Genstat

Summary

Genstat ${ }^{\circledR}$ Reference Manual (Release 23)

Part 1: Summary

Genstat Release 23 was developed by VSN International Ltd, in collaboration with practising statisticians at Rothamsted and other organisations in Britain, Australia, New Zealand and The Netherlands.

Published by:	VSN International, 2 Amberside, Wood Lane,
	Hemel Hempstead, Hertfordshire HP2 4TP, UK
E-mail:	info@genstat.co.uk
Website:	http://www.genstat.co.uk/

First published 1989, as the Genstat 5 Release 2 Reference Summary
This edition published 2023, for Genstat Release 23

Citation: VSN International (2023). Genstat Reference Manual (Release 23), Part 1 Summary. VSN International, Hemel Hempstead, UK.

Genstat is a registered trade of VSN International. All rights reserved.
© 2023 VSN International

Contents

1 The Genstat language $\underline{1}$
1.1 Syntax of the command language 1
1.2 Glossary of terminology 2
1.3 Data structures 11
1.4 Program control $\underline{12}$

2 Data handling $\underline{15}$
2.1 Input and output 15
2.2 Calculations and manipulation $\underline{16}$
2.3 Graphics 21

3 Statistical analyses 24
3.1 Basic and nonparametric statistics 24
3.2 Regression and generalized linear models $\underline{25}$
3.3 Analysis of variance 29
3.4 Design of experiments 31
3.5 REML analysis of linear mixed models 34
3.6 Multivariate and cluster analysis 36
3.7 Time series $\underline{38}$
3.8 Repeated measurements 39
3.9 Survival analysis 40
3.10 Bayesian methods 40
3.11 Spatial statistics 40
3.12 Six sigma 41
3.13 Survey analysis 42
3.14 Data mining 43
3.15 Statistical genetics and QTL estimation 44
3.16 Microarray data 45
3.17 Ecological data $\underline{46}$

4 Syntax summary 47
4.1 Commands $\underline{47}$
4.2 Functions for calculations 502
4.3 Functions for model formulae $\underline{518}$

5 List of commands $\underline{520}$

Conventions

Genstat system words are shown in the Courier typeface e.g. CALCULATE. In the syntax summary, elements of the language to be substituted by the user are in italics, e.g. variate. New directives, procedures or functions in Release 23, or options and parameters of existing directives or procedures that have been modified in Release 23, are marked by the symbol ${ }^{\dagger}$.

1 The Genstat language

Genstat has a clear but powerful command language which provides access to the very wide set of facilities summarized in Sections 2 and 3. Alternatively, many standard operations and analyses can be run using the menus in Genstat's Windows interface.

1.1 Syntax of the command language

Input to Genstat is known as a Genstat program. This is made up of statements each of which may use one of the standard Genstat commands (known as directives); alternatively, it may use a Genstat procedure, that is, a subprogram of statements. You can write your own procedures, or use those in the Library distributed with Genstat, or in the library provided at your site.

Whether the statement uses a directive or a procedure, the syntax is identical. First you give the name of the directive (or procedure), then options, and then parameters. Finally, you indicate the end of the statement, either by typing a colon or by ending the line (by typing <RETURN>). Long statements can be continued onto succeeding lines by typing the continuation character (\backslash) before <RETURN>.

Some statements will have neither options nor parameters: for example
PAGE
to start a new page in output. Others may have no options: for example
PRINT STRUCTURE=X,Y; DECIMALS=0,2
prints the contents of data structures X and Y with zero and two decimal places respectively. In this statement, there are two parameter settings defining two lists running in parallel. Parameter settings are always in parallel like this, and are separated from one another by semicolons. Options are enclosed in square brackets, and set aspects that apply to all the (parallel) parameter values. They are also separated from one another by semicolons. For example

```
PRINT [CHANNEL=2; INDENTATION=5] STRUCTURE=X,Y; DECIMALS=0,2
```

prints X and Y to output channel 2 with a five-character indentation at the start of each line. Nearly all options, and some parameters, have default values chosen to be those required most often, and so will usually not need to be set.

Settings of options and parameters can be lists (as above), expressions or formulae. Lists may be of numbers (as with DECIMALS above), or identifiers (as with STRUCTURE) or strings. An identifier is the name that you give to a Genstat data structure (for example X or Y), and which you then use to refer to it in the program. They must start with a letter (for Genstat this means the alphabetic characters A to Z , in capitals or lower case, as well as the percent and underline characters) and then contain either letters or digits (the numerical characters 0 to 9); Genstat takes notice of only the first 32 characters. (This is the default in Releases 4.2 onwards, but you can use the SET directive to request that Genstat take notice of only the first eight characters as in earlier releases.) Where a list of identifiers provides input to a directive or procedure, you can put an expression instead; this will then be evaluated (to give a list of identifiers containing the results) before the directive or procedure is used. A string is a list of characters. Usually the start and end of the string must be marked by a single quote ('). Strings occur within the Text data structure. Also, the settings of some options and parameters are lists of string "tokens" that can be chosen from a defined list; these do not need to start and end with single quotes. The separator between items in lists is comma; spaces can be included anywhere between items but do not act as separators. Formal definitions of expressions, formulae, and all the other concepts of the Genstat language are in the Guide to the Genstat Command Language, Part 1, Section 1.2.

Names of directives, procedures, options and parameters are examples of Genstat system words. They can be given in capital or small letters (or in mixtures of both) and, provided you are only using directives and official Genstat Library procedures, they can always be abbreviated to four characters. The same rules apply to string tokens in directives and Library procedures. However, if you or your site have defined your own procedures, you may have chosen names that differ only in the fifth or subsequent characters. If you supply more characters, Genstat will check the name up to the 32 nd character, and ignore any characters after that. (You can, however, use the SET directive to request that Genstat also ignores the ninth and subsequent characters, as in releases before 4.2.)

Names of options and parameters can often be abbreviated to fewer than four characters, and there are also rules by which the option or parameter name, with its accompanying equals character, can be omitted altogether. The most useful of these is that, if the first parameter of the directive is the one that comes first in the statement, then the name of the parameter can be omitted: for example
PRINT [CHANNEL=2; INDENTATION=5] X,Y; DECIMALS=0,2
as STRUCTURE is the first parameter of PRINT. The same rule holds for options:
PRINT [2; INDENTATION=5] X,Y; DECIMALS $=0,2$
as CHANNEL is the first option of PRINT. Full details of the rules are in the Guide to the Genstat Command Language, Part 1, Section 1.2.

A final point about the first parameter is that its setting determines the length of the parallel lists. The lists for other parameters will be repeated (or recycled) if they are shorter. (If they are longer, Genstat gives an error diagnostic.) For example

```
PRINT A,B,C,D; DECIMALS=0,2
```

prints A with zero decimal places, B with two, and then (recycling the DECIMALS list), C with zero and D with two.

1.2 Glossary of terminology

Backing store

Bracket
 Round brackets ()

Square brackets []

Curly brackets \{ \}

Channel

Character

Comment

Data structure

Device
is a system provided by Genstat for the convenient storage of data structures and procedures. The OPEN directive allows you to open a backing-store file, the STORE directive stores information and RETRIEVE allows you to access it later on (perhaps in a subsequent run of Genstat). When a data structure is stored, Genstat keeps not only the data values but also all the other associated information (for example level and label definitions of factors, sub-structures of pointers and so on).
are used to enclose a list of numbers to be pre- or post-multiplied or to enclose the arguments of a function; they also occur in expressions.
are used to enclose a list of option settings or to enclose the suffix list of a pointer; also, when preceded by \$, they enclose lists of unit names or numbers for a qualified identifier. are each synonymous with the corresponding square bracket.

Genstat accesses the files on the computer via channels. For each type of file, there is a set of numbered channels that can be used to reference different files in the various input/output directives. For example, there are five input channels, numbered 1 up to 5. Likewise, there are five output channels. Genstat distinguishes between the different types of channel, so you can have one file attached to input channel 3 and a different file simultaneously attached to output channel 3. (See the OPEN directive.)

The characters used to form Genstat statements are a subset of those available on most computers. For the Genstat language they are classified as brackets, digits, letters, punctuation symbols, simple operators, or special symbols.

A comment consists of any series of characters that the computer can represent, enclosed by double quotes ("); comments are ignored and can appear anywhere in a Genstat program.

These are used to store information within Genstat, such as numbers, character strings or even identifiers of other data structures. Directives known as declarations are available to form each of the available types.

Genstat's high-resolution graphics commands.
Diagonal matrix
Digit
Directive
Directive name

Expression

Factor

Fixed format

Formula

Frame

Free format

Function
is a data structure that stores the diagonal elements of a square matrix whose other values are all zero. Diagonal matrices can be declared using the DIAGONALMATRIX directive.

The numerical characters 0 to 9 are known as digits in Genstat.
is a standard form of instruction in the Genstat language requesting a particular action or analysis. All Genstat directives have the same syntax.
is a system word used to request a particular action or analysis from Genstat. Directive names may be abbreviated to four characters; if characters 5-8 are given, they must match the standard form, e.g. TREATMENTSTRUCTURE can be written as TREA, TREAT, TREATM, and so on, but not as TREATS. (Also see procedure.)
is an arithmetic expression consisting of lists and functions separated by operators. An expression data structure stores a Genstat expression, and can be declared using the EXPRESSION directive.
is a data structure that specifies an allocation of the units into groups. It is thus a vector that, unlike the variate or the text, takes only a limited set of values, one for each group. The groups are referred to by numbers known as levels; you can also define textual labels. Factors can be declared using the FACTOR directive.

In fixed format, data values are arranged in specific fields on each line of the file. Each field consists of a fixed number of characters. There is no need for separating spaces. When data are read in fixed format in Genstat (by the READ directive), the tab character is not permitted, nor are comments.
is a model formula of lists and operators defining the list of model terms involved in an analysis. A formula data structure stores a Genstat formula, and can be defined using the FORMULA directive.

In Genstat graphics, frame refers to the available plotting area. (See the FRAME and GRAPH directives.)

In free format, the data values are separated by one or more spaces (or tabs), and can otherwise be arranged any way you like, on one or more lines, so long as the correct order is maintained. The SEPARATOR option of the READ directive allows separators other than spaces to be requested.
denotes a standard operation in an expression or formula, with the form "function-name (sequence of lists and/or expressions separated by ;)". The function-name is a system word and may be abbreviated to four characters; if characters 5-8 are given, they must match the standard form. A wide range of functions are available, for operations ranging from transformations to the
\(\left.\left.$$
\begin{array}{ll}\text { Identifier } & \begin{array}{l}\text { is the name given to a particular data structure within a Genstat } \\
\text { program. The first character of an identifier must be a letter; any } \\
\text { others can be either letters or digits. Only the first } 32 \text { characters } \\
\text { are significant; subsequent characters are ignored. The directive }\end{array} \\
\text { SET allows you to specify whether or not the case of the letters } \\
\text { (small or capital) is to be significant, e.g. whether LENGTH is the } \\
\text { same as Length, or whether only the first eight characters should } \\
\text { be significant (as in Releases before 4.2). }\end{array}
$$\right\} \begin{array}{l}Genstat data structures that depend on other structures can be left

in an inconsistent form if these other structures are deleted. For

example, a table depends on its classifying factors.\end{array}\right\}\)| is a number, a string, an identifier, a system word, a missing |
| :--- |
| value, or an operator. |

Margin	The margin of a Genstat table is a section of the table that contains summaries over the values of one or more of the classifying factors. A marginal term of a term T in a statistical model is a term composed of factors or variates that are a subset of those of T.
Matrix	
is a data structure that stores a rectangular array of numbers.	
	Matrices can be declared using the MATRIX directive.

Option

Option name

Option sequence
Option setting

Parameter

Parameter name

Parameter sequence
Parameter setting
**

* /
+ Dyadic -
$<>==<=>=/=<>$.LT. .GT. .EQ. .LE. .GE. .NE. .NES.
.AND. .OR. .EOR.
$=$
(Monadic minus means the use of the minus sign in a negative number: for example, -1 .) Within each class, operations are done from left to right within a expression, unless brackets are used to indicate some other order.

Options specify arguments that are global within a Genstat statement: i.e. they apply to all the items in the parameter list(s). Often, but not always, options have default values and so need not be specified.
is a system word that identifies a particular option setting. It can be abbreviated to the minimum number of characters required to distinguish it from the options that precede it in the prescribed order for the directive or procedure concerned; for directives, four characters are always sufficient.
is a series of option settings separated by semi-colons (;).
has the form
option-name $=$ list, expression or formula
"option-name $=$ " can be omitted if the settings are given in the prescribed order for the directive or procedure concerned: i.e. the name may be omitted for the first setting if this is for the first prescribed option, and for subsequent settings if the previous setting was for the option immediately before the current one in the prescribed order.

Parameters specify parallel lists of arguments for a statement: i.e. the statement (with its option settings) operates for the first item in each list, then the second, and so on. The number of times that this happens is determined by the length of the parameter list that is first in the prescribed order for the directive or procedure concerned. Subsequent lists are recycled if they are shorter than the first list.
is a system word that identifies which parameter is being set. It
may be abbreviated to the minimum number of characters required to distinguish it from the parameters that precede it in the prescribed order for the directive or procedure concerned; for directives, four characters are always sufficient.
is a series of parameter settings separated by semi-colons (;).
has the form
parameter-name $=$ list, expression or formula"parametername $=$ " can be omitted if the settings are given in the prescribed order for the directive or procedure concerned: i.e. the name may be omitted for the first setting if this is for the first prescribed parameter, and for subsequent settings if the previous setting was for the parameter immediately before the current one in the prescribed order. For directives or procedures with only a single parameter, no parameter name is defined.

Procedure

Procedure name

All the elements of a high-resolution graph, such as symbols, lines, axes, titles, labels, annotation, and filled polygons are drawn by pens, which have associated definitions covering various attributes, like colour, font, and symbol type. The pen also indicates the plotting method, that is, what kind of plot is to be drawn. See the PEn directive.
is a data structure that stores a series of identifiers, pointing to other data structures. Pointers can be declared using the POINTER directive.

This is a structure that contains Genstat statements, and fulfils the role of the subroutine in the Genstat language. The use of a procedure looks just like the use of a Genstat directive. All data structures within the procedure are local (i.e. they cannot be referenced, or confused, with data structures outside the procedure); input and output structures for the procedure are defined by option and parameter settings in the procedure call. is a letter followed by letters and/or digits. Procedure names can be defined with up to 32 characters; if more than 32 are given, characters 33 onwards are ignored. The case of the letters (small or capital) is also ignored. When using a procedure, the name can be abbreviated to as few as four characters, provided there is no ambiguity with the names of directives or other procedures. Directives and procedures in the official Genstat library are all defined to have names that are distinct within the first four characters so there should be no problem unless you (or your site) have defined procedures with ambiguous names. If so, Genstat selects the command to use according to the following order of priority: directives, user-defined procedures, procedures in libraries attached by the user (in order of channel number), procedures in the site library, and procedures in the official library.

The Genstat Procedure Library contains procedures contributed not only by the writers of Genstat but also by knowledgeable Genstat users from many application areas and countries. The Library is controlled by an Editorial Board, who check that the procedures are useful and reliable, and maintain standards for the documentation. It is regularly extended and updated, independently to the releases of Genstat itself, and these revised versions are distributed automatically to all supported Genstat sites. Information about the Library is available using procedures in the help module of the Library. Other modules cover, for example, manipulation, graphics and various types of statistical analysis. These procedures are all accessed automatically by Genstat, when required. Instructions for authors of procedures can be obtained using procedure NOTICE. You can also form your own procedure libraries using the STORE directive.
is a series of statements, ending with the statement STOP.
Lists of numbers ascending or descending with equal increments can be specified succinctly using the form "number, number . . . number" where the first two numbers define the first two elements in the list (and thus the increment) and the list ends with

Punctuation symbol
colon (:)
comma (,)
double quote (")
equals (=)
newline
semi-colon (;)
single quote (')
space
tab

Qualified identifier

Save structure

Scalar

Special symbol

 ampersand (ε)the value beyond which the third number would be passed. For lists with an increment of plus or minus one, the second number can be omitted, to give the form "number . . . number".

The Genstat punctuation symbols are: indicates the end of a statement;
separates items;
is used to show the beginning and end of a comment; separates an option name or parameter name from its setting; is synonymous with colon, by default, but directive SET can request that it be ignored; separates lists;
is used to show the beginning and end of a string (left single quote (') is synonymous with single quote);
can appear between items or can be omitted altogether if the items are already separated by another punctuation symbol, a bracket, an operator, or an ampersand;
the tab character is treated as a synonym of space everywhere except within texts and comments or if reading in fixed format (when it is treated as a fault).

These may occur in a list of identifiers to define subsets of the values of a data structure (i.e. sub-structures). The form is "identifier \$ qualifier", where the qualifier is a sequence of identifier lists enclosed in square brackets. For factors, variates, and texts, the qualifier has a single list, each element of which defines a subset of the vector concerned. For matrices there are two lists running in parallel, one for each dimension. For a symmetric matrix, there can be either one or two lists, depending on whether or not its two dimensions are to be subset in the same way; one list forms a symmetric matrix, and two lists forms a rectangular matrix, For a diagonal matrix there is a single list. Tables cannot be qualified. The elements of the qualifier lists can be scalars, numbers, variates, quoted strings, or texts. The set of units defined by an element in the qualification list is built up, by taking its values one at a time. Positive numbers (or texts or strings) add units to the set, while negative numbers delete the corresponding units from the set (if already there). A missing value can be used to include all the units, and one of these will be included implicitly at the start of the qualification list if the first element of the list is negative. More details, and examples, are given in Section 4.1.6 of the Guide to the Genstat Command Language: Part 1 Syntax and Data Management.
is a special-purpose structure defined within Genstat for saving information, for example from an analysis, so that further output can be obtained without repeating all the calculations.
is a data structure that stores a single number. Scalars can be declared using the SCALAR directive.

The special symbols in Genstat are as follows:
repeats the previous statement name (unless that statement contained a syntax error) and any option settings that are not
asterisk (*)
backslash (
)
dollar (\$)
exclamation mark (!)
hash (\#)

SSPM structure

Statement

statement-name [option-sequence] parameter-sequence terminator

Statement name

String

If no option settings are given, the square brackets can be omitted. The terminator is colon (:), ampersand (ε) or newline (unless directive SET has indicated that this is to be ignored).
explicitly changed;
denotes a missing value (and is also used as an operator); is the continuation symbol, typed at the end of a line to indicate that the current statement continues onto the next line (this is unnecessary when directive SET has been used to specify that newline is to be ignored);
precedes a list of unit names or numbers (enclosed in square brackets) that define subsets of a factor, variate, matrix, symmetric matrix, diagonal matrix, or text;
indicates an unnamed structure (vertical bar (।) is synonymous with exclamation mark);
is the substitution symbol; when used on its own (i.e. followed just by a punctuation symbol) it represents the default setting of an option; alternatively, it can be followed by the identifier of a data structure whose values are to be inserted at that point in a Genstat statement (the substitution takes place immediately before the statement is executed). A pair of contiguous substitution symbols (\#\#) is used to introduce a macro.
is a compound data structure storing sums of squares and products, means and ancillary information for use in regression and multivariate analysis. SSPMs can be declared using the SSPM directive.

The values of a set of factors are said to be in standard order if their units are arranged so that the levels of the first factor occur in the same order as in its levels vector then, within each level of the first factor, the levels of the second factor are arranged similarly, and so on. (See the GENERATE directive.)
is the name of either a directive or a procedure.
is a sequence of characters forming one unit (or line) of a Genstat text structure. In most contexts, the string must be quoted: i.e. enclosed in single quotes ($'$). Quoted strings may contain any of the characters available on the computer. However, if single quote ('), double quote ("), or the continuation symbol (\backslash) are required as characters within a quoted string, they must each be typed twice to distinguish this use from their action in, respectively, terminating the string, introducing a comment within the string, or indicating continuation. Newline within a quoted string is taken to terminate the current (quoted) string and begin another one, unless the newline is within a comment or preceded by an (unduplicated) continuation symbol (\backslash), or unless directive SET has specified that newline is to be ignored. Unquoted strings can occur in unnamed texts, or in option or parameter settings where you have to specify a particular string from a prescribed set of alternatives; an unquoted string must have a letter as its first character and contain only letters or digits.

Subfile

Subset selection

Suffix

Symmetric matrix

System word

Table

Text

Tree

TSM structure

Unknown cell

Unnamed structure

Backing store files are partitioned into subfiles. These are selfcontained, and can be used completely independently of each other.

An identifier list can contain qualified identifiers, each defining a list of subsets of the values of the data structure concerned.

Elements of pointers can be referred to by suffixes. Each suffix takes the form of an identifier list enclosed in square brackets; the list can contain numbers, scalars, or variates to reference an element or elements by number, or texts or quoted strings to reference by label. A null list within the brackets is taken to mean all the elements of the pointer in turn. Where a pointer has other pointers as its elements, their elements can be referred to in the same way, and so the original identifier may be followed by several suffix lists each contained in its own pair of square brackets; these define a list of elements, one for each combination of an element from each suffix list, taking the combinations in an order in which the last list cycles through its elements fastest, then the next to last list, and so on.
is a data structure that stores the lower triangle (including the diagonal) of a symmetric square matrix.
is a letter followed by letters and/or digits with a special meaning within the Genstat language, e.g. directive, option, parameter, or function names. The case of the letters (small/capital) is not significant; the abbreviation rules vary according to context.
is a data structure that stores a multi-dimensional array of numbers, each dimension classified by a factor. Thus a table can be used to hold a summary of data that are classified (by the factors) into groups. Tables can be declared using the TABLE directive.
is a data structure that stores a series of strings, each one representing a line of textual information. Texts can be declared using the TEXT directive.
is a data structure that represents hierarchical structures like classification trees, identification keys and regression trees. Trees can be declared using the TREE directive.
is a compound data structure storing a model for use in BoxJenkins modelling of time series. TSMs can be declared using the TSM directive.
of a table is used to store the relevant summary of all the observations for which any of the classifying factors of the table has a missing value; these observations cannot be assigned to any cell of the table itself. (See TABLE.)

An identifier list may contain unnamed variates, scalars, texts, pointers, expressions, or formulae. An unnamed structure consists of an exclamation mark, followed by the type code, and then the values contained in round brackets. The type code is E for expression, F for formula, P for pointer, S for scalar, T for

Variate

Vector

Window

text, or v for variate. If no code is given, variate is assumed by default.
is a data structure that stores a series of numbers. Variates can be declared using the VARIATE directive.
is a series of values, notionally arranged in a column. Genstat has three different types of vector: factors, texts, and variates.

In high-resolution graphics, a window is a rectangular segment of the frame used to plot a particular graph. (See the FRAME directive.)

1.3 Data structures

Data structures store the information on which a Genstat program operates. Structures can be defined, or declared, by a Genstat statement known as a declaration. The directive for declaring each type of structure has the same name as given to that type of structure, for example SCALAR to declare a scalar (or singlevalued numerical structure), and so on. These are the directives, with details of their corresponding data structures:

SCALAR	single number VARIATE
series of numbers	
TEXT	series of character strings (or lines of text)
FACTOR	series of group allocations (using a pre-defined set of numbers or strings to indicate the groups)
MATRIX	rectangular matrix
SYMMETRICMATRIX	symmetric matrix
diagonal matrix	
DIAGONALMATRIX	table (to store tabular summaries like means, totals etc) TABLE
single identifier	
DUMMY	series of identifiers (e.g. to represent a set of structures) POINTER
arithmetic expression	
EXPRESSION	model formula (to be fitted in a statistical analysis)
FORMULA	latent roots and vectors LRV
sums of squares and products with associated information such	
as means	

You can rename a data structure, or create a new one with attributes the same as those of an existing structure.

RENAME	renames a data structure, to give it a new identifier forms new data structures with attributes taken from an existing DUPLICATE
structure	
duplicates a pointer, with all its components	

You can also define data structures whose contents are customized for particular tasks.

There are commands to access and display the attributes of data structures, and to work out the best formats for printing their values.

```
DUMP
DECIMALS
GETATTRIBUTE
LIST
MINFIELDWIDTH
```


Abstract

prints attributes of data structures and other internal information sets the number of decimals for a structure, using its round-off accesses attributes of data structures lists details of the data structures that currently exist in your program calculates minimum field widths for printing data structures

1.4 Program control

A Genstat program consists of a sequence of one or more jobs. The first job starts automatically at the start of the program. Subsequent jobs can be initialized by the JOB and ENDJOB directives:

```
JOB starts a Genstat job (ending the previous one if necessary)
ENDJOB ends a job
```

The whole program is terminated by a STOP directive:
STOP ends a Genstat program
Statements within a program can be repeated using a FOR loop. The loop is introduced by a FOR statement. This is followed by the series of statements that is to repeated (that is, the contents of the loop), and the end of the loop is marked by an ENDFOR statement. Parameters of the FOR directive allow lists of data structures to be specified so that the statements in the loop operate on different structures each time that it is executed.

```
FOR indicates the start of a loop
ENDFOR
marks the end of a loop
```

Genstat has two ways of choosing between sets of statements. The block-if structure consists of one or more alternative sets of statements. The first set is introduced by an IF statement. There may then be further sets introduced by ELSIF statements. Then there may be a final set introduced by an ELSE statement, and the whole structure is terminated by an ENDIF structure. The IF statement, and each ELSIF statement, contains a single-valued logical expression. Genstat evaluates each one in turn and executes the statements following the first TRUE logical found; if none of them is true, Genstat executes the statements following the ELSE statement (if any).

IF introduces a block-if structure
ELSIF introduces an alternative set of statements in a block-if structure ELSE introduces a default set of statements for a block-if structure Endif marks the end of a block-if structure

The multiple-selection structure consists of several sets of statements. The first is introduced by a CASE statement. Subsequent sets are introduced by OR statements. There can then be a final, default, set introduced by an ELSE statement, and the end of the structure is indicated by an ENDCASE statement. The parameter of the CASE statement is an expression which must produce a single number. Genstat rounds this to the nearest integer, n say, and then executes the nth set of statements. If there is no nth set, the statements following the ELSE statement are executed (if any).

```
CASE introduces a multiple-selection structure
OR introduces an alternative set of statements for a multiple-selection structure
ELSE introduces a default set of statements for a multiple-selection
    structure
ENDCASE marks the end of a multiple-selection structure
```

Sequences of statements can be formed into Genstat procedures for convenient future use. The use of a procedure looks just like one of the Genstat directives, with its own options and parameters, which transfer information to and from the procedure. Otherwise the procedure is completely self-contained. The start of a procedure is indicated by a PROCEDURE statement. Then OPTION and PARAMETER statements can be given to define the arguments of the procedure. These are followed by the statements to be executed when the procedure is called, terminated by an EnDPROCEDURE statement.

PROCEDURE	introduces a procedure, and defines its name
OPTION	defines the options of a procedure
PARAMETER	defines the parameters of a procedure
CALLS	lists library procedures called by a procedure
ENDPROCEDURE	indicates the end of a procedure
WORKSPACE	accesses "private" data structures for use in procedures

Any control structure (job, block-if structure, loop, multiple-selection structure or procedure) can be abandoned using an EXIT statement. Also, execution of any of these structures can be interrupted explicitly with a BREAK statement, or implicitly by using DEBUG. Once DEBUG has been entered, Genstat will produce breaks automatically at regular intervals, until it meets an ENDDEBUG statement. You can also issue a faults, warnings or messages.

```
EXIT
BREAK
ENDBREAK
DEBUG
ENDDEBUG
FAULT
DISPLAY
```

exits from a control structure
suspends the execution of a control structure continues execution of a control structure, following a break can cause a break to take place after the current statement (and at specified intervals thereafter), or immediately after the next fault
cancels DEBUG
evaluates a logical expression to decide whether to issue a diagnostic, i.e. a fault, warning or message
prints, or reprints, diagnostic messages
Macros within a procedure are substituted as soon as they are met during the definition of the procedure. However, it is also possible to execute a set of statements (contained in a text) during execution of the procedure. This can also be useful within loops.

EXECUTE
executes the statements contained within a text
Other commands that may be useful in programs and procedures include the following:

```
CAPTION
COMMANDINFORMATION
COUNTER
GET
GETTEMPFOLDER
SET
ENQUIRE
GETATTRIBUTE
CHECKARGUMENT
LIBEXAMPLE
SETCALCULATE
SETRELATE
SPSYNTAX
SYNTAX
```

prints captions in standardized formats
provides information about whether (and how) a command has been implemented
increments a multi-digit counter using non base-10 arithmetic accesses details of the "environment" of a Genstat job gets the name of the Genstat temporary folder sets details of the "environment" of a Genstat job provides details about files opened by Genstat accesses attributes of structures checks the arguments of a procedure
accesses examples and source code of library procedures
performs Boolean set calculations on the contents of vectors or pointers
compares the sets of values in two data structures puts details about the syntax of commands into a spreadsheet obtains details of the syntax of a command and the source code of a procedure
ASSIGN
DELETE
DUPLICATE
\%CD
\%LOG
\%MESSAGEBOX
\%OPEN
\%FLUSH
\%FPOSITION
\%WRITE
\%CLEAR
\%CLOSE
\%SLEEP
\%TEMPFILE
sets elements of pointers and dummies deletes the attributes and values of structures
forms new data structures with attributes taken from an existing structure
changes the current directory
adds text into the Input Log window in the Genstat client
displays text in a dialog in the Genstat client
open a binary file for use with $\%$ WRITE
flushes server output immediately to the client Output window returns the current position in the binary file opened by \%OPEN writes values of data structures to a binary file opened by \%OPEN clears the client output window closes the binary file opened by \%OPEN pauses execution of the server for a time specified in seconds creates a unique temporary file in the Genstat temporary folder

In some implementations of Genstat, it is possible to suspend the execution of Genstat and return to the operating system of the computer to execute commands, for example to list or edit files on the computer. You can also execute code within an external DLL using the EXTERNAL directive and the OWN function. Likewise, it may be possible to halt the execution of Genstat to execute some other computer program. The own directive provides another way of running a user's program from within Genstat. The OWN subroutine, within the Fortran code of Genstat, needs to be modified to call the program. The new code must then be recompiled and linked into a new version of Genstat.

SUSPEND	suspends the execution of Genstat to carry out operating-system commands runs another computer program, taking data from Genstat and transferring results back
PASS	launches executables or opens files in another application using their file extension declares an external function in a DLL for use by the OWN function executes the user's own code linked into Genstat
EXTERNAL	runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts submits a set of commands externally to R and reads the output
OWG	

2 Data handling

2.1 Input and output

Data can be read into Genstat data structures using the READ and SPLOAD directives or the FILEREAD and TX2VARIATE procedures:

```
READ reads data from an input file, an unformatted file or a text
FILEREAD
SPLOAD
TX2VARIATE
```

Files can be connected to input, output or other channels during execution of a Genstat program. Channels can also be closed, terminating the connection, so that they can be attached to other files.

OPEN	opens files and connects them to Genstat input/output channels
CLOSE	closes files, freeing the channels to which they were attached

The channel from which input statements are taken can be changed, as can the channel to which output is sent. It is also possible to send a transcript (or copy) of input and/or output to output files, to skip sections of input or output files, and to obtain information about the files connected to each channel.

INPUT	specifies the channel from which subsequent statements should be read
RETURN	returns to the previous input channel
OUTPUT	specifies the channel to which future output should be sent
COPY	requests a transcript of subsequent input and/or output
SKIP	skips lines of input or output files
ENQUIRE	provides details about files opened by Genstat

The following commands allow you to generate output.

```
PRINT
CAPTION
LIST
PAGE
PFACLEVELS
PLINK
DISPLAY
DUMP
DECIMALS
MINFIELDWIDTH
```

prints data in tabular form to an output file or text prints captions and titles in standardized formats lists details of the data structures that currently exist in your program
moves to the top of the next page of an output file prints levels and labels of factors prints a link to a graphics file into an HTML file repeats the last Genstat diagnostic prints attributes of data structures and other internal information sets the number of decimals for a structure, using its round-off calculates minimum field widths for printing data structures

You can copy, delete and rename files:

```
FCOPY makes copies of files
FDELETE deletes files
FRENAME
renames files
```

You can define menus:

```
QDIALOG
QUESTION
QFACTOR
QLIST
produces a modal dialog box to obtain a response from the user obtains a response using a Genstat menu (formed using QDIALOG)
allows the user to decide to convert texts or variates to factors presents a sequence of menus to obtain a response from a list
```

The values of a data structure, with all its defining information, can be stored in a sub-file of a "backing-
store" file. It can then be retrieved in a later job, without the need to repeat the definitions. The current state of the whole job can also be dumped to an unformatted file, so that it can be picked up and continued on a later occasion.

```
STORE
RETRIEVE
CATALOGUE
MERGE
RECORD
RESUME
```

stores data structures in a backing-store file retrieves data structures from a backing-store file displays the contents of a backing-store file copies sub-files of backing-store files into a single file dumps the complete details of a job reads and restarts a recorded job

Genstat has several additional commands for accessing data from spreadsheets, databases and other systems. However, these may be unavailable in some implementations.

CSPRO	reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file outputs data structures in foreign file formats, or as plain or comma-delimited text
EXPORT	reads data in a foreign file format, and loads it or converts it to a spreadsheet file
runs an SQL command on an ODBC database	
IMPORT	update an ODBC database table using data from Genstat
DBCOMMAND	loads data into Genstat from an ODBC database loads information on the tables and columns in an ODBC DBEXPORT
DBIMPORT	sends data or commands to a Dynamic Data Exchange server gets data from a Dynamic Data Exchange (DDE) server
DBINFORMATION	reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file combines spreadsheet and data files, without reading them into DEEXPORT
GDEIMPORT	

2.2 Calculations and manipulation

The directive CALCULATE allows arithmetic calculations on the values of any numeric data structure; logical tests can also be done on numerical and textual values. Functions and operators are available for a very wide range of calculations on matrices and tables. Another general directive is EQUATE, which allows values to be copied from one set of data structures to another; the structures must store values of the same mode (for example, numbers or text), but need not be of the same type. Structure values can be deleted to save space within Genstat; attributes can also be deleted so that the structure can be redefined, for example as another type. Contents of data structures can be compared, to see if they contain the same distinct items, or whether the distinct values in one structure are a subset of those in another. You can also find all the locations where a number, identifier or string occurs within a data structure.

CALCULATE	performs arithmetic and logical calculations
DELETE	allows values and attributes of data structures to be deleted
EQUATE	copies values between sets of data structures
SETRELATE	compares the sets of values in two data structures
GETLOCATIONS	finds locations of an identifier within a pointer, or a string within
	a factor or text, or a number within any numerical data structure

There are several general directives for manipulating vectors (variates, factors or texts). Units of vectors can be sorted into systematic order or into random order. Boolean arithmetic can be performed on their contents, or you can form all the ways of partitioning them into subsets. A "restriction" can be associated with a vector, so that subsequent statements operate on only a subset of its units. A default length and labelling can be defined for vectors formed later in the job. Facilities for specific types of vector allow
interpolation of values for variates, monotonic regression, calculation of regression quantiles, generation of factor values, and concatenation, editing and searching of text.

SORT	sorts units of vectors into alphabetic or numerical order of an index vector, or forms a factor from a variate or text performs Boolean set calculations on the contents of vectors and pointers runs through all ways of allocating a set of objects to subsets defines a "restriction" on the units of a vector
SETCALCULATE	defines default length or labelling for vectors defined subsequently in the job calculates variates of interpolated values forms regression quantiles
SETALLOCATIONS	fits an increasing monotonic regression RESTRICT UNITS
forms a factor (or grouping variable) from a variate or text,	
INTERPOLATE	together with the set of distinct values that occur concatenates together lines of text vectors
MONOTONIC	line editor for units of text vectors breaks a text structure into individual words
bROUPS	forms a text structure by appending or concatenating values of scalars, variates, texts, factors or pointers; allows the case of
CONCATENATE	letters to be changed or values to truncated and reversed finds a subtext within a text structure
TXBREAK	converts textual characters to and from their corresponding
TXCONSTRUCT	integer codes
locates strings within the lines of a text structure	

sorts units of vectors into alphabetic or numerical order of an index vector, or forms a factor from a variate or text
performs Boolean set calculations on the contents of vectors and pointers
defines a "restriction" on the units of a vector
defines default length or labelling for vectors defined subsequently in the job
calculates variates of interpolated values
fits an increasing monotonic regression
forms a factor (or grouping variable) from a variate or text, together with the set of distinct values that occur
oncatenates together lines of text vectors
breaks a text structure into individual words
forms a text structure by appending or concatenating values of scalars, variates, texts, factors or pointers; allows the case of ers to be changed or values to truncated and reversed
converts textual characters to and from their corresponding integer codes
replaces a subtext within a text structure

Another general directive allows you to run many algorithms from the Numerical Algorithms Group Library, for example to build mathematical models.

NAG calls an algorithm from the NAG Library
Other facilities for vectors are provided by the procedures in the Genstat Procedure Library, including

```
APPEND
FACAMEND
FACCOMBINATIONS
FACDIVIDE
FACEXCLUDEUNUSED
FACGETLABELS
FACMERGE
FACPRODUCT
FACSORT
FACLEVSTANDARDIZE
FACUNIQUE
FBETWEENGROUPVECTORS
```

FDISTINCTFACTORS

FMFACTORS
FFREERESPONSEFACTOR
appends a list of vectors of compatible types
permutes the levels and labels of a factor
forms a factor to indicate observations with identical values of a set of variates, texts or factors
represents a factor by factorial combinations of a set of factors
redefines the levels and labels of a factor to exclude those that are unused
obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise merges levels of factors
forms a factor with a level for every combination of other factors sorts the levels of a factor according to an index vector redefines a list of factors so that they have the same levels or labels
redefines a factor so that its levels and labels are unique
forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis
checks sets of factors to remove any that define duplicate classifications
forms a pointer of factors representing a multiple-response
forms multiple-response factors from free-response data

2 Data handling

FREGULAR	expands vectors onto a regular two-dimensional grid
FRESTRICTEDSET	forms vectors with the restricted subset of a list of vectors
FROWCANONICALMATRIX	puts a matrix into row canonical, or reduced row echelon, form
FSTRING	forms a single string from a list of strings in a text
FTEXT	forms a text structure from a variate
FUNIQUEVALUES	redefines a variate or text so that its values are unique
FWITHINTERMS	forms factors to define terms representing the effects of one factor within another factor
FVSTRING	forms a string listing the identifiers of a set of data structures
GRANDOM	generates pseudo-random numbers from probability distributions
GRMNOMIAL	generates multinomial pseudo-random numbers
GRMULTINORMAL	generates multivariate normal pseudo-random numbers
Join	joins or merges two sets of vectors together, based on classifying keys
MVFILL	replaces missing values in a vector with the previous non-missing value
ORTHPOLYNOMIAL	calculates orthogonal polynomials
QUANTILE	calculates quantiles of the values in a variate
RANK	produces ranks, from the values in a variate, allowing for ties
RESHAPE	reshapes a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors
SAMPLE	samples from a set of units, possibly stratified by factors
SVSAMPLE	constructs stratified random samples
STACK	combines several data sets by "stacking" the corresponding vectors
STANDARDIZE	standardizes columns of a data matrix to have mean 0 and variance 1
SUBSET	forms vectors containing subsets of the values in other vectors
TXPAD	pads strings of a text structure with extra characters so that their lengths are equal
TXPROGRESSIION	forms a text containing a progression of strings
TXSPLIT	splits a text into individual texts, at positions on each line marked by separator character(s)
TX2VARIATE	converts text structures to variates
UNSTACK	splits vectors into individual vectors according to levels of a factor
VEQUATE	equates values across a set of data structures
VInterpolate	performs linear and inverse linear interpolation between variates
VREPLACE	replaces values of vectors and pointers

There are several procedures for calculating or fitting splines, and for manipulating series of observations of a theoretical curve.

SPLINE
LSPLINE

NCSPLINE

PENSPLINE

PSPLINE

RADIALSPLINE

TENSORSPLINE
calculates a set of basis functions for M-, B- or I-splines calculates design matrices to fit a natural polynomial or trignometric L-spline as a linear mixed model
calculates natural cubic spline basis functions (for use e.g. in REML)
calculates design matrices to fit a penalized spline as a linear mixed model
calculates design matrices to fit a P-spline as a linear mixed model
calculates design matrices to fit a radial-spline surface as a linear mixed model
calculates design matrices to fit a tensor-spline surface as a linear mixed model

```
ALIGNCURVE
BASELINE
PEAKFINDER
forms an optimal warping to align an observed series of observations with a standard series
BASELINE
PEAKFINDER estimates a baseline for a series of numbers whose minimum value is drifting
finds the locations of peaks in an observed series
```

Directives are available for eigenvalue, QR and singular-value decompositions of matrices, and to form the values of SSPM structures.

```
FLRV
QRD calculates QR decompositions of matrices
SVD calculates singular-value decompositions of matrices
FSSPM calculates values for SSPM structures (sums of squares and
    products, means, etc.)
```

Procedures in the Library for operating on matrices include

```
FCORRELATION
PARTIALCORRELATIONS
FHADAMARDMATRIX
FPROJECTIONMATRIX
FRTPRODUCTDESIGNMATRIX
FVCOVARIANCE
GINVERSE
LINDEPENDENCE
MPOWER
POSSEMIDEFINITE
```

VMATRIX
forms the correlation matrix for a list of variates calculates partial correlations for a list of variates forms Hadamard matrices forms a projection matrix for a set of model terms forms summation, or relationship, matrices for model terms forms the variance-covariance matrix for a list of variates calculates the generalized inverse of a matrix finds the linear relations associated with matrix singularities forms integer powers of a square matrix calculates a positive semi-definite approximation of a nonpositive semi-definite symmetric matrix copies values and row/column labels from a matrix to variates and texts

Tables can be formed containing summaries of values in variates: totals, minimum and maximum values, quantiles, numbers of missing and non-missing values, means and variances. Manipulations of multi-way structures include the ability to add various types of marginal summaries to tables, and to combine "slices" of tables, of matrices or of variates.

```
TABULATE
MARGIN
COMBINE
```

forms tables of summaries of the values of a variate calculates or deletes margins of tables combines or omits "slices" of tables, matrices or variates

Procedures in the Library for operating on tables include

BACKTRANSFORM	calculates back-transformed means with approximate standard errors and confidence intervals gives robust identification of multiple outliers in 2-way tables tabulates data classified by multiple-response factors
MEDIANTETRAD	expresses the body of a table as percentages of one of its margins
MTABULATE	bootstraps data from random surveys
PERCENT	performs generalized calibration of survey data fits generalized linear models to survey data
SVBOOT	modifies survey weights adjusting to ensure that their overall sum
SVCALIBRATE	weights remains unchanged SVGLM
SVREWEIGHT	constructs stratified random samples
	analyses stratified random surveys by expansion or ratio raising
tabulates data from random surveys, including multistage surveys	

```
SVWEIGHT
TABINSERT
TABMODE
TABSORT
TCOMBINE
T%CONTROL
VTABLE VTABLE
```

and surveys with unequal probabilities of selection
forms survey weights
inserts the contents of a sub-table into a table
forms summary tables of modes of values
sorts tables so their margins are in ascending or descending order combines several tables into a single table expresses tables as percentages of control cells

Directives are available for adding and removing branches of trees, and to assist in the construction and use of trees.

```
BASSESS
BCUT
BIDENTIFY
BJOIN
BGROW
assesses potential splits for regression and classification trees cuts a tree at a defined node, discarding nodes and information below it
identifies specimens using a tree
extends a tree by joining another tree to a terminal node adds new branches to a node of a tree
```

There are also procedures for displaying and pruning trees. These are provide basic utilities for tree-based analysis, and are used by the existing procedures for classification trees, identification keys and regression trees (BCLASSIFICATION, BKEY and BREGRESSION).

BCONSTRUCT	constructs a tree
BGRAPH	plots a tree
BPRINT	displays a tree
BPRUNE	prunes a tree using minimal cost complexity

Formulae and expressions can be interpreted, revised or constructed automatically from the contents of pointers.

FARGUMENTS	forms lists of arguments involved in an expression
FCLASSIFICATION	forms classification sets for the terms in a formula or breaks a formula up into separate formulae (one for each term)
REFORMULATE	modifies a formula or an expression to operate on a different set of data structures
SET2FORMULA	forms a model formula using structures supplied in a pointer

Values can be assigned to dummies and pointers.

ASSIGN sets values of dummies and pointers
Aspects of the "environment" of the current job can be modified, such as whether or not Genstat starts output from a statistical analysis at the top of a new page, or whether it should pause during interactive output. New defaults can be set for options and parameters. Details of the environmental settings can be copied into Genstat data structures. Attributes of data structures can also be accessed.

```
SET sets details of the "environment" of a Genstat job
SETOPTION
SETPARAMETER sets or modifies defaults of parameters of Genstat directives or
    procedures
GET gets details of the "environment" of a Genstat job
GETATTRIBUTE
GETNAME
```

sets details of the "environment" of a Genstat job
sets or modifies defaults of options of Genstat directives or procedures
sets or modifies defaults of parameters of Genstat directives or procedures
gets details of the "environment" of a Genstat job accesses attributes of data structures
forms the name of a structure according to its IPRINT attribute

There are also various specialist mathematical facilities

```
BPCONVERT
FPARETOSET
GALOIS
NCONVERT
PERMUTE
PRIMEPOWER
```

converts bit patterns between integers, pointers of set bits and textual descriptions
forms the Pareto optimal set of non-dominated groups forms addition and multiplication tables for a Galois finite field converts integers between base 10 and other bases forms all possible permutations of the integers $1 . . . n$ decomposes a positive integer into its constituent prime powers

And there are games

```
BINGO
FRUITMACHINE
LIFE
NOUGHTSANDCROSSES
```

can be used to set up and then play a game of bingo runs a fruit machine using pop-up menus and Genstat graphics plays John Conway's Game of Life plays a game of noughts and crosses

2.3 Graphics

The following directives for produce the plots in "line-printer" style, i.e. using the characters of ordinary textual output:

```
LPCONTOUR produces contour maps of two-way arrays of numbers
LPGRAPH produces scatter plots and line graphs
LPHISTOGRAM plots histograms
```

Genstat can also produce high-resolution plots. The relevant directives have two main purposes. There are those that define the "graphics environment" for subsequent plots, and those that do the plotting. Often the default environment, set up at the start of a program, will be satisfactory. To change the graphics environment, the following directives can be used:
XAXIS
YAXIS
ZAXIS
AXIS
DEVICE
FRAME
PEN
DFONT
DKEEP
DLOAD
DSAVE
GETRGB
defines the x -axis in each graphical window defines the y-axis in each graphical window defines the z -axis in each graphical window defines an oblique axis for high-resolution graphics switches between graphics devices defines the positions of the windows within the frame defines the properties of the graphics "pens" defines the default font for high-resolution graphics saves information about the graphics environment in Genstat data structures
loads the graphics environment settings from an external file saves the current graphics environment settings to an external file provides a standard sequence of colours (defined by the initial defaults of the Genstat pens)

The directives for plotting high-resolution graphs are:

```
BARCHART plots bar charts
DGRAPH produces scatter plots and line graphs
DHISTOGRAM plots histograms
DPIE produces pie charts
DCONTOUR produces contour maps
DBITMAP plots a bit map of RGB colours
DSHADE
DSURFACE
```

[^0]| D3GRAPH | plots a 3-dimensional graph |
| :--- | :--- |
| D3HISTOGRAM | produces 3-dimensional histograms |
| DSTART | starts a sequence of related plots |
| DFINISH | ends a sequence of related plots |
| DDISPLAY | redraws the current graphical display |
| DCLEAR | clears a graphics screen |
| DCLOSE | closes windows in the Genstat Graphics Viewer |
| DVIEW | views windows in the Genstat Graphics Viewer |

Other facilities, provided by procedures in the Library include:

```
BANK
BOXPLOT
DARROW
DBARCHART
DBIPLOT
DCIRCULAR
DCOLOURS
DCOMPOSITIONAL
DCORRELATION
DELLIPSE
DERRORBAR
DKEY
DFRTEXT
DFUNCTION
DHSCATTERGRAM
DKSTPLOT
DMASS
DMOSAIC
DMSCATTER
DOTHISTOGRAM
DOTPLOT
DPROBABILITY
DPSPECTRALPLOT
DQMQTLSCAN
DQSQTLSCAN
DREFERENCELINF
DRESIDUALS
DSCATTER
DSPIDERWEB
DTABLE
DTEXT
DTIMEPLOT
DXDENSITY
DXYDENSITY
DXYGRAPH
DYPOLAR
D2GROUPS
FFRAME
```

calculates the optimum aspect ratio for a graph draws box-and-whisker diagrams (schematic plots)
adds arrows to an existing plot plots bar charts for one or two-way tables plots a biplot from an analysis by PCP, CVA or PCO
plots circular data
forms a band of graduated colours for graphics
plots 3-part compositional data within a barycentric triangle
plots a correlation matrix
draws a 2-dimensional scatter plot with confidence, prediction
and/or equal-frequency ellipses superimposed
adds error bars to a graph
adds a key to a graph
adds text to a graphics frame
plots a function
plots an h-scattergram
produces diagnostic plots for space-time clustering
plots discrete data like mass spectra, discrete probability functions
produces a mosaic plot to display a table of counts
produces a scatter-plot matrix for one or two sets of variables
plots dot histograms
produces a dot-plot
creates probability distribution plots
calculates an estimate of the spectrum of a spatial point pattern plots the results of a genome-wide scan for $\mathrm{QTL} \times \mathrm{E}$ effects in multiple environments
plots the results of a genome-wide QTL search in a single environment trial
adds reference lines to a graph
produces model-checking plots of residuals
produces a scatter-plot matrix
displays spider-web and star plots
plots tables
adds text to a graph
produces horizontal bars displaying a continuous time record
produces one-dimensional density (or violin) plots
produces density plots for large data sets
draws two-dimensional graphs with marginal distribution plots alongside the y - and x -axes
produces polar plots
displays the distribution of groups in a plane using a trellis of bar or pie charts
forms multiple windows in a plot-matrix for high-resolution graphics

GGEBIPLOT

INSIDE
LORENZ

PLINK
RCATENELSON
RUGPLOT

SETDEVICE

STEM
TRELLIS
WINDROSE
plots displays to assess genotype+genotype-by-environment variation
determines whether points lie within a specified polygon plots the Lorenz curve and calculates the Gini and asymmetry coefficients
prints a link to a graphics file into an HTML file performs a Cate-Nelson graphical analysis of bivariate data draws "rugplots" to display the distribution of one or more samples
opens a graphical file and specifies the device number on basis of its extension
produces a simple stem-and-leaf chart
produces trellis plots for each level of one or more factors plots rose diagrams of circular data like wind speeds

3 Statistical analyses

3.1 Basic and nonparametric statistics

Many simple statistical operations, including calculation of summary statistics, t-tests, one- and two-way analysis of variance and non-parametric tests are provided by procedures in the Library:

DESCRIBE	calculates summary statistics for variates
TALLY	forms a simple tally table of the distinct values in a vector
VSUMMARY	Summarizes a variate, with classifying factors, into a data matrix of variates and factors
tTEST	performs a one- or two-sample t-test
A2WAY	performs analysis of variance of a balanced or unbalanced design with up to two treatment factors
A2DISPLAY	provides further output following an analysis of variance by A2WAY
A2KEEP	copies information from an A2WAY analysis into Genstat data structures
AONEWAY	provides one-way analysis of variance
BLANDALTMAN	produces Bland-Altman plots to assess the agreement between two variates
CHISQUARE	calculates chi-square statistics for one- and two-way tables
CHIPERMTEST	performs a random permutation test for a two-dimensional contingency table
BNTEST	calculates one- or two-sample binomial tests
PNTEST	calculates one- or two-sample Poisson tests
FCORRELATION	forms the product moment correlation matrix for a list of variates, and tests whether the correlations are zero
PRCORRELATION	calculates probabilities for product moment correlations
CDESCRIBE	calculates summary statistics and tests of circular data
CASSOCIATION	calculates measures of association for circular data
CCOMPARE	tests whether samples from circular distributions have a common mean direction or have identical distributions
FRIEDMAN	performs Friedman's nonparametric analysis of variance
GSTATISTIC	calculates the gamma statistic of agreement for ordinal data
HCOMPAREGROUPINGS	calculates the Rand index, adjusted Rand index or Jaccard index to compare groupings defined by two factors
KAPPA	calculates a kappa coefficient of agreement for nominally scaled data
KCONCORDANCE	calculates Kendall's Coefficient of Concordance (synonym CONCORD)
KOLMOG2	performs a Kolmogorov-Smirnoff two-sample test
KRUSKAL	carries out a Kruskal-Wallis one-way analysis of variance
KTAU	calculates Kendall's rank correlation coefficient τ
LCONCORDANCE	calculates Lin's concordance correlation coefficient
MANNWHITNEY	performs a Mann-Whitney U test
MCNEMAR	performs McNemar's test for the significance of changes
MCOMPARISON	performs pairwise multiple comparison tests within a table of means
QCochran	performs Cochran's Q test for differences between relatedsamples
CATRENDTEST	calculates the Cochran-Armitage chi-square test for trend
CMHTEST	performs the Cochran-Mantel-Haenszel test
RUNTEST	performs a test of randomness of a sequence of observations
SIGNTEST	performs a one or two sample sign test
SPEARMAN	calculates Spearman's rank correlation coefficient
Steel	performs Steel's many-one rank test
TEQUIVALENCE	performs equivalence, non-inferiority and non-superiority tests
WILCOXON	performs a Wilcoxon Matched-Pairs (Signed-Rank) test

```
STTEST
SBNTEST
SCORRELATION
SLCONCORDANCE
SMANNWHITNEY
SMCNEMAR
SPRECISION
SSIGNTEST
```

calculates the sample size for t -tests (including equivalence tests) calculates the sample size for binomial tests calculates the sample size to detect specified correlations calculates the sample size for Lin's concordance coefficient calculates sample sizes for the Mann-Whitney test calculates sample sizes for McNemar's test calculates the sample size to obtain a specified precision calculates the sample size for a sign test

There are also facilities for calculating probabilities, and for fitting or assessing statistical distributions:

```
DISTRIBUTION
BBINOMIAL
EDFTEST
ELPOISSON
EUPOISSON
FDRMIXTURE
KERNELDENSITY
NORMTEST
PRCORRELATION
PRDOUBLEPOISSON
PRMANNWHITNEYU
PRSPEARMAN
PRWILCOXON
RFFAMOUNT
RFFPROBABILITY
RFSUMMARY
WSTATISTIC
```

estimates the parameters of continuous and discrete distributions estimates the parameters of the beta binomial distribution performs empirical-distribution-function goodness-of-fit tests calculates expected values of the lower parts of Poisson distributions
calculates expected values of the upper parts of Poisson distributions
estimates false discovery rates using mixture distributions uses kernel density estimation to estimate a sample density performs tests of univariate and/or multivariate Normality calculates probabilities for product moment correlations calculates the probability density for the double Poisson distribution
calculates probabilities for the Mann-Whitney U statistic calculates probabilities for Spearman's rank correlation statistic calculates probabilities for the Wilcoxon signed-rank statistic fits harmonic models to mean rainfall amounts for a Markov model
fits harmonic models to rainfall probabilities for a Markov model forms summaries for a Markov model from rainfall data calculates the Shapiro-Wilk test for Normality

3.2 Regression and generalized linear models

Genstat provides directives for carrying out linear and nonlinear regression, also generalized linear, generalized additive and generalized nonlinear models. They are designed to allow easy comparison between models, and comparison between groups of data (specified as factors). The directives for nonlinear regression can also be used for general optimization. There are three preliminary directives for defining the form of model to be fitted, of which the MODEL directive must always be given first:

MODEL defines the response variate(s) and the type of model to be fitted TERMS specifies a maximal model, containing all terms to be used in subsequent regression models
RCYCLE controls iterative fitting of generalized linear models, generalized additive models and nonlinear models, and specifies parameters and bounds for nonlinear models

Separate directives carry out the fitting of the various types of model:

FITNONLINEAR
fits a linear model, a generalized linear model, a generalized additive model, or a generalized nonlinear model fits a standard nonlinear regression model
fits a user-defined nonlinear regression model or optimizes a scalar function

Further directives are provided to allow sequential modification of the set of explanatory variables:

ADD	adds extra terms to any type of regression model
DROP	drops terms from any type of regression model
SWITCH	adds terms to, or drops them from, any type of regression model displays results of single-term changes to a linear or generalized
TRY	linear model
STEP	selects terms to include in or exclude from a linear or generalized linear model

The results of fitting the models can be displayed or stored in data structures:

RDISPLAY
RKEEP
RKESTIMATES

PREDICT
RFUNCTION
RSPREADSHEET
displays the fit of any type of regression model stores the results from any type of regression model saves estimates and other information about individual terms in a regression analysis
forms predictions from a linear or generalized linear model estimates functions of parameters of a regression model puts results from a regression, generalized linear or nonlinear model into Genstat spreadsheets

Procedures in the Library relevant to regression analysis include:

RCHECK	checks the fit of a regression model
RGRAPH	draws a graph to display the fit of a regression model
RDEStimates	plots one- or two-way tables of regression estimates
RPERMTEST	does random permutation and exact tests for regression or generalized-linear-model analyses
RPOWER	calculates the power (probability of detection) for regression models
RCOMPARISONS	calculates comparison contrasts amongst the levels of a factor classifying a table of regression means
RCURVECOMMONNONLINEAR	refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters
RMPLCONFIDENCE	estimates profile likelihood confidence intervals of predicted group means from a linear or generalized linear model analysis
RPLCONFIDENCE	estimates profile likelihood confidence intervals of parameters in a linear or generalized linear model
RRETRIEVE	retrieves a regression save structure from an external file
RSTORE	stores a regression save structure in an external file
RTCOMPARISONS	calculates comparison contrasts within a multi-way table of means
RWALD	calculates Wald and F tests for dropping terms from a regression
RYPARALLEL	fits the same regression model to several response variates, and collates the output
SED2ESE	calculates effective standard errors that give good approximate sed's
SEDLSI	calculates least significant intervals
LSIPLOT	plots least significant intervals
MCOMPARISON	performs pairwise multiple comparison tests within a table of predictions
BRDISPLAY	displays a regression tree
BREGRESSION	constructs a regression tree
BRPREDICT	makes predictions using a regression tree
BRVALUES	forms values for nodes of a regression tree
DILUTION	calculates Most Probable Numbers from dilution series data

DSEPARATIONPLOT

EXTRABINOMIAL FIELLER
FITINDIVIDUALLY

FITMULTINOMIAL GEE

GLM
GLMM
GLDISPLAY
GLKEEP
GLPERMTEST

GLPLOT
GLPREDICT
GLRTEST

GLTOBITPOISSON

HGANALYSE

HGDISPLAY
HGDRANDOMMODEL

HGFIXEDMODEL
HGFTEST

HGGRAPH

HGKEEP
HGNONLINEAR
HGPLOT
HGPREDICT
HGRANDOMMODEL HGRTEST

HGSTATUS
HGTOBITPOISSON

HGWALD
IFUNCTION
MAREGRESSION
MINIMIZE
MIN1DIMENSION
MICHAELISMENTEN

MMPREDICT

NLAR1
PAIRTEST
PPAIR
creates a separation plot for visualising the fit of a model with a dichotomous (i.e. binary) or polytomous (i.e. multi-categorical) outcome
fits models to overdispersed proportions
calculates effective doses or relative potencies
fits regression models one term at a time (useful for obtaining an accumulated analysis of deviance table containing the contributions of individual terms in a generalized linear model) fits generalized linear models with multinomial distribution
fits models to longitudinal data by generalized estimating equations
analyses non-standard generalized linear models
fits a generalized linear mixed model
displays further output from a GLMM analysis
saves results from a GLMM analysis
does random permutation tests for generalized linear mixed models
plots residuals from a GLMM analysis
forms predictions from a GLMM analysis
calculates likelihood tests to assess random terms in a generalized linear mixed model
uses the Tobit method to fit a generalized linear mixed model with censored Poisson data
analyses data using a hierarchical generalized linear model (HGLM) or a double hierarchical generalized linear model (DHGLM)
displays results from an HGLM or DHGLM
adds random terms into the dispersion models of an HGLM, so that the whole model becomes a DHGLM
defines the fixed model for an HGLM or DHGLM
calculates likelihood tests for fixed terms in a hierarchical generalized linear model
draws a graph to display the fit of an HGLM or DHGLM analysis
saves information from an HGLM or DHGLM analysis
defines nonlinear parameters for the fixed model of an HGLM produces model-checking plots for an HGLM or DHGLM forms predictions from an HGLM or DHGLM analysis defines the random model for an HGLM
calculates likelihood tests for random terms in a hierarchical generalized linear model
displays the current HGLM model definitions
uses the Tobit method to fit a hierarchical generalized linear model with censored Poisson data prints or saves Wald tests for fixed terms in an HGLM estimates implicit and/or explicit functions of parameters does regressions for single-channel microarray data finds the minimum of a function calculated by a procedure finds the minimum of a function in one dimension
fits the Michaelis-Menten equation for substrate concentration versus time data
predicts the Michaelis-Menten curve for a particular set of parameter values
fits curves with an AR1 or a power-distance correlation model performs t-tests for pairwise differences
displays results of t-tests for pairwise differences in compact

PROBITANALYSIS
ROINFLATED

ROKEEP
RAR1

RBRADLEYTERRY

RCATENELSON
RCIRCULAR

RFINLAYWILKINSON

RIDGE

RLOESSGROUPS

RDLOESSGROUPS

RKLOESSGROUPS

LRIDGE
RLASSO
RQLINEAR
RQNONLINEAR
RQSMOOTH
RLFUNCTIONAL
RMGLM

RNEGBINOMIAL

RNONNEGATIVE

RPAIR

RPARALLEL

RQUADRATIC
RSCHNUTE

RSCREEN

RSEARCH

RTOBITPOISSON
RVALIDATE

R2LINES
SIMPLEX

SVGLM
WADLEY

XOCATEGORIES

diagrams

fits probit models allowing for natural mortality and immunity
fits zero-inflated regression models to count data with excess zeros
saves information from models fitted by R0INFLATED
fits regressions with an AR1 or a power-distance correlation model
fits the Bradley-Terry model for paired-comparison preference tests
performs a Cate-Nelson graphical analysis of bivariate data does circular regression of mean direction for an angular response
performs Finlay and Wilkinson's joint regression analysis of genotype-by-environment data
produces ridge regression and principal component regression analyses
fits locally weighted regression models (loess) to data with groups
displays results from a locally weighted regression model (loess) fitted to data with groups
stores results from a locally weighted regression (loess) with groups model fitted to data with groups
does logistic ridge regression
performs lasso using iteratively reweighted least-squares
fits and plots quantile regressions for linear models
fits and plots quantile regressions for nonlinear models
fits and plots quantile regressions for loess or spline models
fits a linear functional relationship model
fits a model where different units follow different generalized linear models
fits a negative binomial generalized linear model estimating the aggregation parameter
fits a generalized linear model with nonnegativity constraints (synonym FITNONNEGATIVE)
gives t -tests for all pairwise differences of means from linear or generalized linear models
carries out analysis of parallelism for nonlinear functions (synonym FITPARALLEL)
fits a quadratic surface and estimates its stationary point
fits a general four-parameter growth model to a non-decreasing response variate (synonym FITSCHNUTE)
performs screening tests for generalized or multivariate linear models
searches through models for a regression or generalized linear model (with methods including all-subsets, forward and backward stepwise regression)
uses the Tobit method to fit models to censored Poisson data fits regression models to validate predictions, for example from a deterministic model, against observed data fits two-straight-line (broken-stick) models to data
searches for the minimum of a function using the Nelder-Mead algorithm
fits generalized linear models to survey data
fits models for Wadley's problem, allowing alternative links and errors
performs analyses of categorical data from crossover trials
estimates the parameter lambda of a single parameter transformation

3.3 Analysis of variance

Genstat has a comprehensive set of commands to do an analysis of variance. These directives define the models to be fitted:

```
BLOCKSTRUCTURE
COVARIATE
TREATMENTSTRUCTURE
defines the blocking structure of the design, and hence the strata and error terms specifies covariates for analysis of covariance defines the treatment (or systematic) terms
```

For unstructured designs with a single error term, BLOCKSTRUCTURE need not be specified, and COVARIATE is needed only for analysis of covariance. Balanced designs can be analysed using the ANOVA directive.

