TERMS = formula

Model terms from which to define covariates

AFCYCLIC procedure

Generates block and treatment factors for cyclic designs (R.W. Payne).

Option

PRINT = string token

Whether to print the design (design); default * i.e. no printing

Parameters

INITIALBLOCKS = variates or pointers

INCREMENT = scalars or pointers

LEVELS = scalars or variates

SEED = scalar

TREATMENTS = factors

BLOCKS = factors

UNITS = factors

Defines one (variates) or more (pointer to variates) initial blocks for a treatment factor

Defines the size of the successive increment (scalar) or increments (pointer to scalars) for each initial block

Defines the levels of each treatment factor; this need not be specified if the factor has already been declared

Seed to be used to randomize each design, if required

Specifies treatment factors

Specifies block factors

Specifies factors to index the units within each block

AFDISCREPANCY procedure

Calculates the discrepancy of a design (B.M. Parker).

Options

PRINT = string tokens

Controls whether to print the discrepancy (results); default resu

METHOD = string token

Specifies the method to use to calculate the discrepancy (L2, maximin, entropy); default L2

SWAP = variate

A variate of length two indicating which design points have swapped when updating the discrepancy criterion for the maximin or entropy criteria; default none

Parameters

DESIGN = matrices or pointers

DISCREPANCY = scalars

A matrix, or a pointer of variates, specifying the design points

Saves the discrepancy
DISTANCES = matrices

Stores the distances, to allow fast updates with the maximin or entropy criteria

AFFYMETRIX procedure

Estimates expression values for Affymetrix slides (D.B. Baird).

Options

- **PRINT = string tokens**
 - What to print (estimates, background, monitoring); default para

- **METHOD = string token**
 - Method for calculating probe expression values (mas4, mas5, rma, rma2); default rma

- **BMETHOD = string token**
 - Method to use for background values (mean, quantile, none); default mean for METHOD settings mas4 and mas5, but none for settings rma and rma2

- **BWEIGHTING = string token**
 - Method for weighting background grids (affymetrix, distance); default affy

- **TRANSFORMATION = string token**
 - How to transform the data (log2, none); default log2

- **NMETHOD = string token**
 - Method for normalization i.e. whether to use a mean, median or geometric mean for the averaged normalized distribution (means, medians, geometric means, none); default mean

- **REPLACEDATA = string token**
 - Whether to replace the DATA variates with background corrected intensities (yes, no); default no

- **SPREADSHEET = string token**
 - What to save in a spreadsheet (results); default * i.e. nothing

- **MAXCYCLE = scalar**
 - Maximum number of iterations; default 50

- **TOLERANCE = scalar**
 - Tolerance for convergence; default 0.0001

Parameters

- **DATA = variates**
 - Intensities to be analysed

- **SLIDES = factors**
 - Identify the slides (or chips)

- **PROBES = factors**
 - Identify the probes (or genes) within each slide

- **ATOMS = factors**
 - Identify the PM/MM pairs within each probe

- **PMMM = factors**
 - Distinguish between PM and MM values

- **TYPEPROBES = factors**
 - Defines the probe-type corresponding to each intensity

- **ROWS = factors**
 - Identifies rows within each slide (required only if background corrections are to be made)

- **COLUMNS = factors**
 - Identifies columns within each slide (required only if background corrections are to be made)

- **ESTIMATES = variates**
 - Saves the estimated expression values for each slide and probe combination

- **SE = variates**
 - Saves approximate standard errors for the estimates

- **IDSLIDES = factors**
 - Saves factors to identify the slides in the ESTIMATES variates

- **IDPROBES = factors**
 - Saves factors to identify the probes in the ESTIMATES variates

AFIELDRESIDUALS procedure

Display residuals in field layout (R.W. Payne & A.D.Todd).

Options

- **PRINT = string tokens**
 - Controls output (contour, shade, table); default cont

- **GRAPHICS = string token**
 - Type of graph (highresolution, lineprinter); default high

- **METHOD = string token**
 - Type of residuals to take from the save structure when the RESIDUALS parameter is not specified (combined, finalstratum, standardizedfinal); default comb

- **MARGIN = string token**
 - Whether to include margins in printed tables (yes, no); default no

- **YORIENTATION = string token**
 - Y-axis orientation of the plot (reverse, normal); default norm

- **PENCONTOUR = scalar**
 - Pen number to be used for the contours; default 1

- **PENFILL = scalar or variate**
 - Pen number(s) defining how to fill the areas between contours;
4.1 Commands

PENSHADE = *scalar* or *variate*

Pen(s) to use for the shade plot; default 3

Parameters

Y = *variates* or *factors*

Specifies the y-coordinates of the plots

X = *variates* or *factors*

Specifies the x-coordinates of the plots

RESIDUALS = *variates*

Residuals to be plotted; default is to take the residuals from the save structure specified by the **SAVE** option, or from the most recent **ANOVA** if that is unspecified

SAVE = **ANOVA**, **REML** or **regression** save structures

Save structure of the **ANOVA**, **REML** or regression analysis from which to take the residuals if the **RESIDUALS** parameter is not specified; default is to take the most recent **ANOVA** analysis

FIELDWIDTH = *scalars*

Field width for printing the residuals; default 12

DECIMALS = *scalars*

Number of decimal places to use when printing the residuals

TITLE = *texts*

Titles for the plots

AFLABELS procedure

Forms a variate of unit labels for a design (R.W. Payne).

Options

UNITLABELS = *variate*

Stores the labels

MAXDIGIT = *scalar*

Number of available digits; default 8

Parameters

FACTOR = *factors*

Factors indexing the units of the design; if this is unset, the factors from the most recent **BLOCKSTRUCTURE** command are used

NEWLEVELS = *variates*

Allows new levels to be specified for each **FACTOR**; if this is unset, uses the levels already defined for the factor

AFMEANS procedure

Forms tables of means classified by **ANOVA** treatment factors (R.W. Payne).

Options

PRINT = *string tokens*

What to print (**means**, **sed**, **sedsummary**, **ese**, **lsd**, **lsdsummary**); default **mean**, **sed**

MEANS = *table*

Saves means; default *

SED = *symmetric matrix*

Saves matrices of standard errors of differences between means; default *

ESE = *table*

Saves effective standard errors; default *

LSD = *symmetric matrix*

Saves least significant differences between means; default *

LSDELEVEL = *scalar*

Significance level (%) for least significant differences; default 5

DFMEANS = *symmetric matrices*

Saves degrees of freedom for comparisons between every pair of entries in the table of means

EQFACTORS = *factors*

Factors whose levels are to be assumed to be equal within the comparisons between means, when calculating effective standard errors

SAVE = **ANOVA** save structure

Save structure to provide the table of means; default uses the save structure from the most recent **ANOVA**

Parameter

CLASSIFY = *vectors*

Factors to classify table of means (from those in the **TREATMENTSTRUCTURE** in the **ANOVA** analysis)

AFMINABERRATION directive

Options

PRINT = *string tokens*

Controls printed output (**summary**, **keyblocks**, **keydefining**, **monitoring**); default *
NTIMES = scalar
Number of designs to try in a random search; default 0 does the full search

SEED = scalar
Seed for the random number generator used to search the designs randomly; default 0

Parameters
LEVELS = scalars
Number of levels of the treatment factors, must be a power of a prime number

NTREATMENTFACTORS = scalars
Number of treatment factors

NUNITS = scalars
Number of units in each block of a block design or in the principal block of a fractional factorial

NSUBUNITS = scalars
Number of units in each (sub-)block

KEYBLOCKS = matrices
Design key for the blocks and sub-blocks

KEYDEFINING = matrices
Design key specifying the defining contrasts

RESOLUTION = scalars
Saves the resolution of the design

ABERRATION = matrices
Saves the aberration of the design

SUBRESOLUTION = scalars
Saves the resolution of the sub-design

SUBABERRATION = scalars
Saves the aberration of the sub-design

NDESIGN = scalars
Saves or defines the design number

NSUBDESIGN = scalars
Saves or defines the sub-design number

AFNONLINEAR procedure
Forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model (W. van den Berg).

Options
PRINT = string token
Controls printed output (results, monitoring); default resu, moni

PLOT = string token
Controls whether to plot the design (design); default desi

YARGUMENT = identifier
Data structure that stores the results of the function when it is calculated by expressions supplied by the FUNCTION option; must be set

XARGUMENT = identifier
Data structure representing the x-variate in the expressions supplied by the FUNCTION option; must be set

FUNCTION = expression structures
Specifies the function whose parameters are to be estimated; must be set

FNDERIVATIVES = expression structures
Specifies expressions to calculate derivative of the function with respect to each parameter; must be set

ITERATIVEWEIGHTS = identifier
Data structure that stores the iterative weights in the expressions supplied by the FNITERATIVEWEIGHTS option

FNITERATIVEWEIGHTS = expression structures
Specifies expressions to calculate the iterative weights when estimating the parameters of a generalized linear model

XSUPPORT = variate
Supplies the support points for the initial design, and saves those of the final design; if no initial values are supplied, an initial design is formed at random

XWEIGHTS = variate
Supplies the weights for the support points for the initial design, and saves those of the final design; if no initial values are supplied, equal weights are used initially

GRID = variate
Specifies the grid points where the design will be evaluated

A0 = scalar
Initial update weight; default 0.1

SEED = scalar
Seed for the random numbers used to select the initial design when not supplied by XSUPPORT and XWEIGHTS

NCYCLE = scalar
Number of iterations to make between each value of A0, before halving it for the next batch of iterations; default 100

MAXCYCLE = scalar
Maximum number of iterations; default 2500

TOLERANCES = variate
Variate with two values specifying the convergence criterion
Parameters

PARAMETER = *scalars*

Parameters of the nonlinear or generalized linear model (with values giving an indication of their likely estimated values)

DERIVATIVE = *identifiers*

Data structures that store the results of the calculation of the derivative for each parameter, in the expressions specified by the FNDERIVATIVES option

AFORMS procedure

Prints data forms for an experimental design (R.W. Payne).

Options

BLOCKSTRUCTURE = *formula*

Defines the block factors to be used to label the units of the design; default takes those specified in an earlier BLOCKSTRUCTURE directive

TREATMENTSTRUCTURE = *formula*

Defines the treatment factors to be used, if any, to label the forms

NLINES = *scalar*

Number of lines to be allowed for each measurement; default 1

Parameters

LABEL = *texts*

Labels for the measurements to be recorded on the forms

FIELDWIDTH = *scalar*

Fieldwidth to be allowed for each label

AFPREP procedure

Searches for an efficient partially-replicated design (R.W. Payne).

Options

PRINT = *strings*

Controls printed output (design, efficiency, factors, monitoring); default * i.e. none

LEVELS = *scalar* or *variate*

Levels of the treatment factor; if unset, takes the levels declared for the factor specified by the TREATMENTS option

NREPEATS = *variate*

Number of times each treatment occurs in the design

NBLOCKS = *scalar*

Number of blocks

TREATMENTS = *factor*

Treatment factor

BLOCKS = *factor*

Block factor

UNITS = *factor*

Unit-within-block factor

EFFICIENCY = *variate*

Saves the efficiency factors of the treatment term within blocks

NSTARTS = *scalar*

Specifies the number of random starting configurations to take in the search for the best design

NTRIES = *scalar*

Number of designs to try from each starting configuration

SEED = *scalar*

Seed for the random numbers used to randomize the design; default 0

TRYSEED = *scalar*

Seed for the random numbers used to select the random starting configurations; default 0

SPREADSHEET = *string*

Whether to put the design factors into a spreadsheet (design); default *

No parameters

AFRCRESOLVABLE procedure

Forms doubly resolvable row-column designs, with output (D.B. Baird).

Options

PRINT = *string tokens*

Controls printed output (design, plotnumbers, factors, efficiency; default desi, effi

DESIGNPLOT = *string token*

What factors to display in the design plot (treatment, plotandtreatment); default * i.e. no plot

FIRSTPLOT = *string token*

Defines the starting location for allocating plots to the row-by-column grid (lowleft, lowright, upleft, upright); default uple

PLOTORDER = *string token*

Defines the order in which the blocks are filled
(colserpentine, colbycol, rowserpentine, rowbyrow); default rowb

TIME = scalar

Time in seconds to spend searching for an optimal design; default 60

SEED = scalar

Seed for the randomization; default 0

MAXITERATIONS = scalar

The number of random designs to search for an optimal design; default 10000

SPREADSHEET = string token

What to save in a spreadsheet (data, plan); default *

Parameters

NROWS = scalars

Number of rows in the layout of each design

NCOLUMNS = scalars

Number of columns in the layout of each design

LEVELS = scalar, variate or text

Defines the number of levels or labels of the TREATMENT factor for each design

TREATMENTS = factors

Saves the treatment allocation in each design

ROWREPLICATES = factors

Saves the row replicates in each design

COLREPLICATES = factors

Saves the column replicates in each design

ROWS = factors

Saves the row locations of the plots in each design

COLUMNS = factors

Saves the column locations of the plots in each design

PLOTNUMBER = factors

Saves the plot numbers

TITLE = texts

The title for the design plot; default an automatic description of the design

OUTFILE = texts

Gives a file name (with extension .gsh, .gwb, or .xlsx) to save the factors in each design

EXIT = scalars

Saves the exit code from the design search program (0 for success, greater than 0 for failure)

AFRESPONSESURFACE directive

Uses the BLKL algorithm to construct designs for estimating response surfaces.

Options

PRINT = string token

Printed output required (monitoring); default * i.e. no printing

TERMS = formula

Model to be fitted when the design is used; no default i.e. this option must be specified

CONSTANT = string token

How to treat the constant in the model (estimate, omit); default esti

FACTORIAL = scalar

Limit for expansion of terms in the model; default 2

NUNITS = scalar

Number of units (or trials) in the design

NDELETION = scalar

Number of design points to consider for deletion; default takes NUNITS/4, or 4 is this is larger

NINCLUSION = scalar

Number of design points to consider for inclusion; default takes NUNITS/4, or 4 is this is larger

NRUNS = scalar

Number of times to run the algorithm; default 100

ADJUSTMENTSTEP = scalar

Maximum amount by which to perturb the design points in the adjustment algorithm; default * i.e. no adjustments are tried

NBLOCKS = scalar

Number of blocks; default 1 i.e. design not blocked

BLOCKFACTOR = factor

Saves the block factor (if any) for the design

BLOCKSIZE = scalar or variate

Number of units in each block of the design

PREVIOUSBLOCKS = factor

Supplies values of the blocking factor for any previous experiments that are to be included in the analysis of the results of the design

MIXTURE = variates

Lists any variates that are part of a mixture (their values must be greater than zero and sum to one)

SEED = scalar

Seed for random numbers used to construct the initial design; default 124195

DETERMINANT = scalar

Saves the determinant of the information matrix for the best design
4.1 Commands

MEANGRID $= scalar$

Saves the mean value of the standardized variance of predictions obtained from the design over a grid of x-values

MAXGRID $= scalar$

Saves the maximum value of the standardized variance of predictions obtained from the design over a grid of x-values

NGRIDPOINTS $= scalar$

Number of grid points in each x-direction to use for MEANGRID and MAXGRID; default 5

Parameters

X $=$ variates

Lists the variates to be investigated in the design; these need not be supplied if none of the other parameters are required

X2 $=$ variates

Lists identifiers to be used to represent squares of the x-variates in the model

X3 $=$ variates

Lists identifiers to be used to represent squares of the x-variates in the model

SUPPORTPOINTS $= variates$

Support points for each x-variate in the design; if these are not (all) specified, they are formed automatically

PREVIOUSVALUES $= variates$

Supplies values of the x-variates for any previous experiments that are to be included in the analysis of the results of the design

AFUNITS procedure

Forms a factor to index the units of the final stratum of a design (R.W. Payne & W. van den Berg).

Option

BLOCKSTRUCTURE $= formula$

Defines the block factors for the design; the default is to take those specified by the BLOCKSTRUCTURE directive

Parameter

UNITS $= factor$

Factor to be formed

AGALPHA procedure

Forms alpha designs by standard generators for up to 100 treatments (M.F. Franklin & R.W. Payne).

Option

PRINT $= string token$

Controls whether or not to print a plan or the generator of the design (design, generator); if unset in an interactive run AGALPHA will ask whether the design and generator are to be printed, in a batch run the default is not to print anything

Parameters

LEVELS $= scalars$

Number of treatments

NREPLICATES $= scalars$

Number of replicates

NBLOCKS $= scalars$

Number of blocks per replicate

SEED $= scalars$

Seed for randomization; a negative value implies no randomization

TREATMENTS $= factors$

Identifier for the treatment factor

REPLICATES $= factors$

Identifier for the replicate factor

BLOCKS $= factors$

Identifier for the factor to index the blocks within replicates

UNITS $= factors$

Identifier for the factor to index the units (or plots) within each block

STATEMENT $= texts$

Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGALPHA)

AGBIB procedure

Generates balanced incomplete block designs (R.W. Payne).

Options

PRINT $= string token$

Controls whether or not to print a plan of the design and whether to print a catalogue of the designs in the subfile (design, catalogue); if unset in an interactive run AGBIB will ask whether the design is to be printed, in a batch run the
default is not to print anything

ANALYSE = *string token*
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run.

Parameters

LEVELS = *scalars*
Number of treatments

NBLOCKS = *scalars*
Number of blocks

NUNITS = *scalars*
Number of units per block

SEED = *scalars*
Seed for randomization; a negative value implies no randomization

TREATMENTS = *factors*
Identifier for the treatment factor

BLOCKS = *factors*
Identifier for the factor to index the blocks

UNITS = *factors*
Identifier for the factor to index the units within each block

STATEMENT = *texts*
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGBIB)

AGBOXBEHNKEN procedure

Generates Box Behnken designs (R.W. Payne).

Options

PRINT = *string token*
Controls printed output (design); if unset in an interactive run **AGBOXBEHNKEN** will ask whether the design is to be printed, in a batch run the default is not to print anything

NCENTRALPOINTS = *scalar*
Defines the number of central points to include; default 4

LEVELS = *variate*
Defines the outer levels to be used; default !(-1,1)

NCOMBINATIONS = *scalar*
Number of factors to vary in combination at once; default 2

SEED = *scalar*
Seed to be used to randomize each design; a negative value implies no randomization

STATEMENT = *text*
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGBOXBEHNKEN)

Parameter

TREATMENTFACTOR = *factors*
Treatment factors

AGCENTRALCOMPOSITE procedure

Generates central composite designs (R.W. Payne).

Options

PRINT = *string token*
Controls printed output (design); if unset in an interactive run **AGCENTRALCOMPOSITE** will ask whether the design is to be printed, in a batch run the default is not to print anything

NCENTRALPOINTS = *scalar*
Defines the number of central points to include; default 4

NSTARPOINTS = *scalar*
Defines the number of star points to include; default 1

LFACTORIAL = *variate*
Defines the treatment levels in the factorial part of the design; default !(-1,1)

LSTAR = *variate*
Defines the treatment levels for the star points; default is to use the levels defined by LFACTORIAL

FRACTION = *scalar*
Denominator for fractional factorial; default 1 specifies a complete design

SEED = *scalar*
Seed to be used to randomize each design; a negative value implies no randomization

STATEMENT = *text*
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGCENTRALCOMPOSITE)

Parameter

TREATMENTFACTOR = *factors*
Treatment factors
AGCROSSOVERLATIN procedure

Generates Latin squares balanced for carry-over effects (R.W. Payne).

Options

- **PRINT = string token**
 Controls printed output (design); if unset in an interactive run **AGCROSSOVERLATIN** will ask whether the design is to be printed, in a batch run the default is not to print anything.

- **ANALYSE = string token**
 Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using **ANOVA** (yes, no); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run.

Parameters

- **LEVELS = scalars or variates**
 Number of treatments (scalar) or levels for the treatments.

- **SEED = scalars**
 Seed to be used to randomize the design; a negative value implies no randomization.

- **TREATMENTS = factors**
 Identifier for a factor to represent the direct effects of the treatments.

- **SUBJECTS = factors**
 Identifier for a factor to represent the subjects.

- **PERIODS = factors**
 Identifier for a factor to represent the periods.

- **CARRYOVERFACTOR = factors**
 Identifier for a factor to represent the carry-over (or "residual") effect of the treatments in the period immediately after the period in which they were applied.

- **NOCARRYOVER = factors**
 Identifier for a factor to represent the comparison between none and any carry-over effect of the treatments.

- **STATEMENT = texts**
 Saves a command to recreate each design (useful if the design information has been specified in response to questions from **AGCROSSOVERLATIN**).

AGCYCLIC procedure

Generates cyclic designs from standard generators (M.F. Franklin & R.W. Payne).

Options

- **PRINT = string token**
 Controls whether or not to print a plan of the design (design); if unset in an interactive run **AGCYCLIC** will ask whether the design is to be printed, in a batch run the default is not to print the design.

- **METHOD = string token**
 Type of design = ordinary cyclic, cyclic change-over or cyclic superimposed (cyclic, changeover, superimposed); if unset in an interactive run **AGCYCLIC** will ask about the type of design, in a batch the default is assumed to be cyclic.

Parameters

- **LEVELS = scalars**
 Number of treatments.

- **NBLOCKS = scalars**
 Number of blocks.

- **NUNITS = scalars**
 Number of units per block, or number of periods in a cyclic change-over design.

- **SEED = scalars**
 Seed for randomization; a negative value implies no randomization.

- **TREATMENTS = factors**
 Identifier for the treatment factor.

- **SUPERIMPOSED = factors**
 Identifier for the second treatment factor in a cyclic superimposed design.

- **BLOCKS = factors**
 Identifier for the factor to index the blocks.

- **UNITS = factors**
 Identifier for the factor to index the units within each block, or the periods of a cyclic change-over design.

- **INITIALBLOCKS = variates or pointers**
 To save one (variate) or more (pointer to variates) initial blocks.
STATEMENT = texts

Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGCYCLIC)

AGDESIGN procedure

Generates generally balanced designs (R.W. Payne).

Options

PRINT = string token

Controls whether or not to print a plan of the design and whether to print a catalogue of the designs in the subfile (design, catalogue); if unset in an interactive run AGDESIGN will ask whether the design is to be printed, in a batch run the default is not to print anything.

ANALYSE = string token

Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run.

FILENAME = text

Name of the backing store file containing the design information; default uses the standard design file.

SUBFILE = identifier

Subfile of the backing store file to be used.

Parameters

DESIGN = variates

Contains codes to indicate the choice of design.

TREATMENTFACTORS = pointers

Specifies identifiers for the treatment factors.

BLOCKFACTORS = pointers

Specifies identifiers for the block factors.

PSEUDOFactors = pointers

Specifies identifiers for any pseudo-factors.

REPLICATEFACTOR = factors

Specifies the identifier of the factor to represent the replicates (if any) in each design.

UNITLABELS = variates

Specifies the identifier of a variate to store a unique numerical label for each plot in the design.

SEED = scalars

Seed to be used to randomize each design; a negative value implies no randomization.

STATEMENT = texts

Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGDESIGN).

AGFACTORIAL procedure

Generates minimum aberration block or fractional factorial designs (P.J. Laycock, P.J. Rowley & R.W. Payne).

Options

PRINT = string token

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGFACTORIAL will ask whether the design is to be printed, in a batch run the default is not to print the design.

ANALYSE = string token

Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (yes, no); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run.

FACTORIAL = scalar

Limit on number of factors in treatments terms in the analysis of variance; default 3.

Parameters

LEVELS = scalars

Number of levels of the treatment factors in each design.

NTREATMENTFACTORS = scalars

Number of treatment factors.

NUNITS = scalars

Number of units per block.

NFRACTIONBLOCK = scalars

Defines the number of the block to use to define a fractional factorial, or can be set to zero to take a block at random; if unset in an interactive run AGFACTORIAL will ask whether to form a fractional factorial design, in a batch run the default is...
4.1 Commands

to form the full (block) design

NSUBUNITS = scalars
Number of units in each sub-block

SEED = scalars
Seed to be used to randomize each design; a negative value
implies no randomization

TREATMENTFACTORS = pointers
Specifies identifiers for the treatment factors

BLOCKS = factors
Identifier for the block factor

SUBBLOCKS = factors
Identifier for the sub-block factor

PSEUDOFACTORS = pointers
Specifies identifiers for pseudo-factors

UNITLABELS = variates
Specifies the identifier of a variate to store a unique numerical
label for each unit in the design

NDESIGN = scalars
Saves or defines the design number

NSUBDESIGN = scalars
Saves or defines the sub-design number

STATEMENT = texts
Saves a command to recreate each design (useful if the design
information has been specified in response to questions from
AGFACTORIAL)

AGFRACTION procedure
Generates fractional factorial designs (M.F. Franklin & R.W. Payne).

Options

PRINT = string token
Controls whether or not to print a plan of the design (design); if
unset in an interactive run AGFRACTION will ask whether the
design is to be printed, in a batch run the default is not to print
the design

ANALYSE = string token
Controls whether or not to analyse the design, and produce a
skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to
analyse if it is unset in a batch run

FACTORIAL = scalar
Limit on number of factors in treatments terms in the analysis
of variance; default 2

FILENAME = text
Name of the backing store file containing the design
information; default uses the standard fractional design file

Parameters

LEVELS = scalars
Number of levels of the treatment factors in each design

FRACTION = scalars
Denominator of required fraction

NTREATMENTFACTORS = scalars
Number of treatment factors

NUNITS = scalars
Number of units per block

SEED = scalars
Seed to be used to randomize each design; a negative value
implies no randomization

TREATMENTFACTORS = pointers
Specifies identifiers for the treatment factors

BLOCKS = factors
Identifier for the block factor

UNITS = factors
Identifier for the factor to index the units (or plots) within each
block

STATEMENT = texts
Saves a command to recreate each design (useful if the design
information has been specified in response to questions from
AGFRACTION)

AGHIERARCHICAL procedure
Generates orthogonal hierarchical designs (R.W. Payne).

Options

PRINT = string token
Controls whether or not to print a plan of the design (design); if
unset in an interactive run AGHIERARCHICAL will ask
whether the design is to be printed, in a batch run the default is
not to print the design

ANALYSE = string token
Controls whether or not to analyse the design, and produce a
skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to
analyse if it is unset in a batch run

SEED = scalar
Seed to be used to randomize the design; a negative value implies no randomization

STATEMENT = text
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGHIERARCHICAL)

EXCLUDELEVELS = scalars
Levels of the first block factor to exclude during randomization

Parameters

BLOCKFACTORS = factors
Specifies the identifier for the block factor used to index the units of each stratum (or level of the hierarchy)

TREATMENTFACTORS = factors or pointers
Specifies the identifier of the treatment factor or factors applied to the units of each stratum

LEVELS = scalars or pointers
Number of levels for the treatment factors in each stratum; if required, a pointer can contain an extra scalar to specify replication

AGINDUSTRIAL procedure

Helps to select and generate effective designs for use in industrial experiments (R.W. Payne).

Option

STATEMENT = text
Saves a command to recreate the design

No parameters

AGLATIN procedure

Options

PRINT = string token
Controls printed output (design, squares, list); if unset in an interactive run AGLATIN will ask whether the design is to be printed, in a batch run the default is not to print anything

ANALYSE = string token
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run

Parameters

NROWS = scalars
Specifies the number of rows (and columns) in each square

NSQUARES = scalars
Number of squares to form (i.e. number of treatment factors to generate)

SEED = scalars
Seed to be used to randomize each design; a negative value implies no randomization

TREATMENTFACTORS = pointers
Pointer to identifiers for the treatment factors

ROWS = factors
Identifier for the row factor

COLUMNS = factors
Identifier for the column factor

MAXNSQUARES = scalars
Returns the maximum number of squares available with the specified number of rows and columns

STATEMENT = texts
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGLATIN)

AGLOOP procedure

Generates loop designs e.g. for time-course microarray experiments (R.W. Payne).

Option

PRINT = string token
Controls whether or not to print a plan of the design (design); if unset in an interactive run AGLOOP will ask whether the design is to be printed, in a batch run the default is not to print the design
4.1 Commands

Parameters

- **LEVELS** = *scalars* Number of treatments
- **INCREMENT** = *scalars, variates or pointers* Increment or increments to be used to form the loops
- **SEED** = *scalars* Seed for randomization; a negative value implies no randomization
- **TREATMENTS** = *factors* Identifier for the treatment factor
- **BLOCKS** = *factors* Identifier for the block (plate) factor
- **UNITS** = *factors* Identifier for the factor for the units within each block (or colours in a microarray experiment)
- **STATEMENT** = *texts* Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGLOOP)

AGMAINFEFFECT procedure

Generates designs to estimate main effects of two-level factors (R.W. Payne).

Options

- **PRINT** = *string token* Controls printed output (design, catalogue); if unset in an interactive run AGMAINFEFFECT will ask whether the design or catalogue are to be printed, in a batch run the default is not to print anything
- **ANALYSE** = *string token* Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
- **FOLDED** = *string token* Whether to include an extra "folded" replicate with the levels of each factor interchanged (no, yes); default no
- **SEED** = *scalar* Seed to be used to randomize each design; a negative value implies no randomization
- **STATEMENT** = *texts* Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGMAINFEFFECT)

Parameter

- **TREATMENTFACTOR** = *factors* Treatment factors

AGNATURALBLOCK procedure

Forms 1- and 2-dimensional designs with blocks of natural size (P.D. Johnstone & D.B. Baird).

Options

- **PRINT** = *string token* Controls printed output (design, search); default design
- **DESIGNTYPE** = *string token* Type of design to create (block, rowcolumn); default rowcolumn
- **NSIMULATIONS** = *scalar* Number of randomizations to search to find the best design; default 1000
- **SEED** = *scalar* Seed for the randomization; default 0
- **FIRSTPLOT** = *string token* Defines the starting location for allocating plots to the row-by-column grid (lowleft, lowright, upleft, upright); default upleft
- **FILLMETHOD** = *string token* Defines the order in which the plots are filled (colserpentine, colbycol, rowserpentine, rowbyrow); default rows

Parameters

- **LEVELS** = *scalars or variates* Defines the levels of the treatment factor for each design
- **NROWS** = *scalars* Number of rows in the smallest rectangle containing the layout of each design; not required if the ROWS parameter is set to a factor with levels defined
- **NCOLUMNS** = *scalars* Number of columns in the smallest rectangle containing the layout of each design; not required if the COLUMNS parameter
is set to a factor with levels defined

NUNITS = scalar
Number of plots that will be assigned a treatment in each design; not required if any of the TREATMENTS, ROWS or COLUMNS parameters are set to a factor with values

TREATMENTS = factors
Saves the treatment allocation for each design

ROWS = factors
Defines or saves the row locations of the plots to receive treatments in each design

COLUMNS = factors
Defines or saves the column locations of the plots to receive treatments in each design

BLOCKS = factors
Defines or saves the allocation of the plots to blocks

PLAN = matrices
Saves the treatment layout in each design

AGNEIGHBOUR procedure

Generates neighbour-balanced designs (R.W. Payne).

Options

PRINT = string token
Controls printed output (catalogue, design); if unset in an interactive run AGNEIGHBOUR will ask whether the design is to be printed, in a batch run the default is not to print anything

METHOD = string token
Type of design, n – 1 blocks of n plots, or n blocks of n – 1 plots (N_1BLOCKS, NBLOCKS); if unset in an interactive run AGNEIGHBOUR will ask about the type of design, in a batch the default is assumed to be n blocks of n – 1 plots

Parameters

LEVELS = scalars
Number of treatments

SEED = scalars
Seed for randomization; in batch there is a default of 12345

TREATMENTS = factors
Identifier for the treatment factor

BLOCKS = factors
Identifier for the factor to index the blocks within replicates

UNITS = factors
Identifier for the factor to index the units within each block, or the periods of a cyclic change-over design

LEFTNEIGHBOUR = factors
To save the treatment on the left neighbouring unit

RIGHTNEIGHBOUR = factors
To save the treatment on the right neighbouring unit

STATEMENT = texts
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGNEIGHBOUR)

AGNONORTHOGONALDESIGN procedure

Generates non-orthogonal split-plot and other hierarchical designs (B. M. Parker).

Options

PRINT = string token
Controls printed output (design, debug); default * i.e. nothing

METHOD = string token
Specifies the algorithm to use (jonesgoos, trincagilmour); default trin

CRITERION = string token
Optimality criterion (a, d); default a

MODELMATRIX = matrix
Defines the model to be estimated

NSTARTS = scalar
Number of random starts for the jg algorithm; default 10

NTRIES = scalar
Number of exchanges to try from each start; default 10000

MINIMUM = scalar
Minimum value for levels; default –1

MAXIMUM = scalar
Maximum value for levels; default 1

SEED = scalar
Specifies the seed for the random numbers used by the algorithms; default 0

Parameters

BLOCKFACTORS = factors
Specifies the identifier for the block factor used to index the units of the whole-plots, the sub-plots and, if required, the sub-sub-plots

TREATMENTFACTORS = factors or pointers
Specifies the identifier of the treatment factor or factors
4.1 Commands

BLEVELS = scalars
Numbers of levels for the block factors

LEVELS = scalars or pointers
Numbers of levels for the treatment factors

VARIANCES = scalars
Variances for the strata

AGQLATIN procedure
Generates complete and quasi-complete Latin squares (R.W. Payne).

Options

PRINT = string token
Controls printing of the design (design); if unset in an interactive run AGQLATIN will ask whether the design is to be printed, in a batch run the default is not to print anything

ANALYSE = string token
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run

Parameters

NROWS = scalars
Specifies the number of rows (and columns) in the square

SEED = scalars
Seed to be used to randomize each design; a negative value implies no randomization

TREATMENTS = factors
Identifier for the treatment factor

ROWS = factors
Identifier for the row factor

COLUMNS = factors
Identifier for the column factor

STATEMENT = texts
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGQLATIN)

AGRAPH procedure
Plots tables of means from ANOVA (R.W. Payne).

Options

GRAPHICS = string token
Type of graph (highresolution, lineprinter); default high

METHOD = string token
What to plot (means, lines, data, barchart, splines); default mean

XFREPRESENTATION = string token
How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available

FSE = string token
What to plot to represent variation (differences, lsd, means, allmeans); default diff

LSDLEVEL = scalar
Significance level (%) to use for least significant differences; default 5

DFSPLINE = scalar
Number of degrees of freedom to use when METHOD=splines

YTRANSFORM = string tokens
Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, expl0, ilogit, iprobit, icloglog, root); default iden i.e. none

PENYTRANSFORM = scalar
Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically

'KEYMETHOD = string token
What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name

'PLOTTITLEMETHOD = string token
What to use for the titles of the plots when there are TRELLISGROUPS (labels, namesandlabels); default name

'PAGETITLEMETHOD = string token
What to use for the titles of the pages when there are PAGEGROUPS (labels, namesandlabels); default name

'USEAXES = string token
Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower%, mupper%, nsubticks); default none
SAVE = ANOVA or regression save structure

Parameters

XFACTOR = factors
Factor providing the x-values for each plot

GROUPS = factors or pointers
Factor or factors identifying groups of points in each plot; by default chosen automatically

TRELLISGROUPS = factors or pointers
Factor or factors specifying the different plots of a trellis plot of a multi-way table

PAGEGROUPS = factors or pointers
Factor or factors specifying plots to be displayed on different pages

NEWLEVELS = variates
Values to be used for XFACTOR instead of its existing levels

TITLE = texts
Title for the graph; default defines a title automatically

YTITLE = texts
Title for the y-axis; default is to use the identifier of the y-variate, or to have no title if this is unnamed

XTITLE = texts
Title for the x-axis; default is to use the identifier of the XFACTOR

PENS = variates
Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

AGRCRESOLVABLE directive
Forms doubly resolvable row-column designs.

Options

PLOTORDER = string token
Defines the order in which the pots are formed into replicates (colserpentine, colbycol, rowserpentine, rowbyrow); default rowb

TIME = scalar
Time in seconds to spend searching for an optimal design; default 60

SEED = scalar
Seed for the randomization; default 0

MAXITERATIONS = scalar
The number of random designs to search for an optimal design; default 10000

Parameters

NROWS = scalars
Number of rows in the design

NCOLUMNS = scalars
Number of columns in the design

LEVELS = scalar, variate or text
Defines the number of levels or labels of the TREATMENT factor for each design

TREATMENTS = factors
Saves the treatment allocation in each design

ROWREPLICATES = factors
Saves the row replicates in each design

COLREPLICATES = factors
Saves the column replicates in each design

ROWS = factors
Saves the row locations of the plots in each design

COLUMNS = factors
Saves the column locations of the plots in each design

EXIT = scalars
Saves the exit code from the design search program (0 for success, greater than 0 for failure)

AGREFERENCE procedure
Generates reference-level designs e.g. for microarray experiments (R.W. Payne).

Option

PRINT = string token
Controls whether or not to print a plan of the design (design); if unset in an interactive run AGREFERENCE will ask whether the design is to be printed, in a batch run the default is not to print the design

Parameters

LEVELS = scalars
Number of treatments

REFLEVEL = scalars, variates or pointers
Reference level(s); if this is unset in an interactive run you will be asked which reference level or levels you want, in a batch
4.1 Commands

run the default is level 1

REFUNIT = scalars, variates or pointers
Unit(s) to which to allocate the reference level(s); if this is unset in an interactive run you will be asked which reference level or levels you want, in a batch run the default is to choose the unit at random within each block

SEED = scalars
Seed for randomization; a negative value implies no randomization

TREATMENTS = factors
Identifier for the treatment factor

BLOCKS = factors
Identifier for the block (plate) factor

UNITS = factors
Identifier for the factor for the units within each block (or colours in a microarray experiment)

STATEMENT = texts
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGREFERENCE)

AGSEMILATIN procedure
Generates semi-Latin squares (W. van den Berg).

Options
PRINT = string token
Controls whether or not to print a plan of the design (design); if unset in an interactive run AGSEMILATIN will ask whether the design is to be printed, in a batch run the default is not to print anything

METHOD = string token
Method to use to construct the semi-Latin square (Trojan, interleaving, inflated); if unset in an interactive run AGSEMILATIN will ask what type is required, in a batch run the default is Trojan

ANALYSE = string token
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run

Parameters
NROWS = scalars
Number of rows and columns of the semi-Latin square

NUNITS = scalars
Number of units (i.e. treatments) within each block

SEED = scalars
Seed for randomization; a negative value implies no randomization

TREATMENTS = factors
Identifier for the treatment factor

ROWS = factors
Identifier for the row factor

COLUMNS = factors
Identifier for the column factor

UNITS = factors
Identifier for the unit factor

PSEUDOFACCTOR = factors
Identifier for the pseudo-factor

STATEMENT = texts
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGSEMILATIN)

AGSPACEFILLINGDESIGN procedure
Generates space filling designs (B.M. Parker).

Options
PRINT = string tokens
Controls whether to print the design and its properties

METHOD = string token
Specifies the method to use (latinhypercube, random, quasirandom); default rand

AUGMENT = string token
Indicates whether to augment an existing design (yes, no); default no

CENTRED = string token
For the Latin hypercube method, determines whether the design should be centred (yes, no); default no
CRITERION = string token
For the Latin hypercube method, determines which criterion
should be used to assess space filling; (none, L2, maximin,
entropy); default none

QRSEQUENCE = string token
Specifies which sequence to use with the quasi-random
method; (sobol, niederreiter, faure); default sobol

NUNITS = scalars
Specifies the number of design points

NDIMENSIONS = scalars
Specifies the number of dimensions of each of the design
points

NTIMES = scalars
Specifies the number of times to run the ESE algorithm;
default 10

DISCREPANCY = scalars
Saves the discrepancy of the design

SEED = scalars
Seed to be used to randomize each design; default 0

Parameter
X = pointer to variates
A pointer to a set of variates, each variate representing a
column of the design matrix

AGSQLATTICE procedure
Generates square lattice or lattice square designs (R.W. Payne).

Options
PRINT = string token
Controls whether or not to print a plan of the design (design);
if unset in an interactive run AGSQLATTICE will ask whether
the design is to be printed, in a batch run the default is not to
print the design

ANALYSE = string token
Controls whether or not to analyse the design, and produce a
skeleton analysis-of-variance table using ANOVA (no, yes);
default is to ask if this is unset in an interactive run, and not to
analyse if it is unset in a batch run

DESIGNTYPE = string token
What type of design to form (squarelattice,
latticesquare); default squa

Parameters
LEVELS = scalars
Number of treatments in each design

NREPLICATES = scalars
Number of replicates in each design, taken by default to be the
maximum number available in a batch run

SEED = scalars
Seed for randomization; a negative value implies no
randomization

TREATMENTS = factors
Identifier for the treatment factor for each design

PSEUDOFACTORS = pointers
Identifier for the pseudofactors required if the design is not a
balanced lattice

REPLICATES = factors
Identifier for the replicate factor for each design

BLOCKS = factors
Identifier for the factor to index the blocks within replicates of
a square lattice

ROWS = factors
Identifier for the factor to index the rows within replicates of a
lattice square

COLUMNS = factors
Identifier for the factor to index the columns within replicates
of a lattice square

UNITS = factors
Identifier for the factor to index the units (or plots) within the
blocks of a square lattice

STATEMENT = texts
Saves a command to recreate the design (useful if the design
information has been specified in response to questions from
AGSQLATTICE)

EXCLUDEREPLICATES = scalars or variates
Replicates to exclude during randomization
AGYOUDENSQUARE procedure
Generates a Youden square (W. van den Berg).

Options

- **PRINT = string tokens** Controls printed output (design, lambda, list); default is to ask what to print if this is unset in an interactive run, in a batch run the default is not to print anything.
- **ANALYSE = string token** Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run.

Parameters

- **NROWS = scalars** Specifies the number of rows in the square.
- **NCOLUMNS = scalars** Specifies the number of columns (and treatments) in the square.
- **SEED = scalars** Seed to be used to randomize each design; a negative value implies no randomization.
- **LAMBDA = scalars** Saves the number of times each pair of treatments occurs in the same column.
- **TREATMENTS = factors** Identifier for the treatment factor.
- **ROWS = factors** Identifier for the row factor.
- **COLUMNS = factors** Identifier for the column factor.
- **STATEMENT = texts** Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGYOUDENSQUARE).

AKAIKEHISTOGRAM procedure
Prints histograms with improved definition of groups (A. Keen).

Options

- **CHANNEL = scalar** Channel number of output file; default is the current output file.
- **TITLE = text** General title; default 'Histogram of ..., where ... is the identifier of the structure specified by DATA.
- **LOWER = scalar** Lowest class limit.
- **WIDTH = scalar** Interval width.
- **SCALE = scalar** Number of units represented by each symbol; default 1 (or more if the page width is not sufficient).

Parameters

- **DATA = identifiers** Data for the histograms (variate, table, factor or matrix).
- **NOBSERVATIONS = tables** One-way table to save numbers in the groups.
- **GROUPS = factors** Factor to save groups defined, with LEVELS the midpoints of the intervals and LABELS as LEVELS, but as text-vector.
- **SYMBOLS = texts** Characters to be used to represent the bars of each histogram.
- **DESCRIPTION = texts** Annotation for key.

AKEEP directive
Copies information from an ANOVA analysis into Genstat data structures.

Options

- **FACTORIAL = scalar** Limit on number of factors in a model term; default 3.
- **STRATUM = formula** Model term of the lowest stratum to be searched for effects; default * implies the lowest stratum.
- **SUPPRESSHIGHER = string token** Whether to suppress the searching of higher strata if a term is not found in STRATUM (yes, no); default no.
- **TWOLEVEL = string token** Representation of effects in 2^n experiments (responses, Yates, effects); default resp.
- **RESIDUALS = variate** Saves residuals from the final stratum (as in the RESIDUALS parameter of ANOVA).
- **FITTEDVALUES = variate** Saves fitted values (data values or missing value estimates, minus the residuals from the final stratum – as in the...
FITTEDVALUES parameter of ANOVA)
CBRESIDUALS = variate Saves the sum of the residuals from all the strata
CBCREGRESSION = variate Saves the estimates of the covariate regression coefficients, combining information from all the strata
CBCVCOVARIANCE = symmetric matrix Saves the variance-covariance matrix of the combined estimates of the covariate regression coefficients
TREATMENTSTRUCTURE = formula structure
Saves the treatment formula used for the analysis
BLOCKSTRUCTURE = formula structure
Saves the block formula used for the analysis
AFACTORIAL = scalar Saves the setting of the FACTORIAL option used in the ANOVA command that performed the analysis
WEIGHTS = variate Saves the weights used in the analysis
YVARIATE = dummy Dummy to be set to the y-variate of the analysis
LSDLEVEL = scalar Significance level (%) to use in the calculation of least significant differences; default 5
AOVTABLE = pointer Saves the analysis-of-variance table as a pointer with a variate or text for each column (source, d.f., s.s., m.s. etc)
EQFACTORS = factors Factors whose levels are to be assumed to be equal within the comparisons between means calculated for SEMEANS
RMETHOD = string token Type of residuals to form if the RESIDUALS option or parameter is set (simple, standardized); default simp
EXIT = scalar Saves an exit code indicating the properties of the design
SAVE = identifier Defines the Save structure (from ANOVA) that provides details of the analysis; default * gives that from the most recent ANOVA

Parameters
TERMS = formula Model terms for which information is required
MEANS = tables Table to store means for each term (available for treatment terms only)
SEMEANS = tables Table of effective standard errors for the means, usable for calculating standard errors for differences between means in the table, at equal levels of the factors specified by the EQFACTORS option
SEDMEANS = symmetric matrices Standard errors for comparisons between every pair of entries in the table of means
VCMEANS = symmetric matrices Variances and covariances of means
EFFECTS = tables or scalars Table or scalar (for terms with 1 d.f. when TWOLEVEL=responses or Yates) to store effects (for treatment terms only)
PARTIALEFFECTS = tables Table or scalar (for terms with 1 d.f. when TWOLEVEL=responses or Yates) to store partial effects (for treatment terms only)
REPLICATIONS = tables or scalars Table to store replications or scalar if they are all equal
RESIDUALS = tables Table to store residuals (for block terms only)
DF = scalars Number of degrees of freedom for each term
LSMEANS = symmetric matrices Least significant differences of means
DFMEANS = symmetric matrices Degrees of freedom for comparisons between every pair of entries in the table of means
SS = scalars Sum of squares for each term
EFFICIENCY = scalars Efficiency factor for each term
VARIANCE = scalars Unit variance for the effects of each term
RTERM = formula structures Residual terms; for a treatment term this saves the lowest stratum where the term is estimated (down to the stratum specified by the STRATUM option); for a block term it saves all the strata to which it would be appropriate to compare the term
CEFFICIENCY = scalars Covariance efficiency factor for each term
CREGRESSION = variates Estimated regression coefficients for the covariates in the
4.1 Commands

CSSP = symmetric matrices
Covariate sums of squares and products in the specified stratum

CVCOVARIANCE = symmetric matrix
Variance-covariance matrix of the covariate regression coefficients in the specified stratum

CONTRASTS = pointers
Estimates for the fitted contrasts of each treatment term, stored in a pointer to scalars or tables; units of the pointer are labelled by the contrast name (as used in the analysis-of-variance table)

XCONTRASTS = pointers
X-variates used to fit contrasts, as orthogonalized by ANOVA, stored in a pointer to tables; units of the pointer are labelled as for CONTRASTS

SECONTRASTS = pointers
Standard errors for estimated contrasts, stored in a pointer to scalars or tables; units of the pointer are labelled as for CONTRASTS

DFCONTRASTS = pointers
Degrees of freedom for estimated contrasts, stored in a pointer to scalars; units of the pointer are labelled as for CONTRASTS

CBMEANS = tables
Table to store estimates of the means, combining information from all the strata (for treatment terms only)

SECBMEANS = tables
Table of standard errors for the combined means, usable for calculating standard errors for differences between means in the table, at equal levels of the factors specified by the EQFACTORS option

SEDCBMEANS = symmetric matrices
Standard errors for comparisons between every pair of entries in the table of combined means

VCCBMEANS = symmetric matrices
Variances and covariances of combined means

LSCBMEANS = symmetric matrices
Least significant differences of combined means

DFCBMEANS = symmetric matrices
Effective degrees of freedom for comparisons between every pair of entries in the table of combined means

CBEFFECTS = tables or scalars
Table or scalar (for terms with 1 d.f. when TWOLEVEL=responses or Yates) to store estimates of the effects, combining information from all the strata (for treatment terms only)

CBVARIANCE = scalars
Unit variance for the combined estimates of the effects of each term

DFCEFFECTS = scalars
Effective degrees of freedom for the combined estimates of the effects of each term

CBCEFFICIENCY = scalars
Covariance efficiency factor for the combined estimates of each term

STRATUMVARIANCE = scalars
Estimates of the stratum variances (for block terms only)

COMPONENT = scalars
Stratum variance components (for block terms only)

STATUS = scalars
Status code describing how the term is estimated (together with its marginal terms, if the term is a treatment term)

AKEY procedure
Generates values for treatment factors using the design key method (R.W. Payne).

Options
PRINT = string token
Allows the generated TREATMENTFACTOR values to be printed, tabulated by the BLOCKFACTORS (design); default * i.e. no printing

BLOCKFACTORS = factors
Defines the block factors for the design; default is to take those in the formula already specified by the BLOCKSTRUCTURE directive, in the order in which they occur there

KEY = matrix
Matrix (number of treatment factors × number of block factors) key for the design

BASEVECTOR = variate
Base vector (length = number of treatment factors) for the design; default is a variate of zeros
ROWPRIMES = variate
COLPRIMES = variate
ROWMAPPINGS = variate
COLMAPPINGS = variate
Parameter
TREATMENTFACTORS = factors

Defines the treatment factors for the design; default is to take those in the formula already specified by the TREATMENTSTRUCTURE directive, in the order in which they occur there.

ALIAS procedure

Finds out information about aliased model terms in analysis of variance (R.W. Payne).

Options

TREATMENTSTRUCTURE = formula
BLOCKSTRUCTURE = formula
FACTORIAL = scalar
DESIGN = pointer
Parameter
TERM = factors

ALIGNCURVE procedure

Forms an optimal warping to align an observed series of observations with a standard series (D.B. Baird).

Options

PRINT = string tokens
PLOT = string tokens
WARPPENALTY = scalar
MAXSTEP = scalar
MAXDIFFERENCE = scalar
USEMEANS = string token
FORCEENDALIGNMENT = string token
Parameter
Y = variates
STANDARD = variates
WEIGHTS = variates
UWARP = variates
YWARP = variates
CRITERIONVALUE = scalars
TITLE = text

Sets a limit on size of difference between the series to be squared and added to the criterion (differences greater than this are truncated to MAXDIFFERENCE, thus allowing the effects of outliers to be down-weighted); default * i.e. no limit

Whether to use the means of points covered in one step, rather than the final value, when calculating the sums of squares between the two series (yes, no); default no

Whether to force the ends of the two series to align, so that warping happens only in the middle of the series (yes, no); default no

Window number for the plots; default 1
Window for the key (zero for no key); default 2

Series to be aligned with the standard series
Standard series for each Y
Weights for the contribution of each point to the criterion; default * no weighting
The warped positions of the unit numbers, required to align Y with STANDARD
The warped series for Y, i.e. the optimally aligned Y-values
The criterion value (as optimized during the alignment)
Title for the plots
4.1 Commands

ALLDIFFERENCES procedure

Shows all pairwise differences of values in a variate or table (A.R.G. McLachlan).

Options

PRINT = string token
What to print (differences); default diff

CLPRINT = string token
How to print column labels (labels, integers); default labe

SORT = string token
How to sort the DATA values (ascending, descending); default * i.e. not sorted

MVREMOVE = string token
Whether to remove missing values (yes, no); default no

RCMETHOD = string token
Which differences to calculate i.e. column/row, row/column, or absolute values (column, row, absolute); default colu

DIAGONAL = string token
Whether to put the data values into the diagonal of the symmetric matrices of results (values); default * i.e. diagonal left as missing values

Parameters

DATA = variates or tables
Data values whose pairwise differences are required

DIFFERENCES = symmetric matrices or pointers
Saves the pairwise differences in a symmetric matrix if GROUPS is unset, otherwise in a pointer to several symmetric matrices

GROUPS = factors or pointers
Defines groupings of the data values

LABELS = texts
Labels for the rows (and columns) of the symmetric matrices of differences

NEWLABELS = texts or pointers
Saves the row labels of the symmetric matrices of differences in a text if GROUPS is unset, otherwise in a pointer to several texts

ALLPAIRWISE procedure

Performs a range of all pairwise multiple comparison tests (D.M. Smith).

Options

METHOD = string token
Test to be performed (Tukey, SNK, REGWMR, Duncan, Scheffe, FPLSD, FULSD, Bonferroni, Sidak); default *

DIRECTION = string token
How to sort means (ascending, descending); default asce

PROBABILITY = scalar
The required significance level; default=0.05

ALSD = string token
Whether to use the alternative LSD test where the Studentized Range statistic is used instead of Student's t (yes, no); default no

Parameters

MEANS = variates or tables
Mean values

REPLICATIONS = scalars or tables or variates
Number(s) of observations per mean

VARIANCE = scalars
Estimate of variance

DF = scalars
Degrees of freedom

LABELS = texts
Identifiers of mean values

AMCOMPARISON procedure

Performs pairwise multiple comparison tests for ANOVA means (D.M. Smith).

Options

PRINT = string tokens
Controls printed output (comparisons, critical, description, lines, letters, plot, mplot, pplot); default lett

METHOD = string token
Test to be performed (tukey, snk, regwrm, duncan, scheffe, fplsd, fulsd, bonferroni, sidak); default fplsd

FACTORIAL = scalar
Limit on the number of factors in each term; default 3

DIRECTION = string token
How to sort means (ascending, descending); default asce
Syntax summary

PROBABILITY = scalar

The required significance level; default 0.05

STUDENTIZE = string token

Whether to use the alternative LSD test where the Studentized Range statistic is used instead of Student's t (yes, no); default no

SAVE = ANOVA save structure

Save structure to provide the tables of means and associated information; default uses the save structure from the most recent ANOVA

Parameters

TERMS = formula

Treatment terms whose means are to be compared

MEANS = pointer or variate

Saves the (sorted) means

LABELS = pointer or text

Saves labels for the (sorted) means

LETTERS = pointer or text

Saves letters indicating groups of means that do not differ significantly

SIGNIFICANCE = pointer or symmetric matrix

Indicators to show significant comparisons between (sorted) means

AMDUNNETT procedure

Forms Dunnett's simultaneous confidence interval around a control (R.W. Payne).

Options

PRINT = string token

Controls printed output (interval); default inte

METHOD = string token

Form of the alternative hypothesis (twosided, greaterthan, lessthan); default twos

CIPROBABILITY = scalar

Probability level for the confidence interval; default 0.95, i.e. a 95% confidence interval

LOWER = scalar

Saves the lower confidence limit

UPPER = scalar

Saves the upper confidence limit

SAVE = ANOVA save structure

Save structure to provide the means; default uses the save structure from the most recent ANOVA

Parameters

FACTOR = factors

Define the model term whose means are to be compared

CONTROL = scalars or texts

Scalar or single-valued text for each factor to identify which of the means of the term is the control; default uses the reference level of the FACTOR

AMERGE procedure

Merges extra units into an experimental design (R.W. Payne).

Option

SORT = string token

Whether to sort the factors afterwards (no, yes); default no

Parameters

FACTOR = factors

Factors to which the new units are to be added

NEWUNITS = factors, variates or scalars

Extra units to be added to each factor

AMMI procedure

Options

PRINT = string tokens

Results to be output (aovtable, genotype, environment, estimates, envtable, cluster, stability); default * i.e. none

NROOTS = scalar

Number of IPCA scores required; default is to take as many roots as possible up to a maximum of 9

DIMENSIONS = scalars

Two numbers specifying the dimensions to display in the biplots; default 1,2

PLOT = string tokens

Types of biplot to display (mean, ipca); default * i.e. none
SCALING = string token

Scaling to use for the ipca (AMMI2) biplot (genotype, environment, symmetric); default envi

Parameters
DATA = variates or tables
Provides the data to be analysed
GENOTYPES = factors
Specifies the genotypes
ENVIRONMENTS = factors
Specifies the environments
REPLICATES = factors
 Replication factor; this should be omitted if the data comprises just the genotype by environment means
GSCORES = pointers
Pointer containing a set of variates (each of length equal to the number of genotypes) to save the genotype IPCA scores
ESCORES = pointers
Pointer to a set of variates to save the environment IPCA scores
RESIDUALS = variates
Saves the residuals from the AMMI model
FITTEDVALUES = variates
Saves the fitted values from the AMMI model
TITLEPREFIX = texts
Specifies a prefix to use for the titles of the plots
AOVTABLE = pointers
Saves the analysis-of-variance table
STABILITY = variates
Saves the AMMI stability values

AMTDISPLAY procedure

Displays further output for multitiered experiments analysed by AMTIER (C.J. Brien & R.W. Payne).

Option
PRINT = string tokens
Controls printed output from the analysis (aovtable, aovpseudotable, design, effects, fittedvalues); default * i.e. none

Parameter
SAVE = pointers
Save structure for each analysis (saved from AMTIER); if this is not set the output is from the most recent AMTIER analysis

AMTKEEP procedure

Saves information from the analysis of a multitiered design by AMTIER (C.J. Brien & R.W. Payne).

Options
RESIDUALS = variate
Saves the residuals
FITTEDVALUES = variate
Saves the fitted values
AOVTABLE = pointer
Saves the analysis-of-variance table
SKELETON = string token
Whether to save only the skeleton analysis-of-variance table (yes, no); default no
PSEUDOLINES = string token
Whether to include lines for pseudo-terms in the analysis-of-variance table (yes, no); default no
OMITMISSINGLINES = string token
Whether to omit lines of the analysis-of-variance table that contain only missing values (yes, no); default no
SAVE = pointer
Save structure for the analysis; if this is not set, information is saved from the most recent AMTIER analysis

No parameters

AMTIER procedure

Analyses a multitiered design by an analysis of variance specified by up to three model formulae (C.J. Brien & R.W. Payne).

Options
PRINT = string tokens
Controls printed output from the analysis (aovtable, aovpseudotable, design, effects, fittedvalues); default aovt
F1 = formula
First model formula
F2 = formula
Second model formula
F3 = formula
Third model formula
FACTORIAL = scalar
Limit on the number of factors in a model term
F2BALANCETYPE = string token
Type of balance required for F2 (orthogonal,
4 Syntax summary

F3BALANCETYPE = string token
Type of balance required for F3 (orthogonal, firstorder); default orth

PSEUDOTERMS = formula structures
 Specifies pseudo-terms for terms in the F1, F2 or F3 formulae

DESIGN = tree
Saves or specifies details of the design and analysis

SEED = scalar
Seed for random numbers to generate dummy variate for determining the design; default 13579

TOLERANCE = variate
Tolerance for zero sweeps in dummy and y-variates analyses

DPRINT = string tokens
 Controls debug output (setup, analysis, dummyanalysis); default * i.e. none

Parameters

Y = variates
Each of these contains the data values for an analysis

RESIDUALS = variates
Saves the residuals from each analysis

FITTEDVALUES = variates
Saves the fitted values from each analysis

SAVE = pointers
Save structure for each analysis (to use in AMTDISPLAY)

ANOVA directive
Analyses y-variates by analysis of variance according to the model defined by earlier BLOCKSTRUCTURE, COVARIATE, and TREATMENTSTRUCTURE statements.

Options

PRINT = string tokens
Output from the analyses of the y-variates, adjusted for any covariates (aovtable, information, covariates, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, %cv, missingvalues); default aovt, info, cova, mean, miss

UPRINT = string tokens
Output from the unadjusted analyses of the y-variates (aovtable, information, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, %cv, missingvalues); default * i.e. no printing

CPRINT = string tokens
Output from the analyses of the covariates, if any (aovtable, information, effects, residuals, contrasts, means, %cv, missingvalues); default * i.e. no printing

FACTORIAL = scalar
Limit on number of factors in a treatment term; default 3

CONTRASTS = scalar
Limit on the order of a contrast of a treatment term; default 4

DEVIATIONS = scalar
Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9

PFACTORIAL = scalar
Limit on number of factors in printed tables of means or effects; default 9

PCONTRASTS = scalar
Limit on order of printed contrasts; default 9

PDEVIATIONS = scalar
Limit on number of factors in a treatment term whose deviations from the fitted contrasts are to be printed; default 9

FPROBABILITY = string token
Printing of probabilities for variance ratios (yes, no); default no

PSE = string token
 Standard errors to be printed with tables of means, PSE=* requests s.e.'s to be omitted (differences, lsd, means); default diff

TWOLEVEL = string token
Representation of effects in 2^k experiments (responses, yates, effects); default resp

DESIGN = pointer
Stores details of the design for use in subsequent analyses; default *

WEIGHTS = variate
Weights for each unit; default * i.e. all units with weight one

ORTHOGONAL = string token
Whether or not design to be assumed orthogonal notassumed, assumed, compulsory); default nota

SEED = scalar
Seed for random numbers to generate dummy variate for
4.1 Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXCYCLE = scalar</td>
<td>Maximum number of iterations for estimating missing values; default 20</td>
</tr>
<tr>
<td>TOLERANCES = variate</td>
<td>Allows you to redefine the tolerances for zero used by various parts of the algorithm</td>
</tr>
<tr>
<td>NOMESSAGE = string tokens</td>
<td>Which warning messages to suppress (nonorthogonal, residual); default *</td>
</tr>
<tr>
<td>LSDLEVEL = scalar</td>
<td>Significance level (%) to use in the calculation of least significant differences; default 5</td>
</tr>
<tr>
<td>EXIT = scalar</td>
<td>Saves an exit code indicating the properties of the design</td>
</tr>
</tbody>
</table>

Parameters

- **Y = variates**: Variates to be analysed
- **RESIDUALS = variates**: Variate to save residuals for each y variate
- **FITTEDVALUES = variates**: Variate to save fitted values
- **SAVE = identifiers**: Save details of each analysis for use in subsequent ADISPLAY or AKEEP statements

ANTVMVESTIMATE procedure

Estimates missing values in repeated measurements (M.G. Kenward & R.W. Payne).

Options

- **PRINT = string tokens**: Controls output from the procedure (meanprofiles); default * i.e. none
- **GROUPS = factor**: Factor indicating the plot on which each sequence of observations was made
- **ORDER = scalar**: Order of ante-dependence structure (i.e. number of past times for which to adjust)

Parameters

- **DATA = variates**: Observations at each time
- **NEWDATA = variates**: Data variates with missing observations replaced by their estimates
- **MEANPROFILE = tables**: Estimated mean profiles at each time

ANTOORDER procedure

Assesses order of ante-dependence for repeated measures data (M.S. Ridout & R.W. Payne).

Options

- **TREATMENTSTRUCTURE = formula**: Treatment formula for the model at each time; if this is not set, the default is taken from the setting (which must already have been defined) of the TREATMENTSTRUCTURE directive
- **BLOCKSTRUCTURE = formula**: Block formula for the model at each time; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term)
- **MAXORDER = scalar**: Maximum order against which to test; default is maximum possible order
- **FACTORIAL = scalar**: Limit on the number of factors in a treatment term
- **TIME = factor**: Indicates the time of each observation when there is a single DATA variate

Parameter

- **DATA = variates**: Data observations either in a list of variates (one for each time), or a single variate (with TIME set to a factor indicating the time of each observation)
ANTTEST procedure
Calculates overall tests based on a specified order of ante-dependence (R.W. Payne & M.S. Ridout).

Options
- **TREATMENTSTRUCTURE = formula**
 - Treatment formula for the model at each time; if this is not set, the default is taken from the setting (which must already have been defined) of the TREATMENTSTRUCTURE directive.
- **BLOCKSTRUCTURE = formula**
 - Block formula for the model at each time; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term).
- **ORDER = scalar**
 - Number of past times for which to adjust; default is maximum possible order.
- **FACTORIAL = scalar**
 - Limit on the number of factors in a treatment term.
- **TIME = factor**
 - Indicates the time of each observation when there is a single DATA variate.

Parameter
- **DATA = variates**
 - Data observations either in a list of variates (one for each time), or a single variate (with TIME set to a factor indicating the time of each observation).

AN1ADVICE procedure
Aims to give useful advice if a design that is thought to be balanced fails to be analysed by ANOVA (R.W. Payne).

Options
- **PRINT = string tokens**
 - Controls printed output (advice, suspects); default advice
- **FACTORIAL = scalar**
 - Limit on number of factors in a treatment term; default 3.
- **METHOD = string tokens**
 - Method to use to predict the correct pattern of replication (median, mode, proportional); default mode.
- **WEIGHTS = variate**
 - Weights for the analysis; default * i.e. all units have weight one.
- **SUSPECTS = variate**
 - Saves the numbers of the units whose factor values are suspected to be incorrect.

Parameter
- **Y = variates**
 - Data values to be analysed (this is needed only if the analysis is to take place on a restricted set of units).

AONEWAY procedure
Performs one-way analysis of variance (R.W. Payne).

Options
- **PRINT = string tokens**
 - Controls printed output from the analysis of variance (aovtable, information, covariates, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, %cv, missingvalues, homogeneity, permutationtest); default aovt, mean, miss
- **GROUPS = factor**
 - Defines the treatments for the analysis.
- **COVARIATES = variates**
 - Covariates (if any) for analysis of covariance.
- **PLOT = string tokens**
 - Which residual plots to provide (fittedvalues, normal, halfnormal, histogram, absresidual); default fitt, norm, half, hist.
- **GRAPHICS = string token**
 - Type of graphs (lineprinter, highresolution); default high.
- **FPROBABILITY = string token**
 - Probabilities for variance ratio (yes, no); default no.
- **PSE = string tokens**
 - Types of standard errors to be printed with the means (differences, lsd, means); default diff.
4.1 Commands

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

NTIMES = scalar
Number of random allocations to make when PRINT=perm; default 999

SEED = scalar
Seed for the random number generator used to make the allocations; default 0 continues from the previous generation or (if none) initializes the seed automatically

Parameters
Y = variates
Each of these contains the data values for an analysis
RESIDUALS = variates
Saves the residuals from each analysis
FITTEDVALUES = variates
Saves the fitted values from each analysis

AOVANYHOW procedure
Performs analysis of variance using ANOVA, regression or REML as appropriate (R.W. Payne).

Options
PRINT = string tokens
Controls printed output from the analysis (aovtable, information, means, residuals); default aovt, info, mean

METHOD = string token
Whether to complete the analysis or just form a recommendation (analyse, recommend); default anal

FACTORIAL = scalar
Limit on number of factors in a treatment term; default 3

FPROBABILITY = string token
Printing of probabilities for variance ratios in the analysis-of-variance table (yes, no); default no

PLOT = string tokens
Which residual plots to provide (fittedvalues, normal, halfnormal, histogram); default * i.e. none

COMBINATIONS = string token
Factor combinations for which to form predicted means (present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

WEIGHTS = variate
Weights for each unit; default * i.e. all units with weight one

PSE = string tokens
Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsd, means; default diff

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

EFLOSS = scalar
Maximum loss of efficiency occurring on any treatment contrast if the analysis is done by regression

EFLIMIT = scalar
Limit on the loss of efficiency for the analysis to be done by regression; default 0.1

EXIT = scalar
Exit code indicating the recommended method of analysis

Parameters
Y = variates
Data values to be analysed
RESIDUALS = variates
Variate to save the residuals from each analysis
FITTEDVALUES = variates
Variate to save the fitted values from each analysis
SAVE = identifiers
To save details of each analysis to use subsequently with the AOVDISPLAY procedure

AOVDISPLAY procedure
Provides further output from an analysis by AOVANYHOW (R.W. Payne).

Options
PRINT = string tokens
Controls printed output from the analysis (aovtable, information, means, residuals); default aovt, info, mean

FPROBABILITY = string token
Printing of probabilities for variance ratios in the analysis-of-variance table (yes, no); default no

PLOT = string tokens
Which residual plots to provide (fittedvalues, normal,
4 Syntax summary

COMBINATIONS = string token
Factor combinations for which to form predicted means (present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

PSE = string tokens
Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsl, means); default diff

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

EFLOSS = scalar
Maximum loss of efficiency occurring on any treatment contrast if the analysis is done by regression

EXIT = scalar
Code indicating the method of analysis

Parameters

SAVE = identifiers
Save structure from AOVAHYOW; default uses the save structure from the most recent AOVAHYOW analysis

APAPADAKIS directive
Analysis of variance with an added Papadakis covariate, formed from neighbouring residuals (D.B. Baird).

Options

PRINT = string tokens
Output from the analysis of the y-variates, adjusted for covariates (aovtable, information, covariates, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, %cv, missingvalues); default aovt, info, cova, mean, miss

PLOT = string token
Whether to plot the residuals against the average of neighbouring residuals (residuals); default * i.e. no plot

NEIGHBOURS = string token
The neighbours whose residuals are averaged to form the residual covariate (adjacent, rows, columns, all); default adja

TREATMENTSTRUCTURE = formula
Defines the treatment structure of the model; default given by the most recent TREATMENTSTRUCTURE directive

BLOCKSTRUCTURE = formula
Defines the blockings structure of the model; default given by the most recent BLOCKSTRUCTURE directive

COVARIATE = variates
Specifies any covariates in addition to the residual (Papadakis) covariate; default given by the most recent COVARIATE directive

FACTORIAL = scalar
Limit on number of factors in a treatment term; default 3

CONTRASTS = scalar
Limit on the order of a contrast of a treatment term; default 4

DEVIATIONS = scalar
Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9

PSE = string token
Standard errors to be printed with tables of means, PSE=* requests s.e.'s to be omitted (differences, lsd, means); default diff

LSDLEVEL = scalar
Significance level (%) to use in the calculation of least significant differences; default 5

Parameters

Y = variates
Variates to be analysed

ROWS = factors or variates
Factor giving the row location of each plot

COLUMNS = factors or variates
Factor giving the column location of each plot

UNITS = factors or variates
Factor giving the plot location of each unit

RCOVARIATE = variates
Saves the covariate formed from the mean of the neighbouring residuals

TITLE = texts
Title for the graph; default i.e. title created from the Y variate
4.1 Commands

WINDOW = scalars
Window number for the graph; default 3

PEN = scalars, variates or factors
Pen number for the graph; default 1

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clear

APERMTEST procedure
Does random permutation tests for analysis-of-variance tables (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (aovtable, critical); default aovt

PLOT = string
What to plot (histogram); default *

NTIMES = scalar
Number of permutations to make; default 999

EXCLUDE = factors
Factors in the block model of the design whose levels are not to be randomized

SEED = scalar
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

AOVTABLE = pointer
Saves the aov-table, with permutation probabilities

CRITICAL = pointer
Saves the aov-table, with critical values

SAVE = ANOVA save structure
Save structure from the analysis of variance; default uses the save structure from the most recent ANOVA

No parameters

APLOT procedure
Plots residuals from an ANOVA analysis (R.W. Payne & A.D. Todd).

Options

RMETHOD = string token
Type of residuals to plot (simple, standardized); default simp

INDEX = variate or factor
X-variable for an index plot; default !(1,2...)

STRATUM = formula
The stratum (or error term) whose residuals are to be plotted; the default is to plot the residuals from the final stratum

GRAPHICS = string token
What type of graphics to use (lineprinter, highresolution); default high

TITLE = text
Overall title for the plots; if unset, the identifier of the y-variate is used

SAVE = ANOVA save structure
Specifies the analysis from which the residuals and fitted values are to be taken; by default they are taken from the most recent ANOVA

Parameters

METHOD = string tokens
Type of residual plot (fittedvalues, normal, halfnormal, histogram, absresidual, index); default fitt, norm, half, hist

PEN = scalars, variates or factors
Pen(s) to use for each plot

APOLYNOMIAL procedure
Forms the equation for a polynomial contrast fitted by ANOVA (R.W. Payne).

Options

PRINT = string token
Whether to print the equation of the polynomial (equation); default equa

SAVE = ANOVA save structure
Save structure (from ANOVA) to provide details of the analysis from which the equations are to be formed; default uses the save structure from the most recent ANOVA

Parameters

TERMS = formula
Model terms whose polynomial equations are required

COEFFICIENTS = pointers
Saves the coefficients of each polynomial
APOWER procedure
Calculates the power (probability of detection) for terms in an analysis of variance (R.W. Payne).

Options
PRINT = string token
 Prints the power (power); default power
TERM = formula
 Treatment term to be assessed in the analysis
TREATMENTSTRUCTURE = formula
 Treatment structure of the design; determined automatically from an ANOVA save structure if TREATMENTSTRUCTURE is unset or if SAVE is set
BLOCKSTRUCTURE = formula
 Block structure of the design; determined automatically from an ANOVA save structure if BLOCKSTRUCTURE is unset or if SAVE is set
FACTORIAL = scalar
 Limit on the number of factors in treatment terms; default 3
PROBABILITY = scalar
 Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05
TMETHOD = string token
 Type of test to be made (onesided, twosided, equivalence, noninferiority, fratio); default ones
XCONTRAITS = variate
 X-variate defining a contrast to be detected
CONTRASTTYPE = string token
 Type of contrast (regression, comparison) default rege
SAVE = asave
 ANOVA save structure to provide the information about the design

Parameters
RESPONSE = scalars, variates or tables
 Size of the difference or contrast between the effects of TERM that is to be detected, or (for TMETHOD=fratio) pattern of effects or means to be detected
RMS = scalars
 Anticipated residual mean square corresponding to TERM; can be omitted if a SAVE structure is available
POWER = scalars or variates
 Saves the power (i.e. probability of detection) for RESPONSE

APPEND procedure
Appends a list of vectors of compatible types (R.W. Payne).

Options
NEWVECTOR = variate, factor or text
 Vector to store the appended values; by default uses the first vector of the OLDVECTOR list
FREPRESENTATION = string token
 How to match the values of old factors (levels, labels, ordinals, renumbered); default level
GROUPS = factor
 Factor to represent the OLDVECTOR to which each unit originally belonged

Parameter
OLDVECTOR = variates, factors, texts or scalars
 Values to be appended

APRODUCT procedure
Forms a new experimental design from the product of two designs (R.W. Payne).

Options
PRINT = string token
 Controls printing of the design (design); default desi
ANALYSE = string token
 Whether to analyse the design by ANOVA (yes, no); default no
METHOD = string token
 How to combine the designs (cross, nest); default nest
BF1 = formula
 Block formula for design 1
TF1 = formula
 Treatment formula for design 1
BF2 = formula
 Block formula for design 2
TF2 = formula
 Treatment formula for design 2
No parameters
4.1 Commands

ARANDOMIZE procedure
Randomizes and prints an experimental design (R.W. Payne).

Options
- **PRINT = string token**
 - Allows the (randomized) design to be printed; (design); default *
- **BLOCKSTRUCTURE = formula**
 - Defines the block factors according to which the randomization is to be carried out; default takes the existing specification as defined by the BLOCKSTRUCTURE directive
- **EXCLUDE = factors**
 - (Block) factors whose levels are not to be randomized
- **SEED = scalar**
 - Seed to generate the random numbers used to define the randomization; default 0
- **LPERMUTE = string token**
 - Whether to randomly permute treatment factor levels (no, yes); default no

Parameters
- **OLDVECTOR = factors or variates**
 - Vectors whose values are to be randomized; default is to use the factors occurring in the formula (if any) specified by the most recent TREATMENTSTRUCTURE directive
- **NEWVECTOR = factors or variates**
 - Vectors to store the randomized values; by default these overwrite the values in the original vectors

ARCSPPLITPLOT procedure
Adds extra treatments onto the replicates of a resolvable row-column design, and generates factors giving the row and column locations of the plots within the design (R.W. Payne).

Options
- **PRINT = strings**
 - Controls printed output (design, factors, layout); default * i.e. none
- **LEVELS = scalar or variate**
 - Numbers of levels of the extra treatment factors; if unset, takes the numbers of levels declared for the TREATMENTFACTORS TREATMENTFACTORS = factors
 - Extra treatment factors to be imposed onto the replicates of the original row-column design
- **REPLICATES = factor**
 - Replicates in the modified design (after adding the extra treatments)
- **WHOLEPLOTS = factor**
 - Whole-plots in the modified design
- **ROWS = factor**
 - Factor indexing the rows over the whole design
- **COLUMNS = factor**
 - Factor indexing the columns over the whole design
- **RCREPLICATES = factor**
 - Replicates in the row-column design
- **RCROWS = factor**
 - Rows within replicates of the row-column design
- **RCCOLUMNS = factor**
 - Columns within replicates of the row-column design
- **RELOCATIONS = variate or matrix**
 - Locations of the replicates of the row-column design
- **METHOD = string**
 - How to form the replicates of the modified design (rowserpentine, columnserpentine, given); default rowserpentine
- **SEED = scalar**
 - Seed for randomizing the allocation of the extra treatments; default 0
- **SPREADSHEET = string**
 - Whether to put the design factors into a spreadsheet (design); default *

No parameters

AREPMEASURES procedure
Produces an analysis of variance for repeated measurements (R.W. Payne).

Options
- **PRINT = string tokens**
 - Controls output about the covariance structure (vcovariance, correlation, epsilon, test); default epsi, test
- **APRINT = string tokens**
 - Printed output from the analysis of variance (as for the ANOVA PRINT option); default *
TREATMENTSTRUCTURE = formula
Defines the treatments given to the subjects; if this is not set, the default is taken from any existing setting defined by the TREATMENTSTRUCTURE directive.

BLOCKSTRUCTURE = formula
Defines any block structure over the subjects if this is not set, the default is taken from any existing setting defined by the BLOCKSTRUCTURE directive.

COVARIATE = variates
Specifies any covariates on the subjects if this is not set, the default is taken from any existing setting defined by the COVARIATE directive.

FACTORIAL = scalar
Limit in the number of factors in the terms generated from the TREATMENTSTRUCTURE formula.

TIMEPOINTS = variate, text or factor
When the DATA parameter supplies a separate variate of observations for each time this can specify numbers or labels for the time points, when there is a single DATA variate this must supply a factor to indicate the time of each observation.

CONTRASTS = scalar
Limit on the order of a contrast of a treatment term; default 4

DEVIATIONS = scalar
Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9

FPROBABILITY = string token
Printing of probabilities for variance ratios in the aov table (no, yes); default no.

PSE = string tokens
Standard errors to be printed with tables of means (differences, lsd, means); default diff.

MAXCYCLE = scalar
Maximum number of iterations for estimating missing values; default 20.

LSDLEVEL = scalar
Significance level (%) to use in the calculation of least significant differences; default 5.

EPSILON = scalar
Saves the correction factor epsilon.

SAVEFACTORS = pointer
Saves the factors used in the analysis of variance.

ASAVE = identifier
Saves the ANOVA save structure from the analysis of variance.

Parameter

DATA = variates
Data observations either in a list of variates (one for each time), or a single variate (with TIMEPOINTS set to a factor indicating the time of each observation).

ARESULTSUMMARY procedure
Provides a summary of results from an ANOVA analysis (R.W. Payne).

Options

PRINT = string tokens
What to print (description, means, significant); default desc, mean, sign.

PSE = string tokens
Standard errors to be printed with the means (sed, sedsummary, lsd, lsdsummary, dfmeans); default sed, dfme.

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5.

SAVE = ANOVA save structure
Save structure for the analysis; default uses the save structure from the most recent ANOVA.

No parameters

ARETRIEVE procedure
Retrieves an ANOVA save structure from an external file (R.W. Payne).

No options

Parameters

FILENAME = texts
Name of the file storing the save structure.

EXIT = scalars
Scalar that contains the value one if the save structure was retrieved successfully, otherwise contains either zero or a
ASAMPLESIZE procedure

Finds the replication to detect a treatment effect or contrast (R.W. Payne & P. Brain).

Options

PRINT = string tokens
Prints the replication or produces a printed summary of the power etc. for the various amounts of replication (power, replication); default powe, repl

TERM = formula
Treatment term to be assessed in the analysis

REPLICATES = factor
Factor identifying the replication in the design

MINREPLICATION = scalar
Minimum number of replicates to try; default 2

MAXREPLICATION = scalar
Maximum feasible number of replicates; default * i.e. no limit

TREATMENTSTRUCTURE = formula
Treatment structure of the design; determined automatically from an ANOVA save structure if TREATMENTSTRUCTURE is unset or if SAVE is set

BLOCKSTRUCTURE = formula
Block structure of the design; determined automatically from an ANOVA save structure if BLOCKSTRUCTURE is unset or if SAVE is set

COMPONENTS = variate or scalar
Variate of variance components of all the terms in the block structure or, if TERM is estimated in the final stratum of the design, scalar containing only the variance component of the final stratum itself; determined automatically (if possible) from an ANOVA save structure if unset

FACTORIAL = scalar
Limit on the number of factors in treatment terms; default 3

PROBABILITY = scalar
Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05

POWER = scalar
The required power (i.e. probability of detection) of the test; default 0.9

TMETHOD = string token
Type of test to be made (onesided, twosided, equivalence, noninferiority, fratio); default ones

XCONTRAITS = variate
X-variate defining a contrast to be detected

CONTRASTTYPE = string token
Type of contrast (regression, comparison) default rege

SAVE = asave
ANOVA save structure to provide the information about the design

Parameters

RESPONSE = scalars
Size of the difference or contrast between TERM effects that is to be detected

NREPLICATES = scalars
Number of replicates required to detect RESPONSE

ASCSCREEN procedure

Performs screening tests for designs with orthogonal block structure (R.W. Payne).

Options

PRINT = string tokens
Which tests to print (conditional, marginal, efficiency); default cond, marg

FACTORIAL = scalar
Limit on the number of factors in each treatment term; default 3

EXCLUDEHIGHER = string token
Whether to exclude higher-order interactions in the initial model for the conditional test of each term (yes, no); default no

FORCED = formula
Terms that must be included (together with any covariates) in the initial models for every term; default * i.e. none

Parameter

Y = variates
Variates to be analysed
ASREADSHEET procedure

Saves results from an analysis of variance in a spreadsheet (R.W. Payne).

Options

- `MEANS = pointer`
 - Pointer to tables to contain the treatment means; default `means`
- `SEMEANS = pointer`
 - Pointer to tables to contain the effective standard errors of treatment means; default `ese`
- `SEDMEANS = pointer`
 - Pointer to matrices to contain standard errors of differences of treatment means; default `sed`
- `EFFECTS = pointer`
 - Pointer to tables to contain the treatment effects; default `effects`
- `REPLICATIONS = pointer`
 - Pointer to tables of treatment replications; default `replication`
- `RESIDUALS = variate`
 - Variate to save the residuals in the fittedvalues page; default `residuals`
- `FITTEDVALUES = variate`
 - Variate to save the fitted values in the fittedvalues page; default `fittedvalues`
- `AOVTABLE = pointer`
 - Pointer to a text and variates containing the information in the analysis-of-variance table; default `aovtable`
- `COVINFORMATION = pointer`
 - Pointer to a text and variates containing the information about the estimated covariate regression coefficients; default `cov`
- `MVINFORMATION = pointer`
 - Pointer to a text and variates containing the information about estimated missing values; default `missing`
- `EQFACTORS = factors`
 - Factors whose levels are to be assumed to be equal within the comparisons between means, when calculating effective standard errors
- `RMETHOD = string token`
 - Type of residuals to form (`simple`, `standardized`); default `simp`
- `LSDMEANS = pointer`
 - Pointer to matrices to contain least significant differences for means
- `LSDLLEVEL = scalar`
 - Significance level (as a percentage) for the least significant differences; default `5`
- `SPREADSHEET = string tokens`
 - What to include in the spreadsheet (`aovtable`, `covariates`, `effects`, `means`, `semeans`, `sedmeans`, `lsdmeans`, `replications`, `fittedvalues`, `missingvalues`); default `aovt, cova, mean, sedm, repl, fitt, miss`
- `OUTFILENAME = text`
 - Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create
- `SAVE = ANOVA save structure`
 - Specifies which analysis to save; default `*` i.e. most recent regression

No parameters

ASRULES directive

Derives association rules from transaction data.

Options

- `PRINT = string tokens`
 - Controls printed output (`rules`); default `rule`
- `METHOD = string tokens`
 - What to use to calculate the support of a rule (`allitems`, `antecedent`); default `ante`
- `MINSUPPORT = scalar`
 - Minimum amount of support for a rule to be included; default `0.1`
- `MINCONFIDENCE = scalar`
 - Minimum amount of confidence for a rule to be included; default `0.8`
- `MAXITEMS = scalar`
 - Maximum number of items that a rule may contain; default `10`
- `MAXRULES = scalar`
 - Maximum number of rules to generate; default `100`

Parameters

- `ITEMS = factors`
 - Items in the transactions
- `TRANSACTIONS = factors`
 - Specifies the transaction to which each each item belongs
4.1 Commands

NRULES = scalars
Saves the number of rules that have been derived

RULES = pointers
Pointer to factors, each of which saves the antecedent items
and then the consequent item in one of the rules

SUPPORT = variates
Saves the support values for the rules

CONFIDENCE = variates
Saves the confidence values for the rules

ASSIGN directive
Sets elements of pointers and dummies.

Options

NSUBSTITUTE = scalar
Number of times \(n \) to substitute a dummy in order to determine
which structure to assign (if \(n \) is negative, the assigned
structure is the \(-n \)th from the bottom of the chain of dummies,
like the NTIMES option of EXIT); default 0 i.e. no substitution

METHOD = string token
Whether to replace or preserve the existing value in each
dummy or pointer element (replace,preserve); default
repl (note, pointer elements are never unset so
METHOD=preserve with a pointer simply causes the
assignment to be ignored)

RENAME = string token
Whether to reset the default name for the structure if it has
only a suffixed identifier (yes,no); default no

SCOPE = string token
This allows dummies or pointer elements within a procedure to
be set to point to structures in the program that called the
procedure (SCOPE=external) or in the main program itself
(SCOPE=global) rather than to structures within the
procedure (local, external, global); default loca

NSTRUCTURES SUBSTITUTE = scalar
Number of times \(n \) to substitute a dummy setting of the
STRUCTURE parameter in order to determine which structure to
assign to the setting of the POINTER parameter (if \(n \) is
negative, the assigned structure is the \(-n \)th from the bottom of
the chain of dummies, like the NTIMES option of EXIT);
default 0 i.e. no substitution

Parameters

STRUCTURE = identifiers
Values for the dummies or pointer elements

POINTER = dummies or pointers
Structure that is to point to each of those in the STRUCTURE
list

ELEMENT = scalars or texts
Unit or unit label indicating which pointer element is to be set;
if omitted, the first element is assumed

ASTATUS procedure
Provides information about the settings of ANOVA models and variates (R.W. Payne).

Option

PRINT = string tokens
Controls printed output (y, model, weights); default mode

Parameters

Y = pointers
Pointer of length 1 to save the identifier of the y-variate of the
most recent ANOVA or that used to form INSAVE

TREATMENTSTRUCTURE = formula structures
Saves the current setting of TREATMENTSTRUCTURE or the
setting used to form INSAVE

BLOCKSTRUCTURE = formula structures
Saves the current setting of BLOCKSTRUCTURE or the setting
used to form INSAVE

COVARIATE = pointers
Saves the current COVARIATE setting or the setting used to
form INSAVE

DESIGN = pointers
Pointer of length 1 to save the design structure in the most
recent ANOVA or the one used to form INSAVE

WEIGHTS = pointers
Pointer of length 1 to save the identifier of the variate of
weights (if any) in the most recent ANOVA or that used to form
Syntax summary

INSAVE

- `SAVE = asave structures`
 - Saves the save structure from the most recent `ANOVA`
- `INSAVE = asave structures`
 - Provides a save structure from which to save \(\chi \), `TREATMENTSTRUCTURE`, `BLOCKSTRUCTURE` and `COVARIATE`; default * uses the current settings

ASTORE procedure

Stores an `ANOVA` save structure in an external file (R.W. Payne).

- No options
- **Parameters**
 - `FILENAME = texts`
 - Name of the file to store the save structure
 - `EXIT = scalars`
 - Scalar that contains the value one if the save structure was stored successfully, otherwise contains either zero or a missing value
 - `SAVE = asave structures`
 - Save structure to be stored; default stores the save structure from the most recent `ANOVA`

ASWEEP procedure

- **Options**
 - `TERM = formula`
 - Model term (or terms) involved in the sweep (this need not be specified if `EMETHOD=calculated`); default is to sweep for the grand mean
 - `EFFICIENCY = scalar`
 - Efficiency factor of the term(s)
 - `EMETHOD = string token`
 - Source of the effects (`calculated, given`); default `calc`
 - `RMETHOD = string token`
 - Method to be used to obtain the residual variate (`subtract`, `replace`); default `subt`
- **Parameters**
 - `Y = variate`
 - Working variates to be swept
 - `EFFECTS = table`
 - Estimated effects
 - `RESIDUALS = variate`
 - New working variates, following the sweep
 - `SS = scalars`
 - Sum of squares due to the term(s)
 - `RSS = scalars`
 - Sum of squares of the working variate after the sweep

AUDISPLAY procedure

Produces further output for an unbalanced design after `AUNBALANCED` (R.W. Payne).

- **Options**
 - `PRINT = string tokens`
 - Controls printed output from the analysis (`aovtable, effects, means, residuals, %cv`); default `aovt, mean`
 - `PFACCTORIAL = scalar`
 - Limit on number of factors in printed tables of predicted means; default 3
 - `FPREBABILITY = string token`
 - Printing of probabilities for variance ratios in the analysis-of-variance table (yes, no); default no
 - `TPROBABILITY = string token`
 - Printing of probabilities for t-tests of effects (yes, no); default no
 - `PLOT = string tokens`
 - Which residual plots to provide (`fittedvalues, normal, halfnormal, histogram`); default * i.e. none
 - `COMBINATIONS = string token`
 - Factor combinations for which to form predicted means (`present, estimable`); default esti
 - `ADJUSTMENT = string token`
 - Type of adjustment to be made when predicting means (`marginal, equal, observed`); default marg
 - `PSE = string tokens`
 - Types of standard errors to be printed with the predicted means (`differences, alldifferences, lsd, alllsd, means, ese`); default diff
 - `LSDLEVEL = scalar`
 - Significance level (%) for least significant differences; default 5
4.1 Commands

RMETHOD = string token
Type of residuals to plot (simple, standardized); default simp

PMETHOD = string token
Treatment terms for which predicted means are to be printed; default * implies all the treatment terms

Parameter
SAVE = identifiers
Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED

AUGRAPH procedure
Plots tables of means from AUNBALANCED (R.W. Payne).

Options
GRAPHICS = string token
Type of graph (highresolution, lineprinter); default high

METHOD = string token
What to plot (means, lines, data, barchart, splines); default mean

XFREPRESENTATION = string token
How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available

PSE = string token
What to plot to represent variation (differences, lsd, means, allmeans); default diff

COMBINATIONS = string token
Factor combinations for which to form predicted means (present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

LSDLEVEL = scalar
Significance level (%) to use for least significant differences; default 5

DFSPLINE = scalar
Number of degrees of freedom to use when METHOD=splines

YTRANSFORM = string tokens
Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, expl0, ilogit, iprobit, icloglog, root); default iden i.e. none

PENYTRANSFORM = scalar
Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically

†KEYMETHOD = string token
What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name

†PLOTTITLEMETHOD = string token
What to use for the titles of the plots when there are TRELLISGROUPS (labels, namesandlabels); default name

†PAGETITLEMETHOD = string token
What to use for the titles of the pages when there are PAGEGROUPS (labels, namesandlabels); default name

†USEAXES = string token
Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower%, mupper%, nsubticks); default none

SAVE = regression save structure
Save structure to provide the table of means; default uses the save structure from the most recent AUNBALANCED analysis (provided no other regression analysis has been done in the interim)

Parameters
XFACCTOR = factors
Factor providing the x-values for each plot

GROUPS = factors or pointers
Factor or factors identifying groups of points in each plot; by default chosen automatically

TRELLISGROUPS = factors or pointers
Factor or factors specifying the different plots of a trellis plot of a multi-way table

PAGEGROUPS = factors or pointers
Factor or factors specifying plots to be displayed on different pages

NEWXLEVELS = variates
Values to be used for XFACTOR instead of its existing levels

TITLE = texts
Title for the graph; default defines a title automatically
YTITLE = texts
Title for the y-axis; default is to use the identifier of the y-variate, or to have no title if this is unnamed

XTITLE = texts
Title for the x-axis; default is to use the identifier of the XFACTOR

PENS = variates
Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

AUKEEP procedure
Saves output from analysis of an unbalanced design (by AUNBALANCED) (R.W. Payne).

Options
- FACTORIAL = scalar
 Limit on number of factors in the model terms generated from the TERMS parameter; default 3
- RESIDUALS = variate
 To save residuals from the analysis
- FITTEDVALUES = variate
 To save fitted values
- COMBINATIONS = string token
 Factor combinations for which to form predicted means (present, estimable); default esti
- ADJUSTMENT = string token
 Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
- LSDLEVEL = scalar
 Significance level (as a percentage) for the least significant differences
- RMETHOD = string token
 Type of residuals to form if the RESIDUALS option is set (simple, standardized); default simp
- SAVE = identifier
 Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED

Parameters
- TERMS = formula
 Model terms for which information is required
- MEANS = table or pointer to tables
 Predicted means for each term
- SEMEANS = table or pointer to tables
 Standard errors of the means for each term
- SEDMEANS = symmetric matrix or pointer to symmetric matrices
 Standard errors of differences between means
- ESEMEANS = table or pointer to tables
 Approximate effective standard errors of the means: these are formed by procedure SED2ESE with the aim of allowing good approximations to the standard errors for differences to be calculated by the usual formula \(\text{sed}_{ij} = \sqrt{(\text{ese}_i^2 + \text{ese}_j^2)} \)
- LSD = symmetric matrix or pointer to symmetric matrices
 Least significant differences

AUMCOMPARISON procedure
Performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by AUNBALANCED (D.M. Smith).

Options
- PRINT = string tokens
 Controls printed output (comparisons, critical, description, lines, letters, plot, mplot, pplot); default lett
- METHOD = string token
 Test to be performed (flsd, bonferroni, sidak); default flsd
- FACTORIAL = scalar
 Limit on the number of factors in each term; default 3
- COMBINATIONS = string token
 Factor combinations for which to form predicted means (present, estimable); default esti
- ADJUSTMENT = string token
 Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
- WEIGHTS = table
 Weights classified by some or all of the factors in the model
- DIRECTION = string token
 How to sort means (ascending, descending); default asc
- PROBABILITY = scalar
 The required significance level; default 0.05
- STUDENTIZE = string token
 Whether to use the alternative LSD test where the Studentized
4.1 Commands

Range statistic is used instead of Student's t (yes, no); default no

SAVE = identifier
Save structure to provide the table of means; default uses the save structure from the most recent AUNBALANCED analysis

Parameters

TERMS = formula
Treatment terms whose means are to be compared

MEANS = pointer or variate
Saves the (sorted) means

LABELS = pointer or text
Saves labels for the (sorted) means

LETTERS = pointer or text
Saves letters indicating groups of means that do not differ significantly

SIGNIFICANCE = pointer or symmetric matrix
Indicators to show significant comparisons between (sorted) means

AUNBALANCED procedure
Performs analysis of variance for unbalanced designs (R.W. Payne).

Options

PRINT = string tokens
Controls printed output from the analysis (aovtable, effects, means, residuals, screen, %cv); default aovt, mean

FACTORIAL = scalar
Limit on number of factors in a treatment term; default 3

PFACTORIAL = scalar
Limit on number of factors in printed tables of predicted means; default 3

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * i.e. none

FPROBABILITY = string token
Printing of probabilities for variance ratios in the analysis-of-variance table (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-tests of effects (yes, no); default no

PLOT = string tokens
Which residual plots to provide (fittedvalues, normal, halfnormal, histogram); default * i.e. none

COMBINATIONS = string token
Factor combinations for which to form predicted means (present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

PSE = string tokens
Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsd, means, ese); default diff

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

RMETHOD = string token
Type of residuals to plot (simple, standardized); default simp

Parameters

Y = variates
Data values to be analysed

RESIDUALS = variates
Variate to save the residuals from each analysis

FITTEDVALUES = variates
Variate to save the fitted values from each analysis

SAVE = identifiers
To save details of each analysis to use subsequently with the AUDISPLAY procedure

AUPREDICT procedure
Forms predictions from an unbalanced design (after AUNBALANCED) (R.W. Payne).

Options

PRINT = string tokens
What to print (description, predictions, se, sed, sedsummary, ese, lsd, lsdsummary, vcovariance); default pred, sed

MODEL = formula
Model to use to calculate the predictions; default * i.e. full
model fitted by \texttt{AUNBALANCED}

\texttt{FACTORIAL = scalar}
Limit on number of factors or variates in each term specified by \texttt{MODEL}; default 3

\texttt{COMBINATIONS = string \ token}
Factor combinations for which to form predicted means (present, estimable); default est1

\texttt{ADJUSTMENT = string \ token}
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

\texttt{PREDICTIONS = tables \ or \ scalars}
Saves predictions; default *

\texttt{SE = tables \ or \ scalars}
Saves standard errors of predictions; default *

\texttt{SED = symmetric \ matrices}
Saves matrices of standard errors of differences between predictions; default *

\texttt{ESE = table}
Saves effective standard errors

\texttt{LSD = symmetric \ matrix}
Saves least significant differences between predictions

\texttt{LSDLEVEL = scalar}
Significance level (%) for least significant differences; default 5

\texttt{VCOVARIANCE = symmetric \ matrices}
Saves variance-covariance matrices of predictions; default *

\texttt{SAVE = identifier}
Save structure (from \texttt{AUNBALANCED}) containing details of the analysis for which predictions are required; if omitted, output is from the most recent use of \texttt{AUNBALANCED}

\textbf{Parameters}

\texttt{CLASSIFY = vectors}
Variates and/or factors to classify table of predictions

\texttt{LEVELS = variates \ or \ scalars}
To specify values of variates, levels of factors

\textbf{AUSPREADSHEET procedure}

Saves results from an analysis of an unbalanced design (by \texttt{AUNBALANCED}) in a spreadsheet (R.W. Payne).

\textbf{Options}

\texttt{MEANS = pointer}
Pointer to tables to contain the treatment means; default \texttt{means}

\texttt{SEMEANS = pointer}
Pointer to tables to contain the standard errors of treatment means; default \texttt{sem}

\texttt{SEMEANS = pointer}
Pointer to matrices to contain standard errors of differences of treatment means; default \texttt{sed}

\texttt{ESEMEANS = pointer}
Pointer to matrices to contain effective standard errors of treatment means; default \texttt{ese}

\texttt{EFFECTS = pointer}
Pointer to contain the estimated effects, their standard errors, t-statistics and probabilities; default \texttt{effects}

\texttt{REPLICATIONS = pointer}
Pointer to tables of treatment replications; default \texttt{replication}

\texttt{RESIDUALS = variate}
Variate to save the residuals in the \texttt{fittedvalues} page; default \texttt{residuals}

\texttt{FITTEDVALUES = variate}
Variate to save the fitted values in the \texttt{fittedvalues} page; default \texttt{fittedvalues}

\texttt{COMBINATIONS = string \ token}
Factor combinations for which to form predicted means (present, estimable); default esti

\texttt{ADJUSTMENT = string \ token}
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

\texttt{AOVTABLE = pointer}
Pointer to a text and variates containing the information in the analysis-of-variance table; default \texttt{aovtable}

\texttt{RMETHOD = string \ token}
Type of residuals to form (simple, standardized); default \texttt{simp}

\texttt{LSDMEANS = pointer}
Pointer to matrices to contain least significant differences for means

\texttt{LSDLEVEL = scalar}
Significance level (as a percentage) for the least significant differences; default 5

\texttt{SPREADSHEET = string \ tokens}
What to include in the spreadsheet (aovtable, effects, means, semeans, sedmeans, esemeans, lsdmeans, ...
4.1 Commands

replications, fittedvalues); default aovt, mean, sedm, repl, fitt
OUTFILENAME = text
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create
SAVE = identifier
Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED

No parameters

AU2RDA procedure
Saves results from an unbalanced analysis of variance, by AUNBALANCED, in R data frames (R.W. Payne & Z. Zhang).

Options
TERM = formula
Treatment term whose means, effects etc. are to be saved; must be set if any of these are to be saved, unless there is only one treatment term
COMBINATIONS = string token
Factor combinations for which to form predicted means (present, estimable); default esti
ADJUSTMENT = string token
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
LSDLEVEL = scalar
Significance level (%) for least significant differences and multiple comparisons; default 5
RMETHOD = string token
Type of residuals to form (simple, standardized); default simp
MCOMPARISON = string token
Method to use to make multiple comparisons between the means (flsd, fstudentizedlsd, bonferroni, sidak); default * i.e. none
SAVE = identifier
Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED

Parameters
INFORMATION = string tokens
What to save (aovttable, effects, means, semeans, esemeans, sedmeans, lsdmeans, replications, fittedvalues); must be set
OUTFILENAME = texts
Name of the R (.rda) file to create for each set of information; must be set
COLUMNNAMES = texts
Specifies names for the columns in the file; if this is not set, suitable names are chosen automatically
EXIT = scalars
Records the exit status, 0 if the information was saved successfully, 1 otherwise

AXES directive
Defines the axes in each window for high-resolution graphics.

Options
EQUAL = string tokens
Whether/how to make axes equal (no, scale, lower, upper); default no
RESET = string token
Whether to reset the axes definitions to the default values (no, yes); default no

Parameters
WINDOW = scalars
Numbers of the windows
YTITLE = texts
Title for the y-axis in each window
XTITLE = texts
Title for the x-axis in each window
YLOWER = scalars
Lower bound for y-axis
YUPPER = scalars
Upper bound for y-axis
XLOWER = scalars
Lower bound for x-axis
XUPPER = scalars
Upper bound for x-axis
Syntax summary

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YMARKS = scalars or variates</td>
<td>Distance between each tick mark on y-axis (scalar) or positions of the marks (variate)</td>
</tr>
<tr>
<td>XMARKS = scalars or variates</td>
<td>Distance between each tick mark on x-axis (scalar) or positions of the marks (variate)</td>
</tr>
<tr>
<td>YMPOSITION = string tokens</td>
<td>Position of the tick marks across the y-axis (left, right, centre)</td>
</tr>
<tr>
<td>XMPOSITION = string tokens</td>
<td>Position of the tick marks across the x-axis (above, below, centre)</td>
</tr>
<tr>
<td>YLABELS = texts</td>
<td>Labels at each mark on y-axis</td>
</tr>
<tr>
<td>XLABELS = texts</td>
<td>Labels at each mark on x-axis</td>
</tr>
<tr>
<td>YLPOSITION = string tokens</td>
<td>Position of the labels for the y-axis (left, right)</td>
</tr>
<tr>
<td>XLPOSITION = string tokens</td>
<td>Position of the labels for the x-axis (above, below)</td>
</tr>
<tr>
<td>YORIGIN = scalars</td>
<td>Position on y-axis at which x-axis is drawn</td>
</tr>
<tr>
<td>XORIGIN = scalars</td>
<td>Position on x-axis at which y-axis is drawn</td>
</tr>
<tr>
<td>STYLE = string tokens</td>
<td>Style of axes (none, x, y, xy, box, grid)</td>
</tr>
<tr>
<td>PENTITLE = scalar</td>
<td>Pen to use for the title</td>
</tr>
<tr>
<td>PENAXES = scalar</td>
<td>Pen to use for the axes and their labelling</td>
</tr>
<tr>
<td>PENGRID = scalar</td>
<td>Pen to use for the grid</td>
</tr>
<tr>
<td>SAVE = pointers</td>
<td>Saves details of the current settings for the axes concerned</td>
</tr>
</tbody>
</table>

AXIS directive

Defines an oblique axis for high-resolution graphics.

Option

RESET = string token

Whether to reset the axis definition to the default values (yes, no); default no

Parameters

- **IDENTIFIER** = identifiers

 Name to be used inside Genstat to identify each axis

- **TITLE** = texts

 Title for each axis

- **TPOSITION** = string tokens

 Position of title (middle, end)

- **TDIRECTION** = string tokens

 Direction of title (parallel, perpendicular)

- **LOWER** = scalars

 Lower bound for each axis

- **UPPER** = scalars

 Upper bound for each axis

- **MARKS** = scalars or variates

 Distance between each tick mark (scalar) or positions of the marks along each axis (variate)

- **MPOSITION** = string tokens

 Positioning of the tick marks on each axis (inside, outside, across)

- **LABELS** = texts or variates

 Labels at each major tick mark

- **LPOSITION** = string tokens

 Position of the axis labels (inside, outside)

- **LDIRECTION** = string tokens

 Direction of the axis labels (parallel, perpendicular)

- **LROTATION** = scalars or variates

 Rotation of the axis labels

- **NSUBTICKS** = scalars

 Number of subticks per interval (ignored if **MARKS** is a variate)

- **XZERO** = scalars

 Position of the axis origin in the x-dimension

- **YZERO** = scalars

 Position of the axis origin in the y-dimension

- **ZZERO** = scalars

 Position of the axis origin in the z-dimension

- **XSTEP** = scalars

 Step in the x-direction corresponding to a step of length one along the axis

- **YSTEP** = scalars

 Step in the y-direction corresponding to a step of length one along the axis

- **ZSTEP** = scalars

 Step in the z-direction corresponding to a step of length one along the axis

- **PENTITLE** = scalars

 Pen to use to write the axis title

- **PENAXES** = scalars

 Pen to use to draw the axis

- **PENLABELS** = scalar

 Pen to use to write the axis labels

- **ARROWHEAD** = string tokens

 Whether the axis should have an arrowhead (include, omit)

- **ACTION** = string tokens

 Whether to display or hide the axis (display, hide)

- **TRANSFORM** = string tokens

 Transformed scale for the axis marks and labels (identity,
4.1 Commands

log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root; default iden

DECIMALS = scalars or variates
Number of decimal places to use for numbers printed at the marks

DREPRESENTATION = scalars or variates
Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens
Format to use for numbers printed at the marks (decimal, engineering, scientific); default deci

ZEROOFFSET = scalars
Point on the axis corresponding to XZERO, YXERO and ZZERO

SAVE = pointers
Saves details of the current settings for the axis concerned

AYPARALLEL procedure
Does the same analysis of variance for several y-variates, and collates the output (R.W. Payne & D.B. Baird).

Options
PRINT = string tokens
Controls printed output (summary, monitoring); default * i.e. none

TREATMENTSTRUCTURE = formula
Treatment formula for the analysis; if this is not set, the default is taken from the setting (which must already have been defined) of the TREATMENTSTRUCTURE directive

BLOCKSTRUCTURE = formula
Block formula for the analysis; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term)

COVARIATE = variates
Defines any covariates

FACTORIAL = scalar
Limit on the number of factors in a treatment term

SAVETERMS = formula
Treatment terms for which to save information; if this is not set, information is saved for all the treatment terms

REPLICATION = pointer
Pointer to tables saving the replication of the SAVETERMS

SPREADSHEET = string tokens
What results to save in spreadsheets (aov, means, vcmeans, effects, vareffects, seeffects, contrasts, secontrasts, tcontrasts, prcontrasts); default * i.e. none

CONTRASTSLIMIT = scalar
Limit on the order of a contrast of a treatment term; default 4

DEVIATIONSLIMIT = scalar
Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9

Parameters
Y = variates or pointers
Y-variates for each analysis

VFACOR = factors
Identifies the individual y-variates when they are supplied in a single Y variate

RESIDUALS = variates or matrices
Saves the residuals

FITTEDVALUES = variates or matrices
Saves the fitted values

MEANS = pointers
Pointer to a matrix for each of the SAVETERMS, saving the means from each analysis

VCMEANS = pointers
Pointer to matrices saving variances and covariances for the means

EFFECTS = pointers
Pointer to matrices saving effects

VAREFFECTS = pointers
Pointer to matrices saving unit variances for effects

SEFFECTS = pointers
Pointer to matrices saving standard errors of effects

DF = pointers
Pointer to variates saving degrees of freedom

SS = pointers
Pointer to variates saving sums of squares

MS = pointers
Pointer to variates saving mean squares

RDF = pointers
Pointer to variates saving degrees of freedom for the residual corresponding to each of the SAVETERMS
4 Syntax summary

RSS = pointers
Pointer to variates saving residual sums of squares

RMS = pointers
Pointer to variates saving residual mean squares

VR = pointers
Pointer to variates saving variance ratios

PRVR = pointers
Pointer to variates saving probabilities for the variance ratios

CONTRASTS = pointers
Pointer to matrices saving estimates of contrasts

SECONTRASTS = pointers
Pointer to matrices saving standard errors of contrasts

TCONTRASTS = pointers
Pointer to matrices saving t-statistics for contrasts

PRCONTRASTS = pointers
Pointer to matrices saving probabilities for t-statistics of contrasts

OUTFILENAME = texts
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

A2DISPLAY procedure
Provides further output following an analysis of variance by A2WAY (R.W. Payne).

Options

PRINT = string tokens
Controls printed output from the analysis (aovtable, information, covariates, effects, residuals, means, %cv, missingvalues); default *

FPROBABILITY = string token
Probabilities for variance ratio (yes, no); default no

PLOT = string tokens
Which residual plots to provide (fittedvalues, normal, halfnormal, histogram, absresidual); default *

GRAPHICS = string token
Type of graphs (lineprinter, highresolution); default high

COMBINATIONS = string token
Factor combinations for which to form predicted means (present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

PSE = string tokens
Types of standard errors to be printed with the means (differences, lsd, means); default diff

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

RMETHOD = scalar
Type of residuals to display (simple, standardized); default simp

Parameter

SAVE = pointers
Save structure (from A2WAY) for the analysis; if omitted, output is from the most recent A2WAY analysis

A2KEEP procedure
Copies information from an A2WAY analysis into Genstat data structures (R.W. Payne).

Options

FACTORIAL = scalar
Sets a limit on the number of factors in the terms formed from the TERMS formula; default 2

RESIDUALS = variate
Saves the residuals

FITTEDVALUES = variate
Saves the fitted values

COMBINATIONS = string token
Factor combinations for which to form predicted means (present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

AOVTABLE = scalar
To save the analysis-of-variance table as a pointer with a variate or text for each column (source, d.f., s.s., m.s. etc)

RMETHOD = string token
Type of residuals to form if the RESIDUALS option is set (simple, standardized); default simp

EXIT = scalar
Saves an exit code indicating the properties of the design

SAVE = pointer
Save structure (from A2WAY) for the analysis; if omitted,
4.1 Commands

output is from the most recent A2WAY analysis

Parameters

TERMS = formula
MEANS = table or pointer to tables
SEMEANS = table or pointer to tables
SEDMEANS = table or pointer to tables
LSD = table or pointer to tables

Specifies the treatment terms whose means &c are to be saved
Saves tables of means for the terms or pointer to tables
Saves approximate effective standard errors of means
Saves standard errors of differences between means
Saves least significant differences

A2PLOT procedure

Plots effects from two-level designs with robust s.e. estimates (Eric D. Schoen & Enrico A.A. Kaul).

Options

PRINT = string tokens
CHANNEL = scalar
FACTORIAL = scalar
STRATUM = formula
GRAPHICS = string token
TITLE = string tokens
METHOD = string token
ROBUSTNESS = string token
ALPHALEVEL = scalar
EXCLUDE = scalars

Which ANOVA output to print, as in ADISPLAY; default aovt, effe
What channel to use for anova and line-printer output; default * i.e. the current output channel
Limit for factorial expansion of TREATMENT formula; default 3
Error strata from which Yates effects are to be plotted; if unset, plots are made for all the strata
What type of graphics (highresolution, lineprinter); default high
Separate titles for each of the plots
Whether to make half-Normal or Normal plots (halfnormal, normal); default half
Robustness of scale estimators against contamination with active effects (low, medium, high); default medi
Type I error (0.20, 0.15, 0.10, 0.05, 0.01); default 0.05
How many of the largest effects to withhold from each of the half-Normal plots; default 0

Parameters

Y = variates
EFFECTS = pointers
SE = pointers
SIGNIFICANT = pointers

Data to be analysed
To save a variate for each error stratum containing the (sorted) Yates effects estimated there
To save a scalar with the standard error of the Yates effects for each error stratum
To save formulae containing the significant Yates effects in each stratum

A2RDA procedure

Saves results from an analysis of variance in R data frames (R.W. Payne & Z.Zhang).

Options

TERM = formula
STRATUM = formula
SUPPRESSHIGHER = string token
LSDLEVEL = scalar
EQFACTORS = factors
RMETHOD = string token
MCOMPARISON = string token

Treatment term whose means, effects etc. are to be saved; must be set if any of these are to be saved, unless there is only one treatment term
Model term of the lowest stratum to be searched for effects and contrasts; default * implies the lowest stratum
Whether to suppress the searching of higher strata if a term is not found in STRATUM (yes, no); default no
Significance level (%) for least significant differences and multiple comparisons; default 5
Factors whose levels are to be assumed to be equal within the comparisons between means calculated for effective standard errors of treatment means
Type of residuals to form (simple, standardized, combined); default simp
Method to use to make multiple comparisons between the means (tukey, regwmr, duncan, scheffe, fplsd, fulsd,
4 Syntax summary

fpstudentizedlsd, fustudentizedlsd, bonferroni, sidak); default * i.e. none

SAVE = ANOVA save structure

Specifies the analysis from which to save the results; default * i.e. most recent one

Parameters

INFORMATION = string tokens

What to save (aovtable, covariates, effects, cheffects, partialeffects, contrasts, means, semeans, sedmeans, lsdmeans, dfmeans, cbmeans, secbmeans, sedcbmeans, replications, fittedvalues, missingvalues, stratumvariances, %cv, fixedcoefficients, randomcoefficients); must be set

OUTFILENAME = texts

Name of the R (.rda) file to create for each set of information; must be set

COLUMNNAMES = texts

Specifies names for the columns in the file; if this is not set, suitable names are chosen automatically

EXIT = scalars

Records the exit status, 0 if the information was saved successfully, 1 otherwise

A2RESULTSUMMARY procedure

Provides a summary of results from an analysis by A2WAY (R.W. Payne).

Options

PRINT = string tokens

What to print (description, means, significant); default desc, mean, sign

PSE = string tokens

Standard errors to be printed with the means (sed, sedsummary, lsd, lsdsummary, dfmeans); default sed, dfme

LSDLEVEL = scalar

Significance level (%) for least significant differences; default 5

SAVE = pointer

Save structure from A2WAY; default uses the save structure from the most recent A2WAY analysis

No parameters

A2WAY procedure

Performs analysis of variance of a balanced or unbalanced design with up to two treatment factors (R.W. Payne).

Options

PRINT = string tokens

Controls output from the analysis (aovtable, information, covariates, effects, residuals, means, %cv, missingvalues); default aovt, mean

TREATMENTS = factors

Defines either one or two treatment factors

BLOCKS = factor

Can specify a blocking factor e.g. for a randomized block design

COVARIATES = variates

Specifies any covariates

FACTORIAL = scalar

Can be set to 1 to fit only the main effects of the treatments factors; default 2 also fits their interaction

FPROBABILITY = string token

Probabilities for variance ratio (yes, no); default no

PLOT = string tokens

Which residual plots to provide (fittedvalues, normal, halfnormal, histogram, absresidual); default fitt, norm, half, hist

GRAPHICS = string token

Type of graphs (lineprinter, highresolution); default high

COMBINATIONS = string token

Factor combinations for which to form predicted means (present, estimable); default esti

ADJUSTMENT = string token

Type of adjustment to be made when predicting means (marginal, equal, observed); default marg

PSE = string tokens

Types of standard errors to be printed with the means
4.1 Commands

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

RMETHOD = string token
Type of residuals to save or display (simple, standardized); default simp

MVINCLUDE = string token
Whether to include units with missing y-values when using ANOVA (yvariate); default * i.e. not included

EXIT = scalar
Saves an exit code indicating the properties of the design

Parameters

Y = variates
Each of these contains the data values for an analysis

RESIDUALS = variates
Saves the residuals from each analysis

FITTEDVALUES = variates
Saves the fitted values from each analysis

SAVE = pointers
Save structure for each analysis (to use in A2DISPLAY or A2KEEP)

*%VARIANCE procedure
Calculates the percentage variance and sum of squares accounted for in the strata of an ANOVA analysis (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (%variance, %ss); default %var

METHOD = string token
Which terms to take into account (treatments, blocksandtreatments); default trea

%VARIANCE = pointer
Saves the percentage variance accounted for

%SS = pointer
Saves the percentage sum of squares accounted for

SAVE = ANOVA save structure
Save structure for the analysis; by default this will be the most recent ANOVA

No parameters

BACKTRANSFORMATION procedure
Calculates back-transformed means with approximate standard errors and confidence intervals (V.M. Cave).

Options

PRINT = string tokens
Controls printed output (description, means, backmeans); default desc, back

PLOT = string tokens
The confidence intervals of the back-transformed means to plot (backtransformed, approximate, both); default * i.e. none

TRANSFORMATION = string tokens
Transformation (identity, logarithm, log10, logit, squareroot, reciprocal, power, probit, complementaryloglog, logratio, angular, arcsinesquareroot, calculated); default iden (i.e. no transformation)

CLOG = scalar
Constant c for the logarithm and log10 transformations, in form log(mean+c); default 0

EXPONENT = scalar
Exponent for power transformation; default -2

KLOGRATIO = scalar
Parameter k for logratio transformation, in form log(mean/(mean+k)); default 1

%SCALE = string token
Controls whether back-transformed logit, probit, angular, arcsine-squareroot and complementary log-log values are expressed on the percentage scale (yes, no); default no

BACKTRANSFORMATION = expression
Expression, formed using argument y, that defines the inverse of the transformation; must be specified when TRANSFORMATION = calculated

DERIVATIVE = expression
Expression, formed using argument y, that defines the first derivative of the transformation; must be specified when TRANSFORMATION = calculated
CIPROBABILITY = scalar

Probability for the confidence intervals; default 0.95

DIRECTION = string tokens

Order in which the back-transformed means are plotted
(ordinal, ascending, descending); default ordi

USEPENS = string tokens

Whether to use the current pen definitions for plotting; (yes, no); default no

WINDOW = scalar

Window to use for plot; default 3

Parameters

MEANS = tables, variates or scalars

Supplies the transformed mean(s)

SEMEANS = tables, variates or scalars

Supplies the standard error(s) of the transformed mean(s)

DF = scalars

Degrees of freedom to construct the confidence intervals; default *

DECIMALS = scalars

Number of decimal places for printing; default *

BACKTRANSFORMEDMEANS = tables, variates or scalars

Saves the back-transformed means

SEBACKTRANSFORMEDMEANS = tables, variates or scalars

Saves the approximate standard errors for the back-transformed means

CIAPPROXIMATE = pointers

Saves the approximate confidence intervals for the back-transformed means

CIBACKTRANSFORMED = pointers

Saves the back-transformed confidence intervals for the back-transformed means

TITLE = texts

Title for plot; default * i.e. none

YTITLE = texts

Title for y-axis; default * i.e. none

XTITLE = texts

Title for x-axis; default * i.e. formed automatically

BAFFYMETRIX procedure

Estimates expression values from an Affymetrix CED and CDF file (D.B. Baird).

Options

METHOD = string token

Method for calculating probe expression values (mas4, mas5, rma, rma2); default rma

TRANSFORMATION = string

How to transform the data (log2, none); default none when

METHOD=mas4, otherwise log2

Parameters

CELFILES = texts

Affymetrix CEL files

CDFFILE = texts

Associated CDF file

GSHFILE = texts

Genstat spreadsheet file containing the estimated expression values, together with the associated slide and probe information

BANK procedure

Calculates the optimum aspect ratio for a graph (J. Ollerton & S.A. Harding).

Option

WINDOW = scalar

Window number; default 1

Parameters

Y = variates

Vertical coordinates

X = variates

Horizontal coordinates

ASPECTRATIO = scalars

Store the calculated aspect ratios

BARCHART directive

Plots bar charts in high-resolution graphics.

Options

TITLE = text

General title; default *

WINDOW = scalar

Window number for the bar charts; default 1

KEYWINDOW = scalar

Window number for the key (zero for no key); default 2

BARWIDTH = scalar, variate or table

Width(s) of the bars; default * sets equal widths to fill the x-axis
4.1 Commands

BARCOVERING = scalar
What proportion of the space allocated along the x-axis each bar should occupy; default * gives proportion 1 for a DATA variate, and 0.8 for a factor or table (thus giving a gap between each bar)

LABELS = text
Labels for the bars or groups of bars; default *

APPEND = string token
Whether or not the bars of the bar charts are appended together (yes, no); default no

YSCALING = string token
What scale to use to label the y-axis (absolute, proportion, percentage); default absol

ORIENTATION = string token
Direction of the plot (horizontal, vertical); default vert

OUTLINE = scalar
Pen to use for the outlines; default 0

SCREEN = scalar
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

KEYDESCRIPTION = text
Overall description for the key; default *

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Parameters

DATA = tables or variates
Heights of the bars in each bar chart

ERRORBARS = scalars, tables or variates
Heights of error bars plotted above the bars of each bar chart; default 0 i.e. none

LOWERERRORBARS = scalars, tables or variates
Heights of error bars plotted below the bars of each bar chart; if any of these is omitted, the corresponding setting of ERRORBARS is used as the default so that the error bars will have equal heights above and below the bars of the bar chart

GROUPS = factors
Which factor of a 2-way table to use as the groups factor; default uses the second classifying factor

PEN = scalars, tables or variates
Pen number(s) for each bar chart; default * uses pens 2, 3, and so on for the successive structures specified by DATA

PENERRORBARS = scalars, tables or variates
Pen number(s) for the error bars; default -11

DESCRIPTION = texts
Annotation for key

BASELINE procedure
Estimates a baseline for a series of numbers whose minimum value is drifting. (D.B. Baird).

Options

PLOT = string token
Whether to plot the series and the fitted baseline (baseline); default * i.e. no plot

BANDWIDTH = scalar
Bandwidth for the moving minimum; default 50

WINDOW = scalar
Window number for the plot; default 1

KEYWINDOW = scalar
Window for the key (zero for no key); default 2

Parameters

Y = variates
Series whose baseline is to be estimated

NEWY = variates
Saves the y-values corrected to a zero baseline

BASELINE = variates
Saves the estimated baseline

TITLE = text
Title for the plot

BASSESS directive
Assesses potential splits for regression and classification trees.

Options

Y = variate or factor
Response variate for a regression tree, or factor specifying the groupings for a classification tree

SELECTED = dummy
Returns the identifier of X variate or factor used in the best
split

TESTSPLIT = expression structure
Logical expression representing the best split

MAXSPLITPOINT = scalar or variate
When SELECTED is a variate or a factor with ordered levels
this returns a scalar containing the boundary between the two
splits, when the SELECTED is a factor with unordered levels it
returns a variate containing the levels allocated to the first split

MAXCRITERION = scalar
Maximum value obtained for the selection criterion

NOSELECTION = scalar
Returns the value 1 if no split has been selected, otherwise 0

FMETHOD = string token
Selection method to use when \(Y \) is a factor (Gini, MPI);
default Gini

ANTIENDCUTFACTOR = string token
Anti-end-cut factor to use when \(Y \) is a factor (classnumber,
reciprocalentropy); default * i.e. none

WEIGHTS = variate
Weights; default * i.e. all weights 1

TOLERANCE = scalar
Tolerance multiplier used e.g. to check for equality of x-
values; default * i.e. set automatically for the implementation
cconcerned

Parameters
\(X = \) variates or factors
Variables available to make the split

ORDERED = string tokens
Whether factor levels are ordered (yes, no); default no

SPLITPOINT = scalars or variates
Saves details of the best split found for each \(X \) variable; when
\(X \) is a variate or a factor with ordered levels this returns a
scalar containing the boundary between the two splits, when
the \(X \) is a factor with unordered levels it returns a variate
containing the levels allocated to the first split

CRITERIONVALUE = scalars
Saves the value of the selection criterion for the best split
found for each \(X \) variable

BBINOMIAL procedure
Estimates the parameters of the beta binomial distribution (D.M. Smith).

Options
PRINT = string tokens
Controls printed output (estimates, loglikelihood);
default esti

MAXCYCLE = scalar
Maximum number of iterations; default 50

TOLERANCE = scalar
Convergence criterion; default 10^-5

Parameters
RBINOMIAL = variates
Numerator of binomial data

NBINOMIAL = variates
Denominator of binomial data or scalars

MU = scalars
Mean, expectation of underlying beta distribution

THETA = scalars
Shape-determining parameter of underlying beta distribution

SEMU = scalars
Standard error of mu

SETHETA = scalars
Standard error of theta

LOGLIKELIHOOD = scalars
Log likelihood

NCYCLES = scalars
Number of iterations

EXIT = scalars
Indicator of faults

BCDISPLAY procedure
Displays a classification tree (R.W. Payne).

Option
PRINT = string tokens
Controls printed output (summary, details, indented,
bracketed, labelleddiagram, numbereddiagram,
graph); default * i.e. none

Parameter
TREE = tree
Tree to be displayed
4.1 Commands

BCFDISPLAY procedure
Displays information about a random classification forest (R.W. Payne).

Option

*PRINT = string tokens
Controls printed output (outofbagerror, confusion,importance, orderedimportance, idoutofbag); default * i.e. none

Parameter

SAVE = pointers
Save structure from BCFOREST providing information about the random forest

BCFIDENTIFY procedure
Identifies specimens using a random classification forest (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (identification); default * i.e. none

*IDENTIFICATION = factor, variate or scalar
Saves the identification of each specimen

VOTES = matrix
Saves the number of terminal nodes reached by each group for the specimens

SAVE = pointers
Save structure from BCFOREST providing information about the random forest

Parameters

X = variates or factors
Explanatory variables

VALUES = scalars, variates or texts
Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

BCFOREST procedure
Constructs a random classification forest (R.W. Payne).

Options

*PRINT = string tokens
Controls printed output (outofbagerror, confusion,importance, orderedimportance, idoutofbag, monitoring); default outo, conf, impo

NTREES = scalar
Number of trees in the forest; no default – must be specified

NXTRY = scalar
Number of \(X \) variables to select at random at each node from which to choose the \(X \) variable to use there; default is the square root of number of \(X \) variables

NUNITSTRY = scalar
Number of units of the \(X \) variables to select at random to use in the construction of each tree; default is two thirds of the number of units

METHOD = string token
Selection criterion to use when constructing the trees (Gini, MPI); default Gini

GROUPS = factor
Groupings of the individuals to identify in the trees

NSTOP = scalar
Number of individuals in a group at which to stop selecting tests; default 5

ANTIENDCUTFACTOR = string token
Adaptive anti-end-cut factor to use (classnumber, reciprocalentropy); default * i.e. none

SEED = scalar
Seed for random numbers to select the NXTRY \(X \)-variables and NUNITSTRY units; default 0

OWNBSELECT = string token
Indicates whether or not your own version of the \(BSELECT \) procedure is to be used, as explained in the Method section (yes, no); default no

OUTOFBAGERROR = scalar
Saves the "out-of-bag" error rate

CONFUSION = matrix
Saves the confusion matrix

*IDOUTOFBAG = scalar or variate
Saves "out-of-bag" identifications

*VOTESOUTOFBAG = matrix
Saves "out-of-bag" votes

SAVE = pointer
Saves details of the forest that has been constructed
Parameters

X = factors or variates
X-variables available for constructing the tree

ORDERED = string tokens
Whether factor levels are ordered (yes, no); default no

IMPORTANCE = scalars
Saves the importance of each x-variable

BCIDENTIFY procedure

Identifies specimens using a classification tree (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (identification, transcript); if PRINT is unset in an interactive run BCIDENTIFY will ask what you want to print, in a batch run the default is iden

TREE = tree
Specifies the tree

IDENTIFICATION = text
Saves the identification of each specimen

TERMINALNODES = pointer
Saves the numbers of the terminal nodes reached by each specimen

PROBABILITIES = matrix
Specimen × group matrix giving the probability that the specimens belong to each group

MVINCLUDE = string token
Whether to provide identifications for specimens with missing or unavailable values of the x-variables (explanatory); default expl

Parameters

X = variates or factors
Explanatory variables

VALUES = scalars, variates or texts
Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

BCKEEP procedure

Saves information from a classification tree (R.W. Payne).

No options

Parameters

TREE = trees
Tree from which the information is to be saved

SUMMARY = variates
Saves summary information about each tree

XVARIABLES = pointers
Saves the identifiers of the x-variables in each tree

BCLASSIFICATION procedure

Constructs a classification tree (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (summary, details, indented, bracketed, labelleddiagram, numberediagram, graph, monitoring); default * i.e. none

METHOD = string token
Selection criterion to use when constructing the tree (Gini, MPI); default Gini

GROUPS = factor
Groupings of the individuals in the tree

TREE = tree
Saves the tree that has been constructed

NSTOP = scalar
Number of individuals in a group at which to stop selecting tests; default 5

ANTIENDCUTFACTOR = string token
Adaptive anti-end-cut factor to use (classnumber, reciprocalentropy); default * i.e. none

OWNBSELECT = string token
Indicates whether or not your own version of the BSELECT procedure is to be used, as explained in the Method section (yes, no); default no

Parameter

X = factors or variates
X-variables available for constructing the tree

ORDERED = string tokens
Whether factor levels are ordered (yes, no); default no
BCONSTRUCT procedure

Constructs a tree (R.W. Payne).

Option

`PRINT = string token`
Whether to print monitoring information (monitoring); default * i.e. none

Parameters

`TREE = trees`
Saves the trees that have been constructed

`DATA = identifiers`
Data available for constructing the trees

BCUT directive

Cuts a tree at a defined node, discarding the nodes and information below it.

Option

`RENUMBER = string token`
Whether or not to renumber the nodes of the tree (yes, no); default no

Parameters

`TREE = trees`
Trees to be cut

`NODE = scalars`
Node at which to cut each tree

`NEWTREE = trees`
New trees with the information cut; if unspecified, the new tree replaces the original tree

`CUTTREE = trees`
Tree formed from the branches cut from the original tree

`OLDNODES = variates`
Mapping from old nodes to node numbers in a renumbered new tree (as positive numbers) or to nodes in the `CUTTREE` (as negative numbers)

`NEWNODES = variates`
Mapping from new node numbers in a renumbered tree to the original nodes

`CUTNODES = variates`
Mapping from node numbers in the `CUTTREE` tree to the original nodes

BCVALUES procedure

Forms values for nodes of a classification tree (R.W. Payne).

Options

`GROUPS = factor`
Groupings of the observations in the data set

`TREE = tree`
Tree for which predictions and accuracy values are to be formed

`REPLACE = string token`
Whether to replace the values stored in the tree (yes, no); default no

`PREDICTION = pointer`
New predictions for the nodes of the tree

`ACCURACY = pointer`
New accuracy values for the nodes of the tree

`REPLICATION = pointer`
New replication tables for the nodes of the tree

Parameter

`X = factors or variates`
Values of the factors or variates used in the tree for the new data set

BGIMPORT procedure

Imports MCMC output in CODA format produced by WinBUGS or OpenBUGS (D.A. Murray).

Options

`INDEXFILE = text`
Name of file containing index for output files

`OUTPREFIX = text`
Prefix name for the output files

`WORKDIRECTORY = text`
Working directory to use; default current Genstat working directory

`PREFERENCES = text`
Saves the names of the simulated nodes

`NOUTFILES = scalar`
Number of output files or chains to read; default 1

Parameter

`SIMULATIONS = pointers`
Saves the simulations in a list of pointers, one for each Markov chain
BG PLOT procedure

Produces plots for output and diagnostics from MCMC simulations (D.A. Murray).

Options

- **PRINT = string tokens** Controls printed output (summary); default *
- **PLOT = string tokens** Controls the type of plot (trace, density, autocorrelation, gelmanrubin); default trac
- **ARRANGEMENT = string tokens** Specifies whether to draw the plots individually or 4 to a page (single, multiple); default sing
- **START = scalar** Start iteration number for plots
- **END = scalar** End iteration number for plots
- **MAXLAG = scalar** Maximum lag for autocorrelation plots; default 50
- **BANDWIDTH = scalar** The bandwidth value to be used for the density plots.
- **GRMETHOD = scalar** Controls the method of the Gelman-Rubin diagnostic plot (gr, bgr); default bgr
- **BINWIDTH = scalar** Number of values in each bin in the Gelman-Rubin plot; default 50
- **USEALLSAMPLES = text** Whether to use all the samples for Gelman-Rubin plot, or to discard the first half of the observations (yes, no); default no

Parameter

- **SIMULATIONS = pointers** List of pointers containing simulations, one for each Markov chain

BGRAPH procedure

Plots a tree (R.W. Payne).

Option

- **SIZE = scalar** Provides a multiplier by which to scale the node labels

Parameters

- **TREE = trees** Trees to be plotted
- **XTERMINAL = scalars or variates** X-spacing (scalar) or x-values (variate) for the terminal nodes of each tree; default 2

BGROW directive

Adds new branches to a node of a tree.

No options

Parameters

- **TREE = trees** Trees to be extended
- **NODE = scalars** Node at which to extend each tree
- **NBRANCHES = scalars** Number of branches to add to each node; default 2
- **POSITION = scalars** Position at which to add the branches to each node; default * i.e. after all the current branches from the node
- **NEWNODES = variates** Returns the number(s) allocated to the new nodes

BGXGENSTAT procedure

Runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts (D.A. Murray).

Options

- **PRINT = string tokens** Controls printed output (bugslog, nodestatistics, dic); default node
- **WPATH = text** Path specifying the location of the WinBUGS executable
- **WEXE = text** Name of the WinBUGS or OpenBUGS executable to run; default 'WinBUGS14.exe'
- **MODELFILE = text** Name of a file containing the model in WinBUGS code; the file should have an extension of .txt
- **DATA = pointer** A pointer to the data used by the WinBUGS model
- **IDATANAMES = text** A text containing the names for the data
4.1 Commands

MONITOR = text

The names of the variables that are to be monitored

NCHAINS = scalar

Number of Markov chains; default 3

NBURNIN = scalar

Length of burn-in per chain; default 1000

NSAMPLES = scalar

Number of samples to run after burn-in; default 5000

THIN = scalar

Thinning rate where the samples from every kth iteration are stored; default 1

INAMES = text

The names for the initial parameters

DIC = string token

Whether to calculate the deviance information criterion (yes, no); default no

SEED = scalar

Specifies a seed to use for the random number generator in BUGS; default uses a pseudo-random number generated from the uniform distribution

WORKDIRECTORY = texts

Working directory to use; default current Genstat working directory

BUGS = string token

Whether to use WinBUGS or OpenBUGS (winbugs, openbugs); default winb

VIEWBUGS = string token

Whether to leave WinBUGS open after the run (yes, no); default no

CONTINUE = string token

Whether to continue Genstat server without waiting for WinBUGS to complete; (yes, no); default no

CODA = string token

Whether to save CODA files (yes, no); default no

WLOG = text

Name of file to save log from WinBUGS or OpenBUGS

Parameters

INITIAL = pointers

List of pointers, one for each set of initial values for each Markov chain

SIMULATIONS = pointers

List of pointers to save simulations, one for each Markov chain

BIDENTIFY directive

Identifies specimens using a tree (R.W. Payne).

Options

TREE = tree

Specifies the tree

TESTELEMENT = scalar

Specifies which element of the pointer of information stored at each node of the tree contains the test to be done there to determine which subsequent branch to take

TERMINALNODES = scalar, variate or pointer

Scalar or variate saving the number or numbers of the terminal nodes reached by a single specimen, or pointer of scalars or variates saving the numbers of the terminal nodes reached by several specimens

Parameters

X = factors or variates

Variables involved in the tests performed in the tree

VALUES = scalars, variates or texts

Values of the variables for the specimens to be identified

BINGO procedure

Can be used to set up and then play a game of bingo (R.W. Payne).

Options

PRINT = string tokens

What to print (cards, mycard, scores, status); default * i.e. nothing

PLOT = string tokens

What to plot (cards, mycard); default * i.e. nothing

METHOD = string token

Whether to form cards and/or play (cards, game, automaticgame); default game

NBALLS = scalar

Number of balls, 40, 80 or 90; default 90

NCARDS = scalar

Number of cards to form; default 5

SEED = scalar

Seed for random numbers; default *

CARDS = pointer

Saves or supplies the cards

MYCARD = scalar

Number of the card to view during the game
SPREADSHEET = string token
What to put the cards into a spreadsheet (cards); default *
OUTFILENAME = text
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create to contain the cards

No parameters

BIPlOT procedure

Produces a biplot from a set of variates (S.A. Harding).

Options

PRINT = string tokens
Printed output from the analysis (singular, scores); default * i.e. no output

GRAPHICS = string token
What sort of graphics to use (lineprinter, highresolution); default high

WINDOW = scalar
Window number for the graph; default 3

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

METHOD = string token
Type of analysis required (principalcomponent, variate, diagnostic); default prin

STANDARDIZE = string tokens
Whether to centre the configurations (at the origin), and/or to normalize them (to unit sum of squares) prior to analysis (centre, normalize); default cent, norm

LABELS = factor or text
Labels to identify the points for the individuals

VLABELS = factor or text
Labels to identify the points for the variates

NDIMENSIONS = scalar
Number of dimensions to save with COORDINATES and VCOORDINATES; default 2

Parameters

DATA = pointers
Each pointer contains a set of variates to be analysed

COORDINATES = matrices
Used to store the scores for the individuals

VCOORDINATES = matrices
Used to store the scores for the variates

BJESTIMATE procedure

Fits an ARIMA model, with forecast and residual checks (G. Tunnicliffe Wilson & S.J. Welham).

Options

PRINT = string tokens
Controls printed output (description, monitoring, model); default desc, moni, mode

GRAPHICS = string token
What type of graphics to use (lineprinter, highresolution); default high

WINDOWS = scalar or variate
Windows to be used for residual plots: a scalar N indicates that plots are to be produced on separate pages in window N (as currently defined), whereas a variate specifies four separate windows to be redefined (within the procedure) for plotting four graphs on one page; default 1

PENS = variate
The three pens to be used (after being defined appropriately) for drawing the plots; default !(1,2,3)

Parameters

SERIES = variates
Holds the time series to which the model is to be fitted

LENGTH = scalars or variates
Specifies the units to be used from each series: a scalar N indicates that the first N units of the series are to be used, a variate of length 2 gives the index of the first and last units of the subseries to be used; by default the whole series is used

ORDERS = variates
Variate holding the orders for the ARIMA model to be fitted to each series

PARAMETERS = variates
Variate specifying the initial values for the parameters (to be used by the TFIT directive)

TSM = TSMs
TSM to store each fitted model, also to supply values for orders and parameters if ORDERS and PARAMETERS are unset
RESIDUALS = variates
Variate to save the residuals from fitting the model to each series

BJFORECAST procedure
Plots forecasts of a time series using a previously fitted ARIMA (G. Tunnicliffe Wilson & S.J. Welham).

Options
- PROBABILITY = scalar
 Probability value used for forecast limits; default 0.9
- GRAPHICS = string token
 What type of graphics to use (lineprinter, highresolution); default high
- WINDOW = scalar
 Window to be used for plotting; default 1
- PENS = variate
 The three pens to be used (after being defined appropriately) for drawing the plots; default !(1,2,3)

Parameters
- SERIES = variates
 Variates holding the time series to be used for producing forecasts
- LENGTH = scalars or variates
 Specifies the units to be used from each series: a scalar N specifies that the first N units of the series are to be used, a variate of length 2 gives the time index of the first and last units of the subseries to be used; by default the whole series is used
- TSM = TSMs
 ARIMA model to be used for forecasting
- TIMERANGE = variates
 The first and second elements of each variate specify respectively the first and last time index, relative to the whole series, of the range to be forecast
- ORIGIN = scalars
 The time of the latest observation to be used to construct forecasts with increasing leadtimes for each series; if ORIGIN is unset, the default is to take the latest time point in the series prior to the range given by TIMERANGE, unless parameter LEADTIME is set, in which case fixed leadtime forecasts are constructed
- LEADTIME = scalars
 The fixed leadtime to be used to construct forecasts if ORIGIN is unset
- FORECAST = variates
 Save the values of the constructed forecasts
- LOWER = variates
 Save the lower limits of the forecasts
- UPPER = variates
 Save the upper limits of the forecasts
- SFE = variates
 Save the standardized forecast errors, available only for LEADTIME=1

BJIDENTIFY procedure
Displays time series statistics useful for ARIMA model selection (G. Tunnicliffe Wilson & S.J. Welham).

Options
- PRINT = string token
 Controls printed output (description); default desc
- GRAPHICS = string token
 What type of graphics to use (lineprinter, highresolution); default high
- WINDOWS = scalar or variate
 Windows to be used for the plots: a scalar N indicates that plots are to be produced on separate pages in window N (as currently defined), whereas a variate specifies four separate windows to be redefined (within the procedure) for plotting four graphs on one page; default 1
- PENS = variate
 The three pens to be used (after being defined appropriately) for drawing the plots; default !(1,2,3)

Parameters
- SERIES = variates
 Variates holding the time series for which the statistics are to be produced
- LENGTH = scalars or variates
 Specifies the units to be used from each series: a scalar N
indicates that the first n units of the series are to be used, a variate of length 2 gives the index of the first and last units of the subseries to be used; by default the whole series is used.

BJJOIN directive
Extends a tree by joining another tree to a terminal node.

No options

Parameters

- **TREE** = *trees*
 - Trees to be extended
- **NODE** = *scalars*
 - Node at which to join the tree
- **JOINTREE** = *trees*
 - Trees to be joined onto the tree
- **NEWNODES** = *variates*
 - New node numbers allocated to each node in JOINTREE in the new tree

BKDISPLAY procedure
Displays an identification key (R.W. Payne).

Option

- **PRINT** = *string tokens*
 - Controls printed output (indented, bracketed, diagram, graph); default * i.e. none

Parameter

- **KEY** = *tree*
 - Key to be displayed

BKEY procedure
Constructs an identification key (R.W. Payne).

Options

- **PRINT** = *string tokens*
 - Controls printed output (indented, bracketed, diagram, graph); default * i.e. none
- **TAXONNAMES** = *text*
 - Names of the taxa in the key; default * uses textual versions of the numbers 1, 2 onwards
- **GROUPS** = *factor*
 - Groupings of the taxa, if the key is to identify the group of a specimen rather than its taxon
- **CRITERION** = *string token*
 - Criterion to use to select the character to use at each node of the key (CME, CMV, GME); default GME when GROUPS is set, otherwise CME
- **PARTIAL** = *string token*
 - Controls whether or not to use partial separation; (yes, no) default no
- **KEY** = *tree*
 - Saves the key

Parameters

- **CHARACTER** = *factors*
 - Characters available to construct the key
- **COST** = *scalars*
 - Cost of each character; default 1

BKIDENTIFY procedure
Identifies specimens using a key (R.W. Payne).

Options

- **PRINT** = *string tokens*
 - Controls printed output (identification, transcript); if PRINT is unset in an interactive BKIDENTIFY will ask what you want to print, in a batch run the default is iden
- **KEY** = *tree*
 - Specifies the key
- **IDENTIFICATION** = *variate*
 - Saves the identification of each specimen
- **TERMINALNODE** = *variate*
 - Saves numbers of the terminal nodes reached by the specimens

Parameter

- **CHARACTER** = *factors*
 - Character values of the specimens
BKKEEP procedure
Saves information from an identification key (R.W. Payne).

No options

Parameters

- **KEY** = *trees*
 Identification key from which the information is to be saved
- **SUMMARY** = *variates*
 Saves summary information about each key
- **CHARACTERS** = *pointers*
 Saves the identifiers of the characters in each key

BLANDALTMAN procedure
Produces Bland-Altman plots to assess the agreement between two variates (A.R.G. McLachlan).

Options

- **PRINT** = *string tokens*
 Controls printed output (*summary*, *estimates*); default *i.e. none
- **PLOT** = *string tokens*
 What to plot (*blandaltman*, *normal*); default *blan*
- **DMETHOD** = *string token*
 Method for calculating differences (*differences*, *ratios*, *diff*; default *differences*, *percentages*)
- **LMETHOD** = *string token*
 Method for calculating limits of agreement when regression is not used (*normaldistribution*, *percentile*); default *norm*
- **REGMETHOD** = *string tokens*
 Whether to use regression to calculate bias (i.e. mean) or limits (*bias*, *mean*, *limits*, *auto*); default *i.e. none*
- **CIPROBABILITY** = *scalar*
 Probability level for limits of agreement, confidence intervals and percentiles; default 0.95
- **LOWERLIMIT** = *scalar*
 Lower limit of agreement to use instead of a calculated limit
- **UPPERLIMIT** = *scalar*
 Upper limit of agreement to use instead of a calculated limit
- **ALPHALEVEL** = *scalar*
 Critical probability level used for regression when **REGMETHOD**=auto; default 0.05
- **XBLANDALTMAN** = *string token*
 X-values to use for the Bland-Altman plot (*mean*, *Y1*, *Y2*); default *mean*
- **REFERENCELINECHOICE** = *string tokens*
 Reference lines to plot on a Bland-Altman plot (*bias*, *mean*, *limits*, *zero*); default *bias*
- **GRAPHICS** = *string token*
 Type of graph (*highresolution*, *lineprinter*); default *high*
- **WINDOW** = *scalar*
 Window for the plot; default 3
- **SCREEN** = *string token*
 Whether to clear or keep the screen before displaying the plot (*keep*, *clear*); default *clea*
- **PENZEROLINE** = *scalar*
 Pen to use for the zero reference line
- **PENMEANLINE** = *scalar*
 Pen to use for the mean reference line
- **PENLIMITLINES** = *scalar*
 Pen to use for the reference lines showing limits of agreement

Parameters

- **Y1** = *variates*
 First variate
- **Y2** = *variates*
 Second variate
- **LABELS** = *texts*
 Labels for individual points on the Bland-Altman plot
- **MEANS** = *variates*
 Saves the means
- **DIFFERENCES** = *variates*
 Saves the differences, ratios or % differences (according to the **DMETHOD** option)
- **TITLE** = *texts*
 Title for the Bland-Altman plot
- **YTITLE** = *texts*
 Title for y-axis of the Bland-Altman plot
- **XTITLE** = *texts*
 Title for x-axis of the Bland-Altman plot
- **PEN** = *scalars*, *variates* or *factors*
 Pen for plotting points on the Bland-Altman plot; default 1
BLOCKSTRUCTURE directive

Defines the blocking structure of the design and hence the strata and the error terms.

No options

Parameter formula

Block model (defines the strata or error terms for subsequent ANOVA statements)

BNTEST procedure

Calculates one- and two-sample binomial tests (D.A. Murray).

Options

PRINT = string tokens

Controls printed output (test, summary, confidence); default test, summ, conf

METHOD = string token

Type of test required (twosided, greaterthan, lessthan); default twos

TEST = string token

Form of the test for one-sample test (exact, normalapproximation) or for two-sample (normalapproximation, oddsratio); default norm

CIPROBABILITY = scalar

The probability level for the confidence interval; default 0.95

NULL = scalar

The value of the probability of success under the null hypothesis for the one-sample test; default 0.5

Parameters

R1 = scalars

Number of successes in the first sample

N1 = scalars

Sample size of the first sample

R2 = scalars

Number of successes in the second sample

N2 = scalars

Sample size of the second sample

STATISTIC = scalars

Saves the Normal approximation from the one-sample or two-sample tests, or the odds ratio

PROBABILITY = scalars

Saves the probability value from the one-sample or two-sample tests

LOWER = scalars

Saves the lower limit of the confidence interval

UPPER = scalars

Saves the upper limit of the confidence interval

BOOTSTRAP procedure

Produces bootstrapped estimates, standard errors and distributions (P.W. Lane).

Options

PRINT = string token

Controls printed output (estimates, graphs, vcovariance); default esti

DATA = variates, factors or texts

Data vectors from which the statistics are to be calculated; no default

AUXILIARY = pointers

Further sets of data vectors, each set to be resampled independently

ANCILLARY = any type

Other relevant information needed to calculate the statistics

NTIMES = scalar

Number of times to resample; default 100

SEED = scalar

Seed for random number generator; default continue from previous generation or use system clock

GRAPHICS = string token

Type of graphics (lineprinter, highresolution); default high

PROBABILITY = scalar

Probability level for confidence interval; default 0.95

METHOD = string token

What type of bootstrapping to use (random, balance, permute); default rand

BLOCKSTRUCTURE = formula

Block structure to use for random permutations

CIMETHOD = string token

What type of confidence intervals to provide (bca, percentile); default perc

VCOVARIANCE = symmetric matrix

Saves the variance-covariance matrix of the statistics

Parameters

LABEL = texts

Texts, each containing a single line, to label the statistics;
4.1 Commands

ESTIMATE = scalars
 Saves the bootstrap mean for each statistic
SE = scalars
 Saves the bootstrap standard error for each statistic
LOWER = scalars
 Saves the bootstrap lower confidence limit for each statistic
UPPER = scalars
 Saves the bootstrap upper confidence limit for each statistic
STATISTIC = variates
 Saves the series of bootstrap estimates of each statistic
WINDOW = scalars
 Graphical window to use for displaying bootstrap distribution
 for each statistic; default 4
SCREEN = string tokens
 Whether to clear graphical frame or draw on top (clear, keep); default clea

BOXPLOT procedure
 Draws box-and-whisker diagrams or schematic plots (P.W. Lane & S.D. Langton).

Options
 GRAPHICS = string token
 What type of graphics to use (highresolution, lineprinter); default high
 TITLE = text
 Title for diagram; default *
 AXISTITLE = text
 Title for axis representing data values; default *
 WINDOW = scalar
 Window in which to draw a high-resolution plot; default 4
 ORIENTATION = string token
 Orientation of plots (horizontal, vertical, across, down); default vert
 YORIENTATION = string token
 Direction of the y-axis for horizontal plots (reverse, normal); default reve
 SCREEN = string token
 Whether to clear screen before a high-resolution plot (clear, keep); default clea
 METHOD = string token
 Type of representation of data in a high-resolution plot
 (boxandwhisker, schematic); default boxa
 BOXTITLE = text
 Title for axis representing different variates or groups; default *
 BOXWIDTH = string token
 Whether to relate box width to size of sample in high-resolution plot
 (fixed, variable); default fixe
 WHISKER = number
 Linestyle for whiskers (0...10); default 1
 BAR% = scalar
 Size of bar at the end of the whiskers, as a percentage of the box-width; default 0 (i.e. no bar)
 WIDTH% = scalar
 Width of the boxes, expressed as a percentage of the default width; default 100

Parameters
 DATA = variates
 Data to be summarized; no default
 GROUPS = factor
 Factor to divide values of a single variate into groups; default *
 BOXLABELS = texts
 Labels for individual boxes; default *, i.e. identifiers of variates or labels or levels of factor
 UNITLABELS = texts
 Labels for extreme points in schematic plot; default is to use unit labels
 BOXPOSITIONS = variates
 Positions of the boxes on the appropriate axis; default defines positions in an equal spacing

BFCONVERT procedure
 Converts bit patterns between integers, pointers of set bits and textual descriptions (R.W. Payne).