ANOVA
 performs analysis of variance

Directives and procedures are available to produce plots, checks and further output from an ANOVA analysis, or to save information in Genstat data structures:

ADISPLAY	displays further output from analyses produced by ANOVA
AGRAPH	plots tables of means from ANOVA
plots residuals from an ANOVA analysis	
APLOT	display residuals in field layout
calculates BLUPs for block terms in an ANOVA analysis	
AFIELDRESIDUALS	checks assumptions for an ANOVA analysis
ABLUPS	performs pairwise multiple comparison tests for ANOVA means
copies information from an ANOVA analysis into Genstat data	
ACHECK	structures
AMCOMPARISON	provides a summary of results from an ANOVA analysis AKEEP
saves results from an analysis of variance in a spreadsheet	
ARESULTSUMMARY	calculates the percentage variance and sum of squares accounted for in the strata of an ANOVA analysis
ASPREADSHEET	

Unbalanced designs with a single error term can be be analysed using the AUNBALANCED procedure. (Unbalanced designs with several error terms should be analysed using the commands for REML analysis of linear mixed models.)

AUNBALANCED	performs analysis of variance for unbalanced designs produces further output for an unbalanced design (after AUNBALANCED)
AUDISPLAY	plots tables of means from AUNBALANCED
forms predictions from an unbalanced design (after	
AUGRAPH	AUNBALANCED)
AUPREDICT	Saves results from an analysis of an unbalanced design (by AUNBALANCED) in a spreadsheet
AUSPREADSHEET	performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by AUNBALANCED
AUMCOMPARISON	Saves output from analysis of an unbalanced design (by AUNBALANCED)

There are also specialized procedures for designs (balanced or unbalanced) with a single error term and
one or two treatment factors.

A2WAY	performs analysis of variance of a balanced or unbalanced design with up to two treatment factors
A2DISPLAY	provides further output following an analysis of variance by A2WAY
A2KEEP	copies information from an A2WAY analysis into Genstat data structures
A2RESULTSUMMARY	provides a summary of results from an analysis by A2WAY

If you are unsure what method to use, you can use the AOVANYHOW procedure to see which method is most appropriate.

AOVANYHOW	performs analysis of variance using ANOVA, AUNBALANCED,
	A2WAY or REML as appropriate
AOVDISPLAY	provides further output from an analysis by AOVANYHOW

Other procedures relevant to analysis of variance include:

ABOXCOX	estimates the power λ in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA
AFCOVARIATES	defines covariates from a model formula for ANOVA
AFMEANS	forms tables of means classified by ANOVA treatment factors
ASTATUS	provides information about the settings of ANOVA models and variates
APERMTEST	does random permutation tests for analysis-of-variance tables
ABIVARIATE	produces graphs and statistics for bivariate analysis of variance
ACONFIDENCE	calculates simultaneous confidence intervals
AMDUNNETT	forms Dunnett's simultaneous confidence interval around a control
AMTIER	analyses a multitiered design by analysis of variance specified by up to 3 model formulae
AMTDISPLAY	displays further output for multitiered designs analysed by AMTIER
AMTKEEP	saves information from the analysis of a multitiered design by AMTIER
ACANONICAL	determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae
ACDISPLAY	provides further output from an analysis by ACANONICAL
ACKEEP	saves information from an analysis by ACANONICAL
vSPECTRALCHECK	forms the spectral components from the canonical components of a multitiered design, and constrains any negative spectral components to zero
AN1ADVICE	aims to give useful advice if a design that is thought to be balanced fails to be analysed by ANOVA
APAPADAKIS	analysis of variance with an added Papadakis covariate, formed from neighbouring residuals
APOLYNOMIAL	forms the equation for a polynomial contrast fitted by ANOVA
ADPOLYNOMIAL	plots single-factor polynomial contrasts fitted by ANOVA
AREPMEASURES	produces an analysis of variance for repeated measurements
ARETRIEVE	retrieves an ANOVA save structure from an external file
AStore	stores an ANOVA save structure in an external file
ASCREEN	performs screening tests for designs with orthogonal block structure
AYPARALLEL	does the same analysis of variance for several y-variates, and collates the output

A2RDA	saves results from an analysis of variance in R data frames
AU2RDA	saves results from an unbalanced analysis of variance, by
FALIASTERMS	forms information about aliased model terms in analysis of variance
FWITHINTERMS	forms factors to define terms representing the effects of one factor within another factor
MAANOVA	does analysis of variance for a single-channel microarray design (parallel anova)
SED2ESE	calculates effective standard errors that give good approximate standard errors of differences
SEDLSI	calculates least significant intervals
LSIPLOT	plots least significant intervals, saved from SEDLS
RTCOMPARISONS	calculates comparison contrasts within a multi-way table of means
A2PLOT	plots effects and robust s.e. estimates from designs with two-level factors
CENSOR	pre-processes censored data before analysis by AnOVA
CINTERACTION	clusters rows and columns of a two-way interaction table
DIALLEL	analyses full and half diallel tables with parents
AMMI	allows exploratory analysis of genotype \times environment interactions
FMEGAENVIRONMENTS	forms mega-environments based on winning genotypes from an AMMI-2 model
FRIEDMAN	performs Friedman's nonparametric analysis of variance
NLCONTRASTS	fits non-linear contrasts to quantitative factors in ANOVA
TEQUIVALENCE	performs equivalence, non-inferiority and non-superiority tests
VHOMOGENEITY	tests homogeneity of variances
WSTATISTIC	calculates the Shapiro-Wilk test for Normality

3.4 Design of experiments

Genstat has a comprehensive set of facilities for design of experiments. Collectively, these are known as the Genstat Design System. Many different design types are covered, each with a procedure that allows you to view and choose from the available possibilities. Other procedure allow designs and data forms to be displayed. There is also a general procedure DESIGN that can be used interactively to provide a single point of access to all the design types. DESIGN and the AG... procedures that it calls provide the Select Design facilities in Genstat for Windows, while the alternative Standard Design menu uses Aghierarchical, AGLATIN and AGSQLATTICE to generate completely randomized designs, randomized blocks, Latin and Graeco-Latin squares, split-plots, strip-plots (or criss-cross designs) and lattices.

```
DESIGN
AGALPHA
AGBIB
AGBOXBEHNKEN
AGCENTRALCOMPOSITE
AGCROSSOVERLATIN
AGCYCLIC
AGDESIGN
AGFACTORIAL
AGFRACTION
AGHIERARCHICAI
```

provides a menu-driven interface for selecting and generating experimental designs
forms alpha designs for up to 100 treatments
generates balanced-incomplete-block designs
generates Box-Behnken designs
generates central composite designs
generates Latin squares balanced for carry-over effects
generates cyclic designs from standard generators
generates generally balanced designs - factorial designs with blocking, fractional factorial designs, Lattice squares etc.
generates minimum aberration complete and fractional factorial designs
generates fractional factorial designs
generates orthogonal hierarchical designs

AGINDUSTRIAL	provides a menu-driven interface for selecting and generating designs for industrial experiments
AGLATIN	generates mutually orthogonal Latin squares
AGLOOP	generates loop designs e.g. for time-course microarray experiments
AGMAINEFFECT	generates designs to estimate main effects of two-level factors
AGNEIGHBOUR	generates neighbour-balanced designs
AGQLATIN	generates complete and quasi-complete Latin squares
AGREFERENCE	generates reference-level designs e.g. for microarray experiments
AgSEmilatin	generates semi-Latin squares
AGSQLATTICE	generates square lattice and lattice square designs
AGYOUDENSQUARE	generates a Youden square
PDESIGN	prints treatment combinations tabulated by the block factors
DDESIGN	plots the plan of a design
ADSPREADSHEET	puts the data and plan of an experimental design into Genstat spreadsheets

There are also procedures that you can use to determine the sample size (i.e. replication) required for experiments that are to be analysed by analysis of variance, t-test or various non-parametric tests. You can also calculate the power (or probability of detection) for terms in analysis of variance or regression analyses.

APOWER	calculates the power (probability of detection) for terms in an analysis of variance calculates the power (probability of detection) for regression models uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis finds the replication (sample size) to detect a treatment effect or contrast estimates the replication to detect a fixed term or contrast in a VPOWER REML analysis, using parametric bootstrap
ASAMPLESIZE	calculates the minimum size of effect or contrast detectable in an analysis of variance calculates the sample size for binomial tests calculates the sample size to detect specified correlations
ADETECTION	calculates the sample size for Lin's concordance coefficient calculates the sample size for the Mann-Whitney test calculates the sample size for McNemar's test calculates the sample size for a Poisson test calculates the sample size to obtain a specified precision
SBNTEST	calculates the sample size for a sign test calculates the sample size for t-tests, including equivalence tests and tests for non-inferiority
SLCONCORDANCE	plots power and significance for t-tests, including equivalence
SMANNWHITNEY	tests and tests for non-inferiority

The Design System is based on a range of standard generators. Some of these, such as the Galois fields used to generate Latin squares, can be formed when required - and so there is no limitation on the available designs. Repertoires of others, such as design keys, are stored in backing-store files which are scanned by the design generation procedures to form menus listing the available possibilities. Algorithms are available to form generators for new designs, and these can then be added to the design files to become an integral part of the system. Other design utilities include procedures for combining simple designs into more complicated arrangements, for forming augmented designs, and for determining how many replicates are needed. There are also directives for constructing response-surface designs and doubly resolvable rowcolumn designs. The relevant commands include the directives

AFMINABERRATION

AFRESPONSESURFACE

AGRCRESOLVABLE
GENERATE

RANDOMIZE

FKEY

FPSEUDOFACTORS

SET2FORMULA
and the procedures

```
AEFFICIENCY
AFAUGMENTED
AFLABELS
AFRCRESOLVABLE
AFUNITS
AKEY
AMERGE
AFNONLINEAR
AFPREP
APRODUCT
AGNATURALBLOCK
AGNONORTHOGONALDESIGN
AGSPACEFILLINGDESIGN
ARCSPLITPLOT
```

ARANDOMIZE
CDNAUGMENTEDDESIGN

CDNBLOCKDESIGN
CDNPREP

CDNROWCOLUMNDESIGN
COVDESIGN

FACCOMBINATIONS

FACDIVIDE
FACPRODUCT
FBASICCONTRASTS
FCOMPLEMENT
FDESIGNFILE
FHADAMARDMATRIX
FOCCURRENCES
forms minimum aberration factorial or fractional-factorial designs
uses the BLKL algorithm to construct designs for estimating response surfaces
forms doubly resolvable row-column designs
generates values of factors in systematic order or as defined by a design key, or forms values of pseudo-factors
puts units of vectors into random order, or randomizes units of an experimental design
forms design keys for multi-stratum experimental designs, allowing for confounding and aliasing of treatments
determines patterns of confounding and aliasing from design keys, and extends the treatment formula to incorporate the necessary pseudo-factors
forms a model formula using structures supplied in a pointer
calculates efficiency factors for experimental designs
forms an augmented design
forms a variate of unit labels for a design
forms doubly resolvable row-column designs, with output
forms a factor to index the units of the final stratum of a design generates values for treatment factors using the design key method
merges extra units into an experimental design
forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model
searches for an efficient partially-replicated design
forms a new experimental design from the product of two designs generates 1- and 2-dimensional designs with blocks of natural size
generates non-orthogonal multi-stratum designs generates space filling designs
adds extra treatments onto the replicates of a resolvable rowcolumn design, and generates factors giving the row and column locations of the plots within the design
randomizes and prints an experimental design
constructs an augmented block design, using CycDesigN if the controls are in an incomplete-block design
constructs a block design using CycDesigN
constructs a multi-location partially-replicated design using CycDesigN
constructs a row-column design using CycDesigN
produces experimental designs efficient under analysis of covariance
forms a factor to indicate observations with identical combinations of values of a set of variates, texts or factors represents a factor by factorial combinations of a set of factors forms a factor with a level for every combination of other factors forms the basic contrasts of a model term
forms the complement of an incomplete block design
forms a backing-store file of information for AGDESIGN forms Hadamard matrices
forms a "concurrence" matrix recording how often each pair of treatments occurs in the same block of a design

FPLOTNUMBER
FPROJECTIONMATRIX
XOEFFICIENCY

XOPOWER
forms plot numbers for a row-by-column design forms a projection matrix for a set of model terms calculates the efficiency for estimating effects in cross-over designs
estimates the power of contrasts in cross-over designs

3.5 REML analysis of linear mixed models

The REML algorithm allows you to analyse linear mixed models i.e. linear models that can contain both fixed and random effects. In some applications these are known as "multi-level" models. It can thus be used to analyse unbalanced designs with several error terms (which cannot be analysed by ANOVA). It can also fit random correlation models to describe the covariances between random effects as can arise, for example, in the analysis of repeated measurements or spatial data.

```
REML fits a variance-component model by residual (or restricted)
maximum likelihood
defines the model for REML
controls advanced aspects of the REML algorithm
displays further output from a REML analysis
copies information from a REML analysis into Genstat data
structures
defines a variance structure for random effects in a REML model
generates an inverse relationship matrix for use when fitting
animal or plant breeding models by REML
forms predictions from a REML model
defines the residual term for a REML model
prints the current model settings for REML
```

There are several procedures that may be useful, for example, to define the model, to produce additional output or for other REML-based analyses.

FCONTRASTS	modifies a model formula to contain contrasts of factors
FDIALLEL	forms the components of a diallel model for REML or regression
F2DRESIDUALVARIOGRAM	calculates and plots a 2-dimensional variogram from a 2-dimensional array of residuals
TOBIT	linear mixed model analysis of data with fixed-threshold censoring
VAIC	calculates the Akaike and Schwarz (Bayesian) information coefficients for REML
VALLSUBSETS	fits all subsets of the fixed terms in a REML analysis does the same REML analysis for several y-variates, and collates
VAYPARALLEL	the output
verforms a parametric bootstrap of the fixed effects in a REML	

FRESIDUALS	obtains residuals, fitted values and their standard errors from a
	REML analysis
VFUNCTION	calculates functions of variance components from a REML analysis
VGRAPH	plots tables of means from REML
VHERITABILITY	calculates generalized heritability for a random term in a REML analysis
VLSD	prints approximate least significant differences for REML means
VMCOMPARISON	performs pairwise comparisons between REML means
VMETA	performs a multi-treatment meta analysis using summary results from individual experiments
VPERMTEST	does random permutation tests for the fixed effects in a REML analysis
VPLOT	plots residuals from a REML analysis
VPOWER	uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis
VRACCUMULATE	forms a summary accumulating the results of a sequence of REML random models
VRCHECK	checks effects of a random term in a REML analysis
VRMETAMODEL	forms the random model for a REML meta analysis
VRPERMTEST	performs permutation tests for random terms in REML analysis
VRFIT	fits terms from a REML fixed model in a Genstat regression
VRADD	adds terms from a REML fixed model into a Genstat regression
VRDISPLAY	displays output for a REML fixed model fitted in a Genstat regression
VRDROP	drops terms in a REML fixed model from a Genstat regression
VRKEEP	saves output for a REML fixed model fitted in a Genstat regression
VRSETUP	sets up Genstat regression to assess terms from a REML fixed model
VRSWITCH	adds or drops terms from a REML fixed model in a Genstat regression
VRTRY	tries the effect of adding and dropping individual terms from a REML fixed model in a Genstat regression
VSAMPLESIZE	estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap
VSCREEN	performs screening tests for fixed terms in a REML analysis
vSom	analyses a simple REML variance components model for outliers using a variance shift outlier model
VSPREADSHEET	saves results from a REML analysis in a spreadsheet
vSURFACE	fits a 2-dimensional spline surface using REML, and estimates its extreme point
VTCOMPARISONS	calculates comparison contrasts within a multi-way table of predicted means from a REML analysis
VUVCOVARIANCE	forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model

There is also a suite of procedures to provide automatic selection of REML random models for single trials, series of trials and meta analysis.

VABLOCKDESIGN
VAROWCOLUMNDESIGN
VALINEBYTESTER

analyses an incomplete-block design by REML, allowing automatic selection of random and spatial covariance models analyses a row-and-column design by REML, with automatic selection of the best random and spatial covariance model provides combinabilities and deviances for a line-by-tester trial analysed by VABLOCKDESIGN or VAROWCOLUMNDESIGN

3 Statistical analyses

VLINEBYTESTER
VASERIES

VASDISPLAY
VASKEEP

VASMEANS

VAMETA
VFMODEL VFSTRUCTURE

VMODEL

VAOPTIONS

VARANDOM

VARECOVER
analyses a line-by-tester trial by REML
analyses a series of trials with incomplete-block or row-and-column designs by REML, automatically selecting the best random models
displays further output from an analysis by VASERIES
copies information from an analysis by VASERIES into Genstat data structures
saves experiment \times treatment means from analysis of a series of trials by VASERIES
performs a REML meta analysis of a series of trials
forms a model-definition structure for a REML analysis
adds a covariance-structure definition to a REML model-definition structure
specifies the model for a REML analysis using a model-definition structure defined by VFMODEL
defines options for the fitting of models by VARANDOM and associated procedures
finds the best REML random model from a set of models defined by VFMODEL
recovers when REML, is unable to fit a model, by simplifying the random model

3.6 Multivariate and cluster analysis

Several standard multivariate methods are provided by Genstat directives. These include methods that analyse data in the form of units-by-variates, and methods that use a similarity or distance matrix.

The following directives carry out standard multivariate analyses:

```
CVA canonical variates analysis
FCA factor analysis
MDS non-metric multidimensional scaling
PCP principal components analysis
PCO
principal coordinates analysis
ROTATE
Procrustes rotation
```

Other directives and procedures are available to process results from multivariate analyses:

ADDPOINTS	adds points for new objects to a PCO CVAPLOT
plots the mean and unit scores from a canonical variates analysis	
calculates scores for individual units in canonical variates	
analysis	
displays the distribution of groups over 2 dimensions from a CVA	
analysis using a trellis of bar or pie charts	
plots a biplot from an analysis by PCP, CVA or PCO	
gives a high resolution plot of an ordination with minimum	
spanning tree	

The following commands carry out hierarchical and non-hierarchical cluster analysis:

```
CLUSTER
FSIMILARITY
```

non-hierarchical clustering from a data matrix
forms a similarity matrix or a between-group similarity matrix

HREDUCE
HCLUSTER PCPCLUSTER PTFCLUSTERS
from a units-by-variates data matrix
forms a reduced similarity matrix (by groups)
hierarchical cluster analysis from a similarity matrix forms groups of units using the densities of their PCP scores forms clusters of points from their densities in multi-dimensional space

Other directives and procedures that process the results from cluster analyses are:

DDENDROGRAM
DCLUSTERLABELS

HBOOTSTRAP

HCOMPAREGROUPINGS

HDISPLAY
HFAMALGAMATIONS
HFCLUSTERS
HLIST
HPCLUSTERS
HSUMMARIZE
PTFILLCLUSTERS
draws dendrograms with control over structure and style labels clusters in a single-page dendrogram plotted by DDENDROGRAM
performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis
compares groupings generated, for example, from cluster analyses
displays results associated with hierarchical clustering forms an amalgamations matrix from a minimum spanning tree forms a set of clusters from an amalgamations matrix
lists a data matrix in abbreviated form prints a set of clusters summarizes data variates by clusters fills holes within clusters of points in multi-dimensional space

Other multivariate techniques are provided by procedures in the Library:

```
AMMI allows exploratory analysis of genotype }\times\mathrm{ environment
BCLASSIFICATION
BCDISPLAY
BCIDENTIFY
BCKEEP
BCVALUES
BCFOREST
BCFDISPLAY
BCFIDENTIFY
BIPLOT
BKEY
BKDISPLAY
BKIDENTIFY
BKKEEP
CANCORRELATION
CCA
CRBIPLOT
CRTRIPLOT
CINTERACTION
CLASSIFY
CONVEXHULL
CORANALYSIS
MCORANALYSIS
CABIPLOT
DISCRIMINATE
SDISCRIMINATE
QDISCRIMINATE
DPARALLEL
allows exploratory analysis of genotype \(\times\) environment interactions
constructs a classification tree
displays a classification tree
identifies specimens using a classification tree saves information from a classification tree forms values for nodes of a classification tree constructs a random classification forest displays information about a random classification forest identifies specimens using a random classification forest produces a biplot from a set of variates constructs an identification key displays an identification key identifies specimens using a key saves information from an identification key does canonical correlation analysis performs canonical correspondence analysis plots correlation or distance biplots after CCA or RDA plots ordination biplots or triplots after CCA or RDA clusters rows and columns of a two-way interaction table obtains a starting classification for non-hierarchical clustering finds the points of a single or a full peel of convex-hulls does correspondence analysis, or reciprocal averaging does multiple correspondence analysis plots results from correspondence analysis or multiple correspondence analysis performs discriminant analysis
selects the best set of variates to discriminate between groups performs quadratic discrimination between groups i.e. allowing for different variance-covariance matrices
displays multivariate data using parallel coordinates
```

```
GESTABILITY
GGEBIPLOT
GENPROCRUSTES
IDENTIFY
KNEARESTNEIGHBOURS
MANOVA
MANTEL
MULTMISSING
MVAOD
NORMTEST
OPLS
PCOPROCRUSTES
PLS
RDA
RIDGE
LRIDGE
RLFUNCTIONAL
RMULTIVARIATE
ROBSSPM
SAGRAPES
SKEWSYMMETRY
```

GGEBIPLOT

GENPROCRUSTES
IDENTIFY
KNEARESTNEIGHBOURS

MANOVA
MANTEI
MULTMISSING
MVAOD
NORMTEST

PLS
RDA
RIDGE

LRIDGE
RLFUNCTIONAL
RMULTIVARIATE

ROBSSPM
SAGRAPES

SKEWSYMMETRY
calculates stability coefficients for genotype-by-environment data
plots displays to assess genotype + genotype-by-environment variation
performs a generalized Procrustes analysis
identifies an unknown specimen from a defined set of objects classifies items or predicts their responses by examining their k nearest neighbours
performs multivariate analysis of variance and covariance assesses the association between similarity matrices estimates missing values for units in a multivariate data set does an analysis of distance of multivariate data performs tests of univariate and/or multivariate normality performs orthogonal partial least squares regression performs a multiple Procrustes analysis
fits a partial least squares regression model performs redundancy analysis
produces ridge regression and principal component regression analyses
does logistic ridge regression
fits a linear functional relationship model
performs multivariate linear regression with accumulated testing of terms
forms robust estimates of sum-of-squares-and-products matrices produces statistics and graphs for checking sensory panel performance
provides an analysis of skew-symmetry for an asymmetric matrix

3.7 Time series

Genstat provides several methods for examining and analysing time series. Sample correlation functions are produced by the directive CORRELATE:

CORRELATE forms correlations between variates, autocorrelations of variates, and lagged cross-correlations between variates

The analysis of Box-Jenkins models is specified by several directives:

FTSM
TRANSFERFUNCTION

TFIT
forms preliminary estimates of parameters in time-series models specifies input series and transfer-function models for subsequent estimation of a model for an output series
estimates parameters in Box-Jenkins models for time series (renamed version of ESTIMATE, which is retained as a synonym)

Information can be saved in Genstat data structures, or further output can be produced:

```
TDISPLAY displays further output after an analysis by TFIT
TKEEP saves results after an analysis by TFIT
TFORECAST
TSUMMARIZE
displays further output after an analysis by TFIT
saves results after an analysis by TFIT
forecasts future values of a time series (renamed version of FORECAST, which is retained as a synonym)
TSUMMARIZE
displays characteristics of a time series model
```

It is also possible to filter a time series, or perform spectral analysis via the Fourier transform of a time series using the directives:
filters time series by time-series models (renamed version of

FILTER, which is retained as a synonym)
FOURIER calculates cosine or Fourier transforms of a real or complex series

Relevant procedures in the Library include:

```
BJESTIMATE fits an ARIMA model, with forecasts and residual checks
BJFORECAST plots forecasts of a time series using a previously fitted ARIMA
BJIDENTIFY
DFOURIER
KALMAN
DKALMAN
MCROSSPECTRUM
MC1PSTATIONARY
MOVINGAVERAGE
PERIODTEST
PREWHITEN
REPPERIODOGRAM
SMOOTHSPECTRUM
TVARMA
TVFORECAST
TVGRAPH
fits an ARIMA model, with forecasts and residual checks plots forecasts of a time series using a previously fitted ARIMA displays time series statistics useful for ARIMA model selection performs a harmonic analysis of a univariate time series calculates estimates from the Kalman filter
plots results from an analysis by KALMAN performs a spectral analysis of a multiple time series gives the stationary probabilities for a 1st-order Markov chain calculates and plots the moving average of a time series gives periodogram-based tests for white noise in time series filters a time series before spectral analysis gives periodogram-based analyses for replicated time series forms smoothed spectrum estimates for univariate time series fits a vector autoregressive moving average (VARMA) model forecasts future values from a vector autoregressive moving average (VARMA) model
TVGRAPH
```


3.8 Repeated measurements

A repeated-measurements study is one in which subjects (animals, people, plots, etc) are observed on several occasions. Each subject usually receives some randomly allocated treatment, either at the outset or repeatedly through the investigation, and is then observed at successive occasions to see how the treatment effects develop. One way to analyse data sets like this is to use Genstat's RemL facilities to model the correlation structure over time.

REML	fits a variance-component model by residual (or restricted) maximum likelihood
VCOMPONENTS	defines the model for REML
VSTRUCTURE	defines a variance structure for random effects in a REML model

Alternatively, Genstat has procedures for customized plotting of the observations (or profiles) against time, repeated measures analysis of variance, analyses based on ante-dependence structure or generalized estimating equations, and regression or nonlinear modelling of data where the residuals follow an AR1 or power-distance correlation model.

```
ANTORDER
ANTTEST
AREPMEASURES
CUMDISTRIBUTION
DREPMEASURES
GEE fits models to longitudinal data by generalized estimating
NLAR1
RAR1
VORTHPOLYNOMIAL
assesses order of ante-dependence for repeated measures data calculates overall tests based on a specified order of antedependence
produces an analysis of variance for repeated measurements
fits frequency distributions to accumulated counts
plots profiles and differences of profiles for repeated measurements
fits models to longitudinal data by generalized estimating equations
fits curves with an AR1 or a power-distance correlation model fits regressions with an AR1 or a power-distance correlation model
calculates orthogonal polynomial time-contrasts for repeated measurements
```


3.9 Survival analysis

In survival data the response variate is the survival time of an individual like a medical patient or an industrial component. The responses are often censored, i.e. some individuals survive beyond the end of the study, and so their survival times are unknown. Genstat provides various ways of estimating the survivor function (i.e. the probability that an individual is still surviving at each time). You can do nonparametric tests to compare different survival distributions. Finally, you can model the survival times, by assuming that they follow exponential, Weibull or extremevalue distributions, or by fitting a proportional hazards model.

KAPLANMEIER	calculates the Kaplan-Meier estimate of the survivor function
RLIFETABLE	calculates the life-table estimate of the survivor function RPHFIT
fits the proportional hazards model to survival data as a	
generalized linear model	
RPHCHANGE	modifies a proportional hazards model fitted by RPHFIT prints output for a proportional hazards model fitted by RPHFIT
RPHKEEP	saves information from a proportional hazards model fitted by RPHFIT fits a proportional hazards model by a direct maximization of the
RPROPORTIONAL	likelihood (this will be more efficient than RPHFIT for large data sets)
RSTEST	compares groups of right-censored survival data by nonparametric tests
RSURVIVAL	models survival times of exponential, Weibull or extreme-value
distributions	

3.10 Bayesian methods

Genstat provides convenient ways to define and run Bayesian analyses using WinBUGS or OpenBUGS. It also supports Bayesian computing using the Differential Evolution Markov Chain algorithm.

BGIMPORT	imports MCMC output in CODA format produced by WinBUGS or OpenBUGS.
BGPLOT	produces plots for output and diagnostics from MCMC simulations.
DEXGENSTAT	runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts.
performs Bayesian computing using the Differential Evolution	
Markov Chain algorithm	

3.11 Spatial statistics

Commands are available form forming variograms and for producing kriged estimates.

FVARIOGRAM	forms experimental variograms
MVARIOGRAM	fits models to an experimental variogram
DVARIOGRAM	plots fitted models to an experimental variogram calculates kriged estimates using a model fitted to a sample variogram
FCOVARE	forms a covariogram structure containing auto-variograms of individual variates and cross-variograms for pairs from a list of
MCOVARIOGRAM	variates
DCOVARIOGRAM	fits models to sets of variograms and cross-variograms

COKRIGE

KCROSSVALIDATION
DHSCATTERGRAM
calculates kriged estimates using a model fitted to the sample variograms and cross-variograms of a set of variates computes cross validation statistics for punctual kriging plots an h-scattergram

Relevant procedures in the Library for spatial analyses include:

ADJACENTCELLS	finds cells adjacent to other cells in a multi-dimensional array
DKSTPLOT	produces diagnostic plots for space-time clustering
DPOLYGON	draws polygons using high-resolution graphics
DPTMAP	draws maps for spatial point patterns using high-resolution graphics
DPTREAD	adds points interactively to a spatial point pattern
DRPOLYGON	reads a polygon interactively from the current graphics device
DPSPECTRALPLOT	calculates an estimate of the spectrum of a spatial point pattern
FHAT	calculates an estimate of the F nearest-neighbour distribution function
FZERO	gives the F function expectation under complete spatial randomness
GHAT	calculates an estimate of the G nearest-neighbour distribution function
GRLABEL	randomly labels two or more spatial point patterns
GRTHIN	randomly thins a spatial point pattern
GRTORSHIFT	performs a random toroidal shift on a spatial point pattern
GRCSR	generates completely spatially random points in a polygon
KCSRENVELOPES	simulates K function bounds under complete spatial randomness
KHAT	calculates an estimate of the K function
KLABENVELOPES	gives bounds for K function differences under random labelling
KSED	calculates s.e. for K function differences under random labelling
KSTHAT	calculates an estimate of the K function in space, time and spacetime
KSTMCTEST	performs a Monte-Carlo test for space-time interaction
KSTSE	calculates the standard error for the space-time K function
KTORENVELOPES	gives bounds for the bivariate K function under independence
K12HAT	calculates an estimate of the bivariate K function
MSEKERNEL2D	estimates the mean square error for a kernel smoothing
NEIGHBOURS	finds the neighbours of cells in a multi-dimensional array
PTAREAPOLYGON	calculates the area of a polygon
PTBOX	generates a box bounding or surrounding a spatial point pattern
PTCLOSEPOLYGON	closes open polygons
PTDESCRIBE	gives summary and second order statistics for a point process
PTGRID	generates a grid of points in a polygon
PTINTENSITY	calculates the overall density for a spatial point pattern
PTKERNEL2D	performs kernel smoothing of a spatial point pattern
PTK3D	performs kernel smoothing of space-time data
PTREMOVE	removes points interactively from a spatial point pattern
PTROTATE	rotates a point pattern
PTSINPOLYGON	returns points inside or outside a polygon
PTFCLUSTERS	forms clusters of points from their densities in multi-dimensional space
PTFILLCLUSTERS	fills holes within clusters of points in multi-dimensional space

3.12 Six sigma

Genstat has wide range of facilities to support the six-sigma approach to quality improvement. It can
display many different types of control chart.

SPCCHART	plots c or u charts representing numbers of defective items
SPCUSUM	prints CUSUM tables for controlling a process mean
SPEWMA	plots exponentially weighted moving-average control charts
SPPCHART	plots p or np charts for binomial testing for defective items
SPSHEWHART	plots control charts for mean and standard deviation or range

It can test for Normality, display Pareto charts and calculate capability statistics.

```
NORMTEST performs tests of univariate and/or multivariate normality
SPCAPABILITY calculates capability statistics
TABSORT sorts tables to put margins are in ascending or descending order
for display as a Pareto chart
```

It also provides full statistical backup for wider-ranging investigations. The list below highlights some of the commands that may be useful.

```
AFRESPONSESURFACE
AGBOXBEHNKEN
AGCENTRALCOMPOSITE
AGDESIGN
AGFRACTION
AGMAINEFFECT
A2WAY performs analysis of variance of a balanced or unbalanced design
with up to two treatment factors
ANOVA
AGRAPH
APLOT
AMCOMPARISON
AUNBALANCED
AUGRAPH
FIT
FITCURVE
FITNONLINEAR
FKEY
REML
RQUADRATIC
YTRANSFORM
uses the BLKL algorithm to construct response-surface designs generates Box-Behnken designs generates central composite designs
selects from a set of standard designs including factorials with interactions confounded with blocks
generates fractional factorial designs
generates designs to estimate main effects of two-level factors (Plackett-Burman designs)
performs analysis of variance of a balanced or unbalanced design with up to two treatment factors
analyses \(y\)-variates by analysis of variance according to the model defined by earlier BLOCKSTRUCTURE, COVARIATE, and TREATMENTSTRUCTURE statements
plots one- or two-way tables of means from ANOVA
plots residuals from an ANOVA analysis
performs pairwise multiple comparison tests for ANOVA means performs analysis of variance for unbalanced designs
plots tables of means from AUNBALANCED
fits a linear, generalized linear, generalized additive, or generalized nonlinear model
fits a standard nonlinear regression model
fits a nonlinear regression model or optimizes a function
forms design keys for balanced designs with several error terms, allowing for confounded and aliased treatments fits an unbalanced linear mixed model and estimates variance components
fits a quadratic surface and estimates its stationary point estimates the parameter lambda from various single-parameter transformations, includling power (Box-Cox), modulus, folded power, Guerrero-Johnson, Aranda-Ordaz and power logit
```


3.13 Survey analysis

Genstat has several commands for the analysis of simple of complex surveys, including facilities for modelling, imputation, calculations and manipulation. (For further details, see the Guide to Survey Analysis in Genstat.)

MTABULATE	forms tables of summaries of variates classified by multipleresponse factors
SVBOOT	bootstraps data from random surveys
SVCALIBRATE	performs generalized calibration of survey data
SVGLM	fits generalized linear models to survey data
SVHotdeck	performs hot-deck and model-based imputation for survey data
SVMERGE	merges strata prior to survey analysis
SVREWEIGHT	modifies survey weights adjusting to ensure that their overall sum weights remains unchanged
SVSTRATIFIED	analyses stratified random surveys by expansion or ratio raising
SVTABULATE	tabulates data from random surveys, including multistage surveys and surveys with unequal probabilities of selection
SVWEIGHT	forms survey weights
COMBINE	combines or omits "slices" of tables, matrices or variates
CSPRO	reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file
DTABLE	plots tables
MARGIN	calculates or deletes margins of tables
PERCENT	expresses the body of a table as percentages of one of its margins
TABMODE	forms summary tables of modes of values
TABSORT	sorts tables so their margins are in ascending or descending order
T\%CONTROL	expresses tables as percentages of control cells
VSUMMARY	Summarizes a variate, with classifying factors, into a data matrix of variates and factors

3.14 Data mining

Genstat has many conventional statistical techniques such as generalized linear models (e.g. log-linear models and logistic regression) and multivariate analysis (e.g. canonical variates analysis and cluster analysis) that are very useful for data mining. It also provides various more specialized techniques such as association rules, classification and regression trees, random forests, k-nearest-neighbours classification, self-organizing maps, neural networks and radial basis functions.

```
ASRULES
BCLASSIFICATION
BCDISPLAY
BCIDENTIFY
BCKEEP
BCVALUES
BCFOREST
BCFDISPLAY
BCFIDENTIFY
BREGRESSION
BRDISPLAY
BRKEEP
BRPREDICT
BRVALUES
BRFOREST
BRFDISPLAY
BRFPREDICT
KNEARESTNEIGHBOURS
```

KNNTRAIN
derives association rules from transaction data constructs a classification tree displays a classification tree identifies specimens using a classification tree saves information from a classification tree forms values for nodes of a classification tree constructs a random classification forest displays information about a random classification forest identifies specimens using a random classification forest constructs a regression tree displays a regression tree saves information from a regression tree makes predictions using a regression tree forms values for nodes of a regression tree constructs a random regression forest displays information about a random regression forest makes predictions using a random regression forest classifies items or predicts their responses by examining their k nearest neighbours
evaluates and optimizes the k-nearest-neighbour algorithm using cross-validation

3 Statistical analyses

```
NNFIT
NNDISPLAY
NNPREDICT
RBFIT
RBDISPLAY
RBPREDICT
SOM
SOMADJUST
SOMDESCRIBE
SOMESTIMATE
SOMIDENTIFY
SOMPREDICT
SVMFIT
SVMPREDICT
```

fits a multi-layer perceptron neural network
displays output from a multi-layer perceptron neural network fitted by NNFIT
forms predictions from a multi-layer perceptron neural network fitted by NNFIT
fits a radial basis function model
displays output from a radial basis function model fitted by RBFIT
forms predictions from a radial basis function model fitted by RBFIT
declares a self-organizing map
performs adjustments to the weights of a self-organizing map summarizes values of variables at nodes of a self-organizing map estimates the weights for self-organizing maps allocates samples to nodes of a self-organizing map makes predictions using a self-organizing map fits a support vector machine
forms the predictions using a support vector machine

3.15 Statistical genetics and QTL estimation

Genstat has a suite of procedures for statistical genetics. Several of these make use of Genstat's REML facilities to estimate QTLs from single environment, multi-environment and multi-trait trials.

DQMAP	displays a genetic map
DQMKSCORES	plots a grid of marker scores for genotypes and indicates missing data
DQMQTLSCAN	plots the results of a genome-wide scan for QTL effects in multienvironment trials
DQRECOMBINATIONS	plots a matrix of recombination frequencies between markers
DQSQTLSCAN	plots the results of a genome-wide scan for QTL effects in singleenvironment trials
GPREDICTION	produces genomic predictions (breeding values) using phenotypic and molecular marker information
QCANDIDATES	selects QTLs on the basis of a test statistic profile along the genome
QDESCRIBE	prints summary statistics of genotypes
QEIGENANALYSIS	uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables
QEXPORT	exports genotypic data for QTL analysis
QFLAPJACK	creates a Flapjack project file from genotypic and phenotypic data
QGSELECT	obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization
QIBDPROBABILITIES	reads molecular marker data and calculates IBD probabilities
QIMPORT	imports genotypic and phenotypic data for QTL analysis
QKINSHIPMATRIX	forms a kinship matrix from molecular markers
QLDDECAY	estimates linkage disequilibrium (LD) decay along a chromosome
QLINKAGEGROUPS	forms linkage groups using marker data from experimental populations
QMAP	constructs genetic linkage maps using marker data from experimental populations
QMASSOCIATION	performs multi-environment marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic

QMATCH
QMBACKSELECT

QMESTIMATE

QMKDIAGNOSTICS

QMKRECODE
QMKSELECT

QMQTLSCAN

QMTBACKSELECT
QMTESTIMATE
QMTQTLSCAN

QMVAF

QMVESTIMATE

QMVREPLACE

QRECOMBINATIONS

QREPORT

QSASSOCIATION

QSBACKSELECT

QSESTIMATE
QSIMULATE

QSQTLSCAN

QTHRESHOLD
VGESELECT
markers
matches different data structures to be used in QTL estimation performs a QTL backward selection for loci in multienvironment trials or multiple populations
calculates QTL effects in multi-environment trials or multiple populations
generates descriptive statistics and diagnostic plots of molecular marker data
recodes marker scores into separate alleles
obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization
performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in multi-environment trials or multiple populations
performs a QTL backward selection for loci in multi-trait trials calculates QTL effects in multi-trait trials
performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials
calculates percentage variance accounted for by QTL effects in a multi-environment analysis
replaces missing molecular marker scores using conditional genotypic probabilities
replaces missing marker scores with the mode scores of the most similar genotypes
calculates the expected numbers of recombinations and the recombination frequencies between markers
creates an HTML report from QTL linkage or association analysis results
performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers
performs a backward selection for loci in single-environment trials
calculates QTL effects in single-environment trials
simulates marker data and QTL effects for single and multiple environment trials
performs a genome-wide scan for QTL effects (Simple and Composite Mapping) in single-environment trials calculates a threshold to identify a significant QTL selects the best variance-covariance model for a set of environments

3.16 Microarray data

There is a suite of procedures for the design, analysis and visualization of two-colour and Affymetrix microarray data. These are used by the Microarray menus in Genstat for Windows.

AGBIB	generates balanced incomplete block designs generates loop designs e.g. for time-course microarray AGLOOP experiments
AGREFERENCE	generates reference-level designs e.g. for microarray experiments
BAFFYMETRIX	Estimates expression values from an Affymetrix CED and CDF
MADESIGN	file
MACALCULATE	assesses the efficiency of a two-colour microarray design corrects and transforms two-colour microarray differential expressions

3 Statistical analyses

MNORMALIZE
MAESTIMATE
AFFYMETRIX
MABGCORRECT
MAROBUSTMEANS
MARMA
MAVDIFFERENCE
DMADENSITY
MAHISTOGRAM
MAPLOT
MAANOVA
MAREGRESSION
MASHADE

MAVOLCANO
MAPCLUSTER
MASCLUSTER
MA2CLUSTER

FDRBONFERRONI
FDRMIXTURE
MAEBAYES
MPOLISH
QNORMALIZE
THINPLATE
TUKEYBIWEIGHT
normalizes two-colour microarray data
estimates treatment effects from a two-colour microarray design estimates expression values for Affymetrix slides. performs background correction of Affymetrix slides does a robust means analysis for Affymetrix slides calculates Affymetrix expression values applies the average difference algorithm to Affymetrix data plots the empirical CDF or PDF (kernel smoothed) by groups plots histograms of microarray data produces two-dimensional plots of microarray data does analysis of variance of single-channel microarray data does regressions for single-channel microarray data produces shade plots to display spatial variation of microarray data
produces volcano plots of microarray data clusters probes or genes with microarray data clusters microarray slides performs a two-way clustering of microarray data by probes (or genes) and slides
estimates false discovery rates by a Bonferroni-type procedure estimates false discovery rates using mixture distributions modifies t-values by an empirical Bayes method.
performs a median polish of two-way data performs quantile normalization calculates the basis functions for thin-plate splines estimates means using the Tukey biweight algorithm

3.17 Ecological data

The procedures listed below allow you to display, summarize and model ecological data.

```
ECABUNDANCEPLOT
ECACCUMULATION
ECANOSIM
ECDIVERSITY
ECFIT
ECNICHE
ECNPESTIMATE
ECRAREFACTION
LORENZ
```

produces rank/abundance, $A B C$ and k-dominance plots plots species accumulation curves for samples or individuals performs an analysis of similarities (ANOSIM) calculates measures of diversity with jackknife or bootstrap estimates
fits models to species abundance data generates relative abundance of species for niche-based models calculates nonparametric estimates of species richness calculates individual or sample-based rarefaction plots the Lorenz curve and calculates the Gini and asymmetry coefficients

4 Syntax summary

4.1 Commands

ABIVARIATE procedure

Produces graphs and statistics for bivariate analysis of variance (R.F.A. Poultney).

Options

PRINT $=$ string tokens	Controls printing of statistics from the bivariate analysis (error, treatment); default erro, trea
APRINT $=$ string tokens	Controls output from the (univariate) ANOVAs of Y1 and Y2 (usual ANOVA print options); default aovt
TREATMENTSTRUCTURE $=$ formula	Treatment terms to be fitted in the analysis of variance; this option must be set
BLOCKSTRUCTURE = formula	Block model defining the error terms in the analysis of variance; if unset, the design is assumed to be unstratified (i.e. to have a single error term)
$\mathrm{TERM}=$ formula	Single model term identifying the treatment term whose means are to be plotted
STRATUM = formula	Stratum from which to extract treatment information; default is to take the bottom stratum
FACTORIAL $=$ scalar	Limit on number of factors in a treatment term; default 3
PROBABILITY $=$ scalar	Significance level to use in the calculation of the radius of the confidence region and the region of non-significance; default 0.95
GRAPHICS $=$ string token	Type of graphical output (lineprinter, highresolution); default high
STYLE = string token	controls the style of axes in a high-resolution graph ($x y$, none); default xy
LABELS $=$ factor or text	Plotting symbols for the means; default is to take the letters A to Z , then a to z
Parameters	
$\mathrm{Y} 1=$ variates	First variate for the bivariate analysis
$\mathrm{Y} 2=$ variates	Second variate for the bivariate analysis
TITLE $=$ texts	Title for the graph

ABLUPS procedure

Calculates BLUPs for block terms in an ANOVA analysis (R.W. Payne).

Options

PRINT $=$ string token	Controls printed output (blups); default blup
PTERMS = formula	Specifies the block terms whose BLUPs are to be printed;
default is to print them all	
PSE $=$ string tokens	Types of standard errors to be printed with the BLUPs (differences, alldifferences, blups, allblups); default diff, blup

SAVE $=$ identifier
Save structure for the ANOVA analysis; default is to take the most recent ANOVA analysis

Parameters

Block terms whose BLUPs etc are to be saved
BLUPS $=$ table or pointer to tablesSaves the BLUPs
SEBLUPS $=$ table or pointer to tables Standard errors for the BLUPs of each term
SEDMEANS = symmetric matrix or pointer to symmetric matrices
Standard errors of differences between the BLUPs of each term

```
ABOXCOX procedure
    Estimates the power \(\lambda\) in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA
    (W. van den Berg).
Options
PRINT \(=\) string tokens \(\quad\) Controls printed output (aovtable, lambda, monitoring);
default aovt, lamb
TREATMENTSTRUCTURE = formula
BLOCKSTRUCTURE = formula
COVARIATE \(=\) variates
FACTORIAL \(=\) scalar
CONTRASTS \(=\) scalar
DEVIATIONS \(=\) scalar
PLOT \(=\) string token \(\quad\) Whether to plot the partial log-likelihood
(partialloglikelihood); default part
Probability level for the confidence interval for lambda;
default 0.95 , i.e. a \(95 \%\) confidence interval
Values of \(\lambda\) for which the partial log-likelihood is to be
calculated; default! (-4, -3. \(75 \ldots 4\) )
How to transform the y-variate (estimate, trialvalue);
default tria
Steplength for estimating \(\lambda\); default 0.01
Maximum number of iterations; default 100
Tolerance for convergence; default 0.00001
Saves the ANOVA save structure from the analysis of variance
Response variate
Saves the transformed response variate
Saves the estimated value of \(\lambda\)
Saves the lower confidence limit for \(\lambda\)
Saves the upper confidence limit for \(\lambda\)
```


ACANONICAL procedure

Determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae (C.J. Brien).

Options

PRINT $=$ string tokens

CRITERIA $=$ string tokens

FACTORIAL $=$ scalar

TOLERANCE $=$ variate

Parameters

FORMULAE $=$ pointers

```
What to print (decomposition, df, ecriteria, efficiencies); default deco
The efficiency criteria to be saved and/or printed
(aefficiency, mefficiency, sefficiency, eefficiency, xefficiency, order, dforth); default aeff, eeff, orde
```

Limit on the number of factors and variates in each model term default * i.e. no limit
Tolerances for zero in various contexts; default 10^{-8} for all of these

Each pointer contains two or more model formulae whose joint decomposition is required

ORTHOGONALMETHOD = string tokens	Specifies the method to use for each model formula when orthogonalizing a projection matrix to those for terms that occur earlier in the formula (differencing, eigenmethods, hybrid); default hybr
PROJECTIONSETS = pointers	Saves the projection pointers formed from the formulae COMBINEDPROJECTIONSET = pointers
Saves the projector pointers that produce the orthogonal decomposition	
EFFICIENCYFACTORS = pointers	Saves the canonical efficiency factors
ECRITERIA = pointers	Saves the unadjusted efficiency criteria ADJECRITERIA = pointers
Saves the adjusted efficiency criteria	
ADJDF = pointers	Saves the adjusted degrees of freedom SAVE = pointers
Saves information about the analysis for use by ACDISPLAY and ACKEEP	

ACDISPLAY procedure

Provides further output from an analysis by ACANONICAL (C.J. Brien).

Option

PRINT $=$ string tokens \quad What to print (decomposition, df, ecriteria, efficiencies); default deco

Parameter

SAVE $=$ pointer
Information saved from ACANONICAL; if this is not set, the information is saved from the most recent ACANONICAL analysis

ACHECK procedure

Checks assumptions for an ANOVA analysis (R.W. Payne).

Options

\(\left.\left.$$
\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { Controls printed output (tests, confirmation); default } \\
\text { conf }\end{array} \\
\text { ASSUMPTION = string tokens } & \text { Which assumptions to test (homogeneity, normality, } \\
\text { Stability); default homo, norm, stab }\end{array}
$$\right\} \begin{array}{l}Critical value for the test probabilities to decide whether to

generate warning messages; default 0.025\end{array}\right\}\)| Specifies the analysis to be checked; by default this will be the |
| :--- |
| SAVE = ANOVA save structure |
| most recent ANOVA |

No parameters

ACKEEP procedure

Saves information from an analysis by ACANONICAL (C.J. Brien).

Options

COMBINEDPROJECTIONSET $=$ pointer Saves the projector pointers that produce the orthogonal decomposition
EFFICIENCYFACTORS $=$ pointer \quad Saves the canonical efficiency factors
ECRITERIA = pointer
ADJECRITERIA $=$ pointer
ADJDF $=$ pointer
Saves the unadjusted efficiency criteria
Saves the adjusted efficiency criteria

SAVE $=$ pointer
Saves the adjusted degrees of freedom
Information saved from ACANONICAL; if this is not set, the information is saved from the most recent ACANONICAL analysis

No parameters

ACONFIDENCE procedure

Calculates simultaneous confidence intervals for ANOVA means (D.M. Smith).

Options

PRINT $=$ string token	Controls printed output (intervals); default inte
METHOD $=$ string token	Type of interval (individual, smm, product, Bonferroni,
	Scheffe); default smm

FACTORIAL $=$ scalar \quad Limit on the number of factors in each term; default 3
PROBABILITY = scalar
The required significance level; default 0.05
$\mathrm{SAVE}=$ ANOVA save structure

Parameters

TERMS $=$ formula
MEANS = pointer or table
LOWER = pointer or table
UPPER = pointer or table
Save structure to provide the tables of means and associated information; default uses the save structure from the most recent ANOVA

ADD directive

Adds extra terms to a linear, generalized linear, generalized additive or nonlinear model. Options
PRINT = string tokens
NONLINEAR = string token
CONSTANT = string token
FACTORIAL = scalar
POOL = string token
DENOMINATOR = string token

NOMESSAGE $=$ string tokens

FPROBABILITY $=$ string token

TPROBABILITY = string token SELECTION = string tokens

PROBABILITY $=$ scalar

AOVDESCRIPTION $=$ text

Parameter

formula

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti How to treat nonlinear parameters between groups (common, separate, unchanged); default unch
How to treat the constant (estimate, omit, unchanged, ignore); default unch
Limit for expansion of model terms; default * i.e. that in previous TERMS statement
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual $\mathrm{ms}(\mathrm{ss}$, ms); default ss
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes, no); default no
Printing of probabilities for t-statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and $\% \mathrm{Cv}$ only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%CV if DIST=gamma, and disp for other distributions
Probability level for confidence intervals for parameter estimates; default 0.95
Description for line in accumulated analysis of variance (or deviance) table when POOL=yes

List of explanatory variates and factors, or model formula

ADDPOINTS directive

Adds points for new objects to a principal coordinates analysis.