Options
 PRINT = string token
 Controls printed output (description); default desc
 BITS = text, variate or pointer
 Labels for the individual bits; default !(1..31)
 SEPARATOR = string
 Separator between the bit labels in the description; default "."

Parameters
 DATA = scalars, texts or pointers
 Bit patterns to convert
 BP = scalars
 Bit patterns as integers
4 Syntax summary

CONTENTS = pointers
Bits that are set in each bit pattern

DESCRIPTION = texts
Textual description of each bit pattern

BPRINT procedure
Displays a tree (R.W. Payne).

Option
PRINT = *string tokens*
Controls printed output (*indented*, *bracketed*, *labelleddiagram*, *numbereddiagram*); default *inde

Parameter
TREE = *trees*
Trees to be displayed

BPRUNE procedure
Prunes a tree using minimal cost complexity (R.W. Payne).

Option
PRINT = *string tokens*
Controls printed output (*graph*, *table*, *monitoring*); default *tabl*

Parameters
TREE = *trees*
Trees to be pruned
ACCURACY = *pointers*
Accuracy values for the nodes of each tree; default is to use those stored with the tree
NEWTREES = *pointers*
Saves the trees generated during the pruning of each tree
RTPRUNED = *variates*
Accuracy of the pruned trees of each tree
INTERMINAL = *variates*
Number of terminal nodes in the pruned trees of each tree

BRDISPLAY procedure
Displays a regression tree (R.W. Payne).

Option
PRINT = *string tokens*
Controls printed output (*summary*, *details*, *indented*, *bracketed*, *labelleddiagram*, *numbereddiagram*, *graph*); default *i.e. none*

Parameter
TREE = *tree*
Tree to be displayed

BREAK directive
Suspends execution of the statements in the current channel or control structure and takes subsequent statements from the channel specified.

Option
CHANNEL = *scalar*
Channel number; default 1

Parameter
expression
Logical expression controlling whether or not the break takes place

BREGRESSION procedure
Constructs a regression tree (R.W. Payne).

Options
PRINT = *string tokens*
Controls printed output (*summary*, *details*, *indented*, *bracketed*, *labelleddiagram*, *numbereddiagram*, *graph*, *monitoring*); default *i.e. none*

Y = *variate*
Response variate for the regression
TREE = *tree*
Saves the tree that has been constructed
MSLIMIT = *scalar*
Limit on the mean square of the observations at a node at which to stop making splits; default 0
NSTOP = *scalar*
Specifies the number of observations at a node at which to stop making splits; default 1
OWNBSELECT = *string token*
Indicates whether or not your own version of the BSELECT
4.1 Commands

procedure is to be used, as explained in the Method section
(yes, no); default no

Parameter

\texttt{X = variates or factors} \hspace{1cm} \text{Independent variables available for constructing the tree}

\texttt{ORDERED = string tokens} \hspace{1cm} \text{Whether factor levels are ordered (yes, no); default no}

\textbf{BRFDISPLAY procedure}

Displays information about a random regression forest (R.W. Payne).

\textbf{Option}

\texttt{PRINT = string tokens} \hspace{1cm} \text{Controls printed output (outofbaggerror, youtofbagestimates, importance orderedimportance); default * i.e. none}

Parameter

\texttt{SAVE = pointers} \hspace{1cm} \text{Save structure from BRFOREST providing information about the random forest}

\textbf{BRFOREST procedure}

Constructs a random regression forest (R.W. Payne).

\textbf{Options}

\texttt{PRINT = string tokens} \hspace{1cm} \text{Controls printed output (outofbaggerror, youtofbagestimates, importance orderedimportance, monitoring); default outo, impo}

\texttt{Y = variate} \hspace{1cm} \text{Response variate for the regression}

\texttt{NTREES = scalar} \hspace{1cm} \text{Number of trees in the forest; no default – must be specified}

\texttt{NXTRY = scalar} \hspace{1cm} \text{Number of X variables to select at random at each node from which to choose the X variable to use there; default is the square root of number of X variables}

\texttt{NUNITSTRY = scalar} \hspace{1cm} \text{Number of units of the X variables to select at random to use in the construction of each tree; default is two thirds of the number of units}

\texttt{MSLIMIT = scalar} \hspace{1cm} \text{Limit on the mean square of the observations at a node at which to stop making splits; default 0}

\texttt{NSTOP = scalar} \hspace{1cm} \text{Specifies the number of observations at a node at which to stop making splits; default 1}

\texttt{SEED = scalar} \hspace{1cm} \text{Seed for random numbers to select the NXTRY X-variables and NUNITSTRY units; default 0}

\texttt{OWNBSELECT = string token} \hspace{1cm} \text{Indicates whether or not your own version of the BSELECT procedure is to be used, as explained in the Method section (yes, no); default no}

\texttt{OUTOFBAGERror = string token} \hspace{1cm} \text{Saves the "out-of-bag" error rate}

\texttt{YOUTOFBAGEstimates = variate} \hspace{1cm} \text{Saves the "out-of-bag" estimates of Y}

\texttt{SAVE = pointer} \hspace{1cm} \text{Saves details of the forest that has been constructed}

\textbf{Parameters}

\texttt{X = factors or variates} \hspace{1cm} \text{X-variables available for constructing the tree}

\texttt{ORDERED = string tokens} \hspace{1cm} \text{Whether factor levels are ordered (yes, no); default no}

\texttt{IMPORTANCE = scalars} \hspace{1cm} \text{Saves the importance of each x-variable}

\textbf{BRFPREDICT procedure}

Makes predictions using a random regression forest (R.W. Payne).

\textbf{Options}

\texttt{PRINT = string token} \hspace{1cm} \text{Controls printed output (predictions); default pred}

\texttt{PREDICTIONS = variate} \hspace{1cm} \text{Saves the prediction for the observations}

\texttt{SAVE = pointer} \hspace{1cm} \text{Save structure from BRFOREST providing information about the random forest}

\textbf{Parameters}

\texttt{X = variates or factors} \hspace{1cm} \text{Explanatory variables}
VALUES = scalars, variates or texts Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

BRKEEP procedure
Saves information from a regression tree (R.W. Payne).
No options
Parameters
TREE = trees Tree from which the information is to be saved
SUMMARY = variates Saves summary information about each tree
XVARIABLES = pointers Saves the identifiers of the x-variables in each tree

BRPREDICT procedure
Makes predictions using a regression tree (R.W. Payne).
Options
PRINT = string tokens Controls printed output (prediction, transcript); if PRINT is unset in an interactive run BRPREDICT will ask what you want to print, in a batch run the default is pred
TREE = tree Specifies the tree
PREDICTIONS = variate Saves the prediction for the observations
TERMINALNODES = pointer Saves the numbers of the terminal nodes from which each prediction was obtained
MVINCLUDE = string token Whether to provide predictions for units with missing or unavailable values of the x-variables (explanatory); default expl
Parameters
X = variates or factors Explanatory variables
VALUES = scalars, variates or texts Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

BRVALUES procedure
Forms values for nodes of a regression tree (R.W. Payne).
Options
Y = variate Values of the response variate for the new data set
TREE = tree Tree for which predictions and accuracy values are to be formed
REPLACE = string token Whether to replace the values stored in the tree (yes, no); default no
PREDICTION = pointer New predictions for the nodes of the tree
ACCURACY = pointer New accuracy values for the nodes of the tree
NOBSERVATIONS = pointer New numbers of observations for the nodes of the tree
Parameter
X = variates Values of the x-variates for the new data set

CABIPLOT procedure
Plots results from correspondence analysis or multiple correspondence analysis (A.I. Glaser).
Options
DIMENSIONS = scalars Two numbers specifying which axes of the ordinations to plot; default 1,2
PLOT = string tokens Which scores to plot (rowscores, rowactive, rowpassive, colscores, colactive, colpassive); default rows, cols for correspondence analysis and cols for multiple correspondence analysis
ROWSCALING = string token Scaling to use for row coordinates (principal, standard, mass, sqrtmass); default prin
COLSCALING = string token Scaling to use for column coordinates (principal, standard, mass, sqrtmass); default prin
4.1 Commands

COLOURMETHOD = string tokens
Whether colour of symbol should show level of inertia of rows or columns (rowinertia, colinertia); default *

SIZEMETHOD = string tokens
Whether size of symbol should show row or column masses (rowmass, colmass); default *

FACCOLOURS = text, variate or scalar
Specifies a colour or colours for the factors in a multiple correspondence analysis; if this is unset, a different colour is selected automatically for every factor

WINDOW = scalar
Which graphical window to use; default 1

KEYWINDOW = scalar
Graphical window for the key

SAVE = pointer
Supplies results from a analysis by CORANALYSIS or MCORANALYSIS; default uses the most recent analysis

Parameters

TITLE = texts
Titles for the plot

LMROWVARIABLES = string tokens
How to label the row scores (identifiers, labels, none, numbers); default label if LROWVARIABLES is set, otherwise iden

LMCOLVARIABLES = string tokens
How to label the column scores (identifiers, labels, none, numbers); default label if LCOLVARIABLES is set, otherwise iden

LROWVARIABLES = texts
Labels for row variables

LCOLVARIABLES = texts
Labels for column variables

LSPECIES = texts
Labels for species scores

LSITES = texts
Labels for site scores

CALCULATE directive
Calculates numerical values for data structures.

Options

PRINT = string token
Printed output required (summary); default * i.e. no printing

ZDZ = string token
Value to be given to zero divided by zero (missing, zero); default miss

TOLERANCE = scalar
If the scalar is non missing, this defines the smallest non-zero number; otherwise it accesses the default value, which is defined automatically for the computer concerned

SEED = scalar
Seed to use for any random number generation during the calculation; default 0

INDEX = scalar
If the calculation has a list of structures before the assignment operator (=), the scalar indicates the position within the list of the structure currently being evaluated

RESTRICTEDUNITS = variate
Defines a “restriction” on the vectors in the expression; if this is set the calculations on those vectors will take place only on the units listed in the variate (and any restrictions of their own will be ignored)

Parameter
expression
Expression defining the calculations to be performed

CALLS directive
Lists library procedures called by a procedure.

No options

Parameter
identifiers
Names of the called procedures

CANCORRELATION procedure
Does canonical correlation analysis (P.G.N. Digby).

Option

PRINT = string tokens
Printed output from the analysis (correlations, pcoeff, qcoeff, pscores, qscores); default * i.e. no output
Parameters

PVARIATES = pointers
Pointer to P-set of variates to be analysed

QVARIATES = pointers
Pointer to Q-set of variates to be analysed

CORRELATIONS = diagonal matrices
Stores the canonical correlations from each analysis

PCOEFF = matrices
Stores the coefficients for the P-set of variates

QCOEFF = matrices
Stores the coefficients for the Q-set of variates

PSCORES = matrices
Stores the unit scores from the P-set of variates

QSCORES = matrices
Stores the unit scores from the Q-set of variates

CAPTION directive

Prints captions in standardized formats.

Option

PFIRST = string tokens
What to print first (dots, page, outprint); default * i.e. none

Parameters

TEXT = texts
Contents of the captions

STYLE = string tokens
Style for each caption (plaintext, stress, minor, major, meta, note, status); default plai

CASE directive

Introduces a "multiple-selection" control structure.

No options

Parameter

expression
Expression which is evaluated to an integer, indicating which set of statements to execute

CASSOCIATION procedure

Calculates measures of association for circular data (S.J. Clark).

Options

PRINT = string token
What to print (tests); default test

NRANDOMIZATIONS = scalar
Number of randomizations to use in the randomization tests; default 999

ASCALE = string token
Units of the circular variables (degrees, radians); default degr

Parameters

Y = variates
Response variable

X = variates
Circular explanatory variable

YTYPE = string tokens
Type of response variable (circular, linear); default circ

SEED = variates
Vraiete of length two, firstly to supply a seed for the randomization tests and secondly to supply a seed to use for randomly-selecting sets of data points; default !(0,0)

STATISTICS = variates
Saves the test statistics

CATALOGUE directive

Displays the contents of a backing-store file.

Options

PRINT = string tokens
What to print (subfiles, structures); default subf, stru

CHANNEL = scalar
Channel number of the backing-store file; default 0, i.e. the workfile

LIST = string token
How to interpret the list of subfiles (inclusive, exclusive, all); default incl

SAVESUBFILE = text
To save the subfile identifiers; default *

UNNAMED = string token
Whether to list unnamed structures (yes, no); default no

Parameters

SUBFILE = identifiers
Identifiers of subfiles in the file to be catalogued
4.1 Commands

SAVESTRUCTURE = texts

To save the identifiers of the structures in each subfile

CATRENDTEST procedure

Calculates the Cochran-Armitage chi-square test for trend (A.I. Glaser).

Option
PRINT = string token
Output required (test); default test

Parameters
DATA = tables
Table containing observed data
TREND = factors
Dimension of the table representing the trend; can default if only one dimension of size greater than 2
CHISQUARE = scalars
Saves the chi-square for trend
PROBABILITY = scalars
Saves the probability value for trend
DEVCHISQUARE = scalars
Saves the chi-square for deviations from a linear trend
DEVDF = scalars
Saves the degrees of freedom for the chi-square for deviations
DEVPROBABILITY = scalars
Saves the probability value for the chi-square for deviations

CCA procedure

Performs canonical correspondence analysis (A.I. Glaser).

Options
PRINT = string tokens
Controls printed output (variance, loadings, roots, values, eigenvectors, speciesscores, sitescores, fitsitescores, correlations, fitcorrelations); default vari, root
NROOTS = scalar
Number of eigenvalues and eigenvectors to include in output; default * takes all the non-zero eigenvalues
NORMALIZE = string tokens
Whether to normalize the Y, X and/or Z variates to have unit sums-of-squares before the analysis (x, y, z); default x, z
SCALING = string tokens
Whether to scale for species or site score (species, site); default spec
TOLERANCE = scalar
Tolerance for detecting non-zero eigenvalues; default 10^-5

Parameters
Y = pointers
Each pointer defines a set of response variates to be modelled
X = pointers
Explanatory variates or factors to use for for each pointer of y-variates
Z = pointers
Conditioning variates to remove ("partial out") before the analysis
LRV = LRVs
LRV structure from each analysis, storing the eigenvectors, eigenvalues and total variance
SPECIESSCORES = matrices
Save the "species scores" from each analysis
SITESCORES = matrices
Save the "site scores" from each analysis
FITsitescores = matrices
Save the fitted "site scores" from each analysis
CORRELATIONS = matrices
Saves the correlations between the site scores and the x-variates
FITCORRELATIONS = matrices
Saves the correlations between the fitted site scores and the x-variates
SAVE = pointers
Save structure which provides information for use in CRBIPILOT and CRTRIPILOT

CCOMPARE procedure

Tests whether samples from circular distributions have a common mean direction or have identical distributions (S.J. Clark).

Options
PRINT = string token
What to print (tests); default test
TEST = string token
Which tests to perform (compare, identical); default comp, iden
ASCALE = string token
Units of the circular variables (degrees, radians); default
degr
STATISTICS = variate
Saves the test statistics

COMMON = scalar
Saves the common mean direction

LOWER = scalar
Saves the lower 95% confidence limit for common mean

UPPER = scalar
Saves the upper 95% confidence limit for common mean

Parameter
DATA = variates
Circular response variables to be compared

CDESCRIBE procedure

Options
PRINT = string tokens
What to print (summary, fittedvalues); default summ

SEGMENT = scalar
Width of sectors (in degrees) into which to group an ANGLES variate for calculation of the test of randomness and the chi-square goodness of fit statistic for the von Mises distribution; default 20

MSEGMENT = scalar
Defines the centre (in degrees) of the sectors; default 0

DIRECTION = scalar
Direction (in degrees) of the unimodal alternative distribution for the Rayleigh test; default * i.e. not known

Parameters
ANGLES = factors or variates
Directional observations (in degrees)

RESULTS = variates
Saves the summary statistics

VONMISESCOUNTS = pointers
Saves structures relevant for calculation of the chi-square goodness of fit statistic for the von Mises distribution

CDNAUGMENTEDDESIGN procedure
Constructs an augmented block design, using CycDesigN if the controls are in an incomplete-block design (R.W. Payne).

Options
PRINT = strings
Controls printed output (design, controldesign, factors, monitor); default * i.e. none

LEVELS = scalar or variate
Levels for the unreplicated treatments

LEVCONTROLS = scalar or variate
Levels for the control treatments

NROWS = scalar
Number of rows

N_COLUMNS = scalar
Number of columns

NRBLOCKS = scalar
Number of rows in each block

NCBLOCKS = scalar
Number of columns in each block

NCONTROLSPERBLOCK = scalar
Number of control treatments in each block

TREATMENTS = factor
Treatment factor

ROWS = factor
Row factor

COLUMNS = factor
Column factor

BLOCKS = factor
Block factor

ROWBLOCKS = factor
Row block factor

COBLOCKS = factor
Column block factor

NTIMES = scalar
Number of times to try allocations of controls within blocks

SEED = scalar or variate
Scalar or variate with three values specifying seeds for the random numbers used by CycDesigN to search for the control design, for the allocation of controls within blocks, and for the allocation of the unreplicated treatments – if a scalar is specified the same seed is used for all purposes; default 0 i.e. set automatically

SPREADSHEET = string
Whether to put the design factors into a spreadsheet (design); default *

TIMELIMIT = scalar
Time in minutes for CycDesigN to search; default 1

No parameters
4.1 Commands

CDNBLOCKDESIGN procedure
Constructs a block design using CycDesigN (R.W. Payne).

Options
PRINT = strings
Controls printed output (design, report, factors); default * i.e. none

LEVELS = scalar or variate
Numbers of levels of the treatment factors; if unset, takes the numbers of levels declared for the factors in the TREATMENTSTRUCTURE model

NREPLICATES = scalar
Number of replicates

NBLOCKS = scalar
Number of blocks

NUNITS = scalar
Number of units per block

NGROUPS = variate
Group sizes for a two-factor nested treatment structure
Up to four factors to use in the treatment model: one factor for a one-way treatment model, two factors for a nested structure when NGROUPS is set, or two to four factors for a factorial treatment structure when NGROUPS is not set

TREATMENTFACTORS = factors
Up to four factors to use in the treatment model: one factor for a one-way treatment model, two factors for a nested structure when NGROUPS is set, or two to four factors for a factorial treatment structure when NGROUPS is not set

REPLICATES = factor
Replicate factor

BLOCKS = factor
Block factor

UNITS = factor
Unit-within-block factor

RESOLVABLE = string
Whether the design is resolvable (yes, no); default no

ALPHADESIGN = string
Whether an alpha design is constructed for a resolvable design (yes, no); default no

CYCLIC = string
Whether a cyclic design is constructed for a non-resolvable design (yes, no); default no

NBLATIN = scalar
Number of contiguous blocks to latinize; default 0 i.e. not latinized

REPLATINGROUPS = variate
Sizes of groups defining the positions of the replicates when constructing latinized designs; default * i.e. no groupings

SPATIALMODEL = string
Spatial model to use with a single-treatment-factor resolvable design (integer, linearvariance, seconddifference, ev); default * i.e. none

EVDECAY = scalar
Decay parameter to use when SPATIALMODEL=ev; default 0.5

WEIGHTS = variate
Variate with two values specifying weightings for the main effects and for the interactions in factorial treatment structures; default !(1, 0.25)

SEED = scalar or variate
Scalar or variate with two values specifying seeds for the random numbers used by CycDesigN to search for the best design and to randomize it if a scalar is specified the same seed is used for both purposes; default 0 i.e. set automatically

SPREADSHEET = string
Whether to put the design factors into a spreadsheet (design); default *

TIMELIMITS = scalar or variate
A scalar or a variate containing up to three numbers defining the time in minutes to spend on the first phase, the second phase and the spatial phase of the search (if the 2nd or 3rd numbers are omitted they default to the maximum of those specified); default 1

NRANDOMIZATIONS = scalar
Number of randomizations to generate from the best design; default 1

TRIALS = factor
Trials factor

No parameters

CDNPREP procedure
Constructs a multi-location partially-replicated design using CycDesigN (R.W. Payne).

Options
PRINT = strings
Controls printed output (design, report, factors, blocknumbers); default * i.e. none
LEVELS = scalar
Numbers of levels of the treatment factor; if unset, takes the numbers of levels declared for the factor specified by the TREATMENTS option

NLOCATIONS = scalar
Number of locations

NBLOCKS = scalar
Number of blocks at each location

NUNITSPERLOCATION = scalar
Number of units at each location

NREPLICATEDPERBLOCK = scalar
Number of treatments in each block that are replicated at the location containing the block

TREATMENTS = factor
Treatment factor

LOCATIONS = factor
Locations factor

BLOCKS = factor
Block factor

UNITS = factor
Unit-within-block factor

SEED = scalar or variate
Scalar or variate with two values specifying seeds for the random numbers used by CycDesigN to search for the best design and to randomize it – if a scalar is specified the same seed is used for both purposes; default 0 i.e. set automatically

SPREADSHEET = string
Whether to put the design factors into a spreadsheet (design); default *

TIMELIMIT = scalar
Time in minutes to search; default 1

No parameters

CDNROWCOLUMNDESIGN procedure
Constructs a row-column design using CycDesigN (R.W. Payne).

Options

PRINT = strings
Controls printed output (design, report, factors); default * i.e. none

LEVELS = scalar or variate
Numbers of levels of the treatment factors; if unset, takes the numbers of levels declared for the factors in the TREATMENTSTRUCTURE model

NREPLICATES = scalar
Number of replicates

NROWS = scalar
Number of rows

NCOLUMNS = scalar
Number of columns

NGROUPS = variate
Group sizes for a two-factor nested treatment structure

TREATMENTFACTORS = factors
Up to four factors to use in the treatment model: one factor for a one-way treatment model, two factors for a nested structure when NGROUPS is set, or two to four factors for a factorial treatment structure when NGROUPS is not set

REPLICATES = factor
Replicate factor

ROWS = factor
Row factor

COLUMNS = factor
Column factor

RESOLVABLE = string
Whether the design is resolvable (yes, no); default no

METHOD = string
How to construct the design (onestage, twostage, unrestrictedtwostage); default ones

NRLATIN = scalar
Number of contiguous rows to latinize; default 0 i.e. not latinized

NCLATIN = scalar
Number of contiguous columns to latinize; default 0 i.e. not latinized

REPLATINGROUPS = variate
Specifies the number of replicates in each column when constructing latinized designs; default * i.e. all in one column

SPATIALMODEL = string
Spatial model to use with a single-treatment-factor resolvable design (integer, linearvariance, seconddifference, ev); default * i.e. none

EVDECAY = scalar
Decay parameter to use when SPATIALMODEL=ev; default 0.5

WEIGHTS = variate
Variate with two values specifying weightings for the main effects and for the interactions in factorial treatment structures; default !(1, 0.25)
4.1 Commands

RCWEIGHTS = variate
Variate with three values specifying weightings for the within-row-and-column, between-row and between-column information; default has weight one for the within-row-and-column information, and the reciprocal of their numbers of levels for the rows and columns.

SEED = scalar or variate
Scalar or variate with two values specifying seeds for the random numbers used by CycDesigN to search for the best design and to randomize it – if a scalar is specified the same seed is used for both purposes; default 0 i.e. set automatically.

SPREADSHEET = string
Whether to put the design factors into a spreadsheet (design); default *.

TIMELIMITS = scalar or variate
A scalar or a variate containing up to three numbers defining the time in minutes to spend on the first phase, the second phase and the spatial phase of the search (if the 2nd or 3rd numbers are omitted they default to the maximum of those specified); default 1.

NRANDOMIZATIONS = scalar
Number of randomizations to generate from the best design; default 1.

TRIALS = factor
Trials factor.

No parameters

CENSOR procedure
Pre-processes censored data before analysis by ANOVA (P.W. Lane).

Options

PRINT = string token
Whether to monitor convergence (monitor); default * implies no monitoring.

TERM = formula
Formula for lowest stratum residual term; no default – this option must be set.

DESIGN = pointer
Identifier specifying design information for ANOVA, or to save design information; default *.

MAXCYCLE = scalar
Maximum number of iterations; default 20.

Parameters

Y = variates
Observed variate with censored values represented by values greater than or equal to the bound; no default – this parameter must be set.

BOUND = scalars or variates
Upper bound for censoring for each unit; no default – this parameter must be set.

DF = scalars
Estimated residual d.f. for lowest stratum, adjusting for censoring; default *.

NEWY = variates
Saves a variate with the censored values replaced by their estimates; if unset, the censored values are replaced in the original Y variate.

SAVE = identifiers
Save details of each analysis for use in subsequent ADISPLAY or AKEEP statements.

CHECKARGUMENT procedure
Checks the arguments of a procedure (R.W. Payne).

Option

ERROR = scalar
This scalar is given the value 1 if any errors are detected; it should have the value 0 on entry.

Parameters

STRUCTURE = identifiers
Lists the structures (arguments) to be checked.

VALUES = variates or texts
Defines the allowed values for a structure of type variate or text.

DEFAULT = identifiers
Default to be used if STRUCTURE is set to an unset dummy.

SET = texts
Indicates whether or not each structure must be set (no, yes);

4 Syntax summary

default no

DECLARED = texts
Indicates whether or not each structure must have been declared (no, yes); default no

TYPE = texts
Text for each structure whose values indicate the types allowed (scalar, factor, text, variate, matrix, diagonalmatrix, symmetricmatrix, table, expression, formula, dummy, pointer, LRV, SSPM, TSM, tree, asave, rsave, tsave, vsave); default *

PRESENT = texts
Indicates whether or not each structure must have values (no, yes); default no

CHIPERMTEST procedure

Options

PRINT = string tokens
Output required (summary, observed, expected); default summ

PLOT = string token
What to plot (histogram); default hist

METHOD = string token
Method for calculating chi-square (pearson, maximumlikelihood); default pear

NTIMES = scalar
Number of permutations to make; default 999

SEED = scalar
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

Parameters

DATA = tables
Table containing observed data

CHISQUARE = scalars
Saves the observed chi-square value

CHIPERMUTED = variates
Saves the chi-square values from the permuted data sets

PROBABILITY = scalars
Saves the probability value from the test

CHISQUARE procedure

Options

PRINT = string tokens
Output required (test, probability, fittedvalues, tchisquare); default test, prob

METHOD = string token
Method for calculating chi-square (pearson, maximumlikelihood); default pear

GOODNESSOFFIT = string token
Whether to carry out a goodness-of-fit test for the DATA values against a supplied set of FITTEDVALUES (yes, no); default no

Parameters

DATA = tables
Table containing observed data

CHISQUARE = scalars
Scalar to save the chi-square value

DF = scalars
Scalar to supply or save the degrees of freedom

PROBABILITY = scalars
Scalar to save the probability value

FITTEDVALUES = scalars
Table of expected values

RESIDUALS = tables
Table of standardized residuals

TCHISQUARE = tables
Table whose cells show the individual contributions to the chi-square value

CINTERACTION procedure
Clusters rows and columns of a two-way interaction table (J.T.N.M. Thissen & J. de Bree).

Options

PRINT = string tokens
What information to print (sortedtable, aovtable, summary, monitoring, variance, amalgamations, dendrogram); default sort, aov, summ, moni, vari, amal, dend
4.1 Commands

PRMONITOR = scalar

If option VARIANCE is set this provides a P-value to indicate when to start monitoring, if VARIANCE is unset PRMONITOR is ignored; default 0.95

VARIANCE = scalar

Variance of a mean in TABLE; default *

DF = scalar

Degrees of freedom of VARIANCE; default *

SSTHRESHOLD = scalar

Specifies a value of cumSS at which to partition the dendrograms and to define factors ROWGROUPS and COLGROUPS; default 0 i.e. no partitioning

TITLE = text

General title for the high-resolution graph; default *

PENSIZE = scalar

Pen size for y-labels of dendrograms; default 1

Parameters

TABLE = tables

Two-way table whose interaction structure is to be clarified

ROWAMALGAMATIONS = matrices

To either save or specify amalgamations for rows

COLAMALGAMATIONS = matrices

To either save or specify amalgamations for columns

ROWPERMUTATIONS = variates

To specify order of labels in the row dendrogram

COLPERMUTATIONS = variates

To specify order of labels in the column dendrogram

ROWGROUPS = factors

To save the grouping of the rows specified by the SSTHRESHOLD option

COLGROUPS = factors

To save the grouping of the columns specified by the SSTHRESHOLD option

SORTEDTABLE = tables

To save the sorted TABLE with increasing row and column means

CLASSIFY procedure

Obtains a starting classification for non-hierarchical clustering (S.A. Harding).

No options

Parameters

DATA = pointers

Each pointer contains a set of variates giving the properties of the units to be grouped

NGROUPS = scalars

Indicates the number of groups required

GROUPS = factors

Stores the classifications formed

CLOSE directive

Closes files.

No options

Parameters

CHANNEL = scalars or texts

Numbers of the channels to which the files are attached, or identifiers of files used for input (which, after "closing", can then be re-read)

FILETYPE = string tokens

Type of each file (input, output, unformatted, backingstore, procedurelibrary, graphics); default input

DELETE = string tokens

Whether to delete the file on closure (yes, no); default no

CLUSTER directive

Forms a non-hierarchical classification.

Options

PRINT = string tokens

Printed output required (criterion, optimum, units, typical, initial, random); default * i.e. no printing

DATA = matrix or pointer

Data from which the classification is formed, supplied as a units-by-variates matrix or as a pointer containing the variates of the data matrix

CRITERION = string token

Criterion for clustering (sums, predictive, within, Mahalanobis); default sums

INTERCHANGE = string token

Permitted moves between groups (transfer, swop); default tran (implies swop also)
4 Syntax summary

START = factor

Initial classification; default * i.e. splits the units, in order, into

NGROUPS classes of nearly equal size

NSTARTS = scalar

Number of starting configurations to be used; default 0

SEED = scalar

Seed for the random numbers used to form random starting configurations; default 0

Parameters

NGROUPS = scalars

Numbers of classes into which the units are to be classified:

Note, the values of the scalars must be in descending order

GROUPS = factors

Saves the classification formed for each number of classes

CRITERIONVALUE = scalars

Saves the criterion values (representing within-class homogeneity)

BCRITERIONVALUE = scalars

Saves the subsidiary criterion values (representing between-class heterogeneity for maximal predictive classification)

MEANS = matrices

Saves the variate means for the groups of each classification

PREDICTORS = matrices

Saves the group predictors from maximal predictive classification

CMHTEST procedure

Performs the Cochran-Mantel-Haenszel test (D.A. Murray).

Options

PRINT = string token

Controls printed output (test); default test

CLASSIFICATION = factors

Classifying factors for a DATA variate or classifying factors for the $R \times C$ tables in a DATA table

CONTINUITY = string token

Continuity correction for $2 \times 2 \times K$ Mantel-Haenszel test (correct, none); default corr

CIPROBABILITY = scalar

Size of confidence interval for common odds ratio in $2 \times 2 \times K$ tables; default 0.95

Parameters

DATA = tables or variates

Data values

STATISTIC = scalars

Save the test statistic

PROBABILITY = scalars

Save the probability for the test

ODDSRATIO = scalars

Save the common odds ratio for the $2 \times 2 \times K$ table case

LOWER = scalars

Save lower limit of the confidence interval of odds ratio

UPPER = scalars

Save upper limit of the confidence interval of odds ratio

COKRIGE directive

Calculates kriged estimates using a model fitted to the sample variograms and cross-variograms of a set of variates.

Options

PRINT = string token

Controls printed output (description, search, weights, conditionalprobabilities, quantiles, crossvalidations); default desc

Y = variate

Variate to predict in the cokriging

METHOD = string token

Type of kriging (Normal, LogNormal); default Norm

X1OUTER = variate

Variate containing 2 values to define the bounds of the region to be examined in the first direction; by default the whole region is used

X2OUTER = variate

Variate containing 2 values to define the bounds of the region to be examined in the second direction; by default the whole region is used

X3OUTER = variate

Variate containing 2 values to define the bounds of the region to be examined in the third direction; by default the whole region is used

X1INNER = variate

Variate containing 2 values to define the bounds of the interpolated region in the first direction; no default

X2INNER = variate

Variate containing 2 values to define the bounds of the
4.1 Commands

\[
\begin{align*}
X3INNER &= \text{variate} \\
&\text{Variate containing 2 values to define the bounds of the} \\
&\text{interpolated region in the third direction; no default} \\
X1INTERVAL &= \text{scalar} \\
&\text{Distance between successive interpolations in the first} \\
&\text{direction; default 1.0} \\
X2INTERVAL &= \text{scalar} \\
&\text{Distance between successive interpolations in the second} \\
&\text{direction; default 1.0} \\
X3INTERVAL &= \text{scalar} \\
&\text{Distance between successive interpolations in the third} \\
&\text{direction; default 1.0} \\
POINTS &= \text{matrix} \\
&\text{Allows the point where predictions are required to be specified} \\
&\text{explicitly if the } X1-3INNER \text{ and } X1-3INTERVAL \text{ options are} \\
&\text{unset, otherwise if these are set, saves the locations of the} \\
&\text{prediction points} \\
BLOCKDIMENSIONS &= \text{variate or matrix} \\
&\text{Dimensions of the block(s) in the 3 directions, a variate} \\
&\text{defines identical blocks for each prediction point, a matrix can} \\
&\text{be used to define different block sizes for each point when} \\
&\text{the points are defined by the POINTS option; default } !(0,0,0) \\
&\text{i.e. punctual kriging at every point} \\
POOLRADIUS &= \text{scalar} \\
&\text{Specifies the minimum distance for which points are pooled;} \\
&\text{default * i.e. no pooling} \\
SEARCHNEIGHBOURHOOD &= \text{string token} \\
&\text{Search neighbourhood to be used (global, local); default} \\
&\text{glob} \\
MINPOINTS &= \text{scalars} \\
&\text{Minimum number of data points from which to compute} \\
&\text{elements} \\
MAXPOINTS &= \text{scalars} \\
&\text{Maximum number of data points in each direction from which} \\
&\text{to compute elements} \\
RADII &= \text{scalars or variates} \\
&\text{Scalar defining the maximum distance between target point in} \\
&\text{block and usable data for each variable in 1 dimension, or radii} \\
&\text{of the ellipse or ellipsoid enclosing the usable points in 2 or 3} \\
&\text{dimensions} \\
ELLIPSEAXIS &= \text{scalar or variate} \\
&\text{Angle or angles defining the direction of the axis of the ellipse} \\
&\text{or ellipsoid, scalar for 2 dimensions and variate containing 3} \\
&\text{values for 3 dimensions} \\
DRIFT &= \text{string token} \\
&\text{Mean function for universal cokriging (constant, linear,} \\
&\text{quadratic, polygon); default cons} \\
X1EXV &= \text{variate} \\
&\text{Variate containing locations of the explanatory model in the} \\
&\text{first dimension} \\
X2EXV &= \text{variate} \\
&\text{Variate containing locations of the explanatory model in the} \\
&\text{second dimension (if recorded in 2 or 3 dimensions)} \\
X3EXV &= \text{variate} \\
&\text{Variate containing locations of the explanatory model in the} \\
&\text{third dimension (if recorded in 3 dimensions)} \\
TERMS &= \text{variates} \\
&\text{List of variates for explanatory model; default * i.e. none} \\
POLYGONCOORDINATES &= \text{pointer} \\
&\text{Pointer containing the coordinates of polygons in 2 variates} \\
&\text{and the map unit numbers within a factor} \\
COORDSYSTEM &= \text{string token} \\
&\text{Coordinate system used for the geometry for discretizing the} \\
&\text{lag (mathematical, geographical); default math} \\
CPThreshold &= \text{scalar or variate} \\
&\text{Threshold(s) for calculating the conditional probabilities} \\
PERCENTQUANTILES &= \text{scalar or variate} \\
&\text{Percentage points for which quantiles are required; default 5} \\
&\text{and 95} \\
LOGBASE &= \text{string token} \\
&\text{Base of antilog transformation to be applied to the predictions} \\
&\text{and variances for lognormal (co)kriging (ten, e); default * i.e.} \\
&\text{none} \\
\end{align*}
\]

Parameters

\[
\begin{align*}
\text{DATA} &= \text{variates} \\
&\text{Measurements as one or more variates} \\
\text{x1} &= \text{variates} \\
&\text{Locations of the measurements in the first dimension} \\
\end{align*}
\]
\[X_2 = \text{variates} \]
Locations of the measurements in the second dimension (if recorded in 2 or 3 dimensions)

\[X_3 = \text{variates} \]
Locations of the measurements in the third dimension (if recorded in 3 dimensions)

\[\text{PREDICTIONS} = \text{variate} \]
Kriged estimates

\[\text{VARIANCES} = \text{variate} \]
Estimation variances

\[\text{MEASUREMENTERROR} = \text{scalars} \]
Variance of measurement error for punctual (co)kriging

\[\text{ESTIMATES} = \text{pointers} \]
Estimates for the model structure

\[\text{CONDITIONALPROBABILITIES} = \text{pointers} \]
Structure to save conditional probabilities

\[\text{QUANTILES} = \text{pointers} \]
Structure to save estimated quantiles

\[\text{SAMPLESUPPORT} = \text{scalars} \]
Sampling size (length, area or volume according to the dimensionality of the data) of the data points

COLOUR directive

Defines the red, green and blue intensities to be used for the Genstat colours for certain graphics devices.

Option

\[\text{RESET} = \text{string token} \]
Whether to reset values to their defaults (no, yes); default no

Parameters

\[\text{NUMBER} = \text{scalars} \]
Numbers of the colours to be set

\[\text{RED} = \text{scalars} \]
Red intensity of each colour (between 0 and 255)

\[\text{GREEN} = \text{scalars} \]
Green intensity of each colour (between 0 and 255)

\[\text{BLUE} = \text{scalars} \]
Blue intensity of each colour (between 0 and 255)

\[\text{MATCH} = \text{scalars} \]
Number of a Genstat colour to define any unset values of RED, GREEN or BLUE; default is to restore the original values of the colour

\[\text{SAVE} = \text{pointers} \]
Pointers each containing three scalars to save the red, green and blue intensities of the colours

COMBINE directive

Combines or omits "slices" of a multi-way data structure (table, matrix or variate).

Options

\[\text{OLDSTRUCTURE} = \text{identifier} \]
Structure whose values are to be combined; no default i.e. this option must be set

\[\text{NEWSTRUCTURE} = \text{identifier} \]
Structure to contain the combined values; no default i.e. this option must be set

Parameters

\[\text{OLDDIMENSION} = \text{factors or scalars} \]
Dimension number or factor indicating a dimension of the OLDSTRUCTURE

\[\text{NEWDIMENSION} = \text{factors or scalars} \]
Dimension number or factor indicating the corresponding dimension of the NEWSTRUCTURE; this can be omitted if the dimensions are in numerical order, while zero settings (each in conjunction with a single OLDPOSITION) allows a slice of an old table to be mapped into a new table with fewer dimensions

\[\text{OLDPOSITIONS} = \text{pointers, texts, variates or scalars} \]
These define positions in each OLDDIMENSION: pointers are appropriate for matrices whose rows or columns are indexed by a pointer; texts are for matrices indexed by a text, variates with a textual labels vector, or tables whose OLDDIMENSION factor has labels; and variates either refer to levels of table factors or numerical labels of matrices or variates, if these are present, otherwise they give the (ordinal) number of the position. If omitted, the positions are assumed to be in (ordinal) numerical order. Margins of tables are indicated by missing values
NEWPOSITIONS = pointers, texts, variates or scalars

These define positions in each NEWDIMENSION, specified similarly to OLDPOSITIONS; these indicate where the values from the corresponding OLDDIMENSION positions are to be entered (or added to any already entered there)

WEIGHTS = variates

Define weights by which the values from each OLDDIMENSION coordinate are to be multiplied

COMMANDS Information directive

Provides information about whether (and how) a command has been implemented.

No options

Parameters

NAME = texts

Single-line texts supplying the names of the commands

IMPLEMENTATION = texts

Single-line texts set to 'directive', 'procedure' or a null string ('') according to the type of command

CHANNEL = scalars

Saves the channel for a procedure from a procedure library

PRESENTNOW = scalars

Logical set to one if the command is now present, or zero otherwise

CONCATENATE directive

Concatenates and truncates lines (units) of text structures; allows the case of letters to be changed.

Options

NEWTEXT = text

Text to hold the concatenated/truncated lines; default is the first OLDTEXT vector

CASE = string token

Case to use for letters (given, lower, upper, changed); default give leaves the case of each letter as given in the original string

Parameters

OLDTEXT = texts

Texts to be concatenated

WIDTH = scalars or variates

Number of characters to take from the lines of each text, a negative value takes all the (unskipped) characters other than trailing spaces; if * or omitted, all the (unskipped) characters are taken

SKIP = scalars or variates

Number of characters to skip at the left-hand side of the lines of each text, a negative value skips all initial spaces; if * or omitted, no characters are skipped

CONFIDENCE procedure

Calculates simultaneous confidence intervals (D.M. Smith).

Options

PRINT = string token

Controls printed output (intervals); default inte

METHOD = string token

Type of interval (individual, smm, product, Bonferroni, Scheffe); default smm

MU = scalar

Value for population mean checked as to whether in the confidence interval; default * i.e. no checking

PROBABILITY = scalar

The required significance level; default 0.05

Parameters

MEANS = tables or variates

Mean values

REPLICATIONS = scalars or tables or variates

Number(s) of observations per mean

VARIANCE = scalars

Estimate of variance

DF = scalars

Degrees of freedom

XCONTRASTS = matrices

Matrix of coefficients of orthogonal contrasts

LABELS = texts

Identifiers of mean values

LOWER = tables or variates

Lower values of confidence intervals

UPPER = tables or variates

Upper values of confidence intervals
CONTOUR directive

Produces contour maps of two-way arrays of numbers (on the terminal/printer). This directive was replaced in Release 10 by the directive LPCONTOUR (with exactly the same options and parameters). It is currently retained as a synonym of LPCONTOUR, but may be removed in a future release.

CONVEXHULL procedure

Finds the points of a single or a full peel of convex hulls (P.G.N. Digby).

Options
- **PEELING = string token**
 Specifies whether the procedure is to form the full set of peels, or just the convex hull (no, yes); default no
- **SCALE = scalar**
 Scaling factor for hulls; default 1.0

Parameters
- **Y = variate**
 Y-coordinates of the points
- **X = variate**
 X-coordinates of the points
- **YHULL = variate or pointer**
 Variate storing the y-coordinates of the points defining the convex hull (for PEELING=no) or pointer to a set of variates storing the y-coordinates of the convex hulls forming the complete set of peels
- **XHULL = variate or pointer**
 Variate storing the x-coordinates of the points defining the convex hull (for PEELING=no) or pointer to a set of variates storing the x-coordinates of the convex hulls forming the complete set of peels
- **PEEL = variate**
 Stores the number of the peel to which each point belongs

COPY directive

Forms a transcript of a job.

Option
- **PRINT = string tokens**
 What to transcribe (statements, output); default stat

Parameter
- **scalar**
 Channel number of output file

CORANALYSIS procedure

Does correspondence analysis, or reciprocal averaging; synonym CORRESP (P.G.N. Digby).

Options
- **PRINT = string tokens**
 Printed output from the analysis (roots, rowscores, rowinertias, rowchisquare, rowmass, rowquality, colscores, colinertias, colchisquare, colmass, colquality); default * i.e. no output
- **METHOD = string token**
 Type of analysis required (correspondence, digbycorrespondence, biplot, reciprocal); default corr
- **NROOTS = scalar**
 Number of latent roots for printed output; default * requests them all to be printed
- **%METHOD = string token**
 How to represent proportions or %s in quality statistics (permills, percentages, proportions); default prop
- **NDIMENSIONS = scalar**
 Number of dimensions for which quality statistics are required; default 2
- **ROWSUBSET = scalars**
 Indexes of subset rows
- **COLSUBSET = scalars**
 Indexes of subset columns
- **ROWPASSIVE = scalars**
 Indexes of passive rows
- **COLPASSIVE = scalars**
 Indexes of passive columns

Parameters
- **DATA = matrices or data matrices**
 Data to be analysed
- **ROOTS = diagonal matrices**
 Saves the squared singular values from each analysis
- **ROWSCORES = matrices**
 Saves the scores for the rows of the data matrix
4.1 Commands

COLSCORES = matrices
Saves the scores for the columns of the data matrix

ROWINERTIAS = matrices
Saves the inertias for the rows of the data matrix

COLINERTIAS = matrices
Saves the inertias for the columns of the data matrix

ROWQUALITY = matrices
Saves the quality statistics for rows of the data

COLQUALITY = matrices
Saves the quality statistics for columns of the data

SAVE = pointers
Saves details of the analysis for use by CAPLOT

CORRELATE directive
Forms correlations between variates, autocorrelations of variates, and lagged cross-correlations between variates.

Options
- **PRINT = string tokens**
 What to print (correlations, autocorrelations, partialcorrelations, crosscorrelations); default *
- **GRAPH = string tokens**
 What to display with graphs (autocorrelations, partialcorrelations, crosscorrelations); default *
- **MAXLAG = scalar**
 Maximum lag for results; default * i.e. value inferred from variates to save results
- **CORRELATIONS = symmetric matrix**
 Stores the correlations between the variates specified by the SERIES parameter

Parameters
- **SERIES = variates**
 Variates from which to form correlations
- **LAGGEDSERIES = variates**
 Series to be lagged to form crosscorrelations with first series
- **AUTOCORRELATIONS = variates**
 To save autocorrelations, or to provide them to form partial autocorrelations if SERIES=*
- **PARTIALCORRELATIONS = variates**
 To save partial autocorrelations
- **CROSSCORRELATIONS = variates**
 To save crosscorrelations
- **TESTSTATISTIC = scalars**
 To save test statistics
- **VARIANCES = variates**
 To save prediction error variances
- **COEFFICIENTS = variates or matrices**
 To save prediction coefficients: in a variate to keep only those for the maximum lag, or in a matrix to keep the coefficients for all lags up to the maximum

COUNTER directive
Increments a multi-digit counter using non base-10 arithmetic.

Options
- **NREQUIRED = scalar**
 Specifies the number of values required for the counter; default 2
- **NFOUND = scalar**
 Saves the number of counter values that could be formed
- **DIRECTION = string token**
 Specifies the direction of the sequence of increments to the counter (ascending, descending); default asce

Parameters
- **START = scalars**
 Provides the starting values for the digits in the counter
- **END = scalars**
 Can provide values to define the end of the sequence of counter values
- **STEP = scalars**
 Specifies the amount by which to increment each digit of the counter
- **BASE = scalars**
 Specifies the base of the numbers used for each digit
- **DIGITSEQUENCE = variates**
 Saves the sequence of values generated for each digit

COVARIATE directive
Specifies covariates for use in subsequent ANOVA statements.

No options

Parameter
- **variates or pointers**: Covariates
COVDESIGN procedure

Produces experimental designs efficient under analysis of covariance (D.B. Baird).

Options

PRINT = string tokens
Controls printed output (design, cefficiency, means, histogram, cutoff); default desi, ceff, cuto

TREATMENTSTRUCTURE = formula
Treatment terms to be fitted

BLOCKSTRUCTURE = formula
Block model for the design

COVARIATES = variates
Covariates for the design

FACTORIAL = scalar
Limit on number of factors in a treatment term; default 3

GRBLOCKSTRUCTURE = formula
Formula use for randomization; default uses BLOCKSTRUCTURE

EXCLUDE = factors
(Block) factors whose levels are not to be randomized

UNITS = text, variate or factor
Labels for the units of the design

Parameters

PROPORTION = scalars
Upper proportion of the combined cov. ef. distribution from which the design is to be chosen (or zero to take the best design found); default 0.5

NSIMULATIONS = scalars
Number of designs to simulate for the empirical distribution of combined cov. ef.’s; default 100

WEIGHTS = variates
Weighting for the treatment terms to use when calculating the combined cov. ef.; default 1 (i.e. all equal)

CEFLIMIT = scalars
Minimum value of the cov. ef. for each or variates treatment term for a design to be included in the set of acceptable designs; default 0 (i.e. all designs acceptable).

ORDER = scalars
Order of polynomial to fit for each covariate; or variates default 1 (i.e. only linear covariates)

SEED = scalars
Seed for random number generator for randomizing the simulated designs; default 0

SAVE = pointers
Saves the treatment factor allocations for the selected design; if unset, these overwrite the values of the treatment factors themselves

CUTOFF = scalars
Critical value of the combined cov. ef. from the simulated distribution

CEFFICIENCY = variates
Covariate efficiencies for the treatment terms from the selected design

SIMULATIONS = variates
Simulated combined cov. ef.’s

CRBIPILOT procedure

Plots correlation or distance biplots after RDA, or ranking biplots after CCA (A.I. Glaser).

Options

DIMENSIONS = scalars
Two numbers specifying which axes of the ordinations to plot; default 1,2

PLOT = string token
Whether to plot site or species scores (sitescores, speciesscores); default spec

WINDOW = scalar
Which graphical window to use; default 1

KEYWINDOW = scalar
Which graphical window to use for the key (zero for none); default 2

SAVE = pointer
Supplies results from an ordination analysis by CCA or RDA; default uses the most recent analysis

Parameters

X1 = scalars, variates or texts
First explanatory variable to plot; default 1

X2 = scalars, variates or texts
Second explanatory variable to plot; default * i.e. none

LMXVARIABLES = string tokens
How to label the x-variables (identifiers, labels, none, numbers); default labe if LXVARIABLES is set, otherwise iden

LMSPECIES = string tokens
How to label the species scores (identifiers, labels,
4.1 Commands

none, numbers); default labe if LSPECIES is set, otherwise numb
LMSITES = string tokens
How to label the site scores (labels, none, numbers); default labe if LITER is set, otherwise numb
LXVARIABLES = texts
Labels for variables
LSPECIES = texts
Labels for species scores
LSITES = texts
Labels for site scores

CRTRIPILOT procedure

Plots ordination biplots or triplots after CCA or RDA (A.I. Glaser).

Options

DIMENSIONS = scalars
Which dimensions of the ordinations to display; default 1,2
PLOT = string token
What to plot (sitescores, speciesscores, xvariables); default spec, site, xvar
DGROUPS = string token
Features to plot for the XGROUPS variate (ellipse, hull, lines, spider); default * i.e. none
DBINARY = string token
What to plot for binary variables (biplot, centroid); default bipl
MULTIPLIER = scalar
Value to multiply species and environmental variables scores by when plotting RDA; default * , i.e. none chosen
WINDOW = scalar
Which graphical window to use; default 1
KEYWINDOW = scalar
Which graphical window to use for the key (zero for none); default 2
SAVE = pointer
Supplies results from an ordination analysis by CCA or RDA; default uses the most recent analysis

Parameters

LMXVARIABLES = string tokens
How to label the x-variables (identifiers, labels, none, numbers); default labe if LXVARIABLES is set, otherwise iden
LSPECIES = string tokens
How to label the species scores (identifiers, labels, none, numbers); default labe if LSPECIES is set, otherwise numb
LMSITES = string tokens
How to label the site scores (labels, none, numbers); default labe if LSITES is set, otherwise numb
LXVARIABLES = texts
Labels for variables
LSPECIES = texts
Labels for species scores
LSITES = texts
Labels for site scores
XGROUPS = variates, factors or scalars
X-variate to generate grouping information to appear on the plot (see the DGROUPS option)

CSPRO procedure

Reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file (D.B. Baird).

Options

PRINT = string token
What to print (catalogue); default cata
FACMETHOD = string token
Which factors to create (convertall, keepandconvertall, none, oranges); default keep
MISSINGCODES = string tokens
Which special values to convert to Genstat missing values (missing, na); default miss
FVALUESETS = string token
Whether form to a set of columns containing all the valueset information (yes, no); default no
SUBITEMS = string token
Whether to create a set of columns for the sub-items (yes, no); default no
MERGE = string token
Whether to merge the records into a single set of columns all of the same length (yes, no); default no
FUNKNOWNGROUP = string token
Whether to create a specific level for values not in the value
set, rather than setting them to missing values (yes, no); default no

INCLUDEEXTRA = string token
Whether to include a row of column descriptions in the Excel output file after the column heading row (yes, no); default no

WARNONEMPTYGROUPS = string token
Whether to warn that groups in a factor are empty and offer to remove them when loading the data from a saved GWB file (yes, no); default no

DUPLICATELABELS = string token
What to do with factor groups that have identical labels (combine, ignore, rename); default comb

SCOPE = string token
Whether to read the data into global data structures or into data structures local to a procedure calling CSPRO (local, global); default loca

INOPTIONS = text
Optional extra input options to be passed to the Dataload.dll

OUTOPTIONS = text
Optional extra output options to be passed to the Dataload.dll

Parameters

FILENAME = text
Survey data file to be read

DICTIONARY = text
Survey dictionary for interpreting the data file

OUTFILENAME = text
Name of the output file to be created, if required

SURVEYLEVEL = scalar
Level of the survey (1, 2 or 3) to read; default 1

RECORDS = scalar or variate
Defines the records to be read within the SURVEYLEVEL; by default they are all read

ITEMS = text
Names of the survey items to be read

ISAVE = text or pointer
Saves the identifiers of the columns that are created

CUMDISTRIBUTION procedure
Fits frequency distributions to accumulated counts (R.C. Butler, M.E. O'Neill, P. Brain & H. Turner).

Options

PRINT = string tokens
Controls printed output (model, summary, estimates, correlations, fittedvalues, monitoring); default mode, summ, esti

DISTRIBUTION = string token
Which distribution to use (normal, logistic, complementaryloglog, acomplementaryloglog, inveresnormal, weibull, exponential); default norm

TRANSFORMATION = string token
Whether to use log(TIME) if DISTRIBUTION = normal, logistic, complementaryloglog or acomplementaryloglog (log, none); default * uses log except when DISTRIBUTION = inveresnormal, weibull or exponential

LAG = string token
Type of lag to add to TIME (none, positive, unconstrained); default none

ALLRESPOND = string token
If TOTUNITS is set, whether all units are constrained to respond (yes, no); default no

FORM = string token
Whether DATA are cumulated or differences (cumulated, differences); default cumu

LOSTUNITS = string token
Whether data are left-censored (yes, no); default no

SEPARATE = string token
Which parameters to estimate separately for each group (lag, b, m, propn, gamma); default *

POPSEPARATE = string token
Which parameters to estimate separately for populations in each group (b, m, lag); default *

PLOT = string token
Which graphs to draw (cumulative, density, trcumulative, trdensity); default cumu

MAXCYCLE = scalar
Number of iterations for fitting, as in RCYCLE; default 30

Parameters

DATA = variates or pointers
Specifies the accumulated counts

TIME = variates or pointers
Defines the time at which each count was recorded
GROUPS = factors
INITIAL = variates
IB = scalars or variates
IM = scalars or variates
ILAG = scalars or variates
IGAMMA = scalars or variates
IPROPN = scalars or variates
STEPLENGTHS = variates
SB = scalars or variates
SM = scalars or variates
SLAG = scalars or variates
SGAMMA = scalars or variates
SPROPN = scalars or variates
TOTUNITS = scalars or variates
NPOPULATION = scalars
SAVE = pointers

CVA directive

Performs canonical variates analysis.

Options
PRINT = string tokens
NROOTS = scalar
SMALLEST = string token
Parameters
WSSPM = SSPMs
LRV = LRVs
SCORES = matrices
RESIDUALS = matrices
DISTANCES = symmetric matrices
ADJUSTMENTS = matrices
SAVE = pointers

CVAPLOT procedure

Plots the mean and unit scores from a canonical variates analysis (D.A. Murray).

Options
PLOT = string tokens
GROUPS = factor
MSCORES = matrix
USCORES = matrix
WSSPM = SSPM
CREGION = string tokens
CIPROBABILITY = scalar
TAREA = scalar
regions; default 255 i.e. no shading

Parameters

- **YDIMENSION = scalars**
 - Dimensions to be plotted in the y direction of each graph
- **XDIMENSION = scalars**
 - Dimension to be plotted in the x direction
- **TITLE = texts**
 - Title for each plot
- **WINDOW = scalars**
 - Window for each graph; default 1
- **SCREEN = string tokens**
 - Whether to clear the screen before plotting (clear, keep); default clear

CVASCORES procedure

Calculates scores for individual units in canonical variates analysis (S.A. Harding).

Option

- **PRINT = string tokens**
 - What output to print (scores, adjustments); default scores

Parameters

- **WSSPM = SSPMs**
 - Within-group sums of squares and products structure
- **LRV = LRVs**
 - Loadings, roots and trace saved from CVA of the WSSPM
- **SCORES = matrices**
 - Unit scores
- **ADJUSTMENTS = matrices**
 - Mean Adjustments

CVATRELLIS procedure

Displays the distribution of groups over 2 dimensions from a CVA analysis using a trellis of bar or pie charts (R.W. Payne).

Options

- **PLOT = string tokens**
 - What to plot (barchart, piechart, scaledpiechart, key); default barc, key
- **N PARTITIONS = scalar**
 - Number of partitions along each axis; default 8
- **COLOURS = variate or text**
 - Colours for the groups; default uses the colours defined for pens 2 upwards
- **KEYHEIGHT = scalar**
 - Height of the key; default 0.1
- **SAVE = pointer**
 - Save structure from the CVA analysis to display; default displays the most recent analysis

Parameters

- **YDIMENSION = scalars**
 - Dimension for the y-axis for each graph; default 1
- **XDIMENSION = scalars**
 - Dimension for the x-axis for each graph; default 2
- **TITLE = texts**
 - Title for each graph

DARROW procedure

Adds arrows to an existing plot (D. B. Baird).

Options

- **WINDOW = scalar**
 - Window number for the graphs; default 3
- **COORDINATETYPE = string token**
 - Type of coordinate to use for the locations of the arrows (frame, graph); default graph
- **YUPPER = scalar**
 - Maximum vertical coordinate in the frame; default 1
- **XUPPER = scalar**
 - Maximum horizontal coordinate in the frame; default 1
- **ISTYLE = string token**
 - The type of symbol at the start of the arrow (none, open, closed, circle); default none
- **ESTYLE = string token**
 - The type of symbol at the end of the arrow (none, open, closed, circle); default open
- **ISIZE = scalar**
 - The size of the symbol at the start of the arrow; default 1
- **ESIZE = scalar**
 - The size of the symbol at the end of the arrow; default 1
- **IANGLE = scalar**
 - The angle in degrees of the starting arrowhead when ISTYLE is open or closed; default 45
- **EANGLE = scalar**
 - The angle in degrees of the ending arrowhead when ESTYLE is open or closed; default 45
- **LAYER = scalar**
 - The plot layer for the arrows; default is a new layer above the previous plot items
Parameters

IY = variates, scalars or factors
The starting y-positions of the arrows

IX = variates, scalars or factors
The starting x-positions of the arrows

EY = variates, scalars or factors
The ending y-position of the arrows

EX = variates, scalars or factors
The ending x-position of the arrows

COLOUR = variates, scalars, texts or factors
Colour of the arrows; default 'black'

LINESTYLE = variates, scalars or factors
Linestyle of the line in the arrows; default 1

THICKNESS = variates, scalars or factors
Thickness of the line in the arrows; default 1

TRANSPARENCY = variates, scalars or factors
Transparency of the arrows; default 0

DAYLENGTH procedure

Calculates daylengths at a given period of the year (R.J. Reader & K. Phelps).

Option

LATITUDE = scalar
Latitude at which the daylength is to be calculated, positive for northern hemisphere and negative for southern hemisphere; default 52.205 N (Wellesbourne)

Parameters

DAYNUMBER = variate
Days of year for which daylengths are required

DAYLENGTH = variate
Calculated daylengths in hours

DBARCHART procedure

Produces bar charts for one or two-way tables (A.R.G. McLachlan & R.C. Butler).

Options

TITLE = text
Title for the chart; no default

WINDOW = scalar
Window for the chart; default 1

KEYWINDOW = scalar
Window for the key, no key is produced for one-way tables; default 2

LABELS = text
Labels for clusters of bars; by default the labels or levels of the first classifying factor of TABLE are used

APPEND = string token
Whether to append bars (no, yes); default no

SCREEN = string token
Whether to clear screen before displaying chart (keep, clear); default clea

KEYDESCRIPTION = text
Title for key; default is the name of the second factor of TABLE

YSCALE = expression structure
Defines a transformation of the data, the expression must be a function of either Y or X, for example !e(log(X)), and should be valid for the range of the data in TABLE; default no transformation

BELOWORIGIN = string token
Whether to include or values in TABLE less than ORIGIN (omit, include); default omit

ORIENTATION = string token
Direction of the plot (horizontal, vertical); default vert

BARCOVERING = scalar
What proportion of the space allocated along the x-axis each bar should occupy; default * gives proportion 0.8 (thus giving a gap between each bar or each group of bars)

XPOSITION = string token
Position of the x-axis on the y-axis (lower, origin); default lowe

OMITEMPTYLEVELS = string token
Whether to omit levels where there are only missing values (yes, no); default no

Parameters

TABLE = tables
One or two-way table of data

ORIGIN = scalars
Origin for y-axis; default 0

PEN = variates or scalars
Pen (or pens) to use; default is !(1 ...
DESCRIPTION = \text{texts}
Annotation for Key for two-way tables; default uses the labels or levels of the factor that is not being used as the XFACTOR

YMARKS = \text{variates}
Position of the tick-marks on the y-axis

XFACTOR = \text{factors}
X-axis factor for a 2-way TABLE; default first factor of TABLE

LOWERERRORBARS = \text{tables, variates or scalars}
Lower bounds of the error bars on the y-axis

UPPERERRORBARS = \text{tables, variates or scalars}
Upper bounds of the error bars on the y-axis

YERRORBARS = \text{tables, variates or scalars}
Y-axis position of any error bar symbols; by default no symbols are plotted

XERRORBARS = \text{tables, variates or scalars}
X-axis position of the error bars; default midpoints of bar-chart bars

PENERRORBARS = \text{tables, variates or scalars}
Pen (or pens) to use for plotting error bars; default 1

\textbf{DBCOMMAND procedure}
Runs an SQL command on an ODBC database, PC Windows only (D.B. Baird).

\textbf{Options}
WARNINGDIALOGS = \text{string token}
Whether dialogs giving ODBC error and warning messages are presented (display, omit); default disp

DRIVER = \text{scalar}
Driver version (either 32 or 64) to use with the 64-bit version of Genstat; default 64

\textbf{Parameters}
COMMAND = \text{texts}
Specifies SQL commands to run on the database

DB = \text{texts}
Database connection string for each command

GDBFILE = \text{texts}
Name of GDB file to be used in specifying the database for each command

EXIT = \text{scalars}
The exit code (0=success, 1=failure) from each command

\textbf{DBEXPORT procedure}
Update data in an ODBC database table using Genstat data, PC Windows only (D.B. Baird).

\textbf{Options}
METHOD = \text{string token}
Type of update on table (create, insert, merge); default crea

ROWMERGEMETHOD = \text{string token}
For METHOD=merge, what action to take when rows do not match any in the existing table (none, matched, all); default all

COLMERGEMETHOD = \text{string token}
What to do with unmatched columns (add, omit); default add

OMIT = \text{string token}
Which rows to omit from the data for METHOD settings other than merge (none, restricted); default rest

ERRORACTION = \text{string token}
What to do when any non-fatal errors occur, (continue, stop); default stop

WARNINGDIALOGS = \text{string token}
If any errors occur, pop up warning dialogs (display, omit); default disp

GLKFILE = \text{text}
Name of existing Genstat ODBC Update link file (*.GLK) to use

DRIVER = \text{scalar}
Driver version (either 32 or 64) to use for the 64-bit version of Genstat; default 64

ODBCPATH = \text{text}
Path for the folder containing the executable program (Odbcload.exe) used by the 64-bit version of Genstat to export the data when DRIVER=32; default is the folder containing the Genstat executable program

\textbf{Parameters}
DATA = \text{pointer or text}
Pointer to a compatible set of data structures to add to the table
or text with a name of an existing Genstat spreadsheet file containing data to be added.

DB = text
Database connection string specifying the ODBC database to connect to.

TABLENAME = text
Name of the table in the ODBC database (if METHOD is set to insert or merge, then this must already exist in the database).

COLUMNNAMES = text
Names of the columns in the table to be updated; if this is not provided, it will be assumed that the columns in the table have the same names as the Genstat data structures.

SUBSET = variate or text
Column numbers or names of the subset of data columns (only if a pointer is used for the DATA parameter) to be added to the table; if SUBSET is not set, all columns are added to the table.

MATCH = variate
Numbers of the columns in the table to be matched with the column in the table (the names are provided by WITH).

WITH = text
Names of the columns in the table to be matched with the Column; if this not provided, it is assumed that these columns have the same names as those of the Genstat data structures.

DBIMPORT procedure

Loads data from an ODBC database, PC Windows only (D.B. Baird).

Options

- **PRINT** = string token
 Whether to form a Genstat command file or spreadsheet file as output (GEN, GSH, GWB); default GWB.

- **OUTTYPE** = string token
 Whether to load data into the Genstat server after creating the file, or merely to create the file, or to run a command with no output (create, load, command); default load.

- **METHOD** = string token
 Whether to read the column names from the first row of data, or to use default column names (read, supply, none, default); default read.

- **ENDSTATEMENT** = string token
 Ending statement to use in a GEN output file (RETURN, ENDBREAK); default RETURN.

- **WARNINGDIALOGS** = string token
 Whether dialogs giving ODBC error and warning messages are presented (display, omit); default disp.

- **DRIVER** = scalar
 Driver version (either 32 or 64) to use for the 64-bit version of Genstat; default 64.

- **ODBCPATH** = text
 Path for the folder containing the executable program (Odbcload.exe) used by the 64-bit version of Genstat to load the data when DRIVER=32; default is the folder containing the Genstat executable program.

- **NROWSFETCH** = scalar
 Number of rows to fetch per driver transaction; default 40.

Parameters

- **DB** = text
 Database connection string.

- **SQL** = text
 SQL Query string to run against the ODBC database.

- **GDBFILE** = text
 Name of GDB file to be used in reading from ODBC database.

- **OUTFILE** = text
 Output file to be created; if this is not provided a temporary file will be created, and then deleted if the data is loaded.

- **COLUMNS** = text
 Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, # for a variate, and $ for a text).

- **ISAVE** = pointer
 Name of a pointer to save the column identifiers.

- **NROWSALLOCATE** = scalars
 Specifies how many rows to allow space for, in the initial allocation of memory, before the data are read; default 1000.
DBINFORMATION procedure

Loads information on the tables and columns in an ODBC database, PC Windows only (D.B. Baird).

Options

- `PRINT = string token`: What to print (information); default `info`
- `INFORMATION = string token`: What information to read from the database (tables, columns); default `tabl`
- `DRIVER = scalar`: Driver version (either 32 or 64) to use with the 64-bit version of Genstat; default 64

Parameters

- `DB = texts`: Database connection string
- `GDBFILE = texts`: GDB file specifying an ODBC query
- `ISAVE = pointers`: Specifies pointers to save the information

DBIPlot procedure

Plots a biplot from an analysis by **PCP**, **CVA** or **PCO** (A.I. Glaser).

Options

- `PLOT = string tokens`: Additional features for the plot (convexhull, means); default * i.e. none
- `METHOD = string token`: Type of axes to plot (predictive, interpolative); default `pred`
- `HORIZONTAL = identifier`: Which axis to make horizontal; default * i.e. none
- `PREDICTIONS = matrix`: Saves predicted values
- `GROUPS = factor`: Factor defining groupings of individuals for a **PCP** biplot; default * i.e. none
- `LMINDIVIDUALS = string tokens`: How to label the individuals (labels, none, numbers, unitlabels); default `labe` if `LINDIVIDUALS` is set, otherwise `unit`
- `LMVARIABLES = string tokens`: How to label the variables (identifiers, labels, none, numbers); default `labe` if `LVARABLES` is set, otherwise `iden`
- `LINDIVIDUALS = texts`: Labels for individuals (i.e. scores)
- `LVARABLES = texts`: Labels for variables (i.e. biplot axes)
- `MULTIPLIER = scalar`: Value to multiply vector loadings; default * i.e. determined automatically
- `WINDOW = scalar`: Which graphical window to use; default 1 when there are groups, otherwise 3
- `KEYWINDOW = scalar`: Which graphical window to use for the key when there are groupings of individuals (0 for none); default 2
- `SCREEN = string token`: Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default `clea`
- `SIZEMULTIPLIER = scalar`: Multiplier used in the calculation of the size in which to draw symbols and labels; default 1
- `SAVE = pointer`: Supplies results from an ordination analysis by **PCP**, **CVA** or **PCO**; default uses the most recent analysis

Parameters

- `VARIABLE = identifiers`: Axis variables
- `DISPLAY = string tokens`: Whether to show, hide or omit each axis (show, hide, omit); default `disp`
- `COLOUR = texts or scalars`: Colour to use to plot each axis

DBITMAP directive

Plots a bit map of RGB colours.

Options

- `TITLE = text`: General title; default *
- `WINDOW = scalar`: Window number for the graph; default 1
- `YORIENTATION = string token`: Y-axis orientation of the plot (reverse, normal); default
GRIDMETHOD = string token
How to draw a grid around the elements of the matrix
(present, complete); default * i.e. none
PENGRID = scalar
Pen to use for the grid; default -7
SCREEN = string token
Whether to clear the screen before plotting or to continue
plotting on the old screen (clear, keep); default clea
ENDACTION = string token
Action to be taken after completing the plot (continue,
pause); default * uses the setting from the last DEVICE
statement

Parameters
BITMAP = symmetric matrix, matrix, table, pointer to variates or variate
Data to be plotted
ROWS = variate
Row indexes for a BITMAP variate
COLUMNS = variate
Column indexes for a BITMAP variate

DCLEAR directive
Cleans a graphics screen.
Options
DEVICE = scalar
Device whose screen is to be cleared; default is to clear the
screen of the current graphics device
ENDACTION = string token
Action to be taken after clearing the screen (continue,
pause); default * uses the setting from the last DEVICE
statement

No parameters

'DCLOSE directive
Closes windows in the Genstat Graphics Viewer.
No options
Parameter
WINDOW = scalar
Window number to close; if unset, closes all the windows and
the Viewer itself

DCLUSTERLABELS procedure
Labels clusters in a single-page dendrogram plotted by DDENDROGRAM (R.W. Payne).
Options
WINDOW = scalar
Window containing the dendrogram; default 1
UNITS = variate or text
Names used for the units in the clusters supplied by CLUSTER
PEN = scalar
Pen to use to plot the labels; default 1
Parameters
CLUSTER = variates or texts
Specifies clusters to be labelled
LABEL = texts
Specifies the label to be plotted where each cluster is formed
YSAVE = scalars
Saves the y-coordinate where each label is plotted
XSAVE = scalars
Saves the x-coordinate where each label is plotted

DCOLOURS procedure
Forms a band of graduated colours for graphics (P.W. Goedhart).
Options
METHOD = string token
Type of colour band required (spectral, blackbody,
linear); default line
PLOT = string token
What to plot (testgraph); default *
Parameters
START = scalar or text
Start value for the colour band; default * gives an appropriate
default for the METHOD concerned
END = scalar, text or variate
End value(s) for the colour band; default * gives an
appropriate default for the METHOD concerned
GAMMA = scalar or variate
The gamma-correction exponent(s) for the colour band;
Syntax summary

NCOLOURS = *scalar or variate*

Number(s) of colours in the colour band; default 20

RGB = *variates*

Saves the RGB colour values of each colour band

RED = *variates*

Saves the red component of the RGB colour values

GREEN = *variates*

Saves the green component of the RGB colour values

BLUE = *variates*

Saves the blue component of the RGB colour values

TITLE = *text*

General title for each test graph; default forms an informative title automatically

WINDOW = *scalar*

Window number for each test graph; default 0 does not display a test graph

SCREEN = *string token*

Whether to clear the screen before plotting each test graph or to continue plotting on the old screen (clear, keep); default clea

DCOMPOSITIONAL

Plots 3-part compositional data within a barycentric triangle (S.J. Clark).

Options

PRINT = *text*

What to print (proportions); default *

VERTEXLABELS = *text*

Labels for the vertices of the triangle; default * uses the names of the corresponding variates given in the DATA pointer

TITLE = *text*

Title for the barycentric triangle; default * (i.e. no title)

PERPENDICULARS = *text*

Whether to draw perpendiculars from each vertex to its opposite side (yes, no); default no

WINDOW = *number*

Which high-resolution graphics window to use; default 3

SCREEN = *string token*

Whether to clear the graphics screen before plotting (clear, keep); default clea

Parameters

DATA = *pointers*

Contains variates which form the three-part compositions

SCALE = *scalars*

Scale factor for adjusting size of triangle to represent a fourth category; default 1

SAVECOORDINATES = *pointers*

Saves the two-dimensional x- and y-coordinates into the first and second elements of the pointer, respectively

PEN = *scalars or variates or factors*

Pen number to draw points within the barycentric triangle; default 1

DCONTOUR

Draws contour plots on a plotter or graphics monitor.

Options

TITLE = *text*

General title; default *

WINDOW = *scalar*

Window number for the plots; default 1

KEYWINDOW = *scalar*

Window number for the key (zero for no key); default 2

YORIENTATION = *string token*

Y-axis orientation of the plot (reverse, normal); default reve

ANNOTATION = *string token*

How to annotate the contours (levels, ordinals); default ordi if there is a key, and leve if there is no key

SCREEN = *string token*

Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

KEYDESCRIPTION = *text*

Overall description for the key

ENDACTION = *string token*

Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Parameters

GRID = *identifier*

Pointer (of variates representing the columns of a data matrix), matrix or two-way table specifying values on a regular grid

PENCONTOUR = *scalar*

Pen number to be used for the contours; default 1

PENFILL = *scalar or variate*

Pen number(s) defining how to fill the areas between contours,
4.1 Commands

or 0 to leave the areas in the background colour; default 3

PENHIGHLIGHT = scalar
Pen number to use for highlighted contours; default 0 i.e. no highlighting

HIGHLIGHTFREQUENCY = scalar
Frequency at which contours are to be highlighted; default 10

NCONTOURS = scalar
Number of contours; default 10

CONTOURS = variate
Positions of contours

INTERVAL = scalar
Interval between contours

DESCRIPTION = text
Annotation for key

DCORRELATION procedure
Plots a correlation matrix (A.I. Glaser).

Options
PLOT = string tokens
Type of plot (together, separate); default sepa
SHOW = string tokens
What features to include on the plots (axes, diagonal); default axes
NCOLOURS = scalar
Number of distinct colour to use from 0 to -1 or 1; default 20
COLOURS = text or variate
Text or variate with three values, defining the colours to use for correlations of -1, 0 and 1; default * chooses the colours automatically
WEIGTHS = variate
Provides weights for the units of the variates; default * assumes that they all have weight one

Parameters
PVARIATES = pointers or symmetric matrices
Pointer to either the first (P-) set or the only set of variates to be correlated, or symmetric matrix containing the correlations themselves

QVARIATES = pointers
Pointer to the second (Q-) set of variates to be correlated

PROWS = scalars
Specifies the number of rows corresponding the first (P-) set of variates in a correlation matrix supplied by PVARIATES, when this contains two sets

TITLE = text
Title for the plot

DCOVARIOGRAM procedure
Plots 2-dimensional auto- and cross-variograms (D.A. Murray).

Options
PLOT = string token
Controls how to display the plotted variograms (separate, scattermatrix); default scat
ESTIMATES = pointer
Pointer containing model estimates saved from MCOVARIOGRAM

Parameter
COVARIOGRAM = pointer
Pointer to supply the semi-variances, distances and associated information as saved from FCOVARIOGRAM

DDENDROGRAM procedure
Draws dendrograms with control over structure and style (P.G.N. Digby).

Options
STYLE = string token
Style to use for the links of the dendrogram (average, centroid, lower, full); default aver
ORDERING = string tokens
How to define the order of the units for the dendrogram (given, ziggurat, size, first); default zigg, size, first
REVERSE = string token
Whether to reverse the order of the units in the dendrogram (no, yes); default no
ORIENTATION = string token
Specifies the orientation of a dendrogram produced by high-resolution graphics (north, south, east, west); default west
METHOD = string token
Method used to represent the scale on which the
amalgamations have been made: settings other than the default
are relevant only for data not generated by HCLUSTER or
HDISPLAY (similarities, percentages, distances);
default simi

code

SCREEN = string token
Setting to use for the SCREEN option of DGRAPH (clear, keep); default clea

CHANGE = string token
If a dendrogram-save structure from a previous DDENDROGRAM
is used as the DATA parameter then this option specifies the
area of the process where the first changes occur: see the
description of the SAVE parameter (order, dendrogram,
display); default orde

GRAPHICS = string token
Form of graphics to be used (lineprinter, highresolution); default high

DSIMILARITY = string token
Whether to display an axis for the similarities in
high-resolution graphics (no, yes); default no

LOWSIMILARITY = scalar
Lower value to be used for the axis showing the similarities;
default * i.e. determined from the data

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the current setting

Parameters

Data defining each dendrogram in the form of either a matrix
saved using the AMALGAMATIONS parameter of HCLUSTER
(methods other than single linkage), or a matrix from the TREE
parameter of HDISPLAY, or a SAVE structure from a previous
use of DDENDROGRAM

PERMUTATION = variates
Specify or save permutations of the units for drawing each
dendrogram, according to ORDERING option

LABELS = variates or texts
Supply labels to use for the units of each dendrogram; these
should be in the natural order of the units, not in a permuted
order

TITLE = texts
Titles for the dendrograms

WINDOW = scalars
Window to use for each dendrogram (window 1 if unset); if
this is set to zero the dendrogram is not drawn, but results can
still be saved using the PERMUTATION, ZIGGURAT and SAVE
parameters

PENS = scalars, variates, strings or texts
Scalar or string specifying the graphics pen or symbol in which
to draw each (high-resolution or line-printer) dendrogram;
alternatively use of a variate or text allows the structure of
each dendrogram to be highlighted by drawing different links
with different graphics pens or symbols

ZIGGURAT = variates
Save the "ziggurat-degree" of the links in each dendrogram

SAVE = pointers
Save the information required to plot a dendrogram, for use as
input for the DATA parameter in a subsequent call to
DDENDROGRAM

DDESIGN procedure
Plots the plan of an experimental design (K.E. Bicknell & R.W. Payne).

Options

Y = variate
Specifies the y position of the plots in standard coordinates 1 ...
... number of rows of plots in the experiment (taking 1 as the
top row of the window)

X = variate
Specifies the x-coordinate of the plots in standard coordinates
1 ... number of columns of experimental plots

TITLE = text
Title for the plan

WINDOW = scalar
Window number for the plan; default 3
4.1 Commands

KEYWINDOW = scalar
Window number for the key; default 0

SCREEN = string token
Whether to clear the screen before plotting (clear, keep); default clear

KEYDESCRIPTION = text
Overall description for the key; default *

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

CHARACTERS = scalar
Sets a limit on the length of each factor label; default * i.e. none

SIZE = scalar
Provides a multiplier by which to scale the sizes of the factor labels on the plan

Parameters
FACTOR = factors
Factors to be listed on the plan and to define the layout (the procedure determines the style of line to divide each pair of plots in the design from the grid pen of the first factor in the list with which they have different levels); default * forms the list from first the factors specified by a preceding BLOCKSTRUCTURE statement, and then those specified by a preceding TREATMENTSTRUCTURE statement

PEN = scalars
Pen to be used to write the levels of each factor on the plan (if PEN=0 the levels of that factor are not included); default 1 if the FACTOR parameter is specified, otherwise 0 for block factors and 1 for treatment factors

PENGRID = scalars
Pens to be used to draw the boundaries between the plots in the design (according to the first FACTOR with which they have different levels but ignoring factors with PENGRID=0); default 1, 2...

LABELS = texts
Labels to be used for each factor if its own levels or labels are inappropriate

DDISPLAY directive
Redraws the current graphical display.

Options
DEVICE = scalar
Device on which to redraw the display (on some systems it may only be possible to redisplay the picture on an interactive graphics device); default uses the current graphics device

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

No parameters

DEBUG directive
Puts an implicit BREAK statement after the current statement and after every NSTATEMENTS subsequent statements, until an ENDDDEBUG is reached.

Options
CHANNEL = scalar
Channel number; default 1

NSTATEMENTS = scalar
Number of statements between breaks; default 1

FAULT = string token
Whether to invoke DEBUG only at the next fault (yes, no); default no

No parameters

DECIMALS procedure
Sets the number of decimals for a structure, using its round-off (A. Keen).

Options
SETATTRIBUTE = string token
Attributes to be redefined for STRUCTURE (decimals); default deci
SIGNIFICANTFIGURES = scalar

Required number of significant figures; default takes the system default, which can be modified by SET

Parameters
- STRUCTURE = identifiers
 Numerical structure for which the number of decimals is to be set
- DECIMALS = scalars
 To save the number of decimals
- ROUND = scalars
 To save the round-off
- VDECIMALS = structures
 To save numbers of decimals for every value of each structure
- VROUND = structures
 To save the round-off for every value of each structure

DECLARE directive

Declares one or more customized data structures.

Options
- TYPE = text
 Single-valued text defining the type of structure to declare
- MODIFY = string token
 Whether to modify (instead of redefining) existing structures (yes, no); default no

Parameters
- IDENTIFIER = identifiers
 Identifiers of the structures
- VALUES = pointers
 Values for each structure
- EXTRA = text
 Extra text associated with each identifier

DELETE directive

Deletes the attributes and values of structures.

Options
- REDEFINE = string token
 Whether or not to delete the attributes of the structures so that the type etc can be redefined (yes, no); default no
- LIST = string token
 How to interpret the list of structures (inclusive, exclusive, all); default incl
- PROCEDURE = string token
 Whether the list of identifiers is of procedures instead of data structures (yes, no); default no
- NSUBSTITUTE = scalar
 Number of times n to substitute a dummy in order to determine which structure to delete; default * i.e. full substitution
- REMOVE = string token
 Whether or not to remove the structures from Genstat completely i.e. to delete their identifiers as well as their attributes and values (yes, no); default no

Parameter
- identifiers
 Structures whose values (and attributes, if requested) are to be deleted

DELPOLINE procedure

Draws a 2-dimensional scatter plot with confidence, prediction and/or equal-frequency ellipses superimposed (V.M. Cave).

Options
- PLOT = string tokens
 What type of ellipse to plot (confidence, prediction, equalfrequency); default conf
- PROBABILITY = scalar or variate
 Probability level(s) for the ellipse(s); default 0.95
- NPOINTS = scalar
 Number of points used to draw the ellipses; default 1000
- DISPLAY = string token
 Whether to include the data points on the graph (show, hide); default show
- PAXES = string token
 Whether to plot the principal axes on the graph (no, yes); default no
- TFILL = scalar
 Transparency used to fill the area inside the ellipses, on a scale of 0 (opaque) to 255 (completely transparent); default 255
- USEPENS = string token
 Whether to use the current pen definitions for drawing the ellipses, drawing the principal axes and plotting the data (no, yes); default no

4.1 Commands

CMATCH = string token
When USEPENS=yes and groups are to be plotted, indicates whether the colours for the ellipses and principal axes are matched to the corresponding group, or to the colours defined by the pens for the different ellipse types and principal axes (group, pen); default group

WINDOW = scalar
Window to use for the graph(s); default 1

KEYWINDOW = scalar
Window to use for the key; by default the key is drawn on the right, in window 255

KEYDESCRIPTION = text
Overall title for the key; default * i.e. none

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clear

Parameters
Y = variates or pointers
Vertical coordinates (i.e. variable to plot on the y-axis)

X = variates or pointers
Horizontal coordinates (i.e. variable to plot on the x-axis)

GROUPS = factors
Defines groupings of the data points

DESCRIPTION = texts
Labels for the groups; default generates the labels automatically

TITLE = text
Title for the plot; default * i.e. none

YTITLE = text
Title for the y-axis; by default a title is generated automatically

XTITLE = text
Title for the x-axis; by default a title is generated automatically

DEMC procedure

Options
PRINT = string token
What to print (results, monitoring, scatterplot, histogram); default resu, moni, scat, hist

CALCULATION = expression structures
Calculation(s) of logposterior, involving explanatory or pointer variate; if unset, this is calculated by the procedure specified by the PROCEDURE option

LOGPOSTERIOR = scalar
Identifier of scalar holding log-posterior within CALCULATION (must be set if CALCULATION is set)

MULTIPLE = scalar
Number of populations is number of parameters times MULTIPLE; default 3

UNIFORMLIMIT = scalar
Uniform random numbers are drawn from (-UNIFORMLIMIT, UNIFORMLIMIT) and added to candidate parameter sets; default 0.00001

DATA = identifiers
Data structures used in CALCULATION or by PROCEDURE

NGENERATIONS = scalar
Maximum number of iterations; default 1000

STEP1 = scalar or variate
Generations for which gamma is set to 1; default 0

FRACTIONBURNIN = scalar
Fraction of iterations used for burn-in; default 0.5

GRVARIANCE = scalar or variate
Variance to generate populations from initial values of the parameters; default 0.1

PERCENTAGES = variate
Percentages for which quantiles has to be calculated; default !(2.5, 25, 50, 75, 97.5)

PROCEDURE = identifier
Identifier of procedure to calculate LOGPOSTERIOR if CALCULATION is unset; default _DEMCLOGPOSTERIOR

SEED = scalar
Seed for the random numbers; default 0

NWINDOWS = scalar
Number of histograms and scatterplots per screen when plotting estimates and logposterior from all iterations

SDLOGPOSTERIOR = scalar
Saves the s.d. for LOGPOSTERIOR

QUANTILESLOGPOSTERIOR = variate
Saves quantiles for LOGPOSTERIOR

RHATLOGPOSTERIOR = scalar
Saves the convergence criterion for LOGPOSTERIOR

ALLLOGPOSTERIOR = variate
Saves the parameter estimates for LOGPOSTERIOR from all the iterations

IPOPULATIONS = pointers
Pointer to supply initial populations of the parameters and the
corresponding log-posteriors

Parameters

- **PARAMETER** = **scalars**
 - Parameters to estimate
- **INITIAL** = **scalars**
 - Initial values of the parameters; must be set unless **IPOPULATIONS** is set
- **SD** = **scalars**
 - Standard errors of the estimates
- **QUANTILES** = **variates**
 - Saves the quantiles for each parameter
- **RHIHAT** = **scalars**
 - Convergence criteria
- **ALLESTIMATES** = **variates**
 - Saves the parameter estimates from all the iterations

DERRORBAR procedure

Adds error bars to a graph (R.W. Payne).

Options

- **ORIENTATION** = **string token**
 - Direction of the line (horizontal, vertical); default vert
- **BARCAPWIDTH** = **scalars**
 - Width of the cap drawn at the ends of the error bar; default 1
- **WINDOW** = **scalar**
 - Window in which to draw the bar; default 1
- **KEYWINDOW** = **scalar**
 - Window number for the key (zero for no key); default 2

Parameters

- **BARLENGTH** = **scalars**
 - Lengths of the bars
- **Y** = **identifiers**
 - Vertical coordinates for the midpoints of the bars
- **X** = **identifiers**
 - Horizontal coordinates for the midpoints of the bars
- **PEN** = **scalars**
 - Pen to use for each bar
- **LABEL** = **texts**
 - Text to plot alongside each bar
- **YLPOSITION** = **string tokens**
 - Position of each label in the y-direction (above, below, centre, center); default belo
- **XLPOSITION** = **string tokens**
 - Position of each label in the x-direction (centre, center, left, right); default righ
- **PENLABEL** = **scalars**
 - Pen to use for each label
- **DESCRIPTION** = **texts**
 - Annotation for the key

DESCRIBE procedure

Saves and/or prints summary statistics for variates (R.C. Butler & D.A. Murray).

Options

- **PRINT** = **string token**
 - Controls whether or not the summaries are printed (summaries); default summ
- **SELECTION** = **string tokens**
 - Selects the statistics to be produced (nval, nob, nmv, mean, median, min, max, range, q1, q3, sd, sem, var, sevar, %cv, sum, ss, uss, skew, seskew, kurtosis, sekurtosis, all); default mean, min, max, nob, nmv, medi, q1, q3

Parameters

- **DATA** = **variates**
 - Data to summarize
- **SUMMARIES** = **variates or pointers**
 - To save summaries for each DATA variate, in a variate if **GROUPS** is unset, or in a pointer to a set of variates (one for each group) if groups have been specified; will be redefined if necessary

DESIGN procedure

Helps to select and generate effective experimental designs (R.W. Payne, M.F. Franklin & A.E. Ainsley).

Option

- **STATEMENT** = **text**
 - Saves a command to recreate the design

No parameters
4.1 Commands

DEVICE directive

Switches between (high-resolution) graphics devices.

No options

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER</td>
<td>scalar</td>
<td>Device number</td>
</tr>
<tr>
<td>ENDACTION</td>
<td>string</td>
<td>Action to be taken after completing each plot (continue, pause)</td>
</tr>
<tr>
<td>ORIENTATION</td>
<td>string</td>
<td>Orientation of the pictures, if relevant (landscape, portrait); default * retains the current setting for this device</td>
</tr>
<tr>
<td>PALETTE</td>
<td>string</td>
<td>How to represent colour (monotone, greyscale, grayscale, colour); default * retains the current setting for this device</td>
</tr>
<tr>
<td>RESOLUTION</td>
<td>scalar</td>
<td>Specifies the height of the image for hard-copy output, in pixels</td>
</tr>
<tr>
<td>ACTION</td>
<td>string</td>
<td>How to create graphs for file types such as .emf, .jpg, .tif or .png (asynchronous, synchronous); default asyn</td>
</tr>
</tbody>
</table>

DFINISH directive

Ends a sequence of related high-resolution plots.

No options or parameters

DFONT directive

Defines the default font for high-resolution graphics.

No options

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>text</td>
<td></td>
<td>specifies or saves the default graphics font</td>
</tr>
</tbody>
</table>

DFOURIER procedure

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT</td>
<td>string</td>
<td>Controls printed output (accumulated, means, tsm); default *</td>
</tr>
<tr>
<td>PLOT</td>
<td>string</td>
<td>What to plot (periodogram, harmonics, means, residuals, cumulative, range); default peri, harm, mean, resid</td>
</tr>
<tr>
<td>MODELTYPE</td>
<td>string</td>
<td>What harmonic regression model to fit (none, best, full); default none</td>
</tr>
<tr>
<td>GROUPS</td>
<td>factor</td>
<td>Groups for plot of means</td>
</tr>
<tr>
<td>ORDER</td>
<td>variate</td>
<td>Order for time series model; default !(1,0,0)</td>
</tr>
<tr>
<td>COLOURS</td>
<td>text or variate</td>
<td>Colour for each level of GROUPS</td>
</tr>
<tr>
<td>FACSHORTCYCLE</td>
<td>factor</td>
<td>Factor giving levels of the short cycle</td>
</tr>
<tr>
<td>NCOMPONENTS</td>
<td>scalar</td>
<td>Number of nested cycles, must be 0, 1, or 2; default 0</td>
</tr>
<tr>
<td>SHORTCYCLE</td>
<td>scalar</td>
<td>Length of the short cycle; default 24</td>
</tr>
<tr>
<td>LONGCYCLE</td>
<td>scalar</td>
<td>Length of the long cycle; default 365.225</td>
</tr>
<tr>
<td>LABSHORTCYCLE</td>
<td>text</td>
<td>Label for the short cycle; default 'daily'</td>
</tr>
<tr>
<td>LABELONGLYCYCLE</td>
<td>text</td>
<td>Label for the long cycle; default 'annual'</td>
</tr>
<tr>
<td>NSHORTCYCLE</td>
<td>scalar</td>
<td>Number of harmonics for the short cycle; default 5</td>
</tr>
<tr>
<td>NLONGCYCLE</td>
<td>scalar</td>
<td>Number of harmonics for the long cycle; default 3</td>
</tr>
<tr>
<td>RANGE</td>
<td>variate</td>
<td>Variate with two values, defining the frequency range within [0,0.5] to draw a portion of the periodogram</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>variates</td>
<td>Time series</td>
</tr>
<tr>
<td>PERIODOGRAM</td>
<td>variates</td>
<td>Saves the periodogram of DATA</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>variates</td>
<td>Saves the frequencies at which the periodogram is calculated</td>
</tr>
<tr>
<td>MEANS</td>
<td>tables</td>
<td>Saves the table of means of the fitted model for each value of FACSHORTCYCLE by each level of GROUPS</td>
</tr>
</tbody>
</table>
RESIDUALS = variates
FITTERVALUES = variates

DFRTEXT procedure
Adds text to a graphics frame (W. van den Berg).

No options

Parameters
Y = variates or scalars
Vertical coordinates in the frame
X = variates or scalars
Horizontal coordinates in the frame
TEXT = texts
Text to plot
PEN = scalars, variates or factors
Pens to use; default 1
UPPER = scalars
Maximum vertical coordinate in the frame; default 1
XUPPER = scalars
Maximum horizontal coordinate in the frame; default 1

DFUNCTION procedure
Plots a function (R.W. Payne).

Options
FUNCTION = expression
Function to plot
TITLE = text
Title for the plot; default shows the function
COLOUR = text or scalar
Colour of the function curve; default 'green'
WINDOW = scalar
Which graphics window to use; default 3
ELEVATION = scalar
Elevation of the viewpoint for the surface that is plotted when there are two arguments; default 25 (degrees)
AZIMUTH = scalar
Rotation about the horizontal plane for the viewpoint of a surface plot; default 225 (degrees)
DISTANCE = scalar
Distance of the viewpoint of a surface plot from the centre of the grid on the base plane; default * gives a distance of 100 times the maximum of the x-range and the y-range
ZSCALE = scalar
Defines the scaling of the z-axis relative to the horizontal (x-y) axes in a surface plot; default 1
SCREEN = string token
Whether to clear the screen before plotting (clear, keep, resize); default clea

Parameters
ARGUMENT = scalars
Arguments of the function
LOWER = scalars
Lower values of the arguments for the plot
UPPER = scalars
Upper values of the arguments for the plot
STEP = scalars
Steps at which to evaluate the function

DGRAPH directive
Draws graphs on a plotter or graphics monitor.

Options
TITLE = text
General title; default *
WINDOW = scalar
Window number for the graphs; default 1
KEYWINDOW = scalar
Window number for the key (zero for no key); default 2
SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep, resize); default clea

KEYDESCRIPTION = text
Overall description for the key; default *
ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

HOTMENU = matrices
Defines sets of "hot" components for the user to select as shown or hidden by a menu in the Graphics Viewer

HOTCHOICE = string token
Whether one or several "hot" components can be displayed at a time (one, several); default seve
4.1 Commands

Parameters

Y = identifiers
Vertical coordinates

X = identifiers
Horizontal coordinates

PEN = scalars, variates or factors
Pen number for each graph (use of a variate or factor allows
different pens to be defined for different sets of units); default
* uses pens 1, 2, and so on for the successive graphs

DESCRIPTION = texts
Annotation for key

YLOWER = identifiers
Lower values for vertical bars

YUPPER = identifiers
Upper values for vertical bars

XLOWER = identifiers
Lower values for horizontal bars

XUPPER = identifiers
Upper values for horizontal bars

YBARPEN = scalars, variates or factors
Pens to use to draw the vertical bars; default /c33 11

XBARPEN = scalars, variates or factors
Pens to use to draw the horizontal bars; default /c33 11

LAYER = scalars
"Layer" of the plot

UNITNUMBERS = identifiers
Specifies unit numbers to be used when points are selected in
the graphics viewer; default * uses the actual unit numbers of
the values in the X and Y structures

DISPLAY = string tokens
Whether to display each component initially in the graph
(show, hide); default show

HOTCOMPONENT = scalars
Allows components of the graph (specified by pairs of Y and X
settings) to be defined as "hot" components that can be shown
or hidden through their association with "hot" points or using a
menu in the Graphics Viewer

HOTDEFINITION = matrices
Define how to use points defined by the Y and X parameters
as "hot" points in the Graphics Viewer to allow the user to
decide whether other components of the graph are shown or
hidden

DHELP procedure
Provides information about Genstat graphics (S.A. Harding).
No options
Parameter

TOPIC = string tokens
Lists the required graphics topics (current, possible);
default poss

DHISTOGRAM directive

Draws histograms on a plotter or graphics monitor.
Options

TITLE = text
General title; default *

WINDOW = scalar
Window number for the histograms; default 1

KEYWINDOW = scalar
Window number for the key (zero for no key); default 2

LIMITS = variate
Variate of group limits for classifying DATA variates into
groups; default *

LOWER = scalar
For a DATA variate, this specifies the lower limit of the first
bar; default * takes the minimum value of the variates

UPPER = scalar
For a DATA variate, this specifies the upper limit of the last
bar; default * takes the maximum value of the variates

NGROUPS = scalar
When LIMITS and BINWIDTH are not specified, this defines
the number of groups into which a DATA variate is to be
classified; default is then 10 or the integer value nearest to the
square root of the number of values in the variate if that is
smaller

BINWIDTH = scalar
When LIMITS is unset the range of a DATA variate is split into
equal intervals known as "bins" to form the groups, this option
can set the bin widths (alternative is to set the number of
groups using NGROUPS)
Syntax summary

FIXEDBARWIDTH = string token
Whether to plot the histogram with bars of equal width (no, yes); default no

BARCOVERING = scalar
What proportion of the space allocated along the x-axis each bar should occupy; default * gives proportion 1 for a DATA variate, and 0.8 for a factor or table (thus giving a gap between each bar)

LABELS = text
Group labels; default *

APPEND = string token
Whether or not the bars of the histograms are appended together (yes, no); default no

ORIENTATION = string token
Direction of the plot (horizontal, vertical); default vert

OUTLINE = scalar
Where to draw outlines (bars, perimeter); default bars

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

KEYDESCRIPTION = text
Overall description for the key; default *

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Parameters

DATA = identifiers
Data for the histograms; these can be either a factor indicating the group to which each unit belongs, a variate whose values are to be grouped, or a one-way table giving the height of each bar

NOBSERVATIONS = tables
One-way table to save numbers in the groups

GROUPS = factors
Factor to save groups defined from a variate

PEN = scalars or variates
Pen number(s) for each histogram; default * uses pens 2, 3, and so on for the successive structures specified by DATA

DESCRIPTION = texts
Annotation for key

DHSCATTERGRAM procedure
Plots an h-scattergram (D.A. Murray).

Options

LAGCLASS = scalar or variate
The lag classes to be displayed in the plots; default all lag classes

ARRANGEMENT = text
Specifies whether to display the plots individually or with multiple plots on the same page (single, multiple); default mult

Parameters

DATA = variates
Observations as a variate

LAGPOINTS = pointers
Lag classes, indexes to observations and directions for plotting

DIAGONALMATRIX directive
Declares one or more diagonal matrix data structures.

Options

ROWS = scalar, vector, pointer or text
Number of rows, or labels for rows (and columns); default *

VALUES = numbers
Values for all the diagonal matrices; default *

MODIFY = string token
Whether to modify (instead of redefining) existing structures (yes, no); default no

IPRINT = string tokens
Information to be used by default to identify the diagonal matrices in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Parameters

IDENTIFIER = identifiers
Identifiers of the diagonal matrices

VALUES = identifiers
Values for each diagonal matrix
4.1 Commands

DECIMALS = scalars
Number of decimal places for printing

EXTRA = texts
Extra text associated with each identifier

MINIMUM = scalars
Minimum value for the contents of each structure

MAXIMUM = scalars
Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts
Default format to use when the contents represent dates and times

DIALLEL procedure
Analyses full and half diallel tables with parents (J.F. Potter).

Options

PRINT = string tokens
Controls printed output (data, vrwr, regression, aov, mean, griffingaov); default data, vrwr, regr, aov, mean

LABELS = text
Labels for rowcols, one text value for each, column j has the same label as row j, so each value of LABELS is the label for a pair of parents, applying to a rowcol; default 1...N, where N is the dimension of each diallel table

METHOD = string token
Whether to perform full or half diallel analysis (half, full); default full

Parameter

DATA = matrices
Each matrix contains the data for one block in the analysis, half diallel tables are presented as square matrices with the upper triangles and leading diagonals containing the values of interest, the matrices must be of the same size

DILUTION procedure
Calculates Most Probable Numbers from dilution series data (M.S. Ridout & S.J. Welham).

Options

PRINT = string tokens
Output required (estimates, fitted); default esti, fitt

%LIMITS = scalar
Percentage points for confidence limits; default 95

RMETHOD = string token
Which type of residuals to form (deviance, Pearson); default devi

MAXCYCLE = scalar
Maximum number of iterations allowed for the Newton-Raphson algorithm to converge; default 10

TOLERANCE = scalar
Defines the convergence criterion; default 0.0005

Parameters

POSITIVE = variates
Number of positive subsamples at each dilution

NSAMPLE = variates
Total number of subsamples tested at each dilution

VOLUME = variates
Volume of original sample present in each dilution

FITTED = variates
To store the fitted values

RESIDUAL = variates
To store the residuals, as specified by option RMETHOD

MPN = scalars
To store the maximum likelihood estimate of Most Probable Number

UPPER = scalars
To store the upper confidence limit for MPN

LOWER = scalars
To store the lower confidence limit for MPN

DEVANCE = scalars
To store the residual deviance

PEARSONCHISQUARE = scalars
To store Pearson's chi-square statistic

DF = scalars
To store the degrees of freedom for goodness-of-fit tests (zero if no test is available)

DIRECTORY procedure
Prints or saves a list of files and/or subdirectories with names matching a specified mask (D.B. Baird).

Options

PRINT = string tokens
What to print (filenames, subdirectories); default file

SAVEPATH = string token
Whether to include the path in FILENAMES (yes, no); default no
Syntax summary

MASKTYPE = string token

The type of mask specified by MASK (file, directory); default file

Parameters

MASK = texts

Mask identifying the files that are to be included in the each listing, if no directory path is included, the current working directory is searched; default ‘*.*’

FILENAME = texts

Saves the list of files that match each mask

SUBDIRECTORY = texts

Saves the list of subdirectories that match each mask

DISCRIMINATE procedure

Options

PRINT = string tokens

Printed output from the analysis (counts, lrv, tests, correlations, icorrelations, correlations, adjustments, means, gdistances, scores, distances, newgroups, table, validation); default coun

NROOTS = scalar

The number of dimensions to be used for printed and saved output, and used in calculating the distances and the allocation of units; default is to use the full dimensionality

REALLOCATE = string token

Whether units from the training set are to be reallocated to groups (no, yes); default no

PLOT = string tokens

Features for the plots (means, mlabels, scores, polygons, confidencecircle); default mean, scor, poly (Note: * suppresses plotting)

VALIDATIONMETHOD = string token

Validation method to use to calculate error rates (bootstrap, crossvalidation, jackknife); default cros

NSIMULATIONS = variate

Number of bootstraps or cross-validation sets to use for selection and for validation; default !(10,50)

NCROSSVALIDATIONGROUPS = scalar

Number of groups for cross-validation, default 10

SEED = scalar

Seed for random number generation; default 0

YROOT = scalars

Specifies roots for plotting on y-axes

XROOT = scalars

Specifies roots for plotting on x-axes

TITLE = strings

Titles for plots

WINDOW = scalars

Windows for plots

SCREEN = string tokens

Action before each plot (keep, clear); default clea

Parameters

DATA = pointers

Each pointer contains a set of variates to be analysed

GROUPS = factors

Define groupings for the units in each training set, or missing values for the units to be allocated

NEGROUPS = factors

Saves allocations (and reallocations)

ALLOCATION = factors

Saves allocations to groups including those not present in the training set

MEANS = matrices or pointers

Saves scores for group means

SCORES = matrices or pointers

Saves scores for units

DISTANCES = matrices

Saves unit to group-mean squared distances

LRV = LRVs

Saves the LRVs from the canonical variates analyses

ADJUSTMENTS = matrices

Saves adjustments to the canonical variates analyses

GDISTANCES = symmetric matrices

Saves the distances between groups

CCORRELATIONS = matrices

Saves canonical correlation coefficients

ICORRELATIONS = symmetric matrices

Saves within-group correlation matrices of the input variates

CORRELATIONS = matrices

Saves within-group correlations between the input and canonical variates
4.1 Commands

DISPLAY directive
Prints, or reprints, diagnostic messages.

Options

- **PRINT = string token**
 What information to print (diagnostic); default diag
- **CHANNEL = identifier**
 Channel number of file, or identifier of a text to store output; default current output file
- **FAULT = text**
 Specifies the fault message to print (for example, FAULT='VA 4' prints the message "Values not set"); default is to print the last diagnostic message

No parameters

DISTRIBUTION directive
Estimates the parameters of continuous and discrete distributions.

Options

- **PRINT = string tokens**
 Printed output required from each individual fit (parameters, samplestatistics, fittedvalues, proportions, monitoring); default para, samp, fitt
- **CBPRINT = string tokens**
 Printed output required from a fit combining all the input data (parameters, samplestatistics, fittedvalues, proportions, monitoring); default *
- **DISTRIBUTION = string token**
 Distribution to be fitted (Poisson, geometric, logseries, negativetrinomial, NeymanA, PolyaAeppli, PlogNormal, PPascal, Normal, dNvequal, dNvunequal, logNormal, exponential, gamma, Weibull, b1, b2, Pareto); default * i.e. fit nothing
- **CONSTANT = string token**
 Whether to estimate a location parameter for the gamma, logNormal, Pareto or Weibull distributions (estimate, omit); default omit
- **LIMITS = variate**
 Variate to specify or save upper limits for classifying the data into groups; default *
- **NGROUPS = scalar**
 When LIMITS is not specified, this defines the number of groups (of approximately equal size) into which the data are to be classified; default is the integer value nearest to the square root of the number of data values
- **XDEVIATES = variate**
 Variate to specify points up to which the CUMPROPORTIONS are to be estimated
- **JOINT = string token**
 Requests joint estimates from the combined fit to be used for a re-fit to the separate data sets (dispersion, variancemeanratio, Poissonindex); default *
- **PARAMETERS = variate**
 Estimated parameters from the combined fit
- **SE = variate**
 Standard errors for the estimated parameters of the combined fit
- **VCOVARIANCE = symmetric matrix**
 Variance-covariance matrix for the estimated parameters of the combined fit
- **CUMPROPORTIONS = variate**
 Estimated cumulative proportions of the combined distribution up to the values specified by the XDEVIATES option
- **MAXCYCLE = scalar**
 Maximum number of iterations; default 30
- **TOLERANCE = scalar**
 Convergence criterion; default 0.0001

Parameters

- **DATA = variates or tables**
 Data values either classified (table) or unclassified (variate)
- **NOBSERVATIONS = tables**
 One-way table to save the data classified into groups
- **RESIDUALS = tables**
 Residuals from each (individual) fit
- **FITTEDVALUES = tables**
 Fitted values from each fit
- **PARAMETERS = variates**
 Estimated parameters from each fit
- **SE = variates**
 Standard errors of the estimates
- **VCOVARIANCE = symmetric matrices**
 Variance-covariance matrix for each set of estimated
parameters

Estimated cumulative proportions of each distribution up to the values specified by the \texttt{XDEVIATES} option

Residuals from the combined fit

Fitted values from the combined fit

Initial step lengths for each fit

Initial values for each set fit

\textbf{DKALMAN procedure}

Plots vector time series (A.I. Glaser).

\textbf{Options}

\texttt{TIMEPOINTS = variate} \hspace{1cm} X-coordinates for the graphs; default uses the integers 1, 2...

\texttt{TITLE = texts} \hspace{1cm} Overall title for the graphs

\texttt{YTITLE = texts} \hspace{1cm} Titles for the y-axes; default * forms titles automatically from the identifiers or labels of the y-variables

\texttt{XTITLE = texts} \hspace{1cm} Title for the x-axis in each set of graphs; default * uses the identifier of \texttt{TIMEPOINTS} (if set)

\texttt{NROWS = scalar} \hspace{1cm} Specifies the number of rows of graphs to appear on the graphics screen; default * takes the number of y-variables

\texttt{NCOLUMNS = scalar} \hspace{1cm} Specifies the number of columns of graphs to appear on the graphics screen; default 1

\textbf{Parameter}

\texttt{SAVE = pointers} \hspace{1cm} Save structure from \texttt{KALMAN} with information about the analysis; default plots information from the most recent \texttt{KALMAN} analysis

\textbf{DKEEP directive}

Saves information from the last plot on a particular device.

\textbf{No options}

\textbf{Parameters}

\texttt{DEVICE = scalars} \hspace{1cm} The devices for which information is required, if the scalar is undefined or contains a missing value, this returns the current device number

\texttt{WINDOW = scalars} \hspace{1cm} Window about which the information is required; default * gives information about the last window

\texttt{XLOWER = scalars} \hspace{1cm} Lower bound for the x-axis in last graph in the specified device and window

\texttt{XUPPER = scalars} \hspace{1cm} Upper bound for the x-axis in last graph in the specified device and window

\texttt{YLOWER = scalars} \hspace{1cm} Lower bound for the y-axis in last graph in the specified device and window

\texttt{YUPPER = scalars} \hspace{1cm} Upper bound for the y-axis in last graph in the specified device and window

\texttt{ZLOWER = scalars} \hspace{1cm} Lower bound for the z-axis in last graph in the specified device and window

\texttt{ZUPPER = scalars} \hspace{1cm} Upper bound for the z-axis in last graph in the specified device and window

\texttt{FILE = scalars} \hspace{1cm} Returns the value 1 or 0 to indicate whether a file is required for this device

\texttt{DESCRIPTION = texts} \hspace{1cm} Description of the device

\texttt{DREAD = scalars} \hspace{1cm} Returns the value 1 or 0 to indicate whether graphical input is possible from this device

\texttt{ENDACTION = texts} \hspace{1cm} Returns the current \texttt{ENDACTION} setting ('continue' or 'pause')
DKEY procedure

Adds a key to a graph (D.B. Baird & V.M. Cave).

Options

WINDOW = scalar
Number in which to draw the key; default 2

N_COLUMNS = scalar
Number of columns forming the grid in which the key is
displayed; default * (i.e. set automatically)

N_ROWS = scalar
Number of rows forming the grid in which the key is
displayed; default * (i.e. set automatically)

TITLE = text
Title for the key

PEN_TITLE = scalar
Pen used to write the title of the key; default is that set for the
window in which the key is plotted

PEN_LABELS = variate
Pens to use to plot the labels; default is to plot the labels using
the settings of LFONT, LSIZE and LCOLOUR

POSITION = string
Position of the title (inside, outside, left, centre, center, right); default cent, outs

ORDER = string
Order in which to fill the key's row by column grid (rows, columns); default rows

LSIZE = scalar
Relative size of the labels; default 1

LFONT = scalar or text
Font to use for the labels; default 1

LCOLOUR = scalar or text
Colour used to write the labels; default 'black'

X_OFFSET = scalar or variate
Offset in the x-direction between the items (i.e. symbols/lines)
and labels in the key; default 0

COLUMN_SPACING = string
Column spacing (equal, unequal); default equa

ROW_GAP = scalar
Multiplier for gaps between rows; default 1

COLUMN_GAP = scalar
Multiplier for gaps between columns; default 1

BORDER = string
Border around the key (fit, given, none); default fit

CBORDER = string
Colour for the border around the key; default 'black'

Parameters

DESCRIPTIONS = texts
Labels for the key

PEN = variates
Pens to use for the items in the key; default uses the integers 1,
2 ...

METHOD = texts
Method for plotting the items in the key (fill, point, line,
both, none); default is to use the method defined for the
corresponding PEN

SYMBOL = variates, scalars, factors or texts
Symbols to be drawn in the key; default is to use those
specified by PEN

COLOUR = variates, scalars, factors or texts
Colours of lines, or of filled areas when METHOD='fill';
default is to use those specified by PEN

CSYMBOL = variates, scalars, factors or texts
Colours of symbols; default is to use those specified by PEN

CFILL = variates, scalars, factors or texts
Colours used to fill hollow symbols; default is to use those
specified by PEN

SIZE_MULTIPLIER = variates, scalars or factors
Relative sizes of symbols and filled area; default is to use
those specified by PEN

LINESTYLE = variates, scalars, factors or texts
Numbers or names of the linestyles to use; default is to use
those specified by PEN

THICKNESS = variates, scalars or factors
Thicknesses of the lines; default is to use those specified by
PEN
TRANSPARENCY = variates, scalars or factors

Transparencies of the filled areas when METHOD='fill';
default is to use those specified by PEN

DKSTPLOT procedure

Produces diagnostic plots for space-time clustering (D.A. Murray).

Options

- **PLOT =** string token
 - Whether to produce plots separately or in composite
 - (separate, combined); default comb

- **DZERO =** string token
 - Whether to produce a DZERO plot (yes, no); default no

Parameters

- **Y =** variates
 - Vertical coordinates of the spatial point patterns

- **X =** variates
 - Horizontal coordinates of the spatial point patterns

- **KS =** variates
 - Estimates of spatial K function

- **KT =** variates
 - Estimates of temporal K function

- **KST =** matrices
 - Estimates of space-time K function

- **KSE =** matrices
 - Estimates of standard errors of space-time K function

DLOAD directive

Loads the graphics environment settings from an external file.

- **No options**

- **Parameter text**
 - File from which to lead the environment settings

DMADENSITY procedure

Plots the empirical CDF or PDF (kernel smoothed) by groups (D.B. Baird).

Options

- **PLOT =** string tokens
 - What to plot (cdf, pdf, histogram); default cdf, pdf

- **TRANSFORMATION =** string token
 - Whether to transform the data to log base 2 (log2, none); default none

- **BANDWIDTH =** scalar
 - Bandwidth to use in kernel density estimates for PDF

- **ARRANGEMENT =** string token
 - Whether to use trellis or single plots (single, trellis); default trel

- **WINDOW =** scalar
 - Window number for the graphs; default 3

- **KEYWINDOW =** scalar
 - Window number for the key; default 0 i.e. none

- **DEVICE =** scalar
 - Device number on which to plot the graphs

- **GRAPHICSFILE =** text
 - What graphics filename template to use to save the graphs; default *

Parameters

- **DATA =** variates or pointers
 - Data coordinates

- **GROUPS =** factors or texts
 - Groups

DMASS procedure

Plots discrete data like mass spectra, discrete probability functions (J.W. McNicol).

Options

- **X =** variate
 - Positions on the x-axis at which to plot the lines; default uses 1, 2 ...

- **TITLE =** text
 - Title for the graph; default * i.e. none

- **WINDOW =** scalar
 - Window for the graph; default 3

- **XTITLE =** texts
 - Title for the x-axis

- **YTITLE =** texts
 - Title for the y-axis

- **YMARKS =** scalars or variates
 - Distance between each tick mark on y-axis (scalar) or positions of the marks (variate)

- **XMARKS =** scalars or variates
 - Distance between each tick mark on x-axis (scalar) or positions of the marks (variate)
4.1 Commands

\[\text{YMPOSITION} = \text{string tokens} \]
Position of the tick marks across the y-axis (left, right, centre); default left

\[\text{XMPOSITION} = \text{string tokens} \]
Position of the tick marks across the x-axis (above, below, centre); default * i.e. none

\[\text{YLABELS} = \text{texts} \]
Labels at each mark on y-axis

\[\text{XLABELS} = \text{texts} \]
Labels at each mark on x-axis

\[\text{PENAXES} = \text{scalar} \]
Pen to be used for axes and their titles; default 1

\[\text{PENTITLE} = \text{scalar} \]
Pen to use for the title; default 1

\[\text{LINETHICKNESS} = \text{scalar} \]
Thickness for the vertical lines representing the mass heights; default 1

\[\text{SCREEN} = \text{string token} \]
Whether to clear screen before displaying the graph (keep, clear); default clea

Parameters
\[\text{Y} = \text{variates} \]
Heights for the masses

\[\text{LINECOLOUR} = \text{texts or scalars} \]
Colours for the vertical lines representing mass heights; default * sets suitable colours automatically

'DMOSAIC procedure

Produces a mosaic plot to display a table of counts (D.B. Baird).

Options
\[\text{LINECOLOUR} = \text{text or scalar} \]
Colour to use for the outlines of the boxes; default 'black'

\[\text{EMPTYCOLOUR} = \text{text or scalar} \]
Colour to use for the outlines of the empty boxes; default 'purple'

\[\text{THICKNESS} = \text{scalar} \]
Line thickness for the outlines of the boxes; default 1

\[\text{LABELSIZE} = \text{scalar} \]
Label size for the axis labels; default 1

\[\text{GAP} = \text{scalar} \]
Relative size of the gaps between boxes; default 1

\[\text{MINSIZE} = \text{scalar} \]
Minimum row/column dimension for a box; default 0.002

Parameters
\[\text{DATA} = \text{tables or pointers} \]
Data to be plotted

\[\text{ROWFACTORS} = \text{pointers} \]
Factors to be displayed down the window; if \text{COLFACTORS} is not specified, the default is to display the factors in the second half of the classification set of the table, otherwise it is the classifying factors not included in \text{COLFACTORS}

\[\text{COLFACTORS} = \text{pointers} \]
Factors to be displayed across the window; if \text{ROWFACTORS} is not specified, the default is to display the factors in the first half of the classification set of the table, otherwise it is the classifying factors not included in \text{ROWFACTORS}

\[\text{TITLE} = \text{texts} \]
Title for the plot; default * i.e. none

\[\text{COLOURS} = \text{variate or text} \]
The colours to shade the boxes; by default the colours are taken from the pens 2 onwards, with a final colour of white

\[\text{LABELWIDTH} = \text{scalars or variates} \]
Maximum length of the labels to display for each factor; default * uses the full text of the factor labels

\[\text{WINDOW} = \text{scalar} \]
Window number for the graph; default 3

\[\text{SCREEN} = \text{string token} \]
Whether to clear the screen before plotting or to or continue plotting on the existing screen (clear, keep); default clea

'DMSCATTER procedure

Produces a scatter-plot matrix for one or two sets of variables (J. Ollerton & R.W. Payne).

Options
\[\text{PLOT} = \text{string tokens} \]
Additional information to include in the scatter plots (correlation, histograms, boxplots, densities, dothistograms); default *

\[\text{SCALING} = \text{string token} \]
How to scale the x- and y-axes (common, equal, none); default none

\[\text{PEN} = \text{scalar or variate or factor} \]
Pens to plot the scatter plots; default 1

\[\text{PENHISTOGRAM} = \text{scalar} \]
Pens to plot the histograms; if \text{PEN} is a factor the default plots
the histogram for each group separately using the pen used for that group in the scatter plots, otherwise the default is to use pen 2

PENCORRELATION = *scalar*
Pen to use to write the correlations; default 1

PENTITLE = *scalar*
Pen to use to write the axis titles; default uses the pens currently defined for the axes in the windows that are used for the plots

PENAXIS = *scalar*
Pen to use to draw the axes; default uses the currently defined pens

PENLABELS = *scalar*
Pen to use to write the axis labels; default uses the currently defined pens

NROWS = *scalar*
Number of rows of graphs to put in a single frame (i.e. page); default puts them all in one frame

NCOLUMNS = *scalar*
Number of columns of graphs to put in a single frame; default uses the same value as **NROWS**

ASPECTRATIO = *scalar*
Ratio of the length of the y-axis to the length of the x-axis in each graph

FRAMESHAPE = *string token*
Shape of the plotting frame (landscape, portrait, square); default square

MARGINSIZE = *scalar*
Specifies the size of the margins at the bottom and left-hand edge of the frame

Parameters

Y = *pointers*
Each pointer contains a set of variates and/or factors to be plotted

YTITLES = *texts*
Labels for the axes for the Y variates and factors, to use instead of their identifiers

YMARKS = *variates, scalars or pointers*
Marks to use on the axes for the Y variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor

X = *pointers*
Each pointer contains a set of variates and/or factors to be plotted as the x-variables in a rectangular scatter-plot matrix; if unset Y specifies both the x-varibales and y-variables for a symmetric scatter-plot matrix

XTITLES = *texts*
Labels for the axes for the X variates and factors, to use instead of their identifiers

YMARKS = *variates, scalars or pointers*
Marks to use on the axes for the Y variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor

XMARKS = *variates, scalars or pointers*
Marks to use on the axes for the X variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor

DMST procedure
Gives a high resolution plot of an ordination with minimum spanning tree (A.W.A. Murray).

Options

DIMENSIONS = *scalars*
Two numbers specifying the dimensions to display on the y- and x-axes; default 2,1

TITLE = *text*
Title for the graph

WINDOW = *scalar*
Window for the graph; default 1

KEYWINDOW = *scalar*
Window for the key; default 2

SCREEN = *string token*
Controls screen (clear, keep); default clear

Parameters

COORDINATES = *matrices or datamatrices*
Coordinates from ordination
4.1 Commands

TREE = matrices
Minimum spanning tree

SIMILARITY = symmetric matrices
Association matrix used to derive ordination

SYMBOLS = factors or texts
Symbols to label the coordinates

PENCEORDINATES = scalars
Pen to use for the coordinates

PENTREE = scalars
Pen to use for the minimum spanning tree

DOTHISHISTOGRAM procedure

Plots dot histograms (L.S. Schmitt).

Options

TITLE = text
Title for the plot; default * i.e. none

AXISTITLE = text
Title for the axis representing the data values; default * uses the name of the DATA variate if there is only one, otherwise no title

WINDOW = scalars
Window for the plot; default * uses window 1 when PEN is set, and window 3 when PEN is unset

ORIENTATION = string token
Direction of the plot (horizontal, vertical); default vert

YORIENTATION = string token
Direction of the y-axis for horizontal plots (reverse, normal); default reve

SCREEN = string token
Whether to clear screen before displaying chart (keep, clear); default clea

JUSTIFICATION = string token
How to position the dots; (right, left, centre, center, bottom, top, backtoback); default cent

CREATEMISSINGLEVEL = text
Whether to create a level for missing GROUPS data (yes, no); default no

OMITEMPTYLEVELS = text
Whether to omit levels of GROUPS for which there are no DATA values to plot (yes, no); default no

SIZE = scalar
Size of the pen used to plot the dots; default 1

KEYWINDOW = scalar
Window to use for a key when PEN is set; default 2

KEYDESCRIPTION = text
Overall title for a key when PEN is set; default * uses name of PEN data structure

SELECTION = string tokens
Selects the statistics to be plotted (mean, median, interquartilerange); default * i.e. none

BARWIDTH = scalar
Width of the bars for the selected statistics; default * sets an appropriate width automatically

BARTHICKNESS = scalar
Thickness of the bars for the selected statistics; default 2

CMEAN = scalar, variate or text
Colour of the bars for the means

CMEDIAN = scalar, variate or text
Colour of the bars for the medians

CINTERQUARTILE = scalar, variate or text
Colour of the bars for the inter-quartile ranges

Parameters

DATA = variates or pointers
Data to be plotted

GROUPS = factors
Factor to divide values of a DATA variate into groups

COLOURS = scalars, variates, texts or factors
Colours for the histograms in each plot, a scalar to use the same colour for all the histograms, or a variate or factor to plot each histogram in a different colour; default 'black'

NOBSERVATIONS = tables
Save tables of count

PEN = variates, factors or pointers
Pens to define colours for the individual dots; default uses those defined by the COLOURS parameter

SYMBOLS = scalars, variates, texts or factors
Symbols for the points

DESCRIPTION = texts
Annotation for key when PEN is set; default uses unique values of PEN
DOTPLOT procedure

Produces a dot-plot using line-printer or high-resolution graphics (J. Ollerton & S.A. Harding).

Options

- **GRAPHICS = string token**: Whether to use high-resolution graphics or line-printer graphics (lineprinter, highresolution); default high
- **TITLE = text**: Title for the Dot Plot; default *
- **WINDOW = scalar**: Window number for the graph; default 1
- **SCREEN = string token**: Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea
- **ENDACTION = string token**: Action to be taken after completing the plot (continue, pause); default * uses the current setting
- **DIRECTION = string token**: Order in which to sort the data before plotting, DIRECTION=* implies plot unsorted data (ascending, descending); default asce
- **LINES = string token**: How to draw guide lines on the plot, LINES=* omits the guide lines (todot, full); default todot draws lines from the x-origin to the dots

Parameters

- **YLABELS = texts**: Text specifying Y labels for each dotplot
- **X = variates**: Data to be plotted
- **PENDOTS = scalars**: Pen to draw the dots; default 1
- **PENLINES = scalars**: Pen to draw the lines; default 2

DPARALLEL procedure

Displays multivariate data using parallel coordinates (Z. Karaman).

Options

- **TITLE = text**: Title for the plot
- **GROUPS = factor**: Defines grouping of the units (if any); by default, different pens are used for the observations in different groups
- **PERMUTATIONSALL = string token**: Whether to display all necessary permutations so that any two variates will be adjacent in at least one plot, or just display once in the order given by the DATA pointer (yes, no); default no
- **SCALING = string token**: Whether to do scaling overall (scale all variates on the same scale), or to scale each variate separately (overall, separate); default sepa
- **PEN = variate**: Pens to be used for different groups (if any); default * uses pens from 1 up to the number of groups (number of levels of the GROUPS factor)

Parameter

- **DATA = variates**: Data variables to be plotted

DPIE directive

Draws a pie chart on a plotter or graphics monitor.

Options

- **TITLE = text**: General title; default *
- **WINDOW = scalar**: Window number for the pie chart; default 1
- **KEYWINDOW = scalar**: Window number for the key (zero for no key); default 2
- **ANNOTATION = string token**: Whether to annotate the slices by their percentages (percentages); default perc
- **OUTLINE = string token**: Where to draw outlines (slices, perimeter); default slices
- **PENOUTLINE = scalar**: Pen to use for the outlines; default -10
- **SCREEN = string token**: Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea
- **KEYDESCRIPTION = text**: Overall description for the key
ENDACTION = string token

Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement.

Parameters
SLICE = scalars
Amounts in each of the slices (or categories)

PEN = scalars
Pen number for each slice; default * uses pens 1, 2, and so on for the successive slices

DESCRIPTION = texts
Description of each slice

DPOLYGON procedure

Options
TITLE = text
Main title for the plot; default *

WINDOW = scalar
Which graphics window to use for the plot; default 1

KEYWINDOW = scalar
Which graphics window to use for the key; default 2

YTITLE = text
Title for the vertical axis; default *

XTITLE = text
Title for the horizontal axis; default *

YLOWER = scalar
Lower limit for the vertical axis

YUPPER = scalar
Upper limit for the vertical axis

XLOWER = scalar
Lower limit for the horizontal axis

XUPPER = scalar
Upper limit for the horizontal axis

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clear

KEYDESCRIPTION = text
Overall description for the key; default *

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default pause

Parameters
YPOLYGON = variates
Vertical coordinates of one or more polygons; no default – this parameter must be set

XPOLYGON = variates
Horizontal coordinates of one or more polygons; no default – this parameter must be set

PEN = scalars or variates or factors
Pen number for each graph

DESCRIPTION = texts
Annotation for the key

DPROBABILITY procedure
Creates a probability distribution plot of the values in a variate (D.B. Baird).

Options
PRINT = string tokens
Controls whether to print estimated parameters of the distribution or test statistics (parameters, tests); default para

† DISTRIBUTION = string token
Distribution for expected values against which to plot values (normal, stdnormal, lognormal, exponential, expnormal, gamma, weibull, beta, b2, pareto, chisquare, cauchy, logistic, ev1, ev2, ev3, gev, invnormal, t, f, uniform, skewnormal, stduniform, laplace, gpareto, ubetamix, ugammanix, loggamma, loglogistic, paralogistic, igamma, iweibull, iburr); default norm

METHOD = string token
Method used for the plot axes (quantile, probability, stabilizedprobability); default quan

GRAPHICS = string token
Type of graphics (highresolution, lineprinter); default high

PLOT = string tokens
Whether to plot differences from expectations or the 1-1 reference line (differences, reference); default refe

CONSTANT = string token
Whether to estimate the constant for the distribution
Syntax summary

BANDS = string token
What type of confidence bands to plot, if any
default omit
estimate, omit
(simultaneous, pointwise); default simu

NSIMULATIONS = scalar
Number of simulations for pointwise bands; default 100
*ALPHA = scalar**
Acceptance limits for confidence bands; default 0.95
*DF = scalar**
Number of degrees of freedom of chi-square or t distribution; default 1
*DFNUMERATOR = scalar**
Numerator degrees of freedom of F distribution; default 1
*DFDENOMINATOR = scalar**
Denominator degrees of freedom of F distribution; default 1
*WINDOW = scalar**
Window to use for the plot; default 3
*XMETHOD = string token**
Scaling of X / Expected Plot axes (quantile, probability, stabilizedprobability); if unset, takes the same setting as METHOD
*QMETHOD = string token**
Whether to standardize plotted score in expected quantiles (standardized, unstandardized); default stan
*TMETHOD = string tokens**
Specifies the method used to perform the goodness-of-fit tests (likelihoodratio, traditional); default like
*NTIMES = scalar**
Number of Monte-Carlo simulations to perform for likelihood-ratio tests; default 999
*SEED = scalar**
Seed for random number generation for the likelihood-ratio tests; default 0 continues an existing sequence or, if none, selects a seed automatically

Parameters

DATA = variates
Values to plot
TITLE = text
*Title for the graph; default * generates an appropriate title automatically*
ESTIMATES = variates
Saves the estimated parameters for the distribution
SE = variates
Saves standard errors for the estimated parameters
LOWERTRUNCATION = scalars
Lower truncation points for Loss distributions
UPPERTRUNCATION = scalars
Upper truncation points for Loss distributions
DEVIANCE = scalars
Saves the deviance for the fitted distribution
PROBABILITIES = variates
Saves the probabilities from the goodness-of-fit tests

DPSPECTRALPLOT procedure

Calculates an estimate of the spectrum of a spatial point pattern (C.J. Alexander & D.A.Murray).

Options

PLOT = string tokens
Which graphs to plot (periodogram, rspectrum, thetaspectrum, weights); default peri, rspe, thet, weig

NROWS = scalar
Number of rows for periodogram; default 17
NCOLUMNS = scalar
Number of columns for periodogram; default 32
SCALING = string token
Whether to normalize the coordinates of the points within the study region to a unit square (normalize, none); default norm

Parameters

Y = variates
Vertical coordinates of each spatial point pattern
X = variates
Horizontal coordinates of each spatial point pattern
YPOLYGON = variates
Y-coordinates for the rectangular study region
XPOLYGON = variates
X-coordinates for the rectangular study region
YHOLEPOLYGON = variates
Y-coordinates for the missing region polygons
XHOLEPOLYGON = variates
X-coordinates for the missing region polygons
HOLEGROUPS = variates
Grouping factor where each level represents a different polygon for the missing regions.
PERIODODOGRAM = matrices
Saves the periodogram
WEIGHTS = variates
Saves the weights used for the inter-event calculation
YINTEREVENT = variates
Saves the y-coordinates for the inter-event calculation
4.1 Commands

XINTEREVENT = variates
Saves the x-coordinates for the inter-event calculation

DPTMAP procedure

Options

TITLE = text
Main title for the plot; default *

WINDOW = scalar
Which graphics window to use for the plot; default 1

KEYWINDOW = scalar
Which graphics window to use for the key; default 2

YTITLE = text
Title for the vertical axis; default *

XTITLE = text
Title for the horizontal axis; default *

YLOWER = scalar
Lower limit for the vertical axis

YUPPER = scalar
Upper limit for the vertical axis

XLOWER = scalar
Lower limit for the horizontal axis

XUPPER = scalar
Upper limit for the horizontal axis

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

KEYDESCRIPTION = text
Overall description for the key; default *

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default paus

Parameters

Y = variates
Vertical coordinates of one or more spatial point patterns; no default – this parameter must be set

X = variates
Horizontal coordinates of one or more spatial point patterns; no default – this parameter must be set

PEN = scalars or variates or factors
Pen number for each graph

DESCRIPTION = texts
Annotation for the key

DPTREAD procedure

Options

PRINT = string token
What to print (summary, monitoring); default summ, moni

WINDOW = scalar
Which graphics window to use for the plot; default 1

Parameters

OLDY = variates
Vertical coordinates of each spatial point pattern; no default – this parameter must be set

OLDX = variates
Horizontal coordinates of each spatial point pattern; no default – this parameter must be set

NEWY = variates
Variates to receive the vertical coordinates of the original points and added points

NEWX = variates
Variates to receive the horizontal coordinates of the original points and added points

DQMAP procedure

Displays a genetic map (D.A. Murray).

Options

ORIENTATION = string token
Orientation of map (vertical, horizontal); default vert

DCHROMOSOMES = variate, text or scalar
To specify a subset of the linkage groups to be displayed

TITLE = text
General title; default *

Parameters

CHROMOSOMES = factors
Factor defining the linkage groups

POSITIONS = variates or pointers
Positions of markers within the linkage groups

MKNAMES = texts
Names of the markers

QCHROMOSOMES = factors
Factor defining the linkage groups of the QTLs
4 Syntax summary

QPOSITIONS = variates
QNAMES = texts
QINTERACTIONS = variates

DQMKScores procedure

Plots a grid of marker scores for genotypes and indicates missing data (D.A. Murray).

Options
- PLOT = *string token*
- LOWERGENOTYPE = *scalar*
- UPPERGENOTYPE = *scalar*
- DCHROMOSOMES = *variate, text or scalar*
- POPULATIONTYPE = *string token*
- COLOURS = *text or variate*
- TITLE = *text*

Parameters
- MKSCORES = *pointers*
- CHROMOSOMES = *factors*
- PARENTS = *pointers*
- IDPARENTS = *texts*

DQMQTLScan procedure

Plots the results of a genome-wide scan for QTL effects in multi-environment trials (M.P. Boer & J.T.N.M. Thissen).

Options
- POPULATIONTYPE = *string token*
- METHOD = *string token*
- THRESHOLD = *scalar*
- DCHROMOSOMES = *scalar, text or variate*
- SUPPRESSLINES = *string token*
- SYMBOL = *scalar*
- SIZEMULTIPLIER = *scalar*
- BLACKOUTLINE = *string token*
- COLOURS = *scalar, variate or text*
- TITLE = *text*
- YLOWERTITLE = *text*
- YUPPERTITLE = *text*
- XTITLE = *text*
- YAXUPPER = *scalar*
- ANNOTATION = *string token*

Parameters
- STATISTICS = *variates or pointers*
- CHROMOSOMES = *factors*
4.1 Commands

- **POSITIONS** = *variates* Positions on the chromosome of each locus; must be set
- **QEFFECTS** = *pointers* QTL effects in the different environments; must be set
- **QSE** = *pointers* Standard errors of the QTL effects in the different environments; must be set
- **ENVNAMES** = *texts* Labels for the different environments; must be set
- **IDEFFECTS** = *texts* Labels to use to identify the effects
- **IDPARENTS** = *texts* Labels to use to identify the parents
- **DFILENAME** = *texts* Name of the graphics file for the plots

DQRECOMBINATIONS procedure
Plots a matrix of recombination frequencies between markers (S.J. Welham & D.A. Murray).

Options
- **DCHROMOSOMES** = *scalar, variate or text* Specifies a subset of the linkage groups to be displayed
- **TITLE** = *text* General title for the plot
- **WINDOW** = *scalar* Window number for the graph; default 1
- **KEYWINDOW** = *scalar* Window number for the key (zero for no key); default 2
- **PALETTE** = *string token* Colour scheme for plot (colour, color, greyscale, grayscale); default colo

Parameters
- **RECFREQUENCIES** = *symmetric matrices* Recombination frequencies to plot
- **CHROMOSOMES** = *factors* Linkage group for each marker

DQSQTLSCAN procedure
Plots the results of a genome-wide scan for QTL effects in single-environment trials (M.P. Boer & J.T.N.M. Thissen).

Options
- **POPULATIONTYPE** = *string token* Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set when **QEFFECTS** are supplied
- **METHOD** = *string token* Method to be used for plotting (line, manhattan, spikes); default line
- **THRESHOLD** = *scalar* Threshold value for test statistic; default 0
- **DCHROMOSOMES** = *scalar, text or variate* Allows a subset chromosomes to be specified to display; default * i.e. all the chromosomes
- **SUPPRESSLINES** = *string token* Whether to suppress the vertical lines between the chromosomes (yes, no); default no
- **SYMBOL** = *scalar* Defines the plotting symbol for each point, as in the SYMBOL option of PEN, when METHOD=manhattan; default 2 i.e. circle
- **SIZEMULTIPLIER** = *scalar* Multiplier used in the calculation of sizes of symbols when METHOD=manhattan; default 1
- **BLACKOUTLINE** = *string token* Whether to draw the outer line the SYMBOL in black when METHOD=manhattan (yes, no); default no
- **COLOURS** = *scalar, variate or text* Colours to use for the chromosomes; default * uses the default colours of pens 1, 2 up to the number of chromosomes
- **TITLE** = *text, variate or text* General title
- **YTITLE** = *text* Title for the y-axis; default uses the identifier of the STATISTICS variate or pointer
- **XTITLE** = *text* Title for the x-axis; default 'Chromosomes'
- **UPPER** = *scalar* Upper bound for y-axis
- **WINDOW** = *scalar* Window number for the graphs; default 1
- **KEYWINDOW** = *scalar* Window number for key (zero for none); default 2
- **SCREEN** = *string token* Whether to clear the screen before displaying the graph (clear, keep); default clea
Parameters

STATISTICS = variates or pointers
Test statistic(s) to be plotted; must be set

CHROMOSOMES = factors
Chromosome for each locus; must be set

POSITIONS = variates
Position on the chromosome for each locus; must be set

QEFECTS = variates or pointers
QTL effects along the genome,

QSE = variates or pointers
Standard errors of the QTL effects

IDEFFECTS = texts
Labels along the x-axis to identify the effects when QEFFECTS are supplied

IDPARENTS = texts
Labels to use to identify the parents

DFILENAME = texts
Name of the graphics file for the plots

DREAD directive

Reads the locations of points from an interactive graphical device.

Options

PRINT = string tokens
What to print (data, summary); default summ

CHANNEL = scalar
Number of the graphics device from which to read; default *
takes the current graphics device

WINDOW = scalar
Window from which to read; default 1

CURSORTYPE = scalar
Type of cursor; default 1

SETVALUES = string token
Whether to set number of values of structures from the number of values read (yes, no); default no causes the number of values to be set only for structures whose lengths are not defined already

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Parameters

Y = variates
Variate to receive the y-values that have been read

X = variates
Variate to receive the x-values that have been read

YGIVEN = variates
Y-coordinates of points that may be located on the graph

XGIVEN = variates
X-coordinates of points that may be located

SAVESET = variates
Unit numbers of the located points

PEN = scalars
Pen number to use to echo points; default 0

YSAVE = variates
Variate to receive the y-coordinates of the located points

XSAVE = variates
Variate to receive the x-coordinates of the located points

DREFERENCELINE procedure

Adds reference lines to a graph (R.W. Payne).

Options

ORIENTATION = string token
Direction of the line (horizontal, vertical); default hori

WINDOW = scalar
Window in which to draw the line; default 1

Parameters

POSITION = scalars
Positions of the lines

PEN = scalars
Pen to use for each line

LABEL = texts
Text to plot alongside each line

YLPOSITION = string tokens
Position of the label in the y-direction (above, below, centre, center); default belo

XLPOSITION = string tokens
Position of the label in the x-direction (centre, center, left, right); default left

PENLABEL = scalars
Pen to use for each label

DREPMEASURES procedure

Plots profiles and differences of profiles for repeated measures data (J.T.N.M. Thissen).

Options

TITLE = text
Title for the plots; default *

GROUPS = factors
List of one or two factors; one factor gives one plot while a list
with two factors gives as many plots as the number of levels of
the first factor in the list; must be set

TIMEPOINTS = variate or factor
When the DATA parameter is set to a pointer containing a
separate variate of observations for each time this can specify
the actual time points (otherwise the suffixes of the DATA
pointer are used), when there is a single DATA variate this must
supply a factor to indicate the time of each observation

DIFFERENCES = string token
Parameters

DATA = pointers or variates
Data observations either in a pointer to a list of variates (one
for each time), or a single variate (with TIMEPOINTS set to a
factor indicating the time of each observation)

GROUPMEANS = tables
To save the calculated treatment means at each timepoint

DRESIDUALS procedure
Plots residuals (R.W. Payne).

Options

RESIDUALS = variate
Residuals to plot

FITTEDVALUES = variate
Fitted values against which to plot the residuals

INDEX = variate or factor
X-variable for an index plot; default !(1,2...)

GRAPHICS = string token
What type of graphics to use (lineprinter, highresolution); default high

TITLE = text
Overall title for the plots; default * i.e. none

METHOD = string tokens
Type of residual plot (fittedvalues, normal, halfnormal, histogram, absresidual, index); default fitt, norm, half, hist

PEN = scalars, variates or factors
Pen(s) to use for each plot

DROP directive
Drops terms from a linear, generalized linear, generalized additive or nonlinear model.

Options

PRINT = string tokens
What to print (model, deviance, summary, estimates, corrections, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti

NONLINEAR = string token
How to treat nonlinear parameters between groups (common, separate, unchanged); default unch

CONSTANT = string token
How to treat the constant (estimate, omit, unchanged, ignore); default unch

FACTORIAL = scalar
Limit for expansion of model terms; default * i.e. that in
previous TERMS statement

POOL = string token
Whether to pool ss in accumulated summary between all terms
fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from
model with smallest residual ss or smallest residual ms (ss,
ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string token
Statistics to be displayed in the summary of analysis produced
by PRINT=summary. seobservations is relevant only for a
Normally distributed response, and %cv only for a gamma-
distributed response (%variance, %ss, adjustedr2, r2,
4 Syntax summary

seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if
DIST=normal, \%cv if DIST=gamma, and disp for other

distributions

PROBABILITY = scalar
Probability level for confidence intervals for parameter
estimates; default 0.95

AOVDESCRIPTION = text
Description for line in accumulated analysis of variance (or
deviance) table when POOL=yes

Parameter
formula
List of explanatory variates and factors, or model formula

DRPOLYGON procedure
Reads a polygon interactively from the current graphics device (M.A. Mugglestone, S.A. Harding,

Options
PRINT = string token
What to print (summary); default summ

WINDOW = scalar
Window from which to read default 1

Parameters
YPOLYGON = variates
Variate to receive the vertical coordinates of the polygons
that are read

XPOLYGON = variates
Variate to receive the horizontal coordinates of the polygons
that are read

PEN = scalars
Pen numbers to use to echo points

DSAVE directive
Saves the current graphics environment settings to an external file.

No options

Parameters
FILENAME = text
File in which to save the environment settings

DESCRIPTION = text
Description for these settings

DSCATTER procedure
Produces a scatter-plot matrix using high-resolution graphics (J. Ollerton).

Options
PEN = scalar or variate or factor
Pen number for the graph; default 1

EQUALSCALING = string token
Whether to have equal scaling of x- and y-axes in each plot
(yes, no); default no

XDATA = variates or factors
Variables to be plotted as x-coordinates (DATA then specifies
the y-coordinates); if unset DATA specifies both x-coordinates
and y-coordinates

ASPECTRATIO = scalar
Ratio of the length of the y-axis to the length of the x-axis in
each plot

Parameter
DATA = variates or factors
A list of variables to be plotted

DSEPARATIONPLOT procedure
Creates a separation plot for visualising the fit of a model with a dichotomous (i.e. binary) or polytomous
(i.e. multi-categorical) outcome (V.M. Cave).

Options
METHOD = string token
Method used to plot the predicted probabilities (rectangles,
lines, rbands, lbands); default rect

PLOT = string tokens
Information to be plotted on the graph (key, traceline,
expectednumber); default key, trac, expe when
METHOD=rectangles or lines, and key when
METHOD=rbands or lbands
4.1 Commands

SUCCESSLEVEL = string token
Specifies which level corresponds to success when GROUPS supplies a factor with 2 levels (first, second); default second

LINEORDER = string token
If METHOD=lines, whether the failures or successes are plotted first (failurefirst, successfirst); default fail

NGROUPS = scalar
Number of discrete bands used to group the predicted probabilities when METHOD=rbands or lbands; default 10

TIES = string token
How tied data values in PROBABILITIES are handled when METHOD=rectangles or lines (permute, same); default perm

SEED = scalar
Seed for random number generator used to permute the tied data; default 0

COLOURS = variate or text
The two colours used to plot the predicted probabilities

THICKNESS = scalar
Thickness of the line for plotting the predicted probabilities when METHOD=lines or lbands; default 1

BACKGROUND = scalar or text
Colour of the background when METHOD=lines or lbands; default light

BORDER = string token
Whether to draw borders around the rectangles when METHOD=rectangles or rbands (yes, no); default no

USEPENS = string token
Whether to use the current pen definitions of pens 2 and 3 for plotting the traceline and expected number, respectively (yes, no); default no

SAVE = rsave or pointer
Regression or HGLM save structure to provide the data if PROBABILITIES, GROUPS, NSUCCESSES and NBINOMIAL are not specified

Parameters

![Parameters](image)

GROUPS = variate or factor
Actual outcome, when NSUCCESSES and NBINOMIAL are not supplied

NSUCCESSES = variate
Number of successes when PROBABILITIES supplies predicted probabilities from binomial data

NBINOMIAL = variate or scalar
Number of trials when PROBABILITIES supplies predicted probabilities from binomial data

TITLE = text
Title for the plot; default generates the title automatically

XTITLE = text
Title for the x-axis; default * i.e. none

DSHADE directive
Plots a shade diagram of 3-dimensional data.

Options

TITLE = text
General title; default *

WINDOW = scalar
Window number for the graph; default 1

KEYWINDOW = scalar
Window number for the key (0 for no key); default 2

YORIENTATION = string token
Y-axis orientation of the plot (reverse, normal); default reverse

GRIDMETHOD = string token
How to draw a grid around the elements of the matrix (present, complete); default present

PENGRID = scalar
Pen to use for the grid; default 7

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clear

KEYDESCRIPTION = text
Overall description for the key

ENDACTION = string token
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Parameters
GRID = symmetric matrix, matrix or pointer to variates
PEN = scalar or variate
LIMITS = variate
NGROUPS = scalar
INTERVAL = scalar
PERMUTATION = variate
DESCRIPTION = text

DSPIDERWEB procedure
Displays spider-web and star plots (W. van den Berg).

Options
METHOD = string token
MARKS = scalar or variate
ANGLE = scalar
SIZEMULTIPLIER = scalar
FRAMESHAPE = string token

Parameters
DATA = tables
CATEGORIES = factors
GROUPS = factors or pointers
TRELLISGROUPS = factors or pointers
PAGEGROUPS = factors or pointers
TITLE = texts
COLOURS = texts or variates

DSTART directive
Starts a sequence of related high-resolution plots.

Options
TITLE = text
PEN = scalar

DSTTEST procedure
Plots power and significance for t-tests, including equivalence tests (R.W. Payne).

Options
NSAMPLES = scalar
PROBABILITY = scalar
TMETHOD = string token
RATIOREPLICATION = scalar

Parameters
RESPONSE = scalars
VAR1 = scalars
Anticipated variance of sample 1
VAR2 = scalars
Anticipated variance of sample 2; default * assumes the same
variance as sample 1
NREPLICATES = scalars
Number of replicates
RDF = scalars
Number of residual degrees of freedom; default * calculates
these automatically, assuming a standard t-test

DSURFACE directive

Produces perspective views of two-way arrays of numbers.

Options

- **TITLE = text**
 General title; default *
- **WINDOW = scalar**
 Window number for the plots; default 1
- **KEYWINDOW = scalar**
 Window number for the key (zero for no key); default 2
- **ELEVATION = scalar**
 The elevation of the viewpoint relative to the surface; default
 25 (degrees)
- **AZIMUTH = scalar**
 Rotation about the horizontal plane; the default of 225 degrees
 ensures that, with a square matrix M, the element $M_{[1;1]}$
 is nearest to the viewpoint
- **DISTANCE = scalar**
 Distance of the viewpoint from the centre of the grid on the
 base plane; default * gives a distance of 100 times the
 maximum of the x-range and the y-range
- **ZSCALE = scalar**
 defines the scaling of the z-axis relative to the horizontal (x-y)
 axes; default 1
- **SCREEN = string token**
 Whether to clear the screen before plotting or to continue
 plotting on the old screen (clear, keep); default clear
- **KEYDESCRIPTION = text**
 Overall description for the key; default *
- **ENDACTION = string token**
 Action to be taken after completing the plot (continue,
 pause); default * uses the setting from the last DEVICE
 statement

Parameters

- **GRID = identifier**
 Pointer (of variates representing the columns of a data matrix),
 matrix or two-way table specifying values on a rectangular
 grid
- **PEN = scalar**
 Pen number to be used for the plot; default 1
- **PENFILL = scalar or variate**
 Pen number(s) defining how to fill the areas between contours
 (0 or * leaves the areas in the background colour); default 3
- **PENMESH = scalar**
 Pen number to use to draw the mesh (omitted if set to 0 or *);
 default 1
- **PENSIDE = scalar**
 Pen number to use to shade the sides of the surface (omitted if
 set to 0 or *); default *
- **NCONTOURS = scalar**
 Number of contours; default 10
- **CONTORS = variate**
 Positions of contours
- **INTERVAL = scalar**
 Interval between contours
- **DESCRIPTION = text**
 Annotation for key

DTABLE procedure

Plots tables (R.W. Payne).