Option

PRINT $=$ string tokens

Parameters

NEWDISTANCES = matrices
$\mathrm{LRV}=L R V s$
CENTROID = diagonal matrices
COORDINATES = matrices

RESIDUALS $=$ matrices or variates

Printed output required (coordinates, residuals); default * i.e. no printing

Squared distances of the new objects from the original points Latent roots and vectors from the PCO analysis Centroid distances from the PCO analysis Saves the coordinates of the additional points in the space of the original points
Saves the residuals of the new objects from that space

ADETECTION procedure

Calculates the minimum size of effect or contrast detectable in an analysis of variance (R.W. Payne).

Options

PRINT $=$ string token

TERM = formula
TREATMENTSTRUCTURE = formula

BLOCKSTRUCTURE $=$ formula

FACTORIAL $=$ scalar
PROBABILITY $=$ scalar

TMETHOD $=$ string token

XCONTRASTS $=$ variate
CONTRASTTYPE $=$ string token
TOLERANCE $=$ scalar
SAVE = ANOVA save structure

Parameters

POWER $=$ scalars or variates

RMS $=$ scalars

DETECTED $=$ scalars or variates

Prints the minimum size of response that can be detected (detected); default dete
Treatment term to be assessed in the analysis
Treatment structure of the design; determined automatically from an ANOVA save structure if TREATMENTSTRUCTURE is unset or if SAVE is set
Block structure of the design; determined automatically from an ANOVA save structure if BLOCKSTRUCTURE is unset or if SAVE is set
Limit on the number of factors in treatment terms; default 3 Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05
Type of test to be made (onesided, twosided, equivalence, noninferiority); default ones X -variate defining a contrast to be detected Type of contrast (regression, comparison); default rege Tolerance for the iterations to calculate the detectable response Save structure to provide the information about the design

Specifies the power i.e. probability with which the response should be detected
Anticipated residual mean square corresponding to TERM; can be omitted if a SAVE structure is available Minimum size of difference or contrast between the effects of TERM that is to be detected

ADISPLAY directive

Displays further output from analyses produced by ANOVA.

Options

\(\left.$$
\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { Output from the analyses of the y-variates, adjusted for any } \\
\text { covariates (aovtable, information, covariates, } \\
\text { effects, residuals, contrasts, means, cbeffects, }\end{array}
$$

cbmeans, stratumvariances, \%cv, missingvalues); default

*i.e. no printing\end{array}\right\}\)| Output from the unadjusted analyses of the y-variates |
| :--- |
| (aovtable, information, effects, residuals, |
| contrasts, means, cbeffects, cbmeans, |
| stratumvariances, \%cv, missingvalues); default *i.e. no |
| printing |

```
CHANNEL \(=\) identifier
PFACTORIAL \(=\) scalar
PCONTRASTS \(=\) scalar
PDEVIATIONS \(=\) scalar
FPROBABILITY \(=\) string token
PSE \(=\) string tokens
```

TWOLEVEL = string token
NOMESSAGE $=$ string tokens
LSDLEVEL $=$ scalar

Parameter

identifiers

information, effects, residuals, contrasts, means, \%cv, missingvalues); default * i.e. no printing
Channel number of file, or identifier of a text to store output; default current output file
Limit on number of factors in printed tables of means or effects; default 9
Limit on order of printed contrasts; default 9
Limit on number of factors in a treatment term whose deviations from the fitted contrasts are to be printed; default 9 Printing of probabilities for variance ratios in the aov table (yes, no); default no
Standard errors to be printed with tables of means, PSE=* requests s.e.'s to be omitted (differences, lsd, means); default diff
Representation of effects in 2^{n} experiments (responses, Yates, effects); default resp
Which warning messages to suppress (nonorthogonal, residual); default *
Significance level (\%) to use in the calculation of least significant differences; default 5

Save structure (from ANOVA) to provide details of each analysis from which information is to be displayed; if omitted, output is from the most recent ANOVA

${ }^{\dagger}$ ADJACENTCELLS procedure

Finds cells adjacent to other cells in a multi-dimensional array (R.W. Payne).

Options
ADJACENTINDEXES = pointer

DIAGONALS $=$ string token

DISTANCE $=$ scalar

Parameters

DIMENSION $=$ scalars
CELLS $=$ variates
ADJACENTCELLS $=$ pointers

Pointer containing a variate for each cell, giving the indexes of its adjacent cells
Whether to include diagonal cells (include, exclude); default incl
Maximum distance between cells and adjacent cells; default 1
Dimensions of the array
Locations of the cells in each dimension
The pointer for each DIMENSION contains a variate for each cell with the locations of its adjacent cells in that dimension

ADPOLYNOMIAL procedure

Plots single-factor polynomial contrasts fitted by ANOVA (R.W. Payne).

Option

$\mathrm{SAVE}=$ ANOVA save structure

Parameters

$\mathrm{XFACTOR}=$ factors
GROUPS $=$ factors or pointers
TRELLISGROUPS $=$ factors or pointers

```
TITLE = texts
```

YTITLE $=$ texts
XTITLE $=$ texts

PENS $=$ variates

Save structure (from ANOVA) to provide details of the analysis from which the polynomials are to be plotted; default uses the save structure from the most recent ANOVA

Factor over which the polynomial contrasts have been formed Factor(s) for which different polynomial coefficients should be plotted in the same graph
Factor or factors for which different polynomial coefficients should be plotted in a trellis plot Title for the graph; default defines a title automatically Title for the y-axis; default ' '
Title for the x -axis; default is to use the identifier of the XFACTOR
Defines the pen to use to plot the points and/or line for each
group defined by the GROUPS factors

ADSPREADSHEET procedure	
Puts the data and plan of an exper	design into a spreadsheet (R.W. Payne).
Options	
DATA $=$ factors or variates	Data variables (e.g. design factors and covariates) to put into the data spreadsheet; default takes the factors defined by previous BLOCKSTRUCTURE and TREATMENTSTRUCTURE directives
NEWDATA $=$ variates	New variates (e.g. measurements to be taken during the experiment) to create and put into the data spreadsheet; default * i.e. none
$\mathrm{Y}=$ variate or factor	Specifies the y-coordinates of the plots for the plan spreadsheet
$\mathrm{x}=$ variate or factor	Specifies the x-coordinates of the plots for the plan spreadsheet
CONSTANTFACTORS $=$ string tokens	Whether to put factors whose levels are constant in the y or x direction in a separate row or column of the Plan spreadsheet (y, x); default * i.e. neither
SEPARATOR $=$ text	Separator for factor values in the plan spreadsheet; default ';
OMITGAPS $=$ string token	Whether to omit gaps when the plots in the plan are equally spaced (yes, no); default no
FOREGROUND $=$ scalar, variate or text	Foreground colours to use for the plots in the experiment; default 'Black'
BACKGROUND $=$ scalar, variate or text	Background colours to use for the plots in the experiment; default 'BlanchedAlmond'
CFACTORS $=$ factors	Factors to determine the colour to use for each plot; default uses the first block factor or no colouring otherwise
GAPFOREGROUND $=$ text or scalar	Foreground colour for gaps and surrounding plots; default 'Black'
GAPBACKGROUND $=$ text or scalar	Background colour for gaps and surrounding plots; default 'LightGreen'
YFOREGROUND $=$ text or scalar	Foreground colour for factors constant in y-direction; default 'Black'
YBACKGROUND $=$ text or scalar	Background colour for factors constant in y-direction; default 'PaleTurquoise'
XFOREGROUND $=$ text or scalar	Foreground colour for factors constant in x-direction; default 'Black'
XBACKGROUND $=$ text or scalar	Background colour for factors constant in x-direction; default 'LightCyan'
SPREADSHEET $=$ string tokens	Which spreadsheets to form (data, plan); default data
OUTFILENAME $=$ texts	Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create
Parameters	
$\mathrm{FACTOR}=$ factors	Factors to include in the plan spreadsheet; if unset, includes the factors defined by a previous TREATMENTSTRUCTURE directive
LABELS $=$ texts	Labels to be used for each factor if its own levels or labels are inappropriate

AEFFICIENCY procedure

Calculates efficiency factors for experimental designs (R.W. Payne).

Options

```
FACTORIAL = scalar
METHOD = string token
METHOD \(=\) string token
```

Limit on the number of factors in each treatment term generated from TERMS; default 3
Whether to eliminate or ignore earlier model terms from the

```
FORCED = formula
```


Parameters

TERMS = formula
DF $=$ pointer or scalar
EFFICIENCY $=$ pointer or variate
DFALIASED $=$ pointer or scalar

TERMS formula (eliminate, ignore); default elim
Terms to be eliminated before fitting TERMS; default * i.e. none

Model terms
Saves the degrees of freedom of the terms
Saves the efficiency factors of the terms
Saves the number of aliased degrees of freedom of the terms

AFALPHA procedure

Generates alpha designs (R.W. Payne).
Option

PRINT $=$ string token

Parameters

GENERATOR = matrices
LEVELS $=$ scalars or variates

```
SEED = scalar
TREATMENTS = factors
REPLICATES = factors
BLOCKS = factors
UNITS = factors
```

Whether to print the design (design); default * i.e. no printing
generating array (of size number-of-plots-per-block by number-of-reps)
Defines the levels of each treatment factor; if this is omitted, the levels of the TREATMENT factor are used, if available, otherwise LEVELS is determined from the generating array on the assumption that the blocks are to be of equal size Seed to be used to randomize the design, if required Specifies the treatment factor for each design Specifies the replicate factor Specifies the block factor Specifies the factor to index the units within each block

AFAUGMENTED procedure

Forms an augmented design (R.W. Payne).

Options

PRINT $=$ string tokens	Controls printed output (design); default * i.e. none
TREATMENTSTRUCTURE $=$ formula	Treatment terms, other than GENOTYPES, to be included in the analysis
BLOCKSTRUCTURE $=$ formula	Defines the block structure of the basic design
COVARIATE $=$ variates	Specifies any covariates to be included in the analysis
LEVTEST $=$ variate	Levels to represent the test genotypes in the augmented GENOTYPES factor
LEVCONTROL $=$ scalar or variate	Levels to represent the control genotype(s) if these are not already in the GENOTYPES factor
GENOTYPES $=$ factor	Genotype factor
CONTROLS $=$ factor	Factor identifying the controls
TESTVSCONTROL $=$ factor	Factor representing the comparison between test and control genotypes
SUBPLOTS $=$ factor	Factor to represent the subplots to be created for the test genotypes in the basic design
NSUBPLOTS $=$ scalar	Number of subplots to create within each plot of the basic design
SUBCONTROLS $=$ scalar or variate	Subplots to be used for control genotypes, if not already preallocated in the GENOTYPES and SUBPLOTS factors; default selects subplots for the controls at random within each wholeplot
NREPTEST $=$ scalar or variate	Number of times to replicate the test genotypes; default 1
SEED $=$ scalar	Seed for the random numbers used to randomize the allocation of the genotypes (a negative value implies no randomization); default 0

No parameters

AFCARRYOVER procedure

Forms factors to represent carry-over effects in cross-over trials (R.W. Payne).

Option

NONELEVEL $=$ scalar or text \quad Level or label to use for the units with no carry-over

Parameters

TREATMENTS $=$ factor s	Factors identifying the (direct) effects of the treatments
SUBJECTS $=$ factors	Factors identifying the subjects
PERIODS $=$ factors	Factors identifying the periods
CARRYOVERFACTOR $=$ factors	Factors to represent the carry-over effect of the treatments in
the period immediately after the period in which they were	
applied	
FOCARRYOVER $=$ factors	Factors to represent the comparison between none and any carry-over effect of the treatments

AFCOVARIATES procedure

Defines covariates from a model formula for ANOVA (R.W. Payne).

Options

COVARIATES $=$ pointer
COVGROUPS $=$ pointer

FACTORIAL $=s c a l a r$

Parameters

TERMS = formula

Saves the covariates
Saves the pointers defined to contain the covariates formed for each term in TERMS
Limit on number of factors in the model terms formed from TERMS; default 3

Model terms from which to define covariates

AFCYCLIC procedure

Generates block and treatment factors for cyclic designs (R.W. Payne).

Option

PRINT $=$ string token \quad Whether to print the design (design); default *i.e. no printing

Parameters

INITIALBLOCKS $=$ variates or pointers Defines one (variate) or more (pointer to variates) initial blocks for a treatment factor
INCREMENT $=$ scalars or pointers \quad Defines the size of the successive increment (scalar) or increments (pointer to scalars) for each initial block
LEVELS $=$ scalars or variates

```
SEED = scalar
```

TREATMENTS = factors
BLOCKS $=$ factors
UNITS $=$ factors

Defines the levels of each treatment factor; this need not be specified if the factor has already been declared Seed to be used to randomize each design, if required Specifies treatment factors Specifies block factors Specifies factors to index the units within each block

AFDISCREPANCY procedure

Calculates the discrepancy of a design (B.M. Parker).

Options

PRINT $=$ string tokens

Controls whether to print the discrepancy (results); default resu
Specifies the method to use to calculate the discrepancy (L2, maximin, entropy); default L2
SWAP $=$ variate

Parameters

DESIGN $=$ matrices or pointers DISCREPANCY $=$ scalars
swapped when updating the discrepancy criterion for the maximin or entropy criteria; default none

A matrix, or a pointer of variates, specifying the design points Saves the discrepancy

Stores the distances, to allow fast updates with the maximin or entropy criteria

AFFYMETRIX procedure

Estimates expression values for Affymetrix slides (D.B. Baird).

Options

PRINT $=$ string tokens
METHOD $=$ string token
BMETHOD $=$ string token

BWEIGHTING $=$ string token

TRANSFORMATION = string token NMETHOD $=$ string token

REPLACEDATA $=$ string token
SPREADSHEET $=$ string token
MAXCYCLE $=$ scalar
TOLERANCE $=$ scalar

Parameters

DATA $=$ variates
SLIDES $=$ factors
PROBES $=$ factors
ATOMS $=$ factors
$\mathrm{PMMM}=$ factors
TYPEPROBES = factors
ROWS $=$ factors
COLUMNS $=$ factors
ESTIMATES $=$ variates
$\mathrm{SE}=$ variates
IDSLIDES $=$ factors
IDPROBES $=$ factors

What to print (estimates, background, monitoring); default para
Method for calculating probe expression values (mas 4, mas 5, rma, rma2); default rma
Method to use for background values (mean, quantile, none); default mean for METHOD settings mas 4 and mas5, but none for settings rma and rma2
Method for weighting background grids (affymetrix, distance); default affy
How to transform the data (log2, none); default log2 Method for normalization i.e. whether to use a mean, median or geometric mean for the averaged normalized distribution (means, medians, geometricmeans, none); default mean Whether to replace the DATA variates with background corrected intensities (yes, no); default no
What to save in a spreadsheet (results); default * i.e. nothing
Maximum number of iterations; default 50
Tolerance for convergence; default 0.0001
Intensities to be analysed
Identify the slides (or chips)
Identify the probes (or genes) within each slide
Identify the PM/MM pairs within each probe
Distinguish between PM and MM values
Defines the probe-type corresponding to each intensity
Identifies rows within each slide (required only if background corrections are to be made)
Identifies columns within each slide (required only if background corrections are to be made)
Saves the estimated expression values for each slide and probe combination
Saves approximate standard errors for the estimates
Saves factors to identify the slides in the ESTIMATES variates
Saves factors to identify the probes in the ESTIMATES variates

AFIELDRESIDUALS procedure

Display residuals in field layout (R.W. Payne \& A.D.Todd).

Options

PRINT $=$ string tokens
GRAPHICS $=$ string token
METHOD $=$ string token

MARGIN $=$ string token
YORIENTATION $=$ string token
PENCONTOUR $=$ scalar
PENFILL $=$ scalar or variate

Controls output (contour, shade, table); default cont
Type of graph (highresolution, lineprinter); default high
Type of residuals to take from the save structure when the RESIDUALS parameter is not specified (combined, finalstratum, standardizedfinal); default comb Whether to include margins in printed tables (yes, no); default no
Y-axis orientation of the plot (reverse, normal); default norm Pen number to be used for the contours; default 1
Pen number(s) defining how to fill the areas between contours;
default 3

PENSHADE $=$ scalar or variate

Parameters

$\mathrm{Y}=$ variates or factors
$\mathrm{X}=$ variates or factors
RESIDUALS $=$ variates

Pen(s) to use for the shade plot; default 3

Specifies the y-coordinates of the plots
Specifies the x -coordinates of the plots
Residuals to be plotted; default is to take the residuals from the save structure specified by the SAVE option, or from the most recent ANOVA if that is unspecified
SAVE $=$ ANOVA, REML or regression save structures
Save structure of the ANOVA, REML or regression analysis from which to take the residuals if the RESIDUALS parameter is not specified; default is to take the most recent ANOVA analysis
FIELDWIDTH $=$ scalars Field width for printing the residuals; default 12
DECIMALS = scalars Number of decimal places to use when printing the residuals TITLE = texts

AFLABELS procedure

Forms a variate of unit labels for a design (R.W. Payne).

Options

UNITLABELS $=$ variate	Stores the labels
MAXDIGIT $=$ scalar	Number of available digits; default 8

Parameters

FACTOR $=$ factors

NEWLEVELS $=$ variates

Number of available digits; default 8
Factors indexing the units of the design; if this is unset, the factors from the most recent BLOCKSTRUCTURE command are used
Allows new levels to be specified for each FACTOR; if this is unset, uses the levels already defined for the factor

AFMEANS procedure

Forms tables of means classified by ANOVA treatment factors (R.W. Payne).

Options

PRINT $=$ string tokens
MEANS $=$ table
SED $=$ symmetric matrix
ESE $=$ table
LSD $=$ symmetric matrix
LSDLEVEL $=$ scalar
DFMEANS $=$ symmetric matrices
EQFACTORS $=$ factors

SAVE $=$ ANOVA save structure

Parameter

CLASSIFY $=$ vectors

What to print (means, sed, sedsummary, ese, lsd, isdsummary); default mean, sed
Saves means; default *
Saves matrices of standard errors of differences between means; default *
Saves effective standard errors; default *
Saves least significant differences between means; default * Significance level (\%) for least significant differences; default 5
Saves degrees of freedom for comparisons between every pair of entries in the table of means
Factors whose levels are to be assumed to be equal within the comparisons between means, when calculating effective standard errors
Save structure to provide the table of means; default uses the save structure from the most recent ANOVA

Factors to classify table of means (from those in the TREATMENTSTRUCTURE in the ANOVA analysis)

AFMINABERRATION directive

Forms minimum aberration designs using the algorithm of Laycock \& Rowley (1995).

Options

PRINT $=$ string tokens \quad Controls printed output (summary, keyblocks, keydefining, monitoring); default *

```
NTIMES \(=\) scalar
SEED \(=\) scalar
```


Parameters

LEVELS $=$ scalars

NTREATMENTFACTORS = scalars
NUNITS $=$ scalars

NSUBUNITS = scalars
KEYBLOCKS $=$ matrices
KEYDEFINING $=$ matrices
RESOLUTION $=$ scalars
ABERRATION = scalars
SUBRESOLUTION = scalars
SUBABERRATION $=$ scalars
NDESIGN = scalars
NSUBDESIGN = scalars

Number of designs to try in a random search; default 0 does the full search
Seed for the random number generator used to search the designs randomly; default 0

Number of levels of the treatment factors, must be a power of a prime number
Number of treatment factors
Number of units in each block of a block design or in the principal block of a fractional factorial
Number of units in each (sub-)block
Design key for the blocks and sub-blocks
Design key specifying the defining contrasts
Saves the resolution of the design
Saves the aberration of the design
Saves the resolution of the sub-design
Saves the aberration of the sub-design
Saves or defines the design number
Saves or defines the sub-design number

AFNONLINEAR procedure

Forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model (W. van den Berg).

Options

PRINT = string token	Controls printed output (results, monitoring); default resu, moni
PLOT $=$ string token	Controls whether to plot the design (design); default desi
YARGUMENT = identifier	Data structure that stores the results of the function when it is calculated by expressions supplied by the FUNCTION option;
must be set	
XARGUMENT = identifier	Data structure representing the x-variate in the expressions supplied by the FUNCTION option; must be set
FUNCTION = expression structures	Specifies the function whose parameters are to be estimated; must be set

FNDERIVATIVES $=$ expression structures
Specifies expressions to calculate derivative of the function with respect to each parameter; must be set
ITERATIVEWEIGHTS = identifier \quad Data structure that stores the iterative weights in the expressions supplied by the FNITERATIVEWEIGHTS option
FNITERATIVEWEIGHTS $=$ expression structures
Specifies expressions to calculate the iterative weights when estimating the parameters of a generalized linear model
XSUPPORT $=$ variate
Supplies the support points for the initial design, and saves those of the final design; if no initial values are supplied, an initial design is formed at random
XWEIGHTS $=$ variate \quad Supplies the weights for the support points for the initial design, and saves those of the final design; if no initial values are supplied, equal weights are used initially

GRID $=$ variate
A0 $=$ scalar
SEED = scalar
NCYCLE $=$ scalar
MAXCYCLE $=$ scalar
TOLERANCES $=$ variate

Specifies the grid points where the design will be evaluated Initial update weight; default 0.1
Seed for the random numbers used to select the initial design when not supplied by XSUPPORT and XWEIGHTS
Number of iterations to make between at each value of A0, before halving it for the next batch of iterations; default 100 Maximum number of iterations; default 2500
Variate with two values specifying the convergence criterion
and the tolerance for zero weights; default ! (1.E-6, 1.E-5)

Parameters

PARAMETER $=$ scalars

DERIVATIVE = identifiers

Parameters of the nonlinear or generalized linear model (with values giving an indication of their likely estimated values) Data structures that store the results of the calculation of the derivative for each parameter, in the expressions specified by the FNDERIVATIVES option

AFORMS procedure

Prints data forms for an experimental design (R.W. Payne).

Options

\(\left.$$
\begin{array}{ll}\text { BLOCKSTRUCTURE = formula } & \begin{array}{l}\text { Defines the block factors to be used to label the units of the } \\
\text { design; default takes those specified in an earlier }\end{array}
$$

BLOCKSTRUCTURE directive\end{array}\right]\)| Defines the treatment factors to be used, if any, to label the |
| :--- |
| forms |\quad| Number of lines to be allowed for each measurement; default 1 |
| :--- |

Parameters

LABEL $=$ texts \quad Labels for the measurements to be recorded on the forms
FIELDWIDTH $=$ scalar

AFPREP procedure

Searches for an efficient partially-replicated design (R.W. Payne).

Options

```
PRINT = strings
LEVELS = scalar or variate
NREPEATS = variate
NBLOCKS = scalar
TREATMENTS = factor
BLOCKS = factor
UNITS = factor
EFFICIENCY = variate
NSTARTS = scalar
NTRIES = scalar
SEED = scalar
TRYSEED = scalar
SPREADSHEET = string
```


No parameters

Controls printed output (design, efficiency, factors, monitoring); default * i.e. none
Levels of the treatment factor; if unset, takes the levels declared for the factor specified by the TREATMENTS option Number of times each treatment occurs in the design
Number of blocks
Treatment factor
Block factor
Unit-within-block factor
Saves the efficiency factors of the treatment term within blocks Specifies the number of random starting configurations to take in the search for the best design
Number of designs to try from each starting configuration Seed for the random numbers used to randomize the design; default 0
Seed for the random numbers used to select the random starting configurations; default 0
Whether to put the design factors into a spreadsheet (design); default *

AFRCRESOLVABLE procedure

Forms doubly resolvable row-column designs, with output (D.B. Baird).

Options

\(\left.$$
\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { Controls printed output (design, plotnumbers, factors, } \\
\text { efficiency; default desi, effi }\end{array}
$$

DESIGNPLOT = string token \& What factors to display in the design plot (treatment,

plotandtreatment); default *i.e. no plot\end{array}\right\}\)| Defines the starting location for allocating plots to the row-by- |
| :--- |
| column grid (lowleft, lowright, upleft, upright); |
| default uple |

```
TIME \(=\) scalar
SEED = scalar
MAXITERATIONS \(=\) scalar
```

SPREADSHEET $=$ string token

Parameters

NROWS = scalars
NCOLUMNS $=$ scalars
LEVELS $=$ scalar, variate or text

TREATMENTS $=$ factors
ROWREPLICATES = factors
COLREPLICATES $=$ factors
ROWS = factors
COLUMNS $=$ factors
PLOTNUMBER = factors
TITLE $=$ texts

OUTFILE $=$ texts
$\mathrm{EXIT}=$ scalars
(colserpentine, colbycol, rowserpentine, rowbyrow); default rowb
Time in seconds to spend searching for an optimal design; default 60
Seed for the randomization; default 0
The number of random designs to search for an optimal design; default 10000
What to save in a spreadsheet (data, plan); default *

Number of rows in the layout of each design
Number of columns in the layout of each design
Defines the number of levels or labels of the TREATMENT factor for each design
Saves the treatment allocation in each design
Saves the row replicates in each design
Saves the column replicates in each design
Saves the row locations of the plots in each design
Saves the column locations of the plots in each design
Saves the plot numbers
The title for the design plot; default an automatic description of the design
Gives a file name (with extension .gsh, .gwb, or .xlsx) to save the factors in each design
Saves the exit code from the design search program (0 for success, greater than 0 for failure)

AFRESPONSESURFACE directive

Uses the BLKL algorithm to construct designs for estimating response surfaces.

Options

PRINT $=$ string token	Printed output required (monitoring); default * i.e. no printing
TERMS $=$ formula	Model to be fitted when the design is used; no default i.e. this option must be specified
CONSTANT $=$ string token	How to treat the constant in the model (estimate, omit); default esti
FACTORIAL $=$ scalar	Limit for expansion of terms in the model; default 2
NUNITS = scalar	Number of units (or trials) in the design
NDELETION $=$ scalar	Number of design points to consider for deletion; default takes nunits/4, or 4 is this is larger
NINCLUSION $=$ scalar	Number of design points to consider for inclusion; default takes nunits/4, or 4 is this is larger
NRUNS $=$ scalar	Number of times to run the algorithm; default 100
ADJUSTMENTSTEP $=$ scalar	Maximum amount by which to perturb the design points in the adjustment algorithm; default * i.e. no adjustments are tried
NBLOCKS $=$ scalar	Number of blocks; default 1 i.e. design not blocked
BLOCKFACTOR = factor	Saves the block factor (if any) for the design
BLOCKSIZE $=$ scalar or variate	Number of units in each block of the design
PREVIOUSBLOCKS $=$ factor	Supplies values of the blocking factor for any previous experiments that are to be included in the analysis of the results of the design
MIXTURE $=$ variates	Lists any variates that are part of a mixture (their values must be greater than zero and sum to one)
SEED $=$ scalar	Seed for random numbers used to construct the initial design; default 124195
DETERMINANT $=$ scalar	Saves the determinant of the information matrix for the best design

```
MEANGRID = scalar
MAXGRID \(=\) scalar
NGRIDPOINTS \(=\) scalar
Parameters
\(\mathrm{x}=\) variates
\(\mathrm{x} 2=\) variates
x3 \(=\) variates
SUPPORTPOINTS \(=\) variates
PREVIOUSVALUES = variates
Saves the mean value of the standardized variance of predictions obtained from the design over a grid of \(x\)-values Saves the maximum value of the standardized variance of predictions obtained from the design over a grid of x -values Number of grid points in each x-direction to use for MEANGRID and MAXGRID; default 5
arameters
\(\mathrm{x}=\) variates
\(\mathrm{x} 2=\) variates
Lists the variates to be investigated in the design; these need not be supplied if none of the other parameters are required Lists identifiers to be used to represent squares of the x variates in the model
Lists identifiers to be used to represent squares of the x variates in the model
Support points for each x -variate in the design; if these are not (all) specified, they are formed automatically
Supplies values of the x-variates for any previous experiments that are to be included in the analysis of the results of the design
```


AFUNITS procedure

Forms a factor to index the units of the final stratum of a design (R.W. Payne \& W. van den Berg). Option
BLOCKSTRUCTURE = formula Defines the block factors for the design; the default is to take those specified by the BLOCKSTRUCTURE directive

Parameter

UNITS $=$ factor
Factor to be formed

AGALPHA procedure

Forms alpha designs by standard generators for up to 100 treatments (M.F. Franklin \& R.W. Payne). Option
PRINT $=$ string token \quad Controls whether or not to print a plan or the generator of of the design (design, generator); if unset in an interactive run AGALPHA will ask whether the design and generator are to be printed, in a batch run the default is not to print anything

Parameters

```
LEVELS = scalars
```

NREPLICATES = scalars
NBLOCKS $=$ scalars
SEED $=$ scalars
TREATMENTS $=$ factors
REPLICATES $=$ factors
BLOCKS $=$ factors
UNITS $=$ factors
STATEMENT $=$ texts

Number of treatments
Number of replicates
Number of blocks per replicate
Seed for randomization; a negative value implies no randomization
Identifier for the treatment factor
Identifier for the replicate factor
Identifier for the factor to index the blocks within replicates Identifier for the factor to index the units (or plots) within each block
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGALPHA)

AGBIB procedure

Generates balanced incomplete block designs (R.W. Payne).

Options

PRINT $=$ string token \quad Controls whether or not to print a plan of the design and whether to print a catalogue of the designs in the subfile (design, catalogue); if unset in an interactive run AGBIB will ask whether the design is to be printed, in a batch run the

ANALYSE $=$ string token

Parameters

LEVELS = scalars
NBLOCKS $=$ scalars
NUNITS $=$ scalars
SEED $=$ scalars
TREATMENTS $=$ factors
BLOCKS $=$ factors
UNITS $=$ factors
STATEMENT $=$ texts
default is not to print anything
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run

Number of treatments
Number of blocks
Number of units per block
Seed for randomization; a negative value implies no randomization
Identifier for the treatment factor
Identifier for the factor to index the blocks
Identifier for the factor to index the units within each block
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGBIB)

AGBOXBEHNKEN procedure

Generates Box Behnken designs (R.W. Payne).

Options

PRINT $=$ string token

```
NCENTRALPOINTS = scalar
LEVELS = variate
NCOMBINATIONS = scalar
SEED = scalar
STATEMENT = text
```


Parameter

TREATMENTFACTOR $=$ factors

Controls printed output (design); if unset in an interactive run AGBOXBEHNKEN will ask whether the design is to be printed, in a batch run the default is not to print anything Defines the number of central points to include; default 4 Defines the outer levels to be used; default ! $(-1,1)$ Number of factors to vary in combination at once; default 2 Seed to be used to randomize each design; a negative value implies no randomization
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGBOXBEHNKEN)

Treatment factors

AGCENTRALCOMPOSITE procedure

Generates central composite designs (R.W. Payne).

Options

PRINT $=$ string token

```
NCENTRALPOINTS \(=\) scalar
NSTARPOINTS \(=\) scalar
LFACTORIAL \(=\) variate
LSTAR \(=\) variate
FRACTION \(=\) scalar
SEED \(=\) scalar
STATEMENT \(=\) text
```

Controls printed output (design); if unset in an interactive run AGCENTRALCOMPOSITE will ask whether the design is to be printed, in a batch run the default is not to print anything Defines the number of central points to include; default 4 Defines the number of star points to include; default 1 Defines the treatment levels in the factorial part of the design; default ! (-1,1)
Defines the treatment levels for the star points; default is to use the levels defined by LFACTORIAL
Denominator for fractional factorial; default 1 specifies a complete design
Seed to be used to randomize each design; a negative value implies no randomization
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGCENTRALCOMPOSITE)

Parameter

TREATMENTFACTOR $=$ factors

Treatment factors

AGCROSSOVERLATIN procedure

Generates Latin squares balanced for carry-over effects (R.W. Payne).

Options

ANALYSE $=$ string token

Parameters

LEVELS $=$ scalars or variates
SEED $=$ scalars

TREATMENTS $=$ factors

SUBJECTS $=$ factors
PERIODS = factors
CARRYOVERFACTOR $=$ factors

NOCARRYOVER $=$ factors
STATEMENT $=$ texts

Controls printed output (design); if unset in an interactive run ACROSSOVERGLATIN will ask whether the design is to be printed, in a batch run the default is not to print anything Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (yes, no); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run

Number of treatments (scalar) or levels for the treatments Seed to be used to randomize the design; a negative value implies no randomization
Identifier for a factor to represent the direct effects of the treatments
Identifier for a factor to represent the subjects Identifier for a factor to represent the periods Identifier for a factor to represent the carry-over (or "residual") effect of the treatments in the period immediately after the period in which they were applied Identifier for a factor to represent the comparison between none and any carry-over effect of the treatments Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGCROSSOVERLATIN)

AGCYCLIC procedure

Generates cyclic designs from standard generators (M.F. Franklin \& R.W. Payne).

Options

METHOD $=$ string token

Parameters

LEVELS $=$ scalars
NBLOCKS $=$ scalars
NUNITS $=$ scalars
SEED $=$ scalars
TREATMENTS $=$ factors
SUPERIMPOSED $=$ factors
BLOCKS $=$ factors
UNITS $=$ factors

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGCYCLIC will ask whether the design is to be printed, in a batch run the default is not to print the design
Type of design - ordinary cyclic, cyclic change-over or cyclic superimposed (cyclic, changeover, superimposed); if unset in an interactive run AGCYCLIC will ask about the type of design, in a batch the default is assumed to be cyclic

Number of treatments
Number of blocks
Number of units per block, or number of periods in a cyclic change-over design
Seed for randomization; a negative value implies no randomization
Identifier for the treatment factor
Identifier for the second treatment factor in a cyclic superimposed design
Identifier for the factor to index the blocks
Identifier for the factor to index the units within each block, or the periods of a cyclic change-over design
INITIALBLOCKS $=$ variates or pointers To save one (variate) or more (pointer to variates) initial blocks

Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGCYCLIC)

AGDESIGN procedure

Generates generally balanced designs (R.W. Payne).

Options

PRINT $=$ string token

ANALYSE $=$ string token

FILENAME $=$ text
SUBFILE = identifier

Parameters

DESIGN = variates
TREATMENTFACTORS = pointers
BLOCKFACTORS = pointers
PSEUDOFACTORS = pointers
REPLICATEFACTOR $=$ factors
UNITLABELS $=$ variates
SEED $=$ scalars

STATEMENT $=$ texts

Controls whether or not to print a plan of the design and whether to print a catalogue of the designs in the subfile (design, catalogue); if unset in an interactive run AGDESIGN will ask whether the design is to be printed, in a batch run the default is not to print anything
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
Name of the backing store file containing the design information; default uses the standard design file Subfile of the backing store file to be used

Contains codes to indicate the choice of design Specifies identifiers for the treatment factors Specifies identifiers for the block factors Specifies identifiers for any pseudo-factors Specifies the identifier of the factor to represent the replicates (if any) in each design
Specifies the identifier of a variate to store a unique numerical label for each plot in the design
Seed to be used to randomize each design; a negative value implies no randomization
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGDESIGN)

AGFACTORIAL procedure

Generates minimum aberration block or fractional factorial designs (P.J. Laycock, P.J. Rowley \& R.W. Payne).

Options

PRINT $=$ string token

ANALYSE $=$ string token

FACTORIAL $=$ scalar

Parameters

LEVELS $=$ scalars
NTREATMENTFACTORS $=$ scalars
NUNITS $=$ scalars
NFRACTIONBLOCK = scalars

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGFACTORIAL will ask whether the design is to be printed, in a batch run the default is not to print the design
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (yes, no); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run Limit on number of factors in treatments terms in the analysis of variance; default 3

Number of levels of the treatment factors in each design Number of treatment factors
Number of units per block
Defines the number of the block to use to define a fractional factorial, or can be set to zero to take a block at random; if unset in an interactive run AGFACTORIAL will ask whether to form a fractional factorial design, in a batch run the default is

```
NSUBUNITS = scalars
SEED = scalars
TREATMENTFACTORS = pointers
BLOCKS = factors
SUBBLOCKS = factors
PSEUDOFACTORS = pointers
UNITLABELS = variates
NDESIGN = scalars
NSUBDESIGN = scalars
STATEMENT = texts
```

to form the full (block) design
Number of units in each sub-block
Seed to be used to randomize each design; a negative value implies no randomization
Specifies identifiers for the treatment factors
Identifier for the block factor
Identifier for the sub-block factor
Specifies identifiers for pseudo-factors
Specifies the identifier of a variate to store a unique numerical label for each unit in the design
Saves or defines the design number
Saves or defines the sub-design number
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGFACTORIAL)

AGFRACTION procedure

Generates fractional factorial designs (M.F. Franklin \& R.W. Payne).

Options

ANALYSE $=$ string token

FACTORIAL $=$ scalar

FILENAME $=t e x t$

Parameters

LEVELS = scalars
FRACTION $=$ scalars
NTREATMENTFACTORS $=$ scalars
NUNITS $=$ scalars
SEED $=$ scalars

TREATMENTFACTORS = pointers
BLOCKS $=$ factors
UNITS $=$ factors

STATEMENT $=$ texts

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGFRACTION will ask whether the design is to be printed, in a batch run the default is not to to print the design
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
Limit on number of factors in treatments terms in the analysis of variance; default 2
Name of the backing store file containing the design information; default uses the standard fractional design file

Number of levels of the treatment factors in each design
Denominator of required fraction
Number of treatment factors
Number of units per block
Seed to be used to randomize each design; a negative value implies no randomization
Specifies identifiers for the treatment factors
Identifier for the block factor
Identifier for the factor to index the units (or plots) within each block
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGFRACTION)

AGHIERARCHICAL procedure

Generates orthogonal hierarchical designs (R.W. Payne).

Options

PRINT $=$ string token

ANALYSE $=$ string token

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGHIERARCHICAL will ask whether the design is to be printed, in a batch run the default is not to print the design
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to

AGINDUSTRIAL procedure

Helps to select and generate effective designs for use in industrial experiments (R.W. Payne).

Option

STATEMENT $=$ text Saves a command to recreate the design

No parameters

AGLATIN procedure

Generates mutually orthogonal Latin squares (I. Wakeling \& R.W. Payne).

Options

PRINT $=$ string token	Controls printed output (design, squares, list); if unset in an interactive run AGLATIN will ask whether the design is to be printed, in a batch run the default is not to print anything
ANALYSE $=$ string token	Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
Parameters	
NROWS = scalars	Specifies the number of rows (and columns) in each square
NSQUARES $=$ scalars	Number of squares to form (i.e. number of treatment factors to generate)
SEED $=$ scalars	Seed to be used to randomize each design; a negative value implies no randomization
TREATMENTFACTORS $=$ pointers	Pointer to identifiers for the treatment factors
ROWS $=$ factors	Identifier for the row factor
COLUMNS $=$ factors	Identifier for the column factor
MAXNSQUARES $=$ scalars	Returns the maximum number of squares available with the specified number of rows and columns
STATEMENT $=$ texts	Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGLATIN)

Parameters

NROWS = scalars
NSQUARES $=$ scalars
SEED $=$ scalars

TREATMENTFACTORS = pointers
ROWS = factors
COLUMNS = factors
MAXNSQUARES $=$ scalars

STATEMENT $=$ texts

AGLOOP procedure

Generates loop designs e.g. for time-course microarray experiments (R.W. Payne).

Option

PRINT $=$ string token

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGLOOP will ask whether the design is to be printed, in a batch run the default is not to print the design

Parameters

LEVELS $=$ scalars \quad Number of treatments
INCREMENTS $=$ scalars, variates or pointers
INCREMENTS $=$ scalars, variates or pointers

Increment or increments to be used to form the loops
SEED $=$ scalars \quad Seed for randomization; a negative value implies no randomization
TREATMENTS $=$ factors \quad Identifier for the treatment factor
BLOCKS $=$ factors \quad Identifier for the block (plate) factor
UNITS $=$ factors \quad Identifier for the factor for the units within each block (or colours in a microarray experiment)
STATEMENT $=$ texts
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGLOOP)

AGMAINEFFECT procedure

Generates designs to estimate main effects of two-level factors (R.W. Payne).

Options

\(\left.$$
\begin{array}{ll}\text { PRINT = string token } & \begin{array}{l}\text { Controls printed output (design, catalogue); if unset in an } \\
\text { interactive run AGMAINEFFECT will ask whether the design or } \\
\text { catalogue are to be printed, in a batch run the default is not to } \\
\text { print anything }\end{array}
$$

ANALYSE = string token

Controls whether or not to analyse the design, and produce a

skeleton analysis-of-variance table using ANOVA (no, yes);

default is to ask if this is unset in an interactive run, and not to

analyse if it is unset in a batch run

Whether to include an extra "folded" replicate with the levels

of each factor interchanged (no, yes); default no\end{array}\right]\)| Seed to be used to randomize each design; a negative value |
| :--- |
| implies no randomization |
| Saves a command to recreate the design (useful if the design |
| information has been specified in response to questions from |

AGNATURALBLOCK procedure

Forms 1- and 2-dimensional designs with blocks of natural size (P.D. Johnstone \& D.B. Baird).

Options

```
PRINT = string token
DESIGNTYPE = string token
NSIMULATIONS = scalar
```

SEED $=$ scalar
FIRSTPLOT $=$ string token
FILLMETHOD $=$ string token

Parameters

LEVELS $=$ scalars or variates NROWS $=$ scalars

NCOLUMNS = scalars

Controls printed output (design, search); default desi
Type of design to create (block, rowcolumn); default rowc Number of randomizations to search to find the best design; default 1000
Seed for the randomization; default 0
Defines the starting location for allocating plots to the row-bycolumn grid (lowleft, lowright, upleft, upright); default uple
Defines the order in which the plots are filled
(colserpentine, colbycol, rowserpentine, rowbyrow); default rows

Defines the levels of the treatment factor for each design Number of rows in the smallest rectangle containing the layout of each design; not required if the ROWS parameter is set to a factor with levels defined
Number of columns in the smallest rectangle containing the layout of each design; not required if the COLUMNS parameter
is set to a factor with levels defined

```
NUNITS = scalar
```

NUNITS = scalar
TREATMENTS = factors
TREATMENTS = factors
ROWS = factors
ROWS = factors
COLUMNS = factors
COLUMNS = factors
BLOCKS = factors
BLOCKS = factors
PLAN = matrices
PLAN = matrices
Number of plots that will be assigned a treatment in each
design; not required if any of the TREATMENTS, ROWS or
COLUMNS parameters are set to a factor with values
Saves the treatment allocation for each design
Defines or saves the row locations of the plots to receive
treatments in each design
Defines or saves the column locations of the plots to receive
treatments in each design
Defines or saves the allocation of the plots to blocks
Saves the treatment layout in each design

```
is set to a factor with levels defined

\section*{AGNEIGHBOUR procedure}

Generates neighbour-balanced designs (R.W. Payne).

\section*{Options}

PRINT \(=\) string token
```

METHOD = string token

```

\section*{Parameters}

\section*{LEVELS = scalars}

SEED \(=\) scalars
TREATMENTS = factors
BLOCKS \(=\) factors
UNITS = factors
LEFTNEIGHBOUR = factors
RIGHTNEIGHBOUR \(=\) factors
STATEMENT \(=\) texts

Controls printed output (catalogue, design); if unset in an interactive run AGNEIGHBOUR will ask whether the design is to be printed, in a batch run the default is not to print anything Type of design, \(n-1\) blocks of \(n\) plots, or \(n\) blocks of \(n-1\) plots ( N _1BLOCKS, NBLOCKS); if unset in an interactive run AGNEIGHBOUR will ask about the type of design, in a batch the default is assumed to be n blocks of \(\mathrm{n}-1\) plots

Number of treatments
Seed for randomization; in batch there is a default of 12345 Identifier for the treatment factor
Identifier for the factor to index the blocks within replicates Identifier for the factor to index the units within each block, or the periods of a cyclic change-over design
To save the treatment on the left neighbouring unit To save the treatment on the right neighbouring unit Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGNEIGHBOUR)

\section*{AGNONORTHOGONALDESIGN procedure}

Generates non-orthogonal split-plot and other hierarchical designs (B. M. Parker).

\section*{Options}
```

PRINT = string token
METHOD = string token
CRITERION = string token
MODELMATRIX = matrix
NSTARTS = scalar
NTRIES = scalar
MINIMUM = scalar
MAXIMUM = scalar
SEED = scalar

```

\section*{Parameters}
```

BLOCKFACTORS $=$ factors

```

Controls printed output (design, debug); default * i.e. nothing
Specifies the algorithm to use (jonesgoos, trincagilmour); default trin
Optimality criterion (a, d); default a
Defines the model to be estimated
Number of random starts for the jg algorithm; default 10
Number of exchanges to try from each start; default 10000
Minimum value for levels; default -1
Maximum value for levels; default 1
Specifies the seed for the random numbers used by the algorithms; default 0

Specifies the identifier for the block factor used to index the units of the whole-plots, the sub-plots and, if required, the sub-sub-plots
```

```
BLEVELS = scalars
```

```
BLEVELS = scalars
LEVELS = scalars or pointers
LEVELS = scalars or pointers
VARIANCES = scalars
```

```
VARIANCES = scalars
```

```
applied to the whole, sub-plots and sub-sub-plots

Numbers of levels for the treatment factors Variances for the strata

\section*{AGQLATIN procedure}

Generates complete and quasi-complete Latin squares (R.W. Payne).

\section*{Options}

PRINT \(=\) string token

\section*{ANALYSE \(=\) string token}

\section*{Parameters}

NROWS \(=\) scalars
SEED = scalars

TREATMENTS \(=\) factors
ROWS \(=\) factors
COLUMNS = factors
STATEMENT = texts

Controls printing of the design (design); if unset in an interactive run AGQLATIN will ask whether the design is to be printed, in a batch run the default is not to print anything Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run

Specifies the number of rows (and columns) in the square Seed to be used to randomize each design; a negative value implies no randomization Identifier for the treatment factor
Identifier for the row factor
Identifier for the column factor
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGQLATIN)

\section*{AGRAPH procedure}

Plots tables of means from ANOVA (R.W. Payne).
Options
GRAPHICS = string token
METHOD = string token
XFREPRESENTATION = string token
PSE = string token
LSDLEVEL = scalar
DFSPLINE = scalar
YTRANSFORM = string tokens
PENYTRANSFORM = scalar
†'KEYMETHOD = string token
†PLOTTITLEMETHOD = string token
\({ }^{\dagger}\) PAGETITLEMETHOD = string token
'USEAXES = string token

Type of graph (highresolution, lineprinter); default high
What to plot (means, lines, data, barchart, splines); default mean
How to label the \(x\)-axis (levels, labels); default labels uses the XFACTOR labels, if available
What to plot to represent variation (differences, lsd, means, allmeans); default diff
Significance level (\%) to use for least significant differences; default 5
Number of degrees of freedom to use when METHOD=splines Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the \(y\)-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically
What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name What to use for the titles of the plots when there are TRELLISGROUPS (labels, namesandlabels); default name What to use for the titles of the pages when there are PAGEGROUPS (labels, namesandlabels); default name Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower\%, mupper\%, nsubticks,); default none

SAVE \(=\) ANOVA or regression save structure
Save structure to provide the table of means; default uses the save structure from the most recent ANOVA

\section*{Parameters}

XFACTOR \(=\) factors
GROUPS \(=\) factors or pointers
Factor providing the \(x\)-values for each plot
Factor or factors identifying groups of points in each plot; by default chosen automatically
TRELLISGROUPS \(=\) factors or pointers Factor or factors specifying the different plots of a trellis plot of a multi-way table
PAGEGROUPS \(=\) factors or pointers \(\quad\) Factor or factors specifying plots to be displayed on different pages
NEWXLEVELS \(=\) variates \(\quad\) Values to be used for XFACTOR instead of its existing levels
TITLE \(=\) texts \(\quad\) Title for the graph; default defines a title automatically
YTITLE \(=\) texts

XTITLE \(=\) texts
PENS \(=\) variates
variate, or to have no title if this is unnamed
Title for the x -axis; default is to use the identifier of the XFACTOR
Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

\section*{AGRCRESOLVABLE directive}

Forms doubly resolvable row-column designs.

\section*{Options}

PLOTORDER = string token \(\quad\) Defines the order in which the pots are formed into replicates (colserpentine, colbycol, rowserpentine, rowbyrow); default rowb
TIME \(=\) scalar \(\quad\) Time in seconds to spend searching for an optimal design; default 60
SEED \(=\) scalar \(\quad\) Seed for the randomization; default 0
MAXITERATIONS \(=\) scalar \(\quad\) The number of random designs to search for an optimal design; default 10000

\section*{Parameters}

NROWS = scalars
Number of rows in the design
NCOLUMNS \(=\) scalars
LEVELS \(=\) scalar, variate or text
TREATMENTS = factors
ROWREPLICATES = factors
COLREPLICATES \(=\) factors
Number of columns in the design
Defines the number of levels or labels of the TREATMENT factor for each design
Saves the treatment allocation in each design
Saves the row replicates in each design
Saves the column replicates in each design
ROWS \(=\) factors \(\quad\) Saves the row locations of the plots in each design
COLUMNS = factors
EXIT \(=\) scalars

Saves the column locations of the plots in each design Saves the exit code from the design search program (0 for success, greater than 0 for failure)

\section*{AGREFERENCE procedure}

Generates reference-level designs e.g. for microarray experiments (R.W. Payne).

\section*{Option}

PRINT \(=\) string token \(\quad\) Controls whether or not to print a plan of the design (design); if unset in an interactive run AGREFERENCE will ask whether the design is to be printed, in a batch run the default is not to print the design

\section*{Parameters}

LEVELS \(=\) scalars Number of treatments
REFLEVEL \(=\) scalars, variates or pointers
Reference level(s); if this is unset in an interactive run you will be asked which reference level or levels you want, in a batch
REFUNIT \(=\) scalars, variates or pointers \begin{tabular}{l} 
run the default is level 1 \\
Unit(s) to which to allocate the reference level(s); if this is \\
unset in an interactive run you will be asked which reference \\
level or levels you want, in a batch run the default is to choose \\
the unit at random within each block \\
Seed for randomization; a negative value implies no \\
randomization
\end{tabular}

\section*{AGSEMILATIN procedure}

Generates semi-Latin squares (W. van den Berg).

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT }=\text { string token } & \begin{array}{l}\text { Controls whether or not to print a plan of the design (design); } \\
\text { if unset in an interactive run AGSEMILATIN will ask whether } \\
\text { the design is to be printed, in a batch run the default is not to } \\
\text { print anything }\end{array} \\
\text { Method to use to construct the semi-Latin square (Trojan, } \\
\text { interleaving, inflated); if unset in an interactive run } \\
\text { AGSEMILATIN will ask what type is required, in a batch run } \\
\text { the default is Trojan }\end{array}\right]\)\begin{tabular}{l} 
Controls whether or not to analyse the design, and produce a \\
skeleton analysis-of-variance table using ANOVA (no, yes); \\
default is to ask if this is unset in an interactive run, and not to \\
analyse if it is unset in a batch run
\end{tabular}

\section*{AGSPACEFILLINGDESIGN procedure}

Generates space filling designs (B.M. Parker).

\section*{Options}
```

PRINT $=$ string tokens
METHOD $=$ string token
AUGMENT $=$ string token
CENTRED $=$ string token

```

Controls whether to print the design and its properties (design, properties, monitor); default * i.e. none Specifies the method to use (latinhypercube, random, quasirandom); default rand
Indicates whether to augment an existing design (yes, no); default no
For the Latin hypercube method, determines whether the design should be centred (yes, no); default no
```

CRITERION $=$ string token
QRSEQUENCE $=$ string token
NUNITS $=$ scalars
NDIMENSIONS = scalars
NTIMES $=$ scalars
DISCREPANCY = scalars
SEED = scalars
Parameter
$\mathrm{x}=$ pointer to variates

```

For the Latin hypercube method, determines which criterion should be used to assess space filling; (none, L2, maximin, entropy); default none
Specifies which sequence to use with the quasi-random method; (sobol, niederreiter, faure); default sobol Specifies the number of design points
Specifies the number of dimensions of each of the design points
Specifies the number of times to run the ESE algorithm; default 10
Saves the discrepancy of the design
Seed to be used to randomize each design; default 0
A pointer to a set of variates, each variate representing a column of the design matrix

\section*{AGSQLATTICE procedure}

Generates square lattice or lattice square designs (R.W. Payne).

\section*{Options}

ANALYSE \(=\) string token

DESIGNTYPE \(=\) string token

\section*{Parameters}

LEVELS \(=\) scalars
NREPLICATES = scalars

SEED \(=\) scalars

TREATMENTS = factors
PSEUDOFACTORS = pointers

REPLICATES = factors
BLOCKS \(=\) factors

ROWS \(=\) factors
COLUMNS \(=\) factors

UNITS \(=\) factors

STATEMENT \(=\) texts

Controls whether or not to print a plan of the design (design); if unset in an interactive run AGSQLATTICE will ask whether the design is to be printed, in a batch run the default is not to print the design
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run
What type of design to form (squarelattice,
latticesquare); default squa
Number of treatments in each design
Number of replicates in each design, taken by default to be the maximum number available in a batch run
Seed for randomization; a negative value implies no randomization
Identifier for the treatment factor for each design
Identifier for the pseudofactors required if the design is not a balanced lattice
Identifier for the replicate factor for each design
Identifier for the factor to index the blocks within replicates of a square lattice
Identifier for the factor to index the rows within replicates of a lattice square
Identifier for the factor to index the columns within replicates of a lattice square
Identifier for the factor to index the units (or plots) within the blocks of a square lattice
Saves a command to recreate the design (useful if the design information has been specified in response to questions from AGSQLATTICE)

\section*{†AGYOUDENSQUARE procedure}

Generates a Youden square (W. van den Berg).

\section*{Options}

PRINT \(=\) string tokens

ANALYSE \(=\) string token

\section*{Parameters}

NROWS = scalars
NCOLUMNS = scalars
SEED \(=\) scalars

LAMBDA \(=\) scalars

TREATMENTS = factors
ROWS \(=\) factors
COLUMNS \(=\) factors
STATEMENT \(=\) texts

Controls printed output (design, lambda, list); default is to ask what to print if this is unset in an interactive run, in a batch run the default is not to print anything
Controls whether or not to analyse the design, and produce a skeleton analysis-of-variance table using ANOVA (no, yes); default is to ask if this is unset in an interactive run, and not to analyse if it is unset in a batch run

Specifies the number of rows in the square
Specifies the number of columns (and treatments) in the square Seed to be used to randomize each design; a negative value implies no randomization
Saves the number of times each pair of treatments occurs in the same column
Identifier for the treatment factor
Identifier for the row factor
Identifier for the column factor
Saves a command to recreate each design (useful if the design information has been specified in response to questions from AGYOUDENSQUARE)

\section*{AKAIKEHISTOGRAM procedure}

Prints histograms with improved definition of groups (A. Keen).

\section*{Options}
\begin{tabular}{|c|c|}
\hline CHANNEL \(=\) scalar & Channel number of output file; default is the current output file \\
\hline TITLE = text & General title; default 'Histogram of . . .', where . . . is the identifier of the structure specified by DATA \\
\hline LOWER = scalar & Lowest class limit \\
\hline WIDTH \(=\) scalar & Interval width \\
\hline SCALE \(=\) scalar & Number of units represented by each symbol; default 1 (or more if the page width is not sufficient) \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA = identifiers & Data for the histograms (variate, table, factor or matrix) \\
\hline NOBSERVATIONS = tables & One-way table to save numbers in the groups \\
\hline GROUPS \(=\) factors & Factor to save groups defined, with LEVELS the midpoints of the intervals and LABELS as LEVELS, but as text-vector \\
\hline SYMBOLS \(=\) texts & Characters to be used to represent the bars of each histogram \\
\hline DESCRIPTION \(=\) texts & Annotation for key \\
\hline
\end{tabular}

\section*{AKEEP directive}

Copies information from an ANOVA analysis into Genstat data structures.

\section*{Options}
\begin{tabular}{|c|c|}
\hline FACTORIAL \(=\) scalar & Limit on number of factors in a model term; default 3 \\
\hline STRATUM = formula & Model term of the lowest stratum to be searched for effects; default * implies the lowest stratum \\
\hline SUPPRESSHIGHER = string token & Whether to suppress the searching of higher strata if a term is not found in STRATUM (yes, no); default no \\
\hline TWOLEVEL = string token & Representation of effects in \(2^{n}\) experiments (responses, Yates, effects); default resp \\
\hline RESIDUALS \(=\) variate & Saves residuals from the final stratum (as in the RESIDUALS parameter of ANOVA) \\
\hline FITTEDVALUES = variate & Saves fitted values (data values or missing value estimates, minus the residuals from the final stratum - as in the \\
\hline
\end{tabular}
\begin{tabular}{ll} 
& FITTEDVALUES parameter of ANOVA) \\
CBRESIDUALS \(=\) variate & Saves the sum of the residuals from all the strata \\
CBCREGRESSION \(=\) variate & Saves the estimates of the covariate regression coefficients, \\
& combining information from all the strata \\
CBCVCOVARIANCE \(=\) symmetric matrix & \begin{tabular}{l} 
Saves the variance-covariance matrix of the combined \\
\\
\\
estimates of the covariate regression coefficients
\end{tabular} \\
TREATMENTSTRUCTURE \(=\) formula structure \\
& \\
& Saves the treatment formula used for the analysis
\end{tabular}
\begin{tabular}{ll} 
& \begin{tabular}{l} 
specified stratum \\
Covariate sums of squares and products in the specified \\
Stratum
\end{tabular} \\
CVSP
\end{tabular}

\section*{AKEY procedure}

Generates values for treatment factors using the design key method (R.W. Payne).

\section*{Options}
```