Options

- **GRAPHICS = string token**
 Type of graph (highresolution, lineprinter); default high
- **METHOD = string token**
 What to plot (points, linesandpoints, onlylines, data,
 barchart, splines); default point
- **XFREPRESENTATION = string token**
 How to label the x-axis (levels, labels); default labels
 uses the XFACTOR labels, if available
- **DFSPLINE = scalar**
 Number of degrees of freedom to use when METHOD=splines
- **YTRANSFORM = string tokens**
 Transformed scale for additional axis marks and labels to be
plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default i.e. none

PENYTRANSFORM = scalar Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically

†KEYMETHOD = string token What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name

†PLOTTITLEMETHOD = string token What to use for the titles of the plots when there are TRELLISGROUPS (labels, namesandlabels); default name

†PAGETITLEMETHOD = string token What to use for the titles of the pages when there are PAGEGROUPS (labels, namesandlabels); default name

†USEAXES = string token Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower%, mupper%, nsubticks); default none

Parameters

TABLE = tables Tables to plot
DATA = variates Data values to plot with each table when METHOD=data
XFACTOR = factors Factor providing the x-values for the plot of each table
GROUPS = factors or pointers Factor or factors identifying the different lines from a multi-way table
TRELLISGROUPS = factors or pointers Factor or factors specifying the different plots of a trellis plot of a multi-way table
PAGEGROUPS = factors or pointers Factor or factors specifying plots to be displayed on different pages
BAR = scalars, tables or pointers Scalar defining the length of error bar to be plotted to indicate the overall (or average) variability of the values in each table, or table defining the variability of each individual table value, or pointer containing either two scalars or two tables defining the upper and lower positions of the error bar(s)
NEWXLEVELS = variates Values to be used for XFACTOR instead of its existing levels
TITLE = texts Title for the graph; default uses the identifier of the TABLE
YTITLE = texts Title for the y-axis; default "'
XTITLE = texts Title for the x-axis; default is to use the identifier of the XFACTOR
BARDESCRIPTION = texts Descriptions for the bars
PENS = variates Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

DTEXT procedure
Adds text to a graph (S.A. Harding).
Option
WINDOW = scalar Window number of the graph; default 1

Parameters

Y = variates or scalars Vertical coordinates
X = variates or scalars Horizontal coordinates
TEXT = texts Text to plot
PEN = scalars, variates or factors Pens to use; default 1

DTIMEPLOT procedure
Produces horizontal bars displaying a continuous time record (S.J. Clark).
Options
TITLE = text Title for the plot; default * i.e. none
WINDOW = numbers Which high-resolution graphics windows to use; default 3 for single plots and 5..8 for the composite plot
SCREEN = string token Whether to clear the graphics screen before plotting (clear,
4.1 Commands

Parameters

DATA = variates
GROUPS = factors
LABELS = texts
METHOD = texts

keep); default clea
Bout lengths
Factor defining act performed during each bout
Labels for each act
Type of plot to produce for each DATA variate (barplot,
cumulative, log, survivor, composite); default comp

DUMMY directive

 Declares one or more dummy data structures.

Options

VALUE = identifier
MODIFY = string token
IPRINT = string tokens

Value for all the dummies; default *
Whether to modify (instead of redefining) existing structures
(yes, no); default no
Information to be used by default to identify the dummies in
output (identifier, extra); if this is not set, they will be
identified in the standard way for each type of output

Parameters

IDENTIFIER = identifiers
VALUE = identifiers
EXTRA = texts

Identifiers of the dummies
Value for each dummy
Extra text associated with each identifier

DUMP directive

 Prints information about data structures, and internal system information.

Options

PRINT = string tokens
CHANNEL = identifier
INFORMATION = string tokens
TYPE = string tokens
SYSTEM = string token
UNNAMED = string token

What information to print about structures (attributes,
values, identifiers, space); default attr
Channel number of file, or identifier of a text to store output;
default current output file
What information to print for each structure (brief, full,
extended); default brie
Which types of structure to include in addition to those in the
parameter list (all, diagonal matrix, dummy, expression,
factor, formula, LRV, matrix, pointer, scalar, SSPM,
symmetric matrix, table, text, TSM, variate); default *
i.e. none.
Whether to display Genstat system structures (yes, no);
default no
Whether to display unnamed structures (yes, no); default no

Parameter

identifiers or numbers

Identifier or reference number of a structure whose
information is to be printed

DUPLICATE directive

 Forms new data structures with attributes taken from an existing structure.

Option

ATTRIBUTES = string tokens
REDEFINE = string token

Which attributes to duplicate (all, nvalues, values,
nlevels, levels, labels (of factors or pointers), extra,
decimals, characters, rows, columns,
classification, margins, suffixes, minimum, maximum, restriction, reference level); default all
Whether or not to delete the attributes of the new structures
beforehand so that their types can be redefined (yes, no); default no

Parameters

OLDSTRUCTURE = identifiers

Data structures to provide attributes for the new structures
NEWSTRUCTURE = identifiers
VALUES = identifiers
DECIMALS = scalars
CHARACTERS = scalars
EXTRA = texts
MINIMUM = scalars
MAXIMUM = scalars

DVARIOGRAM procedure
Plots fitted models to an experimental variogram (S.A. Harding, D.A. Murray & R. Webster).

Options
MODELTYPE = string token
Defines which model to plot (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselkl, gaussian, affinepower, linear, cubic, stable, cardinalsine, matern); default power
ISOTROPY = string token
Defines whether this is an isotropic or geometrical anisotropic model (isotropic, geometrical); default isot
WINDOW = scalar
Window in which to plot a graph; default 1
TITLE = text
Title for the graph

Parameters
VARIOGRAM = variates
Experimental variogram to which the model or matrices has been fitted, as a variate if in only one direction or as a matrix if there are several
DISTANCE = variates
Mean lag distances for the points in each or matrices variogram
DIRECTION = variates
Directions in which each variogram was computed
ESTIMATES = variates
Estimated parameter values
XUPPER = scalar
Upper limit for the x-axis in the graph
PENDATA = scalar
Pen to be used to plot the data; default 1
PENMODEL = scalar
Pen to be used to plot the model; default 2

DVIEW directive

Options
PAUSE = scalar
Time in seconds to pause before changing to the next window; default 1

Parameter
WINDOW = scalar
Window number to view

DXDENSITY procedure
Produces one-dimensional density (or violin) plots (D. B. Baird).

Options
BANDWIDTH = scalar
Bandwidth for kernel smoothing (0-1); default density is chosen according to the number of observations
GAP = scalar
The size of the gap (0-1) between envelopes when there several densities are to be plotted; default 0.1
TRANSFORM = string token
Transformed scale for the data (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default is to use the transform defined for XAXIS
AXISTITLE = text
The title for the data axis; default is the name of the DATA variate
GROUPSTITLE = text
The title for the groups or variates axis; default is to use the name of the GROUPS factor
WINDOW = scalar
Window number for the graphs; default 3
4.1 Commands

ORIENTATION = string token
Orientation of plots (horizontal, vertical); default vert

METHOD = string token
Method for plotting the density envelope (fill, line); default fill

SCREEN = string token
Whether to clear screen before the plot (clear, keep, resize); default clea

Parameters

DATA = variates or pointers
The data whose density is to be plotted

GROUPS = factors
Factor to divide values of a single variate into groups; default * i.e. none

TITLE = texts
Title for graph; default uses the names of the data variates and type of plot

DXYDENSITY procedure
Produces density plots for large data sets (D. B. Baird).

Options

PLOT = string tokens
How to plot the density (pointplot, shadeplot, contourplot, histogram, surface); default poin

NGROUPS = scalar
Number of sections into which to divide each axis (4-400); default 50

METHOD = string token
Method to use to smooth the density (thinplate, radialspline, tensorspline, kernel); default * i.e. none

DF = scalar
Degrees of freedom for smoothing methods (2-50); default 12

BANDWIDTH = scalar
Bandwidth for kernel smoothing (0-1); default 0.2

MEANFIT = string tokens
What smooth regression fits to the means to plot (yx, xy); default * i.e. none

NCONTOURS = scalar
Number of contours in the contour plot; default 9

SYMBOL = string token
Symbol to use in a point plot (circle, square); default circ

COLOURS = text, variate or scalar
Colour to use to draw the symbols, shades, contours or surface; default !t(red, blue, black)

XTRANSFORM = string token
Transformed scale for the x-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, llogit, ilogit, icloglog, root); default iden

YTRANSFORM = string token
Transformed scale for the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, llogit, iprobit, icloglog, root); default iden

ZTRANSFORM = string token
Transformed scale for the z-axis (identity, percentile, root); default iden

WINDOW = scalar
Window number for the graphs; default 3

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep, resize); default clea

Parameters

Y = variate or factor
Y-coordinates of the data

X = variate or factor
X-coordinates of the data

TITLE = text
Title for graph; default uses the names of the data and type of plot

DXYGRAPH procedure
Draws two-dimensional graphs with marginal distribution plots alongside the y- and x-axes (D.A. Murray).

Options

YMETHOD = string token
Distribution plot to display in the margin of the y-axis (histogram, rugplot, boxplot); default hist

XMETHOD = string token
Distribution plot to display in the margin of the x-axis
YNGROUPS = scalar
Defines the number of groups in a margin plot of a histogram
of the Y variate; default is 10, or the integer value nearest
the square root of the number of values in the Y variate if that
is smaller

XGROUPS = scalar
Defines the number of groups in a margin plot of a histogram
of the X variate; default is 10, or the integer value nearest
the square root of the number of values in the X variate if that
is smaller

YCOLOUR = scalar or text
Colour to use for the Y margin plot

XCOLOUR = scalar or text
Colour to use for the X margin plot

Y = variates or factors
Vertical coordinates

X = variates or factors
Horizontal coordinates

TITLE = texts
General title for the plot; default *

WINDOW = scalars
Window number for the graphs; default 1

KEYWINDOW = scalars
Window number for the key (zero for no key); default 2

PEN = scalars, variates or factors
Pen number for each graph; default * uses pens 1, 2, and so on
for the successive graphs

SCREEN = string token
Whether to clear the screen before plotting or to continue
plotting on the old screen (clear, keep); default clea

DYPOLAR procedure
Produces polar plots (D. B. Baird).

Options
MODULUS = scalar
Number of units required to give a complete revolution in X;
default 360

TOPANGLE = scalar
Angle at the top of the plot; default is a quarter of the
MODULUS

COLOUR = scalar or text
Colour for the lines marking rings and sectors; default 'black'

LINESTYLE = scalar
Linestyle for the lines marking rings and sectors; default 1

YORIGIN = scalar
Origin for the y-values; default 0 or the minimum of Y if this is
less than 0

YMarks = variate
Y-values for the rings, plotted in the background of the plot

XMARKS = variate
X-values for the lines marking the sectors, plotted in the
background of the plot

YLABELS = text
Labels for the rings

XLABELS = text
Labels for the sectors

YTRANSFORM = string token
Transformed scale for the y-values (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default is to use the transform
defined for YAXIS

NRINGS = scalar
Number of rings to be plotted, if YMARKS is not set; default 9

NSECTORS = scalar
Number of sectors to be plotted, if XMARKS is not set; default 12

WINDOW = scalar
Window number for the graph; default 1

KEYWINDOW = scalar
Window number for the graph key; default 2

SCREEN = string token
Whether to clear the screen before the plot (clear, keep); default clea

KEYDESCRIPTION = text
Overall description for the key; default *

Parameters
Y = variates, factors or pointers
Y-values specifying the amplitudes of the points

X = variates, factors or pointers
X-values specifying the angles of the points

GROUPS = factors
Factor to divide the points into groups; default * i.e. none

TITLE = texts
Title for the graph; default forms a title automatically with the
names of the Y and X structures
4.1 Commands

PEN = scalar or variates Pens used to plot the data; default 1
DESCRIPTION = texts Annotation for key; default uses the names of the Y and X structures, or the labels of GROUPS if set

D2GROUPS procedure
Displays the distribution of groups in a plane using a trellis of bar or pie charts (R.W. Payne).

Options
- **PLOT = string tokens** What to plot (barchart, piechart, scaledpiechart, key); default barc, key
- **NPARTITIONS = scalar** Number of partitions along each axis; default 8
- **COLOURS = variate or text** Colours for the groups; default uses the colours defined for pens 2 upwards
- **EQUALAXES = string tokens** What aspect of the x- and y-axes to make equal (bounds, scaling); default * i.e. none
- **KEYHEIGHT = scalar** Height of the key; default 0.1
- **LABELSIZE = scalar** Size of labels showing the number of points in each unscaled pie chart; default 1
- **%MARGINSIZE = scalar** Ratio as a percentage for margin sizes to their default sizes in pie charts; default 100

Parameters
- **Y = variates** Y-coordinates of the points in each graph
- **X = variates** X-coordinates of the points in each graph
- **GROUPS = factors** Groupings for the points in each graph
- **TITLE = texts** Title for each graph
- **YTITLE = texts** Title for the y-axis in each window
- **XTITLE = texts** Title for the x-axis in each window
- **YLOWER = scalars** Lower bound for y-axis
- **YUPPER = scalars** Upper bound for y-axis
- **XLOWER = scalars** Lower bound for x-axis
- **XUPPER = scalars** Upper bound for x-axis

D3GRAPH directive
Plots a 3-dimensional graph.

Options
- **TITLE = text** General title; default *
- **WINDOW = scalar** Window number for the plots; default 1
- **KEYWINDOW = scalar** Window number for the key (zero for no key); default 2
- **ELEVATION = scalar** The elevation of the viewpoint relative to the surface; default 25 (degrees)
- **AZIMUTH = scalar** Rotation about the horizontal plane; the default of 225 degrees ensures that a point at the minimum x- and y-value is nearest to the viewpoint
- **DISTANCE = scalar** Distance of the viewpoint from the centre of the grid on the base plane; default * ensures that the data points fill the viewing area
- **SCREEN = string token** Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep, resize); default clea
- **KEYDESCRIPTION = text** Overall description for the key; default *
- **ENDACTION = string text** Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Parameters
- **X = identifiers** X-coordinates
- **Y = identifiers** Y-coordinates
- **Z = identifiers** Z-coordinates
EX3HISTOGRAM directive
Plots three-dimensional histograms.

Options
TITLE = text
WINDOW = scalar
KEYWINDOW = scalar
ELEVATION = scalar
AZIMUTH = scalar
DISTANCE = scalar
SCREEN = string token
KEYDESCRIPTION = text
ENDACTION = string token

Parameters
GRID = identifier
PEN = scalar
DESCRIPTION = text

ECABUNDANCEPLOT procedure
Produces rank/abundance, ABC and k-dominance plots (D.A. Murray).

Options
PRINT = string token
PLOT = string token
GROUPS = factor
INDIVIDUALS = variates
SPECIES = variates
BIOMASS = variates

Parameters
PEN = scalar
DESCRIPTION = text

ECACCUMULATION procedure
Plots species accumulation curves for samples or individuals (D.A. Murray).

Options
PRINT = string token
CURVE = string token
PLOT = string token
METHOD = string token
GROUPS = factor

Parameters
PEN = scalar
DESCRIPTION = text
4.1 Commands

of factor of individuals

NPERMUTATIONS = scalar
A scalar defining the number of permutations to be performed for the random method; default 100

SEED = scalar
Seed for random number generator; default 0

SCREEN = string token
Whether to clear screen before displaying the graph (keep, clear); default clea

WINDOW = scalar
Window for the graph; default 1

KEYWINDOW = scalar
Window number for the key (zero for no key); default 2

PEN = scalar
Pen number to draw the curve; default 1

Parameters

DATA = variates, factors, matrices or pointers
For individual-based collector curves, a variate or factor containing the individuals in the order they were collected; for sample-based species accumulation curves, a pointer or matrix specifying the number of individuals for each species for different sites/samples

RICHNESS = variates
Saves the observed number of species for the collector method and the average or expected number of species at each sample size for the Coleman and random methods

VARIANCE = variates
Saves the variance for the richness (Coleman and random methods only)

ECANOSIM procedure

Performs an analysis of similarities i.e. ANOSIM (D.A. Murray).

Options

PRINT = string token
Controls printed output (test); default test

PLOT = string token
Type of plot (boxplot, histogram); default hist

NTIMES = scalar
Number of permutations to make; default 999

BLOCKS = factor
Factor specifying groups for a stratified test; default * i.e. none

SEED = scalar
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

Parameters

DATA = symmetric matrices
Similarity matrix

GROUPS = factors
Specify the different groups for each matrix

STATISTIC = scalars
Save the R statistics

PROBABILITY = scalars
Save the probabilities

ECDIVERSITY procedure

Calculates measures of diversity with jackknife or bootstrap estimates (D.A. Murray).

Options

PRINT = string tokens
Controls printed output (index, estimate); default inde

INDEX = string token
Controls the type of measurement to be calculated (hshannon, qstatistic, simpsonyule, bergerparker, ibrillouin, ebrillouin, dmcintosh, emcintosh, evar, logseriesalpha, lognormallambda, jshannon, margalef, isimpson, richness); default hsha

GROUPS = factor
Defines the groups if there is more than one sample

BMETHOD = string token
Controls whether to use the bootstrap or jackknife method (jackknife, bootstrap); default jack for multiple samples and boot for individual samples

NBOOT = scalar
Number of times to resample in bootstrap; default 100

SEED = scalar
Seed for random number generator for bootstrap; default 0

CIPROBABILITY = scalar
Probability for the confidence interval produced by either jackknife or bootstrap method; default 0.95
Parameters
INDIVIDUALS = variates Number of individuals per species
SPECIES = variates Number of species
INDICES = variate or pointer Saved the diversity indices

ECFIT procedure
Fits models to species abundance data (D.A. Murray).
Options
PRINT = string tokens Controls printed output (summary, estimates, fittedvalues); default summ, esti
MODELTYPE = string token The model or distribution fitted to the data (logseries, plognormal, negativebinomial, geometric, zipf, mandelbrotzipf); default logs
GROUPS = factor Defines the groups if there is more than one sample
LOGBASE = string token Log base to use to form the octaves for the logseries, Poisson log-Normal and negative binomial distributions (two, ten); default two
PLOT = string token Plots the fitted values (fittedabundance, rankabundance); default fitt

Parameters
INDIVIDUALS = variates Number of individuals per species
SPECIES = variates Number of species
ESTIMATES = variates Saves the model estimates
EGROUPS = factors Saves the grouping of the estimates

ECNICHE procedure
Generates relative abundance of species for niche-based models (D.A. Murray).
Options
PRINT = string token Controls printed output (model, expected, replications); default mode, expe
MODELTYPE = string token The niche model (powerfraction, fixedratio, preemption, randomfraction, macarthurfraction); default powe
METHOD = string token Whether to use the Fortran DLL to calculate the relative abundance (dll, commands); default * uses the DLL in Windows implementations, and commands for other platforms
POWER = scalar Power for the Power fraction model, must be in the range 0 to 1
URATIO = scalar Ratio for the fixed ratio model
SEED = scalar Seed for random number generator for the random division of the niche space; default 0
PLOT = string token Plots the average relative abundance (relativeabundance); default rela

Parameters
NREPLICATES = scalars Number of replications
NSPECIES = scalars Number of species
EXPECTED = variates Saves the expected average relative abundance
SDEXPECTED = variates Saves the standard deviation for the expected mean relative abundance

ECNPESTIMATE procedure
Calculates nonparametric estimates of species richness (D.A. Murray).
Options
PRINT = string token Controls printed output (summary, estimates); default summ, esti
GROUPS = factor Grouping factor for different samples
NBOOT = scalar A scalar defining the number of bootstrap samples to be
4.1 Commands

Performs empirical-distribution-function goodness-of-fit tests (V.M. Cave).

EDFTEST procedure

- **Options**
 - `PRINT = string tokens`
 - Controls printed output (summary, tests); default summ, tests
 - `METHOD = string token`
 - Form of the alternative hypothesis (twosided, greaterthan, lessthan); default twos
 - `NTREATMENTS = scalar`
 - Number of treatments being compared
 - `DF = scalar`
 - Number of residual degrees of freedom
 - `REPTREATMENTS = scalar or variate`
 - Specifies the replication of the treatments
 - `REPCONTROL = scalar`
 - Specifies the replication of the control
 - `TOLERANCE = scalar`
 - Tolerance for the difference between the probability for the calculated equivalent deviate and that requested by CIPROBABILITY; default 0.0001

Parameters

- `CIPROBABILITY = scalars`
 - Specifies the probability for the confidence interval
- `ED = scalars`
 - Saves the equivalent deviate
Syntax summary

PLOT = string tokens
What graphs to plot (kerneldensity, histogram); default *

TEST = string tokens
Specifies the type of goodness-of-fit test to perform
(andersondarling, cramervonmises, kolmogorovsmirnov); default ande, cram, kolm

DISTRIBUTION = string tokens
Continuous distribution that is hypothesized to have generated the DATA; (beta, b2, burr, cauchy, chisquare, ev1 (or gumbel), ev2 (or frechet), ev3, expnormal, exponential, fdistribution, gamma, gev, gpareto, iburr, igamma, invnormal, iweibull, laplace, loggamma, logistic, loglogistic, lognormal, normal, paralogistic, pareto, skewnormal, stdnormal, stduniform, tdistribution, ubetamix, u gammamix, uniform, weibull, calculated); default norm

CONSTANT = string tokens
Whether to estimate a constant for the distribution, when the parameter values are estimated from the DATA (estimate, omit); default omit

TMETHOD = string tokens
Specifies the method used to perform the goodness-of-fit tests (likelihoodratio, traditional); default like

PARAMETERS = scalar or variate
Parameter values for the hypothesized distribution; if this is not set, parameter values are estimated from the DATA

NAMES = text
Names to identify the parameters in PARAMETERS; if this is not set, the default parameter ordering is assumed

CDFCALCULATION = expression
Expression, formed using argument x, that defines the cumulative distribution function of the hypothesized distribution; must be specified when DISTRIBUTION = calculated

MCPARAMETERS = string tokens
Whether the parameters are re-estimated or fixed during the Monte-Carlo simulations, when the parameter values are estimated from the DATA (fix, estimate); default esti

NTIMES = scalar
Number of Monte-Carlo simulations to perform; default 999

SEED = scalar
Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically

TITLE = text
Title for the graphs; default generates the title automatically

YTITLE = text
Y-axis title for the graphs; default generates the title automatically

XTITLE = text
X-axis title for the graphs; default generates the title automatically

WINDOW = scalar
Window to use for the graphs; default 3

SCREEN = string tokens
Whether to clear the screen before plotting the graph or to continue plotting on the old screen, when a single graph is requested (clear, keep); default clear

Parameters

DATA = variate
Identifier of the variate holding the data

STATISTIC = pointer
Pointer to scalar(s) to save the test statistic(s)

MCSTATISTICS = pointer
Pointer to variates(s) to save the Monte-Carlo simulated test statistic(s)

PROBABILITY = pointer
Pointer to scalar(s) to save the probability value(s) of the test statistic(s)

EDIT directive
Edits text vectors.

Options

CHANNEL = scalar or text
Text structure containing editor commands or a scalar giving the number of a channel from which they are to be read; default is the current input channel
4.1 Commands

END = text
Character(s) to indicate the end of the commands read from an
input channel; default is the character colon (:)

WIDTH = scalar
Limit on the line width of the text; default *

SAVE = text
Text to save the editor commands for future use; default *

Parameters

OLDTEXT = texts
Texts to be edited

NEWTEXT = texts
Text to store each edited text; if any of these is omitted, the
corresponding OLDTEXT is used

'ELPOISSON procedure
Calculates expected values of the lower parts of Poisson distributions (R.W. Payne).

Option
BOUND = string tokens
Boundary of upper part of distribution

Parameters

MEANS = variates or scalars
Means of the distributions

EXPECTEDVALUES = variates or scalars
Saves the expected values

CLPROBABILITIES = variates or scalars
Saves the cumulative lower probabilities

ELSE directive
Introduces the default set of statements in block-if or in multiple-selection control structures.
No options or parameters

ELSIF directive
Introduces a set of alternative statements in a block-if control structure.
No options
Parameter
expression
Logical expression to indicate whether or not the set of
statements is to be executed.

ENDBREAK directive
Returns to the original channel or control structure and continues execution.
No options or parameters

ENDCASE directive
Indicates the end of a "multiple-selection" control structure.
No options or parameters

ENDDEBUG directive
Cancels a DEBUG statement.
No options or parameters

ENDFOR directive
Indicates the end of the contents of a loop.
No options or parameters

ENDIF directive
Indicates the end of a block-if control structure.
No options or parameters

ENDJOB directive
Ends a Genstat job.
No options or parameters
ENDPROCEDURE directive

Indicates the end of the contents of a Genstat procedure.

No options or parameters

ENQUIRE directive

Provides details about files opened by Genstat.

No options

Parameters

- **CHANNEL = scalars**
 Channel numbers to enquire about; for FILETYPE= input or output, a scalar containing a missing value will be set to the number of the current channel of that type and a negative value can be used to check the existence of a file that is not yet connected to a channel.

- **FILETYPE = string tokens**
 Type of each file (input, output, unformatted, backingstore, procedurelibrary, graphics); default input.

- **OPEN = scalars**
 To indicate whether or not the corresponding channels are currently open (0=closed, 1=open).

- **NAME = texts**
 External name of the file, if channel is open.

- **EXIST = scalars**
 To indicate whether files on corresponding channels currently exist (0=not yet created, 1=exist).

- **WIDTH = scalars**
 Maximum width of records in each file (only relevant for input and output files, set to * for other types).

- **PAGE = scalars**
 Number of lines per page (relevant only for output files).

- **ACCESS = texts**
 Allowed type of access: set to 'readonly', 'writeonly' or 'both'.

- **LINE = scalars**
 Number of the current line (input files only).

- **STYLE = texts**
 Underlying style of an output channel: set to 'plaintext', 'html', 'rtf' or 'latex' (see OPEN).

- **OUTSTYLE = texts**
 Current style of an output channel: set to 'plaintext' or 'formatted' (see OUTPUT).

EQUATE directive

Transfers data between structures of different sizes or types (but the same modes i.e. numerical or text) or where transfer is not from single structure to single structure.

Options

- **OLDFORMAT = variate**
 Format for values of OLDSTRUCTURES; within the variate, a positive value n means take n values, $-n$ means skip n values and a missing value means skip to the next structure; default * i.e. take all the values in turn.

- **NEWFORMAT = variate**
 Format for values of NEWSTRUCTURES; within the variate, a positive value n means fill the next n positions, $-n$ means skip n positions and a missing value means skip to the next structure; default * i.e. fill all the positions in turn.

- **FREPRESENTATION = string token**
 How to interpret factor values (labels, levels, ordinals); default leve.

Parameters

- **OLDSTRUCTURES = identifiers**
 Structures whose values are to be transferred; if values of several structures are to be transferred to one item in the NEWSTRUCTURES list, they must be placed in a pointer.

- **NEWSTRUCTURES = identifiers**
 Structures to take each set of transferred values; if several structures are to receive values from one item in the OLDSTRUCTURES list, they must be placed in a pointer.
ESTIMATE directive

Estimates parameters in Box-Jenkins models for time series (synonym of `TFIT`).

Options

- **PRINT = string tokens**
 - What to print (model, summary, estimates, correlations, monitoring); default `mode, summ, esti`
- **LIKELIHOOD = string token**
 - Method of likelihood calculation (exact, leastsquares, marginal); default `exac`
- **CONSTANT = string token**
 - How to treat the constant (estimate, fix); default `esti`
- **RECYCLE = string token**
 - Whether to continue from previous estimation (yes, no); default `no`
- **WEIGHTS = variate**
 - Weights; default `*`
- **MVREPLACE = string token**
 - Whether to replace missing values by their estimates (yes, no); default `no`
- **FIX = variate**
 - Defines constraints on parameters (ordered as in each model, tf models first): zeros fix parameters, parameters with equal numbers are constrained to be equal; default `*`
- **METHOD = string token**
 - Whether to carry out full iterative estimation, to carry out just one iterative step, to perform no steps but still give parameter standard deviations, or only to initialize for forecasting by regenerating residuals (full, onestep, zerostep, initialize); default `full`
- **MAXCYCLE = scalar**
 - Maximum number of iterations; default `15`
- **TOLERANCE = scalar**
 - Criterion for convergence; default `0.0004`
- **SAVE = identifier**
 - To name save structure, or supply save structure with transfer-functions; default `*` i.e. transfer-functions taken from the latest model

Parameters

- **SERIES = variate**
 - Time series to be modelled (output series)
- **TSM = TSM**
 - Model for output series
- **BOXCOXMETHOD = string token**
 - How to treat transformation parameter in output series (fix, estimate); default `fix`
- **RESIDUALS = variate**
 - To save residual series

EUPOISSON procedure

Calculates expected values of the upper parts of Poisson distributions (R.W. Payne).

Option

- **BOUND = string tokens**
 - Boundary of upper part of distribution

Parameters

- **MEANS = variates or scalars**
 - Means of the distributions
- **EXPECTEDVALUES = variates or scalars**
 - Saves the expected values
- **CUPROBABILITIES = variates or scalars**
 - Saves the cumulative upper probabilities

EXAMPLE procedure

Obtains and runs a Genstat example program, PC Windows only (R.W. Payne).

Option

- **EXECUTE = string token**
 - Whether to run the example when Genstat is running interactively (no, yes); default `no`

Parameters

- **EXTYPE = texts**
 - Types of example
- **EXNAME = texts**
 - Names of example
- **SOURCE = texts**
 - Texts to store the source code of each example
- **STATEMENT = texts**
 - Saves a command to obtain each example (useful if the name and type information has been specified in response to questions from `EXAMPLE`)
EXECUTE directive
Executes the statements contained within a text.
No options
Parameter
texts
Statements to be executed

EXIT directive
Exits from a control structure.
Options
NTIMES = scalar
Number of control structures, n, to exit (if n exceeds the
number of control structures of the specified type that are
currently active, the exit is to the end of the outer one; while
for n negative, the exit is to the end of the -n'th structure in
order of execution); default 1
CONTROLSTRUCTURE = string token
Type of control structure to exit (job, for, if, case, procedure); default for
REPEAT = string token
Whether to go to the next set of parameters on exit from a FOR
loop or procedure (yes, no); default no
EXPLANATION = text
Text to be printed if the exit takes place; default *

EXPORT procedure
Saves data structures in Genstat, Excel, R, Quattro, dBase, SPlus, Gauss, MatLab, SAS, Instat,
Image or text files (D.B. Baird).
Options
PRINT = string token
What to print (summary); default summ
OUTFILE = text
Data file to be written
METHOD = string token
Action to take if the file already exists (add, append, concatenate, merge, overwrite, prompt, fail, replace); default prompt in interactive mode, fail in batch mode
PLAINNAMES = string token
Whether to leave the column names in the file in plain form
rather than decorating them with the column type information
i.e. ! for factors, :D for dates etc (yes, no) default no
SHEETNAME = text
Name of new sheet to be added to an existing Excel file
NONAMES = text
Whether to suppress column names in output to spreadsheet or
text file (yes, no); default no
TITLE = text
Description for spreadsheet
READONLY = string token
Whether to define the complete sheet as read only (yes, no); default no
ANALYSIS = text
Genstat commands to analyse columns in the spreadsheet
ASETUP = text
Genstat commands to be run once before the analysis of any
columns in the spreadsheet
ADUMMY = text
The name of the dummy (if any) used the ANALYSIS
commands
CSVOPTIONS = string tokens
Options for CSV files (noquotes, pack, round, fixed, align); default pack
HTMLOPTIONS = string token
Options for HTML files (allowformats, nogrid, centre, rightjustify); default * i.e. none
COLMATCH = string token
How to match columns when appending (name, position); default posi
GROUPS = factor or text
Identifier for the factor, or text containing the name of the
factor, to identify appended sections in the output file
4.1 Commands

GLABEL = texts
Labels for the GROUPS factor for the current appended section, and also for the original section if no previous sections have been appended.

MATCH = texts, variates or pointers
Up to four DATA variables to use as keys when METHOD=merge; default * uses the first DATA variable.

WITH = texts, variates or pointers
Columns in the file to use as keys when METHOD=merge; default * uses as many columns of the initial columns in the file as are needed to give a column for each MATCH column.

UPDATE = string token
Whether to use columns with matching names to replace existing columns when concatenating or merging (yes, no); default * no changes the names of columns with the same name as existing columns so that they become unique.

OUTOPTIONS = text
Optional output file arguments to be passed to the Dataload.dll.

ROWCOLOURS = factor
The factor to be used for colouring the rows (the factor must have colours defined by the FACCOLOURS parameter).

TABLEFORMAT = string token
The format to use when displaying tables with two or more classifying factors (page, column); default page.

MISSING = text
String to represent a numerical missing value when writing to a text file (.TXT, .TAB or .CSV) or a spreadsheet file (Excel, Quattro or Open Office); default is to use * in .TXT or .TAB files, and leave cells with missing values empty in csv or spreadsheet files.

DELETESHEETS = string token
Whether to delete sheets if you are overwriting a multiple paged file with a single page (always, never, prompt); default prom when running interactively and neve when running in batch.

NONASCII = string token
Specifies how to output non-ASCII characters to text files (utf8, unicode); default utf8.

EXTRAROW = string token
Whether to include the column descriptions in spreadsheet files (yes, no); default no.

TIMEOUT = scalar
Number of seconds to wait when a file is open in another process; default 10.

QTL = text
Private option for QTL files, not for general use.

Parameters

DATA = identifiers
The data structures to be written to the file, these must be compatible (i.e. of the same length).

COLUMNS = texts
Names for the columns to be saved.

PROTECT = scalars
Whether the column is to be defined as read only when option READONLY=no (yes, no); default no.

FACCOLOURS = variates, texts or pointers
Specifies background colours for factor columns.

FOREGROUND = variates, texts, scalars or pointer
Specifies foreground colours for columns.

BACKGROUND = variates, texts, scalars or pointer
Specifies background colours for columns.

DECIMALS = variates or scalars
Specifies numbers of decimals for the columns.

EXPRESSION directive
Declares one or more expression data structures.

Options

VALUE = expression
Value for all the expressions; default *.

MODIFY = string token
Whether to modify (instead of redefining) existing structures (yes, no); default no.

IPRINT = string tokens
Information to be used by default to identify the expressions in output (identifier, extra); if this is not set, they will be
Parameters

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFIER = identifiers</td>
<td>Identifiers of the expressions</td>
</tr>
<tr>
<td>VALUE = expression structures</td>
<td>Expression data structures providing values for the expressions</td>
</tr>
<tr>
<td>EXTRA = texts</td>
<td>Extra texts associated with the identifiers</td>
</tr>
</tbody>
</table>

EXTRABINOMIAL procedure

Fits the models of Williams (1982) to overdispersed proportions (M.S. Ridout & P.W. Goedhart).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string tokens</td>
<td>What to print if iterative estimation process converges successfully and whether to monitor the iterations (model, summary, accumulated, estimates, correlations, fittedvalues, monitoring); default *</td>
</tr>
<tr>
<td>CONSTANT = string token</td>
<td>How to treat constant (estimate, omit); default esti</td>
</tr>
<tr>
<td>FACTORIAL = scalar</td>
<td>Limit for expansion of model terms; default 3</td>
</tr>
<tr>
<td>NOMESSAGE = string tokens</td>
<td>Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality); default *</td>
</tr>
<tr>
<td>METHOD = string token</td>
<td>Which model to fit to take account of the extra variation (II, III); default II</td>
</tr>
<tr>
<td>MODIFYMODEL = string token</td>
<td>Whether to leave the modified MODEL settings (WEIGHTS and DISPERSION) or whether to restore the original situation (yes, no); default no</td>
</tr>
<tr>
<td>WEIGHTS = variate</td>
<td>To save estimated weights</td>
</tr>
<tr>
<td>PHI = scalar</td>
<td>To save estimated overdispersion parameter</td>
</tr>
<tr>
<td>MAXCYCLE = scalar</td>
<td>Maximum number of iterations; default 10</td>
</tr>
<tr>
<td>TOLERANCE = scalar</td>
<td>Convergence criterion; default 0.01</td>
</tr>
</tbody>
</table>

Facamend procedure

Permutates the levels and labels of a factor (J.T.N.M. Thissen).

Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTION = string token</td>
<td>Order into which to sort the levels or labels of FACTOR (ascending, descending); default asce</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR = factor</td>
<td>Factor whose levels or labels are to be permuted</td>
</tr>
<tr>
<td>NEWLEVELS = variate or text</td>
<td>To specify the new order of the factor levels or labels</td>
</tr>
</tbody>
</table>

FACCOMBINATIONS procedure

Forms a factor to indicate observations with identical values of a set of variates, texts or factors (R.W. Payne).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLABELS = string token</td>
<td>When to form labels (always, ifredeclared, only, never); default ifre</td>
</tr>
<tr>
<td>SEPARATOR = text</td>
<td>Separator to use when constructing labels; default ' '</td>
</tr>
<tr>
<td>ISEPARATOR = text</td>
<td>Separator to use between identifiers and levels or labels; default ' '</td>
</tr>
<tr>
<td>IMETHOD = string token</td>
<td>Whether to include identifiers in the labels (include, omit); default omit</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECTORS = pointers</td>
<td>Pointers containing sets of vectors (variates, and/or factors, and/or texts)</td>
</tr>
<tr>
<td>FACTOR = factors</td>
<td>Saves a factor for each set of vectors with a level for every different combination of their values</td>
</tr>
</tbody>
</table>
4.1 Commands

FACDIVIDE procedure

Represents a factor by factorial combinations of a set of factors (R.W. Payne).

Option

`OLDFACTOR = factor`

Factor whose levels are to be represented by the factorial combinations of the `NEWFACTORS`

Parameters

`NEWFACTOR = factors`
Factors formed to represent `OLDFACTOR`

`LEVELS = scalars or variates`
Levels of the `NEWFACTORS`

FACEXCLUDEUNUSED procedure

Redefines the levels and labels of a factor to exclude those that are unused (R.W. Payne).

No options

Parameters

`FACTOR = factors`
Factors with unused levels

`NEWFACTOR = factors`
New factors, with levels (and labels) that exclude those that are unused; if unset, the original factor is redefined

FACGETLABELS procedure

Obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise (V.M. Cave).

Options

`PRINT = string token`
Controls printed output (labels); default * i.e. none

`PREFIX = text`
Supplies a single line of text to be used as a prefix when constructing labels from the factor levels; default * i.e. none

Parameters

`FACTOR = factors`
Factor whose labels are to be obtained

`LABELS = texts`
Specifies text structures to save the labels of each factor

`EXIST = scalars`
Specifies a scalar for each factor, set to the value 1 if its labels already existed or 0 if they had to be constructed

FACLEVSTANDARDIZE procedure

Redefines a list of factors to coordinate their levels or labels (R.W. Payne).

Options

`FREPRESENTATION = string token`
Whether to coordinate the factors to have the same levels, labels or (ordinal) number of levels (`levels`, `labels`, `ordinals`); default `leve`

`DIRECTION = string token`
How to sort the levels or labels (`ascending`, `descending`, `given`); default `asce`

`CASE = string token`
Case to use for labels (`given`, `lower`, `upper`, `sentence`, `title`); default `give`

`REMOVEUNUSED = string token`
Whether to remove unused levels (`yes`, `no`); default `no`

Parameters

`FACTOR = factors`
Factors to be coordinated

`NEWFACTOR = factors`
New factors, redefined to share the same levels or labels; if unset, the original `FACTOR` is redefined

FACMERGE procedure

Merges levels of factors (S.D. Langton).

Options

`PRINT = string token`
Controls printed output (summary); default * i.e. none

`OLDFACTOR = factor`
Original factor

`NEWFACTOR = factor`
New factor with merged levels

Parameters

`MERGE = variates or texts`
Levels to merge

`LEVMERGED = variates`
Level to assign to the merged levels
LABMERGED = texts
Label to assign to the merged levels

FACPRODUCT procedure
Forms a factor with a level for every combination of other factors (R.W. Payne).

Options
- **FLABELS = string token**
 - When to form labels (always, ifredeclared, only, never); default ifre
- **SEPARATOR = text**
 - Separator to use when constructing labels; default ''
- **LMETHOD = string token**
 - Whether to define levels for all combinations or only for those present in the data (all, present); default pres
- **ISEPARATOR = string token**
 - Separator to use between identifiers and levels or labels; default ''
- **IMETHOD = string token**
 - Whether to include identifiers in the labels (include, omit); default omit

Parameters
- **FACTORS = pointers or formulae**
 - Factors contributing to each product
- **PRODUCT = factors**
 - Factors to be formed

FACROTATE directive
Rotates factor loadings from a principal components, canonical variates or factor analysis.

Options
- **PRINT = string tokens**
 - Printed output required (communalities, loadings, orthogonalrotationmatrix, rotation); default * i.e. no printing
- **METHOD = string token**
 - Criterion (varimax, quartimax); default vari
- **NROOTS = scalar**
 - Sets the number of dimensions to rotate from the original loadings; default * i.e. all

Parameters
- **OLDLOADINGS = matrices**
 - Original loadings
- **NEWLOADINGS = matrices**
 - Rotated loadings for each set of OLDLOADINGS
- **COMMUNALITIES = matrices**
 - Communalities of the variables in each rotation
- **ROTATION = matrices**
 - Saves the orthogonal rotation from the original solution to the rotated space

FACSORT procedure
Sorts the levels of a factor according to an index vector (R.W. Payne).

Options
- **DIRECTION = string token**
 - Direction in which to sort the index (ascending, descending); default asce
- **SETATTRIBUTES = string tokens**
 - Which aspects of each NEWFACTOR to define (levels, labels, values); default * i.e. labels and values if defined for FACTOR, also levels if not the integers 1,2...

Parameters
- **FACTOR = factors**
 - Factors whose levels are to be reordered
- **INDEX = variate, text or one-way table**
 - Index vectors defining the ordering of the levels of each factor
- **NEWFACTOR = factors**
 - New factors with reordered levels; if unset, the original FACTOR is redefined
- **NEWLEVELS = variates**
 - Saves the (reordered) levels as defined for each NEWFACTOR

FACTOR directive
Declares one or more factor data structures.

Options
- **NVALUES = scalar or vector**
 - Number of units, or vector of labels; default * takes the setting from the preceding UNITS statement, if any
- **LEVELS = scalar or vector**
 - Number of levels, or series of numbers which will be used to
4.1 Commands

Values refer to levels in the program; default *

VALUES = *numbers*
Values for all the factors, given as levels; default *

LABELS = *text*
Labels for levels, for input and output; default *

MODIFY = *string token*
Whether to modify (instead of redefining) existing structures (yes, no); default no

REFERENCELEVEL = *scalar*
Defines the reference level used e.g. to define the parameterization of regression models

IPRINT = *string tokens*
Information to be used by default to identify the factors in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Parameters

IDENTIFIER = *identifiers*
Identifiers of the factors

VALUES = *identifiers*
Values for each factor, specified as levels or labels

DECIMALS = *scalars*
Number of decimals for printing levels

CHARACTERS = *scalars*
Number of characters for printing labels

EXTRA = *texts*
Extra text associated with each identifier

DREPRESENTATION = *scalars or texts*
Default format to use when the contents represent dates and times

FACUNIQUE procedure
Redefines a factor so that its levels and labels are unique (R.W. Payne).

Options

MERGESAME = *string tokens*
What must be the same for groups defined by the factor to be merged (levels, labels); default * i.e. no groups are merged

INCREMENT = *scalar*
Value to use to modify duplicate levels; default * i.e. a suitable (small) value is determined automatically

ADDTO = *string token*
Whether to add the increment to the value or the absolute value of duplicated levels (value, absolutevalue); default abs

Parameters

OLDFACTOR = *factors*
Factors whose levels and labels are to be made unique

NEWFACTOR = *factors*
New factors with unique levels; if unset, the original **OLDFACTOR** is redefined

CHANGED = *scalars*
Indicates whether the factor has changed

FALIASTERMS procedure
Forms information about aliased model terms in analysis of variance (R.W. Payne).

Options

PRINT = *string tokens*
Controls printed output (aovtable, aliasedterms); default alia

TREATMENTSTRUCTURE = *formula*
Treatment model for the design; if this is not set, the default is taken from any existing setting defined by the **TREATMENTSTRUCTURE directive**

BLOCKSTRUCTURE = *formula*
Block model for the design; if this is not set, the default is taken from any existing setting defined by the **BLOCKSTRUCTURE directive**

FACTORIAL = *scalar*
Limit on number of factors in a treatment term; default 3

RESTRICTION = *variate*
Defines a restriction on the units for the analysis; default * i.e. none

Parameters

TERMS = *formula*
Model terms whose aliased terms are to be identified; the default is to take all the terms in the treatment model

ALIASTERMS = *formula or pointer*
Saves the aliased terms
FARGUMENTS directive

Forms lists of arguments involved in an expression.

Options
- **EXPRESSION = expression structure**: Expression whose arguments are required
- **NRESULTS = scalar**: Number of results generated by the expression
- **NCALCULATIONS = scalar**: Number of calculations in the expression

Parameters
- **ICALCULATION = scalars**: The calculation from which to save the result and arguments
- **RESULT = dummies**: Stores the result structure for calculation ICALCULATION
- **ARGUMENTS = pointers**: Stores the arguments in calculation ICALCULATION

FAULT directive

Checks whether to issue a diagnostic, i.e. a fault, warning or message.

Options
- **DIAGNOSTIC = string token**: Severity of the diagnostic (fault, warning, message); default fault
- **FAULT = text**: Diagnostic code; default 'UF 1' for fault, 'UF 2' for warning
- **EXPLANATION = text**: Explanatory information
- **NCALLS = scalar**: Number of calls from the main procedure (whose name should be used in fault or warning messages); default 0

Parameter
- **expression**: Logical expression to test whether or not to give the diagnostic

FBASICCONTRASTS procedure

Breaks a model term down into its basic contrasts (R.W. Payne).

Options
- **TERM = formula**: Model term to split into basic contrasts
- **PSEUDOFACTORS = pointer**: Pseudo-factors representing the basic contrasts
- **NEWTERMS = formula structure**: Model formula containing the term followed by the pseudofactors

No parameters

FBETWEENGROUPVECTORS procedure

Forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis (R.W. Payne).

Options
- **CLASSIFICATION = factors**: Factors defining the groups; must be set
- **COUNTS = variate**: Saves a variate counting the number of units with each factor combination; default *
- **WEIGHTS = variate**: Weights to be used to calculate the within-group summaries; default * indicates that all units have weight 1
- **METHOD = string token**: How to summarize the data variates (totals, observations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, means, seskewness, sekurtosis); default mean
- **PERCENTQUANTILES = scalar**: Percentage point for quantiles; default 50
- **OMITEMPTYCELLS = string token**: Whether to omit units arising from empty cells in the summary table (yes, no); default no
- **SETLEVELS = string token**: Whether to redefine the levels of factors (yes, no); default no

Parameters
- **VECTOR = variates and factors**: Original data vectors
- **NEWVECTOR = variates and factors**: New vectors containing the within-group summaries
FCA directive
Performs factor analysis.

Options
PRINT = string tokens
Printed output required (communalities, loadings, coefficients, scores, residuals, cresiduals, vresiduals, tests); default * i.e. no printing

NDIMENSIONS = scalar
Number of factors to fit; no default, must be specified

METHOD = string token
Whether to use correlations or variances and covariances (correlation, vcovariance, variancecovariance); default vcov

MAXCYCLE = scalar
Maximum number of iterations; default 50

TOLERANCE = scalar
Minimum value to assume for the unique component \(\psi_i^2 \) of each observed variable; default \(10^{-6} \)

Parameters
DATA = pointers or matrices or symmetric matrices or SSPMs
Pointer of variates forming the data matrix, or matrix storing the variate values by columns, or symmetric matrix storing their variances and covariances, or SSPM giving their sums of squares and products

NUNITS = scalars
When DATA is set to a symmetric matrix of variances and covariances, NUNITS must specify the number of units from which they were calculated if tests are required

LRV = LRVs
Saves the loadings, latent roots and trace from each analysis

SSPM = SSPMs
Saves the SSPM formed from a DATA matrix or pointer

COMMUNALITIES = variates
Saves the communalities

COEFFICIENTS = matrices
Saves the factor score coefficients

SCORES = matrices or pointers
Saves the factor analysis scores

RESIDUALS = matrices or pointers
Saves residuals from the dimensions fitted in the analysis

CRESIDUALS = symmetric matrices
Saves the residual correlation or covariance matrix

VRESIDUALS = variates
Saves the residual variances

FCLASSIFICATION directive
Forms a classification set for each term in a formula, breaks a formula up into separate formulae (one for each term), and applies a limit to the number of factors and variates in the terms of a formula.

Options
FACTORIAL = scalar
Limit on the number of factors and variates in each term; default * i.e. no limit

NTERMS = scalar
Outputs the number of terms in the formula

CLASSIFICATION = pointer
Saves a list of all the factors and variates in the TERMS formula

OUTFORMULA = formula structure
Identifier of a formula to store a new formula, omitting terms with too many factors and variates

INCLUDEFUNCTIONS = string token
Whether or not to include functions in the formulae saved by the OUTFORMULA option or the OUTTERMS parameter (yes, no); default no

REORDER = string token
When to reorder the terms in the model (always, standard, never); default stan

DROPTERMS = string token
Whether to include only terms that can be dropped individually from the formula (yes, no); default no

CHECKFUNCTIONS = scalar
Indicator, set to one if the TERMS formula contains any functions, and zero if it contains none

FUNCTIONDEFINITIONS = pointer
Saves details of the functions defined for each factor and variate in the TERMS formula

EXCLUDEPSEUDOTERMS = string token
Whether to omit pseudo-terms from the numbers of terms and the formulae saved by the OUTFORMULA option and OUTTERMS parameter (yes, no); default no
Parameters
TERMS = formula
Formula from which the classification sets, individual model terms and so on are to be formed
CLASSIFICATION = pointers
Identifiers for pointers to store the factors and variates composing each model term of the TERMS formula
OUT TERMS = formula structures
Identifiers for formulae to store each individual term of the TERMS formula
MA INTERMS = formula structures
Identifiers for formulae to store the main term for each individual term of the TERMS formula

FCOMPLEMENT procedure
Forms the complement of an incomplete block design (W. van den Berg).
Option
PRINT = string token
Controls whether or not to print a plan of the design (design);
default desi

Parameters
TREATMENTS = factors
Specifies the treatment factor of the original design
REPLICATES = factors
Specifies the replicate factor of the original design when this is a resolvable design
BLOCKS = factors
Specifies the block factor of the original design
NEWTREATMENTS = factors
Saves the treatment factor of the complement design
NEWREPLICATES = factors
Saves the replicate factor of the complement design when this is a resolvable design
NEWBLOCKS = factors
Saves the block factor of the complement design
NEWUNITS = factors
Saves the treatment factor of the complement design
SEED = scalars
Seed for the random-numbers to randomize the design; default 0

FCONTRASTS procedure
Modifies a model formula to contain contrasts of factors (R.W. Payne).
Options
FORMULA = formula
Formula to modify to contain contrasts
NEWFORMULA = formula structure
Modified formula
FACTORIAL = scalar
Limit on the number of variates or factors in terms generated from FORMULA; default 3

Parameters
FACTOR = factors
Factors over which to define contrasts
CONTRASTTYPE = string tokens
Type of contrast (polynomial, regression); default poly
ORDER = scalars
Number of contrasts to define for each FACTOR
XCONTRASTS = variates or matrices
X-values defining the contrasts for each FACTOR
DEVIATIONS = string tokens
Whether to include deviations (yes, no); default no
ORTHOGONALIZE = string tokens
Whether to orthogonalize the contrasts (yes, no); default no
SAVECONTRASTS = pointers
Pointer to save the contrast variates defined for each FACTOR

FCOPY directive
Makes copies of files.
No options

Parameters
OLD = texts
Name of each file to copy
NEW = texts
Name for the new copy of each file
OVERWRITE = string tokens
Whether to overwrite any existing files (yes, no); default no
FCORRELATION procedure

Forms the correlation matrix for a list of variates (R.W. Payne).

Options

PRINT = string tokens
Printed output (correlations, test); default corr

METHOD = string token
Type of test to make (against zero) for the correlations (twosided, greater, lessthan); default twos

WEIGHTS = variate
Provides weights for the units of the variates; default * assumes that they all have weight one

CORRELATIONS = symmetric matrix
Saves the correlations

PROBABILITIES = symmetric matrix
Saves the test probabilities

NOBSERVATIONS = scalars
Saves the number of observations from which the correlations have been calculated

Parameter

DATA = variates
Variate for which the matrix is to be calculated

FCOVARIogram directive

Forms a covariogram structure containing auto-variograms of individual variates and cross-variograms for pairs from a list of variates.

Options

PRINT = string token
Controls printed output (statistics, variograms, autovariograms); default stat

METHOD = string token
Specifies what to do when the measurements are not all made at the same locations (allwithcrossnugget, allnocrossnugget, commonpoints); default comm

COVARIogram = pointer
Pointer to store the variograms, cross-variograms and associated information for use in MCOVARIogram

MAXLAG = scalar
Maximum lag in all directions

STEPSLENGTHS = scalar or variate
Length of the step or steps in which lag is incremented

DIRECTIONS = scalar or variates
Directions along which to form the variogram, scalar for a single direction in 2 dimensions, variate for several directions in 2 dimensions, and pairs of variates for 3 dimensional data

SEGMENTS = scalar
Angle subtended by each segment along the DIRECTIONS

COORDSYSTEM = string token
Coordinate system used for the geometry for discretizing the lag (mathematical, geographical); default math

MAXCONEDIAMETER = scalar
Diameter at which the segments over which averaging is to be done should cease to expand; default * implies no limit

MINCOUNT = scalar
Minimum number of points required at a particular lag point for the cross-variogram to be estimated there; default 1

DRIFT = string token
Mean function (constant, linear, quadratic); default cons

Parameters

DATA = variates
Measurements as a variate

X1 = variates
Locations of each set of measurements in the first dimension

X2 = variates
Locations of each set of measurements in the second dimension (if recorded in more than 1 dimension)

X3 = variates
Locations of each set of measurements in the third dimension (if recorded in 3 dimensions)

FDELETE directive

Deletes files.

No options

Parameter

NAME = texts
Names of the files to delete
FDESIGNFILE procedure

Forms a backing-store file of information for AGDESIGN (R.W. Payne).

Option

PRINT = string tokens
Controls printed output (catalogue, data, filestructure); default * i.e. none

Parameters

DATAFILE = texts
Name of the data file containing the information required to form each backing-store subfile

BSFILE = texts
Name of the backing-store file

SUBFILE = identifiers
Identifier of the backing-store subfile

FDIALLEL procedure

Forms the components of a diallel model for REML or regression (R.W. Payne).

No options

Parameters

MALEPARENTS = factors
Specifies the male parents

FEMALEPARENTS = factors
Specifies the female parents

PARENTS = matrices
Saves design matrices for the overall parental effects

COMPPARENTS = matrices
Saves comparison matrices for overall parental effects

PUREVSCROSS = factors
Saves factors to represent the comparison between pure and crossed lines

CROSSPAIR = factors
Saves factors to represent the comparison between types of pairs of parent (ignoring the individual genders)

FDISTINCTFACTORS procedure

Checks sets of factors to remove any that define duplicate classifications (R.W. Payne).

No options

Parameters

SET1 = pointers
First set of factors

SET2 = pointers
Second set of factors

DISTINCTSET = pointers
Saves the distinct factors

FDRBONFERRONI procedure

Estimates false discovery rates by a Bonferroni-type procedure (A.I. Glaser).

Options

PRINT = string token
Controls printed output (pi0); default pi0

METHOD = string token
Controls the method used for calculating π_0 (smoother, bootstrap); default smoo

LOGP = string token
Whether to take logs of π_0 when METHOD=smoother (yes, no); default no

DF = scalar
Degrees of freedom for smoothing spline; default 3

PLOT = string token
Controls plots (phistogram, qhistogram, pi0vslambda, qvsp, tests, expfalsepositive, inference, loginference); default phis, qhis, pi0v, qvsp, test, expf, infe, logi

WINDOW = scalar
Window for the graphs; default 1

KEYWINDOW = scalar
Window for the key (zero for none); default 2

Parameters

PROBABILITIES = variates
Significance values, must lie between 0 and 1

LAMBDA = scalars or variates
Values of tuning parameter λ, equivalent to significance levels at which to test the PROBABILITIES; default !(0, 0.05,...0.9)

FDR = variates
Saves the False Discovery Rates (i.e. q-values) at the sorted p-values in PROBABILITIES

FRR = variates
Saves the False Rejection Rates at the sorted p-values in PROBABILITIES
4.1 Commands

PIO = scalars
Saves the value of π_0, i.e. the maximum value of the FDR

LOWER = scalars
Lower bound of q-values to use with PLOT settings qvsp, tests and expfalsepositive; default 0

UPPER = scalar
Upper bound of q-values to use with PLOT settings qvsp, tests and expfalsepositive; default 1, which indicates maximum q-value

FDRMIXTURE procedure
Estimates false discovery rates using mixture distributions (J.W. McNicol & D.B. Baird).

Options
- PRINT = string token
 What to print (monitoring, estimates); default esti
- DISTRIBUTION = string token
 Which distribution to mix with Uniform (beta, gamma); default beta
- INITIAL = variate
 Initial values for mixing proportion (φ) and Beta or Gamma parameters (A and B); default !(0.90, 0.30, 2)
- LOWER = variate
 Lower limits for parameters; default !(0.00001, 0.001, 0.001)
- UPPER = variate
 Upper values for parameters; default !(0.99999, 5, 1000)
- PLOT = string token
 What to plot (histogram, density, logdensity, inference, loginference); default hist, dens, logd, infe, logi
- WINDOW = scalar
 Window for graphs; default 1
- KEYWINDOW = scalar
 Key window for Inference plot; default 2
- MAXCYCLE = scalar
 Maximum iteration cycles; default 50
- TOLERANCE = scalar or variate
 Tolerance for convergence of parameters; default 0.01 for Beta, and 0.001 for Gamma

Parameters
- PROBABILITIES = variates
 Significance values, must lie between 0 and 1
- ESTIMATES = variates
 Saves the estimates of mixture parameters φ, A and B
- FDR = variates
 Saves the False Discovery Rates at the p-values in PROBABILITIES i.e. q-values
- FRR = variates
 Saves the False Rejection Rates at the p-values in PROBABILITIES
- POWER = variates
 Saves the power estimates as a function of the p-values in PROBABILITIES
- POSTHA = variates
 Saves the Posterior Probability of H_a at the p-values in PROBABILITIES
- LOGLIKELIHOOD = scalars
 Value of the loglikelihood at end of the iteration process
- NCYCLES = scalars
 Number of iterations taken to convergence

FEXACT2X2 procedure
Does Fisher's exact test for 2×2 tables (M.S. Ridout & M.W. Patefield).

Option
- PRINT = string tokens
 Controls printed output (probabilities, tables); default prob

Parameters
- TABLE = tables or variates
 The numbers in each 2×2 table, ordered row by row or column by column
- PROBABILITIES = variates
 Saves the probabilities for each table in a variate of length 6 (to store in positions 1, 3 and 5 one-tailed, two-tailed calculated as twice the one-tailed probability, and as the sum of the probabilities of all tables with probability less than that of the observed table with the corresponding mid-p values stored in positions 2, 4 and 6)
FFRAME procedure

Forms multiple windows in a plot-matrix for high-resolution graphics (P.W. Goedhart).

Options

PRINT = string tokens
Whether to display the layout and numbering of the plot-matrix in a table or in a high-resolution test-graph on the current device (table, testgraph); default *

ARRANGEMENT = string token
Type of plot-matrix (rectangle, square, lowersymmetric, uppersymmetric, diagonal); default rectangle

ROWS = scalar
Number of rows of plot-matrix; default 3

COLUMNS = scalar
Number of columns of plot-matrix; default 3

DIAGONALWINDOWS = string token
Whether to include or exclude the diagonal in symmetric plot-matrices (include, exclude); default include

SQUARESHAPES = string token
Whether to force the individual windows, excluding margins for annotation, to be square (yes, no); default no

STARTWINDOW = scalar
Specifies the number of the first window; default 1

TESTGRAPH = variate
Specifies windows to be displayed in a test-graph (if this option is set, only a test-graph is produced and all other settings are ignored); default *

NUMBERING = string token
Controls the way in which the individual windows are numbered (rowwise, columnwise); default rowwise

DEFINE = string token
Whether to define the windows within the procedure (windows, nothing); default wind

CLEARWINDOW = scalar or variate
Defines the windows for which the screen should be cleared; i.e. specifies the elements of the SCREEN pointer which are set to the single-values text 'clear', other element of SCREEN are set to 'keep'; default 1

RLOWER = scalar
Lowest y device coordinate; default 0

RUPPER = scalar
Highest y device coordinate; default 1

CLOWER = scalar
Lowest x device coordinate; default 0

CUPPER = scalar
Highest x device coordinate; default 1

RSKIP = scalar
Space between windows along the y-axis; default 0

CSKIP = scalar
Space between windows along the x-axis; default 0

MARGIN = string tokens
Sets the size of the margins for labels and titles (xtitle, ytitle, none, small); default *

YMLOWER = scalar
Size of bottom margin (x-axis labelling) in each window; default *

YMUPPER = scalar
Size of upper margin (overall title) in each window; default *

XMLOWER = scalar
Size of left-hand margin (y-axis labelling) in each window; default *

XMUPPER = scalar
Size of right-hand margin in each window; default *

RMLOWER = scalar
Additional size of bottom margin (x-axis labelling) in windows at the bottom of the plot-matrix; default 0

RMUPPER = scalar
Additional size of upper margin (overall title) in windows at the top of the plot-matrix; default 0

CMLOWER = scalar
Additional size of left-hand margin (y-axis labelling) windows at the left of the plot-matrix; default 0

CMUPPER = scalar
Additional size of right-hand margin in windows at the right of the plot-matrix; default 0

BACKGROUND = text or scalar
Specifies the colour to be used for the background in each window (where allowed by the graphics device); default 'background'

Parameters

NGRAPHS = scalar
To save the number of windows in the plot-matrix

SWINDOW = pointer
Pointer to save scalars with window numbers

SYLOWER = pointer
Pointer to save scalars with lower y device coordinates for each window
SYUPPER = pointer
Pointer to save scalars with upper y device coordinates for each window
SXLOWER = pointer
Pointer to save scalars with lower x device coordinates for each window
SXUPPER = pointer
Pointer to save scalars with upper x device coordinates for each window
SSCREEN = pointer
Pointer to save single-valued texts with value 'clear' or 'keep'; this depends only on the setting of the CLEARWINDOW option
SMYLOWER = pointer
Pointer to save scalars with size of bottom margins for each window
SMYUPPER = pointer
Pointer to save scalars with size of upper margins for each window
SMXLOWER = pointer
Pointer to save scalars with size of left-hand margin for each window
SMXUPPER = pointer
Pointer to save scalars with size of right-hand margin for each window

FFREERESPONSEFACTOR procedure

Options
MRESPONSE = pointer
Pointer with a factor for each RESPONSECODE, indicating which of the DATA texts contain that response
RESPONSECODES = text
Specifies the codes to look for in the DATA texts
LABELCODES = text
Strings to label the factors within the MRESPONSE pointer; default RESPONSECODES
DUPLICATECODES = factor
Defines groupings of duplicate or alternative codes within the RESPONSECODES text
EXCLUDENULL = string token
Whether to exclude the factor recording which DATA contain none of the RESPONSECODES (yes, no); default no
SUFFIXNULL = scalars
Suffix to use to represent the null factor in MRESPONSE; default 0
LABELNULL = text
Label to use to represent a the null factor in MRESPONSE; default 'none'

Parameter
DATA = texts
Information from the respondents

FHADAMARDMATRIX procedure
Forms Hadamard matrices (R.W. Payne).

Options
PRINT = string token
Controls printed output (monitoring); default * i.e. none
METHOD = string token
Method of construction (firstpaley, secondpaley, stored, sylvestre, tensorproduct, turyn,
williamson); default * i.e. determined automatically

Parameters

NROWS = scalars
- Number of rows of the matrices

HADAMARDMATRIX = matrices
- Saves the Hadamard matrices

ERROR = scalars
- Returns 0 if the matrix has been formed successfully and 1 if not

FHAT procedure

Option

PRINT = string token
- What to print (summary); default summ

Parameters

Y1 = variates
- Vertical coordinates of the first spatial point patterns; no default – this parameter must be set

X1 = variates
- Horizontal coordinates of the first spatial point patterns; no default – this parameter must be set

Y2 = variates
- Vertical coordinates of the second spatial point patterns; no default – this parameter must be set

X2 = variates
- Horizontal coordinates of the second spatial point patterns; no default – this parameter must be set

S = variates
- Vectors of distances to use; no default – this parameter must be set

FVALUES = variates
- Variates to receive the estimated F nearest-neighbour distribution functions

NNDISTANCES = variates
- Variates to receive the nearest-neighbour distances

FIELLER procedure

Calculates effective doses or relative potencies (P.W. Lane).

Options

PRINT = string token
- What to output (value); default valu

ESTIMATES = variate
- Parameter estimates; default extracts these with RKEEP

VCOVARIANCE = symmetric matrix
- Variances and covariances; default extracts these with RKEEP

%LIMIT = scalar
- Percentage points for limits; default 95, thus giving 95% confidence limits

RELATIVE = string token
- Whether to calculate relative potencies (no, yes); default no

LINK = string token
- Which link function to assume when forming effective doses (probit, logit, complementaryloglog); default obtained using RKEEP, if the ESTIMATES or VARIANCES are obtained in that way, otherwise prob

LOGBASE = string token
- Base of antilog transformation to be applied to value and limits, (ten, e); default * i.e. none

DF = scalar
- If this has a non-missing value, a t-distribution is used instead of a Normal distribution to calculate the confidence limits; default obtained using RKEEP if the ESTIMATES or VARIANCES are obtained in that way (setting DF to the number of residual d.f. when the dispersion factor is estimated, or a missing value when it is fixed), otherwise the default is a missing value

Parameters

TREATMENT = variates or scalars
- Positions of intercept parameters in list of estimates; default first estimate

SLOPE = variates or scalars
- Positions of slope parameters in list of estimates; default last estimate

%DOSE = variates or scalars
- Percentage dose; default 50, thus giving LD50

VALUE = variates or scalars
- To store estimated values
4.1 Commands

LOWER = variates or scalars
To store lower limits

UPPER = variates or scalars
To store upper limits

SE = variates or scalars
To store approximate s.e.s of values

FILEREAD procedure
Reads data from a file (P.W. Lane).

Options

PRINT = string tokens
What output to display (summary, groups, comments, firstline); default summ, grou, comm, firs

NAME = text
External name of the data file; no default in batch mode, name is prompted for in interactive mode

END = text
What string terminates data; default ': ' (the end of file also terminates data for any setting); the setting END=* is not allowed

MISSING = text
What character represents missing values; default '*'

SKIP = scalar or text
Number of lines to skip at the start of the file, or string to indicate the record before the first record of data; default 0

MAXCATEGORY = number
The maximum number of categories for which a structure is defined to be a factor unless otherwise specified by FGROUPS; default 10

COMMENTSYMBOLS = text
What characters to treat as introducing comments if found in the first column at the start of the file; default double-quote character ("")

IMETHOD = string token
How identifiers are to be specified for the data structures to be read (supply, read, none); default supp

ISAVE = pointer
To store the identifiers, whether read or supplied, and to provide suffixed identifiers for data with no specified identifiers

SEPARATOR = text
What (single) character separates successive values; default is the space character

Parameters

IDENTIFIER = identifiers
Names for the data structures that are to be read; these are prompted for if this is unset when running interactively with IMETHOD=supply; identifiers are redefined if they have been used previously

FGROUPS = string tokens
Whether to form each data structure into a factor (check, form, leave); default chec, which causes FILEREAD when running interactively to ask about any structure whose number of distinct values is less than or equal to MAXCATEGORY, and when running in batch to define as factors all structures with MAXCATEGORY or fewer distinct values (note: for compatibility with earlier releases, yes and no can be used as synonyms of form and leave)

REPRESENTATION = string tokens
What representation to assume for each data structure (numbers, characters); default unset – representation is determined by whether the first value is a number; if set for one structure, this parameter must be set for all structures

FILTER directive
Filters time series by time-series models (synonym of TFILTER).

Option

PRINT = string tokens
What to print (series); default *

Parameters

OLDSERIES = variates
Time series to be filtered

NEWSERIES = variates
To save filtered series

FILTER = TSMs
Models to filter with respect to
ARIMA = TSMs

ARIMA models for time series

FIT directive

Fits a linear, generalized linear, generalized additive or generalized nonlinear model.

Options

PRINT = string tokens

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, grid, confidence); default mode, summ, esti or grid if NGRIDLINES is set

CALCULATION = expression structures

Calculation of explanatory variates involving nonlinear parameters

OWN = scalar

Option setting for OWN directive if this is to be used rather than CALCULATE to calculate explanatory variates

CONSTANT = string token

How to treat the constant (estimate, omit, ignore); default esti

FACTORIAL = scalar

Limit for expansion of model terms; default as in previous TERMS statement, or 3 if no TERMS given

POOL = string token

Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token

Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens

Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token

Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token

Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens

Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions

PROBABILITY = scalar

Probability level for confidence intervals for parameter estimates; default 0.95

NGRIDLINES = scalar

Number of values of each nonlinear parameter for a grid of function evaluations

SELINEAR = string token

Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no

INOWN = identifiers

Setting to be used for the IN parameter of OWN if used to calculate explanatory variates

OUTOWN = identifiers

Setting to be used for the OUT parameter of OWN if used to calculate explanatory variates

AOVDESCRIPTION = text

Description for line in accumulated analysis of variance (or deviance) table when POOL=yes

Parameter formula

List of explanatory variates and factors, or model formula

FITCURVE directive

Fits a standard nonlinear regression model.

Options

PRINT = string tokens

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated,
4.1 Commands

CURVE = string token

Site of curve (exponential, dexpontional, cxepontional, lexponential, logistic, glogistic, gompertz, ldl, qdl, qdq, fourier, dfourier, gaussian, dgaussian, emax, gemax); default expo

SENSE = string token

Sense of curve (right, left); default righ

ORIGIN = scalar

Constrained origin; default *

NONLINEAR = string token

How to treat nonlinear parameters between groups (common, separate); default comm

CONSTANT = string token

How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar

Limit for expansion of model terms; default as in previous TERMS statement, or 3 if no TERMS given

POOL = string token

Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token

Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens

Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertexal); default *

FPROBABILITY = string token

Printing of probabilities for variance ratios (yes, no); default no

SELECTION = string tokens

Statistics to be displayed in the summary of analysis produced by PRINT=summary (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob

Parameter

formula

Explanatory variate, list of variate and factor, or variate*factor

FITINDIVIDUALLY procedure

Fits regression models one term at a time (R.W. Payne).

Options

PRINT = string tokens

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti

CONSTANT = string token

How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar

Limit for expansion of model terms; default 3

POOL = string token

Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token

Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens

Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertexal); default *

FPROBABILITY = string token

Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token

Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens

Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions
4 Syntax summary

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

DEVIANCE = scalar
Saves the residual deviance

DF = scalar
Saves the residual d.f.

LACKOFFIT = string token
Whether to use observations with replicated values of the explanatory variables to split the final residual term into a 'true' residual and lack of fit (estimate, omit); default omit

Parameter

TERMS = formula
Terms to be fitted

FITMULTINOMIAL procedure
Fits generalized linear models with multinomial distribution (R.W. Payne).

Options

PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti

RESPONSEFACTOR = factor
Factor representing the response categories of the multinomial distribution

CLASSIFICATION = factors
Factors classifying the subjects; default uses the factors in TERMS

FACTORIAL = scalar
Limit for expansion of model terms from TERMS; default 3

POOL = string token
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary (%variance, %ss, adjustedr2, r2, dispersion, %meandeviance, %deviance, aic, bic, sic); default disp

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

FULL = string token
Whether to assign all possible parameters to factors and interactions (yes, no); default no

Parameter

TERMS = formula
Terms to be fitted

FITNONLINEAR directive
Fits a nonlinear regression model or optimizes a scalar function.

Options

PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, grid); default mode, summ, esti or grid if NGRIDLINES is set

CALCULATION = expression structures
Calculation of fitted values or of explanatory variates involving nonlinear parameters; default * (valid only if OWN set)

OWN = scalar
Option setting for OWN directive if this is to be used rather than CALCULATE; default * requests CALCULATE to be used

CONSTANT = string token
How to treat the constant (estimate, omit); default esti
4.1 Commands

FACTORIAL = scalar
Limit for expansion of model terms; default as in previous
TERMS statement, or 3 if no TERMS given

POOL = string token
Whether to pool ss in accumulated summary between all terms
fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from
model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality,
vertical, df); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced
by PRINT=summary, seobservations is relevant only for a
Normally distributed response, and %cv only for a gamma-
distributed response (%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if
DIST=normal, %cv if DIST=gamma, and disp for other
distributions

NGRIDLINES = scalar
Number of values of each parameter for a grid of function
evaluations; default *

SELINEAR = string token
Whether to calculate s.e.s for linear parameters (yes, no);
default no

INOWN = identifiers
Setting to be used for the IN parameter of OWN if used in place
of CALCULATE; default *

OUTOWN = identifiers
Setting to be used for the OUT parameter of OWN if used in
place of CALCULATE; default *

Parameter
formula
List of explanatory variates and/or one factor to be used in
linear regression, within nonlinear optimization

FKEY directive
Forms design keys for multi-stratum experimental designs, allowing for confounded and aliased
treatments.

Options

BASICFACTORS = factors
Factors indexing the units of the design

ADDEDFACTORS = factors
Factors to be allocated to the units of the design

KEY = matrix
Stores the design key (ADDEDFACTORS × BASICFACTORS)

INKEY = matrix
Can be used to input existing allocations for some of the added
factors

HIERARCHIES = matrix
Can be used to specify that some of the factors must be
constant within each combination of levels of other factors; the
matrix has a row for each added factor and columns first for
the basic factors and then for the added factors, ones in the
entries where the row factor must be constant within the
combinations of the column factors, zero elsewhere

SEED = scalar
Can provide a seed to generate a random permutation of the
sets of basic effects that may be allocated to each added factor,
thus producing design randomly selected from all those that
might be possible; default * i.e. no permutation

ROWPRIMES = variate
Prime numbers for the rows of the KEY matrix

COLPRIMES = variate
Prime numbers for the columns of the KEY matrix

ROWMAPPINGS = variate
Mappings from the rows of the KEY to the
TREATMENTFACTORS

COLMAPPINGS = variate
Mappings from the columns of the KEY to the BLOCKFACTORS
SAVE = identifier
Structure to save all the information about the formation of the design; this can then be input later to give a different design (if possible) with the same properties

Parameters
REQUIRED = formula structures
Formulae each defining a list of terms that are to be estimated in the analysis
NONNEGLIGIBLE = formula structures
Formulae each specifying terms that cannot be ignored in the context of the corresponding REQUIRED formula

FLRV directive
Forms the values of LRV structures.
Options
PRINT = string tokens
Printed output required (roots, vectors); default * i.e. no printing
NROOTS = scalar
Number of roots or vectors to print; default * i.e. print them all
SMALLEST = string token
Whether to print the smallest roots instead of the largest (yes, no); default no
TOLERANCE = scalar
Tolerance for detecting zero roots

Parameters
INMATRIX = matrices or symmetric matrices
Matrices whose latent roots and vectors are to be calculated
LRV = LRVs
LRV to store the latent roots and vectors from each INMATRIX
WMATRIX = symmetric matrices
(Generalized) within-group sums of squares and products matrix used in forming the two-matrix decomposition; if any of these is omitted, it is taken to be the identity matrix, giving the usual spectral decomposition
ILRV = LRVs
LRV to store the imaginary parts of the latent roots and vectors arising from the decomposition of a non-symmetric matrix

FMegaEnvironments procedure
Forms mega-environments based on winning genotypes from an AMMI-2 model (D.A. Murray & M. Malosetti).
Option
PRINT = string tokens
What to print (summary); default summ
Parameters
DATA = variates
Provides the data to be analysed
GENOTYPES = factors
Specifies the genotypes
ENVIRONMENTS = factors
Specifies the environments (or locations when years are supplied)
YEARS = factors
Specifies years within locations
MEGAENVIRONMENTS = factors
Saves the mega-environments

FMFactors procedure
Forms a pointer of factors representing a multiple-response (R.W. Payne).
Options
MRESPONSE = pointer
Pointer with a factor for each code, indicating the units where it occurs in the CODE texts or variates
RESPONSECODES = text or variate
Saves the set of distinct multiple-response codes
CODENULL = text or variate
Code(s) used to represent a null value in the CODE texts or variates; default * or ''
EXCLUDENULL = string token
Whether to exclude the null factor recording the respondents that made no reply (yes, no); default no
SUFFIXNULL = scalar
Suffix to use to represent the null factor in MRESPONSE; default 0
LABELNULL = text
Label to use to represent the null factor in MRESPONSE; default 'none'
Commands

LDIRECTION = string token
How to order the labels from textual codes (ascending, given); default asce

Parameter

CODE = texts, variates or factors
Codes from the respondents

FNCORRELATION procedure

Calculates correlations from variances and covariances, together with their variances and covariances (S.A. Gezan).

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string token</td>
<td>Output required (summary); default summ</td>
</tr>
<tr>
<td>IVARIANCES = variate</td>
<td>Indexes of the two variances in the ESTIMATES variate; no default - must be set</td>
</tr>
<tr>
<td>ICOVARIANCE = scalar</td>
<td>Index of the covariance in the ESTIMATES variate; no default - must be set</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATES = variates</td>
<td>Estimated values of the variances and covariances</td>
</tr>
<tr>
<td>VCOVARIANCE = symmetric matrices</td>
<td>Variance-covariance matrix of the variances and covariances</td>
</tr>
<tr>
<td>FUNCTIONESTIMATE = scalars</td>
<td>Saves the estimated value of the function</td>
</tr>
<tr>
<td>SE = scalars</td>
<td>Saves the standard error of the function estimate</td>
</tr>
<tr>
<td>NEWESTIMATES = variates</td>
<td>Saves new vectors of estimates, including the estimated value of the function</td>
</tr>
<tr>
<td>NEWVCOVARIANCE = symmetric matrices</td>
<td>Saves variance-covariance matrices for the new vectors (including the function estimate)</td>
</tr>
</tbody>
</table>

FNLINEAR procedure

Estimates linear functions of one or more random variables, and calculates their variances and covariances (S.A. Gezan).

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string token</td>
<td>Output required (summary); default summ</td>
</tr>
<tr>
<td>CONSTANTVALUE = scalar</td>
<td>Constant value for the function; default 0</td>
</tr>
<tr>
<td>COEFFICIENTS = scalar</td>
<td>Linear coefficients for the random variables in the function; no default - must be set</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATES = variates</td>
<td>Estimated values of the random variables</td>
</tr>
<tr>
<td>VCOVARIANCE = symmetric matrices</td>
<td>Variance-covariance matrix of the random variable estimates</td>
</tr>
<tr>
<td>FUNCTIONESTIMATE = scalars</td>
<td>Saves the estimated value of the function</td>
</tr>
<tr>
<td>SE = scalars</td>
<td>Saves the standard error of the function estimate</td>
</tr>
<tr>
<td>NEWESTIMATES = variates</td>
<td>Saves new vectors of estimates, including the estimated value of the function</td>
</tr>
<tr>
<td>NEWVCOVARIANCE = symmetric matrices</td>
<td>Saves variance-covariance matrices for the NEWESTIMATES</td>
</tr>
</tbody>
</table>

FNPOWER procedure

Estimates products of powers of two random variables, and calculates their variances and covariances (S.A. Gezan).

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string token</td>
<td>Output required (summary); default summ</td>
</tr>
<tr>
<td>CONSTANTVALUE = scalar</td>
<td>Constant value for the function; default 0</td>
</tr>
<tr>
<td>POWERS = variate</td>
<td>Specifies the powers of the two random variables</td>
</tr>
<tr>
<td>INDEXES = variate</td>
<td>Specifies the locations of the random variables corresponding to the elements of the POWERS variate</td>
</tr>
<tr>
<td>CORRECTION = string token</td>
<td>Whether to apply an additional correction to the variance of a product, using terms from the second-order approximation; default no</td>
</tr>
</tbody>
</table>
Parameters

- ESTIMATES = variates
 Estimated values of the random variables
- VCOVARIANCE = symmetric matrices
 Variance-covariance matrix of the random variable estimates
- FUNCTIONESTIMATE = scalars
 Saves the estimated value of the function
- SE = scalars
 Saves the standard error of the function estimate
- NEWESTIMATES = variates
 Saves new vectors of estimates, including the estimated value of the function
- NEWVCOVARIANCE = symmetric matrices
 Saves variance-covariance matrices for the new vectors (including the function estimate)

FOCCURRENCES procedure

Counts how often each pair of treatments occurs in the same block (W. van den Berg).

Options

- PRINT = string tokens
 Controls printed output (concurrences, efficiency); default conc, effi
- DIAGONAL = string token
 What to store on the diagonal of the concurrence matrix (missingvalues, replication); default repl

Parameters

- TREATMENTS = factors
 Supplies the treatment factor
- REPLICATES = factors
 Supplies the replicates factor
- BLOCKS = factors
 Supplies the block factor
- CONCURRENCES = symmetric matrices
 Saves the concurrence matrix, recording the number of times each pair of treatments occurs together in a block
- EFFICIENCY = scalars
 Save the efficiency of the design

FOR directive

Introduces a loop; subsequent statements define the contents of the loop, which is terminated by the directive ENDFOR.

Options

- NTIMES = scalar
 Number of times to execute the loop; default is to execute as many times as the length of the first parameter list or once if the first list is null
- INDEX = scalar
 Records the loop index
- START = scalar
 Defines an integer initial value for the loop index; default 1
- END = scalar
 Defines an integer final value for the loop index
- STEP = scalar
 Defines an integer amount by which to increase the index each time the loop is executed; default 1
- VALUES = variate
 Defines a set of values to be taken successively by the loop index (overrides START, END and STEP if these are specified too)

Parameters

Any number of parameter settings of the form IDENTIFIER = list of data structures; the IDENTIFIER is set up as a dummy which is then used within the loop to refer, in turn, to the structures in the list

FORECAST directive

Forecasts future values of a time series (synonym of TFORECAST).

Options

- PRINT = string tokens
 What to print (forecasts, limits, setransform, sfe); default fore, limi
- CHANNEL = scalar
 Channel number for output; default * i.e. current output channel
- ORIGIN = scalar
 Number of known values to be incorporated; default 0
- UPDATE = string token
 Whether to update the forecast origin to the end of the new
4.1 Commands

NEWOBSERVATIONS = variate
Observations (yes, no); default no

SFE = variate
Saves standardized forecast errors; default *

MAXLEAD = scalar
Maximum lead time i.e. number of forecasts to be made;
default * defines the number as the length of FORECAST variate

FORECAST = variate
Variate of length MAXLEAD to save forecasts of output series;
default *

SETRANSFORM = variate
Saves standard errors of the forecasts (on transformed scale, if defined); default *

LOWER = variate
Saves lower confidence limits; default *

UPPER = variate
Saves upper confidence limits; default *

PROBABILITY = scalar
Probability level for confidence limits; default 0.9

COMPONENTS = pointer
Contains variates (of length ORIGIN + MAXLEAD) to save components of the forecast

SAVE = identifier
Save structure to supply fitted model; default * i.e. that from last model fitted

Parameters
FUTURE = variates
Variates (of length ORIGIN + MAXLEAD) containing future values of input series

METHOD = string tokens
How to treat future values of input series (observations, forecasts); default obse

FORMULA directive
Declares one or more formula data structures.

Options
VALUE = formula
Value for all the formulae; default *

MODIFY = string token
Whether to modify (instead of redefining) existing structures (yes, no); default no

IPRINT = string tokens
Information to be used by default to identify the formulae in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Parameters
IDENTIFIER = identifiers
Identifiers of the formulae

VALUE = formula structures
Value for each formula

EXTRA = texts
Extra text associated with each identifier

FOURIER directive
Calculates cosine or Fourier transforms of real or complex series.

Option
PRINT = string tokens
What to print (transforms); default *

Parameters
SERIES = variates
Real part of each input series

I SERIES = variates
Imaginary part of each input series

TRANSFORM = variates
To save real part of each output series

ITRANSFORM = variates
To save imaginary part of each output series

PERIODOGRAM = variates
To save periodogram of each transform

FPARETOSET procedure
Forms the Pareto optimal set of non-dominated groups (W. van den Berg).

Options
PRINT = string token
Controls whether to print the groups (groups); default group

PLOT = string token
Controls whether to plot the data, using different coloured points to indicate the groups (data); default data

NGROUPS = scalar
Number of groups to form; default 1
GROUPS = factor
Saves the group allocations

TITLE = text
Title for the plot; default * i.e. none

LABELS = text, variate or factor
Labels for the items; default * i.e. none

Parameters

DATA = variates
Data variates, defining the properties of the items

SIGN = scalars
Value by which to multiply each DATA variate: for example, this can be set to set to −1 if the variate is to be minimized instead of being maximized; default 1

TITLE = texts
Title to use for the axis of each DATA variate in the plot; if unset, its identifier is used

FPLOTNUMBER procedure
Forms plot numbers for a row-by-column design (K. Punyawaew).

Options

FIRSTPLOT = string token
Defines the starting location for numbering the plots
(lowleft, lowright, upleft, upright); default uple

PLOTORDER = string token
Defines the order in which the numbers are allocated
(colserpentine, colbycol, rowserpentine, rowbyrow); default rowb

Parameters

NROWS = scalars
Number of rows in the design

NCOLUMNS = scalars
Number of columns in the design

PLOTNUMBER = factors
Saves the plot numbers

FPROJECTIONMATRIX procedure
Forms a projection matrix for a set of model terms (R.W. Payne).

No options

Parameters

TERMS = formula structure
Defines the model terms corresponding to the design matrices whose projection matrices are required

PROJECTION = symmetric matrix
Saves the projection matrix for each formula structure

FPSEUDOFACTORS directive
Determines patterns of confounding and aliasing from design keys, and extends the treatment model to incorporate the necessary pseudo-factors.

Options

TREATMENTSTRUCTURE = formula
Treatment model for the design

BLOCKSTRUCTURE = formula
Block model for the design

FACTORIAL = scalar
Limit on the number of factors in each treatment term

LROWS = factors or scalars
Numbers of levels of factors, or factors, corresponding to the rows of the key matrices

LCOLUMNS = factors or scalars
Numbers of levels of factors, or factors, corresponding to the columns of the key matrices

NEWTREATMENTSTRUCTURE = identifier
Store the extended treatment model

PSEUDOFACTORS = pointer
Pseudo-factors required for the keys

NPSEUDOFACTORS = scalar
Number of pseudo-factors required for the keys

KEYPSEUDOFACTORS = matrix
Key to generate the pseudo-factors from the treatment factors

KEYCONTRASTS = matrix
Key partitioning the treatment terms into orthogonal sets of contrasts

Parameters

KEY = matrices
Design keys

KEYINVERSE = matrices
Store the inverses of the design keys

ALIASSETS = variates
Stores aliasing information about the orthogonal sets of treatment contrasts
4.1 Commands

RESOLUTION = scalars
Saves the resolution number of the design constructed by each key

FRAME directive
Defines the positions and appearance of the plotting windows within the frame of a high-resolution graph.

Options
GRID = string tokens
Specifies grid lines (xy, xz, yx, yz, zx, zy)

BOXFRAME = string tokens
Whether to include a box enclosing the entire frame (include, omit)

BACKGROUND = scalars or texts
Specifies the colour to be used for the background of the whole frame (where allowed by the graphics device)

RESET = string token
Whether to reset the axis definition to the default values (no, yes); default no

Parameters
WINDOW = scalars
Window numbers

YLOWER = scalars
Lower y device coordinate for each window

YUPPER = scalars
Upper y device coordinate for each window

XLOWER = scalars
Lower x device coordinate for each window

XUPPER = scalars
Upper x device coordinate for each window

YMLOWER = scalars
Size of bottom margin (for x-axis labels)

YMUPPER = scalars
Size of upper margin (for overall title)

XMLOWER = scalars
Size of left-hand margin (for y-axis labels)

XMUPPER = scalars
Size of right-hand margin

BACKGROUND = scalars or texts
Specifies the colour to be used for the background in each window (where allowed by the graphics device)

BOX = string tokens
Whether to include a box enclosing the plotted graphic (include, omit)

BOXSURFACE = string token
Box to include in a surface plot (full, bounded, omit)

BOXKEY = string token
Box to draw around key (full, bounded, omit)

PENTITLE = scalars
Pen to use to write the overall title

PENKEY = scalar
Pen to use for the key

PENGRID = scalar
Pen to use to draw the grid lines

SCALING = string token
How to scale the axis in each window (xyequal, xzequal, yzequal, xyzequal)

POSITION = string token
Position of title (right, left, center, centre)

CINTERIOR = scalars or texts
Specifies the colour to be used for the interior of each window (where allowed by the graphics device)

CFRAME = scalars or texts
Specifies the colour to be used for the frame of each window (where allowed by the graphics device)

CTITLE = scalars or texts
Specifies the colour to be used for the title bar of each window (where allowed by the graphics device)

AXES = identifiers or pointers
Additional oblique axes to include in each window

SAVE = pointers
Saves details of the current settings for the window concerned

FREGULAR procedure
Expands vectors onto a regular two-dimensional grid (R.W. Payne).

Options
ROWS = factor
Original row factor

COLUMNS = factor
Original column factor

NEWROWS = factor
New row factor expanded onto the full grid

NEWCOLUMNS = factor
New column factor expanded onto the full grid

SORT = string token
Whether to sort the new values into row × column order (yes, no); default no

Parameters
OLDVECTOR = variates, factors or texts
Original data vectors
NEWVECTOR = variates, factors or texts
New vector with values, provided by the VALUES parameter, inserted in the units added to complete the grid

VALUES = variates, scalars or texts
Values to insert in the units added to complete the grid; default is to insert missing values

FRENAME directive
Renames files.
No options
Parameters
OLD = texts
Name of each file to rename
NEW = texts
New name for each file
OVERWRITE = string tokens
Whether to overwrite any existing files (yes, no); default no

FRESTRICTEDSET procedure
Forms vectors with the restricted subset of a list of vectors (R.W. Payne).
Options
METHOD = string token
Whether to form the new vectors only when the old vectors are restricted or always (always, whenrestricted); default always
RESTRICTED = scalar
Scalar set to 1 or 0 according to whether or not the old vectors are found to be restricted
VRESTRICTED = variate
Variate with each unit set to 1 or 0 according to whether or not that unit is restricted in any of the OLDVECTORS
Parameters
OLDVECTOR = factors, variates or texts
List of vectors, one or more of which may be restricted
NEWVECTOR = factors, variates or texts
New vectors which will contain only the unrestricted units of the old vectors
SETLEVELS = string token
Whether to reform the levels (and labels) of factors to exclude those that do not occur in the restricted subset (yes, no); default no

FRIEDMAN procedure
Performs Friedman's nonparametric analysis of variance (S. Langton).
Options
PRINT = string tokens
Output required (test, ranks); default test
TREATMENTS = factor
Treatment factor
BLOCKS = factor
Block factor
Parameters
DATA = variates
Identifier of the variate holding the data values
RANKS = variates
Saves the ranks
STATISTIC = scalars
Saves the test statistic
DF = scalars
Saves the degrees of freedom for the chi-square approximation
PROBABILITY = scalars
Saves the probability value for the chi-square statistic

FROWCANONICALMATRIX procedure
Puts a matrix into row canonical, or reduced row echelon, form (C.J. Brien).
Options
PRINT = string token
Controls printed output (rowcanonicalmatrix); default * i.e. none
Parameters
MATRIX = matrices
Matrix to be put into row canonical form
ROWCANONICALMATRIX = identifiers
Matrix in row canonical form
FRQUANTILES directive

Forms regression quantiles.

Options

- **Y = variate**
 Response variate

- **DESIGNMATRIX = matrix**
 Design matrix for the regression model

- **TOLERANCE = scalar**
 Tolerance for the algorithm; default 10^{-12}

Parameters

- **PRQUANTILE = scalars**
 Values for which to perform the quantile regressions

- **RESIDUALS = variates**
 Parameter estimates from each quantile regression

- **ESTIMATES = variates**
 Estimates from each quantile regression

- **XBARQUANTILES = variates**
 When **PRQUANTILE** is set to a missing value, saves the sum of the mean of each design column multiplied by its regression quantile for all the quantile solutions

- **CUMPROBABILITIES = variates**
 When **PRQUANTILE** is set to a missing value, saves the cumulative probability values at which the estimated regression quantiles change

- **EXIT = scalars**
 Saves an exit code, with 0 to indicate success

FRTPRODUCTDESIGNMATRIX procedure

Forms summation, or relationship, matrices for model terms (C.J. Brien).

No options

Parameters

- **TERM = formula structures**
 Model terms corresponding to design matrices whose summation matrices are required

- **MATRIX = symmetric matrices**
 Saves the summation or relationship matrix for each term

FRUITMACHINE procedure

Runs a fruit machine using pop-up menus and Genstat graphics (R.W. Payne).

Options

- **PRINT = string tokens**
 What to print (display, reels, summary, transcript); default * i.e. nothing

- **CREDIT = scalar**
 Credit for the game; default *

- **NTIMES = scalar**
 Limit on the number of pulls in the current session; default 999

- **PICTURES = string token**
 Which pictures to use (cards, fruit); default frui

- **REPLICATION = scalar or variate**
 Number of times each picture should occur on each reel; default 1

- **WINS = scalar or variate**
 Amount to win on a complete line of each picture; default 5

- **SEED = scalar**
 Seed for random numbers to form the reels and execute the pulls; default 0

- **SAVE = pointer**
 Saves or specifies the state of a game so that it can be continued

FSIMILARITY directive

Forms a similarity matrix or a between-group-elements similarity matrix or prints a similarity matrix.

Options

- **PRINT = string token**
 Printed output required (similarity, summary); default * i.e. no printing

- **STYLE = string token**
 Print percentage similarities in full or just the 10% digit (full, abbreviated); default full

- **METHOD = string token**
 Form similarity matrix or rectangular between-group-element similarity matrix (similarity, betweengroupsimilarity); default simi

- **SIMILARITY = matrix or symmetric matrix**
 Input or output matrix of similarities; default *
GROUPS = factor
 Grouping of units into two groups for between-group-element similarity matrix; default *

PERMUTATION = variate
 Permutation of units (possibly from HCLUSTER) for order in which units of the similarity matrix are printed; default *

UNITS = text or variate
 Unit names to label the rows of the similarity matrix; default *

MINKOWSKI = scalar
 Index t for use with TEST=minkowski

Parameters

DATA = variates or factors
 The data values

TEST = string tokens
 Test type, defining how each DATA variate or factor is treated in the calculation of the similarity between each unit

 (simplematching, jaccard, russellrao, dice, antidice, sneathsokal, rogerstanimoto, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variate or factor

RANGE = scalars
 Range of possible values of each DATA variate or factor; if omitted, the observed range is taken

FSPREADSHEET procedure

Creates a Genstat spreadsheet file (GWB or GSH) from specified data structures, PC Windows only (D.B. Baird).

Options

OUTFILE = text
 Name of GSH file to store data in

SHEET = number
 Sequence number of existing sheet, if this is set to 0 the data will be added to the first compatible spreadsheet open in the Windows interface

METHOD = string token
 What to do with any existing columns with the same names as the new columns (replace, rename); default rena

READONLY = string token
 Whether to make the complete sheet read-only (yes, no); default no

TITLE = text
 The title associated with the spreadsheet

POINTER = pointer or text
 A pointer or a name of a pointer to the columns in the spreadsheet

ANALYSIS = text
 Genstat directives to analyse columns in the spreadsheet

ASETUP = text
 Genstat directives to be run once before the analysis of any columns in the spreadsheet

ADUMMY = text
 The name of the dummy (if any) used in the ANALYSIS directives

CURSOR = variate
 A variate of length 2 giving the active cell position (x,y) when the spreadsheet is first displayed

NOUNITS = string token
 Whether to stop the inclusion of a units column in the spreadsheet (yes, no); default no

BOOK = number
 Window number of existing book, if this is set to 0 the sheet will be created in a new book, if to −1 it will be created in the last book formed with BOOK=0, and if set to −2 it will be created in the last book created in the Windows interface.

PAGENAME = text
 The 32 character text to be displayed on the sheet tab

ROWCOLOURS = factor
 The factor to be used for colouring the rows (the factor must have colours defined by the FACCOLOURS parameter)

TABLEFORMAT = string token
 The format to use when displaying tables with two or more classifying factors (page, column); default page

FILEFORMAT = string token
 The format to use for the spreadsheet file (GWB, GSH); default GWB

MARGINNAME = text
 The 60 character text to be displayed for the margin labels

FROZENCOLUMNS = scalar
 The number of columns to freeze on the left hand side of the spreadsheet; default 0 i.e. none
4.1 Commands

Parameters

DATA = **identifiers**
Data to write to the spreadsheet

PROTECT = **string tokens**
Whether to protect each data column by making it read-only
(yes, no); default no

FACCOLOURS = **variates, texts or pointers**
Specifies background colours for factor columns

FOREGROUND = **variate, text, scalar or pointer**
Specifies foreground colours for columns

BACKGROUND = **variate, text, scalar or pointer**
Specifies background colours for columns

HIDDEN = **string tokens**
Whether to hide each **DATA** column (yes, no); default no

FSSPM directive

Forms the values of **SSPM** structures.

Options

PRINT = **string tokens**
Printed output required (correlations, wmeans, **SSPM**); default * i.e. no printing

WEIGHTS = **variate or symmetric matrix**
Variate of weights for weighted SSP, or symmetric matrix of
weights (one row and column for each unit of data); default *
i.e. all units with weight one

SEQUENTIAL = **scalar**
Used for sequential formation of **SSPMs**; a positive value
indicates that formation is not yet complete (see **READ**
directive); default * i.e. not sequential

Parameter

SSPMs
Structures to be formed

FSTRING procedure

Forms a single string from a list of strings in a text (R.W. Payne).

No options

Parameters

TEXT = **texts**
Texts containing the lists of strings to put into single strings

STRING = **texts**
Text to store the strings in each **TEXT**

SEPARATOR = **texts**
Characters to separate all except last two strings of each **TEXT**;
default * , '

LASTSEPARATOR = **texts**
Characters to separate last two strings of each **TEXT**; default **SEPARATOR**

PREFIX = **texts**
Characters to insert at the start of each **STRING**; default ' '
(i.e. none)

END = **texts**
Characters to put at the end of each **STRING**; default ' ' (i.e.
none)

FTEXT procedure

Forms a text structure from any Genstat data structure (A. Keen & J.T.N.M. Thissen).

Option

MISSING = **text**
What to print for missing value; default ' '

Parameters

STRUCTURE = **identifiers**
Structure (scalar, variate, factor, text, table, matrix,
symmetricmatrix, diagonalmatrix, pointer) from which the text
structure is to be formed

TEXT = **texts**
Saves the text structure

DECIMALS = **scalars**
Number of decimals to use when forming the text structure;
default * uses the number required to provide 4 significant
figures, but unnecessary trailing zeros are ignored
Syntax summary

FREPRESENTATION = string tokens
How factor values are to be represented in the text structure (labels, levels, ordinals); default is to use labels if available and levels otherwise.

FTSM directive
Forms preliminary estimates of parameters in time-series models.

Option
PRINT = string tokens
What to print (models); default *

Parameters
TSM = TSMs
Models whose parameters are to be estimated

CORRELATIONS = variates
Auto- or cross-correlations on which to base estimates for each model

BOXCOXTRANSFORM = scalars
Box-Cox transformation parameter

CONSTANTTERM = scalars
Constant term

VARIANCE = scalars
Variance of ARIMA model, or ratio of input variance to output variance for transfer model

Funiquevalues procedure
Redefines a variate or text so that its values are unique (R.W. Payne).

Options
INCREMENT = scalar
Increment to use to modify duplicated numbers; default * i.e. a suitable (small) value is determined automatically

ADDTO = string token
Whether to add the increment to the value or the absolute value of duplicated numbers (value, absolutevalue); default abso

Parameters
OLDVECTOR = variates or texts
Vectors whose values are to be made unique

NEWVECTOR = variates or texts
New vectors with unique values; if unset, the values of the corresponding OLDVECTOR are replaced

CHANGED = scalars
Indicates whether the values have changed

Fvariogram directive
Forms experimental variograms.

Options
PRINT = string token
Controls printed output (statistics); default stat

Y = variate
Y positions (needed only for 2-dimensional irregular data)

X = variate
X positions or interval (not needed for 2-dimensional regular data i.e. when DATA is a matrix)

YMAX = scalar
Maximum lag in the y direction (2-dimensional regular data only)

XMAX = scalar
Maximum lag in the x direction

METHOD = string token
How to estimate the variogram (moments, cressiehawkins, dowd, genton); default mome

STEPLENGTH = scalar or variate
Length(s) of the steps in which lag is incremented

DIRECTIONS = scalar or variate
Directions (degrees) along which to form the variogram (relevant only for 2-dimensional irregular data)

SEGMENTS = scalar or variate
Angles subtended by the segments (degrees) over which averaging is to be done (relevant only for 2-dimensional irregular data)

Parameters
DATA = variates or matrices
Measurements as a variate or, for data on a regular grid, as a matrix

VARIOMGRS = variates or matrices
Structure to store the sample variogram

COUNTS = variates or matrices
Numbers of comparisons involved in the calculation of each variogram

DISTANCES = variates or matrices
Mean lag distances at each step
4.1 Commands

LAGPOINTS = pointer
Saves lag classes, indexes to observations and directions to plot in an h-scattergram

FVCOVARIANCE procedure

Forms the variance-covariance matrix for a list of variates (W. van den Berg).

Options

- **PRINT = string tokens**
 Printed output (df, vcovariance); default df, vcov
- **WEIGHTS = variate**
 Provides weights for the units of the variates; default * assumes that they all have weight one
- **VCOVARIANCE = symmetric matrix**
 Saves the variance-covariance matrix
- **DF = scalar**
 Saves the number of degrees of freedom of the (co)variances

Parameter

- **DATA = variates**
 Variates for which the matrix is to be calculated

FVSTRING procedure

Forms a string listing the identifiers of a set of data structures (R.W. Payne).

Options

- **STRING = text**
 Saves the string
- **POINTERNAME = text**
 If all the structures are belong to the same pointer, this saves its name
- **ELEMENTNAMES = text or variate**
 Saves the elements of the pointer, in a text if they have labels, otherwise in a variate

Parameter

- **DATA = identifiers**
 Data structures to be used to form the string

FWITHINTERMS procedure

Forms factors to define terms representing the effects of one factor within another factor (R.W. Payne).

Options

- **LEVNULL = scalar**
 Numerical value to represent the null level assigned to units not involved in the comparison of the levels of one of the factors within a particular level of the other factor; default 0
- **LABNULL = text**
 String to label the null level; default '- '

Parameters

- **F1 = factors**
 First factor
- **F2 = factors**
 Second factor
- **F1WITHINF2 = pointers**
 Pointer containing a factor for each level of the second factor, used to estimate the effects of the first factor within that level
- **F2WITHINF1 = pointers**
 Pointer containing a factor for each level of the first factor, used to estimate the effects of the second factor within that level

FZERO procedure

Option

- **PRINT = string token**
 What to print (summary); default summ

Parameters

- **DENSITY = scalars**
 Densities to use i.e. numbers of points per unit area; no default - this parameter must be set
- **S = variates**
 Vectors of distances to use; no default - this parameter must be set
- **FVALUES = variates**
 Variates to receive the expected values of the F nearest-neighbour distribution function under CSR
F2DRESIDUALVARIOGRAM procedure

Calculates and plots a 2-dimensional variogram from a 2-dimensional array of residuals (S.J. Welham).

Options

- **PLOT = string token**
 What to plot (surface); default surf
- **ROWS = factor**
 Factor defining the rows of the grid
- **COLUMNS = factor**
 Factor defining the columns of the grid
- **REPLICATES = factor**
 Factor defining the replicate grids (if any)
- **RMAX = scalar**
 Maximum lag to include in variogram in row direction (default determined by procedure)
- **CMAX = scalar**
 Maximum lag to include in variogram in column direction (default determined by procedure)
- **RScale = scalar**
 Actual distance represented by 1 unit in row direction (default 1)
- **CScale = scalar**
 Actual distance represented by 1 unit in column direction (default 1)
- **MINREP = scalar**
 Minimum replication required for position to be included in variogram (default 30)
- **TITLE = text**
 Title for surface/graph; default * i.e. none
- **WINDOW = scalar**
 Graphics window to be used for plotting; default 1
- **SCREEN = string token**
 Whether to keep or clear screen before plotting variogram (clear, keep); default clear
- **METHOD = text**
 Whether to use Fortran DLL or Genstat code to calculate variogram (dll, genstat); default dll
- **SCALEPLOT = string token**
 Whether to scale variogram to 0-1 (i.e. unit) scale for plotting (unit, none); default unit

Parameters

- **RESIDUALS = variates**
 Variate of residuals to form variogram
- **VARIOGRAM = matrices**
 Calculated variogram (trimmed)
- **FULLVARIOGRAM = matrices**
 Calculated variogram (all values)
- **COUNTS = matrices**
 Number of comparisons contributing to each variogram position
- **COMPONENTS = pointers**
 Components used to calculate variogram (only available when METHOD=genstat)

GALOIS procedure

Forms addition and multiplication tables for a Galois finite field (I. Wakeling & R.W. Payne).

Option

- **METHOD = string token**
 Whether to choose the primitive polynomial to generate the Galois field with the least number of higher terms or whether to make a random choice (minimal, random); default rand

Parameters

- **ORDER = scalars**
 Order of the required Galois field
- **ADDITION = symmetric matrices**
 Saves the addition table of the field
- **MULTIPLICATION = symmetric matrices**
 Saves the field's multiplication table
- **PRIMITIVE = variates**
 Saves the primitive irreducible polynomial
- **ERROR = scalars**
 Returns 0 or 1 according to whether or not the tables have been formed successfully

GBGRIDCONVERSION procedure

Converts GB grid references to or from latitudes and longitudes or to or from UTM coordinates (R.W. Payne).

Options

- **INPUTSOURCE = string token**
 Which of the coordinate systems if acting as input for conversion to either of the other two systems
4.1 Commands

GRIDREFERENCES = texts
LATITUDES = scalars or variates
LONGITUDES = scalars or variates
EASTINGS = scalars or variates
NORTHINGS = scalars or variates
GRIDACCURACY = string token

No parameters

GEE procedure

Fits models to longitudinal data by generalized estimating equations (D.M. Smith & M.G. Kenward).

Options

PRINT = string token
DISTRIBUTION = string token
LINK = string token
EXponent = scalar
TERMS = formula
CONSTANT = string token
FACTORIAL = scalar
AGGREGATION = scalar
KLOGRATIO = scalar
QUADESTIMATION = string token
SCALEFACTOR = string token
SFVALUE = scalar
CTETYPE = string token
ORDER = scalar
TIMEDEPENDENT = string token

Parameters

Y = variates
NBINOMIAL = variates or scalars
FITTEDVALUES = variates
RESIDUALS = variates
SUBJECT = factors
OUTCOME = factors
COUNT = variates
TIME = factors
WEIGHT = variates
OFFSET = variates
SAVE = pointers

Grid references
Latitudes
Longitudes
UTM easting references
UTM northing references
The accuracy for saving grid references (kilometres, hectometres, dekametres, metres); default hect

What to display (estimates, correlations, scalefactor, wald, monitoring); default esti, corr, scal
Distribution of response (normal, Poisson, binomial, gamma, inversenormal, negativebinomial); default *
Link function (identity, logarithm, logit, reciprocal, power, squareroot, probit, complementaryloglog, logratio); default *
Exponent for power link; default -2
Explanatory variates, factors etc
How to treat constant (estimate, omit); default esti
Limit for expansion of model terms; default 3
Fixed parameter for negative binomial distribution (parameter \(k \) as in variance function \(\text{var} = \text{mean} + \text{mean}^2/k \)); default 1
Parameter for logratio link, in form \(\log(\text{mean} / (\text{mean} + k)) \); default as set in AGGREGATION option
Whether to use quadratic estimation (used, notused); default used
How to calculate the scale factor (fixed, constant, varytime); default varies with distribution, fixed for Poisson and binomial, constant for rest
Value for scale factor when SCALEFACTOR=fixed; default 1.0 for Poisson and binomial, missing for rest
Form of correlation matrix (independence, unstructured, exchangeable, autoregressive, dependence, antedependence); default *
Order in dependence and ante-dependence form of correlation matrix; default 1
Whether correlation in dependence model changes with time (no, yes); default no

Response variate for each analysis
Denominator in binomial
To store fitted values
To store residuals
Identifier of subjects
Identifier of outcomes
Variate of counts of no. outcomes
Times of repeated measures variate
Weight variate
Offset variate
Structure to save output variables
GENERATE directive

Generates factor values for designed experiments: with no options set, factor values are generated in standard order; the options allow treatment factors to be generated using the design-key method, or pseudo-factors to be generated to describe the confounding in a partially balanced experimental design.

Options

- **TREATMENTS = formula**
 Model term for which pseudo-factors are to be generated; default *
- **REPLICATES = formula**
 Factors defining replicates of the design; default *
- **BLOCKS = formula**
 Block formula (for design-key generation) or term (for generation of pseudo-factors); default *
- **KEY = matrix**
 Key matrix (number of factors in the parameter list by number of factors in the BLOCKS formula) to generate the factors by the design key method; default *
- **BASEVECTOR = variate**
 Base vector for design key generation; default *

Parameter factors
Factors whose values are to be generated

GENPROCRUSTES procedure

Options

- **PRINT = string tokens**
 Printed output required (analysis, centroid, column, individual, monitoring); default anal, cent
- **SCALING = string token**
 Type of scaling to use (none, isotropic, separate); default none
- **METHOD = string token**
 Method to be used (Gower, TenBerge); default Gowe
- **NROOTS = scalar**
 Number of roots (i.e. dimensions) to print for the output configurations, consensus and rotation matrices, and number of dimensions to save with the XOUTPUT, CONSENSUS and ROTATIONS parameters if their matrices have alread not been defined; default is to print and save all the dimensions
- **PLOT = string tokens**
 Controls which graphs to display (consensus, individuals, projections); default * i.e. none
- **NDROOTS = scalar**
 Number of dimensions to display in the consensus and individuals plots; default 3
- **TOLERANCE = scalar**
 The algorithm is assumed to have converged when (last residual sum of squares) / (current residual sum of squares) < TOLERANCE * (number of configurations); default 0.00001
- **MAXCYCLE = scalar**
 Limit on number of iterations; default 50

Parameters

- **XINPUT = pointers**
 Each pointer points to a set of matrices holding the original input configurations
- **XOUTPUT = pointers**
 Each pointer points to a set of matrices to store a set of final (output) configurations
- **CONSENSUS = matrices**
 Stores the final consensus configuration from each analysis
- **ROTATIONS = pointers**
 Each pointer points to a set of matrices to store the rotations required to transform each set of XINPUT configurations to their final (scaled) XOUTPUT configurations
- **RESIDUALS = pointers**
 Each pointer points to a set of matrices to store the distances of a set of scaled XINPUT configurations from its consensus
- **RSS = scalars**
 Stores the residual sum of squares from each analysis
- **ROOTS = diagonal matrices**
 Stores the latent roots from referring the centroid configuration to its principal axis form (consensus) for each analysis
- **WSS = scalars**
 Stores the initial within-configuration sum of squares from each analysis
- **SCALINGFACTOR = variates**
 Stores the isotropic scaling factors for configurations from...
4.1 Commands

PROJECTIONS = pointers
Each analysis
Each pointer points to a set of matrices to store a set of
projection matrices

GESTABILITY procedure

Options
PRINT = string tokens
Controls printed output (means, stability,
sortedstability, quantiles); default stab, quan

METHOD = string tokens
Methods to use to calculate stability (superiority, static,
wricle, ranks); default supe

BESTMETHOD = string token
How to define the best genotype (minimum, maximum); default
maxi

PLOT = string tokens
What graphs to plot (stability); default * i.e. none

NBEST = string tokens
Number of best genotypes to print in tables of sorted stability
coefficients; default * i.e. print all of them

DIRECTION = string token
Direction to sort tables of sorted stability coefficients
(ascending, descending); default asc

PERCENTQUANTILES = scalar or variate
Percentage points for which quantiles are required; default
!(50,5,1,0.1)

NTIMES = scalar
Number of permutations to make; default 999

BLOCKSTRUCTURE = formula
Model formula defining any blocking to consider during the
permutation test; default none

EXCLUDE = factors
Factors in the block formula whose levels are not to be
randomized in the permutation test

Parameters
Y = variates
Yields (or other measurements) made on the genotypes in the
environments

GENOTYPES = factors
Genotype corresponding to each yield

ENVIRONMENTS = factors
Environment where each yield was recorded

SEED = scalar
Seed for the random number generator used to make the
permutations; default 0 continues from the previous generation
or (if none) initializes the seed automatically

STABILITY = tables or pointers
Saves stability coefficients

QUANTILES = tables or pointers
Saves quantiles of the stability coefficients

TITLE = texts
Overall title for the graphs; default * i.e. none

GET directive
Accesses details of the "environment" of a Genstat job.

Options
ENVIRONMENT = pointer
Pointer given unit labels 'inprint', 'outprint',
'diagnostic', 'errors', 'pause', 'prompt',
'newline', 'case', 'run', 'wordlength', 'captions',
'typeset', 'cmethod', 'dataspace', 'algorithms',
'actionafterfault', 'unsetdummy', 'language',
'year2digitbreak' and 'timewithseconds' to save the
current settings of those options of SET; default *

SPECIAL = pointer
Pointer given unit labels 'units', 'blockstructure',
'treatmentstructure', 'covariate', 'asave',
'dsave', 'rsave', 'tsave', 'vsave' and
'vcomponents', used to save the current settings of those
options of SET; default *

LAST = text
To save the last input statement; default *

FAULT = text
To save the last fault code; default *

FIELDWIDTH = scalar
Saves the fieldwidth currently defined as the default minimum
4 Syntax summary

SIGNIFICANTFIGURES = scalar
Saves the minimum number of significant figures currently to be supplied in the default formats determined by PRINT and other output commands

SEEDS = pointer
Saves a pointer to variates defining the seeds currently used as defaults by random-number functions, the RANDOMIZE directive, and internally by various other directives

EPS = scalar
To obtain the value of the smallest x (on this computer) such that $1+x > 1$; default *

VERSION = scalar
Number of the current job within the program; default *

PID = scalar
Gets an integer value unique in the current job to use, for example, in names of temporary files

WORKINGDIRECTORY = text
Saves the name of the current working directory

GETATTRIBUTE directive
Accesses attributes of structures.

Option
ATTRIBUTE = string tokens
Which attributes to access (nvalues, nlevels, nrows, ncolumns, type {of a factor or pointer}, levels, labels {of a factor or pointer}, nvalues, nlevels, identifier, refnumber {structure number}, extra, decimals, characters, minimum, maximum, restriction, mode {integer code 1 - 5 denoting type of values: double real, real, integer, character and word}, maxline {of a text or factor}, rows, columns, classification, margins {of a table}, associated identifier {of a table}, unknown {cell of a table}, suffixes {of a pointer}, owner, terms {of an SSPM}, groups {of an SSPM}, weights {of an SSPM}, SSPMauxiliary, SSPRst, tsmmodel, rstat {of an RSAVE}, stype {type as a character string}, reference level {of a factor}, drepresentation, unit labels {of a vector}, iprint, datavariate {of a table}, summary type {of a table}, percent quantile {of a table of quantiles}, %margin {of a table of percentages}, coding {of a text}); default * i.e. none

Parameters
STRUCTURE = identifiers
SAVE = pointers
Structures whose attributes are to be accessed
Pointer to store copies of the attributes of each structure; these are labelled by the ATTRIBUTE strings

GETLOCATIONS directive
Finds locations of an identifier within a pointer, or a string within a factor or text, or a number within any numerical data structure.

Options
CASE = string token
Whether to treat the case of letters (small or capital) as significant when searching for a string (significant, ignored); default sign

TOLERANCE = scalar
Tolerance for comparing numbers

SUBSTITUTE = string token
Whether to substitute dummies within pointers in DATA or FIND (yes, no); default no

Parameters
DATA = identifiers
Variates, scalars, matrices, tables, factors, texts or pointers to be searched
4.1 Commands

FIND = scalars, texts or pointers
Numbers, strings or identifiers to be located in DATA

NLOCATIONS = scalars
Saves the number of times that FIND occurs in DATA

LOCATIONS = variates or pointers
Saves the locations where FIND occurs as one of the values in DATA, in a variate if DATA is a one-dimensional data structure like a variate or text, or in a pointer containing a variate for each dimension if DATA is a multi-dimensional data structure like a matrix or table

CLASSIFICATION = pointers
Saves the classifying factors for a DATA table, in the same order as the corresponding variates in the LOCATIONS and LEVELS pointers

LEVELS = pointers
Saves the levels of the classifying factors where FIND occurs as one of the values of a DATA table, the information is saved in a pointer containing a variate for each factor

GETNAME procedure
Forms the name of a structure according to its IPRINT attribute (A.R.G. McLachlan).
No options
Parameters
STRUCTURE = identifiers
Structures whose names are to be obtained

NAME = texts
Saves the names of the structures

IDENTIFIER = texts
Saves the identifiers of the structures

EXTRA = texts
Saves the extra texts of the structures

IPRINT = texts
Saves (or forms) IPRINT attributes

GETRGB procedure
Gets the RGB values of the standard graphics colours (R.W. Payne).
No options
Parameters
COLOUR = scalars or variates
Colour numbers

RGB = scalars or variates
RGB values

NAME = texts
Names of nearest colours

GETTEMPFOLDER procedure
Gets gets the location of the folder used by Genstat for temporary files (R.W. Payne).
Option
PRINT = string token
Controls printed output (tempfolder); default temp

Parameter
TEMPFOLDER = text
Saves the name of the temporary folder

GGBIPILOT procedure
Plots displays to assess genotype + genotype-by-environment variation (A.I. Glaser).
Options
PRINT = string tokens
What to print (variation); default * i.e. nothing

DIMENSIONS = scalars
Which dimensions to display; default 1,2

PLOT = string token
Type of plot (scatter, ranking, compare, joint, centred); default scat

METHOD = string token
Whether the names in LEV1 (and LEV2) are from the ENVIRONMENTS or GENOTYPES factor (environments, genotypes); default envi

SCPLOT = string token
Features to add to a scatter plot (hull, sector, megaenvironment, vector, linear); default * i.e. none

SCALING = string tokens
What scaling to use (genotype, environment, symmetric); default envi

NORMALIZE = string token
Whether to scale the data using the within-environment standard deviation (yes, no); default no
CULL = variate or text
Specifies environments at which to examine the performance of the genotypes in order to decide which genotypes to cull.

QUANTILE = scalar
Proportion at which to calculate quantile for CULL; default 0.5.

DIVISIONS = scalar
Number of parallel lines or concentric circles to use when ranking genotypes or environments; default 10.

RANKINGLINES = string token
Whether the ranking lines drawn with PLOT setting ranking or joint are perpendicular to the biplot axis or projected onto the axis (perpendicular, projection); default perp.

GENREVERSE = string token
Whether to reverse the order of the genotype scores (yes, no); default no.

ENVREVERSE = string token
Whether to reverse the order of the environment scores (yes, no); default no.

WINDOW = scalar
Which graphical window to use; default 1.

KEYWINDOW = scalar
Window number for the key (zero for no key); default 2.

Parameters

DATA = variates or tables
Provides the data to be analysed.

GENOTYPES = factors
Specifies the genotypes.

ENVIRONMENTS = factors
Specifies the environments.

LEV1 = texts or scalars
First environment (or genotype) to use with PLOT settings centred, compare, joint or ranking, or with scatter when SCPLOT=linear.

LEV2 = texts or scalars
Second environment (or genotype) to use with PLOT settings centred, compare or joint.

LABGENOTYPES = texts
Labels for genotypes.

LABENVIRONMENTS = texts
Labels for environments.

TITLE = texts
Titles for the plots; if this is unset, an appropriate title is formed automatically.

MEGAGROUPS = variates or texts
Specifies or saves the groupings to use for the plot produced by SCPLOT=megaenvironment.

GHAT procedure

Option

PRINT = string token
What to print (summary); default summ.

Parameters

Y = variates
Vertical coordinates of each spatial point pattern; no default – this parameter must be set.

X = variates
Horizontal coordinates of each spatial point pattern; no default – this parameter must be set.

S = variates
Vectors of distances to use with each pattern; no default – this parameter must be set.

GVALUES = variates
Variates to receive the estimated G nearest-neighbour distribution functions.

NNDISTANCES = variates
Variates to receive the nearest-neighbour distances.

NNUNITS = variates
Variates to receive the unit numbers of the nearest neighbours.

GINVERSE procedure

Calculates the generalized inverse of a matrix (S.K. Haywood).

Options

PRINT = string token
Printed output from the procedure (inverse); default *, i.e. no printing.

METHOD = string token
Method to be used to invert symmetric matrices (svd, lrv); default lrv.

TOLERANCE = scalar
How close a number must be to zero before it is recognised as zero; default 10^{-6}.
Parameters

\texttt{INMATRIX} = \textit{matrices}

The matrix whose inverse is to be calculated

\texttt{INVERSE} = \textit{matrices}

Matrix to save the generalized inverse

\textbf{GLDISPLAY procedure}

Displays further output from a \texttt{GLMM} analysis (R.W. Payne).

\textbf{Options}

\texttt{PRINT} = \textit{string token}

What output to display (model, components, effects, fittedvalues, means, backmeans, vcovariance, waldtests, missingvalues, covariancemodels, deviance); default *

\texttt{PTERMS} = \textit{formula}

Formula specifying fixed terms for which means or back-transformed means are to be printed; default * prints all the fixed model terms

\texttt{PSE} = \textit{string token}

Standard errors to print with tables of means (se, sesummary, sed, sedsummary, vcovariance, differences, estimates, aldifferences, allestimates); default seds

\texttt{OFFSET} = \textit{scalar}

Offset value to use when calculating predicted means; default 0

\texttt{RMETHOD} = \textit{string token}

Which random terms to use when calculating \texttt{RESIDUALS} (final, all); default fina

\texttt{CFORMAT} = \textit{string token}

Whether printed output for covariance models gives the variance matrices or the parameters (variancematrices, parameters); default vari

\texttt{FMETHOD} = \textit{string token}

Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto

\texttt{GLSAVE} = \textit{pointer}

Save structure from the \texttt{GLMM} analysis

\textbf{No parameters}

\textbf{GLKEEP procedure}

Saves results from a \texttt{GLMM} analysis (R.W. Payne).

\texttt{FACTORIAL} = \textit{scalar}

Limit on number of factors in the model terms generated from the \texttt{TERMS} parameter; default 3

\texttt{RESIDUALS} = \textit{variate}

Residuals from the analysis

\texttt{FITTEDVALUES} = \textit{variate}

Fitted values from the analysis

\texttt{DISPERSION} = \textit{scalar}

Dispersion component

\texttt{VCOVARIANCE} = \textit{symmetric matrix}

Variance-covariance matrix for the estimates of the variance components

\texttt{VESTIMATES} = \textit{variate}

Saves a vector of all parameters in the variance model

\texttt{VARESTIMATES} = \textit{symmetric matrix}

Variance-covariance matrix for the parameters in the variance model (as saved by \texttt{VESTIMATES})

\texttt{VLABELS} = \textit{text}

Vector of text labels for the \texttt{VESTIMATES} and \texttt{VARESTIMATES} structures

\texttt{MVESTIMATES} = \textit{variate}

Estimates of missing values

\texttt{MVSE} = \textit{variate}

Standard errors of missing-value estimates

\texttt{MVUNITS} = \textit{variate}

Unit numbers of missing values

\texttt{DEViance} = \textit{scalar}

Saves the deviance

\texttt{MODEL} = \textit{pointer}

Information defining the model

\texttt{RMETHOD} = \textit{string token}

Which random terms to use when calculating \texttt{RESIDUALS} (final, all); default all

\texttt{DFFIXED} = \textit{scalar}

Number of degrees of freedom in the fixed model

\texttt{DFRANDOM} = \textit{scalar}

Number of degrees of freedom in the random model

\texttt{FMETHOD} = \textit{string token}

Controls how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto
\textbf{WMETHOD} = \textit{string token}\newline Controls which Wald statistics are saved (add, drop); default drop

\textbf{OFFSET} = \textit{scalar}\newline Offset value to use when calculating predicted means; default 0

\textbf{ITERATIVEWEIGHTS} = \textit{variate}\newline Saves the iterative weights from the generalized linear model fitting

\textbf{LINEARPREDICTOR} = \textit{variate}\newline Linear predictor from a generalized linear model

\textbf{YADJUSTED} = \textit{variate}\newline Adjusted response variate

\textbf{ZADJUSTED} = \textit{variate}\newline Adjusted dependent variate on the linear predictor scale

\textbf{LPRESIDUALS} = \textit{variate}\newline Residuals from the fit on the linear predictor scale

\textbf{SELPRESIDUALS} = \textit{variate}\newline Standard errors for the residuals from the fit on the linear predictor scale

\textbf{EXIT} = \textit{scalar}\newline Exit status of the fit (0 if successful)

\textbf{GLSAVE} = \textit{pointer}\newline Save structure from the \textit{GLMM} analysis

\textbf{Parameters}\newline \textbf{TERMS} = \textit{formula}\newline Model terms for which information is required

\textbf{COMPONENTS} = \textit{scalar or pointer to scalars}\newline Estimated variance components

\textbf{MEANS} = \textit{table or pointer to tables}\newline Predicted means for each term

\textbf{BACKMEANS} = \textit{table or pointer to tables}\newline Back-transformed means

\textbf{SEMEANS} = \textit{symmetric matrix or pointer to symmetric matrices}\newline Standard errors of differences between means

\textbf{VARMEANS} = \textit{symmetric matrix or pointer to symmetric matrices}\newline Variance-covariance matrix for the means

\textbf{EFFECTS} = \textit{table or pointer to tables}\newline Effects for each term

\textbf{SEDEFFECTS} = \textit{symmetric matrix or pointer to symmetric matrices}\newline Standard errors of differences between effects

\textbf{VAREFFECTS} = \textit{symmetric matrix or pointer to symmetric matrices}\newline Variance-covariance matrix for the effects

\textbf{CADJUSTMENT} = \textit{scalar or pointer to scalars}\newline For a term involving covariates, saves the adjustment made to its values during the analysis

\textbf{WALD} = \textit{scalar or pointer to scalars}\newline Wald statistic (fixed terms only)

\textbf{FSTATISTIC} = \textit{scalar or pointer to scalars}\newline F statistics (fixed terms only)

\textbf{NDF} = \textit{scalar or pointer to scalars}\newline Numerator d.f. (fixed terms only)

\textbf{DDF} = \textit{scalar or pointer to scalars}\newline Denominator d.f. (fixed terms only)

\textbf{GLM procedure}\newline Analyses non-standard generalized linear models (P.W. Lane).

\textbf{Options}\newline \textbf{PRINT} = \textit{string tokens}\newline What to display (deviance, estimates, correlations, monitoring); default devi, esti

\textbf{DISTRIBUTION} = \textit{string token}\newline Distribution of response (Normal, Poisson, binomial, gamma, inverse-normal); default * indicates calculations supplied for non-standard distribution via procedure \textit{GLMDISTRIBUTION} (see the details of the procedures called by \textit{GLM})

\textbf{LINK} = \textit{string token}\newline Link function (identity, logarithm, logit, reciprocal, power, squareroot, probit, complementary log-log); default * indicates calculations supplied for non-standard link via procedure \textit{GLMLINK} (see Method)

\textbf{EXPONENT} = \textit{scalar}\newline Exponent for power link; default \(-2\)

\textbf{TERMS} = \textit{list or formula}\newline Explanatory variates, factors, and interactions specified as for the standard regression directives; default null model

\textbf{CONSTANT} = \textit{string token}\newline Whether to include constant term (estimate, omit); default
INITIALLINEAR = variate

Initial guess at linear predictor, if specifying own link function and not defining procedure GLMINITIAL

Parameters

Y = variates

Response variate; this parameter must be set

NBINOMIAL = variates

Totals for use when DISTRIBUTION=binomial; must then be set

FITTEDVALUES = variates

To store correct fitted values

GLMM procedure

Fits a generalized linear mixed model (S.J. Welham).

Options

PRINT = string token

What output to display (model, components, effects, fittedvalues, means, backmeans, monitoring, vcovariance, waldtests, missingvalues, covariancemodels, deviance); default mode, comp, effe, mean, back, moni, vcov, cova

DISTRIBUTION = string token

Error distribution (binomial, poisson, normal, gamma, negativebinomial); default bino

LINK = string token

Link function (identity, logarithm, logit, reciprocal, probit, complementaryloglog, logratio); default * gives the canonical link

DISPERSION = scalar

Value at which to fix the residual variance, if missing the variance is estimated; default 1 for binomial, Poisson and negative binomial distributions, a missing value otherwise

RANDOM = formula

Random model excluding bottom stratum; this must be set

FIXED = formula

Fixed model; default *

ABSORB = factor

Absorbing factor to be used at the REML step of the iterations

CONSTANT = string token

Whether to estimate or omit constant term in fixed model (omit, estimate); default esti

FACTORIAL = scalar

Limit on number of factors/covariates in a model term; default 3

PTERMS = formula

Formula specifying fixed terms for which means or back-transformed means are to be printed; default * prints all the fixed model terms

PSE = string token

Standard errors to print with tables of means (se, sesummary, sed, sedsummary, vcovariance, differences, estimates, alldifferences, allestimates); default seds

MVINCLUDE = string tokens

Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

MAXCYCLE = scalar

Maximum number of iterations of the GLMM algorithm; default 20

TOLERANCE = scalar

Convergence criterion for iterative procedure; default 0.0001

FMETHODGLMM = string token

Specifies fitting method (all, fixed): all indicates the method of Schall (1991); fixed indicates the marginal method of Breslow & Clayton (1993); default all

OFFSET = variate

Variate holding values to be used as an offset on the linear predictor scale; default *

CADJUST = string token

What adjustment to make to covariates for the REML analysis (mean, none); default mean

AGGREGATION = scalar

Fixed parameter for negative binomial distribution (parameter k as in variance function \(\text{var} = \text{mean} + \text{mean}^2/k \)); default 1

KLOGRATIO = scalar

Parameter k for logratio link, in form \(\log(\text{mean} / (\text{mean} + k)) \);
Syntax summary

OWNDIST = text
For non-standard distributions only: text specifying the variance function to be used with dummy variable DUM, e.g. OWNDIST = 'DUM'

OWNLINK = text
For non-standard link functions only: text specifying 3 functions using dummy variable DUM – the link function, its inverse and its derivative, e.g. OWNLINK = IT('log(DUM)', 'exp(DUM)', '1/DUM')

CDEFINITIONS = text
Statements to execute to define correlation models; default * i.e. none

CVECTORS = pointer
Data structures involved in the correlation models

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm; default 1

VCONSTRAINTS = string token
Whether to constrain variance components to be positive (none, positive); default posi

VMETHOD = string token
Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI

VMAXCYCLE = scalar
Limit on the number of iterations; default 30

Parameters
Y = variates
Dependent variates

NBINOMIAL = scalars or variates
Number of binomial trials for each unit (must be set if DISTRIBUTION=binomial)

FITTEDVALUES = variates
Variates to save fitted values

COMPONENTS = variates
Variant to save estimated variance components

VCOVARIANCE = symmetric matrices
Variance-covariance matrix for the variance components

MEANS = pointers
Pointer to save tables of means for each Y variate

VMEANS = pointers
Pointer to save covariance matrices of tables of means for each Y variate

BACKMEANS = pointers
Pointer to save tables of back-transformed means for each Y variate

ITERATIVEWEIGHTS = variates
Saves the iterative weights from the generalized linear model fitting

INITIALFITTEDVALUES = variates
Defines initial values for the fitted values; if unset, these are formed automatically

EXIT = scalar
Exit status for the fit of the GLMM (0 if successful)

SAVE = REML save structures
Saves details of the REML analysis used to fit the model

GLSAVE = pointer
Saves details of the GLMM analysis

GLPERMTEST procedure
Does random permutation tests for generalized linear mixed models (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (prwald, criticalwald, ownstatistics, monitoring); default prwa, crit

NTIMES = scalar
Number of permutations to make; default 99

NRETRIES = scalar
Maximum number of extra samples to take when some analyses fail to converge; default NTIMES

BLOCKSTRUCTURE = formula
Model formula defining any blocking to consider during the randomization; default none

EXCLUDE = factors
Factors in the block formula whose levels are not to be randomized

SEED = scalar
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

BINMETHOD = string token
How to permute binomial data (individuals, units; default indiv)

WMETHOD = string token
Controls which Wald statistics are used (add, drop); default
4.1 Commands

OWNMETHOD = string token
Type of test required for own statistics (twosided, greaterthan, lessthan); default twos

CIPROBABILITY = scalar
Probability level for the confidence interval for own statistics; default 0.95

Parameters

GLSAVE = pointers
Save structure of the original analysis from GLMM; default * uses the save structure from the most recent GLMM analysis

WALD = pointers
Saves a pointer with a variate for each of the fixed terms containing the Wald statistics from the permuted data sets

PRWALD = pointers
Saves a pointer with a scalar for each of the fixed terms, containing the test probability obtained from the position of its Wald statistic within those from the permuted data sets

CRITICALWALD = pointers
Saves a pointer with variates for the 5%, 1% and 0.1% significance levels containing the corresponding critical values for the fixed terms, obtained from the quantiles of the Wald statistics from the permuted data sets

NNOTCONVERGED = scalars
Saves the number of permuted data sets whose analyses failed to converge

OWNDATA = pointers
Data required to calculate own statistics

OWNOBSERVEDVALUES = variates
Saves observed values of the own statistics

OWNPROBABILITIES = variates
Saves bootstrap probabilities for the own statistics

OWNESTIMATES = variates
Saves bootstrap estimates for the own statistics

OWNSES = variates
Saves bootstrap standard errors for the own statistics

OWNLOWERCIS = variates
Saves bootstrap lower values of the confidence intervals for the own statistics

OWNUPPERCIS = variates
Saves bootstrap upper values of the confidence intervals for the own statistics

OWNSTATISTICS = pointers
Saves the own statistics obtained from the permuted data sets, in a pointer with a variate for each statistic

GLPLOT procedure
Plots residuals from a GLMM analysis (R.W. Payne).

Options

RMETHOD = string token
Which random terms to use when calculating the residuals (final, all); default all

BACKTRANSFORM = string token
Whether to plot residuals on the natural scale (calculated using back-transformed fitted values) or standardized residuals on the linear-predictor scale (link, none); default none

INDEX = variate or factor
X-variable for an index plot; default !(1,2...)

OFFSET = scalar
Value of offset to use when calculating the residuals; default 0

GRAPHICS = string token
What type of graphics to use (lineprinter, highresolution); default high

TITLE = text
Overall title for the plots; the default is to form a title displaying the identifier of the y-variate and the type of residual

GLSAVE = pointer
Save structure from the GLMM analysis; default * uses the GLSAVE structure from the most recent GLMM analysis

Parameters

METHOD = string tokens
Type of residual plot (fittedvalues, normal, halfnormal, histogram, absresidual, index); default fitt, norm, half, hist

PEN = scalars, variates or factors
Pen(s) to use for each plot
GLPREDICT procedure

Forms predictions from a GLMM analysis (R.W. Payne).

Options

- **PRINT = string tokens**
 - What to print (description, predictions, backpredictions, se, sesummary, sed, sedsummary, vcovariance); default desc, pred, back, seds

- **MODEL = formula**
 - Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms

- **OMITTERMS = formula**
 - Specifies terms to be excluded from the MODEL; default * i.e. none

- **FACTORIAL = scalar**
 - Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3

- **PRESENTCOMBINATIONS = factors**
 - Lists factors for which averages should be taken across combinations that are present

- **WEIGHTS = tables**
 - One-way tables of weights classified by factors in the model; default *

- **OFFSET = scalar**
 - Value of offset on which to base predictions; default 0

- **NBINOMIAL = scalar**
 - Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value \(n\) greater than one allows predictions to be made of the number of "successes" out of \(n\), whereas the value one predicts the proportion of successes); default 1

- **PREDICTIONS = table or scalar**
 - To save the predictions; default *

- **BACKPREDICTIONS = table or scalar**
 - To save back-transformed predictions; default *

- **SE = table or scalar**
 - To save standard errors of predictions; default *

- **SED = symmetric matrix**
 - To save standard errors of differences between predictions; default *

- **VCOVARIANCE = symmetric matrix**
 - To save variances and covariances of predictions; default *

- **GLSAVE = pointer**
 - Save structure of the original analysis from GLMM; default * uses the SAVE structure from the most recent GLMM analysis

Parameters

- **CLASSIFY = vectors**
 - Variates and/or factors to classify table of predictions

- **LEVELS = variates, scalars or texts**
 - To specify values of variates and/or levels of factors for which predictions are calculated

- **PARALLEL = identifiers**
 - For each vector in the CLASSIFY list, allows you to specify another vector in the CLASSIFY list with which the values of this vector should change in parallel (you then obtain just one dimension in the table of predictions for these vectors)

- **NEWFACTOR = identifiers**
 - Identifiers for new factors that are defined when LEVELS are specified

GLRTEST procedure

Calculates likelihood tests to assess the random terms in a generalized linear mixed model (R.W. Payne).

Options

- **PRINT = string tokens**
 - Controls printed output (tests); default test

- **SELECTION = string tokens**
 - Specifies information to print with the tests (aic, sic, bic, critical); default crit

- **CRITICAL = variate**
 - Saves the critical values

- **GLSAVE = pointer**
 - Save structure of the original analysis from GLMM; default * uses the save structure from the most recent GLMM analysis

Parameters

- **TERMS = formula**
 - Random terms to be tested; default is to test them all

- **TESTSTATISTIC = scalar or pointer to scalars**
 - Test statistics for each term
4.1 Commands

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DF = scalar or pointer to scalars</td>
<td>Degrees of freedom of the test statistics</td>
</tr>
<tr>
<td>AIC = scalar or pointer to scalars</td>
<td>Akaike information coefficients for each term</td>
</tr>
<tr>
<td>SIC = scalar or pointer to scalars</td>
<td>Schwarz (Bayesian) information coefficients for each term</td>
</tr>
</tbody>
</table>

GLTObitPoisson procedure

Uses the Tobit method to fit a generalized linear mixed model with censored Poisson data (R.W. Payne).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string token</td>
<td>What output to display (model, components, effects, fittedvalues, means, backmeans, monitoring, vcovariance,waldtests,missingvalues, covariancemodels, deviance, censored); default mode, comp, mean, back, cens</td>
</tr>
<tr>
<td>DISPERSION = scalar</td>
<td>Value at which to fix the residual variance, if missing the variance is estimated; default 1</td>
</tr>
<tr>
<td>RANDOM = formula</td>
<td>Random model excluding bottom stratum; this must be set</td>
</tr>
<tr>
<td>FIXED = formula</td>
<td>Fixed model; default *</td>
</tr>
<tr>
<td>CONSTANT = string token</td>
<td>Whether to estimate or omit constant term in fixed model (omit, estimate); default esti</td>
</tr>
<tr>
<td>FACTORIAL = scalar</td>
<td>Limit on number of factors/covariates in a model term; default 3</td>
</tr>
<tr>
<td>PTERMS = formula</td>
<td>Formula specifying fixed terms for which means or back-transformed means are to be printed; default * prints all the fixed model terms</td>
</tr>
<tr>
<td>PSE = string token</td>
<td>Standard errors to print with tables of means (se, sesummary, sed, sedsummary, vcovariance, differences, estimates, alldifferences, allestimates); default seds</td>
</tr>
<tr>
<td>MVINCLUDE = string tokens</td>
<td>Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates</td>
</tr>
<tr>
<td>MAXCYCLE = scalar</td>
<td>Maximum number of iterations of the E-M algorithm; default 100</td>
</tr>
<tr>
<td>TOLERANCE = scalar</td>
<td>Convergence criterion for the E-M algorithm; default 0.001</td>
</tr>
<tr>
<td>DIRECTION = string token</td>
<td>Whether the data are left or right censored (left, right); default right</td>
</tr>
<tr>
<td>GLMAXCYCLE = scalar</td>
<td>Maximum number of iterations of the GLMM algorithm; default 20</td>
</tr>
<tr>
<td>GLTOLERANCE = scalar</td>
<td>Convergence criterion for iterative procedure; default 0.0001</td>
</tr>
<tr>
<td>FMETHODGLMM = string token</td>
<td>Specifies fitting method (all, fixed): all indicates the method of Schall (1991); fixed indicates the marginal method of Breslow & Clayton (1993); default all</td>
</tr>
<tr>
<td>CADJUST = string token</td>
<td>What adjustment to make to covariates for the REML analysis (mean, none); default mean</td>
</tr>
<tr>
<td>WORKSPACE = scalar</td>
<td>Number of blocks of internal memory to be set up for use by the REML algorithm; default 1</td>
</tr>
<tr>
<td>VCONSTRAINTS = string token</td>
<td>Whether to constrain variance components to be positive (none, positive); default posi</td>
</tr>
<tr>
<td>VMETHOD = string token</td>
<td>Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI</td>
</tr>
<tr>
<td>VMAXCYCLE = scalar</td>
<td>Limit on the number of iterations; default 30</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y = variate</td>
<td>Response variate to be analysed; must be set</td>
</tr>
</tbody>
</table>
Syntax summary

BOUND = scalar
- Censoring threshold; must be set

INITIAL = scalar or variate
- Scalar or a variate providing starting values for the censored observations in the E-M algorithm; default $\text{BOUND}+1$

NEWY = variate
- Saves a copy of the response variate with the censored observations replaced by their estimates

OFFSET = variate
- Offset variate

EXIT = scalar
- Exit status (0 for success, 1 for failure in the E-M algorithm, 2 for failure to fit the generalized linear mixed model)

SAVE = REML save structure
- REML save structure from the analysis of the data with censored observations replaced by their estimates

GLSAVE = pointer
- GLMM save structure from the analysis of the data with censored observations replaced by their estimates

GPREDICTION procedure

Produces genomic predictions (breeding values) using phenotypic and molecular marker information (M. Malosetti, M.P. Boer & S.J. Welham).

Options

PRINT = string token
- What to print (summary); default summ

PLOT = string token
- What to plot (scatterplot, pco); default scat, pco

MODELTYPE = string token
- Model to use to obtain the predictions (gb1up, gaussian, exponential); default gb1u

THETA = variate
- Values to use for the tuning parameter θ when the model is Gaussian or exponential

SIMILARITY = symmetric matrix
- Similarity matrix between individuals of the whole population

Parameters

TRAIT = variates
- Quantitative trait to be analysed; must be set

GENOTYPES = factors
- Genotype factor; must be set

MKSCORES = pointers
- Marker scores

IDMGENOTYPES = texts
- Labels of the tested and untested genotypes

PREDICTIONS = variates
- Saves the predictions

NEWGENOTYPES = factors
- Factor to index the predictions

TESTED = factors
- Factor that classifies NEWGENOTYPES as part of the tested or the untested set

SAVE = pointers
- Pointer to REML save structures to save details of the analyses

GRANDOM procedure

Generates pseudo-random numbers from probability distributions (D.M. Roberts & P.W. Lane).

Options

DISTRIBUTION = string token
- Type of distribution required (beta, chisquare, exponential, F, gamma, logNormal, Normal, t, uniform, Weibull, expNormal, invNormal, skewNormal, Laplace, GEV, binomial, hypergeometric, Poisson); default Norm

NVALUES = scalar
- Number of values to generate; default 1

SEED = scalar
- Seed to start random number generation; default set by CALCULATE or continued from previous generation

MEAN = scalar
- Mean for distribution, except for Weibull or hypergeometric; default 0 for Normal distribution and 1 for Poisson and exponential, otherwise *

VARIANCE = scalar
- Variance for distribution, except for the Weibull or hypergeometric; must be positive; default *, except for Normal when default is 1

LOWER = scalar
- Lower bound for the uniform or beta distribution; default 0

UPPER = scalar
- Upper bound for the uniform or beta distribution; default 1

LOCATION = scalar
- Location parameter for the log-Normal, gamma or Weibull distribution; default 0

SCALE = scalar
- Scale parameter for the Weibull distribution and exponentially
4.1 Commands

*SHAPE = scalar
Shape parameter for the Weibull, GEV and skew Normal
distributions, must be positive; default 0 for GEV and 1
otherwise

ABETA = scalar
First shape parameter for the beta distribution; must be
positive; default 1

BBETA = scalar
Second shape parameter for the beta distribution; must be
positive; default 1

AGAMMA = scalar
Location-scale parameter for the gamma distribution, must be
positive, usually denoted by alpha or theta; default 1

BGAMMA = scalar
Shape parameter for the gamma distribution, must be positive,
usually denoted by beta or kappa; default 1

DF = scalar
Number of degrees of freedom for the t or chi distribution,
must be 1 or greater; default 1

DFINUMERATOR = scalar
Number of degrees of freedom of the numerator for the F
distribution, must be 1.0 or greater; default 1

DFDENOMINATOR = scalar
Number of degrees of freedom of the denominator for the F
distribution, must be 1.0 or greater; default 1

NBINOMIAL = scalar
Number of binomial trials for the binomial distribution, must
be positive; default 1

PROBABILITY = scalar
Probability of success for the binomial or hypergeometric
distribution, must be positive and not greater than 1; default
0.5

NHYPERGEOMETRIC = scalar
Number of elements for the hypergeometric distribution, must
be positive; default 1

SSHYPERGEOMETRIC = scalar
Sample size for the hypergeometric distribution, must be
positive and less than \texttt{NHYPERGEOMETRIC}; default 1

Parameter
NUMBERS = scalar or variate
The generated numbers are returned here; if the length of the
supplied structure is defined, it must equal the setting of the
NVALUES option

GRAPH directive
Produces scatter and line graphs on the terminal or line printer.
This directive was replaced in Release 10 by the directive \texttt{LPGRAPH} (with exactly the same options and
parameters). It is currently retained as a synonym of \texttt{LPGRAPH}, but may be removed in a future release.

GRCSR procedure
Generates completely spatially random points in a polygon (M.A. Mugglestone, S.A. Harding,

Option
PRINT = string token
What to print (summary); default \texttt{summ}

Parameters
YPOLYGON = variates
Vertical coordinates of each polygon; no default – this
parameter must be set

XPOLYGON = variates
Horizontal coordinates of each polygon; no default – this
parameter must be set

NPOINTS = scalars
How many points to generate in each polygon; no default –
this parameter must be set

YCSR = variates
Variates to receive the vertical coordinates of the points that
have been generated

XCSR = variates
Variates to receive the horizontal coordinates of the points that
have been generated

SEED = scalars
Seeds for the random numbers used to generate the points;
default 0
GREJECTIONSAMPLE procedure

Generates random samples using rejection sampling (W. van den Berg).

Options

- **PLOT = string tokens**
 - What to plot (density, sample); default dens, samp

- **NVALUES = scalar**
 - Size of each random sample; no default, must be set

- **PRDENSITY = expression structure**
 - Calculation defining the probability density function \(f(x) \) to sample; no default, must be set

- **X = identifier**
 - Data structure used inside PRDENSITY for the \(x \)-coefficient of the density function \(f(x) \); no default, must be set

- **XLOWER = scalar**
 - Lower bound of the region in which \(f(x) \) is non-negligible; default -10

- **XUPPER = scalar**
 - Upper bound of the region in which \(f(x) \) is non-negligible; default 10

- **PRENVELOPE = expression structure**
 - Calculation defining the probability density function \(g(x) \) used to generate the sample; default \(\text{!e(PRT(X; 60))} \)

- **GRENVELOPE = expression structure**
 - Calculation to sample from the probability density \(g(x) \) used to generate the sample (note, PRENVELOPE and GRENVELOPE must either be both set, or both unset); default \(\text{!e(GRT(NTRIES; 60))} \)

- **MULTIPLIER = scalar**
 - Multiplier \(M \) used in the definition of the envelope \(M \times g(x) \) that must always be greater than \(f(x) \); default 10

- **NTRIES = scalar**
 - Number of random samples to take in each sampling step; default * i.e. determined automatically

Parameters

- **NUMBERS = variates**
 - Saves each random sample

- **SEED = scalars**
 - Seed to use for the random numbers used to generate each random sample; default 0

GRIBIMPORT procedure

Reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file (D.B. Baird).

Options

- **PRINT = string token**
 - What information to print (catalogue); default cata

- **OUTTYPE = string token**
 - Output file type (GEN, GSH, GWB, XLS, XLSX, TXT, CSV, RECORDS); default GWB

- **METHOD = string token**
 - Whether to load data into the Genstat server after creating the file, or merely to create the file (create, load); default load

- **SERIAL = string token**
 - Whether to store the records in series, in a single column, instead of in parallel columns (no, yes); default no

- **LONGITUDERANGE = string token**
 - What range to use for longitude (negative, positive); default posi

- **MISSING = scalar**
 - What value represents a missing value; default -999

- **GRID = variate**
 - Specifies limits on the longitude and latitude for the data to be read; default * i.e. read all grid points

- **ENDTIME = string token**
 - Whether to keep the end time for each period when SERIAL = yes (yes, no); default no

- **SCOPE = string token**
 - Whether to create the data locally in a procedure that is using GRIBIMPORT, or globally in the whole program (local, global); default loca

Parameters

- **FILE = texts**
 - Input file or URL to be read

- **OUTFILE = texts**
 - Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded

- **RECORDS = scalars or variates**
 - The numbers of the records to read; default is to read all the records in the file

- **MATCH = texts**
 - Text strings to match in the record descriptions; default *
4.1 Commands

requests all the records selected by RECORDS

COLUMNS = texts

Names and/or type codes for the columns that are read (the
type of column can be forced by ending the column name, if
supplied, with the code ! for a factor, # for a variate, and $ for
a text), using a name of ‘*’ will cause a column to be dropped

ISAVE = pointers

Saves the identifiers of the columns

GRLABEL procedure

Randomly labels two or more spatial point patterns (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee,
P.J. Diggle & B.S. Rowlingson).

Options

PRINT = string token

What to print (summary); default summ

SEED = scalar

Seed for the random numbers used to create the random
labellings; default 0

Parameters

OLDY = variates

Vertical coordinates of two or more spatial point patterns; no
default – this parameter must be set

OLDX = variates

Horizontal coordinates of two or more spatial point patterns;
no default – this parameter must be set

NEWY = variates

Variate to receive the vertical coordinates of the spatial point
patterns created by random labelling

NEWX = variates

Variate to receive the horizontal coordinates of the spatial
point patterns created by random labelling

GRMNOMIAL procedure

Generates multinomial pseudo-random numbers (D.B. Baird).