PRINT = string token
BLOCKFACTORS = factors
KEY = matrix
BASEVECTOR = variate
$K E Y=$ matrix
BASEVECTOR $=$ variate

```

Allows the generated TREATMENTFACTOR values to be printed, tabulated by the BLOCKFACTORS (design); default * i.e. no printing
Defines the block factors for the design; default is to take those in the formula already specified by the BLOCKSTRUCTURE directive, in the order in which they occur there
factors) key for the design Base vector (length = number of treatment factors) for the design; default is a variate of zeros

ROWPRIMES = variate
COLPRIMES \(=\) variate
ROWMAPPINGS \(=\) variate

COLMAPPINGS = variate
Parameter
TREATMENTFACTORS \(=\) factors

Prime numbers for the rows of the KEY matrix
Prime numbers for the columns of the KEY matrix
Mappings from the rows of the KEY to the TREATMENTFACTORS
Mappings from the columns of the KEY to the BLOCKFACTORS
Defines the treatment factors for the design; default is to take those in the formula already specified by the TREATMENTSTRUCTURE directive, in the order in which they occur there

\section*{ALIAS procedure}

Finds out information about aliased model terms in analysis of variance (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
TREATMENTSTRUCTURE = formula & Treatment model for the design \\
BLOCKSTRUCTURE = formula & Block model for the design \\
FACTORIAL = scalar & \begin{tabular}{l} 
Value used in the FACTORIAL option of ANOVA if not the \\
default
\end{tabular} \\
\begin{tabular}{ll} 
DESIGN \(=\) pointer \\
Parameter
\end{tabular} & Design structure for the analysis \\
TERM \(=\) factors & Factors defining the aliased model term
\end{tabular}

\section*{ALIGNCURVE procedure}

Forms an optimal warping to align an observed series of observations with a standard series (D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (criterion, ss, warps); default * i.e. nothing \\
\hline PLOT \(=\) string tokens & What to plot (series, warping); default * i.e. no plots \\
\hline WARPPENALTY \(=\) scalar & The relative penalty to add to the criterion when jumping a unit in one series but not the other; default 1 \\
\hline MAXSTEP \(=\) scalar & The largest jump that can be made between the two series at a single point; default 1 \\
\hline MAXDIFFERENCE = scalar & Sets a limit on size of difference between the series to be squared and added to the criterion (differences greater than this are truncated to MAXDIFFERENCE, thus allowing the effects of outliers to be down-weighted); default * i.e. no limit \\
\hline USEMEANS \(=\) string token & Whether to use the means of points covered in one step, rather than the final value, when calculating the sums of squares between the two series (yes, no); default no \\
\hline FORCEENDALIGNMENT \(=\) string token & Whether to force the ends of the two series to align, so that warping happens only in the middle of the series (yes, no); default no \\
\hline WINDOW = scalar & Window number for the plots; default 1 \\
\hline KEYWINDOW = scalar & Window for the key (zero for no key); default 2 \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Series to be aligned with the standard series \\
\hline STANDARD \(=\) variates & Standard series for each Y \\
\hline WEIGHTS \(=\) variates & Weights for the contribution of each point to the criterion; default * no weighting \\
\hline UWARP \(=\) variates & The warped positions of the unit numbers, required to align \(Y\) with STANDARD \\
\hline YWARP \(=\) variates & The warped series for \(Y\), i.e. the optimally aligned \(y\)-values \\
\hline CRITERIONVALUE \(=\) scalars & The criterion value (as optimized during the alignment) \\
\hline TITLE \(=\) text & Title for the plots \\
\hline
\end{tabular}

\section*{ALLDIFFERENCES procedure}

Shows all pairwise differences of values in a variate or table (A.R.G. McLachlan).

\section*{Options}
```

PRINT = string token
CLPRINT = string token
SORT = string token
MVREMOVE = string token
RCMETHOD = string token
DIAGONAL = string token

```

\section*{Parameters}

DATA \(=\) variates or tables
DIFFERENCES \(=\) symmetric matrices or pointers
Saves the pairwise differences in a symmetric matrix if GROUPS is unset, otherwise in a pointer to several symmetric matrices
```

GROUPS = factors or pointers

```
LABELS \(=\) texts

NEWLABELS \(=\) texts or pointers
What to print (differences); default diff
How to print column labels (labels, integers); default labe
How to sort the DATA values (ascending, descending); default * i.e. not sorted Whether to remove missing values (yes, no); default no Which differences to calculate i.e. column-row, row-column, or absolute values (column, row, absolute); default colu Whether to put the data values into the diagonal of the symmetric matrices of results (values); default * i.e. diagonal left as missing values

Data values whose pairwise differences are required

Defines groupings of the data values
Labels for the rows (and columns) of the symmetric matrices of differences
Saves the row labels of the symmetrix matrices of differences in a text if GROUPS is unset, otherwise in a pointer to several texts

\section*{ALLPAIRWISE procedure}

Performs a range of all pairwise multiple comparison tests (D.M. Smith).

\section*{Options}
\begin{tabular}{ll} 
METHOD = string token & Test to be performed (Tukey, SNK, REGWMR, Duncan, \\
& Scheffe, FPLSD, FULSD, Bonferroni, Sidak); default * \\
DIRECTION \(=\) string token & How to sort means (ascending, descending); default asce \\
PROBABILITY = scalar & The required significance level; default=0.05 \\
ALSD \(=\) string token & Whether to use the alternative LSD test where the Studentized \\
& Range statistic is used instead of Student's (yes, no); default \\
no
\end{tabular}

\section*{Parameters}
\begin{tabular}{ll} 
MEANS \(=\) variates or tables & Mean values \\
REPLICATIONS \(=\) scalars or tables or variates \\
& Number(s) of observations per mean \\
VARIANCE \(=\) scalars & Estimate of variance \\
DF \(=\) scalars & Degrees of freedom \\
LABELS \(=\) texts & Identifiers of mean values
\end{tabular}

\section*{AMCOMPARISON procedure}

Performs pairwise multiple comparison tests for ANOVA means (D.M. Smith).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & Controls printed output (comparisons, critical, \\
& description, lines, letters, plot, mplot, pplot); \\
default lett \\
METHOD = string token & Test to be performed (tukey, snk, regwmr, duncan, \\
& scheffe, fplsd, fulsd, bonferroni, sidak); default \\
fplsd \\
FACTORIAL = scalar & Limit on the number of factors in each term; default 3 \\
DIRECTION = string token & How to sort means (ascending, descending); default asce
\end{tabular}

PROBABILITY \(=\) scalar STUDENTIZE = string token

SAVE \(=\) ANOVA save structure

\section*{Parameters}

TERMS \(=\) formula
MEANS \(=\) pointer or variate
LABELS = pointer or text
LETTERS = pointer or text

The required significance level; default 0.05
Whether to use the alternative LSD test where the Studentized Range statistic is used instead of Student's \(t\) (yes, no); default no
Save structure to provide the tables of means and associated information; default uses the save structure from the most recent AnOVA

Treatment terms whose means are to be compared
Saves the (sorted) means
Saves labels for the (sorted) means
Saves letters indicating groups of means that do not differ significantly

SIGNIFICANCE \(=\) pointer or symmetric matrix
Indicators to show significant comparisons between (sorted) means

\section*{AMDUNNETT procedure}

Forms Dunnett's simultaneous confidence interval around a control (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string token & Controls printed output (interval); default inte \\
METHOD = string token & Form of the alternative hypothesis (twosided, \\
greaterthan, lessthan); default twos \\
CIPROBABILITY = scalar & \begin{tabular}{l} 
Probability level for the confidence interval; default 0.95, i.e. a \\
\\
IOWER \(=\) scalar \\
UPPER \(=\) scalar \\
SAVE \(=\) ANOVA save structure
\end{tabular} \\
& Saves the lower confidence limit \\
& Saves the upper confidence limit \\
& Save structure to provide the means; default uses the save \\
structure from the most recent ANOVA
\end{tabular}

\section*{Parameters}

FACTOR = factors
CONTROL \(=\) scalars or texts

Define the model term whose means are to be compared Scalar or single-valued text for each factor to identify which of the means of the term is the control; default uses the reference level of the FACTOR

\section*{AMERGE procedure}

Merges extra units into an experimental design (R.W. Payne).

\section*{Option}

SORT = string token Whether to sort the factors afterwards (no, yes); default no

\section*{Parameters}

FACTOR \(=\) factors \(\quad\) Factors to which the new units are to be added
NEWUNITS \(=\) factors, variates or scalars
Extra units to be added to each factor

\section*{AMMI procedure}

Allows exploratory analysis of genotype \(\times\) environment interactions (M. Talbot, K. Brown \& M.F. Smith).

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Results to be output (aovtable, genotype, environment, estimates, envtable, cluster, stability); default * i.e. none

NROOTS \(=\) scalar \(\quad\) Number of IPCA scores required; default is to take as many roots as possible up to a maximum of 9
Two numbers specifying the dimensions to display in the biplots; default 1,2
Types of biplot to display (mean, ipca); default * i.e. none

\section*{SCALING \(=\) string token}

\section*{Parameters}

DATA \(=\) variates or tables
GENOTYPES = factors
ENVIRONMENTS = factors
REPLICATES = factors

GSCORES \(=\) pointers

ESCORES \(=\) pointers

RESIDUALS \(=\) variates
FITTEDVALUES \(=\) variates
TITLEPREFIX = texts
AOVTABLE \(=\) pointers
STABILITY \(=\) variates

Scaling to use for the ipca (AMMI2) biplot (genotype, environment, symmetric); default envi

Provides the data to be analysed
Specifies the genotypes
Specifies the environments
Replication factor; this should be omitted if the data comprises just the genotype by environment means
Pointer containing a set of variates (each of length equal to the number of genotypes) to save the genotype IPCA scores
Pointer to a set of variates to save the environment IPCA scores
Saves the residuals from the AMMI model
Saves the fitted values from the AMMI model Specifies a prefix to use for the titles of the plots Saves the analysis-of-variance table Saves the AMMI stability values

\section*{AMTDISPLAY procedure}

Displays further output for multitiered experiments analysed by AMTIER (C.J. Brien \& R.W. Payne). Option
PRINT \(=\) string tokens \(\quad\) Controls printed output from the analysis (aovtable, aovpseudotable, design, effects, fittedvalues); default * i.e. none

\section*{Parameter}
\(\mathrm{SAVE}=\) pointers
Save structure for each analysis (saved from AMTIER); if this is not set the output is from the most recent AMTIER analysis

\section*{AMTKEEP procedure}

Saves information from the analysis of a multitiered design by AMTIER (C.J. Brien \& R.W. Payne).

\section*{Options}
```

FITTEDVALUES = variate
AOVTABLE = pointer
SKELETON = string token
PSEUDOLINES = string token

```
OMITMISSINGLINES \(=\) string token
SAVE \(=\) pointer

Saves the residuals
Saves the fitted values
Saves the analysis-of-variance table Whether to save only the skeleton analysis-of-variance table (yes, no); default no Whether to include lines for pseudo-terms in the analysis-ofvariance table (yes, no); default no Whether to omit lines of the analysis-of-variance table that contain only missing values (yes, no); default no
Save structure for the analysis; if this is not set, information is saved from the most recent AMTIER analysis

\section*{No parameters}

\section*{AMTIER procedure}

Analyses a multitiered design by an analysis of variance specified by up to three model formulae (C.J. Brien \& R.W. Payne).

\section*{Options}

PRINT = string tokens Controls printed output from the analysis (aovtable, aovpseudotable, design, effects, fittedvalues); default aovt
\(\mathrm{F} 1=\) formula
\(\mathrm{F} 2=\) formula
First model formula
Second model formula
Third model formula
Limit on the number of factors in a model term
FACTORIAL \(=\) scalar
F2BALANCETYPE \(=\) string token
\begin{tabular}{|c|c|}
\hline & firstorder); default orth \\
\hline F3BALANCETYPE \(=\) string token & Type of balance required for F3 (orthogonal, firstorder); default orth \\
\hline PSEUDOTERMS \(=\) formula structures & Specifies pseudo-terms for terms in the F1, F2 or F3 formulae \\
\hline DESIGN = tree & Saves or specifies details of the design and analysis \\
\hline SEED \(=\) scalar & Seed for random numbers to generate dummy variate for determining the design; default 13579 \\
\hline TOLERANCE = variate & Tolerance for zero sweeps in dummy and y-variate analyses \\
\hline DPRINT \(=\) string tokens & Controls debug output (setup, analysis, dummyanalysis); default * i.e. none \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Each of these contains the data values for an analysis \\
\hline RESIDUALS \(=\) variates & Saves the residuals from each analysis \\
\hline FITTEDVALUES \(=\) variates & Saves the fitted values from each analysis \\
\hline SAVE \(=\) pointers & Save structure for each analysis (to use in AMTDISPLAY) \\
\hline
\end{tabular}

\section*{ANOVA directive}

Analyses y-variates by analysis of variance according to the model defined by earlier BLOCKSTRUCTURE, COVARIATE, and TREATMENTSTRUCTURE statements.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Output from the analyses of the \(y\)-variates, adjusted for any covariates (aovtable, information, covariates, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, \%cv, missingvalues); default aovt, info, cova, mean, miss \\
\hline UPRINT \(=\) string tokens & Output from the unadjusted analyses of the y-variates (aovtable, information, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, \%cv, missingvalues); default * i.e. no printing \\
\hline CPRINT \(=\) string tokens & Output from the analyses of the covariates, if any (aovtable, information, effects, residuals, contrasts, means, \%cv, missingvalues); default * i.e. no printing \\
\hline FACTORIAL \(=\) scalar & Limit on number of factors in a treatment term; default 3 \\
\hline CONTRASTS \(=\) scalar & Limit on the order of a contrast of a treatment term; default 4 \\
\hline DEVIATIONS \(=\) scalar & Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9 \\
\hline PFACTORIAL \(=\) scalar & Limit on number of factors in printed tables of means or effects; default 9 \\
\hline PCONTRASTS \(=\) scalar & Limit on order of printed contrasts; default 9 \\
\hline PDEVIATIONS = scalar & Limit on number of factors in a treatment term whose deviations from the fitted contrasts are to be printed; default 9 \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance ratios (yes, no); default no \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of means, PSE=* requests s.e.'s to be omitted (differences, lsd, means); default diff \\
\hline TWOLEVEL = string token & Representation of effects in \(2^{n}\) experiments (responses, Yates, effects); default resp \\
\hline DESIGN \(=\) pointer & Stores details of the design for use in subsequent analyses; default * \\
\hline WEIGHTS \(=\) variate & Weights for each unit; default * i.e. all units with weight one \\
\hline ORTHOGONAL \(=\) string token & Whether or not design to be assumed orthogonal notassumed, assumed, compulsory); default nota \\
\hline SEED \(=\) scalar & Seed for random numbers to generate dummy variate for \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline MAXCYCLE \(=\) scalar & Maximum number of iterations for estimating missing values; default 20 \\
\hline TOLERANCES \(=\) variate & Allows you to redefine the tolerances for zero used by various parts of the algorithm \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (nonorthogonal, residual); default * \\
\hline LSDLEVEL = scalar & Significance level (\%) to use in the calculation of least significant differences; default 5 \\
\hline EXIT \(=\) scalar & Saves an exit code indicating the properties of the design \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Variates to be analysed \\
\hline RESIDUALS \(=\) variates & Variate to save residuals for each y variate \\
\hline FITTEDVALUES = variates & Variate to save fitted values \\
\hline SAVE \(=\) identifiers & Save details of each analysis for use in subsequent ADISPLAY \\
\hline
\end{tabular}

\section*{ANTMVESTIMATE procedure}

Estimates missing values in repeated measurements (M.G. Kenward \& R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls output from the procedure (meanprofiles); default \\
* i.e. none
\end{tabular} \\
GROUPS = factor & \begin{tabular}{l} 
Factor indicating the plot on which each sequence of \\
observations was made
\end{tabular} \\
ORDER = scalar & \begin{tabular}{l} 
Order of ante-dependence structure (i.e. number of past times \\
for which to adjust)
\end{tabular} \\
Parameters & \begin{tabular}{l} 
Observations at each time \\
Data variates with missing observations replaced by their \\
estimates
\end{tabular} \\
NEWDATA = variates & Estimated mean profiles at each time
\end{tabular}

ANTORDER procedure
Assesses order of ante-dependence for repeated measures data (M.S. Ridout \& R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline TREATMENTSTRUCTURE \(=\) formula & Treatment formula for the model at each time; if this is not set the default is taken from the setting (which must already have been defined) of the TREATMENTSTRUCTURE directive \\
\hline BLOCKSTRUCTURE \(=\) formula & Block formula for the model at each time; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term) \\
\hline MAXORDER \(=\) scalar & Maximum order against which to test; default is maximum possible order \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors in a treatment term \\
\hline TIME \(=\) factor & Indicates the time of each observation when there is a single DATA variate \\
\hline Parameter & \\
\hline DATA \(=\) variates & Data observations either in a list of variates (one for each time), or a single variate (with TIME set to a factor indicating the time of each observation) \\
\hline
\end{tabular}

\section*{ANTTEST procedure}

Calculates overall tests based on a specified order of ante-dependence (R.W. Payne \& M.S. Ridout). Options
TREATMENTSTRUCTURE = formula Treatment formula for the model at each time; if this is not set, the default is taken from the setting (which must already have been defined) of the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula

ORDER \(=\) scalar

FACTORIAL \(=\) scalar
TIME \(=\) factor

\section*{Parameter}
\(\mathrm{DATA}=\) variates Block formula for the model at each time; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term)
Number of past times for which to adjust; default is maximum possible order
Limit on the number of factors in a treatment term Indicates the time of each observation when there is a single DATA variate

Data observations either in a list of variates (one for each time), or a single variate (with TIME set to a factor indicating the time of each observation)

\section*{AN1ADVICE procedure}

Aims to give useful advice if a design that is thought to be balanced fails to be analysed by ANOVA (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (advice, suspects); default advi \\
FACTORIAL = scalar \\
METHOD = string tokens
\end{tabular} \\
Limit on number of factors in a treatment term; default 3 \\
WEIGHTS = variate & \begin{tabular}{l} 
Method to use to predict the correct pattern of replication \\
(median, mode, proportional); default mode
\end{tabular} \\
SUSPECTS = variate & \begin{tabular}{l} 
Weights for the analysis; default * i.e. all units have weight \\
one
\end{tabular} \\
Parameter & \begin{tabular}{l} 
Saves the numbers of the units whose factor values are \\
suspected to be incorrect
\end{tabular} \\
Y = variates & \begin{tabular}{l} 
Data values to be analysed (this is needed only if the analysis \\
is to take place on a restricted set of units)
\end{tabular}
\end{tabular}

\section*{AONEWAY procedure}

Performs one-way analysis of variance (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output from the analysis of variance (aovtable, information, covariates, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, \%cv, missingvalues, homogeneity, permutationtest); default aovt, mean, miss \\
\hline GROUPS \(=\) factor & Defines the treatments for the analysis \\
\hline COVARIATES \(=\) variates & Covariates (if any) for analysis of covariance \\
\hline PLOT \(=\) string tokens & Which residual plots to provide (fittedvalues, normal, halfnormal, histogram, absresidual); default fitt, norm, half, hist \\
\hline GRAPHICS \(=\) string token & Type of graphs (lineprinter, highresolution); default high \\
\hline FPROBABILITY \(=\) string token & Probabilities for variance ratio (yes, no); default no \\
\hline \(\mathrm{PSE}=\) string tokens & Types of standard errors to be printed with the means (differences, lsd, means); default diff \\
\hline
\end{tabular}
\begin{tabular}{ll} 
LSDLEVEL = scalar & \begin{tabular}{l} 
Significance level (\%) for least significant differences; default \\
5
\end{tabular} \\
NTIMES = scalar & \begin{tabular}{l} 
Number of random allocations to make when PRINT=perm; \\
default 999 \\
Seed for the random number generator used to make the \\
allocations; default 0 continues from the previous generation \\
or (if none) initializes the seed automatically
\end{tabular} \\
Pcalar & \begin{tabular}{l} 
Each of these contains the data values for an analysis \\
Y = variates
\end{tabular} \\
RESIDUALS \(=\) variates & \begin{tabular}{l} 
Saves the residuals from each analysis
\end{tabular} \\
FITTEDVALUES = variates & Saves the fitted values from each analysis
\end{tabular}

\section*{AOVANYHOW procedure}

Performs analysis of variance using ANOVA, regression or REML as appropriate (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output from the analysis (aovtable, information, means, residuals); default aovt, info, mean \\
\hline METHOD \(=\) string token & Whether to complete the analysis or just form a recommendation (analyse, recommend); default anal \\
\hline FACTORIAL \(=\) scalar & Limit on number of factors in a treatment term; default 3 \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance ratios in the analysis-ofvariance table (yes, no); default no \\
\hline PLOT \(=\) string tokens & Which residual plots to provide (fittedvalues, normal, halfnormal, histogram); default * i.e. none \\
\hline COMBINATIONS \(=\) string token & Factor combinations for which to form predicted means (present, estimable); default esti \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment to be made when predicting means (marginal, equal, observed); default marg \\
\hline WEIGHTS = variate & Weights for each unit; default * i.e. all units with weight one \\
\hline PSE \(=\) string tokens & Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsd, means; default diff \\
\hline LSDLEVEL \(=\) scalar & Significance level (\%) for least significant differences; default 5 \\
\hline EFLOSS \(=\) scalar & Maximum loss of efficiency occurring on any treatment contrast if the analysis is done by regression \\
\hline EFLIMIT \(=\) scalar & Limit on the loss of efficiency for the analysis to be done by regression; default 0.1 \\
\hline EXIT \(=\) scalar & Exit code indicating the recommended method of analysis \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Data values to be analysed \\
\hline RESIDUALS \(=\) variates & Variate to save the residuals from each analysis \\
\hline FITTEDVALUES = variates & Variate to save the fitted values from each analysis \\
\hline SAVE \(=\) identifiers & To save details of each analysis to use subsequently with the AOVDISPLAY procedure \\
\hline
\end{tabular}

\section*{AOVDISPLAY procedure}

Provides further output from an analysis by AOVANYHOW (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output from the analysis (aovtable, \\
information, means, residuals); default aovt, info, \\
mean
\end{tabular} \\
FPROBABILITY = string token & \begin{tabular}{l} 
Printing of probabilities for variance ratios in the analysis-of- \\
variance table (yes, no); default no
\end{tabular} \\
PLOT = string tokens & Which residual plots to provide (fittedvalues, normal,
\end{tabular}
\begin{tabular}{|c|c|}
\hline & halfnormal, histogram); default * i.e. none \\
\hline COMBINATIONS \(=\) string token & Factor combinations for which to form predicted means (present, estimable); default esti \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment to be made when predicting means (marginal, equal, observed); default marg \\
\hline \(\mathrm{PSE}=\) string tokens & Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsd, means; default diff \\
\hline LSDLEVEL \(=\) scalar & Significance level (\%) for least significant differences; default 5 \\
\hline EFLOSS \(=\) scalar & Maximum loss of efficiency occurring on any treatment contrast if the analysis is done by regression \\
\hline EXIT \(=\) scalar & Code indicating the method of analysis \\
\hline Parameters & \\
\hline SAVE = identifiers & Save structure from AOVANYHOW; default uses the save structure from the most recent AOVANYHOW analysis \\
\hline
\end{tabular}

\section*{APAPADAKIS directive}

Analysis of variance with an added Papadakis covariate, formed from neighbouring residuals (D.B. Baird).

Options
```

PRINT = string tokens

```

PLOT \(=\) string token
NEIGHBOURS \(=\) string token

TREATMENTSTRUCTURE \(=\) formula

BLOCKSTRUCTURE \(=\) formula

COVARIATE \(=\) variates

FACTORIAL \(=\) scalar
CONTRASTS \(=\) scalar
DEVIATIONS = scalar
\(\mathrm{PSE}=\) string token

LSDLEVEL = scalar

\section*{Parameters}
\(\mathrm{Y}=\) variates
ROWS \(=\) factors or variates
COLUMNS \(=\) factors or variates
UNITS \(=\) factors or variates
RCOVARIATE \(=\) variates

TITLE \(=\) texts

Output from the analysis of the y-variates, adjusted for covariates (aovtable, information, covariates, effects, residuals, contrasts, means, cbeffects, cbmeans, stratumvariances, \%cv, missingvalues); default aovt, info, cova, mean, miss
Whether to plot the residuals against the average of neighbouring residuals (residuals); default * i.e. no plot The neighbours whose residuals are averaged to form the residual covariate (adjacent, rows, columns, all); default adja
Defines the treatment structure of the model; default given by the most recent TREATMENTSTRUCTURE directive Defines the blockings structure of the model; default given by the most recent BLOCKSTRUCTURE directive Specifies any covariates in addition to the residual (Papadakis) covariate; default given by the most recent COVARIATE directive
Limit on number of factors in a treatment term; default 3 Limit on the order of a contrast of a treatment term; default 4 Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9
Standard errors to be printed with tables of means, PSE=* requests s.e.'s to be omitted (differences, lsd, means); default diff
Significance level (\%) to use in the calculation of least significant differences; default 5

Variates to be analysed
Factor giving the row location of each plot
Factor giving the column location of each plot
Factor giving the plot location of each unit
Saves the covariate formed from the mean of the neighbouring residuals
Title for the graph; default i.e. title created from the \(Y\) variate

WINDOW = scalars
\(\mathrm{PEN}=\) scalars, variates or factors
SCREEN = string token
name and the neighbouring plots that are used
Window number for the graph; default 3
Pen number for the graph; default 1
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

\section*{APERMTEST procedure}

Does random permutation tests for analysis-of-variance tables (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & Controls printed output (aovtable, critical); default aovt \\
PLOT \(=\) string & What to plot (histogram); default * \\
NTIMES \(=\) scalar & Number of permutations to make; default 999 \\
EXCLUDE \(=\) factors & \begin{tabular}{l} 
Factors in the block model of the design whose levels are not \\
to be randomized
\end{tabular} \\
SEED \(=\) scalar & \begin{tabular}{l} 
Seed for the random number generator used to make the \\
permutations; default 0 continues from the previous generation \\
or (if none) initializes the seed automatically
\end{tabular} \\
AOVTABLE \(=\) pointer & \begin{tabular}{l} 
Saves the aov-table, with permutation probabilities \\
CRITICAL \(=\) pointer
\end{tabular} \\
Saves the aov-table, with critical values
\end{tabular}

\section*{No parameters}

\section*{APLOT procedure}

Plots residuals from an AnOVA analysis (R.W. Payne \& A.D. Todd).

\section*{Options}
\begin{tabular}{|c|c|}
\hline RMETHOD \(=\) string token & Type of residuals to plot (simple, standardized); default simp \\
\hline INDEX \(=\) variate or factor & X-variable for an index plot; default ! (1,2...) \\
\hline STRATUM = formula & The stratum (or error term) whose residuals are to be plotted; the default is to plot the residuals from the final stratum \\
\hline GRAPHICS \(=\) string token & What type of graphics to use (lineprinter, highresolution); default high \\
\hline TITLE \(=\) text & Overall title for the plots; if unset, the identifier of the yvariate is used \\
\hline SAVE = ANOVA save structure & Specifies the analysis from which the residuals and fitted values are to be taken; by default they are taken from the most recent ANOVA \\
\hline Parameters & \\
\hline METHOD \(=\) string tokens & Type of residual plot (fittedvalues, normal, halfnormal, histogram, absresidual, index); default fitt, norm, half, hist \\
\hline PEN \(=\) scalars, variates or factors & Pen(s) to use for each plot \\
\hline
\end{tabular}

\section*{APOLYNOMIAL procedure}

Forms the equation for a polynomial contrast fitted by ANOVA (R.W. Payne).

\section*{Options}
```

PRINT = string token
SAVE = ANOVA save structure

```

\section*{Parameters}

TERMS = formula
COEFFICIENTS = pointers

Whether to print the equation of the polynomial (equation); default equa
Save structure (from ANOVA) to provide details of the analysis from which the equations are to be formed; default uses the save structure from the most recent ANOVA

Model terms whose polynomial equations are required
Saves the coefficients of each polynomial

\section*{APOWER procedure}

Calculates the power (probability of detection) for terms in an analysis of variance (R.W. Payne).

\section*{Options}
PRINT = string token
TERM = formula
TREATMENTSTRUCTURE = formula

BLOCKSTRUCTURE = formula

\section*{FACTORIAL \(=\) scalar}
PROBABILITY \(=\) scalar

TMETHOD = string token

XCONTRASTS \(=\) variate
CONTRASTTYPE = string token
SAVE = asave
Prints the power (power); default powe
Treatment term to be assessed in the analysis
Treatment structure of the design; determined automatically from an ANOVA save structure if TREATMENTSTRUCTURE is unset or if SAVE is set
Block structure of the design; determined automatically from an ANOVA save structure if BLOCKSTRUCTURE is unset or if SAVE is set
Limit on the number of factors in treatment terms; default 3
Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05
Type of test to be made (onesided, twosided, equivalence, noninferiority, fratio); default ones
X -variate defining a contrast to be detected
Type of contrast (regression, comparison) default rege ANOVA save structure to provide the information about the design

\section*{Parameters}

RESPONSE \(=\) scalars, variates or tables Size of the difference or contrast between the effects of TERM that is to be detected, or (for TMETHOD=fratio) pattern of effects or means to be detected
RMS \(=\) scalars \(\quad\) Anticipated residual mean square corresponding to TERM; can be omitted if a SAVE structure is available
POWER \(=\) scalars or variates Saves the power (i.e. probability of detection) for RESPONSE

\section*{APPEND procedure}

Appends a list of vectors of compatible types (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
NEWVECTOR = variate, factor or text & \begin{tabular}{l} 
Vector to store the appended values; by default uses the first \\
vector of the OLDVECTOR list
\end{tabular} \\
FREPRESENTATION \(=\) string token & \begin{tabular}{l} 
How to match the values of old factors (levels, labels, \\
ordinals, renumbered); default leve
\end{tabular} \\
GROUPS = factor & \begin{tabular}{l} 
Factor to represent the OLDVECTOR to which each unit \\
originally belonged
\end{tabular}
\end{tabular}

\section*{Parameter}

OLDVECTOR \(=\) variates, factors, texts or scalars
Values to be appended

\section*{APRODUCT procedure}

Forms a new experimental design from the product of two designs (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token & Controls printing of the design (design); default desi \\
ANALYSE \(=\) string token & Whether to analyse the design by ANOVA (yes, no); default no \\
METHOD \(=\) string token & How to combine the designs (cross, nest); default nest \\
BF1 \(=\) formula & Block formula for design 1 \\
TF1 \(=\) formula & Treatment formula for design 1 \\
BF2 \(=\) formula & Block formula for design 2 \\
TF2 \(=\) formula & Treatment formula for design 2
\end{tabular}

No parameters

\section*{ARANDOMIZE procedure}

Randomizes and prints an experimental design (R.W. Payne).

\section*{Options}

PRINT \(=\) string token

BLOCKSTRUCTURE = formula

EXCLUDE \(=\) factors
SEED \(=\) scalar

LPERMUTE \(=\) string token

\section*{Parameters}

OLDVECTOR \(=\) factors or variates

NEWVECTOR \(=\) factors or variates

Allows the (randomized) design to be printed; (design); default *
Defines the block factors according to which the randomization is to be carried out; default takes the existing specification as defined by the BLOCKSTRUCTURE directive (Block) factors whose levels are not to be randomized Seed to generate the random numbers used to define the randomization; default 0 Whether to randomly permute treatment factor levels (no, yes); default no

Vectors whose values are to be randomized; default is to use the factors occurring in the formula (if any) specified by the most recent TREATMENTSTRUCTURE directive Vectors to store the randomized values; by default these overwrite the values in the original vectors

\section*{ARCSPLITPLOT procedure}

Adds extra treatments onto the replicates of a resolvable row-column design, and generates factors giving the row and column locations of the plots within the design (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) strings & Controls printed output (design, factors, layout); default * i.e. none \\
\hline LEVELS = scalar or variate & Numbers of levels of the extra treatment factors; if unset, takes the numbers of levels declared for the TREATMENTFACTORS \\
\hline TREATMENTFACTORS \(=\) factors & Extra treatment factors to be imposed onto the replicates of the original row-column design \\
\hline REPLICATES \(=\) factor & Replicates in the modified design (after adding the extra treatments) \\
\hline WHOLEPLOTS \(=\) factor & Whole-plots in the modified design \\
\hline ROWS \(=\) factor & Factor indexing the rows over the whole design \\
\hline COLUMNS = factor & Factor indexing the columns over the whole design \\
\hline RCREPLICATES \(=\) factor & Replicates in the row-column design \\
\hline RCROWS \(=\) factor & Rows within replicates of the row-column design \\
\hline RCCOLUMNS \(=\) factor & Columns within replicates of the row-column design \\
\hline REPLOCATIONS \(=\) variate or matrix & Locations of the replicates of the row-column design \\
\hline METHOD \(=\) string & \begin{tabular}{l}
How to form the replicates of the modified design \\
(rowserpentine, columnserpentine, given); default rows
\end{tabular} \\
\hline SEED \(=\) scalar & Seed for randomizing the allocation of the extra treatments; default 0 \\
\hline SPREADSHEET \(=\) string & Whether to put the design factors into a spreadsheet (design); default * \\
\hline
\end{tabular}

\section*{No parameters}

\section*{AREPMEASURES procedure}

Produces an analysis of variance for repeated measurements (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

APRINT \(=\) string tokens

Controls output about the covariance structure
(vcovariance, correlation, epsilon, test); default epsi, test
Printed output from the analysis of variance (as for the ANOVA PRINT option); default *
\begin{tabular}{|c|c|}
\hline TREATMENTSTRUCTURE = formula & Defines the treatments given to the subjects; if this is not set, the default is taken from any existing setting defined by the TREATMENTSTRUCTURE directive \\
\hline BLOCKSTRUCTURE \(=\) formula & Defines any block structure over the subjects if this is not set, the default is taken from any existing setting defined by the BLOCKSTRUCTURE directive \\
\hline COVARIATE \(=\) variates & Specifies any covariates on the subjects if this is not set, the default is taken from any existing setting defined by the COVARIATE directive \\
\hline FACTORIAL \(=\) scalar & Limit in the number of factors in the terms generated from the TREATMENTSTRUCTURE formula \\
\hline TIMEPOINTS \(=\) variate, text or factor & When the DATA parameter supplies a separate variate of observations for each time this can specify numbers or labels for the time points, when there is a single DATA variate this must supply a factor to indicate the time of each observation \\
\hline CONTRASTS \(=\) scalar & Limit on the order of a contrast of a treatment term; default 4 \\
\hline DEVIATIONS \(=\) scalar & Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9 \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance ratios in the aov table (no, yes); default no \\
\hline PSE \(=\) string tokens & Standard errors to be printed with tables of means (differences, lsd, means); default diff \\
\hline MAXCYCLE \(=\) scalar & Maximum number of iterations for estimating missing values; default 20 \\
\hline LSDLEVEL \(=\) scalar & Significance level (\%) to use in the calculation of least significant differences; default 5 \\
\hline EPSILON \(=\) scalar & Saves the correction factor epsilon \\
\hline SAVEFACTORS = pointer & Saves the factors used in the analysis of variance \\
\hline ASAVE \(=\) identifier & Saves the ANOVA save structure from the analysis of variance \\
\hline Parameter & \\
\hline DATA \(=\) variates & Data observations either in a list of variates (one for each time), or a single variate (with TIMEPOINTS set to a factor indicating the time of each observation) \\
\hline
\end{tabular}

\section*{ARESULTSUMMARY procedure}

Provides a summary of results from an ANOVA analysis (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & \begin{tabular}{l} 
What to print (description, means, significant); default \\
desc, mean, sign
\end{tabular} \\
PSE = string tokens & \begin{tabular}{l} 
Standard errors to be printed with the means (sed, \\
sedsummary, lsd, lsdsummary, dfmeans); default sed, \\
dfme
\end{tabular} \\
LSDLEVEL = scalar & \begin{tabular}{l} 
Significance level (\%) for least significant differences; default
\end{tabular} \\
SAVE = ANOVA save structure & \begin{tabular}{l}
5
\end{tabular} \\
& \begin{tabular}{l} 
Save structure for the analysis; default uses the save structure \\
from the most recent ANOVA
\end{tabular}
\end{tabular}

\section*{No parameters}

\section*{ARETRIEVE procedure}

Retrieves an ANOVA save structure from an external file (R.W. Payne).

\section*{No options}

\section*{Parameters}

FILENAME \(=\) texts
EXIT \(=\) scalars

Name of the file storing the save structure
Scalar that contains the value one if the save structure was retrieved successfully, otherwise contains either zero or a
missing value
Save structure that has been retrieved

\section*{ASAMPLESIZE procedure}

Finds the replication to detect a treatment effect or contrast (R.W. Payne \& P. Brain). Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Prints the replication or produces a printed summary of the power etc. for the various amounts of replication (power, replication); default powe, repl \\
\hline TERM \(=\) formula & Treatment term to be assessed in the analysis \\
\hline REPLICATES \(=\) factor & Factor identifying the replication in the design \\
\hline MINREPLICATION \(=\) scalar & Minimum number of replicates to try; default 2 \\
\hline MAXREPLICATION \(=\) scalar & Maximum feasible number of replicates; default * i.e. no limit \\
\hline TREATMENTSTRUCTURE = formula & Treatment structure of the design; determined automatically from an ANOVA save structure if TREATMENTSTRUCTURE is unset or if SAVE is set \\
\hline BLOCKSTRUCTURE \(=\) formula & Block structure of the design; determined automatically from an ANOVA save structure if BLOCKSTRUCTURE is unset or if SAVE is set \\
\hline COMPONENTS \(=\) variate or scalar & Variate of variance components of all the terms in the block structure or, if TERM is estimated in the final stratum of the design, scalar containing only the variance component of the final stratum itself; determined automatically (if possible) from an ANOVA save structure if unset \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors in treatment terms; default 3 \\
\hline PROBABILITY \(=\) scalar & Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05 \\
\hline POWER \(=\) scalar & The required power (i.e. probability of detection) of the test; default 0.9 \\
\hline TMETHOD \(=\) string token & Type of test to be made (onesided, twosided, equivalence, noninferiority, fratio); default ones \\
\hline XCONTRASTS \(=\) variate & X -variate defining a a contrast to be detected \\
\hline CONTRASTTYPE \(=\) string token & Type of contrast (regression, comparison) default rege \\
\hline SAVE = asave & ANOVA save structure to provide the information about the design \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline RESPONSE \(=\) scalars & Size of the difference or contrast between TERM effects that is to be detected \\
\hline NREPLICATES \(=\) scalars & Number of replicates required to detect RESPONSE \\
\hline
\end{tabular}

\section*{ASCREEN procedure}

Performs screening tests for designs with orthogonal block structure (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Which tests to print (conditional, marginal, \\
efficiency); default cond, marg
\end{tabular} \\
FACTORIAL = scalar & Limit on the number of factors in each treatment term; default \\
& 3
\end{tabular}
efficiency); default cond, marg
Limit on the number of factors in each treatment term; default Whether to exclude higher-order interactions in the initial model for the conditional test of each term (yes, no); default no the initial models for every term; default * i.e. none

Variates to be analysed

ASPREADSHEET procedure
Saves results from an analysis of variance in a spreadsheet (R.W. Payne).

Options
MEANS = pointer
SEMEANS = pointer

SEDMEANS \(=\) pointer

EFFECTS = pointer
REPLICATIONS \(=\) pointer
RESIDUALS \(=\) variate

FITTEDVALUES = variate

AOVTABLE \(=\) pointer

COVINFORMATION \(=\) pointer

MVINFORMATION = pointer

EQFACTORS \(=\) factors

RMETHOD = string token

LSDMEANS \(=\) pointer
LSDLEVEL = scalar

SPREADSHEET = string tokens

OUTFILENAME \(=\) text

SAVE \(=\) ANOVA save structure

Pointer to tables to contain the treatment means; default means Pointer to tables to contain the effective standard errors of treatment means; default ese
Pointer to matrices to contain standard errors of differences of treatment means; default sed
Pointer to tables to contain the treatment effects; default effects
Pointer to tables of treatment replications; default replication
Variate to save the residuals in the fittedvalues page; default residuals
Variate to save the fitted values in the fittedvalues page; default fittedvalues
Pointer to a text and variates containing the information in the analysis-of-variance table; default aovtable
Pointer to a text and variates containing the information about the estimated covariate regression coefficients; default cov Pointer to a text and variates containing the information the about estimated missing values; default missing Factors whose levels are to be assumed to be equal within the comparisons between means, when calculating effective standard errors
Type of residuals to form (simple, standardized); default simp
Pointer to matrices to contain least significant differences for means
Significance level (as a percentage) for the least significant differences; default 5
What to include in the spreadsheet (aovtable, covariates, effects, means, semeans, sedmeans, lsdmeans, replications, fittedvalues, missingvalues); default aovt, cova, mean, sedm, repl, fitt, miss
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create
Specifies which analysis to save; default * i.e. most recent regression

\section*{No parameters}

\section*{ASRULES directive}

Derives association rules from transaction data.

\section*{Options}

PRINT \(=\) string tokens
\(\mathrm{METHOD}=\) string tokens

MINSUPPORT \(=\) scalar
MINCONFIDENCE \(=\) scalar

MAXITEMS \(=\) scalar
MAXRULES \(=\) scalar

\section*{Parameters}

ITEMS = factors
TRANSACTIONS \(=\) factors

Controls printed output (rules); default rule What to use to calculate the support of a rule (allitems, antecedent); default ante
Minimum amount of support for a rule to be included; default 0.1

Minimum amount of confidence for a rule to be included; default 0.8
Maximum number of items that a rule may contain; default 10
Maximum number of rules to generate; default 100
Items in the transactions
Specifies the transaction to which each each item belongs

NRULES = scalars
RULES \(=\) pointers

SUPPORT = variates
CONFIDENCE \(=\) variates

Saves the number of rules that have been derived Pointer to factors, each of which saves the antecedent items and then the consequent item in one of the rules Saves the support values for the rules Saves the confidence values for the rules

\section*{ASSIGN directive}

Sets elements of pointers and dummies.

\section*{Options}
\(\left.\begin{array}{ll}\text { NSUBSTITUTE = scalar } & \begin{array}{l}\text { Number of times } n \text { to substitute a dummy in order to determine } \\
\text { which structure to assign (if } n \text { is negative, the assigned }\end{array} \\
\text { structure is the }-n \text {th from the bottom of the chain of dummies, } \\
\text { like the NTIMES option of EXIT); default } 0 \text { i.e. no substitution }\end{array}\right\}\)\begin{tabular}{l} 
Whether to replace or preserve the existing value in each \\
dummy or pointer element (replace, preserve); default \\
repl (note, pointer elements are never unset so \\
METHOD=preserve with a pointer simply causes the \\
assignment to be ignored)
\end{tabular}

\section*{ASTATUS procedure}

Provides information about the settings of ANOVA models and variates (R.W. Payne).

\section*{Option}
\begin{tabular}{ll}
\begin{tabular}{l} 
PRINT = string tokens \\
Parameters \\
Y = pointers
\end{tabular} & \begin{tabular}{l} 
Controls printed output ( y, model, weights); default mode
\end{tabular} \\
TREATMENTSTRUCTURE = formula structures \\
Pointer of length 1 to save the identifier of the y-variate of the \\
Saves the current setting of TREATMENTSTRUCTURE or the \\
setting used to form INSAVE
\end{tabular}

INSAVE

SAVE = asave structures
INSAVE \(=\) asave structures

Saves the save structure from the most recent ANOVA
Provides a save structure from which to save \(Y\), TREATMENTSTRUCTURE, BLOCKSTRUCTURE and COVARIATE; default * uses the current settings

\section*{ASTORE procedure}

Stores an ANOVA save structure in an external file (R.W. Payne).

\section*{No options}

\section*{Parameters}

FILENAME \(=\) texts
EXIT \(=\) scalars

SAVE \(=\) asave structures

Name of the file to store the save structure
Scalar that contains the value one if the save structure was stored successfully, otherwise contains either zero or a missing value
Save structure to be stored; default stores the save structure from the most recent ANOVA

\section*{ASWEEP procedure}

Performs sweeps for model terms in an analysis of variance (R.W. Payne).

\section*{Options}

EFFICIENCY \(=\) scalar
EMETHOD \(=\) string token
RMETHOD \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) variate
EFFECTS = table
RESIDUALS \(=\) variate
\(\mathrm{SS}=\) scalars
RSS \(=\) scalars
Model term (or terms) involved in the sweep (this need not be specified if EMETHOD=calculated); default is to sweep for the grand mean
Efficiency factor of the term(s)
Source of the effects (calculated, given); default calc Method to be used to obtain the residual variate (subtract, replace); default subt

Working variates to be swept
Estimated effects
New working variates, following the sweep
Sum of squares due to the term(s)
Sum of squares of the working variate after the sweep

\section*{AUDISPLAY procedure}

Produces further output for an unbalanced design after AUNBALANCED (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output from the analysis (aovtable, effects, means, residuals, \%cv); default aovt, mean \\
\hline PFACTORIAL \(=\) scalar & Limit on number of factors in printed tables of predicted means; default 3 \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance ratios in the analysis-ofvariance table (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for \(t\)-tests of effects (yes, no); default no \\
\hline \(\mathrm{PLOT}=\) string tokens & Which residual plots to provide (fittedvalues, normal, halfnormal, histogram); default * i.e. none \\
\hline COMBINATIONS \(=\) string token & Factor combinations for which to form predicted means (present, estimable); default esti \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment to be made when predicting means (marginal, equal, observed); default marg \\
\hline PSE \(=\) string tokens & Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsd, means, ese); default diff \\
\hline
\end{tabular}

LSDLEVEL \(=\) scalar
Significance level (\%) for least significant differences; default

RMETHOD = string token
PMEANTERMS \(=\) formula

\section*{Parameter}

SAVE \(=\) identifiers

Type of residuals to plot (simple, standardized); default simp
Treatment terms for which predicted means are to be printed; default * implies all the treatment terms

Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED

\section*{AUGRAPH procedure}

Plots tables of means from Aunbalanced (R.W. Payne).
Options
\begin{tabular}{|c|c|}
\hline GRAPHICS \(=\) string token & Type of graph (highresolution, lineprinter); default high \\
\hline METHOD \(=\) string token & What to plot (means, lines, data, barchart, splines); default mean \\
\hline XFREPRESENTATION \(=\) string token & How to label the \(x\)-axis (levels, labels); default labels uses the XFACTOR labels, if available \\
\hline PSE \(=\) string token & What to plot to represent variation (differences, lsd, means, allmeans); default diff \\
\hline COMBINATIONS \(=\) string token & Factor combinations for which to form predicted means (present, estimable); default esti \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment to be made when predicting means (marginal, equal, observed); default marg \\
\hline LSDLEVEL = scalar & Significance level (\%) to use for least significant differences; default 5 \\
\hline DFSPLINE \(=\) scalar & Number of degrees of freedom to use when METHOD=spline \\
\hline YTRANSFORM \(=\) string tokens & Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the \(y\)-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none \\
\hline PENYTRANSFORM = scalar & Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically \\
\hline \({ }^{\dagger}\) KEYMETHOD \(=\) string token & What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name \\
\hline \({ }^{\dagger}\) PLOTTITLEMETHOD \(=\) string token & What to use for the titles of the plots when there are \\
\hline & TRELLISGROUPS (labels, namesandlabels); default name \\
\hline \({ }^{\dagger}\) PAGETITLEMETHOD \(=\) string token & What to use for the titles of the pages when there are \\
\hline 'USEAXES \(=\) string token & PAGEGROUPS (labels, namesandlabels); default name Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower\%, mupper\%, nsubticks,); default none \\
\hline
\end{tabular}
\(\mathrm{SAVE}=\) regression save structure

\section*{Parameters}
```

XFACTOR = factors
GROUPS = factors or pointers

```
TRELLISGROUPS \(=\) factors or pointers
PAGEGROUPS \(=\) factors or pointers \(\quad\) Factor or factors specifying plots to be displayed on different
pages
NEWXLEVELS \(=\) variates
TITLE \(=\) texts
Save structure to provide the table of means; default uses the
save structure from the most recent AUNBALANCED analysis
(provided no other regression analysis has been done in the
interim)

Factor providing the \(x\)-values for each plot
Factor or factors identifying groups of points in each plot; by default chosen automatically
Factor or factors specifying the different plots of a trellis plot of a multi-way table
Factor or factors specifying plots to be displayed on different pages
Values to be used for XFACTOR instead of its existing levels
TITLE \(=\) texts \(\quad\) Title for the graph; default defines a title automatically

YTITLE \(=\) texts

XTITLE \(=\) texts

PENS \(=\) variates

Title for the \(y\)-axis; default is to use the identifier of the \(y\) variate, or to have no title if this is unnamed Title for the x -axis; default is to use the identifier of the XFACTOR
Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

\section*{AUKEEP procedure}

Saves output from analysis of an unbalanced design (by AUNBALANCED) (R.W. Payne).

\section*{Options}
FACTORIAL = scalar
RESIDUALS \(=\) variate
FITTEDVALUES \(=\) variate
COMBINATIONS \(=\) string token
ADJUSTMENT = string token
LSDLEVEL = scalar
RMETHOD = string token
SAVE \(=\) identifier

\section*{Parameters}
\begin{tabular}{ll} 
TERMS = formula & Model terms for which information is required \\
MEANS = table or pointer to tables & Predicted means for each term \\
SEMEANS = table or pointer to tables & Standard errors of the means for each term \\
SEDMEANS = symmetric matrix or pointer to symmetric matrices
\end{tabular}\(\quad\)\begin{tabular}{ll} 
Standard errors of differences between means
\end{tabular}

LSD \(=\) symmetric matrix or pointer to symmetric matrices
Least significant differences

\section*{AUMCOMPARISON procedure}

Performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by AUNBALANCED (D.M. Smith).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (comparisons, critical, \\
description, lines, letters, plot, mplot, pplot); \\
default lett
\end{tabular} \\
METHOD = string token & \begin{tabular}{l} 
Test to be performed (flsd, bonferroni, sidak); default \\
flsd
\end{tabular} \\
FACTORIAL = scalar \\
COMBINATIONS = string token & \begin{tabular}{l} 
Limit on the number of factors in each term; default 3 \\
Factor combinations for which to form predicted means \\
(present, estimable); default esti
\end{tabular} \\
ADJUSTMENT = string token & \begin{tabular}{l} 
Type of adjustment to be made when predicting means \\
(marginal, equal, observed); default marg
\end{tabular} \\
WEIGHTS = table & Weights classified by some or all of the factors in the model \\
DIRECTION = string token & How to sort means (ascending, descending); default asce \\
PROBABILITY = scalar \\
STUDENTIZE = string token & The required significance level; default 0.05
\end{tabular}

SAVE \(=\) identifier

\section*{Parameters}
```

TERMS = formula
MEANS = pointer or variate
LABELS = pointer or text
LETTERS = pointer or text

```

Range statistic is used instead of Student's t (yes, no); default no
Save structure to provide the table of means; default uses the save structure from the most recent AUNBALANCED analysis

Treatment terms whose means are to be compared
Saves the (sorted) means
Saves labels for the (sorted) means
Saves letters indicating groups of means that do not differ significantly
SIGNIFICANCE \(=\) pointer or symmetric matrix
Indicators to show significant comparisons between (sorted) means

\section*{AUNBALANCED procedure}

Performs analysis of variance for unbalanced designs (R.W. Payne).

Options
PRINT \(=\) string tokens
```

FACTORIAL = scalar
PFACTORIAL = scalar
NOMESSAGE = string tokens

```
FPROBABILITY \(=\) string token
TPROBABILITY \(=\) string token
\(\mathrm{PLOT}=\) string tokens
COMBINATIONS \(=\) string token
ADJUSTMENT \(=\) string token
\(\mathrm{PSE}=\) string tokens
LSDLEVEL \(=\) scalar
RMETHOD \(=\) string token
Parameters
\(\mathrm{Y}=\) variates
RESIDUALS \(=\) variates
FITTEDVALUES = variates
SAVE \(=\) identifiers

Controls printed output from the analysis (aovtable, effects, means, residuals, screen, \%cv); default aovt, mean
Limit on number of factors in a treatment term; default 3 Limit on number of factors in printed tables of predicted means; default 3
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * i.e. none Printing of probabilities for variance ratios in the analysis-ofvariance table (yes, no); default no
Printing of probabilities for t-tests of effects (yes, no); default no
Which residual plots to provide (fittedvalues, normal, halfnormal, histogram); default * i.e. none Factor combinations for which to form predicted means (present, estimable); default esti Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
Types of standard errors to be printed with the predicted means (differences, alldifferences, lsd, alllsd, means, ese); default diff
Significance level (\%) for least significant differences; default 5

Type of residuals to plot (simple, standardized); default simp

Data values to be analysed
Variate to save the residuals from each analysis Variate to save the fitted values from each analysis To save details of each analysis to use subsequently with the AUDISPLAY procedure

\section*{AUPREDICT procedure}

Forms predictions from an unbalanced design (after AUNBALANCED) (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & \begin{tabular}{l} 
What to print (description, predictions, se, sed, \\
sedsummary, ese, lsd, lsdsummary, vcovariance); \\
default pred, sed
\end{tabular} \\
MODEL \(=\) formula & Model to use to calculate the predictions; default *i.e. full
\end{tabular}
FACTORIAL = scalar
COMBINATIONS = string token
ADJUSTMENT = string token
PREDICTIONS = tables or scalars
SE = tables or scalars
SED = symmetric matrices
ESE = table
LSD = symmetric matrix
LSDLEVEL = scalar

VCOVARIANCE \(=\) symmetric matrices SAVE \(=\) identifier

\section*{Parameters}

CLASSIFY \(=\) vectors
LEVELS \(=\) variates or scalars
model fitted by AUNBALANCED
Limit on number of factors or variates in each term specified by MODEL; default 3
Factor combinations for which to form predicted means (present, estimable); default esti
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
Saves predictions; default *
Saves standard errors of predictions; default *
Saves matrices of standard errors of differences between predictions; default *
Saves effective standard errors
Saves least significant differences between predictions Significance level (\%) for least significant differences; default 5
Saves variance-covariance matrices of predictions; default * Save structure (from AUNBALANCED) containing details of the analysis for which predictions are required; if omitted, output is from the most recent use of AUNBALANCED

Variates and/or factors to classify table of predictions
To specify values of variates, levels of factors

\section*{AUSPREADSHEET procedure}

Saves results from an analysis of an unbalanced design (by AUNBALANCED) in a spreadsheet (R.W. Payne).

\section*{Options}

MEANS = pointer
SEMEANS \(=\) pointer
SEDMEANS \(=\) pointer
ESEMEANS \(=\) pointer
EFFECTS \(=\) pointer

REPLICATIONS \(=\) pointer
RESIDUALS \(=\) variate
FITTEDVALUES \(=\) variate
COMBINATIONS \(=\) string token
ADJUSTMENT \(=\) string token
AOVTABLE \(=\) pointer
RMETHOD \(=\) string token
LSDMEANS = pointer
LSDLEVEL \(=\) scalar
SPREADSHEET \(=\) string tokens

Pointer to tables to contain the treatment means; default means Pointer to tables to contain the standard errors of treatment means; default sem
Pointer to matrices to contain standard errors of differences of treatment means; default sed
Pointer to matrices to contain effective standard errors of treatment means; default ese
Pointer to contain the estimated effects, their standard errors, t statistics and probabilities; default effects
Pointer to tables of treatment replications; default replication
Variate to save the residuals in the fittedvalues page; default residuals
Variate to save the fitted values in the fittedvalues page; default fittedvalues
Factor combinations for which to form predicted means
(present, estimable); default esti
Type of adjustment to be made when predicting means
(marginal, equal, observed); default marg
Pointer to a text and variates containing the information in the analysis-of-variance table; default aovtable
Type of residuals to form (simple, standardized); default simp
Pointer to matrices to contain least significant differences for means
Significance level (as a percentage) for the least significant differences; default 5
What to include in the spreadsheet (aovtable, effects, means, semeans, sedmeans, esemeans, 1sdmeans,
replications, fittedvalues); default aovt, mean, sedm, repl, fitt
```

OUTFILENAME = text
SAVE = identifier

```

\section*{No parameters}

Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create
Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED

\section*{AU2RDA procedure}

Saves results from an unbalanced analysis of variance, by AUNBALANCED, in R data frames (R.W. Payne \& Z. Zhang).

\section*{Options}

TERM \(=\) formula \(\quad\) Treatment term whose means, effects etc. are to be saved; must be set if any of these are to be saved, unless there is only one treatment term
COMBINATIONS \(=\) string token
ADJUSTMENT \(=\) string token

LSDLEVEL \(=\) scalar
RMETHOD \(=\) string token
MCOMPARISON \(=\) string token

SAVE \(=\) identifier

\section*{Parameters}

INFORMATION \(=\) string tokens

OUTFILENAME \(=\) texts

COLUMNNAMES \(=\) texts

EXIT \(=\) scalars
Factor combinations for which to form predicted means (present, estimable); default esti
Type of adjustment to be made when predicting means (marginal, equal, observed); default marg
Significance level (\%) for least significant differences and multiple comparisons; default 5
Type of residuals to form (simple, standardized); default simp
Method to use to make multiple comparisons between the means (flsd, fstudentizedlsd, bonferroni, sidak); default * i.e. none
Save structure (from AUNBALANCED) containing details of the analysis for which further output is required; if omitted, output is from the most recent use of AUNBALANCED

What to save (aovtable, effects, means, semeans, esemeans, sedmeans, Isdmeans, replications, fittedvalues); must be set
Name of the R (.rda) file to create for each set of information; must be set
Specifies names for the columns in the file; if this is not set, suitable names are chosen automatically
Records the exit status, 0 if the information was saved successfully, 1 otherwise

\section*{AXES directive}

Defines the axes in each window for high-resolution graphics.

\section*{Options}

EQUAL \(=\) string tokens
RESET \(=\) string token

\section*{Parameters}

\section*{WINDOW = scalars}

YTITLE \(=\) texts
\(\mathrm{XTITLE}=\) texts
YLOWER \(=\) scalars
YUPPER \(=\) scalars
\(\mathrm{XLOWER}=\) scalars
XUPPER \(=\) scalars

Whether/how to make axes equal (no, scale, lower, upper); default no
Whether to reset the axes definitions to the default values (no, yes); default no

Numbers of the windows
Title for the \(y\)-axis in each window
Title for the x -axis in each window
Lower bound for y -axis
Upper bound for \(y\)-axis
Lower bound for x -axis
Upper bound for x -axis
```