Options

NVALUES = scalar

Number of values to generate

SEED = scalar

Seed to generate the random numbers; default 0 continues an
existing sequence or initializes the sequence automatically if
no random numbers have been generated in this job

Parameters

PROBABILITIES = variates or tables

Probabilities for the categories

NUMBERS = factors

Saves the random numbers

COUNTS = tables

Saves counts of the numbers generated in each category

GMRMULTINORMAL procedure

Options

NVALUES = scalar

Number of values to generate

MEANS = variate

The mean for the multivariate Normal distribution; default is a
variate with values all equal to 0

VCOVARIANCE = symmetric matrix

The variance/covariance matrix for the multivariate Normal
distribution; default is to use an identity matrix

SEED = scalar

Seed to generate the random numbers; default 0 continues an
existing sequence or initializes the sequence automatically if
no random numbers have been generated in this job

Parameters

NUMBERS = pointers or matrices

Saves the random numbers as either a pointer to a set of
variates or a matrix

GROUPS directive

Forms a factor (or grouping variable) from a variate or text, together with the set of distinct values
that occur.

Options

PRINT = string token

Printed output required (summary); default * i.e. no printing
NGROUPS = scalar

Number of groups to form when LIMITS is not specified; if NGROUPS is also unspecified, each distinct value (allowing for rounding) defines a group; default *

LMETHOD = string token

Defines how to form the levels variate if the setting of the VECTOR parameter is a variate, or the labels if it is a text; if LMETHOD=*, no levels/labels are formed, and existing levels (for a variate VECTOR) or labels (for a text VECTOR) of an already declared FACTOR will be retained if still appropriate (given, minimum, median, maximum, limit); default medi

DECIMALS = scalar

Number of decimal places to which to round the VECTOR before forming the groups; default * i.e. no rounding

BOUNDARIES = string token

Whether to interpret the LIMITS as upper or lower boundaries (upper, lower); default lowe

REDEFINE = string token

Whether to allow a structure in the FACTOR list that has already been declared (e.g. as a variate or text) to be redefined (yes, no); default no

CASE = string token

Whether the case of letters (small and capital) in text should be regarded as significant or ignored (significant, ignored); default sign

LDIRECTION = string token

How to define the levels (for a variate VECTOR) or labels (for a text VECTOR) when LMETHOD = minimum, median or maximum (ascending, given); default asce

OMITUNBOUNDED = string token

Whether to omit the (unbounded) group that occurs below the lowest limit when BOUNDARIES=lower, or above the final limit when BOUNDARIES=upper (yes, no); default no

Parameters

VECTOR = variates or texts

Vectors whose values are to define the groups

FACTOR = factors

Structures to be defined as factors to save details of the groups; default * will, if REDEFINE=*, cause the corresponding VECTOR itself to be defined as a factor

LIMITS = variates or texts

Limits to define the groups

LEVELS = variates

Variate to define the levels of each FACTOR if LMETHOD=give, or to save them otherwise

LABELS = texts

Text to define the labels of each FACTOR if LMETHOD=give, or to save them otherwise

GRTHIN procedure

Option

PRINT = string token

What to print (summary); default summ

Parameters

OLDY = variates

Vertical coordinates of each spatial point pattern; no default – this parameter must be set

OLDX = variates

Horizontal coordinates of each spatial point pattern; no default – this parameter must be set

NPOINTS = scalars

How many points to return from each pattern; no default – this parameter must be set

NEWY = variates

Variate to receive the vertical coordinates of the randomly thinned patterns

NEWX = variates

Variate to receive the horizontal coordinates of the randomly thinned patterns

SEED = scalars

Seeds for the random numbers used to select the thinned points; default 0
4.1 Commands

GRTORSHIFT procedure

Option
PRINT = string token
What to print (summary); default summ

Parameters
OLDY = variates
Vertical coordinates of each spatial point pattern; no default – this parameter must be set

OLDX = variates
Horizontal coordinates of each spatial point pattern; no default – this parameter must be set

YBOX = variates
Vertical coordinates of the toroidal regions

XBOX = variates
Horizontal coordinates of the toroidal regions

NEWY = variates
Variates to receive the vertical coordinates of the randomly shifted patterns

NEWX = variates
Variates to receive the horizontal coordinates of the randomly shifted patterns

SEED = scalars
Seeds for the random numbers used to perform the shifts; default 0

GSTATISTIC procedure
Calculates the gamma statistic of agreement for ordinal data (A.W. Gordon).

Options
PRINT = string token
Whether to print the statistic with its associated information and the resulting test (test); default test

METHOD = string token
Type of test required (twosided, positive, negative); default twos

Parameters
DATA = tables
Tables of data each classified by the two variables (factors) of interest

STATISTIC = scalars
Save the value of gamma for each data table

VARIANCE = scalars
Save the corresponding variances

G2AEXPORT procedure
Forms a dbase file to transfer ANOVA output to Agronomix Generation II (R.W. Payne).

Options
PRINT = strings
Controls printed output (columns); default * i.e. none

REPLICATETERMS = formula
Specifies the term or terms that define the replication in the design

METHOD = string
How to form the means (loweststratum, combined); default lowe

ALPHALEVEL = scalar
Alpha value to use when calculating least significant differences; default 0.05

TAIL = scalar
Number of tails in the calculation of least significant differences (1, 2); default 1

SAVE = ANOVA save structure
Save structure for the analysis from which the means &c are to be saved; default * takes the information from the most recent ANOVA analysis

Parameters
MEANTERM = formula
Defines the treatment term whose means are to be saved; no default (must be specified)

OUTFILE = text
Name of the output file (dbf) to form; default * i.e. file not formed
G2FAFACTORS procedure
Redefines block and treatment variables as factors (R.W. Payne).

No options

Parameter

FACTOR = variates or texts
Other variates or texts to convert into factors (if required)

G2VEXPORT procedure
Forms a dbase file to transfer REML output to Agronomix Generation II (R.W. Payne).

Options

PRINT = strings
Controls printed output (columns); default * i.e. none

REPLICATERMS = formula
Specifies the term or terms that define the replication in the design

MODEL = formula
Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms

OMITTERMS = formula
Specifies terms to be excluded from the MODEL; default * i.e. none

FACTORIAL = scalar
Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3

PRESENT = identifiers
Lists factors for which averages should be taken across combinations that are present

WEIGHTS = tables
One-way tables of weights classified by factors in the model; default *

ALPHALEVEL = scalar
Alpha value to use when calculating least significant differences; default 0.05

TAIL = scalar
Number of tails in the calculation of least significant differences (1, 2); default 1

SAVE = REML save structure
Save structure for the analysis from which the means &c are to be saved; default * takes the information from the most recent REML analysis

Parameters

MEANTERM = formula
Defines the treatment term whose means are to be saved; no default (must be specified)

OUTFILE = text
Name of the output file (dbf) to form; default * i.e. file not formed

HANOVA procedure
Does hierarchical analysis of variance/covariance for unbalanced data (P.W. Lane).

Options

PRINT = string token
Which analyses to print (all, some, none); default all

INCHANNEL = scalar
Channel from which to read data; default * specifies that the data values are already stored in the factors and variates specified by the parameters of HANOVA

FORMAT = variate scalar
Format for reading data; default * requests free format

ANALYSIS = symmetric matrix
For PRINT=some, this indicates which analyses to print

SSPM = SSPM
Stores the corrected sums of squares and products; default *

COEFFICIENT = matrix
Stores the estimated variance and co-variance components; default *

Parameters

VARIATES = pointers
VARIATES to be analysed

FACTORS = pointers
Factors defining the hierarchy, the first factor of the pointer defining the first stratum, and so on
HBOOTSTRAP directive

Performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis (R.W. Payne).

Options

- **PRINT = string token**
 Controls printed output (clusters, dendrograms; default * i.e. none)
- **METHOD = string token**
 Criterion for forming clusters (singlelink, nearestneighbour, completelink, furthestneighbour, averagelink, mediansort, groupaverage); default sing
- **CLIMIT = scalar**
 Similarity value below which clusters are not recorded; default 0
- **UNITS = text or variate**
 Names to label the units of the clusters when they are printed; default *
- **MINKOWSKI = scalar**
 Index t for use with TEST=minkowski
- **CLUSTERS = pointer**
 Specifies or saves the clusters
- **REPLICATION = variate**
 Saves the replication of the clusters in the bootstrap samples
- **NDATASAMPLE = variate**
 Number of DATA vectors to take in each sample; default takes the same number as supplied by the DATA parameter
- **NTIMES = scalar**
 Number of times to resample; default 100
- **SEED = scalar**
 Seed for random number generator; default continue from previous generation or use system clock

Parameters

- **DATA = variates or factors**
 The characteristics of the units to be clustered
- **TEST = string tokens**
 Test type, defining how each DATA variate or factor is treated in the calculation of the similarity between each unit (simplematching, jaccard, russellrao, dice, antidice, sneathsokal, rogerstanimoto, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variate or factor
- **RANGE = scalars**
 Range of possible values of each DATA variate or factor; if omitted, the observed range is taken

HCLUSTER directive

Performs hierarchical cluster analysis.

Options

- **PRINT = string tokens**
 Printed output required (dendrogram, amalgamations); default * i.e. no printing
- **METHOD = string token**
 Criterion for forming clusters (singlelink, nearestneighbour, completelink, furthestneighbour, averagelink, mediansort, groupaverage); default sing
- **CTHRESHOLD = scalar**
 Clustering threshold at which to print formation of clusters; default * i.e. determined automatically

Parameters

- **SIMILARITY = symmetric matrices**
 Input similarity matrix for each cluster analysis
- **GTHRESHOLD = scalars**
 Grouping threshold where groups are formed from the dendrogram
- **GROUPS = factors**
 Stores the groups formed
- **PERMUTATION = variates**
 Permutation order of the units on the dendrogram
- **AMALGAMATIONS = matrices**
 To store linked list of amalgamations
HCOMPAREGROUPINGS procedure

Compares groupings generated, for example, from cluster analyses (R.W. Payne).

Options

PRINT = string tokens Controls printed output (indexes, tests); default inde
PLOT = string What to plot (histogram); default *
METHOD = string tokens Which indexes to calculate (arand, jaccard, rand); default arand
NTIMES = scalar Number of permutations to make for the tests; default 999

Parameters

FIRSTGROUPING = factors First set of groupings
SECONDGROUPING = factors Second set of groupings
ESTIMATES = pointers Saves the values of the indexes calculated from the original data set
SEED = scalars Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically
PERMUTATIONESTIMATES = pointers Saves the values of the indexes calculated from the permuted data sets

HDISPLAY directive

Displays results ancillary to hierarchical cluster analyses: matrix of mean similarities between and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the most typical elements from each group.

Option

PRINT = string tokens Printed output required (neighbours, tree, typicalelements, gsimilarities); default tree

Parameters

SIMILARITY = symmetric matrices Input similarity matrix for each cluster analysis
NNEIGHBOURS = scalars Number of nearest neighbours to be printed
NEIGHBOURS = matrices Matrix to store nearest neighbours of each unit
GROUPS = factors Indicates the groupings of the units (for calculating typical elements and mean similarities between groups)
TREE = matrices To store the minimum spanning tree (as a series of links and corresponding lengths)
GSIMILARITY = symmetric matrices To store similarities between groups

HEATUNITS procedure

Calculates accumulated heat units of a temperature dependent process (R.J. Reader, R.A. Sutherland & K. Phelps).

Options

METHOD = string token Temperature/time relationship to be used (sawtooth, cosine, linsine, expsine); default sawt
LATITUDE = scalar Latitude at which temperatures were measured; default 52.205 N (Wellesbourne, U.K.)
RATE = variate Value of rate relationship at cardinal temperatures
TEMPERATURE = variate Cardinal temperatures
PARAMETERS = variate Parameters a, b, c (a, c in hours) for the expsine method

Parameters

MINTEMPERATURE = variates Minimum temperature on each day
MAXTEMPERATURE = variates Maximum temperature on each day
FIRSTDAY = scalars Day of year of first temperature recorded
HEATUNITS = variates Development on each day
HELP directive

Provides help information about Genstat commands and functions.

No options

Parameter

`TOPIC = texts`

Single-valued texts indicating the command or function about which the information is required

HFAMALGAMATIONS procedure

Forms an amalgamations matrix from a minimum spanning tree (R.W. Payne).

No options

Parameters

- `TREE = matrices`
 - Minimum spanning tree
- `AMALGAMATIONS = matrices`
 - Saves the amalgamation matrices formed from the minimum spanning trees

HFCLUSTERS procedure

Forms a set of clusters from an amalgamations matrix (R.W. Payne).

Options

- `CLIMIT = scalar`
 - Similarity value below which clusters are not formed; default 0
- `ORDERING = string token`
 - How to order the clusters (join, lexicographic); default lexi
- `NCLUSTERS = scalar`
 - Saves the number of clusters that have been formed

Parameters

- `AMALGAMATIONS = matrices`
 - Amalgamation matrices
- `CLUSTERS = pointers`
 - Saves the clusters
- `SIMILARITIES = variates`
 - Saves the similarity values at which the clusters are formed

HGANALYSE procedure

Analyses data using a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

- `PRINT = string tokens`
 - Controls printed output (model, fixedestimates, randomestimates, dispersionestimates, likelihoodstatistics, deviance, waldtests, fittedvalues, monitoring, dhgmonitoring); default mode, fixe, disp, like, devi, moni
- `LMETHOD = string token`
 - Whether to use exact likelihood or extended quasi likelihood to obtain the y-variate and weights for the dispersion model (exact, eql); default exac
- `SEMETHOD = string token`
 - Method to use to calculate the se's for the dispersion estimates (approximate, profilelikelihood); default appr
- `DMETHOD = string token`
 - Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto
- `EMETHOD = string token`
 - Extrapolation method to use (aitken, adjustedaitken); default aitk
- `MLAPLACEORDER = scalar`
 - Order of Laplace approximation to use in the estimation of the mean model (0 or 1); default 0
- `DLAPLACEORDER = scalar`
 - Order of Laplace approximation to use in the estimation of the dispersion components (0, 1 or 2); default 0
- `MAXCYCLE = scalars`
 - Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50
- `EXIT = scalar`
 - Exit status (0 for success, 1 for failure to converge)
- `TOLERANCE = scalar`
 - Criterion for convergence; default 0.0005
- `ETOLERANCE = scalar`
 - Maximum size of ratio of the original to the new estimates
4 Syntax summary

GROUPTERM = formula

Random term to use as groups when fitting the augmented mean model; default * i.e. none

Parameters

Y = variate
Response variate (must be one only)

NBINOMIAL = variate
Total numbers for binomial data

RESIDUALS = variate
Saves the residuals

FITTEDVALUES = variate
Saves the fitted values

SAVE = pointer
Saves details of the analysis for use in subsequent HGDISPLAY, HGKEEP, HG PLOT or HG PREDICT statements

HGDISPLAY procedure

Displays results from a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

PRINT = string tokens
Controls printed output (model, fixedestimates, randomestimates, dispersionestimates, likelihoodstatistics, deviance, waldtests, fittedvalues); default *

SEMETHOD = string token
Method to use to calculate the se's for the dispersion estimates (approximate, profilelikelihood); default appr

DMETHOD = string token
Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto

DISPERSIONTERM = formula
Model term for output from a dispersion analysis

SAVE = pointer
Save structure (from HGANALYSE) to provide details of the analysis; if omitted, output is from the most recent analysis

No parameters

HGDRANDOMMODEL procedure

Options

DISTRIBUTION = string token
Distribution for the random model (beta, normal, gamma, inversegamma); default norm

LINK = string token
Link for the random model (identity, logarithm, logit, reciprocal); default iden

RANDOMTERM = formula
Random term whose dispersion is being modelled; if unset, the model is assumed to be for the residual dispersion parameter (phi)

PHIMETHOD = string token
Whether to fix or estimate the residual dispersion parameter in the dispersion HGLM (fix, estimate); default fix

Parameters

TERMS = formula
Random model

DLINK = string tokens
Link for the dispersion model for each random term (logarithm, reciprocal); default loga

DFORMULA = formula structures
Dispersion model for each random term; default * i.e. none

DOFFSET = variates
Offset variate for dispersion model for each random term; default * i.e. none

LMATRIX = matrices
Linear transformation to apply to design matrix Z of each random term, in order to define correlations between its effects; default * i.e. none

DDISPERsion = scalar
Dispersion parameter to use in the dispersion model for each random term; default 1

FDISPERSION = scalar
Fixed value for the dispersion parameter of each random term; default $!s(*)$ i.e. dispersion is estimated
4.1 Commands

HGFIXEDMODEL procedure

Defines the fixed model for a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

- **DISTRIBUTION = string token**
 Distribution of the data (binomial, poisson, normal, gamma); default norm

- **LINK = string token**
 Link for the fixed model (identity, logarithm, logit, reciprocal, probit, complementaryloglog); default iden

- **DLINK = string token**
 Link for the dispersion model (logarithm, reciprocal); default loga

- **DISPERSION = scalar**
 Value of dispersion parameter in calculation of s.e.s etc; default * i.e. none

- **DTERMS = formula**
 Dispersion model; default * i.e. none

- **CONSTANT = string token**
 How to treat the constant (estimate, omit) default esti

- **FACTORIAL = scalar**
 Limit on number of variates and/or factors in a fixed model term; default 3

- **WEIGHTS = variate**
 Prior weights; default * i.e. 1

- **OFFSET = variate**
 Offset variate; default * i.e. none

- **DOFFSET = variate**
 Offset variate for dispersion model; default * i.e. none

- **DDISPERSION = scalar**
 Dispersion parameter to use in a dispersion model for the residual dispersion parameter phi; default 1

- **IDISPERSSION = scalar**
 Initial value for the residual dispersion parameter phi; default * i.e. formed automatically

Parameter

- **TERMS = formula**
 Fixed model

HGFTEST procedure

Options

- **PRINT = string token**
 Controls printed output (tests); default test

- **FACTORIAL = scalar**
 Limit on number of factors in the model terms generated from the TERMS parameter

- **LMETHOD = string token**
 Whether to use exact likelihood or extended quasi likelihood to obtain the y-variate and weights for the dispersion model (exact, eql); default is to use the same setting as in the original analysis

- **DMETHOD = string token**
 Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto

- **EMETHOD = string token**
 Extrapolation method to use (aitken, adjustedaitken); default is to use the same setting as in the original analysis

- **MLAPLACEORDER = scalar**
 Order of Laplace approximation to use in the estimation of the mean model (0 or 1); default is to use the same setting as in the original analysis

- **DLAPLACEORDER = scalar**
 Order of Laplace approximation to use in the estimation of the dispersion components (0, 1 or 2); default is to use the same setting as in the original analysis

- **MAXCYCLE = scalars**
 Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50

- **EXIT = scalar**
 Exit status (0 for success, 1 for failure to converge with any of the fixed terms)
TOLERANCE = scalar
Criterion for convergence; default is to use the same setting as in the original analysis

ETOLERANCE = scalar
Maximum size of ratio of the original to the new estimates allowed in Aitken extrapolation; default is to use the same setting as in the original analysis

SAVE = pointer
Save structure from the original analysis

Parameters

TERMS = formula
Terms to test

TESTSTATISTIC = pointer or scalar
Saves the test statistics

DF = pointer or scalar
Saves the degrees of freedom

HGRAPH procedure
Draws a graph to display the fit of an HGLM or DHGLM analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

GRAPHICS = string token
Type of graphics to use (lineprinter, highresolution); default high

TITLE = text
Title for the graph; default * sets an appropriate title automatically

WINDOW = number
Which high-resolution graphics window to use; default 4 (redefined if necessary to fill the frame)

SCREEN = string token
Whether to clear the graphics screen before plotting (clear, keep); default clea

BACKTRANSFORM = string token
What back-transformation to make (link, none, axis); default none

OMITRESPONSE = string token
Whether to omit the adjusted response values (no, yes); default no

SAVE = pointer
Specifies the save structure (from HGANALYSE) of the analysis from which to predict; default uses the most recent analysis

Parameters

INDEX = variates or factors
Which variate or factor to display along the x-axis; default * if GROUPS is set, otherwise INDEX is set to the first variate in the fixed model

GROUPS = factors
Factor to define groups of points to display; default * if INDEX is set, otherwise GROUPS is set to the first factor in the fixed model

HGKEEP procedure
Saves information from a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

MODELTYPE = string token
Type of model from which to save information (mean, dispersion); default mean

RMETHOD = string token
Type of residuals to save using the RESIDUALS parameter (deviance, Pearson, simple); default devi

DMETHOD = string token
Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto

IGNOREFAILURE = string token
Whether to save information even if the fitting of the HGLM failed to converge (yes, no); default no

SAVE = pointer
Save structure (from HGANALYSE) to provide details of the analysis; if omitted, information is saved from the most recent analysis

Parameters

RANDOMTERM = formula
Random model terms from whose analysis the information is to be saved
4.1 Commands

DHGRANDOMTERM = formula
Random model terms in a DHGLM from whose (HGLM) analysis the information is to be saved

RESIDUALS = variates
Residuals

FITTEDVALUES = variates
Fitted values

LEVERAGE = variates
Leverages

ESTIMATES = variates
Estimates of parameters

SE = variates
Standard errors of the estimates

VCOVARIANCE = symmetric matrices
Variance-covariance matrix of each set of estimates

DEVIANCE = scalars or tables
Scaled deviances (in a table) for a mean model, or residual deviance (in a scalar) for a dispersion model

DF = scalars or tables
Residual degrees of freedom

ITERATIVEWEIGHTS = variates
Iterative weights

LINEARPREDICTOR = variates
Linear predictors

YADJUSTED = variates
Adjusted responses

LIKENLIHOODSTATISTICS = variates
Likelihood statistics

LDF = variates
Numbers of fixed and random parameters in the mean and dispersion models

HGNONLINEAR procedure

Options

CALCULATION = expression structures
Calculation of explanatory variates involving nonlinear parameters

METHOD = string token
Algorithm for fitting the nonlinear model (GaussNewton, NewtonRaphson, FletcherPowell); default Gauss

VECTORS = variates
Vectors involved in the calculations (data vectors or factors or derived vectors that appear in the fixed model)

Parameters

PARAMETER = scalars
Nonlinear parameters in the model

LOWER = scalars
Lower bound for each parameter

UPPER = scalars
Upper bound for each parameter

STEPLENGTH = scalars
Initial step length for each parameter

INITIAL = scalars
Initial value for each parameter

DELTA = scalars
Parameter increment to use when calculating numerical derivatives

HGPLOT procedure

Options

MODELTYPE = string token
Type of model for which plots are required (mean, dispersion); default mean

RANDOMTERM = formula
Random term whose residuals are to be plotted; default * i.e. the residuals from the full model

DHGRANDOMTERM = formula
Random model term in a DHGLM whose residuals are to be plotted; default *

RMETHOD = string token
Type of residual to use (deviance, Pearson, simple); default devi

INDEX = variate or factor
X-values to use for an index plot; default !(1,2...)

GRAPHICS = string token
What type of graphics to use (lineprinter, highresolution); default high

TITLE = text
Overall title for the plots; if unset, the identifier of the y-variate is used

SAVE = pointer
Specifies the analysis (by HGANALYSE) from which the residuals and fitted values are to be taken; by default they are
4 Syntax summary

taken from the most recent analysis

Parameters
METHOD = string tokens
Types of graph (up to four out of the six possible) to be plotted
(histogram, fittedvalues, absresidual, normal,
halfnormal, index); default hist, fitt, norm, absr
PEN = scalars, variates or factors
Pen(s) to use for each plot

HGPREDICT procedure
Forms predictions from a hierarchical or double hierarchical generalized linear model analysis (R.W.

Options
PRINT = string token
What to print (description, predictions, se, sed,
vcovariance); default desc, pred, se
COMBINATIONS = string token
Which combinations of factors in the current model to include
(full, present, estimable); default esti
ADJUSTMENT = string token
Type of adjustment (marginal, equal); default marg
WEIGHTS = table
Weights classified by some or all of the factors in the model;
default *
OFFSET = scalar
Value of offset on which to base predictions; default mean of
offset variate
METHOD = string token
Method of forming margin (mean, total); default mean
ALIASING = string token
How to deal with aliased parameters (fault, ignore); default
fault
BACKTRANSFORM = string token
What back-transformation to apply to the values on the linear
scale, before calculating the predicted means (link, none); default none
NOMESSAGE = string tokens
Which warning messages to suppress (dispersion,
nonlinear); default *
NBINOMIAL = scalar
Supplies the total number of trials to be used for prediction
with a binomial distribution (providing a value \(n \) greater than
one allows predictions to be made of the number of
"successes" out of \(n \), whereas the value 1 predicts the
proportion of successes); default 1

PREDICTIONS = table or scalar
To save the predictions; default *
SE = table or scalar
To save standard errors of predictions; default *
SED = symmetric matrix
To save matrices of standard errors of differences between
predictions; default *
VCOVARIANCE = symmetric matrix
To save variance-covariance matrices of predictions; default *
SAVE = pointer
Specifies the save structure (from HGANALYSE) of the analysis
from which to predict; default uses the most recent analysis

Parameters
CLASSIFY = vectors
Variates and/or factors to classify table of predictions
LEVELS = variates or scalars
To specify values of variates, levels of factors
NEWFACTOR = identifiers
Identifiers for new factors that are defined when LEVELS are
specified

HGRANDOMMODEL procedure
Defines the random model for a hierarchical or double hierarchical generalized linear model (R.W.

Options
DISTRIBUTION = string token
Distribution for the random model (beta, normal, gamma,
inversegamma); default norm
LINK = string token
Link for the random model (identity, logarithm, logit,
reciprocal); default iden

Parameters
TERMS = formula
Random model
4.1 Commands

DLINK = string tokens
Link for the dispersion model for each random term
(logarithm, reciprocal); default loga

DFORMULA = formula structure
Dispersion model for each random term; default * i.e. none

DOFFSET = variates
Offset variate for dispersion model for each random term; default * i.e. none

LMATRIX = matrices
Linear transformation to apply to design matrix Z of each random term, in order to define correlations between its elements; default * i.e. none

DDISPERSION = scalar
Dispersion parameter to use in the dispersion model for each random term; default 1

FDISPERSION = scalar
Fixed value for the dispersion parameter of each random term; default * i.e. dispersion is estimated

IDISPERSION = scalar
Initial value for the dispersion parameter for each random term; default * i.e. formed automatically

HGRTEST procedure

Options

PRINT = string token
Controls printed output (tests); default test

LMETHOD = string token
Whether to use exact likelihood or extended quasi likelihood to obtain the y-variate and weights for the dispersion model (exact, eqi); default is to use the same setting as in the original analysis

DMETHOD = string token
Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto

EMETHOD = string token
Extrapolation method to use (aitken, adjustedaitken); default is to use the same setting as in the original analysis

MLAPLACEORDER = scalar
Order of Laplace approximation to use in the estimation of the mean model (0 or 1); default is to use the same setting as in the original analysis

DLAPLACEORDER = scalar
Order of Laplace approximation to use in the estimation of the dispersion components (0, 1 or 2); default is to use the same setting as in the original analysis

MAXCYCLE = scalars
Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50

EXIT = scalar
Exit status (0 for success, 1 for failure to converge for any of the random terms)

TOLERANCE = scalar
Criterion for convergence; default is to use the same setting as in the original analysis

ETOLERANCE = scalar
Maximum size of ratio of the original to the new estimates allowed in Aitken extrapolation; default is to use the same setting as in the original analysis

GROUPTERM = formula
Random term to use as groups when fitting the augmented mean model; default is to use the same setting as in the original analysis

SAVE = pointer
Save structure from the original analysis

Parameters

TERMS = formula
Terms to test

TESTSTATISTIC = pointer or scalar
Saves the test statistics

DF = pointer or scalar
Saves the degrees of freedom
HGSTATUS procedure

Option
SAVE = pointer
Save structure (from HGANALYSE) to provide details of the HGLM; if omitted, information is printed for the most recently defined or fitted HGLM

No parameters

HGTOBITPOISSON procedure
Uses the Tobit method to fit a hierarchical generalized linear model with censored Poisson data (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (model, fixedestimates, randomestimates, dispersionestimates, likelihoodstatistics, deviance, waldtests, fittedvalues, monitoring, hgmonitoring, dhgmonitoring, censored); default mode, fixe, disp, dev, like, cens

LMETHOD = string token
Whether to use exact likelihood or extended quasi likelihood to obtain the y-variate and weights for the dispersion model (exact, eql); default exac

SEMETHOD = string token
Method to use to calculate the se's for the dispersion estimates (approximate, profilelikelihood); default appr

DMETHOD = string token
Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto

EMETHOD = string token
Extrapolation method to use (aitken, adjustedaitken); default aitk

MLAPLACEORDER = scalar
Order of Laplace approximation to use in the estimation of the mean model (0 or 1); default 0

DLAPLACEORDER = scalar
Order of Laplace approximation to use in the estimation of the dispersion components (0, 1 or 2); default 0

MAXCYCLE = scalar
Maximum number of iterations of the E-M algorithm; default 100

TOLERANCE = scalar
Convergence criterion for the E-M algorithm; default 0.001

DIRECTION = string token
Whether the data are left or right censored (left, right); default right

HGMAXCYCLE = scalars
Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50

HGTORELERENCE = scalar
Criterion for convergence; default 0.0005

ETOLERANCE = scalar
Maximum size of ratio of the original to the new estimates allowed in Aitken extrapolation; default 7.5

GROUPTERM = formula
Random term to use as groups when fitting the augmented mean model; default * i.e. none

Parameters
Y = variate
Response variate to be analysed; must be set

BOUND = scalar
Censoring threshold; must be set

INITIAL = scalar or variate
Scalar or a variate providing starting values for the censored observations in the E-M algorithm; default BOUND + 1

NEWY = variate
Saves a copy of the response variate with the censored observations replaced by their estimates

EXIT = scalar
Exit status (0 for success, 1 for failure in the E-M algorithm, 2 for failure to fit the generalized linear mixed model)

SAVE = pointer
Saves details of the analysis for use in subsequent HGDISPLAY, HGKEEP, HG PLOT or HG PREDICT statements
HGWALD procedure

Prints or saves Wald tests for fixed terms in an HGLM (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options

- **PRINT = string token**
 - Controls printed output (waldtests); default wald
- **FACTORIAL = scalar**
 - Limit on number of factors in the model terms generated from the TERMS parameter; default 3
- **SAVE = pointer**
 - Specifies the save structure (from HGANALYSE) of the analysis from which to calculate the tests; default uses the most recent analysis

Parameters

- **TERMS = formula**
 - Model terms for which tests are required
- **WALDSTATISTIC = scalar or pointer to scalars**
 - Saves Wald statistics
- **DF = scalar or pointer to scalars**
 - Saves d.f. of Wald statistics

HISTOGRAM directive

Produces histograms of data on the terminal or line printer.

This directive was replaced in Release 10 by the directive LHISTOGRAM (with exactly the same options and parameters). It is currently retained as a synonym of LHISTOGRAM, but may be removed in a future release.

HLIST directive

Lists the data matrix in abbreviated form.

Options

- **GROUPS = factor**
 - Defines groupings of the units; used to split the printed table at appropriate places and to label the groups; default *
- **UNITS = text or variate**
 - Names for the rows (i.e. units) of the table; default *

Parameters

- **DATA = variates or factors**
 - The data variables
- **TEST = string tokens**
 - Test type, defining how each variable is treated in the calculation of the similarity between each unit (simplematching, jaccard, russellrao, dice, antidice, sneathskol, rogerstanimoto, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variable
- **RANGE = scalars**
 - Range of possible values of each variable; if omitted, the observed range is taken

HPCLUSTERS procedure

Prints a set of clusters (R.W. Payne).

Option

- **UNITS = variate or text**
 - Names to use for the units in the clusters

Parameters

- **CLUSTERS = pointers**
 - Clusters to print
- **EXTRA = pointers**
 - Extra information to print

HREDUCE directive

Forms a reduced similarity matrix (referring to the GROUPS instead of the original units).

Options

- **PRINT = string token**
 - Printed output required (similarities); default * i.e. no printing
- **METHOD = string token**
 - Method used to form the reduced similarity matrix (first,
Syntax summary

last, mean, minimum, maximum, zigzag; default firs

Parameters
SIMILARITY = symmetric matrices Input similarity matrix
REDUCEDSIMILARITY = symmetric matrices Output (reduced) similarity matrix
GROUPS = factors Factor defining the groups
PERMUTATION = variates Permutation order of units (for METHOD = firs, last or zigzag)

HSUMMARIZE directive
Forms and prints a group by levels table for each test together with appropriate summary statistics for each group.

Option
GROUPS = factor Factor defining the groups; no default i.e. this option must be specified

Parameters
DATA = variates or factors The data variables
TEST = string tokens Test type, defining how each variable is treated in the calculation of the similarity between each unit
(simplematching, jaccard, russellrao, dice, antidice, sneathsokal, rogerstanimoto, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variable
RANGE = scalars Range of possible values of each variable; if omitted, the observed range is taken

IDENTIFY procedure
Identifies an unknown specimen from a defined set of objects (R.W. Payne).

Options
PRINT = string tokens Controls printed output (identification, transcript); default iden, tran
METHOD = string token Type of run (batch, interactive); if this is not set IDENTIFY checks whether the run of Genstat itself is batch or interactive
TAXA = text or factor Names for the taxa (i.e. the objects); default uses the positive integers 1, 2...
NMISTAKE = scalar Number of mistakes to allow for; default 0
IDENTIFICATION = text Saves the names of the taxa that are identified; default * i.e. not saved
DIFFERENCES = variate Saves the number of differences between the observed character states and those that can be displayed by each taxon; default * i.e. not saved

Parameters
CHARACTER = factors or tables Define the characteristics of the taxa; must be set
OBSERVATION = scalars or texts Can define an observation for each character; default * i.e. none
COST = scalars Costs of observing each character; default 1

IF directive
Introduces a block-if control structure.
No options
Parameter
expression Logical expression, indicating whether or not to execute the first set of statements.
4.1 Commands

IFUNCTION procedure
Estimates implicit and/or explicit functions of parameters (W.M. Patefield).

Options

- **PRINT = string token**
 What to print (estimates, correlations, monitoring); default esti

- **NOMESSAGE = string token**
 Which warning messages to suppress (parameter, convergence); default *

- **NPARAMETER = scalar**
 Number of parameters; default zero

- **MAXCYCLE = scalar**
 Maximum number of iterations; default 20

- **STRINGENCY = scalar**
 Stringency of tests for convergence, 0,1,2...etc; default 5

- **EXITCONTROL = string token**
 Control for exit on fault detection (job, procedure); default job for batch jobs, proc for interactive

- **ZCALCULATION = expression structures**
 Specify the calculation of ZERO and DZBIMPLICIT

- **DZPCALCULATION = expression structures**
 Specify the calculation of DZBPARAMETER

- **ECALCULATION = expression structures**
 Specify the calculation of EXPLICIT, DEBPARAMETER and DEBIMPLICIT

Parameters

- **IMPLICIT = variate or pointer to scalars**
 Implicit functions

 - **INITIAL = variate**
 Initial values for IMPLICIT functions

 - **LOWER = variate**
 Lower bounds to IMPLICIT functions; default \(-10^{10}\)

 - **UPPER = variate**
 Upper bounds to IMPLICIT functions; default \(+10^{10}\)

 - **VCOVARIANCE = symmetric matrix**
 Variance-covariance matrix of parameter estimates

 - **ZERO = variate**
 Equations defining implicit functions (values calculated by ZCALCULATION)

- **DZBIMPLICIT = matrix**
 First derivatives of equations ZERO with respect to implicit functions IMPLICIT (values calculated by ZCALCULATION); rows correspond to ZERO, columns correspond to IMPLICIT

- **DZBPARAMETER = matrix**
 First derivatives of equations ZERO with respect to parameters (must not be set for NPARAMETER=0; values calculated by DZPCALCULATION); rows correspond to ZERO, columns to parameters

- **DIBPARAMETER = matrix**
 First derivatives of IMPLICIT functions with respect to parameters (must not be set for NPARAMETER=0); rows correspond to IMPLICIT, columns correspond to parameters

- **EXPLICIT = variate or pointer to scalars**
 Explicit functions of parameters and/or implicit functions (values calculated by ECALCULATION)

 - **DEBPARAMETER = matrix**
 First partial derivatives of EXPLICIT functions with respect to parameters (values calculated by ECALCULATION); rows correspond to EXPLICIT, columns correspond to parameters

 - **DEBIMPLICIT = matrix**
 First partial derivatives of EXPLICIT functions with respect to IMPLICIT functions (values calculated by ECALCULATION); rows correspond to EXPLICIT, columns correspond to IMPLICIT

 - **DFBPARAMETER = matrix**
 First derivatives of ESTIMATES with respect to parameters; rows correspond to ESTIMATES, columns correspond to parameters

- **ESTIMATES = variate**
 Estimates of IMPLICIT and EXPLICIT functions

- **SE = variate**
 Standard errors of ESTIMATES

- **CORRELATIONS = symmetric matrix**
 Correlation matrix of ESTIMATES

- **FCOVARIANCE = symmetric matrix**
 Variance-covariance matrix of ESTIMATES
IMPORT procedure

Reads data from a foreign file format and loads it or converts it to a spreadsheet file (D.B. Baird).

Options

- **PRINT = string token**
 - What to print: catalogue, summary; default cata

- **OUTTYPE = string token**
 - Output file type: GEN, GSH, GWB, XLS, XLSX, TXT, CSV, SHEETS; default GWB

- **METHOD = string token**
 - Whether to load data into the Genstat server after creating the file, or merely to create the file: create, load; default load

- **IMETHOD = string token**
 - How identifiers are to be specified for the columns: read, supply, none, overlay; default supply if COLUMNS is set (and specifies names rather than just types), otherwise read

- **ENDSTATEMENT = string token**
 - Ending statement for a type GEN output file: return, endbreak; default retu

- **SPSSMV = string token**
 - What to do with SPSS missing value codes: ignore, convert; default conv

- **MISSING = text**
 - What labels represent missing values in Excel, Quattro or Lotus files: default '*'

- **FORDER = string token**
 - The order in which to define the labels or levels of a factor: sorted, unsorted; default sort

- **TEXTCONVERSION = string token**
 - How to convert text to numbers for the columns: strict, single, common, standard, lax; default stan

- **KEEPEMPTY = string tokens**
 - Whether to retain any empty rows or columns found in the data: rows, columns, none; default none

- **NAMEROW = scalar**
 - The row number within an Excel or Quattro spreadsheet which contains the column names (IMETHOD must be unset or set to read); default, the first row in CELLRANGE

- **EMETHOD = string token**
 - Whether to read column descriptions/extra from Excel, SigmaPlot or Quattro spreadsheets: read, none; default none

- **EXTRAROW = scalar**
 - The row number within an Excel or Quattro spreadsheet which contains the column descriptions (EMETHOD must be set to read); default, the second row in CELLRANGE

- **PREFIX = text**
 - The string with which to prefix numerical column names; default '%'

- **TEMPPENDING = string token**
 - Whether to read temporarily missing values as missing: yes, no; default no

- **INOPTIONS = text**
 - Optional input file arguments to be passed to the Dataload.dll

- **OUTOPTIONS = text**
 - Optional output file arguments to be passed to the Dataload.dll

- **RGBMETHOD = string token**
 - How to read colour values: combined, separate, matrix; default sepa

- **SEPARATORS = text**
 - Alternative separators to use in text or csv files

- **SCOPE = string token**
 - Whether to create the data locally in a procedure that is using IMPORT, or globally in the whole program: local, global; default loca

- **IPREFIX = text**
 - Prefix to use with unnamed columns; default 'C'

- **TRANSPOSE = string token**
 - Whether to transpose the rows and columns of the input file: yes, no; default no

- **UNICODE = string token**
 - What to do with Unicode characters found e.g. in Excel XLSX input files: utf8, typeset, ascii, remove; default utf8

- **COLUNICODENAMES = string token**
 - How to convert Unicode column names: suffix, extra, ignore; default suff

- **UNINAME = text**
 - Name of the pointer for Unicode column names used as suffixes; default 'C'

- **XLSCONTENT = string tokens**
 - What content to read from an Excel XLSX file: values,
formule, forecolour, backcolour, fontname, style, size); default valu

Parameters
FILE = texts
OUTFILE = texts
SHEETNAME = texts or scalars
CELLRANGE = texts
COLUMNS = texts
ISAVE = pointers
START = texts
END = texts
ANCILLARY = texts
ROWSELECTION = variates
COLSELECTION = variates or texts

INPUT directive
Specifies the input file from which to take further statements.

Options
PRINT = string tokens
REWIND = string token
Parameter
scalar

INSDIE procedure
Determines whether points lie within a specified polygon (S.A. Harding).

Option
TOLERANCE = scalar
Parameters
Y = variates
X = variates
YPOLYGON = variates
XPOLYGON = variates
INSIDE = variates

INTERPLOATE directive
Interpolates values at intermediate points.

Options
CURVE = string token
METHOD = string token
4 Syntax summary

missing): for METHOD=valu, values are interpolated for each point in the NEWINTERVAL variate and stored in the NEWVALUE variate; for METHOD=inte, points are estimated in the NEWINTERVAL variate for the observations in the NEWVALUE variate; while for METHOD=miss, the NEWVALUE and NEWINTERVAL lists are irrelevant, INTERPOLATE now interpolates for missing values in the OLDVALUE and OLDINTERVAL variates (except those missing in both variates); default inte

Parameters
OLDVALUES = variates
NEWVALUES = variates
OLDINTERVALS = variates
NEWINTERVALS = variates

IRREDUNDANT directive
Forms irredudant test sets for the efficient identification of a set of objects.

Options
PRINT = string tokens
BESTSET = pointer
SETS = matrix
NOTDISTINGUISHED = matrix
METHOD = string token
TAXONNAMES = text, variate or factor

GROUPS = factor
Defines groupings of the objects so that the sets are constructed to distinguish only between the objects that belong to different groups; default constructs sets to distinguish between individual objects

OBJECT = scalar or text
If this is specified, sets are constructed just to distinguish the specified object (or taxon) from the other objects

NDISTINCTIONS = scalar
Number of factors required in each set to distinguish between each pair of objects; default 1

MAXPREFERENCE = scalar
Maximum preference of the factors to be included in the sets

MAXSIZE = scalar
Limit on number of factors in a set (sets containing more than this are discarded); default * i.e. none

NPRINT = scalar
Number of sets to print (a positive number specifies the number to print, a negative number sets a tolerance on the difference between the sizes of the sets printed and the size of the best set); default * prints them all

NSAVE = scalar
Number of sets to save in the SETS matrix; default * saves them all

LIMSETS = variate
Variate containing two numbers \(n_1\) and \(n_2\), if this is specified then every time that there are more than \(n_1\) sets under construction using the exact method, the sets are arranged in order of increasing size and all sets containing more factors than set \(n_2\) are deleted

DISTINCTIONS = string token
Whether or not to store the distinctions or recalculate them at every stage in the exact algorithm (store, calculate); default stor

CRITERION = string token
Function to be use to select factors by the sequential method (ndistinctions, weightedndistinctions); default ndis

MAXCYCLE = scalar
Maximum number of improvement cycles to perform during
4.1 Commands

EQUivalence = scalar

Value for determining equivalence of the selection criteria of tests selected during the sequential method.

Parameters

character = identifiers

Factors, and/or tables classified by a single factor, defining the properties of the objects to be identified.

cost = scalars

Cost associated with each factor; default 1.

preference = scalar

Preference rating for each factor (1 representing most preferred etc.); default 1.

variable = scalar or text

Factor level used to represent variable information; default is to use a missing value.

inapplicable = scalar or text

Factor level used to indicate that the information provided by that factor is inapplicable for a particular object.

Jackknife procedure

Produces Jackknife estimates and standard errors (R.W. Payne).

Options

print = string token

Controls printed output (estimates, vcovariance); default esti.

data = variates, factors or texts

Data vectors from which the statistics are to be calculated.

ancillary = any type

Other relevant information needed to calculate the statistics.

vcovariance = symmetric matrix

Saves the variance-covariance matrix for the statistics.

Parameters

label = texts

Texts, each containing a single line, to label the statistics.

estimate = scalars

Saves the Jackknife estimate for each statistic.

se = scalars

Saves Jackknife estimates of the standard errors.

pseudovalues = variates

Saves the Jackknife pseudo-values.

acceleration = scalars

Saves the acceleration parameter for bias-corrected and accelerated bootstrap confidence intervals.

Job directive

Starts a Genstat job.

Options

inprint = string tokens

Printing of input as in PRINT option of INPUT (statements, macros, procedures, unchanged); default unch.

outprint = string tokens

Additions to output as in PRINT option of OUTPUT (dots, page, unchanged); default unch.

diagnostic = string tokens

Defines the least serious class of Genstat diagnostic which should still be generated (messages, warnings, faults, extra, unchanged); default unch.

errors = scalar

Limit on number of error diagnostics that may occur before the job is abandoned; default * i.e. no change.

prompt = text

Characters to be printed for the input prompt.

wordlength = string token

Length of word (8 or 32 characters) to check in identifiers, directives, options, parameters and procedures (long, short); default * i.e. no change.

Parameter

text

Name to identify the job.

join procedure

Joins or merges two sets of vectors together, based on the values of sets of classifying keys (C.F. Johnston & D.B. Baird).

Options

nindex = scalar

Number of index vectors in structures (up to 10); default 1.

method = string token

Type of join (inner, left, right, full); default full.

repeats = string token

How to handle repeats of matches (combinations, single).
default sing outputs one row per match

INCLUDE = string token
How to handle restrictions on the input vectors (all, nonrestricted); default all uses all the data rows

SORT = string token
Whether NEWVECTORS should be sorted on the index vectors (ascending, descending, unsorted); default unsorted keeps the same ordering as the input sets

Parameters
LEFTVECTORS = pointer
Pointer to a list of vectors in left set (keys and variables)
RIGHTVECTORS = pointer
Pointer to a list of vectors in right set (keys and variables)
NEWVECTORS = pointer
Pointer to a list of output vectors (keys and variables)

KALMAN procedure
Calculates estimates from the Kalman filter (A.I. Glaser).

Option
PRINT = string tokens
Controls printed output (xpredicted, xfiltered, deviance, residuals, gain, varpredictions, varfiltered, varresiduals); default ∗

Parameters
Y = variates, matrices or pointers
Time series data
YTRANSITIONMATRIX = scalars, matrices or pointers
Observation transition matrix, mapping the relationship between the current value of the state vector and the observation

YVCOVARIANCE = scalars, symmetricmatrices or pointers
Observation error covariance matrix

XSTATETRANSITIONMATRIX = scalars, matrices or pointers
State transition matrix, mapping the relationship between the current value of the state vector and its previous value

BXVCOVARIANCE = scalars, matrices or pointers
State noise coefficient matrix

XVCOVARIANCE = scalars, symmetricmatrices or pointers
State error covariance matrix

MEANINITIAL = scalars, variates or matrices
Initial value of the mean of the state vector

VARINITIAL = scalars or symmetricmatrices
Initial value of the variance-covariance matrix of the state vector

DEVIANCEx = scalars
To save the deviance of the model

XPREDICTED = matrices
Saves the predicted (a priori) state estimate matrix

XFILTERED = matrices
Saves the filtered (a posteriori) state estimate matrix

RESIDUALS = matrices
Saves the matrix of residuals

GAIN = pointers
Saves the Kalman gain matrix at each iteration

VARPREDICTIONS = pointers
Saves the variances of the predicted state estimate matrix at each iteration

VARFILTERED = pointers
Saves the variances of the filtered state estimate matrix at each iteration

VARRESIDUALS = pointers
Saves the variances of the residuals at each iteration

SAVE = pointers
Save structure which provides information for use in KALMAN

KAPLANMEIER procedure
Calculates the Kaplan-Meier estimate of the survivor function (J.T.N.M. Thissen).

Options
PRINT = string tokens
Whether to print the estimates or to display the Kaplan-Meier estimate in a graph (estimate, mean, quantiles, summary, graph); default esti, grap

GRAPHICS = string token
Type of graphics to use (lineprinter, highresolution);
4.1 Commands

TITLE = text
General title for the graph; default *

WINDOW = scalar
Window number for the high-resolution graph; default 1

KEYWINDOW = scalar
Window number for the key (zero for no key); default 2

SCREEN = string token
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clear

PROBABILITY = scalar
Probability level of the confidence interval for the Kaplan-Meier estimates; default 0.95

XLOWER = scalar
Lower bound for x-axis; default 0

XUPPER = scalar
Upper bound for x-axis; default * i.e. a value slightly larger than the maximum of the TIME parameter (or EVENT parameter if TIME is not set) is used

PLOT = string tokens
What additional plotting features to include (referenceline, censored); default * i.e. none

PERCENTILES = variate or scalar
Percentiles at which to estimate quantiles of survival times; default 25,50,75

Parameters

TIME = variates
Observed timepoints

CENSORED = variates
Variate specifying whether the corresponding element of TIME is censored (1) or not (0); default is to assume no censoring

GROUPS = factors
Factor specifying the different groups for which the survivor function is estimated

EVENT = variates
Saves the distinct TIME values when TIME is set; otherwise supplies an input variate specifying the endpoint of each interval

NDEATH = variates
Saves the number of deaths at each EVENT when TIME is set; otherwise supplies an input variate specifying the number of deaths in each interval

NATRISK = variates
Saves the number of units at risk at each EVENT when TIME is set; otherwise supplies an input variate with the number at risk in each interval

ESTIMATE = variates
Saves the Kaplan-Meier estimates of the survivor function

NEWGROUPS = factors
Saves the grouping of the EVENT, NDEATH, NATRISK and ESTIMATE variates when TIME is set

KAPPA procedure
Calculates a kappa coefficient of agreement for nominally scaled data (A.J. Rook).

Option

PRINT = string token
Whether to print kappa and its associated information (test); default test

Parameters

DATA = tables
Data sets, each consisting of an object × category table whose entries are the number of judges assigning the ith object to the jth category

STATISTIC = scalars
Save the value of kappa for each data table

VARIANCE = scalars
Save the corresponding variances

KCONCORDANCE procedure
Calculates Kendall's Coefficient of Concordance; synonym CONCORD (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Options

PRINT = string tokens
Output required (test, ranks): test produces the relevant test statistics, ranks produces the vector of mean ranks and the ranks for each sample; default test

GROUPS = factor
Defines the variable stored in each unit if only one variate is specified by DATA
Syntax summary

- **STATISTIC** = scalar
 - Scalar to save the coefficient of concordance

- **CHISQUARE** = scalar
 - Scalar to save the chi-square approximation to the coefficient (calculated only if the sample size is at least 8)

- **MEANRANKS** = variate
 - Variate to save the mean ranks for individuals over variables

- **DF** = scalar
 - Scalar to save the degrees of freedom for **CHISQUARE**

Parameters

- **DATA** = variates
 - List of variables to be compared, or a single variate containing the data for all the variables (the **GROUPS** option must then be set to indicate the variable recorded in each unit belongs)

- **RANKS** = variates
 - Save the ranks of the variables

KCROSSVALIDATION procedure

Computes cross validation statistics for punctual kriging (D.A. Murray & R. Webster).

Options

- **PRINT** = string tokens
 - Controls printed output (statistics, correlation); default **stat**

- **PLOT** = string token
 - Whether to produce a scatter plot of the predicted against the true values (**scatter**); default * i.e. none

- **Y** = variate or scalar
 - Y positions or interval (not needed for 2D regular data i.e. when **DATA** is a matrix)

- **X** = variate
 - X positions (needed only for 2D irregular data)

- **YOUTER** = variate
 - Variate containing 2 values to define the Y-bounds of the region to be examined (bottom then top); by default the whole region is used

- **XOUTER** = variate
 - Variate containing 2 values to define the X-bounds of the region to be examined (bottom then top); by default the whole region is used

- **RADIUS** = scalar
 - Maximum distance between target point and usable data

- **SEARCH** = string token
 - Type of search (**isotropic**, **anisotropic**); default **isot**

- **MINPOINTS** = scalar
 - Minimum number of data points from which to compute elements; default 7

- **MAXPOINTS** = scalar
 - Maximum number of data points from which to compute elements; default 20

- **DRIFT** = string token
 - Amount of drift (**constant**, **linear**, **quadratic**); default **cons**

- **YXRATIO** = scalar
 - Ratio of Y interval to X interval

- **SAVE** = pointer
 - Pointer containing model estimates saved from **MVARIOGRAM**

Parameters

- **DATA** = variates or matrices
 - Observed measurements as a variate or, for data on a regular grid, as a matrix

- **ISOTROPY** = string tokens
 - Form of variogram (**isotropic**, **Burgess**, **geometrical**); default **isot**

- **MODELTYPE** = string tokens

- **NUGGET** = scalars
 - The nugget variance

- **SILLVARIANCES** = scalars or variates
 - Sill variances of the spatially dependent component

- **RANGES** = scalar or variates
 - Ranges of the spatially dependent component

- **GRADIENT** = scalars or variates
 - Slope of the unbounded component

- **EXPONENT** = scalars or variates
 - Power of the unbounded component or power for the stable model

- **SMOOTHNESS** = scalar
 - Value of v parameter for the Matern model

- **PHI** = scalars or variates
 - Phi parameters in anisotropic model (**ISOTROPY** = **burg** or **geom**)

- **RMAX** = scalars or variates
 - Maximum gradient of an anisotropic model
4.1 Commands

RMIN = scalars or variates
Minimum gradient of an anisotropic model

MEASUREMENTERROR = scalars
Variance of measurement error

PREDICTIONS = variates or matrices
Saves the kriged estimates in matrices for 2D Regular data, otherwise in variates

VARIANCES = variates or matrices
Saves the estimation variances in matrices for 2D Regular data, otherwise in variates

STATISTICS = variates
Saves the cross validation statistics

KCSRENELOPES procedure

Option
PRINT = string token
What to print (summary, monitoring); default summ, moni

Parameters
YPOLYGON = variates
Vertical coordinates of each polygon; no default – this parameter must be set

XPOLYGON = variates
Horizontal coordinates of each polygon; no default – this parameter must be set

NPOINTS = scalars
How many points to generate in each simulation; no default – this parameter must be set

NSIMULATIONS = scalars
How many simulations of CSR to use; no default – this parameter must be set

S = variates
Vectors of distances to use; no default – this parameter must be set

KLOWER = variates
Variates to receive the values of the lower bound of the K function

KUPPER = variates
Variates to receive the values of the upper bound of the K function

SEED = scalars
Seeds for the random numbers used in the simulations; default 0

KERNELDENSITY procedure
Uses kernel density estimation to estimate the underlying density of a sample (P.W. Goedhart).

Options
PRINT = string token
What to print (integral, summary, monitoring, graph); default inte

METHOD = string token
Which automatic bandwidth selection method should be used when the BANDWIDTH option is not set (s1, s2, s3, sj); default sj

BANDWIDTH = scalar or variate
Which bandwidth value or values are to be used; default *

NGRIDEXONENT2 = scalar
Defines the number of grid points as 2**NGRIDEXONENT2; default 11

SAVEGRIDEXTENT = scalar
Defines the lower and upper limit of the interval on which the kernel density is saved; the default value of 4 uses the full interval on which the kernel density is calculated

NFOURIER = scalar
Defines the upper limit of the sample size for which the kernel density is calculated directly (when the sample size exceeds the setting of this option, the fast Fourier transform is used to calculate the kernel density); default 100

PROPORTION = variate
Proportions at which to calculate quantiles of the kernel density estimate; default !(0.025, 0.25, 0.5, 0.75, 0.975)

WINDOW = scalar or variate
Window number(s) for the graph(s); default 1

SCREEN = string token
Whether to clear the screen before plotting into the first window, or whether to or continue plotting on the old screen (clear, keep); default clea
Parameters

SAMPLE = variates
GRID = variates
DENSITY = variates or pointers
CUMULATIVE = variates or pointers
QUANTILE = variates or pointers
SAVEBANDWIDTH = scalars

The sample for which to calculate the kernel density estimate
Saves the grid of equidistant points at which the kernel density
is calculated
Saves the kernel density estimate
Saves the estimated cumulative distribution
Saves the quantiles calculated from the estimated cumulative
distribution
Saves the automatically selected bandwidths as specified by
the METHOD option

KHAT procedure
Calculates an estimate of the K function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle
& B.S. Rowlingson).

Option
PRINT = string token

Parameters
Y = variates
X = variates
YPOLYGON = variates
XPOLYGON = variates
S = variates
KVALUES = variates

Vertical coordinates of each spatial point pattern; no default –
this parameter must be set
Horizontal coordinates of each spatial point pattern; no default
– this parameter must be set
Vertical coordinates of each polygon; no default – this
parameter must be set
Horizontal coordinates of each polygon; no default – this
parameter must be set
Vectors of distances to use; no default – this parameter must
be set
Variates to receive the estimated values of the K function

KLABENVELOPES procedure
Gives bounds for K function differences under random labelling (M.A. Mugglestone, S.A. Harding,

Options
PRINT = string tokens

Parameters
Y1 = variates
X1 = variates
Y2 = variates
X2 = variates
YPOLYGON = variates
XPOLYGON = variates
NSIMULATIONS = scalars
S = variates
KLOWER = variates
KUPPER = variates

Vertical coordinates of the first spatial point patterns; no
default – this parameter must be set
Horizontal coordinates of the first spatial point patterns; no
default – this parameter must be set
Vertical coordinates of the second spatial point patterns; no
default – this parameter must be set
Horizontal coordinates of the second spatial point patterns; no
default – this parameter must be set
Vertical coordinates of each polygon; no default – this
parameter must be set
Horizontal coordinates of each polygon; no default – this
parameter must be set
How many simulations of random labelling to use; no default
– this parameter must be set
Vectors of distances to use; no default – this parameter must
be set
Variates to receive the values of the lower bound of the
difference between the K functions
Variates to receive the values of the upper bound of the
difference between the K functions
4.1 Commands

SEED = scalars

Seeds for the random numbers used to generate the random labellings; default 0

KNEARESTNEIGHBOURS procedure

Classifies items or predicts their responses by examining their k nearest neighbours (R.W. Payne).

Options

PRINT = string tokens

Printed output required (neighbours, predictions); default pred

SIMILARITY = matrix or symmetric matrix

Provides the similarities between the training and prediction sets of items

NEIGHBOURS = pointer

Pointer with a variate for each prediction item to save the numbers of its nearest neighbours in the training set

GROUPS = factor

Defines groupings to identify the training and prediction sets of items when SIMILARITY is a symmetric matrix

LEVTRAINING = scalar or text

Identifies the level of GROUPS or dimension of SIMILARITY that represents the training set; default 1

LEV PREDICTION = scalar or text

Identifies the level of GROUPS or dimension of SIMILARITY that represents the prediction set; default 2

METHOD = string token

How to calculate the prediction from a DATA variate (mean, median); default medi

MINSIMILARITY = scalar

Cut-off minimum value of the similarity for items to be regarded as neighbours; default 0.75

MINNEIGHBOURS = scalar

Minimum number of nearest neighbours to use; default 5

MAXNEIGHBOURS = scalar

Maximum number of nearest neighbours to use; default 10

SEED = scalar

Seed for the random numbers used to select neighbours when more than MAXNEIGHBOURS are available; default 0

Parameters

DATA = variates or factors

Data values for the items in the training set

PREDICTIONS = variates or factors

Saves the predictions

KNNTRAIN procedure

Evaluates and optimizes the k-nearest-neighbour algorithm using cross-validation (D.B. Baird).

Options

PRINT = string tokens

Printed output required (error, confusion, predictions); default erro, conf

SIMILARITY = symmetric matrix

Provides the similarities between the observations

METHOD = string token

How to calculate the prediction from a DATA variate (mean, median); default medi

MINSIMILARITY = scalar or variate

Cut-off minimum value of the similarity for items to be regarded as neighbours; default 0.75

MINNEIGHBOURS = scalar or variate

Minimum number of nearest neighbours to use; default 5

MAXNEIGHBOURS = scalar or variate

Maximum number of nearest neighbours to use; default 10

NSIMULATIONS = variate

Number of cross-validation sets to use; default 1

NCROSSVALIDATIONGROUPS = scalar

Number of groups for cross-validation, default 10

SEED = scalar

Seed for the random numbers used to select cross-validation groups; default 0

Parameters

DATA = variate or factor

Data values for the items in the data set

PREDICTIONS = variate or factor

Saves the predictions using the optimal options

ERROR = scalar

Cross-validation error rate for the optimal combination

CONFUSION = matrix

Confusion matrix for the cross-validation predictions from the optimal options

OPTIMAL = pointer

Pointer to the optimal options
KOLMOG2 procedure

Performs a Kolmogorov-Smirnoff two-sample test (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Options

PRINT = *string tokens*
Output required (*test, differences, ranks*): test gives the test statistic, differences gives signed differences, and ranks produces the ranks for each sample; default *test*

GROUPS = *factor*
Defines the groups for a two-sample test if only the Y1 parameter is specified

Parameters

Y1 = *variates*
Identifier of the variate holding the first sample

Y2 = *variates*
Identifier of the variate holding the second sample

R1 = *variates*
Saves the ranks of the first sample

R2 = *variates*
Saves the ranks of the second sample

STATISTIC = *scalars*
Scalar to save the test statistic (the maximum absolute difference between the cumulative distribution functions)

CHISQUARE = *scalars*
Scalar to save the chi-square approximation to the test statistic

DIFFERENCES = *variates*
Variate to save the signed differences between the cumulative distribution functions

KRIGE directive

Calculates kriged estimates using a model fitted to the sample variogram.

Options

PRINT = *string token*
Controls printed output (*description, search, weights, monitor, data*); default *desc*

Y = *variate*
Y positions (not needed for 2-dimensional regular data i.e. when *DATA* is a matrix)

X = *variate*
X positions (needed only for 2-dimensional irregular data)

YOUTER = *variate*
Variate containing 2 values to define the Y-bounds of the region to be examined (bottom then top); by default the whole region is used

XOUTER = *variate*
Variate containing 2 values to define the X-bounds of the region to be examined (left then right); by default the whole region is used

YINNER = *variate*
Variate containing 2 values to define the Y-bounds of the interpolated region (bottom then top); no default

XINNER = *variate*
Variate containing 2 values to define the X-bounds of the interpolated region (left then right); no default

BLOCK = *variate*
Dimensions (length and height) of block; default !(0, 0) i.e. punctual kriging

RADIUS = *scalar*
Maximum distance between target point in block and usable data

SEARCH = *string token*
Type of search (*isotropic, anisotropic*); default *isot*

MINPOINTS = *scalar*
Minimum number of data points from which to compute elements; default 7

MAXPOINTS = *scalar*
Maximum number of data points from which to compute elements (2 < MINPOINTS < MAXPOINTS < 41); default 20

NSTEP = *scalar*
Number of steps for numerical integration; (3 < NSTEP < 11); default 8

DRIFT = *string token*
Amount of drift (*constant, linear, quadratic*); default *cons*

YXRATIO = *scalar*
Ratio of Y interval to X interval; default 1.0

INTERVAL = *scalar*
Distance between successive interpolations; default 1.0

Parameters

DATA = *variates or matrices*
Observed measurements as a variate or, for data on a regular grid, as a matrix

ISOTROPY = *string tokens*
Form of variogram (*isotropic, Burgess, geometrical*);
4.1 Commands

MODELTYPE = string tokens
Model fitted to the variogram (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, cubic, stable, cardinalsine, matern); default isot

NUGGET = scalars
The nugget variance

SILLVARIANCES = variates
Sill variances of the spatially dependent component; default none

RANGES = variates
Ranges of the spatially dependent component; default none

GRADIENT = variates
Slope of the unbounded component; default none

EXPONENT = variates
Power of the unbounded component or power for the stable model; default none

SMOOTHNESS = scalar
Value of \(v \) parameter for the Matern model; default none

PHI = variates
Phi parameters of an anisotropic model (ISOTROPY = Burg or geom)

RMAX = variates
Maximum gradient or distance parameter of an anisotropic model

RMIN = variates
Minimum gradient or distance parameter of an anisotropic model

PREDICTIONS = matrices
Kriged estimates

VARIANCES = matrices
Estimation variances

LAGRANGEMULTIPLIER = matrices or pointers
Saves the Lagrange multipliers from each kriging solution

MEASUREMENTERROR = scalar
Specifies the variance of the measurement error

SAVE = pointers
Supplies the model name and estimates, as saved from MVARIOGAM

KRUSKAL procedure
Carries out a Kruskal-Wallis one-way analysis of variance (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Options

PRINT = string tokens
Output required (test, ranks): test produces the relevant test statistics, ranks produces a vector of ranks for each sample relative to the whole data set; default test

GROUPS = factor
Defines the sample membership if only one variate is specified by DATA

STATISTIC = scalar
Scalar to save the Kruskal-Wallis test statistic

MEANRANKS = variate
Variate to save the mean ranks of the samples

DF = scalar
Scalar to save the degrees of freedom for the statistic

Parameters

DATA = variates
List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs)

RANKS = variates
Allow the ranks to be saved (relative to the combined data)

KSED procedure

Option

PRINT = string token
Controls printed output (summary); default summ

Parameters

Y1 = variates
Vertical coordinates of the first spatial point patterns; no default – this parameter must be set

X1 = variates
Horizontal coordinates of the first spatial point patterns; no default – this parameter must be set
270

4 Syntax summary

Y2 = variates
Vertical coordinates of the second spatial point patterns; no default – this parameter must be set

X2 = variates
Horizontal coordinates of the second spatial point patterns; no default – this parameter must be set

YPOLYGON = variates
Vertical coordinates of the polygons; no default – this parameter must be set

XPOLYGON = variates
Horizontal coordinates of the polygons; no default – this parameter must be set

S = variates
Vectors of distances to use; no default – this parameter must be set

KSED = variates
Variates to receive the values of the standard error of the difference between the K functions for the two patterns under random labelling

VCOVARIANCE = symmetric matrices
Saves the variance-covariance matrix

VK1 = variates
Saves the variance of Khat for first spatial point pattern

VK2 = variates
Saves the variance of Khat for second spatial point pattern

VK12 = variates
Saves the covariance of Khat for the two samples

KSTHAT procedure
Calculates an estimate of the K function in space, time and space-time (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Option
PRINT = string token
Controls printed output (summary); default summ

Parameters
Y = variates
Vertical coordinates of the spatial point patterns; no default – this parameter must be set

X = variates
Horizontal coordinates of the spatial point patterns; no default – this parameter must be set

TIMES = variates
Times for each event

YPOLYGON = variates
Vertical coordinates of the polygons; no default – this parameter must be set

XPOLYGON = variates
Horizontal coordinates of the polygons; no default – this parameter must be set

S = variates
Vectors of distances to use; no default – this parameter must be set

TVALUES = variates
Time scales for the analysis

TLOWER = variates
Lower temporal domain

TUPPER = variates
Upper temporal domain

KS = variates
Saves the spatial K function estimates

KT = variates
Saves the spatial K function estimates

KST = variates
Saves the space-time K function estimates

KSTMCTEST procedure
Performs a Monte-Carlo test for space-time interaction (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Options
PRINT = string token
Controls printed output (statistic, rank); default stat, rank

PLOT = string token
Whether to produce a plot of the test statistic (histogram); default hist

NTIMES = scalar
Number of simulations for Monte-Carlo test; default 49

SEED = scalar
Seed for random number generator; default 0 continues from previous generation or uses system clock

Parameters
Y = variates
Vertical coordinates of the first spatial point patterns; no default – this parameter must be set
4.1 Commands

\[\text{X} = \text{variates} \]
Horizontal coordinates of the first spatial point patterns; no default – this parameter must be set

\[\text{TIMES} = \text{variates} \]
Times for each event

\[\text{YPOLYGON} = \text{variates} \]
Vertical coordinates of the polygons; no default – this parameter must be set

\[\text{XPOLYGON} = \text{variates} \]
Horizontal coordinates of the polygons; no default – this parameter must be set

\[S = \text{variates} \]
Vectors of distances to use; no default – this parameter must be set

\[\text{TVALUES} = \text{variates} \]
Time scales for the analysis

\[\text{TLOWER} = \text{variates} \]
Lower temporal domain

\[\text{TUPPER} = \text{variates} \]
Upper temporal domain

\[\text{STATISTIC} = \text{scalars} \]
Saves the Monte-Carlo statistic

KSTSE procedure
Calculates the standard error for the space-time K function (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Option
\[\text{PRINT} = \text{string token} \]
Controls printed output (summary); default summ

Parameters
\[\text{Y} = \text{variates} \]
Vertical coordinates of the spatial point patterns; no default – this parameter must be set

\[\text{X} = \text{variates} \]
Horizontal coordinates of the spatial point patterns; no default – this parameter must be set

\[\text{TIMES} = \text{variates} \]
Times for each event

\[\text{YPOLYGON} = \text{variates} \]
Vertical coordinates of the polygons; no default – this parameter must be set

\[\text{XPOLYGON} = \text{variates} \]
Horizontal coordinates of the polygons; no default – this parameter must be set

\[S = \text{variates} \]
Vectors of distances to use; no default – this parameter must be set

\[\text{TVALUES} = \text{variates} \]
Time scales for the analysis

\[\text{TLOWER} = \text{variates} \]
Lower temporal domain

\[\text{TUPPER} = \text{variates} \]
Upper temporal domain

\[\text{SE} = \text{variates} \]
Saves the standard errors

KTAU procedure
Calculates Kendall's rank correlation coefficient \(\tau \) (R.W. Payne & D.B. Baird).

Options
\[\text{PRINT} = \text{string tokens} \]
Output required (correlations, probabilities); default corr, prob

\[\text{GROUPS} = \text{factor} \]
Defines the sample membership if only one variate is specified by DATA

\[\text{CORRELATIONS} = \text{scalar or symmetric matrix} \]
Scalar to save the rank correlation coefficient if there are two samples, or symmetric matrix to save the coefficients between all pairs of samples if there are several

\[\text{PROBABILITIES} = \text{scalar or symmetric matrix} \]
Scalar to save the probability for the correlation coefficient if there are two samples, or symmetric matrix to save the probabilities for all pairs of samples if there are several

\[\text{NORMAL} = \text{scalar or symmetric matrix} \]
Scalar to save a transformation of tau that approximately follows a Normal distribution with mean zero and variance if there are two samples, or symmetric matrix to save the transformation for all pairs of samples if there are several
Parameter

DATA = variates

List of variates containing the data for each sample, or a single variate containing the data from all the samples (the **GROUPS** option must then be set to indicate the sample to which each unit belongs).

KTORENVELOPES procedure

Option

PRINT = string tokens

What to print (**summary**, **monitoring**); default **summ**, **moni**

Parameters

Y1 = variates

Vertical coordinates of the first spatial point patterns; no default – this parameter must be set

X1 = variates

Horizontal coordinates of the first spatial point patterns; no default – this parameter must be set

Y2 = variates

Vertical coordinates of the second spatial point patterns; no default – this parameter must be set

X2 = variates

Horizontal coordinates of the second spatial point patterns; no default – this parameter must be set

YPOLYGON = variates

Vertical coordinates of each polygon; no default – this parameter must be set

XPOLYGON = variates

Horizontal coordinates of each polygon; no default – this parameter must be set

NSIMULATIONS = scalars

How many simulations of independence to use; no default – this parameter must be set

S = variates

Vectors of distances to use; no default – this parameter must be set

KLOWER = variates

Variates to receive the values of the lower bound of the bivariate K function

KUPPER = variates

Variates to receive the values of the upper bound of the bivariate K function

SEED = scalars

Seeds for the random numbers used to generate the random shifts; default 0

K12HAT procedure

Option

PRINT = string token

What to print (**summary**); default **summ**

Parameters

Y1 = variates

Vertical coordinates of the first spatial point patterns; no default – this parameter must be set

X1 = variates

Horizontal coordinates of the first spatial point patterns; no default – this parameter must be set

Y2 = variates

Vertical coordinates of the second spatial point patterns; no default – this parameter must be set

X2 = variates

Horizontal coordinates of the second spatial point patterns; no default – this parameter must be set

YPOLYGON = variates

Vertical coordinates of each polygon; no default – this parameter must be set

XPOLYGON = variates

Horizontal coordinates of each polygon; no default – this parameter must be set

S = variates

Vectors of distances to use; no default – this parameter must be set
4.1 Commands

KVALUES = variates
Variates to receive the estimated values of the bivariate K functions

LCONCORDANCE procedure
Calculates Lin's concordance correlation coefficient (R.W. Payne & M.S. Dhanoa).

Options
PRINT = string token
Controls printed output (concordance); default conc
GROUPS = factor
Defines the sets of measurements when they are all supplied in a single DATA variate
CONCORDANCE = scalar or variate
Saves Lin's the concordance coefficient
LOWER = scalar or variate
Saves the lower confidence limit for the coefficient
UPPER = scalar or variate
Saves the upper confidence limit for the coefficient
CORRELATION = scalar or variate
Saves the correlation coefficient
CB = scalar or variate
Saves the bias correction factor
ZTRANSFORMATION = scalar or variate
Saves the Z transformation of the coefficient
ZSD = scalar or variate
Saves the standard deviation of the Z transformation
CIPROBABILITY = scalar
Defines the size of the confidence interval; default 0.95 i.e. 95%
REFERENCELEVEL = scalar or text
Defines the set of measurements to be used as the control if there are more than two variates or groups; default 1

Parameter
DATA = variates
List of variates specifying the sets of measurements to be compared, or a single variate containing all the measurements (the GROUPS option must then be set to indicate the set to which each unit belongs)

LIBEXAMPLE procedure
Accesses examples and source code of library procedures (R.W. Payne).
No options
Parameters
PROCEDURE = texts
Single-valued texts indicating the procedures about which the information is required
EXAMPLE = texts
Identifiers of text structures to store the example for each procedure
SOURCE = texts
Identifiers of text structures to store the source code of each procedure

LIBFILENAME procedure
Supplies the names of information files for library procedures (R.W. Payne).
No options
Parameters
FILENAME = texts
Text in which to store the name of the backing-store file containing the required information
CONTENTS = string tokens
Indicates which file is required (procedures, adesign, afraction, acyclic, agenerator); default proc

LIBHELP procedure
Provides help information about library procedures (R.W. Payne).
No options
Parameter
PROCEDURE = texts
Single-valued texts indicating the procedures about which the information is required; if this is not set, information is given about LIBHELP itself
LIBSOURCE procedure

Obtains the source code of a Genstat procedure, PC Windows only (R.W. Payne).

No options

Parameters

PROCEDURE = texts Procedure names
SOURCE = texts Texts to store the source code of each procedure
STATEMENT = texts Saves a command to obtain the source of each procedure
(useful if the name has been specified in response to questions from PROCEDURE)

LIBVERSION procedure

Provides the name of the current Genstat Procedure Library (R.W. Payne).

Option

PRINT = string token Controls printed output (release); default rele

Parameter

RELEASENAME = text Text in which to store the name of the currently available release of the Genstat 5 Procedure Library

LIFE procedure

Plays John Conway's Game of Life (W. van den Berg).

Options

NROWS = scalar Number of rows in the grid (must greater than 5); default 51
NCOLUMNS = scalar Number of columns in the grid (must greater than 5); default 51
X = variate Inputs the y-coordinates of the cells in the initial configuration
Y = variate Inputs the x-coordinates of the cells in the initial configuration
NEWY = variate Saves the final y-coordinates
NEWX = variate Saves the final x-coordinates
NTIMES = scalar Number of times to update the configuration; default 200
TITLE = text Title for the plot
COLOURS = text or variate Colours for the live and dead cells; default !t(SpringGreen, Black)
PAUSE = scalar Time in seconds to pause before displaying the next plot; default 0.5

No parameters

LINDEPENDENCE procedure

Finds the linear relations associated with matrix singularities (J.H. Maindonald).

Option

PRINT = string tokens Printed output (dependent, coefficients); default depe

Parameters

DATA = symmetric matrices Specifies the positive semi-definite matrix for which the information is required
COEFFICIENTS = matrices Stores the coefficients of the linear dependencies

LIST directive

Lists details of the data structures currently available within Genstat.

Options

PRINT = string tokens What to print (identifier, attributes); default iden, attr
CHANNEL = identifier Channel number of file, or identifier of a text to store output; default current output file
SYSTEM = string token Whether to include "system" structures with prefix _ (yes, no); default no
SCOPE = string token When used within a procedure, this allows the listing of
structures in the program that called the procedure (SCOPE=external), or in the main program itself (SCOPE=global), rather than those within the procedure (local, external, global); default: local

\[NSTRUCTURES = \text{scalar} \]
Saves the number of structures of the requested types

\[\text{SAVE} = \text{pointer} \]
Saves a pointer containing the structures of the requested types

Parameter strings
Types of structure to list (all, diagonal, dummy, expression, factor, formula, lrv, matrix, pointer, scalar, sspm, symmetric, table, text, tsm, variate); default: all

LORENZ procedure
Plots the Lorenz curve and calculates the Gini and asymmetry coefficients (R.W. Payne).

Options
- \[\text{PRINT} = \text{string tokens} \]
 Controls printed output (gini, lorenz, asymmetry); default: gini, lore, asym
- \[\text{PLOT} = \text{string token} \]
 Controls graphical output (curve); default: curv
- \[\text{TITLE} = \text{string} \]
 Title for the graph; default uses the identifier of the DATA variate
- \[\text{NBOOT} = \text{scalar} \]
 Number of samples to make to construct the bootstrap confidence intervals; default: 100
- \[\text{SEED} = \text{scalar} \]
 Seed for the random number generator used to construct the bootstrap samples; default 0 i.e. continue an existing sequence of random numbers or, if none, initialize the generator automatically
- \[\text{CIPROBABILITY} = \text{scalar} \]
 Probability for the bootstrap confidence interval; default: 0.95

Parameters
- \[\text{DATA} = \text{variates} \]
 Specifies sets of data values
- \[\text{GINI} = \text{scalars} \]
 Saves the Gini coefficient for each DATA variate
- \[\text{ASYMMETRY} = \text{scalars} \]
 Saves the asymmetry coefficient for each DATA variate

LPCONTOUR directive
Produces contour maps of two-way arrays of numbers using character (i.e. line-printer) graphics.

Options
- \[\text{CHANNEL} = \text{scalar} \]
 Channel number of output file; default is current output file
- \[\text{INTERVAL} = \text{scalar} \]
 Contour interval for scaling; default * i.e. determined automatically
- \[\text{TITLE} = \text{text} \]
 General title; default *
- \[\text{YTITLE} = \text{text} \]
 Title for y-axis; default *
- \[\text{XTITLE} = \text{text} \]
 Title for x-axis; default *
- \[\text{YLOWER} = \text{scalar} \]
 Lower bound for y-axis; default 0
- \[\text{YUPPER} = \text{scalar} \]
 Upper bound for y-axis; default 1
- \[\text{XLOWER} = \text{scalar} \]
 Lower bound for x-axis; default 0
- \[\text{XUPPER} = \text{scalar} \]
 Upper bound for x-axis; default 1
- \[\text{YINTEGER} = \text{string token} \]
 Whether y-labels integral (yes, no); default no
- \[\text{XINTEGER} = \text{string token} \]
 Whether x-labels integral (yes, no); default no
- \[\text{LOWERCUTOFF} = \text{scalar} \]
 Lower cut-off for array values; default *
- \[\text{UPPERCUTOFF} = \text{scalar} \]
 Upper cut-off for array values; default *

Parameters
- \[\text{GRID} = \text{identifiers} \]
 Pointers (of variates representing the columns of a data matrix), matrices or two-way tables specifying values on a regular grid
- \[\text{DESCRIPTION} = \text{texts} \]
 Annotation for key
LPGRAPH directive

Produces point and line graphs using character (i.e. line-printer) graphics.

Options

- **CHANNEL = scalar**
 - Channel number of output file; default is current output file

- **TITLE = text**
 - General title; default *

- **YTITLE = text**
 - Title for y-axis; default *

- **XTITLE = text**
 - Title for x-axis; default *

- **YLOWER = scalar**
 - Lower bound for y-axis; default *

- **YUPPER = scalar**
 - Upper bound for y-axis; default *

- **XLOWER = scalar**
 - Lower bound for x-axis; default *

- **XUPPER = scalar**
 - Upper bound for x-axis; default *

- **MULTIPLE = variate**
 - Numbers of plots per frame; default * i.e. all plots are on a single frame

- **JOIN = string token**
 - Order in which to join points (ascending, given); default asce

- **EQUAL = string tokens**
 - Whether/how to make bounds equal (no, scale, lower, upper); default no

- **NROWS = scalar**
 - Number of rows in the frame; default * i.e. determined automatically

- **NCOLUMNS = scalar**
 - Number of columns in the frame; default * i.e. determined automatically

- **YINTEGER = string token**
 - Whether y-labels integral (yes, no); default no

- **XINTEGER = string token**
 - Whether x-labels integral (yes, no); default no

Parameters

- **Y = identifiers**
 - Y-coordinates

- **X = identifiers**
 - X-coordinates

- **METHOD = string tokens**
 - Type of each graph (point, line, curve, text); if unspecified, point is assumed

- **SYMBOLS = factors or texts**
 - For factor SYMBOLS, the labels (if defined), or else the levels, define plotting symbols for each unit, whereas a text defines textual information to be placed within the frame for METHOD=text or the symbol to be used for each plot for other METHOD settings; if unspecified, * is used for points, with integers 1-9 to indicate coincident points, * and . are used for lines and curves

- **DESCRIPTION = texts**
 - Annotation for key

LPHISTOGRAM directive

Produces histograms using character (i.e. line-printer) graphics.

Options

- **CHANNEL = scalar**
 - Channel number of output file; default is the current output file

- **TITLE = text**
 - General title; default *

- **LIMITS = variate**
 - Variate of group limits for classifying variates into groups; default *

- **NGROUPS = scalar**
 - When LIMITS is not specified, this defines the number of groups into which a data variate is to be classified; default is the integer value nearest to the square root of the number of values in the variate

- **LABELS = text**
 - Group labels

- **SCALE = scalar**
 - Number of units represented by each character; default 1

Parameters

- **DATA = identifiers**
 - Data for the histograms; these can be either a factor indicating the group to which each unit belongs, a variate whose values are to be grouped, or a one-way table giving the number of units in each group

- **NOBSERVATIONS = tables**
 - One-way table to save numbers in the groups
GROUPS = factors
SYMBOLS = texts
DESCRIPTION = texts

LRI$$\text{DGE}$$ procedure
Does logistic ridge regression (A.I. Glaser).

Options

PRINT = string token
What output to print (correlation, crossvalidation, ridge, scaledridge, standarderrors); default corr

PLOT = string tokens
What graphs to plot (correlation, ridgetrace, buildup); default * i.e. none

LINK = string token
Link function (logit, probit, complementaryloglog); default logi

DISPERSION = scalar
Value of the the dispersion parameter; default 1

TERMS = formula
Explanatory model

FACTORIAL = scalar
Limit on number of factors/covariates in a model term; default 3

LAMBDA = variate or scalar
Values for the ridge parameter lambda

CROSSVALIDATION = string token
Whether to use cross-validation to find an optimal value of lambda (yes, no); default no

NCROSSVALIDATIONGROUPS = scalar
Number of groups for cross-validation; default 10

CVMETHOD = string token
Which method to use for cross-validation (deviance, squarederror, countingerror); default devi

SEED = scalar
Seed for random numbers to use in cross-validation; default 0

Parameters

Y = variates
Response variate

NBINOMIAL = scalars or variates
Number of binomial trials for each unit; default 1

YVALIDATION = variates
Response variate for validation

XVALIDATION = pointers
Explanatory variables for validation

XDATA = pointers
Pointer containing the original explanatory variables in the same order as in XVALIDATION; default takes the variables in the order in which they occur in TERMS

NVALIDATION = variates or scalars
Number of binomial trials for the units of each YVALIDATION variate; default 1

BESTLAMBDA = scalars
Saves the optimal lambda value from cross-validation

CVSTATISTICS = matrices
Saves the cross-validation statistics

RESIDUALS = variates
Saves residuals when LAMBDA is a scalar

FITTEDVALUES = variates
Saves fitted values when LAMBDA is a scalar

ESTIMATES = variates
Saves parameter estimates when LAMBDA is a scalar

SE = variates
Saves standard errors of the parameter estimates when LAMBDA is a scalar

DEVIANCE = scalars
Saves the residual deviance when LAMBDA is a scalar

LINEARPREDICTOR = variates
Saves the linear predictor when LAMBDA is a scalar

LRI$$\text{DGE}$$ directive
Declares one or more LRV data structures.

Options

ROWS = scalar, vector or pointer
Number of rows, or row labels, for the matrix; default *

COLUMNS = scalar, vector or pointer
Number of columns, or column labels, for matrix and diagonal matrix; default *

Parameters

IDENTIFIER = identifiers
Identifiers of the LRVs

VECTORS = matrices
Matrix to contain the latent vectors for each LRV

ROOTS = diagonal matrices
Diagonal matrix to contain the latent roots for each LRV

TRACE = scalars
Trace of the matrix
LRVSCREE procedure

Prints a scree diagram and/or a difference table of latent roots (P.G.N. Digby).

Option

- **PRINT = string tokens**

 Printed output (scree, differences); default: scre

- **PLOT = string token**

 What to plot in high-resolution graphics (scree); default: scre

- **TITLE = text**

 Title for the graph; default: *i.e. none*

- **WINDOW = scalar**

 Window to use for the graph; default: 1

Parameters

- **ROOTS = LRVs or any numerical structures**

 Latent roots to be displayed; if an LRV is supplied the trace will also be extracted from it

- **TRACE = scalars**

 Supplies or saves the total of the latent roots

- **DIFFERENCES = pointers**

 Contains 3 variates to save the difference table

LSIPLLOT procedure

Plots least significant intervals, saved from SEDLSI (M.C. Hannah).

Options

- **WINDOW = scalar**

 Window in which to plot the graph

- **TITLE = text**

 Title for the graph; default: 'Estimates with LSIs by Treatment'

- **YTITLE = text**

 Title for the y-axis; default: 'Estimates'

Parameters

- **LSI = pointers**

 Defines the least significant intervals

- **SYMBOL = texts or scalars**

 Symbol to use to plot each set of estimates

- **CSYMBOL = texts or scalars**

 Colour for each symbol

- **SMSYMBOL = scalars**

 Multiplier to use in the calculation of the size of each symbol

- **SMLABEL = scalars**

 Multiplier to use in the calculation of the size of the labels in each plot

LSPLINE procedure

Calculates design matrices to fit a natural polynomial or trigonometric L-spline as a linear mixed model (S.J. Welham).

Options

- **KMETHOD = string token**

 Method for constructing the set of knots (equal, quantile, given); default: equa

- **NSEGMENTS = scalar**

 Specifies the number of segments between boundaries; default: *obtains a value automatically

- **INKNOTS = variate**

 Provides the set of internal knots when KMETHOD=given

- **CORE = string token**

 The form of core function to use; (cossin, intcossin, lincossin, intercept, linear, quadratic) default: linc

- **PERIOD = scalar**

 Defines the period for trigonometric functions (not required for polynomial splines)

- **LOWER = scalar**

 Specifies the lower boundary when KMETHOD=equal; default: takes the minimum value in X

- **UPPER = scalar**

 Specifies the upper boundary when KMETHOD=equal; default: takes the maximum value in X

- **ORTHOGONALIZETO = variate**

 Variate to use to get an orthogonalized basis; default: *i.e. orthogonalization with respect to X

- **SCALING = scalar**

 Scaling of the XRANDOM terms (automatic, none); default: auto

Parameters

- **X = variates**

 The explanatory variate for which the spline values are required

- **XFIXED = matrices**

 Saves the design matrix to define the fixed terms (excluding the constant) for fitting the L-spline
4.1 Commands

XRANDOM = matrices
Saves the design matrix to define the random terms for fitting the L-spline

KNOTS = variates
Saves the internal knots and boundaries used to form the basis for the spline

PX = variates
Specifies x-values at which predictions are required

PFIXED = matrices
Saves the design matrix for the fixed terms (excluding the constant) for the spline at the prediction points

PRANDOM = matrices
Saves the design matrix for the random terms for the spline at the prediction points

LVARMODEL procedure
Analyses a field trial using the Linear Variance Neighbour model (D.B. Baird).

Options
PRINT = string tokens
Controls printed output (data, effects, sed, residuals, variances); default effe, sed, vari

METHOD = string token
Indicates which version of the LV model to use (full, reduced); default full

LAMBDA = scalar
Number between 0 and 1 which defines the value for the variance parameter \(\lambda \). (If METHOD=full and LAMBDA=0, the value is estimated by REML); default 0

VARMETHOD = string token
Specifies which estimator of residual variance to use to calculate the sed's of treatment effects (RMS2, GLS); default RMS2

TOLERANCE = scalar
Defines the precision to which the variance parameter \(\lambda \) should be estimated; default 0.01

Parameters
Y = variates
Y-values (usually plot yields) row by row

TREATMENTS = factors
Plot treatments for each y-variate

BLOCKS = factors
Block factor, defining groups of plots to be de-trended independently

UNITS = factors
Unit-within-block factor, defining the order of plots within each block

EFFECTS = tables
To save the estimated treatment effects from each analysis

SED = matrices or symmetric matrices
To save the estimated standard errors of differences between treatments

WNOISE = variates
To save the estimated white noise component

TREND = variates
To save the estimated trend component

COMPONENTS = variates
To save the estimated variance components: the tuning parameter \(\lambda \), and either the variance of the random walk innovations (\(\lambda < 0.9 \)) or the white noise variance (\(\lambda \geq 0.9 \))

MAANOVA procedure
Does analysis of variance for a single-channel microarray design (R.W. Payne & D.B. Baird).

Options
PRINT = string tokens
Controls printed output (summary, monitoring); default * i.e. none

TREATMENTSTRUCTURE = formula
Treatment formula for the analysis; if this is not set, the default is taken from the setting (which must already have been defined) of the TREATMENTSTRUCTURE directive

BLOCKSTRUCTURE = formula
Block formula for the analysis; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term)

COVARIATE = variates
Defines any covariates

FACTORIAL = scalar
Limit on the number of factors in a treatment term
Syntax summary

SAVETERMS = *formula*

Treatment terms for which to save information; if this is not
set, information is saved for all the treatment terms

REPLICATION = *pointer*

Pointer to tables saving the replication of the SAVETERMS

SPREADSHEET = *string tokens*

What results to save in spreadsheets (acv, means, vcmeans,
effects, vareffects, seeffects, teffects,
prefs, contrasts, secontrasts, tcontrasts,
pcontrasts); default * i.e. none

CONTRASTSLIMIT = *scalar*

Limit on the order of a contrast of a treatment term; default 4

DEVIATIONSLIMIT = *scalar*

Limit on the number of factors in a treatment term for the devia-
tions from its fitted contrasts to be retained in the model;
default 9

Parameters

Y = *variates or pointers*

Y-variates for each analysis

PROBES = *factors or texts*

Defines the probe information for each analysis

SLIDES = *factors or texts*

Defines the slide information for each analysis

CHECK = *texts or variates*

Slide ID's that can be compared with the labels or levels of the
SLIDES factor to ensure that the slide order is correct in each
analysis

IDS = *texts*

Saves the probes names that have been generated to label the
rows of the output structures from each analysis

RESIDUALS = *matrices*

Saves the residuals

FITTEDVALUES = *matrices*

Saves the fitted values

MEANS = *pointers*

Pointer to a matrix for each of the SAVETERMS, saving the
means from each analysis

VCMEANS = *pointers*

Pointer to matrices saving variances and covariances for the
means

EFFECTS = *pointers*

Pointer to matrices saving effects

VAREFFECTS = *pointers*

Pointer to variates saving unit variances for effects

SEEFFECTS = *pointers*

Pointer to variates saving standard errors of effects

TEFFECTS = *pointers*

Pointer to variates saving t-statistics of effects

PREFFECTS = *pointers*

Pointer to variates saving probabilities for t -statistics of
effects

DF = *pointers*

Pointer to variates saving degrees of freedom

SS = *pointers*

Pointer to variates saving sums of squares

MS = *pointers*

Pointer to variates saving mean squares

RDF = *pointers*

Pointer to variates saving degrees of freedom for the residual
corresponding to each of the SAVETERMS

RSS = *pointers*

Pointer to variates saving residual sums of squares

RMS = *pointers*

Pointer to variates saving residual mean squares

VR = *pointers*

Pointer to variates saving variance ratios

PRVR = *pointers*

Pointer to variates saving probabilities for the variance ratios

CONTRASTS = *pointers*

Pointer to matrices saving estimates of contrasts

SECONTRASTS = *pointers*

Pointer to matrices saving standard errors of contrasts

TCONTRASTS = *pointers*

Pointer to matrices saving t-statistics for contrasts

PRCONTRASTS = *pointers*

Pointer to matrices saving probabilities for t-statistics of
contrasts

MABGCORRECT procedure

Performs background correction of Affymetrix slides (D.B. Baird).

Options

PRINT = *string token*

What to print (quantiles); default quan

METHOD = *string token*

Method of establishing grid background (mean, quantile);
default mean

WEIGHTING = *string token*

Weighting method to use (affymetrix, distance); default affy

POWER = *scalar*

Power applied to distance; default 2 i.e. square
SMOOTH = scalar
Parameters
DATA = variates or pointers
SLIDES = factors or texts
ROWS = factors
COLUMNS = factors
NEWDATA = variates or pointers

SMOOTH = scalar
Smoothing parameter applied to weights; default 100

Parameters
DATA = variates or pointers
SLIDES = factors or texts
ROWS = factors
COLUMNS = factors
NEWDATA = variates or pointers

MACALCULATE procedure
Corrects and transforms two-colour microarray differential expressions (D.B. Baird).

Options
PRINT = string token
BMETHOD = string token
TRANSFORMATION = string token
MINIMUM = scalar
PERSPOTMINIMUM = string token
CONSTANTVALUE = scalar
DF = scalar

Parameters
RFOREGROUND = variates or pointers
GFOREGROUND = variates or pointers
RBACKGROUND = variates or pointers
GBACKGROUND = variates or pointers
RSDBACKGROUND = variates or pointers
GSDBACKGROUND = variates or pointers
SLIDES = factors or texts
ROWS = factors
COLUMNS = factors
LOGRATIOS = variates or pointers
INTENSITIES = variates or pointers
RCORRECTED = variates or pointers
GCORRECTED = variates or pointers

MADESIGN procedure
Assesses the efficiency of a two-colour microarray design (D.B. Baird).

Options
PRINT = string tokens
DYEBIASMETHOD = string token
SPREADSHEET = string token

Parameters
RED = factors
GREEN = factors
MAEBAYES procedure

Modifies t-values by an empirical Bayes method (D.B. Baird).

Options

PRINT = string tokens
PLOT = string tokens
DATATYPE = string token
METHOD = string token
DEVICE = scalar
GRAPHICSFILE = text

Parameters

DATA = pointers or variates
SD = variates
DF = variates
SD0 = scalars
DF0 = scalars
TMODIFIED = variates
SDMODIFIED = variates
PMODIFIED = variates

MAESTIMATE procedure

Estimates treatment effects from a two-colour microarray design (D.B. Baird).

Options

PRINT = string tokens
DYEBIASMETHOD = string token
SPREADSHEET = string tokens

Parameters

LOGRATIOS = variates or pointers
PROBES = factors or texts
SLIDES = factors or texts
REDTREATMENTS = factors
GREENTREATMENTS = factors
CHECK = texts or variates
XCONTRASTS = matrices
IDPROBES = texts
DF = variates
RSD = variates

XCONTRASTS = matrices
SE = symmetric matrices
VCOVARIANCE = symmetric matrices
SECONTRASTS = symmetric matrices

MAEBAYES procedure

Modifies t-values by an empirical Bayes method (D.B. Baird).

Options

PRINT = string tokens
PLOT = string tokens
DATATYPE = string token
METHOD = string token
DEVICE = scalar
GRAPHICSFILE = text

Parameters

DATA = pointers or variates
SD = variates
DF = variates
SD0 = scalars
DF0 = scalars
TMODIFIED = variates
SDMODIFIED = variates
PMODIFIED = variates

MAESTIMATE procedure

Estimates treatment effects from a two-colour microarray design (D.B. Baird).

Options

PRINT = string tokens
DYEBIASMETHOD = string token
SPREADSHEET = string tokens

Parameters

LOGRATIOS = variates or pointers
PROBES = factors or texts
SLIDES = factors or texts
REDTREATMENTS = factors
GREENTREATMENTS = factors
CHECK = texts or variates
XCONTRASTS = matrices
IDPROBES = texts
DF = variates
RSD = variates

XCONTRASTS = matrices
SE = symmetric matrices
VCOVARIANCE = symmetric matrices
SECONTRASTS = symmetric matrices

MAEBAYES procedure

Modifies t-values by an empirical Bayes method (D.B. Baird).

Options

PRINT = string tokens
PLOT = string tokens
DATATYPE = string token
METHOD = string token
DEVICE = scalar
GRAPHICSFILE = text

Parameters

DATA = pointers or variates
SD = variates
DF = variates
SD0 = scalars
DF0 = scalars
TMODIFIED = variates
SDMODIFIED = variates
PMODIFIED = variates

MAESTIMATE procedure

Estimates treatment effects from a two-colour microarray design (D.B. Baird).

Options

PRINT = string tokens
DYEBIASMETHOD = string token
SPREADSHEET = string tokens

Parameters

LOGRATIOS = variates or pointers
PROBES = factors or texts
SLIDES = factors or texts
REDTREATMENTS = factors
GREENTREATMENTS = factors
CHECK = texts or variates
XCONTRASTS = matrices
IDPROBES = texts
DF = variates
RSD = variates

XCONTRASTS = matrices
SE = symmetric matrices
VCOVARIANCE = symmetric matrices
SECONTRASTS = symmetric matrices

MAEBAYES procedure

Modifies t-values by an empirical Bayes method (D.B. Baird).

Options

PRINT = string tokens
PLOT = string tokens
DATATYPE = string token
METHOD = string token
DEVICE = scalar
GRAPHICSFILE = text

Parameters

DATA = pointers or variates
SD = variates
DF = variates
SD0 = scalars
DF0 = scalars
TMODIFIED = variates
SDMODIFIED = variates
PMODIFIED = variates

MAESTIMATE procedure

Estimates treatment effects from a two-colour microarray design (D.B. Baird).

Options

PRINT = string tokens
DYEBIASMETHOD = string token
SPREADSHEET = string tokens

Parameters

LOGRATIOS = variates or pointers
PROBES = factors or texts
SLIDES = factors or texts
REDTREATMENTS = factors
GREENTREATMENTS = factors
CHECK = texts or variates
XCONTRASTS = matrices
IDPROBES = texts
DF = variates
RSD = variates

XCONTRASTS = matrices
SE = symmetric matrices
VCOVARIANCE = symmetric matrices
SECONTRASTS = symmetric matrices
4.1 Commands

DYEBIAS = variates
Saves estimated dye swap bias effects

ESTIMATES = pointers
Saves the estimates

SEESTIMATES = pointers
Saves the standard errors of the estimates

TVALUES = pointers
Saves t-values of the estimates

PROBABILITIES = pointers
Saves probabilities for the t-values

CONTRASTS = pointers
Saves estimates of the contrasts

SECONTRASTS = pointers
Saves the standard errors of the contrasts

TCONTRASTS = pointers
Saves t-values for the contrasts

PRCONTRASTS = pointers
Saves probabilities for the contrasts

MAHISTOGRAM procedure
Plots histograms of microarray data (D.B. Baird).

Options

- **SLIDES = factor or text**
 Defines the slides when the DATA variate contains data from more than one slide

- **SLIST = variate or text**
 Subset of slides to plot; default * i.e. all

- **NGROUPS = scalar**
 Number of groups into which to classify the DATA units; default 100

- **COLOUR = text or scalar**
 Colour to use for the bars of the histogram; default 'red'

- **TRANSFORMATION = string token**
 Whether to transform data to logarithms base 2 (log2, none); default none

- **SCALING = string token**
 Whether to use a common scale when not using Trellis plots (common, none); default comm

- **NROWS = scalar**
 Number of rows on a page in a trellis plot

- **NCOLUMNS = scalar**
 Number of columns on a page in a trellis plot

- **TITLE = text**
 Title for the graph

- **YTITLE = text**
 Title for the y-axis

- **XTITLE = text**
 Title for the x-axis

- **ARRANGEMENT = string token**
 Whether to use trellis or single plots when the DATA variate contains data from more than one slide (single, trellis); default treл

- **WINDOW = scalar**
 Window number for the graphs; default 3

- **DEVICE = scalar**
 Device number on which to plot the graphs

- **GRAPHICSFILE = text**
 What graphics filename template to use to save the graphs; default *

- **YMINIMUM = scalar**
 Minimum value on the y-axis of the histogram

- **YMAXIMUM = scalar**
 Maximum value on the y-axis of the histogram

- **XMINIMUM = scalar**
 Minimum value on the x-axis of the histogram

- **XMAXIMUM = scalar**
 Maximum value on the x-axis of the histogram

Parameter

- **DATA = variates or pointers**
 Data values to plot

MANNWHITNEY procedure
Performs a Mann-Whitney U test (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Options

- **PRINT = string tokens**
 Output required (test, ranks, hodgesslehmann, confidence); default test

- **METHOD = string token**
 Type of test required (twosided, greaterthan, lessthan); default twos

- **GROUPS = factor**
 Defines the samples for a two-sample test if the Y2 parameter is not set

- **CIPROBABILITY = scalar**
 Probability for the confidence interval for the median difference between the samples; default 0.95

- **CONTROL = scalar or text**
 Identifies the control group against which to make comparisons if GROUPS is set; default uses the reference level of GROUPS
Parameters

Y1 = variates
Identifier of the variate holding the first sample if Y2 is set, or both samples if Y2 is unset (the GROUPS option must then also be set)

Y2 = variates
Identifier of the variate holding the second sample

R1 = variates
Saves the ranks of the first sample if Y2 is set, or both samples if Y2 is unset

R2 = variates
Saves the ranks of the second sample if Y2 is set

STATISTIC = scalars or tables
Saves the test statistics U

PROBABILITY = scalars or tables
Probability values for the test statistics

SIGN = scalars or tables
Saves indicators: 1 if the first sample scores the highest ranks on average, 0 otherwise

HODGESLEHMANN = scalars or tables
Saves the Hodges-Lehmann estimates for the differences in location of the two samples (i.e. the median differences between the samples)

LOWER = scalars or tables
Saves lower confidence values for median differences between the samples

UPPER = scalars or tables
Saves upper confidence values for median differences between the samples

MANOVA procedure

Options

PRINT = string tokens
Printed output required from the multivariate analysis of covariance (ssp, tests); default test

APRINT = string tokens
Printed output from the univariate analyses of variance of the y-variates (as for the ANOVA PRINT option); default *

UPRINT = string tokens
Printed output from the univariate unadjusted analyses of variance of the y-variates (as for the ANOVA UPRINT option); default *

CPRINT = string tokens
Printed output from the univariate analyses of variance of the covariates (as for the ANOVA CPRINT option); default *

TREATMENTSTRUCTURE = formula
Treatment formula for the analysis; if this is not set, the default is taken from the setting (which must already have been defined) by the TREATMENTSTRUCTURE directive

BLOCKSTRUCTURE = formula
Block formula for the analysis; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term)

COVARIATES = variates
Covariates for the analysis; by default MANOVA uses those listed by a previous COVARIATE directive (if any)

FACTORIAL = scalar
Limit on the number of factors in a treatment term

LRV = pointer
Contains elements first for the treatment terms and then the covariate term (if any), allowing the LRV's to be saved from one of the analyses; if a term is estimated in more than one stratum, the LRV is taken from the lowest stratum in which it is estimated

FPROBABILITY = string token
Printing of probabilities for F statistics and Chi-square variables (no, yes); default no

SELECTION = string tokens
Which test statistics to print when PRINT=test
(lawleyhotellingtrace, pillabartletttrace, roysmaximumroot, wilkslambda); default lawl, pill, roys, wilk

NTIMES = scalar
Number of permutations to make when PRINT=perm; default 999
4.1 Commands

EXCLUDE = factors

Factors in the block model of the design whose levels are not to be randomized

SEED = scalar

Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

Parameter

Y = variates

Y-variates for an analysis

MANTEL procedure

Assesses the association between similarity matrices (J.W. McNicol, E.I. Duff & D.A. Elston).

Options

PRINT = string token

Controls printed output (test); default * i.e. none

METHOD = string token

The type of metric by which to compare the distance matrices (correlation, rankcorrelation, mantel); default corr

NPERMUTATIONS = scalar

The number of permutations of the units in the second distance matrix X on which the significance of the correlation between Y and X is to be based; default 100

Parameters

Y = symmetric matrices

The first distance or similarity matrix: the order of the units of this matrix is held fixed

X = symmetric matrices

The second distance or similarity matrix: the rows of X are permuted to allow the significance of the correlation between Y and X to be assessed

SEED = scalars

Random number seed for the permutations; default set by RANDOMIZE

M = scalars

Association between Y and X

MPERMUTED = variates

Associations between Y and the permuted X’s

CUPROB = scalars

The proportion of MPERMUTED values greater than or equal to M

YOFFDIAGONAL = variates

Variate to save the off-diagonal elements of the distance/similarity matrix Y

XOFFDIAGONAL = variates

Variate to save the off-diagonal elements of the distance/similarity matrix X

MAPCLUSTER procedure

Clusters probes or genes with microarray data (D.B. Baird).

Options

PRINT = string tokens

What to print (cluster, groups, summary); default clus

PLOT = string tokens

What to plot (dendrogram, groups, meangroups); default dend, grou

METHOD = string token

Type of clustering to use (hierarchical, kmeans); default hier

DMETHOD = string token

Distance method to use for hierarchical clustering (euclidean, cityblock); default euc1

LMETHOD = string token

What type of link to use in hierarchical clustering (singlelink, nearestneighbour, completelink, furthestneighbour, averagelink, mediansort, groupaverage); default aver

CRITERION = string token

Criterion to use in forming groups when LMETHOD=kmeans (sums, predictive, within, Mahalanobis); default sums

NGROUPS = scalar

Number of groups to form when LMETHOD=kmeans

GTHRESHOLD = scalar

Grouping threshold for forming groups from the dendrogram; default *

PERCENT = scalar

Percentage of the probes/genes to use; default 100

DTITLE = text

Title for the dendrogram

GTITLE = text

Title for the groups plot
4 Syntax summary

ARRANGEMENT = string token
Whether to use a trellis or single plot (single, trellis); default trel

WINDOW = scalar
Window number for the graphs; default 3

DEVICE = scalar
Device number on which to plot the graphs

GRAPHICSFILE = text
What graphics filename template to use to save the graphs; default *

SPREADSHEET = string token
What results to put in spreadsheets (top%probes); default * i.e. none

Parameters
DATA = variates or pointers
Data values (i.e. log-ratios)

SLIDES = factors, texts or variates
Identifies the slides

PROBES = factors, texts or variates
Identifies the probes or genes

SIMILARITY = symmetric matrices
Saves the pair-wise similarities between probes or genes when METHOD=hier

GROUPS = factors
Saves the group membership for each probe

AMALGAMATIONS = matrices
Saves the probe or gene amalgamation data when METHOD=hier

MAPLOT procedure
Produces two-dimensional plots of microarray data (D.B. Baird).

Options
SLIDES = factor or text
Defines the slides when the X and Y variates contain data from more than one slide

SLIST = variate or text
Subset of slides to plot; default * i.e. all

GROUPS = factor
Specifies groups within slides

COLOURS = text, scalar or variate
Colours to use for the plots

SYMBOLS = scalar or variate
Symbols to use for the plots

REFERENCELINECHOICE = string token
Reference line to include (identity, zero, none); default none

TRANSFORMATION = string token
Whether to transform data to logarithms base 2 (log2, none); default none

SCALING = string token
Whether to use a common scale when not using Trellis plots (common, none); default comm

BANDS = string token
Whether to plot approximate confidence bands (confidence, none); default none

SMOOTHEDMEAN = string token
Whether to plot spline smooth of mean (yes, no); default no

NROWS = scalar
Number of rows on a page in a trellis plot

NCOLUMNS = scalar
Number of columns on a page in a trellis plot

TITLE = text
Title for the graph

YTITLE = text
Title for the y-axis

XTITLE = text
Title for the x-axis

ARRANGEMENT = string token
Whether to use trellis, single or multiple plots when the X and Y variates contain data from more than one slide (separate, overlaid, trellis); default trel

WINDOW = scalar
Window number for the graphs; default 3

KEYWINDOW = scalar
Window number for the key; default 0

DEVICE = scalar
Device number on which to plot the graphs

GRAPHICSFILE = text
What graphics filename template to use to save the graphs; default *

Parameters
Y = variates or pointers
Y-coordinates

X = variates or pointers
X-coordinates
MAREGRESSION procedure

Does regressions for single-channel microarray data (P. Brain, R.W. Payne & D.B. Baird).

Options

PRINT = string tokens
Controls printed output (model, summary); default * i.e. none

TERMS = formula
Defines the regression model over the slides

WEIGHTS = variate
Weights for the regression; default 1

OFFSET = variate
Offset; default * i.e. none

CONSTANT = string token
How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar
Limit for expansion of model terms; default 3

FULL = string token
Whether to assign all possible parameters to factors and interactions (yes, no); default no

POOL = string token
Whether to pool the information on each term in the analysis of variance (yes, no); default no

RMETHOD = string token
Type of residuals to form (deviance, Pearson, simple); default devi

SPREADSHEET = string tokens
What results to save in a book of spreadsheets (aov, residuals, fittedvalues, estimates, se, testimates, prestimates); default * i.e. none

Parameters

Y = variates or pointers
Y-values for each set of analyses

PROBES = factors or texts
Defines the probe information for each analysis

SLIDES = factors or texts
Defines the slide information for each analysis

CHECK = texts or variates
Slide ID's that can be compared with the labels or levels of the SLIDES factor to ensure that the slide order is correct in each analysis

IDS = texts
Saves the probes names that have been generated to label the rows of the output structures from each analysis

RESIDUALS = matrices
Saves residuals from each set of analyses

FITTEDVALUES = matrices
Saves fitted values from each set of analyses

ESTIMATES = matrices
Saves estimates from each set of analyses

SE = matrices
Saves s.e.'s of estimates

TESTIMATES = matrices
Saves t-statistics of estimates

PRESTIMATES = matrices
Saves t-probabilities of estimates

DF = pointers
Saves degrees of freedom for the model terms or variates in each analysis of variance

SS = pointers or variates
Saves sums of squares for the model terms in each analysis of variance

MS = pointers or variates
Saves mean squares for the model terms in each analysis of variance

RDF = variates
Saves degrees of freedom from the "residual" lines in each analysis of variance

RSS = variates
Saves sums of squares from the "residual" lines

RMS = variates
Saves mean squares from the "residual" lines

TDF = variates
Saves degrees of freedom from the "total" lines in each analysis of variance

TSS = variates
Saves sums of squares from the "total" lines

TMS = variates
Saves mean squares from the "total" lines

VR = pointers or variates
Saves variance ratios for the model terms in each analysis of variance

PRVR = pointers or variates
Saves probabilities of the variance ratios

MARGIN directive

Forms and calculates marginal values for tables.

Option

CLASSIFICATION = factors
Factors classifying the margins to be formed; default * requests all margins to be formed
Parameters

OLDTABLE = tables
Tables from which the margins are to be taken or calculated

NEWTABLE = tables
New tables formed with margins

METHOD = string tokens
Way in which the margins are to be formed for each table (totals, means, minima, maxima, variances, medians, deletion, or a null string to indicate that the marginal values are all to be set to the missing value); default "tota"

MARMA procedure

Calculates Affymetrix expression values (D.B. Baird).

Options

PRINT = string token
What to print (estimates, monitoring); default "est"

METHOD = string token
Method of establishing grid background (rma, rma2); default "rma"

NORMALIZED = string token
Whether slides have been normalized (yes, no); default "no"

Parameters

DATA = variates or pointers
Perfect-match data

SLIDES = factors or texts
Defines the slides

NEWDATA = variates or pointers
Saves the corrected values; if this is unset, they replace the original values in **DATA**

ESTIMATES = variates
Saves the estimated parameters of the model

MAROBUSTMEANS procedure

Does a robust means analysis for Affymetrix slides (D.B. Baird).

Options

TRANSFORMATION = string token
How to transform the data (log2, none); default "none"

MAXCYCLE = scalar
Maximum number of iterations; default 50

TOLERANCE = scalar
Tolerance for convergence; default 0.0001

Parameters

DATA = variates or pointers
Expression data to be summarized

SLIDES = factors or texts
Defines the slides

PROBES = factors
Defines the probes

IDPROBES = factors
Saves the probe IDs

MEANS = variates or pointers
Saves the robust means

SEM = variates or pointers
Saves approximate standard errors of the robust means

MASCLUSTER procedure

Clusters microarray slides (D.B. Baird).

Options

PRINT = string tokens
What to print (cluster, pco, correlations, distances); default "clus, pco, corr, dist"

PLOT = string tokens
What to plot (dendrogram, mst); default "dend, mst"

DMETHOD = string token
What distance method to use to form the similarity matrix (correlation, euclidean, cityblock); default "corr"

PERCENT = scalar
Percentage of the probes genes to use to calculate correlations; default 100

DTITLE = text
Title for the dendrogram

MTITLE = text
Title for the minimum spanning tree

WINDOW = scalar
Window number for the graphs; default 3

DEVICE = scalar
Device number on which to plot the graphs

GRAPHICSFILE = text
What graphics filename template to use to save the graphs; default "*

Parameters

DATA = variates or pointers
Data values (i.e. log-ratios)

SLIDES = factors, texts or variates
Identifies the slides
4.1 Commands

PROBES = factors, texts or variates Identifies the probes or genes
CORRELATION = symmetric matrices Saves the correlation matrix
DISTANCE = symmetric matrices Saves the distance matrix

MASHADE procedure

Produces shade plots to display spatial variation of microarray data (D.B. Baird).

Options

- SLIDES = factor or text Defines the slides when the DATA variate contains data from more than one slide
- SLIST = variate or text Subset of slides to plot; default * i.e. all
- ROWS = factor or variate Row to which each DATA unit belongs
- COLUMNS = factor or variate Column to which each DATA unit belongs
- COLOURS = text, scalar or variate Colours to use for the plots; default !t(blue,red)
- SHADING = string token Shading scale (natural, percentiles); default natu
- TITLE = text Title for the graph
- YTITLE = text Title for the y-axis
- XTITLE = text Title for the x-axis
- WINDOW = scalar Window number for the graphs; default 3
- DEVICE = scalar Device number on which to plot the graphs
- GRAPHICSFILE = text What graphics filename template to use to save the graphs; default *

Parameter

- DATA = variates or pointers Values for each shade plot

MATRIX directive

Declares one or more matrix data structures.

Options

- ROWS = scalar, vector, pointer or text Number of rows, or labels for rows; default *
- COLUMNS = scalar, vector, pointer or text Number of columns, or labels for columns; default *
- VALUES = numbers Values for all the matrices; default *
- MODIFY = string token Whether to modify (instead of redefining) existing structures (yes, no); default no
- IPRINT = string tokens Information to be used by default to identify the matrices in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Parameters

- IDENTIFIER = identifiers Identifiers of the matrices
- VALUES = identifiers Values for each matrix
- DECIMALS = scalars Number of decimal places for printing
- EXTRA = texts Extra text associated with each identifier
- MINIMUM = scalars Minimum value for the contents of each structure
- MAXIMUM = scalars Maximum value for the contents of each structure
- DREPRESENTATION = scalars or texts Default format to use when the contents represent dates and times

MAVDIFFERENCE procedure

Applies the average difference algorithm to Affymetrix data (D.B. Baird).

Options

- PRINT = string token Whether to print monitoring information (monitoring); default *
- SDLIMIT = scalar Maximum number of iterations; default 50

Parameters

- DATA = variates or pointers Data values
- GROUPS = factors Groupings of the data values
- MEANS = variates Saves the means
MAVOLCANO procedure

Produces volcano plots of microarray data (D.B. Baird).

Options

NGROUPS = scalar
Number of groupings for a variate; default 10

COLOURS = text, scalar or variate
Colours to use for the plots; default !t(blue, red)

SYMBOL = scalar
Symbol to use for the points; default 1

TRANSFORMATION = string token
Whether to transform data to logarithms base 2 (log10, none); default log10

TITLE = text
Title for the graph

YTITLE = text
Title for the y-axis

XTITLE = text
Title for the x-axis

WINDOW = scalar
Window number for the graphs; default 3

DEVICE = scalar
Device number on which to plot the graphs

GRAPHICSFILE = text
What graphics filename template to use to save the graphs; default *

Parameters

X = variates
X-coordinates

Y = variates or factors
Y-coordinates

Z = variates or factors
Z-coordinates

PNGROUPS = scalar
Number of probe groups to form when

GTHRESHOLD = scalar
Grouping threshold for forming probe groups from the dendrogram; default *

SGGROUPS = scalar
Number of target (slide) groups to form when

SGTHRESHOLD = scalar
Grouping threshold for forming target (slide) groups from the dendrogram; default *

MINOBSERVATIONS = scalar
Smallest number of observations before probes are dropped; default *

PERCENT = scalar
Percentage of the probes/genes to use; default 100

STANDARDIZE = string token
Allows you to centre the values by slide and probe (centre); default * i.e. no centring

COLOURS = text, scalar or variate
Colours to use for Shade plot; default !t(blue, red)

DTITLE = text
Title for the dendrogram

STITLE = text
Title for the shade plot

WINDOW = scalar
Window number for the graphs; default 3

DEVICE = scalar
Device number on which to plot the graphs

MA2CLUSTER procedure

Performs a two-way clustering of microarray data by probes (or genes) and slides (D.B. Baird).

Options

PRINT = string tokens
What to print (cluster, groups, summary); default clus

PLOT = string tokens
What to plot (dendrogram, shade, meanshade); default dend, shad

METHOD = string token
Type of clustering to use (hierarchical, kmeans); default hier

DMETHOD = string token
Distance method to use for hierarchical clustering (euclidean, cityblock); default eucl

LMETHOD = string token
What type of link to use in hierarchal clustering (singlelink, nearestneighbour, completelink, furthestneighbour, averagelink, mediansort, groupaverage); default aver

CRITERION = string token
Criterion to use in forming groups when LMETHOD=kmeans (sums, predictive, within, Mahalanobis); default sums

PNGROUPS = scalar
Number of probe groups to form when LMETHOD=kmeans

GTHRESHOLD = scalar
Grouping threshold for forming probe groups from the dendrogram; default *

SGGROUPS = scalar
Number of target (slide) groups to form when LMETHOD=kmeans

SGTHRESHOLD = scalar
Grouping threshold for forming target (slide) groups from the dendrogram; default *

MINOBSERVATIONS = scalar
Smallest number of observations before probes are dropped; default *

PERCENT = scalar
Percentage of the probes/genes to use; default 100

STANDARDIZE = string token
Allows you to centre the values by slide and probe (centre); default * i.e. no centring

COLOURS = text, scalar or variate
Colours to use for Shade plot; default !t(blue, red)

DTITLE = text
Title for the dendrogram

STITLE = text
Title for the shade plot

WINDOW = scalar
Window number for the graphs; default 3

DEVICE = scalar
Device number on which to plot the graphs
4.1 Commands

GRAPHICSFILE = text
What graphics filename template to use to save the graphs; default *

SPREADSHEET = string token
What results to put in spreadsheets (top$probes); default *
 i.e. none

Parameters

DATA = variates or pointers
Data values (i.e. log-ratios)

SLIDES = factors, texts or variates
Identifies the slides

PROBES = factors, texts or variates
Identifies the probes or genes

GMEANS = matrices
Saves the tabulation of the data by probe groups and target
 groups, as a two-way matrix

PGROUPS = factors
Saves the group membership for each probe (or gene)

SGROUPS = factors
Saves the group membership for each slide (or target)

PAMALGAMATIONS = matrices
Saves the probe (or gene) amalgamation data when
 METHOD=hier

SAMALGAMATIONS = matrices
Saves the slide (or target) amalgamation data when
 METHOD=hier

MCNEMAR procedure
Performs McNemar's test for the significance of changes (R.W. Payne & D.A. Murray).

Options

PRINT = string tokens
Controls printed output (test, table); default test

METHOD = string token
Type of test required (twosided, greaterthan, lessthan); default twos

Parameters

Y1 = factors or tables
Factor containing the responses obtained before the treatment
 (with 1 indicating a positive response) or two-by-two table
 (classified by factors representing the two occasions of testing)
 summarizing the responses before and after treatment

Y2 = factors
Factor containing the responses obtained after the treatment
 (need not be specified if Y1 is a table)

STATISTIC = scalars
Saves the test statistic

PROBABILITY = scalars
Saves the probability value

MCOMPARISON procedure
Performs pairwise multiple comparison tests within a table of means (D.M. Smith).

Options

PRINT = string tokens
Controls printed output (comparisons, critical,
 description, lines, letters, plot, mplot, pplot); default lett

METHOD = string token
Test to be performed (flsd, bonferroni, sidak); default flsd

DIRECTION = string token
How to sort means (ascending, descending); default asce

PROBABILITY = scalar
The required significance level; default 0.05

STUDENTIZE = string token
Whether to use the alternative LSD test where the Studentized
 Range statistic is used instead of Student's t (yes, no); default
 no

Parameters

MEANS = tables
Means to be compared

SED = symmetric matrix or scalar
Standard errors of differences of the means

DF = symmetric matrix or scalar
Degrees of freedom for the standard errors of differences

VMEANS = pointer or variate
Saves the means in a variate, sorted as requested by the
 DIRECTION option

DIFFERENCES = symmetric matrix
Saves differences between the (sorted) means

LABELS = text
Saves labels for the (sorted) means

LETTERS = text
Saves letters indicating groups of means that do not differ
 significantly

SIGNIFICANCE = symmetric matrix
Indicators to show significant comparisons between (sorted)
means
CIWIDTH = symmetric matrix
Saves the width of the confidence interval for the absolute differences between the (sorted) means
TERMNAME = texts
Name of the term, to use to annotate the graphs

MCORANALYSIS procedure

Does multiple correspondence analysis (A.I. Glaser).

Options

- **PRINT = string tokens**
 Printed output from the analysis (roots, rowscores, rowinertias, rowchisquare, rowmass, rowquality, colscores, colinertias, colchisquare, colmass, colquality); default * i.e. no output
- **ROWMETHOD = string token**
 Analysis method for rows i.e. units (indicator); default indi
- **COLMETHOD = string token**
 Analysis method for columns i.e. factors (adjusted, burt, indicator); default adju
- **NROOTS = scalar**
 Number of latent roots for printed output; default * requests them all to be printed
- **%METHOD = string token**
 How to represent proportions or %s in quality statistics (permills, percentages, proportions); default prop
- **NDIMENSIONS = scalar**
 Number of dimensions for which quality statistics are required; default 2
- **TOLERANCE = scalar**
 Tolerance criteria for zero eigenvalues; default 10^{-6}

Parameters

- **DATA = pointers**
 Data to be analysed
- **ROOTS = diagonal matrices**
 Saves the squared singular values from each analysis
- **ROWSCORES = matrices**
 Saves the scores for the rows of the data
- **COLSCORES = matrices**
 Saves the scores for the columns of the data
- **ROWINERTIAS = matrices**
 Saves the total inertias for the rows of the data
- **COLINERTIAS = matrices**
 Saves the total inertias for the columns of the data
- **ROWQUALITY = matrices**
 Saves the quality statistics for rows of the data
- **COLQUALITY = matrices**
 Saves the quality statistics for columns of the data
- **SUBINERTIAS = matrices**
 Saves the inertias of the subtables of the Burt matrices
- **FREQUENCY = variates**
 Frequencies for elements of DATA
- **SAVE = pointers**
 Saves details of the analysis for use by CABIPLOT

MCOVARIogram directive

Fits models to sets of variograms and cross-variograms.

Options

- **PRINT = string tokens**
 Controls printed output from the fit (model, summary, estimates, fittedvalues, monitoring); default mode, summ, esti
- **WEIGHTING = string token**
 Method to be used for weighting (counts, equal); default coun
- **MAXLAG = scalar**
 Maximum lag distance of points to be included in the modelling
- **MINCOUNT = scalar**
 Minimum number of points required at a particular lag point for a pair of variables for this to be used to model their cross-variogram; default 30 for equal weighting and 10 for counts
- **MAXCYCLE = scalar**
 Maximum number of iterations for model fitting; default 30
- **TOLERANCES = variate**
 Tolerances for model fitting; default * i.e. appropriate default values
- **COORDSYSTEM = string token**
 Coordinate system used for the geometry for discretizing the lag (mathematical, geographical); default math
- **COVARIogram = pointers**
 Experimental variograms, cross-variograms and associated information defining the data for fitting the model
4.1 Commands

Parameters

MODELTYPE = string tokens
Defines the model structures to be fitted (nugget, power, boundedlinear, circular, spherical, pentaspherical, cubic, stable, besselk1, cardinalsine, dampenedcosine); no default i.e. must be specified

INITIAL = scalars or variates
Scalar defining the initial distance parameter for fitting an isotropic model structure or a variate defining initial values for an anisotropic ellipse or ellipsoid for fitting an geometrical anisotropic model

ISOTROPY = string tokens
Specifies the zonal anisotropy to be used for model structure (isotropic, x, y, z, xy, xz, yz); default isot

ESTIMATES = pointers
Structures to store the estimated non-linear parameters and sill values

LOWER = scalars
Lower bound for each non-linear distance parameter

UPPER = scalars
Upper bound for each non-linear distance parameter

STEPLENGTH = scalars
Initial step length for each non-linear distance parameter

SMOOTHNESS = scalars
Value of exponent parameter for the power and stable models, or theta parameter for the dampened-cosine model

MCROSSPECTRUM procedure

Options

PRINT = string token
Controls printed output (description); default desc

PLOT = string tokens
Variables for which to plot the analysis (explanatory, response); default expl, resp

CORRECT = string token
Whether to mean or trend correct the series (mean, linear, quadratic, none); default mean

BANDWIDTH = scalar
Bandwidth for smoothing, must be between 0 and 0.5; if unset, a default is calculated automatically

MAXLAG = scalar
Maximum lag for the time domain outputs; if unset, a default is calculated automatically

PROBABILITY = scalar
Probability value for confidence limits; default 0.95

TAPER = scalar
The proportion of data to be tapered using a cosine bell window; default 0

YLOG = string token
Whether to plot the univariate spectra with a log 10 -transformed y-axis (yes, no); default no

Parameters

Y = variates
Response time series

X = variates or pointers
Explanatory time series

ALIGN = variates
Shifts to apply to the explanatory series; default none

SPECTRUM = pointers
Saves autospectra, co-spectra and quad-spectra

FREQUENCY = variate
Saves the frequency values at which the spectra are calculated

VARSPECTRUM = pointers
Saves information about the variation of the spectrum: coefficient of variation, degrees of freedom, and lower and upper multiplicative limits for the univariate spectra

MULTICOHERENCYSQUARED = pointers
Saves estimates, significance limits, lower and upper confidence limits for the squared multiple coherency between the response and explanatory series

PARTIALCOHERENCYSQUARED = pointers
Saves estimates, significance limits, lower and upper confidence limits for the squared partial coherency of the response series with each explanatory series

GAIN = pointers
Saves estimates, lower and upper limits for the estimated gain of response series from each of the explanatory series

PHASE = pointers
Saves estimates, lower and upper limits for the estimated phase
NOISESPECTRUM = variates

Saves the estimated spectrum of the noise process

IMPULSERESPONSE = pointers

Saves the impulse response from −maxlag to +maxlag: estimates and significance limit

LAGS = variates

Saves the lags for the impulse response

ACFNOISE = variates

Saves the ACF of the noise process

MC1PSTATIONARY procedure

Gives the stationary probabilities for a 1st-order Markov chain (R.P. Littlejohn).

Option

PRINT = string token
What to print (transitions, pstationary); default psta

Parameters

DATA = matrices or factors
Specifies the Markov chain as a factor, or matrix of transitions

STATES = texts
Labels for the states

PSTATIONARY = variates
Saves the stationary probabilities

TRANSITIONS = matrices
Saves the transition matrices

MDS directive

Performs non-metric multidimensional scaling.

Options

PRINT = string tokens
Printed output required (coordinates, roots, distances, fitteddistances, stress, monitoring); default * i.e. no printing

DATA = symmetric matrix
Distances amongst a set of units

METHOD = string token
Whether to use non-metric scaling, or metric scaling with linear regression of the fitted distances to the actual distances (nonmetric, linear); default nonm

SCALING = string token
Whether least-squares, least-squares-squared, or log-stress scaling is to be used (ls, lss, logstress); default ls

TIES = string token
Treatment of tied data values (primary, secondary, tertiary); default prim

WEIGHTS = symmetric matrix
Weights for each distance value; default * i.e. all distances with weight one

INITIAL = matrix
Initial configuration; default * i.e. a principal coordinate solution is used

NSTARTS = scalar
Number of starting configurations to be used, by making random perturbations to the initial configuration; default 10

SEED = scalar
Seed for the random-number generator; default 0

MAXCYCLE = scalar
Maximum number of iterations; default 30

Parameters

NDIMENSIONS = scalars
Number of dimensions for each solution

COORDINATES = matrices
To store the coordinates of the units for each solution

STRESS = scalars
To store the stress value for each solution

DISTANCES = symmetric matrices
To store the distances amongst the points for the units in the fitted number of dimensions

FITTEDDISTANCES = symmetric matrices
To store the fitted distances from the monotonic (METHOD=nonmetric) or linear (METHOD=linear) regression

MEDIANTETRAD procedure

Gives robust identification of multiple outliers in 2-way tables (J.K.M. Brown).

Options

PRINT = string tokens
Printed output required (graph, table); default grap, tabl

GRAPHICS = string tokens
Type of graph required (highresolution, lineprinter); default high
4.1 Commands

SORT = string tokens

Parameters

TABLE = tables
ROWS = factors
COLUMNS = factors
DATA = variates
MEDIANTETRADS = variates
RANKS = variates
HALFNORMALSCORES = variates
TESTOUTLIERS = scalars

Specifying the two-way table of data
Saves the factor classifying the table rows
Saves the factor classifying the table columns
Saves the data values in the body of the table
Saves median tetrads for each cell in the table
Saves ranks of absolute values of median tetrads
Saves half-Normal scores of absolute values of median tetrads
Specifies the number of cells, with the highest absolute median tetrads, to be set to their predicted values before re-running the analysis

META procedure

Combines estimates from individual trials (R.W. Payne & S. Senn).

Options

PRINT = string tokens
SELECT = string tokens
RMETHOD = string token
XLABEL = text
SMETHOD = string token
CIPROBABILITY = scalar
CIMETHOD = string token
PRMETHOD = string token
MAXCYCLE = scalar
TOLERANCE = scalar

Controls output (estimates, overall test, heterogeneity, confidence plot, galbraith plot, monitoring); default esti, over, hetero, conf
Which combined estimates to include in the output (fixed, random); default fixe, rand
How to form the random estimate (max likelihood, max rem likelihood, moments, rem); default rem
Label for the x-axis of the confidence plot; default 'treatment effect'
How to set the sizes of symbols on the confidence plot (equal, inverse); default inve
Probability level to use for the confidence intervals; default 0.95
Method to use for calculating the confidence interval for random estimates formed by maximum likelihood or REML (approximate, profile); default prof
Type of test to use for the overall probability values (greater than, less than, two sided); default grea
Maximum number of iterations to use with RMETHOD settings max likelihood and max rem likelihood; default 100
Convergence criterion to use with RMETHOD settings max likelihood and max rem likelihood; default 10^{-6}

Parameters

ESTIMATES = variates
SEESTIMATES = variates
LABELS = texts
FIXEDESTIMATE = scalars
SEFIXEDESTIMATE = scalars
PRFIXEDESTIMATE = scalars
RANDOMESTIMATE = scalars
SERANDOMESTIMATE = scalars
PRRANDOMESTIMATE = scalars
QSTATISTIC = scalars

Supplies the estimates to combine
Specifies the standard errors of the estimates
Labels to use for each variate of ESTIMATES in the output
Saves the combined estimate for each variate of ESTIMATES, treating them as fixed effects
Saves the standard error of the combined estimate for each variate of ESTIMATES, treating them as fixed effects
Saves the probability of the combined estimate for each variate of ESTIMATES, treating them as fixed effects
Saves the combined estimate for each variate of ESTIMATES, treating them as random effects
Saves the standard error of the combined estimate for each variate of ESTIMATES, treating them as random effects
Saves the probability of the combined estimate for each variate of ESTIMATES, treating them as random effects
Saves the statistic Q for the test of heterogeneity across trials
MICHAELIS-MENTEN procedure

Fits the Michaelis-Menten equation for substrate concentration versus time data (M.C. Hannah).

Options

PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, monitoring); default mode, summ, esti

PLOT = string tokens
What to plot (concentration, rate); default conc

WINDOW = scalar
Window in which to plot the graphs; default 1

TITLE = text
Title for the graphs; default 'Michaelis-Menten process'

TTIMES = text
Title for the times axis; if this is unset, the identifier of the TIMES variate is used

TCONCENTRATIONS = text
Title for the concentrations axis; if this is unset, the identifier of the CONCENTRATIONS variate is used if available, otherwise 'Concentration'

TRATES = text
Title for the rates axis; if this is unset, the identifier of the RATES variate is used if available, otherwise 'Rate'

WEIGHTS = variate
Weights for the observations, to use in the fit, if required; default * i.e. all observations with weight one

Parameters

TIMES = variates
Times at which substrate concentration data were measured

CONCENTRATIONS = variates
Substrate concentration data

STEPLENGTHS = variates
Variate with four values defining initial step lengths for the parameters S_0, V_{max}, K_m and K_1 (in that order)

INITIAL = variates
Variate containing initial values for the parameters, similarly to STEPLENGTHS

RESIDUALS = variates
Saves the residuals from each fit

FITTEDVALUES = variates
Saves the fitted concentration values

ESTIMATES = variates
Saves the parameter estimates

SE = variates
Saves the standard errors of the estimates

VCOVARIANCE = symmetric matrix
Saves the variance-covariance matrix of the estimates

OBSRATES = variates
Saves reaction rates, calculated from the observed concentrations

FITRATE = variates
Saves fitted reaction rates

MINFIELDWIDTH procedure

Calculates minimum field widths for printing data structures (R.W. Payne).

Option

IPRINT = string tokens
What identifier and/or text to print for the structure (identifier, extra); default is to take the IPRINT setting of each STRUCTURE

Parameters

STRUCTURE = identifiers
Data structures to be printed

FIELDWIDTH = scalars
Saves the minimum field widths

DECIMALS = scalars
Number of decimal places to be used for numerical data structures; if unset, a default is obtained using the DECIMALS procedure

SKIP = scalars
Number of spaces to leave before each value of the structure; default 1
4.1 Commands

FREPRESENTATION = string tokens
How to represent factor values (labels, levels, ordinals); default is to use labels if available, otherwise levels

MINIMIZE procedure
Finds the minimum of a function calculated by a procedure (R.W. Payne).

Options
PRINT = string tokens
What output to produce (minimum, monitoring); default mini
FUNCTIONVALUE = scalar
Saves the minimum function value
DATA = any type
Data to be used with procedure _MINFUNCTION
MAXCYCLE = scalar
Maximum number of iterations; default 2000
NSTARTS = scalar
Maximum number of restarts; default 4
STEPADJUSTMENT = scalar
Adjustment to step lengths at each restart; default 0.1
EXIT = scalar
Indicates whether there has been convergence (zero) or non-convergence (non-zero)
TOLERANCE = scalar
Convergence criterion; default 0.0001
METHOD = string token
Algorithm for fitting nonlinear model (GaussNewton, NewtonRaphson, FletcherPowell); default Newt

Parameters
PARAMETER = scalars
Parameters to be estimated
LOWER = scalars
Lower bound for each parameter
UPPER = scalars
Upper bound for each parameter
STEPLENGTH = scalars
Step length for each parameter
INITIAL = scalars
Initial value for each parameter

MIN1DIMENSION procedure
Finds the minimum of a function in one dimension (R.W. Payne).

Options
PRINT = string tokens
What output to produce (minimum, monitoring, plot); default mini
CALCULATION = expression structures
Expressions to calculate the target function
FUNCTIONVALUE = scalars
Identifier of the scalar, calculated by CALCULATION, whose value is to be minimized
DATA = any type
Data to be used with procedure _MIN1DFUNCTION
CRITERION = string token
Criterion for convergence (function, parameters); default func
MAXCYCLE = scalars
Maximum number of iterations; default 250
EXIT = scalars
Indicates whether there has been convergence (0) or non-convergence (1)
TOLERANCE = scalars
Convergence criterion; default 10^-6 or variate

Parameters
PARAMETER = scalars
Parameters to be estimated
LOWER = scalars
Lower bound for each parameter
UPPER = scalars
Upper bound for each parameter
STEPLENGTH = scalars
Step length for each parameter
INITIAL = scalars
Initial value for each parameter

MERGE directive
Copies subfiles from backing-store files into a single file.

Options
PRINT = string token
What to print (catalogue); default *
OUTCHANNEL = scalar
Channel number of the backing-store file where the subfiles are to be stored; default 0, i.e. the workfile
METHOD = string token
How to append subfiles to the OUT file (add, overwrite, replace); default add, i.e. clashes in subfile identifiers cause
a fault (note: replace overwrites the complete file)

PASSWORD = **text**
Password to be checked against that stored with the file; default *

Parameters

SUBFILE = **identifiers**
Identifiers of the subfiles

INCHANNEL = ** scalars**
Channel number of the backing-store file containing each subfile

NEWSUBFILE = **identifiers**
Identifier to be used for each subfile in the new file

MMPREDICT procedure
Predicts the Michaelis-Menten curve for a particular set of parameter values (M.C. Hannah).

Options

PLOT = **string tokens**
What to plot (concentration, rate); default conc

WINDOW = **scalar**
Window in which to plot the graphs; default 1

TITLE = **text**
Title for the graphs; default 'Michaelis-Menten process'

TTIMES = **text**
Title for the times axis; if this is unset, the identifier of the TIMES variate is used

TCONCENTRATIONS = **text**
Title for the concentrations axis; if this is unset, the identifier of the CONCENTRATIONS variate is used if available, otherwise 'Concentration'

TRATES = **text**
Title for the rates axis; if this is unset, the identifier of the RATES variate is used if available, otherwise 'Rate'

Parameters

PARAMETERS = **variates**
Variate with four values specifying the values of the parameters S_0, V_{max}, K_m and K to use to form the predictions

TIMES = **variates**
Times at which to make predictions

CONCENTRATIONS = **variates**
Saves the predicted substrate concentrations

RATES = **variates**
Saves the predicted reaction rates

MNORMALIZE procedure
Normalizes two-colour microarray data (D.B. Baird).

Options

PRINT = **string tokens**
What to print (summary, slidessummary, monitoring); default summ, slid, moni

PLOT = **string tokens**
What plots to produce (pineffects, roweffects, columneffects, intensityeffects, rowxcoleffects, ma, standardizedma, spatialresiduals); default * i.e. none

METHOD = **string token**
What type of model components to fit (spline, loess); default spli

MODELTERMS = **string tokens**
What model components to fit (pins, rows, columns, intensity, pinxintensity, arl, rowxcolumn, pinxrow, pinxcolumn); default pins, rows, colu, inte

DFINTENSITY = **scalar**
Degrees of freedom for intensity cubic spline; default 24

DPROWXCOLUMN = **scalar**
Degrees of freedom for row × col thinplate spline; default 49

POORFLAGS = **text or variate**
Levels of FLAGS that are poor quality spots

BADFLAGS = **text or variate**
Levels of FLAGS that are bad spots

ARRANGEMENT = **string token**
Whether to use trellis or single plots (single, trellis); default trel

WINDOW = **scalar**
Window number for the graphs; default 3

DEVICE = **scalar**
Device number on which to plot the graphs

GRAPHICSFILE = **text**
What graphics filename template to use to save the graphs; default *

Parameters

LOGRATIOS = **variates or pointers**
Log-ratios
INTENSITIES = variates or pointers
SLIDES = factors or texts
FINS = factors
SROWS = factors
SCOLUMNS = factors
PROWS = factors
PCOLUMNS = factors
FLAGS = factors or pointers
CLOGRATIOS = variates or pointers
SLOGRATIOS = variates or pointers
SDSMOOTH = variates or pointers
PINEFFECTS = tables
ROWEFFECTS = tables
COLEFFECTS = tables
INTEFFECTS = variates or pointers
CLRED = variates or pointers
CLGREEN = variates or pointers
VAREXPLAINED = variates

MODEL directive

Defines the response variate(s) and the type of model to be fitted for linear, generalized linear, generalized additive, and nonlinear models.

Options

DISTRIBUTION = string token
LINK = string token
EXponent = scalar
AGGREGATION = scalar
KLOGRATIO = scalar
DISPERSION = scalar
WEIGHTS = variate or symmetric matrix
OFFSET = variate
GROUPS = factor
RMETHOD = string token
DMETHOD = string token
FUNCTIONVALUE = scalar
YRELATION = string token
successive categories of a multinomial distribution
(separate, cumulative); default sepa

DCALCULATION = expression structures
Calculations to define the deviance contributions and variance
function for a non-standard distribution; must be specified
when DIST=calc

LCALCULATION = expression structures
Calculations to define the fitted values and link derivative for a
non-standard link; must be specified when LINK=calc

DFDISPERSION = scalar
Allows you to specify the number of degrees of freedom for a
dispersion parameter specified by the DISPERSION option; if
this is not set, the supplied dispersion is assumed to be known
exactly

SAVE = identifier
To name regression save structure; default *

Parameters

Y = variates
Response variates; only the first is used in nonlinear models
and in generalized linear models except when DIST=mult,
when they specify the numbers in each category of an ordinal
response model

NBINOMIAL = variate or scalar
Total numbers for DIST=bino

RESIDUALS = variates
To save residuals for each y variate after fitting a model

FITTEDVALUES = variates
To save fitted values, and provide fitted values if no terms are
given in FITNONLINEAR

LINEARPREDICTOR = variate
Specifies the identifier of the variate to hold the linear
predictor

DERIVATIVE = variate
Specifies the identifier of the variate to hold the derivative of
the link function at each unit

DEVIANCE = variate
Specifies the identifier of the variate to hold the contribution to
the deviance from each unit

VFUNCTION = variate
Specifies the identifier of the variate to hold the value of the
variance function at each unit

MONOTONIC directive

Fits an increasing monotonic regression of y on x.

No options

Parameters

Y = variates
Y-values of the data points

X = variates
X-values of the data points; default is to assume that the x-
values are monotonically increasing

RESIDUALS = variates
Variate to save the residuals from each fit

FITTEDVALUES = variates
Variate to save the fitted values from each fit

MOVINGAVERAGE procedure

Calculates and plots the moving average of a time series (R.P. Littlejohn, G. Tunnicliffe Wilson &
D.B. Baird).

Options

PRINT = string token
What to print (parameters); default * i.e. nothing

NSAMPLES = scalar
Number of samples used to calculate each moving average

METHOD = string token
How to calculate the averages (past, centred,
exponential, filter, holtwinters) default past

ORDER = scalars
Order for polynomial smoothing (0, 1, 2, 3, 4); default 0 i.e.
ordinary moving-averages calculated from means

TRIM = string token
Whether to trim transients with METHOD settings past or
centre when ORDER=0 (yes, no); default no

PLOT = string token
What to plot (components, movingaverages); default * i.e.
nothing

ALPHA = scalar
Allows the smoothing parameter for the contribution of the last
value in the series to the moving average to be specified for
4.1 Commands

the exponential or Holt-Winters methods

BETA = scalar
Allows the smoothing parameter for the trend to be specified for the Holt-Winters method.

GAMMA = scalar
Allows the smoothing parameter for the seasonal component to be specified for the Holt-Winters method.

MULTIPLICATIVE = string token
Controls whether the seasonal component is multiplicative in the Holt-Winters method (yes, no); default no

Parameters

SERIES = variates
Time series whose moving averages are required.

MASERIES = pointers
Saves the moving averages for the defined ORDER settings.

TITLE = texts
Title for the graph.

SEASONAL = factors
Factor for seasonal adjustment.

SAVE = pointers
Saves results from the Holt-Winters method or from seasonal adjustment.

MPOLISH procedure
Performs a median polish of two-way data (D.B. Baird).

Options

MAXCYCLE = scalar
Maximum number of iterations; default 50.

TOLERANCE = scalar
Tolerance for convergence; default 0.0001.

Parameters

DATA = variates or pointers or matrices or tables
Two-way data to be polished.

ROWS = factors
Row definitions for a DATA variate.

COLUMNS = factors
Column definitions for a DATA variate.

ROKEFFECTS = variate
Row effects removed from polished results.

COLEFFECTS = variate
Column effects removed from polished results.

POLISH = variates or pointers or matrices or tables
Polished result in same format as DATA.

CENTRE = scalars
Estimate of overall centre point.

MPOWER procedure
Forms integer powers of a square matrix (P.W. Lane).

No options.

Parameters

MATRIX = matrices, symmetric matrices or diagonal matrices
Matrix from which to form the power.

POWER = scalars
Power to which each matrix is to be raised.

RESULT = identifiers
Structure to store the result.

MSEKERNEL2D procedure

Option

PRINT = string token
What to print (summary); default summ.

Parameters

Y = variates
Vertical coordinates of each spatial point pattern; no default – this parameter must be set.

X = variates
Horizontal coordinates of each spatial point pattern; no default – this parameter must be set.

YPOLYGON = variates
Vertical coordinates of each polygon; no default – this parameter must be set.

XPOLYGON = variates
Horizontal coordinates of each polygon; no default – this parameter must be set.

NSTEP = scalars
How many values of the kernel width to use; no default – this parameter must be set.
HMAX = scalars
Maximum values for the kernel width; no default – this parameter must be set
HVALUES = variates
Variates to receive the values of the kernel width
MSE = variates
Variates to receive the estimated mean square error for each value of the kernel width

MTABULATE procedure
Forms tables classified by multiple-response factors (R.W. Payne).

Options

PRINT = string token
Controls printed output (counts, totals, nobservations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, semans, seskewness, sekurtosis); default * i.e. none

CLASSIFICATION = factors
Non multiple-response factors classifying the tables

MRESPONSE = pointers
Pointers to factors defining the multiple-responses for the tables

MRFACOR = identifiers
Identifier of factors to index the sets of multiple responses in the tables

COUNTS = table
Saves a table counting the number of units with each factor combination; default *

MARGINS = string token
Whether the tables should be given margins (yes, no); default no

WEIGHTS = variate
Weights to be used in the tabulations; default * indicates that all units have weight 1

PERCENTQUANTILES = scalar or variate
Percentages for which quantiles are required; default 50 i.e. median

Parameters

DATA = variates
Data values to be tabulated

TOTALS = tables
Tables to contain totals

NOSERVATIONS = tables
Tables containing the numbers of non-missing values in each cell

MEANS = tables
Tables of means

MINIMA = tables
Tables of minimum values in each cell

MAXIMA = tables
Tables of maximum values in each cell

VARIANCES = tables
Tables of cell variances

QUANTILES = tables or pointers
Table to contain quantiles at a single PERCENTQUANTILE, or pointer of pointers to tables for several PERCENTQUANTILES

SDS = tables
Tables of standard deviations

SKEWNESS = tables
Tables of skewness coefficients

KURTOSIS = tables
Tables of kurtosis coefficients

SEMEANS = tables
Tables of standard errors of means

SESKWENESS = tables
Tables of standard errors of skewness

SEKURTOSIS = tables
Tables of standard errors of kurtosis

MULTMISSING procedure

Option

MAXCYCLE = scalar
Defines the maximum allowed number of iterations; default 10

Parameters

DATA = pointers
Each pointer contains a set of variates whose missing values are to be estimated; these will be overwritten by the estimates unless the OUT parameter is specified

OUT = pointers
Each pointer contains a set of variates to hold the results
4.1 Commands

MVAOD procedure

Options

- **PRINT = string tokens**
 - Controls printed output *(aodtable, permutationtest)*
 - default aodt
- **TERMS = formula**
 - Model terms to fit in the analysis; must be specified
- **FACTORIAL = scalar**
 - Limit on the number of factors or variates in a term for it to be included in the analysis; default 3
- **NTIMES = scalar**
 - Number of permutations to use in the permutation test; default 999
- **SEED = scalar**
 - Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

Parameters

- **DATA = symmetric matrices**
 - Supplies the squared distances between the data points
- **SSD = variates**
 - Saves the sums of squared distances
- **DF = variates**
 - Saves the numbers of degrees of freedom
- **PRPERMUTATION = variates**
 - Saves probabilities from the permutation test
- **DISTANCES = pointers**
 - Contains a symmetric matrix of distances for each model term

MVARIOGRAM procedure

Fits models to an experimental variogram (S.A. Harding & R. Webster).

Options

- **PRINT = string tokens**
 - Controls printed output from the fit *(model, summary, estimates, correlations, fittedvalues, monitoring)*
 - default mode, summ, esti
- **MODELTYPE = string token**
 - Defines which model to fit *(power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, affinepower, linear, cubic, stable, cardinalsine, matern)*
 - default powe
- **WEIGHTING = string token**
 - Method to be used for weighting *(counts, cbyvar, equal)*
 - default coun
- **CONSTANT = string token**
 - How to treat the constant *(estimate, omit)*
 - default esti
- **SMOOTHNESS = scalar**
 - Value of power parameter for the stable model, or v parameter for the Matern model; default * i.e. estimate
- **ISOTROPY = string token**
 - Defines whether to fit an isotropic or geometrical anisotropic model *(isotropic, geometrical)*
 - default isot
- **WINDOW = scalar**
 - Window in which to plot a graph; default 0 i.e. no graph
- **TITLE = text**
 - Title for the graph
- **XUPPER = scalar**
 - Upper limit for the x-axis in the graph
- **PENDATA = scalar**
 - Pen to be used to plot the data; default 1
- **PENMODEL = scalar**
 - Pen to be used to plot the model; default 2

Parameters

- **VARIOGRAM = variates or matrices**
 - Experimental variogram to which the model is to be fitted, as a variate if in only one direction or as a matrix if there are several
- **COUNTS = variates or matrices**
 - Counts for the points in each variogram (not required if WEIGHTING=equal)
- **DISTANCE = variates or matrices**
 - Mean lag distances for the points in each variogram
- **DIRECTION = variates**
 - Directions in which each variogram was computed
- **INITIAL = scalars or variates**
 - Scalar defining initial distance parameter for an isotropic model, or variate with two values for a double-spherical isotropic model, or a variate with three values for a geometrical anisotropic model
- **ESTIMATES = variates**
 - Estimated parameter values
FITTEDVALUES = variates
EXIT = scalars
SAVE = pointers

MVFILL procedure

Replaces missing values in a vector with the previous non-missing value in that vector (J.T.N.M. Thissen).