YMARKS $=$ scalars or variates
XMARKS $=$ scalars or variates
YMPOSITION $=$ string tokens
XMPOSITION $=$ string tokens
YLABELS $=$ texts
XLABELS $=$ texts
YLPOSITION $=$ string tokens
XLPOSITION $=$ string tokens
YORIGIN = scalars
XORIGIN = scalars
STYLE $=$ string tokens
PENTITLE = scalar
PENAXES $=$ scalar
PENGRID $=$ scalar
$\mathrm{SAVE}=$ pointers
YMARKS $=$ scalars or variates
XMARKS $=$ scalars or variates
YMPOSITION $=$ string tokens
XMPOSITION $=$ string tokens
YLABELS $=$ texts
XLABELS $=$ texts
YLPOSITION $=$ string tokens
XLPOSITION = string tokens
RIGIN = scalars
STYLE = string tokens
PENTITLE = scalar
PENAXES $=$ scalar
PENGRID $=$ scalar
SAVE = pointers

```

Distance between each tick mark on y-axis (scalar) or positions of the marks (variate)
Distance between each tick mark on x-axis (scalar) or positions of the marks (variate)
Position of the tick marks across the y-axis (left, right, centre)
Position of the tick marks across the x -axis (above, below, centre)
Labels at each mark on y-axis
Labels at each mark on x -axis
Position of the labels for the \(y\)-axis (left, right)
Position of the labels for the x -axis (above, below)
Position on \(y\)-axis at which \(x\)-axis is drawn
Position on x -axis at which y -axis is drawn
Style of axes (none, \(x, y, x y, b o x, ~ g r i d)\)
Pen to use for the title
Pen to use for the axes and their labelling
Pen to use for the grid
Saves details of the current settings for the axes concerned

\section*{AXIS directive}

Defines an oblique axis for high-resolution graphics.

\section*{Option}

RESET = string token

\section*{Parameters}

IDENTIFIER = identifiers
TITLE \(=\) texts
TPOSITION = string tokens
TDIRECTION \(=\) string tokens
LOWER \(=\) scalars
UPPER \(=\) scalars
MARKS \(=\) scalars or variates

MPOSITION \(=\) string tokens
LABELS \(=\) texts or variates
LPOSITION = string tokens
LDIRECTION = string tokens
LROTATION \(=\) scalars or variates
NSUBTICKS \(=\) scalars
\(\mathrm{XZERO}=\) scalars
YZERO = scalars
\(\mathrm{ZZERO}=\) scalars
\(\mathrm{XSTEP}=\) scalars
YSTEP \(=\) scalars

ZSTEP \(=\) scalars

PENTITLE = scalars
PENAXIS = scalars
PENLABELS = scalar
ARROWHEAD \(=\) string tokens
ACTION = string tokens
TRANSFORM = string tokens

Whether to reset the axis definition to the default values (yes, no); default no

Name to be used inside Genstat to identify each axis
Title for each axis
Position of title (middle, end)
Direction of title (parallel, perpendicular)
Lower bound for each axis
Upper bound for each axis
Distance between each tick mark (scalar) or positions of the marks along each axis (variate)
Positioning of the tick marks on each axis (inside, outside, across)
Labels at each major tick mark
Position of the axis labels (inside, outside)
Direction of the axis labels (parallel, perpendicular)
Rotation of the axis labels
Number of subticks per interval (ignored if MARKS is a variate)
Position of the axis origin in the x -dimension
Position of the axis origin in the \(y\)-dimension
Position of the axis origin in the z -dimension
Step in the \(x\)-direction corresponding to a step of length one along the axis
Step in the y-direction corresponding to a step of length one along the axis
Step in the z-direction corresponding to a step of length one along the axis
Pen to use to write the axis title
Pen to use to draw the axis
Pen to use to write the axis labels
Whether the axis should have an arrowhead (include, omit)
Whether to display or hide the axis (display, hide)
Transformed scale for the axis marks and labels (identity,
log, \(\log 10, \operatorname{logit,~probit,~cloglog,~square,~exp,~}\) exp10, ilogit, iprobit, icloglog, root); default iden

DECIMALS \(=\) scalars or variates

DREPRESENTATION = scalars or variates
Format to use for dates and times printed at the marks
VREPRESENTATION = string tokens

ZEROOFFSET \(=\) scalars
SAVE = pointers

Number of decimal places to use for numbers printed at the marks

Format to use for numbers printed at the marks (decimal, engineering, scientific); default deci
Point on the axis corresponding to XZERO, YXERO and ZZERO
Saves details of the current settings for the axis concerned

\section*{AYPARALLEL procedure}

Does the same analysis of variance for several y-variates, and collates the output (R.W. Payne \& D.B. Baird).

\section*{Options}
PRINT = string tokens
TREATMENTSTRUCTURE = formula

BLOCKSTRUCTURE = formula
```

COVARIATE = variates
FACTORIAL = scalar
SAVETERMS = formula
REPLICATION = pointer
SPREADSHEET = string tokens

```
CONTRASTSLIMIT \(=\) scalar
DEVIATIONSLIMIT = scalar

\section*{Parameters}
\(\mathrm{Y}=\) variates or pointers
\(\mathrm{VFACTOR}=\) factors
RESIDUALS \(=\) variates or matrices FITTEDVALUES \(=\) variates or matrices MEANS \(=\) pointers

VCMEANS \(=\) pointers
EFFECTS \(=\) pointers
VAREFFECTS \(=\) pointers
SEEFFECTS = pointers
\(\mathrm{DF}=\) pointers
\(\mathrm{SS}=\) pointers
MS \(=\) pointers
\(\mathrm{RDF}=\) pointers

Controls printed output (summary, monitoring); default * i.e. none

Treatment formula for the analysis; if this is not set, the default is taken from the setting (which must already have been defined) of the TREATMENTSTRUCTURE directive Block formula for the analysis; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term)
Defines any covariates
Limit on the number of factors in a treatment term Treatment terms for which to save information; if this is not set, information is saved for all the treatment terms Pointer to tables saving the replication of the SAVETERMS What results to save in spreadsheets (aov, means, vcmeans, effects, vareffects, seeffects, contrasts, secontrasts, tcontrasts, prcontrasts); default * i.e. none
Limit on the order of a contrast of a treatment term; default 4 Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9

Y-variates for each analysis
Identifies the individual y-variates when they are supplied in a single Y variate
Saves the residuals
Saves the fitted values
Pointer to a matrix for each of the SAVETERMS, saving the means from each analysis
Pointer to matrices saving variances and covariances for the means
Pointer to matrices saving effects
Pointer to variates saving unit variances for effects
Pointer to variates saving standard errors of effects
Pointer to variates saving degrees of freedom
Pointer to variates saving sums of squares
Pointer to variates saving mean squares
Pointer to variates saving degrees of freedom for the residual corresponding to each of the SAVETERMS
```

RSS = pointers
RMS = pointers
VR = pointers
PRVR = pointers
CONTRASTS = pointers
SECONTRASTS = pointers
TCONTRASTS = pointers
PRCONTRASTS = pointers
OUTFILENAME = texts

```

Pointer to variates saving residual sums of squares Pointer to variates saving residual mean squares Pointer to variates saving variance ratios Pointer to variates saving probabilities for the variance ratios Pointer to matrices saving estimates of contrasts Pointer to matrices saving standard errors of contrasts Pointer to matrices saving \(t\)-statistics for contrasts Pointer to matrices saving probabilities for \(t\)-statistics of contrasts
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

\section*{A2DISPLAY procedure}

Provides further output following an analysis of variance by A2WAY (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output from the analysis (aovtable, information, covariates, effects, residuals, means, \%cv, missingvalues); default * \\
\hline FPROBABILITY \(=\) string token & Probabilities for variance ratio (yes, no); default no \\
\hline PLOT \(=\) string tokens & Which residual plots to provide (fittedvalues, normal, halfnormal, histogram, absresidual); default * \\
\hline GRAPHICS \(=\) string token & Type of graphs (lineprinter, highresolution); default high \\
\hline COMBINATIONS \(=\) string token & Factor combinations for which to form predicted means (present, estimable); default esti \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment to be made when predicting means (marginal, equal, observed); default marg \\
\hline \(\mathrm{PSE}=\) string tokens & Types of standard errors to be printed with the means (differences, lsd, means); default diff \\
\hline LSDLEVEL = scalar & Significance level (\%) for least significant differences; default 5 \\
\hline RMETHOD = string token & Type of residuals to display (simple, standardized); default simp \\
\hline Parameter & \\
\hline SAVE = pointers & Save structure (from A2WAY) for the analysis; if omitted, output is from the most recent A2WAY analysis \\
\hline
\end{tabular}

\section*{A2KEEP procedure}

Copies information from an A2WAY analysis into Genstat data structures (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline FACTORIAL \(=\) scalar & Sets a limit on the number of factors in the terms formed from the TERMS formula; default 2 \\
\hline RESIDUALS \(=\) variate & Saves the residuals \\
\hline FITTEDVALUES = variate & Saves the fitted values \\
\hline COMBINATIONS \(=\) string token & Factor combinations for which to form predicted means (present, estimable); default esti \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment to be made when predicting means (marginal, equal, observed); default marg \\
\hline LSDLEVEL = scalar & Significance level (\%) for least significant differences; default 5 \\
\hline AOVTABLE \(=\) pointer & To save the analysis-of-variance table as a pointer with a variate or text for each column (source, d.f., s.s., m.s. etc) \\
\hline RMETHOD = string token & Type of residuals to form if the RESIDUALS option is set (simple, standardized); default simp \\
\hline EXIT \(=\) scalar & Saves an exit code indicating the properties of the design \\
\hline SAVE \(=\) pointer & Save structure (from A2WAY) for the analysis; if omitted, \\
\hline
\end{tabular}
output is from the most recent A2WAY analysis

\section*{Parameters}

TERMS = formula
MEANS \(=\) table or pointer to tables
SEMEANS \(=\) table or pointer to tables
SEDMEANS = table or pointer to tables
LSD \(=\) table or pointer to tables

Specifies the treatment terms whose means \&c are to be saved Saves tables of means for the terms or pointer to tables Saves approximate effective standard errors of means Saves standard errors of differences between means Saves least significant differences

\section*{A2PLOT procedure}

Plots effects from two-level designs with robust s.e. estimates (Eric D. Schoen \& Enrico A.A. Kaul). Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Which ANOVA output to print, as in ADISPLAY; default aovt, effe \\
\hline CHANNEL \(=\) scalar & What channel to use for anova and line-printer output; default * i.e. the current output channel \\
\hline FACTORIAL \(=\) scalar & Limit for factorial expansion of TREATMENT formula; default 3 \\
\hline STRATUM = formula & Error strata from which Yates effects are to be plotted; if unset, plots are made for all the strata \\
\hline GRAPHICS \(=\) string token & What type of graphics (highresolution, lineprinter); default high \\
\hline TITLE \(=\) string tokens & Separate titles for each of the plots \\
\hline METHOD \(=\) string token & Whether to make half-Normal or Normal plots (halfnormal, normal); default half \\
\hline ROBUSTNESS \(=\) string token & Robustness of scale estimators against contamination with active effects (low, medium, high); default medi \\
\hline ALPHALEVEL \(=\) scalar & Type I error ( \(0.20,0.15,0.10,0.05,0.01\) ); default 0.05 \\
\hline EXCLUDE \(=\) scalars & How many of the largest effects to withhold from each of the half-Normal plots; default 0 \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Data to be analysed \\
\hline EFFECTS \(=\) pointers & To save a variate for each error stratum containing the (sorted) Yates effects estimated there \\
\hline \(\mathrm{SE}=\) pointer s & To save a scalar with the standard error of the Yates effects for each error stratum \\
\hline SIGNIFICANT \(=\) pointers & To save formulae containing the significant Yates effects in each stratum \\
\hline
\end{tabular}

\section*{A2RDA procedure}

Saves results from an analysis of variance in R data frames (R.W. Payne \& Z.Zhang).

\section*{Options}
```

TERM = formula
STRATUM= formula
SUPPRESSHIGHER = string token
LSDLEVEL = scalar
EQFACTORS = factors

```
RMETHOD \(=\) string token
MCOMPARISON \(=\) string token

Treatment term whose means, effects etc. are to be saved; must be set if any of these are to be saved, unless there is only one treatment term
Model term of the lowest stratum to be searched for effects and contrasts; default * implies the lowest stratum Whether to suppress the searching of higher strata if a term is not found in STRATUM (yes, no); default no
Significance level (\%) for least significant differences and multiple comparisons; default 5
Factors whose levels are to be assumed to be equal within the comparisons between means calculated for effective standard errors of treatment means
Type of residuals to form (simple, standardized, combined); default simp
Method to use to make multiple comparisons between the means (tukey, regwmr, duncan, scheffe, fplsd, fulsd,
\begin{tabular}{|c|c|}
\hline & fpstudentizedlsd, fustudentizedlsd, bonferroni, sidak); default * i.e. none \\
\hline SAVE \(=\) ANOVA save structure & Specifies the analysis from which to save the results; default * i.e. most recent one \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline INFORMATION \(=\) string tokens & What to save (aovtable, covariates, effects, cbeffects, partialeffects, contrasts, means, semeans, sedmeans, lsdmeans, dfmeans, cbmeans, secbmeans, sedcbmeans, replications, fittedvalues, missingvalues, stratumvariances, \%cv, \\
\hline OUTFILENAME \(=\) texts & fixedcoefficients, randomcoefficients); must be set Name of the R (.rda) file to create for each set of information; must be set \\
\hline COLUMNNAMES \(=\) texts & Specifies names for the columns in the file; if this is not set, suitable names are chosen automatically \\
\hline EXIT \(=\) scalars & Records the exit status, 0 if the information was saved successfully, 1 otherwise \\
\hline
\end{tabular}

\section*{A2RESULTSUMMARY procedure}

Provides a summary of results from an analysis by A2WAY (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & \begin{tabular}{l} 
What to print (description, means, significant); default \\
desc, mean, sign
\end{tabular} \\
PSE \(=\) string tokens & Standard errors to be printed with the means (sed, \\
sedsummary, lsd, lsdsummary, dfmeans); default sed, \\
LSDLEVEL = scalar & dfme \\
& Significance level (\%) for least significant differences; default \\
SAVE = pointer & 5
\end{tabular}

\section*{No parameters}

\section*{A2WAY procedure}

Performs analysis of variance of a balanced or unbalanced design with up to two treatment factors (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

TREATMENTS \(=\) factors
BLOCKS \(=\) factor

COVARIATES \(=\) variates
FACTORIAL \(=\) scalar

FPROBABILITY \(=\) string token PLOT \(=\) string tokens

GRAPHICS \(=\) string token
COMBINATIONS \(=\) string token
ADJUSTMENT \(=\) string token
PSE \(=\) string tokens

Controls printed output from the analysis (aovtable, information, covariates, effects, residuals, means, \%cv, missingvalues); default aovt, mean
Defines either one or two treatment factors
Can specify a blocking factor e.g. for a randomized block design
Specifies any covariates
Can be set to 1 to fit only the main effects of the treatments factors; default 2 also fits their interaction
Probabilities for variance ratio (yes, no); default no Which residual plots to provide (fittedvalues, normal, halfnormal, histogram, absresidual); default fitt, norm, half, hist
Type of graphs (lineprinter, highresolution); default high
Factor combinations for which to form predicted means ( present, estimable); default esti
Type of adjustment to be made when predicting means
(marginal, equal, observed); default marg
Types of standard errors to be printed with the means
\begin{tabular}{ll} 
LSDLEVEL = scalar & \begin{tabular}{l} 
Significance level (\%) for least significant differences; default \\
\\
RMETHOD \(=\) string token
\end{tabular} \\
& \begin{tabular}{l} 
Type of residuals to save or display (simple, \\
standardized); default simp
\end{tabular} \\
MVINCLUDE \(=\) string token & Whether to include units with missing y-values when using \\
& \begin{tabular}{l} 
ANOVA (yvariate); default * i.e. not included
\end{tabular} \\
EXIT = scalar & Saves an exit code indicating the properties of the design \\
Parameters & \\
Y = variates & Each of these contains the data values for an analysis \\
RESIDUALS \(=\) variates & Saves the residuals from each analysis \\
FITTEDVALUES = variates & \begin{tabular}{l} 
Saves the fitted values from each analysis \\
SAVE = pointers
\end{tabular} \\
& \begin{tabular}{l} 
Save structure for each analysis (to use in A2DISPLAY or \\
A2KEEP)
\end{tabular}
\end{tabular}

\section*{\({ }^{\dagger}\) A\%VARIANCE procedure}

Calculates the percentage variance and sum of squares accounted for in the strata of an ANOVA analysis (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & Controls printed output \((\%\) variance, \%ss); default \%var \\
METHOD \(=\) string token & Which terms to take into account (treatments, \\
& blocksandtreatments); default trea \\
\(\%\) VARIANCE \(=\) pointer & Saves the percentage variance accounted for \\
\(\%\) SS \(=\) pointer & Saves the percentage sum of squares accounted for \\
SAVE \(=\) ANOVA save structure & \begin{tabular}{l} 
Save structure for the analysis; by default this will be the most \\
recent ANOVA
\end{tabular}
\end{tabular}

\section*{No parameters}

\section*{BACKTRANSFORM procedure}

Calculates back-transformed means with approximate standard errors and confidence intervals (V.M. Cave).

Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (description, means, backmeans); default desc, back \\
\hline PLOT \(=\) string tokens & The confidence intervals of the back-transformed means to plot (backtransformed, approximate, both); default * i.e. none \\
\hline TRANSFORMATION \(=\) string tokens & Transformation (identity, logarithm, log10, logit, squareroot, reciprocal, power, probit, complementaryloglog,logratio, angular, arcsinesquareoot, calculated); default iden (i.e. no transformation) \\
\hline CLOG \(=\) scalar & Constant \(c\) for the logarithm and log10 transformations, in form \(\log (\) mean \(+c)\); default 0 \\
\hline EXPONENT \(=\) scalar & Exponent for power transformation; default -2 \\
\hline KLOGRATIO \(=\) scalar & Parameter \(k\) for logratio transformation, in form \(\log (\) mean \(/(\) mean \(+k))\); default 1 \\
\hline \(\dagger \%\) SCALE \(=\) string token & Controls whether back-transformed logit, probit, angular, arcsine-squareroot and complementary log-log values are expressed on the percentage scale (yes, no); default no \\
\hline BACKTRANSFORMATION \(=\) expression & Expression, formed using argument Y , that defines the inverse of the transformation; must be specified when \\
\hline & TRANSFORMATION = calculated \\
\hline DERIVATIVE \(=\) expression & Expression, formed using argument Y , that defines the first derivative of the transformation; must be specified when TRANSFORMATION = calculated \\
\hline
\end{tabular}
\begin{tabular}{ll} 
CIPROBABILITY = scalar \\
DIRECTION = string tokens & \begin{tabular}{l} 
Probability for the confidence intervals; default 0.95 \\
Order in which the back-transformed means are plotted \\
(ordinal, ascending, descending); default ordi
\end{tabular} \\
USEPENS = string tokens & \begin{tabular}{l} 
Whether to use the current pen definitions for plotting; (yes, \\
no); default no
\end{tabular} \\
Window to use for plot; default 3
\end{tabular}

\section*{BAFFYMETRIX procedure}

Estimates expression values from an Affymetrix CED and CDF file (D.B. Baird).

\section*{Options}

METHOD \(=\) string token

TRANSFORMATION \(=\) string

\section*{Parameters}

CELFILES \(=\) texts
CDFFILE \(=\) texts
GSHFILE \(=\) texts

Method for calculating probe expression values (mas 4, mas 5, rma, rma2); default rma
How to transform the data (log2, none); default none when METHOD=mas 4, otherwise log2

Affymetrix CEL files
Associated CDF file
Genstat spreadsheet file containing the estimated expression values, together with the associated slide and probe information

\section*{BANK procedure}

Calculates the optimum aspect ratio for a graph (J. Ollerton \& S.A. Harding).

\section*{Option}
\begin{tabular}{ll} 
WINDOW \(=\) scalar & Window number; default 1 \\
Parameters & \\
\(\mathrm{Y}=\) variates & Vertical coordinates \\
\(\mathrm{X}=\) variates & Horizontal coordinates \\
ASPECTRATIO \(=\) scalars & Store the calculated aspect ratios
\end{tabular}

\section*{BARCHART directive}

Plots bar charts in high-resolution graphics.

\section*{Options}

TITLE \(=\) text
WINDOW = scalar
KEYWINDOW = scalar
BARWIDTH \(=\) scalar, variate or table

General title; default *
Window number for the bar charts; default 1
Window number for the key (zero for no key); default 2
Width(s) of the bars; default * sets equal widths to fill the xaxis

BARCOVERING \(=\) scalar

LABELS \(=\) text
APPEND \(=\) string token
YSCALING = string token

ORIENTATION \(=\) string token
OUTLINE = string token
PENOUTLINE = scalar
SCREEN \(=\) string token

KEYDESCRIPTION = text
ENDACTION \(=\) string token

\section*{Parameters}

DATA \(=\) tables or variates Heights of the bars in each bar chart
ERRORBARS \(=\) scalars, tables or variates
Heights of error bars plotted above the bars of each bar chart; default 0 i.e. none
LOWERERRORBARS \(=\) scalars, tables or variates
Heights of error bars plotted below the bars of each bar chart; if any of these is omitted, the corresponding setting of ERRORBARS is used as the default so that the error bars will have equal heights above and below the bars of the bar chart GROUPS \(=\) factors
\(\mathrm{PEN}=\) scalars, tables or variates Which factor of a 2-way table to use as the groups factor; default uses the second classifying factor
Pen number(s) for each bar chart; default * uses pens 2, 3, and so on for the successive structures specified by DATA
PENERRORBARS \(=\) scalars, tables or variates
Pen number(s) for the error bars; default - 11
DESCRIPTION \(=\) texts \(\quad\) Annotation for key

\section*{BASELINE procedure}

Estimates a baseline for a series of numbers whose minimum value is drifting. (D.B. Baird).

\section*{Options}

PLOT \(=\) string token \(\quad\) Whether to plot the series and the fitted baseline (baseline); default * i.e. no plot
BANDWIDTH \(=\) scalar \(\quad\) Bandwidth for the moving minimum; default 50
WINDOW = scalar \(\quad\) Window number for the plot; default 1
KEYWINDOW = scalar \(\quad\) Window for the key (zero for no key); default 2

\section*{Parameters}
\(\mathrm{Y}=\) variates \(\quad\) Series whose baseline is to be estimated
NEWY \(=\) variates \(\quad\) Saves the \(y\)-values corrected to a zero baseline
BASELINE \(=\) variates \(\quad\) Saves the estimated baseline
TITLE \(=\) text \(\quad\) Title for the plot

\section*{BASSESS directive}

Assesses potential splits for regression and classification trees.

\section*{Options}
\(\mathrm{Y}=\) variate or factor \(\quad\) Response variate for a regression tree, or factor specifying the groupings for a classification tree
SELECTED \(=\) dummy
Returns the identifier of x variate or factor used in the best
\(\left.\begin{array}{ll} & \begin{array}{l}\text { split }\end{array} \\
\text { TESTSPLIT = expression structure } \\
\text { Logical expression representing the best split } \\
\text { When SELECTED is a variate or a factor with ordered levels }\end{array}\right]\)\begin{tabular}{ll} 
When \\
this returns a scalar containing the boundary between the two \\
splits, when the SELECTED is a factor with unordered levels it \\
returns a variate containing the levels allocated to the first split
\end{tabular}

\section*{BBINOMIAL procedure}

Estimates the parameters of the beta binomial distribution (D.M. Smith).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & \begin{tabular}{l} 
Controls printed output (estimates, loglikelihood); \\
default esti
\end{tabular} \\
MAXCYCLE \(=\) scalar & Maximum number of iterations; default 50 \\
TOLERANCE \(=\) scalar & Convergence criterion; default \(10^{-5}\) \\
Parameters & \\
RBINOMIAL \(=\) variates & Numerator of binomial data \\
NBINOMIAL \(=\) variates & Denominator of binomial data or scalars \\
MU = scalars & Mean, expectation of underlying beta distribution \\
THETA \(=\) scalars & Shape-determining parameter of underlying beta distribution \\
SEMU = scalars & Standard error of mu \\
SETHETA = scalars & Standard error of theta \\
LOGLIKELIHOOD \(=\) scalars & Log likelihood \\
NCYCLES = scalars & Number of iterations \\
EXIT = scalars & Indicator of faults
\end{tabular}

\section*{BCDISPLAY procedure}

Displays a classification tree (R.W. Payne).

\section*{Option}

PRINT \(=\) string tokens

\section*{Parameter}

TREE \(=\) tree

Controls printed output (summary, details, indented, bracketed, labelleddiagram, numbereddiagram, graph); default * i.e. none

Tree to be displayed

\section*{BCFDISPLAY procedure}

Displays information about a random classification forest (R.W. Payne).

\section*{Option}
\({ }^{\dagger}\) PRINT \(=\) string tokens \(\quad\) Controls printed output (outofbagerror, confusion, importance, orderedimportance, idoutofbag); default * i.e. none

\section*{Parameter}

SAVE \(=\) pointers
Save structure from BCFOREST providing information about the random forest

\section*{BCFIDENTIFY procedure}

Identifies specimens using a random classification forest (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (identification); default * i.e. \\
none
\end{tabular} \\
†IDENTIFICATION = factor, variate or \begin{tabular}{l} 
scalar
\end{tabular} \\
VOTES = matrix & \begin{tabular}{l} 
Saves the identification of each specimen \\
Saves the number of terminal nodes reached by each group for \\
the specimens
\end{tabular} \\
SAVE = pointers & \begin{tabular}{l} 
Save structure from BCFOREST providing information about \\
the random forest
\end{tabular} \\
Parameters \\
X = variates or factors \\
VALUES = scalars, variates or texts & \begin{tabular}{l} 
Explanatory variables \\
Values to use for the explanatory variables; if these are unset \\
for any variable, its existing values are used
\end{tabular}
\end{tabular}

\section*{BCFOREST procedure}

Constructs a random classification forest (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline \({ }^{\dagger}\) PRINT \(=\) string tokens & Controls printed output (outofbagerror, confusion, importance, orderedimportance, idoutofbag, monitoring); default outo, conf, impo \\
\hline NTREES \(=\) scalar & Number of trees in the forest; no default - must be specified \\
\hline NXTRY \(=\) scalar & Number of \(x\) variables to select at random at each node from which to choose the x variable to use there; default is the square root of number of \(x\) variables \\
\hline NUNITSTRY \(=\) scalar & Number of units of the X variables to select at random to use in the construction of each tree; default is two thirds of the number of units \\
\hline METHOD \(=\) string token & Selection criterion to use when constructing the trees (Gini, MPI); default Gini \\
\hline GROUPS \(=\) factor & Groupings of the individuals to identify in the trees \\
\hline NSTOP \(=\) scalar & Number of individuals in a group at which to stop selecting tests; default 5 \\
\hline ANTIENDCUTFACTOR \(=\) string token & Adaptive anti-end-cut factor to use (classnumber, reciprocalentropy); default * i.e. none \\
\hline SEED \(=\) scalar & Seed for random numbers to select the NXTRY X-variables and NUNITSTRY units; default 0 \\
\hline OWNBSELECT \(=\) string token & Indicates whether or not your own version of the BSELECT procedure is to be used, as explained in the Method section (yes, no); default no \\
\hline OUTOFBAGERROR = scalar & Saves the "out-of-bag" error rate \\
\hline CONFUSION \(=\) matrix & Saves the confusion matrix \\
\hline \({ }^{\dagger}\) IDOUTOFBAG \(=\) scalar or variate & Saves "out-of-bag" identifications \\
\hline *VOTESOUTOFBAG \(=\) matrix & Saves "out-of-bag" votes \\
\hline SAVE \(=\) pointer & Saves details of the forest that has been constructed \\
\hline
\end{tabular}

\section*{Parameters}
\(\begin{array}{ll}\mathrm{X}=\text { factors } \text { or variates } & \text { X-variables available for constructing the tree } \\ \text { ORDERED }=\text { string tokens } & \text { Whether factor levels are ordered (yes, no); default no } \\ \text { IMPORTANCE }=\text { scalars } & \text { Saves the importance of each } \mathrm{x} \text {-variable }\end{array}\)

\section*{BCIDENTIFY procedure}

Identifies specimens using a classification tree (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Controls printed output (identification, transcript); if PRINT is unset in an interactive run BCIDENTIFY will ask what you want to print, in a batch run the default is iden
```

TREE = tree

``` Specifies the tree
IDENTIFICATION \(=\) text
Saves the identification of each specimen
TERMINALNODES \(=\) pointer
Saves the numbers of the terminal nodes reached by each specimen
PROBABILITIES \(=\) matrix

MVINCLUDE \(=\) string token

\section*{Parameters}
\(\mathrm{X}=\) variates or factors Specimen \(\times\) group matrix giving the probability that the specimens belong to each group
Whether to provide identifications for specimens with missing or unavailable values of the x -variables (explanatory); default expl

VALUES \(=\) scalars, variates or texts
Explanatory variables
Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

\section*{BCKEEP procedure}

Saves information from a classification tree (R.W. Payne).

\section*{No options}

\section*{Parameters}

TREE \(=\) trees
SUMMARY \(=\) variates
XVARIABLES \(=\) pointers

Tree from which the information is to be saved Saves summary information about each tree Saves the identifiers of the \(x\)-variables in each tree

\section*{BCLASSIFICATION procedure}

Constructs a classification tree (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

METHOD \(=\) string token

GROUPS \(=\) factor
TREE \(=\) tree
NSTOP \(=\) scalar

ANTIENDCUTFACTOR = string token

OWNBSELECT \(=\) string token

\section*{Parameter}
\(\mathrm{X}=\) factors or variates
ORDERED \(=\) string tokens

Controls printed output (summary, details, indented, bracketed, labelleddiagram, numbereddiagram, graph, monitoring); default * i.e. none Selection criterion to use when constructing the tree (Gini, MPI); default Gini
Groupings of the individuals in the tree
Saves the tree that has been constructed
Number of individuals in a group at which to stop selecting tests; default 5
Adaptive anti-end-cut factor to use (classnumber, reciprocalentropy); default * i.e. none
Indicates whether or not your own version of the BSELECT procedure is to be used, as explained in the Method section (yes, no); default no

X-variables available for constructing the tree Whether factor levels are ordered (yes, no); default no

\section*{BCONSTRUCT procedure}

Constructs a tree (R.W. Payne).

\section*{Option}

PRINT \(=\) string token

\section*{Parameters}

TREE \(=\) trees
DATA \(=\) identifiers

Whether to print monitoring information (monitoring); default * i.e. none

Saves the trees that have been constructed
Data available for constructing the trees

\section*{BCUT directive}

Cuts a tree at a defined node, discarding the nodes and information below it.

Option
RENUMBER \(=\) string token

\section*{Parameters}

TREE = trees
NODE \(=\) scalars
NEWTREE = trees

CUTTREE \(=\) trees
OLDNODES \(=\) variates

NEWNODES \(=\) variates

CUTNODES \(=\) variates

Whether or not to renumber the nodes of the tree (yes, no); default no

Trees to be cut
Node at which to cut each tree
New trees with the information cut; if unspecified, the new tree replaces the original tree
Tree formed from the branches cut from the original tree Mapping from old nodes to node numbers in a renumbered new tree (as positive numbers) or to nodes in the CUTTREE (as negative numbers)
Mapping from new node numbers in a renumbered tree to the original nodes
Mapping from node numbers in the CUTTREE tree to the original nodes

\section*{BCVALUES procedure}

Forms values for nodes of a classification tree (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline GROUPS \(=\) factor & Groupings of the observations in the data set \\
\hline TREE \(=\) tree & Tree for which predictions and accuracy values are to be formed \\
\hline REPLACE \(=\) string token & Whether to replace the values stored in the tree (yes, no); default no \\
\hline PREDICTION \(=\) pointer & New predictions for the nodes of the tree \\
\hline ACCURACY \(=\) pointer & New accuracy values for the nodes of the tree \\
\hline REPLICATION \(=\) pointer & New replication tables for the nodes of the tree \\
\hline Parameter & \\
\hline \(\mathrm{x}=\) factors or variates & Values of the factors or variates used in the tree for the new data set \\
\hline
\end{tabular}

\section*{BGIMPORT procedure}

Imports MCMC output in CODA format produced by WinBUGS or OpenBUGS (D.A. Murray).

\section*{Options}
\(\left.\begin{array}{ll}\text { INDEXFILE }=\text { text } & \text { Name of file containing index for output files } \\
\text { OUTPREFIX }=\text { text } \\
\text { WORKDIRECTORY }=\text { text } & \text { Prefix name for the output files } \\
\text { Working directory to use; default current Genstat working } \\
\text { directory }\end{array}\right]\)\begin{tabular}{l} 
Saves the names of the simulated nodes \\
NOUTFILES \(=\) text scalar \\
\begin{tabular}{l} 
Parameter \\
SIMULATIONS \(=\) pointers
\end{tabular} \\
Number of output files or chains to read; default 1
\end{tabular}

\section*{BGPLOT procedure}

Produces plots for output and diagnostics from MCMC simulations (D.A. Murray).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (summary); default * \\
\hline PLOT \(=\) string tokens & Controls the type of plot (trace, density, autocorrelation, gelmanrubin); default trac \\
\hline ARRANGEMENT \(=\) string tokens & Specifies whether to draw the plots individually or 4 to a page (single, multiple); default sing \\
\hline START \(=\) scalar & Start iteration number for plots \\
\hline END \(=\) scalar & End iteration number for plots \\
\hline MAXLAG \(=\) scalar & Maximum lag for autocorrelation plots; default 50 \\
\hline BANDWIDTH \(=\) scalar & The bandwidth value to be used for the density plots. \\
\hline GRMETHOD \(=\) scalar & Controls the method of the Gelman-Rubin diagnostic plot (gr, bgr); default bgr \\
\hline BINWIDTH \(=\) scalar & Number of values in each bin in the Gelman-Rubin plot; default 50 \\
\hline USEALLSAMPLES \(=t e x t\) & Whether to use all the samples for Gelman-Rubin plot, or to discard the first half of the observations (yes, no); default no \\
\hline Parameter & \\
\hline SIMULATIONS \(=\) pointers & List of pointers containing simulations, one for each Markov chain \\
\hline
\end{tabular}

\section*{BGRAPH procedure}

Plots a tree (R.W. Payne).

\section*{Option}

SIZE \(=\) scalar
Provides a multiplier by which to scale the node labels

\section*{Parameters}

TREE = trees
XTERMINAL \(=\) scalars or variates

Trees to be plotted
X-spacing (scalar) or x -values (variate) for the terminal nodes of each tree; default 2

\section*{BGROW directive}

Adds new branches to a node of a tree.

\section*{No options}

\section*{Parameters}
\begin{tabular}{ll} 
TREE \(=\) trees & Trees to be extended \\
NODE \(=\) scalars & Node at which to extend each tree \\
NBRANCHES \(=\) scalars & Number of branches to add to each node; default 2 \\
POSITION \(=\) scalars & Position at which to add the branches to each node; default * \\
NEWNODES \(=\) variates & i.e. after all the current braches from the node
\end{tabular}

\section*{BGXGENSTAT procedure}

Runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts (D.A. Murray).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (bugslog, nodestatistics, dic); \\
default node
\end{tabular} \\
WPATH = text & \begin{tabular}{l} 
Path specifying the location of the WinBUGS executable \\
Name of the WinBUGS or OpenBUGS executable to run; \\
default 'WinBUGS14. exe'
\end{tabular} \\
MODELFILE \(=\) text & \begin{tabular}{l} 
Name of a file containing the model in WinBUGS code; the \\
file should have an extension of .txt
\end{tabular} \\
DATA = pointer & A pointer to the data used by the WinBUGS model \\
IDATANAMES \(=\) text & A text containing the names for the data
\end{tabular}
```

MONITOR = text
NCHAINS = scalar
NBURNIN = scalar
NSAMPLES = scalar
THIN = scalar
INAMES = text
DIC = string token
SEED = scalar

```
WORKDIRECTORY \(=\) texts
BUGS \(=\) string token
VIEWBUGS \(=\) string token
CONTINUE = string token
CODA \(=\) string token
\(\mathrm{WLOG}=\) text
Parameters
INITIAL \(=\) pointers
SIMULATIONS \(=\) pointers

The names of the variables that are to monitored Number of Markov chains; default 3 Length of burn-in per chain; default 1000 Number of samples to run after burn-in; default 5000
Thinning rate where the samples from every kth iteration are stored; default 1
The names for the initial parameters
Whether to calculate the deviance information criterion (yes, no); default no
Specifies a seed to use for the random number generator in BUGS; default uses a pseudo-random number generated from the uniform distribution
Working directory to use; default current Genstat working directory
Whether to use WinBUGS or OpenBUGS (winbugs, openbugs); default winb
Whether to leave WinBUGS open after the run (yes, no); default no
Whether to continue Genstat server without waiting for
WinBUGS to complete; (yes, no); default no
Whether to save CODA files (yes, no); default no
Name of file to save log from WinBUGS or OpenBUGS
List of pointers, one for each set of initial values for each Markov chain
List of pointers to save simulations, one for each Markov chain

\section*{BIDENTIFY directive}

Identifies specimens using a tree (R.W. Payne).

\section*{Options}
```

TREE = tree
TESTELEMENT = scalar
TESTELEMENT $=$ scalar

```

Specifies the tree
Specifies which element of the pointer of information stored at each node of the tree contains the test to be done there to determine which subsequent branch to take
TERMINALNODES \(=\) scalar, variate or pointer
Scalar or variate saving the number or numbers of the terminal nodes reached by a single specimen, or pointer of scalars or variates saving the numbers of the terminal nodes reached by several specimens

\section*{Parameters}
\(\mathrm{X}=\) factors or variates
Variables involved in the tests performed in the tree
VALUES \(=\) scalars, variates or texts

\section*{'BINGO procedure}

Can be used to set up and then play a game of bingo (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & What to print (cards, mycard, scores, status); default * \\
i.e. nothing \\
PLOT \(=\) string tokens & What to plot (cards, mycard); default * i.e. nothing \\
METHOD = string token & Whether to form cards and/or play (cards, game, \\
& automat icgame); default game \\
NBALLS \(=\) scalar & Number of balls, 40, 80 or 90; default 90 \\
NCARDS = scalar & Number of cards to form; default 5 \\
SEED = scalar & Seed for random numbers; default * \\
CARDS = pointer & Saves or supplies the cards \\
MYCARD = scalar & Number of the card to view during the game
\end{tabular}

SPREADSHEET \(=\) string token
OUTFILENAME \(=\) text

What to put the cards into a spreadsheet (cards); default * Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create to contain the cards

\section*{No parameters}

\section*{BIPLOT procedure}

Produces a biplot from a set of variates (S.A. Harding).

\section*{Options}

PRINT \(=\) string tokens

GRAPHICS \(=\) string token

WINDOW \(=\) scalar
SCREEN = string token

METHOD \(=\) string token

STANDARDIZE \(=\) string tokens

LABELS \(=\) factor or text
\(\mathrm{VLABELS}=\) factor or text
NDIMENSIONS \(=\) scalar

\section*{Parameters}

DATA \(=\) pointers
COORDINATES \(=\) matrices
VCOORDINATES \(=\) matrices

Printed output from the analysis (singular, scores); default * i.e. no output

What sort of graphics to use (lineprinter, highresolution); default high Window number for the graph; default 3 Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea Type of analysis required (principalcomponent, variate, diagnostic); default prin
Whether to centre the configurations (at the origin), and/or to normalize them (to unit sum of squares) prior to analysis (centre, normalize); default cent, norm
Labels to identify the points for the individuals
Labels to identify the points for the variates
Number of dimensions to save with COORDINATES and vCOORDINATES; default 2

Each pointer contains a set of variates to be analysed Used to store the scores for the individuals
Used to store the scores for the variates

\section*{BJESTIMATE procedure}

Fits an ARIMA model, with forecast and residual checks (G. Tunnicliffe Wilson \& S.J. Welham). Options
\begin{tabular}{ll} 
PRINT \(=\) string tokens & \begin{tabular}{l} 
Controls printed output (description, monitoring, \\
model); default desc, moni, mode
\end{tabular} \\
GRAPHICS \(=\) string token & \begin{tabular}{l} 
What type of graphics to use (lineprinter, \\
highresolution); default high
\end{tabular} \\
WINDOWS = scalar or variate & \begin{tabular}{l} 
Windows to be used for residual plots: a scalar N indicates that \\
plots are to be produced on separate pages in window N (as \\
currently defined), whereas a variate specifies four separate \\
windows to be redefined (within the procedure) for plotting \\
four graphs on one page; default 1
\end{tabular} \\
The three pens to be used (after being defined appropriately) \\
for drawing the plots; default ! (1, 2, 3)
\end{tabular}

Variate to save the residuals from fitting the model to each series

\section*{BJFORECAST procedure}

Plots forecasts of a time series using a previously fitted ARIMA (G. Tunnicliffe Wilson \& S.J. Welham).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PROBABILITY \(=\) scalar & Probability value used for forecast limits; default 0.9 \\
\hline GRAPHICS \(=\) string token & What type of graphics to use (lineprinter, highresolution); default high \\
\hline WINDOW = scalar & Window to be used for plotting; default 1 \\
\hline PENS \(=\) variate & The three pens to be used (after being defined appropriately) for drawing the plots; default! \((1,2,3)\) \\
\hline Parameters & \\
\hline SERIES = variates & Variates holding the time series to be used for producing forecasts \\
\hline LENGTH \(=\) scalars or variates & Specifies the units to be used from each series: a scalar \(N\) specifies that the first N units of the series are to be used, a variate of length 2 gives the time index of the first and last units of the subseries to be used; by default the whole series is used \\
\hline TSM \(=T S M S\) & ARIMA model to be used for forecasting \\
\hline TIMERANGE \(=\) variates & The first and second elements of each variate specify respectively the first and last time index, relative to the whole series, of the range to be forecast \\
\hline ORIGIN \(=\) scalars & The time of the latest observation to be used to construct forecasts with increasing leadtimes for each series; if ORIGIN is unset, the default is to take the latest time point in the series prior to the range given by TIMERANGE, unless parameter LEADTIME is set, in which case fixed leadtime forecasts are constructed \\
\hline LEADTIME \(=\) scalars & The fixed leadtime to be used to construct forecasts if ORIGIN is unset \\
\hline FORECAST \(=\) variates & Save the values of the constructed forecasts \\
\hline LOWER \(=\) variates & Save the lower limits of the forecasts \\
\hline UPPER \(=\) variates & Save the upper limits of the forecasts \\
\hline \(\mathrm{SFE}=\) variates & Save the standardized forecast errors, available only for LEADTIME=1 \\
\hline
\end{tabular}

\section*{BJIDENTIFY procedure}

Displays time series statistics useful for ARIMA model selection (G. Tunnicliffe Wilson \& S.J. Welham).

\section*{Options}

PRINT = string token
GRAPHICS \(=\) string token
WINDOWS \(=\) scalar or variate

PENS \(=\) variate

\section*{Parameters}

SERIES \(=\) variates

LENGTH \(=\) scalars or variates

Controls printed output (description); default desc What type of graphics to use (lineprinter, highresolution); default high Windows to be used for the plots: a scalar N indicates that plots are to be produced on separate pages in window N (as currently defined), whereas a variate specifies four separate windows to be redefined (within the procedure) for plotting four graphs on one page; default 1
The three pens to be used (after being defined appropriately) for drawing the plots; default ! \((1,2,3)\)

Variates holding the time series for which the statistics are to be produced
Specifies the units to be used from each series: a scalar N
indicates that the first N units of the series are to be used, a variate of length 2 gives the index of the first and last units of the subseries to be used; by default the whole series is used

\section*{BJOIN directive}

Extends a tree by joining another tree to a terminal node.

\section*{No options}

\section*{Parameters}
TREE \(=\) trees \(\quad\) Trees to be extended

NODE \(=\) scalars \(\quad\) Node at which to join the tree
JOINTREE \(=\) trees
Trees to be joined onto the tree
NEWNODES \(=\) variates
New node numbers allocated to each node in JOintree in the new tree

\section*{BKDISPLAY procedure}

Displays an identification key (R.W. Payne).

\section*{Option}

PRINT \(=\) string tokens \(\quad\) Controls printed output (indented, bracketed, diagram, graph); default * i.e. none

\section*{Parameter}

KEY = tree
Key to be displayed

\section*{BKEY procedure}

Constructs an identification key (R.W. Payne).

Options
\(\left.\begin{array}{ll}\text { PRINT }=\text { string tokens } & \begin{array}{l}\text { Controls printed output (indented, bracketed, diagram, } \\
\text { graph); default * i.e. none }\end{array} \\
\text { TAXONNAMES }=\text { text } \\
\text { Names of the taxa in the key; default * uses textual versions of } \\
\text { the numbers 1, 2 onwards }\end{array}\right]\)\begin{tabular}{l} 
Groupings of the taxa, if the key is to identify the group of a \\
specimen rather than its taxon \\
Criterion to use to select the character to use at each node of \\
the key (CME, CMV, GME); default GME when GROUPS is set, \\
otherwise CME
\end{tabular} graph); default * i.e. none
Names of the taxa in the key; default * uses textual versions of the numbers 1,2 onwards
Groupings of the taxa, if the key is to identify the group of a specimen rather than its taxon
Criterion to use to select the character to use at each node of the key (CME, CMV, GME); default GME when GROUPS is set,

Controls whether or not to use partial separation; (yes, no) default no
Saves the key

Cost of each character; default 1

\section*{BKIDENTIFY procedure}

Identifies specimens using a key (R.W. Payne).
Options
PRINT \(=\) string tokens
\(\mathrm{KEY}=\) tree
IDENTIFICATION \(=\) variate
TERMINALNODE = variate

\section*{Parameter}

CHARACTER \(=\) factors
Controls printed output (identification, transcript); if PRINT is unset in an interactive BKIDENTIFY will ask what you want to print, in a batch run the default is iden
Specifies the key
Saves the identification of each specimen
Saves numbers of the terminal nodes reached by the specimens
Character values of the specimens

\section*{BKKEEP procedure}

Saves information from an identification key (R.W. Payne).

\section*{No options}

\section*{Parameters}

KEY \(=\) trees \(\quad\) Identification key from which the information is to be saved
SUMMARY \(=\) variates
Saves summary information about each key
CHARACTERS = pointers
Saves the identifiers of the characters in each key

\section*{BLANDALTMAN procedure}

Produces Bland-Altman plots to assess the agreement between two variates (A.R.G. McLachlan). Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (summary, estimates); default * i.e. none \\
\hline PLOT \(=\) string tokens & What to plot (blandaltman, normal); default blan \\
\hline DMETHOD \(=\) string token & Method for calculating differences (differences, ratios, \%differences, percentages); default diff \\
\hline LMETHOD \(=\) string token & Method for calculating limits of agreement when regression is not used (normaldistribution, percentile); default norm \\
\hline REGMETHOD \(=\) string tokens & Whether to use regression to calculate bias (i.e. mean) or limits (bias, mean, limits, auto); default * i.e. none \\
\hline CIPROBABILITY \(=\) scalar & Probability level for limits of agreement, confidence intervals and percentiles; default 0.95 \\
\hline LOWERLIMIT \(=\) scalar & Lower limit of agreement to use instead of a calculated limit \\
\hline UPPERLIMIT \(=\) scalar & Upper limit of agreement to use instead of a calculated limit \\
\hline ALPHALEVEL \(=\) scalar & Critical probability level used for regression when \\
\hline & REGMETHOD=auto; default 0.05 \\
\hline XBLANDALTMAN \(=\) string token & X -values to use for the Bland-Altman plot (mean, Y1, Y2); default mean \\
\hline \multicolumn{2}{|l|}{REFERENCELINECHOICE \(=\) string tokens} \\
\hline & Reference lines to plot on a Bland-Altman plot (bias, mean, limits, zero); default bias \\
\hline GRAPHICS \(=\) string token & Type of graph (highresolution, lineprinter); default high \\
\hline WINDOW = scalar & Window for the plot; default 3 \\
\hline SCREEN \(=\) string token & Whether to clear or keep the screen before displaying the plot (keep, clear); default clea \\
\hline PENZEROLINE \(=\) scalar & Pen to use for the zero reference line \\
\hline PENMEANLINE \(=\) scalar & Pen to use for the mean reference line \\
\hline PENLIMITLINES \(=\) scalar & Pen to use for the reference lines showing limits of agreement \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y} 1=\) variates & First variate \\
\hline \(\mathrm{Y} 2=\) variates & Second variate \\
\hline LABELS \(=\) texts & Labels for individual points on the Bland-Altman plot \\
\hline MEANS \(=\) variates & Saves the means \\
\hline DIFFERENCES \(=\) variates & Saves the differences, ratios or \% differences (according to the DMETHOD option) \\
\hline TITLE \(=\) texts & Title for the Bland-Altman plot \\
\hline YTITLE \(=\) texts & Title for y -axis of the Bland-Altman plot \\
\hline XTITLE \(=\) texts & Title for x -axis of the Bland-Altman plot \\
\hline PEN \(=\) scalars, variates or factors & Pen for plotting points on the Bland-Altman plot; default 1 \\
\hline
\end{tabular}

\section*{BLOCKSTRUCTURE directive}

Defines the blocking structure of the design and hence the strata and the error terms.

\section*{No options}

Parameter
formula
Block model (defines the strata or error terms for subsequent ANOVA statements)

\section*{BNTEST procedure}

Calculates one- and two-sample binomial tests (D.A. Murray).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT = string tokens & Controls printed output (test, summary, confidence); default test, summ, conf \\
\hline \(\mathrm{METHOD}=\) string token & Type of test required (twosided, greaterthan, lessthan); default twos \\
\hline TEST \(=\) string token & Form of the test for one-sample test (exact, normalapproximation) or for two-sample (normalapproximation, oddsratio); default norm \\
\hline CIPROBABILITY = scalar & The probability level for the confidence interval; default 0.95 \\
\hline NULL \(=\) scalar & The value of the probability of success under the null hypothesis for the one-sample test; default 0.5 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{R} 1=\) scalars & Number of successes in the first sample \\
\hline \(\mathrm{N} 1=\) scalars & Sample size of the first sample \\
\hline \(\mathrm{R} 2=\) scalars & Number of successes in the second sample \\
\hline \(\mathrm{N} 2=\) scalars & Sample size of the second sample \\
\hline STATISTIC = scalars & Saves the Normal approximation from the one-sample or twosample tests, or the odds ratio \\
\hline PROBABILITY \(=\) scalars & Saves the probability value from the one-sample or twosample tests \\
\hline LOWER = scalars & Saves the lower limit of the confidence interval \\
\hline UPPER \(=\) scalars & Saves the upper limit of the confidence interval \\
\hline
\end{tabular}

\section*{BOOTSTRAP procedure}

Produces bootstrapped estimates, standard errors and distributions (P.W. Lane).

Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (estimates, graphs, vcovariance); default esti \\
\hline \(\mathrm{DATA}=\) variates, factors or texts & Data vectors from which the statistics are to be calculated; no default \\
\hline AUXILIARY = pointers & Further sets of data vectors, each set to be resampled independently \\
\hline ANCILLARY \(=\) any type & Other relevant information needed to calculate the statistics \\
\hline NTIMES = scalar & Number of times to resample; default 100 \\
\hline SEED = scalar & Seed for random number generator; default continue from previous generation or use system clock \\
\hline GRAPHICS \(=\) string token & Type of graphics (lineprinter, highresolution); default high \\
\hline PROBABILITY = scalar & Probability level for confidence interval; default 0.95 \\
\hline \(\mathrm{METHOD}=\) string token & What type of bootstrapping to use (random, balance, permute); default rand \\
\hline BLOCKSTRUCTURE \(=\) formula & Block structure to use for random permutations \\
\hline CIMETHOD \(=\) string token & What type of confidence intervals to provide (bca, percentile); default perc \\
\hline VCOVARIANCE \(=\) symmetric matrix & Saves the variance-covariance matrix of the statistics \\
\hline Parameters & \\
\hline LABEL \(=\) texts & Texts, each containing a single line, to label the statistics; \\
\hline
\end{tabular}

\section*{Parameters}

LABEL = texts

Texts, each containing a single line, to label the statistics;
default 'Statistic'
SCREEN = string tokens
```

```
```

ESTIMATE = scalars

```
```

ESTIMATE = scalars
SE=scalars
SE=scalars
LOWER = scalars
LOWER = scalars
UPPER = scalars
UPPER = scalars
STATISTIC = variates
STATISTIC = variates
WINDOW = scalars

```
WINDOW = scalars
```

Saves the bootstrap mean for each statistic
Saves the bootstrap standard error for each statistic
Saves the bootstrap lower confidence limit for each statistic
Saves the bootstrap upper confidence limit for each statistic
Saves the series of bootstrap estimates of each statistic
Graphical window to use for displaying bootstrap distribution for each statistic; default 4
Whether to clear graphical frame or draw on top (clear, keep); default clea

BOXPLOT procedure

Draws box-and-whisker diagrams or schematic plots (P.W. Lane \& S.D. Langton).

Options

GRAPHICS $=$ string token	What type of graphics to use (highresolution, lineprinter); default high
TITLE $=$ text	Title for diagram; default *
AXISTITLE $=$ text	Title for axis representing data values; default *
WINDOW = scalar	Window in which to draw a high-resolution plot; default 4
ORIENTATION $=$ string token	Orientation of plots (horizontal, vertical, across, down); default vert
YORIENTATION $=$ string token	Direction of the y-axis for horizontal plots (reverse, normal); default reve
SCREEN $=$ string token	Whether to clear screen before a high-resolution plot (clear, keep); default clea
METHOD $=$ string token	Type of representation of data in a high-resolution plot (boxandwhisker, schematic); default boxa
BOXTITLE $=$ text	Title for axis representing different variates or groups; default
BOXWIDTH $=$ string token	Whether to relate box width to size of sample in highresolution plot (fixed, variable); default fixe
WHISKER $=$ number	Linestyle for whiskers ($0 . . .10$); default 1
BAR\% = scalar	Size of bar at the end of the whiskers, as a percentage of the box-width; default 0 (i.e. no bar)
WIDTH\% = scalar	Width of the boxes, expressed as a percentage of the default width; default 100
Parameters	
DATA $=$ variates	Data to be summarized; no default
GROUPS $=$ factor	Factor to divide values of a single variate into groups; default
BOXLABELS $=$ texts	Labels for individual boxes; default *, i.e. identifiers of variates or labels or levels of factor
UNITLABELS $=$ texts	Labels for extreme points in schematic plot; default is to use unit labels
BOXPOSITIONS $=$ variates	Positions of the boxes on the appropriate axis; default defines positions in an equal spacing

BPCONVERT procedure

Converts bit patterns between integers, pointers of set bits and textual descriptions (R.W. Payne).

Options

```
PRINT = string token
BITS = text, variate or pointer
SEPARATOR = string
```


Parameters

```
DATA \(=\) scalars, texts or pointers \(\mathrm{BP}=\) scalars
```

Controls printed output (description); default desc Labels for the individual bits; default ! (1...31)
Separator between the bit labels in the description; default '. '
Bit patterns to convert
Bit patterns as integers

CONTENTS = pointers
DESCRIPTION $=$ texts

Bits that are set in each bit pattern
Textual description of each bit pattern

BPRINT procedure

Displays a tree (R.W. Payne).

Option

PRINT $=$ string tokens \quad Controls printed output (indented, bracketed, labelleddiagram, numbereddiagram); default inde

Parameter

TREE $=$ trees \quad Trees to be displayed

BPRUNE procedure

Prunes a tree using minimal cost complexity (R.W. Payne).

Option

PRINT $=$ string tokens \quad Controls printed output (graph, table, monitoring); default tabl

Parameters

TREE $=$ trees \quad Trees to be pruned
ACCURACY $=$ pointers
NEWTREES = pointers
RTPRUNED $=$ variates
Accuracy values for the nodes of each tree; default is to use those stored with the tree
Saves the trees generated during the pruning of each tree
NTERMINAL $=$ variates

Number of terminal nodes in the pruned trees of each tree

BRDISPLAY procedure

Displays a regression tree (R.W. Payne).
Option
PRINT $=$ string tokens \quad Controls printed output (summary, details, indented, bracketed, labelleddiagram, numbereddiagram, graph); default * i.e. none

Parameter

TREE $=$ tree
Tree to be displayed

BREAK directive

Suspends execution of the statements in the current channel or control structure and takes subsequent statements from the channel specified.

Option

CHANNEL $=$ scalar \quad Channel number; default 1

Parameter

expression
Logical expression controlling whether or not the break takes place

BREGRESSION procedure

Constructs a regression tree (R.W. Payne).

Options

PRINT $=$ string tokens
$\mathrm{Y}=$ variate
TREE $=$ tree
MSLIMIT $=$ scalar
NSTOP $=$ scalar
OWNBSELECT $=$ string token

Controls printed output (summary, details, indented, bracketed, labelleddiagram, numbereddiagram, graph, monitoring); default * i.e. none
Response variate for the regression
Saves the tree that has been constructed
Limit on the mean square of the observations at a node at which to stop making splits; default 0
Specifies the number of observations at a node at which to stop making splits; default 1
Indicates whether or not your own version of the BSELECT
procedure is to be used, as explained in the Method section (yes, no); default no

Parameter

$\mathrm{X}=$ variates or factors
ORDERED $=$ string tokens

Independent variables available for constructing the tree Whether factor levels are ordered (yes, no); default no

BRFDISPLAY procedure

Displays information about a random regression forest (R.W. Payne).

Option

PRINT $=$ string tokens \quad Controls printed output (outofbagerror, youtofbagestimates, importance orderedimportance); default * i.e. none

Parameter

SAVE $=$ pointers
Save structure from BRFOREST providing information about the random forest

BRFOREST procedure

Constructs a random regression forest (R.W. Payne).

Options

PRINT $=$ string tokens	```Controls printed output (outofbagerror, youtofbagestimates,importance, orderedimportance, monitoring); default outo, impo```
$\mathrm{Y}=$ variate	Response variate for the regression
NTREES = scalar	Number of trees in the forest; no default - must be specified
NXTRY = scalar	Number of x variables to select at random at each node from which to choose the x variable to use there; default is the square root of number of x variables
NUNITSTRY $=$ scalar	Number of units of the X variables to select at random to use in the construction of each tree; default is two thirds of the number of units
MSLIMIT $=$ scalar	Limit on the mean square of the observations at a node at which to stop making splits; default 0
$\mathrm{NSTOP}=$ scalar	Specifies the number of observations at a node at which to stop making splits; default 1
SEED $=$ scalar	Seed for random numbers to select the NXTRY X-variables and NUMITSTRY units; default 0
OWNBSELECT $=$ string token	Indicates whether or not your own version of the BSELECT procedure is to be used, as explained in the Method section (yes, no); default no
OUTOFBAGERROR = string token	Saves the "out-of-bag" error rate
YOUTOFBAGESTIMATES = variate	Saves the "out-of-bag" estimates of Y
SAVE = pointer	Saves details of the forest that has been constructed
Parameters	
$\mathrm{X}=$ factors or variates	X-variables available for constructing the tree
ORDERED $=$ string tokens	Whether factor levels are ordered (yes, no); default no
IMPORTANCE $=$ scalars	Saves the importance of each x -variable

BRFPREDICT procedure

Makes predictions using a random regression forest (R.W. Payne).

Options

PRINT = string token Controls printed output (predictions); default pred
PREDICTIONS $=$ variate
SAVE $=$ pointer

Parameters

$\mathrm{x}=$ variates or factors

Saves the prediction for the observations
Save structure from BRFOREST providing information about the random forest

Explanatory variables

VALUES $=$ scalars, variates or texts

Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

BRKEEP procedure

Saves information from a regression tree (R.W. Payne).

No options

Parameters

TREE = trees
SUMMARY $=$ variates
XVARIABLES $=$ pointers

Tree from which the information is to be saved Saves summary information about each tree Saves the identifiers of the x -variables in each tree

BRPREDICT procedure

Makes predictions using a regression tree (R.W. Payne).

Options

PRINT $=$ string tokens	Controls printed output (prediction, transcript); if PRINT is unset in an interactive run BRPREDICT will ask what you want to print, in a batch run the default is pred
TREE $=$ tree	Specifies the tree
PREDICTIONS $=$ variate	Saves the prediction for the observations
TERMINALNODES $=$ pointer	Saves the numbers of the terminal nodes from which each prediction was obtained
MVINCLUDE $=$ string token	Whether to provide predictions for units with missing or unavailable values of the x-variables (explanatory); default expl
Parameters	
$\mathrm{X}=$ variates or factors	Explanatory variables
VALUES $=$ scalars, variates or texts	Values to use for the explanatory variables; if these are unset for any variable, its existing values are used

BRVALUES procedure

Forms values for nodes of a regression tree (R.W. Payne).

Options

$\mathrm{Y}=$ variate \quad Values of the response variate for the new data set
TREE $=$ tree \quad Tree for which predictions and accuracy values are to be formed
REPLACE $=$ string token
PREDICTION $=$ pointer
Whether to replace the values stored in the tree (yes, no); default no

New predictions for
ACCURACY = pointer \quad New accuracy values for the nodes of the tree
NOBSERVATIONS = pointer New numbers of observarions for the nodes of the tree

Parameter

$\mathrm{x}=$ variates \quad Values of the x -variates for the new data set

CABIPLOT procedure

Plots results from correspondence analysis or multiple correspondence analysis (A.I. Glaser).

Options

```
DIMENSIONS = scalars
PLOT = string tokens
ROWSCALING = string token
COLSCALING = string token
```

Two numbers specifying which axes of the ordinations to plot; default 1,2
Which scores to plot (rowscores, rowactive, rowpassive, colscores, colactive, colpassive);
default rows, cols for correspondence analysis and cols for multiple correspondence analysis
Scaling to use for row coordinates (principal, standard, mass, sqrtmass); default prin
Scaling to use for column coordinates (principal, standard, mass, sqrtmass); default prin

COLOURMETHOD $=$ string tokens	Whether colour of symbol should show level of inertia of rows or columns (rowinertia, colinertia); default *
SIZEMETHOD $=$ string tokens	Whether size of symbol should show row or column masses (rowmass, colmass); default *
FACCOLOURS $=$ text, variate or scalar	Specifies a colour or colours for the factors in a multiple correspondence analysis; if this is unset, a different colour is selected automatically for every factor
WINDOW = scalar	Which graphical window to use; default 1
KEYWINDOW = scalar	Graphical window for the key
SAVE $=$ pointer	Supplies results from a analysis by CORANALYSIS or MCORANALYSIS; default uses the most recent analysis
Parameters	
TITLE $=$ texts	Titles for the plot
LMROWVARIABLES $=$ string tokens	How to label the row scores (identifiers, labels, none, numbers); default labe if LROWVARIABLES is set, otherwise iden
LMCOLVARIABLES $=$ string tokens	How to label the column scores (identifiers, labels, none, numbers); default labe if LCOLVARIABLES is set, otherwise iden
LROWVARIABLES $=$ texts	Labels for row variables
LCOLVARIABLES $=$ texts	Labels for column variables
LSPECIES $=$ texts	Labels for species scores
LSITES $=$ texts	Labels for site scores

CALCULATE directive

Calculates numerical values for data structures.

Options

PRINT = string token ZDZ $=$ string token	Printed output required (summary); default * i.e. no printing Value to be given to zero divided by zero (missing, zero); default miss
TOLERANCE = scalar	If the scalar is non missing, this defines the smallest non-zero number; otherwise it accesses the default value, which is defined automatically for the computer concerned
SEED = scalar	
Seed to use for any random number generation during the	
calculation; default 0	
If the calculation has a list of structures before the assignment	

Parameter

expression
Expression defining the calculations to be performed

CALLS directive

Lists library procedures called by a procedure.

No options

Parameter
identifiers Names of the called procedures

CANCORRELATION procedure

Does canonical correlation analysis (P.G.N. Digby).

Option

PRINT $=$ string tokens
Printed output from the analysis (correlations, pcoeff, qcoeff, pscores, qscores); default * i.e. no output

Parameters

PVARIATES $=$ pointers \quad Pointer to P-set of variates to be analysed
QVARIATES $=$ pointers \quad Pointer to Q-set of variates to be analysed
CORRELATIONS $=$ diagonal matrices
PCOEFF $=$ matrices
QCOEFF $=$ matrices
PSCORES = matrices
Stores the canonical correlations from each analysis
Stores the coefficients for the P-set of variates
Stores the coefficients for the Q -set of variates
Stores the unit scores from the P-set of variates
QSCORES $=$ matrices

CAPTION directive

Prints captions in standardized formats.

Option

PFIRST $=$ string tokens \quad What to print first (dots, page, outprint); default *i.e. none

Parameters

TEXT $=$ texts \quad Contents of the captions
STYLE = string tokens

Style for each caption (plaintext, stress, minor, major, meta, note, status); default plai

CASE directive

Introduces a "multiple-selection" control structure.

No options

Parameter
expression
Expression which is evaluated to an integer, indicating which set of statements to execute

CASSOCIATION procedure

Calculates measures of association for circular data (S.J. Clark).

Options

PRINT $=$ string token	
NRANDOMIZATIONS $=$ scalar	What to print (tests); default test
ASCALE $=$ string token	Number of randomizations to use in the randomization tests; default 999
Parameters	Units of the circular variables (degrees, radians); default degr
Y = variates	Response variable
X variates	CTYPE $=$ string tokens
SEED $=$ variates	Type of response variable (circular, linear); default circ Vraiete of length two, firstly to supply a seed for the randomization tests and secondly to supply a seed to use for randomly-selecting sets of data points; default $!(0,0)$
STATISTICS $=$ variates	Saves the test statistics

CATALOGUE directive

Displays the contents of a backing-store file.
Options
\(\left.$$
\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { What to print (subfiles, structures); default subf, } \\
\text { stru }\end{array}
$$

CHANNEL = scalar \& Channel number of the backing-store file; default 0, i.e. the

workfile\end{array}\right]\)| How to interpret the list of subfiles (inclusive, exclusive, |
| :--- |
| all); default incl |

To save the identifiers of the structures in each subfile

CATRENDTEST procedure

Calculates the Cochran-Armitage chi-square test for trend (A.I. Glaser).

Option

```
PRINT = string token
```

Parameters
DATA $=$ tables
TREND $=$ factors
CHISQUARE $=$ scalars
PROBABILITY = scalars
DEVCHISQUARE $=$ scalars
DEVDF $=$ scalars
DEVPROBABILITY $=$ scalars

Output required (test); default test
Table containing observed data
Dimension of the table representing the trend; can default if only one dimension of size greater than 2
Saves the chi-square for trend Saves the probability value for trend
Saves the chi-square for deviations from a linear trend Saves the degrees of freedom for the chi-square for deviations Saves the probability value for the chi-square for deviations

CCA procedure

Performs canonical correspondence analysis (A.I. Glaser).

Options

PRINT $=$ string tokens	Controls printed output (variance, loadings, roots, evalues, evectors, speciesscores, sitescores, fitsitescores, correlations, fitcorrelations); default vari, root
NROOTS $=$ scalar	Number of eigenvalues and eigenvectors to include in output; default * takes all the non-zero eigenvalues
NORMALIZE $=$ string tokens	Whether to normalize the Y, X and/or Z variates to have unit sums-of-squares before the analysis ($\mathrm{x}, \mathrm{y}, \mathrm{z}$); default x, z
SCALING $=$ string tokens	Whether to scale for species or site score (species, site); default spec
TOLERANCE $=$ scalar	Tolerance for detecting non-zero eigenvalues; default 10^{-5}
Parameters	
$\mathrm{Y}=$ pointers	Each pointer defines a set of response variates to be modelled
$\mathrm{X}=$ pointers	Explanatory variates or factors to use for for each pointer of y variates
$\mathrm{Z}=$ pointers	Conditioning variates to remove ("partial out") before the analysis
$L R V=L R V S$	LRV structure from each analysis, storing the eigenvectors, eigenvalues and total variance
SPECIESSCORES $=$ matrices	Save the "species scores" from each analysis
SITESCORES $=$ matrices	Save the "site scores" from each analysis
FITSITESCORES = matrices	Save the fitted "site scores" from each analysis
CORRELATIONS $=$ matrices	Saves the correlations between the site scores and the x variates
FITCORRELATIONS = matrices	Saves the correlations between the fitted site scores and the xvariates
SAVE $=$ pointers	Save structure which provides information for use in

CCOMPARE procedure

Tests whether samples from circular distributions have a common mean direction or have identical distributions (S.J. Clark).

Options

$\mathrm{PRINT}=$ string token
$\mathrm{TEST}=$ string token

ASCALE $=$ string token

What to print (tests); default test
Which tests to perform (compare, identical); default comp, iden
Units of the circular variables (degrees, radians); default

STATISTICS $=$ variate

COMMON = scalar
LOWER = scalar
UPPER $=$ scalar
Parameter
$\mathrm{DATA}=$ variates

degr

Saves the test statistics
Saves the common mean direction
Saves the lower 95% confidence limit for common mean
Saves the upper 95% confidence limit for common mean
Circular response variables to be compared

CDESCRIBE procedure

Calculates summary statistics and tests of circular data (P.W. Goedhart \& R.W. Payne).

Options

PRINT $=$ string tokens
SEGMENT $=$ scalar

MSEGMENT $=$ scalar
DIRECTION = scalar

Parameters

ANGLES $=$ factors or variates
RESULTS $=$ variates
VONMISESCOUNTS $=$ pointers

What to print (summary, fittedvalues); default summ Width of sectors (in degrees) into which to group an ANGLES variate for calculation of the test of randomness and the chisquare goodness of fit statistic for the von Mises distribution; default 20
Defines the centre (in degrees) of the sectors; default 0 Direction (in degrees) of the unimodal alternative distribution for the Rayleigh test; default * i.e. not known

Directional observations (in degrees)
Saves the summary statistics
Saves structures relevant for calculation of the chi-square goodness of fit statistic for the von Mises distribution

CDNAUGMENTEDDESIGN procedure

Constructs an augmented block design, using CycDesigN if the controls are in an incomplete-block design (R.W. Payne).

Options

PRINT $=$ strings	Controls printed output (design, controldesign, factors, monitor); default * i.e. none
LEVELS $=$ scalar or variate	Levels for the unreplicated treatments
LEVCONTROLS $=$ scalar or variate	Levels for the control treatments
NROWS $=$ scalar	Number of rows
NCOLUMNS $=$ scalar	Number of columns
NRBLOCKS $=$ scalar	Number of rows in each block
NCBLOCKS $=$ scalar	Number of columns in each block
NCONTROLSPERBLOCK $=$ scalar	Number of control treatments in each block
TREATMENTS $=$ factor	Treatment factor
ROWS $=$ factor	Row factor
COLUMNS $=$ factor	Column factor
BLOCKS $=$ factor	Block factor
ROWBLOCKS $=$ factor	Row block factor
COLBLOCKS $=$ factor	Column block factor
NTIMES $=$ scalar	Number of times to try allocations of controls within blocks
SEED $=$ scalar or variate	Scalar or variate with three values specifying seeds for the
	random numbers used by CycDesigN to search for the control
	design, for the allocation of controls within blocks, and for the
	allocation of the unreplicated treatments - if a scalar is
	specified the same seed is used for all purposes; default 0 i.e.
set automatically	

No parameters

CDNBLOCKDESIGN procedure

Constructs a block design using CycDesigN (R.W. Payne).

Options

```
PRINT = strings
LEVELS = scalar or variate
NREPLICATES = scalar
NBLOCKS = scalar
NUNITS = scalar
NGROUPS = variate
TREATMENTFACTORS = factors
```

REPLICATES = factor
BLOCKS $=$ factor
UNITS = factor
RESOLVABLE $=$ string
ALPHADESIGN $=$ string
CYCLIC $=$ string
NBLATIN $=s c a l a r$
REPLATINGROUPS $=$ variate
SPATIALMODEL = string
EVDECAY $=$ scalar
WEIGHTS $=$ variate
SEED $=$ scalar or variate
SPREADSHEET = string
TIMELIMITS $=$ scalar or variate
NRANDOMIZATIONS = scalar
TRIALS $=$ factor

No parameters

Controls printed output (design, report, factors); default

* i.e. none

Numbers of levels of the treatment factors; if unset, takes the numbers of levels declared for the factors in the TREATMENTSTRUCTURE model
Number of replicates
Number of blocks
Number of units per block
Group sizes for a two-factor nested treatment structure
Up to four factors to use in the treatment model: one factor for a one-way treatment model, two factors for a nested structure when NGROUPS is set, or two to four factors for a factorial treatment structure when NGROUPS is not set
Replicate factor
Block factor
Unit-within-block factor
Whether the design is resolvable (yes, no); default no Whether an alpha design is constructed for a resolvable design (yes, no); default no
Whether a cyclic design is constructed for a non-resolvable design (yes, no); default no
Number of contiguous blocks to latinize; default 0 i.e. not latinized
Sizes of groups defining the positions of the replicates when constructing latinized designs; default * i.e. no groupings Spatial model to use with a single-treatment-factor resolvable design (integer, linearvariance, seconddifference, ev); default * i.e. none
Decay parameter to use when SPATIALMODEL=ev; default 0.5
Variate with two values specifying weightings for the main effects and for the interactions in factorial treatment structures; default! (1, 0.25)
Scalar or variate with two values specifying seeds for the random numbers used by CycDesigN to search for the best design and to randomize it - if a scalar is specified the same seed is used for both purposes; default 0 i.e. set automatically Whether to put the design factors into a spreadsheet (design); default *
A scalar or a variate containing up to three numbers defining the time in minutes to spend on the first phase, the second phase and the spatial phase of the search (if the 2 nd or 3 rd numbers are omitted they default to the maximum of those specified); default 1
Number of randomizations to generate from the best design; default 1
Trials factor

CDNPREP procedure

Constructs a multi-location partially-replicated design using CycDesigN (R.W. Payne).

Options

PRINT $=$ strings	Controls printed output (design, report, factors,
blocknumbers); default $*$ i.e. none	

LEVELS = scalar

NLOCATIONS $=$ scalar
NBLOCKS = scalar
NUNITSPERLOCATION = scalar
NREPLICATEDPERBLOCK $=$ scalar

TREATMENTS $=$ factor
LOCATIONS = factor
BLOCKS $=$ factor
UNITS = factor
SEED $=$ scalar or variate

SPREADSHEET $=$ string
TIMELIMIT = scalar

Numbers of levels of the treatment factor; if unset, takes the numbers of levels declared for the factor specified by the TREATMENTS option
Number of locations
Number of blocks at each location
Number of units at each location
Number of treatments in each block that are replicated at the location containing the block
Treatment factor
Locations factor
Block factor
Unit-within-block factor
Scalar or variate with two values specifying seeds for the random numbers used by CycDesigN to search for the best design and to randomize it - if a scalar is specified the same seed is used for both purposes; default 0 i.e. set automatically Whether to put the design factors into a spreadsheet (design); default *
Time in minutes to search; default 1

No parameters

CDNROWCOLUMNDESIGN procedure

Constructs a row-column design using CycDesigN (R.W. Payne).

Options

```
PRINT = strings
LEVELS = scalar or variate
NREPLICATES = scalar
NROWS = scalar
NCOLUMNS = scalar
NGROUPS = variate
TREATMENTFACTORS = factors
```

REPLICATES $=$ factor
ROWS $=$ factor
COLUMNS $=$ factor
RESOLVABLE $=$ string
METHOD = string
NRLATIN $=$ scalar
NCLATIN $=$ scalar
REPLATINGROUPS $=$ variate
SPATIALMODEL $=$ string
$\operatorname{EVDECAY}=s c a l a r$
WEIGHTS $=$ variate

Controls printed output (design, report, factors); default * i.e. none

Numbers of levels of the treatment factors; if unset, takes the numbers of levels declared for the factors in the
TREATMENTSTRUCTURE model
Number of replicates
Number of rows
Number of columns
Group sizes for a two-factor nested treatment structure Up to four factors to use in the treatment model: one factor for a one-way treatment model, two factors for a nested structure when NGROUPS is set, or two to four factors for a factorial treatment structure when NGROUPS is not set
Replicate factor
Row factor
Column factor
Whether the design is resolvable (yes, no); default no
How to construct the design (onestage, twostage, unrestrictedtwostage); default ones
Number of contiguous rows to latinize; default 0 i.e. not latinized
Number of contiguous columns to latinize; default 0 i.e. not latinized
Specifies the number of replicates in each column when constructing latinized designs; default * i.e. all in one column Spatial model to use with a single-treatment-factor resolvable design (integer, linearvariance, seconddifference, ev); default * i.e. none
Decay parameter to use when SPATIALMODEL=ev; default 0.5
Variate with two values specifying weightings for the main effects and for the interactions in factorial treatment structures; default! (1, 0.25)

RCWEIGHTS $=$ variate	Variate with three values specifying weightings for the within-row-and-column, between-row and between-column information; default has weight one for the within-row-and-column information, and the reciprocal of their numbers of levels for the rows and columns
SEED $=$ scalar or variate	Scalar or variate with two values specifying seeds for the random numbers used by CycDesigN to search for the best design and to randomize it - if a scalar is specified the same seed is used for both purposes; default 0 i.e. set automatically
SPREADSHEET $=$ string	Whether to put the design factors into a spreadsheet (design); default *
TIMELIMITS $=$ scalar or variate	A scalar or a variate containing up to three numbers defining the time in minutes to spend on the first phase, the second phase and the spatial phase of the search (if the 2nd or 3rd numbers are omitted they default to the maximum of those specified); default 1
NRANDOMIZATIONS $=$ scalar	Number of randomizations to generate from the best design; default 1
TRIALS $=$ factor	Trials factor
No parameters	
CENSOR procedure	
Pre-processes censored data before analysis by AnOVA (P.W. Lane).Options	
PRINT $=$ string token	Whether to monitor convergence (monitor); default * implies no monitoring
TERM $=$ formula	Formula for lowest stratum residual term; no default - this option must be set
DESIGN $=$ pointer	Identifier specifying design information for ANOVA, or to save design information; default *
MAXCYCLE $=$ scalar	Maximum number of iterations; default 20
Parameters	
$\mathrm{Y}=$ variates	Observed variate with censored values represented by values greater than or equal to the bound; no default - this parameter must be set
BOUND $=$ scalars or variates	Upper bound for censoring for each unit; no default - this parameter must be set
$\mathrm{DF}=$ scalars	Estimated residual d.f. for lowest stratum, adjusting for censoring; default *
NEWY = variates	Saves a variate with the censored values replaced by their estimates; if unset, the censored values are replaced in the original Y variate
SAVE $=$ identifiers	Save details of each analysis for use in subsequent ADISPLAY or AKEEP statements

CHECKARGUMENT procedure

Checks the arguments of a procedure (R.W. Payne).

Option

ERROR $=$ scalar

Parameters

STRUCTURE $=$ identifiers
VALUES $=$ variates or texts

DEFAULT $=$ identifiers
SET $=$ texts

This scalar is given the value 1 if any errors are detected; it should have the value 0 on entry

Lists the structures (arguments) to be checked
Defines the allowed values for a structure of type variate or text
Default to be used if STRUCTURE is set to an unset dummy Indicates whether or not each structure must be set (no, yes);

```
DECLARED = texts
```

TYPE $=$ texts
PRESENT $=$ texts
default no
Indicates whether or not each structure must have been declared (no, yes); default no
Text for each structure whose values indicate the types allowed (scalar, factor, text, variate, matrix, diagonalmatrix, symmetricmatrix, table, expression, formula, dummy, pointer, LRV, SSPM, TSM, tree, asave, rsave, tsave, vsave); default * Indicates whether or not each structure must have values (no, yes); default no

CHIPERMTEST procedure

Performs a random permutation test for a two-dimensional contingency table (L.H. Schmitt, M.C.
Hannah \& S.J. Welham).

Options

```
PRINT = string tokens
PLOT = string token
METHOD = string token
NTIMES = scalar
SEED = scalar
```


Parameters

DATA $=$ tables
CHISQUARE $=$ scalars
CHIPERMUTED $=$ variates
PROBABILITY $=$ scalars

Output required (summary, observed, expected); default summ
What to plot (histogram); default hist
Method for calculating chi-square (pearson, maximumlikelihood); default pear
Number of permutations to make; default 999
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

Table containing observed data
Saves the observed chi-square value
Saves the chi-square values from the permuted data sets Saves the probability value from the test

CHISQUARE procedure

Calculates chi-square statistics for one- and two-way tables (A.D. Todd \& P.K. Leech). Options

PRINT = string tokens	Output required (test, probability, fittedvalues, tchisquare); default test, prob
METHOD = string token	Method for calculating chi-square (pearson, maximumlikelihood); default pear
GOODNESSOFFIT = string token	Whether to carry out a goodness-of-fit test for the DATA values against a supplied set of FITTEDVALUES (yes, no); default no
Parameters	
DATA = tables	Table containing observed data
CHISQUARE $=$ scalars	Scalar to save the chi-square value
DF = scalars	Scalar to supply or save the degrees of freedom
PROBABILITY = scalars	Scalar to save the probability value
FITTEDVALUES = tables	Table of expected values
RESIDUALS $=$ tables	Table of standardized residuals
TCHISQUARE $=$ tables	Table whose cells show the individual contributions to the chi-
	square value

CINTERACTION procedure

Clusters rows and columns of a two-way interaction table (J.T.N.M. Thissen \& J. de Bree).

Options

PRINT $=$ string tokens \quad What information to print (sortedtable, aovtable, summary, monitoring, variance, amalgamations, dendrogram); default sort, aov, summ, moni, vari, amal, dend

PRMONITOR $=$ scalar

VARIANCE $=$ scalar
DF $=$ scalar
SSTHRESHOLD $=$ scalar

TITLE $=$ text
PENSIZE $=$ scalar

Parameters

TABLE $=$ tables
ROWAMALGAMATIONS $=$ matrices
COLAMALGAMATIONS $=$ matrices
ROWPERMUTATIONS $=$ variates
COLPERMUTATIONS $=$ variates
ROWGROUPS $=$ factors

COLGROUPS $=$ factors
SORTEDTABLE $=$ tables

If option VARIANCE is set this provides a P-value to indicate when to start monitoring, if VARIANCE is unset PRMONITOR is ignored; default 0.95
Variance of a mean in TABLE; default *
Degrees of freedom of VARIANCE; default *
Specifies a value of cumSS at which to partition the dendrograms and to define factors ROWGROUPS and COLGROUPS; default 0 i.e. no partitioning General title for the high-resolution graph; default * Pen size for y-labels of dendrograms; default 1

Two-way table whose interaction structure is to be clarified To either save or specify amalgamations for rows To either save or specify amalgamations for columns To specify order of labels in the row dendrogram To specify order of labels in the column dendrogram To save the grouping of the rows specified by the SSTHRESHOLD option
To save the grouping of the columns specified by the SSTHRESHOLD option
To save the sorted TABLE with increasing row and column means

CLASSIFY procedure

Obtains a starting classification for non-hierarchical clustering (S.A. Harding).

No options

Parameters

DATA $=$ pointers
NGROUPS $=$ scalars
GROUPS $=$ factors

CLOSE directive

Closes files.
No options

Parameters

CHANNEL $=$ scalars or texts

FILETYPE $=$ string tokens

DELETE = string tokens

Each pointer contains a set of variates giving the properties of the units to be grouped
Indicates the number of groups required
Stores the classifications formed

CLUSTER directive

Forms a non-hierarchical classification.

Options

\(\left.$$
\begin{array}{ll}\text { PRINT = string tokens } & \text { Printed output required (criterion, optimum, units, } \\
\text { typical, initial, random); default * i.e. no printing } \\
\text { DATA = matrix or pointer } & \begin{array}{l}\text { Data from which the classification is formed, supplied as a } \\
\text { units-by-variates matrix or as a pointer containing the variates }\end{array}
$$

of the data matrix\end{array}\right]\)| Criterion for clustering (sums, predictive, within, |
| :--- |
| Mahalanobis); default sums |
| INTERCHANGE = string token |
| Permitted moves between groups (transfer, swop); default |
| tran (implies swop also) |

START $=$ factor
NSTARTS $=$ scalar
SEED = scalar

Parameters

NGROUPS $=$ scalars

GROUPS $=$ factors
CRITERIONVALUE $=$ scalars

BCRITERIONVALUE $=$ scalars

MEANS $=$ matrices
PREDICTORS $=$ matrices

Initial classification; default * i.e. splits the units, in order, into NGROUPS classes of nearly equal size
Number of starting configurations to be used; default 0 Seed for the random numbers used to form random starting configurations; default 0

Numbers of classes into which the units are to be classified: note, the values of the scalars must be in descending order Saves the classification formed for each number of classes Saves the criterion values (representing within-class homogeneity)
Saves the subsidiary criterion values (representing betweenclass heterogeneity for maximal predictive classification)
Saves the variate means for the groups of each classification Saves the group predictors from maximal predictive classification

CMHTEST procedure

Performs the Cochran-Mantel-Haenszel test (D.A. Murray).

Options

PRINT $=$ string token CLASSIFICATION $=$ factors	Controls printed output (test); default test Classifying factors for a DATA variate or classifying factors for the $R \times C$ tables in a DATA table
CONTINUITY $=$ string token	Continuity correction for $2 \times 2 \times K$ Mantel-Haenszel test $($ correct, none); default corr
CIPROBABILITY $=$ scalar	Size of confidence interval for common odds ratio in $2 \times 2 \times K$ tables; default 0.95
Parameters	Data values
DATA $=$ tables or variates	Save the test statistic
STATISTIC $=$ scalars	Save the probability for the test
PROBABILITY $=$ scalars	Save the common odds ratio for the $2 \times 2 \times K$ table case ODDSRATIO $=$ scalars LOWER $=$ scalars UPPER $=$ scalars

COKRIGE directive

Calculates kriged estimates using a model fitted to the sample variograms and cross-variograms of a set of variates.

Options

PRINT $=$ string token	Controls printed output (description, search, weights, conditionalprobabilities, quantiles, crossvalidations); default desc
$\mathrm{Y}=$ variate	Variate to predict in the coKriging
METHOD $=$ string token	Type of kriging (Normal, LogNormal); default Norm
XIOUTER $=$ variate	Variate containing 2 values to define the bounds of the region to be examined in the first direction; by default the whole region is used
X2OUTER $=$ variate	Variate containing 2 values to define the bounds of the region to be examined in the second direction; by default the whole region is used
X3OUTER $=$ variate	Variate containing 2 values to define the bounds of the region to be examined in the third direction; by default the whole region is used
X1INNER $=$ variate	Variate containing 2 values to define the bounds of the interpolated region in the first direction; no default
X2INNER $=$ variate	Variate containing 2 values to define the bounds of the

Percentage points for which quantiles are required; default 5 and 95
LOGBASE $=$ string token

Parameters

DATA $=$ variates
Base of antilog transformation to be applied to the predictions and variances for lognormal (co)kriging (ten, e); default * i.e. none
$\mathrm{X} 1=$ variates
Measurements as one or more variates
Locations of the measurements in the first dimension

```
\(\mathrm{x} 2=\) variates
\(\mathrm{X} 3=\) variates \(\quad\) Locations of the measurements in the third dimension (if
PREDICTIONS \(=\) variate
VARIANCES \(=\) variate
MEASUREMENTERROR \(=\) scalars
ESTIMATES \(=\) pointers Estimates for the model structure
CONDITIONALPROBABILITIES \(=\) pointers
Structure to save conditional probabilities
QUANTILES = pointers
SAMPLESUPPORT = scalars
SUANTILES \(=\) pointers
SAMPLESUPPORT \(=\) scalars
Locations of the measurements in the second dimension (if
recorded in 2 or 3 dimensions)
recorded in 3 dimensions)
Kriged estimates
Estimation variances
Variance of measurement error for punctual (co)kriging
Structure to save estimated quantiles
Sampling size (length, area or volume according to the
dimensionality of the data) of the data points
```


COLOUR directive

Defines the red, green and blue intensities to be used for the Genstat colours for certain graphics devices.

Option

RESET = string token Whether to reset values to their defaults (no, yes); default no

Parameters

NUMBER $=$ scalars	Numbers of the colours to be set
RED $=$ scalars	Red intensity of each colour (between 0 and 255)
GREEN $=$ scalars	Green intensity of each colour (between 0 and 255)
BLUE $=$ scalars	Blue intensity of each colour (between 0 and 255)
MATCH $=$ scalars	Number of a Genstat colour to define any unset values of RED, GREEN or BLUE; default is to restore the original values of the
Colour	

COMBINE directive

Combines or omits "slices" of a multi-way data structure (table, matrix or variate).

Options

OLDSTRUCTURE $=$ identifier \quad Structure whose values are to be combined; no default i.e. this option must be set
NEWSTRUCTURE $=$ identifier \quad Structure to contain the combined values; no default i.e. this option must be set

Parameters

OLDDIMENSION $=$ factors or scalars
Dimension number or factor indicating a dimension of the OLDSTRUCTURE
NEWDIMENSION $=$ factors or scalars \quad Dimension number or factor indicating the corresponding dimension of the NEWSTRUCTURE; this can be omitted if the dimensions are in numerical order, while zero settings (each in conjunction with a single OLDPOSITION) allows a slice of an old table to be mapped into a new table with fewer dimensions
OLDPOSITIONS = pointers, texts, variates or scalars
These define positions in each OLDDIMENSION: pointers are appropriate for matrices whose rows or columns are indexed by a pointer; texts are for matrices indexed by a text, variates with a textual labels vector, or tables whose OLDDIMENSION factor has labels; and variates either refer to levels of table factors or numerical labels of matrices or variates, if these are present, otherwise they give the (ordinal) number of the position. If omitted, the positions are assumed to be in (ordinal) numerical order. Margins of tables are indicated by missing values

NEWPOSITIONS = pointers, texts, variates or scalars
These define positions in each NEWDIMENSION, specified similarly to OLDPOSITIONS; these indicate where the values from the corresponding OLDDIMENSION positions are to be entered (or added to any already entered there)
WEIGHTS $=$ variates
Define weights by which the values from each OLDDIMENSION coordinate are to be multiplied

COMMANDINFORMATION directive

Provides information about whether (and how) a command has been implemented.

No options

Parameters

$\mathrm{NAME}=$ texts
IMPLEMENTATION $=$ texts

CHANNEL = scalars
PRESENTNOW = scalars

Single-line texts supplying the names of the commands
Single-line texts set to 'directive', 'procedure' or a null string ($'$ ') according to the type of command
Saves the channel for a procedure from a procedure library
Logical set to one if the command is now present, or zero otherwise

CONCATENATE directive

Concatenates and truncates lines (units) of text structures; allows the case of letters to be changed. Options

NEWTEXT $=$ text	Text to hold the concatenated/truncated lines; default is the first OLDTEXT vector
CASE = string token	Case to use for letters (given, lower, upper, changed); default give leaves the case of each letter as given in the original string
Parameters	
OLDTEXT $=$ texts	
WIDTH $=$ scalars or variates	Texts to be concatenated Number of characters to take from the lines of each text, a negative value takes all the (unskipped) characters other than trailing spaces; if * or omitted, all the (unskipped) characters are taken Number of characters to skip at the left-hand side of the lines of each text, a negative value skips all initial spaces; if * or omitted, no characters are skipped
SKIP = scalars or variates	

CONFIDENCE procedure

Calculates simultaneous confidence intervals (D.M. Smith).

Options

PRINT $=$ string token	Controls printed output (intervals); default inte
METHOD $=$ string token	Type of interval (individual, smm, product, Bonferroni, Scheffe); default smm
$\mathrm{MU}=$ scalar	Value for population mean checked as to whether in the confidence interval; default * i.e. no checking
PROBABILITY $=$ scalar	The required significance level; default 0.05
Parameters	
MEANS $=$ tables or variates	Mean values
REPLICATIONS $=$ scalars or tables or variates	
	Number(s) of observations per mean
VARIANCE $=$ scalars	Estimate of variance
$\mathrm{DF}=$ scalars	Degrees of freedom
XCONTRASTS $=$ matrices	Matrix of coefficients of orthogonal contrasts
LABELS $=$ texts	Identifiers of mean values
LOWER $=$ tables or variates	Lower values of confidence intervals
UPPER $=$ tables or variates	Upper values of confidence intervals

CONTOUR directive

Produces contour maps of two-way arrays of numbers (on the terminal/printer).
This directive was replaced in Release 10 by the directive LPCONTOUR (with exactly the same options and parameters). It is currently retained as a synonym of LPCONTOUR, but may be removed in a future release.

CONVEXHULL procedure

Finds the points of a single or a full peel of convex hulls (P.G.N. Digby).

Options

PEELING = string token
SCALE $=$ scalar
Parameters
Y = variate
X = variate
YHULL $=$ variate or pointer

XHULL $=$ variate or pointer

PEEL = variate

Specifies whether the procedure is to form the full set of peels, or just the convex hull (no, yes); default no Scaling factor for hulls; default 1.0

Y-coordinates of the points
X-coordinates of the points
Variate storing the y-coordinates of the points defining the convex hull (for PEELING=no) or pointer to a set of variates storing the y-coordinates of the convex hulls forming the complete set of peels
Variate storing the x -coordinates of the points defining the convex hull (for PEELING=no) or pointer to a set of variates storing the x -coordinates of the convex hulls forming the complete set of peels
Stores the number of the peel to which each point belongs

COPY directive

Forms a transcript of a job.

Option

PRINT $=$ string tokens

Parameter

scalar
What to transcribe (statements, output); default stat
Channel number of output file

CORANALYSIS procedure

Does correspondence analysis, or reciprocal averaging; synonym CORRESP (P.G.N. Digby).

Options
PRINT $=$ string tokens

METHOD $=$ string token

NROOTS = scalar
$\%$ METHOD $=$ string token
NDIMENSIONS $=$ scalar
ROWSUBSET $=$ scalars
COLSUBSET $=$ scalars
ROWPASSIVE $=$ scalars
COLPASSIVE $=$ scalars

Parameters

$\mathrm{DATA}=$ matrices or data matrices
ROOTS $=$ diagonal matrices
ROWSCORES $=$ matrices

Printed output from the analysis (roots, rowscores, rowinertias, rowchisquare, rowmass, rowquality, colscores, colinertias, colchisquare, colmass, colquality); default * i.e. no output
Type of analysis required (correspondence, digbycorrespondence, biplot, reciprocal); default corr
Number of latent roots for printed output; default * requests them all to be printed
How to represent proportions or \%s in quality statistics
(permills, percentages, proportions); default prop
Number of dimensions for which quality statistics are required; default 2
Indexes of subset rows
Indexes of subset columns
Indexes of passive rows
Indexes of passive columns
Data to be analysed
Saves the squared singular values from each analysis
Saves the scores for the rows of the data matrix

COLSCORES $=$ matrices
ROWINERTIAS $=$ matrices
COLINERTIAS $=$ matrices
ROWQUALITY $=$ matrices
COLQUALITY $=$ matrices
SAVE = pointers

Saves the scores for the columns of the data matrix Saves the inertias for the rows of the data matrix Saves the inertias for the columns of the data matrix Saves the quality statistics for rows of the data Saves the quality statistics for columns of the data Saves details of the analysis for use by CAPLOT

CORRELATE directive

Forms correlations between variates, autocorrelations of variates, and lagged cross-correlations between variates.

Options

```
PRINT = string tokens
GRAPH = string tokens
MAXLAG = scalar
```

CORRELATIONS $=$ symmetric matrix

Parameters

SERIES = variates
LAGGEDSERIES = variates
AUTOCORRELATIONS $=$ variates

PARTIALCORRELATIONS $=$ variates
CROSSCORRELATIONS = variates
TESTSTATISTIC = scalars
VARIANCES $=$ variates
What to print (correlations, autocorrelations, partialcorrelations, crosscorrelations); default *
What to display with graphs (autocorrelations, partialcorrelations, crosscorrelations); default * Maximum lag for results; default * i.e. value inferred from variates to save results
Stores the correlations between the variates specified by the SERIES parameter

Variates from which to form correlations
Series to be lagged to form crosscorrelations with first series To save autocorrelations, or to provide them to form partial autocorrelations if SERIES=*
To save partial autocorrelations
To save crosscorrelations
To save test statistics
To save prediction error variances
COEFFICIENTS $=$ variates or matrices To save prediction coefficients: in a variate to keep only those for the maximum lag, or in a matrix to keep the coefficients for all lags up to the maximum

COUNTER directive

Increments a multi-digit counter using non base-10 arithmetic.

Options

NREQUIRED $=$ scalar	Specifies the number of values required for the counter; default 2
NFOUND = scalar	Saves the number of counter values that could be formed
DIRECTION $=$ string token	Specifies the direction of the sequence of increments to the counter (ascending, descending); default asce
Parameters	
START $=$ scalars	Provides the starting values for the digits in the counter
END $=$ scalars	Can provide values to define the end of the sequence of counter values
STEP $=$ scalars	Specifies the amount by which to increment each digit of the counter
BASE $=$ scalars	Specifies the base of the numbers used for each digit
DIGITSEQUENCE $=$ variates	Saves the sequence of values generated for each digit

COVARIATE directive

Specifies covariates for use in subsequent ANOVA statements.

No options

Parameter
variates or pointers
Covariates

COVDESIGN procedure

Produces experimental designs efficient under analysis of covariance (D.B. Baird).

Options

PRINT $=$ string tokens	Controls printed output (design, cefficiency, means, histogram, cutoff); default desi, ceff, cuto
TREATMENTSTRUCTURE $=$ formula	Treatment terms to be fitted
BLOCKSTRUCTURE $=$ formula	Block model for the design
COVARIATES $=$ variates	Covariates for the design
FACTORIAL $=$ scalar	Limit on number of factors in a treatment term; default 3
GRBLOCKSTRUCTURE $=$ formula	Formula use for randomization; default uses BLOCKSTRUCTURE
EXCLUDE $=$ factors	(Block) factors whose levels are not to be randomized
UNITS $=$ text, variate or factor	Labels for the units of the design
PROPORTION $=$ scalars	Upper proportion of the combined cov. ef. distribution from which the design is to be chosen (or zero to take the best design found); default 0.5
NSIMULATIONS $=$ scalars	Number of designs to simulate for the empirical distribution of combined cov. ef.'s; default 100
WEIGHTS $=$ variates	Weighting for the treatment terms to use when calculating the combined cov. ef.; default 1 (i.e. all equal)
CEFLIMIT $=$ scalars	Minimum value of the cov. ef. for each or variates treatment term for a design to be included in the set of acceptable designs; default 0 (i.e. all designs acceptable).
ORDER $=$ scalars	Order of polynomial to fit for each covariate; or variates default 1 (i.e. only linear covariates)
SEED $=$ scalars	Seed for random number generator for randomizing the simulated designs; default 0
SAVE $=$ pointers	Saves the treatment factor allocations for the selected design; if unset, these overwrite the values of the treatment factors themselves
CUTOFF $=$ scalars	Critical value of the combined cov. ef. from the simulated distribution
CEFFICIENCY $=$ variates	Covariate efficiencies for the treatment terms from the selected design
SIMULATIONS $=$ variates	Simulated combined cov. ef.'s

CRBIPLOT procedure

Plots correlation or distance biplots after RDA, or ranking biplots after CCA (A.I. Glaser).

Options

DIMENSIONS $=$ scalars	Two numbers specifying which axes of the ordinations to plot; default 1,2
PLOT $=$ string token	Whether to plot site or species scores (sitescores, speciesscores); default spec
WINDOW = scalar	Which graphical window to use; default 1 KEYWINDOW = scalar Which graphical window to use for the key (zero for none); default 2
SAVE = pointer	Supplies results from an ordination analysis by CCA or RDA; default uses the most recent analysis
Parameters	First explanatory variable to plot; default 1
X1 = scalars, variates or texts	
X2 = scalars, variates or texts	
LMXVARIABLES = string tokens	Second explanatory variable to plot; default i.e. none How to label the x-variables (identifiers, labels, none,
numbers); default labe if LXVARIABLES is set, otherwise	
iden	

```
LMSITES = string tokens
LXVARIABLES = texts
LSPECIES = texts
LSITES = texts
```

none, numbers); default labe if LSPECIES is set, otherwise numb
How to label the site scores (labels, none, numbers);
default labe if LSITES is set, otherwise numb
Labels for variables
Labels for species scores
Labels for site scores

CRTRIPLOT procedure

Plots ordination biplots or triplots after CCA or RDA (A.I. Glaser).

Options

DIMENSIONS $=$ scalars	Which dimensions of the ordinations to display; default 1,2
PLOT $=$ string token	What to plot (sitescores, speciesscores, xvariables); default spec, site, xvar
DGROUPS $=$ string token	Features to plot for the XGROUPS variate (ellipse, hull, lines, spider); default * i.e. none
DBINARY $=$ string token	What to plot for binary variables (biplot, centroid); default bipl
MULTIPLIER = scalar	Value to multiply species and environmental variables scores by when plotting RDA; default *, i.e. none chosen
WINDOW = scalar	Which graphical window to use; default 1
KEYWINDOW = scalar	Which graphical window to use for the key (zero for none); default 2
SAVE $=$ pointer	Supplies results from an ordination analysis by CCA or RDA; default uses the most recent analysis
Parameters	
LMXVARIABLES = string tokens	How to label the x -variables (identifiers, labels, none, numbers); default labe if LXVARIABLES is set, otherwise iden
LMSPECIES $=$ string tokens	How to label the species scores (identifiers, labels, none, numbers); default labe if LSPECIES is set, otherwise numb
LMSITES $=$ string tokens	How to label the site scores (labels, none, numbers); default labe if LSITES is set, otherwise numb
LXVARIABLES $=$ texts	Labels for variables
LSPECIES $=$ texts	Labels for species scores
LSITES $=$ texts	Labels for site scores
XGROUPS $=$ variates, factors or scalars	X -variate to generate grouping information to appear on the plot (see the DGROUPS option)

CSPRO procedure

Reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file (D.B. Baird).

Options

PRINT = string token
FACMETHOD $=$ string token

MISSINGCODES $=$ string tokens

FVALUESETS $=$ string token
SUBITEMS $=$ string token

MERGE $=$ string token

FUNKNOWNGROUP $=$ string token

What to print (catalogue); default cata Which factors to create (convertall, keepandconvertall, none, noranges); default keep Which special values to convert to Genstat missing values (missing, na); default miss
Whether form to a set of columns containing all the valueset information (yes, no); default no
Whether to create a set of columns for the sub-items (yes, no); default no
Whether to merge the records into a single set of columns all of the same length (yes, no); default no Whether to create a specific level for values not in the value
\(\left.\left.$$
\begin{array}{ll}\text { INCLUDEEXTRA = string token } & \begin{array}{l}\text { Whether to include a row of column descriptions in the Excel } \\
\text { output file after the column heading row (yes, no); default no } \\
\text { Whether to warn that groups in a factor are empty and offer to }\end{array} \\
\text { WARNONEMPTYGROUPS = string token } \\
\text { remove them when loading the data from a saved GWB file } \\
\text { (yes, no); default no }\end{array}
$$\right] \begin{array}{l}What to do with factor groups that have identical labels

(combine, ignore, rename); default comb

Whether to read the data into global data structures or into

data structures local to a procedure calling CSPRO (local,

global); default loca\end{array}\right\}\)| Optional extra input options to be passed to the |
| :--- |
| Dataload.dll |
| SCOPE = string token |
| Optional extra output options to be passed to the |
| Dataload.dll |

CUMDISTRIBUTION procedure

Fits frequency distributions to accumulated counts (R.C. Butler, M.E. O'Neill, P. Brain \& H. Turner). Options

PRINT $=$ string tokens	Controls printed output (model, summary, estimates, correlations, fittedvalues, monitoring); default mode, summ, esti
DISTRIBUTION $=$ string token	Which distribution to use (normal, logistic, complementaryloglog, acomplementaryloglog, inversenormal, weibull, exponential); default norm
TRANSFORMATION = string token	```Whether to use log(TIME) if DISTRIBUTION = normal, logistic, complementarylog or acomplementarylog (log, none); default * uses log except when DISTRIBUTION = inversenormal, weibull or exponential```
LAG $=$ string token	Type of lag to add to TIME (none, positive, unconstrained); default none
ALLRESPOND $=$ string token	If TOTUNITS is set, whether all units are constrained to respond (yes, no); default no
FORM $=$ string token	Whether DATA are cumulated or differences (cumulated, differences); default cumu
LOSTUNITS $=$ string token	Whether data are left-censored (yes, no); default no
SEPARATE $=$ string token	Which parameters to estimate separately for each group (lag, b, m, propn, gamma); default *
POPSEPARATE $=$ string token	Which parameters to estimate separately for populations in each group (b, m, lag); default *
$\mathrm{PLOT}=$ string token	Which graphs to draw (cumulative, density, trcumulative, trdensity); default cumu
MAXCYCLE = scalar	Number of iterations for fitting, as in RCYCLE; default 30
Parameters	
DATA $=$ variates or pointers	Specifies the accumulated counts
TIME $=$ variates or pointers	Defines the time at which each count was recorded

GROUPS $=$ factors
INITIAL $=$ variates
$\mathrm{IB}=$ scalars or variates
$\mathrm{IM}=$ scalars or variates
LAG $=$ scalars or variates
IGAMMA $=$ scalars or variates
IPROPN = scalars or variates
STEPLENGTHS $=$ variates
$\mathrm{SB}=$ scalars or variates
$\mathrm{SM}=$ scalars or variates
SLAG $=$ scalars or variates
SGAMMA = scalars or variates
SPROPN $=$ scalars or variates
TOTUNITS = scalars or variates
NPOPULATION = scalars
SAVE = pointers

Factor indicating groups
Initial values for all parameters
Initial values for b
Initial values for m
Initial values for lag
Initial values for gamma
Initial values for proportions
Steplengths for all parameters
Steplengths for b
Steplengths for m
Steplengths for lag
Steplengths for gamma
Steplengths for proportions
Total number
Number of populations (1, 2 or 3); default 1
Saves the results

CVA directive

Performs canonical variates analysis.

Options

PRINT $=$ string tokens
NROOTS $=$ scalar
SMALLEST $=$ string token

Parameters

$\mathrm{wSSPM}=S S P M s$
$\mathrm{LRV}=L R V S$
SCORES $=$ matrices
RESIDUALS $=$ matrices

DISTANCES = symmetric matrices
ADJUSTMENTS = matrices
SAVE $=$ pointers

Printed output required (roots, loadings, means, residuals, distances, tests); default * i.e. no printing Number of latent roots for printed output; default * requests them all to be printed Whether to print the smallest roots instead of the largest (yes, no); default no

Within-group sums of squares and products, means etc (input for the analyses)
Saves loadings, roots, and trace from each analysis
Saves canonical variate means
Saves distances of the means from the dimensions fitted in each analysis
Saves inter-group-mean Mahalanobis distances
Saves the adjustment terms
Saves details of the analysis; if unset, an unnamed save structure is saved automatically (and this can be accessed using the GET directive)

CVAPLOT procedure

Plots the mean and unit scores from a canonical variates analysis (D.A. Murray).

Options

PLOT $=$ string tokens	Type of plot to be drawn (meanscores, unitscores, confidenceregion); default mean, conf
GROUPS $=$ factor	Group allocations in the CVA
MSCORES $=$ matrix	Mean scores from the CVA; if unset these are calculated using the CVA directive
USCORES $=$ matrix	Unit scores from the CVA; if unset these are calculated using the CVASCORES procedure
WSSPM $=$ SSPM	Within-group sums of squares and products, means etc. for the CVA; must be supplied if the scores and groupings are not provided
CREGION $=$ string tokens	Type of confidence region to be drawn (mean, population); default mean
CIPROBABILITY $=$ scalar	The probability level for the confidence region; default 0.95
TAREA $=$ scalar	Defines the transparency to use to shade the confidence

regions; default 255 i.e. no shading

Parameters

YDIMENSION = scalars
XDIMENSION $=$ scalars
TITLE $=$ texts
WINDOW = scalars
SCREEN $=$ string tokens

Dimensions to be plotted in the y direction of each graph
Dimension to be plotted in the x direction
Title for each plot
Window for each graph; default 1
Whether to clear the screen before plotting (clear, keep);
default clea

CVASCORES procedure

Calculates scores for individual units in canonical variates analysis (S.A. Harding).

Option

PRINT $=$ string tokens

Parameters

$\mathrm{WSSPM}=$ SSPMs
$L R V=L R V s$
SCORES $=$ matrices
ADJUSTMENTS $=$ matrices

What output to print (scores, adjustments); default scor
Within-group sums of squares and products structure
Loadings, roots and trace saved from CVA of the WSSPM
Unit scores
Mean Adjustments

${ }^{\text {}}$ CVATRELLIS procedure

Displays the distribution of groups over 2 dimensions from a CVA analysis using a trellis of bar or pie charts (R.W. Payne).

Options

PLOT $=$ string tokens
NPARTITIONS $=$ scalar
COLOURS $=$ variate or text
KEYHEIGHT= scalar
SAVE $=$ pointer

Parameters

YDIMENSION $=$ scalars
XDIMENSION $=$ scalars
TITLE $=$ texts

What to plot (barchart, piechart, scaledpiechart, key); default barc, key
Number of partitions along each axis; default 8
Colours for the groups; default uses the colours defined for pens 2 upwards
Height of the key; default 0.1
Save structure from the CVA analysis to display; default displays the most recent analysis

Dimension for the y-axis for each graph; default 1
Dimension for the x -axis for each graph; default 2
Title for each graph

DARROW procedure

Adds arrows to an existing plot (D. B. Baird).

Options

WINDOW $=$ scalar
COORDINATETYPE $=$ string token
YUPPER $=$ scalar
XUPPER $=$ scalar
ISTYLE $=$ string token
ESTYLE $=$ string token
ISIZE $=$ scalar
ESIZE scalar
IANGLE $=$ scalar
EANGLE $=$ scalar
LAYER $=$ scalar

Window number for the graphs; default 3
Type of coordinate to use for the locations of the arrows (frame, graph); default grap
Maximum vertical coordinate in the frame; default 1 Maximum horizontal coordinate in the frame; default 1 The type of symbol at the start of the arrow (none, open, closed, circle); default none
The type of symbol at the end of the arrow (none, open, closed, circle); default open
The size of the symbol at the start of the arrow; default 1 The size of the symbol at the end of the arrow; default 1 The angle in degrees of the starting arrowhead when ISTYLE is open or closed; default 45
The angle in degrees of the ending arrowhead when ESTYLE is open or closed; default 45
The plot layer for the arrows; default is a new layer above the previous plot items

Parameters

 Transparency of the arrows; default 0

DAYLENGTH procedure

Calculates daylengths at a given period of the year (R.J. Reader \& K. Phelps).

Option

LATITUDE $=$ scalar \quad Latitude at which the daylength is to be calculated, positive for northern hemisphere and negative for southern hemisphere; default 52.205 N (Wellesbourne)

Parameters

DAYNUMBER $=$ variate
Days of year for which daylengths are required
DAYLENGTH = variate Calculated daylengths in hours

DBARCHART procedure

Produces bar charts for one or two-way tables (A.R.G. McLachlan \& R.C. Butler).

Options

TITLE $=$ text	Title for the chart; no default
WINDOW = scalar	Window for the chart; default 1
KEYWINDOW = scalar	Window for the key, no key is produced for one-way tables; default 2
LABELS $=$ text	Labels for clusters of bars; by default the labels or levels of the first classifying factor of TABLE are used
APPEND $=$ string token	Whether to append bars (no, yes); default no
SCREEN $=$ string token	Whether to clear screen before displaying chart (keep, clear); default clea
KEYDESCRIPTION $=$ text	Title for key; default is the name of the second factor of TABLE
YSCALE $=$ expression structure	Defines a transformation of the data, the expression must be a function of either Y or X, for example !e $(\log (X))$, and should be valid for the range of the data in TABLE; default no transformation
BELOWORIGIN $=$ string token	Whether to include or values in TABLE less than ORIGIN (omit, include); default omit
ORIENTATION $=$ string token	Direction of the plot (horizontal, vertical); default vert
BARCOVERING $=$ scalar	What proportion of the space allocated along the x -axis each bar should occupy; default * gives proportion 0.8 (thus giving a gap between each bar or each group of bars)
XPOSITION $=$ string token	Position of the x -axis on the y -axis (lower, origin); default lowe
OMITEMPTYLEVELS $=$ string token	Whether to omit levels where there are only missing values (yes, no); default no

Parameters

TABLE $=$ tables
One or two-way table of data
ORIGIN = scalars
Origin for y-axis; default 0
Pen (or pens) to use; default is ! (1 . . .

```
DESCRIPTION = texts
YMARKS = variates
XFACTOR = factors
LOWERERRORBARS = tables, variates or scalars
    Lower bounds of the error bars on the y-axis
UPPERERRORBARS = tables, variates or scalars
                            Upper bounds of the error bars on the y-axis
YERRORBARS = tables, variates or scalars
    Y-axis position of any error bar symbols; by default no
    symbols are plotted
XERRORBARS = tables, variates or scalars
    X-axis position of the error bars; default midpoints of
    bar-chart bars
PENERRORBARS = tables, variates or scalars
    Pen (or pens) to use for plotting error bars; default 1
```


DBCOMMAND procedure

Runs an SQL command on an ODBC database, PC Windows only (D.B. Baird).

Options

WARNINGDIALOGS $=$ string token \quad Whether dialogs giving ODBC error and warning messages are presented (display, omit); default disp
DRIVER $=$ scalar \quad Driver version (either 32 or 64) to use with the 64-bit version of Genstat; default 64

Parameters

COMMAND $=$ texts
$\mathrm{DB}=$ texts
GDBFILE $=$ texts
Specifies SQL commands to run on the database
Database connection string for each command
$\mathrm{EXIT}=$ scalars
Name of GDB file to be used in specifying the database for each command
The exit code ($0=$ success, $1=$ failure) from each command

DBEXPORT procedure

Update data in an ODBC database table using Genstat data, PC Windows only (D.B. Baird).