No options

Parameter

VECTORS = vectors

Variates, texts or factors whose missing values are replaced by the previous non-missing value of that vector

NAG directive

Calls an algorithm from the NAG Library.

Options

PRINT = string token
Controls printed output (algorithms, monitoring); default * i.e. none

NAME = string token
Name of the algorithm to call; default * i.e. none

ZDZ = string token
Value to be given to zero divided by zero in Genstat expressions defined in the ARGUMENTS(missing, zero); default miss

TOLERANCE = scalar
If the scalar is non missing, this defines the smallest non-zero number for use in Genstat expressions defined in the ARGUMENTS; otherwise it accesses the default value, which is defined automatically for the computer concerned

SEED = scalar
Seed to use for any random number generation in Genstat expressions defined in the ARGUMENTS; default 0

INDEX = scalar
If a Genstat expression defined in the ARGUMENTS has a list of structures before the assignment operator (=), the scalar indicates the position within the list of the structure currently being evaluated

Parameters

ARGUMENTS = pointer
Arguments for the call

RESULT = scalar
Stores the result for algorithms that take the form of a function rather than a subroutine

NCONVERT procedure

Converts integers between base 10 and other bases (R.W. Payne).

Options

PRINT = string token
Controls printed output (number); default numb

METHOD = string token
Whether to convert NUMBER to DIGITS or vice versa (tobase, frombase); default toba

BASE = scalars
Base to which to convert number; default 2

Parameters

NUMBER = scalars
Number in base 10

DIGITS = pointers
Digits of the NUMBER in the base specified by the BASE option

SIGN = scalars
Sign of the NUMBER

NCSPLINE procedure

Calculates natural cubic spline basis functions for use e.g. in REML (S.J. Welham).

Options

INKNOTS = variate
Defines a set of knots to use to construct the spline

METHOD = string token
Whether to produce a basis suitable for use with independent or correlated random effects; (independent, correlated);
4.1 Commands

ORTHOGONALIZE = variate
default inde
Variate to use to get an orthogonalized basis; default * i.e. orthogonalization with respect to KNOTS

Parameters
X = variates
Values for which the basis functions are calculated
BASIS = pointers
Non-linear part of spline basis for use as design matrix for random effects in REML analysis
DBASIS = pointers
First derivative of BASIS functions
D2BASIS = pointers
Second derivative of BASIS functions
INVCOVARIANCE = symmetric matrices
Inverse covariance matrix for use with correlated spline random effects
SECONDDIFFERENCES = matrices
Scaled second divided difference matrix associated with KNOTS
KNOTS = variates
Knots used in construction of basis
DISTANCES = variates
Inter-knot distances used in construction of basis
SCALE = scalars
Saves the appropriate value for scaling design matrix

'NEIGHBOURS procedure
Finds the neighbours of cells in a multi-dimensional array (R.W. Payne).
Options
DIAGONALS = string token
Whether to include diagonal cells (include, exclude); default incl
NNEIGHBOURS = scalar
Saves the number of neighbours that have been found
Parameters
DIMENSION = scalars
Dimensions of the array
CELLS = variates
Locations of the cells in each dimension
NEIGHBOURS = variates
Locations of the neighbours in each dimension

NLAR1 procedure
Fits curves with an AR1 or a power-distance correlation model (R.W. Payne).
Options
PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, cparameter, cmonitoring, cplot); default mode, summ, esti, cpar
CURVE = string token
Which standard curve to fit (exponential, dexponential, cexponential, lexponential, logistic, glogistic, gompertz, ldl, qdl, qdg, fourier, dfourier, gaussian, dgaussian); default expo
SENSE = string token
Sense of a standard curve (right, left); default righ
ORIGIN = scalars
Constrained origin for a standard curve; default * i.e. not constrained
NONLINEAR = string token
How to treat nonlinear parameters between groups in standard curves (common, separate); default comm
CALCULATION = expression structures
Define a nonlinear model involving explanatory variates and nonlinear parameters; default * implies that a standard curve is fitted
CONSTANT = string token
How to treat the constant (estimate, omit); default esti
FACTORIAL = scalars
Limit for expansion of model terms; default 3
POOL = string token
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality,
4 Syntax summary

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary(\%variance, \%ss, adjustdr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob

SELINEAR = string token
Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no

WEIGHTS = variate
Prior weights for the units

CPARAMETER = scalars
Correlation parameter

CPOSITIONS = variate
Correlation positions

CGROUPS = factor
Groupings of correlation positions

MAXCYCLE = scalars
Maximum number of iterations; default 100

TOLERANCE = scalars
Convergence criterion; default 10^{-5}

Parameter

TERMS = formula
Terms to be fitted

NLCONTRASTS procedure

Fits nonlinear contrasts to quantitative factors in ANOVA (R.C. Butler).

Options

PRINT = string tokens
Printed output required (aovtable, information, covariates, effects, residuals, contrasts, means, \%cv, missingvalues); default aovt, info, cova, mean, miss

CURVE = string token
Curve (as in FITCURVE) to use for nonlinear regression (exponential, dexpontial, cexponential, lexponential, logistic, glogistic, gompertz, ldl, qdl, qdq); default expo

FPROBABILITY = string token
Printing of probabilities for variance ratios (yes, no); default no

PSE = string token
Standard errors to print with means tables (differences, means); default diff

WEIGHT = variate
Variate of weights for each unit; default * (no weights)

Parameters

Y = variates
Data to be analysed

XFACTOR = factors
Factor with quantitative levels for which contrasts are to be found

XLEVELS = variates
Variate of values to use for the levels of XFACTOR; if unset, the factor levels themselves are used

GROUPFACTOR = factors
Factor whose interaction with XFACTOR is to be assessed

CONTRASTS = pointers
Structures to hold the estimates of the fitted contrasts:

CONTRASTS[1] is a pointer with two values, labelled 'Curve' (parameter estimates for a single fitted curve) and 'Deviations' (the differences between this curve and the means for XFACTOR); CONTRASTS[2] has three values, labelled 'Common NonLin' (parameter estimates for curves fitted with common nonlinear parameters for all levels of GROUPFACTOR), 'Separate Curves' (parameter estimates for curves fitted with all parameters varying with the levels of GROUPFACTOR) and 'Deviations' (differences between the treatment means and the Separate Curves); the order of the parameters is as in the output of the procedure, the variates of estimated contrasts are labelled by the parameter names as used in the printed output, while the 'Deviations' are both tables, labelled by the relevant factors

SECONTRASTS = pointers
Structures to save the standard errors for the contrast
4.1 Commands

estimates, including 'deviations'; the pointer has the same form as the CONTRASTS pointer

DFCONTRASTS = pointers

Structures to save the degrees of freedom for the contrast estimates; the pointer has the same form as the CONTRASTS pointer, except that the variates and tables are replaced by scalars

NNDISPLAY directive

Displays output from a multi-layer perceptron neural network fitted by NNFIT.

Option

PRINT = string tokens

Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ

Parameter

pointers

Save structure with details of the network and the estimated parameters

NNFIT directive

Fits a multi-layer perceptron neural network.

Options

PRINT = string tokens

Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ

NHIDDEN = scalar

Number of functions in the hidden layer; no default, must be set

HIDDENMETHOD = string token

Type of activation function in the hidden layer (logistic, hyperbolictangent); default logi

OUTPUTMETHOD = string token

Type of activation function in the output layer (linear, logistic, hyperbolictangent); default line

GAIN = scalar

Multiplicative constant to use in the functions; default 1

NTRIES = scalar

Number of times to search for a good initial starting point for the optimization; default 5

NSTARTITERATIONS = scalar

Number of iterations to use to find a good starting point for the optimization; default 30

VALIDATIONOPTIONS = variate

Variate containing three integers to control validation for early stopping; default * i.e. no early stopping; default !(10,4,16)

SEED = scalar

Seed for random numbers to generate initial values for the free parameters; default 0

MAXCYCLE = scalar

Maximum number of iterations of the conjugate-gradient algorithm; default 50

Parameters

Y = variates

Response variates

X = pointers

Input variates

YVALIDATION = variates

Validation data for the dependent variates

XVALIDATION = pointers

Validation data for the independent variates

FITTEDVALUES = variates

Fitted values generated for each y-variate by the neural network

NCOMPLETED = scalars

Number of completed iterations of the conjugate-gradient algorithm

EXIT = scalars

Saves the exit code

SAVE = pointers

Saves details of the network and the estimated parameters

NNPREDICT directive

Forms predictions from a multi-layer perceptron neural network fitted by NNFIT.

Option

PRINT = string tokens

Controls fitted output (description, predictions); default desc, pred
Parameters

\(X = \text{pointers}\) Input variates
\(\text{PREDICTIONS} = \text{variates}\) Predictions
\(\text{SAVE} = \text{pointers}\) Details of the network

NORMTEST procedure

Performs tests of univariate and/or multivariate normality (M.S. Ridout).

Option

\(\text{PRINT} = \text{string tokens}\) Allows the required printed output to be selected: test statistics, tables of critical values and the flagging of significant values with stars (marginal, bivariate angle, radius, critical, stars); default marg, biva, radi

Parameter

\(\text{DATA} = \text{variates or pointers}\) Variates whose univariate normality is to be tested or pointers, each to a set of variates whose normality and/or multivariate normality are to be tested

NOTICE procedure

Provides news and other information about Genstat (R.W. Payne).

Option

\(\text{PRINT} = \text{string tokens}\) Indicates what information is required (news, release, errors, instructions); default news

No parameters

NOUGHTSANDCROSSES procedure

Plays a game of noughts and crosses (R.W. Payne).

Options

\(\text{PLAY} = \text{string token}\) Which symbol to play (noughts, crosses); default * sets this by a question when you run the procedure
\(\text{DIFFICULTY} = \text{scalar}\) Level of difficulty, either 0, 1, 2 or 3; default * sets this by a question when you run the procedure
\(\text{SEED} = \text{scalar}\) Seed for the random numbers used by Genstat to select its choice of squares; default 0

No parameters

OPEN directive

Opens files.

No options

Parameters

\(\text{NAME} = \text{texts}\) External names of the files
\(\text{CHANNEL} = \text{scalars}\) Channel number to be used to refer to each file in other statements (numbers for each type of file are independent); if this is set to a scalar containing a missing value, the first available channel of the specified type is opened and the scalar is set to the channel number
\(\text{FILETYPE} = \text{string tokens}\) Type of each file (input, output, unformatted, backingstore, procedurelibrary, graphics); default input
\(\text{WIDTH} = \text{scalars}\) Maximum width of a record in each file; default 80
\(\text{INDENTATION} = \text{scalar}\) Number of spaces to leave at the start of each line; default 0
\(\text{PAGE} = \text{scalars}\) Number of lines per page (relevant only for output files)
\(\text{ACCESS} = \text{string token}\) Allowed type of access (readonly, writeonly, both); default both
\(\text{STYLE} = \text{string token}\) Style in which to write to an output file (plaintext, html, latex, rtf); default plain
\(\text{HTMLHEAD} = \text{texts}\) Text structures containing custom content for the header of an
4.1 Commands

†UNICODE = string token
Content of an input file is Unicode (no, yes); default no

OPLS procedure
Performs orthogonal partial least squares regression (V. M. Cave).

Options
PRINT = string tokens
Printed output required (data, xloadings, yloadings, ploadings, scores, leverages, xerrors, yerrors, scree, xpercent, ypercent, predictions, groups, estimates, fittedvalues, summary); default esti, xper, yper, scor, xloa, yloa, ploa, summ

PCPRINT = string tokens
Controls printed output from principal components analysis of orthogonal X matrix (loadings, roots, scores, tests); default root

PLOT = string token
What graphs to plot (pcplot); default * (i.e. none)

NORTHOGONALROOTS = scalar
Number of orthogonal components to extract; default 1

NROOTS = scalar
Number of predictive (i.e. PLS) components to extract; default 1

STANDARDIZE = string tokens
Whether to standardize the Y, X and filtered X variables to unit variance and zero mean (Y, X, filteredX); default * (i.e. no standardizing)

NGROUPS = scalar
Number of cross-validation groups used by PLS; default 1 (i.e. no cross-validation performed)

SEED = scalar or factor
A scalar indicating the seed value used for dividing the data randomly into NGROUPS groups for cross-validation by PLS, or a factor indicating a specific set of groupings to use for cross-validation by PLS; default 0

LABELS = text
Sample labels for X and Y to use in output; default uses the integers 1...n where n is the length of the variates in X and Y

PLABELS = text
Labels for XPREDICTIONS; default uses P1, P2 etc.

PCMETHOD = string tokens
Method used by PCP to perform principal components analysis on the orthogonal X matrix (ssp, correlation, vcovariance, variancecovariance); default * (i.e. principal components analysis not performed)

WINDOW = scalar
Window to use for graph (available only when NORTHOGONALROOTS = 1); default 3

Parameters
Y = pointers
Pointer to variates containing the dependent variable(s) for each analysis

X = pointers
Pointer to variates containing the independent variables for each analysis

YLOADINGS = pointers
Pointer to variates containing the Y component loadings, for the predictive (i.e. PLS) dimensions, extracted from the filtered X matrix

XLOADINGS = pointers
Pointer to variates containing the component loading weights for the predictive dimensions, extracted from the filtered X matrix

PLOADINGS = pointers
Pointer to variates containing the bilinear model loadings for the predictive dimensions, extracted from the filtered X matrix

YSCORES = pointers
Pointer to variates containing the Y component scores, for each predictive dimension extracted from the filtered X matrix

XSCORES = pointers
Pointer to variates containing the component scores for each predictive dimension, extracted from the filtered X matrix

B = diagonal matrices
Saves the regression coefficients of YSCORES on XSCORES, for the predictive dimensions, extracted from the filtered X matrix

YPREDICTIONS = pointer
Pointer to variates used to store predicted y-values for samples
in the prediction set

XPREDICTIONS = *pointer*

Pointer to variates containing data for the independent variables in the prediction set

ESTIMATES = *matrices*

An \(n_x \times (n_x + 1) \) matrix (where \(n_x \) and \(n_y \) are the number of variates contained in \(X \) and \(Y \), respectively) to store the PLS regression coefficients

FITTEDVALUES = *pointers*

Pointer to variates used to store the fitted values for the \(Y \) variates

LEVERAGEs = *variates*

Variate to store the leverage that each sample has on the PLS model

PRESS = *variates*

Variate used to store the Predictive Residual Error Sum of Squares for each dimension in the PLS model, available only if cross-validation has been selected

RSS = *variates*

Variate to save residual sums of squares

YRESIDUALS = *pointers*

Pointer to variates containing the residuals from the \(Y \) block after \(NROOTS \) predictive dimensions have been extracted, uncorrected for any scaling applied using STANDARDIZE

XRESIDUALS = *pointers*

Pointer to variates containing the residuals from the \(X \) block after \(NROOTS \) predictive dimensions have been extracted, uncorrected for any scaling applied using STANDARDIZE

PCSCOREs = *matrices*

Matrix to save principal component scores

PCSAVE = *pointers*

Pointer to save structures from the principal component analysis (by PCP) of the orthogonal \(X \) matrix

SAVE = *pointers*

Pointer to save structures from the orthogonal projection

OPTION directive

Defines the options of a Genstat procedure with information to allow them to be checked when the procedure is executed.

No options

Parameters

NAME = *texts*

Names of the options

MODE = *string tokens*

Mode of each option (\(e, f, p, t, v \), as for unnamed structures); default \(p \)

NVALUES = *scalars or variates*

Specifies allowed numbers of values

VALUES = *variates or texts*

Defines the allowed values for a structure of type variate or text

DEFAULT = *identifiers*

Default values for each option

SET = *string tokens*

Indicates whether or not each option must be set (\(\text{yes, no} \)); default \(\text{no} \)

DECLARED = *string tokens*

Indicates whether or not the setting of each option must have been declared (\(\text{yes, no} \)); default \(\text{no} \)

TYPE = *texts*

Text for each option, whose values indicate the types allowed (\(\text{ASAVE, datamatrix \{i.e. pointer to variates of equal lengths as required in multivariate analysis\}, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, tree, TSAVE, TSM, variate, VSAVE}; \(\text{default * meaning no limitation} \))

COMPATIBLE = *texts*

Defines aspects to check for compatibility with the first parameter of the directive or procedure (\(\text{nvalues, nlevels, nrows, ncolumns, type, levels, labels \{of factors or pointers\}, mode, rows, columns, classification, margins, associatedidentifier, suffixes \{of pointers\}, restriction} \))

PRESENT = *string tokens*

Indicates whether or not each structure must have values (\(\text{yes, no} \)); default \(\text{no} \)

LIST = *string tokens*

Whether to allow a list of identifiers (MODE\(= p \)) or of values
4.1 Commands

INPUT = string token

(MODE=v or t) instead of just one (yes, no); default no
Whether the option only supplies input information to the procedure (yes, no); default no

OR directive

Introduces a set of alternative statements in a "multiple-selection" control structure.

No options or parameters

ORTHPOLYNOMIAL procedure

Calculates orthogonal polynomials (P.W. Lane).

Options

- MAXDEGREE = scalar
 - Maximum degree of polynomial to be calculated; default is the number of identifiers in the pointer specified by the POLYNOMIAL parameter
- WEIGHTS = variate
 - Weights to be used in orthogonalization; default * gives an equal weight to each unit

Parameters

- X = variates
 - Values from which to calculate the polynomials; no default – this parameter must be set
- POLYNOMIAL = pointers
 - Identifiers of variates to store results; no default – this parameter must be set

OUTPUT directive

Defines where output is to be stored or displayed.

Options

- PRINT = string tokens
 - Additions to output (dots, page, unchanged); default dots, page
- DIAGNOSTIC = string tokens
 - What diagnostic printing is required (messages, warnings, faults, extra, unchanged); default faul, mess, warn
- WIDTH = scalar
 - Limit on number of characters per record; default width of output file
- INDENTATION = scalar
 - Number of spaces to leave at the start of each line; default 0
- PAGE = scalar
 - Number of lines per page
- STYLE = string token
 - Style for future output to the channel (plaintext, formatted); default * i.e. unchanged

Parameter

- scalar
 - Channel number of output file

OWN directive

Does work specified in Fortran subprograms linked into Genstat by the user.

Option

- SELECT = scalar
 - Sets a switch, designed to allow OWN to be used for many applications; standard set-up assumes a scalar in the range 0-9; default 0

Parameters

- IN = identifiers
 - Supplies input structures, which must have values, needed by the auxiliary subprograms
- OUT = identifiers
 - Supplies output structures whose values or attributes are to be defined by the auxiliary subprograms

PAGE directive

Moves to the top of the next page of an output file.

Option

- CHANNEL = scalar
 - Channel number of file; default * i.e. current output file

No parameters
PAIRTEST procedure

Performs t-tests for pairwise differences (P.W. Goedhart).

Options

PRINT = string tokens
What to print (differences, sed, tvalues, tprobabilities); default diff, sed, tval

DF = scalar
Degrees of freedom for calculation of TPROBABILITIES from TVALUES; default 10000, approximates to the normal distribution

SORT = string token
Whether ESTIMATES (and other output) are sorted in ascending order (yes, no); default no

Parameters

ESTIMATES = variates
Estimates to be compared

VCOVARIANCE = symmetric matrices
Symmetric matrix containing the variance-covariance matrix of the estimates

LABELS = texts
Text vector naming the elements of ESTIMATES; if unset, the numbers 1, 2... are used as labels

DIFFERENCES = symmetric matrices
To save the pairwise differences (ESTIMATES on the diagonal)

SED = symmetric matrices
To save the standard errors of the pairwise differences (missing values on the diagonal)

TVALUES = symmetric matrices
To save the t-values (missing values on the diagonal)

TPROBABILITIES = symmetric matrices
To save the t-probabilities (missing values on the diagonal)

PARAMETER directive

Defines the parameters of a Genstat procedure with information to allow them to be checked when the procedure is executed.

No options

Parameters

NAME = texts
Names of the parameters

MODE = string tokens
Mode of each parameter (e, f, p, t, v, as for unnamed structures); default p

NVALUES = scalars or variates
Specifies allowed numbers of values

VALUES = variates or texts
Defines the allowed values for a structure of type variate or text

DEFAULT = identifiers
Default values for each parameter

SET = string tokens
Indicates whether or not each parameter must be set (yes, no); default no

DECLARED = string tokens
Indicates whether or not the setting of each parameter must have been declared (yes, no); default no

TYPE = texts
Text for each option, whose values indicate the types allowed (ASAVE, datamatrix [i.e. pointer to variates of equal lengths as required in multivariate analysis], diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, TSAVE, TSM, variate); default * meaning no limitation

COMPATIBLE = texts
Defines aspects to check for compatibility with the first parameter of the directive or procedure (nvalues, nlevels, nrows, ncolumns, type, levels, labels {of factors or pointers}, mode, rows, columns, classification, margins, associatedidentifier, suffixes {of pointers}, restriction)

PRESENT = string tokens
Indicates whether or not each structure must have values (yes, no); default no

INPUT = string token
Whether the parameter only supplies input information to the procedure (yes, no); default no
PARTIALCORRELATIONS procedure
Calculates partial correlations for a list of variates (S. Langton).

Options
- **PRINT = string token**
 Output required (correlations); default corre
- **CORRELATIONS = symmetric matrix**
 Saves the partial correlations
- **WEIGHTS = variate**
 Supplies weights for the units; default * i.e. all 1

Parameters
- **DATA = variates**
 Set of variates whose partial correlations are to be calculated

PASS directive
Performs tasks specified in subprograms supplied by the user, but not linked into Genstat; this directive may not be available on some computers.

Option
- **NAME = text**
 Filename of external executable program; default 'GNPASS'

Parameter
- **pointers**
 Structures whose values are to be passed to the external program, and returned

PCO directive
Performs principal coordinates analysis, also principal components and canonical variates analysis (but with different weighting from that used in CVA) as special cases.

Options
- **PRINT = string tokens**
 Printed output required (roots, scores, loadings, residuals, centroid, distances); default * i.e. no printing
- **NROOTS = scalar**
 Number of latent roots for printed output; default * requests them all to be printed
- **SMALLEST = string token**
 Whether to print the smallest roots instead of the largest (yes, no); default no

Parameters
- **DATA = identifiers**
 These can be specified either as a symmetric matrix of similarities or transformed distances or, for the canonical variates analysis, as an SSPM containing within-group sums of squares and products etc or, for principal components analysis, either as a pointer containing the variates of the data matrix or as a matrix storing the variates by columns
- **LRV = LRVs**
 Latent vectors (i.e. coordinates or scores), roots, and trace from each analysis
- **CENTROID = diagonal matrices**
 Squared distances of the units from their centroid
- **RESIDUALS = matrices or variates**
 Distances of the units from the fitted space
- **LOADINGS = matrices**
 Principal component loadings, or canonical variate loadings
- **DISTANCES = symmetric matrices**
 Computed inter-unit distances calculated from the variates of a data matrix, or inter-group Mahalanobis distances calculated from a within-group SSPM
- **SAVE = pointers**
 Saves details of the analysis; if unset, an unnamed save structure is saved automatically (and this can be accessed using the GET directive)

PCOPROCRUSTES procedure
Performs a multiple Procrustes analysis (P.G.N. Digby).

Options
- **PROTATE = string tokens**
 Printed output required from each Procrustes rotation (rotations, coordinates, residuals, sums); default * i.e. no output
- **PPCO = string tokens**
 Printed output required from the PCO analysis (roots,
SCALING = string token
Whether isotropic scaling should be used for the Procrustes rotations (no, yes); default no

STANDARDIZE = string tokens
Whether to centre the configurations and/or normalize them to unit sums-of-squares for the Procrustes rotations (centre, normalize); default cent, norm

Parameters
DATA = pointers
Each pointer points to a set of matrices holding the original input configurations

LRV = LRVs
Stores the latent vectors (i.e. coordinates), roots and trace from the PCO analysis

CENTROID = diagonal matrices
Stores the squared distances of the points representing the input configurations from their overall centroid from the PCO analysis

DISTANCES = symmetric matrices
Stores the residual sums-of-squares from the Procrustes rotations

PCORELATE directive
Relates the observed values on a set of variates or factors to the results of a principal coordinates analysis.

Options
COORDINATES = matrix
Points in reduced space; no default i.e. this option must be specified

NROOTS = scalar
Number of latent roots for printed output; default * requests them all to be printed

Parameters
DATA = variates or factors
The data variables

TEST = string tokens
Test type, defining how each variable is treated in the calculation of the similarity between each unit (simplematching, jaccard, russellrao, dice, antidice, sneakhsokal, rogerstandimot, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variable

RANGE = scalars
Range of possible values of each variable; if omitted, the observed range is taken

PCP directive
Performs principal components analysis.

Options
PRINT = string tokens
Printed output required (loadings, roots, residuals, scores, tests); default * i.e. no printing

NROOTS = scalar
Number of latent roots for printed output; default * requests them all to be printed

SMALLEST = string token
Whether to print the smallest roots instead of the largest (yes, no); default no

METHOD = string token
Whether to use sums of squares, correlations or variances and covariances (ssp, correlation, vcovariance, variancecovariance); default ssp

Parameters
DATA = pointers or matrices or SSPMs
Pointer of variates forming the data matrix, or matrix storing the variate values by columns, or SSPM giving their sums of squares and products (or correlations) etc

LRV = LRVs
To store the principal component loadings, roots, and trace from each analysis

SSPM = SSPMs
To store the computed sum-of-squares-and-products or
PCPCLUSTER procedure

Forms groups of units using the densities of their PCP scores (R.W. Payne).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string tokens</td>
<td>What to print (cellclusters, density, summary); default summ</td>
</tr>
<tr>
<td>PLOT = string tokens</td>
<td>What to plot (cellclusters, density, histogram, summary); default cell, dens, hist</td>
</tr>
<tr>
<td>NROOTS = scalars</td>
<td>Numbers of dimensions to use; default 2</td>
</tr>
<tr>
<td>NPARTITIONS = scalars</td>
<td>Numbers of partitions in each dimension; default 10</td>
</tr>
<tr>
<td>CLUSTERS = pointer</td>
<td>Saves variates defining the clusters for each minimum number of points</td>
</tr>
<tr>
<td>CELLCLUSTERS = pointer</td>
<td>Saves tables containing the clusters of cells for each minimum number of points</td>
</tr>
<tr>
<td>DENSITY = table</td>
<td>Saves the table of cell densities</td>
</tr>
<tr>
<td>SUMMARY = pointer</td>
<td>Saves the summary table</td>
</tr>
<tr>
<td>MINUNITS = variate or scalar</td>
<td>Minimum numbers of units within cells at which to form clusters</td>
</tr>
<tr>
<td>Parameter SAVE = pointer</td>
<td>Save structure from the PCP analysis to use; default uses the most recent analysis</td>
</tr>
</tbody>
</table>

PDESIGN procedure

Prints or stores treatment combinations tabulated by the block factors (R.W. Payne).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string token</td>
<td>Controls the printing of the design (design); default desi</td>
</tr>
<tr>
<td>BLOCKSTRUCTURE = formula</td>
<td>Defines the block factors for the design; the default is to take those specified by the BLOCKSTRUCTURE directive</td>
</tr>
<tr>
<td>TREATMENTSTRUCTURE = formula</td>
<td>Defines the treatment factors for each design; the default is to take those specified by the TREATMENTSTRUCTURE directive</td>
</tr>
<tr>
<td>TABLES = pointer</td>
<td>Contains tables to store the tabulated factor values for printing outside the procedure in some other format</td>
</tr>
<tr>
<td>FREPRESENTATION = string token</td>
<td>How to represent the factor values (labels, levels); default leve</td>
</tr>
</tbody>
</table>

No parameters

PDUPLICATE procedure

Duplicates a pointer, with all its components (R.W. Payne).

No options

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLDPOINTER = pointers</td>
<td>Pointers to duplicate</td>
</tr>
<tr>
<td>NEWPOINTER = pointers</td>
<td>Duplicated pointers</td>
</tr>
</tbody>
</table>

PEAKFINDER procedure

Finds the locations of peaks in an observed series (D.B. Baird).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string token</td>
<td>Controls printed output (peaks); default peak</td>
</tr>
<tr>
<td>CURVE = string token</td>
<td>Shape of curve to fit to peaks (normal, exponential);</td>
</tr>
</tbody>
</table>
default norm

PLOT = string tokens
What to plot (peaks, trace); default peak

METHOD = string token
The method for finding the peaks (additive, local); default addi

BANDWIDTH = scalar
Width of window to use when fitting peaks locally, or the number of low points at the edge of each zone when fitting peaks additively; default takes the number of points divided by ten, or six if this is greater

MINPEAK = scalar
Minimum height of a peak; no default (must be set)

MINGAP = scalar
Minimum number of points between two peaks when METHOD=additive; default 5

MINFALL = scalar
Minimum fall around a peak before a new peak will be found when METHOD=additive; default MINPEAK/10

MINCOHERENCY = scalar
Minimum coherency (i.e. proportion of variation explained) for a peak to be selected when METHOD=local; default 0.1

MAXSIGMA = scalar
The maximum value of sigma for peaks when METHOD=local; default 4*BANDWIDTH

MAXRESIDUAL = scalar
Limit on the absolute size of any residual for the adding of peaks to stop when METHOD=additive; default MINPEAK/3

WINDOW = scalar
Window number for the plots; default 3

SCREEN = string token
Whether to clear the screen before plotting or continue plotting on the old screen (clear, keep); default clea

Parameters
Y = variates
Series to search for peaks

X = variates
X-coordinates for the series; default !(1...n) where n is the number of Y values

YPEAKS = variates
Saves the y-values of the peaks

XPEAKS = variates
Saves the positions of the peaks

FITTEDYPEAKS = variates
Saves the sigma values of the fitted Normal or exponential models, which provide a measure of the widths of the peaks

SIGMA = variates
Saves the sigma values of the fitted Normal or exponential models

COHERENCY = variates
Saves the coherency (i.e. the proportion of variation accounted for) of the model fitted to identify each peak model

TITLE = texts
Titles for the plots

PEN directive
Defines the properties of "pens" for high-resolution graphics.

Option
RESET = string token
Whether to reset the pen definitions to their default values (yes, no); default no

BOXUNITS = string token
Units to use for text boxes (characters, distance); the default is to retain the existing setting

Parameters
NUMBER = scalars
Numbers associated with the pens

COLOUR = texts or scalars
Colour to use with each pen unless otherwise specified by the CSYMBOL, CLINE, CFILL or CAREA parameters

LINESTYLE = texts or scalars
Style for line used by each pen when joining points

METHOD = string tokens
Method for determining line (point, line, monotonic, closed, open, fill, spline, polygon)

SYMBOL = texts, scalars, pointers or matrices
Defines the plotting symbol for each pen, by a text or scalar for a pre-defined symbol, a pointer for a user-defined symbol, or a matrix to supply a bitmap

LABELS = texts or factors
Define labels that will be printed alongside the plotting symbols

ROTATION = scalars or variates
Rotation required for the plotting symbols and labels (in
4.1 Commands

JOIN = string tokens
Order in which points are to be joined by each pen
(ascending, given)

BRUSH = scalars
Number of the type of area filling used with each pen when
drawing pie charts or histograms

FONT = texts or scalars
Font to be used for any text written by each pen

THICKNESS = scalars
Thickness with which any lines are drawn by each pen

SIZEMULTIPLIER = scalars or variates
Multiplier to used in the calculation of the size in which to
draw symbols and labels by each pen unless otherwise
specified by SMSYMBOL or SMLABEL

CSYMBOL = texts or scalars
Colour to use with each pen when drawing symbols

CLINE = texts or scalars
Colour to use with each pen when drawing lines

CFILL = texts or scalars
Colour to use with each pen when filling areas inside hollow
symbols

CAREA = texts or scalars
Colour to use with each pen when filling areas inside polygons
and bars of histograms

SMSYMBOL = scalars or variates
Multiplier used in the calculation of the size in which to draw
symbols by each pen

SMLABEL = scalars or variates
Multiplier used in the calculation of the size in which to draw
labels by each pen

DFSPLINE = scalars
Number of degrees of freedom to use when METHOD=spline

YMISSING = string token
How to treat missing y-values when METHOD=spline (break,
interpolate)

XMISSING = string token
How to treat missing x-values when METHOD=spline (break,
ignore)

YLPOSITION = string token
How to position labels in the y-direction with respect to the
points (above, centre, below, automatic)

XLPOSITION = string token
How to position labels in the x-direction with respect to the
points (left, centre, right, automatic)

YLSIZE = scalars or variates
Widths in the y-direction of the text boxes into which to plot
labels

XLSIZE = scalars or variates
Widths in the x-direction of the text boxes

YLOFFSET = scalars or variates
Offsets in the y-direction of the text boxes

XLOFFSET = scalars or variates
Offsets in the x-direction of the text boxes

BARTHICKNESS = scalars
Thickness with which any error bars are drawn by each pen

BARCAPWIDTH = scalars
Width of the cap drawn by each pen at the top and bottom of
any error bars

DESCRIPTION = texts
Description for points plotted by the pen, to be used by the
Data Information tool in the Graphics Viewer

TSYMBOL = scalars
Defines the transparency of symbols drawn by each pen, on a
scale of 0 (opaque) to 255 (completely transparent)

TLINE = scalars
Defines the transparency of lines drawn by each pen

TFILL = scalars
Defines the transparency to use when filling areas inside
hollow symbols with each pen

TAREA = scalars
Defines the transparency to use when filling areas inside
polygons and bars of histograms with each pen

SAVE = pointers
Saves details of the current settings for the pen concerned

PEN SPLINE procedure
Calculates design matrices to fit a penalized spline as a linear mixed model (S.J. Welham).

Options

KMETHOD = string token
Method for constructing the set of knots (equal, quantile,
given); default equal

NSEGMENTS = scalar
Specifies the number of segments between boundaries; default
* obtains a value automatically

INKNOTS = variate
Provides the set of knots when **KMETHOD=given**
4 Syntax summary

DEGREE = scalar	Degree of polynomial used to form the underlying spline basis functions; default 1
LOWER = scalar	Specifies the lower boundary when $\text{KMETHOD}=\text{equal}$; default takes the minimum value in X
UPPER = scalar	Specifies the upper boundary when $\text{KMETHOD}=\text{equal}$; default takes the maximum value in X
ORTHOGONALIZETO = variate	Variate to use to get an orthogonalized basis; default * i.e. orthogonalization with respect to X
SCALING = scalar	Scaling of the X_{RANDOM} terms (automatic, none); default auto

Parameters
- **X = variates**: The explanatory variate for which the spline values are required
- **XFIXED = matrices**: Saves the design matrix to define the fixed terms (excluding the constant) for fitting the penalized spline
- **XRANDOM = matrices**: Saves the design matrix to define the random terms for fitting the penalized spline
- **KNOTS = variates**: Saves the internal knots and boundaries used to form the basis for the spline
- **PX = variates**: Specifies x-values at which predictions are required
- **PFIXED = matrices**: Saves the design matrix for the fixed terms (excluding the constant) for the spline at the prediction points
- **PRANDOM = matrices**: Saves the design matrix for the random terms for the spline at the prediction points

PERCENT procedure
Expresses the body of a table as percentages of one of its margins (R.W. Payne).

Options
- **CLASSIFICATION = factors**: Factors classifying the margin over which the percentages are to be calculated; if this is not set, the percentages are over the final margin (grand mean or grand total etc.)
- **METHOD = string token**: Method to use to calculate the margin if not already present (totals, means, minima, maxima, variances, medians); default total
- **HUNDRED = string token**: Whether to put 100% values into the margin instead of the original values (no, yes); default no

Parameters
- **OLDTABLE = tables**: Tables containing the original values
- **NEWTABLE = tables**: Tables to store the percentage values; if any of these is unset, the new values replace those in the original table

PERIODTEST procedure
Gives periodogram-based tests for white noise in time series (R.P. Littlejohn).

Option
- **LENGTH = scalar or variate**: Scalar specifying that the first N units of the series are to be used, or a variate specifying the first and last units of the series to be used

Parameters
- **SERIES = variates**: Specify the time series to be analysed
- **PERIODOGRAM = variates**: Save periodograms of the time series

PERMUTE procedure
Forms all possible permutations of the integers 1...n (J.W. McNicol & R.W. Payne).

Option
- **SORT = string token**: Whether or not to sort the permutations (no, yes); default no
4.1 Commands

Parameters
NVALUES = scalars
Specifies the final number, \(n \), in the sequence of integers 1\(\ldots n \) to be permuted

PERMUTATIONS = pointers
Pointer to a set of variates of length NVALUES storing the permutations

PFACLEVELS procedure
Prints levels and labels of factors (R.W. Payne).
No options
Parameter
FACTOR = factors
Factors whose levels and labels are to be printed

PLINK procedure
Prints a link to a graphics file into an HTML file (D.A. Murray).
Options
CHANNEL = scalar
Output channel number of file; default current output channel

EXCLUDEPATH = string token
Whether to remove path information when printing the link (yes, no); default no

Parameter
FILENAME = texts
Name of the graphics file to be linked within the html file

PLS procedure
Fits a partial least squares regression model (Ian Wakeling & Nick Bratchell).
Options
PRINT = string tokens
Printed output required (data, xloadings, yloadings, ploadings, scores, leverages, xerrors, yerrors, scree, xpercent, ypercent, predictions, groups, estimates, fittedvalues); default esti, xper, yper, scor, xloa, yloa, ploa

NROOTS = scalar
Number of PLS dimensions to be extracted

YSCALING = string token
Whether to scale the Y variates to unit variance; (yes, no); default no

XSCALING = string token
Whether to scale the X variates to unit variance; (yes, no); default no

NGROUPS = scalar
Number of cross-validation groups into which to divide the data; default 1 (i.e. no cross-validation performed)

SEED = scalar or factor
A scalar indicating the seed value to use when dividing the data randomly into NGROUPS groups for the cross-validation or a factor to indicate a specific set of groupings to use for the cross-validation; default 0

LABELS = text
Sample labels for X and Y that are to be used in the printed output; defaults to the integers 1\(\ldots n \) where \(n \) is the length of the variates in X and Y

PLABELS = text
Sample labels for XPREDICTIONS that are to be used in the printed output; default uses the integers 1, 2 ...

Parameters
Y = pointers
Pointer to variates containing the dependent variables

X = pointers
Pointer to variates containing the independent variables

YLOADINGS = pointers
Pointer to variates used to store the Y component loadings for each dimension extracted

XLOADINGS = pointers
Pointer to variates used to store the X component loadings for each dimension extracted

PLOADINGS = pointers
Pointer to variates used to store the loadings for the bilinear model for the X block

YSCORES = pointers
Pointer to variates used to store the Y component scores for each dimension extracted
XSCORES = pointers Pointer to variates used to store the X component scores for each dimension extracted

B = matrices A diagonal matrix containing the regression coefficients of YSCORES on XSCORES for each dimension

YPREDICTIONS = pointers A pointer to variates used to store predicted Y values for samples in the prediction set

XPREDICTIONS = pointers A pointer to variates containing data for the independent variables in the prediction set

ESTIMATES = matrices An n_x+1 by n_y matrix (where n_x and n_y are the numbers of variates contained in X and Y respectively) used to store the PLS regression coefficients for a PLS model with NROOTS dimensions

FITTEDVALUES = pointers Pointer to variates used to store the fitted values for each Y variate

LEVERAGES = variates Variate used to store the leverage that each sample has on the PLS model

PRESS = variates Variate used to contain the Predictive Residual Error Sum of Squares for each dimension in the PLS model, available only if cross-validation has been selected

RSS = variates Variate used to store the Residual Sum of Squares for each dimension extracted

YRESIDUALS = pointers Pointer to variates used to store the residuals from the Y block after NROOTS dimensions have been extracted, uncorrected for any scaling applied using YSCALING

XRESIDUALS = pointers Pointer to variates used to store the residuals from the X block after NROOTS dimensions have been extracted, uncorrected for any scaling applied using XSCALING

XPRESIDUALS = pointers Pointer to variates used to store the residuals from the XPREDICTIONS block after NROOTS dimensions have been extracted

FTEST = pointers Pointer to save the results from the Osten F test (when NGROUPS > 1)

PNTEST procedure
Calculates one- and two-sample Poisson tests (D.A. Murray).

Options
PRINT = string tokens Controls printed output (test, summary, confidence);
default test, summ, conf

METHOD = string token Type of test required (twosided, greaterthan, lessthan);
default twos

TEST = string token Form of the test for one-sample test (exact, normalapproximation); default norm

S1 = scalar Sample size for sample 1; default 1
S2 = scalar Sample size for sample 2; default 1

CIPROBABILITY = scalar The probability level for the confidence interval; default 0.95

NULL = scalar The value of the probability of success under the null hypothesis for the one-sample test

Parameters
MU1 = scalars Number recorded in the first sample

MU2 = scalars Number recorded in the second sample

R2 = scalars Sample size of the second sample

NORMAL = scalars Saves the Normal approximation

PROBABILITY = scalars Saves the probability value from the one-sample or two-sample tests

LOWER = scalars Saves the lower limit of the confidence interval

UPPER = scalars Saves the upper limit of the confidence interval
4.1 Commands

POINTER directive
Declares one or more pointer data structures.

Options
- `NVALUES = scalar or text`: Number of values, or labels for values; default *
- `VALUES = identifiers`: Values for all the pointers; default *
- `SUFFIXES = variate or scalar`: Defines an integer number for each of the suffixes; default *
- `CASE = string token`: Whether to distinguish upper and lower case in the labels of the pointers (significant, ignored); default sign
- `ABBREVIATE = string token`: Whether or not to allow the labels to be abbreviated (yes, no); default no
- `FIXNVALUES = string token`: Whether or not to prohibit automatic extension of the pointers (yes, no); default no
- `RENAME = string token`: Whether to reset the default names of elements of the pointer if they do not have their own identifiers (yes, no); default no
- `MODIFY = string token`: Whether to modify (instead of redefining) existing structures (yes, no); default no
- `IPRINT = string tokens`: Information to be used by default to identify the pointers in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output
- `EXTEND = string token`: Whether to extend (instead of redefining) an existing pointer (yes, no); default no

Parameters
- `IDENTIFIER = identifiers`: Identifiers of the pointers
- `VALUES = pointers`: Values for each pointer
- `EXTRA = texts`: Extra text associated with each identifier

POSSEMDIFEMINE procedure

Options
- `PRINT = string tokens`: Controls printed output (approximation, eigenvalues, epsilon); default * i.e. none
- `EPSILON = scalar`: Specifies the lowest eigenvalue for the positive semi-definite matrix; default 0.0001

Parameters
- `OLDSYMMETRICMATRIX = symmetric matrices`: Symmetric matrices to approximate
- `NEWSYMMETRICMATRIX = symmetric matrices`: Positive semi-definite approximations to the old symmetric matrices

PPAIR procedure
Displays results of t-tests for pairwise differences in compact diagrams (P.W. Goedhart, H. van der Voet & D.C. van der Werf).

Options
- `PRINT = string token`: What to print (items, groups); default group
- `PROBABILITY = scalar or symmetric matrix`: Level of significance of pairwise comparison tests; default 0.05

Parameters
- `TPROBABILITIES = symmetric matrices`: Probabilities of tests of pairwise comparisons
- `DIFFERENCES = symmetric matrices, variates or tables`: What to print alongside the labels of TPROBABILITIES; default *
4 Syntax summary

LABELS = texts
Text vector labelling the output; if unset the row labels of TPROBABILITIES and the diagonal of DIFFERENCES (if set) are used.

ITEMLETTERS = texts
Saves the letters showing the items not significantly different from each item.

GROUPLETTERS = texts
Saves the letters showing groups of items not significantly different from each other.

PRCORRELATION procedure
Calculates probabilities for product moment correlations (R.W. Payne).

Option
NOBSERVATIONS = scalar
Number of observations from which the correlation(s) were calculated.

Parameters
DATA = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Correlations for calculating probabilities or cumulative lower probabilities for calculating equivalent deviates.

CLPROBABILITY = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves cumulative lower probabilities.

CUPROBABILITY = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves cumulative upper probabilities.

PROBABILITY = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves probability densities.

CORRELATION = scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves correlations.

PRDOUBLEPOISSON procedure
Calculates the probability density for the double Poisson distribution (V.M. Cave).

Options
PRINT = string tokens
Controls printed output (probability, summary); default prob.

PLOT = string token
Whether to plot the \(k \) terms used to approximate the normalizing constant by the \(k_{\text{partialsum}} \) method (yes, no); default no.

METHOD = string token
How to approximate the normalizing constant (\(k_{\text{partialsum}}, \text{edgeworth} \)); default \(k_{\text{par}} \).

LOCATION = scalar or variate
Location parameter; no default, must be set.

SHAPE = scalar or variate
Shape parameter; default 1.

MAXCYCLE = scalar or variate
Limits the number of terms, \(k \), used to approximate the normalizing constant by the \(k_{\text{partialsum}} \) method; default \(\max(1000, 2 \cdot \text{LOCATION}) \).

TOLERANCE = scalar
Convergence criterion used when approximating the normalizing constant by the \(k_{\text{partialsum}} \) method; default 1E-12.

Parameters
DATA = scalar or variate
Non-negative integer values for which the double Poisson probabilities are to be calculated.

DECIMALS = scalars
Number of decimal places for printing; default *.

PROBABILITY = variate
Saves the probabilities.

PREDICT directive
Forms predictions from a linear or generalized linear model.

Options
PRINT = string token
What to print (description, lsd, predictions, se, sed, vcovariance); default desc, pred, se.

CHANNEL = scalar
Channel number for output; default * i.e. current output.
4.1 Commands

COMBINATIONS = string token
Which combinations of factors in the current model to include (full, present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment (marginal, equal); default marg

WEIGHTS = table
Weights classified by some or all of the factors in the model; default *

OFFSET = scalar
Value of offset on which to base predictions; default mean of offset variate

METHOD = string token
Method of forming margin (mean, total); default mean

ALIASING = string token
How to deal with aliased parameters (fault, ignore); default faul

BACKTRANSFORM = string token
What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default link

SCOPE = string token
Controls whether the variance of predictions is calculated on the basis of forecasting new observations rather than summarizing the data to which the model has been fitted (data, new); default data

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, nonlinear); default *

DISPERSION = scalar
Value of dispersion parameter in calculation of s.e.s; default is as set in the MODEL statement

DMETHOD = string token
Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement

NBINOMIAL = scalar
Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value \(n \) greater than one allows predictions to be made of the number of "successes" out of \(n \), whereas the value one predicts the proportion of successes); default 1

PREDICTIONS = tables or scalars
Saves predictions for each y variate; default *

SE = tables or scalars
Saves standard errors of predictions for each y variate; default *

SED = symmetric matrices
Saves standard errors of differences between predictions for each y variate; default *

LSD = symmetric matrices
Saves least significant differences between predictions for each y variate (models with Normal errors only); default *

LSDLEVEL = scalar
Significance level (%) to use in the calculation of least significant differences; default 5

VCOVARIANCE = symmetric matrices
Saves variance-covariance matrices of predictions for each y variate; default *

SAVE = identifier
 Specifies save structure of model to display; default * i.e. that from latest model fitted

Parameters

CLASSIFY = vectors
VARIATES and/or factors to classify table of predictions

LEVELS = variates, scalars or texts
To specify values of variates, levels of factors

PARALLEL = identifiers
For each vector in the CLASSIFY list, allows you to specify another vector in the CLASSIFY list with which the values of this vector should change in parallel (you then obtain just one dimension in the table of predictions for these vectors)

NEWFACTOR = identifiers
 Identifiers for new factors that are defined when LEVELS are specified
PREWHITEN procedure
Filters a time series before spectral analysis (A.W.A. Murray).

Option

PHI = scalar
Specifies the value of the parameter used in filtering; default 0.99

Parameters

SERIES = variates
Input series

FILTERED = variates
Output series

PRIMEPOWER procedure
Decomposes a positive integer into its constituent prime powers (I. Wakeling & R.W. Payne).

Option

PRINT = string token
Controls printed output (decomposition); default *

Parameters

NUMBER = scalars
Number to be decomposed

PRIMES = pointers
Prime factors of NUMBER

POWERS = pointers
Powers of the prime factors in NUMBER

PRINT directive
Prints data in tabular format in an output file, unformatted file or text.

Options

CHANNEL = identifier
Channel number of file, or identifier of a text to store output; default current output file

SERIAL = string token
Whether structures are to be printed in serial order, i.e. all values of the first structure, then all of the second, and so on (yes, no); default no, i.e. values in parallel

IPRINT = string tokens
What identifier and/or text to print for the structure
(identifier, extra, associatedidentifier), for a table
associatedidentifier prints the identifier of the variate from which the table was formed (e.g. by TABULATE),
IPRINT= suppresses the identifier altogether; default iden

RLPRINT = string tokens
What row labels to print (labels, integers, identifiers), *RLPRINT=* suppresses row labels altogether; default labe, iden

CLPRINT = string tokens
What column labels to print (labels, integers, identifiers), *CLPRINT=* suppresses column labels altogether; default labe, iden

RLWIDTH = scalar
Field width for row labels; default 13

INDENTATION = scalar
Number of spaces to leave before the first character in the line; default 0

WIDTH = scalar
Last allowed position for characters in the line; default width of current output file

SQUASH = string token
Whether to omit blank lines in the layout of values (yes, no); default no

MISSING = text
What to print for missing value; default uses * for numbers and blanks in texts

ORIENTATION = string token
How to print vectors or pointers (down, across); default down, i.e. down the page

ACROSS = scalar or factors
Number of factors or list of factors to be printed across the page when printing tables; default for a table with two or more classifying factors prints the final factor in the classifying set and the notional factor indexing a parallel list of tables across the page, for a one-way table only the notional factor is printed across the page

DOWN = scalar or factors
Number of factors or list of factors to be printed down the page when printing tables; default is to print all other factors
WAFER = scalar or factors
Number of factors or list of factors to classify the separate
"wafers" (or slices) used to print the tables; default 0

PUNKNOWN = string token
When to print unknown cells of tables (present, always, zero, missing, never); default pres

UNFORMATTED = string token
Whether file is unformatted (yes, no); default no

REWIND = string token
Whether to rewind unformatted file before printing (yes, no); default no

WRAP = string token
Whether to wrap output that is too long for one line onto
subsequent lines, rather than putting it into a subsequent
"block" (yes, no); default no

STYLE = string token
Style to use for an output file (plaintext, formatted);
default * uses the current style of the channel

PMARGIN = string tokens
Which margins to print for tables (full, columns, rows, wafers); default full

OMITMISSINGROWS = string token
Whether to omit rows of tables that contain only missing
values (yes, no); default no

VSPECIAL = scalar or variate
Special values to be modified in the output

TSPECIAL = text
Strings to be used for the special values; must be set if
VSPECIAL is set

Parameters
STRUCTURE = identifiers
Structures to be printed

FIELDWIDTH = scalars
Field width in which to print the values of each structure (a
negative value -n prints numbers in E-format in width n); if
omitted, a default is determined (for numbers, this is usually
12; for text, the width is one more character than the longest
line)

DECIMALS = structures
Number of decimal places for numerical data structures, a
scalar if the same number of decimals is to be used for all
values of the structure, or a data structure of the same type and
size to use different numbers of decimals for each value; if
omitted or set to a missing value, a default is determined which
prints the mean absolute value to 4 significant figures

CHARACTERS = scalars
Number of characters to print in strings

SKIP = scalars or variates
Number of spaces to leave before each value of a structure (*
means a new line before structure)

FREPRESENTATION = string tokens
How to represent factor values (labels, levels,
ordinals); default is to use labels if available, otherwise
levels

JUSTIFICATION = string tokens
How to position values within the field (right, left,
center, centre); if omitted, right is assumed

MNAME = string tokens
Name to print for table margins (margin, total, nobservd,
mean, minimum, maximum, variance, count, median,
quantile); if omitted, "Margin" is printed

DREPRESENTATION = scalars or texts
Format to use for dates and times (stored in numerical
structures)

HEADING = texts
Heading to be used for vectors printed in columns down the
page; default is to use the information requested by the
IPRINT option

TLABELS = texts
If this is specified for a table STRUCTURE, the values of the
table are interpreted as references to lines within the TLABELS
text that are to be printed instead of the values of the table
itself
PRKTAU procedure

Calculates probabilities for Kendall's rank correlation coefficient \(\tau \) (D.B. Baird).

No options

Parameters

\(N = \text{scalars} \) Sizes of the first groups of observations

\(\text{TAU} = \text{scalars} \) Values of Kendall's \(\tau \) statistic

\(\text{CLPROBABILITY} = \text{scalars} \) Cumulative lower probability of \(\text{TUAU} \)

\(\text{CUPROBABILITY} = \text{scalars} \) Cumulative upper probability of \(\text{TUAU} \)

\(\text{PROBABILITY} = \text{scalars} \) Probability density of \(\text{TUAU} \)

\(\text{LPROBABILITIES} = \text{variates} \) Probability densities of \(-1...\text{TUAU}\)

\(\text{LTAU} = \text{variates} \) Values of Tau at corresponding values of \(\text{LPROBABILITIES} \)

PRMANNWHITNEYU procedure

Calculates probabilities for the Mann-Whitney U statistic (D.B. Baird).

No options

Parameters

\(N1 = \text{scalars} \) Sizes of the first groups of observations

\(N2 = \text{scalars} \) Sizes of the second groups of observations

\(U = \text{scalars} \) Values of the U statistic

\(\text{TIES} = \text{scalars} \) Number of tied observations; default 0

\(\text{CLPROBABILITY} = \text{scalars} \) Cumulative lower probability of \(U \)

\(\text{CUPROBABILITY} = \text{scalars} \) Cumulative upper probability of \(U \)

\(\text{PROBABILITY} = \text{scalars} \) Probability density of \(U \)

\(\text{LPROBABILITIES} = \text{variates} \) Probability densities of \(0...U \)

\(\text{EXIT} = \text{scalars} \) Set to 1 if it has not been possible to calculate the probabilities when there are ties, otherwise 0

PROBITANALYSIS procedure

Fits probit models allowing for natural mortality and immunity (R.W. Payne).

Options

\(\text{PRINT} = \text{string tokens} \) Printed output required (model, summary, estimates, correlations, fitted values, monitoring, effectivedoses); default mode, summ, esti, fitt

\(\text{TRANSFORMATION} = \text{string token} \) Transformation to be used (probit, logit, complementaryloglog); default prob

\(\text{MORTALITY} = \text{string token} \) Whether to estimate natural mortality (omit, estimate); default omit

\(\text{IMMUNITY} = \text{string token} \) Whether to estimate natural immunity (omit, estimate); default omit

\(\text{GROUPS} = \text{factor} \) Defines groups for an analysis of parallelism; default * i.e. no groups

\(\text{SEPARATE} = \text{string tokens} \) Which parameters (apart from intercept) should be estimated separately for different groups (slope, mortality, immunity, not intercept); default * i.e. none

\(\text{LD} = \text{scalar or variate} \) Effective, or lethal, doses to be estimated, other than 50

\(\text{CIPROBABILITY} = \text{scalar} \) Probability level for the confidence interval of effective doses; default 0.95, i.e. a 95% confidence interval

\(\text{LOGBASE} = \text{string token} \) Base of antilog transformation to be applied to LD's (ten, e); default * i.e. none

\(\text{DISPERSION} = \text{scalar} \) Controls the use of a heterogeneity factor in the calculation of s.e.s etc; with the default of 1 no factor is used, a missing value * estimates the heterogeneity from the residual deviance

\(\text{FITMETHOD} = \text{string token} \) Method to use to fit the model (generalizednonlinear, nonlinear) default non1 for Wadley's problem, otherwise gene
4.1 Commands

MAXCYCLE = *scalar*

Maximum number of iterations for fitting the model; default 30

Parameters

Y = *variates*

Number of subjects responding in each batch

DOSE = *variates*

Dose received by each batch of subjects

NBINOMIAL = *variates, scalars or factors*

Variate specifying the number of subjects in each batch, or factor specifying groupings of the observations assumed to have equal expected total numbers of subjects in Wadley's problem; if omitted, assumes Wadleys's problem with all observations having the same expected total number of subjects

INITIAL = *variates*

Initial values for parameters

STPLENGTHS = *variates*

Step lengths for parameters

LDESTIMATES = *variates*

Saves estimates of the effective, or lethal, doses

LDLOW = *variates*

Saves lower values of the confidence intervals for the estimates of the effective, or lethal, doses (for FITMETHOD=gene only)

LDUPPER = *variates*

Saves upper values of the confidence interval values for the estimates of the effective, or lethal, doses (for FITMETHOD=gene only)

PROCEDURE directive

Introduces a Genstat procedure.

Options

PARAMETER = *string token*

Whether to process the structures in each parameter list of the procedure sequentially using a dummy to store each one in turn, or whether to put them all into a pointer so that the procedure is called only once (dummy, pointer); default dummy

RESTORE = *string tokens*

Which aspects of the Genstat environment to store at the start of the procedure and restore at the end (inprint, outprint, outstyle, diagnostic, errors, pause, prompt, newline, case, run, units, blockstructure, treatmentstructure, covariate, asave, dsave, msave, rsave, tsave, vsave, vcomponents, seeds, captions, cmmethod, actionafterfault, unsetdummy, all); default *

SAVE = *text*

Text to save the contents of the procedure (omitting comments and some spaces)

WORDLENGTH = *string token*

Length of word (8 or 32 characters) to check in identifiers, directives, options, parameters and procedures within the procedure (long, short); default * i.e. no change

Parameter

text

Name of the procedure

PRSPREARMAN procedure

Calculates probabilities for Spearman's rank correlation statistic (D.B. Baird).

No options

Parameters

N = *scalars*

Numbers of pairs of observations

CORRELATION = *scalars*

Values of the signed rank statistic

CLPROBABILITY = *scalars*

Cumulative lower probability of CORRELATION

CUPROBABILITY = *scalars*

Cumulative upper probability of CORRELATION

PROBABILITY = *scalars*

Probability density of CORRELATION

UPROBABILITIES = *variates*

Probability densities of CORRELATION...1
UCORRELATION = variates

Values of CORRELATION at corresponding elements of UPROBABILITIES

PRWILCOXON procedure
Calculates probabilities for the Wilcoxon signed-rank statistic (D.B. Baird).

No options

Parameters
N = scalars
Sizes of the first groups of observations
SIGNERANK = scalars
Values of the signed rank statistic
CLPROBABILITY = scalars
Cumulative lower probability of SIGNEDRANK
CUPROBABILITY = scalars
Cumulative upper probability of SIGNEDRANK
PROBABILITY = scalars
Probability density of SIGNEDRANK
LPROBABILITIES = variates
Probability densities of 0...SIGNEDRANK

PSPLINE procedure
Calculates design matrices to fit a P-spline as a linear mixed model (S.J. Welham).

Options
NSEGMENTS = scalar
Specifies the number of segments between boundaries; default * obtains a value automatically
DEGREE = scalar
Degree of polynomial used to form the underlying spline basis functions; default 3
DIFFORDER = scalar
Differencing order for penalty; default 2
LOWER = scalar
Specifies the lower boundary; default takes the minimum value in X
UPPER = scalar
Specifies the upper boundary; default takes the maximum value in X
ORTHOGONALIZETO = variate
Variate to use to get an orthogonalized basis; default * i.e. orthogonalization with respect to X
SCALING = scalar
Scaling of the XRANDOM terms; (automatic, none); default auto

Parameters
X = variates
The explanatory variate for which the basis functions are required
XFIXED = matrices
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the P-spline
XRANDOM = matrices
Saves the design matrix to define the random terms for fitting the P-spline
KNOTS = variates
Saves the internal knots and boundaries used to form the basis functions
PX = variates
Specifies x-values at which predictions are required
PFIXED = matrices
Saves the design matrix for the fixed terms (excluding the constant) for the spline at the prediction points
PRANDOM = matrices
Saves the design matrix for the random terms for the spline at the prediction points

PTAREAPOLYGON procedure

Option
PRINT = string token
What to print (summary); default summ

Parameters
YPOLYGON = variates
Vertical coordinates of each polygon; no default – this parameter must be set
XPOLYGON = variates
Horizontal coordinates of each polygon; no default – this parameter must be set
AREA = scalars
Scalars to receive the areas of the polygons
4.1 Commands

PTBOX procedure

Options
PRINT = string token What to print (summary); default summ
METHOD = string token Type of box to form (bounding, surrounding); default boun

Parameters
Y = variates Vertical coordinates of each spatial point pattern; no default – this parameter must be set
X = variates Horizontal coordinates of each spatial point pattern; no default – this parameter must be set
YBOX = variates Variates to receive the vertical coordinates of the bounding or surrounding boxes
XBOX = variates Variates to receive the horizontal coordinates of the bounding or surrounding boxes
YFRACTION = scalars How much to extend the extremes of the vertical coordinates of each surrounding box as a fraction of the range of the vertical coordinates; default 0.1
XFRACTION = scalars How much to extend the extremes of the horizontal coordinates of each surrounding box as a fraction of the range of the horizontal coordinates; default 0.1

PTCLOSEPOLYGON procedure

Option
PRINT = string token What to print (summary); default summ

Parameters
OLDYPOLYGON = variates Vertical coordinates of each polygon; no default – this parameter must be set
OLDXPOLYGON = variates Horizontal coordinates of each polygon; no default – this parameter must be set
NEWYPOLYGON = variates Vertical coordinates of the closed polygons
NEWXPOLYGON = variates Horizontal coordinates of the closed polygons

PTDESCRIBE procedure
Gives summary and second order statistics for a point process (R.P. Littlejohn & R.C. Butler).

Options
PRINT = string token Whether to print (statistics); default stat
SELECTION = string tokens What to print (interval, trend, poisson, icorrelation, ispectrum, cspectrum, cintensity, vtcurve, all); default inte
REPRESENTATION = string token How the point process is represented in the DATA variate (time, interval, zeroone); default time
GRAPHICS = string token Style of graphical output, or GRAPHICS=* to avoid any graphs (lineprinter, highresolution); default high

Parameters
DATA = variates Variate containing point process to be analysed
START = scalars Initial time (if REPRESENTATION=time); default 0
LENGTH = scalars Length of time over which process is observed; default takes the time of the last event
CITAU = scalars Window width for calculating count intensity; default 0.5 × mean interval length
VTITAU = scalars Window width for calculating variance-time curve; default 0.5
SAVE = pointers

	mean interval length

Pointer to save calculated values

PTGRID procedure

Option

PRINT = string token

What to print (summary); default summ

Parameters

YPOLYGON = variates

Vertical coordinates of each polygon; no default – this parameter must be set

XPOLYGON = variates

Horizontal coordinates of each polygon; no default – this parameter must be set

NPOLY = scalars

How many points to generate

YSTEP = scalars

Spacings to use between columns of the grid

XSTEP = scalars

Spacings to use between rows of the grid

YGRID = variates

Variates to receive the vertical coordinates of the points in the grid

XGRID = variates

Variates to receive the horizontal coordinates of the points in the grid

PTINTENSITY procedure

Option

PRINT = string tokens

What to print (grid, monitoring); default grid, moni

Parameters

Y = variates

Vertical coordinates of each spatial point pattern; no default – this parameter must be set

X = variates

Horizontal coordinates of each spatial point pattern; no default – this parameter must be set

YPOLYGON = variates

Vertical coordinates of each polygon; no default – this parameter must be set

XPOLYGON = variates

Horizontal coordinates of each polygon; no default – this parameter must be set

DENSITY = scalars

Scalars to receive the density of the spatial point patterns, i.e. the number of points per unit area

PTKERNEL2D procedure

Option

PRINT = string tokens

What to print (grid, monitoring); default grid, moni

Parameters

Y = variates

Vertical coordinates of each spatial point pattern; no default – this parameter must be set

X = variates

Horizontal coordinates of each spatial point pattern; no default – this parameter must be set

YPOLYGON = variates

Vertical coordinates of each polygon; no default – this parameter must be set

XPOLYGON = variates

Horizontal coordinates of each polygon; no default – this parameter must be set

HZERO = scalars

What kernel width to use for each pattern; no default – this parameter must be set

NY = scalars

Numbers of rows to use in the grid of kernel density estimates; default 20
NX = scalars
Numbers of columns to use in the grid of kernel density estimates; default 20

YGRID = variates
Variates to receive the vertical coordinates at which each kernel function has been evaluated

XGRID = variates
Variates to receive the horizontal coordinates at which each kernel function has been evaluated

ZGRID = matrices
Matrices of dimension NY by NX to receive the grid of density estimates

PTK3D procedure
Performs kernel smoothing of space-time data (D.A. Murray, P.J. Diggle & B.S. Rowlingson).

Option
PRINT = string token
Controls printed output (grid, monitoring); default grid

Parameters
Y = variates
Vertical coordinates of the spatial point pattern

X = variates
Horizontal coordinates of the spatial point pattern

TIMES = variates
Times for each event

XGRID = variates
The values of x to compute kernel function

YGRID = variates
The values of y to compute kernel function

ZGRID = variates
The values of z, or time dimension, to compute kernel function

HXY = scalars
What quartic kernel width to use in the XY direction

HZ = scalars
What quartic kernel width to use in the Z or time direction

GRID = pointers
Pointer to matrices containing the kernel smoothed values

'PTFCLUSTERS procedure
Forms clusters of points from their densities in multi-dimensional space (R.W. Payne).

Options
PRINT = string tokens
What to print (cellclusters, density, summary); default summ

PLOT = string tokens
What to plot (cellclusters, density, histogram, summary); default cell, dens, hist

CLUSTERS = pointer
Saves variates defining the clusters for each minimum number of points

CELLCLUSTERS = pointer
Saves tables containing the clusters of cells for each minimum number of points

DENSITY = table
Saves or supplies the table of cell densities

SUMMARY = pointer
Saves the summary table

INITIALCELLCLUSTERS = table
 Defines clusters of cells to use to start the clustering

MINPOINTS = variate or scalar
Minimum numbers of points within cells at which to form clusters

Parameters
DATA = variates
Coordinates of the points

NPARTITIONS = scalars
Numbers of partitions in each dimension; default 10

'PTFILLCLUSTERS procedure

Fills holes within clusters of points in multi-dimensional space (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (cellclusters); default * .e. none

DIAGONALS = string token
Whether to include diagonal cells (include, exclude); default incl

DISTANCE = scalar
Maximum distance between cells and adjacent cells; default 1

NUNCLASSIFIED = scalar
How many adjacent cells may be unclassified; default 0

NNEWCELLS = scalar
Saves the number of cells that have been added to clusters

Parameters
CELLCLUSTERS = tables
Clusters of cells containing holes to be filled
NEWCELLCLUSTERS = tables
Clusters with filled holes; if unset, the CELLCLUSTERS table itself is updated

PTREMOVE procedure

Options
- **PRINT** = string token
 What to print (summary, monitoring); default summ, mon
- **WINDOW** = scalar
 Which graphics window to use for the plot; default 1

Parameters
- **OLDY** = variates
 Vertical coordinates of each spatial point pattern; no default – this parameter must be set
- **OLDX** = variates
 Horizontal coordinates of each spatial point pattern; no default – this parameter must be set
- **NEWY** = variates
 Variates to receive the vertical coordinates of the original points minus the deleted points of each pattern
- **NEWX** = variates
 Variates to receive the horizontal coordinates of the original points minus the deleted points of each pattern

PTROTATE procedure
Rotates a point pattern (W. van den Berg).

Options
- **ANGLE** = scalar
 Angle, in degrees over which the point pattern is to be rotated; no default – must be set
- **HUB** = string token
 Whether the point pattern is to be rotated around the origin or around the centroid (origin, centroid); default orig

Parameters
- **OLDY** = variates
 Vertical coordinates of each spatial point pattern
- **OLDX** = variates
 Horizontal coordinates of each spatial point pattern
- **NEWT** = variates
 Save the vertical coordinates of the rotated point patterns; if this unset, these replace the original values in OLDY
- **NEWX** = variates
 Save the horizontal coordinates of the rotated point patterns; if this unset, these replace the original values in OLDX
- **ROTATION** = matrices
 Save the rotation matrices

PTSINPOLYGON procedure

Options
- **PRINT** = string token
 What to print (summary); default summ
- **METHOD** = string token
 Whether to select points inside or outside the polygon (inside, outside); default insi

Parameters
- **OLDY** = variates
 Vertical coordinates of each spatial point pattern; no default – this parameter must be set
- **OLDX** = variates
 Horizontal coordinates of each spatial point pattern; no default – this parameter must be set
- **YPOLYGON** = variates
 Vertical coordinates of each polygon; no default – this parameter must be set
- **XPOLYGON** = variates
 Horizontal coordinates of each polygon; no default – this parameter must be set
- **NEWY** = variates
 Variates to receive the vertical coordinates of points inside (or outside) the polygons
- **NEWX** = variates
 Variates to receive the horizontal coordinates of points inside (or outside) the polygons
4.1 Commands

QBESTGENOTYPES procedure

Sorts individuals of a segregating population by their genetic similarity with a defined target genotype, using the identity by descent (IBD) information at QTL positions for one or more traits (M. Malosetti & F.A. van Eeuwijk).

Options

- **PRINT** = string tokens: What to print (summary); default summ
- **PLOT** = string tokens: What to plot (haplotypes); default hapl
- **POPULATIONTYPE** = string token: Type of population (BC1, DH1, F2, RIL); default F2
- **IBDWINDOW** = scalar: Size of the window around the QTL position to use to construct the haplotypes; default 10
- **TRAITS** = text: Names of the traits whose QTL information is to be used; default is to use all the traits
- **SELECTION** = variate: Indicator variate with values defining whether each trait should be maximized (1), minimized (-1) or remain unchanged (0); if unset, the default is to maximize every trait
- **%BESTGENOTYPES** = scalar: Specifies the percentage of the best genotypes to display in the output and plots; default 10

Parameters

- **GENFILENAME** = texts: Name of a Flapjack genotype file
- **MAPFILENAME** = texts: Name of a Flapjack map file
- **FJQTLFILENAME** = texts: Name of a file to supply the QTL results
- **QTRAITS** = texts: Names of the traits affected by each QTL
- **QCHROMOSOMES** = factors: Factor defining the linkage group of each QTL
- **QPOSITIONS** = variates: Position of each QTL within the linkage group
- **QNAMES** = texts: Name of each QTL
- **QEFFECTS** = variates: Individual QTL effects
- **QBESTSAVE** = pointers: Saves similarities with the target genotype, and their ranks, across and per trait

QCANDIDATES procedure

Selects QTLs on the basis of a test statistic profile along the genome (M.P. Boer & J.T.N.M. Thissen).

Options

- **PRINT** = string token: What to print (summary); default summ
- **THRESHOLD** = scalar: Threshold for the test statistic; default 0
- **QTLWINDOW** = scalar: Minimum distance in cM between two peaks to be selected as two QTLs; default 10

Parameters

- **STATISTICS** = variates: Test statistic along the genome; must be set
- **CHROMOSOMES** = factors: Chromosome for each locus; must be set
- **POSITIONS** = variates: Position on the chromosome for each locus; must be set
- **IDLOCI** = texts: Labels for the loci
- **QTLCANDIDATES** = variates: Saves the index numbers of the selected QTLs

QCOCHRAN procedure

Performs Cochran's Q test for differences between related samples (D.A. Murray).

Options

- **PRINT** = string token: Controls printed output (test); default test
- **METHOD** = string token: Form of the test (exact, chisquare); default exac for small samples, otherwise chis
- **GROUPS** = factor: Defines the groups if there only one variable supplied for the DATA
- **STATISTIC** = scalar: Scalar to save the Q value
- **PROBABILITY** = scalar: Scalar to save the probability for the Q Test
- **MAXTIME** = scalar: Defines a limit for the maximum time for calculating the exact test; default * i.e. no limit.
Parameter
DATA = variates
List of related samples, or variate containing all the samples
(the GROUPS option must then be set to indicate the variable
recorded in each unit belongs)

QDESCRIBE procedure
Options
PRINT = string tokens
What to print (chromosomes, genome); default chro
DISTANCE = scalar
Distance between chromosomes (for plotting purposes);
default 10

Parameters
CHROMOSOMES = factors
Chromosome for each locus; must be set
POSITIONS = variates
Position on the chromosome for each locus; must be set
IDLOCI = texts
Labels for the loci
CUMPOSITIONS = variates
Saves the cumulative positions of the loci along the genome
NLOCI = variates
Saves the number of loci on each chromosome
FIRST = variates
Saves the index number of the first locus of each chromosome
LAST = variates
Saves the index number of the last locus of each chromosome
LENGTHS = variates
Saves the lengths of the chromosomes
MIDDLEPOSITIONS = variates
Saves the middle positions of the chromosomes (as cumulative
positions)
SEPARATION = variates
Saves the positions of the gaps between chromosomes (as
cumulative positions)
GENOMELENGTH = scalars
Saves the length of the genome
TOTLENGTH = scalars
Saves the total length of the genome, including added gaps
between chromosomes

QDIALOG procedure
Produces a modal dialog box to obtain a response from the user.
Options
DIALOG = string token
Type of dialog box (checkbox, pushbutton, radiobutton,
text, integer, real, variable, query, message); no
default, must be specified
TITLE = text
Title for the dialog box; default * i.e. none
PREAMBLE = text
Informative text that appears above any controls on the dialog;
default * i.e. none
LABEL = text
Label for the data entry field; default * i.e. none
RESPONSE = identifier
Structure to store the response
STATUS = scalar
Stores the exit status as 1 for OK, 2 for cancel, 3 for no, or 4
for yes
DEFAULT = identifier
Default setting or settings to appear in the menu; default * i.e.
none
LIST = string token
Whether an integer, real or variable entry field can contain a
list of settings (yes, no); default no
HELP = texts
Help on the menu, to be displayed in a pop-up window; default
* i.e. none
ICON = string token
Type of icon to display in the dialog box (information,
warning, error, query); default * i.e. none
TIMEOUT = scalar
Permits the dialog to continue and return a default value after a
specified period (in seconds); default * i.e. no timeout
MINIMUM = scalar
Minimum value for numerical input fields; default * i.e. none
MAXIMUM = scalar
Minimum value for numerical input fields; default * i.e. none
Parameters
BOXLABEL = texts
Label for each checkbox or radio button
BOXRESPONSE = scalars
Indicates the selection status of each checkbox or radio button
QDISCRIMINATE procedure

Performs quadratic discrimination between groups i.e. allowing for different variance-covariance matrices (D.B. Baird).

Options
PRINT = string tokens
Printed output from the analysis (allocation, counts, distance, probabilities, specificity, summary, table, validation, vcovariance); default spec, summ, vali

VALIDATIONMETHOD = string token
Validation method to use to calculate error rates (bootstrap, crossvalidation, jackknife, prediction); default cros

NSIMULATIONS = scalar
Number of bootstraps or cross-validation sets; default 50

NCROSSVALIDATIONGROUPS = scalar
Number of groups for cross-validation, default 10

Parameters
DATA = pointers
Each pointer contains a training set of variates to be used to form a quadratic discrimination

GROUPS = factors
Define groupings for the units in each training set

PRIORPROBABILITIES = variates
Prior probabilities of group membership; default * i.e. equal

SEED = scalars
Seed for the random numbers used in bootstrapping or cross-validation; default 0 continues from the previous generation or (if none) initializes the seed automatically

ERRORRATE = scalars
Saves the validation error rate

SPECIFICITY = matrices
Saves the specificity table

ALLOCATION = factors
Saves the groups allocated by the discriminant rule

PROBABILITIES = matrices or pointers
Save posterior probabilities of membership of the groups (in the columns of a matrix or the variates in a pointer) for the units in the training set (in the rows)

QEIGENANALYSIS procedure

Uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables (M. Malosetti & J.T.N.M. Thissen).

Options
PRINT = string tokens
What to print (summary, scores); default summ

NROOTS = scalar
Number of principal components to retain; default saves the significant components

PLOT = string token
What to plot (eigenvalues, %variance); default eige, %var

PROBABILITY = scalar
Specifies the significance level; default 0.05

SCALING = string token
Whether to scale the principal component scores by the square roots of their singular values (singularvalues, none); default none

STANDARDIZE = string token
How to standardize the DATA variates (frequency, none); default freq

TITLE = text
General title for the plots

Parameters
DATA = pointers
Data variates; must be set

SCORES = pointers
Pointer of variates to store the scores of the significant axes for each set of DATA variates

EVALUES = variates
Saves the eigenvalues of the significant principal components

NEFFECTIVE = scalars
Saves the effective number of columns of the marker data matrix

%VARIANCE = variates
Saves the percentage variances explained by the significant principal components

CUM%VARIANCE = variates
Saves the cumulative percentage variances explained by the significant principal components
QEXPORT procedure

Exports genotypic and phenotypic data for QTL analysis (D.A. Murray).

Options
- **OUTFILENAME = text** Name of the file to receive the data
- **MAPFILENAME = text** Name of the associated map file for Flapjack or MapQTL
- **POPULATIONTYPE = string token** Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
- **NGENERATIONS = scalar** Number of generations for a RIL population
- **NAME = text** Name for the header in a .loc file
- **MISSING = text** Character to represent a missing genotype in Flapjack or R/QTL format; default '-'
- **SEPARATOR = text** Character to separate data values in Flapjack format; default separates them by tabs
- **ASEPARATOR = text** Character to separate allele values in Flapjack format; default '/'
- **FJROWS = string token** Specifies whether the genotypes or markers are to be stored on the rows in Flapjack format (genotypes,markers); default geno

Parameters
- **MKSCORES = pointers** Genotype codes for each marker
- **CHROMOSOMES = factors** Linkage groups for the markers
- **POSITIONS = variates** Positions within the linkage groups of markers
- **MKNAMES = texts** Marker names
- **MKSETS = factors** Marker sets
- **IDMGENOTYPES = texts** Labels for genotypes
- **PARENTS = pointers** Parent information
- **IDPARENTS = texts** Labels used to identify the parents

QFACTOR procedure

Allows the user to decide to convert texts or variates to factors (R.W. Payne).

Options
- **PRINT = string tokens** Controls printed output (replication,summary); default summ
- **MAXCATEGORY = scalar** Maximum number of distinct values that a VECTOR may contain if it is to be converted; default 10
- **QUERY = string token** Whether to ask the user if each VECTOR with no more than MAXCATEGORY distinct values is to be converted

Parameter
- **VECTOR = variates or texts** Vectors to be converted into factors

QFLAPJACK procedure

Creates a Flapjack project file from genotypic and phenotypic data (D.A. Murray).

Options
- **WORKDIRECTORY = text** Working directory to use for files; default current Genstat working directory
- **FJPATH = text** Path specifying the location of Flapjack; by default QFLAPJACK searches for a version of Flapjack installed within C:\program files (x86)\Flapjack or C:\program files\Flapjack
- **DECIMALSYMBOL = string token** Controls whether to use the locale (automatic) or English (dot) representation of decimal marks (automatic,dot); default auto

Parameters
- **FJFILENAME = texts** Name of the Flapjack project file to create
- **TRAITS = pointers** Pointer to variates containing the phenotypic trait data
4.1 Commands

GENOTYPES = factors
Genotype factor associated with the traits

ENVIRONMENTS = factors
Environment factor

GENFILENAME = texts
Name of a Flapjack genotype file

MAPFILENAME = texts
Name of a Flapjack map file

FJTRAITFILENAME = texts
Name of a file to supply the trait data, or to save them if the TRAITS and GENOTYPES parameters are also set

FJQTLFILENAME = texts
Name of a file to supply the QTL results, or to save them if the QSAVE parameter is also set

QSAVE = pointers
Information and results saved from an earlier QTL analysis

QGSELECT procedure

Obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization (J. Jansen & J.T.N.M. Thissen).

Options

- **PRINT = string tokens**
 What to print (summary, monitoring); default summ
- **NCLUSTERS = scalar**
 The number of genotypes to be selected; must be set
- **METHOD = string token**
 Method to be used (sampling, optimization); default samp

Parameters

- **GENOTYPES = factors**
 Genotype factor; must be set
- **SIMILARITY = symmetric matrices**
 Input similarity matrix for each selection; must be set
- **PRIORGROUPS = factors**
 Defines prior groupings of the genotypes
- **SELECTED = variates**
 Logical variate indicating whether a genotype is selected (1) as cluster centre or not (0)
- **NEIGHBOURS = variates**
 Saves the nearest cluster centres of the genotypes
- **DISTANCES = variates**
 Saves the distances of the genotypes to the nearest cluster centre
- **SEED = scalars**
 Seed for randomization at the start; default 0

QIBDPROBABILITIES procedure

Reads molecular marker data and calculates IBD probabilities (M.P. Boer & J.T.N.M. Thissen).

Options

- **PRINT = string tokens**
 What to print (summary, loci); default summ
- **STEPSIZE = scalar**
 Maximum stepsize along the genome; default 10^6, i.e. the IBD probabilities are calculated only at the marker positions
- **METHOD = string token**
 Method of calculation for IBD probabilities of RIL populations (approximate, exact); default appr
- **POPULATIONTYPE = string token**
 Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
- **NGENERATIONS = scalar**
 Number of generations of selfing for a RIL population
- **NBACKCROSSES = scalar**
 Number of backcrosses for a BCxSy population
- **NSELFINGS = scalar**
 Number of selfings for a BCxSy population
- **MAPPINGFUNCTION = string token**
 Mapping function (haldane, kosambi); default hald

Parameters

- **MKSCORES = pointers**
 Genotype codes for each marker; must be set
- **CHROMOSOMES = factors**
 The chromosome where each marker is located; must be set
- **POSITIONS = variates**
 The position on the chromosome of each marker; must be set
- **MKNAMES = texts**
 Marker names; must be set
- **IDMGENOTYPES = texts**
 Labels for the genotypes
- **PARENTS = pointers**
 Parent information; must be set
- **IDPARENTS = texts**
 Labels used to identify the parents; must be set
- **PEDIGREE = pointers**
 Defines the parents of the offspring
- **ADDITIVEPREDICTORS = pointers**
 Saves the additive genetic predictors
- **ADD2PREDICTORS = pointers**
 Saves the second (paternal) additive genetic predictors if POPULATIONTYPE is CP
DOMINANCEPREDICTORS = pointers
Saves the dominance genetic predictors if POPULATIONTYPE is F2, RIL, BCxSy or CP
SCHROMOSOMES = factors
Saves the chromosome where each locus is located
SPSITIONS = variates
Saves the position on the chromosome of each locus
LOCI = variates
Saves the index number of each locus
IDLOCI = texts
Saves the locus labels
MKLOCI = variates
Saves a logical variate indicating whether each locus is a marker
NLOCI = scalars
Saves the number of loci
NGENOTYPES = scalars
Saves the number of genotypes
APROBABILITIES = pointers
Saves probabilities of the genotypes being equal to parent A
BPROBABILITIES = pointers
Saves probabilities of the genotypes being equal to parent B
HPROBABILITIES = pointers
Saves the probabilities of the genotypes being heterozygous
ACPROBABILITIES = pointers
Saves the probabilities of the genotypes being AC when POPULATIONTYPE is CP
ADPROBABILITIES = pointers
Saves the probabilities of the genotypes being AD when POPULATIONTYPE is CP
BCPROBABILITIES = pointers
Saves the probabilities of the genotypes being BC when POPULATIONTYPE is CP
BDPROBABILITIES = pointers
Saves the probabilities of the genotypes being BD when POPULATIONTYPE is CP
OUTFILENAME = texts
Name of the Genstat workbook file (*.gwb) to be created

QIMPORT procedure

Imports genotypic and phenotypic data for QTL analysis (D.A. Murray).

Options
PRINT = string token
What to print (catalogue, errorreport); default cata, erro
POPULATIONTYPE = string token
Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
MISSING = text
Character representing a missing genotype in Flapjack or R/QTL format; default '-'
SEPARATOR = text
Character separating data values in Flapjack format; default separates them by tabs
ASEPARATOR = text
Character separating allele values in Flapjack format; default '/'
FJROWS = string token
Specifies whether the genotypes or markers are stored on the rows in Flapjack format (genotypes, markers); default geno
NPARENTS = scalar
Number of parents in Flapjack file; default 0 for population AMP, 4 for CP, and 2 otherwise

Parameters
FILENAME = texts
Name of the file for import
MAPFILENAME = texts
Name of the map file (Flapjack or MapQTL®)
PHEFILENAME = texts
Name of the phenotypic file (MapQTL®)
MKSCORES = pointers
Saves the genotype codes for each marker
TRAILS = pointers
Saves the trait data from the phenotypic file
CHROMOSOMES = factors
Saves linkage groups for each marker
POSITIONS = variates
Saves positions of the markers within linkage groups
MNAMES = texts
Saves the marker names
MKSETS = factors
Saves marker sets
IDQGENOTYPES = texts
Labels for genotypes
PARENTS = pointers
Saves the parent information
IDPARENTS = texts
Saves the labels used to identify the parents
IDFILENAME = texts
Specifies a file containing genotype labels for MapQTL® files; if unset, they are assumed to be in the .loc file
4.1 Commands

QKINSHIPMATRIX procedure

Forms a kinship matrix from molecular markers (L.C.P. Keizer & J.T.N.M. Thissen).

Options

- PRINT = string token
 - What to print (summary); default summ
- METHOD = string token
 - Method to use for the calculation (correlation, dice); default dice

Parameters

- MKSCORES = pointers
 - Pointer with the marker scores; must be set
- IDGENOTYPES = texts
 - Labels for the genotypes
- KMATRIX = symmetric matrices
 - Saves the kinship matrix
- OUTFILENAME = texts
 - Name of the file to receive the kinship matrix

QLDDECAY procedure

Estimates linkage disequilibrium (LD) decay along a chromosome (M. Malosetti & J.T.N.M. Thissen).

Options

- PRINT = string token
 - What to print (progress); default *
- PLOT = string tokens
 - What to plot (ldmatrix, lddecay); default ldde
- RELATIONSHIPMODEL = string token
 - What model to use to account for genetic relatedness

 - (eigenanalysis, subpopulations, null); default eige

 - Provides the scores of significant principal components, obtained from an eigenvalue analysis
- SCORES = pointer
- SUBPOPULATIONS = factor
 - Defines groupings of genotypes into subpopulations
- CHRONALYSE = scalar
 - Defines which chromosome to analyse, using a level of the

 - CHROMOSOMES: factor
- MAXMISSING = scalar
 - Markers with more than the specified % of missing values will be excluded from the LD calculations; default 20
- MAXDISTANCE = scalar
 - Defines the maximum distance between markers to show in LD plots; default 30
- TITLE = text
 - General title for the plots
- YTITLE = text
 - Title for the y-axis
- XTITLE = text
 - Title for the x-axis

Parameters

- MKSCORES = pointers
 - Genotype codes for each marker; must be set
- CHROMOSOMES = factors
 - Linkage groups for the markers; must be set
- POSITIONS = variates
 - Positions within the linkage groups of markers; must be set
- DISTANCES = symmetric matrices
 - Saves the distances between markers
- R2 = symmetric matrices
 - Saves the value of r^2 between markers

QLINKAGEGROUPS procedure

Forms linkage groups using marker data from experimental populations (J. Jansen, J.T.N.M. Thissen & M.P. Boer).

Options

- PRINT = string token
 - What to print (summary); default summ
- POPULATIONTYPE = string token
 - Type of population (BC1, DH1, F2, RIL, CP); must be set
- USEPENALTY = string token
 - Whether to increase the number of recombinations by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no
- THRESHOLD = scalar or variate
 - Threshold for the recombination frequency at which markers are said to be linked; default 0.2

Parameters

- MKSCORES = pointers
 - Marker scores for each marker; must be set
- CHROMOSOMES = factors or pointers
 - Saves the linkage groups of the markers
- MKNAMES = texts
 - Names of the markers; must be set
- PARENTS = pointers
 - Marker scores of the parents; must be set
Syntax summary

SMKSCORES = pointers
Saves the marker scores factors according to the **SMKNAMES** parameter.

SCHROMOSOMES = factors or pointers
Saves the sorted linkage groups.

SMKNAMES = texts or pointers
Saves the names of the markers according to the **SCHROMOSOMES** parameter.

SPARENTS = pointers
Saves the parent information according to the **SMKNAMES** parameter when **POPULATIONTYPE**=CP.

QLIST procedure

Gets the user to select a response interactively from a list (R.W. Payne).

Option
HELP = text
Help information for the **QUESTION**

Parameters
ALTERNATIVES = texts
Alternatives from which each choice is to be made

CODES = texts
Codes to use to represent each set of alternatives

PREAMBLE = texts
Preamble for the question used to select from each set of alternatives

CHOICE = texts
Alternative chosen from each set

NCHOICE = scalars
Numbers of the chosen alternatives (0 if exit has been chosen instead)

QMAP procedure

Constructs genetic linkage maps using marker data from experimental populations (J. Jansen, J.T.N.M. Thissen & M.P. Boer).

Options
PRINT = string token
What to print (map, monitoring, summary); default summ

PLOT = string token
What to plot (frequencies, map); default map

POPULATIONTYPE = string token
Type of population (BC1, DH1, F2, RIL, CP); must be set

USEPENALTY = string token
Whether to increase the number of recombinations by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no

SPATIALMETHOD = string token
Which method to use for clustering (sampling, optimization, none); default opti for population CP, samp otherwise

NGROUPS = scalar
Number of groups for clustering; default 10

MAPCHROMOSOMES = variate, text or scalar
Allows a subset of chromosomes to be mapped; default * i.e. all the chromosomes

LINKAGEPHASES = string token
Controls estimation of linkage phases for population type CP (estimate, omit); default esti

TITLE = text
General title for the graph

OUTFILENAME = text
Name (without extension) of the Flapjack files to be created

Parameters
MKSCORES = pointers
Marker scores for each marker; must be set

CHROMOSOMES = factors
Factor defining the linkage groups

POSITIONS = variates
Saves the positions of markers

MKNAMES = texts
Names of the markers; must be set

IDMGENOTYPES = texts
Names of the genotypes

PARENTS = pointers
Marker scores of the parents; must be set

IDPARENTS = texts
Labels to identify the parents

SMKSCORES = pointers
Saves the scores of the markers, sorted according to the markers in the **SCHROMOSOMES** factor (if **CHROMOSOMES** is set) and the **SPOSITIONS** variate.

SCHROMOSOMES = factors
Saves the sorted linkage groups

SPOSITIONS = variates
Saves the sorted positions of markers (within the sorted linkage groups if **CHROMOSOMES** is set).
SMKNAMES = texts
Saves the names of the markers, sorted according to the
SCHROMOSOMES factor (if CHROMOSOMES is set) and the
SPOSITIONS variate

SPARENTS = pointers
Saves the marker scores of the parents, sorted according to the
markers in the SCHROMOSOMES factor (if CHROMOSOMES is set)
and the SPOSITIONS variate

SEED = scalars
Seed for the random numbers used for spatial sampling;
default 0

QMASSOCIATION procedure
Performs multi-environment marker-trait association analysis in a genetically diverse population

Options
PRINT = string tokens
What to print (summary, progress); default summ

PLOT = string tokens
What to plot (profile, map); default prof, map

RELATIONSHIPMODEL = string token
What model to use to account for genetic relatedness
(autocorelation, subpopulations, null); default eige

VCMODEL = string token
Specifies the variance-covariance model for the set of
environments (identity, diagonal, cs, hcs, outside, fa,
unstructured, best); default best

CRITERION = string token
Defines which criterion is used to compare the different
covariance structures (aic, sic); default sic

MINORALLELE = scalar
Frequency of minor alleles; default 0.05

THRESHOLD = scalar
Threshold value for significant LD, on the −log10 scale;
default 2

SUBPOPULATIONS = factor
Defines groupings of genotypes into subpopulations

MODELPART = string token
Defines which part of the model should include
SUBPOPULATIONS if RELATIONSHIPMODEL is set to
subpopulations, or the principal components scores if
RELATIONSHIPMODEL is set to eigenanalysis (fixed,
random); default rand

SCALING = string token
Whether to scale the scores by the square roots of their
singular values if RELATIONSHIPMODEL is set to
eigenanalysis (singularvalues, none); default sing

STANDARDIZE = string token
Whether to standardize the marker scores according to their
frequencies (frequency, none); default freq

TITLE = text
General title for the plots

YTITLE = text
Title for the y-axis

XTITLE = text
Title for the x-axis

Parameters
TRAIT = variates
Phenotypic trait to analyse; must be set

GENOTYPES = factors
Genotype factor; must be set

ENVIRONMENTS = factors
Environment factor; must be set

MKSCORES = pointers
Genotype codes for each marker; must be set

CHROMOSOMES = factors
Linkage groups for the markers; must be set

POSITIONS = variates
Positions within the linkage groups of markers; must be set

MKNAMES = texts
Marker names

WALDSTATISTICS = variates
Saves the Wald test statistics

NDF = variates
Saves the degrees of freedom associated to the Wald test

MINLOG10P = variates
Saves the associated probability values of the Wald test
statistics, on a −log10 scale

QSAVE = pointers
Saves a pointer with information and results for the significant
effects

DFILENAME = texts
Name of the graphics file for the plots
QMATCH procedure

Matches different data structures to be used in QTL estimation (L.C.P. Keizer & J.T.N.M. Thissen).

Options

- **PRINT = string tokens**
 What to print (summary, details); default summ
- **GEN%MISSING = scalar**
 Percentage of missing values allowed for a genotype; default 50
- **MK%MISSING = scalar**
 Percentage of missing values allowed for a marker; default 50
- **MK%EXTREME = scalar**
 Extreme allele percentage allowed for a marker; default 5
- **GENSELECTION = variate**
 Logical variate containing the value one for the genotypes to retain and zero for those to remove (supersedes the options GEN%MISSING, MK%MISSING and MK%EXTREME)
- **MKSELECTION = variate**
 Logical variate containing the value one for the markers to retain and zero for those to remove (supersedes the options GEN%MISSING, MK%MISSING and MK%EXTREME)
- **POPCULATIONTYPE = string token**
 Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
- **OUTFILEPREFIX = text**
 Prefix for the output file names; default * i.e. files not saved

Parameters

- **TRAITS = pointers or variates**
 Quantitative traits
- **GENOTYPES = factors**
 Genotype factors corresponding to the traits
- **ENVIRONMENTS = factors**
 Environment factors corresponding to the traits
- **MKSCORES = pointers**
 Marker scores; must be set
- **CHROMOSOMES = factors**
 Chromosomes corresponding to the markers
- **POSITIONS = variates**
 Positions on the chromosomes corresponding to the markers
- **MKNAMES = texts**
 Names of the markers
- **IDMGENOTYPES = texts**
 Labels for the genotypes corresponding to the markers
- **PARENTS = pointers**
 Parent information
- **IDPARENTS = texts**
 Labels used to identify the parents
- **KMATRIX = symmetric matrices**
 Kinship matrices containing coefficients of coancestries
- **SUBPOPULATIONS = factors**
 Groups of genotypes
- **STRAITS = pointers or variates**
 Saves the sorted quantitative traits
- **SGENOTYPES = factors**
 Saves the sorted genotype factors
- **SENvironments = factors**
 Saves the sorted environment factors
- **SMKSCORES = pointers**
 Saves the sorted marker scores; must be set
- **SCHROMOSOMES = factors**
 Saves the sorted chromosomes corresponding to the markers
- **SPOSITIONS = variates**
 Saves the sorted positions on the chromosomes corresponding to the markers
- **SMKNAMES = texts**
 Saves the sorted names of the markers
- **SIDMGENOTYPES = texts**
 Saves the sorted labels for the genotypes
- **SPARENTS = pointers**
 Saves the sorted parent information
- **SIDPARENTS = texts**
 Saves the sorted labels used to identify the parents
- **SKMATRIX = symmetric matrices**
 Saves the sorted kinship matrices
- **SSUBPOPULATIONS = factors**
 Saves the sorted groups of genotypes

QMBACKSELECT procedure

Options

- **PRINT = string tokens**
 What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
- **POPCULATIONTYPE = string token**
 Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
- **ALPHALEVEL = scalar**
 Defines a significance level; default 0.05
- **VCMODEL = string token**
 Defines the variance-covariance model for the set of
4.1 Commands

VCPARMTERMS = string token
Whether to re-estimate the variance-covariance model parameters (estimate, fix); default estl

VCSELECT = string token
Whether to re-select the variance-covariance model (no, yes); default no

CRITERION = string token
Criterion to use for model selection (aic, sic); default sic

FIXED = formula
 Defines extra fixed effects

UNITFACTOR = factor
Saves the units factor required to define the random model when UNITERERROR is to be used

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar

MAXCYCLE = scalar
Limit on the number of iterations; default 100

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

TRAIT = variates
Quantitative trait to be analysed; must be set

GENOTYPES = factors
Genotype factor; must be set

ENVIRONMENTS = factors
Environment factor; must be set for a multi-environment trial

POPULATIONS = factors
Population factor; must be set for a multiple-population analysis

UNITERERROR = variates
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

VCINITIAL = pointers
Initial values for the parameters of the variance-covariance model

SELECTEDMODEL = texts
VCMODEL setting for the selected covariance structure

ADITIVEPREDICTORS = pointers
Additive genetic predictors; must be set

ADD2PREDICTORS = pointers
Second (paternal) set of additive genetic predictors

DOMINANCEPREDICTORS = pointers
Dominance genetic predictors

CHROMOSOMES = factors
Chromosomes corresponding to the genetic predictors; must be set

POSITIONS = variates
Positions on the chromosomes corresponding to the genetic predictors; must be set

IDLOCI = texts
Labels for the loci

IDMGENOTYPES = texts
Labels for the genotypes corresponding to the genetic predictors

QTLCANDIDATES = variates
Specifies the locus index numbers from which to start the selection; must be set

QTLESELECTED = variates
Saves the index numbers of the selected QTLs

INTERACTIONS = variates
Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) QTL-by-environment or QTL-by-population interaction

DOMSELECTED = variates
Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) effect of the DOMINANCEPREDICTORS

DOMINTERACTIONS = variates
Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) dominance-by-environment or dominance-by-population interaction

WALDSTATISTICS = variates
Saves the Wald test statistics

PRWALD = variates
Saves the associated Wald probabilities
QMESTIMATE procedure

Options

- **PRINT = string tokens**
 What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ

- **POPULATIONTYPE = string token**
 Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

- **NGENERATIONS = scalar**
 Number of generations of selfing for a RIL population

- **NBACKCROSSES = scalar**
 Number of backcrosses for a BCxSy population

- **NSELFINGS = scalar**
 Number of selfings for a BCxSy population

- **VCMODEL = string token**
 Specifies the variance-covariance model for the set of environments or populations (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs for multi-environment trials, and diagonal for multiple populations

- **VCPARAMETERS = string token**
 Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti

- **VCSELECT = string token**
 Whether to re-select the variance-covariance model (no, yes); default no

- **CRITERION = string token**
 Criterion to use for model selection (aic, sic); default sic

- **FIXED = formula**
 Defines extra fixed effects

- **UNITFACTOR = factor**
 Saves the units factor required to define the random model when UNITERROR is to be used

- **MVINCLUDE = string tokens**
 Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar

- **MAXCYCLE = scalar**
 Limit on the number of iterations; default 100

- **WORKSPACE = scalar**
 Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

- **TRAIT = variates**
 Quantitative trait to be analysed; must be set

- **GENOTYPES = factors**
 Genotype factor; must be set

- **ENVIRONMENTS = factors**
 Environment factor; must be set for a multi-environment trial

- **POPULATIONS = factors**
 Population factor; must be set for a multiple-population analysis

- **UNITERROR = variates**
 Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

- **VCINITIAL = pointers**
 Initial values for the parameters of the variance-covariance model

- **SELECTEDMODEL = texts**
 VCMODEL setting for the selected covariance structure

- **ADDITIVEPREDICTORS = pointers**
 Additive genetic predictors; must be set

- **ADD2PREDICTORS = pointers**
 Second (paternal) set of additive genetic predictors

- **DOMINANCEPREDICTORS = pointers**
 Dominance genetic predictors

- **CHROMOSOMES = factors**
 Chromosomes corresponding to the genetic predictors; must be set

- **POSITIONS = variates**
 Positions on the chromosomes corresponding to the genetic predictors; must be set

- **IDLOCI = texts**
 Labels for the loci; must be set

- **MKLOCI = variates**
 Logical variate containing the value 1 if the locus is a marker, otherwise 0; must be set

- **IDMGENOTYPES = texts**
 Labels for the genotypes corresponding to the genetic predictors

- **IDPARENTS = texts**
 Labels to identify the parents
QTLSELECTED = variates

Index numbers of the selected QTLs; must be set

INTERACTIONS = variates

Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-environment or QTL-by-population interaction

DOMSELECTED = variates

Logical variate indicating whether the dominance predictor of each selected QTL must be present (1) or absent (0) in the model

DOMINTERACTIONS = variates

Logical variate indicating whether the dominance-by-environment or dominance-by-population interaction of each selected QTL must be present (1) or absent (0) in the model

RESIDUALS = variates

Residuals from the analysis

FITTEDVALUES = variates

Fitted values from the analysis

WALDSTATISTICS = variates

Saves the Wald test statistics

PRWALD = variates

Saves the associated Wald probabilities

DFWALD = variates

Saves the degrees of freedom for the Wald test

QEFFECTS = pointers

Saves the estimated QTL effects

QSE = pointers

Saves the standard errors of the QTL effects

OUTFILENAME = texts

Name of the Genstat workbook file (*.gwb) to be created

QSAVE = pointers

Saves a pointer with information and results for the significant effects

SAVE = REML save structures

Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

QMKDIAGNOSTICS procedure

Options

PRINT = string tokens

What to print (summary, missingvalues, frequencies); default: summ, miss, freq

PLOT = string tokens

What to plot (missingvalues, frequencies, probabilities, genotypes, map); default: miss, geno, map

GEN%MISSING = scalar

Threshold for printing genotypes with many missing values (i.e. genotypes with a higher percentage of missing values than the specified value); default: 10

MK%MISSING = scalar

Threshold for printing markers with many missing values (i.e. markers with a higher percentage of missing values than the specified value); default: 10

MK%EXTREME = scalar

Threshold for printing markers with rare alleles (i.e. alleles present with a lower percentage than the specified threshold); default: 10

POPULATIONTYPE = string token

Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set

NGENERATIONS = scalar

Number of generations for a RIL population; default: 6

NBACKCROSSES = scalar

Number of backcrosses; must be set for a BCxSy population

NSELFINGS = scalar

Number of selfings; must be set for a BCxSy population

DCHROMOSOMES = variate, text or scalar

Specifies a subset of the linkage groups to be displayed

PDIRECTION = string token

How to sort the probabilities when PRINT=frequencies with BC1, DH1, F2, RIL and BCxSy populations (ascending, descending); default: * i.e. no sorting

Parameters

MKSCORES = pointers

Genotype codes for each marker; must be set

CHROMOSOMES = factors

Linkage groups for the markers; must be set

POSITIONS = variates

Positions within the linkage groups of markers; must be set

MKNAMES = texts

Marker name; must be set
IDMGENOTYPES = texts
Labels for genotypes corresponding to the marker scores
PARENTS = pointers
Parent information
IDPARENTS = texts
Labels to identify the parents
GENCHECK = variates
Logical variates containing the value one for genotypes with missing value problems, according to the setting of the GENMISSING option, and zero otherwise
MKCHECK = variates
Logical variates containing the value one for markers with missing or extreme value problems, as defined by the MKMISSING and MKEXTREME options, and zero otherwise
SUMMARY = pointers
Saves a summary of counts and probabilities for the chi-square tests for BC1, DH1, F2, RIL and BCxSy populations

QMKRECODE procedure
Recodes marker and/or parental scores into separate alleles (L.C.P. Keizer & J.T.N.M. Thissen).

Options
- PRINT = string tokens
 What to print (alleles, summary); default alle
- POPULATIONTYPE = string token
 Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
- MISSING = text
 Character representing a missing genotype; default '-'
- USEFIRSTGENOTYPE = string token
 Makes all the first (and second) labels of the LABALLELES pointer from the first genotype of the population (yes, no); default no
- ASEPARATOR = text
 Character separating allele values; default '/'

Parameters
- MKSCORES = pointers
 Marker scores; must be set
- MKALLELES = pointers
 Saves the marker scores per allele
- LABALLELES = pointers
 Saves the allele labels
- MKLABALLELES = pointers
 Saves the allele labels per marker
- NALLELES = variates
 Saves the number of alleles per marker
- MKNAMES = texts
 Names of the markers

QMKSELECT procedure
Obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization (J. Jansen & J.T.N.M. Thissen).

Options
- PRINT = string tokens
 What to print (summary, monitoring); default summ
- NCLUSTERS = scalar
 The number of markers to be selected; must be set
- METHOD = string token
 Method to be used (sampling, optimization); default samp

Parameters
- MKNAMES = texts
 Names of the markers; must be set
- RECFREQUENCY = symmetric matrices
 Input recombination frequencies matrix for each selection; must be set
- PRIORGROUPS = factors
 Defines prior groupings of the markers
- SELECTED = variates
 Logical variate indicating whether a marker is selected (1) as cluster centre or not (0)
- NEIGHBOURS = variates
 Saves the nearest cluster centres of the markers
- DISTANCES = variates
 Saves the distances of the markers to the nearest cluster centre
- SEED = scalars
 Seed for randomization at the start; default 0

QMQTLSCAN procedure
Performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-environment trials or multiple populations (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options
- PRINT = string tokens
 What to print (summary, progress, model, components,
4.1 Commands

effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ

PLOT = string token
Whether to plot the profile along the genome (profile); default prof

POPULATIONTYPE = string token
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

ALPHALEVEL = scalar
Defines a genome-wide significance level to calculate the threshold; default 0.05

VCMODEL = string token
Specifies the variance-covariance model for the set of environments or populations (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs for multi-environment trials, and diagonal for multiple populations

VCPARAMETERS = string token
Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti

QTLMODEL = string token
Type of QTL model (q, qqe); default qqe

COFACTORS = variate
Index numbers of loci to be used as cofactors for the genetic background

COFWINDOW = scalar
Specifies a window for cofactor exclusion from the model; default 10^6 which means that all cofactors on the same chromosomes are excluded

THRMETHOD = string token
Which method to use to calculate the threshold for QTL detection (bonferroni, liji, given); default liji

THRESHOLD = scalar
Threshold value for test statistic when THRMETHOD=given

DISTANCE = scalar
Distance between loci when THRMETHOD=bonferroni; default 4

FIXED = formula
Formula with extra fixed terms

UNITFACTOR = factor
Saves the units factor required to define the random model when UNITERROR is to be used

STATISTICTYPE = string token
Which test statistic to plot and save using the STATISTICS parameter (wald, minlog10p); default min1

COLOURS = scalar, variate or text
Colours to use for the chromosomes; default * uses the colours of pens 1, 2 up to the number of chromosomes

TITLE = text
General title for the plot

YLOWERTITLE = text
Title for the y-axis of the lower graph; default 'Environments' for multi-environment trials, and 'Populations' for multiple populations

YUPPERTITLE = text
Title for the y-axis of the upper graph; default uses the identifier of the STATISTICS variate or pointer

XTITLE = string
Title for the x-axis; default 'Chromosomes'

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar

MAXCYCLE = scalar
Limit on the number of iterations; default 100

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

TRAIT = variates
Quantitative trait to be analysed; must be set

GENOTYPES = factors
Genotype factor; must be set

ENVIRONMENTS = factors
Environment factor; must be set for a multi-environment trial

POPULATIONS = factors
Population factor; must be set for a multiple-population analysis

UNITERROR = variate
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

VCINITIAL = pointers
Initial values for the parameters of the variance-covariance
model

ADDPREDICTORS = pointers Additive genetic predictors; must be set
ADD2PREDICTORS = pointers Second (paternal) set of additive genetic predictors
DOMINANCEPREDICTORS = pointers Dominance genetic predictors
CHROMOSOMES = factors Chromosomes corresponding to the genetic predictors; must be set
POSITIONS = variates Positions on the chromosomes corresponding to the genetic predictors; must be set
IDLOCI = texts Labels for the loci
IDMGENOTYPES = texts Labels for the genotypes corresponding to the genetic predictors
IDEFFECTS = texts Labels for the effects along the y-axis, in the frame below the profile plot
IDPARENTS = texts Labels to use to identify the parents
QSTATISTICS = variates Saves test statistics for QTL effects along the genome
QEFFECTS = pointers Saves QTL effects along the genome
QSE = pointers Saves standard errors of the QTL effects
OUTFILENAME = texts Name of the Genstat workbook file (*.gwb) to be created
DFFILENAME = texts Name of the graphics file for the plots

QMTBACKSELECT procedure

Options

PRINT = string tokens What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ

POPULATIONTYPE = string token Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

ALPHALEVEL = scalar Defines a significance level; default 0.05

VCMODEL = string token Defines the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs

VCPARAMETERS = string token Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti

VCSELECT = string token Whether to re-select the variance-covariance model (no, yes); default no

STANDARDIZE = string token How to standardize the traits (none, normalize); default norm

CRITERION = string token Criterion to use for model selection (aic, sic); default sic

FIXED = formula Defines extra fixed effects

UNITFACTOR = factor Saves the units factor required to define the random model when UNITERROR is to be used

MVINCLUDE = string tokens Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar

MAXCYCLE = scalar Limit on the number of iterations; default 100

WORKSPACE = scalar Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

Y = variates Quantitative traits to be analysed; must be set

GENOTYPES = factors Genotype factor; must be set

FTRAITS = factors Factor indicating the trait of each y-value; must be set

UNITERROR = variates Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e.
VCINITIAL = pointers

Initial values for the parameters of the variance-covariance model

SELECTEDMODEL = texts

VCMODEL setting for the selected covariance structure

ADDPREDICTORS = pointers

Additive genetic predictors; must be set

ADD2PREDICTORS = pointers

Second (paternal) set of additive genetic predictors

DOMINANCEPREDICTORS = pointers

Dominance genetic predictors

CHROMOSOMES = factors

Chromosomes corresponding to the genetic predictors; must be set

POSITIONS = variates

Positions on the chromosomes corresponding to the genetic predictors; must be set

IDLOCI = texts

Labels for the loci

IDMGENOTYPES = texts

Labels for the genotypes corresponding to the genetic predictors

QTLCANDIDATES = variates

Specifies the locus index numbers from which to start the selection; must be set

QTLSELECTED = variates

Saves the index numbers of the selected QTLs

INTERACTIONS = variates

Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) QTL-by-trait interaction

DOMSELECTED = variates

Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) effect of the DOMINANCEPREDICTORS

DOMINTERACTIONS = variates

Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) dominance-by-trait interaction

WALDSTATISTICS = variates

Saves the Wald test statistics

PRWALD = variates

Saves the associated Wald probabilities

QMTESTIMATE procedure

Options

PRINT = string tokens

What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ

POPULATIONTYPE = string token

Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

NGENERATIONS = scalar

Number of generations of selfing for a RIL population

NBACKCROSSES = scalar

Number of backcrosses for a BCxSy population

NSELFINGS = scalar

Number of selfings for a BCxSy population

VCMODEL = string token

Specifies the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs

VCPARAMETERS = string token

Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti

VCSELECT = string token

Whether to re-select the variance-covariance model (no, yes); default no

STANDARDIZE = string token

How to standardize the traits (none, normalize); default norm

CRITERION = string token

Criterion to use for model selection (sic, sic); default sic

FIXED = formula

Defines extra fixed effects

UNIFACTOR = factor

Saves the units factor required to define the random model when UNIFERROR is to be used

MVINCLUDE = string tokens

Whether to include units with missing values in the explanatory factors and variates and/or the y-variates
Syntax summary

MAXCYCLE = _scalar_

Limit on the number of iterations; default 100

WORKSPACE = _scalar_

Number of blocks of internal memory to be set up for use by the **REML** algorithm; default 100

Parameters

- **Y** = _variate_

 Quantitative traits to be analysed; must be set

- **GENOTYPES** = _factors_

 Genotype factor; must be set

- **FTRAITS** = _factors_

 Factor indicating the trait of each y-value; must be set

- **UNITERROR** = _variate_

 Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

- **VCINITIAL** = _pointers_

 Initial values for the parameters of the variance-covariance model

- **SELECTEDMODEL** = _texts_

 VCMODEL setting for the selected covariance structure

- **ADDITIVEPREDICTORS** = _pointers_

 Additive genetic predictors; must be set

- **ADD2PREDICTORS** = _pointers_

 Second (paternal) set of additive genetic predictors

- **DOMINANCEPREDICTORS** = _pointers_

 Dominance genetic predictors

- **CHROMOSOMES** = _factors_

 Chromosomes corresponding to the genetic predictors; must be set

- **POSITIONS** = _variates_

 Positions on the chromosomes corresponding to the genetic predictors; must be set

- **IDLOCI** = _texts_

 Labels for the loci; must be set

- **MKLOCI** = _variates_

 Logical variate containing the value 1 if the locus is a marker, otherwise 0; must be set

- **IDMGENOTYPES** = _texts_

 Labels for the genotypes corresponding to the genetic predictors

- **IDPARENTS** = _texts_

 Labels to identify the parents

- **QTLSELECTED** = _variates_

 Index numbers of the selected QTLs; must be set

- **INTERACTIONS** = _variates_

 Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-trait interaction

- **DOMSELECTED** = _variates_

 Logical variate indicating whether the dominance predictor of each selected QTL must be present (1) or absent (0) in the model

- **DOMINTERACTIONS** = _variates_

 Logical variate indicating whether the dominance-by-trait interaction of each selected QTL must be present (1) or absent (0) in the model

- **RESIDUALS** = _variates_

 Residuals from the analysis

- **FITTEDVALUES** = _variates_

 Fitted values from the analysis

- **WALDSTATISTICS** = _variates_

 Saves the Wald test statistics

- **PRNLD** = _variates_

 Saves the associated Wald probabilities

- **DFNLD** = _variates_

 Saves the degrees of freedom for the Wald test

- **QEFFECTS** = _pointers_

 Saves the estimated QTL effects

- **QSE** = _pointers_

 Saves the standard errors of the QTL effects

- **OUTFILENAME** = _texts_

 Name of the Genstat workbook file (*.gwb) to be created

- **QSAVE** = _pointers_

 Saves a pointer with information and results for the significant effects

- **SAVE** = _REML save structures_

 Save the details of each **REML** analysis for use in subsequent **VDISPLAY** and **VKEEP** directives

QMTQTLSCAN procedure

QMTQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials (M.P. Boer, M. Malosetti, S.J. Welham & J.T.N.M. Thissen).

Options

- **PRINT** = _string tokens_

 What to print (summary, progress, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues,....)...
4.1 Commands

covariancemodels); default summ

PLOT = string token
Whether to plot the profile along the genome (profile); default prof

POPULATIONTYPE = string token
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

ALPHALEVEL = scalar
Defines a genome-wide significance level to calculate the threshold; default 0.05

VCMODEL = string token
Specifies the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs

VCPARAMETERS = string token
Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti

STANDARDIZE = string token
How to standardize the traits (none, normalize); default norm

COFACTORS = variate
Index numbers of loci to be used as cofactors for the genetic background

COFWINDOW = scalar
Specifies a window for cofactor exclusion from the model; default 10^6 which means that all cofactors on the same chromosomes are excluded

THRMETHOD = string token
Which method to use to calculate the threshold for QTL detection (bonferroni, liji, given); default liji

THRESHOLD = scalar
Threshold value for test statistic when THRMETHOD=given

DISTANCE = scalar
Distance between loci when THRMETHOD=bonferroni; default 4

FIXED = formula
Formula with extra fixed terms

UNITFACTOR = factor
Saves the units factor required to define the random model when UNITERROR is to be used

STATISTICSTYPE = string token
Which test statistic to plot and save using the STATISTICS parameter (wald, minlog10p); default minl

COLOURS = scalar, variate or text
Colours to use for the chromosomes; default * uses the colours of pens 1, 2 up to the number of chromosomes

TITLE = text
General title for the plot

YLOWERTITLE = text
Title for the y-axis of the lower graph(s); default 'Traits'

YUPPERTITLE = text
Title for the y-axis of the upper graph; default uses the identifier of the STATISTICS variate or pointer

XTITLE = string
Title for the x-axis; default 'Chromosomes'

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar

MAXCYCLE = scalar
Limit on the number of iterations; default 100

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

Y = variates
Quantitative traits to be analysed; must be set

GENOTYPES = factors
Genotype factor; must be set

FTRAITS = factors
Factor indicating the trait of each y-value; must be set

UNITERROR = variate
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

VCINITIAL = pointers
Initial values for the parameters of the variance-covariance model

ADDITIVEPREDICTORS = pointers
Additive genetic predictors; must be set

ADD2PREDICTORS = pointers
Second (paternal) set of additive genetic predictors

DOMINANCEPREDICTORS = pointers
Dominance genetic predictors

CHROMOSOMES = factors
Chromosomes corresponding to the genetic predictors; must be set

POsITIONS = variates
Positions on the chromosomes corresponding to the genetic
predictors; must be set
IDLOCI = texts Labels for the loci
IDMGENOTYPES = texts Labels for the genotypes corresponding to the genetic predictors
IDEFFECTS = texts Labels for the effects along the y-axis, in the frame below the profile plot
IDPARENTS = texts Labels to use to identify the parents
QSTATISTICS = variates Saves test statistics for QTL effects along the genome
QEFFECTS = pointers Saves QTL effects along the genome
QSE = pointers Saves standard errors of the QTL effects
OUTFILENAME = texts Name of the Genstat workbook file (*.gwb) to be created
DFILENAME = texts Name of the graphics file for the plots

QMVAF procedure

Options
PRINT = string token What to print (summary); default summ
SELECTION = string tokens What types of statistics to calculate (add, drop, cumulative); default add, drop, cumu
METHOD = string tokens What methods to use to calculate the percentage variance accounted for (trace, determinant); default trac, dete
VCMODEL = string token Specifies the variance-covariance model for the set of environments (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs
FIXED = formula Defines extra fixed effects
UNITFACTOR = factor Saves the units factor required to define the random model when UNITERROR is to be used
MVINCLUDE = string tokens Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar
MAXCYCLE = scalar Limit on the number of iterations; default 100
WORKSPACE = scalar Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters
TRAIT = variates Quantitative trait to be analysed; must be set
GENOTYPES = factors Genotype factor; must be set
ENVIRONMENTS = factors Environment factor; must be set
UNITERROR = variate Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
VCINITIAL = pointers Initial values for the parameters of the variance-covariance model
ADDITIVEPREDICTORS = pointers Additive genetic predictors; must be set
CHROMOSOMES = factors Chromosomes corresponding to the genetic predictors; must be set
POSITIONS = variates Positions on the chromosomes corresponding to the genetic predictors; must be set
IDLOCI = texts Labels for the loci
QTLSELECTED = variates Index numbers of the selected QTLs; must be set
INTERACTIONS = variates Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-environment interaction
OUTFILENAME = texts Name of the Genstat workbook file (*.gwb) to be created
QMVESTIMATE procedure
Replaces missing molecular marker scores using conditional genotypic probabilities (D.A. Murray & M. Malosetti).

Options
POPULATIONTYPE = string token
Type of population (BC1, DH1, F2, RIL, BCxSy); must be set
NGENERATIONS = scalar
Number of generations of selfing for a RIL population
NBACKCROSSES = scalar
Number of backcrosses for a BCxSy population
NSELFINGS = scalar
Number of selfings for a BCxSy population

Parameters
MKSCORES = pointers
Genotype codes for each marker; must be set
CHROMOSOMES = factors
The chromosome where each marker is located; must be set
POSITIONS = variates
The position on the chromosome of each marker; must be set
MKNAMES = texts
Marker names; must be set
IDMGENOTYPES = texts
Labels for the genotypes
PARENTS = pointers
Parent information; must be set
IDPARENTS = texts
Labels used to identify the parents; must be set
NEWMKSCORES = pointers
Saves the imputed genotype codes for each marker; if this is not set, the imputed values overwrite those in MKSCORES

QMVREPLACE procedure
Replaces missing marker scores with the mode scores of the most similar genotypes (L.C.P. Keizer, J.T.N.M. Thissen & F.A. van Eeuwijk).

Options
PRINT = string tokens
What to print (summary, similarity, neighbours, details); default summ
NNEIGHBOURS = scalar
Number of nearest neighbours; default 5
MAXDISTANCE = scalar
Maximum similarity difference; default 0.1

Parameters
MKSCORES = pointers
Pointer with the original marker scores; must be set
MKNAMES = texts
Marker names
IDMGENOTYPES = texts
Labels for genotypes
NEWMKSCORES = pointers
Pointer to store the new marker scores; must be set

QNORMALIZE procedure
Performs quantile normalization (D.B. Baird).

Options
PRINT = string token
What to print (summary); default summ
PLOT = string tokens
What to plot (cdf, histogram, ncdf, nhistogram); default hist, nhis
METHOD = string token
Whether to use means, medians or geometric means for the averaged normalized distribution (means, medians, geometricmeans); default mean
ARRANGEMENT = string token
Whether to use trellis or single plots for PLOT=cdf or ncdf (single, trellis); default trel
DEVICE = scalar
Device number on which to plot the graphs
GRAPHICSFILE = text
What graphics filename template to use to save the graphs; default *

Parameters
DATA = variates or pointers
Data values
GROUPS = factors or texts
Groupings of the data values
NEWDATA = variates or pointers
Saves the normalized values; if this is unset, they replace the original values in DATA
QRD directive
Calculates QR decompositions of matrices.

Option
- **PRINT = string tokens**
 - Printed output required (orthogonalmatrix, uppertriangularmatrix); default * i.e. no printing

Parameters
- **INMATRIX = matrices or symmetric matrices**
 - Matrices to be decomposed
- **ORTHOGONALMATRIX = matrices**
 - Orthogonal matrix of each decomposition
- **UPPERTRIANGULARMATRIX = matrices**
 - Upper-triangular matrix of each decomposition

QRECOMBINATIONS procedure
Calculates the expected numbers of recombinations and the recombination frequencies between markers (J. Jansen, J.T.N.M. Thissen & M.P. Boer).

Options
- **PRINT = string tokens**
 - What to print (summary, positions); default summ
- **PLOT = string token**
 - What to plot (frequencies); default freq
- **POPULATIONTYPE = string token**
 - Type of population (F2, BC1, RIL, DH1, CP); must be set
- **METHOD = string token**
 - Which method to use (twopoint, multipoint); default twop
- **USEPENALTY = string token**
 - Whether to increase the number of recombinations when METHOD=twopoint by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no
- **TITLE = text**
 - General title for the plot

Parameters
- **MKSCORES = pointers**
 - Marker scores for each marker; must be set
- **CHROMOSOMES = factors**
 - Factor defining the linkage groups
- **POSITIONS = variates**
 - Saves the positions of the markers when METHOD=multipoint
- **MKNAMES = texts**
 - Names of the markers; must be set
- **PARENTS = pointers**
 - Marker scores of the parents; must be set
- **ORDER = variates**
 - Order of the markers for METHOD=multipoint
- **NRECOMBINATIONS = symmetric matrices or pointers**
 - Saves the number of recombinations
- **RECFREQUENCIES = symmetric matrices or pointers**
 - Saves the recombination frequencies
- **PHASESWITCHES = pointers**
 - Saves the phase switches for pairs of markers when POPULATIONTYPE=CP
- **INHERITANCEVECTORS = pointers**
 - Saves the inheritance vectors when METHOD=multipoint
- **GENNRECOMBINATIONS = variates**
 - Saves the numbers of recombinations of the genotypes when METHOD=multipoint

QREPORT procedure
Creates an HTML report from QTL linkage or association analysis results (D.A. Murray).

Options
- **OUTFILEPREFIX = text**
 - Prefix to use for the files that are generated
- **WORKDIRECTORY = text**
 - Working directory to use for files; default current Genstat working directory
- **CHROMOSOMES = factor**
 - Factor defining linkage groups for the genetic map
- **POSITIONS = variate**
 - Positions of markers within the linkage groups for the genetic map
- **HTMLHEAD = text**
 - Text structure containing custom content for the header of the HTML report file

Parameter
- **QSAVE = pointers**
 - Information and results saved from an earlier QTL analysis
QSAASSOCIATION procedure

Options

PRINT = string tokens
What to print (summary, progress); default summ

PLOT = string tokens
What to plot (profile, qq, map); default prof, qq

RELATIONSHIPMODEL = string token
What model to use to account for genetic relatedness (eigenanalysis, kinship, subpopulations, null); default kins

SCORES = pointer
Provides the scores of significant principal components, obtained from an eigenvalue analysis

METHOD = string token
What model to use for GWAS (exact, fast); default fast

ALPHALEVEL = scalar
Defines a genome-wide significance level to calculate the threshold; default 0.05

THRMETHOD = string token
Method to define the threshold for significance (neffective, bonferroni, given); default neff

THRESHOLD = scalar
Threshold value for significant LD, on the \(-\log10\) scale; default 2

DISTANCE = scalar
Minimum distance gap between independent tests (i.e. distance beyond which loci are expected to be in linkage equilibrium) when THRMETHOD=bonferroni; default *

MINORALLELE = scalar
Frequency of minor alleles; default 0.05

KMATRIX = symmetric matrix
Kinship matrix containing coefficients of coancestries

KMETHOD = string token
Method to use to estimate kinship matrix if not supplied by KMATRIX (correlation, dice); default dice

SUBPOPULATIONS = factor
Defines groupings of genotypes into subpopulations

MODELPART = string token
Defines which part of the model should include SUBPOPULATIONS if RELATIONSHIPMODEL is set to subpopulations, or the principal components scores if RELATIONSHIPMODEL is set to eigenanalysis (fixed, random); default rand

SCALING = string token
Whether to scale the scores by the square roots of their singular values (singularvalues, none); default none

STANDARDIZE = string token
Whether to standardize the marker scores according to their frequencies (frequency, none); default freq

COLOURS = scalar, variate or text
Colours to use for the chromosomes; default * uses the colours of pens 1, 2 up to the number of chromosomes

TITLE = text
General title for the plots

YTITLE = text
Title for the y-axis

XTITLE = text
Title for the x-axis

Parameters

TRAIT = variates
Phenotypic trait to analyse; must be set

GENOTYPES = factors
Genotype factor

MKSCORES = pointers
Genotype codes for each marker; must be set

CHROMOSOMES= factors
Linkage groups for the markers; must be set

POSITIONS = variates
Positions within the linkage groups of markers; must be set

MKNAMES = texts
Marker names

IDMGENOTYPES = texts
Labels for the genotypes corresponding to the markers

GENFILENAME = texts
Name of a comma-delimited file (*.csv) containing marker scores (with markers in the rows and genotypes in the columns)

MAPFILENAME = texts
Name of a comma-delimited file (*.csv) with map information

WALDSTATISTICS = variates
Saves the Wald test statistics

NDF = variates
Saves the degrees of freedom associated with the Wald test

MINLOG10P = variates
Saves the associated probability values of the Wald test
statistics, on a \log_{10} scale

LAMBDA = *scalars*
Saves the inflation factor i.e. slope of the QQ plot of $-\log_{10}(P)$ values

QSAVE = *pointers*
Saves a pointer with information and results for the significant effects

DFILENAME = *texts*
Name of the graphics file for the plots

QSBACKSELECT procedure

Options

PRINT = *string tokens*
What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ

POPULATIONTYPE = *string token*
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

ALPHALEVEL = *scalar*
Defines a significance level; default 0.05

FIXED = *formula*
Formula with extra fixed effects

UNITFACTOR = *factor*
Saves the units factor required to define the random model when UNITERROR is to be used

MVINCLUDE = *string tokens*
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar

MAXCYCLE = *scalar*
Limit on the number of iterations; default 100

WORKSPACE = *scalar*
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

TRAIT = *variates*
Quantitative trait to be analysed; must be set

GENOTYPES = *factors*
Genotype factor; must be set

UNITERROR = *variates*
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

ADDITIVEPREDICTORS = *pointers*
Additive genetic predictors; must be set

ADD2PREDICTORS = *pointers*
Second (paternal) set of additive genetic predictors

DOMINANCEPREDICTORS = *pointers*
Dominance genetic predictors

CHROMOSOMES = *factors*
Chromosomes corresponding to the genetic predictors; must be set

POSITIONS = *variates*
Positions on the chromosomes corresponding to the genetic predictors; must be set

IDLOCI = *texts*
Labels for the loci

IDMGENOTYPES = *texts*
Labels for the genotypes corresponding to the genetic predictors

QTLCANDIDATES = *variates*
Specifies the locus index numbers from which to start the selection; must be set

QTLSELECTED = *variates*
Saves the index numbers of the selected QTLs; must be set

DOMSELECTED = *variates*
Logical indicator variable storing one where the selected QTLs show a significant effect of the dominance predictor, zero otherwise

WALDSTATISTICS = *variates*
Saves the Wald test statistics

PRWALD = *variates*
Saves the associated Wald probabilities
4.1 Commands

QSELECTIONINDEX procedure
Calculates (molecular) selection indexes by using phenotypic information and/or molecular scores of multiple traits (M. Malosetti & F.A. van Eeuwijk).

Options

PRINT = string tokens
What to print (summary); default summ

METHOD = string token
Defines which index to calculate (simple, smithhazel, landethompson); default smit

INTENSITY = scalar
Specifies the selection intensity expressed as the percentage of individuals of the population to select; default 10

Parameters

TRAITS = pointers
Pointer with a variate for each trait, supplying the phenotypic values for the genotypes; must be set

MOLECULARSCORES = pointers
Pointer with a variate for each trait, supplying QTL-based predictions or genomic predictions

GENOTYPES = factors
Genotype factor; must be set

IDMGENOTYPES = texts
Labels of the genotypes

WEIGHTS = variates
Specifies economic weights for the traits; if unset, all traits have weight one

VCYPHENOTYPIC = symmetric matrices
Specifies the phenotypic variance-covariance matrix of the traits

VCYGENETIC = symmetric matrices
Specifies the genotypic variance-covariance matrix of the traits

HERITABILITY = symmetric matrices
Specifies the heritabilities and coheritabilities of the traits

SELECTIONINDEX = variates
Saves the selection index

QSESTIMATE procedure

Options

PRINT = string tokens
What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ

POPULATIONTYPE = string token
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

NGENERATIONS = scalar
Number of generations of selfing for a RIL population

NBACKCROSSES = scalar
Number of backcrosses for a BCxSy population

NSELFINGS = scalar
Number of selfings for a BCxSy population

FIXED = formula
Defines extra fixed effects

UNITFACTOR = factor
Saves the units factor required to define the random model when UNITERROR is to be used

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar

MAXCYCLE = scalar
Limit on the number of iterations; default 100

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

TRAIT = variates
Quantitative trait to be analysed; must be set

GENOTYPES = factors
Genotype factor; must be set

UNITERROR = variates
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

ADDITIVEPREDICTORS = pointers
Additive genetic predictors; must be set

ADD2PREDICTORS = pointers
Second (paternal) set of additive genetic predictors

DOMINANCEPREDICTORS = pointers
Dominance genetic predictors

CHROMOSOMES = factors
Chromosomes corresponding to the additive genetic
predictors; must be set

POSITIONS = variates

Positions on the chromosomes corresponding to the additive genetic predictors; must be set

IDLOCI = texts

Labels for the loci

MKLOCI = variates

Logical variate containing the value 1 if the locus is a marker, otherwise 0; must be set

IDMGENOTYPES = texts

Labels for the genotypes corresponding to the the additive genetic predictors

IDPARENTS = texts

Labels to identify the parents

QTLSELECTED = variates

Index numbers of the selected QTLs; must be set

DOMSELECTED = variates

Logical variate indicating whether the dominance predictor of each selected QTL must be present (1) or absent (0) in the model

RESIDUALS = variates

Residuals from the analysis

FITTEDVALUES = variates

Fitted values from the analysis

WALDSTATISTICS = variates

Saves the Wald test statistics

PRWALD = variates

Saves the associated Wald probabilities

QEFFECTS = pointers

Saves the estimated QTL effects

QSE = pointers

Saves the standard errors of the QTL effects

OUTFILENAME = texts

Name of the Genstat workbook file (*.gwb) to be created

QSAVE = pointers

Saves a pointer with information and results for the significant effects

SAVE = REML save structures

Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

QSIMULATE procedure

Simulates marker data and QTL effects for single and multiple environment trials (M.P. Boer & J.T.N.M. Thissen).

Options

PRINT = string token

What to print (summary); default summ

POPULATIONTYPE = string token

Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

NGENERATIONS = scalar

Number of generations for a RIL population; default 3

NBACKCROSSES = scalar

Number of backcrosses for a BCxSy population; default 2

NSELFINGS = scalar

Number of selfings for a BCxSy population; default 3

GENOMELENGTH = variate

Length in cM for each chromosome

DISTANCE = scalar

Distance between the markers in cM; default 1 cM

COMPLETE = string token

Complete marker information, i.e. all parents have a different allele (yes, no); default no

FRACTIONMISSING = scalar

Fraction of the markers with missing values; default 0

NGENOTYPES = scalar

Number of genotypes; must be set

NCHROMOSOMES = scalar

Number of chromosomes

NPOSITIONS = scalar

Number of positions per chromosome

MEAN = scalar or variate

Mean of the trait for each environment; must be set if TRAIT is set

VARIANCE = scalar or variate

Variance of the trait for each environment; must be set if TRAIT is set

ADDITIVEEFFECTS = variate or pointer

Additive effects of each QTL for each environment; must be set if TRAIT is set

ADD2PREDICTORS = pointers

Second (paternal) set of additive genetic predictors of each QTL for each environment if POPULATIONTYPE is CP; must be set if TRAIT is set

DOMINANCEPREDICTORS = pointers

Dominance genetic predictors of each QTL for each environment if POPULATIONTYPE is F2 or CP; must be set if
4.1 Commands

TRAITCHROMOSOMES = variate

Chromosome number for each QTL; must be set if TRAIT is set

QTLPOSITIONS = variate

Position on the QTLCHROMOSOMES for each QTL; must be set if TRAIT is set

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAIT = variates</td>
<td>Saves the quantitative trait values</td>
</tr>
<tr>
<td>GENOTYPES = factors</td>
<td>Saves the genotype factor</td>
</tr>
<tr>
<td>ENVIRONMENTS = factors</td>
<td>Saves the environment factor</td>
</tr>
<tr>
<td>MKSCORES = pointers</td>
<td>Saves the marker scores for each marker</td>
</tr>
<tr>
<td>CHROMOSOMES = factors</td>
<td>Saves the linkage groups of the markers</td>
</tr>
<tr>
<td>POSITIONS = variates</td>
<td>Saves the position on the chromosome for each marker</td>
</tr>
<tr>
<td>MKNAMES = texts</td>
<td>Names of the markers</td>
</tr>
<tr>
<td>IDGENOTYPES = texts</td>
<td>Labels of the genotypes</td>
</tr>
<tr>
<td>PARENTS = pointers</td>
<td>Saves the parent information</td>
</tr>
<tr>
<td>SEED = scalars</td>
<td>Specifies a seed to use for the random number generator; default 0 continues from the previous generation or (if none) initializes the seed automatically</td>
</tr>
</tbody>
</table>

QSQTLSCAN procedure

Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string tokens</td>
<td>What to print (summary, progress, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ</td>
</tr>
<tr>
<td>PLOT = string token</td>
<td>Whether to plot the profile along the genome (profile); default prof</td>
</tr>
<tr>
<td>POPULATIONTYPE = string token</td>
<td>Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set</td>
</tr>
<tr>
<td>ALPHALEVEL = scalar</td>
<td>Defines a genome-wide significance level to calculate the threshold; default 0.05</td>
</tr>
<tr>
<td>COFACTORS = variate</td>
<td>Index numbers of loci to be used as cofactors for the genetic background</td>
</tr>
<tr>
<td>COFWINDOW = scalar</td>
<td>Specifies a window for cofactor exclusion from the model; default 10^6 which means that all cofactors on the same chromosomes are excluded</td>
</tr>
<tr>
<td>THRMETHOD = string token</td>
<td>Which method to use to calculate the threshold for QTL detection (bonferroni, liji, given); default liji</td>
</tr>
<tr>
<td>THRESHOLD = scalar</td>
<td>Threshold value for test statistic when THRMETHOD=given</td>
</tr>
<tr>
<td>DISTANCE = scalar</td>
<td>Distance between loci when THRMETHOD=bonferroni; default 4</td>
</tr>
<tr>
<td>FIXED = formula</td>
<td>Formula with extra fixed terms</td>
</tr>
<tr>
<td>UNITFACTOR = factor</td>
<td>Saves the units factor required to define the random model when UNITERROR is to be used</td>
</tr>
<tr>
<td>STATISTICSTYPE = string token</td>
<td>Which test statistic to plot and save using the STATISTICS parameter (wald, minlog10p); default minl</td>
</tr>
<tr>
<td>COLOURS = scalar, variate or text</td>
<td>Colours to use for the chromosomes; default * uses the colours of pens 1, 2 up to the number of chromosomes</td>
</tr>
<tr>
<td>TITLE = text</td>
<td>General title for plot</td>
</tr>
<tr>
<td>YTITLE = text</td>
<td>Title for the y-axis; default uses the identifier of the STATISTICS variate or pointer</td>
</tr>
<tr>
<td>XTITLE = text</td>
<td>Title for the x-axis; default 'Chromosomes'</td>
</tr>
<tr>
<td>MVINCLUDE = string tokens</td>
<td>Whether to include units with missing values in the explanatory factors and variates and/or the y-variates</td>
</tr>
</tbody>
</table>
MAXCYCLE = scalar

Limit on the number of iterations; default 100

WORKSPACE = scalar

Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

trait = variates

Quantitative trait to be analysed; must be set

genotypes = factors

Genotype factor; must be set

uniterror = variates

Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

additivepredictors = pointers

Additive genetic predictors; must be set

add2predictors = pointers

Second (paternal) set of additive genetic predictors

dominancepredictors = pointers

Dominance genetic predictors

chromosomes = factors

Chromosomes corresponding to the genetic predictors; must be set

positions = variates

Positions on the chromosomes corresponding to the genetic predictors; must be set

idloci = texts

Labels for the loci

idgenotypes = texts

Labels for the genotypes corresponding to the genetic predictors

ideffects = texts

Labels for the effects along the y-axis, in the frame below the profile plot

idparents = texts

Labels to use to identify the parents

qstatistics = variates

Saves test statistics for QTL effects along the genome

qeffects = pointers

Saves QTL effects along the genome (additive effects, and, if specified, also second additive and dominance effects)

qse = pointers

Saves standard errors of the QTL effects

outfilename = texts

Name of the Genstat workbook file (*.gwb) to be created

dfilename = texts

Name of the graphics file for the plots

QTHRESHOLD procedure

Calculates a threshold to identify a significant QTL (M.P. Boer & J.T.N.M. Thissen).

Options

print = string token

What to print (summary); default summ

populationtype = string token

Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

thrmethod = string token

Which method to use (bonferroni, liji); default liji

statisticstype = string token

Which type of test statistic to use (wald, minlog10p); default minl

alphalevel = scalar

Defines the genome-wide significance level; default 0.05

distance = scalar

Distance between evaluation points for THRMETHOD=bonferroni; default 4

Degrees of freedom for the Wald test; default 1

Parameters

chromosomes = factors

Chromosome for each locus; must be set

positions = variates

Position on the chromosome for each locus; must be set

additivepredictors = pointers

Additive genetic predictors

add2predictors = pointers

The second (paternal) additive genetic predictors if POPULATIONTYPE is CP

dominancepredictors = pointers

The dominance genetic predictors if POPULATIONTYPE is F2 or CP

threshold = scalars

Saves the calculated threshold
4.1 Commands

QUANTILE procedure
Calculates quantiles of the values in a variate (P.W. Lane).

Options
- **PRINT = string token** What to print (quantiles); default quan
- **METHOD = string token** Type of quantile to form (population, sample); default samp
- **PROPORTION = variate or scalar** Proportions at which to calculate quantiles; default !(0,0.25,0.5,0.75,1)

Parameters
- **DATA = variates** Values whose quantiles are required; this parameter must be specified
- **QUANTILES = variates or scalars** Identifiers of structures to store results, if required

QUESTION procedure

Options
- **PREAMBLE = text** Text posing a question; (no default)
- **PROMPT = text** Text to be used as final prompt; the default prompt specifies the mode of response and lists the default values (if any), in brackets, followed by "">
- **RESPONSE = identifier** Structure to store response; default * allows a menu to be saved without being executed
- **MODE = string token** Mode of response (p, t, v); default p
- **DEFAULT = identifier** Response to be assumed if just <RETURN> is given; default is to repeat the prompt until a response is obtained
- **LIST = string token** Whether a list of responses, rather than a single response, is valid (yes, no); default no
- **DECLARED = string token** Whether identifiers must already be declared (yes, no); default no
- **TYPE = string tokens** Allowed types for identifiers (ASAVE, datamatrix i.e. pointer to variates of equal lengths as required in multivariate analysis, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, tree, TSAVE, TSM, variate, VSAVE); default *, meaning no limitation
- **PRESENT = string token** Whether the identifier must have values (yes, no); default no
- **LOWER = scalar** Lower limit for numbers; default *, meaning no check
- **UPPER = scalar** Upper limit for numbers; default *, meaning no check
- **HELP = text** Text to be used in response to a general query for the question; default *
- **SAVE = pointer** Previously allowed you to save or reinput the specification of the menu, but is now no longer supported

Parameters
- **VALUES = texts** Possible codes for MODE t; (no default for MODE t; not relevant for others)
- **CHOICE = texts** Text giving explanation of each letter code; (no default for MODE t; not relevant for others)
- **HELP = texts** Text to be used in response to a specific query for a code; default *

RADIALSPLINE procedure
Calculates design matrices to fit a radial-spline surface as a linear mixed model (S.J. Welham & D.B. Baird).

Options
- **ORTHOGONALIZATION = string token** How to orthogonalize the random basis (fixed, none); default fixe
SCALING = scalar
Scaling of the XRANDOM terms (automatic, none); default auto

Parameters
X1 = variates or factors
Coordinates in the first dimension for which spline values are required
X2 = variates or factors
Coordinates in the second dimension for which spline values are required
XFIXED = matrices
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the radial spline
XRANDOM = matrices
Saves the design matrix to define the random terms for fitting the radial spline
X1KNOTS = variates
Specifies the coordinates in the first dimension of the internal knots used to form the basis for the spline
X2KNOTS = variates
Specifies the coordinates in the second dimension of the internal knots used to form the basis for the spline
PX1 = variates
Specifies the coordinates in the first dimension at which to predict
PX2 = variates
Specifies the coordinates in the second dimension at which to predict
PFIXED = matrices
Saves the design matrix for the fixed terms (excluding the constant) for the radial spline at the prediction points
PRANDOM = matrices
Saves the design matrix for the random terms for the radial spline at the prediction points

RANDOMIZE directive
Randomizes the units of a designed experiment or the elements of a factor or variate.

Options
BLOCKSTRUCTURE = formula
Block model according to which the randomization is to be carried out; default * i.e. as a completely-randomized design
EXCLUDE = factors
(Block) factors whose levels are not to be randomized
SEED = scalar
Seed for the random-number generator; default 0

Parameters
factors or variates
Structures whose units are to be randomized according to the defined block model

RANK procedure
Produces ranks, from the values in a variate, allowing for ties (J.B. van Biezen & C.J.F. ter Braak).

Option
OMIT = string token
Whether units excluded by a restriction on the DATA variate should be omitted from the RANKS variate (restricted); default *, i.e. the units are not omitted, and their values are left unchanged

Parameters
DATA = variates
Variate containing values to be ranked
RANKS = variates
Variate to save vector of ranks
TIESIZE = variates
Variate to save the sizes of ties

RAR1 procedure
Fits regressions with an AR1 or a power-distance correlation model (R.W. Payne).

Options
PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, cparameter, cmonitoring, cplot); default mode, summ, esti, cpar
CALCULATION = expression structures
Calculation of explanatory variates involving nonlinear parameters
4.1 Commands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT = string token</td>
<td>How to treat the constant (estimate, omit); default estimate</td>
</tr>
<tr>
<td>FACTORIAL = scalars</td>
<td>Limit for expansion of model terms; default 3</td>
</tr>
<tr>
<td>POOL = string token</td>
<td>Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no</td>
</tr>
<tr>
<td>DENOMINATOR = string token</td>
<td>Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss</td>
</tr>
<tr>
<td>NOMESSAGE = string tokens</td>
<td>Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *</td>
</tr>
<tr>
<td>FPROBABILITY = string token</td>
<td>Printing of probabilities for variance and deviance ratios (yes, no); default no</td>
</tr>
<tr>
<td>TPROBABILITY = string token</td>
<td>Printing of probabilities for t-statistics (yes, no); default no</td>
</tr>
<tr>
<td>SELECTION = string tokens</td>
<td>Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seb if DIST=normal, %cv if DIST=gamma, and disp for other distributions</td>
</tr>
<tr>
<td>SELINEAR = string token</td>
<td>Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no</td>
</tr>
<tr>
<td>WEIGHTS = variate</td>
<td>Prior weights for the units</td>
</tr>
<tr>
<td>CMETHOD = string token</td>
<td>Estimation method (maximumlikelihood, reml); default maxi</td>
</tr>
<tr>
<td>CPARAMETER = scalars</td>
<td>Correlation parameter</td>
</tr>
<tr>
<td>CPOSITIONS = variate</td>
<td>Correlation positions</td>
</tr>
<tr>
<td>CGROUPS = factor</td>
<td>Groupings of correlation positions</td>
</tr>
<tr>
<td>MAXCYCLE = scalars</td>
<td>Maximum number of iterations; default 100</td>
</tr>
<tr>
<td>TOLERANCE = scalars</td>
<td>Convergence criterion; default 10^{-5}</td>
</tr>
<tr>
<td>RBTYPE = string token</td>
<td>Type of radial basis function (linear, cubic, thinplate, gaussian, multiquadric, inversemultiquadric, cauchy); default line</td>
</tr>
<tr>
<td>METRIC = string token</td>
<td>How to calculate distances for the radial basis functions (euclidean, cityblock, manhattan, pythagorean); default eucl</td>
</tr>
<tr>
<td>SCALING = string token</td>
<td>Type of scaling used to compute distances (sd, mahalanobis, supplied); default sd</td>
</tr>
<tr>
<td>ALPHA = scalar</td>
<td>Specifies the value for the constant α, used to calculate radial</td>
</tr>
</tbody>
</table>

RBDISPLAY directive

Displays output from a radial basis function model fitted by RBFIT.

Option

- **PRINT = strings** Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ

Parameter pointers

- Save structure with details of the fitted model

RBFIT directive

Fits a radial basis function model.

Options

- **PRINT = string tokens** Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ
- **RBTYPE = string token** Type of radial basis function (linear, cubic, thinplate, gaussian, multiquadric, inversemultiquadric, cauchy); default line
- **METRIC = string token** How to calculate distances for the radial basis functions (euclidean, cityblock, manhattan, pythagorean); default eucl
- **SCALING = string token** Type of scaling used to compute distances (sd, mahalanobis, supplied); default sd
- **ALPHA = scalar** Specifies the value for the constant α, used to calculate radial
distances for **RBTPYE settings** multiquadric, inverse multiquadric and cauchy; default 1

LAMBDA = scalar

Specifies the value of the penalty constant \(\lambda \)

TOLERANCE = scalar

Tolerance for setting eigenvalues equal to zero in the singular value decomposition; default 0.000001

Parameters

Y = variates

Response variates

X = pointers

Independent variates

CENTRES = pointers

Centres of the radial basis functions for the dependent variates

RBSCALING = scalars or variates

Scaling parameters for the radial distance calculations when SCALING=supplied; default 1

FITTEDVALUES = variates

Fitted values generated for each y-variate by the model

ESTIMATES = variates

Saves the estimated model parameters

EXIT = scalars

Saves the exit code

SAVE = pointers

Saves details of the model and the estimated parameters for RBDISPLAY or RBPREDICT

RBPREDICT directive

Forms predictions from a radial basis function model fitted by RBFIT.

Option

PRINT = strings

Controls fitted output description, predictions); default desc, pred

Parameters

X = pointers

X-values at which to predict

PREDICTIONS = variates

Predictions

SAVE = pointers

Details of the fitted model

RBRADLEYTERRY procedure

Fits the Bradley-Terry model for paired-comparison preference tests (R.W. Payne).

Options

PRINT = string tokens

What to print model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, preferenceprobabilities); default mode, summ, esti

GROUPS = factor

Factor representing different test circumstances

COVARIATE = variates

Other covariates to include in the model

NOMESSAGE = string tokens

Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token

Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token

Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens

Statistics to be displayed in the summary of analysis produced by PRINT=summary (%variance, %ss, adjustedr2, r2, dispersion, %meandeviance, %deviance, aic, bic, sic); default disp

DISPERSION = scalar

Dispersion parameter to be used as estimate for variability in s.e.s etc; default 1

PROBABILITY = scalar

Probability level for confidence intervals for parameter estimates; default 0.95

Parameters

WINNERS = factors

Specifies the winners in the tests

LOSERS = factors

Specifies the loser in the tests

NWINS = variates or scalars

Number of wins; default 1

NBINOMIAL = variates or scalars

Number of trials; default 1
4.1 Commands

PREPREFERENCEPROBABILITIES = *matrices or pointers*

Saves the estimated probability that each object is preferred to other objects

LOWERPREPREFERENCEPROBABILITIES = *matrices or pointers*

Saves the lower values of the confidence intervals for the preference probabilities

UPPPREFERENCEPROBABILITIES = *matrices or pointers*

Saves the upper values of the confidence intervals for the preference probabilities

SAVE = *identifiers*

To save the regression save structure

RCATENELSON procedure

Performs a Cate-Nelson graphical analysis of bivariate data (V.M. Cave).