Options

$\mathrm{METHOD}=$ string token	Type of update on table (create, insert, merge); default crea
ROWMERGEMETHOD = string token	For METHOD=merge, what action to take when rows do not match any in the existing table (none, matched, all); default all
COLMERGEMETHOD = string token	What to do with unmatched columns (add, omit); default add
$\mathrm{OMIT}=$ string token	Which rows to omit from the data for METHOD settings other than merge (none, restricted); default rest
ERRORACTION $=$ string token	What to do when any non-fatal errors occur, (continue, stop); default stop
WARNINGDIALOGS = string token	If any errors occur, pop up warning dialogs (display, omit); default disp
GLKFILE $=$ text	Name of existing Genstat ODBC Update link file (*. GLK) to use
DRIVER = scalar	Driver version (either 32 or 64) to use for the 64 -bit version of Genstat; default 64
ODBCPATH $=$ text	Path for the folder containing the executable program (Odbcload.exe) used by the 64-bit version of Genstat to export the data when DRIVER=32; default is the folder containing the Genstat executable program
Parameters	
DATA $=$ pointer or text	Pointer to a compatible set of data structures to add to the table

```
\(\mathrm{DB}=t e x t\)
TABLENAME \(=t e x t\)
COLUMNNAMES \(=\) text
```

SUBSET $=$ variate or text
$\mathrm{MATCH}=$ variate
$\mathrm{WITH}=t e x t$
or text with a name of an existing Genstat spreadsheet file containing data to be added
Database connection string specifying the ODBC database to connect to
Name of the table in the ODBC database (if METHOD is set to insert or merge, then this must already exist in the database) Names of the columns in the table to be updated; if this is not provided, it will be assumed that the columns in the table have the same names as the Genstat data structures
Column numbers or names of the subset of data columns (only if a pointer is used for the DATA parameter) to be added to the table; if SUBSET is not set, all columns are added to the table Numbers of the columns in the table to be matched with the column in the table (the names are provided by WITH) Names of the columns in the table to be matched with the Column; if this not provided, it is assumed that these columns have the same names as those of the Genstat data structures

DBIMPORT procedure

Loads data from an ODBC database, PC Windows only (D.B. Baird).

Options

PRINT = string token
OUTTYPE = string token
METHOD = string token
IMETHOD = string token
ENDSTATEMENT = string token
WARNINGDIALOGS = string token
DRIVER = scalar
ODBCPATH = text

NROWSFETCH = scalar

Parameters

$\mathrm{DB}=$ text
$\mathrm{SQL}=$ text
GDBFILE $=$ text
OUTFILE $=$ text

COLUMNS $=$ text

ISAVE = pointer

NROWSALLOCATE = scalars

What information to print (catalogue); default cata Whether to form a Genstat command file or spreadsheet file as output (GEN, GSH, GWB); default GWB
Whether to load data into the Genstat server after creating the file, or merely to create the file, or to run a command with no output (create, load, command); default load Whether to read the column names from the first row of data, or to use default column names (read, supply, none, default); default read
Ending statement to use in a GEN output file (RETURN, ENDBREAK); default RETURN
Whether dialogs giving ODBC error and warning messages are presented (display, omit); default disp
Driver version (either 32 or 64) to use for the 64-bit version of Genstat; default 64
Path for the folder containing the executable program
(Odbcload.exe) used by the 64-bit version of Genstat to load the data when DRIVER=32; default is the folder containing the Genstat executable program
Number of rows to fetch per driver transaction; default 40
Database connection string
SQL Query string to run against the ODBC database Name of GDB file to be used in reading from ODBC database Output file to be created; if this is not provided a temporary file will be created, and then deleted if the data is loaded Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, \# for a variate, and \$ for a text) Name of a pointer to save the column identifiers Specifies how many rows to allow space for, in the initial allocation of memory, before the data are read; default 1000

DBINFORMATION procedure

Loads information on the tables and columns in an ODBC database, PC Windows only (D.B. Baird). Options

PRINT = string token INFORMATION $=$ string token	What to print (information); default info DRIVER $=$ scalar		
What information to read from the database (tables, columns); default tabl Darameters DB $=$ texts of Genstat; default 64			
GDBFILE $=$ texts			
ISAVE $=$ pointers		\quad	Database connection string
:---			
GDB file specifying an ODBC query			

DBIPLOT procedure

Plots a biplot from an analysis by PCP, CVA or PCO (A.I. Glaser).

Options

PLOT $=$ string tokens

METHOD $=$ string token
HORIZONTAL $=$ identifer
PREDICTIONS = matrix
GROUPS $=$ factor
LMINDIVIDUALS $=$ string tokens

LMVARIABLES $=$ string tokens

LINDIVIDUALS $=$ texts
LVARIABLES $=$ texts
MULTIPLIER $=$ scalar

WINDOW $=$ scalar
KEYWINDOW $=$ scalar
SCREEN $=$ string token

SIZEMULTIPLIER $=$ scalar

SAVE $=$ pointer

Parameters

```
VARIABLE \(=\) identifiers
```

DISPLAY $=$ string tokens
COLOUR $=$ texts or scalars

Additional features for the plot (convexhull, means); default * i.e. none

Type of axes to plot (predictive, interpolative); default pred
Which axis to make horizontal; default * i.e. none
Saves predicted values
Factor defining groupings of individuals for a PCP biplot; default * i.e. none
How to label the individuals (labels, none, numbers, unitlabels); default labe if LINDIVIDUALS is set, otherwise unit
How to label the variables (identifiers, labels, none, numbers); default labe if LVARIABLES is set, otherwise iden
Labels for individuals (i.e. scores)
Labels for variables (i.e. biplot axes)
Value to multiply vector loadings; default * i.e. determined automatically
Which graphical window to use; default 1 when there are groups, otherwise 3
Which graphical window to use for the key when there are groupings of individuals (0 for none); default 2
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea Multiplier used in the calculation of the size in which to draw symbols and labels; default 1
Supplies results from an ordination analysis by PCP, CVA or PCO; default uses the most recent analysis

Axis variables
Whether to show, hide or omit each axis (show, hide, omit);
default disp
Colour to use to plot each axis

DBITMAP directive

Plots a bit map of RGB colours.

Options

TITLE $=$ text
WINDOW $=$ scalar
YORIENTATION $=$ string token

General title; default *
Window number for the graph; default 1
YORIENTATION $=$ string token
GRIDMETHOD $=$ string token
PENGRID $=$ scalar
SCREEN $=$ string token
ENDACTION $=$ string token

Parameters

BITMAP $=$ symmetric matrix, matrix, table, pointer to variates or variate	
	Data to be plotted
ROWS $=$ variate	Row indexes for a BITMAP variate
COLUMNS $=$ variate	Column indexes for a BITMAP variate

DCLEAR directive
Clears a graphics screen.
Options
DEVICE $=$ scalar \quad Device whose screen is to be cleared; default is to clear the

ENDACTION $=$ string token

No parameters

'DCLOSE directive

Closes windows in the Genstat Graphics Viewer.

No options

Parameter
WINDOW $=$ scalar \quad Window number to close; if unset, closes all the windows and the Viewer itself

DCLUSTERLABELS procedure

Labels clusters in a single-page dendrogram plotted by DDENDROGRAM (R.W. Payne).

Options
WINDOW $=$ scalar
UNITS $=$ variate or text
PEN $=$ scalar

Parameters

CLUSTER $=$ variates or texts
LABEL $=$ texts
YSAVE $=$ scalars
XSAVE $=$ scalars

Window containing the dendrogram; default 1
Names used for the units in the clusters supplied by CLUSTER Pen to use to plot the labels; default 1

Specifies clusters to be labelled
Specifies the label to be plotted where each cluster is formed
Saves the y-coordinate where each label is plotted
Saves the x-coordinate where each label is plotted

DCOLOURS procedure

Forms a band of graduated colours for graphics (P.W. Goedhart).

Options

METHOD = string token	Type of colour band required (spectral, blackbody, linear); default line
PLOT $=$ string token	
Parameters	
START $=$ scalar or text	What to plot (testgraph); default *
END $=$ scalar, text or variate	Start value for the colour band; default * gives an appropriate default for the METHOD concerned
GAMMA = scalar or variate	End value(s) for the colour band; default * gives an appropriate default for the METHOD concerned
The gamma-correction exponent(s) for the colour band;	

```
NCOLOURS = scalar or variate
RGB = variates
RED = variates
GREEN = variates
BLUE = variates
TITLE = text
WINDOW = scalar
SCREEN = string token
```

NCOLOURS = scalar or variate
RGB $=$ variates
RED $=$ variates
GREEN $=$ variates
BLUE $=$ variates
TITLE $=$ text

WINDOW = scalar

SCREEN $=$ string token
default 1
Number(s) of colours in the colour band; default 20
Saves the RGB colour values of each colour band
Saves the red component of the RGB colour values
Saves the green component of the RGB colour values
Saves the blue component of the RGB colour values
General title for each test graph; default forms an informative title automatically
Window number for each test graph; default 0 does not display a test graph
Whether to clear the screen before plotting each test graph or to continue plotting on the old screen (clear, keep); default clea

DCOMPOSITIONAL procedure

Plots 3-part compositional data within a barycentric triangle (S.J. Clark).

Options

```
PRINT = text
VERTEXLABELS = text
TITLE = text
PERPENDICULARS = text
WINDOW = number
SCREEN = string token
```


Parameters

DATA $=$ pointers
SCALE $=$ scalars

SAVECOORDINATES = pointers
PEN $=$ scalars or variates or factors

What to print (proportions); default *
Labels for the vertices of the triangle; default * uses the names of the corresponding variates given in the DATA pointer
Title for the barycentric triangle; default * (i.e. no title) Whether to draw perpendiculars from each vertex to its opposite side (yes, no); default no
Which high-resolution graphics window to use; default 3
Whether to clear the graphics screen before plotting (clear, keep); default clea

Contains variates which form the three-part compositions Scale factor for adjusting size of triangle to represent a fourth category; default 1
Saves the two-dimensional x - and y -coordinates into the first and second elements of the pointer, respectively
Pen number to draw points within the barycentric triangle; default 1

DCONTOUR directive

Draws contour plots on a plotter or graphics monitor.

Options

TITLE $=$ text
WINDOW = scalar
KEYWINDOW = scalar
YORIENTATION = string token
ANNOTATION = string token
SCREEN = string token
KEYDESCRIPTION = text
ENDACTION = string token

Parameters

GRID $=$ identifier

PENCONTOUR $=$ scalar
PENFILL = scalar or variate

General title; default *
Window number for the plots; default 1
Window number for the key (zero for no key); default 2
Y-axis orientation of the plot (reverse, normal); default reve
How to annotate the contours (levels, ordinals); default ordi if there is a key, and leve if there is no key
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea Overall description for the key
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Pointer (of variates representing the columns of a data matrix), matrix or two-way table specifying values on a regular grid Pen number to be used for the contours; default 1 Pen number(s) defining how to fill the areas between contours,

PENHIGHLIGHT $=s c a l a r$

HIGHLIGHTFREQUENCY $=$ scalar
NCONTOURS $=$ scalar
CONTOURS $=$ variate
INTERVAL $=$ scalar
DESCRIPTION $=$ text
or 0 to leave the areas in the background colour; default 3
Pen number to use for highlighted contours; default 0 i.e. no highlighting
Frequency at which contours are to be highlighted; default 10
Number of contours; default 10
Positions of contours
Interval between contours
Annotation for key

DCORRELATION procedure

Plots a correlation matrix (A.I. Glaser).

Options

$\mathrm{PLOT}=$ string tokens	Type of plot (together, separate); default sepa
SHOW $=$ string tokens	What features to include on the plots (axes, diagonal); default axes
NCOLOURS $=$ scalar	Number of distinct colour to use from 0 to -1 or 1; default 20
COLOURS $=$ text or variate	Text or variate with three values, defining the colours to use for correlations of $-1,0$ and 1 ; default * chooses the colours automatically
WEIGHTS = variate	Provides weights for the units of the variates; default * assumes that they all have weight one

Parameters

PVARIATES = pointers or symmetric matrices
Pointer to either the first (P-) set or the only set of variates to be correlated, or symmetric matrix containing the correlations themselves
QVARIATES = pointers Pointer to the second (Q-) set of variates to be correlated
PROWS $=$ scalars Specifies the number of rows corresponding the first (P-) set of variates in a correlation matrix supplied by PVARIATES, when this contains two sets
TITLE $=t e x t$ Title for the plot

DCOVARIOGRAM procedure
Plots 2-dimensional auto- and cross-variograms (D.A. Murray).

Options

PLOT $=$ string token Controls how to display the plotted variograms (separate, scattermatrix); default scat
ESTIMATES $=$ pointer Pointer containing model estimates saved from MCOVARIOGRAM

Parameter

COVARIOGRAM $=$ pointer \quad Pointer to supply the semi-variances, distances and associated information as saved from FCOVARIOGRAM

DDENDROGRAM procedure

Draws dendrograms with control over structure and style (P.G.N. Digby).

Options

STYLE $=$ string token
ORDERING $=$ string tokens
REVERSE $=$ string token
ORIENTATION $=$ string token

METHOD $=$ string token

Style to use for the links of the dendrogram (average, centroid, lower, full); default aver How to define the order of the units for the dendrogram (given, ziggurat, size, first); default zigg, size, firs Whether to reverse the order of the units in the dendrogram (no, yes); default no
Specifies the orientation of a dendrogram produced by highresolution graphics (north, south, east, west); default west
Method used to represent the scale on which the
SCREEN $=$ string token
CHANGE $=$ string token

GRAPHICS $=$ string token

DSIMILARITY $=$ string token

LOWSIMILARITY = scalar

ENDACTION $=$ string token

Parameters

DATA $=$ matrices or pointers

PERMUTATION $=$ variates

LABELS $=$ variates or texts

TITLE $=$ texts
WINDOW $=$ scalars
amalgamations have been made: settings other than the default are relevant only for data not generated by HCLUSTER or HDISPLAY (similarities, percentages, distances); default simi
Setting to use for the SCREEN option of DGRAPH (clear, keep); default clea
If a dendrogram-save structure from a previous DDENDROGRAM is used as the DATA parameter then this option specifies the area of the process where the first changes occur: see the description of the SAVE parameter (order, dendrogram, display); default orde
Form of graphics to be used (lineprinter, highresolution); default high
Whether to display an axis for the similarities in high-resolution graphics (no, yes); default no
Lower value to be used for the axis showing the similarities; default * i.e. determined from the data
Action to be taken after completing the plot (continue, pause); default * uses the current setting

Data defining each dendrogram in the form of either a matrix saved using the AMALGAMATIONS parameter of HCLUSTER (methods other than single linkage), or a matrix from the TREE parameter of HDISPLAY, or a SAVE structure from a previous use of DDENDROGRAM
Specify or save permutations of the units for drawing each dendrogram, according to ORDERING option
Supply labels to use for the units of each dendrogram; these should be in the natural order of the units, not in a permuted order
Titles for the dendrograms
Window to use for each dendrogram (window 1 if unset); if this is set to zero the dendrogram is not drawn, but results can still be saved using the PERMUTATION, ZIGGURAT and SAVE parameters
PENS $=$ scalars, variates, strings or texts
Scalar or string specifying the graphics pen or symbol in which to draw each (high-resolution or line-printer) dendrogram; alternatively use of a variate or text allows the structure of each dendrogram to be highlighted by drawing different links with different graphics pens or symbols
ZIGGURAT $=$ variates
SAVE $=$ pointers

Save the "ziggurat-degree" of the links in each dendrogram Save the information required to plot a dendrogram, for use as input for the DATA parameter in a subsequent call to DDENDROGRAM

DDESIGN procedure

Plots the plan of an experimental design (K.E. Bicknell \& R.W. Payne).

Options

$\mathrm{Y}=$ variate
$\mathrm{X}=$ variate

TITLE $=$ text
WINDOW $=$ scalar

Specifies the y position of the plots in standard coordinates 1 ... number of rows of plots in the experiment (taking 1 as the top row of the window)
Specifies the x-coordinate of the plots in standard coordinates
1 ... number of columns of experimental plots
Title for the plan
Window number for the plan; default 3

```
KEYWINDOW = scalar
SCREEN = string token
KEYDESCRIPTION = text
ENDACTION = string token
CHARACTERS = scalar
SIZE = scalar
```


Parameters

```
\(\mathrm{FACTOR}=\) factors
PEN \(=\) scalars \(\quad\) Pen to be used to write the levels of each factor on the plan (if PEN=0 the levels of that factor are not included); default 1 if the FACTOR parameter is specified, otherwise 0 for block factors and 1 for treatment factors
PENGRID \(=\) scalars
LABELS \(=\) texts
Window number for the key; default 0
Whether to clear the screen before plotting (clear, keep); default clea
Overall description for the key; default *
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Sets a limit on the length of each factor label; default * i.e. none
Provides a multiplier by which to scale the sizes of the factor labels on the plan
Factors to be listed on the plan and to define the layout (the procedure determines the style of line to divide each pair of plots in the design from the grid pen of the first factor in the list with which they have different levels); default * forms the list from first the factors specified by a preceding BLOCKSTRUCTURE statement, and then those specified by a preceding TREATMENTSTRUCTURE statement
```

DDISPLAY directive
Redraws the current graphical display.

Options

DEVICE $=$ scalar \quad Device on which to redraw the display (on some systems it may only be possible to redisplay the picture on an interactive graphics device); default uses the current graphics device

ENDACTION $=$ string token

 Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
No parameters

DEBUG directive

Puts an implicit BREAK statement after the current statement and after every NSTATEMENTS subsequent statements, until an ENDDEBUG is reached.

Options

```
CHANNEL = scalar Channel number; default 1
NSTATEMENTS = scalar Number of statements between breaks; default 1
FAULT = string token
Whether to invoke DEBUG only at the next fault (yes, no);
default no
```


No parameters

DECIMALS procedure

Sets the number of decimals for a structure, using its round-off (A. Keen).

Options

SIGNIFICANTFIGURES $=$ scalar

Parameters

STRUCTURE $=$ identifiers
DECIMALS = scalars
ROUND $=$ scalars
VDECIMALS $=$ structures
VROUND $=$ structures

Required number of significant figures; default takes the system default, which can be modified by SET

Numerical structure for which the number of decimals is to be set
To save the number of decimals
To save the round-off
To save numbers of decimals for every value of each structure To save the round-off for every value of each structure

DECLARE directive

declares one or more customized data structures.

Options

TYPE $=$ text \quad Single-valued text defining the type of structure to declare

MODIFY $=$ string token

Parameters

IDENTIFIER = identifiers
VALUES = pointers
EXTRA $=$ text

Whether to modify (instead of redefining) existing structures (yes, no); default no

Identifiers of the structures
Values for each structure
Extra text associated with each identifier

DELETE directive

Deletes the attributes and values of structures.
Options

REDEFINE $=$ string token
LIST $=$ string token
PROCEDURE $=$ string token
NSUBSTITUTE $=$ scalar
REMOVE $=$ string token

Parameter

identifiers

Whether or not to delete the attributes of the structures so that the type etc can be redefined (yes, no); default no How to interpret the list of structures (inclusive, exclusive, all); default incl
Whether the list of identifiers is of procedures instead of data structures (yes, no); default no
Number of times n to substitute a dummy in order to determine which structure to delete; default * i.e. full substitution Whether or not to remove the structures from Genstat completely i.e. to delete their identifiers as well as their attributes and values (yes, no); default no

Structures whose values (and attributes, if requested) are to be deleted

DELLIPSE procedure

Draws a 2-dimensional scatter plot with confidence, prediction and/or equal-frequency ellipses superimposed (V.M. Cave).

Options

PLOT $=$ string tokens
PROBABILITY $=$ scalar or variate
NPOINTS $=$ scalar
DISPLAY $=$ string token
PAXES $=$ string token
TFILL $=$ scalar
USEPENS $=$ string token

What type of ellipse to plot (confidence, prediction, equalfrequency); default conf
Probability level(s) for the ellipse(s); default 0.95
Number of points used to draw the ellipses; default 1000
Whether to include the data points on the graph (show, hide); default show
Whether to plot the principal axes on the graph (no, yes); default no
Transparency used to fill the area inside the ellipses, on a scale of 0 (opaque) to 255 (completely transparent); default 255 Whether to use the current pen definitions for drawing the ellipses, drawing the principal axes and plotting the data (no, yes); default no

CMATCH $=$ string token

WINDOW = scalar
KEYWINDOW = scalar

KEYDESCRIPTION = text
SCREEN = string token

Parameters

$\mathrm{Y}=$ variates or pointers
$\mathrm{X}=$ variates or pointers
GROUPS $=$ factors
DESCRIPTION = texts

TITLE $=$ text
YTITLE $=$ text
XTITLE $=$ text

When USEPENS=yes and groups are to be plotted, indicates whether the colours for the ellipses and principal axes are matched to the corresponding group, or to the colours defined by the pens for the different ellipse types and principal axes (group, pen); default group
Window to use for the graph(s); default 1
Window to use for the key; by default the key is drawn on the right, in window 255
Overall title for the key; default * i.e. none
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clear

Vertical coordinates (i.e. variable to plot on the y-axis)
Horizontal coordinates (i.e. variable to plot on the x -axis)
Defines groupings of the data points
Labels for the groups; default generates the labels automatically
Title for the plot; default * i.e. none
Title for the y-axis; by default a title is generated automatically
Title for the x -axis; by default a title is generated automatically

DEMC procedure

Performs Bayesian computing using the Differential Evolution Markov Chain algorithm (W. van den Berg \& R.W. Payne).

Options

PRINT $=$ string token	What to print (results, monitoring, scatterplot, histogram); default resu, moni, scat, hist
CALCULATION = expression structures	Calculation(s) of logposterior, involving explanatory or pointer variate; if unset, this is calculated by the procedure
	specified by the PROCEDURE option
LOGPOSTERIOR = scalar	Identifier of scalar holding log-posterior within CALCULATION
(must be set if CALCULATION is set)	

FPOPULATIONS = pointers

Parameters

PARAMETER = scalars
INITIAL = scalars

SD $=$ scalars
QUANTILES $=$ variates
RHAT $=$ scalars
ALLESTIMATES $=$ variates
corresponding log-posteriors
Pointer to save final populations of the parameters and the corresponding log-posteriors

Parameters to estimate
Initial values of the parameters; must be set unless
IPOPULATIONS is set
Standard errors of the estimates
Saves the quantiles for each parameter
Convergence criteria
Saves the parameter estimates from all the iterations

DERRORBAR procedure

Adds error bars to a graph (R.W. Payne).

Options

ORIENTATION = string token	Direction of the line (horizontal, vertical); default vert
BARCAPWIDTH = scalars	Width of the cap drawn at the ends of the error bar; default 1
WINDOW $=$ scalar	Window in which to draw the bar; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
Parameters	
BARLENGTH = scalars	Lengths of the bars
Y = identifiers	Vertical coordinates for the midpoints of the bars
X = identifiers	Horizontal coordinates for the midpoints of the bars
PEN = scalars	Pen to use for each bar
LABEL $=$ texts	Text to plot alongside each bar
YLPOSITION = string tokens	Position of each label in the y-direction (above, below, centre, center); default belo
XLPOSITION = string tokens	Position of each label in the x-direction (centre, center, left, right); default righ
PENLABEL $=$ scalars	Pen to use for each label
DESCRIPTION = texts	Annotation for the key

DESCRIBE procedure

Saves and/or prints summary statistics for variates (R.C. Butler \& D.A. Murray).

Options

PRINT $=$ string token \quad Controls whether or not the summaries are printed

SELECTION $=$ string tokens

GROUPS $=$ factor

Parameters

DATA $=$ variates
SUMMARIES $=$ variates or pointers
(summaries); default summ
Selects the statistics to be produced (nval, nobs, nmv, mean, median, min, max, range, q1, q3, sd, sem, var, sevar, \%cv, sum, ss, uss, skew, seskew, kurtosis, sekurtosis, all); default mean, min, max, nobs, nmv, medi, q1, q3 Allows groups to be defined, so that summaries are produced for each group in turn

Data to summarize
To save summaries for each DATA variate, in a variate if GROUPS is unset, or in a pointer to a set of variates (one for each group) if groups have been specified; will be redefined if necessary

DESIGN procedure

Helps to select and generate effective experimental designs (R.W.Payne, M.F. Franklin \& A.E. Ainsley). Option
STATEMENT = text Saves a command to recreate the design
No parameters

DEVICE directive
Switches between (high-resolution) graphics devices.

No options

Parameters

NUMBER = scalar	Device number Action to be taken after completing each plot (continue, pause)
ORIENTATION = string token	Orientation of the pictures, if relevant (landscape, portrait); default * retains the current setting for this device
PALETTE $=$ string token	How to represent colour (monotone, greyscale, grayscale, colour); default * retains the current setting for this device
RESOLUTION = scalar	Specifies the height of the image for hard-copy output, in pixels
ACTION $=$ string token	How to create graphs for file types such as .emf, .jpg, .tif or .png (asynchronous, synchronous); default asyn

DFINISH directive

Ends a sequence of related high-resolution plots.

No options or parameters

DFONT directive

Defines the default font for high-resolution graphics.

No options

Parameter
text
specifies or saves the default graphics font

DFOURIER procedure

Performs a harmonic analysis of a univariate time series (G. Tunnicliffe Wilson \& R.P. Littlejohn).

Options

PRINT $=$ string tokens	Controls printed output (accumulated, means, tsm); default
$\mathrm{PLOT}=$ string tokens	What to plot (periodogram, harmonics, means, residuals, cumulative, range); default peri, harm, mean, resid
MODELTYPE $=$ string token	What harmonic regression model to fit (none, best, full); default none
GROUPS $=$ factor	Groups for plot of means
ORDER = variate	Order for time series model; default ! ($1,0,0$)
COLOURS $=$ text or variate	Colour for each level of GRoups
FACSHORTCYCLE $=$ factor	Factor giving levels of the short cycle
NCOMPONENTS $=$ scalar	Number of nested cycles, must be 0 , 1, or 2 ; default 0
SHORTCYCLE = scalar	Length of the short cycle; default 24
LONGCYCLE $=$ scalar	Length of the long cycle; default 365.225
LABSHORTCYCLE $=$ text	Label for the short cycle; default 'daily'
LABLONGCYCLE $=$ text	Label for the long cycle; default 'annual'
NHSHORTCYCLE $=$ scalar	Number of harmonics for the short cycle; default 5
NHLONGCYCLE $=$ scalar	Number of harmonics for the long cycle; default 3
RANGE $=$ variate	Variate with two values, defining the frequency range within $[0,0.5]$ to draw a portion of the periodogram

Parameters

DATA $=$ variates
PERIODOGRAM $=$ variates
FREQUENCY = variates
MEANS $=$ tables

Controls printed output (accumulated, means, tsm); default
What to plot (periodogram, harmonics, means, residuals, cumulative, range); default peri, harm, mean, resid
What harmonic regression model to fit (none, best, full); default none

Groups for plot of means
Order for time series model; default ! ($1,0,0$)
ROUPS

Number of nested cycles, must be 0,1 , or 2 ; default 0
Length of the short cycle; default 24
ength of the long cycle; default 365.225

Label for the long cycle; default 'annual'
Number of harmonics for the short cycle; default 5
Number of harmonics for the long cycle; default 3 [$0,0.5$] to draw a portion of the periodogram

Time series
Saves the periodogram of DATA
Saves the frequencies at which the periodogram is calculated Saves the table of means of the fitted model for each value of FACSHORTCYCLE by each level of GROUPS

RESIDUALS $=$ variates
FITTEDVALUES $=$ variates

Saves the residuals from the fitted model Saves the fitted values from the model

DFRTEXT procedure

Adds text to a graphics frame (W. van den Berg).

No options

Parameters

$\mathrm{Y}=$ variates or scalars
$\mathrm{X}=$ variates or scalars
$\mathrm{TEXT}=$ texts
$\mathrm{PEN}=$ scalars, variates or factor S
YUPPER = scalars
XUPPER $=$ scalars

Vertical coordinates in the frame
Horizontal coordinates in the frame
Text to plot
Pens to use; default 1
Maximum vertical coordinate in the frame; default 1
Maximum horizontal coordinate in the frame; default 1

DFUNCTION procedure

Plots a function (R.W. Payne).
Options

FUNCTION = expression	Function to plot TITLE $=$ text
Title for the plot; default shows the function	
COLOUR = text or scalar	
WINDOW = scalar	Colour of the function curve; default 'green '
ELEVATION = scalar	Which graphics window to use; default 3
Elevation of the viewpoint for the surface that is plotted when	
there are two arguments; default 25 (degrees)	
Rotation about the horizontal plane for the viewpoint of a	
surface plot; default 225 (degrees)	

Parameters

ARGUMENT = scalars
Arguments of the function
LOWER = scalars
Lower values of the arguments for the plot
UPPER $=$ scalars \quad Upper values of the arguments for the plot
STEP $=$ scalars \quad Steps at which to evaluate the function

DGRAPH directive

Draws graphs on a plotter or graphics monitor.

Options

```
TITLE = text
WINDOW = scalar
KEYWINDOW = scalar
SCREEN = string token
KEYDESCRIPTION = text
ENDACTION = string token
```

HOTMENU $=$ matrices
HOTCHOICE $=$ string token

General title; default *
Window number for the graphs; default 1
Window number for the key (zero for no key); default 2 Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep, resize); default clea
Overall description for the key; default *
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement
Defines sets of "hot" components for the user to select as shown or hidden by a menu in the Graphics Viewer Whether one or several "hot" components can be displayed at a time (one, several); default seve

Parameters	
$\mathrm{Y}=$ identifiers	Vertical coordinates
$\mathrm{x}=$ identifiers	Horizontal coordinates
PEN $=$ scalars, variates or factors	Pen number for each graph (use of a variate or factor allows different pens to be defined for different sets of units); default * uses pens 1,2 , and so on for the successive graphs
DESCRIPTION $=$ texts	Annotation for key
YLOWER $=$ identifiers	Lower values for vertical bars
YUPPER = identifiers	Upper values for vertical bars
XLOWER = identifiers	Lower values for horizontal bars
XUPPER = identifiers	Upper values for horizontal bars
YBARPEN $=$ scalars, variates or factors	Pens to use to draw the vertical bars; default -11
XBARPEN $=$ scalars, variates or factors	Pens to use to draw the horizontal bars; default -11
LAYER = scalars	"Layer" of the plot
UNITNUMBERS = identifiers	Specifies unit numbers to be used when points are selected in the graphics viewer; default * uses the actual unit numbers of the values in the X and Y structures
DISPLAY $=$ string tokens	Whether to display each component initially in the graph (show, hide); default show
HOTCOMPONENT $=$ scalars	Allows components of the graph (specified by pairs of Y and X settings) to be defined as "hot" components that can be shown or hidden through their association with "hot" points or using a menu in the Graphics Viewer
HOTDEFINITION $=$ matrices	Define how to use points defined by the Y and X parameters as "hot" points in the Graphics Viewer to allow the user to decide whether other components of the graph are shown or hidden

DHELP procedure

Provides information about Genstat graphics (S.A. Harding).

No options

Parameter

TOPIC $=$ string tokens \quad Lists the required graphics topics (current, possible); default poss

DHISTOGRAM directive

Draws histograms on a plotter or graphics monitor.

Options

TITLE = text
WINDOW = scalar
KEYWINDOW = scalar
LIMITS = variate
LOWER = scalar
UPPER = scalar
NGROUPS = scalar

General title; default * Window number for the histograms; default 1
Window number for the key (zero for no key); default 2 Variate of group limits for classifying DATA variates into groups; default *
For a DATA variate, this specifies the lower limit of the first bar; default * takes the minimum value of the variates For a DATA variate, this specifies the upper limit of the last bar; default * takes the maximum value of the variates When LIMITS and BINWIDTH are not specified, this defines the number of groups into which a DATA variate is to be classified; default is then 10 or the integer value nearest to the square root of the number of values in the variate if that is smaller
When LIMITS is unset the range of a DATA variate is split into equal intervals known as "bins" to form the groups, this option can set the bin widths (alternative is to set the number of groups using NGROUPS)

FIXEDBARWIDTH = string token
BARCOVERING $=$ scalar

LABELS $=$ text
APPEND $=$ string token

ORIENTATION = string token
OUTLINE = string token
PENOUTLINE = scalar
SCREEN $=$ string token

KEYDESCRIPTION = text
ENDACTION $=$ string token

Parameters

DATA = identifiers

NOBSERVATIONS $=$ tables
GROUPS $=$ factors
$\mathrm{PEN}=$ scalars or variates

DESCRIPTION $=$ texts

Whether to plot the histogram with bars of equal width (no, yes); default no
What proportion of the space allocated along the x -axis each bar should occupy; default * gives proportion 1 for a DATA variate, and 0.8 for a factor or table (thus giving a gap between each bar)
Group labels; default *
Whether or not the bars of the histograms are appended together (yes, no); default no
Direction of the plot (horizontal, vertical); default vert
Where to draw outlines (bars, perimeter); default bars
Pen to use for the outlines; default - 8
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea Overall description for the key; default *
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Data for the histograms; these can be either a factor indicating the group to which each unit belongs, a variate whose values are to be grouped, or a one-way table giving the height of each bar
One-way table to save numbers in the groups Factor to save groups defined from a variate
Pen number(s) for each histogram; default * uses pens 2, 3, and so on for the successive structures specified by DATA Annotation for key

DHSCATTERGRAM procedure

Plots an h-scattergram (D.A. Murray).

Options

LAGCLASS $=$ scalar or variate

ARRANGEMENT $=$ text

Parameters

DATA $=$ variates
LAGPOINTS = pointers

The lag classes to be displayed in the plots; default all lag classes
Specifies whether to display the plots individually or with multiple plots on the same page (single, multiple); default mult

Observations as a variate
Lag classes, indexes to observations and directions for plotting

DIAGONALMATRIX directive

Declares one or more diagonal matrix data structures.

Options

ROWS $=$ scalar, vector, pointer or text

```
VALUES = numbers
MODIFY = string token
IPRINT = string tokens
```


Parameters

IDENTIFIER = identifiers
VALUES $=$ identifiers

Number of rows, or labels for rows (and columns); default * Values for all the diagonal matrices; default * Whether to modify (instead of redefining) existing structures (yes, no); default no
Information to be used by default to identify the diagonal matrices in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the diagonal matrices
Values for each diagonal matrix

DECIMALS $=$ scalars	Number of decimal places for printing
EXTRA $=$ texts	Extra text associated with each identifier
MINIMUM $=$ scalars	Minimum value for the contents of each structure
MAXIMUM $=$ scalars	Maximum value for the contents of each structure
DREPRESENTATION $=$ scalars or texts	Default format to use when the contents represent dates and times

DIALLEL procedure

Analyses full and half diallel tables with parents (J.F. Potter).

Options

PRINT $=$ string tokens	Controls printed output (data, vrwr, regression, aov, means, griffingaov); default data, vrwr, regr, aov, mean

LABELS $=$ text Labels for rowcols, one text value for each, column j has the same label as row j, so each value of LABELS is the label for a pair of parents, applying to a rowcol; default $1 \ldots N$, where N is the dimension of each diallel table

METHOD $=$ string token

Parameter

$\mathrm{DATA}=$ matrices

Whether to perform full or half diallel analysis (half, full); default full

Each matrix contains the data for one block in the analysis, half diallel tables are presented as square matrices with the upper triangles and leading diagonals containing the values of interest, the matrices must be of the same size

DILUTION procedure

Calculates Most Probable Numbers from dilution series data (M.S. Ridout \& S.J. Welham).

Options

PRINT $=$ string tokens	Output required (estimates, fitted); default esti, fitt
\%LIMITS = scalar	Percentage points for confidence limits; default 95
RMETHOD $=$ string token	Which type of residuals to form (deviance, Pearson); default devi
MAXCYCLE $=$ scalar	Maximum number of iterations allowed for the NewtonRaphson algorithm to converge; default 10
TOLERANCE $=$ scalar	Defines the convergence criterion; default 0.0005
Parameters	
POSITIVE = variates	Number of positive subsamples at each dilution
NSAMPLE $=$ variates	Total number of subsamples tested at each dilution
VOLUME $=$ variates	Volume of original sample present in each dilution
FITTED $=$ variates	To store the fitted values
RESIDUAL $=$ variates	To store the residuals, as specified by option RMETHOD
$\mathrm{MPN}=$ scalars	To store the maximum likelihood estimate of Most Probable Number
UPPER $=$ scalars	To store the upper confidence limit for MPN
LOWER = scalars	To store the lower confidence limit for MPN
DEVIANCE = scalars	To store the residual deviance
PEARSONCHISQUARE = scalars	To store Pearson's chi-square statistic
$\mathrm{DF}=$ scalars	To store the degrees of freedom for goodness-of-fit tests (zero if no test is available)

DIRECTORY procedure

Prints or saves a list of files and/or subdirectories with names matching a specified mask (D.B. Baird). Options

```
PRINT = string tokens What to print(filenames, subdirectories); default file
SAVEPATH = string token
```

What to print (filenames, subdirectories); default file Whether to include the path in FILENAMES (yes, no); default

MASKTYPE $=$ string token

Parameters

MASK $=$ texts

FILENAMES $=$ texts
SUBDIRECTORIES = texts

The type of mask specified by MASK (file, directory); default file

Mask identifying the files that are to be included in the each listing, if no directory path is included, the current working directory is searched; default '*.*'
Saves the list of files that match each mask
Saves the list of subdirectories that match each mask

DISCRIMINATE procedure

Performs discriminant analysis (L.H. Schmitt \& P.G.N. Digby).

Options

PRINT $=$ string tokens	Printed output from the analysis (counts, lrv, tests, ccorrelations, icorrelations, correlations, adjustments, means, gdistances, scores, distances, newgroups, table, validation); default coun
NROOTS $=$ scalar	The number of dimensions to be used for printed and saved output, and used in calculating the distances and the allocation of units; default is to use the full dimensionality
REALLOCATE $=$ string token	Whether units from the training set are to be reallocated to groups (no, yes); default no
PLOT $=$ string tokens	Features for the plots (means, mlabels, scores, polygons, confidencecircle); default mean, scor, poly (Note: * suppresses plotting)
VALIDATIONMETHOD $=$ string token	Validation method to use to calculate error rates (bootstrap, crossvalidation, jackknife); default cros
NSIMULATIONS $=$ variate	Number of bootstraps or cross-validation sets to use for selection and for validation; default ! $(10,50)$
NCROSSVALIDATIONGROUPS $=$ scalar	Number of groups for cross-validation, default 10
SEED = scalar	Seed for random number generation; default 0
YROOT $=$ scalars	Specifies roots for plotting on y-axes
XROOT $=$ scalars	Specifies roots for plotting on x -axes
TITLE $=$ strings	Titles for plots
WINDOW = scalars	Windows for plots
SCREEN $=$ string tokens	Action before each plot (keep, clear); default clea
Parameters	
DATA $=$ pointers	Each pointer contains a set of variates to be analysed
GROUPS $=$ factors	Define groupings for the units in each training set, or missing values for the units to be allocated
NEWGROUPS $=$ factors	Saves allocations (and reallocations)
ALLOCATION $=$ factors	Saves allocations to groups including those not present in the training set
MEANS $=$ matrices or pointers	Saves scores for group means
SCORES $=$ matrices or pointers	Saves scores for units
DISTANCES $=$ matrices	Saves unit to group-mean squared distances
$L \mathrm{LVV}=L R V S$	Saves the LRVs from the canonical variates analyses
ADJUSTMENTS $=$ matrices	Saves adjustments to the canonical variates analyses
GDISTANCES $=$ symmetric matrices	Saves the distances between groups
CCORRELATIONS $=$ matrices	Saves canonical correlation coefficients
ICORRELATIONS $=$ symmetric matrices	Saves within-group correlation matrices of the input variates
CORRELATIONS $=$ matrices	Saves within-group correlations between the input and canonical variates

DISPLAY directive

Prints, or reprints, diagnostic messages.

Options

PRINT $=$ string token
CHANNEL = identifier

FAULT $=$ text

What information to print (diagnostic); default diag Channel number of file, or identifier of a text to store output; default current output file Specifies the fault message to print (for example, FAULT='VA 4' prints the message "Values not set"); default is to print the last diagnostic message

No parameters

DISTRIBUTION directive

Estimates the parameters of continuous and discrete distributions.

Options

PRINT $=$ string tokens	Printed output required from each individual fit (parameters, samplestatistics, fittedvalues, proportions, monitoring); default para, samp, fitt
CBPRINT $=$ string tokens	Printed output required from a fit combining all the input data (parameters, samplestatistics, fittedvalues, proportions, monitoring); default *
DISTRIBUTION $=$ string token	Distribution to be fitted (Poisson, geometric, logseries, negativebinomial, NeymanA, PolyaAeppli, PlogNormal, PPascal, Normal, dNvequal, dNvunequal, logNormal, exponential, gamma, Weibull, b1, b2, Pareto); default * i.e. fit nothing
CONSTANT $=$ string token	Whether to estimate a location parameter for the gamma, $\operatorname{logNormal}$, Pareto or Weibull distributions (estimate, omit); default omit
LIMITS $=$ variate	Variate to specify or save upper limits for classifying the data into groups; default *
NGROUPS $=$ scalar	When LIMITS is not specified, this defines the number of groups (of approximately equal size) into which the data are to be classified; default is the integer value nearest to the square root of the number of data values
XDEVIATES $=$ variate	Variate to specify points up to which the CUMPROPORTIONS are to be estimated
JOINT $=$ string token	Requests joint estimates from the combined fit to be used for a re-fit to the separate data sets (dispersion, variancemeanratio, Poissonindex); default *
PARAMETERS $=$ variate	Estimated parameters from the combined fit
$\mathrm{SE}=$ variate	Standard errors for the estimated parameters of the combined fit
VCOVARIANCE $=$ symmetric matrix	Variance-covariance matrix for the estimated parameters of the combined fit
CUMPROPORTIONS $=$ variate	Estimated cumulative proportions of the combined distribution up to the values specified by the XDEVIATES option
MAXCYCLE $=$ scalar	Maximum number of iterations; default 30
TOLERANCE $=$ scalar	Convergence criterion; default 0.0001
Parameters	
DATA $=$ variates or tables	Data values either classified (table) or unclassified (variate)
NOBSERVATIONS $=$ tables	One-way table to save the data classified into groups
RESIDUALS $=$ tables	Residuals from each (individual) fit
FITTEDVALUES = tables	Fitted values from each fit
PARAMETERS $=$ variates	Estimated parameters from each fit
$\mathrm{SE}=$ variates	Standard errors of the estimates
VCOVARIANCE $=$ symmetric matrices	Variance-covariance matrix for each set of estimated

CUMPROPORTIONS $=$ variates

CBRESIDUALS $=$ tables
CBFITTEDVALUES = tables
STEPLENGTH = variates
INITIAL $=$ variates

parameters

Estimated cumulative proportions of each distribution up to the values specified by the XDEVIATES option
Residuals from the combined fit
Fitted values from the combined fit
Initial step lengths for each fit
Initial values for each set fit

DKALMAN procedure

Plots vector time series (A.I. Glaser).

Options

```
TIMEPOINTS = variate
TITLE = texts
YTITLE = texts
XTITLE = texts
NROWS = scalar
NCOLUMNS = scalar
```

Parameter
SAVE $=$ pointers

X-coordinates for the graphs; default uses the integers 1, $2 \ldots$ Overall title for the graphs
Titles for the y-axes; default * forms titles automatically from the identifiers or labels of the y-variables
Title for the x -axis in each set of graphs; default * uses the identifier of TIMEPOINTS (if set)
Specifies the number of rows of graphs to appear on the graphics screen; default * takes the number of y-variables Specifies the number of columns of graphs to appear on the graphics screen; default 1

Save structure from KALMAN with information about the analysis; default plots information from the most recent KALMAN analysis

DKEEP directive

Saves information from the last plot on a particular device.

No options

Parameters

DEVICE $=$ scalars

WINDOW = scalars
XLOWER $=$ scalars
XUPPER $=$ scalars
YLOWER $=$ scalars
YUPPER $=$ scalars

ZLOWER $=$ scalars
ZUPPER $=$ scalars

FILE $=$ scalars
DESCRIPTION $=$ texts
DREAD $=$ scalars

ENDACTION $=$ texts

The devices for which information is required, if the scalar is undefined or contains a missing value, this returns the current device number
Window about which the information is required; default * gives information about the last window
Lower bound for the x -axis in last graph in the specified device and window
Upper bound for the x -axis in last graph in the specified device and window
Lower bound for the y-axis in last graph in the specified device and window
Upper bound for the y-axis in last graph in the specified device and window
Lower bound for the z -axis in last graph in the specified device and window
Upper bound for the z-axis in last graph in the specified device and window
Returns the value 1 or 0 to indicate whether a file is required for this device
Description of the device
Returns the value 1 or 0 to indicate whether graphical input is possible from this device
Returns the current ENDACTION setting (' continue' or 'pause')

DKEY procedure

Adds a key to a graph (D.B. Baird \& V.M. Cave).

Options

```
WINDOW = scalar
NCOLUMNS \(=\) scalar
NROWS \(=\) scalar
TITLE \(=\) text
PENTITLE = scalar
PENLABELS \(=\) variate
TPOSITION \(=\) string
ORDER \(=\) string
LSIZE \(=\) scalar
LFONT = scalar or text
LCOLOUR = scalar or text
XLOFFSET = scalar or variate
COLSPACING \(=\) string
ROWGAP = scalar
COLGAP \(=\) scalar
BORDER = string
CBORDER = string
Parameters
DESCRIPTIONS = texts
PEN \(=\) variates
METHOD \(=\) texts
Now \(=\) scalar
```

```
-
```

Window in which to draw the key; default 2
Number of columns forming the grid in which the key is
displayed; default * (i.e. set automatically)
Number of rows forming the grid in which the key is
displayed; default * (i.e. set automatically)
Title for the key
Pen used to write the title of the key; default is that set for the
window in which the key is plotted
Pens to use to plot the labels; default is to plot the labels using
the settings of LFONT, LSIZE and LCOLOUR
Position of the title (inside, outside, left, centre,
center, right); default cent, outs
Order in which to fill the key's row by column grid (rows,
columns); default rows
Relative size of the labels; default 1
Font to use for the labels; default 1
Colour used to write the labels; default 'black '
Offset in the x-direction between the items (i.e. symbols/lines)
and labels in the key; default 0
Column spacing (equal, unequal); default equa
Multiplier for gaps between rows; default 1
Multiplier for gaps between columns; default 1
Border around the key (fit, given, none); default fit
Colour for the border around the key; default 'black'

Labels for the key
Pens to use for the items in the key; default uses the integers 1, 2 ...
Method for plotting the items in the key (fill, point, line, both, none); default is to use the method defined for the corresponding PEN
SYMBOL $=$ variates, scalars, factors or texts
Symbols to be drawn in the key; default is to use those specified by PEN
COLOUR $=$ variates, scalars, factors or texts Colours of lines, or of filled areas when METHOD='fill'; default is to use those specified by PEN
CSYMBOL $=$ variates, scalars, factors or texts
Colours of symbols; default is to use those specified by PEN
CFILL $=$ variates, scalars, factors or texts
Colours used to fill hollow symbols; default is to use those specified by PEN
SIZEMULTIPLIER $=$ variates, scalars or factors
Relative sizes of symbols and filled area; default is to use those specified by PEN
LINESTYLE $=$ variates, scalars, factors or texts Numbers or names of the linestyles to use; default is to use those specified by PEN
THICKNESS $=$ variates, scalars or factors
Thicknesses of the lines; default is to use those specified by PEN

TRANSPARENCY $=$ variates, scalars or factors
Transparencies of the filled areas when METHOD='fill'; default is to use those specified by PEN

DKSTPLOT procedure

Produces diagnostic plots for space-time clustering (D.A. Murray).

Options

$\mathrm{PLOT}=$ string token	Whether to produce plots separately or in composite $($ separate, combined); default comb
$\mathrm{DZERO}=$ string token	Whether to produce a DZERO plot (yes, no); default no
Parameters	
$\mathrm{Y}=$ variates	Vertical coordinates of the spatial point patterns
$\mathrm{X}=$ variates	Horizontal coordinates of the spatial point patterns
$\mathrm{KS}=$ variates	Estimates of spatial K function
$\mathrm{KT}=$ variates	Estimates of temporal K function
$\mathrm{KST}=$ matrices	Estimates of space-time K function
$\mathrm{KSE}=$ matrices	Estimates of standard errors of space-time K function

DLOAD directive

Loads the graphics environment settings from an external file.

No options

Parameter

text
File from which to lead the environment settings

DMADENSITY procedure

Plots the empirical CDF or PDF (kernel smoothed) by groups (D.B. Baird).

Options

PLOT $=$ string tokens	What to plot (cdf, pdf, histogram); default cdf, pdf
TRANSFORMATION = string token	Whether to transform the data to \log base 2 (log2, none); default none
BANDWIDTH $=$ scalar	Bandwidth to use in kernel density estimates for PDF
ARRANGEMENT = string token	Whether to use trellis or single plots (single, trellis); default trel
WINDOW = scalar	Window number for the graphs; default 3
KEYWINDOW = scalar	Window number for the key; default 0 i.e. none
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE $=$ text	What graphics filename template to use to save the graphs; default *
Parameters	
DATA $=$ variates or pointers	Data coordinates
GROUPS $=$ factors or texts	Groups

DMASS procedure

Plots discrete data like mass spectra, discrete probability functions (J.W. McNicol).

Options

$\mathrm{X}=$ variate	Positions on the x-axis at which to plot the lines; default uses
	$1,2 \ldots$
TITLE $=$ text	Title for the graph; default * i.e. none
WINDOW $=$ scalar	Window for the graph; default 3
YTITLE $=$ texts	Title for the y-axis
XTITLE $=$ texts	Title for the x-axis
YMARKS $=$ scalars or variates	Distance between each tick mark on y-axis (scalar) or Positions of the marks (variate)
	Distance between each tick mark on x-axis (scalar) or XMARKS $=$ scalars or variates
	positions of the marks (variate)

```
YMPOSITION \(=\) string tokens
XMPOSITION \(=\) string tokens
YLABELS \(=\) texts
XLABELS \(=\) texts
PENAXES \(=\) scalar
PENTITLE = scalar
LINETHICKNESS = scalar
SCREEN \(=\) string token
```


Parameters

```
\(\mathrm{Y}=\) variates
LINECOLOUR \(=\) texts or scalars
Position of the tick marks across the \(y\)-axis (left, right, centre); default left
Position of the tick marks across the x -axis (above, below, centre); default * i.e. none
Labels at each mark on y-axis
Labels at each mark on x -axis
Pen to be used for axes and their titles; default 1
Pen to use for the title; default 1
Thickness for the vertical lines representing the mass heights; default 1
Whether to clear screen before displaying the graph (keep, clear); default clea
Heights for the masses
Colours for the vertical lines representing mass heights; default * sets suitable colours automatically
```


'DMOSAIC procedure

Produces a mosaic plot to display a table of counts (D.B. Baird).

Options

LINECOLOUR = text or scalar	Colour to use for the outlines of the boxes; default 'black'
EMPTYCOLOUR $=$ text or scalar	Colour to use for the outlines of the empty boxes; default 'purple'
THICKNESS $=$ scalar	Line thickness for the outlines of the boxes; default 1
LABELSIZE $=$ scalar	Label size for the axis labels; default 1
GAP = scalar	Relative size of the gaps between boxes; default 1
MINSIZE $=$ scalar	Minimum row/column dimension for a box; default 0.002
Parameters	
DATA $=$ tables or pointers	Data to be plotted
ROWFACTORS $=$ pointers	Factors to be displayed down the window; if COLFACTORS is not specified, the default is to display the factors in the second half of the classification set of the table, otherwise it is the classifying factors not included in COLFACTORS
COLFACTORS $=$ pointers	Factors to be displayed across the window; if ROWFACTORS is not specified, the default is to display the factors in the first half of the classification set of the table, otherwise it is the classifying factors not included in ROWFACTORS
TITLE $=$ texts	Title for the plot; default * i.e. none
COLOURS $=$ variate or text	The colours to shade the boxes; by default the colours are taken from the pens 2 onwards, with a final colour of white
LABELWIDTH $=$ scalars or variates	Maximum length of the labels to display for each factor; default * uses the full text of the factor labels
WINDOW = scalar	Window number for the graph; default 3
SCREEN $=$ string token	Whether to clear the screen before plotting or to or continue plotting on the existing screen (clear, keep); default clea

DMSCATTER procedure

Produces a scatter-plot matrix for one or two sets of variables (J. Ollerton \& R.W. Payne).

Options

PLOT $=$ string tokens

SCALING $=$ string token

PEN $=$ scalar or variate or factor
PENHISTOGRAM $=$ scalar

Additional information to include in the scatter plots
(correlation, histograms, boxplots, densities, dothistograms); default *
How to scale the x - and y-axes (common, equal, none); default none
Pens to plot the scatter plots; default 1
Pens to plot the histograms; if PEN is a factor the default plots

```
the histogram for each group separately using the pen used for that group in the scatter plots, otherwise the default is to use pen 2
```

PENCORRELATION $=$ scalar
PENTITLE $=$ scalar

PENAXIS $=$ scalar

PENLABELS $=$ scalar

NROWS $=$ scalar

NCOLUMNS $=$ scalar

ASPECTRATIO $=$ scalar

FRAMESHAPE $=$ string token

MARGINSIZE $=s c a l a r$

Parameters

$\mathrm{Y}=$ pointers

YTITLES $=$ texts

YMARKS $=$ variates, scalars or pointers
$\mathrm{x}=$ pointers

Pen to use to write the correlations; default 1
Pen to use to write the axis titles; default uses the pens currently defined for the axes in the windows that are used for the plots
Pen to use to draw the axes; default uses the currently defined pens
Pen to use to write the axis labels; default uses the currently defined pens
Number of rows of graphs to put in a single frame (i.e. page); default puts them all in one frame
Number of columns of graphs to put in a single frame; default uses the same value as NROWS
Ratio of the length of the y-axis to the length of the x-axis in each graph
Shape of the plotting frame (landscape, portrait, square); default squa
Specifies the size of the margins at the bottom and left-hand edge of the frame

Each pointer contains a set of variates and/or factors to be plotted
Labels for the axes for the Y variates and factors, to use instead of their identifiers
Marks to use on the axes for the Y variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor
Each pointer contains a set of variates and/or factors to be plotted as the x -variables in a rectangular scatter-plot matrix; if unset Y specifies both the x-variables and y-variables for a symmetric scatter-plot matrix
Labels for the axes for the x variates and factors, to use instead of their identifiers
YMARKS $=$ variates, scalars or pointers
Marks to use on the axes for the y variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor

XMARKS $=$ variates, scalars or pointers

Marks to use on the axes for the x variates and factors, if any of these contains missing values, the marks and their labels are suppressed for that variate or factor

DMST procedure

Gives a high resolution plot of an ordination with minimum spanning tree (A.W.A. Murray).

Options
DIMENSIONS $=$ scalars

TITLE $=$ text
WINDOW $=$ scalar
KEYWINDOW = scalar
SCREEN $=$ string token

Two numbers specifying the dimensions to display on the y and x-axes; default 2,1
Title for the graph
Window for the graph; default 1
Window for the key; default 2
Controls screen (clear, keep); default clea

Parameters

COORDINATES $=$ matrices or datamatrices

TREE $=$ matrices
SIMILARITY = symmetric matrices
SYMBOLS $=$ factors or texts
PENCOORDINATES $=$ scalars
PENTREE = scalars

Minimum spanning tree
Association matrix used to derive ordination
Symbols to label the coordinates
Pen to use for the coordinates
Pen to use for the minimum spanning tree

DOTHISTOGRAM procedure

Plots dot histograms (L.S. Schmitt).

Options

TITLE $=$ text
AXISTITLE $=$ text

WINDOW $=$ scalars

ORIENTATION $=$ string token
YORIENTATION $=$ string token
SCREEN $=$ string token
JUSTIFICATION $=$ string token
CREATEMISSINGLEVEL $=$ text
OMITEMPTYLEVELS $=$ text

```
SIZE = scalar
KEYWINDOW = scalar
KEYDESCRIPTION = text
```

SELECTION $=$ string tokens
BARWIDTH $=$ scalar
BARTHICKNESS $=$ scalar
CMEAN $=$ scalar, variate or text
CMEDIAN $=$ scalar, variate or text
CINTERQUARTILE = scalar, variate or tex
Colour of the bars for the inter-quartile ranges

Parameters

	Data to be plotted
DATA - variates or pointers	Data to be plotted
GROUPS $=$ factors	Factor to divide values of a DATA variate into groups
COLOURS $=$ scalars, variates, texts or factors	
	Colours for the histograms in each plot, a scalar to use the same colour for all the histograms, or a variate or factor to plot each histogram in a different colour; default 'black'
NOBSERVATIONS = tables	Save tables of count
PEN $=$ variates, factors or pointers	Pens to define colours for the individual dots; default uses those defined by the COLOURS parameter
SYMBOLS $=$ scalars, variates, texts or factors	
	Symbols for the points
DESCRIPTION $=$ texts	Annotation for key when PEN is set; default uses unique values of PEN

DOTPLOT procedure

Produces a dot-plot using line-printer or high-resolution graphics (J. Ollerton \& S.A. Harding). Options

GRAPHICS $=$ string token	Whether to use high-resolution graphics or line-printer graphics (lineprinter, highresolution); default high
TITLE $=$ text	Title for the Dot Plot; default *
WINDOW = scalar	Window number for the graph; default 1
SCREEN $=$ string token	Whether to clear the screen before plotting or to or continue plotting on the old screen (clear, keep); default clea
ENDACTION $=$ string token	Action to be taken after completing the plot (continue, pause); default * uses the current setting
DIRECTION $=$ string token	Order in which to sort the data before plotting, DIRECTION=* implies plot unsorted data (ascending, descending); default asce
LINES $=$ string token	How to draw guide lines on the plot, LINES=* omits the guide lines (todot, full); default todot draws lines from the x origin to the dots
Parameters	
YLABELS $=$ texts	Text specifying Y labels for each dotplot
$\mathrm{X}=$ variates	Data to be plotted
PENDOTS $=$ scalars	Pen to draw the dots; default 1
PENLINES $=$ scalars	Pen to draw the lines; default 2

DPARALLEL procedure
Displays multivariate data using parallel coordinates (Z. Karaman).