Options

PRINT = *string tokens*

Controls printed output (*summary*, *quadrants*, *errorquadrants*); default *summ, quad*

PLOT = *string tokens*

What graphs to plot (*catenelson*, *criticalvalues*); default *cate*

DIRECTION = *string token*

Direction of the association between the y and x values (*ascending*, *descending*); default *asce* i.e. a positive trend

YCRITICAL = *scalar*

Pre-specified critical value of y; default *i.e. the critical value of y is estimated*

XCRITICAL = *scalar*

Pre-specified critical value of x; default *i.e. the critical value of x is estimated*

TITLE = *text*

Title for the Cate-Nelson plot; if unset, the title is generated automatically

YTITLE = *text*

Y-axis title for the Cate-Nelson plot; if unset, the title is generated automatically

XTITLE = *text*

X-axis title for the Cate-Nelson plot; if unset, the title is generated automatically

WINDOW = *scalar*

Window to use for the graphs; default 3

SAVE = *identifier*

Specifies the save structure of regression model holding the y-values, distribution, link function and weights; default *i.e. that from last regression fitted*

Parameters

X = *variates*

Supplies the x-values for each analysis

RESULTS = *pointers*

Saves the critical value of x, the critical value of y and the quadrant allocations for each x variate

RCHECK procedure

Checks the fit of a linear, generalized linear or nonlinear regression (P.W. Lane, R. Cunningham & C. Donnelly).

Options

PRINT = *string tokens*

What to print (*index*, *residuals*, *leverages*, *Cook*); default *

RMETHOD = *string token*

Type of residual to use (*deviance*, *Pearson*, *simple*, *deletion*); default *i.e. as set in *MODEL*

INDEX = *variate or factor*

Which variable to use as index; default !*(1...n)*

ENVELOPE = *string token*

Type of envelope with Normal and half-Normal plots (*none*, *rough*, *smooth*, *asymptotic*); default *none*

PROBABILITY = *scalar*

Approximate probability level for envelope; default 0.95

NSIMULATIONS = *scalar*

How many simulations to generate for rough or smooth envelopes; default (1+PROB)/(1-PROB)

SHADE = *string token*

Whether to show shaded envelope rather than boundaries (*no*, *yes*); default *no*

RESIDUALS = *variate*

To store chosen type of residuals; default *
RCIRCULAR procedure

Does circular regression of mean direction for an angular response (P.W. Goedhart).

Options

PRINT = string tokens
What to print (model, summary, estimates,
fittedvalues, monitoring); default model, summ, esti

FACTORIAL = scalar
Limit for expansion of model terms; default 3

RESIDUALS = variate
To save the residuals

FITTEDVALUES = variate
To save the fitted values, i.e. the fitted mean directions

LEVERAGES = variate
To save the leverages

ESTIMATES = variate
To save estimates of linear parameters

SE = variate
To save standard errors of the estimates

VCOVARIANCE = symmetric matrix
To save the variance-covariance matrix of the estimates

MU0 = scalar
To save the estimate of the mean parameter \(\mu_0 \)

SEMU0 = scalar
To save the standard error of the estimated mean parameter \(\mu_0 \)

KAPPA = scalar
To save the estimate of the concentration parameter \(\kappa \) of the von Mises distribution

SEKAPPA = scalar
To save the standard error of the estimated concentration parameter \(\kappa \)

_2LOGLIKELIHOOD = scalar
To save the value of minus twice the maximized log likelihood

DF = scalar
To save the residual degrees of freedom

ITERATIVEWEIGHTS = variate
To save the iterative weights

LINEARPREDICTOR = variate
To save the linear predictor

YADJUSTED = variate
To save the adjusted dependent variate

I_2LOGLIKELIHOOD = variate
To save the contribution of each unit to the value of minus twice the maximized log likelihood

MAXCYCLE = scalar
Maximum number of iterations for see-saw algorithm; default 30

TOLERANCE = scalar
Convergence criterion; default 10^{-5}

Parameter

TERMS = formula
List of explanatory variates and factors, or model formula

RCOMPARISONS procedure

Calculates comparison contrasts amongst regression means (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (aov, contrasts); default aov, cont

COMBINATIONS = string token
Factor combinations for which to form the predicted means
(present, estimable); default esti

ADJUSTMENT = string token
Type of adjustment to be made when forming the predicted means (marginal, equal, observed); default marg

PSE = string tokens
Types of standard errors to be printed with the contrasts
4.1 Commands

WEIGHTS = table
Weights classified by some or all of the factors in the model; default *

OFFSET = scalar
Value of offset on which to base predictions; default mean of offset variate

METHOD = string token
Method of forming margin (mean, total); default mean

ALIASING = string token
How to deal with aliased parameters (fault, ignore); default fault

BACKTRANSFORM = string token
What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default link

SCOPE = string token
Controls whether the variance of predictions is calculated on the basis of forecasting new observations rather than summarizing the data to which the model has been fitted (data, new); default data

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, nonlinear); default *

DISPERSION = scalar
Value of dispersion parameter in calculation of s.e.s; default is as set in the MODEL statement

DMETHOD = string token
Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement

NBINOMIAL = scalar
Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value \(n \) greater than one allows predictions to be made of the number of "successes" out of \(n \), whereas the value one predicts the proportion of successes); default 1

LSDLEVEL = scalar
Significance level (%) for least significant differences; default 5

SAVE = identifier
Regression save structure for the analysis from which the comparison contrasts are to be calculated

Parameters

FACTOR = factors
Factor whose levels are compared

CONTRASTS = matrices
Defines the comparisons to be estimated

ORDER = scalars
Number of comparisons to estimate; default is the number of rows of the CONTRASTS matrix

GROUPS = factors or pointers
Set if comparisons are to be made at different combinations of another factor or factors

ESTIMATES = variates or pointers
Saves the estimated contrasts in a variate if GROUPS is unset, or in a pointer to a set of tables

SE = variates or pointers
Saves standard errors of the contrasts in a variate if GROUPS is unset, or in a pointer to a set of tables

SED = pointers
Pointer to a set of symmetric matrices to save standard errors for differences between the contrasts estimated for different levels of the GROUPS factor(s)

LSD = pointers
Pointer to a set of symmetric matrices to save least significant differences for the contrasts estimated for different levels of the GROUPS factor(s)

DF = variates
Saves degrees of freedom for the contrasts

SS = variates
Saves sums of squares of the contrasts

RCURVECOMMONNONLINEAR procedure

Refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters (R.W. Payne).

Options

PRINT = string tokens
Printed output from the analysis (model, deviance,
Syntax summary

MAXCYCLE = variate
METHOD = string token
STEPLENGHTS = scalar or variate
SAVE = regression save structure
INSAVE = regression save structure

No parameters

RCYCLE directive

Controls iterative fitting of generalized linear, generalized additive, and nonlinear models, and specifies parameters, bounds etc for nonlinear models.

Options

MAXCYCLE = scalars
Maximum number of iterations for Fisher-scoring algorithm (used in generalized linear models), back-fitting algorithm (used in additive models) and nonlinear algorithms; single setting implies the same limit for all; default 15, 15, 30

TOLERANCE = scalar or variate
Scalar or first unit of a variate defines the convergence criterion for the relative change in deviance and, if required, the second element of a variate defines the criterion for convergence to a zero deviance; default ![0.0001,1.0E-11]

FITTEDVALUES = variate
Initial fitted values for generalized linear model; default *

METHOD = string token
Algorithm for fitting nonlinear model (GaussNewton, NewtonRaphson, FletcherPowell); default Gaus, but Newt for scalar minimization

LINEARPARAMETERS = scalars
Scalars to hold current values of linear parameters used in nonlinear model, for reference within model calculations

Parameters

PARAMETER = scalars
Nonlinear parameters in the model

LOWER = scalars
Lower bound for each parameter

UPPER = scalars
Upper bound for each parameter

STEPLENGHT = scalars
Initial step length for each parameter

INITIAL = scalars
Initial value for each parameter

RDA procedure

Performs redundancy analysis (A.I. Glaser).

Options

PRINT = string tokens
What to print (variance, loadings, roots, evals, evecetor, speciescores, sitescores, fit sitescores, correlations, fitcorrelations, weights); default vari, root

NROOTS = scalar
Number of eigenvalues and eigenvectors to include in output; default * takes all the non-zero eigenvalues

NORMALIZE = string tokens
Whether to normalize the Y, X and/or Z variates to have unit sums-of-squares before the analysis (x, y, z); default x, z

SCALING = string token
Scaling for species and site scores (none, both); default none

TOLERANCE = scalar
Tolerance for detecting non-zero eigenvalues; default 10⁻⁵

Parameters

Y = pointers
Each pointer defines a set of response variates to be modelled

X = pointers
Explanatory variates or factors to use for for each pointer of y-variates

Z = pointers
Conditioning variates or factors to remove ("partial out") before the analysis
LRV = \textit{LRVs}

LRV structure from each analysis, storing the eigenvectors, eigenvalues and total variance.

\textbf{SPECIESSCORES = matrices}

Saves the "species scores" from each analysis.

\textbf{SITESCORES = matrices}

Save the "site scores" from each analysis.

\textbf{FITSITESCORES = matrices}

Save the fitted "site scores" from each analysis.

\textbf{CORRELATIONS = matrices}

Saves the correlations between the site scores and the x-variates.

\textbf{FITCORRELATIONS = matrices}

Saves the correlations between the fitted site scores and the x-variates.

\textbf{WEIGHTS = matrices}

Save the weights of the x-variates in the formation of the site scores.

\textbf{SAVE = pointers}

Save structure which provides information for use in CRBIPLOT and CRTRIPLOT.

\textbf{RDESESTIMATES procedure}

Plots one- or two-way tables of regression estimates (R.W. Payne).

\textbf{Options}

\textbf{GRAPHICS = string token}

Type of graph (highresolution, lineprinter); default high.

\textbf{METHOD = string token}

What to plot (estimates, lines); default esti.

\textbf{XFREPRESENTATION = string token}

How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available.

\textbf{PSE = string token}

What s.e. to plot to represent variation (average, individual); default aver.

\textbf{SAVE = regression save structure}

Save structure of the analysis to display; default * shows the most recently fitted regression.

\textbf{Parameters}

\textbf{XFACTOR = factors}

Factor providing the x-values for each plot.

\textbf{GROUPS = factors}

Factor identifying the different sets of points from a two-way table of estimates.

\textbf{XVARIATES = variates}

X-variates for regression coefficients or pointer.

\textbf{NEWXLEVELS = variates}

Values to be used for XFACTOR instead of its existing levels.

\textbf{TITLE = texts}

Title for the graph; default defines a title automatically.

\textbf{YTITLE = texts}

Title for the y-axis; default is undefined.

\textbf{XTITLE = texts}

Title for the x-axis; default is to use the identifier of the XFACTOR.

\textbf{RDISPLAY directive}

Displays the fit of a linear, generalized linear, generalized additive or nonlinear model.

\textbf{Options}

\textbf{PRINT = string tokens}

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, confidence); default mode, summ, esti.

\textbf{CHANNEL = identifier}

Channel number of file, or identifier of a text to store output; default current output file.

\textbf{DENOMINATOR = string token}

Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss.

\textbf{NOMESSAGE = string tokens}

Which warning messages to suppress (dispersion, leverage, residual, vertical, df, inflation); default *

\textbf{FPROBABILITY = string token}

Printing of probabilities for variance and deviance ratios (yes, no); default no.

\textbf{TPROBABILITY = string token}

Printing of probabilities for t-statistics (yes, no); default no.

\textbf{SELECTION = string tokens}

Statistics to be displayed in the summary of analysis produced by PRINT = summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-
distributed response (%variance,%ss,adjustedr2,r2, seobservations,dispersion,%cv,%meandeviance, %deviance,aic,bic,sic); default %var,seob if DISTR=normal,%cv if DISTR=gamma, and disp for other distributions

DISPERSION = scalar

Dispersion parameter to be used as estimate for variability in s.e.s; default is as set in the MODEL statement

RMETHOD = string token

Type of residuals to display (deviance,Pearson,simple); default is as set in the MODEL statement

DMETHOD = string token

Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement

PROBABILITY = scalar

Probability level for confidence intervals for parameter estimates; default 0.95

DFDISPERSION = scalar

Allows you to specify the number of degrees of freedom for a dispersion parameter specified by the DISPERSION option; default is as set in the MODEL statement

SAVE = identifier

Specifies save structure of model to display; default * i.e. that from latest model fitted

No parameters

RDLOESSGROUPS procedure

Displays results from a locally weighted regression model (loess) fitted to data with groups (D.B. Baird).

Options

PRINT = string tokens

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default * - no output

PLOT = string tokens

What to plot (fittedvalues, residuals); default * - no plots

DENOMINATOR = string token

Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

FPROBABILITY = string token

Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token

Printing of probabilities for t-statistics (yes, no); default no

PROBABILITY = scalar

Probability level for confidence intervals for parameter estimates; default 0.95

Parameter

SAVE = pointer

Save structure from the analysis of a loess with groups model by RLOESSGROUPS; default uses the model fitted most recently by RLOESSGROUPS

READ directive

Reads data from an input file, an unformatted file or a text.

Options

PRINT = string tokens

What to print (data, errors, summary); default erro, summ

CHANNEL = identifier

Channel number of file, or text structure from which to read data; default current file

SERIAL = string token

Whether structures are in serial order, i.e. all values of the first structure, then all of the second, and so on (yes, no); default no, i.e. values in parallel

SETNVALUES = string token

Whether to set number of values of vectors from the number of values read (yes, no); default no causes the number of values to be set only for structures whose lengths are not defined already (e.g. by declaration or by UNITS)
4.1 Commands

LAYOUT = string token
How values are presented (separated, fixedfield); default sep

END = text
What string terminates data (* means there is no terminator); default \'

SEQUENTIAL = scalar
To store the number of units read (negative if terminator is met); default *

ADD = string token
Whether to add values to existing values (yes, no); default no
(available only in serial read)

MISSING = text
What character represents missing values; default ' *'

SKIP = scalar
Number of characters (LAYOUT=fixe) or values
(LAYOUT=sepa) to be skipped between units (* means skip to next record); default 0 (available only in parallel read)

BLANK = string token
Interpretation of blank fields with LAYOUT=fixe (missing, zero, error); default miss

JUSTIFIED = string tokens
How values are to be assumed justified with LAYOUT=fixe
(left, right); default right

ERRORS = scalar
How many errors to allow in the data before reporting a fault rather than a warning, a negative setting, -n, causes reading of data to stop after the nth error; default 0

FORMAT = variate
Allows a format to be specified for situations where the layout varies for different units, option SKIP and parameters FIELDWIDTH and SKIP are then ignored (in the variate: 0 switches to fixed format; 0.1, 0.2, 0.3 or 0.4 to free format with space, comma, colon or semi-colon respectively as separators; * skips to the beginning of the next line; in fixed format, a positive integer n indicates an item in a field width of n, \(n \) skips n characters; in free format, \(n \) indicates \(n \) items, \(n \) skips \(n \) items); default *

QUIT = scalar
Channel number of file to return to after a fatal error; default *
i.e. current input file

UNFORMATTED = string token
Whether file is unformatted (yes, no); default no

REWIND = string token
Whether to rewind the file before reading (yes, no); default no

SEPARATOR = text
Text containing the (single) character to be used in free format; default ' '

SETLEVELS = string token
Whether to define factor levels or labels (according to the setting of FREPRESENTATION) automatically from those that occur in the data (yes, no); default no causes them to be set only when they are not defined already

TRUNCATE = string tokens
Truncation of leading or trailing spaces of strings read in fixed format (leading, trailing); default * i.e. none

CASE = string token
Whether the case of letters (small and capital) should be regarded as significant or ignored when forming factor labels automatically (significant, ignored); default sign

LDIRECTION = string token
How to define the ordering of levels or labels when these are formed automatically (ascending, given); default asce

Parameters

STRUCTURE = identifiers
Structures into which to read the data

FIELDWIDTH = scalars
Field width from which to read values of each structure
(LAYOUT=fixe only)

DECIMALS = scalars
Number of decimal places for numerical data containing no decimal points

SKIP = scalars
Number of values (LAYOUT=sepa) or characters
(LAYOUT=fixe) to skip before reading a value

FREPRESENTATION = string tokens
How factor values are represented (labels, levels, ordinals); default leve
RECORD directive

Dumps a job so that it can later be restarted by a RESUME statement.

Option

CHANNEL = scalar

Channel number of the backing-store file where information is to be dumped; default 1

No parameters

REDUCE directive

Forms a reduced similarity matrix (referring to the GROUPS instead of the original units).
This directive was replaced in Release 14 by the directive HREDUCE (with exactly the same options and parameters). It is currently retained as a synonym of HREDUCE, but may be removed in a future release.

REFORMULATE directive

Modifies a formula or an expression to operate on a different set of data structures.

Options

OLDFORMULA = formula or expression structure

Original formula or expression

NEWFORMULA = formula or expression structure

New formula or expression, modified to operate on the new structures

Parameters

OLDSTRUCTURE = identifiers

Data structures in the OLDFORMULA to be replaced in the NEWFORMULA

NEWSTRUCTURE = identifiers

Identifier of the new data structure to replace each OLDSTRUCTURE

RELATE directive

Relates the observed values on a set of variates or factors to the results of a principal coordinates analysis.
This directive was replaced in Release 14 by the directive PCORELATE (with exactly the same options and parameters). It is currently retained as a synonym of PCORELATE, but may be removed in a future release.

REML directive

Fits a variance-components model by residual (or restricted) maximum likelihood.

Options

PRINT = string tokens

What output to present (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default mode, comp, Wald, cova

PTERMS = formula

Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token

Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences,allestimates, none); default diff

WEIGHTS = variate

Weights for the analysis; default * implies all weights 1

MVINCLUDE = string tokens

Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

SUBMODEL = formula

Defines a submodel of the fixed model to be assessed against the full model (for METHOD=Fisher only)

RECYCLE = string token

Whether to reuse the results from the estimation when printing or assessing a submodel (yes, no); default no

RMETHOD = string token

Which random terms to use when calculating RESIDUALS
4.1 Commands

METHOD = string token
Indicates whether to use the standard Fisher-scoring algorithm
or the new AI algorithm with sparse matrix methods (Fisher,
AI); default AI

MAXCYCLE = scalar
Limit on the number of iterations; default 30

TOLERANCES = variate
Tolerances for matrix inversion; default * i.e. appropriate
default values

PARAMETERIZATION = string token
Parameterization to use for the variance component estimation
(gammas, sigmas); default * i.e. use whichever is most
appropriate for the model

CFORMAT = string token
Whether printed output for covariance models gives the
variance matrices or the parameters (variancematrices,
parameters); default vari

FMETHOD = string token
Controls whether and how to calculate F-statistics for fixed
terms (automatic, none, algebraic, numerical); default
auto

WORKSPACE = scalar
Number of blocks of internal memory to be allocated for use
by the estimation algorithm when METHOD=AI; default 1

Parameters

Y = variates
Variates to be analysed

RESIDUALS = variates
Residuals from each analysis

FITTEDVALUES = variates
Fitted values from each analysis

EXIT = scalar
Exit status of the fit (0 if successful)

SAVE = REML save structures
Saves the details of each analysis for use in subsequent
VDISPLAY and VKEEP directives

RENAME directive
Assigns new identifiers to data structures.

No options

Parameters

OLDIDENTIFIER = identifiers
Specifies the data structures to rename

NEWIDENTIFIER = identifiers
Specifies a new identifier for each data structure

REPPERIODODOGRAM procedure
Gives periodogram-based analyses for replicated time series (R.P. Littlejohn).

Options

PRINT = string token
What to print (pair, randomization, glm); default * i.e.
none

PLOT = string token
What graphs to plot (group, mean, logmean, cumulative,
cv, pair); default mean, logm

TITLE = text
Title for each page of graphs

REPRESENTATION = string token
Form of data in SERIES (timeseries, meanperiodogram);
default time

LENGTH = scalar or variate
Scalar specifying that the first N units of the series are to be
used, or a variate specifying the first and last units of the series
to be used

SEED = scalar
Seed for randomization; default 0

NRANDOMIZATIONS = scalar
Number of randomizations; default 99

TREATMENTS = factor
Contains ordered classification of SERIES

PAIR = variates
Treatment pair levels for pairwise comparisons

COLOUR = text or variate
Colours for each level of TREATMENTS; default * sets suitable
colours automatically

MEANPERIODODGRAM = pointer
Saves mean periodograms according if
REPRESENTATION=timeseries

REPLICATION = scalar or variate
Inputs or saves number of replicate series if
REPRESENTATION=timeseries; scalar can be used for equal
Parameter

SERIES = variates

Specify the time series to be analysed

RESHAPE procedure

Reshapes a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors (D.B. Baird).

Options

PRINT = string token

What to print (results); default *, i.e. none

ROWCLASSIFICATION = factors, texts, variates or pointer

Factors classifying the rows in the data; default a factor called Rows with a level for each row

COLCLASSIFICATION = factors, texts, variates or pointer

Factors or texts classifying the columns in the data; default a factor called Columns with labels formed from the column identifiers in DATA

MEANFACTORS = factors, texts, variates or pointer

Row or column factors whose groups are averaged in the output data set

TOTALFACTORS = factors, texts, variates or pointer

Row or column factors whose groups are totalled in the output data set

FIRSTSUMMARY = string token

Which summaries to form first (means, totals) default means

NEWROWFACTORS = factors

Factors to index the new rows

NEWCOLUMNFACTORS = factors, texts or variates

Factors to indexing the columns in the new data set

REDEFINE = string token

Whether to redefine the NEWROWFACTORS factors and DATA columns, if NEWROWFACTORS or NEWDATA are not set or use names used in the input data (yes, no); default no

MVINCLUDE = string token

Whether to include factor combinations with no observations in the output data set (*, rows, columns); default *; i.e. remove missing rows and columns

Parameters

DATA = pointers

Pointer containing data to be reshaped

NEWDATA = pointers

Pointer containing the reshaped data columns

RESTRICT directive

Defines a restricted set of units of vectors for subsequent statements.

No options

Parameters

VECTOR = vectors

Vectors to be restricted

CONDITION = expression

Logical expression defining the restriction for each vector; a zero (false) value indicates that the unit concerned is not in the set

SAVESET = variates

List of the units in each restricted set

NULL = scalars

Indicator for each restricted set, set to 1 or 0 according to whether or not it contains no units

RESUME directive

Restarts a recorded job.

Options

CHANNEL = scalar

Channel number of the backing-store file where the information was dumped; default 1

CLOSE = string token

Whether to close the file afterwards (yes, no); default no
4.1 Commands

RETRIEVE directive
Retrieves structures from a subfile.

Options

- **CHANNEL = scalar**
 Specifies the channel number of the backing-store or procedure-library file containing the subfile (FILETYPE settings 'back' or 'proc'); default 0 (i.e. the workfile) for FILETYPE=back, no default for FILETYPE=proc, not relevant with other FILETYPE settings

- **SUBFILE = identifier**
 Identifier of the subfile; default SUBFILE

- **LIST = string token**
 How to interpret the list of structures (inclusive, exclusive, all); default incl

- **MERGE = string token**
 Whether to merge structures with those already in the job (yes, no); default no, i.e. a structure whose identifier is already in the job overwrites the existing one, unless it has a different type

- **FILETYPE = string token**
 Indicates the type of file from which the information is to be retrieved (backingstore, procedurelibrary, siteprocedurelibrary, Genstatprocedurelibrary); default back

Parameters

- **IDENTIFIER = identifiers**
 Identifiers to be used for the structures after they have been retrieved

- **STOREDIDENTIFIER = identifiers**
 Identifier under which each structure was stored

RETURN directive
Returns to a previous input stream (text vector or input channel).

Options

- **NTIMES = scalar**
 Number of streams to ascend; default 1

- **CLOSE = string token**
 Whether to close the channel (or text) after the return (yes, no); default no

- **DELETE = string token**
 Whether to delete the text or the file to which the channel was attached (only relevant if CLOSE=yes) after the return (yes, no); default no

Parameter

- **expression**
 Logical expression controlling whether or not to return to the previous input stream; default 1 (i.e. true)

RFFAMOUNT procedure
Fits harmonic models to mean rainfall amounts for a Markov model (J.O. Ong’ala & D.B. Baird).

Options

- **PRINT = string tokens**
 Controls printed output for each fitted model (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti, accu

- **PLOT = string token**
 What plots to display (results); default resu

- **NHARMONICS = scalar**
 Defines the number of harmonics to fit (1...4); default 2

- **SPREADSHEET = string tokens**
 What to save in a spreadsheet (results); default *

Parameters

- **COUNTS = table**
 Supplies the table of counts by Markov class and day number within the year (1...366)

- **AMOUNTS = tables**
 Supplies the table of mean rainfall by wet Markov class and day

- **WINDOW = scalars**
 Window for the graph; default 3 for a single class and 1 otherwise

- **TITLE = texts**
 Title for the graph; default forms an automatic description
RESULTS = pointers
Saves a pointer to the variates of fitted rainfall means by day for each wet class
OUTFILE = texts
File(with extension .gwb, or .xlsx) to save the spreadsheet of results

RFFPROBABILITY procedure
Fits harmonic models to rainfall probabilities for a Markov model (J.O. Ong'ala & D.B. Baird).
Options
- PRINT = string tokens
 Controls printed output for each fitted model (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti, accu
- PLOT = string token
 What plots to display (results); default resu
- NHARMONICS = scalar
 Defines the number of harmonics to fit (1...4); default 2
- SPREADSHEET = string tokens
 What to save in a spreadsheet (results); default *

Parameters
- COUNTS = table
 Supplies the table of counts by Markov class and day within the year (1...366)
- WINDOW = scalars
 Window to plot the graph; default 3 for a single class and 1 otherwise
- TITLE = texts
 The title for the plot; default forms an automatic description
- RESULTS = pointers
 Saves a pointer to variates of fitted rainfall probabilities by day for each wet state
- OUTFILE = texts
 File (with extension .gwb, or .xlsx) to save the selected spreadsheet components

RFINLAYWILKINSON procedure
Options
- PRINT = string tokens
 What to print (model, summary, estimates, sortedsensitivities, monitoring); default mode, summ, esti, sort
- PLOT = string tokens
 What graphs to plot (lines, trellislines, sensitivities); default *
- NBEST = scalar
 Number of best genotypes to print in table of sorted sensitivities; default * i.e. print all of them
- DIRECTION = string token
 Direction to sort table of sorted sensitivities (ascending, descending); default asce
- TOLERANCE = scalar
 Convergence criterion; default 0.001
- MAXCYCLE = scalar
 Maximum number of cycles; default 15
- SAVE = regression save structure
 Save structure from MODEL statement defining the model; default is to use the structure from the latest MODEL statement

Parameters
- GENOTYPES = factors
 The genotype factor; no default
- ENVIRONMENTS = factors
 The environment factor; no default
- SENSITIVITIES = tables
 Saves the estimates of sensitivities; default *
- GENMEANS = tables
 Saves the estimates of genotype means; default *
- ENVMEANS = tables
 Saves the estimates of environment means; default *
- ENVEFFECTS = tables
 Saves the estimates of environment effects; default *
- SESENSITIVITIES = tables
 Saves the s.e.s of sensitivities; default *
- SEGENMEANS = tables
 Saves the s.e.s of genotype means; default *
- SEENVEFFECTS = tables
 Saves the s.e.s of environment effects; default *
- MSDEVIATIONS = tables
 Saves the mean square deviations about the line fitted to each genotype; default *
- DEVIANCE = scalar
 Saves the residual deviance
4.1 Commands

DF = scalar
Saves the residual d.f

TITLE = text
Overall title for the graphs

YTITLE = text
Y-axis title for the graph of the lines

XTITLE = text
X-axis title for the graph of the lines

EXIT = scalar
Exit status: set to 0 if the analysis converged, 1 otherwise

RFSUMMARY procedure
Forms summaries for a Markov model from rainfall data (J.O. Ong’ala & D.B. Baird).

Options

PRINT = string tokens
Controls printed output (counts, amounts, probabilities); default *

PLOT = string token
What plots to display (probabilities); default prob

DAY = variate or factor
Day as a date or a day number within the year

LIMITS = scalar or variate
Values to define the daily rainfall states; default 0.85

ORDER = scalar
Defines the order of the Markov chain (0...5); default 1

HIGHORDER = scalar
Whether to use a high-order Markov chain; (no, yes); default no

INITIAL = scalar or variate
The amounts of rainfall prior to the first day; default *

SPREADSHEET = string tokens
What to save in a spreadsheet (counts, amounts, probabilities); default *

Parameters

DATA = variates
The daily rainfall amounts

WINDOW = scalars
Window to plot the graph; default 3 for ORDER=0 and 1 otherwise

TITLE = texts
The title for the plot; default uses an automatic description

COUNTS = tables
Saves the counts by Markov state and day

AMOUNTS = tables
Saves the mean rainfall by Markov wet states and day

PROBABILITIES = pointers
Saves a pointer to variates of probabilities of a wet day by class

CATEGORIES = factors
Saves the Markov class for each day

STATECOUNTS = pointers
Saves a pointer to tables of counts for each state

OUTFILE = texts
File (with extension .gwb, or .xlsx) to save selected spreadsheet components

RFUNCTION directive
Estimates functions of parameters of a linear, generalized linear, generalized additive or nonlinear model.

Options

PRINT = string tokens
What to print (estimates, se, correlations); default esti,se

CHANNEL = identifier
Channel number of file, or identifier of a text to store output; default current output file

CALCULATION = expression structures
Calculation of functions involving nonlinear and/or linear parameters; no default

SE = variate
To save approximate standard errors; default *

VCOVARIANCE = symmetric matrix
To save approximate variance-covariance matrix; default *

SAVE = identifier
Specifies save structure of regression model; default * i.e. that from last model fitted

Parameter

scalars
Identifiers of scalars assigned values of the functions by the calculations

RGRAPH procedure
Draws a graph to display the fit of a regression model (P.W. Lane).

Options

GRAPHICS = string token
Type of graphics to produce (lineprinter,
Syntax summary

TITLE = text

Title for the graph; default 'Fitted and observed relationship'

WINDOW = number

Which high-resolution graphics window to use; default 4
(redefined if necessary to fill the frame)

SCREEN = string token

Whether to clear the graphics screen before plotting (clear, keep); default clea

CI PLOT = string token

Whether to plot confidence intervals (no, yes); default no

CIPROBABILITY = scalar

Probability for confidence interval; default 0.95

BACKTRANSFORM = string token

What back-transformation to make (link, none, axis); default link

SAVE = regression save structure

Save structure of the model to display; default * uses the most recently fitted regression model

PARAMETERS

INDEX = variate

Which explanatory variate to display; default * if **GROUPS** is set, otherwise **INDEX** is set to the first variate in the fitted model (must be set for nonlinear models other than standard curves)

GROUPS = factor

Which explanatory factor to display; default * if **INDEX** is set, otherwise **GROUPS** is set to the first factor in the fitted model (ignored for nonlinear models)

RIDGE procedure

Produces ridge regression and principal component regression analyses (A.J. Rook & M.S. Dhanoa).

Options

PRINT = string token

What to print (correlation, pcp, ridge); default corr

PLOT = string token

Graphical output required (ridgetrace); default *

Parameters

Y = variates

Response variate in regression model

X = pointers

Containing explanatory variates in regression model

RJOINT procedure

Does modified joint regression analysis for variety-by-environment data (P.W. Lane & K. Ryder).

Options

PRINT = string tokens

What to print (model, summary, estimates, monitoring, graph); default mode, summ, esti

TITLE = text

Overall title for graph

YTITLE = text

Y-axis title for graph

XTITLE = text

X-axis title for graph

TOLERANCE = scalar

Convergence criterion; default 0.001

MAXCYCLE = scalar

Maximum number of cycles; default 15

SAVE = regression save structure

Save structure from **MODEL** statement defining the model; default is to use the structure from the latest **MODEL** statement

Parameters

ENVIRONMENT = factors

The environment factor; no default

VARIETY = factors

The variety factor; no default

SENSITIVITIES = variates

To store estimates of sensitivities; default *

VARMEANS = variates

To store estimates of variety means; default *

ENVEFFECTS = variates

To store estimates of environment effects; default *

ENUMEANS = variates

To store estimates of environment means; default *

SESENSITIVITIES = variates

To store s.e.s of sensitivities; default *

SEVARMEANS = variates

To store s.e.s of variety means; default *

SEENVEFFECTS = variates

To store s.e.s of environment effects; default *

DEVIANCE = scalar

To store the residual deviance

DF = scalar

To store the residual d.f

EXIT = scalar

Exit status – set to 0 if the analysis converged, 1 otherwise
RKEEP directive

Stores results from a linear, generalized linear, generalized additive or nonlinear model.

Options

EXPAND = string token
Whether to put estimates in the order defined by the maximal model for linear or generalized linear models (yes, no); default no

DISPERSION = scalar
Dispersion parameter to be used as estimate for variability in s.e.s; default as set in the MODEL directive

RMETHOD = string token
Type of residuals to form if parameter RESIDUALS is set (deviance, Pearson, simple); default as set in MODEL

DMETHOD = string token
Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default as set in MODEL

PROBABILITY = scalar
Probability level for confidence limits; default 0.95

OMODEL = pointer
Pointer to settings of options of the current MODEL statement, given unit labels corresponding to the option names of MODEL (starting with 'distribution')

PMODEL = pointer
Pointer to settings of parameters of the current MODEL statement, given unit labels corresponding to the parameter names of MODEL (starting with 'y'), only refers to the first setting of y, FITTEDVALUES and RESIDUAL

STATISTICS = variates
Saves all the statistics that could be displayed for the first Y variate by the 'summary' setting of the PRINT option of the fitting directives FIT, ADD etc

CIMETHOD = string token
Method to use to calculate confidence intervals for nonlinear models (exact, quadratic); default quad

IGNOREFAILURE = string
Whether to ignore failure to fit a generalized linear model (yes, no); default no

MAXIMALMODEL = formula structure
Saves the maximal model (as defined by TERMS)

FITMODEL = formula structure
Saves the currently-fitted model (including any contrast functions)

FITCONSTANT = scalar
Saves a scalar containing the value one if the constant is included in the fitted model, or zero otherwise

FITTYPE = scalar
Saves a scalar to indicate the type of model that has been fitted

SAVE = identifier
Specifies save structure of model; default * i.e. that from latest model fitted

Parameters

Y = variates
Response variates for which results are to be saved; default is the list of response variates in the most recent MODEL statement

RESIDUALS = variates
Residuals for each Y variate, as specified by the RMETHOD option

FITTEDVALUES = variates
Fitted values for each Y variate

LEVERAGE = variate
Leverages of the units for each Y variate

ESTIMATES = variates
Estimates of parameters for each Y variate

SE = variates
Standard errors of the estimates

INVERSE = symmetric matrix
Inverse matrix from a linear or generalized linear model, inverse of second derivative matrix from a nonlinear model

VCOVARIANCE = symmetric matrix
Variance-covariance matrix of the estimates

DEVIANCE = scalars
Residual ss or deviance

DF = scalar
Residual degrees of freedom

TERMS = pointer or formula structure
Fitted terms (excluding constant)

ITERATIVEWEIGHTS = variate
Iterative weights from a generalized linear model

LINEARPREDICTOR = variate
Linear predictor from a generalized linear model

YADJUSTED = variate
Adjusted response of a generalized linear model

EXIT = scalar
Exit status from a generalized linear or nonlinear model

GRADIENTS = pointer
Derivatives of fitted values with respect to parameters in a
nonlinear model

GRID = variate
Grid of function or deviance values from a nonlinear model

DESIGNMATRIX = matrix
Design matrix whose columns are explanatory variates and dummy variates

PEARSONCHISQUARE = scalar
Pearson chi-square statistic from a generalized linear model

TERMS = pointer
Saves the identifiers of the variates that have been smoothed in the current model

SCOMPONENTS = pointer
Saves a pointer to variates holding the nonlinear components of the variates that have been smoothed

NOBSERVATIONS = scalar
Number of units used in regression, excluding missing data and zero weights and taking account of restrictions

SEFITTEDVALUES = variate
Saves standard errors of the fitted values

SELINEARPREDICTOR = variate
Saves standard errors of the linear predictor

INFLATION = variate
Saves the variance inflation factors of the parameter estimates

UPPER = variates
Saves upper confidence limits for the parameter estimates

LOWER = variates
Saves lower confidence limits for the parameter estimates

MEANDEVIANCE = scalars
Saves the residual mean deviance (or mean square)

TDEVIANCE = scalars
Saves the total deviance (or sum of squares)

TDF = scalars
Saves the total degrees of freedom (corrected for the mean or uncorrected as displayed by the fitting directives)

TMEANDEVIANCE = scalars
Saves the total mean deviance (or mean square)

SUMMARY = pointer
Saves the summary analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc)

ACCUMULATED = pointer
Saves the accumulated analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc)

STATISTICS = variates
Saves all the statistics that could be displayed for the Y variate by the 'summary' setting of the PRINT option of the fitting directives FIT, ADD etc

RKESTIMATES directive
Saves estimates and other information about terms in a regression analysis.

Options

FACTORIAL = scalar
Limit on number of factors and variates in a model term; default 3

Y = variate
Response variate for which results are to be saved; default is the last response variate in the save structure

SAVE = identifier
Provides the regression save structure for the analysis from which the estimates are to be saved; default * takes the save structure from the most recent regression

Parameters

TERMS = formula
Model terms for which information is required

ESTIMATES = tables or scalars
Table or scalar to store the estimated regression coefficients for each term

SE = tables or scalars
Table or scalar to store the standard errors of the estimated regression coefficients

VCOVARIANCE = symmetric matrices
Symmetric matrix or scalar to store the variances and covariances between the estimates of each term

DF = scalars
Number of degrees of freedom for each term

POSITIONS = tables or scalars
Positions of the estimates in the variate of estimates as saved from RKEEP when option EXPAND=yes
RKLOESSGROUPS procedure
Stores results from a locally weighted regression (loess) with groups model fitted to data with groups (D.B. Baird).

Options
RMETHOD = string token
Type of residuals to form if parameter RESIDUALS is set
(deviance, simple); default devi
SAVE = identifier
Save structure from the analysis of a loess with groups model
by RKLOESSGROUPS; default uses the model fitted most recently
by RKLOESSGROUPS

Parameters
RESIDUALS = variates
Residuals, as specified by the RMETHOD option
FITTEDVALUES = variates
Fitted values
LEVERAGEs = variate
Leverages of the units
ESTIMATES = variates
Estimates of parameters
SE = variates
Standard errors of the estimates
VCOVARIANCE = symmetric matrix
Variance-covariance matrix of the estimates
CORRELATIONS = symmetric matrix
Correlation matrix of the estimates
DEVIANcE = scalars
Residual ss or deviance
DF = scalar
Residual degrees of freedom
ACCUMULATED = pointer
Saves the accumulated analysis-of-variance (or deviance) table
as a pointer with a variate or text for each column (source, d.f.
etc)

RLASSO procedure
Performs lasso using iteratively reweighted least-squares (D.A. Murray & P.H.C. Eilers).

Options
PRINT = string token
What output to print (correlation, crossvalidation,estimates,best); default best
PLOT = string tokens
What graphs to plot (correlation, coefficients); default
* i.e. none
TERMS = formula
Explanatory model
FACTORIAL = scalar
Limit on number of factors/covariates in a model term; default
3
LAMBDA = variate or scalar
Values for the parameter lambda; must be set
VALIDATIONMETHOD = string token
Which cross-validation method to use (crossvalidation,
gcv); default gcv
NCROSSVALIDATIONGROUPS = scalar
Number of groups for k-fold cross-validation; default 10
NBOOT = scalar
Number of times to bootstrap data to estimate standard errors
and confidence limits for fitted values; default 100
SEED = scalar
Seed for random numbers to use in cross-validation and then
in bootstrapping; default 0
CIPROBABILITY = scalar
Probability level for confidence interval for fitted values;
default 0.95
MAXCYCLE = scalar
Maximum number of iterations for the iterative process
TOLERANCE = variate
Contains two values to define the convergence criterion for
iterative least-squares and the adjustment to avoid division by
zero in the penalty term; default !(0.0001,le=0-8)

Parameters
Y = variates
Response variate
BESTLAMBDA = scalars
Saves the optimal lambda value from cross-validation
CVSTATISTICS = matrices
Saves the cross-validation statistics
RESIDUALS = variates
Saves residuals for the optimal LAMBDA
FITTEDVALUES = variates
Saves fitted values for the optimal LAMBDA
ESTIMATES = variates
Saves parameter estimates for the optimal LAMBDA
SE = variates
Saves standard errors of the parameter estimates for the
optimal LAMBDA
4 Syntax summary

SEFITTED = variates
Saves standard errors of the fitted values, from bootstrapping, for the optimal LAMBDA

LOWER = variates
Saves lower confidence limits for the fitted values, from bootstrapping, for the optimal LAMBDA

UPPER = variates
Saves upper confidence limits for the fitted values, from bootstrapping, for the optimal LAMBDA

RLFUNCTIONAL procedure
Fits a linear functional relationship model (M.S. Dhanoa & D.B. Baird).

Options

PRINT = string token
Controls printed output (summary, estimates, fittedvalues, confidencelimits, grouptests); default summ, esti, conf, grou

METHOD = string tokens
Specifies what methods to use to fit the regression (bartlett, majoraxis, errorsinvariables, yonx, xony, reducedmajoraxis, standardmajoraxis, rangedmajoraxis, geometricmean, bisector, medyox, medxony, qgeometricmean, qbisector, qmajoraxis, theisenbartlett); default bart

PLOT = string tokens
Controls what to plot (fitted, residuals, bootestimates, confidencelimits); default fitt

TITLE = text
The title for the analysis; default title uses the Y and X identifiers

NBOOT = scalar
The number of samples to take for the bootstrap confidence limits; default 200

SEED = scalar
Seed for bootstrap randomization; default 0

CIPROBABILITY = scalar
Defines the size of the confidence interval; default 0.95 i.e. 95%

CIMETHOD = string token
Method for confidence limits (parametric, bootstrap); default boot

GMETHOD = string token
Method for comparing slopes, elevations and locations between groups (majoraxis, standardmajoraxis); default uses standardmajoraxis for METHOD settings standardmajoraxis, reducedmajoraxis, rangedmajoraxis, geometricmean or bisector, and majoraxis otherwise

VRATIO = scalar
Ratio between variance of Y and X variables for
METHOD=errorsinvariables; default 1

YRANGEMETHOD = string token
Type of range used for Y when METHOD=rangedmajoraxis (relative, interval); default rela

XRANGEMETHOD = string token
Type of range used for X when METHOD=rangedmajoraxis (relative, interval); default rela

WINDOW = scalar
Graphics window to use for fitted-value plots; default 1

KEYWINDOW = scalar
Graphics window to use for key; default 2

Parameters

Y = variates
Y-variate for each model

X = variates
X-variate for each model

SLOPE = scalars, variates or matrices
Saves the estimated slopes

INTERCEPT = scalars, variates or matrices
Saves the estimated intercepts

GROUPS = factors
Defines groups of units

RESIDUALS = variates, matrices or pointers
Saves the residuals from the fitted models

FITTEDVALUES = variates, matrices or pointers
Saves the fitted values
4.1 Commands

ESTIMATES = variates, matrices or pointers

Saves the estimates

SE = variates, matrices or pointers

Saves the standard errors of the estimates

LOWER = variates, matrices or pointers

Saves lower values of confidence intervals for the estimates

UPPER = variates, matrices or pointers

Saves upper values of confidence intervals for the estimates

LOWFITTEDVALUES = variates, matrices or pointers

Saves the lower confidence limits from a bootstrap analysis of fitted values

UPPFITTEDVALUES = variates, matrices or pointers

Saves the upper confidence limits from a bootstrap analysis of fitted values

TESTPROBABILITIES = pointers

Saves the between-group test probabilities (in a symmetric matrix) for differences in slopes, elevations and locations

RLIFETABLE procedure

Calculates the life-table estimate of the survivor function (D.A.Murray).

Options
PRINT = string tokens
Controls printed output (lifetable); default life

PLOT = string tokens
Type of graph to be plotted (survivor, hazard, pdf); default surv, haza, pdf

INTERVAL = scalar or variate
A scalar defining the width of the intervals or a variate containing the boundaries of the intervals

Parameters
TIMES = variates
Observed timepoints

CENSORED = variates
Variate specifying whether the corresponding element of each TIMES variate is censored (1) or represents failures (0)

FREQUENCY = variates
Variate containing frequencies for the elements of TIMES; by default these are all assumed to be 1

GROUPS = factors
Factor specifying the different groups for which to estimate life tables

LIFETABLE = pointers
Pointer to variates to save the information from each life table

RLOESSGROUPS procedure

Fits locally weighted regression models (loess) to data with groups (D.B. Baird).

Options
PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, groups, submodels); default mode, summ, esti

PLOT = string tokens
What to plot (fittedvalues, residuals); default * - no plots

FINALMODEL = string token
What to model to fit as the final model (common, parallel, separateslopes, full); default full

CONSTANT = string token
How to treat the constant (estimate, omit); default esti

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

MAXCYCLE = scalar
Maximum number of iterations for the back-fitting algorithm;
DEVIANCE = scalar
Saves the residual deviance

DF = scalar
Saves the residual d.f.

Parameters

X = variate
Explanatory x-variate to be fitted

GROUPS = factor
Groups to be fitted

SMOOTH = scalar
Smoothing value to be used in loess term; default 4

SMTYPE = string token
Type of value provided in SMOOTH (df, smoothing); default df

ORDER = scalar
Order of regression used in loess term (1 or 2); default 1

RESDUALS = variates
Simple residuals from the fitted loess model

FITTEDVALUES = variates
Fitted values from the fitted loess model

ACCUMULATED = pointer
Saves the accumulated analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc.)

SAVE = pointer
Save structure for the fitted model

RMGLM procedure

Fits a model where different units follow different generalized linear models (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default mode, summ, esti

Y = variate
Response variate

TERMS = formula
Terms in the model

NBINOMIAL = variate
Binomial totals

DISPERSION = scalar
Dispersion parameter; default * for DIST=norm, gamm, inve or calc, and 1 for DIST=pois, bino, mult, nega, geom, expo or bern

WEIGHTS = variate
Prior weights; default 1

OFFSET = variate
Offset variate to be included in model; default * i.e. none

CONSTANT = string token
How to treat the constant (estimate, omit, ignore); default esti

FACTORIAL = scalar
Limit for expansion of model terms; default 3

FULL = string token
Whether to assign all possible parameters to factors and interactions (no, yes); default no

DATASET = factor
Indicates which generalized linear model to apply to each unit; default defined from NVALUES

LINEARPREDICTOR = variate
Initial values for linear predictor

MAXCYCLE = scalar
Maximum number of iterations; default 30

MVINCLUDE = string token
Whether to include units with missing values in the explanatory factors and variates (explanatory); default * i.e. omit these

SAVE = identifier
To name the regression save structure; default *

Parameters

NVALUES = scalars
Number of units for each generalized linear model

DISTRIBUTION = string tokens
Error distributions (normal, poisson, binomial, gamma, inversenormal, multinomial, calculated, negativebinomial, geometric, exponential, bernoulli); default norm

LINK = string tokens
Link functions (canonical, identity, logarithm, logit, reciprocal, power, squareroot, probit, complementaryloglog, calculated, logratio); default cano (i.e. iden for DIST=norm or calc; loga for DIST=pois; logi for DIST=bino, bern or mult; reci for DIST=gamm or expo; powe for DIST=invex; logr for
RMPLCONFIDENCE procedure

Estimates profile likelihood confidence intervals of predicted group means from a linear or generalized linear model analysis (V.M. Cave).

Options

- **PRINT = string token**
 - Controls printed output (intervals); default inte
- **BACKTRANSFORM = string token**
 - What back-transformation to apply to the intervals on the linear scale (link, none); default link (i.e. the intervals are presented on the natural scale)
- **PLOT = string tokens**
 - What to plot (profiles, intervals); default * i.e. no plots
- **DECIMALS = scalar**
 - Number of decimal places for printing
- **CIPROBABILITY = scalar**
 - Probability for the confidence intervals; default 0.95
- **RANGE = scalar, variate or matrix**
 - Defines the range of values over which to evaluate the profile likelihoods; default 3
- **NPOINTS = scalar**
 - Defines the number of values at which to evaluate the profile likelihoods initially; default 10
- **NEXTRAPOINTS = scalar**
 - Defines the number of extra values to evaluate the profile likelihoods at, within the neighbourhoods of the confidence limits identified during the initial scan as defined by RANGE and NPOINTS; default 10
- **SAVE = regression save structure**
 - Regression save structure to provide the information on the regression model; default * uses the most recently fitted regression model

Parameter

- **CISAVE = pointer**
 - Pointer that saves the lower and upper limits of the profile likelihood intervals, along with the estimated group means, labels identifying the groups, and an indicator variable for one-sided intervals

RMULTIVARIATE procedure

Performs multivariate linear regression with accumulated tests; synonym FITMULTIVARIATE (H. van der Voet).

Options

- **PRINT = string tokens**
 - Controls printed output (model, summary, accumulated); default mode, summ, accu
- **RPRINT = string tokens**
 - Controls printed output from the univariate regression analyses (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default *
- **FACTORIAL = scalar**
 - Limit for expansion of model terms; default 3
- **NOMESSAGE = string tokens**
 - Which warning messages to suppress when fitting the complete model – messages are always suppressed when fitting models for individual tests (aliasing, marginality); default *
- **RESULTS = pointer**
 - To save results from accumulated and summary tests in a pointer containing terms, degrees of freedom of terms, Wilks' Lambda, Rao's F-statistic, degrees of freedom for numerator and denominator of Rao's F and P-value of Rao's F

Parameter

- **TERMS = formula**
 - List of explanatory variates and factors, or model formula
RNEGBINOMIAL procedure

Fits a negative binomial generalized linear model estimating the aggregation parameter (R.M. Harbord & R.W. Payne).

Options

PRINT = string tokens

Printed output from the analysis (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, aggregation, loglikelihood); default mode, summ, esti, aggr

AGGREGATION = scalar

Saves the estimate of the aggregation parameter

_2LOGLIKELIHOOD = scalar

Saves the value of \(-2 \times \text{log-likelihood}\)

CONSTANT = string token

How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar

Limit on number of factors in a treatment term; default 3

POOL = string token

Whether to pool the deviance for the terms in the accumulated summary (yes, no); default no

NOMESSAGE = string tokens

Warnings to suppress from FIT (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token

Printing of probabilities for variance ratios (yes, no); default no

TPROBABILITY = string token

Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens

Statistics to be displayed in the summary of analysis produced by PRINT=summary (%variance, %ss, adjustedr2, r2, dispersion, %meandeviance, %deviance, aic, bic, sic); default disp

PROBABILITY = scalar

Probability level for confidence intervals for parameter estimates; default 0.95

SEAGGREGATION = scalar

Saves the standard error of the estimated aggregation parameter

MAXCYCLE = variate

Maximum number of iteration for main and Newton-Raphson estimations; default !(15,15)

TOLERANCE = variate

Convergence criteria for deviance and \(k\); default !(1E-4,1E-4)

Parameter

TERMS = formula

List of explanatory variates and factors, or model formula (as for FIT)

RNONNEGATIVE procedure

Fits a generalized linear model with nonnegativity constraints; synonym FITNONNEGATIVE (P.W. Goedhart & C.J.F. ter Braak).

Options

PRINT = string tokens

Printed output required (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default mode, summ, esti

CONSTANT = string token

How to treat the constant (estimate, omit); default esti

POOL = string token

Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token

Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens

Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality); default *

FPROBABILITY = string token

Printing of probabilities for variance ratios (yes, no); default no

TPROBABILITY = string token

Printing of probabilities for t-statistics (yes, no); default no

MAXCYCLE = scalar

Maximum number of iterations; default 100

TOLERANCE = scalar

Value against which the Kuhn-Tucker values are tested;
4.1 Commands

INITIALMODEL = string token
Initial model from which to start the iterative procedure (null, full, positive, own); default null

OWNINITIAL = variates
Specifies the variates that compose your own initial model; this option must be set when INITIALMODEL=own; default *

FORCED = formula
Model formula which is fitted irrespective of nonnegativity constraints; default *

Parameter
X = variates
List of predictors which are subject to nonnegativity constraints

ROBSSPM procedure

Options
PRINT = string tokens
Controls printed output (sspm, distances, weights, vcovariance, means, correlations, outliers); default * i.e. no output

B1 = scalar
The value from which the threshold distance is derived (see the Method Section); default 2

B2 = scalar
The value indicating the decline in weight as the distance of a unit above the threshold increases, (see the Method Section); default 1.25

MAXCYCLE = scalar
Maximum number of iterations; default 100

TOLERANCE = scalar
The minimum change in the average squared-weight that has to be achieved for the iterative process to converge; default 1.0 *

Parameters
DATA = pointers
Supplies the set of variates in each datamatrix

SSPM = SSPMs
SSPM structure to contain the robust estimates of the sums of squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix

DISTANCES = variates
To contain the Mahalanobis distances of the units from the mean

WEIGHTS = variates
To contain the weights used for each unit when forming the robust estimates

VCOVARIANCE = symmetric matrices
To contain the robust estimates of the matrices of variances and covariances

CORRELATIONS = symmetric matrices
This contains on output the correlations from the robust estimates of the variances and covariances

ROTATE directive
Does a Procrustes rotation of one configuration of points to fit another.

Options
PRINT = string tokens
Printed output required (rotations, coordinates, residuals, sums); default * i.e. no printing

SCALING = string token
Whether or not isotropic scaling is allowed (yes, no); default no

STANDARDIZE = string tokens
Whether to centre the configurations (at the origin), and/or to normalize them (to unit sum of squares) prior to rotation (centre, normalize); default cent, norm

SUPPRESSREFLECTION = string token
Whether to suppress reflection (yes, no); default no

Parameters
XINPUT = matrices
Inputs the fixed configuration

YINPUT = matrices
Inputs the configuration to be fitted

XOUTPUT = matrices
To store the (standardized) fixed configuration

YOUTPUT = matrices
To store the fitted configuration
4 Syntax summary

ROTATION = *matrices*
To store the rotation matrix

RESIDUALS = *matrices or variates*
To store distances between the (standardized) fixed and fitted configurations

RSS = *scalars*
To store the residual sum of squares

RPAIR procedure

Gives t-tests for all pairwise differences of means from a regression or generalized linear model (J.T.N.M. Thissen & P.W. Goedhart).

Options

PRINT = *string tokens*
What to print (differences, sed, tvalues, tprobabilities); default diff, sed, tvl

SORT = *string token*
Whether to sort the means into ascending order (no, yes); default no

COMBINATIONS = *string token*
Which combinations of factors in the current model to include (full, present, estimable); default esti (similar to the PREDICT directive)

ADJUSTMENT = *string token*
Type of adjustment with linear regression models (marginal, equal); default marg (similar to the PREDICT directive)

WEIGHTS = *table*
Weights classified by some or all standardizing factors; default * (similar to the PREDICT directive)

METHOD = *string token*
Method of forming margin (mean, total); default mean (similar to the PREDICT directive)

ALIASING = *string token*
How to deal with aliased parameters (fault, ignore); default fault (similar to the PREDICT directive)

SAVE = *identifier*
Specifies save structure of model to display; default * (i.e. that of the latest model fitted)

Parameters

TREATFACTORS = *pointers*
Each pointer contains a list of treatment factors classifying the table of means to be compared (the right-most factor changes fastest, then the second from the right, etc.); this parameter must be set

LABELS = *texts*
Structures containing strings to label rows (and columns) of the symmetric matrices of pairwise differences etc; the length of the text must equal the product of the numbers of factor levels as implied by the factor list in the TREATFACTORS pointer

NEWLABELS = *texts*
To save the row labels of the DIFFERENCES, SED, TVVALUES and TPROBABILITIES matrices

DIFFERENCES = *symmetric matrices*
To save pairwise differences (treatment means on the diagonal)

SED = *symmetric matrices*
To save standard errors of the pairwise differences (missing values on the diagonal)

TVALUES = *symmetric matrices*
To save t-values (missing values on the diagonal)

TPROBABILITIES = *symmetric matrices*
To save t-probabilities (missing values on the diagonal)

RPARALLEL procedure

Carries out analysis of parallelism for nonlinear functions; synonym FITPARALLEL (R.C. Butler).

Options

PRINT = *string tokens*
What to print (model, summary, accumulated, estimates, correlations, fittedvalues, monitoring); default mode, summ, accu, esti

CALCULATION = *expression structures*
Calculation(s) involving explanatory variate; no default (must be set)

METHOD = *string token*
Which models to fit (singleline, constantsseparate, linearseparate, nonlinearseparate); default nonl
CONSTANT = string token How to treat constant (estimate, omit); default esti

Parameters
X = variates Explanatory variate; must be set
GROUPS = factors Grouping factor for data; must be set
RESULTS = pointers To save results from model nonlinear or separate, if fitted; should be set only if METHOD=nonl

RPERMTEST procedure
Does random permutation tests for regression or generalized linear model analyses (R.W. Payne).

Options
PRINT = string tokens Controls printed output (probability, accumulated, summary, critical); default prob
CONSTANT = string token How to treat the constant (estimate, omit); default prob
FACTORIAL = scalar Limit on the number of variates and/or factors in the terms to be fitted; default 3
NTIMES = scalar Number of permutations to make; default 999
BLOCKSTRUCTURE = formula Model formula defining any blocking to consider during the randomization; default none
EXCLUDE = factors Factors in the block formula whose levels are not to be randomized
SEED = scalar Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically
SUMMARY = pointer Saves the summary analysis-of-variance (or deviance) table with permutation probabilities and critical values
ACCUMULATED = pointer Saves the accumulated analysis-of-variance (or deviance) table with permutation probabilities and critical values
BINMETHOD = string token How to permute binomial data (individuals, units; default indiv)

Parameter
TERMS = formula List of explanatory variates and factors, or model formula, defining the model to fit

RPHCHANGE procedure
Modifies a proportional hazards model fitted by RPHFIT (R.W. Payne).

Options
PRINT = string tokens Controls printed output (model, deviance, summary, estimates, correlations, fitted values, accumulated, monitoring, loglikelihood); default mode, summ, esti
METHOD = string token How to change the model (add, drop, switch); default add
POOL = string token Whether to pool terms in the accumulated summary generated by the fit

Parameter
TERMS = formula Mode specifying the change

RPHDISPLAY procedure
Prints output for a proportional hazards model fitted by RPHFIT (R.W. Payne).

Option
PRINT = string tokens Controls printed output (model, deviance, summary, estimates, correlations, fitted values, accumulated, loglikelihood); default mode, summ, esti

No parameters
RPHFIT procedure

Fits a proportional hazards model to survival data as a generalized linear model (R.W. Payne).

Options

- **PRINT = string tokens** Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, loglikelihood); default mode, summ, esti
- **MAXIMALMODEL = formula** Defines the full model to explore (using RPHCHANGE); default uses the model defined by the TERMS parameter
- **SUBJECTS = factor** Subject corresponding to each observation
- **TIMES = factor or variate** Time of each observation
- **CENSORED = variate** Contains the value 1 for censored observations, otherwise 0; if unset it is assumed that there is no censoring
- **OFFSET = variate** Offset to include in the model
- **POOL = string token** Whether to pool terms in the accumulated summary generated by the fit

Parameter

- **TERMS = formula** Model to fit

RPHKEEP procedure

Saves information from a proportional hazards model fitted by RPHFIT (R.W. Payne).

Options

- **RESIDUALS = variate** Saves the standardized residuals
- **FITTEDVALUES = variate** Saves the fitted values
- **ESTIMATES = variate** Saves estimates of the parameters
- **SE = variate** Saves standard errors of the estimates
- **RESPONSE = variate** Saves the response variate defined for the generalized linear model
- **OFFSET = variate** Saves the offset variate defined for the generalized linear model
- **INDEX = variate** Index variate used to produce the expanded covariates and factors
- **RISKSET = factor** Saves the expanded time factor
- **_2LOGLIKELIHOOD = scalar** Saves \(-2 \times \) log-likelihood for the fitted model

No parameters

RPHVECTORS procedure

Forms vectors for fitting a proportional hazards model as a generalized linear model (R.W. Payne).

Options

- **SUBJECTS = factor** Subject corresponding to each observation
- **TIMES = factor or variate** Time of each observation
- **CENSORED = variate** Contains the value 1 for censored observations, otherwise 0; if unset it is assumed that there is no censoring
- **RESPONSE = variate** Response variate for the generalized linear model
- **OFFSET = variate** Offset variate
- **INDEX = variate** Mapping variate used to produce the expanded variables
- **NEWSUBJECTS = factor** Expanded subjects factor
- **NEWTIMES = factor or variate** Expanded times factor
- **NEWOFFSET = variate** Offset variate for fitting the proportional hazards model

Parameters

- **X = variates or factors** Lists the x-variables that are to be expanded
- **NEWX = variates or factors** Identifiers to store the expanded x-variables; if no NEWX is specified, the expanded values overwrite the original values of X
4.1 Commands

RPLCONFIDENCE procedure
Estimates profile likelihood confidence intervals of parameters in a linear or generalized linear model (V.M. Cave).

Options
- **PRINT** = string token Controls printed output (intervals); default inte
- **PLOT** = string tokens What to plot (profiles, intervals); default * i.e. no plots
- **DECIMALS** = scalar Number of decimal places for printing
- **CIPROBABILITY** = scalar Probability for the confidence intervals; default 0.95
- **RANGE** = scalar, variate or matrix Defines the range of values over which to evaluate a parameter's profile likelihood; default 3
- **NPOINTS** = scalar Defines the number of values at which to evaluate a parameter's profile likelihood initially; default 10
- **NEXTRAPOINTS** = scalar Defines the number of extra values to evaluate the profile likelihoods at, within the neighbourhoods of the confidence limits identified during the initial scan as defined by RANGE and NPOINTS; default 10
- **SAVE** = regression save structure Regression save structure to provide the information on the regression model; default * uses the most recently fitted regression model

Parameters
- **TERMS** = formula Model terms for which profile likelihood confidence intervals of their parameters are to be estimated; if unset, intervals are produced for all parameters in the model
- **CISAVE** = pointer Pointer that saves the lower and upper limits of the profile likelihood intervals, along with the parameter estimates and a label identifying the parameters

RPOWER procedure
Calculates the power (probability of detection) for regression models (R.W. Payne).

Options
- **PRINT** = string token Prints the power (power); default powe
- **TERMS** = formula Specifies the terms (x-variates, factors or model terms) to be fitted in the analysis when the responses to be detected are specified by the RESPONSE parameter
- **FACTORIAL** = scalar Limit on the number of factors or variates in a model term generated from TERMS; default 3
- **PROBABILITY** = scalar Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05
- **TMETHOD** = string token Type of test to be made (onesided, twosided, equivalence, noninferiority, fratio, chisquare); default ones
- **SAVE** = rsave Regression save structure to provide the information about the regression model

Parameters
- **RESPONSE** = variates Variate of fitted values calculated using regression parameters of the size to be detected; default * implies that the information is to be taken from a regression save structure
- **RDF** = scalars Number of residual degrees of freedom; if unset, this is obtained from the analysis of RESPONSE or from the regression save structure
- **RSS** = scalars Anticipated residual sum of squares; if unset, this is obtained from the analysis of RESPONSE or from the regression save structure
- **POWER** = scalars or variates Saves the power
RPROPORTIONAL procedure

Fits the Cox proportional hazards model to survival data (A.I. Glaser & R.W. Payne).

Options

- **PRINT = string tokens**
 - Controls printed output (estimates, vcovariance, residuals, survivor, _2loglikelihood); default esti, _2lo

- **FACTORIAL = scalar**
 - Sets a limit on the number of factors in the terms formed from the TERMS formula

- **TIMES = factor or variate**
 - Time of each observation

- **CENSORED = variate**
 - Contains the value 1 for censored observations, otherwise 0; if unset it is assumed that there is no censoring

- **OFFSET = variate**
 - Offset to include in the model

- **BLOCKS = factor**
 - Blocking factor defining groups of observations with different baseline hazard functions

- **INITIAL = scalar or variate**
 - Initial values for the parameters in the model

- **RESIDUALS = variate**
 - Saves the Cox-Snell residuals

- **ESTIMATES = variate**
 - Saves the parameter estimates

- **SE = variate**
 - Saves standard errors of the estimates

- **VCOVARIANCE = symmetric matrix**
 - Saves the variance-covariance matrix of the estimates

- **_2LOGLIKELIHOOD = scalar**
 - Saves $-2 \times \log$-likelihood for the fitted model

- **DTERMS = scalar**
 - Saves the number of d.f. in the model specified by TERMS

- **SURVIVOR = variate or matrix**
 - Saves estimates of the survivor function, in a variate if BLOCKS is unset, otherwise in a matrix with a column for each block

- **EXIT = scalar**
 - Exit code, set to zero if the fit was successful

- **MAXCYCLE = scalar**
 - Maximum number of iterations to use; default 50

- **TOLERANCE = scalar**
 - Defines the convergence criterion; default 0.000001

Parameter

- **TERMS = formula**
 - Defines the model to fit

RQLINEAR procedure

Fits and plots quantile regressions for linear models (D.B. Baird).

Options

- **PRINT = string tokens**
 - What to print (model, estimates, summary, fittedvalues, correlations, wald, jointqtest, separetqtest); default mode, esti, summ, wald

- **PLOT = string tokens**
 - What to plot (rhistogram, histogram, fittedvalues, estimates, bootestimates); default rhis, phis, fitt

- **TERMS = formula**
 - Terms to be fitted

- **WEIGHTS = variate**
 - Weights for data values; default equally weighted

- **CONSTANT = string token**
 - Whether to include a constant in the model (omit, estimate); default esti

- **FACTORIAL = scalar**
 - Limit on number of factors or variates in a term; default 3.

- **FITINDIVIDUALLY = string token**
 - Whether to fit the regression model one term at a time (yes, no); default no

- **FULL = string token**
 - Whether to assign all possible parameters to factors and interactions (yes, no); default no

- **BMETHOD = string token**
 - Bootstrap method (xy, weightedxy); default xy

- **NBOOT = scalar**
 - Number of times to bootstrap data to estimate confidence limits; default 200

- **SEED = scalar**
 - Seed for bootstrap randomization; default 0

- **CIPROBABILITY = scalar**
 - Probability level for confidence interval; default 0.95

- **XPLOT = variate**
 - Variate to plot fitted values against; default 1st variate in model

Parameters

- **Y = variates**
 - Response variate

- **PRQUANTILES = scalars or variates**
 - Proportions at which to calculate quantiles; default 0.5
4.1 Commands

RESIDUALS = variates or pointers
Fitted values from regression for each quantile
FITTEDVALUES = variates or pointers
Estimated coefficients of model terms for each quantile
ESTIMATES = variates or pointers
Standard errors of the estimated coefficients for each quantile
SE = variates or pointers
VCOVARIANCE = symmetric matrices or pointers
Variance-covariance matrix of estimates for each quantile
DF = scalars or variates
Numbers of degrees of freedom fitted by the model
LOWER = variates or pointers
Lower confidence limit of coefficients for each quantile
UPPER = variates or pointers
Upper confidence limit of coefficients for each quantile
LOWFITTEDVALUES = variates or pointers
Lower confidence limit of fitted values for each quantile
UPPFITTEDVALUES = variates or pointers
Upper confidence limit of fitted values for each quantile
OBJECTIVE = scalars or variates
Optimal values of the objective function
EXIT = scalars or variates
Exit codes indicating whether the estimation was successful

RQNONLINEAR procedure

Fits and plots quantile regressions for nonlinear models (D.B. Baird).

Options

PRINT = string tokens
What to print (model, estimates, summary, fittedvalues, correlations, monitoring); default mode, esti, summ
PLOT = string tokens
What to plot (rhistogram, phistograms, fittedvalues, confidence limits); default phis, fitt, conf
X = variates
Variates to fit in the model
DATA = variates or factors
Data to bootstrap in parallel with y; default takes the variates and factors of the same length as y involved in the CALCULATION expressions
CONSTANT = string token
Whether to include a constant in the model (omit, estimate); default esti
CALCULATION = expression structures
Calculation of explanatory variates involving nonlinear parameters
PARAMETERS = pointer
Pointer to scalars representing the nonlinear parameters to be optimized in the expressions
INITIAL = variate
Initial values for parameters
LOWPARAMETERS = variate
Lower bound for parameters
UPPPARAMETERS = variate
Upper bound for parameters
STEPLENGTHS = variate
Step sizes for parameters
LINEARPARAMETERS = pointer
Pointer to scalars representing the linear parameters in the model (including the constant)
METHOD = string token
Which optimization method to use (gaussnewton, newtonraphson, fletcherpowell, simplex); default gaus
NBOOT = scalar
Number of times to bootstrap data to estimate confidence limits; default 100
SEED = scalar
Seed for bootstrap randomization; default 0
CIPROBABILITY = scalar
Probability level for confidence interval; default 0.95
MAXCYCLE = scalar
Maximum number of iterations for optimization; default 200
XPLOT = variate
Variate to plot fitted values against; default is the first variate on the right-hand side of the CALCULATION expressions

Parameters

Y = variates
Response variates
PRQUANTILE = scalars
Proportion at which to calculate the quantile for each response variate; default 0.5
RESIDUALS = variates
Residuals from the nonlinear model
FITTEDVALUES = variates
Fitted values from the nonlinear model
Syntax summary

<table>
<thead>
<tr>
<th>Names</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATES = variates</td>
<td>Estimates of the parameters in the model (nonlinear, linear and constant)</td>
</tr>
<tr>
<td>SE = variates</td>
<td>Standard errors of the parameters</td>
</tr>
<tr>
<td>VCOVARIANCE = symmetric matrices</td>
<td>Variance-covariance matrix for the parameters</td>
</tr>
<tr>
<td>LOWER = variates</td>
<td>Lower confidence limits for the parameters</td>
</tr>
<tr>
<td>UPPER = variates</td>
<td>Upper confidence limits for the parameters</td>
</tr>
<tr>
<td>LOWFITTEDVALUES = variates</td>
<td>Lower confidence limits for the fitted values</td>
</tr>
<tr>
<td>UPPFITTEDVALUES = variates</td>
<td>Upper confidence limits for the fitted values</td>
</tr>
<tr>
<td>OBJECTIVE = scalars</td>
<td>Optimal values of the objective function</td>
</tr>
<tr>
<td>TITLE = texts</td>
<td>Titles for fitted value graphs</td>
</tr>
</tbody>
</table>

RQSMOOTH procedure

Fits and plots quantile regressions for loess or spline models (D.B. Baird).

Options

- **PRINT = string tokens**
 - What to print: (model, summary, fittedvalues); default mode, summ
- **PLOT = string tokens**
 - What to plot: (rhistogram, fittedvalues); default fitt
- **METHOD = string token**
 - Smoothing method: (loess, spline); default spli
- **DF = scalar**
 - Spline Degrees of Freedom (3-40); default 4
- **KNOTS = variate**
 - Knot points for smoothing splines; default uses equally spaced percentiles of the X variate
- **KERNEL = string token**
 - What Kernel to use for Loess: (normal, epanechnikov, quadratic, triweight, tukeybiweight, quartic, linear, uniform); default norm
- **LMETHOD = string token**
 - Span method for Loess: (constant, adaptive); default adap
- **BANDWIDTH = scalar**
 - Bandwidth for smoothing between 0 and 1; default 0.4
- **ORDER = scalar**
 - Order of local polynomial; default 1
- **NGRIDPOINTS = scalar**
 - Number of points on smooth curve; default 100
- **NBOOT = scalar**
 - Number of times to bootstrap data to estimate confidence limits; default 0 i.e. no bootstrapping
- **SEED = scalar**
 - Seed for bootstrap randomization; default 0
- **CIPROBABILITY = scalar**
 - Probability level for confidence interval; default 0.95
- **TITLE = text**
 - Title for plots; default generates titles from the structure names
- **ARRANGEMENT = string token**
 - Whether to plot fitted regressions by the GROUPS parameter in a trellis plot (single, trellis); default sing

Parameters

- **Y = variates**
 - Response variate
- **X = variates**
 - Explanatory variate
- **PRQUANTILES = scalars or variates**
 - Proportions at which to calculate quantiles; default 0.5
- **GROUPS = factors**
 - Groups for which independent curves are fitted
- **GRID = variates**
 - Grid of equidistant points at which the smooth is calculated
- **OUTGROUPS = factors**
 - Groups for the fitted smoothed values saved by the SMOOTH parameter
- **SMOOTH = variates or pointers**
 - Fitted smooth estimated at the NGRIDPOINTS points given in GRID
- **SLOPE = variates or pointers**
 - Fitted slope from model for the same points as SMOOTH
- **RESIDUALS = variates or pointers**
 - Residuals from regression for each quantile
- **FITTEDVALUES = variates or pointers**
 - Fitted values from regression for each quantile
- **LOWSMOOTH = variates or pointers**
 - Lower confidence limit of smooth for each quantile
- **UPPSMOOTH = variates or pointers**
 - Upper confidence limit of smooth for each quantile
- **SESMOOTH = variates or pointers**
 - Standard error of coefficients for each quantile
RQUADRATIC procedure

Fits a quadratic surface and estimates its stationary point (R.W. Payne).

Options

`PRINT = string tokens`
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, predictions, stationary); default mode, summ, esti

`CONSTANT = string token`
How to treat the constant (estimate, omit); default esti

`FACTORIAL = scalars`
Limit for expansion of model terms; default 3

`POOL = string token`
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

`DENOMINATOR = string token`
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

`NOMESSAGE = string tokens`
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

`FPROBABILITY = string token`
Printing of probabilities for variance and deviance ratios (yes, no); default no

`TPROBABILITY = string token`
Printing of probabilities for t-statistics (yes, no); default no

`SELECTION = string tokens`
Statistics to be displayed in the summary of analysis produced by `PRINT=summary`, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions

`PROBABILITY = scalar`
Probability level for confidence intervals for parameter estimates; default 0.95

`STATIONARY = scalars`
Saves the estimated value of `y` at the stationary point

`SESTATIONARY = scalars`
Saves the standard error of the estimated value of `y` at the stationary point

`TYPESTATIONARY = scalars`
Identifies the type of stationary point (2 for maximum, 1 for maximum on a ridge, /c33 2 for minimum, /c33 1 for minimum on a ridge, or 0 for saddle point)

`PREDICTIONS = matrix`
Saves predictions

`PLOT = string tokens`
What to plot (contour, surface); default * i.e. nothing

`COLOURS = text or variate`
Colours for the plots

Parameters

`X = variates`
X-variates whose linear, quadratic and product terms define the quadratic surface

`ESTIMATE = scalars`
Estimated value of each x-variates at the stationary point

`SE = scalars`
Standard error of the estimated value of each x-variates at the stationary point

`LEVELS = variates`
Values at which to evaluate each `x` for plots and predictions

RRETRIEVE procedure

Retrieves a regression save structure from an external file (R.W. Payne).

No options

Parameters

`FILENAME = texts`
Name of the file storing the save structure

`EXIT = scalars`
Scalar that contains the value one if the save structure could not be retrieved successfully, otherwise zero

`SAVE = regression save structures`
Save structure that has been retrieved
RSCHNUTE procedure
Fits a general 4 parameter growth model to a non-decreasing Y-variate; synonym FITSCHNUTE (A. Keen).

Options
PRINT = string tokens
 What to print (model, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default mode, summ, esti

T1 = scalar
 Timepoint defining \(y_1 \); default the first timepoint with \(\mu > 0.4 \times y_2 \); \(\mu \) and \(y_2 \) are obtained by an approximating model

T2 = scalar
 Timepoint defining \(y_2 \); default \(* \) takes the last observed timepoint

NGRID = scalar
 The number of points for a grid search with parameters \(a \) and/or \(b \); default 7

PLUS = scalar
 The constant added to the observed and fitted values, in order to obtain a suitable variance function in case of other than normal error distribution; default \(* \) takes the smallest possible value for the response given the rounding off

A = scalar
 Fixed value for parameter \(a \) of the growth model, defining a submodel; only 0 is appropriate; default \(* \)

B = scalar
 Fixed value for parameter \(b \) of the growth model; default \(* \)

ALOWER = scalar
 Lower bound for parameter \(a \) of the growth model; default \(-40/(t_2-t_1)\)

AUPPER = scalar
 Upper bound for parameter \(a \) of the growth model; default \(40/(t_2-t_1) \)

BLOWER = scalar
 Lower bound for parameter \(b \) of the growth model; default \(-20 \)

BUPPER = scalar
 Upper bound for parameter \(b \) of the growth model; default 20

MAXCYCLE = scalar
 Maximum number of iterations; default 20

TOLERANCE = scalar
 Convergence criterion; default 0.0004

Parameters
T = variates
 Observed timepoints for each fit

MGRID = matrices
 Deviances from the gridsearch in \(a \) and/or \(b \)

RT = pointers
 Pointer of two variates: the fitted growth rates and relative growth rates at the observed timepoints

OWNT = variates
 A variate of arbitrary timepoints to be specified by the user e.g. for obtaining a smooth plot of fitted values

ROWNT = pointers
 Pointer of three variates: the fitted values, growth rates and relative growth rates at the timepoints specified in \(\text{OWNT} \)

EXTRA = pointers
 Pointer of eight scalars, with: 1) the starting point of the curve below which the response equals 0, 2) the endpoint of the curve where the response is infinite, 3) the lower asymptote of the curve, 4) the upper asymptote of the curve, 5) the inflexion point, 6) the fitted value at the point of inflexion, 7) the growth rate at the point of inflexion, 8) the relative growth rate at the point of inflexion; if no finite value for a scalar exists, the value is set to be missing

RSCREEN procedure
Performs screening tests for generalized or multivariate linear models (H. van der Voet).

Options
PRINT = string tokens
 Printed output required (model, pool, starscheme, tests, pvalues); default mode, pool, star

CONSTANT = string token
 How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar
 Limit for expansion of model terms; default 3

NOMESSAGE = string tokens
 Which warning messages to suppress when fitting the complete model (aliasing, marginality); warning
4.1 Commands

messages are always suppressed when fitting models for individual tests; default *

EXCLUDEHIGHER = string token Whether to exclude higher-order interactions in the conditional regression model for each tested term (yes, no); default no

FORCED = formula Terms always included in the model (no tests on these terms); default *

TESTED = text To save the names of individual terms which are tested

NELEMENTS = variate To save the number of identifiers composing each individual term

MARGINAL = pointer To save results from marginal tests for each tested term in a pointer containing the test statistic, corresponding degrees of freedom and the calculated probability

CONDITIONAL = pointer To save results from conditional tests for each tested term in a pointer containing the test statistic, corresponding degrees of freedom and the calculated probability

MVINCLUDE = string token Whether to include units with missing values in non-relevant explanatory variates or factors when calculating conditional and marginal tests (yes, no); default no

Parameter

FREE = formula List of explanatory variates and factors, or model formula; each term from the expanded **FREE** formula is tested in a marginal and in a conditional test, unless the term is also part of the **FORCED** formula

RSEARCH procedure

Helps search through models for a regression or generalized linear model (P.W. Goedhart).

Options

PRINT = string token Printed output required (model, results); default mode, resu

METHOD = string tokens Model selection method to employ (allpossible, forward, backward, fstepwise, bstepwise, accumulated, pooled); default allp

FORCED = formula Model formula to include in every model; default *

CONSTANT = string token How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar Limit for expansion of all model terms; default 3

DENOMINATOR = string token Whether to base ratios in accumulated summaries on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

INRATIO = scalar Criterion for inclusion of terms for forward selection, backward elimination and stepwise regression; default 1.0

OUTRATIO = scalar Criterion for exclusion of terms for forward selection, backward elimination and stepwise regression; default 1.0

MAXCYCLE = scalar Limit on number of times to repeat stepwise selection methods, unless no change is made; default 50

CRITERION = string token Criterion for selecting best models among all possible models (r2, adjusted, cp, ep, aic, bic, sic, meandeviance, deviance); default adju

EXTRA = string token Criterion which is also printed for the selected best models (r2, adjusted, cp, ep, aic, bic, sic, meandeviance, deviance); default cp when **DISPERSION=** *, and mean otherwise

AFACTORIAL = scalar Limit for expansion of **FREE** model terms for the fitting of all possible models; default 3

PENALTY = scalar Penalty for Mallows Cp and Akaike’s information criterion AIC; default 2

NTERMS = scalar Limit on the number of terms to be fitted when fitting all
NBESTMODELS = scalar
Number of best models printed for each subset size; default 16

PPROBABILITY = scalar
When METHOD=allpossible, only models with all probabilities less than PPROBABILITY are printed; default 1 i.e. all models are printed

FINALMODELS = pointer
Pointer to save the final models for forward, backward, fstepwise and bstepwise regression methods

ALLMODELS = pointer
Pointer to save formulae for all possible regression models containing the fitted terms of all the models; every formula includes the FORCED formula if set

ESTIMATES = pointer
Pointer to save variates for all possible regression models containing the parameter estimates

SE = pointer
Pointer to save variates for all possible regression models containing standard errors of the parameter estimates

RESULTS = pointer
Pointer to save variates for all possible regression models containing the criteria (r2, adjusted, cp, ep, aic, sic or bic, deviance, meandeviance), degrees of freedom for residual and the total number of fitted parameters p

STATISTICS = pointer
Pointer to save variates for all possible regression models containing the test statistics. These are F-to-delete statistics (i.e. deviance ratios) when the DISPERSION option of the MODEL directive is set to *, and Chi-square-to-delete statistics (i.e. deviance differences scaled by the dispersion parameter) for a fixed dispersion parameter

DF = pointer
Pointer to save variates for all possible regression models containing the degrees of freedom for the numerator of the test statistics

PROBABILITIES = pointer
Pointer to save variates for all possible regression models containing the probabilities of the test statistics

MARGINALTERMS = string token
How to treat terms that are marginal to other terms in the FREE formula (forced, free); default forc

Parameter
FREE = formula
Model formula specifying the candidate model terms

RSPREADSHEET procedure
Puts results from a regression, generalized linear or nonlinear model into a spreadsheet (R.W. Payne).

Options
DISPERSION = scalar
Dispersion parameter to be used as estimate for variability in s.e.s; default as set in MODEL

RMETHOD = string token
Type of residual to use (deviance, Pearson, simple, deletion); default * i.e. as set in MODEL

DMETHOD = string token
basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default * i.e. as set in MODEL

SPREADSHEET = string tokens
Which spreadsheets to form (summary, estimates, fittedvalues, accumulated); default summary, estimates, fittedvalues

SPESTIMATES = string tokens
What to include in the estimates spreadsheet (estimates, se, testimates, prestimates); default esti, se, test, pres

SPFITTEDVALUES = string tokens
What to include in the fitted-values spreadsheet (y, fittedvalues, residuals, leverages, sefittedvalues); default y, fitt, resi, leve

SAVE = regression save structure
Specifies which analysis to save; default * i.e. most recent regression

Parameters
Y = variates
Y-variate of the analysis to be saved
4.1 Commands

RESIDUALS = variates
Identifier of variate to save the residuals from each analysis;
default residuals

FITTEDVALUES = variates
Identifier of variate to save the fitted values from each
analysis; default fittedvalues

LEVERAGES = variates
Identifier of variate to save the leverages from each analysis;
default leverages

ESTIMATES = variates
Identifier of variate to save the estimates from each analysis;
default estimates

SE = variates
Identifier of variate to save s.e.’s of the estimates from each
analysis; default se

TESTIMATES = variates
Identifier of variate to save the t-statistics of the estimates from
each analysis; default t_statistics

PRESTIMATES = variates
Identifier of variate to save the t-probabilities of the estimates
from each analysis; default t_probabilities

SEFITTEDVALUES = variates
Identifier of variate to save s.e.’s of the fitted values from each
analysis; default sefittedvalues

SUMMARY = pointers
Identifier of pointer to save the summary analysis-of-variance
(or deviance) from each analysis; default summary

ACCUMULATED = pointers
Identifier of pointer to save the accumulated analysis-of-
variance (or deviance) from each analysis; default accumulated

OUTFILENAME = texts
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx)
file to create

RTEST procedure
Compares groups of right-censored survival data by nonparametric tests (D.A. Murray).

Options
PRINT = string token
Controls printed output (test); default test

METHOD = string tokens
Types of test required (logrank, breslow, petoprentice, taroneware); default logr, bres, peto, taro

BLOCKS = factor
Factor specifying groupings for a stratified test; default * i.e. none

Parameters
TIMES = variates
Observed timepoints

CENSORED = variates
Variate specifying whether the corresponding element of
TIMES is censored (1) or not (0)

GROUPS = factors
Factor specifying the different groups

TESTS = pointers
Pointer to variates (length 3) to save test statistic, d.f. and
probability value for each chosen method

RSTORE procedure
Stores a regression save structure in an external file (R.W. Payne).

No options

Parameters
FILENAME = texts
Name of the file to store the save structure

EXIT = scalars
Scalar that contains the value one if the save structure could
not be stored successfully, otherwise zero

SAVE = regression save structures
Save structure to be stored; default stores the save structure
from the most recent regression analysis

RSURVIVAL procedure
Models survival times of exponential, Weibull, extreme-value, log-logistic or lognormal distributions
(R.W. Payne & D.A. Murray).

Options
PRINT = string tokens
Controls printed output (model, deviance, summary,
estimates, correlations, fittedvalues,
accumulated, loglikelihood); default mode, summ, esti

\textbf{TIMES} = variate

Time of each observation

\textbf{DISTRIBUTION} = string token

Distribution of the survival times (exponential, weibull, extremevalue, loglogistic, lognormal); default expo

\textbf{CENSORED} = variate

Indicator for censored observations: 0 if uncensored, 1 if right censored (subject survived the whole trial), -1 if left censored (log-logistic distribution only); default assumes no censored observations

\textbf{GRAPHICS} = string token

Controls the plotting of diagnostic graphs of the empirical survivor function against the estimate produced by the model (lineprinter, highresolution) default * i.e. none

\textbf{ALPHA} = scalar

Saves the estimated value of the parameter \(\alpha \) of the Weibull and extreme-value distributions, if the scalar is input with a non-missing value this provides the initial estimate for \(\alpha \) (which will also be the final estimate if \texttt{MAXCYCLE=1})

\textbf{SIGMA} = scalar

Saves the estimated value of the shape parameter sigma of the log-logistic and lognormal distributions

\textbf{SURVIVOR} = variate

Saves estimates of the survivor function

\textbf{PARAMETERIZATION} = string token

Controls the parameterization used when saving the survivor function for the Weibull distribution (\(\text{ph, aft} \)); default \(\text{ph} \)

\textbf{MAXCYCLE} = scalar

Maximum number of iterations to use to estimate \(\alpha \); default 20

\textbf{TOLERANCE} = scalar

Convergence limit for \(\alpha \); default 10^{-5}

\textbf{TERMS} = formula

Defines the model to fit

\textbf{RTCOMPARISONS procedure}

Calculates comparison contrasts within a multi-way table of means (R.W. Payne).

\textbf{Options}

\textbf{PRINT} = string token

Controls printed output (contrasts); default cont

\textbf{COMBINATIONS} = string token

Factor combinations for which to form the predicted means (full, present, estimable); default esti

\textbf{ADJUSTMENT} = string token

Type of adjustment to be made when forming the predicted means (marginal, equal, observed); default marg

\textbf{WEIGHTS} = table

Weights classified by some or all of the factors in the model; default *

\textbf{OFFSET} = scalar

Value of offset on which to base predictions; default mean of offset variate

\textbf{METHOD} = string token

Method of forming margin (mean, total); default mean

\textbf{ALIASING} = string token

How to deal with aliased parameters (fault, ignore); default fault

\textbf{BACKTRANSFORM} = string token

What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default link

\textbf{SCOPE} = string token

Controls whether the variance of predictions is calculated on the basis of forecasting new observations rather than summarizing the data to which the model has been fitted (data, new); default data

\textbf{NOMESSAGE} = string tokens

Which warning messages to suppress (dispersion, nonlinear); default *

\textbf{DISPERSION} = scalar

Value of dispersion parameter in calculation of s.e.s; default is as set in the \texttt{MODEL} statement

\textbf{DMETHOD} = string token

Basis of estimate of dispersion, if not fixed by \texttt{DISPERSION} option (deviance, Pearson); default is as set in the \texttt{MODEL} statement

\textbf{NBINOMIAL} = scalar

Supplies the total number of trials to be used for prediction
with a binomial distribution (providing a value \(n \) greater than one allows predictions to be made of the number of "successes" out of \(n \), whereas the value one predicts the proportion of successes); default 1

SAVE = identifier
Regression or ANOVA save structure for the analysis from which the comparisons are to be calculated

Parameters

CONTRAST = tables
Defines the comparisons to be estimated

ESTIMATES = scalars
Saves the estimated contrasts

SE = scalars
Saves standard errors of the contrasts

RTOBITPOISSON procedure
Uses the Tobit method to fit models to censored Poisson data (R.W. Payne).

Options

PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fitted values, accumulated, monitoring, confidence, censored); default mode, summ, esti

TERMS = formula
Defines the model to be fitted

CONSTANT = string token
How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar
Limit for expansion of model terms; default 3

POOL = string token
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary (%variance, %ss, adjustedr2, r2, dispersion, %meandeviance, %deviance, aic, bic, sic); default disp

DISPERSION = scalar
Dispersion parameter; default 1

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

WEIGHTS = variate
Variate of weights for weighted regression; default *

GROUPS = factor
Absorbing factor defining the groups for within-groups regression; default *

MAXCYCLE = scalar
Sets a limit on the number of iterations performed by the E-M algorithm; default 100

TOLERANCE = variate
Sets tolerance limits for convergence of the E-M algorithm on the estimates of the censored observations; default 0.001

DIRECTION = string token
Whether the data are left or right censored (left, right); default right

Parameters

Y = variate
Response variate to be analysed; must be set

BOUND = scalar
Censoring threshold; must be set

INITIAL = scalar or variate
Scalar or a variate providing starting values for the censored observations in the E-M algorithm; default BOUND+1

NEWY = variate
Saves a copy of the response variate with the censored observations replaced by their estimates

OFFSET = variate
Offset variate
EXIT = *scalar*

Save status (0 for success, 1 for failure to converge)

SAVE = *regression save structure*

Save structure from the analysis of the data with censored observations replaced by their estimates.

RUGPLOT procedure

Draws "rugplots" to display the distribution of one or more samples (P.W. Lane).

Options

- `GRAPHICS = string token` - What type of graphics to use (highresolution, lineprinter); default high
- `TITLE = text` - Title for diagram; default *
- `AXISTITLE = text` - Title for axis; default *
- `WINDOW = scalar` - Window in which to draw high-resolution plot; default *, taken as 11 if SCREEN=clear, or 1 if SCREEN=keep
- `SCREEN = string token` - Whether to clear screen before high-resolution plot (clear, keep); default clea
- `ORIENTATION = string token` - Orientation of plots (down, across); default down
- `JITTER = number` - Ratio of jitter width to range of data in high-resolution plot; default 0.01
- `SEED = number` - Seed for generating random numbers used in jittering; default 0, i.e. continue from last generation, or initialize from system clock

Parameters

- `DATA = variates` - Data to be summarized; no default
- `GROUPS = factor` - Factor to divide values of a single variate into groups; default *
- `RUGLABELS = texts` - Labels for individual rugs; default *, i.e. identifiers of variates or labels or levels of factor
- `POSITION = scalar or variate` - Position on x-axis (or on y-axis if ORIENTATION=across) at which to plot each rug; if GROUPS is set, positions for each level of the factor are taken from a variate; default is to draw a single rug on the axis, and to spread multiple rugs across the window

RUNTEST procedure

Performs a test of randomness of a sequence of observations (P.W. Goedhart).

Options

- `PRINT = string token` - Controls printed output (results); default resu
- `NULL = scalar` - Defines the boundary between the two types; default 0

Parameters

- `DATA = variates` - Sequences of observations
- `SAVE = pointers` - To save the number of runs, the number of positive and negative observations and the lower and upper tail probabilities of the test

RVALIDATE procedure

Fits regression models to validate predictions, for example from a deterministic model, against observed data (R.W. Payne).

Options

- `PRINT = string tokens` - What to print (summary, tests, nullmodel, slopeone, constantzero, fullmodel); default summ, test
- `RPRINT = string tokens` - What to print from the regressions (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, graph, checks); default mode, summ, esti
- `DENOMINATOR = string token` - Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss,
NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default ss

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default *

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %var only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

Parameters
OBSERVATIONS = variates
Observed data

PREDICTIONS = variates
Predictions from the model

SAVE = pointers
Saves information from the analysis

R WALD procedure
Calculates Wald and F tests for dropping terms from a regression (R.W. Payne).

Options
PRINT = string token
Controls printed output (waldtests); default wald

FACTORIAL = scalar
Limit on number of factors in the model terms generated from the TERMS parameter; default 3

Y = variate
Y-variate from whose analysis to calculate the statistics; default is the last y-variate in SAVE

RDF = scalar
Saves the residual d.f. used to calculate F probabilities when the dispersion is not fixed

SAVE = regression save structure
Specifies the save structure (from MODEL) containing the analysis for which to calculate the tests; default is the save structure from the most recent regression

Parameters
TERMS = formula
Model terms for which tests are required

WALDSTATISTIC = scalar or pointer to scalars
Saves Wald statistics

DF = scalar or pointer to scalars
Saves d.f. of Wald statistics

PROBABILITY = scalar or pointer to scalars
Saves the probabilities for the Wald statistics if the dispersion is fixed, or the corresponding F statistics if it is estimated

RXGENSTAT procedure
Submits a set of commands externally to R and reads the output (M.F. D'Antuono & D.A. Murray).

Options
PRINT = string tokens
Controls printed output (summary, output); default outp

RPATH = text
Path specifying the location of the R executable; by default Genstat searches for a version of R installed within C:\program files (x86)\R or C:\program files\R

REXE = text
Name of the R executable to run; default 'Rterm.exe'

RARGS = text
Command line arguments to be used with the R executable; default ‘--no-restore --no-save’

SCRIPT = text
A set of R commands to run within R

SFILE = text
A file containing a set of R commands to run within R
4 Syntax summary

RGEN = text
Name of a file to save the full set of commands used within R

ROUT = text
Name of a file to save the output from R

Parameters

WORKDIRECTORY = texts
Working directory to use within R; default current Genstat working directory

IDATA = pointers
Pointer to data structures to export to R (the data are exported into the file specified by the IRDAFILE parameter)

IRDAFILE = texts
Name of an R data (rda) file to import into R

ISAVE = texts
Pointer to data structures to import from R (the data are imported from the file specified by the ORDAFI LE parameter)

ORDAFI LE = text
Name of an R data (rda) file used to export data from R

RYPARALLEL procedure
Fits the same regression model to several response variates, and collates the output (P. Brain, R.W. Payne & D.B. Baird).

Options

PRINT = string tokens
Controls printed output (model, summary); default * i.e. none

TERMS = formula
Defines the regression model to fit on each variate

WEIGHTS = variate or symmetric matrix
Weights for the regression; default 1

OFFSET = variate
Offset; default * i.e. none

CONSTANT = string token
How to treat the constant (estimate, omit); default esti

FACTORIAL = scalar
Limit for expansion of model terms; default 3

FULL = string token
Whether to assign all possible parameters to factors and interactions (yes, no); default no

POOL = string token
Whether to pool the information on each term in the analysis of variance (yes, no); default no

RMETHOD = string token
Type of residuals to form (deviance, Pearson, simple); default devi

SPREADSHEET = string tokens
What results to save in a book of spreadsheets (aov, residuals, fittedvalues, estimates, se, testimates, prestimates); default * i.e. none

Parameters

Y = variates or pointers
Y-values for each set of analyses

RESIDUALS = matrices
Saves residuals from each set of analyses

FITTEDVALUES = matrices
Saves fitted values from each set of analyses

ESTIMATES = matrices
Saves estimates from each set of analyses

SE = matrices
Saves s.e.'s of estimates

TESTIMATES = matrices
Saves t-statistics of estimates

PRESTIMATES = matrices
Saves t-probabilities of estimates

DF = pointers
Saves degrees of freedom for the model terms or variates in each analysis of variance

SS = pointers or variates
Saves sums of squares for the model terms in each analysis of variance

MS = pointers or variates
Saves mean squares for the model terms in each analysis of variance

RDF = variates
Saves degrees of freedom from the "residual" lines in each analysis of variance

RSS = variates
Saves sums of squares from the "residual" lines

RMS = variates
Saves mean squares from the "residual" lines

TDF = variates
Saves degrees of freedom from the "total" lines in each analysis of variance

TSS = variates
Saves sums of squares from the "total" lines

TMS = variates
Saves mean squares from the "total" lines

VR = pointers or variates
Saves variance ratios for the model terms in each analysis of variance

PRVR = pointers or variates
Saves probabilities of the variance ratios
4.1 Commands

OUTFILENAME = texts
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

R0INFLATED procedure
Fits zero-inflated regression models to count data with excess zeros (D.A. Murray).

Options
PRINT = string token
Controls printed output (model, summary, estimates, fittedvalues, monitoring); default mode, summ, esti
DISTRIBUTION = string token
Distribution of response variable (poisson, negativebinomial); default pois
METHOD = string token
Method used for model fitting (em, conditional); default em
CONSTANT = string token
How to treat constant for count state (estimate, omit); default esti
ZCONSTANT = string token
How to treat constant for zero-inflation state (estimate, omit); default esti
XTERMS = formula
List of explanatory variates and factors, or model formula for count state of model
ZTERMS = formula
List of explanatory variates and factors, or model formula for zero-inflation state of model
WEIGHTS = variate
Variate of weights for weighted zero-inflated regression (Lambert model only)
OFFSET = variate
Offset variate to be used in the model (Lambert model only)
MAXCYCLE = scalar
Maximum number of iterations for EM algorithm; default 100
TOLERANCE = scalar or variate
Convergence criteria for EM algorithm, k and in the generalized linear models; default !(1.E-4, 1.E-4, 1.E-4)

Parameters
Y = variates
Response variate
RESIDUALS = variates
Saves the simple residuals
FITTEDVALUES = variates
Saves the fitted values
ESTIMATES = variates
Saves the estimates of the parameters
SE = variates
Saves the standard errors of the estimates
RSAVE = identifiers
Saves the regression structure for the final generalized model fitted for the count model
ZSAVE = identifiers
Saves the regression structure for the final binomial regression fitted for the zero-inflation model

R0KEEP procedure
Saves information from a zero-inflated regression model for count data with excess zeros fitted by R0INFLATED (D.A. Murray).

Options
RESIDUALS = variate
Saves the simple residuals
FITTEDVALUES = variate
Saves the fitted values
ESTIMATE = variate
Saves the parameter estimates
SE = variate
Saves the standard errors of the parameter estimates
VCOVARIANCE = symmetric matrix
Saves the variance-covariance matrix of estimates for the ZIP and ZINB models
XFITTEDVALUES = variate
Saves the fitted values for the count model
XSEFITTEDVALUES = variate
Saves the standard errors of the fitted values for the fitted values of the count model
ZFITTEDVALUES = variate
Saves the fitted values for the zero model
ZSEFITTEDVALUES = variate
Saves the standard errors of the fitted values for the fitted values of the zero model
_2LOGLIKELIHOOD = scalar
Saves –2 times the log-likelihood

No parameters
R2LINES procedure

Fits two-straight-line (broken-stick) models to data (A.W.A. Murray & J.T. Wood).

Options

- **PRINT = string token**

 What to print (model, summary, estimates, fittedvalues, intercepts); default mode, summ, esti

- **PLOT = string tokens**

 What to plot (breakpoint, lines, residuals); default * i.e. nothing

- **HORIZONTAL = string token**

 Forces either the left- the or right-hand line to be horizontal (left, right); default * i.e. neither

- **CIPROBABILITY = scalar**

 Sets the probability level of the confidence interval about the x value at the intersection; default 0.95

- **NGRIDLINES = scalar**

 Controls the number of points used in the initial search for the intersection of the lines; default 100

- **TERMS = variates**

 Additional x-variates to include in the model; default none

- **METHOD = string token**

 Optimization method (gaussnewton, newtonraphson, fletcherpowell); default newt

Parameters

- **Y = variates**

 Response variates to be modelled

- **X = variates**

 Explanatory variable for each response variate

- **TITLE = texts**

 Title to use on the graphs for each response variate

- **FITTEDVALUES = variates**

 Saves fitted values

- **RESIDUALS = variates**

 Saves standardized residuals

- **ESTIMATES = variates**

 Saves estimates from each model (i.e. intersection coordinates and slopes of the fitted lines)

- **SE = variates**

 Saves standard errors of the estimates

- **INTERCEPTS = variates**

 Saves the intercepts

- **LOWER = scalars**

 Saves the lower bound of the confidence interval about the x-value at the intersection

- **UPPER = scalars**

 Saves the upper bound of the confidence interval about the x-value at the intersection

- **PARTIALLIKELIHOOD = pointers**

 Saves the partial likelihood and grid values for partial likelihood plots

SAGRAPES procedure

Options

- **PRINT = string tokens**

 Controls printed output (aovtables, graphs, summarystatistics, tables); default grap, tabl

- **TREATMENTS = factor**

 Factor defining the different treatments that are being assessed

- **SESSIONS = factor**

 Factor defining the sessions on which the assessments were done

- **ASSESSORS = factor**

 Factor defining the individual assessors

- **SCALING = string token**

 Equal scaling for x and y axes on Drift-Unreliability and Discrimination-Disagreement graphs (equal, nome); default none

- **DESCRIPTION = text**

 Extra information to print on graphs

Parameter

- **DATA = variates**

 Variate for each attribute, containing the recorded score

SAMPLE procedure

Samples from a set of units, possibly stratified by factors (P.W. Lane).

Options

- **SEED = scalar**

 Seed for the random number generator; default 0 i.e. continue from previous generation

- **NVALUES = scalar**

 Number of units from which a simple sample is to be taken; default * i.e. as defined by UNITS statement
4.1 Commands

Parameters

NSAMPLE = scalars or tables
Number of values in simple sample, or table of numbers of values at each combination of levels of its classifying factors; no default

SAMPLE = identifiers
Structure to store the result; no default

SBTEST procedure
Calculates the sample size for binomial tests (R.W. Payne & D.A. Murray).

Options

- **PRINT = string token**
 What to print (replication, power); default repl, powe

- **PRMETHOD = string token**
 Method to be used to calculate the probabilities for the binomial test (angular, normalapproximation, exact); default norm

- **PROBABILITY = scalar**
 Significance level for the test; default 0.05

- **POWER = scalar**
 The required power (i.e. probability of detection) of the test; default 0.9

- **TMETHOD = string token**
 Type of test to be done (onesided, twosided); default ones

- **NULL = scalar**
 Probability under the null hypothesis for the one-sample test; default 0.5

- **RATIOREPLICATION = scalar**
 Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1

- **REPLICATION = variate**
 Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Parameters

- **P1 = scalars**
 Probability to detect in sample 1

- **P2 = scalars**
 Probability to detect in sample 2

- **NREPLICATES = scalars**
 Saves the required number of replicates

- **VREPLICATION = variates**
 Numbers of replicates for which powers have been calculated

- **VPOWER = variates**
 Power (i.e. probability of detection) for the various numbers of replicates

SCALAR directive
Declares one or more scalar data structures.

Options

- **VALUE = scalar**
 Value for all the scalars; default is a missing value

- **MODIFY = string token**
 Whether to modify (instead of redefining) existing structures (yes, no); default no

- **IPRINT = string tokens**
 Information to be used to identify the scalars in output
 (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Parameters

- **IDENTIFIER = identifiers**
 Identifiers of the scalars

- **VALUE = scalars**
 Value for each scalar

- **DECIMALS = scalars**
 Number of decimal places for printing

- **EXTRA = texts**
 Extra text associated with each identifier

- **MINIMUM = scalars**
 Minimum value for the contents of each structure

- **MAXIMUM = scalars**
 Maximum value for the contents of each structure

- **DREPRESENTATION = scalars or texts**
 Default format to use when the contents represents a date and time

SCORRELATION procedure
Calculates the sample size to detect specified correlations (R.W. Payne).

Options

- **PRINT = string token**
 What to print (replication, power); default repl, powe
PROBABILITY = scalar

Significance level at which the correlation or difference between correlations is to be tested; default 0.05

POWER = scalar

The required power (i.e. probability of detection) of the test; default 0.9

TMETHOD = string token

Whether to a one- or two-sided test is to be made (onesided, twosided); default onesided

RATIOREPLICATION = scalar

Ratio of replication sample2:sample1 (i.e. the size of sample for group 2 should be RATIOREPLICATION times the size of sample for group 1); default 1

REPLICATION = variate

Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Parameters

COR1 = scalars

Anticipated correlation in group 1

COR2 = scalars

Anticipated correlation in group 2

NREPLICATES = scalars

Saves the required number of replicates

VREPLICATION = variates

Numbers of replicates for which powers have been calculated

VPOWER = variates

Power (i.e. probability of detection) for the various numbers of replicates

SDISCRIMINATE procedure

Options

PRINT = string tokens

Printed output from the analysis (summary, steps, validation, specificity, discrimination, monitoring); default summ, vali, spec, disc

PLOT = string tokens

What plots to produce (errorrate, steps, specificity, discriminant); default erro, steps, spec, disc

DDISCRIMINANT = string tokens

What to display on the discriminant plot (means, mlabels, scores, polygons, confidencecircle); default means, mlabels, scores, conf

METHOD = string token

The variable selection method to use (forward, backward); default forw

NSELECT = scalar

Number of variates to select; default 4

CRITERION = string token

Criterion to use to select variables (wilkslambda, crossvalidation, bootstrap, jackknife); default wilk

MODELCHOICE = string token

Which model to save (optimal, nselect); default opti

VALIDATIONMETHOD = string token

Validation method to use to calculate error rates (bootstrap, crossvalidation, jackknife, prediction); default cros

NSIMULATIONS = variate

Number of bootstraps or cross-validation sets to use for selection and for validation; default !(10,50)

NCROSSVALIDATIONGROUPS = scalar

Number of groups for cross-validation, default 10

SEED = scalar

Seed for random number generation; default 0

YROOT = scalar

Specifies the root for plotting on the y-axis

XROOT = scalar

Specifies the root for plotting on the x-axis

Parameters

DATA = pointers

Each pointer contains a set of variates that are available to be selected

GROUPS = factors

Define groupings for the units in each training set

FORCED = pointers

Variates that must be included in the model

SELECTED = pointers

Saves the variates in the final model

STEPS = pointers

Saves the criterion values for each step in the model selection

ERRORRATE = scalars

Saves the validation error rate for the final model

SPECIFICITY = matrices

Saves the specificity table for the final model
4.1 Commands

ALLOCATION = factors
Saves the groups allocated by the final model

LRV = LRVs
Saves the LRVs from the final discriminant analysis

SCORES = matrices or pointers
Save discriminant scores for unit from the final model

SEDLSI procedure
Calculates least significant intervals (M.C. Hannah).

Options

PRINT = string tokens
What to print (delta, lsi, fittedsed, discrepancy, maxdiscrepancy, %discrepancy); default delta, lsi, maxd

METHOD = string token
Selects the method for computing the deltas (leastsquares, max, maxpse); default leas

PLOT = string tokens
What to plot (sed, lsi); default sed, lsi

CHECKFIT = string token
Which pairwise contrasts to use in printed output or plots involving the fitted SEDs (specified, all); default spec

PROBABILITY = scalar
Significance level for the least significant intervals; default 0.05.

DF = scalar
Degrees of freedom for the t-distribution use in calculation of the least significant intervals; default * assumes an infinite number of degrees of freedom (i.e. a Normal rather than a t-distribution)

WINDOW = scalar
Window in which to plot the graphs

TITLE = text
Title for the graphs; default 'Estimates with LSIs by Treatment'

YTITLE = text
Title for the y-axis; default 'Estimates'

Parameters

ESTIMATES = tables or variates
Parameter estimates; if these are not supplied SEDLSI can calculate the parameters \(\{ \delta \} \) but not the LSIs

SED = symmetric matrices
Matrix containing standard errors of (pairwise) differences between estimates

VCOVARIANCE = symmetric matrices
Matrix containing variances and covariances of estimates

WEIGHTS = symmetric matrices
Weight (or importance) to be used for each pairwise difference; default is a matrix of ones (i.e. all pairwise differences of equal interest)

LABELS = texts
Text vector (e.g. treatment labels) for labelling output; default takes the labels of levels of the factor classifying an ESTIMATES table or (if ESTIMATES is a variate or unset) row labels from SED or VCOVARIANCE

DELTA = variates
Saves the estimated parameters \(\{ \delta \} \)

LSI = pointers
Saves details of the least significant intervals

FITTEDSED = symmetric matrices
Saves the fitted SED matrices

SED2ESE procedure
Calculates effective standard errors that give good approximate standard errors of differences (R.W. Payne).

Option

PRINT = string token
Controls printed output (ese, discrepancy, maxdiscrepancy, %discrepancy, %accounted); default * i.e. none

Parameters

SED = symmetric matrices
Standard errors of differences to be approximated

ESE = variates or tables
Saves the effective standard errors

DISCREPANCY = symmetric matrices
Saves the discrepancies between the standard errors of differences and the approximate values calculated from the effective standard errors

%ACCOUNTED = scalars
Percentage of variation amongst the standard errors of
differences accounted for by the approximate values calculated from the effective standard errors

TEMPLATE = *tables*

Table that can be duplicated to provide a table to store the effective standard errors

SET directive

Sets details of the "environment" of a Genstat job.

Options

INPRINT = *string tokens*

Printing of input as in PRINT option of INPUT (statements, macros, procedures, unchanged); default unch

OUTPRINT = *string tokens*

Additions to output as in PRINT option of OUTPUT (dots, page, unchanged); default unch

DIAGNOSTIC = *string tokens*

Defines the least serious class of Genstat diagnostic which should still be generated (messages, warnings, faults, extra, unchanged); default unch

ERRORS = *scalar*

Number of errors that a job may contain before it is abandoned (0 implies no limit); default is to leave unchanged

FAULT = *text*

Sets the Genstat fault indicator (for example, `FAULT=*` clears the last fault); default is to leave the indicator unchanged

PAUSE = *scalar*

Number of lines to output before pausing (interactive use only; 0 implies no pausing); default is no change

PROMPT = *text*

Characters to be printed for the input prompt; default is to leave unchanged

NEWLINE = *string token*

How to treat a new line ((significant, ignored)); default is no change

CASE = *string token*

Whether lower- and upper-case (small and capital) letters are to be regarded as identical in identifiers (significant, ignored); default is no change

FIELDWIDTH = *scalar*

Fieldwidth to be used as a default minimum by PRINT and other output commands

SIGNIFICANTFIGURES = *scalar*

Minimum number of significant figures to be supplied in the default formats determined by PRINT and other output commands

SEEDS = pointer or scalar

Defines the current default seeds to be used for random numbers in various parts of Genstat

RUN = *string token*

Whether or not the run is interactive (interactive, batch); by default the current setting is left unchanged

UNITS = *identifier*

To (re)set the current units structure; default is to leave unchanged

BLOCKSTRUCTURE = *identifier*

To (re)set the internal record of the most recent BLOCKSTRUCTURE statement; default is to leave unchanged

TREATMENTSTRUCTURE = *identifier*

To (re)set the internal record of the most recent TREATMENTSTRUCTURE statement; default is to leave unchanged

COVARIATE = *identifier*

To (re)set the internal record of the most recent COVARIATE statement; default is to leave unchanged

ASAVE = *identifier*

To (re)set the current ANOVA save structure; default is to leave unchanged

DSAVE = *identifier*

To (re)set the current save structure for the high-resolution graphics environment; default is to leave unchanged

MSAVE = *identifier*

To (re)set the current save structure for multivariate analysis; default is to leave unchanged

RSAVE = *identifier*

To (re)set the current regression save structure; default is to leave unchanged

TSAVE = *identifier*

To (re)set the current time-series save structure; default is to leave unchanged
4.1 Commands

VSAVE = identifier
To (re)set the current REML save structure; default is to leave unchanged

VCOMPONENTS = identifier
To (re)set the current REML model definitions, as specified by VCOMPONENTS and VSTRUCTURE; default is to leave unchanged

WORDLENGTH = string token
Length of word (8 or 32 characters) to check in identifiers, directives, options, parameters and procedures (long, short); default * i.e. no change

CAPTIONS = string tokens
Controls which captions are displayed (minor, major, meta, unchanged); default unch

TYPESET = string tokens
Controls when typesetting commands within textual strings are used (output, graphics); if unset, the existing setting is left unchanged

METHOD = string token
Controls whether number settings for colour options and parameters are interpreted as RGB values or as numbers of standard colours (rgb, standard); if unset, the existing setting is left unchanged

DATASPACE = scalar or variate
Updates the current data space allocations; if unset, the existing allocations are left unchanged

WORKINGDIRECTORY = text
Sets the working directory; default is to leave this unchanged

ALGORITHMS = string token
Controls the use of enhanced computing algorithms (standard, mkl); if unset, the existing setting is left unchanged

ACTIONAFTERFAULT = string token
Controls what happens after a fault (continue, stop); if unset, the existing setting is left unchanged

UNSETDUMMY = string token
Controls what happens if you specify an unset dummy as the setting of an option or parameter that expects another type of data structure (fault, ignore, warn); if unset, the existing setting is left unchanged

LANGUAGE = text
Text with either one or two values to specify a preferred language for output and (optionally) a second choice in case the preferred language is unavailable

YEAR2DIGITBREAK = scalar
Controls how 2 digits can be used to specify years

TIMEWITHSECONDS = string token
Controls whether seconds are included with the time12 and time24 date representations; (absent, present, unchanged); default unch

No parameters

SETALLOCATIONS directive
Runs through all ways of allocating a set of objects to subsets.

Options
NREQUIRED = scalar
Number of allocations that are required; default 1

UNIQUE = string token
Whether only unique allocations are to be formed, allowing the reordering of the subsets (yes, no); default no

NFOUND = scalar
Number of allocations that has been found

NPOSSIBLE = scalar
Saves the total of allocations that can be formed

GROUPS = factor or pointer
Saves the allocations, in a single factor if NREQUIRED = 1, otherwise in a pointer to NFOUND factors

UNITS = variate
Supplies numbers for the objects; if unset, the positive integers 1, 2 ... are used

START = variate
Previous allocation; if unset the allocations start as a partitioning of the objects in the ordering in the UNITS variate

Parameters
SETSIZE = scalars
Number of objects in each subset

ELEMENTS = variates or pointers
Saves the objects allocated to each subset, in a single variate if NREQUIRED = 1, otherwise in a pointer to NFOUND variates
SETCALCULATE directive

Performs Boolean set calculations on the contents of vectors or pointers.

Options

- **NULL = scalar**
 - Returns either 1 or 0 according to whether or not the result is a null (i.e. empty) set

- **REPRESENTATION = string token**
 - How to represent factors in a calculation that contains only factors (levels, labels); default level

- **TOLERANCE = scalar**
 - Tolerance to use when comparing numerical values; default 10^{-6}

- **SUBSTITUTE = string token**
 - Whether to substitute dummies within pointers in the expression (yes, no); default no

- **NOMESSAGE = string tokens**
 - Which warning messages to suppress (novalues); default * i.e. none

Parameter

- **expression**
 - Expression defining the calculation to be performed

SETDEVICE procedure

Opens a graphical file and specifies the device number on basis of its extension (M.P. Boer & J.T.N.M. Thissen).

No options

Parameters

- **FILENAME = texts**
 - Name of the graphical file including one of the possible extensions .bmp, .emf, .eps, .gmf, .jpg, .jpeg, .pdf, .png, .tif or .tiff; must be set

- **NUMBER = scalars**
 - Saves the device number corresponding to the graphical format specified by parameter FILENAME

- **ACTION = string token**
 - How to create graphs for file types such as .emf, .jpg, .tif or .png (asynchronous, synchronous); default asyn

SETOPTION directive

Sets or modifies defaults of options of Genstat directives or procedures.

Option

- **DIRECTIVE = string token**
 - Directive (or procedure) to be modified

Parameters

- **NAME = string tokens**
 - Option names

- **DEFAULT = identifiers**
 - New default values

SETPARAMETER directive

Sets or modifies defaults of parameters of Genstat directives or procedures.

Option

- **DIRECTIVE = string token**
 - Directive (or procedure) to be modified

Parameters

- **NAME = string tokens**
 - Parameter names

- **DEFAULT = identifiers**
 - New default values

SETRELATE directive

Compares the distinct values contained in two data structures.

Options

- **REPRESENTATION = string token**
 - How to represent factors in a comparison between two factors (levels, labels, ordinals); default level

- **LFACTORIAL = scalar**
 - Limit on number of factors or variates in the terms formed from a LEFT formula; default * i.e. none

- **RFACTORIAL = scalar**
 - Limit on number of factors or variates in the terms formed
4.1 Commands

TOLERANCE = scalar
Tolerance to use when comparing numerical values; default 10^{-6}

SUBSTITUTE = string token
Whether to substitute dummy values within LEFT or RIGHT pointers
and formulae (yes, no); default no

Parameters
LEFT = identifiers
First structures in each comparison
RIGHT = identifiers
Second structures in each comparison
CONTAINS = scalars
Returns 1 or 0 according to whether or not LEFT contains
RIGHT
EQUALS = scalars
Returns 1 or 0 according to whether or not LEFT and RIGHT
contain exactly the same distinct set of items
INCLUDEDIN = scalars
Returns 1 or 0 according to whether or not LEFT is included in
RIGHT
DISTINCT = scalars
Returns 1 or 0 according to whether or not LEFT and RIGHT
are distinct

SET2FORMULA directive
Forms a model formula using a set of structures supplied in a pointer.

Option
METHOD = string token
Relationship of the structures within the formula (combined,
crossed, nested); default comb

Parameters
POINTER = pointers
Sets of structures to be used to form the formulae
FORMULA = formula structures
Formulae constructed from the sets

SHELLEXECUTE directive
Launch executables or open files in another application using their file extension, PC Windows only.
No options

Parameters
FILE = text
Name of the file to execute
STATUS = scalar
Indicates whether the execution of the file was successful (0)
or not (1)
MESSAGE = text
Saves the error message associated with a failure to execute
the file

SIGNTEST procedure
Performs a one or two sample sign test (E. Stephens & P.W. Goedhart).

Options
PRINT = string token
Whether to print the test statistic with the associated
probability and sample size (test); default test
METHOD = string token
Type of test (twosided, greaterthan, lessthan); default
twos
GROUPS = factor
Defines the groups for a two-sample test if only the Y1
parameter is specified
NULL = scalar
Median value or difference in medians under the null
hypothesis; default 0

Parameters
Y1 = variates
Data values for a one-sample sign test (neither Y2 nor GROUPS
specified), or for the first sample of a two-sample test (Y2 also
specified) or the values in both samples of a two-sample test
(GROUPS specified but not Y2)
Y2 = variates
Data values for the second sample of a two-sample test
STATISTIC = scalars
To save the sign test statistic
NBINOMIAL = scalars
To save the effective sample size
PROBABILITY = scalars
To save the probability level of the test
SIMPLEX procedure

Searches for the minimum of a function using the Nelder-Mead simplex algorithm (J.A. Nelder & W. van den Berg).

Options

- **PRINT = string tokens**
 - Controls printed output (results, monitoring); default resu
- **CALCULATION = expression structures**
 - Expressions to calculate the target function
- **FUNCTIONVALUE = scalar**
 - Identifier of the scalar, calculated by CALCULATION, whose value is to be minimized
- **DATA = any type**
 - Data to be used with procedure _SIMPLEXFUNCTION
- **POINTS = pointer**
 - Saves the points of the final simplex
- **FVALUES = pointer**
 - Saves the function values at the points
- **MAXCYCLE = scalar**
 - Maximum number of iterations; default 500
- **TOLERANCE = scalar**
 - Convergence criterion; when standard deviation of function values is lower than TOLERANCE convergence is assumed to be reached; default 1.E-9

Parameters

- **PARAMETER = scalars**
 - Parameters to be estimated
- **LOWERINITIAL = scalars**
 - Lower starting values for the parameters
- **UPPERINITIAL = scalars**
 - Upper starting values for the parameters

SKEWSYMMETRY procedure

Provides an analysis of skew-symmetry for an asymmetric matrix (P.G.N. Digby).

Option

- **PRINT = string tokens**
 - Printed output from the analysis (roots, scores); default * i.e. no output

Parameters

- **DATA = matrices**
 - Asymmetric (square) matrices to be analysed
- **ROOTS = diagonal matrices**
 - Stores the squared singular values from the analysis; the structure has one value for each plane fitted in the analysis (e.g. if the DATA matrix has 11 rows and columns, the ROOTS diagonal matrix will have 5 values)
- **SCORES = matrices**
 - Stores the coordinates of the points from the analysis; each matrix has the same number of rows as the corresponding DATA matrix, and has 2 columns for each plane fitted in the analysis (e.g. if the DATA matrix has 11 rows and columns, the SCORES matrix will have 11 rows and 10 columns)

SKIP directive

Skips lines in input or output files.

Options

- **CHANNEL = scalar**
 - Channel number of file; default current channel of the specified type
- **FILETYPE = string token**
 - Type of the file concerned (input, output); default input
- **STYLE = string token**
 - Style to use when skipping output (plaintext, formatted); default * uses the current style of the channel

Parameter

- **identifiers**
 - How many lines to skip; for input files, a text means skip until the contents of the text have been found, further input is then taken from the following line

SLCONCORDANCE procedure

Calculates the sample size for Lin's concordance correlation coefficient (R.W. Payne).

Options

- **PRINT = string token**
 - What to print (replication, power); default repl, powe
4.1 Commands

PROBABILITY = scalar
Significance level at which the non-reproducibility is to be tested; default 0.05

POWER = scalar
The required power (i.e. probability of detection) of the test; default 0.9

REPLICATION = variate
Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Parameters
CORRELATION = scalars
Correlation for two samples with the smallest amount of non-reproducibility required to be detected

CONCORDANCE = scalars
Value of Lin's concordance for two samples with the smallest amount of non-reproducibility required to be detected

MEANSHIFT = scalars
Value of the shift in means (divided by the harmonic mean of the standard deviations) for two samples with the smallest amount of non-reproducibility required to be detected

SDRATIO = scalars
Value of the ratio of the standard deviations for two samples with the smallest amount of non-reproducibility required to be detected

NREPLICATES = scalars
Saves the required number of replicates

VREPLICATION = variates
Numbers of replicates for which powers have been calculated

VPOWER = variates
Power (i.e. probability of detection) for the various numbers of replicates

SMANNWHITNEY procedure
Calculates the sample sizes for the Mann-Whitney test (R.W. Payne).

Options
PRINT = string token
What to print (replication, power); default repl, powe

PROBABILITY = scalar
Significance level at which the test is to be made; default 0.05

POWER = scalar
The required power (i.e. probability of detection) of the test; default 0.9

TMETHOD = string token
Whether a one- or two-sided test is to be made (onesided, twosided); default twos

RATIOREPLICATION = scalar
Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1

REPLICATION = variate
Sample sizes for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Parameters
NULLPROBABILITIES = variates
Probabilities under null hypothesis

ODDSRATIO = scalars
Odds ratio for test group vs. control

NREPLICATES = scalars
Saves the required sample size

VREPLICATION = variates
Sample sizes for which powers have been calculated

VPOWER = variates
Power (i.e. probability of detection) for the various numbers of replicates

SMCNEMAR procedure
Calculates sample sizes for McNemar's test (R.W. Payne).

Options
PRINT = string token
What to print (replication, power); default repl, powe

PRMETHOD = string token
Method to be used to calculate the power of the McNemar test (normalapproximation, exact); default exac

PROBABILITY = scalar
Significance level at which the test is to be made; default 0.05

POWER = scalar
The required power (i.e. probability of detection) of the test; default 0.9

TMETHOD = string token
Whether a one- or two-sided test is to be made (onesided,
4 Syntax summary

Syntax summary

PARAMETERS

REPLICATION = variate
Sample sizes for which to calculate and print or save the
power; default 1 takes 11 replication values centred around the
required number of replicates

Parameters

CHANGEPROBABILITY = scalars
Probability of any sort of change

RATIOPROBABILITIES = scalars
Ratio of the two probabilities of change

NREPLICATES = scalars
Saves the required sample size

VREPLICATION = variates
Sample sizes for which powers have been calculated

VPOWER = variates
Power (i.e. probability of detection) for the various numbers of replicates

SMOOTH SPECTRUM procedure

Forms smoothed spectrum estimates for univariate time series (G. Tunnicliffe Wilson & S.J.
Welham).

Options

PRINT = string token
Controls printed output (description); default desc

METHOD = string token
Method to be used for smoothing (lagwindow, direct,
YuleWalker, exactautoregressive); default lagw

BANDWIDTH = scalar
Frequency domain bandwidth for the smoothing window; must
be set if METHOD=dire

MAXLAG = scalar
Specifies the cut-off lag (i.e. the maximum lag of
autocovariance used in the spectrum calculation) for
METHOD=lagw, or the order of the autoregression for
METHOD=Yule or exact; if this option is not set then
BANDWIDTH must be set, and will be used to determine an
appropriate value of MAXLAG

DIVISIONS = scalar
Determines the number of frequency divisions into which the
range [0.0, 0.5] is divided for calculating the spectrum; the
default is chosen so that the bandwidth covers about four
intervals

PROBABILITY = scalar
Probability value used for confidence limits; default 0.9

TAPER = scalar
The proportion of data to be tapered (applied for all settings of
METHOD except exact); default 0.0

SHAPE = scalar
The shape of the trapezium window (a value of 1.0 specifies a
rectangular, and 0.0 a triangular window); default 0.5

YLOG = string token
Whether to plot with a log-transformed Y-axis (yes, no);
default no

XLOG = string token
Whether to plot with a log-transformed X-axis (yes, no);
default no

GRAPHICS = string token
What sort of graphics to use (lineprinter,
highresolution); default high

WINDOW = scalar
Window to be used for plotting; default 1

PENS = variate
The two pens to be used (after being defined appropriately) for
drawing the plots; default !(1,2)

Parameters

SERIES = variates
The series for which the spectrum is to be calculated

LENGTH = scalars or variates
Scalar specifying that the first N units of the series are to be
used, or a variate specifying the first and last units of the series
to be used

SPECTRUM = variates
Saves the smoothed spectrum; need not be declared in
advance, but will be set up as a variate of the appropriate
length within the procedure

LOWER = scalars or variates
Scalar to save the multiplier of the spectrum used to calculate
the lower limit, or a variate to save the values of the lower limit
4.1 Commands

UPPER = *scalars or variates*

Scalar to save the multiplier of the spectrum used to calculate the upper limit, or a variate to save the values of the upper limit.

FREQUENCY = *variates*

Saves the frequency values at which the spectrum is calculated.

SOM procedure

Declares a self-organizing map (R.W. Payne).

No options

Parameters

- **IDENTIFIER** = identifiers
 Identifiers of the SOMs
- **VARIABLENAMES** = texts
 Names of variables corresponding to the weights of each SOM
- **ROWS** = *scalars or variates*
 Number of rows or row coordinates for the map
- **COLUMNS** = *scalars or variates*
 Number of columns or column coordinates for the map
- **DMETHOD** = *string tokens*
 Method for calculating the distances of data points from the modes (*euclidean*, *cityblock*); default *eucl*
- **WMETHOD** = *string tokens*
 Method for calculating the contribution of a data point to each node when revising the weights (*gaussian*, *neighbour*); default *gaus*

SOMADJUST procedure

Performs adjustments to the weights of a self-organizing map (R.W. Payne).

Options

- **SOM** = pointer
 Self-organizing map
- **DATA** = matrix or pointer
 Data values for training the map
- **DMETHOD** = *string token*
 Method for calculating the distances of data points from the modes (*euclidean*, *cityblock*); default *eucl*
- **WMETHOD** = *string token*
 Method for calculating the contribution of a data point to each node when revising the weights (*gaussian*, *neighbour*); default *gaus*

Parameters

- **ALPHA** = *scalars*
 Alpha value for each iteration
- **SIGMA** = *scalars*
 Sigma value for each iteration when **WMETHOD**=gaussian
- **THRESHOLD** = *scalars*
 Threshold for each iteration when **WMETHOD**=neighbour
- **ERRORS** = matrices
 Saves the reconstruction errors at the nodes of the map after each iteration
- **TOTALERROR** = *scalars*
 Saves the total reconstruction error after each iteration
- **FITNODES** = factors
 Saves the nodes allocated to the data points after each iteration

SOMDESCRIBE procedure

Summarizes values of variables at nodes of a self-organizing map (R.W. Payne).

Options

- **PRINT** = *string token*
 Controls whether or not the summaries are printed (summaries); default *summ*
- **DATA** = matrix or pointer
 Data values to identify the positions of the samples on the map
- **SOM** = pointer
 Specifies the map
- **NEWSOM** = pointer
 Saves the map, augmented by the summary information

Parameters

- **Y** = *variates or factors*
 Data values to be summarized
- **METHOD** = *string tokens*
 How to summarize each Y (*mean*, *mode*, *median*, *minimum*, *maximum*, *sd*, *variance*); default *mode for factors*, *mean for variates*
SOMESTIMATE procedure

Estimates the weights for self-organizing maps (R.W. Payne).

Options

- **PRINT** = string tokens
 Controls output (weights, errors, monitoring, report); default weig, repo
- **PLOT** = string token
 Controls what to plot (fit, totalerror); default fit
- **DMETHOD** = string token
 Method for calculating the distances of data points from the nodes (euclidean, cityblock); default eucl
- **WMETHOD** = string token
 Method for calculating the contribution of a data point to each node when revising the weights (gaussian, neighbour); default gaus
- **ALPHA** = scalar or variate
 Initial alpha value for each set of iterations; default !(1, 0.1)
- **SIGMA** = scalar or variate
 Initial sigma value for each set of iterations when WMETHOD=gaussian; default !(1, 0.01) multiplied by the maximum distance between nodes
- **THRESHOLD** = scalar or variate
 Initial distance threshold for each set of iterations when WMETHOD=neighbour; default !(0.5, 0.1) multiplied by the maximum distance between nodes
- **NCYCLE** = scalar or variate
 Number of cycles in each set of iterations; default 500
- **NSTOP** = scalar
 Number of consecutive cycles with no changes required for convergence; default 10

Parameters

- **SOM** = pointers
 Save the information about each map
- **DATA** = matrices or pointers
 Data values for training each map
- **ERRORS** = matrices
 Reconstruction errors at the nodes of each map
- **FITROWS** = factors
 Save the positions of the rows allocated to the data points
- **FITCOLUMNS** = factors
 Save the positions of the columns allocated to the data points
- **Y** = variates
 Save y-values used to plot the data points
- **X** = variates
 Save x-values used to plot the data points
- **PEN** = scalars, variates or factors
 Pens used to plot the maps
- **SEED** = scalars
 Seed for the random numbers used to initialize the weights in each map

SOMIDENTIFY procedure

Allocates samples to nodes of a self-organizing map (R.W. Payne).

No options

Parameters

- **DATA** = matrices or pointers
 Data values used to allocate the samples to the nodes of the map
- **SOM** = pointers
 Save the information about each map
- **FITNODES** = factors
 Save nodes allocated to the data points
- **FITROWS** = factors
 Save the positions of the rows allocated to the data points
- **FITCOLUMNS** = factors
 Save the positions of the columns allocated to the data points

SOMPREDICT procedure

Options

- **PRINT** = string token
 Controls whether or not the predictions are printed
- **SOM** = pointer
 Specifies the map
- **YNAMES** = text
 Names of variables to predict; default * gives predictions for all the variables
- **METHODS** = string tokens
 Types of predictions to give (mean, mode, median, minimum, maximum, sd, variance); default mean, mode, medi, mini, maxi, sd, vari
- **YSAVE** = text
 Saves a text with a unit for each set of predictions giving the
name of the corresponding y-variable

Parameters

MSAVE = **text**

Saves a text with a unit for each set of predictions giving the name of the corresponding method

DATA = **matrices or pointers**

Data values to identify the positions of the new samples on the map

UNITLABELS = **variates or texts**

Labels for the predictions (to identify the samples); default takes the row labels if **DATA** is a matrix or any unit labels if **DATA** is a pointer to a set of variates

PREDICTIONS = **variates or pointers**

Save the predictions

SORT directive

Sorts units of vectors according to an index vector.

Options

INDEX = **vectors**

Variates, texts or factors whose values are to define the ordering; default is to use the first vector in the **OLDVECTOR** list

DIRECTION = **string token**

Order in which to sort (ascending, descending); default asce

DECIMALS = **scalar**

Number of decimal places to which to round before sorting numbers; default * i.e. no rounding

Parameters

OLDVECTOR = **vectors or pointers**

Factors, pointers, texts, or variates whose values are to be sorted

NEWVECTOR = **vectors or pointers**

Structure to receive each set of sorted values; if any are omitted, the values are placed in the corresponding **OLDVECTOR**

SPCAPABILITY procedure

Calculates capability statistics (R.W. Payne).

Option

PRINT = **string tokens**

Controls output (cpk, ppk, histogram); default cpk, ppk

Parameters

DATA = **variates or pointers**

Data measurements

SAMPLES = **factors or scalars**

Factor identifying samples or scalar indicating the size of each sample

LOWERLIMIT = **scalars**

Specifies the lower specification limit for each set of data

UPPERLIMIT = **scalars**

Specifies the upper specification limit for each set of data

CPK = **scalars**

Saves the index C_{pk}

PPK = **scalars**

Saves the index P_{pk}

SPCCCHART procedure

Plots c or u charts representing numbers of defective items (A.F. Kane & R.W. Payne).

Options

PRINT = **string token**

What to print (warnings); default * i.e. nothing

PLOT = **string token**

Type of chart to plot (c, u); default c

METHOD = **string token**

Method to use to obtain the control limits (given, loglinear, untransformed); default untr

TOLERANCEMULTIPLIER = **scalar**

Multiplier to use to test whether to use mean sample size for control limits; default 1

WINDOW = **scalar**

Which high-resolution graphics window to use; default 3

SCREEN = **string token**

Whether or not to clear the graphics screen before plotting (clear, keep); default clea

Parameters

NDEFECTIVE = **variates**

Number of defective items

NTESTED = **scalars or variates**

Number of items tested
CENTRELINE = scalars
Sets or saves centre line
LOWERCONTROLLIMIT = scalars or variates
Sets or saves lower control limit
UPPERCONTROLLIMIT = scalars or variates
Sets or saves upper control limit

SPCOMBINE procedure
Combines spreadsheet and data files, without reading them into Genstat (D.B. Baird).

Options

- **OUTFILENAME = text**
 Name of the output file
- **METHOD = string token**
 How to add the new data from the files specified by the FILENAME parameter (add, append, concatenate, merge); default = append
- **COLMATCH = string token**
 How to match columns when appending (name, position); default = position
- **GROUPS = factor**
 Factor to identify sections of appended files
- **OLDGLABEL = texts**
 Label to use in the GROUPS factor for the original data if GROUPS has not already been defined
- **MATCH = text or pointer**
 Up to four columns in the files specified by the FILENAME parameter to use as keys when merging files; default = uses the first column in the file
- **WITH = text or pointer**
 Columns in the OUTFILENAME file to use as keys when merging files; default = uses as many columns of the initial columns in OUTFILENAME as are needed to give a column for each MATCH column
- **UPDATE = string token**
 Whether to use columns with matching names to replace existing columns when concatenating or merging files (yes, no); default = no changes the names of columns with the same name as existing columns so that they become unique

Parameters

- **FILENAME = texts**
 Names of files containing new data to be combined with the data in the OUTFILENAME file
- **SHEETNAME = texts**
 Name of a worksheet or a named range within an Excel, Quattro, 123 or Open Office spreadsheet file; default takes the first sheet
- **CELLRANGE = texts**
 Cell range giving the top left and bottom right cells within a worksheet; default takes all the data that it contains
- **ROWSELECTION = variates**
 Row numbers of the units of data to be included into the OUTFILENAME file; default takes all the rows
- **COLSELECTION = variates**
 Numbers of the columns of data to be combined with the OUTFILENAME file; default takes all the columns
- **PAGENAME = texts**
 Page name for each new sheet when METHOD = add; default = 'SHEET<n>' where n is the number of the sheet in the OUTFILENAME file, unless the sheet is already named in the FILENAME file
- **GLABEL = texts**
 Label to use in the GROUPS factor to identify the data from each FILENAME file; if this is unset, GROUPS is defined with only levels
4.1 Commands

SPCUSUM procedure
Prints CUSUM tables for controlling a process mean (A.F. Kane & R.W. Payne).

Options
- **REFERENCEVALUE = scalars** Specifies the upper and then the lower reference values, or just one of these if they are both the same; default 0.5
- **THRESHOLD = scalars** Detection thresholds, upper and then the lower, or just one of these if they are both the same; default 5
- **HEADSTART = scalars** Headstart values, upper and then the lower, or just one of these if they are both the same; default 0

Parameters
- **DATA = variates or pointers** Data measurements
- **SAMPLES = factors or scalars** Factor identifying samples or scalar indicating the size of each sample
- **MEANTARGET = scalars** Specifies the target value for the sample means
- **SIGMA = scalars** Specifies or saves the standard deviation of the observations

SPEARMAN procedure
Calculates Spearman's Rank Correlation Coefficient (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Options
- **PRINT = string tokens** Output required (test, correlations, ranks): test produces the correlation coefficient/matrix and relevant test statistics, correlations prints out just the correlation coefficients for each pair of variates; ranks produces the vectors of ranks for each sample; default test
- **GROUPS = factor** Defines the sample membership if only one variate is specified by DATA
- **CORRELATION = scalar or symmetric matrix** Scalar to save the rank correlation coefficient if there are two samples, or symmetric matrix to save the coefficients between all pairs of samples if there are several
- **T = scalar or symmetric matrix** Scalar to save the Student's t approximation to the correlation coefficient if there are two samples, or symmetric matrix to save the t approximations for all pairs of samples if there are several (calculated only if the sample size is 8 or more)
- **DF = scalars** Scalar to save the degrees of freedom for each t-statistic

Parameters
- **DATA = variates** List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs)
- **RANKS = variates** Saves the ranks

SPEWMA procedure

Options
- **PRINT = string token** What to print (warnings); default * i.e. nothing
- **TOLERANCEMULTIPLIER = scalar** Multiplier to use to test whether to use mean sample size for control limits; default 1
- **WEIGHT = scalar** Weight parameter used in the calculation of the exponentially weighted moving-average statistic; default 0.25
- **NSIGMA = scalar** Number of multiples of sigma to use for control limits; default 3
- **WINDOW = scalar** Which high-resolution graphics window to use; default 3
- **SCREEN = string token** Whether or not to clear the graphics screen before plotting (clear, keep); default clea
Parameters
DATA = variates or pointers Data measurements
SAMPLES = factors or scalars Factor identifying samples or scalar indicating the size of each sample
MEAN = scalars Sets or saves the sample mean value
SIGMA = scalars Sets or saves the sample standard deviation

SPLINE procedure
Calculates a set of basis functions for M-, B- or I-splines (P.W. Goedhart).

Options
KNOTS = scalar or variate Defines the interior knot values; no default i.e. this option must be set
ORDER = scalar Defines the order of the piecewise polynomial; default 3
TYPE = string token Controls which spline basis is calculated (m, b, i); default m
LOWER = scalar Left-hand limit L of the interval [L, U]; default * i.e. the minimum of the X parameter is used
UPPER = scalar Right-hand limit U of the interval [L, U]; default * i.e. a value slightly larger than the maximum of the X parameter is used
NGMESSAGE = string token Which warning messages to suppress (warning); default *

Parameters
X = variates Values for which the basis spline functions are calculated
BASIS = pointers Pointer to save variates containing the values of the basis spline functions
DBASIS = pointers Pointer to save variates containing the values of the first order derivatives of the basis spline functions

SPLOAD directive
Loads Genstat spreadsheet files.

Options
PRINT = string token What to print (catalogue, directory, summary); default cata
SCOPE = string token When SPLOAD is used within a procedure, this allows the data structures to be created in program that called the procedure (SCOPE=external) or in the main program itself (SCOPE=global) rather than within the procedure (local, external, global); default loca
REDEFINE = string token Whether to allow existing structures to have their type redefined (no, yes); default no
SYSTEM = string token Whether to include Genstat system structures in the catalogue (yes, no); default no
UNNAMED = string token Whether to include unnamed structures in the catalogue (yes, no); default no
TEMPMISSING = string token Whether to read temporarily missing values as missing (yes, no); default no

Parameters
FILENAME = texts Names of spreadsheet files
SHEETNAME = texts, variates or scalars Names or numbers of the sheets to read from each file; default *
ISAVE = pointers Stores the identifiers of the structures loaded from each file

SPNTEST procedure
Calculates the sample size for a Poisson test (R.W. Payne & D.A. Murray).

Options
PRINT = string token What to print (replication, power); default repl, powe
PRMETHOD = string token Method to be used to calculate the probabilities for the test (normalapproximation, exact); default norm
4.1 Commands

PROBABILITY = scalar
POWER = scalar

Significance level for the test; default 0.05
The required power (i.e. probability of detection) of the test; default 0.9

TMETHOD = string token
NULL = scalar

Type of test to be done (onesided, twosided); default ones
Mean under the null hypothesis for the one-sample test; must be set when MU2 is unset

RATIOREPLICATION = scalar

Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1

REPLICATION = variate

Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Parameters
MU1 = scalars
Mean to detect in sample 1
MU2 = scalars
Mean to detect in sample 2
NREPLICATES = scalars
Saves the required number of replicates
VREPLICATION = variates
Numbers of replicates for which powers have been calculated
VPOWER = variates
Power (i.e. probability of detection) for the various numbers of replicates

SPPCHART procedure
Plots p or np charts for binomial testing for defective items (A.F. Kane & R.W. Payne).

Options
PRINT = string token
What to print (warnings); default * i.e. nothing
PLOT = string token
Type of chart to plot (p, np); default p
METHOD = string token
Method to use to obtain the control limits
(complementaryloglog, given, logit, probit, untransformed); default untr
TOLERANCEMULTIPLIER = scalar
Multiplier to use to test whether to use mean sample size for control limits; default 1
WINDOW = scalar
Which high-resolution graphics window to use; default 3
SCREEN = string token
Whether or not to clear the graphics screen before plotting
(clear, keep); default clea

Parameters
NDEFECTIVE = variates
Number of defective items
NTESTED = scalars or variates
Number of items tested
CENTRELINE = scalars
Sets or saves centre line
LOWERCONTROLLIMIT = scalars or variates
Sets or saves lower control limit
UPPERCONTROLLIMIT = scalars or variates
Sets or saves upper control limit

SPRECISION procedure
Calculates the sample size to obtain a specified precision (R.W. Payne).

Options
PRINT = string token
What to print (replication, precision); default repl, prec
NSAMPLES = scalar
Number of samples (1 or 2); default 2
CIPROBABILITY = scalar
Probability level for the confidence interval to indicate the precision; default 0.95
RATIOREPLICATION = scalar
Ratio of replication sample2:sample1 (i.e. the size of sample 2 should have be RATIOREPLICATION times the size of sample 1); default 1
REPLICATION = variate
Replication values for which to calculate and print or save the precision; default * takes 11 replication values centred around the required number of replicates
Parameters

- **PRECISION = scalars**
 - Required precision
- **VAR1 = scalars**
 - Anticipated variance of sample 1
- **VAR2 = scalars**
 - Anticipated variance of sample 2; default * assumes the same variance as sample 1
- **NREPLICATES = scalars**
 - Saves the required number of replicates
- **VREPLICATION = variates**
 - Numbers of replicates for which precisions have been calculated
- **VPRDETECTION = variates**
 - Precision for the various numbers of replicates

SPSHEWHART procedure

Plots control charts for mean and standard deviation or range (A.F. Kane & R.W. Payne).

Options

- **PRINT = string token**
 - What to print (warnings); default * i.e. nothing
- **PLOT = string token**
 - Type of chart to plot to accompany the chart of sample means (range, standarddeviation); default stan
- **METHOD = string token**
 - Type of control limits (probability, sigma); default sigm
- **TOLERANCEMULTIPLIER = scalar**
 - Multiplier to use to test whether to use mean sample size for control limits; default 1
- **PROBABILITY = scalars**
 - Probability value(s) to use to calculate control limits when METHOD=probability; default 0.01, 0.025
- **WINDOWS = scalar**
 - Which high-resolution graphics windows to use; if unset SPSHEWHART automatically sets up two windows containing the upper and lower halves of the screen
- **SCREEN = string token**
 - Whether or not to clear the graphics screen before plotting (clear, keep); default clea

Parameters

- **DATA = variates or pointers**
 - Data measurements
- **SAMPLES = factors or scalars**
 - Factor identifying samples or scalar indicating the size of each sample
- **MEAN = scalars**
 - Sets or saves the sample mean value
- **SIGMA = scalars**
 - Sets or saves the sample standard deviation

SPSYNTAX procedure

Puts details about the syntax of commands into a spreadsheet (R.W. Payne).

Option

- **OUTFILENAME = texts**
 - Name of Genstat file (.gsh or .gwb) or Excel (.xls or .xlsx) file to create

Parameter

- **COMMAND = texts**
 - Single-line texts specifying the commands

SSIGNTEST procedure

Calculates the sample size for a sign test (R.W. Payne).

Options

- **PRINT = string token**
 - What to print (replication, power); default repl, powe
- **PROBABILITY = scalar**
 - Significance level at which the response is to be tested; default 0.05
- **POWER = scalar**
 - The required power (i.e. probability of detection) of the test; default 0.9
- **TMETHOD = string token**
 - Whether to a one- or two-sided test is to be made (onesided, twosided); default twos
- **REPLICATION = variate**
 - Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Parameters

- **RESPONSE = scalars**
 - Probability of response (i.e. the probability that an observation
in one sample will be greater than the equivalent observation in the other sample) that should be detectable

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NREPLICATES</td>
<td>Scalars Saves the required number of replicates</td>
</tr>
<tr>
<td>VREPLICATION</td>
<td>Variates Numbers of replicates for which powers have been calculated</td>
</tr>
<tr>
<td>VPOWER</td>
<td>Variates Power (i.e. probability of detection) for the various numbers of replicates</td>
</tr>
</tbody>
</table>

SSPM directive
Declares one or more SSPM data structures.

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMS</td>
<td>Formula Terms for which sums of squares and products are to be calculated; default *</td>
</tr>
<tr>
<td>FACTORIAL</td>
<td>Scalar Maximum number of vectors in a term; default 3</td>
</tr>
<tr>
<td>FULL</td>
<td>String token Full factor parameterization (yes, no); default no</td>
</tr>
<tr>
<td>GROUPS</td>
<td>Factor Groups for within-group SSPMs; default *</td>
</tr>
<tr>
<td>DF</td>
<td>Scalar Number of degrees of freedom for sums of squares; default *</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFIER</td>
<td>Identifiers of the SSPMs</td>
</tr>
<tr>
<td>SSP</td>
<td>Symmetric matrices Symmetric matrix to contain the sums of squares and products for each SSPM</td>
</tr>
<tr>
<td>MEANS</td>
<td>Variate to contain the means for each SSPM</td>
</tr>
<tr>
<td>NUNITS</td>
<td>Scalars Number of units or sum of weights for each SSPM</td>
</tr>
<tr>
<td>WMMEANS</td>
<td>Pointers to variates of group means for each SSPM</td>
</tr>
</tbody>
</table>

STACK procedure
Combines several data sets by "stacking" the corresponding vectors (R.W. Payne).

Option

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATASET</td>
<td>Factor to indicate the data set to which each unit originally belonged</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STACKEDVECTOR</td>
<td>Variates, factors or texts New vectors combining the corresponding members of the data sets specified by parameter V1, or parameters V1-V100</td>
</tr>
<tr>
<td>V1</td>
<td>Pointers defining (all) the components to be stacked into each STACKEDVECTOR, or contents of the first data set</td>
</tr>
<tr>
<td>V2-V100</td>
<td>Variates, factors, texts or scalars Data sets 2 - 100</td>
</tr>
<tr>
<td>FREPRESENTATION</td>
<td>String token How to match the values of factors (levels, labels, ordinals, renumbered); default leve</td>
</tr>
</tbody>
</table>

STANDARDIZE procedure
Standardizes columns of a data matrix to have mean zero and variance one (S.A. Harding & D.A. Murray).

No options

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLD</td>
<td>Variates or matrices Structures containing data to be standardized</td>
</tr>
<tr>
<td>NEW</td>
<td>Variates or matrices Structures to contain output; by default the OLD structures are overwritten</td>
</tr>
</tbody>
</table>

STEEL procedure
Performs Steel's many-one rank test (R.W. Payne).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT</td>
<td>String token Controls printed output (description, sumranks, critical, permutationtest); default desc, sumr, crit</td>
</tr>
</tbody>
</table>
METHOD = string token
Form of the alternative hypothesis (twosided, greaterthan, lessthan); default twos

TREATMENTS = factor
Defines the treatments

CONTROL = scalar or text
Treatment level corresponding to the control; default takes the reference level of TREATMENTS

NTIMES = scalar
Number of permutations for the permutation test; default 999

SEED = scalar
Seed to use to generate the random numbers for the permutation test; default 0

Parameters
DATA = variates
Data values for the tests

SUMRANKS = tables
Saves the sum of the ranks within the treatments from each test

RANKS = variates
Saves the ranks of the data values for each test

STEM procedure
Produces a simple stem-and-leaf chart (J. Ollerton & S.A. Harding).

No options

Parameters
DATA = variates
Data values for each plot

NDIGITS = scalars
Number of digits in the leaves of each plot

STEMUNITS = scalars
Scale units for the stem values in each plot

STEP directive
Selects terms to include in or exclude from a linear, generalized linear or generalized additive model according to the ratio of residual mean squares.

Options
PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, changes, confidence); default mode, summ, esti, chan

FACTORIAL = scalar
Limit for expansion of model terms; default * i.e. that in previous TERMS statement

POOL = string token
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, auc, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions

INRATIO = scalar
Criterion for inclusion of terms; default 1.0

OUTRATIO = scalar
Criterion for exclusion of terms; default 1.0

MAXCYCLE = scalar
Limit on number of times to repeat stepwise selection, unless no change is made; default 1

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95
4.1 Commands

Parameter

- **formula**
 - List of explanatory variates and factors, or model formula

STOP directive

- Ends a Genstat program.
- No options or parameters

STORE directive

- To store structures in a subfile of a backing-store file.

Options

- **PRINT** = *string token*
 - What to print (catalogue); default *

- **CHANNEL** = *scalar*
 - Channel number of the backing-store file where the subfile is to be stored; default 0, i.e. the workfile

- **SUBFILE** = *identifier*
 - Identifier of the subfile; default SUBFILE

- **LIST** = *string token*
 - How to interpret the list of structures (inclusive, exclusive, all); default incl

- **METHOD** = *string token*
 - How to append the subfile to the file (add, overwrite, replace, update); default add, i.e. clashes in subfile identifiers cause a fault (note: replace overwrites the complete file)

- **PASSWORD** = *text*
 - Password to be stored with the file; default *

- **PROCEDURE** = *string token*
 - Whether subfile contains procedures only (yes, no); default no

- **UNNAMED** = *string token*
 - Whether to list unnamed structures (yes, no); default no

- **MERGE** = *string token*
 - Whether or not to merge the structures with the existing contents of the subfile (yes, no); default no

Parameters

- **IDENTIFIER** = *identifiers*
 - Identifiers of the structures to be stored

- **STOREDIDENTIFIER** = *identifiers*
 - Identifier to be used for each structure when it is stored

STRUCTURE directive

- Defines a compound data structure.

Options

- **NAME** = *text*
 - Single-valued text defining a name for the type of structure, which must not clash with the name of any existing type of structure

- **STRUCTURELIST** = *string token*
 - Whether or not the structure consists of a list (of any length) of structures of the same type or types (yes, no); default no

Parameters

- **LABEL** = *texts*
 - Single-valued texts defining the labels of the elements of the structure

- **SUFFIX** = *scalars*
 - Suffix numbers for the elements; default assumes the numbers 1, 2 ...

- **TYPE** = *texts*
 - Texts defining the allowed types for each element

- **COMPATIBLE** = *texts*
 - Defines aspects to check for compatibility with the first element

STTEST procedure

- Calculates the sample size for t-tests, including equivalence tests (R.W. Payne).

Options

- **PRINT** = *string token*
 - What to print (replication, power); default repl,powe

- **NSAMPLES** = *scalar*
 - Number of samples for the t-test (1 or 2); default 2

- **PROBABILITY** = *scalar*
 - Significance level at which the response is to be tested; default 0.05

- **POWER** = *scalar*
 - The required power (i.e. probability of detection) of the test; default 0.9
Syntax summary

TMETHOD = string token
Type of test to be done (onesided, twosided, equivalence, noninferiority); default ones

RATIOREPLICATION = scalar
Ratio of replication sample 2:sample 1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1

REPLICATION = variate
Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPONSE</td>
<td>scalars</td>
</tr>
<tr>
<td>VAR1</td>
<td>scalars</td>
</tr>
<tr>
<td>VAR2</td>
<td>scalars</td>
</tr>
<tr>
<td>NREPLICATES</td>
<td>scalars</td>
</tr>
<tr>
<td>VREPLICATION</td>
<td>variates</td>
</tr>
<tr>
<td>VPOWER</td>
<td>variates</td>
</tr>
</tbody>
</table>

- **RESPONSE** = scalars
 Response to be detected

- **VAR1** = scalars
 Anticipated variance of sample 1

- **VAR2** = scalars
 Anticipated variance of sample 2; default * assumes the same variance as sample 1

- **NREPLICATES** = scalars
 Saves the required number of replicates

- **VREPLICATION** = variates
 Numbers of replicates for which powers have been calculated

- **VPOWER** = variates
 Power (i.e. probability of detection) for the various numbers of replicates

SUBSET procedure

Forms vectors containing subsets of the values in other vectors (R.W. Payne).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITION = expression</td>
<td>Logical expression to define which units are to be included; no default – this option must be set</td>
</tr>
<tr>
<td>SETLEVELS = string token</td>
<td>Whether to reform the levels (and labels) of factors to exclude those that do not occur in the subset (yes, no); default no</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLDVECTOR = vectors</td>
<td>Vector from which the subset is to be formed</td>
</tr>
<tr>
<td>NEWVECTOR = vectors</td>
<td>Vector to store the subsets if none is specified, the OLDVECTOR is redefined to store the subset</td>
</tr>
</tbody>
</table>

SUSPEND directive

Suspends execution of Genstat to carry out commands in the operating system; this directive may not be available on some computers.

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM = text</td>
<td>Commands for the operating system; default: prompt for commands (interactive mode only)</td>
</tr>
<tr>
<td>CONTINUE = string token</td>
<td>Whether to continue execution of Genstat without waiting for commands to complete (yes, no); default no</td>
</tr>
<tr>
<td>MINIMIZE = string token</td>
<td>Whether to minimize the console window (yes, no); default no</td>
</tr>
</tbody>
</table>

No parameters

SVBOOT procedure

Bootsraps data from random surveys (S.D. Langton).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT = string token</td>
<td>Controls printed output (summary); default * i.e. none</td>
</tr>
<tr>
<td>SEED = scalar</td>
<td>Seed for random numbers; default 0</td>
</tr>
<tr>
<td>STRATUMFACTOR = factor</td>
<td>Stratification factor</td>
</tr>
<tr>
<td>SAMPLINGUNITS = factor</td>
<td>Sampling units (default single stage design)</td>
</tr>
<tr>
<td>WEIGHTS = variates</td>
<td>Weights variates (not required for simple bootstrap)</td>
</tr>
<tr>
<td>METHOD = string token</td>
<td>Method (simple, sarndal); default simp</td>
</tr>
<tr>
<td>POPULATION = pointers</td>
<td>Units in the population</td>
</tr>
<tr>
<td>SAVEUNITS = variate</td>
<td>Units in the bootstrapped sample</td>
</tr>
<tr>
<td>BSTRATUMFACTOR = factor</td>
<td>Bootstrapped stratification factor</td>
</tr>
<tr>
<td>BSAMPLINGUNITS = factor</td>
<td>Bootstrapped sampling units</td>
</tr>
</tbody>
</table>
4.1 Commands

Parameters

DATA = variates or factors
BOOT = variates or factors

Data to bootstrap
Saves bootstrap sampling units

SVCALIBRACE procedure

Performs generalized calibration of survey data (S.D. Langton).

Options

PRINT = string token
Controls printed output (summary, totals, monitoring); default summ, tota

PLOT = string token
Controls which high-resolution graphs are plotted (weights); default * i.e. none

STRATUMFACTOR = factor
Stratification factor; default * i.e. unstratified

SAMPLINGUNITS = factor
Factors indicating the sampling units in a two-stage design; default *, i.e. single-stage design

TCONSTRAINTS = scalars
Constraint totals or tables

X = variates
Variates corresponding to TCONSTRAINTS; * implies the equivalent constraint relates to a count

WEIGHTS = variate
Initial weights

OUTWEIGHTS = variate
Final (calibration) weights

METHOD = string token
Method to use (linear, truncated linear, logistic, fittedvalues); default line

LOWER = scalar
Lower bound for g-weights; default 0.1

UPPER = scalar
Upper bound for g-weights; default 10

MAXCYCLE = scalar
Maximum number of iterations; default 50

TOLERANCE = scalar
Tolerance for convergence; default 0.0001

Parameters

Y = variates
Response data for analysis

TOTALS = scalars
Saves estimated totals

SETOTALS = scalars
Saves standard errors of totals

FITTEDVALUES = variates
Saves fitted values from the regression

SVD directive

Calculates singular value decompositions of matrices.

Option

PRINT = string tokens
Printed output required (left, singular, right); default * i.e. no printing

Parameters

INMATRIX = matrices
Matrices to be decomposed

LEFT = matrices
Left-hand matrix of each decomposition

SINGULAR = diagonal matrices
Singular values (middle) matrix

RIGHT = matrices
Right-hand matrix of each decomposition

SVGLM procedure

Fits generalized linear models to survey data (S.D. Langton).

Options

PRINT = string token
What output to display (model, summary, estimates, wald, predictions, monitor); default mode, esti, wald, pred

DISTRIBUTION = string token
Error distribution (binomial, poisson, normal, gamma); default norm

LINK = string token
Link function (identity, logarithm, logit, reciprocal, probit, complementary loglog, canonical); default cano

DISPERSION = scalar
Value at which to fix the residual variance, if missing the variance is estimated; default 1 for binomial or Poisson, otherwise *

TERMS = formula
Explanatory model
CONSTANT = string token
Whether to estimate or omit constant term in fixed model (omit, estimate); default esti

FACTORIAL = scalar
Limit on number of factors/covariates in a model term; default 3

PFACTORS = factors or variates
Variables for which predictions are to be formed; default *, or as specified in PTERMS

PLEVELS = variates or scalars
Levels or values at which predictions are to be made corresponding to PFACTORS; default (weighted) mean for variates, all levels for factors

PTERMS = formula
Formula specifying fixed terms for which predicted means are to be printed; default *, unless PFACTORS is set, in which case it is all main effects of and interactions between PFACTORS

STRATUMFACTOR = factor
Stratification factor; default *, i.e. unstratified

NUNITS = variate or table
Number of primary sampling units in each stratum

SAMPLINGUNITS = factor
Factor indicating the primary sampling units; default *, i.e. single stage design

WEIGHTS = variates
Survey weights

METHOD = string token
Bootstrapping method (simple, csimple, sarndal); default simp

NBOOT = scalar
Number of bootstrap samples to use; default 0 uses a Taylor series approximation

SEED = scalar
Seed for random number generator for bootstrap; default 0

CIPROBABILITY = scalars
The probability level for the confidence intervals; default 0.95

CIMETHOD = string token
Method for forming confidence intervals (automatic, tdistribution, percentile); default auto

Parameters

Y = variates
Dependent variates

NBINOMIAL = scalars or variates
Number of binomial trials for each unit (must be set if DISTRIBUTION=binomial)

RESIDUALS = variates
Variates to save residuals

FITTEDVALUES = variates
Variates to save fitted values

ESTIMATES = variates
Estimates of parameters for each Y variate

SE = variates
Standard errors of the estimates

VCOVARIANCE = symmetric matrices
Variance-covariance matrix for the estimates

LOWER = variates
Lower confidence limits for estimates

UPPER = variates
Upper confidence limits for estimates

WALD = pointers
Pointers to save Wald statistics for each term (pointer contains name of term, Wald statistic, F statistic, degrees of freedom, and P-value)

PREDICTIONS = pointers
Pointers to tables of predictions

SEPREDICTIONS = pointers
Pointers to tables of standard errors of predictions

LOWPREDICTIONS = variates
Lower confidence limits for predictions

UPPREDICTIONS = variates
Upper confidence limits for predictions

VCPREDICTIONS = symmetric matrices
Variance-covariance matrix for the predictions

SVHOTDECK procedure
Performs hot-deck and model-based imputation for survey data (S.D. Langton).

Options

PRINT = string token
Controls printed output (summary, monitoring, check, list, regression); default summ

METHOD = string token
Imputation method (hotdeck, modelbased); default hotd

DMETHOD = string token
Method for calculating distances (mean, minimax, regression); default mini

%THRESHOLD = scalar
Percentage threshold for matches

THRESHOLD = scalar
Absolute threshold for matches

D VARIABLES = variates or factors
Variables to use for distance calculation or factors
4.1 Commands

DRANGES = scalars
Ranges to use for distance calculations with each of the **DVARIABLES**; default * uses the observed range

LABELS = variate, factor or text
Provides labels for the cases

SEED = scalar
Seed for random numbers; default 0

IMPUTE = variate or scalar
The variate provides logical (0 or 1) values to indicate whether each unit is to be imputed, alternatively the scalar specifies a number of rows to be selected at random to be imputed to allow the effectiveness of the imputation process to be studied; default * imputes values for any units where an **OLDSTRUCTURE** contains a missing value

DONORS = variate
Logical variate indicating whether each unit can be used as a donor; default * implies that all units are used with complete data for each **OLDSTRUCTURE**

RSAVE = rsave
Regression analysis to use for **METHOD=model** or **DMETHOD=regression**

URECEPTORS = variate
Saves unit numbers of receptor (imputed) cases

UDONORS = variate
Saves unit numbers of donor cases

DISTANCES = variate
Saves the distances for the chosen receptor-donor pairs

Parameters

OLDSTRUCTURES = variates or factors
Structure containing missing values

NEWSTRUCTURES = variates or factors
New structures with imputed values

OVERWRITE = string tokens
Whether to overwrite any existing data for imputed cases (yes, no); default no

SVMERGE procedure
Merges strata prior to survey analysis (S.D. Langton).

Options

PRINT = string token
Controls printed output (summary, intable, outtable, twowaytable); default summ

OLDFACTOR = factor
Factor defining the original strata

NEWFACTOR = factor
Factor to save the merged strata

Parameters

MERGELABELS = texts
Labels of strata to merge

NEWLABEL = text
Label for merged stratum

SVMFIT procedure
Fits a support vector machine (D. B. Baird).

Options

PRINT = string tokens
Printed output from the analysis (summary, predictions, allocations, debug); default summ, alloc

SVMTYPE = string token
Type of support vector machine to fit (svc, svr, nusvc, nusvr, lsvc, lsvr, lcs, svm1); default svc

KERNEL = string token
Type of kernel to use (linear, polynomial, radialbasis, sigmoid); default radi

PENALTY = scalar or variate
Penalty or cost for points on the wrong side of the boundary; default 1

GAMMA = scalar or variate
Gamma parameter for types with non-linear kernels; default 1

NU = scalar or variate
Nu parameter for types nusvc, nusvr, and svm1; default 0.5

EPSILON = scalar or variate
Epsilon parameter for types svr and lsvr; default 0.1

BIAS = scalar
Bias for allocations to groups for types lsvc and lsvr; default -1 i.e. no bias

DEGREE = scalar
Degree for polynomial kernel; default 3

CONSTANTVALUE = scalar
Constant for polynomial or sigmoid kernel; default 0

LOWER = scalar or variate
Lower limit for scaling data variates when **SCALING** = given; default -1

UPPER = scalar or variate
Upper limit for scaling data variates when **SCALING** = given;
4 Syntax summary

default 1
SCALING = string token Type of scaling to use (none, uniform, given); default unif
NOSHRINK = string token Whether to suppress the shrinkage of attributes to exclude unused ones (no, yes); default no
OPTMETHOD = string token Whether to optimize probabilities or allocations (allocations, probabilities); default allo
REGULARIZATIONMETHOD = string token Regularization method for SVMTYPE = lsvc or lsvr (l1, l2); default l2
LOSSMETHOD = string token Loss method for SVMTYPE = lsvc or lsvr (logistic, l1, l2); default logi
DUALMETHOD = string token Whether to use the dual algorithm for SVMTYPE = lsvc or lsvr (yes, no); default no
NCROSSVALIDATIONGROUPS = scalar Number of groups for cross-validation; default 10
SEED = scalar Seed for random number generation; default 0
TOLERANCE = scalar Tolerance for termination criterion; default 0.001
WORKSPACE = scalar Size of workspace needed for data; default is to calculate this from the number of observations and variates

Parameters

Y = factors or variates Define groupings for the units in each training set, or missing values for the units to be allocated; or y-variate to be predicted via regression
X = pointers Each pointer contains a set of explanatory variates or factors
WEIGHTS = variates Weights to multiply penalties for each group when SVMTYPE = svc, nusvc, lsvc or lcs
PREDICTIONS = factors or variates Saves allocations to groups or predictions from regression
ERRORRATE = scalars, variates or matrices Saves the error rate for the combinations of parameters specified for the support vector machine
OPTPENALTY = scalars Saves the optimal value of penalty parameter
OPTGAMMA = scalars Saves the optimal value of gamma parameter
OPTNU = scalars Saves the optimal value of nu parameter
OPTEPSILON = scalars Saves the optimal value of epsilon parameter
OPTERRORRATE = scalars Saves the minimum error rate
SCALE = texts or pointers Saves the scaling used for the X variates, in a file if a text is given, or otherwise in a pointer to a pair of variates
SAVEFILE = texts File in which to save the model, for use by SVMPREDICT

SVMPREDICT procedure
Forms the predictions using a support vector machine (D. B. Baird).

Options

SCALE = texts or pointers Gives scaling used for the X variates
SAVEFILE = text Gives support vector machine model file; default is to use the model from the last support vector machine

Parameters

X = pointers Each pointer contains a set of variates defining the attributes for the predictions
PREDICTIONS = factors or variates Saves the classification groupings or predicted values for each observation in X
GROUPDEFINITIONS = factors Supplies levels and labels for predicted groups; default uses ordinal levels
SVREWEIGHT procedure

Modifies survey weights for particular observations, adjusting other weights in the sampling unit or stratum to ensure that the overall sum of the weights remains unchanged (S.D. Langton).

Options

PRINT = string tokens
Controls printed output (summary); default summ

METHOD = string tokens
What to reweight over (all, stratum, samplingunits, lowest); default lowe

WEIGHTS = variate
Initial weights

OUTWEIGHTS = variate
Final weights

STRATUMFACTOR = factor
Stratification factor; default * i.e. unstratified

OUTSTRATUMFACTOR = factor
Saves a modified stratification factor with the reweighted observations in their own stratum

SAMPLINGUNITS = factor
Factor indicating the primary sampling units; default *, i.e. single stage design

LABELS = variate, text or factor
Labels for each unit

Parameters

OBSERVATIONS = scalars, variates or texts
Observation to reweight

NEWWEIGHTS = scalars or variates
New weight (default inserts a missing value, indicating that the observation should be removed)

SVSAMPLE procedure

Constructs stratified random samples (S.D. Langton).

Options

PRINT = string token
Controls printed output (list, summary); default summ

SAMPLE = variate
Saves the sample, as unit numbers of sampled units when METHOD=sample, or as a logical (1 or 0) variable indicating sampled or unsampled units when METHOD=population

STRATUMFACTOR = factor
Saves the stratification factor

CLUSTERS = factor
Specifies a factor indicating groupings of units for a cluster sample; default * i.e. sample individual rows

NUNITS = table, scalar or variate
Numbers of units in the full data set for each level of the STRATUMFACTOR

NSAMPLE = table, scalar or variate
Numbers, or proportions, of units to sample for each level of the STRATUMFACTOR

SFLEVELS = variate
Levels for the stratum factor, if it has not already been declared

SFLABELS = text
Labels for the stratum factor, if it has not already been declared

METHOD = string token
Whether SAMPLE should contain the numbers of the units sampled from the population, or be a variate with a value for every unit of the full population containing 0 or 1 for unsampled and sampled units respectively (population, sample); default samp

NUMBERING = string token
Whether to number units within each stratum, or across the whole population (withinstratum, population); default with

SEED = scalar
Seed for the random number generator; default 0 i.e. continue from previous generation

Parameters

OLDVECTOR = variates, factors or texts
Data from the full survey

NEWVECTOR = variates, factors or texts
Data for the sample
SVSTRATIFIED procedure

Analyses stratified random surveys by expansion or ratio raising (S.D. Langton).

Options

PRINT = string token Controls printed output (summary, totals, means, influence, ratios, extra); default summ, tota, infl
PLOT = string token Controls which high-resolution graphs are plotted (single, separate); default * i.e. none
XMISSING = string token Action if x-variable contains missing values (estimate, fault); default esti
RESTRICTED = string token Action with restricted (or filtered) observations (omit, add); default omit
STRATUMFACTOR = factor Stratification factor; default * i.e. unstratified
NINFLUENCE = scalar Number of influential points to print; default 10
METHOD = string token Method for ratio analysis (separate, combined, classicalcombined); default sepa
SAVESUMMARY = string token Whether to save just the overall summaries instead of those for each stratum (yes, no); default no
COMBINEDSTRATUM = scalar Stratum for which the ratio should be set to the combined ratio estimate; default *
ROWS = scalars Number of rows of plot-matrix; default * i.e. set automatically depending on number of levels of STRATUMFACTOR
COLUMNS = scalars Number of columns of plot-matrix; default * i.e. set automatically depending on number of levels of STRATUMFACTOR
NBOOT = scalar Number of bootstrap samples to use; default 0
SEED = scalar Seed for random number generator for bootstrap; default 0
CIPROBABILITY = scalars The probability level for the confidence intervals; default 0.95
CIMETHOD = string token Method for forming confidence intervals (automatic, tdistribution, percentile); default auto
COMPACT = string token Whether to produce output in a compact (plaintext) format (yes, no); default no

Parameters

Y = variates Response data
X = variates Base data; if unset expansion raising is used
LABELS = variates, factors or texts Structure for labelling influential points
NUMUNITS = tables, scalars or variates Numbers of units in each stratum in the population
XTOTALS = tables, scalars or variates Population totals of the base data in each stratum
TOTALS = tables or scalars Saves total estimates
SETOTALS = tables or scalars Saves standard errors of estimates
MEANS = tables or scalars Saves mean estimates
SEMEANS = tables or scalars Saves standard errors of mean estimates
RATIOS = tables Saves estimates of ratios
FITTEDVALUES = variates Saves fitted values for the observations
INFLUENCE = variates Saves influence statistics
LTOTALS = tables or scalars Saves lower confidence limit for total
UTOTALS = tables or scalars Saves upper confidence limit for total
LMEANS = tables or scalars Saves lower confidence limit for mean
UMEANS = tables or scalars Saves upper confidence limit for mean
VARIANCES = tables or scalars Saves residual variances in each stratum

SVTABULATE procedure

Tabulates data from random surveys, including multistage surveys and surveys with unequal probabilities of selection (S.D. Langton).

Options

PRINT = string token Controls printed output (summary, stratumsummary, psusummary, totals, means, ratios, influence, wald,
4.1 Commands

PLOT = string token
Controls which high-resolution graphs are plotted (single, separate, weights, influence); default * i.e. none

STRATUMFACTOR = factor
Stratification factor; default *, i.e. unstratified

NUNITS = table, scalar or variate
Numbers of units in each STRATUMFACTOR level (for a multistage design these will be the number of primary sampling units)

SAMPLINGUNITS = factor
Factor indicating the primary sampling units; default *, i.e. single stage design

NSECONDARYUNITS = table, scalar or variate
Numbers of secondary sampling units for the levels of the SAMPLINGUNITS factor

CLASSIFICATION = factors
Domains for which separate estimates are required

NINFLUENCE = scalar
Number of influential points to print; default 10

MRFACTOR = identifiers
Identifier of factors to index the sets of multiple responses in the tables

WEIGHTS = variate
Survey weights

FPCOMIT = string token
Whether to omit the finite population correction from calculation of variances (yes, no); default no

METHOD = string token
Method of bootstrapping (simple, sarndal); default simp

NBOOT = scalar
Number of bootstrap samples to use; default 0 uses a Taylor series approximation

SEED = scalar
Seed for random number generator for bootstrap; default 0

CIPROBABILITY = scalar
The probability level for the confidence intervals; default 0.95

CIMETHOD = string token
Method for forming confidence intervals (automatic, tdistribution, percentile); default auto

PERCENTQUANTILES = scalar or variate
Percentage points for which quantiles are required; default 50 (i.e. median)

Parameters

Y = variates
Response data

X = variates
Base data for ratio estimation

LABELS = variates or texts
Labels for influential points

OUTWEIGHTS = tables
Saves weights

TOTALS = tables or scalars
Saves total estimates

SETOTALS = tables or scalars
Saves standard errors of estimates

VCTOTALS = symmetric matrices
Saves variance-covariance matrix of total estimates or scalars Saves mean estimates

SEMEANS = table or scalars
Saves standard errors of mean estimates

VCMEANS = symmetric matrices
Saves variance-covariance matrix of mean estimates

RATIOS = tables or scalars
Saves estimates of ratios

SERATIOS = tables or scalars
Saves standard errors of ratios

VCRATIOS = symmetric matrices
Saves variance-covariance matrix of ratio estimates

NOBSERVATIONS = tables or scalars
Saves numbers of (non-missing) observations

SUMWEIGHTS = tables or scalars
Saves sums of weights

FITTEDVALUES = variates
Supplies fitted values for each observation

INFLUENCE = variates
Saves influence statistics

WALD = variates
Saves Wald statistics

QUANTILES = tables or pointers
Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES

SEQUANTILES = tables or pointers
Saves standard errors of quantiles

VQUANTILES = tables or pointers
Saves variance-covariance matrix of quantiles

LQUANTILES = tables or pointers
Saves lower confidence limits of quantiles

UQUANTILES = tables or pointers
Saves upper confidence limits of quantiles

LTOTALS = tables
Saves lower confidence limits of totals

UTOTALS = tables
Saves upper confidence limits of totals
LMEANS = tables
Saves lower confidence limits of means

UMEANS = tables
Saves upper confidence limits of means

LRATIOS = tables
Saves lower confidence limits of ratios

URATIOS = tables
Saves upper confidence limits of ratios

CELLINFLUENCE = variates
Saves influence statistics for individual cells

SVWEIGHT procedure
Forms survey weights (S.D. Langton).

Options

PRINT = string token
Controls printed output (summary, stratumsummary, psusummary); default summ, stra, psus

PLOT = string token
Controls which high-resolution graphs are plotted (weights); default * i.e. none

STRATUMFACTOR = factor
Stratification factor; default * i.e. unstratified

NUNITS = tables, scalars or variates
Numbers of units in each STRATUMFACTOR (for a multistage design these will be the number of primary sampling units)

SAMPLINGUNITS = factor
Factor indicating the primary sampling units; default * i.e. single stage design.

NSECONDARYUNITS = tables, scalars or variates
Numbers of secondary sampling units for each level of the SAMPLINGUNITS factor

Parameters

Y = variates of scalars
Response data or a scalar indicating the number of sampled units

OUTWEIGHTS = variates
Saves weights

SWITCH directive
Adds terms to, or drops them from a linear, generalized linear, generalized additive or nonlinear model.

Options

PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti

NONLINEAR = string token
How to treat nonlinear parameters between groups (common, separate, unchanged); default unch

CONSTANT = string token
How to treat the constant (estimate, omit, unchanged, ignore); default unch

FACTORIAL = scalar
Limit for expansion of model terms; default * i.e. that in previous TERMS statement

POOL = string token
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance,
%deviance, aic, bic, sic); default %var, seob if
DIST=normal, %cv if DIST=gamma, and disp for other
distributions

PROBABILITY = scalar Probability level for confidence intervals for parameter
estimates; default 0.95
AOVDESCRIPTION = text Description for line in accumulated analysis of variance (or
deviance) table when POOL=yes

Parameter

- formula List of explanatory variates and factors, or model formula

SYMMENTRICMATRIX directive

Declares one or more symmetric matrix data structures.

Options

- **ROWS** = scalar, vector, pointer or text Number of rows, or labels for rows (and columns); default *
- **VALUES** = numbers Values for all the symmetric matrices; default *
- **MODIFY** = string token Whether to modify (instead of redefining) existing structures
 (yes, no); default no
- **IPRINT** = string tokens Information to be used by default to identify the symmetric
 matrices in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of
 output

Parameters

- **IDENTIFIER** = identifiers Identifiers of the symmetric matrices
- **VALUES** = identifiers Values for each symmetric matrix
- **DECIMALS** = scalars Number of decimal places for printing
- **EXTRA** = texts Extra text associated with each identifier
- **MINIMUM** = scalars Minimum value for the contents of each structure
- **MAXIMUM** = scalars Maximum value for the contents of each structure
- **DREPRESENTATION** = scalars or texts Default format to use when the contents represent dates and
times

SYNTAX directive

Obtains details of the syntax of a command and the source code of a procedure.

No options

Parameters

- **COMMAND** = texts Single-line texts specifying the commands
- **NOPTIONS** = scalars Number of options for each command
- **NPARAMETERS** = scalars Number of parameters for each command
- **NAME** = texts Names of the options, and then the parameters, of each
 command
- **MODE** = texts Modes of the options and parameters
- **NVALUES** = pointers Number of values allowed for the options and parameters
- **VALUES** = pointers Allowed values for the options and parameters
- **DEFAULT** = pointers Default values for the options and parameters
- **SET** = texts Whether the options and parameters must be set
- **DECLARED** = texts Whether the options and parameters must have been declared
- **TYPE** = pointers Allowed types for the options and parameters
- **COMPATIBLE** = pointers Aspects of the options and parameters that must be compatible
 with the first parameter
- **PRESENT** = texts Whether the options and parameters must have values
- **LIST** = texts Whether the options have more than one setting (not relevant
 for the parameters
- **INPUT** = texts Whether the options and parameters only supply input
 information
- **DEFINITION** = texts Saves statements to define the syntax
SOURCE = texts

Saves the source code of a procedure

TABINSERT procedure

Inserts the contents of a sub-table into a table (R.W. Payne).

Options

- OLDTABLE = tables
 - Table containing the original values
- SUBTABLE = tables
 - Sub-table to insert into the original table
- NEWTABLE = tables
 - Tables to store the new values; if this is not set, these replace those in the original table

Parameters

- OLDFACTOR = factors
 - Factors classifying the dimensions of the old table that are smaller in the sub-table
- SUBFACTOR = factors
 - Specifies the factors classifying the corresponding dimensions of the sub-table
- FREPRESENTATION = string token
 - How to match the values of each OLDFACTOR and SUBFACTOR (levels, labels); default level

TABLE directive

Declares one or more table data structures.

Options

- CLASSIFICATION = factors
 - Factors classifying the tables; default *
- MARGINS = string token
 - Whether to add margins (yes, no); default no
- VALUES = numbers
 - Values for all the tables; default *
- MODIFY = string token
 - Whether to modify (instead of redefining) existing structures (yes, no); default no
- IPRINT = string tokens
 - Information to be used by default to identify the tables in output (identifier, extra, associatedidentifier); if this is not set, they will be identified in the standard way for each type of output

Parameters

- IDENTIFIER = identifiers
 - Identifiers of the tables
- VALUES = identifiers
 - Values for each table
- DECIMALS = scalars
 - Number of decimal places for printing
- EXTRA = texts
 - Extra text associated with each identifier
- UNKNOWN = identifiers
 - Identifier for scalar to hold summary of unclassified data associated with each table
- MINIMUM = scalars
 - Minimum value for the contents of each structure
- MAXIMUM = scalars
 - Maximum value for the contents of each structure
- DREPRESENTATION = scalars or texts
 - Default format to use when the contents represent dates and times
- DATAVARIATE = variates
 - Records the identifier of the variate whose summaries are in the table
- SUMMARYTYPE = string tokens
 - Records the type of summary that the table contains (counts, totals, nobservations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, semeans, seskewness, sekurtosis); default * i.e. not recorded
- PERCENTQUANTILE = scalars
 - Records the percentage points for which quantiles have been formed; default * i.e. not recorded
- %MARGIN = pointers
 - Records the factors defining the margin over which the table has been converted to percentages

TABMODE procedure

Forms summary tables of modes of values (R.W. Payne).

Options

- PRINT = string token
 - Controls whether or not the modes are printed (mode); default
4.1 Commands

\[\text{CLASSIFICATION} = \text{factors} \]
Factors classifying the tables; if unset, the overall mode is formed for all the values in each \text{DATA} vector

Parameters

\[\text{DATA} = \text{variates or factors} \]
Data values whose modes are to be formed

\[\text{MODES} = \text{tables or scalars} \]
Save the modes for each \text{DATA} vector

TABSORT procedure

Sorts tables so their margins are in ascending or descending order (R.W. Payne).

Options

\[\text{PRINT} = \text{string tokens} \]
Controls output (\text{tables, histograms}); default * i.e. none

\[\text{DIRECTION} = \text{string token} \]
Direction of sorting (\text{ascending, descending}); default \text{asce}

\[\text{METHOD} = \text{string token} \]
Method to use to construct a marginal table for the sorting of a factor when there is no one-way table classified by the factor in the \text{TABLE} list, and the first table in the \text{TABLE} list classified by the factor has no margins (\text{totals, means, minima, maxima, variances, medians}); default \text{tota}

\[\text{FACTORS} = \text{pointer} \]
Specifies or saves a list of classifying factors of the tables in the \text{TABLE} list

\[\text{NEFACTORS} = \text{pointer} \]
Specifies or saves a list of classifying factors of the new tables, corresponding to those in the \text{FACTORS} pointer

\[\text{EXCLUDE} = \text{pointer} \]
Factors to exclude from sorting

\[\text{NBEST} = \text{string tokens} \]
Number of (best) levels to include from each sorted factor; default * i.e. all of them

Parameters

\[\text{TABLE} = \text{tables} \]
Tables to be sorted

\[\text{NEWTABLE} = \text{tables} \]
Allows the new sorted tables to be saved

\[\text{TITLE} = \text{texts} \]
Title to be used when displaying each table

\[\text{FIELDWIDTH} = \text{scalars} \]
Field width for printing each table

\[\text{DECIMALS} = \text{scalars} \]
Decimal places for each table

TABTABLE procedure

Opens a tabbed-table spreadsheet in the Genstat client, PC Windows only (D.B. Baird).

Options

\[\text{IDENTIFIER} = \text{identifier} \]
Identifier for the combined table when several tables are specified by \text{TABLE}

\[\text{PAGEFACTOR} = \text{factor} \]
Specifies the the classifying factor to go across the tabs in the spreadsheet when \text{TABLE} is set to a single table, or gives the identifier of the factor to be created to index the tables when \text{TABLE} supplies several tables

Parameter

\[\text{TABLE} = \text{tables} \]
Tables to be placed into a tabbed-table spreadsheet

TABULATE directive

Forms summary tables of variate values.

Options

\[\text{PRINT} = \text{string tokens} \]
Printed output required (\text{counts, totals, nobservations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, semeans, seskewness, sekurtosis}); default * i.e. no printing

\[\text{CLASSIFICATION} = \text{factors} \]
Factors classifying the tables; default * i.e. these are taken from the tables in the parameter lists

\[\text{COUNTS} = \text{table} \]
Saves a table counting the number of units with each factor combination; default *

\[\text{SEQUENTIAL} = \text{scalar} \]
Used for sequential formation of tables; a positive value
indicates that formation is not yet complete (see READ); default *.

MARGINS = string token
Whether the tables should be given margins if not already declared (yes, no); default no.

IPRINT = string token
Whether to print the identifier of the table or the identifier of the (associated) variate that was used to form it (identifier, extra, associatedidentifier); default identifier.

WEIGHTS = variate
Weights to be used in the tabulations; default * indicates that all units have weight 1.

PERCENTQUANTILES = scalar or variate
Percentage points for which quantiles are required; default 50 (i.e. median).

OWN = scalar or variate
Specifies option settings for the OWNTAB subroutine and indicates that this is to supply the data values instead of the variates in the DATA list; default *.

OWNFACTORS = factors
Factors whose values are to be read by OWNTAB (must include the factors of the classification set); default *.

OWNVARIATES = variates
Variates whose values are to be read by OWNTAB (must include the DATA variates); default *.

INCHANNEL = scalar
Channel number of the file from which the OWNTAB subroutine is to read the data (previously opened by an OPEN statement).

INFILETYPE = string token
Type of the OWN data file (input, unformatted); default input.

Parameters

DATA = variates
Data values to be tabulated.

TOTALS = tables
Tables to contain totals.

NOBSERVATIONS = tables
Tables containing the numbers of non-missing values in each cell.

MEANS = tables
Tables of means.

MINIMA = tables
Tables of minimum values in each cell.

MAXIMA = tables
Tables of maximum values in each cell.

VARIANCES = tables
Tables of cell variances.

QUANTILES = tables or pointers
Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILES (not available for sequential or OWN tabulation).

SDS = tables
Tables of standard deviations.

SKEWNESS = tables
Tables of skewness coefficients.

KURTOSIS = tables
Tables of kurtosis coefficients.

SEMEANS = tables
Tables of standard errors of means.

SESKEWNESS = tables
Tables of standard errors of skewness coefficients.

SEKURTOSIS = tables
Tables of standard errors of kurtosis coefficients.

TALLY procedure
Forms a simple tally table of the distinct values in a vector (D.B. Baird & R.D. Stern).

Options

PRINT = string tokens
What to print out for each vector (frequencies, percentages, cumfrequencies, cumpercentages, cumgraph, all); default freq, perc.

GRAPH = string tokens
What to display as graphs (cumulative, %cumulative); default * i.e. no graphs.

NGROUPS = scalar
Number of groups to form from a DATA variate or factor (ignored for texts); default * forms a group for each distinct value allowing for rounding (see DECSMALS).

DECIMALS = scalar
Number of decimal places to which to round the DATA before forming the groups; default * i.e. no rounding.

BOUNDARIES = string token
Whether to interpret the LIMITS as upper or lower boundaries.
4.1 Commands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECTION = string token</td>
<td>Order in which to sort (ascending, descending); default <code>lowe</code></td>
</tr>
<tr>
<td>OMITEMPTY = string token</td>
<td>Whether empty groups are omitted (yes, no); default <code>no</code></td>
</tr>
<tr>
<td>WEIGHTS = variate</td>
<td>Weights to be used in the tabulations; default <code>*</code> indicates that all units have weight 1</td>
</tr>
<tr>
<td>PQUANTILES = string token</td>
<td>Whether to include quantiles on the plot (yes, no); default <code>no</code></td>
</tr>
<tr>
<td>WINDOW = scalar</td>
<td>Window in which to plot the graphs; default 1 if GROUPS is set, or 3 otherwise</td>
</tr>
<tr>
<td>KEYWINDOW = scalar</td>
<td>Window in which to display the key when GROUPS is set; default 2</td>
</tr>
<tr>
<td>SCREEN = string token</td>
<td>Whether to clear screen before the plot (clear, keep); default <code>clear</code></td>
</tr>
</tbody>
</table>

Parameters

- **DATA** = variates, factors or texts: Data to be tallied
- **GROUPS** = factors: Defines groupings of the data, to be tallied into separate tables; default `*` i.e. none
- **LIMITS** = variates or texts: Limits to define the groups within the tally tables
- **FREPRESENTATION** = string tokens: Specifies the representation used to define the sort order of a **DATA** factor (ordinals, levels, labels); default `levels`
- **VALUES** = variates, texts or pointers: Saves the distinct groups formed for the tally tables
- **FREQUENCIES** = variates or pointers: Saves the frequencies of the groups in the tally tables
- **PERCENTAGES** = variates or pointers: Saves the percentage occurrences of the groups
- **CUMFREQUENCIES** = variates or pointers: Saves the cumulative frequencies of the groups
- **CUMPERCENTAGES** = variates or pointers: Saves the cumulative percentages of the groups
- **TITLE** = texts: Title for plot; default automatically forms a title containing the identifiers of the **DATA** vector and any **GROUPS** factor
- **XTITLE** = texts: Title for the axis representing data values; default uses the identifier of the **DATA** vector

TDISPLAY directive

Displays further output after an analysis by **ESTIMATE**.

Options

- **PRINT** = string tokens: What to print (model, summary, estimates, correlations); default `mode, summ, esti`
- **CHANNEL** = scalar: Channel number for output; default `*` i.e. current output channel
- **SAVE** = identifier: Save structure to supply fitted model; default `*` i.e. that from the last model fitted

No parameters

TENORSPLINE procedure

Calculates design matrices to fit a tensor-spline surface as a linear mixed model (S.J. Welham & P.H.C. Eilers).

Options

- **METHOD** = string token: Type of spline to use to construct the basis (pspline, penalizedspline); default `pspl`
- **PENALTYMETHOD** = string token: Which tensor-spline penalty to use (isotropic, semiconstrained, unconstrained); default `unconstrained`
- **NX1SEGMENTS** = scalar: Specifies the number of segments between boundaries in the X1 dimension; default `*` obtains a value automatically
- **NX2SEGMENTS** = scalar: Specifies the number of segments between boundaries in the X2 dimension; default `*` obtains a value automatically
- **DEGREE** = scalar: Degree of polynomial used to form the underlying spline basis
functions; default 1 for METHOD=pena and 3 for
METHOD=pspl

DIFFORDER = scalar
Differencing order for P-spline penalty; default 2

X1LOWER = scalar
Specifies the lower boundary in the X1 dimension; default
takes the minimum value of X1

X1UPPER = scalar
Specifies the upper boundary in the X1 dimension; default
takes the maximum value of X1

X2LOWER = scalar
Specifies the lower boundary in the X2 dimension; default
takes the minimum value of X2

X2UPPER = scalar
Specifies the upper boundary in the X2 dimension; default
takes the maximum value of X2

ORTHOGONALIZATION = string token
How to orthogonalize the random basis (fixed, none);
default fixe

SCALING = scalar
Scaling of the XRANDOM terms (automatic, none); default
auto

Parameters
X1 = variates or factors
Coordinates in the first dimension for which spline values are
required

X2 = variates or factors
Coordinates in the second dimension for which spline values
are required

XFIXED = matrices
Saves the design matrix to define the fixed terms (excluding
the constant) for fitting the tensor spline

XRANDOM = pointers
Saves the design matrices to define the random terms for
fitting the tensor spline

X1KNOTS = variates
Saves the coordinates in the first dimension of the internal
knots used to form the basis for the spline

X2KNOTS = variates
Saves the coordinates in the second dimension of the internal
knots used to form the basis for the spline

PX1 = variates
Specifies the coordinates in the first dimension at which to
predict

PX2 = variates
Specifies the coordinates in the second dimension at which to
predict

PFIXED = matrices
Saves the design matrix for the fixed terms (excluding the
constant) for the tensor spline at the prediction points

PRANDOM = pointers
Saves the design matrices for the random terms for the tensor
spline at the prediction points

TEQUIVALENCE procedure
Performs equivalence, non-inferiority and non-superiority tests (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (confidence, description, test); default desc, test

PLOT = string token
Controls plotting of the confidence intervals (confidence); default *

CLASSIFICATION = pointer
Specifies the factors classifying the table of means; must be
supplied for a multi-way table

METHOD = string token
Type of test required (equivalence, noninferiority, nonsuperiority); default equi

CIPROBABILITY = scalar
The probability level for the confidence interval; default 0.95

EQLIMITS = scalar or variate
Limits for equivalence, non-inferiority or non-superiority

TITLE = text
Title for the graph of confidence intervals; default
'Confidence plot'

WINDOW = scalar
Window for the graph of confidence intervals; default uses a
window defined to fill the screen

SCREEN = string token
Whether to clear the screen before plotting the confidence
intervals (clear, keep); default clea
Parameters
MEANS = tables or variates Means to be compared
CONTROL = scalars, texts or pointers Specifies the control treatment
SED = symmetric matrix or scalar Standard errors of differences of the means
DF = symmetric matrix or scalar Degrees of freedom for the standard errors of differences
TSTATISTICS = tables or variates Saves the t-statistics for the tests
PROBABILITIES = tables or variates Saves the probabilities from the tests
DIFFERENCES = tables or variates Saves the differences from the control
SEDCONTROL = tables or variates Saves the standard errors for the differences from the control
DFCONTROL = tables or variates Saves the degrees of freedom for the differences from the control
LOWER = tables or variates Saves the lower limits of the confidence intervals
UPPER = tables or variates Saves the upper limits of the confidence intervals

TERMS directive
Specifies a maximal model, containing all terms to be used in subsequent linear, generalized linear, generalized additive, and nonlinear models.

Options
PRINT = string tokens What to print (correlations, wmeans, SSPM, monitoring); default *
FACTORIAL = scalar Limit for expansion of model terms; default 3
FULL = string token Whether to assign all possible parameters to factors and interactions (yes, no); default no
SSPM = SSPM Gives sums of squares and products on which to base calculations; default *
TOLERANCE = scalar Criterion for testing for linear dependence; default is 10^{-7}, where ε is the smallest real value such that $1+\varepsilon$ is greater than 1 on the computer
DESIGNMATRIX = matrix Saves the design matrix for the maximal model
MVINCLUDE = string token Whether to include units with missing values in the explanatory factors and variates (explanatory); default * i.e. omit these
RIDGE = scalar or variate Supplies values to add to the diagonal of the sums-of-squares-and-products matrix, to enable ridge methods to be used; default 0
CLDESIGNMATRIX = text Saves the column labels of the design matrix for the maximal model i.e. the names of the parameters estimated in the maximal model
CLSSP = text Saves the labels of the sum-of-squares-and-products matrix

Parameter formula List of explanatory variates and factors, or model formula

TEXT directive
Declares one or more text data structures.

Options
NVALUES = scalar or vector Number of strings, or vector of labels; default * takes the setting from the preceding UNITS statement, if any
VALUES = strings Values for all the texts; default *
MODIFY = string token Whether to modify (instead of redefining) existing structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the texts in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Parameters
IDENTIFIER = identifiers Identifiers of the texts
VALUES = texts Values for each text
CHARACTERS = scalars
Numbers of characters of the lines of each text to be printed by default
EXTRA = texts
Extra text associated with each identifier

TFILTER directive
Filters time series by time-series models.

Option
PRINT = string tokens
What to print (series); default *

Parameters
OLDSERIES = variates
Time series to be filtered
NEWSERIES = variates
To save filtered series
FILTER = TSMs
Models to filter with respect to
ARIMA = TSMs
ARIMA models for time series

TFIT directive
Estimates parameters in Box-Jenkins models for time series.

Options
PRINT = string tokens
What to print (model, summary, estimates, correlations, monitoring); default mode, summ, esti
LIKELIHOOD = string token
Method of likelihood calculation (exact, leastsquares, marginal); default exac
CONSTANT = string token
How to treat the constant (estimate, fix); default esti
RECYCLE = string token
Whether to continue from previous estimation (yes, no); default no
WEIGHTS = variate
Weights; default *
MVREPLACE = string token
Whether to replace missing values by their estimates (yes, no); default no
FIX = variate
Defines constraints on parameters (ordered as in each model, tf models first): zeros fix parameters, parameters with equal numbers are constrained to be equal; default *
METHOD = string token
Whether to carry out full iterative estimation, to carry out just one iterative step, to perform no steps but still give parameter standard deviations, or only to initialize for forecasting by regenerating residuals (full, onestep, zerostep, initialize); default full
MAXCYCLE = scalar
Maximum number of iterations; default 15
TOLERANCE = scalar
Criterion for convergence; default 0.0004
SAVE = identifier
To name save structure, or supply save structure with transfer-functions; default * i.e. transfer-functions taken from the latest model

Parameters
SERIES = variate
Time series to be modelled (output series)
TSM = TSM
Model for output series
BOXCOXMETHOD = string token
How to treat transformation parameter in output series (fix, estimate); default fix
RESIDUALS = variate
To save residual series

TFORECAST directive
Forecasts future values of a time series.

Options
PRINT = string tokens
What to print (forecasts, limits, setransform, sfe); default fore, limi
CHANNEL = scalar
Channel number for output; default * i.e. current output channel
ORIGIN = scalar
Number of known values to be incorporated; default 0
UPDATE = string token
Whether to update the forecast origin to the end of the new
4.1 Commands

NEWOBSERVATIONS = variate
Variate of length ≥ ORIGIN providing new values of the time series to be incorporated (must be set if ORIGIN > 0)

SFE = variate
Saves standardized forecast errors; default *

MAXLEAD = scalar
Maximum lead time i.e number of forecasts to be made; default * defines the number as the length of FORECAST variate

FORECAST = variate
Variate of length MAXLEAD to save forecasts of output series; default *

SETTRANSFORM = variate
Saves standard errors of the forecasts (on transformed scale, if defined); default *

LOWER = variate
Saves lower confidence limits; default *

UPPER = variate
Saves upper confidence limits; default *

PROBABILITY = scalar
Probability level for confidence limits; default 0.9

COMPONENTS = pointer
Contains variates (of length ORIGIN + MAXLEAD) to save components of the forecast

SAVE = identifier
Save structure to supply fitted model; default * i.e. that from last model fitted

Parameters

FUTURE = variates
Variates (of length ORIGIN + MAXLEAD) containing future values of input series

METHOD = string tokens
How to treat future values of input series (observations, forecasts); default obse

THINPLATE procedure
Calculates the basis functions for thin-plate splines (D.B. Baird).

No options

Parameters

Y = variates or factors
Y-coordinates of the data points

X = variates or factors
X-coordinates of the data points

YKNOTS = variates or factors
Y-coordinates of the knots

XKNOTS = variates or factors
X-coordinates of the knots

TPSPLINE = variates or matrices
Thin-plate spline basis, as either a pointer of variates (default if not already declared) or a matrix

TKEEP directive
Saves results after an analysis by ESTIMATE.

Option

SAVE = identifier
Save structure to supply fitted model; default * i.e. that from last model fitted

Parameters

OUTPUTSERIES = variate
Output series to which model was fitted

RESIDUALS = variate
Residual series

ESTIMATES = variate
Estimates of parameters

SE = variate
Standard errors of estimates

INVERSE = symmetric matrix
Inverse matrix

VCOVARIANCE = symmetric matrix
Variance-covariance matrix of parameters

DEVIANCE = scalar
Residual deviance

DF = scalar
Residual degrees of freedom

MVESTIMATES = variate
Estimates of missing values in series

SEMV = variate
Standard errors of estimates of missing values

COMPONENTS = pointer
Variates to save components of output series

SCORES = variate
To save scores (derivatives of the log-likelihood with respect to the parameters)
TOBIT procedure

Performs a Tobit linear mixed model analysis on data with fixed-threshold censoring (M.C. Hannah & V.M. Cave).

Options

- `PRINT = string token` Controls printed output (summary); default `summ`
- `VPRINT = string tokens` Controls printed output from the REML analysis of the data with censored observations replaced by their estimates (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues); default `mode, comp, Wald`
- `FSE = string token` Standard errors to be printed with tables of effects and means from the REML analysis (differences, estimates, alldifferences, allestimates, none); default `diff`
- `PLOT = string token` To display a scatter plot of the data with censored observations replaced by their estimates against the observed data (scatterplot); default `*`
- `MAXCYCLE = scalar` Sets a limit on the number of iterations performed by the E-M algorithm; default `30`
- `TOLERANCE = variate` Sets tolerance limits for convergence of the E-M algorithm on the treatment means and the variance components; default `0.1` and `0.05` for the treatment means and variance components, respectively
- `RMETHOD = string token` Which random terms to use when calculating the residuals during the E-step of the E-M algorithm (final, all); default `final`
- `DIRECTION = string token` The direction of the censoring (left, right); default `left` (i.e., the true values for the censored observations are less than or equal to the `BOUND`)

Parameters

- `Y = variate` Response variate to be analysed; no default, must be set
- `BOUND = scalar` Censoring threshold; no default, must be set
- `CENSORED = variate` Indicator variable for censored observations, with values of one where the response values are censored and zero otherwise
- `INITIAL = scalar or variate` Scalar or a variate providing starting values for the censored observations in the E-M algorithm
- `NEWY = variate` Saves a copy of the response variate with the censored observations replaced by their estimates
- `YCENSORED = variate` Saves a logical variate indicating which `Y` values are censored
- `SAVE = REML save structure` REML save structure from the analysis of the data with censored observations replaced by their estimates

TRANSFERFUNCTION directive

Specifies input series and transfer-function models for subsequent estimation of a model for an output series.

Option

- `SAVE = identifier` To name time-series save structure; default `*`

Parameters

- `SERIES = variates` Input time series
- `TRANSFERFUNCTION = TSMs` Transfer-function models; if omitted, model with 1 moving-average parameter, lag 0
- `BOXCOXMETHOD = string tokens` How to treat transformation parameters (fix, estimate); default `fix`
- `PRIORMETHOD = string tokens` How to treat prior values (fix, estimate); default `fix`
- `ARIMA = TSMs` ARIMA models for input series
TREATMENTSTRUCTURE directive
Specifies the treatment terms to be fitted by subsequent ANOVA statements.
No options
Parameter
 formula Treatment formula, specifies the treatment model terms to be fitted by subsequent ANOVAs

TREE directive
Declares one or more tree data structures and initializes each one to have a single node known as its root.
No options
Parameter
 IDENTIFIER = identifiers Identifiers of the trees

TRELLIS procedure
Does a trellis plot (S.J. Welham & S.A. Harding).
Options
 GROUPS = factors or variate Factors or variate defining the classification for the plots
 GMETHOD = string token Determines the method used to partition the range when GROUPS is set to a variate (equalspacing, quantiles, distinct, limits); default equal
 NGROUPS = scalar Determines the number of plots to be formed when GROUPS is set to a variate and GMETHOD is set to quantiles or equalspacing
 LIMITS = variate Limits to use to form groups from a GROUPS variate when GMETHOD=limits
 OVERLAP = scalar Proportion by which a GROUPS variate should overlap between plots (scalar in range 0 - 0.5); default 0
 OMITEMPTY = string token Whether to omit all empty plots from the array (all), or omit levels of a GROUPS factor where all plots are empty (levels), or keep all plots in the array (none); default level
 PENGROUP = factors Defines factor combinations to be plotted in different colours, note that the number of colours available may differ between devices
 NROWS = scalar Specifies number of rows of plots to appear on one page; default determined automatically from GROUPS
 NCOLUMNS = scalar Specifies number of columns of plots to appear on one page; default determined automatically from GROUPS
 TITLE = text Supplies a title for the plot
 FIRSTPICTURE = string token Whether to put the first picture at bottom or top left of the grid (bottomleft, topleft); default topl
 TMETHOD = string token Whether to give plot titles as factor names with labels or just labels (names,labels); default names
 YTITLE = text Supplies an overall y-axis title
 XTITLE = text Supplies an overall x-axis title
 YMARGIN = scalar Relative size of margins for the y-axis labels on individual plots; default 0.04
 XMARGIN = scalar Relative size of margins for the x-axis labels on individual plots; default 0.04
 TMARGIN = scalar Relative size of margin for titles of individual plots; default 0.04
 PENSIZE = scalar Proportionate adjustment to the pen size for individual plot titles and axis labels; default 1
 USEPENS = string token Whether to use current pen definitions in the procedure (no, yes); default no
 USEAXES = string token Which aspects of the current axis definitions of window 1 to
use (none, limits, style, marks, mpositions, nsubticks, transform); default none

NRMAX = scalar
Maximum number of rows on page; default 8 for a square frame, 7 for a landscape frame and 10 for a portrait frame

NCMAX = scalar
Maximum number of columns on page; default 8 for a square frame, 10 for a landscape frame and 7 for a portrait frame

KEYHEIGHT = scalar
Space in y-direction to use for key (0 to suppress key); default * i.e. determined automatically

YPENMETHOD = string token
Whether to use the same or different pens for each y-variate (different, same); default diff

FRAMESHAPE = string token
Shape of the plotting frame (landscape, portrait, square); default squa

Parameters
Y = variates
Y-values of the data to be plotted

X = variates or factors
X-values of the data to be plotted

METHOD = string tokens
Type of plot (point, line, mean, median, histogram, boxplot, spline, schematicboxplot); default poin

DESCRIPTION = texts
Annotation for key

TRY directive
Displays results of single-term changes to a linear, generalized linear or generalized additive model.

Options
PRINT = string tokens
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, changes, confidence); default chan

FACTORIAL = scalar
Limit for expansion of model terms; default * i.e. that in previous TERMS statement

POOL = string token
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

NOMESSAGE = string tokens
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *

FPROBABILITY = string token
Printing of probabilities for variance and deviance ratios (yes, no); default no

TPROBABILITY = string token
Printing of probabilities for t-statistics (yes, no); default no

SELECTION = string tokens
Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and %cv only for a gamma-distributed response (%variance, %ss, adjustedr2, r2, seobservations, dispersion, %cv, %meandeviance, %deviance, aic, bic, sic); default %var, seob if DIST=normal, %cv if DIST=gamma, and disp for other distributions

PROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

Parameter
formula
List of explanatory variates and factors, or model formula

TSM directive
Declares one or more TSM data structures.

Option
MODELTYPE = string token
Type of model (arima, transfer); default arim
Parameters

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFIER</td>
<td>Identifiers of the TSMs</td>
</tr>
<tr>
<td>ORDERS</td>
<td>Orders of the autoregressive, integrated, and moving-average parts of each TSM</td>
</tr>
<tr>
<td>PARAMETERS</td>
<td>Parameters of each TSM</td>
</tr>
<tr>
<td>LAGS</td>
<td>Lags, if not default</td>
</tr>
</tbody>
</table>

TSUMMARIZE directive

Displays characteristics of time series models.

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT</td>
<td>What to print (autocorrelations, expansion, impulse, piweight, psiweight); default *</td>
</tr>
<tr>
<td>GRAPH</td>
<td>What to display with graphs (autocorrelations, impulse, piweight, psiweight); default *</td>
</tr>
<tr>
<td>MAXLAG</td>
<td>Maximum lag for results; default 30</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSM</td>
<td>Models to be displayed</td>
</tr>
<tr>
<td>AUTOCORRELATIONS</td>
<td>To save theoretical autocorrelations</td>
</tr>
<tr>
<td>IMPULSERESPONSE</td>
<td>To save impulse-response function</td>
</tr>
<tr>
<td>STEPFUNCTION</td>
<td>To save step function from impulse</td>
</tr>
<tr>
<td>PIWEIGHTS</td>
<td>To save pi-weights</td>
</tr>
<tr>
<td>PSIWEIGHTS</td>
<td>To save psi-weights</td>
</tr>
<tr>
<td>EXPANSION</td>
<td>To save expanded models</td>
</tr>
<tr>
<td>VARIANCE</td>
<td>To save variance of each TSM</td>
</tr>
</tbody>
</table>

TTEST procedure

Performs a one- or two-sample t-test (S.J. Welham).

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINT</td>
<td>Controls printed output (confidence, summary, test, variance, permutationtest); default conf, summ, test, vari</td>
</tr>
<tr>
<td>METHOD</td>
<td>Type of test required (twosided, greaterthan, lessthan, equivalence, noninferiority, nonsuperiority); default twos</td>
</tr>
<tr>
<td>GROUPS</td>
<td>Defines the groups for a two-sample test if only the Y1 parameter is specified</td>
</tr>
<tr>
<td>CIPROBABILITY</td>
<td>The probability level for the confidence interval; for a one-sided test this will be for the mean and for a two-sided test for the difference in means; default *, i.e. no confidence interval is produced</td>
</tr>
<tr>
<td>NULL</td>
<td>The value of the mean under the null hypothesis; default 0</td>
</tr>
<tr>
<td>VMETHOD</td>
<td>Selects between the standard two-sample t-test, with a pooled estimate of the variances of the samples, and the use of separate estimates for the sample variances (automatic, pooled, separate); default auto uses a pooled estimate unless there is evidence of unequal variances</td>
</tr>
<tr>
<td>NTIMES</td>
<td>Number of random allocations to make when PRINT=perm; default 999</td>
</tr>
<tr>
<td>SEED</td>
<td>Seed for the random number generator used to make the allocations; default 0 continues from the previous generation or (if none) initializes the seed automatically</td>
</tr>
<tr>
<td>EQLIMITS</td>
<td>Limits for equivalence, non-inferiority or non-superiority</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>Identifier of the variate holding the first sample</td>
</tr>
<tr>
<td>Y2</td>
<td>Identifier of the variate holding the second sample</td>
</tr>
</tbody>
</table>
| TESTRESULTS | Identifier of variate (length 3) to save test statistic, d.f. and
probability value

LOWER = **scalars**
Identifier of scalar to save the lower limit of each confidence interval

UPPER = **scalars**
Identifier of scalar to save the upper limit of each confidence interval

W1 = **variates**
Weights (replications) of the values in Y1; default 1 i.e. all 1

W2 = **variates**
Weights (replications) of the values in Y2; default 1 i.e. all 1

TUKEYBIWEIGHT procedure

Options
- **CUTPOINT** = **scalar**
 Cut point after which weight is set to zero; default 5
- **TOLERANCE** = **scalar**
 Tolerance to avoid division by zero; default 0.00001

Parameters
- **DATA** = **variates or pointers**
 Data values
- **GROUPS** = **factors**
 Groupings of the data values
- **MEANS** = **variates**
 Saves the means
- **SE** = **variates**
 Saves standard errors

TVARMA procedure
Fits a vector autoregressive moving average (VARMA) model (A.I. Glaser).

Options
- **PRINT** = **string tokens**
 What to print (model, summary, estimates, correlations); default mode, summ, esti
- **LIKELIHOOD** = **string token**
 Method of likelihood calculation (exact, conditional); default exact
- **CONSTANT** = **string token**
 How to treat the constant (estimate, fixtozero); default esti
- **ARMA** = **variates**
 Variate of length two, containing the number of AR and MA parameters respectively
- **ARFIXED** = **pointer**
 Specifies fixed values of the AR parameters
- **MAFIXED** = **pointer**
 Specifies fixed values of the MA parameters
- **MUFIXED** = **variates**
 Specifies fixed values of the constant parameters
- **NDIFFERENCING** = **variates or scalar**
 Specifies the order of differencing for each series; default 0
- **NCROSSRESIDUAL** = **scalar**
 Number of residual cross-correlation matrices to be computed for calculating the modified portmanteau statistic; default 20
- **MAXCYCLE** = **scalar**
 Maximum number of iterations; if this is not set, an appropriate default is determined automatically according to the number of parameters
- **TOLERANCE** = **scalar**
 Convergence criterion; default 0.0001

Parameters
- **SERIES** = **pointers**
 Time series to be modelled (output series)
- **RESIDUALS** = **pointers**
 Saves the residual series
- **ESTIMATES** = **pointers**
 Saves estimates of parameters for each SERIES variate
- **SEESTIMATES** = **pointers**
 Saves standard errors of the estimates
- **VCRSIDIUALS** = **symmetric matrices**
 Variance-covariance matrix of the residuals
- **DEVIANCE** = **scalars**
 Saves the residual sum of squares or deviance
- **CORRELATIONS** = **symmetric matrices**
 Saves the correlation matrix of the estimates
- **GRADIENTS** = **pointers**
 Saves the first derivative of the loglikelihood function
- **SAVE** = **pointers**
 Saves information for use with TVGRAPH or TVFORECAST

TVFORECAST procedure
Forecasts future values from a vector autoregressive moving average (VARMA) model (A.I. Glaser).

Options
- **PRINT** = **string tokens**
 What to print (forecasts, se); default fore, se
- **MAXLEAD** = **scalar**
 Maximum lead time i.e. number of forecasts to be made;
4.1 Commands

Parameters

FORECASTS = matrices Saves the forecasts
SE = matrices Saves standard errors of the forecasts
SAVE = pointers Save structure from a previous TVARMA

TVGRAPH procedure

Plots a vector autoregressive moving average (VARMA) model (A.I. Glaser).

Options

TIMEPOINTS = variate X-coordinates for the graphs; default uses the integers 1, 2...
TITLE = texts Overall title for the graphs
YTITLE = texts Titles for the y-axes; default * forms titles automatically from the identifiers or labels of the y-variables
XTITLE = texts Title for the x-axis in each set of graphs; default * uses the identifier of TIMEPOINTS (if set)
NROWS = scalar Specifies the number of rows of graphs to appear on the graphics screen; default * takes the number of y-variables
NCOLUMNS = scalar Specifies the number of columns of graphs to appear on the graphics screen; default 1

Parameter

SAVE = pointers Save structure from TVARMA with information about the analysis; default plots information from the most recent TVARMA analysis

TXBREAK directive

Breaks up a text structure into individual words.

Option

SEPARATOR = text Defines the characters separating the words in the original text; default ’ ,;:. ’

Parameters

TEXT = texts Text to break into words
WORDS = texts Saves the words contained in each text (in the order in which they occur)
COLUMNS = variates Saves the number of the column in the TEXT where each word began
LINES = variates Saves the number of the line where each word was found
PLACESINLINES = variates Saves the place of each word (first, second &c) within the line where it was found

TXCONSTRUCT directive

Forms a text structure by appending or concatenating values of scalars, variates, texts, factors, pointers or formulae; allows the case of letters to be changed or values to be truncated and reversed.

Options

TEXT = text Stores the text that is formed
CASE = string token Case to use for letters (given, lower, upper, changed, sentence, title); default give leaves the case of each letter as given in the original texts
METHOD = string token Whether to append or concatenate the values of the structures (append, concatenate) default conc
SEPARATOR = string Characters to separate all except last two strings in each line when concatenating; default ’ ’ (i.e. none)
LASTSEPARATOR = string Characters to separate last two strings in each line when concatenating; default uses the characters defined by SEPARATOR
PREFIX = string Characters to put at the start of each line when concatenating; default ’ ’ (i.e. none)
END = string
Characters to put at the end of each line when concatenating; default ‘’ (i.e. none)

SIGNIFICANTFIGURES = scalar
Specifies the number of significant figures to include for numerical data; default 4

Parameters

STRUCTURE = scalars, variates, factors, texts, pointers or formulae
Structures whose values are to be appended or concatenated

WIDTH = scalars or variates
Number of characters to take from the strings formed from the units of each STRUCTURE, a negative value takes all the (unskipped) characters other than trailing spaces; if omitted or set to a missing value, all the (unskipped) characters are taken

DECIMALS = scalars or variates
Number of decimal places to use for numerical structures; if omitted or set to a missing value, a default is used which aims to print the value to the precision defined by the SIGNIFICANTFIGURES option

SKIP = scalars or variates
Number of characters to skip at the left-hand side of the strings formed from the units of each STRUCTURE, a negative value skips all initial spaces; if omitted or set to a missing value, no characters are skipped

FREPRESENTATION = string tokens
How to represent factor values (labels, levels, ordinals); default is to use labels if available, otherwise levels

DREPRESENTATION = scalars or texts
Format to use for dates and times (stored in numerical structures)

REVERSE = string tokens
Whether to reverse the strings of characters formed from the units of each structure (yes, no); default no

MISSING = texts
String to use to represent missing values of numerical structures; default ‘*’

TXFIND directive
\---
Finds a subtext within a text structure.
\---

Options

CASE = string token
Whether to treat the case of letters (small or capital) as significant when searching for the SUBTEXT within the TEXT (significant, ignored); default sign

REVERSE = string token
Whether to reverse the search to work from the end of the TEXT (yes, no); default no

MULTISPACES = string token
Whether to treat differences between multiple spaces and single spaces as significant, or to treat them all like a single space (significant, ignored); default sign

DISTINCT = string tokens
Whether to require the SUBTEXT to have one or more separators to its left or right within the TEXT (left, right); default ‘*’

SEPARATOR = string
Characters to use as separators; default ‘ ,;:.’

SAMELINE = string token
Whether to ignore matches in the TEXT where the SUBTEXT is not all on the same line (yes, no); default no

Parameters

TEXT = texts
Texts to be searched

SUBTEXT = texts
Text to look for in each TEXT

COLUMN = scalars
Position of the column within TEXT where the first character of SUBTEXT has been found

LINE = scalars
Number of the line within TEXT where the first character of SUBTEXT has been found

ICOLUMN = scalars
Column within TEXT at which to start the search

ILINE = scalars
Line within TEXT at which to start the search

ENDCOLUMN = scalars
Position of the column within TEXT where the last character of
4.1 Commands

ENDLINE = scalars

SUBTEXT has been found
Number of the line within TEXT where the last character of
SUBTEXT has been found

TXINTEGERCODES directive
Converting textual characters to and from their corresponding integer codes.

Options
CONVERTTO = string token
Whether to convert from text characters to integer codes or
integer codes to text characters (codes, text); default code
REPRESENT = string token
How to treat code values 128-255 (extendedascii, utf8);
default exte if CODES defines no characters that can be
represented only in UTF-8, otherwise utf8

Parameters
TEXT = texts
Text structures (each with a single line only)
CODES = variates or scalars
Integer codes corresponding to the characters in each text

TXPAD procedure
Pads strings of a text structure with extra characters so that their lengths are equal (J.T.N.M.
Thissen).

Options
PADDINGCHARACTERS = string token
Character(s) used for padding; default uses the dot character
'
METHOD = string token
Whether the character(s) of PADDINGCHARACTERS should be
placed before or after the strings of OLDTEXT (before,
after); default afte
REMOVESPACES = string tokens
Whether to remove initial and/or trailing spaces in the strings
of OLDTEXT (leading, trailing); default * i.e. none

Parameters
OLDTEXT = texts
Texts to be padded; must be set
NEWTEXT = texts
Saves the padded texts
WIDTH = scalars
Sets a limit on the length of the strings in the padded texts;
default is the width of the largest string in OLDTEXT

TXPOSITION directive
Locates strings within the lines of a text structure.

Options
CASE = string token
Whether to treat the case of letters as significant when
searching for lines of the SUBTEXT within the TEXT
(significant, ignored); default sign
REVERSE = string tokens
Whether to reverse the search to work from the end of the lines
of the TEXT (yes, no); default no
MULTISpaces = string token
Whether to treat differences between multiple spaces and
single spaces as significant, or to treat them all like a single
space (significant, ignored); default sign
DISTINCT = string tokens
Whether to require the SUBTEXT to have one or more
separators to its left or right within the TEXT (left, right;
default *
SEPARATOR = text
Characters to use as separators; default ' ,;:'.

Parameters
TEXT = texts
Texts whose strings are to be searched
SUBTEXT = texts
Specifies a string or strings to find in each TEXT
POSITION = variates
Position of the SUBTEXT strings within the TEXT
WIDTH = scalars or variates
Right-most character(s) to search in the lines of each TEXT;
default * searches up to the end of each line
SKIP = scalars or variates
Number of characters to skip at the left-hand side of the lines
of each TEXT; default 0
TXPROGRESSION procedure

Forms a text containing a progression of strings (R.W. Payne).

Options

- **INCLUDECHARACTERS = string tokens**
 Defines the set of characters to include in the progression
 (lower, upper, digits, _, %, space); default lowe

- **DIRECTION = string token**
 Direction of the progression (ascending, descending); default asce

- **FIRSTLETTERS = string token**
 Controls which letters come first (allower, allupper, lower, upper); default uppe

- **OWNCHARACTERSET = text**
 Can supply an alternative set of characters

Parameters

- **FIRST = texts**
 Single-valued text specifying the first string in each progression

- **SECOND = texts**
 Single-valued text specifying the second string in each progression

- **LAST = texts**
 Single-valued text defining the end of each progression

- **PROGRESSION = texts**
 Saves the progression

TXREPLACE directive

Replaces a subtext within a text structure.

Options

- **NTIMES = scalar**
 Number of times to search for the OLDSUBTEXT and replace it; default 1

- **CASE = string token**
 Whether to treat the case of letters (small or capital) as significant when searching for the OLDSUBTEXT within the OLDTEXT (significant, ignored); default sign

- **MULTISPOCES = string token**
 Whether to treat differences between multiple spaces and single spaces as significant when locating the OLDSUBTEXT within the OLDTEXT, or to treat them all like a single space (significant, ignored); default sign

- **DISTINCT = string tokens**
 Whether to require the OLDSUBTEXT to have one or more separators to its left or right within the OLDTEXT (left, right); default *

- **SEPARATOR = string**
 Characters to use as separators; default ', ; : . '

- **SAMELINE = string token**
 Whether to ignore matches in the OLDTEXT where the OLDSUBTEXT is not all on the same line (yes, no); default no

Parameters

- **OLDTEXT = texts**
 Texts to be edited

- **NEWTEXT = texts**
 Texts with OLDSUBTEXT replaced by NEWSUBTEXT; if no NEWTEXT is supplied, the new values replace those in the corresponding OLDTEXT

- **OLDSUBTEXT = texts**
 Text to look for in each OLDTEXT

- **NEWTEXT = texts**
 Text to replace OLDSUBTEXT

- **COLUMN = scalars**
 Position of the column within OLDTEXT where the first character of NEWSUBTEXT has been placed

- **LINE = scalars**
 Number of the line within OLDTEXT where the first character of NEWSUBTEXT has been placed

- **ICOLUMN = scalars**
 Column within OLDTEXT at which to start the search

- **ILINE = scalars**
 Line within OLDTEXT at which to start the search

- **ENDCOLUMN = scalars**
 Position of the column within OLDTEXT where the last character of NEWSUBTEXT has been placed

- **ENDLINE = scalars**
 Number of the line within OLDTEXT where the last character of NEWSUBTEXT has been placed

- **NREPLACED = scalars**
 Number of subtexts replaced
4.1 Commands

TXSPLIT procedure
Splits a text into individual texts, at positions on each line marked by separator character(s) (R.W. Payne).

Options

- **SEPARATOR = text**: Defines the character(s) that indicate where to split each line; default ‘,’
- **INCLUDE = string tokens**: Whether to retain the separator at the end of a split text, or any spaces at its start and end (separators, spaces); default * i.e. include neither

Parameters

- **TEXT = texts**: Text to split
- **SPLITTEXTS = texts**: Saves the texts into which TEXT is split

TX2VARIATE directive
Converts text structures to variates.

Options

- **PRINT = string token**: Controls printed output (conversions); default * (i.e. none)
- **NONNUMERIC = string token**: How to treat non-numeric values (bestmatch, missing); default miss
- **YEAR = scalar**: Year to use when calculating the day within year for the date formats that specify only months and days; default is to assume that this is any year that is not a leap year
- **REDEFINE = string token**: Whether to allow a structure in the VARIATE list that has already been declared (e.g. as a text) to be redefined (yes, no); default no

Parameters

- **TEXT = texts**: Text structures to convert
- **VARIATE = variates**: Variate for each text, containing the numbers in each of its lines
- **DREPRESENTATION = scalars**: Format to use for dates and times (stored in numerical structures)
- **MISSING = texts**: Strings used to represent missing values in each text; default *’*’
- **STATUS = variates**: Code to indicate whether the number in each unit was read successfully (1), or with conversions (2), or unsuccessfully (0)

T%CONTROL procedure
Expresses tables as percentages of control cells (R.W. Payne).

Option

- **PRINT = string token**: Controls printed output (percentages); default perc

Parameters

- **OLDTABLE = tables**: Tables containing the original values
- **NEWTABLE = tables**: Tables to store the percentage values
- **FACTOR = factors or pointers**: Factor, or pointer of factors, with control levels
- **CONTROL = scalars, variates, texts or pointers**: Identifies the control level or levels of each FACTOR (if more than one is specified for a factor, their mean is used); default uses the reference level

UNITS directive
Defines an auxiliary vector of labels and/or the length of any vector whose length is not defined when a statement needing it is executed.

Option

- **NVALUES = scalar**: Default length for vectors

Parameter

- **variate or text**: Vector of labels
UNSTACK procedure
Splits vectors into individual vectors according to levels of a factor (R.W. Payne).

Options
- **DATASET = factor**: Factor identifying the unstacked data sets
- **IDSTACKED = factors**: Factors identifying how the units of the unstacked data sets should be matched
- **IDUNSTACKED = factors**: Factors defined to identify these units in the unstacked vectors
- **MVINCLUDE = strings**: Which missing values to include (datasets, idstacked); default * i.e. none

Parameters
- **STACKEDVECTOR = variates, factors or texts**: Vectors to be unstacked
- **DATASETINDEX = scalars or texts**: Level or label of the DATASET factor indicating the group whose units are to be stored in the UNSTACKEDVECTOR; default takes the levels of DATASET one at a time (and then recycling this list to match the other parameters)
- **UNSTACKEDVECTOR = variates, factors or texts**: Unstacked vectors

UTMCONVERSION procedure
Converts between geographical latitude and longitude coordinates and UTM eastings and northings (D.B. Baird).

Options
- **CONVERTTO = string token**: Whether to convert to UTM eastings and northings from geographical latitude and longitude coordinates, or to geographical coordinates from UTM (geographical, utm); default utm
- **DATUM = string token**: The datum to use when constructing the grid for eastings and northings (WG284, NAD83, GRS80, OSGB36, WGS72, AUSTRALIAN1965, KRAsovsky1940, NORTHAMERICAN1927, INTERNATIONAL1924, HAYFORD1909, CLARKE1880, CLARKE1866, AIRY1830, BESSSEL1841, EVEREST1830); default WGS8
- **CENTRALMERIDIAN = scalar**: Central meridian in degrees for the UTM coordinates
- **SINGLEZONE = string token**: Whether to convert to easting and northing in a single zone (yes, no); default no
- **EORIGIN = string token**: False origin for easting; default 500000
- **NORIGIN = string token**: False origin for northing; default 0

Parameters
- **LATITUDE = scalars or variates**: Latitudes
- **LONGITUDE = scalars or variates**: Longitudes
- **DIRECTION = scalars or variates**: Directions of the angles of latitude and longitude coordinates (NE, NW, NE, SW); default NE
- **EASTING = scalars or variates**: UTM easting grid references
- **NORTHING = scalars or variates**: UTM northing grid references
- **ZONE = scalars or variates**: UTM zones

VABLOCKDESIGN procedure
Analyses an incomplete-block design by REML, allowing automatic selection of random and spatial correlation models (R.W. Payne).

Options
- **PRINT = string tokens**: Controls what summary output is produced about the models (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best, description); default best, desc
- **PBEST = string tokens**: Controls the output from the REML analysis with the best
4.1 Commands

model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

PTRY = string tokens
Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

FIXED = formula
Fixed model terms; default * i.e. none

RANDOM = formula
Additional random model terms; default * i.e. none

CONSTANT = string token
How to treat the constant term (estimate, omit); default esti

FACTORIAL = scalar
Limit on the number of factors or covariates in each fixed term; default 3

REPLICATES = factor
Replicate factor

BLOCKS = factor
Block factor; no default (must be specified)

ROWS = factor
Row factor for spatial analysis

COLUMNS = factor
Column factor for spatial analysis

ROWCOORDINATES = variate or factor
Row coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the ROWS factor

COLCOORDINATES = variate or factor
Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the COLUMNS factor

PLOTFACTOR = factor
Factor numbering the plots in the design; if unset, a local factor is defined automatically

PTERMS = formula
Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token
Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, all.estimates, none); default diff

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

VCONSTRAINTS = string token
Whether to constrain variance components to be positive (none, positive); default none

RSTRATEGY = string token
Strategy for selecting the random model (all, allfeasible, optimal, automatic, full); default allf

METHOD = string token
Criterion to choose the best random model (aic, sic, bic); default sic

TRYSPATIAL = string token
Whether to try spatial models (always, ifregular); default * i.e. no spatial models

TRYTRENDS = string token
Whether to see whether row and column trends are needed in the fixed model (yes, no); default no

SPATIALFACTOR = factor
Factor to use to define the term for a 2-dimensional power-distance model; if unset, a local factor is defined automatically

Parameters

Y = variates
Response variates

BESTMODEL = pointers
Saves a model-definition structure for the best model for each y-variate

EXIT = scalars
Exit status of the best model for each y-variate

SAVE = REML save structures
Save structure from the analysis of the best model for each y-variate
VAIC procedure
Calculates the Akaike and Schwarz (Bayesian) information coefficients for REML (R.W. Payne & V.M. Cave).

Options
PRINT = string tokens Controls printed output (deviance, aic, bic, sic, dffixed, dfrandom, changes); default aic
INCLUDE = string tokens When LMETHOD=residual, which constants to include that depend only on the fixed model (determinant, pi); default pi
DMETHOD = string token Method to use to calculate log(determinant(X'X))(choleski, lrv); default chol
LMETHOD = string token Whether the residual or full log-likelihood is used to calculate the information coefficients (residual, full); default resi
REPEAT = string token Whether to repeat output from the previous VAIC (yes, no); default no

Parameters
DEVIANCE = scalars Saves the deviance
AIC = scalars Saves the Akaike information coefficient
SIC = scalars Saves the Schwarz (Bayesian) information coefficient
DFFIXED = scalars Saves the number of parameters fitted in the fixed model
DFRANDOM = scalars saves the number of parameters fitted in the random model (and any covariance models)
CHANGES = variates Saves changes since the previous VAIC; the units of the variates are labelled by the names of the coefficients (deviance, aic, sic, dffixed and dfrandom)
SAVE = REML save structures Save structure for which to calculate the coefficients; default uses the save structure from the most recent REML

VALLSUBSETS procedure
Fits all subsets of the fixed terms in a REML analysis (R.W. Payne).

Options
PRINT = string tokens Controls printed output (results); default resu
FORCED = formula Terms to include in every model
FACTORIAL = scalar Limit for expansion of FORCED terms; default 3
SELECTION = string tokens One or two criteria to be printed with the models (r2, adjusted, cp, ep, aic, bic, sic, rss, rms); default aic, sic
NBESTMODELS = scalar Number of models to print; default * i.e. all
BESTMODEL = pointer Saves the best model according to the selected criteria
RESULTS = pointer Pointer to save variates containing the criteria for the sets, and F and Wald statistics for the terms that they contain
MARGINALTERMS = string token How to treat terms that are marginal to other terms (forced, free); default forc
SAVE = REML save structure Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent REML

No parameters

VALINEBYTESTER procedure
Provides combinabilities and deviances for a line-by-tester trial analysed by VABLOCKDESIGN or VAROWCOLUMNDESIGN (R.W. Payne).

Options
PRINT = string tokens Controls what summary output is produced about the models (combinability, tests); default comb, test
LINES = factor Specifies the line (usually female parent); no default (must be specified)
TESTERS = factor Specifies the tester (usually male parent); no default (must be
CONTROLS = factor
Distinguishes between control and test (line × tester) genotypes; default is that there are no controls

PCOMBINABILITYTERMS = formula
Terms whose combinability effects are to be printed (LINES and/or LINES.TESTERS; default is to print both of them

MVINCLUDE = string tokens
When the SAVE parameter is unset, this specifies whether to include units with missing values in the explanatory factors and variates and/or the y-variates in the analyses (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

Parameters
Y = variates
Response variates

MODELSTRUCTURE = pointers
Model-definition structure used for the analysis of each y-variate

COMBINABILITY = pointers
Pointer to tables of combinability effects for each y-variate

SECOMBINABILITY = pointers
Pointer to tables of standard errors of combinability effects for each y-variate

DEVIANCES = variates
Saves deviances for LINES and LINES.TESTERS

SAVE = REML save structures
Save structure from the analysis of each y-variate

VAMETA procedure
Performs a REML meta analysis of a series of trials, previously analysed by VASERIES (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default mode, comp, Wald

PTRY = string tokens
Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

PRECOVERY = string tokens
Controls what summary output is produced about the models that are tried during recovery (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best); default devi, aic, sic, dfra, best

FIXED = formula
Fixed model terms; if unset, these are taken from the MODELSTRUCTURES

RANDOM = formula
Additional random model terms; default * i.e. none

CONSTANT = string token
How to treat the constant term (estimate, omit); default esti

FACTORIAL = scalar
Limit on the number of factors or covariates in each fixed term; default 3

PTERMS = formula
Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token
Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff

RECOVER = string token
Whether to try to recover with a simpler random model if REML cannot fit the model (yes, no); default no

METHOD = string token
How to choose the best model during recovery (aic, sic, bic); default sic

Parameters
Y = variates
Response variates
MODELDEFINITIONS = pointers

Descriptions of the models for each y-variate, saved from VASERIES

EXIT = scalars

Exit status for the fit (zero if successful)

SAVE = vsaves

REML save structure from the analysis of each y-variate

VAOPTIONS procedure

Defines options for the fitting of models by VARANDOM and associated procedures (R.W. Payne).

Options

MAXCYCLE = scalar

Limit on the number of iterations in REML analyses; default 100

WORKSPACE = scalar

Number of blocks of internal memory to be set up for use by the REML algorithm

MINSPATIALCOORDINATES = scalar

Minimum number of different coordinates in a direction for a spatial model to be fitted by VAROWCOLUMNDESIGN; default 4

LIMPRTREND = scalar

Critical value for the probability of a row or column trend in the initial basic REML analysis (with replicates but no other random terms) for this to be included in the later analyses) by VAROWCOLUMNDESIGN; default 0.01

REPORTFAILURES = string token

Whether the accumulated summary should include models that fail to fit or that have bound variance parameters (yes, no); default no

No parameters

VARANDOM procedure

Finds the best REML random model from a set of models defined by VFMODEL (R.W. Payne).

Options

PRINT = string tokens

Controls what summary output is produced about the models (best, deviance, aic, bic, sic, dfixed, dfrandom, change, exit); default devi, aic, sic, dfra, best

PBEST = string tokens

Controls the output from the REML analysis with the best model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

PTRY = string tokens

Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

MODELSTRUCTURES = pointer

Model-definition structures specifying the models to try

PTERMS = formula

Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token

Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff

MVINCLUDE = string tokens

Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

METHOD = string token

How to choose the best model (aic, sic, bic); default sic

Parameters

y = variates

Response variates

NBESTMODEL = scalars

Saves the number of the best model for each y-variate, returning a missing value if no models could be fitted successfully
4.1 Commands

SAVE = REML save structures
Save structure from the analysis of the best model for each y-variate

VARECOVER procedure

Recover when **REML**, is unable to fit a model, by simplifying the random model (R.W. Payne).

Options

PRINT = string tokens
Controls what summary output is produced about the simpler random models that are tried (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best); default devi, aic, sic, dfra, best

PBEST = string tokens
Controls the output from the **REML** analysis with the best simpler model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

PTRY = string tokens
Controls the output to present from the **REML** analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

PLOTFACTOR = factor
Factor numbering the plots in the design, required if **VARECOVER** needs to try a null random model; if unset, a local factor is defined automatically

FORCED = formula
Specifies terms that must not be removed from the random model; by default any of the random terms can be removed

PTERMS = formula
Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token
Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

METHOD = string token
Criterion to choose the best model (aic, sic, bic); default sic

PROHIBIT = string token
Whether to exclude models where any estimated variance parameters are held at a bound (bound); default *

Parameters

Y = variates
Response variates

MODELSTRUCTURE = pointers
Model-definition structure for the unsuccessful analysis of each y-variate

BESTMODEL = pointers
Saves a model-definition structure for the best model for each y-variate

EXIT = scalars
Enter status of the best model for each y-variate

SAVE = REML save structures
Save structure from the analysis of the best model for each y-variate

VARIATE directive

Declares one or more variate data structures.

Options

NVALUES = scalar or vector
Number of units, or vector of labels; default * takes the setting from the preceding **UNITS** statement, if any

VALUES = numbers
Values for all the variates; default *

MODIFY = string token
Whether to modify (instead of redefining) existing structures
IPRINT = string tokens

Information to be used by default to identify the variates in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Parameters

IDENTIFIER = identifiers
Identifiers of the variates

VALUES = identifiers
Values for each variate

DECIMALS = scalars
Number of decimal places for output

EXTRA = texts
Extra text associated with each identifier

MINIMUM = scalars
Minimum value for the contents of each structure

MAXIMUM = scalars
Maximum value for the contents of each structure

DREPRESENTATION = scalars or texts
Default format to use when the contents represent dates and times

VAROWCOLUMNDESIGN procedure

Analyses a row-and-column design by REML, with automatic selection of the best random and spatial covariance model (R.W. Payne).

Options

PRINT = string tokens
Controls what summary output is produced about the models (best, description, deviance, aic, bic, sic, dfixed, dfrandom, change, exit); default best, desc

PBEST = string tokens
Controls the output from the REML analysis with the best model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

PTRY = string tokens
Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

FIXED = formula
Fixed model terms; default * i.e. none

RANDOM = formula
Additional random model terms; default * i.e. none

CONSTANT = string token
How to treat the constant term (estimate, omit); default esti

FACTORIAL = scalar
Limit on the number of factors or covariates in each fixed term; default 3

REPLICATES = factor
Replicate factor, if relevant

ROWS = factor
Row factor; default * i.e. must be specified

COLUMNS = factor
Column factor; default * i.e. must be specified

ROWCOORDINATES = variate or factor
Row coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the ROWS factor

COLCOORDINATES = variate or factor
Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the COLUMNS factor

PLOTFACTOR = factor
Factor numbering the plots in the design; if unset, a local factor is defined automatically

PTERMS = formula
Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token
Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with
missing values in either explanatory factors or variates or y-
variates

VCONSTRAINTS = string token Whether to constrain variance components to be positive
(default none; none, positive)

RSTRATEGY = string token Strategy for selecting the random model (all, allfeasible,
set, setfeasible, fastoptimal, optimal, automatic,
comprehensive, full, given); default allf

METHOD = string token Criterion to choose the best random model (aic, sic, bic);
default sic

TRYSPATIAL = string token Whether to try spatial models (always, ifregular); default
* i.e. no spatial models

TRYTRENDS = string token Whether to see whether row and column trends are needed in
the fixed model (yes, no); default no

SPATIALFACTOR = factor Factor to use to define the term for a 2-dimensional power-
distance model; if unset, a local factor is defined automatically

Parameters

Y = variates Response variates

BESTMODEL = pointers Saves a model-definition structure for the best model for each
y-variate

EXIT = scalars Exit status of the best model for each y-variate

SAVE = REML save structures Save structure from the analysis of the best model for each y-
variate

VASDISPLAY procedure

Displays further output from an analysis by VASERIES (R.W. Payne).

Options

PRINT = string tokens What output to present (model, components, effects,
means, stratumvariances, vcovariance, deviance,
Waldtests, missingvalues, covariancemodels, aic,
sic, bic); default mode, comp, Wald, cova

PTERMS = formula Terms (fixed or random) for which effects or means are to be
printed; default * implies all the fixed terms

PSE = string token Standard errors to be printed with tables of effects and means
(differences, estimates, alldifferences, allestimates, none); default diff

CFORMAT = string token Whether printed output for covariance models gives the
variance matrices or the parameters (variancematrices,
parameters); default vari

FMETHOD = string token Controls whether and how to calculate F-statistics for fixed
terms (automatic, none, algebraic, numerical); default
auto

MODELDEFINITIONS = pointer Definitions of the models used by VASERIES

SAVE = pointer REML save structures from the VASERIES analysis

Parameter

EXPERIMENT = scalars or texts Specifies the experiment, from the series, whose output is to be
displayed; no default, must be set

VASERIES procedure

Analyses a series of trials with incomplete-block or row-and-column designs by REML, automatically
selecting the best random models (R.W. Payne).

Options

PRINT = string tokens Controls what summary output is produced about the models
(deviance, aic, bic, sic, dffixed, dfrandom, change,
exit, best, description, summary); default devi, aic,
sic, dff, best

PBEST = string tokens Controls the output from the REML analysis with the best
model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

PTRY = string tokens
Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none

FIXED = formula
Fixed model terms; default * i.e. none

RANDOM = formula
Additional random model terms; default * i.e. none

CONSTANT = string token
How to treat the constant term (estimate, omit); default esti

FACTORIAL = scalar
Limit on the number of factors or covariates in each fixed term; default 3

EXPERIMENTS = factor
Experiment factor

REPLICATES = factor
Replicate factor, if required

BLOCKS = factor
Block factor, if required

ROWS = factor
Row factor, if required

COLUMNS = factor
Column factor, if required

ROWCOORDINATES = variate or factor
Row coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the ROWS factor

COLCOORDINATES = variate or factor
Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the COLUMNS factor

PLOTFACTOR = factor
Factor numbering the plots in the design; if unset, a local factor is defined automatically

PTERMS = formula
Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token
Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

VCONSTRAINTS = string token
Whether to constrain variance components to be positive (none, positive); default none

RSTRATEGY = string token
Strategy for selecting the random model (all, allfeasible, fastoptimal, optimal); default allf

METHOD = string token
How to choose the best random model (aic, sic, bic); default sic

TRYSpatial = string token
Whether to try spatial models (always, ifregular); default * i.e. no spatial models

TRYTRENDS = string token
Whether to see whether row and column trends are needed in the fixed model (yes, no); default no

SPATIALFACTOR = factor
Factor to use to define the term for a 2-dimensional power-distance model; if unset, a local factor is defined automatically

Parameters

Y = variates
Response variates

MODELDEFINITIONS = pointers
Saves definitions of the best models for use by VAMETA

EXIT = variates
Exit status of the best models (zero if successful)

SAVE = pointers
REML save structures for the best analysis of each experiment
VASKEEP procedure
Copies information from an analysis by VASERIES into Genstat data structures (R.W. Payne).

Options
EXPERIMENT = scalar or text
Specifies the experiment, from the series, whose output is to be saved; no default, must be set.

FACTORIAL = scalar
Limit on the number of factors or covariates in the terms generated from the TERMS parameter; default 3.

RESIDUALS = variate
Residuals from the analysis.

FITTEDVALUES = variate
Fitted values from the analysis.

DEVIANCE = scalar
Residual deviance from fitting the full fixed model.

DF = scalar
Residual degrees of freedom after fitting the full fixed model.

AIC = scalar
Saves the Akaike information coefficient.

SIC = scalar
Saves the Schwarz (Bayesian) information coefficient.

RMETHOD = string token
Which random terms to use when calculating RESIDUALS (final, all); default fina.

FMETHOD = string token
Controls how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto.

WMETHOD = string token
Controls which Wald statistics are saved (add, drop); default drop.

MODELDEFINITIONS = pointer
Definitions of the models used by VASERIES.

SAVE = pointer
REML save structures from the VASERIES analysis.

Parameters
TERMS = formula
Terms for which information is to be saved.

COMPONENTS = scalars
Estimated variance components.

MEANS = tables
Table of predicted means for each term.

SEMEANS = symmetric matrices
Standard errors of differences between the predicted means.

VARMSEANS = symmetric matrices
Variance-covariance matrix of the means.

EFFECTS = tables
Table of estimated regression coefficients for each term.

SEDEFFECTS = symmetric matrices
Standard errors of differences between the estimated parameters of each term.

VAREFFECTS = symmetric matrices
Variance-covariance matrix of the effects of a term.

WALD = scalars
Wald statistic (fixed terms only).

FSTATISTIC = scalars
F statistics (fixed terms only).

NDF = scalars
Numerator d.f. (fixed terms only).

DDF = scalars
Denominator d.f. (fixed terms only).

VASMEANS procedure

Options
FACTORIAL = scalar
Limit on the number of factors in the terms generated from the TERMS parameter; default 3.

RESIDUALVARIANCES = table
Saves residual variances from the experiments.

MODELDEFINITIONS = table
Definitions of the models used by VASERIES.

SAVE = pointer
REML save structures from the VASERIES analysis.

Parameters
TERMS = formula
Terms for which means are to be saved.

MEANS = tables or pointers
Experiment × term tables of means.

SEMEANS = tables or pointers
Experiment × term tables of standard errors of means.

AVESEDMEANS = tables or pointers
Average standard errors of differences for the experiments.

VAYPARALLEL procedure
Does the same REML analysis for several y-variates, and collates the output (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (summary, monitoring); default * i.e. none.

MODELDEFINITION = pointer
Defines the model for the analysis.
4 Syntax summary

FSAVETERMS = formula
Fixed terms for which to save information; if this is not set, information is saved for all the fixed terms.

RSAVETERMS = formula
Random terms for which to save information; if this is not set, no information is saved for the random terms.

RECOVER = string token
Whether to try to recover with a simpler random model if REML cannot fit the model for a particular y-variate (yes, no); default no.

METHOD = string token
How to choose the best model during recovery (aic, sic, bic); default sic.

SPREADSHEET = string tokens
What results to save in spreadsheets (components, fixedtests, means, vcmeans, effects, vceffects, residuals, fittedvalues); default * i.e. none.

SHEETLAYOUT = string token
How to store the results in spreadsheets (yrows, ycolumns, onesheet); default ycol.

Parameters

- **Y** = pointers
 - Y-variates for the analyses

- **RESIDUALS** = matrices
 - Saves the residuals

- **FITTEDVALUES** = matrices
 - Saves the fitted values

- **COMPONENTS** = matrices
 - Saves the variance components

- **MEANS** = pointers
 - Pointer to a matrix for each of the terms in FSAVETERMS, saving the predicted means

- **VCMEANS** = pointers
 - Pointer to matrices saving variances and covariances for the means

- **EFFECTS** = pointers
 - Pointer to matrices saving effects for the terms in FSAVETERMS and RSAVETERMS

- **VCEFFECTS** = pointers
 - Pointer to matrices saving variances and covariances for the effects

- **WALD** = matrices
 - Saves the Wald statistics for the terms in FSAVETERMS

- **FSTATISTIC** = matrices
 - Saves the F statistics for the terms in FSAVETERMS

- **NDF** = matrices
 - Saves the numerator degrees of freedom for the terms in FSAVETERMS

- **DDF** = matrices
 - Saves the denominator degrees of freedom for the terms in FSAVETERMS

- **PRFIXED** = matrices
 - Saves the probabilities for the F statistics if available, or otherwise the Wald statistics, for the terms in FSAVETERMS

- **EXIT** = pointers
 - Pointer to scalars saving the exit codes from the initial REML analyses

- **OUTFILENAME** = texts
 - Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

VBOOTSTRAP procedure

Performs a parametric bootstrap of the fixed effects in a REML analysis (C.J. Brien & R.W. Payne).

Options

- **PRINT** = string tokens
 - Controls printed output (observedteststatistics, pvalues, vdiagnostics, nnotconverged, monitoring, all, ownstatistics); default obse, pval

- **VPRINT** = string tokens
 - Controls the output from the REML analysis of each sample (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none

- **PLOT** = string
 - What to plot (histogram); default *

- **NBOOT** = scalar
 - Number of bootstrap samples to take; default 99

- **NRETRIES** = scalar
 - Maximum number of extra samples to take when some REML analyses fail to converge; default NBOOT

- **SEED** = scalar
 - Seed for random number generation; default 0 continues an
4.1 Commands

METHOD = string token
Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI

MAXCYCLE = scalar
Sets a limit on the number of iterations in the REML analyses; default 30

FMETHOD = string token
Controls whether and how to calculate F statistics for fixed terms (automatic, none, algebraic, numerical); default none

WMETHOD = string token
Controls which Wald statistics are saved (add, drop); default add

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm

OWNMETHOD = string token
Type of test required for own statistics (twosided, greaterthan, lessthan); default twos

CIPROBABILITY = scalar
Probability level for the confidence interval for own statistics; default 0.95

Parameters
SAVE = REML save structures
Specifies the (REML) save structure of the original analysis; default * uses the SAVE structure from the most recent REML analysis

UMEANS = variates
Specifies the expected values for the units under the null hypothesis of no effects from the FIXEDTERMS

UVCOVARIANCE = symmetric matrices
Specifies the variances and covariances of the units under the null hypothesis of no effects from the FIXEDTERMS

FIXEDTERMS = formula
Specifies the fixed terms to test; default * tests all the fixed terms in the original analysis

FSTATISTICS = pointers
Saves a pointer with a variate for each of the FIXEDTERMS, containing the F statistics from the bootstrap samples

PVALUES = pointers
Saves a pointer with a scalar for each of the FIXEDTERMS, containing the test probability obtained from the position of its F statistic within those from the bootstrap samples

NNOTCONVERGED = scalars
Saves the number of bootstrap samples whose REML analysis failed to converge

OWNDATA = pointers
Data required to calculate own statistics

OWNOBSERVEDVALUES = variates
Saves observed values of the own statistics

OWNPROBABILITIES = variates
Saves bootstrap probabilities for the own statistics

OWNESTIMATES = variates
Saves bootstrap estimates for the own statistics

OWNSES = variates
Saves bootstrap standard errors for the own statistics

OWNLOWERCI = variates
Saves bootstrap lower values of the confidence intervals for the own statistics

OWNUPPERCI = variates
Saves bootstrap upper values of the confidence intervals for the own statistics

OWNSTATISTICS = pointers
Saves the own statistics obtained from the bootstrap samples, in a pointer with a variate for each statistic

VCHECK procedure
Checks standardized residuals from a REML analysis (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (largereresiduals, similarunits, stability); default larg

RMETHOD = string token
Which random terms to use when calculating the standardized residuals (final, all); default final

RLIMIT = scalar
Limit for detection of large standardized residuals; if this is not set, the limit is set automatically according to the number of residual degrees of freedom

COMMONFACTORS = factors
Factors to define similar units; if this is not set, the factors in
the fixed model are used

REPORTFACTORS = factors
Additional factors to include in the table of similar units

PROBABILITY = scalar
Critical value for the test probabilities to decide whether to generate warning messages from the Levine test for variance stability; default=0.025

NLARGERESIDUALS = scalar
Saves the number of large standardized residuals that have been detected

LARGERESIDUALUNITS = variate
Saves the unit numbers of the large standardized residuals

SIMILARINFORMATION = pointer
Saves details of large standardized residuals and residuals in similar units

STABILITYTEST = pointer
Saves the results of the Levene test for stability of the variance of the standardized residuals

SAVE = REML save structure
Specifies the analysis to be checked; by default this will be the most recent REML

No parameters

VCOMPONENTS directive
Defines the variance-components model for REML.

Options

FIXED = formula
Fixed model terms; default *

ABSORB = factor
Defines the absorbing factor (appropriate only when REML option METHOD=Fisher); default * i.e. none

CONSTANT = string token
How to treat the constant term (estimate, omit); default esti

FACTORIAL = scalar
Limit on the number of factors or covariates in each fixed term; default 3

CADJUST = string token
What adjustment to make to covariates before analysis (mean, none); default mean

RELATIONSHIP = matrix
Defines relationships constraining the values of the components; default *

SPLINE = formula
Defines random cubic spline terms to be generated: each term must contain only one variate, if there is more than one factor in a term, separate splines are calculated for each combination of levels of the factors

EXPERIMENTS = factor
Factor defining the different experiments in a multi-experiment (meta-) analysis

Parameters

RANDOM = formula
Random model terms

INITIAL = scalars
Initial values for each component and the residual variance

CONSTRAINTS = string tokens
How to constrain each variance component and the residual variance (none, positive, fixrelative, fixabsolute); default none

VCRITICAL procedure
Uses a parametric bootstrap to estimate critical values for a fixed term in a REML analysis (R.W. Payne & C.J. Brien).

Options

PRINT = string tokens
Prints the critical values (critical, fcritical, tcritical, wcritical, monitoring); default crit, fcri, tcri, wcri

VPRINT = string tokens
Controls the output from the REML analyses (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none

TERM = formula
Fixed term to be tested

UMEANS = variate
Specifies the expected values for the units under the null
4.1 Commands

hypothesis of no effects from the TERM; default is to use the constant from the SAVE structure

UVCOVARIANCE = symmetric matrix
Specifies the variances and covariances of the units under the null hypothesis of no effects from the TERM; default is to take this from the SAVE structure

WCRITICAL = variate
Saves the critical values of the Wald statistic

FCRITICAL = variate
Saves the critical values of the F statistic

NBREITIES = scalar
Number of bootstrap samples to take; default 99

NNOTCONVERGED = scalar
Saves the number of bootstrap samples whose REML analyses fail to converge; default NBREITIES

SEED = scalar
Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically

PROBABILITIES = scalar or variate
Significance levels for which critical values are required; default 0.05

METHOD = string token
Indicates whether to use the Fisher-scoring algorithm or the AI algorithm with sparse matrix methods (Fisher, AI); default AI

MAXCYCLE = scalar
Sets a limit on the number of iterations in the REML analyses; default 30

FMETHOD = string token
Controls how to calculate estimated denominator degrees of freedom when these are to be saved (automatic, none, algebraic, numerical); default auto

WMETHOD = string token
Controls which Wald statistics are saved (add, drop); default add

TMETHOD = string token
Type of test to be made for the contrasts (twosided, greaterthan, lessthan, equivalence, noninferiority); default twos

WALD = variate
Saves the Wald statistics from the samples

FSTATISTIC = variate
Saves the F statistics from the samples

NDF = scalar
Saves the numerator degrees of freedom for the Wald and F statistics

DDF = variate
Saves the estimated denominator degrees of freedom for the F statistics

NNOTCONVERGED = scalar
Saves the number of bootstrap samples whose REML analysis failed to converge

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm

SAVE = vsave
REML save structure to provide the information about the analysis

Parameters

XCONTRASTS = variates or tables
X-variate defining a contrast to be detected

CONTRASTTYPE = string tokens
Type of contrast (regression, comparison) default rege

ESTIMATE = variates
Saves the estimated values of the contrasts from the samples

SE = variates
Saves the standard errors for the estimates of the contrasts from the samples

CRITICAL = variates
Saves the critical values for the contrasts

TCRITICAL = variates
Saves the critical values for the t-statistics of the contrasts

VCYCLE directive
Controls the operation of the REML algorithm.

Options

CONVERGENCE = string token
Type of criterion for assessing convergence (deviance, parameter); default * uses the deviance with the average-information algorithm, and the variance parameter values for the Fisher scoring algorithm

CRITERIONVALUE = scalar
Sets the convergence criterion value; default * i.e. determined automatically
STEPLENGTH = scalar

Sets the default relative step size for the average-information algorithm; default * i.e. determined automatically

NDENSE = scalar

Number of equations to use as dense in the average-information algorithm; default * uses all fixed model terms as dense

EQORDER = string token

Method to use to reorder the mixed model equations for fitting (none, a, b); default b

No parameters

VDFIELDRESIDUALS procedure

Display residuals from a REML analysis in field layout (R.W. Payne).

Options

PRINT = string tokens

Controls printed output (table); default * i.e. none

PLOT = string tokens

Controls the graphs that are displayed (contour, shade); default cont

RMETHOD = string token

Which random terms to use to calculate the residuals (final, all, notspline, stfinal, stall); default all

GRAPHICS = string token

Type of graph (highresolution, lineprinter); default high

MARGIN = string token

Whether to include margins in printed tables (yes, no); default no

YORIENTATION = string token

Y-axis orientation of the plot (reverse, normal); default norm

PENCONTOUR = scalar

Pen number to be used for the contours; default 1

PENFILL = scalar or variate

Pen number(s) defining how to fill the areas between contours; default 3

PENSHADE = scalar or variate

Pen(s) to use for the shade plot; default 3

Parameters

Y = variates or factors

Specifies the y-coordinates of the plots

X = variates or factors

Specifies the x-coordinates of the plots

SAVE = REML save structures

Save structure of the REML analysis from which to take the residuals; default is to take the most recent REML analysis

FIELDWIDTH = scalars

Field width for printing the residuals; default 12

DECIMALS = scalars

Number of decimal places to use when printing the residuals

TITLE = texts

Titles for the plots

VDISPLAY directive

Displays further output from a REML analysis.

Options

PRINT = string tokens

What output to present (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default mode, comp, Wald, cova

CHANNEL = identifier

Channel number of file, or identifier of a text to store output; default current output file

PTERMS = formula

Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

PSE = string token

Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff

CFORMAT = string token

Whether printed output for covariance models gives the variance matrices or the parameters (variancematrices, parameters); default vari

FMETHOD = string token

Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto
4.1 Commands

Parameter

REML save structures

Save structure containing the details of each analysis; default is to take the save structure from the latest REML analysis.

VEQUATE procedure

Equates across numerical structures (P.W. Goedhart).

No options

Parameters

OLDSTRUCTURES = pointers

Structures whose values are to be transferred – each pointer should contain a set of structures with the same length and type (either scalar, variate, matrix, diagonal matrix, symmetric matrix, table, text or pointer).

NEWSTRUCTURES = pointers

Structures to contain the transferred values – each pointer contains a set of either variates, texts or pointers, as relevant to the type of the OLDSTRUCTURES.

VDEFFECTS procedure

Plots one- or two-way tables of effects estimated in a REML analysis (R.W. Payne).

Options

GRAPHICS = string token

Type of graph (highresolution, lineprinter); default high.

METHOD = string token

What to plot (effects, lines); default effe.

XREPRESENTATION = string token

How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available.

PSE = string

What s.e. to plot to represent variation (differences, effects, alleffects); default diff.

SAVE = REML save structure

Save structure of the analysis to display; the default is to take the most recent REML analysis.

Parameters

XFACTOR = factors

Factor providing the x-values for each plot.

GROUPS = factors

Factor identifying the different sets of points from a two-way table of effects.

COVARIATES = variates

X-variates for regression coefficients or pointer.

NEWLEVELS = variates

Values to be used for XFACTOR instead of its existing levels.

TITLE = texts

Title for the graph; default defines a title automatically.

YTITLE = texts

Title for the y-axis; default ‘’.

XTITLE = texts

Title for the x-axis; default is to use the identifier of the XFACTOR.

VFIXEDTESTS procedure

Saves fixed tests from a REML analysis (R.W. Payne).

Options

FIXEDTESTS = pointer

Saves the fixed tests.

FMETHOD = string token

Controls whether and how to calculate F-statistics (automatic, none, algebraic, numerical); default auto.

WMETHOD = string token

Controls which tests are saved (add, drop); default drop.

SAVE = REML save structure

Specifies the save structure from the required analysis; default * i.e. most recent one.

No parameters

VFLC procedure

Performs an F-test of random effects in a linear mixed model based on linear combinations of the responses, i.e. an FLC test (V.M. Cave).

PRINT = string tokens

Controls printed output (summary, monitoring); default summ.

PLOT = string tokens

What graphs to plot for the bootstrap and fast double bootstrap.
FLC tests (kerneldensity, histogram); default * i.e. none

Type(s) of test to perform; (flc, bootstrap, fastdoublebootstrap); default flc

Number of bootstrap samples to take; default 99

Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically

Window to use for the graphs; default 3

Specifies the save structure of the original analysis; default is to use the save structure from the most recent REML analysis

Random terms to test

Saves the FLC test statistic

Pointer to scalars and variates to save the first-level bootstrap probability value and FLC test statistics, and the second-level fast double bootstrap FLC test statistics and resulting critical value

Pointer to scalar(s) to save the probability value(s) from the test(s)

Title for the graphs

Forms a model-definition structure for a REML analysis (R.W. Payne).

Specifies the model-definition structure; no default (must be specified)

Description of the model (for output)

Fixed model terms; default *

How to treat the constant term (estimate, omit); default esti

Limit on the number of factors or covariates in each fixed term; default 3

What adjustment to make to covariates before analysis (mean, none); default mean

What changes to make to an existing model-definition structure (description, fixed, constant, factorial, cadjust, random, initial, constraints); if this is unset, the structure is redefined completely

Specifies the initial model-definition structure, to modify when CHANGEITEMS is set; default is to modify the one specified by MODELSTRUCTURE

Factor defining the different experiments in a multi-experiment (meta-) analysis

Random model terms

Initial values for each component

How to constrain each variance component and the residual variance (none, positive, fixrelative, fixabsolute); must be set unless MODIFY=yes

Whether to match factor values by their levels or their labels
4.1 Commands

SEX = string token
 Possible sex categories of parents (fixed, either); default fixe
UNKNOWN = scalar or string
 Value to be treated as unknown in the pedigree factors
INVMETHOD = string token
 How to represent the INVERSE (full, sparse); default spar

Parameters
INDIVIDUALS = factors
 Individuals on which data have been measured
MALEPARENTS = factors
 Male parents (or sires) of the progeny
FEMALEPARENTS = factors
 Female parents (of dams) of the progeny
NEWINDIVIDUALS = factors
 New individuals factor, with levels standardized for use in VPEDIGREE
NEWMALEPARENTS = factors
 New males factor, with levels standardized to match those in the NEWINDIVIDUALS factor
NEWFEMALEPARENTS = factors
 New females factor, with levels standardized to match those in the NEWINDIVIDUALS factor
OTHERFACTORS = pointers
 Pointer containing additional factors, that may be used in the REML models, whose levels must also be standardized to match those in the NEWINDIVIDUALS factor
NEWOTHERFACTORS = pointers
 Pointer containing new additional factors, with standardized levels
INVERSE = pointer
 Inverse relationship matrix in sparse matrix form
POPULATION = variates
 Full list of identifiers generated from the individuals and parents

VFRESIDUALS procedure
Obtains residuals, fitted values and their standard errors from a REML analysis (S.J. Welham).

Options
RESIDUALS = variate
 Saves the residuals
SERESIDUALS = variate
 Saves standard errors of the residuals
FITTEDVALUES = variate
 Saves the fitted values
SEFITTEDVALUES = variate
 Saves prediction standard errors for the fitted values
RMETHOD = string token
 Which random terms to use when calculating the residuals (final, all); default fina
MAXNUNITS = scalar
 Maximum number of units for which the full variance-covariance matrix will be formed; default 1000
EXIT = scalar
 Exit code set to zero if the saving was successful, one otherwise
SAVE = REML save structure
 Save structure for the required analysis; default uses the save structure from the most recent REML

No parameters

VFSTRUCTURE procedure
Adds a covariance-structure definition to a REML model-definition structure (R.W. Payne).

Options
MODELSTRUCTURE = pointer
 Supplies the model-definition structure; no default (must be specified)
EXPERIMENT = scalar
 Level of the EXPERIMENTS factor for which a residual is to be defined (using the VRESIDUAL directive)
TERMS = formula
 Model terms for which the covariance structure is to be defined
FORMATION = string token
 Whether the structure is formed by direct product construction or by definition of the whole matrix (direct, whole); default dire
COORDINATES = identifiers
 Coordinates of the data points to be used in calculating distance-based models (list of variates or matrix)
Parameters

MODELTYPE = string tokens
Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct
(identity, fixed, AR, MA, ARMA, power, banded, correlation, antedependence, unstructured, diagonal, uniform, FA, FAequal) default iden

ORDER = scalar
Order of model

HETEROGENEITY = string token
Heterogeneity for correlation matrices (none, outside); default none

METRIC = string token
How to calculate distances when MODELTYPE=power
(cityblock, squared, euclidean); default city

FACTOR = factors
Factors over which to form direct products

VFUNCTION procedure
Calculates functions of variance components from a REML analysis (S.J. Welham).

Options

PRINT = string token
Output required (function); default func

RANDOM = formula
Random model (excluding residual stratum) used for the REML analysis

NCONSTANT = scalar
Value to be used as constant in the numerator function; default 0

DCONSTANT = scalar
Value to be used as constant in the denominator function; default 0

SAVE = REML save structure
Specifies the (REML) save structure from which the variance components are to be taken; by default they are taken from the save structure of the most recent REML analysis

Parameters

NUMERATOR = variates
Each variate contains a list of coefficients, one for each variance component, defining a linear combination of the components to use as the numerator of the function

DENOMINATOR = variates
Each variate contains coefficients defining a linear combination of the variance components to use as the denominator of the function

FUNCTIONVALUE = scalars
Saves the calculated value of the function

SE = scalars
Saves the approximate standard error of the function value

VGESELECT procedure

Options

PRINT = string tokens
What to print (summary, best, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, waldtests, missingvalues, covariancemodels); default summ, best, comp, cova

VCMODELS = string tokens
Specifies the variance-covariance models that are to be compared for the set of environments (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default iden, diag, cs, hcs, outs, fa, fa2, unst

CRITERION = string token
Defines which criterion is used to compare the different covariance structures (aic, sic); default sic

FIXED = formula
Defines extra fixed effects

UNITFACTOR = factor
Saves the units factor required to define the random model when UNITERROR is to be used

MVINCLUDE = string tokens
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar
4.1 Commands

MAXCYCLE = scalar
Limit on the number of iterations; default 100

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Parameters

MAXCYCLE = scalar
Quantitative trait to be analysed; must be set

WORKSPACE = scalar
Genotype factor; must be set

ENVIRONMENTS = factors
Environment factor; must be set

UNITERROR = variate
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted

SELECTEDMODEL = texts
VCMODELS setting for the best variance-covariance model

SAVE = REML save structures
Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

VGRAPH procedure
Plots tables of means from REML (R.W. Payne).

Options

GRAPHICS = string token
Type of graph (highresolution, lineprinter); default high

METHOD = string token
What to plot (points, means, linesandpoints, onlylines, data, barchart, splines); default point when XFACTOR is a factor, and only when it is a variate

XFREPRESENTATION = string token
How to label the x-axis (levels, labels); default labes uses the XFACTOR labels, if available

PSE = string token
What to plot to represent variation when points are plotted at the means (differences, lsd, means, allmeans); default diff

LSDLEVEL = scalar
Significance level (%) to use for approximate least significant differences; default 5

DFSPLINE = scalar
Number of degrees of freedom to use when METHOD=splines

YTRANSFORM = string tokens
Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the y-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default ident i.e. none

PENYTRANSFORM = scalar
Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically

'KEYMETHOD = string token
What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name

'PLOTTITLEMETHOD = string token
What to use for the titles of the plots when there are TRELLISGROUPS (labels, namesandlabels); default name

'PAGETITLEMETHOD = string token
What to use for the titles of the pages when there are PAGEGROUPS (labels, namesandlabels); default name

USEAXES = string token
Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower%, mupper%, nsubticks); default none

SAVE = REML save structure
Save structure to provide the table of means; default uses the save structure from the most recent REML

Parameters

XFACOR = factors or variates
Provides the x-values for each plot; by default this is chosen automatically

GROUPS = factors or pointers
Factor or factors identifying groups in each plot; by default chosen automatically

TRELLISGROUPS = factors or pointers
Factor or factors specifying the different plots of a trellis plot of a multi-way table

PAGEGROUPS = factors or pointers
Factor or factors specifying plots to be displayed on different
NEWXLEVELS = variates
Values to be used for XFACTOR; default uses the existing levels if XFACTOR is a factor, and the minimum and maximum values if it is a variate.

TITLE = texts
Title for the graph; default is to define a title automatically if GROUPS is set, or to have none if it is unset.

YTITLE = texts
Title for the y-axis; default is to use the identifier of the y-variate, or to have no title if this is unnamed.

XTITLE = texts
Title for the x-axis; default is to use the identifier of the XFACTOR.

PENS = variates
Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors.

VHERITABILITY procedure
Calculates generalized heritability for a random term in a REML analysis (R.W. Payne).

PRINT = string tokens
Controls printed output (heritability); default heri

SAVE = REML save structure
Save structure of the analysis from which to calculate the heritabilities; default uses the most recent REML analysis.

Parameters

TERMS = formula
Random terms whose heritabilities are to be calculated.

HERITABILITY = scalar or variate
Saves the heritabilities.

EXIT = scalar or variate
Exit status for the calculations: one if unsuccessful, otherwise zero.

VHOMOGENEITY procedure
Tests homogeneity of variances and variance-covariance matrices (R.W. Payne).

PRINT = string tokens
Controls printed output (test, variances); default test.

GROUPS = factors
Define the groups whose variances are to be compared; these need be given only if DATA is set.

Parameters

DATA = variates or pointers
Data variate from which variances are calculated, or pointer to a list of variates from which variance-covariance matrices are calculated.

VARIANCES = any numerical structures or pointers
Supplies the variances (in any numerical structure) or variance-covariance matrices in a pointer to a list of symmetric matrices if the DATA parameter is not set, or saves variances (in a table) and variance-covariance matrices (in a pointer to a list of symmetric matrices) if they have been calculated from DATA and GROUPS.

DF = any numerical structure
Supplies the degrees of freedom for variances (in any numerical structure) or for variance-covariance matrices (as a pointer to a list of scalars) if the DATA parameter is not set, or saves the degrees of freedom for variances (in a table) or variance-covariance matrices (as a pointer to a list of scalars) if they have been calculated from DATA and GROUPS.

SAVE = pointers
Saves the results i.e. type of test, chi-square statistic, degrees of freedom and probability.

VINTERPOLATE procedure
Performs linear & inverse linear interpolation between variates (R.J. Reader).

Options

METHOD = string token
Type of interpolation required (interval, value): for METHOD=value, y-values are interpolated for each point in the NEWINTERVALS variates and stored in the NEWVALUES.
4.1 Commands

Variates, while for METHOD=interval, x-values are estimated for the y-values in the NEWVALUES variates and stored in the NEWINTERVALS variates; default int

RANGEMETHOD = string token
Whether the smallest value, largest value or the mean of the two is returned if more than one value is valid (first, middle, last); default midd

Parameters

OLDVALUES = pointers
Each one contains variates specifying the y-values (data values) with which an interpolation is to be carried out

NEWVALUES = pointers
For METHOD=value, each pointer contains variates to store the results of an interpolation; for METHOD=interval, it contains either variates or scalars to specify y-values for which inverse interpolation is to be carried out

OLDINTERVALS = variates
Contains the x-values (intervals) corresponding to the variates in the OLDVALUES pointer

NEWINTERVALS = pointers
For METHOD=interval, each pointer contains variates to store the results of an inverse interpolation; for METHOD=value, it contains either variates or scalars to specify x-values at which interpolation is to be performed

VKEEP directive
Copies information from a REML analysis into Genstat data structures.

Options

RESIDUALS = variate
Residuals from the analysis

FITTEDVALUES = variate
Fitted values from the analysis

SIGMA2 = scalar
Variance component for the lowest stratum

VCOVARIANCE = symmetric matrix
Variance-covariance matrix for the estimates of the variance components

VESTIMATES = variate
Saves a vector of all parameters in the variance model

VARESTIMATES = symmetric matrix
Variance-covariance matrix for the parameters in the variance model (as saved by VESTIMATES)

VLABELS = text
Vector of text labels for the VESTIMATES and VARESTIMATES structures

MVESTIMATES = variate
Estimates of missing values

MVSE = variate
Standard errors of missing-value estimates

MVUNITS = variate
Unit numbers of missing values

ALLEFFECTS = variate
Full set of estimated fixed and random effects

ALLVCOVARIANCE = symmetric matrix
Variance-covariance matrix for the full set of fixed and random effects not associated with the absorbing factor

DEVIANDE = scalar
Residual deviance from fitting the full fixed model

DF = scalar
Residual degrees of freedom after fitting the full fixed model

SUBDEVIANDE = scalar
Residual deviance after fitting the submodel of the fixed model

SUBDF = scalar
Residual degrees of freedom after fitting the submodel of the fixed model

RSS = scalar
Residual sum of squares from fitting the FIXED model by general least squares with a covariance matrix derived from the estimated variance components

INDEX = variate
Index of units included in the analysis

MODELS = pointer
Pointer to formulae giving the fixed, random, spline and residual terms fitted

RMATRIX = pointer
Saves details of the covariance model fitted to the residual

RMETHOD = string token
Which random terms to use when calculating RESIDUALS (final, all, notspme); default uses the setting from the REML statement

CFORMAT = string token
Whether the covariance matrices or the parameters are saved for a COVARIANCEMODEL (variancematrices,
 parameters); default var

 UVCOVARIANCE = symmetric matrix Unit-by-unit variance-covariance matrix
 DFFIXED = scalar Number of degrees of freedom in the fixed model
 DFRANDOM = scalar Number of degrees of freedom in the random model
 FMETHOD = string token Controls how to calculate F-statistics for fixed terms
 (automatic, none, algebraic, numerical); default auto
 WMETHOD = string token Controls which Wald statistics are saved (add, drop); default drop
 WORKSPACE = scalar Saves the workspace setting that was used by the REML command
 YVARIATE = dummy Dummy to be set to the y-variate of the analysis
 EXIT = scalar Exit status of the fit (0 if successful)
 SAVE = REML save structures Save structure from the required analysis; default * takes the save structure from the latest REML statement

 Parameters
 TERMS = formula Terms for which information is to be saved
 COMPONENTS = scalars Estimated variance components
 COVARIANCEMODEL = pointers Saves details of the covariance model fitted to a random term
 MEANS = tables Table of predicted means for each term
 SEMEANS = symmetric matrices Standard errors of differences between the predicted means
 VAREFFECTS = symmetric matrices Variance-covariance matrix of the means
 EFFECTS = tables Table of estimated regression coefficients for each term
 SEDPARAMETERS = symmetric matrices Standard errors of differences between the estimated parameters of each term
 VAREFFECTS = symmetric matrices Variance-covariance matrix of the effects of a term
 DESIGNMATRIX = matrices Saves the design matrix for the term
 SPLBLUP = pointers Best linear unbiased predictors for spline terms, saved in a pointer with a variate for each combination of the levels of the factors in the term
 SPLDESIGN = pointers Design matrices (Z) for spline terms, saved in a pointer with a matrix for each combination of the levels of the factors in the term
 SPLX = pointers Knot points for spline terms, saved in a pointer with a variate for each combination of the levels of the factors in the term
 SPLSMOOTH = pointers Smoothing parameters estimated for spline terms, saved in a pointer with a scalar for each combination of the levels of the factors in the term
 CADJUSTMENT = scalars For a term involving covariates, saves the adjustment made to its values during the analysis
 WALD = scalars Wald statistic (fixed terms only)
 FSTATISTIC = scalars F statistics (fixed terms only)
 NDF = scalars Numerator d.f. (fixed terms only)
 DDF = scalars Denominator d.f. (fixed terms only)

 VLINEBYTESTER procedure
 Analyses a line-by-tester trial by REML (R.W. Payne).

 Options
 PRINT = string tokens Specifies the output to be produced (model, components, effects, means, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic, combinability, tests); default mode, comp, wald, comp, test
 PRECOVERY = string tokens Controls what summary output is produced about the models that are tried during recovery (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best); default devi, aic, sic, dfra, best
4.1 Commands

LINES = factor

Specifies the line (usually female parent); no default (must be specified)

TESTERS = factor

Specifies the tester (usually male parent); no default (must be specified)

CONTROLS = factor

Distinguishes between control and test (line × tester) genotypes; default is that there are no controls

FIXED = formula

Fixed model terms, in addition to the TESTERS main effect and any control comparisons; default * i.e. none

RANDOM = formula

Random model terms, in addition to the terms involving LINES, TESTERS and EXPERIMENTS that are included automatically; default * i.e. none

CONSTANT = string token

How to treat the constant term (estimate, omit); default esti

FACTORIAL = scalar

Limit on the number of factors or covariates in each fixed term; default 3

EXPERIMENTS = factor

Specifies the different experiments for a REML meta analysis; default is that the data are all from a single experiment

PCOMBINABILITYTERMS = formula

Terms whose combinability effects are to be printed, selected from LINES, LINES.TESTERS and their interactions with EXPERIMENTS; default is to print all of them

PTERMS = formula

Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms

FSE = string token

Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff

MVINCLUDE = string tokens

Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or y-variates

RECOVER = string token

Whether to try to recover with a simpler random model if REML cannot fit the model (yes, no); default no

METHOD = string token

How to choose the best model during recovery (aic, sic, bic); default sic

Parameters

Y = variates

Response variates

COMBINABILITY = pointers

Pointer to tables of combinability effects for each y-variate

SECOMBINABILITY = pointers

Pointer to tables of standard errors of combinability effects for each y-variate

DEVIANCES = variates

Saves deviances for LINES, LINES.TESTERS and their interactions with EXPERIMENTS

EXIT = scalars

Exit status for each y-variate (zero to indicate that the analysis was successful)

SAVE = REML save structures

Save structure from the analysis of each y-variate

VLSD procedure

Prints approximate least significant differences for REML means (R.W. Payne).

Options

PRINT = string tokens

Controls printed output (means, sed, lsd, df); default lsd

FACTORIAL = scalar

Limit on the number of factors in each term; default 3

LSDLEVEL = scalar

Significance level (%) to use in the calculation of least significant differences; default 5

DFMETHOD = string token

Specifies which degrees of freedom to use for the t-statistics (fddf, given, tryfddf); default fddf

DFGIVEN = scalar

Specifies the number of degrees of freedom to use for the t-statistics when DFMETHOD=given, or if d.d.f. are unavailable
4 Syntax summary

FMETHOD = string token
Controls how to calculate denominator degrees of freedom for the F-statistics, if these are not already available in the REML save structure (automatic, algebraic, numerical); default auto

SAVE = REML save structure
Save structure to provide the table of means; default uses the save structure from the most recent REML

Parameters

TERMS = formula
Treatment terms whose means are to be compared; default * takes the REML fixed model

MEANS = pointer or table
Saves the means for each term

SED = pointer or symmetric matrix
Saves standard errors of differences between means

LSD = pointer or symmetric matrix
Saves approximate least significant differences matrix for the means

DF = pointer or scalar
Saves the degrees of freedom used to calculate the t critical values for the LSDs

DDF = pointer or scalar
Saves the range of denominator degrees of freedom in the F tests for the term and any terms that are marginal to the term (available only when denominator degrees of freedom of F-statistics are being used)

VMATRIX procedure
Copies values and row/column labels from a matrix to variates or texts (D.A. Murray).

No options

Parameters

MATRIX = matrices, symmetric matrices or diagonal matrices
Matrices to copy into variates

VARIATE = variates
Saves the values from each matrix

ROWS = variates
Saves the row coordinates

COLUMNS = variates
Saves the column coordinates

ROWLABELS = texts
Saves the row labels

COLLABELS = texts
Saves the column labels

VMCOMPARISON procedure
Performs pairwise comparisons between REML means (D.M. Smith).

Options

PRINT = string tokens
Controls printed output (comparisons, critical, description, lines, letters, plot, mplot, pplot); default lett

METHOD = string token
Test to be performed (fplsd, fulsd, bonferroni, sidak); default fuls

FACTORIAL = scalar
Limit on the number of factors in each term; default 3

DIRECTION = string token
How to sort means (ascending, descending); default asce

PROBABILITY = scalar
The required significance level; default 0.05

STUDENTIZE = string token
Whether to use the alternative LSD test where the Studentized Range statistic is used instead of Student's t (yes, no); default no

DFMETHOD = string token
Specifies which degrees of freedom to use for the tests (fddf, given, tryfddf); default fddf

DFGIVEN = scalar
Specifies the number of degrees of freedom to use for the tests when DMETHOD=given, or if d.d.f. are unavailable when DMETHOD=tryfddf

FMETHOD = string token
Controls how to calculate denominator degrees of freedom for the F-statistics, if these are not already available in the REML save structure (automatic, algebraic, numerical); default auto
SAVE = REML save structure
Save structure to provide the tables of means and associated
information; default uses the save structure from the most
recent REML

Parameters
TERMS = formula
Treatment terms whose means are to be compared
MEANS = pointer or variate
Saves the (sorted) means
LABELS = pointer or text
Saves labels for the (sorted) means
LETTERS = pointer or text
Saves letters indicating groups of means that do not differ
significantly
SIGNIFICANCE = pointer
Indicators to show significant comparisons between or
symmetric matrix (sorted) means

VMETA procedure
Performs a multi-treatment meta analysis using summary results from individual experiments (V.M. Cave).
Options
PRINT = string tokens
Controls printed output from the REML analysis (model,
components, effects, means, monitoring,
v covariance, deviance, Waldtests,
covariance models); default mode, comp, cova, mean
PSE = string token
Standard errors to be printed with tables of effects and means
(differences, estimates, all differences,
allestimates, none); default alle
EMETHOD = string token
Specifies whether the EXPERIMENTS main effect is fitted as a
fixed or random term in the REML model; default fixe
VCMODEL = string token
Specifies the between-experiment variance-covariance model
(identity, diagonal, cs, hcs, unstructured,
f aequal1, f aequal2, fa1); default iden for fixed
EXPERIMENTS effects and cs for random effects
INITIAL = scalars, variates, matrices, symmetric matrices or pointers
Initial parameter values for the variance-covariance model
specified by VCMODEL (supplied in the structures appropriate
for the model concerned); default generates values
automatically
MAXCYCLE = scalar
Sets a limit on the number of iterations in the REML analysis;
default 30

Parameters
MEANS = variates
Supplies the TREATMENTS by EXPERIMENTS means
TREATMENTS = factors
Identifier of the treatments factor
EXPERIMENTS = factors
Identifier of the experiments factor
SEDMEANS = variates
Supplies the (average) standard error of differences in each
experiment
VARIANCES = variates
Identifier for the variate containing the sampling variance for
each experiment
MODERATOR = factors or variates
Identifier for a moderator variable
SAVE = REML save structures
Saves the details of each analysis for use in subsequent
VDISPLAY and VKEEP directives

VMODEL procedure
Specifies the model for a REML analysis using a model-definition structure defined by VMODEL
(R.W. Payne).
Option
PRINT = string tokens
Controls printed output (model, structure); default * i.e.
none
Parameter
MODELSTRUCTURE = pointer
Model-definition structure
Syntax summary

VNEARESTNEIGHBOUR procedure
Analyses a field trial using nearest neighbour analysis (D.B. Baird).

Options

PRINT = string tokens
Controls printed output (model, wald, components, means, effects, sed); default mode, wald, comp, mean, effe, sed

NDIFFERENCES = scalar
Specifies the number of neighbours to use in differencing the plots, either 1 for first or 2 for second differences; default 1

TMETHOD = string token
Indicates how the treatments effects are to be included in the model (fixed, random); default fixe

UMETHOD = string token
Whether to include a unit-error term in the model (include, omit); default incl

SEDMETHOD = string token
Specifies how the estimates of standard errors of differences of treatment effects are to be calculated (REML, simulation); default REML

NTIMES = scalar
Specifies the number of simulations to make; default 100

Parameters

Y = variates
Variates to be analysed

TREATMENTS = factors
Treatment factor for each y-variate

BLOCKS = factors
Block factor for each y-variate, defining groups of plots to be detrended independently

UNITS = factors
Unit-within-block factor for each y-variate, defining the order of plots within each block

MEANS = tables
Saves the estimated treatment means from each analysis

EFFECTS = tables
Saves the estimated treatment effects from each analysis

SED = matrices or symmetric matrices
Saves the estimated standard errors of differences between treatments

COMPONENTS = variates
Saves the estimated variance components from the fitted model

SEED = scalars
Seed for the random number generator used in the simulations to calculate standard error of differences; default 0 continues from the previous generation or (if none) initializes the seed automatically

VORTHPOLYNOMIAL procedure
Forms orthogonal polynomials over time for repeated measures (J.T.N.M. Thissen).

Options

TIMEPOINTS = variate
Variate of timepoints; default uses the suffixes of the data pointer

MAXDEGREE = scalar
The number of contrasts (excluding the mean); default is the number of identifiers in the CONTRAST pointer minus 1

Parameters

DATA = pointers
Each pointer contains the data variates (observed at successive times); must be set

CONTRAST = pointers
To save the calculated contrasts: the first variate contains the means, the second the linear polynomial contrasts, the third the quadratic polynomial contrasts etc; must be set

VPEDIGREE directive
Generates an inverse relationship matrix for use when fitting animal or plant breeding models by REML.

Options

SEX = string token
Possible sex categories of parents (fixed, either); default fixe

UNKNOWN = scalar
Value to be treated as unknown
4.1 Commands

Parameters
- **INDIVIDUALS = factors**
 Individuals on which data has been measured
- **MALEPARENTS = factors**
 Male parents of the progeny
- **FEMALEPARENTS = factors**
 Female parents of the progeny
- **INVERSE = pointer**
 Inverse relationship matrix in sparse matrix form
- **POPULATION = variates**
 Full list of identifiers generated from the individuals and parents

VPERMTEST procedure

Does random permutation tests for the fixed effects in a **REML** analysis (R.W. Payne).

Options
- **PRINT = string tokens**
 Controls printed output (prwald, criticalwald, ownstatistics, monitoring); default prwa, crit
- **NTIMES = scalar**
 Number of permutation samples to make; default 99
- **NRETRIES = scalar**
 Maximum number of extra samples to take when some **REML** analyses fail to converge; default NTIMES
- **BLOCKSTRUCTURE = formula**
 Model formula defining any blocking to consider during the randomization; default none
- **EXCLUDE = factors**
 Factors in the block formula whose levels are not to be randomized
- **SEED = scalar**
 Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically
- **WMETHOD = string token**
 Controls which Wald statistics are used (add, drop); default add
- **OWNMETHOD = string token**
 Type of test required for own statistics (twosided, greaterthan, lessthan); default twos
- **CIPROBABILITY = scalar**
 Probability level for the confidence interval for own statistics; default 0.95

Parameters
- **SAVE = **
 Specifies the (**REML**) save structure of the original analysis; default * uses the SAVE structure from the most recent **REML** analysis
- **WALD = pointers**
 Wald statistics saved in a pointer with a variate for each term
- **PRWALD = pointers**
 Critical values for Wald statistics saved in a pointer with a scalar for each term
- **CRITICALWALD = pointers**
 Saves a pointer with variates for the 5%, 1% and 0.1% significance levels containing the corresponding critical values for the fixed terms, obtained from the quantiles of the Wald statistics from the permuted data sets
- **NNOTCONVERGED = scalars**
 Saves the number of permutations whose **REML** analysis failed to converge
- **OWNDATA = pointers**
 Data required to calculate own statistics
- **OWNOBSERVEDVALUES = variates**
 Saves observed values of the own statistics
- **OWNPROBABILITIES = variates**
 Saves probabilities for the own statistics
- **OWNESTIMATES = variates**
 Saves estimates for the own statistics
- **OWNSES = variates**
 Saves standard errors for the own statistics
- **OWNLOWERCIS = variates**
 Saves lower values of the confidence intervals for the own statistics
- **OWNUPPERCIS = variates**
 Saves upper values of the confidence intervals for the own statistics
- **OWNSTATISTICS = pointers**
 Saves the own statistics obtained from the permutation samples, in a pointer with a variate for each statistic
VPLOT procedure

Plots residuals from a REML analysis (S.J. Welham).

Options

RMETHOD = string token
Which random terms to use when calculating the residuals
(final, all, notspline, stfinal, stall); default uses the
setting from the REML statement

INDEX = variate or factor
X-variable for an index plot; default !(1,2...)

GRAPHICS = string token
What type of graphics to use (lineprinter, highresolution); default high

TITLE = text
Overall title for the plots; if unset, the identifier of the y-
variate is used

SAVE = REML save structure
Specifies the (REML) save structure from which the residuals
and fitted values are to be taken; default * uses the SAVE
structure from the most recent REML analysis

Parameters

METHOD = string tokens
Type of graph for residuals (fittedvalues, normal,
halfnormal, histogram, absresidual, index); default
fitt, norm, half, hist

PEN = scalars, variates or factors
Pens to be used for the plots

VPOWER procedure

Uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML
analysis (R.W. Payne & C.J. Brien).

Options

PRINT = string tokens
Controls printed output (power, nnotconverged, monitoring); default powe

VPRINT = string tokens
Controls the output from the REML analyses (model, components, effects, means, stratumvariances,
monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none

TERM = formula
Fixed term to be assessed in the analysis

UVCOVARIANCE = symmetric matrix
Specifies the variances and covariances of the units; default is
to take this from the SAVE structure

PROBABILITY = scalar
Significance level at which the response is to be detected;
default 0.05

TMETHOD = string token
Type of test to be made (fratio, wald, twosided, greaterthan, lessthan, equivalence, noninferiority); default frat

XCONTRASTS = variate
X-variate defining a contrast to be detected

CONTRASTTYPE = string token
Type of contrast (regression, comparison) default rege

CRITICALVALUE = string token
Supplies a critical value for the test statistic

NBOOT = scalar
Number of bootstrap samples to analyse; default 500

NRETRIES = scalar
Maximum number of extra samples to take when some REML
analyses fail to converge; default NBOOT

SEED = scalar
Seed for random number generation; default 0 continues an
existing sequence or, if none, selects a seed automatically

METHOD = string token
Indicates whether to use the standard Fisher-scoring algorithm
or the new AI algorithm with sparse matrix methods (Fisher,
AI); default AI

MAXCYCLE = scalar
Sets a limit on the number of iterations in the REML analyses;
default 30

FMETHOD = string token
Controls whether and how to calculate F statistics for fixed
terms (automatic, none, algebraic, numerical); default auto

WMETHOD = string token
Controls which Wald statistics are saved (add, drop); default add
4.1 Commands

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm

SAVE = vsave
REML save structure to provide the unit-by-unit variance-covariance matrix if UVCOVARIANCE is not specified

Parameters
RESPONSE = scalars, variates or tables
Specifies the response to be detected

POWER = scalars
Saves the power (i.e. probability of detection) for RESPONSE

NCONVERGED = scalars
Saves the number of bootstrap samples whose REML analyses converged

NNOTCONVERGED = scalars
Saves the number of bootstrap samples whose REML analyses failed to converge

VPREDICT directive
Forms predictions from a REML model.

Options
PRINT = string tokens
What to print (description, predictions, se, sed, avesed, vcovariance); default desc, pred, se, aves

CHANNEL = scalar
Channel number for output; default * i.e. current output channel

MODEL = formula
Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms

OMITTERMS = formula
Specifies terms to be excluded from the MODEL; default * i.e. none

FACTORIAL = scalar
Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3

PRESENTCOMBINATIONS = identifiers
Lists factors for which averages should be taken across combinations that are present

WEIGHTS = tables
Weights classified by some or all of the factors in the model; default *

PREDICTIONS = table or scalar
To save the predictions; default *

SE = table or scalar
To save standard errors of predictions; default *

SED = symmetric matrix
To save standard errors of differences between predictions; default *

VCOVARIANCE = symmetric matrix
To save variances and covariances of predictions; default *

SAVE = REML save structure
Specifies the save structure from which to predict; default * i.e. that from most recent REML

Parameters
CLASSIFY = vectors
Variates and/or factors to classify table of predictions

LEVELS = variates, scalars or texts
To specify values of variates and/or levels of factors for which predictions are calculated

PARALLEL = identifiers
For each vector in the CLASSIFY list, allows you to specify another vector in the CLASSIFY list with which the values of this vector should change in parallel (you then obtain just one dimension in the table of predictions for these vectors)

NEWFACTOR = identifiers
Identifiers for new factors that are defined when LEVELS are specified

VRACCUMULATE procedure
Forms a summary accumulating the results of a sequence of REML random models (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (deviance, aic, bic, sic, dffixed, dfrandom, change, exit); default devi, aic, sic, dfra

METHOD = string token
How to accumulate the current analysis (add, printonly, restart); default add

INCLUDE = string tokens
Which constants to include that depend only on the fixed
model (determinant, pi); default pi

DMETHOD = string token
Method to use to calculate log(determinant(X’X)) (choleski, lrv); default chol

ACCUMULATED = pointer
Saves the summary

Parameters

DESCRIPTION = text
Single-line text to describe the analysis; default lists the random terms added or deleted from the previous model

SAVE = REML save structure
Save structure for the REML analysis to put into the summary; default uses the save structure from the most recent REML

VRADDD procedure

Adds terms from a REML fixed model into a Genstat regression (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated); default mode, summ, esti, accu

FACTORIAL = scalar
Limit for expansion of terms; default 3

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

SELECTION = string tokens
One or two criteria to be printed with the models (%variance, %ss, adjustedr2, r2, dispersion, aic, sic, bic); default %var, aic, sic

Parameter

TERMS = formula
Fixed terms to be added

VRCHECK procedure

Checks effects of a random term in a REML analysis (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (largeblups, stability); default larg

TERM = formula
Random term whose BLUPs are to be assessed; must be set

RMETHOD = string token
Which random terms to use to form the residuals that are subtracted from the y-variate to provide the fitted values (all, term); default all

RLIMIT = scalar
Limit for detection of large standardized BLUPs; if this is not set, the limit is set automatically according to the number of BLUPs

NLARGEBLUPS = scalar
Saves the number of large standardized BLUPs that have been detected

LARGEBLUPUNITS = pointer
Saves the factor levels of the large standardized BLUPs

STABILITYTEST = pointer
Saves the results of the Levene test for stability of the variance of the standardized BLUPs

SAVE = REML save structure
Specifies the analysis from which the BLUPs are to be taken; by default this will be the most recent REML

No parameters

VRDISPLAY procedure

Displays output for a REML fixed model fitted in a Genstat regression (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated); default mode, summ, esti, accu

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss
4.1 Commands

SELECTION = string tokens
One or two criteria to be printed with the models (%variance, %ss, adjustedr2, r2, dispersion, aic, sic, bic); default %var, aic, sic

No parameters

VRDROP procedure
Drops terms in a REML fixed model from a Genstat regression (R.W. Payne).

Options

PRINT = string tokens
Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated); default mode, summ, esti, accu

FACTORIAL = scalar
Limit for expansion of terms; default 3

DENOMINATOR = string token
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

SELECTION = string tokens
One or two criteria to be printed with the models (%variance, %ss, adjustedr2, r2, dispersion, aic, sic, bic); default %var, aic, sic

Parameter

TERMS = formula
Fixed terms to be dropped

VREGRESS procedure
Performs regression across variates (M.W. Patefield & D. Tandy).

No options

Parameters

Y = pointers
Pointers each containing a set of y-variates for each of whose units a regression is to be done

X = pointers
Pointer containing x-variates for each set of y-variates

SLOPE = variates
Variate to save the estimated slopes from each set of regressions

INTERCEPT = variates
Variate to save the estimated intercepts from each set of regressions

VREPLACE procedure
Replaces values of vectors and pointers (R.W. Payne).

No options

Parameters

OLDSTRUCTURE = vectors or pointers
Variate, factor, text or pointer whose values are to be replaced

NEWSTRUCTURE = vectors or pointers
Variate, factor, text or pointer to store the new values; if unset these replace the values in the OLDSTRUCTURE

OLDVALUES = texts, variates, scalars or pointers
Values to be replaced

NEWVALUES = texts, variates, scalars or pointers
Replacement values

VRESIDUAL directive
Defines the residual term for a REML analysis, or the residual term for an experiment within a meta-analysis (combined analysis of several experiments)

Options

EXPERIMENT = scalar
Level of the EXPERIMENTS factor for which the residual is being defined

TERM = formula
Model term to be used as the residual

FORMATION = string token
Whether the structure is formed by direct product construction or by definition of the whole matrix (direct, whole); default dire

VARIANCE = scalar
Allows an initial estimate to be provided for the residual
4 Syntax summary

CONSTRAINT = *string token*
Allows the residual variance to be fixed at its initial value
(fix, positive) default posi

COORDINATES = *matrix or variates*
Coordinates of the data points to be used in calculating distance-based models

Parameters

MODELTYPE = *string tokens*
Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct
(identity, fixed, AR, MA, ARMA, power, boundedlinear, circular, spherical, linearvariance, banded, correlation, antedependence, unstructured,
diagonal, uniform, FA, FAequal) default iden

ORDER = *scalar*
Order of model

HETEROGENEITY = *string token*
Heterogeneity for correlation matrices (none, outside); default none

METRIC = *string token*
How to calculate distances when MODELTYPE=power
(cityblock, squared, euclidean); default city

FACTOR = *factors*
Factors over which to form direct products

MATRIX = *identifiers*
To define matrix values for the term or the factors when MODELTYPE=fixed

INVERSE = *identifiers*
To define values for matrix inverses (instead of the fixed matrices themselves) when MODELTYPE=fixed

INITIAL = *identifiers*
Initial parameter values for each correlation matrix

CONSTRAINTS = *texts*
Texts containing strings none, fix or positive to define constraints for the parameters in each model

EQUALITYCONSTRAINTS = *variates*
Non-zero values in the variate indicate groups of parameters whose values are to be constrained to be equal

VRFIT procedure

Fits terms from a REML fixed model in a Genstat regression (R.W. Payne).

Options

PRINT = *string tokens*
Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated); default mode, summ, esti, accu

FACTORIAL = *scalar*
Limit for expansion of terms; default 3

DENOMINATOR = *string token*
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

SELECTION = *string tokens*
One or two criteria to be printed with the models (%variance, %ss, adjustedr2, r2, dispersion, aic, sic, bic); default %var, aic, sic

Parameter

TERMS = *formula*
Fixed terms to be fitted

VRKEEP procedure

Saves output for a REML fixed model fitted in a Genstat regression (R.W. Payne).

Options

FACTORIAL = *scalar*
Limit for expansion of terms; default 3

RESIDUALS = *variate*
Residuals, as specified by the RMETHOD option

FITTEDVALUES = *variate*
Fitted values

RMETHOD = *string token*
Type of residuals to form (simple, standardized); default simp

RDF = *scalar*
Residual degrees of freedom

RSS = *scalar*
Residual sum of squares

ACCUMULATED = *pointer*
Accumulated analysis-of-variance table

DENOMINATOR = *string token*
Whether to base ratios in accumulated summary on rms from
4.1 Commands

model with smallest residual ss or smallest residual ms (ss, ms); default ss

Parameters
TERMS = formula

Terms whose information is to be saved

ESTIMATES = table, scalar or pointer to tables or scalars

Estimated regression coefficients for each term

SE = table, scalar or pointer to tables or scalars

Standard errors of estimated regression coefficients for each term

VCOVARIANCE = symmetric matrix or pointer to symmetric matrices

Variances and covariances between the estimates of each term

NDF = scalar or pointer to scalars

Numerator degrees of freedom for each term

DDF = scalar or pointer to scalars

Denominator degrees of freedom for each term

VRMETAMODEL procedure

Forms the random model for a REML meta analysis (R.W. Payne).

Options
RANDOM = formula structure

Saves the random model

EXPERIMENTSFACTOR = factor

Factor defining which units are in each experiment

TERMS = formula

Specifies terms, if any, to be fitted over the whole data set; default * i.e. none

Parameters
EXPERIMENT = scalars, variates or texts

Experiments on which additional random terms are to be fitted

LOCALTERMS = formula structures

Random terms that are to be fitted only on the corresponding experiment

SAVEVECTORS = pointers

Saves the factors (and/or any variates) defined to represent the local terms on each experiment

VRPERMTEST procedure

Performs permutation tests for random terms in REML analysis (V.M. Cave).

Options
PRINT = string tokens

Controls printed output (summary, monitoring, vdiagnostics); default summ

VPRINT = string tokens

Controls the output from the REML analysis of the full and reduced models (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none

PLOT = string tokens

What graphs to plot (kerneldensity, histogram); default *

MODELDEFINITION = pointer

REML model definition structure, defined using the VFMODEL and VFSTRUCTURE procedures, to specify the full model; no default, must be set

RDROP = formula

Random term(s) to drop from the full model; no default, must be set

NTIMES = scalar

Number of permutations to make; default 99

NRETRIES = scalar

Maximum number of extra permutations to make when some REML analyses fail to converge; default NTIMES

SEED = scalar

Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically

WINDOW = scalar

Window to use for the graphs; default 3

Parameters
Y = variates

Variates to be analysed

STATISTICS = scalars or pointers

Saves the test statistics

PROBABILITIES = scalars or pointers

Saves the p-values
TITLE = text
 Title for the graphs
SAVE = pointers
 Saves the test statistics and permuted values

VRSETUP procedure

Sets up Genstat regression to assess terms from a **REML** fixed model (R.W. Payne).

Option

SAVE = **REML** save structure
 Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent **REML**

No parameters

VRSWITCH procedure

Adds or drops terms from a **REML** fixed model in a Genstat regression (R.W. Payne).

Options

PRINT = string tokens
 Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated); default mode, summ, esti, accu

FACTORIAL = scalar
 Limit for expansion of terms; default 3

DENOMINATOR = string token
 Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms); default ss

SELECTION = string tokens
 One or two criteria to be printed with the models (%variance, %ss, adjustedr2, r2, dispersion, aic, sic, bic); default %var, aic, sic

Parameter

TERMS = formula
 Fixed terms to be added or dropped

VRTRY procedure

Tries the effect of adding and dropping individual terms from a **REML** fixed model in a Genstat regression (R.W. Payne).

Options

PRINT = string tokens
 Controls printed output (changes); default chan

FACTORIAL = scalar
 Limit for expansion of terms; default 3

CHANGES = pointer
 Saves details of the changes

Parameter

TERMS = formula
 Fixed terms to be added or dropped

VSAMPLESIZE procedure

Estimates the replication to detect a fixed term or contrast in a **REML** analysis, using parametric bootstrap (R.W. Payne).

Options

PRINT = string tokens
 Controls printed output (power, replication, monitoring); default powe, repl, moni

TERM = formula
 Fixed term to be assessed in the analysis

REPLICATES = factor
 Factor identifying the replication in the design

TRYREPLICATION = variate
 Replication values to try first; default !(2, 4)

MAXREPLICATION = scalar
 Maximum feasible replication; default * i.e. not defined

FIXED = formula
 Fixed terms in the analysis; if unset, determined automatically from the most recent **VCOMPONENTS**

RANDOM = formula
 Random terms in the analysis; if unset, determined automatically from the most recent **VCOMPONENTS**

COMPONENTS = variate or scalar
 Variate of variance components of the random terms; must be set

FACTORIAL = scalar
 Limit on the number of factors or variates in fixed terms; default 3

PROBABILITY = scalar
 Significance level at which the term is required to be detected
4.1 Commands

POWER = scalar
(assuming a one-sided test); default 0.05

The required power (i.e. probability of detection) of the test; default 0.9

TMETHOD = string token
Type of test to be made (fratio, wald, twosided, lessthan, greaterthan, equivalence, noninferiority; default frat

XCONTRASTS = variate
X-variante defining a contrast to be detected

CONTRASTTYPE = string token
Type of contrast (regression, comparison) default rege

CRITICALVALUE = scalar
Supplies a critical value for the test statistic

NBOOT = scalar or variate
Number of bootstrap samples to analyse, in a variate with 2 values if there is to be preliminary search, otherwise in a scalar; default 1000

NRETRIES = scalar or variate
Maximum number of extra samples to take when some REML analyses fail to converge, in a variate with 2 values if there is to be preliminary search, otherwise in a scalar; default NBOOT

SEED = scalar
Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically

METHOD = string token
Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI

MAXCYCLE = scalar
Sets a limit on the number of iterations in the REML analyses; default 30

FMETHOD = string token
Controls whether and how to calculate F statistics for fixed terms (automatic, none, algebraic, numerical); default auto

WMETHOD = string token
Controls which Wald statistics are saved (add, drop); default add

WORKSPACE = scalar
Number of blocks of internal memory to be set up for use by the REML algorithm

Parameters
RESPONSE = scalars or tables
Specifies the response to be detected

NREPLICATES = scalars
Number of replicates required to detect RESPONSE

VSCREEN procedure
Performs screening tests for fixed terms in a REML analysis (R.W. Payne).

Options
PRINT = string tokens
Controls printed output (ftests, waldtests); default fttes, wald

EXCLUDEHIGHER = string token
Whether to exclude higher-order interactions in the conditional models (yes, no); default no

FORCED = formula
Terms that must always be included in the model (no tests on these terms); default *

FSAVE = pointer
Saves the F tests

WSAVE = pointer
Saves the Wald tests

SAVE = REML save structure
Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent REML

No parameters

VSOM procedure
Analyses a simple REML variance components model for outliers using a variance shift outlier model (S.J. Welham, F.N. Gummedze & D.B. Baird).

Options
PRINT = string tokens
Specifies the output to be produced (fdr, outliers); default fdr, outl

VPRINT = string tokens
Controls the output from the REML analysis of the baseline model (model, components, effects, means,
stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default mode, comp, Wald, cova

PLOT = string tokens

Controls which plots are produced (indexplots, residual); default inde, resi

INDEXPLOT = string tokens

Selects the index plots to produce (omega, sigma2, tsquared, lrt, method, all); default meth

TERM = formula

Random term to scan for outliers; default is the residual term

METHOD = string token

Method for calculating the statistics used to indicate an outlier (full, partial, t); default t

THRMETHOD = string token

Method for obtaining the threshold statistics (approximate, bootstrap); default appr for METHOD=full and boot otherwise

NBOOT = scalar

Number of bootstrap samples to take to form the threshold statistics; default 99 for METHOD=full and 499 otherwise

FIXED = formula

Fixed model terms

RANDOM = formula

Random model terms

CONSTANT = string token

How to treat the constant term (estimate, omit); default esti

FACTORIAL = scalar

Limit on the number of factors or covariates in each fixed term; default 3

VCONSTRAINTS = string token

How to constrain the variance components and the residual variance (none, positive, fixrelative, fixabsolute); default posi

INITIAL = variate

Initial values for the variance components; default 1

SEED = scalar

Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically

SAVEITEMS = string tokens

Selects the items to save (residuals, omega, sigma2, gamma, tsquared, lrt, fdr, approxthresholds, thresholdstats, outliers, method, all); default resi, omeg, sigm, meth, fdr, outl

Parameters

Y = variates

Response variates

TITLE = texts

Specifies the title or titles to use for the plots

SAVE = pointers

Saves information from the analysis of each y-variate

VSPECTRALCHECK procedure

Forms the spectral components from the canonical components, and constrains any negative spectral components to zero (C.J. Brien).

Options

PRINT = string tokens

Controls printed output (relationships matrix, canonicalcomponentestimates, spectralcomponentestimates, nconstrainedcomponents, all); default spec

VPRINT = string tokens

Controls the output from the final REML refit (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none

INITIALMETHOD = string token

Whether to use the estimates from the unconstrained fit as initial values in constrained fits or the default REML initial values (remldefault, unconstrainedanalysis); default unco

MAXCYCLE = scalar

Sets a limit on the number of iterations in the REML analyses; default 30

TOLERANCE = scalar

Tolerance for zero values; default 10^-10

DPRINT = string tokens

Controls output of diagnostic information
4.1 Commands

(spectralcomponents, canonicalcomponents, relationshipmatrix, all); default * i.e. none

Parameters

Y = variates
Response variates

CORRESPONDENCE = matrices
Upper-triangular matrix giving the spectral components in terms of the canonical components

SPECTRALESTIMATES = variates
Saves estimates of the spectral components

CANONICALESTIMATES = variates
Saves estimates of the canonical components

NCONSTRANDEDCOMPONENTS = scalars
Saves the number of spectral components constrained to zero, returns a missing value if some components could not be constrained

EXIT = scalars
Exit status of the final REML refit

SAVE = REML save structures
Supplies the save structure from the prior analysis of each Y variate; this need not be set, if that was the most recent REML analysis

VSPREADSHEET procedure

Saves results from a REML analysis in a spreadsheet (R.W. Payne).

Options

COMPONENTS = variate
Variate to contain the variance components; default components

MEANS = pointer
Pointer to tables to contain the means; default means

SEMEANS = pointer
Pointer to matrices to contain the standard errors of differences of the means; default sedmeans

VARMEANS = pointer
Pointer to matrices to contain the variance-covariance matrices of the means; default varmeans

EFFECTS = pointer
Pointer to tables to contain the effects; default effects

SEDEFFECTS = pointer
Pointer to matrices to contain the standard errors of differences of the effects; default sedeffects

VAREFFECTS = pointer
Pointer to matrices to contain the variance-covariance matrices of the effects; default vareffects

REPLICATIONS = pointer
Pointer to tables of replications; default replication

WALDTABLE = pointer
Pointer to a text and variates containing the information in the table of tests for fixed effects; default waldtable

PTERMS = formula
Terms (fixed or random) for which effects or means are to be saved; default * implies all the fixed terms

FMETHOD = string token
Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto

SPREADSHEET = string tokens
What to include in the spreadsheet (components, waldtable, effects, sedeffects, vareffects, means, sedmeans, varmeans, replications); default comp, wald, mean, sedm, repl

OUTFILENAME = text
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

SAVE = REML save structure
Specifies which REML analysis to save; default * i.e. most recent one

No parameters

VSTATUS directive

Prints the current model settings for REML.

Option

PRINT = string tokens
What to print (model); default mode

No parameters
VSTRUCTURE directive

Defines a variance structure for random effects in a **REML** model.

Options

TERMS = formula
Model terms for which the covariance structure is to be defined

FORMATION = string token
Whether the structure is formed by direct product construction or by definition of the whole matrix (direct, whole); default dire

CORRELATE = string token
Whether to impose correlation across the model terms if several are specified (none, positive, unrestricted); default none

CINITIAL = scalars
Initial values for covariance matrix across terms

COORDINATES = matrix or variates
Coordinates of the data points to be used in calculating distance-based models

Parameters

MODELTYPE = string tokens
Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, boundedlinear, circular, spherical, linearvariance, banded, correlation, antedependence, unstructured, diagonal, uniform, FA, FAequal) default iden

ORDER = scalar
Order of model

HETEROGENEITY = string token
Heterogeneity for correlation matrices (none, outside); default none

METRIC = string token
How to calculate distances when MODELTYPE=power (cityblock, squared, euclidean); default city

FACTOR = factors
Factors over which to form direct products

MATRIX = symmetric matrices, diagonal matrices or pointers
Defines matrix values for a term or the factors when MODELTYPE=fixed

INVERSE = symmetric matrices, diagonal matrices or pointers
Define values for matrix inverses (instead of the fixed matrices themselves) when MODELTYPE=fixed

DISTANCES = symmetric matrices
Symmetric matrix of pre-formed distances to be used in distance-based models of order one

COORDINATES = matrices, variates or pointers
Specifies coordinates of each factor level to be used in calculating distance-based models

INITIAL = scalars, variates, matrices, symmetric matrices or pointers
Initial parameter values for each correlation matrix (supplied in the structures appropriate for the model concerned)

CONSTRAINTS = texts
Texts containing strings none, fix or positive to define constraints for the parameters in each model

EQUALITYCONSTRAINTS = variates
Non-zero values in the variate indicate groups of parameters whose values are to be constrained to be equal

VSUMMARY procedure

Summarizes a variate, with classifying factors, into a data matrix of variates and factors (D.B. Baird).

Options

PRINT = string token
What to print (summaries); default * i.e. none

CLASSIFICATION = factors
Factors classifying the summary groups

NEWCLASSIFICATION = factors
Factors in the data matrix to classify the output variates

REDEFINE = string token
Whether to redefine the CLASSIFICATION factors and DATA variates, if NEWCLASSIFICATION or NEWDATA are not set (yes, no); default no

CMETHOD = string token
How to form levels for carried factors (median, minimum,
4.1 Commands

MVINCLUDE = string token
Whether to include factor combinations with no observations in summaries (yes, no); default no

WARNING = string token
What warnings to output (carry); default carry warns when carried factors have varying values within classification groups

Parameters

DATA = variates, factors or pointers
Data to be summarized

STATISTIC = texts
What statistic to calculate (carry, counts, sums, totals, nobservations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, semeans, seskewness, sekurtosis); default mean

PERCENTILE = scalars or variates
Percentile to be used for quantiles; default 50.

NEWDATA = variates, factors or pointers
Summary statistics as variates or factors for STATISTIC=carry

VSURFACE procedure

Fits a 2-dimensional spline surface using REML, and estimates its extreme point (D.B. Baird).

Options

PRINT = string tokens
What to print (description, model, components, effects, vcovariance, deviance, walidtests, extreme, confidence, monitoring); default desc, mode, comp, wald, extr

PLOT = string tokens
What to plot (contour, surface); default * i.e. nothing

BASIS = string token
Spline basis to use (thinplate, pspline, penalizedspline); default thin

KNOTS = scalar, variate or pointer
Knots to be fitted in spline model, if a scalar, this is the total number of knots to be fitted; if a variate of length 2, this is the number of knots in the X1 and X2 directions; and if a pointer to 2 variates, these are the values for knots in the X1 and X2 directions; default 16

PENALTYP METHOD = string token
Which tensor spline penalty to use (isotropic, semiconstrained, unconstrained); default unco

DEGREE = scalars
Degree of polynomial used to form the underlying spline; default 1 for METHOD=penalizedspline and 3 for METHOD=pspline

DIFFORDER = scalars
Differencing order for p-spline penalty; default 2

EXTREME = scalars
Saves the estimated value of y at the extreme point

SEEEXTREME = scalars
Saves the standard error of the estimated value of y at the extreme point

TYPEEXTREME = string token
Type of extreme to be identified (minimum, maximum); default maxi

PREDICTIONS = matrix or pointer
Saves predictions

PMETHOD = string tokens
Method of returning predictions (grid, list); default grid

NBOOT = scalars
The number of bootstrap samples to estimate standard errors and confidence limits; default 100

NRETRIES = scalars
Number of times to retry bootstrap sampling when the REML fit fails; default is the same value as NBOOT

SEED = scalars
The seed used to initialize the randomization in the bootstrap sampling; default 0 continues an existing sequence or, if none, selects a seed automatically

CIPROBABILITY = scalar
Probability level for confidence intervals for parameter estimates; default 0.95

COLOURS = text or variate
Colours for the plots

Parameters

Y = variates
Y-variate to which the spline surface will be fitted

X1 = variates
The first X-variate which defines the spline surface

X2 = variates
The second X-variate which defines the spline surface
ESTIMATE = variates
SE = variates
LEVELS = scalars, variates or pointers
TITLE = texts
WINDOW = scalars
SCREEN = string tokens
EXIT = scalars

VTABLE procedure
Forms a variate and set of classifying factors from a table (P.W. Goedhart).

No options

Parameters
TABLE = tables
VARIATE = variates
CLASSIFICATION = pointers
LABELS = texts

VTCOMPARISONS procedure
Calculates comparison contrasts within a multi-way table of predicted means from a REML analysis (R.W. Payne).

Options
PRINT = string tokens
MODEL = formula
OMITTERMS = formula
FACTORIAL = scalar
PRESENTCOMBINATIONS = identifiers
WEIGHTS = tables
GROUPS = factors
DFMETHOD = string token
DFGIVEN = scalar
FMETHOD = string token
SAVE = identifier

Parameters
CONTRAST = tables
ESTIMATE = scalars or variates
SE = scalars or variates

VTABLE procedure
Forms a variate and set of classifying factors from a table (P.W. Goedhart).

No options

Parameters
TABLE = tables
VARIATE = variates
CLASSIFICATION = pointers
LABELS = texts

VTCOMPARISONS procedure
Calculates comparison contrasts within a multi-way table of predicted means from a REML analysis (R.W. Payne).

Options
PRINT = string tokens
MODEL = formula
OMITTERMS = formula
FACTORIAL = scalar
PRESENTCOMBINATIONS = identifiers
WEIGHTS = tables
GROUPS = factors
DFMETHOD = string token
DFGIVEN = scalar
FMETHOD = string token
SAVE = identifier

Parameters
CONTRAST = tables
ESTIMATE = scalars or variates
SE = scalars or variates
4.1 Commands

VCOVARIANCE = symmetric matrices
Save the variance-covariance matrices of contrasts estimated for GROUPS.

STATISTIC = scalars or variates
Saves the test statistic (t or Wald).

DF = scalars or variates
Saves estimated numbers of residual degrees of freedom of the contrasts.

PROBABILITY = scalars or variates
Saves the probabilities of the contrasts.

WALD = scalars
Wald statistic for each comparison, combining the tests within groups.

FSTATISTIC = scalars
F statistics for each comparison, if available, combining the tests within groups.

NDF = scalars
Numerator d.f. for FSTATISTIC.

DDF = scalars
Denominator d.f. for FSTATISTIC.

VUVCOVARIANCE procedure
Forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model (R.W. Payne).

Options
FIXED = formula
Fixed model terms; default *.

CONSTANT = string token
How to treat the constant term (estimate, omit); default esti.

FACTORIAL = scalar
Limit on the number of factors or covariates in each fixed term; default 3.

SEED = scalar
Seed for the random numbers used to generate a dummy y-variate; default 12345.

Parameters
RANDOM = formula structures
Random model terms.

COMPONENTS = variates
Values for the variance components and residual variance.

UVCOVARIANCE = symmetric matrices
Saves the unit-by-unit variance-covariance matrices.

WADLEY procedure
Fits models for Wadley's problem, allowing alternative links and errors (D.M. Smith).

Options
PRINT = string tokens
Controls printed output (deviance, estimates, correlations, monitoring); default devi, esti.

DISTRIBUTION = string token
Distribution of the response variate (poisson, negativebinomial, qlnegativebinomial, qlscaledpoisson); default pois.

LINK = string token
Link transformation (logit, probit, complementaryloglog, cauchit); default logit.

TERMS = formula
Model to be fitted.

CONTROL = factor
Factor to distinguish the control, or zero, dose (level 1) from the other treatments (level 2).

MAXIMAL = factor
Factor to define the maximal model i.e. with a level for every combination of values of the variates and factors in TERMS.

RMETHOD = string token
Type of residuals to be formed (deviance, Pearson); default devi.

Parameters
Y = variates
Response variate for each fit.

RESIDUALS = variates
Variate to save the residuals from each fit.

FITTEDVALUES = variates
Variate to save the fitted values from each fit.

WILCOXON procedure
Performs a Wilcoxon Matched-Pairs (Signed-Rank) test (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Option
PRINT = string tokens
Output required (test, ranks); test gives the relevant test.
Syntax summary

Parameters

- **DATA = variates**
 - Variates holding the differences between each pair of samples

- **RANKS = variates**
 - Variate to save the signed ranks

- **STATISTIC = scalars**
 - Scalar to save the value of the test statistic

- **PROBABILITY = scalars**
 - Saves the probability for each test statistic

- **SIGN = scalars**
 - Scalar to indicate the sign of the total sum of the signed ranks:
 - 1 if the sum is positive, 0 otherwise

WINDROSE procedure

- Plots rose diagrams of circular data like wind speeds (P.W. Goedhart & R.W. Payne).

Options

- **PRINT = string token**
 - What to print (table); default * i.e. nothing

- **SEGMENT = scalar**
 - Width of sectors (in degrees) into which to group an ANGLES variates before plotting; default 20

- **MSEGMENT = scalar**
 - Defines the centre (in degrees) of the sectors; default 0

- **INTERVALS = scalar or variate**
 - Scalar to define the intervals at which to summarize the data values, or a variate defining the boundaries between the intervals; default * i.e. determined automatically

- **%INTERVAL = scalar**
 - Interval (on the percent scale) between the circles drawn to provide a scale on the diagram; default * i.e. determined automatically

- **COLOURS = text or variate**
 - Colours to shade the triangles segment for each interval; default * sets suitable colours automatically

- **SCREEN = string token**
 - Whether to clear screen before displaying the graphs (keep, clear); default clea

Parameters

- **DATA = variates**
 - Data values

- **ANGLES = factors or variates**
 - Directions of the data values

- **TITLE = text**
 - Title for the graph; default * i.e. identifier of the DATA variate

- **WINDOW = scalar**
 - Window for the graph; default 3

WORKSPACE directive

- Accesses private data structures for use in procedures.

No options

Parameters

- **NAME = texts**
 - Texts, each containing a single line, to give the names used to identify the private data structures

- **DUMMY = identifiers**
 - Dummy structure to be used to refer to each private data structure

WSTATISTIC procedure

- Calculates the Shapiro-Wilk test for Normality (R.W. Payne).

Option

- **PRINT = string tokens**
 - What to print (test); default test

Parameters

- **DATA = variates**
 - Samples of data to be tested for Normality

- **W = scalars**
 - Saves the Shapiro-Wilk W statistic for each sample

- **PROBABILITY = scalars**
 - Saves the probability for W under the assumption that the data are Normal
XAXIS directive

Defines the x-axis in each window for high-resolution graphics.

Option

RESET = string token
Whether to reset the axis definition to the default values (no, yes); default no

Parameters

WINDOW = scalars
Numbers of the windows

TITLE = texts
Title for the axis

TPOSITION = string tokens
Position of title (middle, end)

TDIRECTION = string tokens
Direction of title (parallel, perpendicular)

LOWER = scalars
Lower bound for axis

UPPER = scalars
Upper bound for axis

MARKS = scalars or variates
Distance between each tick mark (scalar) or positions of the marks along the axis (variate)

MPOSITION = string tokens
Positioning of the tick marks on the axis (inside, outside, across)

LABELS = texts or variates
Labels at each major tick mark

LPOSITION = string tokens
Position of the axis labels (inside, outside)

LDIRECTION = string tokens
Direction of the axis labels (parallel, perpendicular)

NSUBTICKS = scalars
Number of subticks per interval (ignored if MARKS is a variate)

YORIGIN = scalars
Position on y-axis at which the axis is drawn

ZORIGIN = scalars
Position on z-axis at which the axis is drawn

PENTITLE = scalar
Pen to use to write the axis title

PENAXIS = scalar
Pen to use to draw the axis

PENLABELS = scalars
Pen to use to write the axis labels

ARROWHEAD = string tokens
Whether the axis should have an arrowhead (include, omit)

ACTION = string tokens
Whether to display or hide the axis (display, hide)

TRANSFORM = string tokens
Transformed scale for the axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, icprobit, root); default iden

LINKED = scalars
Linked axis whose definitions should be used for this axis in 2-dimension graphs; default * i.e. none

MLOWER% = scalars
How large a margin to set between the lowest x-value and the lower value of the axis, if not set explicitly by LOWER (expressed as a percentage of the range of the x-values)

MUPPER% = scalars
How large a margin to set between the largest x-value and the upper value of the axis, if not set explicitly by UPPER (expressed as a percentage of the range of the x-values)

DECIMALS = scalars or variates
Number of decimal places to use for numbers printed at the marks

DREPRESENTATION = scalars, variates or texts
Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens
Format to use for numbers printed at the marks (decimal, engineering, scientific); default dec1

YMETHOD = string tokens
Method to use to set the position of the origin on the y-axis if not set explicitly by YORIGIN (upper, lower, center, centre)

ZMETHOD = string tokens
Method to use to set the position of the origin on the z-axis if not set explicitly by ZORIGIN (upper, lower, center, centre)

REVERSE = string tokens
Whether to reverse the axis direction to run from upper to lower instead of the default lower to upper (yes, no); default no

SAVE = pointers
Saves details of the current settings for the axis concerned
XOCATEGORIES procedure

Performs analyses of categorical data from cross-over trials (D.M. Smith & M.G. Kenward).

Options

PRINT = string token
What to print at each fit (model, summary, accumulated, estimates, correlations, fitted values, monitoring); default *

PDATA = string token
Whether or not a display of category combination by sequence is required (yes, no); default no

METHOD = string token
Type of analysis for which factors are required (subject, loglinear, ownsubject, ownloglinear); default subj

CARRYOVER = string token
Whether or not models with carryover effects in are to be produced (yes, no); default no

Parameters

SEQUENCE = factors
The identifier of the sequence of treatments

RESULTS = pointers
Pointer containing factors (one for each period) giving the category scores observed

NUMBER = variates
Numbers recorded in the sequence/category combinations

SAVE = pointers
Saves the factors constructed to do the analysis

REUSE = pointers
To reuse factors saved earlier using SAVE

MODEL = formula
Additional terms to be fitted to model if OWNSUBJECT or OWNLOGLINEAR options used; default *

XOEFFICIENCY procedure

Calculates efficiency of estimating effects in cross-over designs (B. Jones & P.W. Lane).

Options

PRINT = string tokens
What reports to produce (summary, efficiency, variance, carryover, contrasts, dummy analysis, incidence); default summ, effi, cont

NPERIODS = scalar
Number of periods in the design; no default

CARRYOVER = string token
Whether to included effects of carryover (yes, no); default no

CONTRASTTYPE = string token
Type of treatment contrasts if POLYNOMIAL and OWN parameters are unset (pairwise, control); default pair

INCIDENCE = pointer
Saves incidence matrices; default *

Parameters

SEQUENCES = formula
Text, variate or factor with sequence of levels of a single treatment; no default

POLYNOMIAL = scalars
Order of polynomials to represent each term in the SEQUENCES parameter; default *, i.e. represent effects according to OWN parameter or CONTRASTTYPE option

OWN = matrices
Specific contrasts for each term in the sequences parameter; default *, i.e. represent effects according to POLYNOMIAL parameter or CONTRASTTYPE option

EFFICIENCY = symmetric matrices, variates or diagonal matrices
Saves efficiencies; default *

VARIANCE = symmetric matrices, variates or diagonal matrices
Saves variances; default *

XOPOWER procedure

Estimates the power of contrasts in cross-over designs (P.W. Lane & B. Jones).

Options

PRINT = string tokens
What reports to produce (summary, contrasts, nonequality, equivalence, noninferiority, superiority); default summ, none

NPERIODS = scalar
Number of periods in the design; default 2

NREPEATS = scalar
Number of repeats of supplied sequences, or variate or a series of numbers to get power for multiples of a design; default 1
4.1 Commands

CARRYOVER = string token
Whether to include the carry-over term (yes, no); default no

CONTRASTTYPE = string token
Type of treatment contrasts if POLYNOMIAL and OWN parameters are unset (pairwise, control); default pair

ALPHALEVEL = scalar
Significance level at which to test each contrast, adjusted if necessary for multiplicity; default 0.05

DELTA = scalar
Tolerance for equivalence & non-inferiority tests; default 0.2231 i.e. log(1.25)

VARWITHIN = scalar
Variance of response within subjects; default 1

VARBETWEEN = scalar
Variance of response between subjects; default 1

NSIMULATIONS = scalar
Number of simulations; default 1000

SEED = scalar
Seed for random-number generator; default 0 i.e. continue from previous or use system clock

MONITOR = string token
What summary of power values to report every 50 simulations for each report chosen in PRINT option (minimum, mean, median, maximum); default * i.e. no monitoring

Parameters
SEQUENCES = texts, variates or factors
Sequence of levels of a single treatment factor; no default

POLYNOMIAL = scalars
Order of polynomials to represent the treatment factor; default * i.e. represent effects according to OWN parameter or CONTRASTTYPE option

OWN = matrices
Specific contrasts for the treatment factor; default * i.e. represent effects according to POLYNOMIAL parameter or CONTRASTTYPE option

MEANS = variates
Pattern of means for each treatment level for which to establish power; default * i.e. all zero

NONEQUALITY = symmetric matrices or matrices
Structure to save calculated power values for nonequality; default *

EQUIVALENCE = symmetric matrices or matrices
Structure to save calculated power values for equivalence; default *

NONINFERIORITY = symmetric matrices or matrices
Structure to save calculated power values for noninferiority; default *

SUPERIORITY = symmetric matrices or matrices
Structure to save calculated power values for superiority; default *

YAXIS directive
Defines the y-axis in each window for high-resolution graphics.

Option
RESET = string token
Whether to reset the axis definition to the default values (no, yes); default no

Parameters
WINDOW = scalars
Numbers of the windows

TITLE = texts
Title for the axis

TPOSITION = string tokens
Position of title (middle, end)

TDIRECTION = string tokens
Direction of title (parallel, perpendicular)

LOWER = scalars
Lower bound for axis

UPPER = scalars
Upper bound for axis

MARKS = scalars or variates
Distance between each tick mark (scalar) or positions of the marks along the axis (variate)

MPOSITION = string tokens
Positioning of the tick marks on the axis (inside, outside, across)

LABELS = texts or variates
Labels at each major tick mark

LPOSITION = string tokens
Position of the axis labels (inside, outside)
YTRANSFORM procedure

Estimates the parameter lambda of a single parameter transformation (D.M. Smith).

Options

- **TRANSFORM = string token**
 - Type of transformation (power, modulus, foldedpower, GuerreroJohnson, Aranda1, Aranda2, powerlogit); default *powe*
- **METHOD = string tokens**
 - Method of evaluating transformation parameter lambda
 - Atkinson, Andrews, BoxCox, Robust; default *boxc*
- **K = scalar**
 - Cut-off value for robust method; default *
- **LOWER = scalar**
 - Lower limit of range of lambda; default *
- **UPPER = scalar**
 - Upper limit of range of lambda; default *
- **STEPLENGTH = scalar**
 - Increment of lambda; default *(UPPER - LOWER)/20*
- **LAMBDA = scalar**
 - Single value of lambda; default *
- **FVBOUND = string token**
 - Replace illegal fitted values by the corresponding boundary values (no, yes); default no
- **GRAPHICS = string token**
 - What sort of graphics to use (lineprinter, highresolution); default high
- **TERMS = formula**
 - Terms of model

<table>
<thead>
<tr>
<th>LDIIRECTION = string tokens</th>
<th>Direction of the axis labels (parallel, perpendicular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LROTATION = scalars or variates</td>
<td>Rotation of the axis labels</td>
</tr>
<tr>
<td>NSUBTICKS = scalars</td>
<td>Number of subticks per interval (ignored if MARKS is a variate)</td>
</tr>
<tr>
<td>XORIGIN = scalars</td>
<td>Position on x-axis at which the axis is drawn</td>
</tr>
<tr>
<td>ZORIGIN = scalars</td>
<td>Position on z-axis at which the axis is drawn</td>
</tr>
<tr>
<td>PENTITLE = scalars</td>
<td>Pen to use to write the axis title</td>
</tr>
<tr>
<td>PENAXIS = scalars</td>
<td>Pen to use to draw the axis</td>
</tr>
<tr>
<td>PENLABELS = scalar</td>
<td>Pen to use to write the axis labels</td>
</tr>
<tr>
<td>ARROWHEAD = string tokens</td>
<td>Whether the axis should have an arrowhead (include, omit)</td>
</tr>
<tr>
<td>ACTION = string tokens</td>
<td>Whether to display or hide the axis (display, hide)</td>
</tr>
<tr>
<td>TRANSFORM = string tokens</td>
<td>Transformed scale for the axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden</td>
</tr>
<tr>
<td>LINKED = scalars</td>
<td>Linked axis whose definitions should be used for this axis in 2-dimensional graphs; default *i.e. none</td>
</tr>
<tr>
<td>MLOWER% = scalars</td>
<td>How large a margin to set between the lowest y-value and the lower value of the axis, if not set explicitly by LOWER (expressed as a percentage of the range of the y-values)</td>
</tr>
<tr>
<td>MUPPER% = scalars</td>
<td>How large a margin to set between the largest y-value and the upper value of the axis, if not set explicitly by UPPER (expressed as a percentage of the range of the y-values)</td>
</tr>
<tr>
<td>DECIMALS = scalars or variates</td>
<td>Number of decimal places to use for numbers printed at the marks</td>
</tr>
<tr>
<td>DREPRESENTATION = scalars, variates or texts</td>
<td>Format to use for dates and times printed at the marks</td>
</tr>
<tr>
<td>VREPRESENTATION = string tokens</td>
<td>Format to use for numbers printed at the marks (decimal, engineering, scientific); default deci</td>
</tr>
<tr>
<td>XOMETHOD = string tokens</td>
<td>Method to use to set the position of the origin on the x-axis if not set explicitly by XORIGIN (upper, lower, center, centre)</td>
</tr>
<tr>
<td>ZOMETHOD = string tokens</td>
<td>Method to use to set the position of the origin on the z-axis if not set explicitly by ZORIGIN (upper, lower, center, centre)</td>
</tr>
<tr>
<td>REVERSE = string tokens</td>
<td>Whether to reverse the axis direction to run from upper to lower instead of the default lower to upper (yes, no); default no</td>
</tr>
<tr>
<td>SAVE = pointers</td>
<td>Saves details of the current settings for the axis concerned</td>
</tr>
</tbody>
</table>
4.1 Commands

Parameters

Y = variates
Response variate

NBINOMIAL = variates
Denominator for a binomial variate

SAVE = pointers
Structures to save the output

ZAXIS directive

Defines the z-axis in each window for high-resolution graphics.

Option

RESET = string token
Whether to reset the axis definition to the default values (no, yes); default no

Parameters

WINDOW = scalars
Numbers of the windows

TITLE = texts
Title for the axis

TPOSITION = string tokens
Position of title (middle, end)

TDIRECTION = string tokens
Direction of title (parallel, perpendicular)

LOWER = scalars
Lower bound for axis

UPPER = scalars
Upper bound for axis

MARKS = scalars or variates
Distance between each tick mark (scalar) or positions of the marks along the axis (variate)

MPOSITION = string tokens
Positioning of the tick marks on the axis (inside, outside, across)

LABELS = texts
Labels at each major tick mark

LPOSITION = string tokens
Position of the axis labels (inside, outside)

LDIRECTION = string tokens
Direction of the axis labels (parallel, perpendicular)

LROTATION = scalars or variates
Rotation of the axis labels

NSUBTICKS = scalars
Number of subticks per interval (ignored if MARKS is a variate)

XORIGIN = scalars
Position on x-axis at which the axis is drawn

YORIGIN = scalars
Position on y-axis at which the axis is drawn

PENTITLE = scalars
Pen to use to write the axis title

PENAXIS = scalars
Pen to use to draw the axis

PENLABELS = scalar
Pen to use to write the axis labels

ARROWHEAD = string tokens
Whether the axis should have an arrowhead (include, omit)

ACTION = string tokens
Whether to display or hide the axis (display, hide)

MLOWER\% = scalars
How large a margin to set between the lowest z-value and the lower value of the axis, if not set explicitly by LOWER (expressed as a percentage of the range of the z-values)

MUPPER\% = scalars
How large a margin to set between the largest z-value and the upper value of the axis, if not set explicitly by UPPER (expressed as a percentage of the range of the z-values)

DECIMALS = scalars or variates
Number of decimal places to use for numbers printed at the marks

DREPRESENTATION = scalars variates or texts
Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens
Format to use for numbers printed at the marks (decimal, engineering, scientific); default deci

XMETHOD = string tokens
Method to use to set the position of the origin on the x-axis if not set explicitly by XORIGIN (upper, lower, center, centre)

YMETHOD = string tokens
Method to use to set the position of the origin on the y-axis if not set explicitly by YORIGIN (upper, lower, center, centre)

REVERSE = string tokens
Whether to reverse the axis direction to run from upper to lower instead of the default lower to upper (yes, no); default no

SAVE = pointers
Saves details of the current settings for the axis concerned
%CD directive
Changes current directory, PC Windows only.
No options
Parameters
DIRECTORY = text Directory to change to
CURRENT = text Saves new directory

%CLEAR directive
Clears the client Output window.
No options or parameters

%CLOSE directive
Closes the binary file opened by %OPEN.
No options or parameters

%FLUSH directive
Flushes server output immediately to the client Output window.
No options or parameters

%FPOSITION directive
Returns the current position in the binary file opened by %OPEN.
No options
Parameter
scalar Number of bytes of the current position from the start of the file

%LOG directive
Adds text into the Input Log window in the Genstat client.
No options
Parameter
text Text to display in the Input Log window

%MESSAGEBOX directive
Display text in a dialog in the Genstat client.
Options
TITLE = text Title for the dialog; default 'Genstat'
ICON = string token Icon to display in the dialog (information, warning, error, question); default info
Parameter
text text to display in the dialog

%OPEN directive
Open a binary file for use with %WRITE.
No options
Parameter
NAME = text Name of file to be opened for binary output using %WRITE

%SLEEP directive
Pauses execution of the server for a time specified in seconds.
No options
Parameter
scalar Specifies the time in seconds to pause
4.1 Commands

%TEMPFILE directive
Creates a unique temporary file in the Genstat temporary folder.

No options
Parameters
PREFIX = string Prefix for the filename
FILENAME = text Saves the filename
INDEX = scalar Saves the index number that follows the prefix in the filename

%WRITE directive
Writes values of data structures to a binary file opened by %OPEN.

Options
SEPARATOR = scalar or text Separator character as a literal character or a scalar giving an ASCII code (0-255); default * i.e. none
TERMINATOR = string token Terminator to use at the end of a text (null, newline) default null
POSITION = scalar File position at which to write the data; default 0 writes at the current position

Parameters
DATA = texts, scalars, variates or matrices Data structures to write to the file
FORMATTED = string tokens Output format to use when writing the structures (bit, byte, shortint, longint, real, double, string, text, rawtext, factor); default depends on the type of data structure
NBYTES = scalars Saves the number of bytes written to the file

4.2 Functions for calculations

Function name Description
ABS(x) the absolute value of x: |x|.
ACOS synonym of ARCCOS.
ANG synonym of ANGULAR.
ANGLE(y;x) inverse tangent of y/x, result in radians in range (-π,π].
ANGULAR(p) the angular transformation: for a percentage p (0 <= p < 100), forms
x = (180/π) × arcsin(sqrt(p/100)).
ARCCOS(x) inverse cosine of x, where -1 <= x <= 1.
ARCSIN(x) inverse sine of x, where -1 <= x <= 1.
ARCTAN(x) arctangent (inverse tangent) of x, result in radians.
AREA(y;x) numerically integrates the curve running through the points specified by variates y and x using the trapezoidal method.
ASIN synonym for ARCSIN.
ATAN synonym for ARCTAN.
BASE(i;n) column matrix with n rows, value one in row i and zero elsewhere.
BBELOW(t;n;m) provides a variate containing numbers of all the nodes below node n of tree t; if m=1 this gives only the terminal nodes below n, otherwise it includes internal nodes as well.
BBRANCHES(t;n) provides a variate containing the numbers of the branches taken on the path to node n in tree t (the result is of the same length as the results of BPATH, and includes a * as the final element, corresponding to n itself).
BDEPTH(t;x) calculates the depths of nodes x in tree t.
BETA(a;b;x) Beta function B(a,b) or, if x is set, regularized incomplete
Beta function $I(a, b, x)$.

modified Bessel function of the first kind $I_0(x)$.

modified Bessel function of the first kind $I_1(x)$.

Bessel function of the first kind $J_0(x)$.

Bessel function of the first kind $J_1(x)$.

modified Bessel function of the first kind $K_0(x)$.

modified Bessel function of the first kind $K_1(x)$.

modified Bessel function of the second kind $K_0(x)$.

modified Bessel function of the second kind $K_1(x)$.

modifies components of the RGB colour values in x.

provides the maximum node number in tree t.

provides the number of branches below nodes x in tree t (0 if n is a terminal node).

finds the numbers of the nodes on branches y from nodes x in tree t (or * for any terminal node).

provides the number of nodes in tree t.

sets values of x less than l to l, and values greater than u to u; missing values can be set in l or u to imply no boundary.

provides a variate containing the numbers of the nodes on the branch to node n in tree t (includes n itself as the final element).

finds the numbers of the nodes immediately above nodes x in tree t (or * for the root of the tree).

finds the numbers of the nodes immediately after nodes x in tree t in an standard branch-by-branch order that visits each node once (or * for the root of the tree).

finds the next terminal nodes after nodes x in tree t (or * for the node after the last terminal node).

Bessel function of the second kind $J_0(x)$.

Bessel function of the second kind $J_1(x)$.

Bessel function of the second kind $K_0(x)$.

Bessel function of the second kind $K_1(x)$.

Bessel function of the second kind $Y_0(x)$.

Bessel function of the second kind $Y_1(x)$.

Bessel function of the second kind $Y_n(x)$.

synonym of CONSTANTS.

synonym of EDCHI.

ceiling of x: returns for each value x_j of x the least integer i such that $i \times x_j$.

returns a variate giving the length of each line of text t: if c is omitted or set to 0 the length is the "raw" length (with no checking for any typesetting commands); if $c = 1$ it is the formatted length (taking account of typesetting commands, see 1.4.2 for their syntax); finally, if $c = -1$ it is the number of storage units ("bytes") required to store the text (standard characters like letters and digits require only one, more complicated characters like Chinese or Thai characters may require as many as four).

the Choleski decomposition of a symmetric matrix x: such that $x = LL^T$ where L is square with upper off-diagonal elements zero.

shifts the values of x, treating x as a circular stack. If s is omitted, values are shifted one to the right, as for $s=1$.

cumulative lower probability for a beta distribution with parameters a and b.

probability of j or fewer successes out of n binomial trials with probability of success p.

cumulative lower probability for a bivariate normal
4.2 Functions for calculations

CLCHISQUARE(x; df; c)
Cumulative lower probability for a non-central chi-square distribution with noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) chi-square distribution.

CLF(x; df1; df2; c)
Cumulative lower probability for a non-central F distribution with degrees of freedom df1 and df2, and noncentrality parameter c; if the fourth parameter c is omitted, it is assumed to be zero, giving the ordinary (central) F distribution.

CLGAMMA(x; k; t)
Cumulative lower probability for a gamma distribution with shape parameter k (kappa) and scale parameter t (theta).

CLHYPERGEOMETRIC(j; l; m; n)
Probability of j or fewer positive samples out of a total sample of size m from a population of size n of which l are positive (hypergeometric distribution).

CLINVNORMAL(x; m; l)
Cumulative lower probability for an inverse Normal (or inverse Gaussian) distribution with mean m and reciprocal dispersion parameter l (variance is m^3/l).

CLLOGNORMAL(x)
Cumulative lower probability for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1.

CLNORMAL(x; m; v)
Cumulative lower probability for a Normal distribution with mean m (default 0) and variance v (default 1).

CLOGLOG(p)
Takes the complementary log-log transformation of the percentages p (0 < p < 100%).

CLPOISSON(j; m)
Probability of value of j or less for a Poisson distribution with mean m.

CLSMMODULUS(x; df; n)
Cumulative lower probability for a Studentized maximum modulus distribution with degrees of freedom df and number of means n.

CLSRANGE(x; df; n)
Cumulative lower probability for a Studentized range distribution with degrees of freedom df and number of means n.

CLT(x; df; c)
Cumulative lower probability for a non-central Student's t distribution with degrees of freedom df and noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) t distribution.

CLUNIFORM(x; a; b)
Cumulative lower probability for a uniform distribution on [a,b].

COLBIND(x; y)
Joins matrices x and y side by side.

COLCENTRE(x)
Centres the columns of matrix x by subtracting their means.

COLMEANS(x)
Mean of the non-missing elements of each row of matrix x.

COLNOBSERVATIONS(x)
Number of non-missing elements in each column of matrix x.

COLSUMS(x)
Sum of the non-missing elements of each column of matrix x.

COL1(n)
Column matrix of 1's with n rows.

CONSTANTS(g)
Provides the value of various constants, according to the contents of g: e (for a string of 'e' or 'E'), π ('pi' or 'PI'), missing value ('**'), the conversion factor by which to multiply radians to get degrees ('degrees'), the conversion factor by which to multiply degrees to get radians ('radians') and the number ε defined as the smallest number such that the calculation 1+ε is detectable on the computer as greater than one ('epsilon').

CORRELATION(x; y)
If both x and y are specified, returns a scalar giving the correlation between the values of x and y; if y is omitted, forms a correlation matrix from a symmetric matrix x of sums of squares and products.
4 Syntax summary

CORORMAT synonym of CORRELATION.
COS(x) cosine of x, for x in radians.
COSH(x) hyperbolic cosine of x.
COV synonym of COVARIANCE.
COVARIANCE(x;y) returns a scalar giving the covariance between the values of x and y.
CPUTIME(x) returns a scalar containing the currently used cpu time in seconds (argument x is ignored).
CUBETA(x;a;b) cumulative upper probability for a beta distribution with parameters a and b.
CUBINOMIAL(j;n;p) probability of more than j successes out of n binomial trials with probability of success p.
CUBVARIATENORMAL(x;y;r) cumulative upper probability for a bivariate normal distribution with means 0, variances 1, and correlation r.
CUHISQUARE(x;df;c) cumulative upper probability for a non-central chi-square distribution with noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) chi-square distribution.
CUF(x;df1;df2;c) cumulative upper probability for a non-central F distribution with degrees of freedom df1 and df2, and noncentrality parameter c; if the fourth parameter c is omitted, it is assumed to be zero, giving the ordinary (central) F distribution.
CUGAMMA(x;k;t) cumulative upper probability for a gamma distribution with shape parameter k (kappa) and scale parameter t (theta).
CUHYPERGEOMETRIC(j;l;m;n) probability of more than j positive samples out of a total sample of size m from a population of size n of which l are positive (hypergeometric distribution).
CUINVNORMAL(x;m;l) cumulative upper probability for an inverse Normal (or inverse Gaussian) distribution with mean m and reciprocal dispersion parameter l (variance is m^2/l).
CULOGNORMAL(x) cumulative upper probability for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1.
CUM synonym of CUMULATE.
CUMULATE(x) forms the cumulative sum of the values of x; i.e. x_1, x_1+x_2, x_1+x_2+x_3, and so on.
CUNORMAL(x;m;v) cumulative upper probability for a Normal distribution with mean m (default 0) and variance v (default 1).
CUPOISSON(j;m) probability of a value greater than j for a Poisson distribution with mean m.
CUSMMODULUS(x;df;n) cumulative upper probability for a Studentized maximum modulus distribution with degrees of freedom df and number of means n.
CUSRANGE(x;df;n) cumulative upper probability for a Studentized range distribution with degrees of freedom df and number of means n.
CUT(x;df;c) cumulative upper probability for a non-central Student's t distribution with degrees of freedom df and noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) t distribution.
CUUNIFORM(x;a;b) cumulative upper probability for a uniform distribution on [a,b].
D synonym of DETERMINANT.
DATE(d;m;y) constructs the date value corresponding to day d, month m and year y.
DAY(x) the day of month corresponding to date-time value x.
4.2 Functions for calculations

DEGREES(x) converts angles x from radians to degrees.

DETERMINANT(x) the determinant of a square or symmetric matrix

DIAGONAL(x;b) form a diagonal matrix from a variate x, or takes diagonal of a square, symmetric or diagonal matrix x; b may be set if x is a matrix, to request a banded diagonal matrix of order b (returned as a square matrix with the values off the bands set to zero).

DIFFERENCE(x;s) forms the differences of x, i.e. $x_i - x_{i-1}$; if s is omitted, first differences are formed, as for $s=1$

DIGAMMA(x) digamma function of x, $\Psi(x)$.

DPRODUCT(x;y) direct or Kronecker product of matrices x and y: $x \otimes y$.

DSUM(x;y) direct sum of matrices x and y ($x \oplus y$); alternatively, if the second argument is omitted, x can be a pointer and the function then gives $x[1] \oplus x[2] \oplus ... \oplus x[n]$.

EDBETA (p;a;b) equivalent deviate corresponding to cumulative lower probability p for a beta distribution with parameters a and b.

EDBINOMIAL (p;n;bp) equivalent deviate corresponding to cumulative lower probability p for a binomial distribution with n trials and probability of success bp (returns the smallest integer x such that the probability of up to x successes is greater than or equal to p).

EDCHISQUARE (p;df;c) equivalent deviate corresponding to cumulative lower probability p for a non-central chi-square distribution with noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) chi-square distribution.

EDF (p;df1;df2;c) equivalent deviate corresponding to cumulative lower probability p for a non-central F distribution with degrees of freedom $df1$ and $df2$, and noncentrality parameter c; if the fourth parameter c is omitted, it is assumed to be zero, giving the ordinary (central) F distribution.

EDGAMMA (p;k;t) equivalent deviate corresponding to cumulative lower probability p for a gamma distribution with shape parameter k (kappa) and scale parameter t (theta).

EDHYPERGEOMETRIC (p;l;m;n) equivalent deviate corresponding to cumulative lower probability p for a hypergeometric distribution with samples of size m from a population of size n of which l are positive (returns the smallest integer x such that the probability of up to x successes is greater than or equal to p).

EDINVNORMAL (p;m;l) equivalent deviate corresponding to cumulative lower probability p for an inverse Normal (or inverse Gaussian) distribution with mean m and reciprocal dispersion parameter l (variance is m^2/l).

EDLOGNORMAL (p) equivalent deviate corresponding to cumulative lower probability p for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1.

EDNORMAL (p;m;v) equivalent deviate corresponding to cumulative lower probability p for a Normal distribution with mean m (default 0) and variance v (default 1).

EDPOISSON (p;m) equivalent deviate corresponding to cumulative lower probability p for a Poisson distribution with mean m (returns the smallest integer x such that the probability of up to x successes is greater than or equal to p).

EDSMODULUS (p;df;n) equivalent deviate corresponding to cumulative lower probability p for a Studentized maximum modulus
distribution with degrees of freedom df and number of means n.

EDSRANGE($p;df;n$) equivalent deviate corresponding to cumulative lower probability p for a Studentized range distribution with degrees of freedom df and number of means n.

EDT($p;df;c$) equivalent deviate corresponding to cumulative lower probability p for a non-central Student's t distribution with degrees of freedom df and noncentrality parameter c; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) t distribution.

EDUNIFORM($p;a;b$) equivalent deviate corresponding to cumulative lower probability p for a uniform distribution on $[a,b]$.

ELEMENTS($x;e1;e2$) forms a sub-structure of x. If x is a vector or a diagonal matrix, then only $e1$ should be specified; this then indicates the selected elements of x. If x is a rectangular matrix, then both $e1$ and $e2$ should be given, to specify respectively the selected rows and columns of x. For a symmetric matrix x, if the same rows and columns are to be selected (giving a symmetric matrix) then only $e1$ should be specified; otherwise both $e1$ and $e2$ should be given (and the result is a matrix).

EVALUES(x) eigenvalues of x (as a diagonal matrix).

EVECTORS(x) eigenvectors of x (as a rectangular matrix).

EXP(x) exponential: e^x.

EXPAND($x;s$) forms a variate of length s, containing zeroes and ones; if s is omitted and the length cannot be determined from the context, the length of the current units structure, if any, is taken. The values in x specify the numbers of the units that are to contain the value 1.

FACTORIAL(x) factorial of x ($x!$): the values in x must be non-negative, missing values are given for results that are too large to be stored.

FED synonym of **EDF**.

FLOOR(x) floor of x: returns for each value x_j of x the largest integer i such that $i \leq x_j$.

FPROBABILITY synonym of **CLF**.

FRACTION(x) fractional part of x i.e. $x - \text{INTEGER}(x)$.

FRATIO synonym of **CLF**.

GAMMA($a;x$) Gamma function, $\Gamma(a)$ for $a > 0$ or, if x is set, lower incomplete Gamma function $\gamma(a,x)$.

GCONSTANTS(g) provides type numbers of Genstat data structures. The string g can therefore be either 'scalar', 'factor', 'text', 'variate', 'matrix', 'diagonalmatrix', 'symmetricmatrix', 'table', 'asave', 'tsave', 'expression', 'formula', 'dummy', 'pointer', 'lrv', 'sspm', 'tsm', 'rsave', 'tree', or 'vsave'.

GETFIRST(g) gives a variate containing the position of the first non-space character in each string of the text g.

GETLAST(g) gives a variate containing the position of the last non-space character in each string of the text g.

GETPOSITION($g1;g2;x$) for each unit, if the string in the text $g2$ occurs as a substring of the string in the text $g1$, this returns the position at which the substring starts; otherwise it returns the value zero. The text $g2$ may contain a single string (to be checked against every string of $g1$). The structure x (scalar or variate) supplies a logical value to indicate whether to ignore the case of any letters; if x is omitted, the logical is assumed to be false (case
4.2 Functions for calculations

GINVERSE(x) Moore-Penrose generalized inverse of x.

GRAY(x) calculates RGB colour values for the values on the gray (grey) scale in x.

GRBETA(n;a;b) generates n pseudo-random numbers from a Beta distribution with parameters a and b.

GRBINOMIAL(n;t;p) generates n pseudo-random numbers from a Binomial distribution with t trials and probability p.

GRCISQUARE(n;df;c) generates n pseudo-random numbers from a chi-square distribution with degrees of freedom df and non-centrality parameter c (default $c=0$).

GREEN(x) calculates the green components of the RGB colour values in x.

GREY(x) calculates RGB colour values for the values on the gray (grey) scale in x.

GRF(n;df1;df2;c) generates n pseudo-random numbers from an F distribution with $df1$ and $df2$ degrees of freedom, and non-centrality parameter c (by default $c=0$).

GRGAMMA(n;k;t) generates n pseudo-random numbers from a Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).

GRHYPERGEOMETRIC(n;l;m;p) generates n pseudo-random numbers from a Hypergeometric distribution representing the number of positive values or successes in samples of size m from a population of size p of which l are positive.

GRLNORMAL(n;m;v) generates n pseudo-random numbers from a lognormal distribution such that log(x) has a Normal distribution with mean m and variance v.

GRNORMINAL(n;m;v) generates n pseudo-random numbers from a Normal distribution with mean m (default 0) and variance v (default 1).

GRPOISSON(n;m) generates n pseudo-random numbers from a Poisson distribution with mean m.

GRSAMPLE(n; v; p) forms a variate of size n by sampling with replacement from variate v with probabilities (or relative weights) p; if p is omitted, the probabilities are assumed to be equal; if v is omitted, sampling is from a variate containing the integers $1...n$.

GRSELECT(n; v; r) forms a variate of size n by sampling from a population defined as NEXPAND(r; v); if r is omitted, the population contains just one of each element of v; if v is omitted, sampling is from a variate containing the integers $1...n$.

GRT(n;df;c) generates n pseudo-random numbers from a Student's t distribution with degrees of freedom df and non-centrality parameter c (default $c=0$).

GRUNIFORM(n;a;b) generates n pseudo-random numbers from a uniform distribution on $[a,b]$.

HOURS(x) the number of hours during the day corresponding to x (i.e. the number of hours recorded on a 24 hour clock at date-time value x).

I synonym of INVERSE.

IANGULAR(x) gives the inverse of the angular transformation (result in percentages).

ICLOGLOG(x) gives the inverse of the complementary log-log transformation (result in percentages).

IDENTITY(n) identity matrix of order n (returned as a diagonal matrix).

ILOGIT(x) gives the inverse of the logit transformation (result in percentages).
INT synonym of INTEGER.

INTEGER(x) integer part of x: \([x]\).

INV synonym of INVERSE.

INVERSE(x) the inverse of a non-singular, symmetric or diagonal matrix x.

IMBEQUALIZE(r; l; u) performs histogram equalization of brightness of RGB image in matrix r; scalar l specifies the lower threshold and scalar h specifies the upper threshold.

IMBLUR(r; b) blurs the RGB image in matrix r by the amount specified in scalar b (0<b<100; default 2).

IMCEQUALIZE(r; l; u) performs an independent histogram equalization of colours in RGB image in matrix r; scalars l and h specify the lower and upper threshold.

IMBRIGHTNESS(r; l; h; m) modifies brightness of the RGB image in matrix r, setting pixels in each channel with brightness less than l (default 0) to 0 and those brighter than h (default 255) to 255; m defines mode of adjustment (default 0 stretches brightness and 1 distributes brightness evenly across the range).

IMBSTRETCH(r; l; u; m) performs a histogram stretch of brightness in RGB image in matrix r; scalar l (default 0) specifies percentage of pixels to set to 0 (i.e. black), scalar h (default 0) specifies percentage of pixels to set to white, and scalar m (0≤m≤255; default 128) specifies the colour value in each channel to be set to the middle intensity.

IMCONTRAST(r; c; b) modifies contrast and brightness of RGB image in matrix r; c (-1≤c≤1; default 0 i.e. no adjustment) defines adjustment to the contrast, and b (-1≤b≤1; default 0 i.e. no adjustment) defines adjustment to the brightness.

IMCREPLACE(r; c; d; t) replaces colour c in RGB image in matrix r with colour d, using tolerance t (default 0).

IMCSTRETCH(r; l; h; m) performs a histogram stretch of the individual colours in RGB image in matrix r; scalar l (default 0) specifies percentage of pixels to set to 0 (i.e. black), scalar h (default 0) specifies percentage of pixels to set to white, and scalar m (0≤m≤255; default 128) specifies the colour value in each channel to be set to the middle intensity.

IMDESPECKLE(r) despeckles the RGB image in matrix r.

IMELLIPSE(r; cx; cy; hr; vr; c; cf; p) draws an ellipse with centre (cx, cy), horizontal radius hx (default 40), vertical radius vr (default 40), colour cl, fill colour cf (default 0) and opacity p (0≤p≤1, where 0 is transparent and default of 1 is solid) on RGB image in matrix r.

IMEMBOSS(r; b; t; a; e; d) embosses RGB image in matrix r; matrix b specifies a "bump map" defining the peaks and valleys in the output image (typically this is a grey scale version of r); matrix t defines the texture to apply to the input matrix; scalar a gives the angle of the light source in radians; scalar e is the elevation of the light source in radians; scalar d defines the depth of the effect.

IMGAMMA(r; g) applies gamma correction g (g≥0; default 1.5) to the brightness of RGB image in matrix r; g<1 decreases brightness, and g>1 increases brightness.

IMGBLUR(r; s) applies a Gaussian blur with standard deviation s to RGB image in matrix r.

IMGRAYSCALE(r) or IMGREYSCALE(r) convert RGB image in matrix r to grey scale.

IMHFLIP(r) performs a horizontal flip on RGB image in matrix r.
4.2 Functions for calculations

IMLINE\((r; x_1; y_1; x_2; y_2; c) \) draws a line from point \((x_1, y_1)\) to \((x_2, y_2)\) in colour \(c\) on RGB image in matrix \(r\).

IMCONVOLUTION\((r; f; i; cr; cg; cb; m) \) applies the convolution filter in matrix \(f\) to RGB image in matrix \(r\); scalar \(i\) (default 1) defines intensity parameter; scalars \(cr\), \(cg\) and \(cb\) contain 0 or 1 (default) according to whether red, green and blue channels, respectively, are to be modified. If mode defined by scalar \(m\) is 0 (default), the new value at each point is \(i\) multiplied by the sum of the values at the point and nearby points multiplied by the convolution matrix. Alternatively, if \(m=1\) (default), the new value at each point is the current value at the point minus \(i\) multiplied by the sum of the values at the point and nearby points multiplied by the values in the convolution matrix.

IMMEDIANFILTER\((r) \) performs a median filter on the RGB image in a matrix \(r\).

IMOVERLAY\((rt; rb; m; mp; p; x; y) \) overlays RGB image in matrix \(rt\) over RGB image in matrix \(rb\); \(m\) controls how images are blended (0 = fast blend, 1 = slower, more accurate blend, 2 = pixels combined with logical AND, 3 = pixels combined with logical OR, 4 = pixels combined with logical XOR, 5 = output pixel is maximum of top and bottom as in Photoshop "Lighten", 6 = output pixel is minimum of top and bottom as in Photoshop "Darken", 7 = output pixel is sum of top and bottom, 8 = output pixel is difference of top and bottom, 9 = if top > mp, output top, 10 = if top < mp, output top, 11 = absolute value of the difference of top and bottom, 12 = take top × bottom / maximum component, 13 = take top × bottom × ModeParameter / maxComponent, 14 = screen, 15 = define bottom to be bottom + top - mp, 16 = define bottom to bottom - top - mp, 17 = pixels combined with logical NAND, 18 = pixels combined with logical NOR, 20 = color dodge, 21 = color burn, 22 = soft dodge, 23 = soft burn, 24 = Photoshop "overlay", 25 = soft light, 26 = hard light, 27 = XFader reflect, 28 = XFader glow, 29 = XFader freeze, 30 = XFader heat; \(p\) defines the opacity of the blended image; and \((x, y)\) specifies the position of bottom left-hand corner of the top image on the bottom image.

IMPUSH\((r; x_1; y_1; x_2; y_2) \) applies a point-to-point warp on RGB image in matrix \(r\), "pushing" point \((x_1, y_1)\) to \((x_2, y_2)\).

IMRECTANGLE\((r; x_1; y_1; x_2; y_2; c) \) colours rectangle with bottom left corner \((x_1, y_1)\) and top right corner \((x_2, y_2)\) in RGB image in matrix \(r\) to be colour \(c\).

IMROTATE\((r; a; b) \) rotates RGB image in matrix \(r\); \(a\) is the angle in radians (default \(\pi/2\)); \(b\) is the background colour to put into the (blank) corners.

IMSATURATE\((r; s) \) adjusts the saturation level of RGB image in matrix \(r\) according to the value of scalar \(s\) (default 1.1): when \(s>1\) the saturation is increased, when \(0<s<1\) saturation is decreased, and when \(s<0\) photo-negative is generated.

IMSHARPEN\((r; s) \) sharpens RGB image in matrix \(r\) by the amount specified in scalar \(s\) (0\(<s\)<100; default 2).

IMSIZE\((r; w; h; m) \) changes the size of RGB image in matrix \(r\) to have width \(w\) and height \(h\); \(m\) selects the algorithm to use to assign colours in the new image: 0 = box filter, 1 = triangle filter, 2 = Hamming filter, 3 = Gaussian filter, 4 = bell filter, 5 = B-spline filter, 6 = cubic 1 filter, 7 = cubic 2 filter, 8 = Lanczos3 filter, 9 = Mitchell filter, 10 = sinc filter, 11 = Hermite filter, 12 = Hanning filter, 13 = Catrom filter, 14 = fast area-average, 15 =...
area-average, 16 = bi-linear interpolation, 17 (default) = bi-
cubic interpolation, 18 = nearest neighbour.

IMSSTRETCH(r;l;h;m) performs a histogram stretch of the saturation in RGB image in
matrix r; scalar l (default 0) specifies percentage of pixels to
set to 0 (i.e. black), scalar h (default 0) specifies percentage of
pixels to set to white, and scalar m (0 ≤ m ≤ 255; default 128)
specifies the colour value in each channel to be set to the
middle intensity.

IMSTEXT(r;st;c;fh;y1;x1;y2;x2;ft;tr;sm) draws the text in string st with height fh, font
ft, colour c, transparency tr and smoothness sm (sm=1 for
none, or 2 or 4) within the bounding rectangle with top left
corner at (x1, y1) and bottom right corner at (x2, y2) on RGB
image in matrix r.

IMTEXT(r;st;c;fh;y1;x1;y2;x2;ft) draws the text in string st with height fh, font ft and
colour c within the bounding rectangle with top left corner at
(x1, y1) and bottom right corner at (x2, y2) on RGB image in
matrix r.

IMUNSHARPEN(r;t;a;s) applies an unsharp mask to RGB image in matrix r:
this first applies a Gaussian blur with standard deviation s; it then finds
the difference between pixels in the blurred image and in the
original and, if this is greater than t in each channel, it adds
the amount specified by scalar a multiplied by the difference
from the original value.

IMVFLIP(r) performs a vertical flip on RGB image in a matrix r.

IMXSHEAR(r;x;b) shears RGB image in matrix r by moving the top of the image
|x| pixels to the right (x>0) or left (x<0); the blank parts of the
new image are given (background) colour b.

IMYSHEAR(r;y;b) shears RGB image in matrix r by moving the right-hand side
of the image |y| pixels up or down; the blank parts of the new
image are given (background) colour b.

IM3CONVOLUTION(r;f;i;cr;cg;cb;d) applies convolution filter in the 3×3 matrix f to RGB
image in matrix r; scalar i (default 1) defines intensity
parameter; scalars cr, cg and cb contain 0 or 1 (default)
according to whether red, green and blue channels,
respectively, are to be modified. If the "feedback" defined by
scalar d is 0 (default), the new value at each point is i
multiplied by the sum of the values at the point and nearby
points multiplied by the convolution matrix. Alternatively, if
d=i (default), the new value at each point is calculated by
taking (1−i) multiplied by the current value at the point, and
then subtracting i multiplied by the sum of the values at the
point and nearby points multiplied by the values in the
convolution matrix.

IPROBIT(x) gives the inverse of the probit transformation (result in
percentages).

KRONECKER synonym for DPRODUCT.

KURTOSIS(x) kurtosis of the non-missing values in x.

LEAPYEAR(x) returns 1 if the year corresponding to date-time value x is a
leap year, 0 otherwise.

LEVELS(f) forms a variate containing the levels of the factor f.

LLB synonym of LLBINOMIAL.

LLBINOMIAL(x;n;p) log-likelihood function for the Binomial distribution; n is the
sample size and p the mean proportion (or the probability).

LLG synonym of LLGAMMA.

LLGAMMA(x;k;t) log-likelihood function for the Gamma distribution with shape
parameter k (kappa) and scale parameter t (theta).
4.2 Functions for calculations

LLN

synonym of LLNORMAL.

LLNORMAL(x;m;v)

log-likelihood function for the Normal distribution; m is the mean and v the variance.

LGP

synonym of LLP.

LLPOISSON(x;m)

log-likelihood function for the Poisson distribution; m is the mean.

LNFACORIAL (x)

log of x! for non-negative integer values x.

LNGAMMA(x)

log-Gamma function, log_e(Γ(x)), for x > 0.

LOG(x)

natural logarithm of x, for x > 0.

LOG10(x)

logarithm to base 10 of x, for x > 0.

LOGIT(p)

takes the logit transformation log(p/(1-p)) of the percentages p (0 < p < 100%).

LSVECTORS(x)

matrix of vectors from the left-hand side of a singular-value decomposition of x.

LTPRODUCT(x;y)

left transposed product of x and y: a more efficient way of calculating TRANSPOSE(x)*y.

LTRIANGLE (m;d)

returns the lower triangle of square matrix m, as a square matrix with the upper triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.

MAT0

synonym of MZERO.

MAT1(r;c)

matrix of ones of size r by c.

MAX

synonym of MAXIMUM.

MAXIMUM(x)

finds the maximum of the values in x.

MAXPOSITION(x)

finds the position of the first instance of the maximum value within x. For a variate this is the number of the unit containing the maximum. For a matrix the row of the maximum value can then be calculated as

row = INTEGER((MAXPOSITION(x)-1)/NROWS(x)) + 1

and the column as

col = MAXPOSITION(x) - NROWS(x)*(row-1)

For a symmetric matrix, the column is

col = INTEGER((SQRT(8*MAXPOSITION(x)+1)+1)/2)

and the row is

row = MAXPOSITION(x) - col*(col-1)/2

MBASE(r;c;i;j)

matrix of size r by c which is zero, except for position(s) i,j which are set to one.

MCENTRE (m)

doubly centres the matrix m so that its rows and columns have mean zero.

MEAN(x)

forms the mean of the values of x.

MED

synonym of MEDIAN.

MEDIAN(x)

finds the median of the values in x.

MEXP(m)

calculates the matrix exponential of m.

MFRACTION(x;p;m)

returns the period within a month that date-time value x belongs to; p is the length of the period (e.g. 5 for pentade, 10 for decade), and m is the starting month (default 1).

MIN

synonym of MINIMUM.

MINIMUM(x)

finds the minimum of the values in x.

MINPOSITION(x)

finds the position of the first instance of the minimum value within x. For a variate this is the number of the unit containing the minimum. For a matrix the row of the minimum value can then be calculated as

row = INTEGER((MINPOSITION(x)-1)/NROWS(x)) + 1

and the column as

col = MINPOSITION(x) - NROWS(x)*(row-1)

For a symmetric matrix, the column is

col = INTEGER((SQRT(8*MINPOSITION(x)+1)+1)/2)

and the row is
row = MINPOSITION(x) - col*(col-1)/2

inserts matrix m into matrix x, putting its top-left element into row i and column j of x; elements of m that are defined to lie outside x are ignored.

MINUTES(x)
the number of minutes during the hour corresponding to x (i.e. the number of minutes recorded on a clock at date-time value x).

MODULO(x; y)
Form modulus of x to base y.

MONTH(x)
the month corresponding to date-time value x.

MPOWER(m; n)
raises matrix m to the n’th power.

MSQRT(m)
calculates the matrix square root of m.

MVINSERT(x; y)
replaces values in x by missing value wherever the second identifier stores a non-zero value (logical .TRUE.).

MVREPLACE(x; y)
replaces missing values in x with the values in the corresponding units of y.

MZERO(r; c)
zero matrix of size r by c.

NCOLUMNS(x)
gives the number of columns of x.

NCOMBINATIONS(n; r)
number of combinations nC_r of r objects taken from a set of size n.

NDAYINYEAR(x; m)
the number of the day in year corresponding to date-time value x, and starting the year at the beginning of month m (default 1).

NED
synonym of EDNORMAL.

NEWLEVELS(f; x)
forms a variate from the factor f; the variate x defines a value for each level and should be the same length as the number of levels of the factor; if the second argument x is omitted, the ordinals (1, 2...) are given.

NEXPAND(n; v)
expands structure v to repeat each value the number of times specified by the corresponding element of n.

NLEVELS(f)
gives the number of levels of factor f.

NMISSING(x)
counts the number of missing values in x.

NORMAL
synonym of CLNORMAL.

NOW(x)
returns a scalar containing the current date and time (argument x is ignored).

NPERMUTATIONS(n; r)
number of permutations nP_r of r objects taken from a set of size n.

NROWS(x)
gives the number of rows of x.

NVVALUES(x)
gives the number of values of x including missing values and taking account of any restriction.

NVRESTRICTED(x)
synonym of NVVALUES.

NVUNRESTRICTED(x)
number of values of x ignoring any restriction (i.e. gives the full “length” of x).

NWEKINYEAR(x; s)
number of the week through the year for date-time value x. The default setting for s is 'iso'; this uses the definition of ISO Standard IS-8601 (1988) in which any week (starting on Monday) that lies in more than one year is assigned a week number for the year in which most of its days occur. The alternative setting, 'simple', takes the first week of the year as the one containing 1st January.

OWN(x; 'name'; p1; p2...pn)
calls an external function with data in a variate x and n scalar parameters; the function is in a DLL defined by the EXTERNAL directive.

PAREA(y; x)
area of a polygon with vertices specified by y and x.

PERCENTILES(x; p)
percentiles (defined in variate p) of the values of x.

POSITION(x; y)
finds the position, within the vector y, of each value of x.

PRBETA(x; a; b)
probability density function for a beta distribution with
4.2 Functions for calculations

parameters \(a \) and \(b \).

\[
\text{PRBINOMIAL}(j;n;p) \quad \text{probability of } j \text{ successes out of } n \text{ binomial trials with probability of success } p.
\]

\[
\text{PRCHISQUARE}(x;df;c) \quad \text{probability density function for a non-central chi-square distribution with noncentrality parameter } c; \text{ if the third parameter } c \text{ is omitted, it is assumed to be zero, giving the ordinary (central) chi-square distribution.}
\]

\[
\text{PRF}(x;df1;df2;c) \quad \text{probability density function for a non-central F distribution with degrees of freedom } df1 \text{ and } df2, \text{ and noncentrality parameter } c; \text{ if the fourth parameter } c \text{ is omitted, it is assumed to be zero, giving the ordinary (central) F distribution.}
\]

\[
\text{PRGAMMA}(x;k;t) \quad \text{probability density function for a gamma distribution with shape parameter } k \text{ (kappa) and scale parameter } t \text{ (theta).}
\]

\[
\text{PRHYPERGEOMETRIC}(j;l;m;n) \quad \text{probability of } j \text{ successes out of a sample of } m \text{ from a population of size } n \text{ of which } l \text{ are positive (hypergeometric distribution).}
\]

\[
\text{PRINVNORMAL}(x;m;l) \quad \text{probability density function for an inverse Normal (or inverse Gaussian) distribution with mean } m \text{ and reciprocal dispersion parameter } l \text{ (variance is } m^3/4).
\]

\[
\text{PRLOGNORMAL}(x) \quad \text{probability density function for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1.}
\]

\[
\text{PRNORMAL}(x;m;v) \quad \text{probability density function for a Normal distribution with mean } m \text{ (default 0) and variance } v \text{ (default 1).}
\]

\[
\text{PROBIT}(p) \quad \text{takes the probit transformation of the percentages } p \text{ (} 0 < p < 100\%). \text{ This is equal to the Normal equivalent deviate of } p/100.
\]

\[
\text{PRODUCT}(x;y) \quad \text{forms the matrix product of } x \text{ and } y \text{ (that is } x *+ y)\).
\]

\[
\text{PRPOISSON}(j;m) \quad \text{probability of the value } j \text{ for a Poisson distribution with mean } m.
\]

\[
\text{PRSMMODULUS}(x;df;n) \quad \text{probability density function for a Studentized maximum modulus distribution with degrees of freedom } df \text{ and number of means } n.
\]

\[
\text{PRSRANGE}(x;df;n) \quad \text{probability density function for a Studentized range distribution with degrees of freedom } df \text{ and number of means } n.
\]

\[
\text{PRT}(x;df;c) \quad \text{probability density function for a non-central Student's t distribution with degrees of freedom } df \text{ and noncentrality parameter } c; \text{ if the third parameter } c \text{ is omitted, it is assumed to be zero, giving the ordinary (central) t distribution.}
\]

\[
\text{PRUNIFORM}(p;a;b) \quad \text{probability density function for a uniform distribution on } [a,b].
\]

\[
\text{QPRODUCT}(x;y) \quad \text{forms the quadratic product of } x \text{ and } y \text{ (that is } x *+ y *+ \text{TRANSPOSE}(x)), \text{ where } x \text{ is a rectangular matrix or variate and } y \text{ is a symmetric or diagonal matrix or a scalar.}
\]

\[
\text{QTPRODUCT}(x;y) \quad \text{quadratic matrix product of } x /c78 \text{ and } y \text{ (that is } \text{TRANSPOSE}(x) *+ y *+ x), \text{ where } x \text{ is a rectangular matrix or variate and } y \text{ is a symmetric or diagonal matrix or a scalar.}
\]

\[
\text{QUANTILES}(x;q) \quad \text{quantiles (defined in variate } q) \text{ of the values of } x.
\]

\[
\text{RADIANS}(x) \quad \text{converts angles } x \text{ from degrees to radians.}
\]

\[
\text{RANGE}(x) \quad \text{range of values in } x, \text{ i.e. MAX}(x) - \text{MIN}(x).
\]

\[
\text{RANKS}(x) \quad \text{ranks of the values in } x.
\]

\[
\text{RED}(x) \quad \text{calculates the red components of the RGB colour values in } x.
\]

\[
\text{REPLACE}(x;y;z) \quad \text{searches } x \text{ for all occurrences of each value in } y, \text{ and replaces them with the corresponding value from } z.
\]

\[
\text{RESTRICTION}(x) \quad \text{forms a variate with the value 1 in the units to which } x \text{ is currently restricted.}
\]
4 Syntax summary

REVERSE(x) reverses the values of x.

RGB(x;y;z) calculates RGB colour values from the red, green and blue components in \(x, y \) and \(z \), respectively; these components must all be between 0 and 255.

RGB(t) gives the RGB colour values of the standard Genstat colours in text \(t \). The text can contain the string 'match' in its second and subsequent units, to repeat the colour in the previous unit. It can also contain strings made up of three pairs of hexadecimal digits (00-FF) prefixed by '#', 0x or 0X: i.e. '#rgb', '0xrgb' or '0Xrgb' where rgb are pairs of hexadecimal digits 00-FF that define the red, green and blue intensities of the colour respectively.

RMEANS(x;p;q) running means of \(x \) using a window around each unit that includes \(p \) preceding and \(q \) succeeding observations; \(p \) must be set, default for \(q \) is 0.

RNOBSERVATIONS(x;p;q) number of observations contributing to the computation of a running mean or total involving \(p \) preceding and \(q \) succeeding observations about each unit of \(x \); \(p \) must be set, default for \(q \) is 0.

ROUND(x) rounds the values of \(x \) to the nearest integer.

ROWBIND(x;y) joins matrices \(x \) and \(y \) vertically (i.e. stacks \(y \) below \(x \)).

ROWCENTRE(x) centres the rows of matrix \(x \) by subtracting their means.

ROWMEANS(x) mean of the non-missing elements of each row of matrix \(x \).

ROWNOBSERVATIONS(x) number of non-missing elements in each row of matrix \(x \).

ROWSUMS(x) sum of the non-missing elements of each row of matrix \(x \).

ROW1(n) row matrix of 1's with \(n \) columns.

RQOBJECTIVE(y;d;p;t) returns the objective function from fitting a quantile linear regression with a response variate \(y \), a design matrix \(d \), a probability value specified by the scalar \(p \), and using a tolerance defined by the scalar \(t \); if the fourth argument is omitted, a default tolerance of \(10^{-12} \) is used.

RSVECTORS(x) matrix of vectors from the right-hand side of a singular-value decomposition of \(x \).

RTOTALS(x;p;q) running totals of \(x \) using a window around each unit that includes \(p \) preceding and \(q \) succeeding observations; \(p \) must be set, default for \(q \) is 0.

RTPRODUCT(x;y) forms the right transposed product of \(x \) and \(y \) (that is \(x^* \) \(TRANSPOSE(y) \)).

RUNS(x) length of run of identical values up to each unit in \(x \).

SD(x) standard deviation of the non-missing values in \(x \).

SECONDS(x) the number of seconds (including fraction of seconds) during the minute corresponding to date-time value \(x \).

SEMEAN(x) standard error of the mean of the non-missing values in \(x \).

SET(x) returns a scalar logical value containing the values 1 or 0 according to whether or not dummy \(x \) is set (i.e. the opposite of the function UNSET).

SHIFT(x;s) shifts the values of \(x \) by \(s \) places (to the right or left according to the sign of \(s \)). This is not a circular shift, so some positions lose their values and are given missing values.

SIGN(x) sign of \(x \) (-1, 0 or 1 for \(x < 0 \), \(x = 0 \) or \(x > 0 \) respectively).

SIN(x) sine of \(x \) for \(x \) in radians.

SINH(x) hyperbolic sine of \(x \).

SKEWNESS(x) skewness of the non-missing values in \(x \).

SOLUTION(x;y) finds the solution \(b \) of the set of simultaneous linear equations \(x \cdot b = y \).

SORT(x;y) sorts the elements of \(x \) into the order that would put the values
of \(y \) into ascending order; if \(y \) is omitted, the values of \(x \) are sorted.

\[
\begin{align*}
\text{SQRT}(x) & \quad \text{gives the square root of } x \,(x \geq 0). \\
\text{SSPLINE}(y;x;\text{df};p) & \quad \text{fits a smoothing-spline of } y \text{ on } x, \text{ with } \text{df} \text{ degrees of freedom or (if } \text{df} \text{ is missing) smoothing parameter } p. \\
\text{STANDARIZE}(x) & \quad \text{standardizes } x \text{ to } (x-\text{MEAN}(x))/\text{SD}(x). \\
\text{SUBMAT}(x) & \quad \text{forms sub-triangles or sub-rectangles of a rectangular or symmetric matrix. The rows and columns to be included are determined by matching the pointers indexing the resultant matrix with the pointers indexing } x. \quad (\text{SUBMAT does not allow for indexing by variates or texts.}) \\
\text{SUM}(x) & \quad \text{forms the sum of the values in } x \,(\text{synonym TOTAL}). \\
\text{SVALUES}(x) & \quad \text{singular values of } x \,(\text{as a diagonal matrix}). \\
\text{T} & \quad \text{synonym of TRANSPOSE.} \\
\text{TAN}(x) & \quad \text{tangent of } x, \text{ for } x \text{ in radians.} \\
\text{TANH}(x) & \quad \text{hyperbolic tangent of } x. \\
\text{TCOLUMN}(t) & \quad \text{converts one-way table } t \text{ into a matrix with a single column.} \\
\text{TDIAGONAL}(t) & \quad \text{converts one-way table } t \text{ into a diagonal matrix.} \\
\text{TIME}(h;m;s) & \quad \text{constructs the time value (days and fractions of days) corresponding to } h \text{ hours, } m \text{ minutes and } s \text{ seconds.} \\
\text{TKURTOSIS}(x) & \quad \text{forms margins containing the kurtosis of the cells in table } t. \\
\text{TMATRIX}(t;f_1;f_2) & \quad \text{converts two-way table } t \text{ into a matrix, with classifying factor } f_1 \text{ corresponding to the rows, and classifying factor } f_2 \text{ corresponding to the columns.} \\
\text{TMAXIMA}(t) & \quad \text{forms margins of maxima for table } t. \\
\text{TMEANS}(t) & \quad \text{forms margins of means for table } t. \\
\text{TMEDIANs}(t) & \quad \text{forms margins of medians for table } t. \\
\text{TMINIMA}(t) & \quad \text{forms margins of minima for table } t. \\
\text{TNMV}(t) & \quad \text{forms margins counting the numbers of missing values in table } t. \\
\text{TNOBSERVATIONS}(t) & \quad \text{forms margins counting the numbers of observations (non-missing) values in table } t. \\
\text{TNVALUES}(t) & \quad \text{forms margins counting the numbers of values (missing or non-missing) in table } t. \\
\text{TOTAL}(x) & \quad \text{forms the total of the values in } x \,(\text{synonym SUM}). \\
\text{TPROJECT}(t) & \quad \text{converts table } t \text{ into a variate, using the values of its classifying factors to determine which value of the table to put into each unit of the variate.} \\
\text{TRACE}(x) & \quad \text{calculates the trace of the square, diagonal, or symmetric matrix } x \,(\text{that is the sum of all its diagonal elements}). \\
\text{TRANSPOSE}(x) & \quad \text{forms the transpose of a rectangular matrix } x. \\
\text{TRIGAMMA}(x) & \quad \text{trigamma function of } x. \\
\text{TROW}(t) & \quad \text{converts one-way table } t \text{ into a matrix with a single row.} \\
\text{TSD}(t) & \quad \text{forms margins of between-cell standard deviations for table } t. \\
\text{TSEMEANS}(t) & \quad \text{forms margins of standard errors for between-cell means of table } t. \\
\text{TSKKNWESS}(x) & \quad \text{forms margins containing the skewness of the cells in table } t. \\
\text{TSUMS} & \quad \text{synonym of TTOTALS.} \\
\text{TTOTALS}(t) & \quad \text{forms margins of totals for table } t. \\
\text{TVARANCES}(t) & \quad \text{forms margins of between-cell variances for table } t. \\
\text{TVVECTOR}(t; s; p) & \quad \text{copies the values from table } t \text{ into a variate. The scalar } s \text{ is zero if the margins of the table are to be omitted, or a non-zero (and non-missing) value if they are included. The pointer } p \text{ contains the classifying factors of the table, defining the order in which the values are to be copied; this can be omitted if } t \text{ is a one-way table. If margins are not to be included from a one-}
\end{align*}
\]
520 4 Syntax summary

way table, s can also be omitted.

TYPE(x) gives the type number of the data structure x.
UNIQUE(x) the unique values in x.
UNSET(d) returns a scalar logical value according to whether or not the dummy d is set.
URAND(seed;s) provides s uniform pseudo-random numbers in the range (0,1). If s is not supplied and URAND cannot determine the length of the result from the context of the expression, the length of the current units structure (if any) is taken. Scalar seed initializes the generator. If zero in the first use of URAND in a job, the system clock is used to provide a seed; subsequent calls may use zero to continue the sequence of random numbers.
UTRIANGLE (m;d) returns the upper triangle of square matrix m; as a square matrix with the lower triangular set to zero; putting d=1 (default) indicates that the diagonal is to be included, while putting d=0 excludes the diagonal.

VAR synonym of VARIANCE.
VARIANCE(x) gives the variance of the values in x.
VCORRELATION(p1;p2) gives the correlation, at every unit, between the values of the corresponding structures in the pointers p1 and p2.
VCOVARIANCE(p1;p2) gives the covariance, at every unit, between the values of the corresponding structures in the pointers p1 and p2.
VEC(x) stacks columns of a matrix x into a single variate (VEC operator).
VECH(x) stacks columns of the lower triangle of a matrix x (VECH operator).
VKURTOSIS(x) kurtosis of the non-missing values in each unit of the variates (or scalars) in pointer p.
VMAXIMA(p) finds the maximum of the values in each unit of the variates (or scalars) in pointer p.
VMEANS(p) gives the mean of the non-missing values in each unit of the variates (or scalars) in pointer p.
VMEDIANS(p) finds the median of the values in each unit of the variates (or scalars) in pointer p.
VMINIMA(p) finds the minimum of the values in each unit of the variates (or scalars) in pointer p.
VNVALUES(p) gives the number of values in each unit of the variates (or scalars) in pointer p: that is the number of values of p.
VPERCENTILES(p;s) calculates percentiles for the value supplied in scalar s, across the set of variates in pointer p.
VPOSITIONS(x;p) gives the suffix of the first vector in the pointer p containing the value in each unit of the variate or text x.
VQUANTILES(p;s) calculates quantiles for the probability supplied in scalar s, across the set of variates in pointer p.
VRANGE(p) range of values within the units of the variates in pointer p.
VSD(x) standard deviation of the non-missing values in each unit of the variates (or scalars) in pointer p.
VSEMEANS(x) standard error of the mean of non-missing values in each unit of the variates (or scalars) in pointer p.
VSKEWNESS(x) skewness of the non-missing values in each unit of the variates (or scalars) in pointer p.
VSUMS(p) gives the sum of the non-missing values in each unit of the
4.2 Functions for calculations

VTOTALS (p)
gives the total of the non-missing values in each unit of the variates (or scalars) in pointer p (synonym VTOTALS).

VVARIANCES (p)
gives the variance of the non-missing values in each unit of the variates (or scalars) in pointer p.

WEEKDAY (x)
the day of the week (where Monday is weekday 1) corresponding to data-time value x.

WHERE (x)
produces a variate listing the units of x that are logically true (i.e. non-zero).

WHICH (x)
synonym of WHERE.

YEAR (x)
the year corresponding to date-time value x.

4.3 Functions for model formulae

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPARISON (f; s; m)</td>
<td>estimates the comparisons amongst the levels of factor f specified by the first s rows of the matrix m. In regression models, the first argument may be a variate instead of a factor; COMP (v; s; m) then fits a set of associated variates stored in the first s rows of the rows of the matrix m. In either case, the comparisons define explanatory variates to be included in the regression, and their parameter estimates are the resulting regression coefficients. In TREATMENTSTRUCTURE formulae (specifying a model for analysis-of-variance), the parameter estimates are the estimates of the comparisons themselves (i.e. m^*+e, where e is the vector of estimated effects of factor f). This differs from the use of COMPARISON in regression models (and the use of the REG function in either regression or analysis of variance) as there the parameter estimates are regression coefficients. Another difference is that in analysis of variance each comparison is fitted ignoring the other comparisons, but in regression they are adjusted for each other.</td>
</tr>
<tr>
<td>LO</td>
<td>synonym of LOESS.</td>
</tr>
<tr>
<td>LOESS (x; d; s; l)</td>
<td>fits a locally weighted regression of order l (= 1 for linear, 2 for quadratic) with approximately d degrees of freedom or using smoothing parameter s (regression models only): x is a variate for univariate smoothing, or a pointer to up to four variates for multivariate smoothing; when x is a variate l is a scalar, when x is a pointer it is either a scalar or a variate with an element for each variate in the pointer.</td>
</tr>
<tr>
<td>POL (f; s; v)</td>
<td>indicates that the effects of factor f are to be partitioned into polynomial contrasts (linear, quadratic etc) up to order s, where s is a scalar containing an integer between 1 and 4. Variate v defines a numerical value for each level of the factor; if omitted, the factor levels themselves are used. In a TREATMENT formula, the contrasts are orthogonalized, but they are not in a regression or generalized linear model. In regression models, POL (v; s) can be used to fit simple (non-orthogonalized) polynomials of a variate v up to order s.</td>
</tr>
<tr>
<td>POLND (f; s; v)</td>
<td>has the same effect as POL, except that no dev components are fitted for factor f in interactions (TREATMENT formulae only).</td>
</tr>
<tr>
<td>REG (f; s; m)</td>
<td>indicates that the effects of factor f are to be partitioned into the orthogonal regression contrasts specified by the first s rows of the matrix m. In regression models, the first argument may be a variate instead of a factor; REG (v; s; m) then</td>
</tr>
</tbody>
</table>
orthogonalizes and fits a set of associated variates stored in the first \(s \) rows of the rows of the matrix \(m \). The matrix \(m \) may be omitted in a regression model, in which case orthogonal polynomial contrasts are constructed for either \(x \) or \(v \). Note, though, that the orthogonalization is with respect to the replication of the main effect of the factor or variate, so interactions of the contrasts with other vectors in a regression model may not be orthogonal.

\[\text{REGND}(f; s; m) \]

has the same effect as \text{REG}, except that no \text{Dev} components are fitted for factor \(f \) in interactions (TREATMENT formulae only).

\[S \]

\text{synonym of SSPLINE.}

\[\text{SSPLINE}(v; s; p) \]

indicates that the effect of a variate \(v \) is to be fitted by a smoothing spline with approximately \(s \) degrees of freedom or using "smoothing parameter" \(p \) (only in regression models or expressions).
5 List of commands

This lists the directives in Release 23, together with the procedures in the Procedure Library PL31 that accompanies Release 23.

ABIVARIATE produces graphs and statistics for bivariate analysis of variance.

ABLUPS calculates BLUPs for block terms in an ANOVA analysis.

ABOXCOX estimates the power λ in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA.

ACANONICAL determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae.

ACDISPLAY provides further output from an analysis by **ACANONICAL**.

ACHECK checks assumptions for an ANOVA analysis.

ACHECK saves information from an analysis by **ACANONICAL**.

ACONFIDENCE calculates simultaneous confidence intervals for ANOVA means.

ADD adds extra terms to a linear, generalized linear, generalized additive, or nonlinear model.

ADDPINTS adds points for new objects to a principal coordinates analysis.

ADETECTION calculates the minimum size of effect or contrast detectable in an analysis of variance.

ADISPLAY displays further output from analyses produced by ANOVA.

ADJACENTCELLS finds cells adjacent to other cells in a multi-dimensional array.

ADPOLYNOMIAL plots single-factor polynomial contrasts fitted by ANOVA.

ADSPREADSHEET puts the data and plan of an experimental design into Genstat spreadsheets.

AEFFICIENCY calculates efficiency factors for experimental designs.

AFALPHA generates alpha designs.

AFAUGMENTED forms an augmented design.

AFCARRYOVER forms factors to represent carry-over effects in cross-over trials.

AFCOVARIATES defines covariates from a model formula for ANOVA.

AFCYCLES generates block and treatment factors for cyclic designs.

AFDISCREPANCY calculates the discrepancy of a design.

AFFYMETRIX estimates expression values for Affymetrix slides.

AFFIELDRESIDUALS display residuals in field layout.

AFLABELS forms a variate of unit labels for a design.

AFMEANS forms tables of means classified by ANOVA treatment factors.

AFMINABERRATION forms minimum aberration factorial or fractional-factorial designs.

AFNONLINEAR forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model.

AFORMS prints data forms for an experimental design.

AFFREP searches for an efficient partially-replicated design.

AFFRESOLVABLE forms doubly resolvable row-column designs, with output.

AFFRESPONSESURFACE uses the BLKL algorithm to construct designs for estimating response surfaces.

AFFUNITS forms a factor to index the units of the final stratum of a design.

AGALPHA forms alpha designs by standard generators for up to 100 treatments.

AGBIB forms orthogonal hierarchical designs.

AGCENTRALCOMPOSITE generates central composite designs.

AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects.

AGCYSINC generates cyclic designs from standard generators.

AGDESIGN generates generally balanced designs.

AGFACTORIAL generates minimum aberration block or fractional factorial designs.

AGFRACTION generates fractional factorial designs.

AGHIERARCHICAL generates orthogonal hierarchical designs.

AGINDUSTRIAL helps to select and generate effective designs for use in industrial experiments.

AGLATIN generates mutually orthogonal Latin squares.

AGLOOP generates loop designs e.g. for time-course microarray experiments.

AGMAINEFFECT generates designs to estimate main effects of two-level factors.

AGNATURALBLOCK forms 1- and 2-dimensional designs with blocks of natural size.

AGNEIGHBOUR generates neighbour-balanced designs.

AGNONORTHOGONALDESIGN generates non-orthogonal multi-stratum designs.
AGQLATIN generates complete and quasi-complete Latin squares.
AGRAPHER plots tables of means from ANOVA.
AGCRESCREVABLE forms doubly resolvable row-column designs.
AGREFERENCE generates reference-level designs e.g. for microarray experiments.
AGSEMELATIN generates semi-Latin squares.
AGSPACEFILLING DESIGN generates space filling designs.
AGSQLATTICE generates square lattice designs.
AGYOUDEN SQUARE generates a Youden square.
AKAIKEHISTOGRAM prints histograms with improved definition of groups.
AKEEP copies information from an ANOVA analysis into Genstat data structures.
AKEY generates values for treatment factors using the design key method.
ALIAS finds out information about aliased model terms in analysis of variance.
ALIGNCURVE forms an optimal warping to align an observed series of observations with a standard series.
ALLDIFFERENCES shows all pairwise differences of values in a variate or table.
ALLPAIRWISE performs a range of all pairwise multiple comparison tests.
AMCOMPARISON performs pairwise multiple comparison tests for ANOVA means.
AMDUNNETT forms Dunnett's simultaneous confidence interval around a control.
AMERGE merges extra units into an experimental design.
AMMI allows exploratory analysis of genotype × environment interactions.
AMTDISPLAY displays further output for a multi-tiered design analysed by AMTIER.
AMTIER analyses a multi-tiered design with up to 3 structures.
AMTKEEP saves information from the analysis of a multitiered design by AMTIER.
ANOVA analyses y-variates by analysis of variance according to the model defined by earlier BLOCKSTRUCTURE, COVARIATE, and TREATMENTSTRUCTURE statements.
ANTMVESTIMATE estimates missing values in repeated measurements.
ANTORDER assesses order of ante-dependence for repeated measures data.
ANTTEST calculates overall tests based on a specified order of ante-dependence.
ANIADVICE aims to give useful advice if a design that is thought to be balanced fails to be analysed by ANOVA.
AONEWAY performs one-way analysis of variance.
AOVANYHOW performs analysis of variance using ANOVA, regression or REML as appropriate.
AOVDISPLAY provides further output from an analysis by AOVANYHOW.
APAPADAKIS analysis of variance with an added Papadakis covariate, formed from neighbouring residuals.
APERMTEST does random permutation tests for analysis-of-variance tables
APLOT plots residuals from an ANOVA analysis.
APOLYNOMIAL forms equations for single-factor polynomial contrasts fitted by ANOVA.
APower calculates the power (probability of detection) for terms in an aov.
APPEND appends a list of vectors of compatible types.
APRODUCT forms a new experimental design from the product of two designs.
ARANDOMIZE randomizes and prints an experimental design.
ARCSPLITPLOT adds extra treatments onto the replicates of a resolvable row-column design, and generates factors giving the row and column locations of the plots within the design.
ASAMPLESIZE finds the replication to detect a treatment effect or contrast.
ASRULES derives association rules from transaction data.
ASTORE saves an ANOVA save structure in an external file.
ASTORE stores an ANOVA save structure in an external file.
ASVALIDATE provides a summary of results from an ANOVA analysis.
ASRETRIEVE retrieves an ANOVA save structure from an external file.
ASWEET performs sweeps for model terms in an analysis of variance.
AUGRAPH plots tables of means from AUNBALANCED.
AUKEEP saves output from analysis of an unbalanced design (by AUNBALANCED).
AUNBALANCED performs analysis of variance for unbalanced designs.
AUMCOMPARISON performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by AUNBALANCED.
AUPREDICT forms predictions from an unbalanced design (after AUNBALANCED).
AUSPREADSHEET saves results from an analysis of an unbalanced design (by AUNBALANCED) in a spreadsheet.
A2RDAsaves results from an unbalanced analysis of variance, by AUNBALANCED, in R data frames.
AXES defines the axes in each window for high-resolution graphics.
AXIS defines an oblique axis for high-resolution graphics.
AYPARALLEL does the same analysis of variance for several y-variates, and collates the output.
A2DISPLAY provides further output following an analysis of variance by A2WAY.
A2KEEP copies information from an A2WAY analysis into Genstat data structures.
A2PLOT plots effects from two-level designs with robust s.e. estimates.
A2RDA saves results from an analysis of variance in R data frames.
A2RESULTSUMMARY provides a summary of results from an analysis by A2WAY.
A2WAY performs analysis of variance of a balanced or unbalanced design with up to two treatment factors.
A%VARIANCE calculates the percentage variance and sum of squares accounted for in the strata of an ANOVA analysis.
BACKTRANSFORM calculates back-transformed means with approximate standard errors and confidence intervals.
BAFFYMETRIX estimates expression values from an Affymetrix CED and CDF file.
BANK calculates the optimum aspect ratio for a graph.
BARCHART plots bar charts in high-resolution graphics.
BASELINE estimates a baseline for a series of numbers whose minimum value is drifting.
BASESS assesses potential splits for regression and classification trees.
BBINOMIAL estimates the parameters of the beta binomial distribution.
BCDISPLAY displays a classification tree.
BCFDISPLAY displays information about a random classification forest.
BCIDENTIFY identifies specimens using a random classification forest.
BCFOREST constructs a random classification forest.
BCIDENTIFY identifies specimens using a classification tree.
BKKEEP saves information from a classification tree.
BCLASSIFICATION constructs a classification tree.
BCONSTRUCT constructs a tree.
BCUT cuts a tree at a defined node, discarding nodes and information below it.
BVALUES forms values for nodes of a classification tree.
BGIMPORT imports MCMC output in CODA format produced by WinBUGS or OpenBUGS.
BGHEIGHT plots output and diagnostics from MCMC simulations.
BGROW plots a tree.
BGROW adds new branches to a node of a tree.
BGXGENSTAT runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts.
BIKEEP identifies specimens using a tree.
BINGO can be used to set up and then play a game of bingo.
BPLOT produces a biplot from a set of variates.
BJESTIMATE fits an ARIMA model, with forecast and residual checks.
BJFORECAST plots forecasts of a time series using a previously fitted ARIMA.
BJIDENTIFY displays time series statistics useful for ARIMA model selection.
BJJOIN extends a tree by joining another tree to a terminal node.
BKDISPLAY displays an identification key.
BKEY constructs an identification key.
BKIDENTIFY identifies specimens using a key.
BKKEEP saves information from an identification key.
BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates.
5 List of commands

BLOCKSTRUCTURE defines the blocking structure of the design and hence the strata and the error terms.
BNTEST calculates one- and two-sample binomial tests.
BOOTSTRAP produces bootstrapped estimates, standard errors and distributions.
BOXPLOT draws box-and-whisker diagrams or schematic plots.
BPCONVERT converts bit patterns between integers, pointers of set bits and textual descriptions.
BPRINT displays a tree.
BPRUNE prunes a tree using minimal cost complexity.
BREGRESSION constructs a regression tree.
BRDISPLAY displays a regression key.
BREAK suspends execution of the statements in the current channel or control structure and takes
subsequent statements from the channel specified.
BRFOREST constructs a random regression forest.
BRFPREDICT makes predictions using a random regression forest.
BRKEEP saves information from a regression tree.
BRPREDICT makes predictions using a regression tree.
BRVALUES forms values for nodes of a regression tree.
CABIPLOT plots results from correspondence analysis or multiple correspondence analysis.
CALCULATE calculates numerical values for data structures.
CALLS lists library procedures called by a procedure.
CANCORRELATION does canonical correlation analysis.
CAPTION prints captions in standardized formats.
CASE introduces a "multiple-selection" control structure.
CASSOCIATION calculates measures of association for circular data.
CATALOGUE displays the contents of a backing-store file.
CATRENDTEST calculates the Cochran-Armitage chi-square test for trend.
CCA performs canonical correspondence analysis.
CCOMPARE tests whether samples from circular distributions have a common mean direction or have
identical distributions.
CDESCRIBE calculates summary statistics and tests of circular data.
CDNAUGMENTEDDESIGN constructs an augmented block design, using CycDesigN if the controls are in
an incomplete-block design.
CDNBLOCKDESIGN constructs a block design using CycDesigN.
CDNPREP constructs a multi-location partially-replicated design using CycDesigN.
CDNRANDOMIZEDDESIGN constructs a row-column design using CycDesigN.
CENSOR pre-processes censored data before analysis by ANOVA.
CHECKARGUMENT checks the arguments of a procedure.
CHIPERMTEST performs a random permutation test for a two-dimensional contingency table.
CHISQUARE calculates chi-square statistics for one- and two-way tables.
CCLASSIFY clusters rows and columns of a two-way interaction table.
CLASSIFY obtains a starting classification for non-hierarchical clustering.
CLOSE closes files.
CLUSTER forms a non-hierarchical classification.
CMHTEST performs the Cochran-Mantel-Haenszel test.
COKRIGE calculates kriged estimates using a model fitted to the sample variograms and cross-
variograms of a set of variates.
COLOUR defines the red, green and blue intensities to be used for the Genstat colours with certain
graphics devices.
COMBINE combines or omits "slices" of a multi-way data structure (table, matrix, or variate).
COMMANDINFORMATION provides information about whether (and how) a command has been
implemented.
CONCATENATE concatenates and truncates lines (units) of text structures; allows the case of letters to be
changed.
CONCORD is a synonym for KCONCORDANCE.
CONFIDENCE calculates simultaneous confidence intervals.
CONTOUR is a synonym for LPCONTOUR.
CONVEXHULL finds the points of a single or a full peel of convex hulls.

COPY forms a transcript of a job.

CORANALYSIS does correspondence analysis, or reciprocal averaging.

CORRELATE forms correlations between variates, autocorrelations of variates, and lagged cross-correlations between variates.

CORRESP is a synonym for CORANALYSIS.

COVARIATE specifies covariates for use in subsequent ANOVA statements.

COVDETECT produces experimental designs efficient under analysis of covariance.

CSIPRO reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file.

CUMDISTRIBUTION fits frequency distributions to accumulated counts.

CRBIPLLOT plots correlation or distance biplots after RDA, or ranking biplots after CCA.

CRTRIPLLOT plots ordination biplots or triplots after CCA or RDA.

CVA performs canonical variates analysis.

CVAPLLOT plots the mean and unit scores from a canonical variates analysis.

CVASCORES calculates scores for individual units in canonical variates analysis.

CVATRELLIS displays the distribution of groups over 2 dimensions from a CVA analysis using a trellis of bar or pie charts.

DARROW adds arrows to an existing plot.

DAYLENGTH calculates daylengths at a given period of the year.

DARCHART produces bar charts for one or two-way tables.

DBCOMMAND runs an SQL command on an ODBC database.

DBEXPORT updates an ODBC database table using data from Genstat.

DBIMPORT loads data into Genstat from an ODBC database.

DBINFORMATION loads information on the tables and columns in an ODBC database.

DBBIPLLOT plots a biplot from an analysis by PCP, CVA or PCO.

DBITMAP plots a bit map of RGB colours.

DCIRCULAR plots circular data.

DEMC performs Bayesian computing using the Differential Evolution Markov Chain algorithm.

DERRORBAR adds error bars to a graph.

DESCRIBE saves and/or prints summary statistics for variates.

DEVICE helps to select and generate effective experimental designs.

DEVICESwitches between (high-resolution) graphics devices.

DFINISH ends a sequence of related high-resolution plots.

DFONT defines the default font for high-resolution graphics.

DFOURIER performs a harmonic analysis of a univariate time series.
DFRTEXT adds text to a graphics frame.
DFUNCTION plots a function.
DFGRAPH draws graphs on a plotter or graphics monitor.
DHELP provides information about Genstat graphics.
DHISTOGRAM draws histograms on a plotter or graphics monitor.
DHSCATTERGRAM plots an h-scattergram.
DIAGONALMATRIX declares one or more diagonal matrix data structures.
DIALLEL analyses full and half diallel tables with parents.
DILUTION calculates Most Probable Numbers from dilution series data.
DIRECTORY prints or saves a list of files with names matching a specified mask.
DISCRIMINATE performs discriminant analysis.
DISPLAY prints, or reprints, diagnostic messages.
DISTRIBUTION estimates the parameters of continuous and discrete distributions.
DKALMAN plots results from an analysis by KALMAN.
DKEEP saves information from the last plot on a particular device.
DKEY adds a key to a graph.
DKSTPLOT produces diagnostic plots for space-time clustering.
DLOAD loads the graphics environment settings from an external file.
DMADENSITY plots the empirical CDF or PDF (kernel smoothed) by groups.
DMASS plots discrete data like mass spectra, discrete probability functions.
DMOSAIC produces a mosaic plot to display a table of counts.
DMSCATTER produces a scatter-plot matrix for one or two sets of variables.
DMST gives a high resolution plot of an ordination with minimum spanning tree.
DOTHISTOGRAM plots dot histograms.
DOTPLOT produces a dot-plot using line-printer or high-resolution graphics.
DPARALLEL displays multivariate data using parallel coordinates.
DPOLYGON draws polygons using high-resolution graphics.
DPROBABILITY creates a probability distribution plot of the values in a variate.
DPSPECTRALPLOT calculates an estimate of the spectrum of a spatial point pattern.
DPTMAP draws maps for spatial point patterns using high-resolution graphics.
DPTREAD adds points interactively to a spatial point pattern.
DQMAP displays a genetic map.
DQMKSCORES plots a grid of marker scores for genotypes and indicates missing data.
DQMQTLSCAN plots the results of a genome-wide scan for QTL effects in multi-environment trials.
DQRECOMBINATIONS plots a matrix of recombination frequencies between markers.
DQSQTFLSCAN plots the results of a genome-wide scan for QTL effects in single-environment trials.
DREAD reads the locations of points from an interactive graphical device.
REFERENCELINE adds reference lines to a graph.
DMAP plots profiles and differences of profiles for repeated measures data.
DREMEDIAL plots residuals.
DROP drops terms from a linear, generalized linear, generalized additive, or nonlinear model.
DRPOLYGON reads a polygon interactively from the current graphics device.
DSAVE saves the current graphics environment settings to an external file.
DSCATTER produces a scatter-plot matrix using high-resolution graphics.
DSEPARATIONPLOT creates a separation plot for visualising the fit of a model with a dichotomous (i.e. binary) or polytomous (i.e. multi-categorical) outcome.
DSHADE plots a shade diagram of 3-dimensional data.
DSTART starts a sequence of related high-resolution plots.
DSTTEST plots power and significance for t-tests, including equivalence tests.
DSURFACE produces perspective views of a two-way arrays of numbers.
DTABLE plots tables.
DTTEXT adds text to a graph.
DTIMEPLOT produces horizontal bars displaying a continuous time record.
DUMMY declares one or more dummy data structures.
DUMP prints information about data structures, and internal system information.
DUPLICATE forms new data structures with attributes taken from an existing structure.
DVARIOMGRAM plots fitted models to an experimental variogram.
DVIEW views windows in the Genstat Graphics Viewer.
DXDENSITY produces one-dimensional density (or violin) plots.
DXYDENSITY produces density plots for large data sets.
DYDENSITY draws two-dimensional graphs with marginal distribution plots alongside the y- and x-axes.
DYPOLAR produces polar plots.
D2GROUPS displays the distribution of groups in a plane using a trellis of bar or pie charts.
D3GRAPH plots a 3-dimensional graph.
D3HISTOGRAM plots three-dimensional histograms.
ECABUNDANCEPLOT produces rank/abundance, ABC and k-dominance plots
ECACCUMULATION plots species accumulation curves for samples or individuals.
ECANOSIM performs an analysis of similarities (ANOSIM)
ECDIVERSITY calculates measures of diversity with jackknife or bootstrap estimates
ECFIT fits models to species abundance data
ECNICHE generates relative abundance of species for niche-based models
ECNPESTIMATE calculates nonparametric estimates of species richness.
ECRAREFACTION calculates individual or sample-based rarefaction
EDDUNNETT calculates equivalent deviates for Dunnett’s simultaneous confidence interval around a control.
EDFTEST performs empirical-distribution-function goodness-of-fit tests.
EDIT edits text vectors.
ELSEPoisson calculates expected values of the lower parts of Poisson distributions.
ELSE introduces the default set of statements in block-if or in multiple-selection control structures.
ELSIF introduces a set of alternative statements in a block-if control structure.
ENDBREAK returns to the original channel or control structure and continues execution.
ENDCASE indicates the end of a “multiple-selection” control structure.
ENDEBUG cancels a DEBUG statement.
ENDIF indicates the end of a block-if control structure.
ENDJOB ends a Genstat job.
ENDPROCEDURE indicates the end of the contents of a Genstat procedure.
ENQUIRE provides details about files opened by Genstat.
EQUATE transfers data between structures of different sizes or types (but the same modes i.e. numerical or text) or where transfer is not from single structure to single structure.
ESTIMATE is a synonym for Tfit.
EUPOISSON calculates expected values of the upper parts of Poisson distributions.
EXAMPLE obtains and runs a Genstat example program.
EXECUTE executes the statements contained within a text.
EXIT exits from a control structure.
EXPORT outputs data structures in foreign file formats, including Excel, Quattro, dBase, SPlus, Gauss, MatLab and Instat, or as plain or comma-delimited text.
EXPRESSION declares one or more expression data structures.
EXTERNAL declares an external function in a DLL for use by the OWN function.
EXTRABINOMIAL fits the models of Williams (1982) to overdispersed proportions.
FACAMEND permutes the levels and labels of a factor.
FACCOMBINATIONS forms a factor to indicate observations with identical combinations of values of a set of variates, texts or factors.
FACDIVIDE represents a factor by factorial combinations of a set of factors.
FACEXCLUDEUNUSED redefines the levels and labels of a factor to exclude those that are unused.
FACGETLABELS obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise.
FACLEVSTANDARDIZE standardizes the levels or labels of a list of factors.
FACMERGE merges levels of factors.
FACPRODUCT forms a factor with a level for every combination of other factors.
FACROTATE rotates factor loadings from a principal components, canonical variates or factor analysis.
FACSORT sorts the levels of a factor according to an index vector.
FACTOR declares one or more factor data structures.
FACUNIQUE redefines a factor so that its levels and labels are unique.
FALIATESTTERMS forms information about aliased model terms in analysis of variance.
FARGUMENTS forms lists of arguments involved in an expression.
FAULT checks whether to issue a diagnostic, i.e. a fault, warning or message.
FBASICCONTRASTS breaks a model term down into its basic contrasts.
FBETWEENGROUPVECTORS forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis.
FCA performs factor analysis.
FCCLASSIFICATION forms a classification set for each term in a formula, breaks a formula up into separate formulae (one for each term), and applies a limit to the number of factors and variates in the terms of a formula.
FCOMPLEMENT forms the complement of an incomplete block design.
FCONTRASTS modifies a model formula to contain contrasts of factors.
FCOPY makes copies of files.
FCORRELATION forms the correlation matrix for a list of variates.
FCOVARIOMGRAM forms a covariogram structure containing auto-variograms of individual variates and cross-variograms for pairs from a list of variates.
FDELETE deletes files.
FDESIGNFILE forms a backing-store file of information for AGDESIGN.
FDIALOGLELS forms the components of a diallel model for REML or regression.
FDISTINCTFACTORS checks sets of factors to remove any that define duplicate classifications.
FDRBONFERRONI estimates false discovery rates by a Bonferroni-type procedure.
FDIRMIXTURE estimates false discovery rates using mixture distributions.
FEXACT2X2 does Fisher's exact test for 2×2 tables.
FFRAME forms multiple windows in a plot-matrix for high-resolution graphics.
FFORERESPONSEFACTOR forms multiple-response factors from free-response data.
FHADAMARDMATRIX forms Hadamard matrices.
FILL calculates an estimate of the F nearest-neighbour distribution function.
FILLER calculates effective doses or relative potencies.
FNCORRELATION calculates correlations from variances and covariances, together with their variances and covariances.
FNLINEAR estimates linear functions of random variables, and calculates their variances and covariances.
FNPOWER estimates products of powers of two random variables, and calculates their variances and covariances.
FOCCURRENCES counts how often each pair of treatments occurs in the same block.
FOR introduces a loop.
FORECAST is a synonym for TFORECAST.
FORMULA declares one or more formula data structures.
FOURIER calculates cosine or Fourier transforms of real or complex series.
FPARETOSET forms the Pareto optimal set of non-dominated groups.
FPLOTNUMBER forms plot numbers for a row-by-column design.
FPROJECTIONMATRIX forms a projection matrix for a set of model terms.
FPSEUDOFACTORS determines patterns of confounding and aliasing from design keys, and extends the
treatment model to incorporate the necessary pseudo-factors.
FRAME defines the positions and appearance of the plotting windows within the frame of a high-
resolution graph.
FREGULAR expands vectors onto a regular two-dimensional grid.
FRNAME renames files.
FRESTRICTEDSET forms vectors with the restricted subset of a list of vectors.
FRIEDMAN performs Friedman's non-parametric analysis of variance.
FROWCANONICALMATRIX puts a matrix into row canonical, or reduced row echelon, form.
FQUANTILES forms regression quantiles.
FRTPRODUCTDESIGNMATRIX forms summation, or relationship, matrices for model terms.
FGRUITMACHINE runs a fruit machine using pop-up menus and Genstat graphics.
FSIMILARITY forms a similarity matrix or a between-group-elements similarity matrix or prints a
similarity matrix.
FSPREADSHEET creates a Genstat Spreadsheet file (GSH) from specified data structures.
FSSPM forms the values of SSPM structures.
FSTRING forms a single string from a list of strings in a text.
FTEXT forms a text structure from a variate.
FTSM forms preliminary estimates of parameters in time-series models.
FUNIQUEVALUES redefines a variate or text so that its values are unique.
FVARIOMATIC forms experimental variograms.
FCOVARIOGRAM forms the variance-covariance matrix for a list of variates.
FVSTRING forms a string listing the identifiers of a set of data structures.
FWITHINTERMS forms factors to define terms representing the effects of one factor within another
factor.
FZERO gives the F function expectation under complete spatial randomness.
F2DRESIDUALVARIOGRAM calculates and plots a 2-dimensional variogram from a 2-dimensional array
of residuals.
GALOIS forms addition and multiplication tables for a Galois finite field.
GBGRIDCONVERSION converts GB grid references to or from latitudes and longitudes or to or from
UTM coordinates.
GEE fits models to longitudinal data by generalized estimating equations.
GENERATE generates factor values for designed experiments.
GENPROCRUSTES performs a generalized Procrustes analysis.
GESTABILITY calculates stability coefficients for genotype-by-environment data.
GET accesses details of the "environment" of a Genstat job.
GETATTRIBUTE accesses attributes of structures.
GETLOCATIONS finds locations of an identifier within a pointer, or a string within a factor or text, or a
number within any numerical data structure.
GETNAME forms the name of a structure according to its IPRINT attribute.
GETRGB gets the RGB values of the standard graphics colours.
GGEBIPILOT plots displays to assess genotype-genotype-by-environment variation.
GHAT calculates an estimate of the G nearest-neighbour distribution function.
GINVERSE calculates the generalized inverse of a matrix.
GLDISPLAY displays further output from a GLMM analysis.
GLKEEP saves results from a GLMM analysis.
GLM analyses non-standard generalized linear models.
GLMM fits a generalized linear mixed model.
GPERMTTEST does random permutation tests for generalized linear mixed models.
GLPLOT plots residuals from a GLMM analysis.
GLRTEST calculates likelihood tests to assess random terms in a generalized linear mixed model.
GLTObitPoisson uses the Tobit method to fit a generalized linear mixed model with censored Poisson data.
GLPredict forms predictions from a GLMM analysis.
GPrediction produces genomic predictions (breeding values) using phenotypic and molecular marker information.
GRandom generates pseudo-random numbers from probability distributions.
Graph is a synonym for LPGraph.
GRCSR generates completely spatially random points in a polygon.
GrejectionSample generates random samples using rejection sampling.
GRibImport reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file.
GRLABEL randomly labels two or more spatial point patterns.
GRNominal generates multinomial pseudo-random numbers.
GRmultinormal generates multivariate normal pseudo-random numbers.
Groups forms a factor (or grouping variable) from a variate or text, together with the set of distinct values that occur.
GRThin randomly thins a spatial point pattern.
Gtorshift performs a random toroidal shift on a spatial point pattern.
GStatistic calculates the gamma statistic of agreement for ordinal data.
G2Aexport forms a dbase file to transfer ANOVA output to Agronomix Generation II.
G2AFactors redefines block and treatment variables as factors.
G2Vexport forms a dbase file to transfer REML output to Agronomix Generation II.
HAnova does hierarchical analysis of variance or covariance for unbalanced data.
HBootstrap performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis.
HCluster performs hierarchical cluster analysis.
Hcomparegroupings compares groupings generated, for example, from cluster analyses.
HDisplay displays results ancillary to hierarchical cluster analyses: matrix of mean similarities between and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the most typical elements from each group.
Heatunits calculates accumulated heat units of a temperature dependent process.
Help provides help information about Genstat.
HFamaligations forms an amalgamations matrix from a minimum spanning tree.
HClusters forms a set of clusters from an amalgamations matrix.
Hganalyse analyses data using a hierarchical or double hierarchical generalized linear model.
HDisplay displays results from a hierarchical or double hierarchical generalized linear model.
HGrandommodel defines the random model in a hierarchical generalized linear model for the dispersion model of a double hierarchical generalized linear model.
Hgfixedmodel defines the fixed model for a hierarchical or double hierarchical generalized linear model.
Hgftest calculates likelihood tests for fixed terms in a hierarchical generalized linear model.
Hggraph draws a graph to display the fit of an HGLM or DHGLM analysis.
Hgkeep saves information from a hierarchical or double hierarchical generalized linear model analysis.
Hgnonlinear defines nonlinear parameters for the fixed model of a hierarchical generalized linear model.
Hgplot produces model-checking plots for a hierarchical or double hierarchical generalized linear model.
Hgpredict forms predictions from a hierarchical or double hierarchical generalized linear model.
Hgrandommodel defines the random model for a hierarchical or double hierarchical generalized linear model.
Hgtest calculates likelihood tests for random terms in a hierarchical generalized linear model.
HGstatus displays the current HGLM model definitions.
HTObitPoisson uses the Tobit method to fit a hierarchical generalized linear model with censored Poisson data.
Hgwald prints or saves Wald tests for fixed terms in an HGLM.
Histogram is a synonym for LPHistogram.
5 List of commands

HLIST lists the data matrix in abbreviated form.

HPCLUSTERS prints a set of clusters.

HREDUCE forms a reduced similarity matrix (referring to the GROUPS instead of the original units).

HSUMMARIZE forms and prints a group by levels table for each test together with appropriate summary statistics for each group.

IDENTIFY identifies an unknown specimen from a defined set of objects.

IF introduces a block-if control structure.

IFUNCTION estimates implicit and/or explicit functions of parameters.

IMPORT reads data from a foreign file format, and loads it or converts it to a spreadsheet file.

INPUT specifies the input file from which to take further statements.

INSIDE determines whether points lie within a specified polygon.

INTERPOLATE interpolates values at intermediate points.

IRREDUNDANT forms irredundant test sets for the efficient identification of a set of objects.

JACKKNIFE produces Jackknife estimates and standard errors.

JOB starts a Genstat job.

JOIN joins or merges two sets of vectors together, based on classifying keys.

KALMAN calculates estimates from the Kalman filter.

KAPLANMEIER calculates the Kaplan-Meier estimate of the survivor function.

KAPPA calculates a kappa coefficient of agreement for nominally scaled data.

KCONCORDANCE calculates Kendall's Coefficient of Concordance.

KCROSSVALIDATION computes cross validation statistics for punctual kriging.

KCSRENVELOPES simulates K function bounds under complete spatial randomness.

KERNELDENSITY uses kernel density estimation to estimate a sample density.

KHYAT calculates an estimate of the K function.

KL1ABENVELOPES gives bounds for K function differences under random labelling.

KNNEARESTNEIGHBOURS classifies items or predicts their responses by examining their k nearest neighbours.

KNNTRAIN evaluates and optimizes the k-nearest-neighbour algorithm using cross-validation.

KOLMOG2 performs a Kolmogorov-Smirnov two-sample test.

KRIGE calculates kriged estimates using a model fitted to the sample variogram.

KRUSKAL carries out a Kruskal-Wallis one-way analysis of variance.

KSED calculates the standard error for K function differences under random labelling.

KTHAT calculates an estimate of the K function in space, time and space-time.

KSTMCTEST performs a Monte-Carlo test for space-time interaction.

KSTSE calculates the standard error for the space-time K function.

KTAU calculates Kendall's rank correlation coefficient τ.

KTORENVELOPES gives bounds for the bivariate K function under independence.

K12HAT calculates an estimate of the bivariate K function.

LCONCORDANCE calculates Lin's concordance correlation coefficient.

LIBEXAMPLE accesses examples and source code of library procedures.

LIBFILENAME supplies the names of information files for library procedures.

LIBHELP provides help information about library procedures.

LIBSOURCE obtains the source code of a Genstat procedure.

LIBVERSION provides the name of the current Genstat Procedure Library.

LIFE plays John Conway's Game of Life.

LINDEPENDENCE finds the linear relations associated with matrix singularities.

LIST lists details of the data structures currently available within Genstat.

LORENZ plots the Lorenz curve and calculates the Gini and asymmetry coefficients.

LPCONTOUR produces contour maps of two-way arrays of numbers using character (i.e. line-printer) graphics.

LPGRAHP produces point and line plots using character (i.e. line-printer) graphics.

LPHISTOGRAM produces histograms using character (i.e. line-printer) graphics.

LRIDGE does logistic ridge regression.

LRV declares one or more LRV data structures.

LVRVSCREE prints a scree diagram and/or a difference table of latent roots.

LSIPILOT plots least significant intervals, saved from SEDLSI.
LSPLINE calculates design matrices to fit a natural polynomial or trignometric L-spline as a linear mixed model.

LVARMODEL analyses a field trial using the Linear Variance Neighbour model.

MAANOVA does analysis of variance for a single-channel microarray design.

MABGCORRECT performs background correction of Affymetrix slides.

MADESIGN assesses the efficiency of a two-colour microarray design.

MAESTIMATE estimates treatment effects from a two-colour microarray design.

MAHISTOGRAM plots histograms of microarray data.

MANNWHITNEY performs a Mann-Whitney U test.

MANOVA performs multivariate analysis of variance and covariance.

MANTEL assesses the association between similarity matrices.

MAPCLUSTER clusters probes or genes with microarray data.

MAPLOT produces two-dimensional plots of microarray data.

MAREGRESSION does regressions for single-channel microarray data.

MARGIN forms and calculates marginal values for tables.

MARMA calculates Affymetrix expression values.

MAROBUSTMEANS does a robust means analysis for Affymetrix slides.

MASCLUSTER clusters microarray slides.

MASHADE produces shade plots to display spatial variation of microarray data.

MATRIX declares one or more matrix data structures.

MAVDIFFERENCE applies the average difference algorithm to Affymetrix data.

MAVOLCANO produces volcano plots of microarray data.

M2CLUSTER performs a two-way clustering of microarray data by probes (or genes) and slides.

MCNEMAR performs McNemar's test for the significance of changes.

MCOMPARISON performs pairwise multiple comparison tests within a table of means.

MCORANALYSIS does multiple correspondence analysis.

MCROSSPECTRUM performs a spectral analysis of a multiple time series.

MC1PSTATIONARY gives the stationary probabilities for a 1st-order Markov chain.

MDS performs non-metric multidimensional scaling.

MEDIANTETRAD gives robust identification of multiple outliers in 2-way tables.

MERGE copies subfiles from backing-store files into a single file.

META combines estimates from individual trials.

MICHAELISMENTEN fits the Michaelis-Menten equation for substrate concentration versus time data.

MINFIELDWIDTH calculates minimum field widths for printing data structures.

MINIMIZE finds the minimum of a function calculated by a procedure.

MIN1DIMENSION finds the minimum of a function in one dimension.

MMPREDICT predicts the Michaelis-Menten curve for a particular set of parameter values.

MNORMALIZE normalizes two-colour microarray data.

MODEL defines the response variate(s) and the type of model to be fitted for linear, generalized linear, generalized additive, and nonlinear models.

MONOTONIC fits an increasing monotonic regression of y on x.

MOVINGAVERAGE calculates and plots the moving average of a time series.

MPOLISH performs a median polish of two-way data.

MPOWER forms integer powers of a square matrix.

MSEKERNEL2D estimates the mean square error for a kernel smoothing.

MTABULATE forms tables classified by multiple-response factors.

MULTMISSING estimates missing values for units in a multivariate data set.

MVOD does an analysis of distance of multivariate data.

MVARIOMORPH fits models to an experimental variogram.

MVFILL replaces missing values in a vector with the previous non-missing value.

NAG calls an algorithm from the NAG Library.

NCONVERT converts integers between base 10 and other bases.

NCSPLINE calculates natural cubic spline basis functions (for use e.g. in REML).
NEIGHBOURS finds the neighbours of cells in a multi-dimensional array.
NLAR1 fits curves with an AR1 or a power-distance correlation model.
NLCONTRASTS fits nonlinear contrasts to quantitative factors in ANOVA.
NNDISPLAY displays output from a multi-layer perceptron neural network fitted by NNFIT.
NNFIT fits a multi-layer perceptron neural network.
NNPREDICT forms predictions from a multi-layer perceptron neural network fitted by NNFIT.
NORMTEST performs tests of univariate and/or multivariate Normality.
NOTICE provides news and other information about Genstat.
NOUGHTSANDCROSSES plays a game of noughts and crosses.
OPEN opens files.
OPLS performs orthogonal partial least squares regression.
OPTION defines the options of a Genstat procedure with information to allow them to be checked when the procedure is executed.
OR introduces a set of alternative statements in a "multiple-selection" control structure.
ORTHPOLYNOMIAL calculates orthogonal polynomials.
OUTPUT defines where output is to be stored or displayed.
OWN does work specified in Fortran subprograms linked into Genstat by the user.
PAGE moves to the top of the next page of an output file.
PAIRTEST performs t-tests for pairwise differences.
PARAMETER defines the parameters of a Genstat procedure with information to allow them to be checked when the procedure is executed.
PARTIALCORRELATIONS calculates partial correlations for a list of variates.
PASS does work specified in subprograms supplied by the user, but not linked into Genstat. This directive may not be available on some computers.
PCO performs principal coordinates analysis, also principal components and canonical variates analysis (but with different weighting from that used in CVA) as special cases.
PCOPROCRUSTES performs a multiple Procrustes analysis.
PCORELATE relates the observed values on a set of variables to the results of a principal coordinates analysis.
PCP performs principal components analysis.
PCPCLUSTER forms groups of units using the densities of their PCP scores.
PDESIGN prints or stores treatment combinations tabulated by the block factors.
PDUPLICATE duplicates a pointer, with all its components.
PEAKFINDER finds the locations of peaks in an observed series.
PEN defines the properties of "pens" for high-resolution graphics.
PENSPLINE calculates design matrices to fit a penalized spline as a linear mixed model.
PERCENT expresses the body of a table as percentages of one of its margins.
PERIODTEST gives periodogram-based tests for white noise in time series.
PERMUTE forms all possible permutations of the integers 1...n.
PFACLEVELS prints levels and labels of factors.
PLINK prints a link to a graphics file into an HTML file.
PLS fits a partial least squares regression model.
PNTEST calculates one- and two-sample Poisson tests.
POINTER declares one or more pointer data structures.
POSSEMINDEFINITE calculates a positive semi-definite approximation of a non-positive semi-definite symmetric matrix.
PPAIR displays results of t-tests for pairwise differences in compact diagrams.
PRCORRELATION calculates probabilities for product moment correlations.
PRDOUBLEPOISSON calculates the probability density for the double Poisson distribution.
PREDICT forms predictions from a linear or generalized linear model.
PREWHITEN filters a time series before spectral analysis.
PRIMEPOWER decomposes a positive integer into its constituent prime powers.
PRINT prints data in tabular format in an output file, unformatted file, or text.
PRKTAU calculates probabilities for Kendall's rank correlation coefficient τ.
PRMANNWHITNEYU calculates probabilities for the Mann-Whitney U statistic.
PROBITANALYSIS fits probit models allowing for natural mortality and immunity.
PROCEDURE introduces a Genstat procedure.

PRSPAREMAN calculates probabilities for Spearman's rank correlation statistic.

PRWILCOXON calculates probabilities for the Wilcoxon signed-rank statistic.

PSPLINE calculates design matrices to fit a P-spline as a linear mixed model.

PTAREAPOLYGON calculates the area of a polygon.

PTDESCRIBE generates a bounding or surrounding box for a spatial point pattern.

PTCLOSEPOLYGON closes open polygons.

PTDESCRIPTION gives summary and second order statistics for a point process.

PTCLUSTERS forms clusters of points from their densities in multi-dimensional space.

PTFILLCLUSTERS fills holes within clusters of points in multi-dimensional space.

PTGRID generates a grid of points in a polygon.

PTINTENSITY calculates the overall density for a spatial point pattern.

PTKERNEL2D performs kernel smoothing of a spatial point pattern.

PTK3D performs kernel smoothing of space-time data.

PTREMOVE removes points interactively from a spatial point pattern.

PTROTATE rotates a point pattern.

PTSINPOLYGON returns points inside or outside a polygon.

QBESTGENOTYPES sorts individuals of a segregating population by their genetic similarity with a target genotype, using the identity by descent (IBD) information at QTL positions.

QCANDIDATES selects QTLs on the basis of a test statistic profile along the genome.

QCOCRAN performs Cochran's Q test for differences between related-samples.

QDESCRIBE calculates descriptive statistics of molecular markers.

QDIAG does a modal dialog box to obtain a response from the user.

QDISCRIMINATE performs quadratic discrimination between groups i.e. allowing for different variance-covariance matrices.

QDIALYSIS uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables.

QFACTORS exports genotypic data for QTL analysis.

QFACTOR allows the user to decide to convert texts or variates to factors.

QFLAPJACK creates a Flapjack project file from genotypic and phenotypic data.

QGSELECT obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization.

QIBDPROBABILITIES reads molecular marker data and calculates IBD probabilities.

QIMPORT imports genotypic and phenotypic data for QTL analysis.

QKINSHIPMAKES a kinship matrix from molecular markers.

QLDDECAY estimates linkage disequilibrium (LD) decay along a chromosome.

QLINKAGEGROUPS makes linkage groups using marker data from experimental populations.

QLIST gets the user to select a response interactively from a list.

QMAP constructs genetic linkage maps using marker data from experimental populations.

QMARKET performs multi-environment marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers.

QMAPBACKSELECT performs a QTL backward selection for loci in multi-environment trials or multiple populations.

QMARKET calculates QTL effects in multi-environment trials or multiple populations.

QMKDiagnostics generates descriptive statistics and diagnostic plots of molecular marker data.

QMKRECODE recodes marker scores into separate alleles.

QMKSELECT obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization.

QMQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-environment trials or multiple populations.

QMTBACKSELECT performs a QTL backward selection for loci in multi-trait trials.

QMTKDIAGNOSTICS calculates QTL effects in multi-trait trials.

QMTQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials.

QMVAF calculates percentage variance accounted for by QTL effects in a multi-environment analysis.
5 List of commands

QMVESTIMATE replaces missing molecular marker scores using conditional genotypic probabilities.
QMREPLACE replaces missing marker scores with the mode scores of the most similar genotypes.
QRNORMALIZE performs quantile normalization.
QRD calculates QR decompositions of matrices.
QRECOMBINATIONS calculates the expected numbers of recombinations and the recombination frequencies between markers.
QREPORT creates an HTML report from QTL linkage or association analysis results.
QASSOCIATION performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers.
QBACKSELECT performs a QTL backward selection for loci in single-environment trials.
QSELECTIONINDEX calculates (molecular) selection indexes by using phenotypic information and/or molecular scores of multiple traits.
QESTIMATE calculates QTL effects in single-environment trials.
QSIMULATE simulates marker data and QTL effects for single and multiple environment trials.
QTHRESHOLD calculates a threshold to identify a significant QTL.
QUANTILE calculates quantiles of the values in a variate.
QUESTION obtains a response using a Genstat menu.
RADIALSPLINE calculates design matrices to fit a radial-spline surface as a linear mixed model.
RANK produces ranks, from the values in a variate, allowing for ties.
RAR1 fits regressions with an AR1 or a power-distance correlation model.
RBDDISPLAY displays output from a radial basis function model fitted by RBFIT.
RBFIT fits a radial basis function model.
RBPREDICT forms predictions from a radial basis function model fitted by RBFIT.
RBRADLEYTERRY fits the Bradley-Terry model for paired-comparison preference tests.
RCATENELSON performs a Cate-Nelson graphical analysis of bivariate data.
RCHECK checks the fit of a linear or generalized linear regression.
RCIRCULAR does circular regression of mean direction for an angular response.
RCOMPARISSONS calculates comparison contrasts amongst regression means.
RCURVECOMMONNONLINEAR refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters.
RCYCLE controls iterative fitting of generalized linear, generalized additive, and nonlinear models, and specifies parameters, bounds etc for nonlinear models.
RDA performs redundancy analysis.
RDESTIMATES plots one- or two-way tables of regression estimates.
RDDISPLAY displays the fit of a linear, generalized linear, generalized additive, or nonlinear model.
RDLOESSGROUPS displays results from a locally weighted regression model (loess) fitted to data with groups.
READ reads data from an input file, an unformatted file, or a text.
RECORD dumps a job so that it can later be restarted by a RESUME statement.
REDUCE is a synonym for HREDUCE.
REFORMULATE modifies a formula or an expression to operate on a different set of data structures.
RELATE is a synonym for PCORELATE.
REML fits a variance-components model by residual (or restricted) maximum likelihood.
RENAME assigns new identifiers to data structures.
REPERIODODGRAM gives periodogram-based analyses for replicated time series.
RESHAPE reshares a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors.
RESTRICT defines a restricted set of units for vectors for subsequent statements.
RESUME restarts a recorded job.
RETRIEVE retrieves structures from a subfile.
RETURN returns to a previous input stream (text vector or input channel).
RFFAMOUNT fits harmonic models to mean rainfall amounts for a Markov model.
RFFPROBABILITY fits harmonic models to rainfall probabilities for a Markov model.
5 List of commands

RFINLAYWILKINSON performs Finlay and Wilkinson's joint regression analysis of genotype-by-environment data.

RFSUMMARY forms summaries for a Markov model from rainfall data.

RFUNCTION estimates functions of parameters of a nonlinear model.

RGRAPH draws a graph to display the fit of a regression model.

RIDGE produces ridge regression and principal component regression analyses.

RJOINT does modified joint regression analysis for variety-by-environment data.

RKEEP stores results from a linear, generalized linear, generalized additive, or nonlinear model.

RKESTIMATES saves estimates and other information about individual terms in a regression analysis.

RKLOESSGROUPS stores results from a locally weighted regression (loess) with groups model fitted to data with groups.

RLASSO performs lasso using iteratively reweighted least-squares.

RLFUNTIONAL fits a linear functional relationship model.

RLIFETABLE calculates the life-table estimate of the survivor function.

RLOESSGROUPS fits locally weighted regression models (loess) to data with groups.

RMGLM fits a model where different units follow different generalized linear models.

RMPLCONFIDENCE estimates profile likelihood confidence intervals of predicted group means from a linear or generalized linear model analysis.

RMULTIVARIATE performs multivariate linear regression with accumulated tests.

RNEGIBINOMIAL fits a negative binomial generalized linear model estimating the aggregation parameter.

RNONNEGATIVE fits a generalized linear model with nonnegativity constraints.

ROBSSPM forms robust estimates of sum-of-squares-and-products matrices.

ROTATE does a Procrustes rotation of one configuration of points to fit another.

RPAIR gives t-tests for all pairwise differences of means from a regression or generalized linear model.

RPARALLEL carries out analysis of parallelism for nonlinear functions.

RPERMTEST does random permutation tests for regression or generalized-linear-model analyses.

RPHCHANGE modifies a proportional hazards model fitted by RPHFIT.

RPHDISPLAY prints output for a proportional hazards model fitted by RPHFIT.

RPHFIT fits the proportional hazards model to survival data as a generalized linear model.

RPHKEEP saves information from a proportional hazards model fitted by RPHFIT.

RPHVECTORS forms vectors for fitting proportional hazards data as a generalized linear model.

RPLCONFIDENCE estimates profile likelihood confidence intervals of predicted group means from a linear or generalized linear model.

RPOWER calculates the power (probability of detection) for regression models.

RPROPORTIONAL fits the proportional hazards model to survival data as a generalized linear model.

RQLINEAR fits and plots quantile regressions for linear models.

RQNLINEAR fits and plots quantile regressions for nonlinear models.

RQSMOOTH fits and plots quantile regressions for loess or spline models.

RQUADRATIC fits a quadratic surface and estimates its stationary point.

RRETREIVE retrieves a regression save structure from an external file.

RSCHNUTE fits a general 4 parameter growth model to a non-decreasing Y-variate.

RSCREEN performs screening tests for generalized or multivariate linear models.

RSERACH helps search through models for a regression or generalized linear model.

RSREADSHEET puts results from a regression, generalized linear or nonlinear model into Genstat spreadsheets.

RSTEST compares groups of right-censored survival data by nonparametric tests.

RSTORE stores a regression save structure in an external file.

RSURVIVAL models survival times of exponential, Weibull, extreme-value, log-logistic or lognormal distributions.

RTCComparisons calculates comparison contrasts within a multi-way table of means.

RTOBITPOISSON uses the Tobit method to fit models to censored Poisson data.

RUGPLOT draws "rugplots" to display the distribution of one or more samples.

RUNTEST performs a test of randomness of a sequence of observations.

RVALIDATE fits regression models to validate predictions, for example from a deterministic model, against observed data.

RWALD calculates Wald and F tests for dropping terms from a regression.
RXGENSTAT submits a set of commands externally to R and reads the output.
RYPARALLEL fits the same regression model to several response variates, and collates the output.
R0INFLATED fits zero-inflated regression models to count data with excess zeros.
RKEEP saves information from a zero-inflated regression model for count data with excess zeros fitted by R0INFLATED.
R2LINES fits two-straight-line (broken-stick) models to data
SAGRAPES produces statistics and graphs for checking sensory panel performance.
SAMPLE samples from a set of units, possibly stratified by factors.
SBNTTEST calculates the sample size for binomial tests.
SCALAR declares one or more scalar data structures.
SCORRELATION calculates the sample size to detect specified correlations.
SDISCRIMINATE selects the best set of variates to discriminate between groups.
SEDLSI calculates least significant intervals.
SED2ESE calculates effective standard errors that give good approximate sed's.
SET sets details of the "environment" of a Genstat job.
SETALLOCATIONS runs through all ways of allocating a set of objects to subsets.
SETCALCULATE performs Boolean set calculations on the contents of vectors or pointers.
SETDEVICE opens a graphical file and specifies the device number on basis of its extension.
SETNAME sets the identifier of a data structure to be one specified in a text.
SETOPTION sets or modifies defaults of options of Genstat directives or procedures.
SETPARAMETER sets or modifies defaults of parameters of Genstat directives or procedures.
SETRELATE compares two sets of values in two data structures.
SET2FORMULA forms a model formula using structures supplied in a pointer.
SHELLEXECUTE launches executables or opens files in another application using their file extension.
SIGNTEST performs a one or two sample sign test.
SIMPLEX searches for the minimum of a function using the Nelder-Mead algorithm.
SKEWSYMMETRY provides an analysis of skew-symmetry for an asymmetric matrix.
SKIP skips lines in input or output files.
SLCONCORDANCE calculates the sample size for Lin's concordance coefficient.
SMANNWHITNEY calculates sample sizes for the Mann-Whitney test.
SMCNEMAR calculates sample sizes for McNemar's test.
SMOOTHESPECTRUM forms smoothed spectrum estimates for univariate time series.
SOM declares a self-organizing map.
SOMADJUST performs adjustments to the weights of a self-organizing map.
SOMDESCRIBE summarizes values of variables at nodes of a self-organizing map.
SOMESTIMATE estimates the weights for self-organizing maps.
SOMIDENTIFY allocates samples to nodes of a self-organizing map.
SOMPREDICT makes predictions using a self-organizing map.
SORT sorts units of vectors according to an index vector.
SPCAPABILITY calculates capability statistics.
SPCOMBINE combines spreadsheet and data files, without reading them into Genstat.
SPCUSUM prints CUSUM tables for controlling a process mean.
SPEREIMAN calculates Spearman's rank correlation coefficient.
SPROWMA plots exponentially weighted moving-average control charts.
SPLINE calculates a set of basis functions for M-, B- or L-splines.
SPLOAD loads Genstat spreadsheet files.
SPPCOMBINE plots p or u charts representing numbers of defective items.
SPCOMBINE combines spreadsheet and data files, without reading them into Genstat.
SPCUSUM prints CUSUM tables for controlling a process mean.
SPEARMAN calculates Spearman's rank correlation coefficient.
SPROWMA plots exponentially weighted moving-average control charts.
SPLINE calculates a set of basis functions for M-, B- or L-splines.
SPLOAD loads Genstat spreadsheet files.
SPPCOMBINE plots p or u charts representing numbers of defective items.
SPNTTEST calculates the sample size for a Poisson test.
SPRECISION calculates the sample size to obtain a specified precision.
SPSEWHART plots control charts for mean and standard deviation or range.
SPSYNTAX puts details about the syntax of commands into a spreadsheet.
SSIGNTEST calculates the sample size for a sign test.
SSPM declares one or more SSPM data structures.
STACK combines several data sets by "stacking" the corresponding vectors.
STANDARDIZE standardizes columns of a data matrix to have mean zero and variance one.
5 List of commands

STEEL performs Steel's many-one rank test.
STEM produces a simple stem-and-leaf chart.
STEP selects terms to include in or exclude from a linear, generalized linear, or generalized additive model according to the ratio of residual mean squares.
STOP ends a Genstat program.
STORE to store structures in a subfile of a backing-store file.
STRUCTURE defines a compound data structure.
STTEST calculates the sample size for t-tests (including equivalence tests).
SUBSET forms vectors containing subsets of the values in other vectors.
SUSPEND suspends execution of Genstat to carry out commands in the operating system. This directive may not be available on some computers.
SVBOOT bootstraps data from random surveys.
SVCALIBRATE performs generalized calibration of survey data.
SVGLM fits generalized linear models to survey data.
SVHOTDECK performs hot-deck and model-based imputation for survey data.
SVMERGE merges strata prior to survey analysis.
SVFIT fits a support vector machine.
SVMFIT modifies survey weights, adjusting other weights to ensure that their overall sum remains unchanged.
SVSAMPLE constructs stratified random samples.
SVSTRATIFIED analyses stratified random surveys by expansion or ratio raising.
SVTABULATE tabulates data from random surveys, including multistage surveys and surveys with unequal probabilities of selection.
SVWEIGHT forms survey weights.
SWITCH adds terms to, or drops them from a linear, generalized linear, generalized additive, or nonlinear model.
SYMMETRICMATRIX declares one or more symmetric matrix data structures.
SYNTAX obtains details of the syntax of a command and the source code of a procedure.
TABINSERT inserts the contents of a sub-table into a table.
TABLE declares one or more table data structures.
TABMODE forms summary tables of modes of values.
TABSORT sorts tables so their margins are in ascending or descending order.
TABTABLE opens a tabbed-table spreadsheet in the Genstat client.
TABULATE forms summary tables of variate values.
TALLY forms a simple tally table of the distinct values in a vector.
TCOMBINE combines several tables into a single table.
TDISPLAY displays further output after an analysis by TFIT.
TENSORSPLINE calculates design matrices to fit a tensor-spline surface as a linear mixed model.
TERMS specifies a maximal model, containing all terms to be used in subsequent linear, generalized linear, generalized additive, and nonlinear models.
TEXT declares one or more text data structures.
TFILTER filters time series by time-series models.
TFIT estimates parameters in Box-Jenkins models for time series.
TFORECAST forecasts future values of a time series.
THINPLATE calculates the basis functions for thin-plate splines.
TKEEP saves results after an analysis by TFIT.
TOBIT performs a Tobit linear mixed model analysis on data with fixed-threshold censoring.
TRANSFERFUNCTION specifies input series and transfer-function models for subsequent estimation of a model for an output series.
TREATMENTSTRUCTURE specifies the treatment terms to be fitted by subsequent ANOVA statements.
TREE declares a tree, & initializes it to have a single node known as the root.
TRELLIS does a trellis plot.
TRY displays results of single-term changes to a linear, generalized linear, or generalized additive model.
5 List of commands

TSM declares one or more TSM data structures.
TSMARMA displays characteristics of time series models.
TTEST performs a one- or two-sample t-test.
TUKEYBIWEIGHT estimates means using the Tukey biweight algorithm.
TVARMA fits a vector autoregressive moving average (VARMA) model.
TVFORECAST forecasts future values from a vector autoregressive moving average (VARMA) model.
TVGRAPH plots a vector autoregressive moving average (VARMA) model.
TXBREAK breaks up a text structure into individual words.
TXCONSTRUCT forms a text structure by appending or concatenating values of scalars, variates, texts, factors, pointers or formulae; allows the case of letters to be changed or values to be truncated and reversed.
TXFIND finds a subtext within a text structure.
TXINTEGERCODES converts textual characters to and from their corresponding integer codes.
TXPAD pads strings of a text structure with extra characters so that their lengths are equal.
TXPOSITION locates strings within the lines of a text structure.
TXPROGRESSION forms a text containing a progression of strings.
TXREPLACE replaces a subtext within a text structure.
TXSPLIT splits a text into individual texts, at positions on each line marked by separator character(s).
TXVARIATE converts text structures to variates.
T%CONTROL expresses tables as percentages of control cells.
UNITS defines an auxiliary vector of labels and/or the length of any vector whose length is not defined when a statement needing it is executed.
UNSTACK splits vectors into individual vectors according to levels of a factor.
UTMCONVERSION converts between geographical latitude and longitude coordinates and UTM eastings and northings.
VABLOCKDESIGN analyses an incomplete-block design by REML, allowing automatic selection of random and spatial covariance models.
VAIC calculates the Akaike and Schwarz (Bayesian) information coefficients for REML.
VALINEBYTESTER provides combinabilities and deviances for a line-by-tester trial analysed by VABLOCKDESIGN or VAROWCOLUMNDESIGN.
VALLSUBSETS fits all subsets of the fixed terms in a REML analysis.
VAMETA performs a REML meta analysis of a series of trials.
VAOPTIONS defines options for the fitting of models by VARAMND and associated procedures.
VARECOVER recovers when REML, is unable to fit a model, by simplifying the random model.
VARYPARALLEL does the same REML analysis for several y-variates, and collates the output.
VBOOTSTRAP performs a parametric bootstrap of the fixed effects in a REML analysis.
VCHECK checks standardized residuals from a REML analysis.
VCOMPONENTS defines the variance-components model for REML.
VCRITICAL uses a parametric bootstrap to estimate critical values for a fixed term in a REML analysis.
VCYCLE controls details of the REML algorithm.
VDEFFECTS plots one- or two-way tables of effects estimated in a REML analysis.
VDFIELDRESIDUALS display residuals from a REML analysis in field layout.
VDISPLAY displays further output from a REML analysis.
VEQUATE equates values across a set of structures.
VFIXEDTESTS saves fixed tests from a REML analysis.
VFHC performs an F-test of random effects in a linear mixed model based on linear combinations of the
responses, i.e. an FLC test.
VFMODEL forms a model-definition structure for a REML analysis.
VFPEDEGREE checks and prepares pedigree information from several factors, for use by VPEDIGREE and REML.
VFRESIDUALS obtains residuals, fitted values and their standard errors from a REML analysis.
VFSTRUCTURE adds a covariance-structure definition to a REML model-definition structure.
VF function calculates functions of variance components from a REML analysis.
VGESELECT selects the best variance-covariance model for a set of environments.
VGRAPH plots tables of means from REML.
VHERITABILITY calculates generalized heritability for a random term in a REML analysis.
VHOMOGENEITY tests homogeneity of variances and variance-covariance matrices.
VINTERPOLATE performs linear & inverse linear interpolation between variates.
VKKEEP copies information from a REML analysis into Genstat data structures.
VLINEBYTESTER analyses a line-by-tester trial by REML.
VLSD prints approximate least significant differences for REML means.
VMATRIX copies values and row/column labels from a matrix to variates or texts.
VMCOMPARISON performs pairwise comparisons between REML means.
VMETA performs a multi-treatment meta analysis using summary results from individual experiments.
VMODEL specifies the model for a REML analysis using a model-definition structure defined by VFMODEL.
VNEARESTNEIGHBOUR analyses a field trial using nearest neighbour analysis.
VORTHPOLYNOMIAL forms orthogonal polynomials over time for repeated measures.
VPEDIGREE generates an inverse relationship matrix for use when fitting animal or plant breeding models by REML.
VPERMTEST does random permutation tests for the fixed effects in a REML analysis.
VPOWER uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis.
VPOWER uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis.
VRADD adds terms from a REML fixed model into a Genstat regression.
VRDISPLAY displays output for a REML fixed model fitted in a Genstat regression.
VRDROP drops terms in a REML fixed model from a Genstat regression.
VREPLACE replaces values of vectors and pointers.
VRESIDUAL defines the residual term for a REML model.
VRFIT fits terms from a REML fixed model in a Genstat regression.
VRKEEP saves output for a REML fixed model fitted in a Genstat regression.
VRMETA MODEL forms the random model for a REML meta analysis.
VRPERMTEST performs permutation tests for random terms in REML analysis.
VRSETUP sets up Genstat regression to assess terms from a REML fixed model.
VRSWITCH adds or drops terms from a REML fixed model in a Genstat regression.
VRTRY tries the effect of adding and dropping individual terms from a REML fixed model in a Genstat regression.
VSAMPLESIZE estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap.
VSCREEN performs screening tests for fixed terms in a REML analysis.
VSOM analyses a simple REML variance components model for outliers using a variance shift outlier model.
VSPECTRALCHECK forms the spectral components from the canonical components of a multitiered design, and constrains any negative spectral components to zero.
VSPREADSHEET saves results from a REML analysis in a spreadsheet.
VSTATUS prints the current model settings for REML.
VSTRUCTURE defines a variance structure for random effects in a REML model.
VSUMMARY summarizes a variate, with classifying factors, into a data matrix of variates and factors.
VSURFACE fits a 2-dimensional spline surface using REML, and estimates its extreme point.
VTABLE forms a variate and set of classifying factors from a table.
VTCOMPARISONS calculates comparison contrasts within a multi-way table of predicted means from a REML analysis.
VUVCOVARIANCE forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model.
WADLEY fits models for Wadley's problem, allowing alternative links and errors.
WILCOXON performs a Wilcoxon Matched-Pairs (Signed-Rank) test.
WINDROSE plots rose diagrams of circular data like wind speeds.
WORKSPACE accesses private data structures for use in procedures.
WSTATISTIC calculates the Shapiro-Wilk test for Normality.
XAXIS defines the x-axis in each window for high-resolution graphics.
XOCATEGORIES performs analyses of categorical data from cross-over trials.
XOEFICIENCY calculates efficiency of estimating effects in cross-over designs.
XOPPOWER estimates the power of contrasts in cross-over designs.
YAXIS defines the y-axis in each window for high-resolution graphics.
YTRANSFORM estimates the parameter lambda of a single parameter transformation.
ZAXIS defines the z-axis in each window for high-resolution graphics.
%CD changes the current directory.
%CLEAR clears the client Output window.
%CLOSE closes the binary file opened by %OPEN.
%FLUSH flushes server output immediately to the client Output window.
%FPOSITION returns the current position in the binary file opened by %OPEN.
%LOG adds text into the Input Log window in the Genstat client.
%MESSAGEBOX displays text in a dialog in the Genstat client.
%OPEN open a binary file for use with %WRITE.
%SLEEP pauses execution of the server for a time specified in seconds.
%TEMPFILE creates a unique temporary file in the Genstat temporary folder.
%WRITE writes values of data structures to a binary file opened by %OPEN.