Options

TITLE = text
GROUPS $=$ factor

PERMUTATIONSALL = string token

SCALING = string token

PEN $=$ variate

Parameter

DATA $=$ variates

Title for the plot
Defines grouping of the units (if any); by default, different pens are used for the observations in different groups Whether to display all necessary permutations so that any two variates will be adjacent in at least one plot, or just display once in the order given by the DATA pointer (yes, no); default no
Whether to do scaling overall (scale all variates on the same scale), or to scale each variate separately (overall, separate); default sepa
Pens to be used for different groups (if any); default * uses pens from 1 up to the number of groups (number of levels of the GROUPS factor)

Data variables to be plotted

DPIE directive

Draws a pie chart on a plotter or graphics monitor.

Options

TITLE $=$ text
WINDOW $=$ scalar
KEYWINDOW = scalar
ANNOTATION $=$ string token

OUTLINE $=$ string token
PENOUTLINE = scalar
SCREEN $=$ string token

KEYDESCRIPTION = text

General title; default *
Window number for the pie chart; default 1
Window number for the key (zero for no key); default 2
Whether to annotate the slices by their percentages
(percentages); default perc
Where to draw outlines (slices, perimeter); default slices
Pen to use for the outlines; default - 10
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea
Overall description for the key

ENDACTION $=$ string token

Parameters

SLICE = scalars
PEN $=$ scalars

DESCRIPTION $=$ texts

Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Amounts in each of the slices (or categories)
Pen number for each slice; default * uses pens 1, 2, and so on for the successive slices
Description of each slice

DPOLYGON procedure

Draws polygons using high-resolution graphics (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

Options

```
TITLE = text Main title for the plot; default *
WINDOW = scalar }\quad\mathrm{ Which graphics window to use for the plot; default 1
KEYWINDOW = scalar
YTITLE = text
XTITLE = text
YLOWER = scalar
YUPPER = scalar
XLOWER = scalar
XUPPER = scalar
SCREEN = string token
KEYDESCRIPTION = text
ENDACTION = string token
```


Parameters

```
YPOLYGON = variates
```

YPOLYGON = variates
XPOLYGON = variates
PEN = scalars or variates or factors
DESCRIPTION = texts

```

Main title for the plot; default *
Which graphics window to use for the plot; default 1
Which graphics window to use for the key; default 2
Title for the vertical axis; default *
Title for the horizontal axis; default *
Lower limit for the vertical axis
Upper limit for the vertical axis
Lower limit for the horizontal axis
Upper limit for the horizontal axis
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea Overall description for the key; default *
Action to be taken after completing the plot (continue, pause); default paus

Vertical coordinates of one or more polygons; no default - this parameter must be set Horizontal coordinates of one or more polygons; no default this parameter must be set
Pen number for each graph
Annotation for the key

\section*{DPROBABILITY procedure}

Creates a probability distribution plot of the values in a variate (D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls whether to print estimated parameters of the distribution or test statistics (parameters, tests); default para \\
\hline \({ }^{\dagger}\) DISTRIBUTION \(=\) string token & Distribution for expected values against which to plot values (normal, stdnormal, lognormal, exponential, expnormal, gamma, weibull, beta, b2, pareto, chisquare, cauchy, logistic, ev1, ev2, ev3, gev, invnormal, t, f, uniform, skewnormal, stduniform, laplace, gpareto, ubetamix, ugammamix, loggamma, loglogistic, paralogistic, igamma, iweibull, burr, iburr); default norm \\
\hline METHOD \(=\) string token & Method used for the plot axes (quantile, probability, stabilizedprobability); default quan \\
\hline GRAPHICS \(=\) string token & Type of graphics (highresolution, lineprinter); default high \\
\hline PLOT \(=\) string tokens & Whether to plot differences from expectations or the 1-1 reference line (differences, reference); default refe \\
\hline CONSTANT \(=\) string token & Whether to estimate the constant for the distribution \\
\hline
\end{tabular}
```

BANDS = string token
NSIMULATIONS = scalar
ALPHA = scalar
DF = scalar
DFNUMERATOR = scalar
DFDENOMINATOR = scalar
WINDOW = scalar
XMETHOD = string token
QMETHOD = string token
TMETHOD = string tokens
NTIMES = scalar
SEED = scalar

```

\section*{Parameters}

DATA \(=\) variates
TITLE \(=\) text

ESTIMATES \(=\) variates
\(\mathrm{SE}=\) variates
LOWERTRUNCATION = scalars
UPPERTRUNCATION = scalars
DEVIANCE = scalars
PROBABILITIES \(=\) variates
(estimate, omit) default omit
What type of confidence bands to plot, if any
(simultaneous, pointwise); default simu
Number of simulations for pointwise bands; default 100
Acceptance limits for confidence bands; default 0.95
Number of degrees of freedom of chi-square or t distribution; default 1
Numerator degrees of freedom of F distribution; default 1
Denominator degrees of freedom of F distribution; default 1
Window to use for the plot; default 3
Scaling of X / Expected Plot axes (quantile, probability, stabilizedprobability); if unset, takes the same setting as METHOD
Whether to standardize plotted score in expected quantiles
(standardized, unstandardized); default stan
Specifies the method used to perform the goodness-of-fit tests
(likelihoodratio, traditional); default like
Number of Monte-Carlo simulations to perform for likelihoodratio tests; default 999
Seed for random number generation for the likelihood-ratio tests; default 0 continues an existing sequence or, if none, selects a seed automatically

Values to plot
Title for the graph; default * generates an appropriate title automatically
Saves the estimated parameters for the distribution Saves standard errors for the estimated parameters
Lower truncation points for Loss distributions
Upper truncation points for Loss distributions
Saves the deviance for the fitted distribution
Saves the probabilities from the goodness-of-fit tests

\section*{DPSPECTRALPLOT procedure}

Calculates an estimate of the spectrum of a spatial point pattern (C.J. Alexander \& D.A.Murray).

\section*{Options}

PLOT \(=\) string tokens

NROWS = scalar
NCOLUMNS \(=\) scalar
SCALING \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) variates
\(\mathrm{X}=\) variates
YPOLGON \(=\) variates
XPOLYGON \(=\) variates
YHOLEPOLGON \(=\) variates
XHOLEPOLYGON \(=\) variates
HOLEGROUPS \(=\) variates

PERIODOGRAM = matrices
WEIGHTS \(=\) variates
YINTEREVENT \(=\) variates

Which graphs to plot (periodogram, rspectrum, thetaspectrum, weights); default peri, rspe, thet, weig
Number of rows for periodogram; default 17
Number of columns for periodogram; default 32
Whether to normalize the coordinates of the points within the study region to a unit square (normalize, none); default norm

Vertical coordinates of each spatial point pattern
Horizontal coordinates of each spatial point pattern
Y-coordinates for the rectangular study region
X-coordinates for the rectangular study region
Y-coordinates for the missing region polygons
X-coordinates for the missing region polygons
Grouping factor where each level represents a different polygon for the missing regions.
Saves the periodogram
Saves the weights used for the inter-event calculation
Saves the y-coordinates for the inter-event calculation

Saves the x-coordinates for the inter-event calculation

\section*{DPTMAP procedure}

Draws maps for spatial point patterns using high-resolution graphics (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

\section*{Options}
\begin{tabular}{|c|c|}
\hline TITLE \(=\) text & Main title for the plot; default * \\
\hline WINDOW = scalar & Which graphics window to use for the plot; default 1 \\
\hline KEYWINDOW = scalar & Which graphics window to use for the key; default 2 \\
\hline YTITLE \(=\) text & Title for the vertical axis; default * \\
\hline XTITLE \(=\) text & Title for the horizontal axis; default * \\
\hline YLOWER = scalar & Lower limit for the vertical axis \\
\hline YUPPER = scalar & Upper limit for the vertical axis \\
\hline XLOWER \(=\) scalar & Lower limit for the horizontal axis \\
\hline XUPPER = scalar & Upper limit for the horizontal axis \\
\hline SCREEN \(=\) string token & Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea \\
\hline KEYDESCRIPTION \(=\) text & Overall description for the key; default * \\
\hline ENDACTION \(=\) string token & Action to be taken after completing the plot (continue, pause); default paus \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Vertical coordinates of one or more spatial point patterns; no default - this parameter must be set \\
\hline \(\mathrm{X}=\) variates & Horizontal coordinates of one or more spatial point patterns; no default - this parameter must be set \\
\hline PEN \(=\) scalars or variates or factors & Pen number for each graph \\
\hline DESCRIPTION \(=\) texts & Annotation for the key \\
\hline
\end{tabular}

\section*{DPTREAD procedure}

Adds points interactively to a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

\section*{Options}
\begin{tabular}{ll}
\begin{tabular}{l} 
PRINT \(=\) string token \\
WINDOW \(=\) scalar
\end{tabular} & What to print (summary, monitoring); default summ, moni \\
Parameters & Which graphics window to use for the plot; default 1 \\
OLDY \(=\) variates & Vertical coordinates of each spatial point pattern; no default - \\
OLDY \(=\) variates & \begin{tabular}{l} 
this parameter must be set
\end{tabular} \\
Horizontal coordinates of each spatial point pattern; no default \\
NEWY \(=\) variates & \begin{tabular}{l} 
- this parameter must be set
\end{tabular} \\
Variates to receive the vertical coordinates of the original \\
NEWX \(=\) variates & \begin{tabular}{l} 
points and added points
\end{tabular} \\
& \begin{tabular}{l} 
Variates to receive the horizontal coordinates of the original \\
points and added points
\end{tabular}
\end{tabular}

\section*{DQMAP procedure}

Displays a genetic map (D.A. Murray).

\section*{Options}
ORIENTATION \(=\) string token \(\quad\) Orientation of map (vertical, horizontal); default vert
DCHROMOSOMES \(=\) variate, text or scalar
DCHROMOSOMES = variate, text or scalar

To specify a subset of the linkage groups to be displayed

TITLE \(=\) text

\section*{Parameters}

CHROMOSOMES \(=\) factors
POSITIONS \(=\) variates or pointers
MKNAMES \(=\) texts
QCHROMOSOMES \(=\) factors

General title; default *
Factor defining the linkage groups
Positions of markers within the linkage groups
Names of the markers
Factor defining the linkage groups of the QTLs

QPOSITIONS \(=\) variates
QNAMES = texts
QINTERACTIONS \(=\) variates

Positions of QTLs within the linkage groups Names of the QTLs
Logical variate indicating whether the QTL has significant (1) or non-significant (0) QTL-by-environment interaction

\section*{DQMKSCORES procedure}

Plots a grid of marker scores for genotypes and indicates missing data (D.A. Murray).

\section*{Options}
\begin{tabular}{ll} 
PLOT \(=\) string token & Type of plot (missing, all); default miss \\
LOWERGENOTYPE \(=\) scalar & Lower genotype for the display \\
UPPERGENOTYPE \(=\) scalar & Upper genotype for the display \\
DCHROMOSOMES \(=\) variate, text or scalar & \\
& Specify a subset of the linkage groups to be displayed \\
POPULATIONTYPE \(=\) string token & Type of population (BC1, DH1, F2, RIL, BCxSY, AMP); must be \\
& set \\
COLOURS \(=\) text or variate & Colours to use for the different marker scores \\
TITLE \(=\) text & Title for the graph \\
Parameters & \\
MKSCORES \(=\) pointers & Marker score code for each marker \\
CHROMOSOMES = factors & Linkage group for each marker \\
PARENTS \(=\) pointers & Parent information \\
IDPARENTS \(=\) texts & Labels to identify the parents
\end{tabular}

\section*{DQMQTLSCAN procedure}

Plots the results of a genome-wide scan for QTL effects in multi-environment trials (M.P. Boer \& J.T.N.M. Thissen).

\section*{Options}

POPULATIONTYPE \(=\) string token
METHOD \(=\) string token
THRESHOLD \(=\) scalar DCHROMOSOMES \(=\) scalar, text or variate

Allows a subset chromosomes to be specified to display; default * i.e. all the chromosomes
SUPPRESSLINES = string token Whether to suppress the vertical lines between the chromosomes (yes, no); default no
Defines the plotting symbol for each point, as in the SYMBOL option of PEN, when METHOD=manhattan; default 2 i.e. circle Multiplier used in the calculation of sizes of symbols when METHOD=manhattan; default 1
Whether to draw the outer line the SYMBOL in black when METHOD=manhattan (yes, no); default no
Colours to use for the chromosomes; default * uses the default colours of pens 1,2 up to the number of chromosomes
General title
Title for the y-axis of the lower graph; default
'Environments'
Title for the \(y\)-axis of the upper graph; default uses the identifier of the STATISTICS variate or pointer
Title for the x-axis; default 'Chromosomes '
Upper bound for y-axis of the upper graph Whether to include annotation of the effects in the plot (include, omit); default incl

Test statistics to be plotted; must be set Chromosome for each locus; must be set
```

POSITIONS = variates
QEFFECTS = pointers
QSE = pointers
ENVNAMES = texts
IDEFFECTS = texts
IDPARENTS = texts
DFILENAME = texts

```

Positions on the chromosome of each locus; must be set
QTL effects in the different environments; must be set Standard errors of the QTL effects in the different environments; must be set
Labels for the different environments; must be set
Labels to use to identify the effects
Labels to use to identify the parents
Name of the graphics file for the plots

\section*{DQRECOMBINATIONS procedure}

Plots a matrix of recombination frequencies between markers (S.J. Welham \& D.A. Murray).

\section*{Options}

DCHROMOSOMES \(=\) scalar, variate or text
Specifies a subset of the linkage groups to be displayed
```

TITLE = text General title for the plot
WINDOW = scalar Window number for the graph; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
PALETTE = string token Colour scheme for plot (colour, color, greyscale,
grayscale); default colo

```

\section*{Parameters}
\begin{tabular}{ll} 
RECFREQUENCIES \(=\) symmetric matrices & \\
Recombination frequencies to plot \\
CHROMOSOMES \(=\) factors & Linkage group for each marker
\end{tabular}

\section*{DQSQTLSCAN procedure}

Plots the results of a genome-wide scan for QTL effects in single-environment trials (M.P. Boer \& J.T.N.M. Thissen).

\section*{Options}
\begin{tabular}{|c|c|}
\hline POPULATIONTYPE \(=\) string token & Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set when QEFFECTS are supplied \\
\hline METHOD \(=\) string token & Method to be used for plotting (line, manhattan, spikes); default line \\
\hline THRESHOLD \(=\) scalar & Threshold value for test statistic; default 0 \\
\hline \multicolumn{2}{|l|}{DCHROMOSOMES = scalar, text or variate} \\
\hline & Allows a subset chromosomes to be specified to display; default * i.e. all the chromosomes \\
\hline SUPPRESSLINES \(=\) string token & Whether to suppress the vertical lines between the chromosomes (yes, no); default no \\
\hline SYMBOL \(=\) scalar & Defines the plotting symbol for each point, as in the SYMBOL option of PEN, when METHOD=manhattan; default 2 i.e. circle \\
\hline SIZEMULTIPLIER = scalar & Multiplier used in the calculation of sizes of symbols when METHOD=manhattan; default 1 \\
\hline BLACKOUTLINE \(=\) string token & Whether to draw the outer line the SYMBOL in black when METHOD=manhattan (yes, no); default no \\
\hline COLOURS \(=\) scalar, variate or text & Colours to use for the chromosomes; default * uses the default colours of pens 1, 2 up to the number of chromosomes \\
\hline TITLE \(=\) text & General title \\
\hline YTITLE \(=\) text & Title for the \(y\)-axis; default uses the identifier of the STATISTICS variate or pointer \\
\hline XTITLE \(=\) text & Title for the x -axis; default 'Chromosomes ' \\
\hline YUPPER \(=\) scalar & Upper bound for y -axis \\
\hline WINDOW = scalar & Window number for the graphs; default 1 \\
\hline KEYWINDOW = scalar & Window number for key (zero for none); default 2 \\
\hline SCREEN \(=\) string token & Whether to clear the screen before displaying the graph (clear, keep); default clea \\
\hline
\end{tabular}

\section*{Parameters}

STATISTICS = variates or pointers
CHROMOSOMES \(=\) factors
POSITIONS \(=\) variates
QEFFECTS \(=\) variates or pointers
QSE \(=\) variates or pointers
IDEFFECTS = texts

IDPARENTS \(=\) texts
DFILENAME \(=\) texts

Test statistic(s) to be plotted; must be set
Chromosome for each locus; must be set
Position on the chromosome for each locus; must be set QTL effects along the genome, Standard errors of the QTL effects Labels along the x -axis to identify the effects when QEFFECTS are supplied
Labels to use to identify the parents
Name of the graphics file for the plots

\section*{DREAD directive}

Reads the locations of points from an interactive graphical device.

\section*{Options}
PRINT \(=\) string tokens
CHANNEL = scalar
WINDOW \(=\) scalar
CURSORTYPE \(=\) scalar
SETNVALUES \(=\) string token

ENDACTION \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) variates
\(\mathrm{X}=\) variates
YGIVEN \(=\) variates
XGIVEN \(=\) variates
SAVESET = variates
PEN = scalars
YSAVE \(=\) variates
XSAVE \(=\) variates

What to print (data, summary); default summ
Number of the graphics device from which to read; default * takes the current graphics device Window from which to read; default 1
Type of cursor; default 1
Whether to set number of values of structures from the number of values read (yes, no); default no causes the number of values to be set only for structures whose lengths are not defined already
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Variate to receive the \(y\)-values that have been read
Variate to receive the \(x\)-values that have been read Y-coordinates of points that may be located on the graph X-coordinates of points that may be located Unit numbers of the located points
Pen number to use to echo points; default 0
Variate to receive the \(y\)-coordinates of the located points
Variate to receive the x -coordinates of the located points

\section*{DREFERENCELINE procedure}

Adds reference lines to a graph (R.W. Payne).

\section*{Options}

ORIENTATION \(=\) string token
WINDOW = scalar

\section*{Parameters}

POSITION = scalars
\(\mathrm{PEN}=\) scalars
LABEL \(=\) texts
YLPOSITION \(=\) string tokens
XLPOSITION \(=\) string tokens
PENLABEL \(=\) scalars

Direction of the line (horizontal, vertical); default hori Window in which to draw the line; default 1

Positions of the lines
Pen to use for each line
Text to plot alongside each line
Position of the label in the y-direction (above, below, centre, center); default belo
Position of the label in the x -direction (centre, center, left, right); default left
Pen to use for each label

\section*{DREPMEASURES procedure}

Plots profiles and differences of profiles for repeated measures data (J.T.N.M. Thissen).

\section*{Options}

TITLE \(=\) text \(\quad\) Title for the plots; default \(*\)
GROUPS \(=\) factors
List of one or two factors; one factor gives one plot while a list

TIMEPOINTS \(=\) variate or factor

DIFFERENCES \(=\) string token

\section*{Parameters}

DATA \(=\) pointers or variates

\section*{GROUPMEANS \(=\) tables}

\section*{DRESIDUALS procedure}

Plots residuals (R.W. Payne).

\section*{Options}

RESIDUALS \(=\) variate
FITTEDVALUES = variate
INDEX \(=\) variate or factor
GRAPHICS \(=\) string token

TITLE \(=\) text

\section*{Parameters}
\(\mathrm{METHOD}=\) string tokens
\(\mathrm{PEN}=\) scalars, variates or factors
with two factors gives as many plots as the number of levels of the first factor in the list; must be set When the DATA parameter is set to a pointer containing a separate variate of observations for each time this can specify the actual time points (otherwise the suffixes of the DATA pointer are used), when there is a single DATA variate this must supply a factor to indicate the time of each observation Can suppress plotting of the differences (no, yes); default no

Data observations either in a pointer to a list of variates (one for each time), or a single variate (with TIMEPOINTS set to a factor indicating the time of each observation)
To save the calculated treatment means at each timepoint

\section*{DROP directive}

Drops terms from a linear, generalized linear, generalized additive or nonlinear model. Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti \\
\hline NONLINEAR \(=\) string token & How to treat nonlinear parameters between groups (common, separate, unchanged); default unch \\
\hline CONSTANT \(=\) string token & How to treat the constant (estimate, omit, unchanged, ignore); default unch \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of model terms; default * i.e. that in previous TERMS statement \\
\hline POOL \(=\) string token & Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no \\
\hline DENOMINATOR \(=\) string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ); default ss \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t -statistics (yes, no); default no \\
\hline SELECTION \(=\) string tokens & Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \%cv only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, \\
\hline
\end{tabular}
```

seobservations, dispersion, %cv, %meandeviance,
%deviance, aic,bic, sic); default %var, seob if
DIST=normal, %CV if DIST=gamma, and disp for other
distributions

```

Probability level for confidence intervals for parameter estimates; default 0.95
Description for line in accumulated analysis of variance (or deviance) table when POOL=yes

List of explanatory variates and factors, or model formula

PROBABILITY \(=\) scalar

AOVDESCRIPTION = text

\section*{Parameter}
formula

\section*{DRPOLYGON procedure}

Reads a polygon interactively from the current graphics device (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

\section*{Options}
\begin{tabular}{ll}
\begin{tabular}{l} 
PRINT = string token \\
WINDOW = scalar
\end{tabular} & What to print (summary); default summ \\
Parameters & Window from which to read default 1 \\
YPOLYGON = variates & \begin{tabular}{l} 
Variates to receive the vertical coordinates of the polygons \\
that are read
\end{tabular} \\
XPOLYGON = variates & \begin{tabular}{l} 
Variates to receive the horizontal coordinates of the polygons \\
that are read
\end{tabular} \\
PEN = scalars & Pen numbers to use to echo points
\end{tabular}

\section*{DSAVE directive}

Saves the current graphics environment settings to an external file.

\section*{No options}

\section*{Parameters}
FILENAME \(=\) text \(\quad\) File in which to save the environment settings

DESCRIPTION = text
Description for these settings

\section*{DSCATTER procedure}

Produces a scatter-plot matrix using high-resolution graphics (J. Ollerton).

\section*{Options}
\(\left.\begin{array}{ll}\text { PEN }=\text { scalar or variate or factor } \\
\text { EQUALSCALING }=\text { string token }\end{array} \quad \begin{array}{l}\text { Pen number for the graph; default 1 } \\
\text { Whether to have equal scaling of } \mathrm{x} \text { - and y-axes in each plot } \\
\text { (yes, no); default no }\end{array}\right]\)\begin{tabular}{l} 
Variables to be plotted as x-coordinates (DATA then specifies \\
the y-coordinates); if unset DATA specifies both x-coordinates \\
and y-coordinates
\end{tabular}

\section*{Parameter}
\(\mathrm{DATA}=\) variates or factors
A list of variables to be plotted

\section*{DSEPARATIONPLOT procedure}

Creates a separation plot for visualising the fit of a model with a dichotomous (i.e. binary) or polytomous (i.e. multi-categorical) outcome (V.M. Cave).

\section*{Options}

METHOD \(=\) string token
PLOT \(=\) string tokens
Method used to plot the predicted probabilities (rectangles, lines, rbands, lbands); default rect
Information to be plotted on the graph (key, traceline,
expectednumber); default key, trac, expe when
METHOD=rectangles or lines, and key when
METHOD=rbands or lbands
\begin{tabular}{|c|c|}
\hline SUCCESSLEVEL \(=\) string token & Specifies which level corresponds to success when GROUPS supplies a factor with 2 levels (first, second); default seco \\
\hline LINEORDER \(=\) string token & If METHOD=lines, whether the failures or successes are plotted first (failurefirst, successfirst); default fail \\
\hline NGROUPS \(=\) scalar & Number of discrete bands used to group the predicted probabilities when METHOD=rbands or lbands; default 10 \\
\hline TIES \(=\) string token & How tied data values in PROBABILITIES are handled when METHOD=rectangles or lines (permute, same); default perm \\
\hline SEED \(=\) scalar & Seed for random number generator used to permute the tied data; default 0 \\
\hline COLOURS \(=\) variate or text & The two colours used to plot the predicted probabilities \\
\hline THICKNESS \(=\) scalar & Thickness of the line for plotting the predicted probabilities when METHOD=lines or lbands; default 1 \\
\hline BACKGROUND \(=\) scalar or text & Colour of the background when METHOD=lines or lbands; default ligh \\
\hline BORDER \(=\) string token & Whether to draw borders around the rectangles when \\
\hline & METHOD=rectangles or rbands (yes, no); default no \\
\hline USEPENS \(=\) string token & Whether to use the current pen definitions of pens 2 and 3 for plotting the traceline and expectednumber. respectively (yes, no); default no \\
\hline SAVE \(=\) rsave or pointer & Regression or HGLM save structure to provide the data if PROBABILITIES, GROUPS, NSUCCESSES and NBINOMIAL are not specified \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \({ }^{\dagger}\) PROBABILITIES \(=\) variate, \(m\) & pointer \\
\hline & Variate containing probabilities of success for a binary outcome (i.e. for binary or binomial data) or, for a polytomous outcome, a matrix or pointer to variates containing probabilities of membership in each group \\
\hline GROUPS \(=\) variate or factor & Actual outcome, when NSUCCESSES and NBINOMIAL are not supplied \\
\hline NSUCCESSES \(=\) variate & Number of successes when PROBABILITIES supplies predicted probabilities from binomial data \\
\hline NBINOMIAL \(=\) variate or scalar & Number of trials when PROBABILITIES supplies predicted probabilities from binomial data \\
\hline TITLE \(=\) text & Title for the plot; default generates the title automatically \\
\hline XTITLE \(=\) text & Title for the x-axis; default * i.e. none \\
\hline \multicolumn{2}{|l|}{DSHADE directive} \\
\hline \multicolumn{2}{|l|}{Plots a shade diagram of 3-dimensional data.} \\
\hline \multicolumn{2}{|l|}{Options} \\
\hline TITLE \(=\) text & General title; default * \\
\hline WINDOW = scalar & Window number for the graph; default 1 \\
\hline KEYWINDOW = scalar & Window number for the key ( 0 for no key); default 2 \\
\hline YORIENTATION \(=\) string token & Y -axis orientation of the plot (reverse, normal); default reve \\
\hline GRIDMETHOD \(=\) string token & How to draw a grid around the elements of the matrix (present, complete); default pres \\
\hline PENGRID = scalar & Pen to use for the grid; default -7 \\
\hline SCREEN \(=\) string token & Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea \\
\hline KEYDESCRIPTION \(=\) text & Overall description for the key \\
\hline ENDACTION = string token & Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement \\
\hline
\end{tabular}

\section*{Parameters}
\begin{tabular}{ll} 
GRID \(=\) symmetric matrix, matrix or pointer to variates \\
& Data to be plotted \\
PEN \(=\) scalar or variate & How to draw each shade \\
LIMITS \(=\) variate & Boundary values for changes in shade \\
NGROUPS \(=\) scalar & Number of groups to form from the data values (i.e. number of \\
& different shades) \\
INTERVAL \(=\) scalar & Interval between changes in shade \\
PERMUTATION \(=\) variate & \begin{tabular}{l} 
Can define permutations to be done to the units of symmetric \\
matrices prior to plotting
\end{tabular} \\
DESCRIPTION \(=\) text & Annotation for key
\end{tabular}

\section*{DSPIDERWEB procedure}

Displays spider-web and star plots (W. van den Berg).

\section*{Options}
\begin{tabular}{ll} 
METHOD = string token \\
MARKS \(=\) scalar or variate & \begin{tabular}{l} 
Type of plot (spiderweb, star); default spid \\
Distances between the strands of the web or marks on the axes \\
of the star (scalar), or positions of those strands or marks \\
(variate); default 0.25
\end{tabular} \\
ANGLE \(=\) scalar \\
SIZEMULTIPLIER = scalar & \begin{tabular}{l} 
Angle to rotate the plot, in degrees; default 0 \\
Controls the size of the labels identifying the categories; \\
default selects a size appropriate to the number of plots in the \\
frame
\end{tabular} \\
Shape of the plotting frame (landscape, portrait, \\
square); default squa
\end{tabular}

\section*{DSTART directive}

Starts a sequence of related high-resolution plots.

\section*{Options}
\begin{tabular}{ll} 
TITLE \(=\) text & Overall title for the plots \\
PEN \(=\) scalar & Pen to use for the title; if this is not set, pen -12 is used
\end{tabular}

\section*{DSTTEST procedure}

Plots power and significance for t-tests, including equivalence tests (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
NSAMPLES \(=\) scalar & Number of samples for the t-test \((1\) or 2); default 2 \\
PROBABILITY \(=\) scalar & \begin{tabular}{l} 
Significance level at which the response is to be tested; default
\end{tabular} \\
TMETHOD \(=\) string token & \begin{tabular}{l} 
Type of test to be done (onesided, twosided,
\end{tabular} \\
RATIOREPLICATION \(=\) scalar & \begin{tabular}{l} 
equivalence, noninferiority); default ones \\
Ratio of replication sample2:sample1 (i.e. the size of sample 2 \\
should be RATIOREPLICATION times the size of sample 1); \\
default 1
\end{tabular}
\end{tabular}

\section*{Parameters}

RESPONSE \(=\) scalars

Number of samples for the \(t\)-test (1 or 2); default 2
Significance level at which the response is to be tested; default 0.05 equivalence, noninferiority); default ones Ratio of replication sample2:sample1 (i.e. the size of sample 2 default 1

Response to be detected
```

VAR1 = scalars Anticipated variance of sample 1
VAR2 = scalars Anticipated variance of sample 2; default * assumes the same
variance as sample 1
NREPLICATES = scalars Number of replicates
RDF= scalars
Number of residual degrees of freedom; default * calculates
these automatically, assuming a standard t-test

```

\section*{DSURFACE directive}

Produces perspective views of two-way arrays of numbers.

\section*{Options}
\begin{tabular}{|c|c|}
\hline TITLE \(=\) text & General title; default * \\
\hline WINDOW = scalar & Window number for the plots; default 1 \\
\hline KEYWINDOW = scalar & Window number for the key (zero for no key); default 2 \\
\hline ELEVATION = scalar & The elevation of the viewpoint relative to the surface; default 25 (degrees) \\
\hline AZIMUTH \(=\) scalar & Rotation about the horizontal plane; the default of 225 degrees ensures that, with a square matrix M , the element \(\mathrm{M} \$[1 ; 1]\) is nearest to the viewpoint \\
\hline DISTANCE \(=\) scalar & Distance of the viewpoint from the centre of the grid on the base plane; default * gives a distance of 100 times the maximum of the \(x\)-range and the \(y\)-range \\
\hline ZSCALE \(=\) scalar & defines the scaling of the z -axis relative to the horizontal ( \(\mathrm{x}-\mathrm{y}\) ) axes; default 1 \\
\hline SCREEN \(=\) string token & Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea \\
\hline KEYDESCRIPTION \(=\) text & Overall description for the key; default * \\
\hline ENDACTION \(=\) string token & Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline GRID \(=\) identifier & Pointer (of variates representing the columns of a data matrix), matrix or two-way table specifying values on a rectangular grid \\
\hline PEN \(=\) scalar & Pen number to be used for the plot; default 1 \\
\hline PENFILL = scalar or variate & Pen number(s) defining how to fill the areas between contours ( 0 or * leaves the areas in the background colour); default 3 \\
\hline PENMESH \(=\) scalar & Pen number to use to draw the mesh (omitted if set to 0 or *); default 1 \\
\hline PENSIDE \(=\) scalar & Pen number to use to shade the sides of the surface (omitted if set to 0 or *); default * \\
\hline NCONTOURS \(=\) scalar & Number of contours; default 10 \\
\hline CONTOURS \(=\) variate & Positions of contours \\
\hline INTERVAL \(=\) scalar & Interval between contours \\
\hline DESCRIPTION \(=\) text & Annotation for key \\
\hline
\end{tabular}

\section*{DTABLE procedure}

Plots tables (R.W. Payne).

\section*{Options}
\(\left.\begin{array}{ll}\text { GRAPHICS }=\text { string token } & \begin{array}{l}\text { Type of graph (highresolution, lineprinter); default } \\
\text { high }\end{array} \\
\text { METHOD }=\text { string token } & \text { What to plot (points, linesandpoints, onlylines, data, } \\
\text { barchart, splines); default poin }\end{array}\right]\)\begin{tabular}{l} 
How to label the \(x\)-axis (levels, labels); default labels \\
DFSPLINE \(=\) scalar \\
YTRANSFORM \(=\) string tokens XFACTOR labels, if available
\end{tabular}\(\quad\)\begin{tabular}{l} 
Number of degrees of freedom to use when METHOD=splines \\
Transformed scale for additional axis marks and labels to be
\end{tabular}

PENYTRANSFORM \(=\) scalar
\({ }^{\dagger} \mathrm{KEYMETHOD}=\) string token
\({ }^{\dagger}\) PLOTTITLEMETHOD = string token
\({ }^{\dagger}\) PAGETITLEMETHOD = string token
\({ }^{\dagger}\) USEAXES \(=\) string token

\section*{Parameters}
\(\mathrm{TABLE}=\) tables
\(\mathrm{DATA}=\) variates
XFACTOR = factors
GROUPS \(=\) factors or pointers
TRELLISGROUPS \(=\) factors or pointers

PAGEGROUPS \(=\) factors or pointers
BAR \(=\) scalars, tables or pointers

NEWXLEVELS \(=\) variates
TITLE \(=\) texts
YTITLE \(=\) texts
XTITLE \(=\) texts
BARDESCRIPTION \(=\) texts
PENS \(=\) variates
plotted on the right-hand side of the \(y\)-axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically
What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name What to use for the titles of the plots when there are TRELLISGROUPS (labels, namesandlabels); default name What to use for the titles of the pages when there are PAGEGROUPS (labels, namesandlabels); default name Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower\%, mupper\%, nsubticks,); default none

Tables to plot
Data values to plot with each table when METHOD=data Factor providing the \(x\)-values for the plot of each table Factor or factors identifying the different lines from a multiway table Factor or factors specifying the different plots of a trellis plot of a multi-way table
Factor or factors specifying plots to be displayed on different pages
Scalar defining the length of error bar to be plotted to indicate the overall (or average) variability of the values in each table, or table defining the variability of each individual table value, or pointer containing either two scalars or two tables defining the upper and lower positions of the error \(\operatorname{bar}(\mathrm{s})\)
Values to be used for XFACTOR instead of its existing levels Title for the graph; default uses the identifier of the TABLE Title for the y-axis; default ' '
Title for the x -axis; default is to use the identifier of the XFACTOR
Descriptions for the bars
Defines the pen to use to plot the points and/or line for each group defined by the GROUPS factors

\section*{DTEXT procedure}

Adds text to a graph (S.A. Harding).

\section*{Option}

WINDOW = scalar

\section*{Parameters}
\(\mathrm{Y}=\) variates or scalars
\(\mathrm{X}=\) variates or scalars
\(\mathrm{TEXT}=\) texts
\(\mathrm{PEN}=\) scalars, variates or factors

Window number of the graph; default 1
Vertical coordinates
Horizontal coordinates
Text to plot
Pens to use; default 1

\section*{DTIMEPLOT procedure}

Produces horizontal bars displaying a continuous time record (S.J. Clark).

\section*{Options}
\begin{tabular}{ll} 
TITLE \(=\) text & Title for the plot; default \(*\) i.e. none \\
WINDOW \(=\) numbers & \begin{tabular}{l} 
Which high-resolution graphics windows to use; default 3 for \\
single plots and 5...8 for the composite plot
\end{tabular} \\
SCREEN \(=\) string token & Whether to clear the graphics screen before plotting (clear,
\end{tabular}
keep); default clea

\section*{Parameters}
\begin{tabular}{ll} 
DATA \(=\) variates & Bout lengths \\
GROUPS \(=\) factors & Factor defining act performed during each bout \\
LABELS \(=\) texts & Labels for each act \\
METHOD \(=\) texts & Type of plot to produce for each DATA variate (barplot, \\
& cumulative, log, survivor, composite); default comp
\end{tabular}

\section*{DUMMY directive}

Declares one or more dummy data structures.

Options
VALUE \(=\) identifier
MODIFY \(=\) string token
IPRINT \(=\) string tokens

\section*{Parameters}

IDENTIFIER = identifiers
\(\mathrm{VALUE}=\) identifiers
EXTRA \(=\) texts

Value for all the dummies; default * Whether to modify (instead of redefining) existing structures (yes, no); default no
Information to be used by default to identify the dummies in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the dummies
Value for each dummy
Extra text associated with each identifier

\section*{DUMP directive}

Prints information about data structures, and internal system information.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT = string tokens & What information to print about structures (attributes, values, identifiers, space); default attr \\
\hline CHANNEL = identifier & Channel number of file, or identifier of a text to store output; default current output file \\
\hline INFORMATION \(=\) string tokens & What information to print for each structure (brief, full, extended); default brie \\
\hline TYPE \(=\) string tokens & Which types of structure to include in addition to those in the parameter list (all, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, scalar, SSPM, symmetricmatrix, table, text, TSM, variate); default * i.e. none \\
\hline SYSTEM = string token & Whether to display Genstat system structures (yes, no); default no \\
\hline UNNAMED \(=\) string token & Whether to display unnamed structures (yes, no); default no \\
\hline Parameter & \\
\hline identifiers or numbers & Identifier or reference number of a structure whose information is to be printed \\
\hline
\end{tabular}

\section*{DUPLICATE directive}

Forms new data structures with attributes taken from an existing structure.

\section*{Option}

ATTRIBUTES \(=\) string tokens \(\quad\) Which attributes to duplicate (all, nvalues, values, nlevels, levels, labels (of factors or pointers), extra, decimals, characters, rows, columns, classification, margins, suffixes, minimum, maximum, restriction, referencelevel); default all

REDEFINE \(=\) string token

\section*{Parameters}

OLDSTRUCTURE = identifiers

Whether or not to delete the attributes of the new structures beforehand so that their types can be redefined (yes, no); default no

Data structures to provide attributes for the new structures

NEWSTRUCTURE = identifiers
VALUES = identifiers
DECIMALS \(=\) scalars
CHARACTERS \(=\) scalars
EXTRA \(=\) texts
MINIMUM \(=\) scalars
MAXIMUM \(=\) scalars

Identifiers of the new structures
Values for each new structure
Number of decimals for printing numerical structures
Number of characters for printing texts or labels of a factor
Extra text associated with each identifier
Minimum value for numerical structures
Maximum value for numerical structures

\section*{DVARIOGRAM procedure}

Plots fitted models to an experimental variogram (S.A. Harding, D.A. Murray \& R. Webster).

Options
\begin{tabular}{|c|c|}
\hline MODELTYPE \(=\) string token & Defines which model to plot (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, affinepower, linear, cubic, stable, cardinalsine, matern); default powe \\
\hline ISOTROPY \(=\) string token & Defines whether this is an isotropic or geometrical anisotropic model (isotropic, geometrical); default isot \\
\hline WINDOW = scalar & Window in which to plot a graph; default 1 \\
\hline TITLE \(=\) text & Title for the graph \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline VARIOGRAM \(=\) variates & Experimental variogram to which the model or matrices has been fitted, as a variate if in only one direction or as a matrix if there are several \\
\hline DISTANCE \(=\) variates & Mean lag distances for the points in each or matrices variogram \\
\hline DIRECTION \(=\) variates & Directions in which each variogram was computed \\
\hline ESTIMATES \(=\) variates & Estimated parameter values \\
\hline XUPPER = scalar & Upper limit for the x -axis in the graph \\
\hline PENDATA \(=\) scalar & Pen to be used to plot the data; default 1 \\
\hline PENMODEL \(=\) scalar & Pen to be used to plot the model; default 2 \\
\hline
\end{tabular}

Defines which model to plot (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, ffinepower, linear, cubic, stable, cardinalsine, Defines whether this is an isotropic or geometrical anisotropic model (isotropic, geometrical); default isot
Window in which to plot a graph; default 1
Title for the graph

Experimental variogram to which the model or matrices has been fitted, as a variate if in only one direction or as a matrix if there are several variogram
Directions in which each variogram was computed
Estimated parameter values
Upper limit for the x -axis in the graph
Pen to be used to plot the model; default 2

\section*{\({ }^{*}\) DVIEW directive}

Views windows in the Genstat Graphics Viewer.
Options
PAUSE \(=\) scalar

\section*{Parameter}

WINDOW = scalar

Time in seconds to pause before changing to the next window; default 1

Window number to view

\section*{DXDENSITY procedure}

Produces one-dimensional density (or violin) plots (D. B. Baird).

Options
\begin{tabular}{ll} 
BANDWIDTH = scalar & \begin{tabular}{l} 
Bandwidth for kernel smoothing \((0-1)\); default density is \\
chosen according to the number of observations
\end{tabular} \\
The size of the gap (0-1) between envelopes when there \\
TRANSFORM = string token & \begin{tabular}{l} 
several densities are to be plotted; default 0.1 \\
Transformed scale for the data (identity, log, log 10, \\
logit, probit, cloglog, square, exp, exp10, ilogit, \\
iprobit, icloglog, root); default is to use the transform \\
defined for XAXIS
\end{tabular} \\
AXISTITLE = text & \begin{tabular}{l} 
The title for the data axis; default is the name of the DATA \\
variate
\end{tabular} \\
GROUPSTITLE = text & \begin{tabular}{l} 
The title for the groups or variates axis; default is to use the \\
name of the GROUPS factor
\end{tabular} \\
WINDOW = scalar & Window number for the graphs; default 3
\end{tabular}

ORIENTATION \(=\) string token
METHOD \(=\) string token

SCREEN \(=\) string token

\section*{Parameters}

DATA \(=\) variates or pointer s GROUPS \(=\) factor S

TITLE \(=\) texts

Orientation of plots (horizontal, vertical); default vert Method for plotting the density envelope (fill, line); default fill
Whether to clear screen before the plot (clear, keep, resize); default clea

The data whose density is to be plotted
Factor to divide values of a single variate into groups; default * i.e. none

Title for graph; default uses the names of the data variates and type of plot

\section*{DXYDENSITY procedure}

Produces density plots for large data sets (D. B. Baird).
Options
\begin{tabular}{|c|c|}
\hline \(\mathrm{PLOT}=\) string tokens & How to plot the density (pointplot, shadeplot, contourplot, histogram, surface); default poin \\
\hline NGROUPS \(=\) scalar & Number of sections into which to divide each axis (4-400); default 50 \\
\hline \(\mathrm{METHOD}=\) string token & Method to use to smooth the density (thinplate, radialspline, tensorspline, kernel); default * i.e. none \\
\hline \(\mathrm{DF}=\) scalar & Degrees of freedom for smoothing methods (2-50); default 12 \\
\hline BANDWIDTH \(=\) scalar & Bandwidth for kernel smoothing (0-1); default 0.2 \\
\hline MEANFIT = string tokens & What smooth regression fits to the means to plot ( \(\mathrm{y} x, \mathrm{xy}\) ); default * i.e. none \\
\hline NCONTOURS \(=\) scalar & Number of contours in the contour plot; default 9 \\
\hline SYMBOL = string token & Symbol to use in a point plot (circle, square); default circ \\
\hline COLOURS \(=\) text, variate or scalar & Colour to use to draw the symbols, shades, contours or surface; default!t(red, blue, black) \\
\hline XTRANSFORM \(=\) string token & Transformed scale for the x -axis (identity, \(\log , \log 10\), logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden \\
\hline YTRANSFORM \(=\) string token & Transformed scale for the \(y\)-axis (identity, \(\log , \log 10\), logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden \\
\hline ZTRANSFORM \(=\) string token & Transformed scale for the z-axis (identity, percentile, root); default iden \\
\hline WINDOW = scalar & Window number for the graphs; default 3 \\
\hline SCREEN = string token & Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep, resize); default clea \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variate or factor & Y-coordinates of the data \\
\hline \(\mathrm{X}=\) variate or factor & X-coordinates of the data \\
\hline TITLE \(=\) text & Title for graph; default uses the names of the data and type of plot \\
\hline
\end{tabular}

\section*{DXYGRAPH procedure}

Draws two-dimensional graphs with marginal distribution plots alongside the \(y\) - and \(x\)-axes (D.A. Murray).

\section*{Options}

YMETHOD \(=\) string token
XMETHOD \(=\) string token
Distribution plot to display in the margin of the \(y\)-axis
(histogram, rugplot, boxplot); default hist

YNGROUPS \(=\) scalar

XNGROUPS \(=\) scalar

YCOLOUR = scalar or text
XCOLOUR = scalar or text

\section*{Parameters}
\(\mathrm{Y}=\) variates or factors
\(\mathrm{X}=\) variates or factors
TITLE \(=\) texts
WINDOW = scalars
KEYWINDOW = scalars
PEN \(=\) scalars, variates or factors

SCREEN \(=\) string token
(histogram, rugplot, boxplot); default hist
Defines the number of groups in a margin plot of a histogram of the \(Y\) variate; default is then 10 , or the integer value nearest the square root of the number of values in the \(Y\) variate if that is smaller
Defines the number of groups in a margin plot of a histogram of the \(x\) variate; default is then 10 , or the integer value nearest the square root of the number of values in the X variate if that is smaller
Colour to use for the \(Y\) margin plot
Colour to use for the X margin plot
Vertical coordinates
Horizontal coordinates
General title for the plot; default *
Window number for the graphs; default 1
Window number for the key (zero for no key); default 2
Pen number for each graph; default * uses pens 1,2 , and so on for the successive graphs
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea

\section*{DYPOLAR procedure}

Produces polar plots (D. B. Baird).

\section*{Options}
MODULUS = scalar
TOPANGLE = scalar
COLOUR = scalar or text
LINESTYLE = scalar
YORIGIN = scalar
YMARKS = variate
XMARKS \(=\) variate
YLABELS \(=\) text
XLABELS \(=\) text
YTRANSFORM = string token
```

NRINGS = scalar
NSECTORS = scalar
WINDOW = scalar
KEYWINDOW = scalar
SCREEN = string token

```
KEYDESCRIPTION = text

\section*{Parameters}
\(\mathrm{Y}=\) variates, factors or pointers
\(\mathrm{X}=\) variates, factors or pointers
GROUPS \(=\) factor s
TITLE = texts

Number of units required to give a complete revolution in X ; default 360
Angle at the top of the plot; default is a quarter of the MODULUS
Colour for the lines marking rings and sectors; default 'black'
Linestyle for the lines marking rings and sectors; default 1 Origin for the y -values; default 0 or the minimum of Y if this is less than 0
Y-values for the rings, plotted in the background of the plot
X -values for the lines marking the sectors, plotted in the background of the plot
Labels for the rings
Labels for the sectors
Transformed scale for the \(y\)-values (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default is to use the transform defined for YAXIS
Number of rings to be plotted, if YMARKS is not set; default 9 Number of sectors to be plotted, if XMARKS is not set; default 12
Window number for the graph; default 1
Window number for the graph key; default 2
Whether to clear the screen before the plot (clear, keep); default clea
Overall description for the key; default *
Y-values specifying the amplitudes of the points
X -values specifying the angles of the points
Factor to divide the points into groups; default * i.e. none Title for the graph; default forms a title automatically with the names of the \(Y\) and \(X\) structures

PEN \(=\) scalar or variates
DESCRIPTION = texts

Pens used to plot the data; default 1
Annotation for key; default uses the names of the \(Y\) and \(X\) structures, or the labels of GROUPS if set

\section*{'D2GROUPS procedure}

Displays the distribution of groups in a plane using a trellis of bar or pie charts (R.W. Payne).

\section*{Options}
```

PLOT = string tokens
NPARTITIONS = scalar
COLOURS = variate or text
EQUALAXES = string tokens
KEYHEIGHT = scalar
LABELSIZE = scalar
%MARGINSIZE = scalar

```

\section*{Parameters}
\(\mathrm{Y}=\) variates
\(\mathrm{X}=\) variates
GROUPS \(=\) factors
TITLE = texts
YTITLE \(=\) texts
XTITLE \(=\) texts
YLOWER = scalars
YUPPER = scalars
XLOWER \(=\) scalars
XUPPER \(=\) scalars

> What to plot (barchart, piechart, scaledpiechart, key); default barc, key
> Number of partitions along each axis; default 8 Colours for the groups; default uses the colours defined for pens 2 upwards
> What aspect of the \(x\) - and \(y\)-axes to make equal (bounds, scaling); default * i.e. none
> Height of the key; default 0.1
> Size of labels showing the number of points in each unscaled pie chart; default 1
> Ratio as a percentage for margin sizes to their default sizes in pie charts; default 100

> Y-coordinates of the points in each graph
> X-coordinates of the points in each graph
> Groupings for the points in each graph
> Title for each graph
> Title for the \(y\)-axis in each window
> Title for the x -axis in each window
> Lower bound for y -axis
> Upper bound for y -axis
> Lower bound for x -axis
> Upper bound for x -axis

\section*{D3GRAPH directive}

Plots a 3-dimensional graph.

\section*{Options}
TITLE \(=\) text
WINDOW \(=\) scalar
KEYWINDOW \(=\) scalar
ELEVATION = scalar
AZIMUTH = scalar
DISTANCE = scalar
SCREEN = string token

KEYDESCRIPTION = text
ENDACTION \(=\) string token

\section*{Parameters}
\(\mathrm{X}=\) identifiers
\(\mathrm{Y}=\) identifiers
\(\mathrm{Z}=\) identifiers

General title; default *
Window number for the plots; default 1
Window number for the key (zero for no key); default 2
The elevation of the viewpoint relative to the surface; default 25 (degrees)
Rotation about the horizontal plane; the default of 225 degrees ensures that a point at the minimum x - and y -value is nearest to the viewpoint
Distance of the viewpoint from the centre of the grid on the base plane; default * ensures that the data points fill the viewing area
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep, resize); default clea
Overall description for the key; default *
Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

X-coordinates
Y-coordinates
Z-coordinates
\(\mathrm{PEN}=\) scalars, variates or factors

DESCRIPTION \(=\) texts
UNITNUMBERS = identifiers

Pen number for each graph (use of a variate or factor allows different pens to be defined for different sets of units); default * uses pens 1,2 , and so on for the successive graphs Annotation for key
Specifies unit numbers to be used when points are selected in the graphics viewer; default * uses the actual unit numbers of the values in the X and Y structures

\section*{D3HISTOGRAM directive}

Plots three-dimensional histograms.

\section*{Options}
```

TITLE = text
WINDOW = scalar
KEYWINDOW $=$ scalar
ELEVATION $=$ scalar
AZIMUTH $=$ scalar
DISTANCE $=$ scalar
SCREEN $=$ string token
KEYDESCRIPTION = text
ENDACTION $=$ string token

```

\section*{Parameters}

GRID \(=\) identifier
PEN \(=\) scalar
DESCRIPTION \(=\) texts

\section*{General title; default *}

Window number for the plots; default 1
Window number for the key (zero for no key); default 2
The elevation of the viewpoint relative to the surface; default 25 (degrees)
Rotation about the horizontal plane; the default of 225 degrees ensures that, with a square matrix \(M\), the element \(M \$[1 ; 1]\) is nearest to the viewpoint
Distance of the viewpoint from the centre of the grid on the base plane; default * gives a distance of 25 times the number of y points in the grid
Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea Overall description for the key; default * Action to be taken after completing the plot (continue, pause); default * uses the setting from the last DEVICE statement

Pointer (of variates representing the columns of a data matrix), matrix or two-way table specifying values on a regular grid Pen number to be used for the plot; default 3 Annotation for key

ECABUNDANCEPLOT procedure
Produces rank/abundance, \(A B C\) and \(k\)-dominance plots (D.A. Murray).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (summary); default summ \\
\hline \(\mathrm{PLOT}=\) string token & Controls the type of plot (rankabundance, kdominance, abc); default rank, kdom \\
\hline GROUPS \(=\) factor & Defines the groups if there is more than one sample \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline INDIVIDUALS \(=\) variates & Number of individuals per species \\
\hline SPECIES \(=\) variates & Number of species \\
\hline BIOMASS \(=\) variates & Biomass data for each species for an ABC plot \\
\hline
\end{tabular}

\section*{ECACCUMULATION procedure}

Plots species accumulation curves for samples or individuals (D.A. Murray).

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT }=\text { string token } \\
\text { CURVE }=\text { string token } & \text { Controls printed output (summary); default summ } \\
\text { Controls the type of species accumulation curve (collector, } \\
\text { random, coleman); default coll }\end{array}\right]\)\begin{tabular}{l} 
Controls plot type (sac); default sac \\
METHOD \(=\) string token
\end{tabular}\(\quad\)\begin{tabular}{l} 
Controls collector curve when data supplied in variate or \\
factor with groups (individual, sample); default samp \\
GROUPS \(=\) factor
\end{tabular}
```

```
NPERMUTATIONS = scalar
```

```
NPERMUTATIONS = scalar
SEED = scalar
SEED = scalar
SCREEN = string token
SCREEN = string token
WINDOW = scalar
WINDOW = scalar
KEYWINDOW = scalar
KEYWINDOW = scalar
PEN = scalar
```

```
PEN = scalar
```

```
of factor of individuals

\section*{Parameters}

DATA \(=\) variates, factors, matrices or pointers
For individual-based collector curves, a variate or factor containing the individuals in the order they were collected; for sample-based species accumulation curves, a pointer or matrix specifying the number of individuals for each species for different sites/samples
RICHNESS \(=\) variates \(\quad\) Saves the observed number of species for the collector method and the average or expected number of species at each sample size for the Coleman and random methods
VARIANCE \(=\) variates Saves the variance for the richness (Coleman and random methods only)

\section*{ECANOSIM procedure}

Performs an analysis of similarities i.e. ANOSIM (D.A. Murray).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token & Controls printed output (test); default test \\
PLOT \(=\) string token & Type of plot (boxplot, histogram); default hist \\
NTIMES \(=\) scalar & Number of permutations to make; default 999 \\
BLOCKS = factor & Factor specifying groups for a stratified test; default * i.e. none \\
SEED \(=\) scalar & \begin{tabular}{l} 
Seed for the random number generator used to make the \\
permutations; default 0 continues from the previous generation \\
or (if none) initializes the seed automatically
\end{tabular} \\
Parameters & Similarity matrix \\
DATA \(=\) symmetric matrices & \begin{tabular}{l} 
Specify the different groups for each matrix \\
GROUPS \(=\) factors
\end{tabular} \\
STATISTIC \(=\) scalars & Save the \(R\) statistics \\
PROBABILITY = scalars & Save the probabilities
\end{tabular}

\section*{ECDIVERSITY procedure}

Calculates measures of diversity with jackknife or bootstrap estimates (D.A. Murray).

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT }=\text { string tokens } & \text { Controls printed output (index, estimate); default inde } \\
\text { INDEX }=\text { string token } & \text { Controls the type of measurement to be calculated (hshannon, } \\
& \text { qstatistic, simpsonyule, bergerparker, ibrillouin, } \\
\text { ebrillouin, dmcintosh, emcintosh, evar, } \\
& \text { logseriesalpha, lognormallambda, jshannon, } \\
\text { margalef, isimpson, richness); default hsha }\end{array}\right]\)\begin{tabular}{l} 
Defines the groups if there is more than one sample \\
GROUPS \(=\) factor \\
BMETHOD \(=\) string token \\
\\
Controls whether to use the bootstrap or jackknife method \\
(jackknife, bootstrap); default jack for multiple samples \\
and boot for individual samples
\end{tabular}

\section*{Parameters}
\begin{tabular}{ll} 
INDIVIDUALS \(=\) variates & Number of individuals per species \\
SPECIES \(=\) variates & Number of species \\
INDICES \(=\) variate or pointer & Saved the diversity indices
\end{tabular}

\section*{ECFIT procedure}

Fits models to species abundance data (D.A. Murray).

\section*{Options}
```

PRINT = string tokens Controls printed output (summary, estimates,
MODELTYPE = string token
GROUPS = factor
LOGBASE = string token
PLOT = string token
Controls printed output (summary, estimates, fittedvalues); default summ, esti
MODELTYPE $=$ string token
GROUPS $=$ factor
LOGBASE $=$ string token

```

\section*{Parameters}

INDIVIDUALS \(=\) variates
SPECIES \(=\) variates
ESTIMATES \(=\) variates
EGROUPS \(=\) factors

The model or distribution fitted to the data (logseries, plognormal, negativebinomial, geometric, zipf, mandelbrotzipf); default logs
Defines the groups if there is more than one sample Log base to use to form the octaves for the logseries, Poisson log-Normal and negative binomial distributions (two, ten); default two
Plots the fitted values (fittedabundance, rankabundance); default fitt

Number of individuals per species
Number of species
Saves the model estimates
Saves the grouping of the estimates

\section*{ECNICHE procedure}

Generates relative abundance of species for niche-based models (D.A. Murray).
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (model, expected, replications); default mode, expe \\
\hline MODELTYPE \(=\) string token & The niche model (powerfraction, fixedratio, preemption, randomfraction, macarthurfraction); default powe \\
\hline METHOD \(=\) string token & Whether to use the Fortran DLL to calculate the relative abundance (dll, commands); default * uses the DLL in Windows implementations, and commands for other platforms \\
\hline POWER = scalar & Power for the Power fraction model, must be in the range 0 to 1 \\
\hline URATIO \(=\) scalar & Ratio for the fixed ratio model \\
\hline SEED \(=\) scalar & Seed for random number generator for the random division of the niche space; default 0 \\
\hline PLOT \(=\) string token & Plots the average relative abundance (relativeabundance); default rela \\
\hline
\end{tabular}

\section*{Parameters}

NREPLICATES = scalars Number of replications
NSPECIES \(=\) scalars \(\quad\) Number of species
EXPECTED \(=\) variates Saves the expected average relative abundance
SDEXPECTED \(=\) variates

Saves the standard deviation for the expected mean relative abundance

\section*{ECNPESTIMATE procedure}

Calculates nonparametric estimates of species richness (D.A. Murray).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token & Controls printed output (summary, estimates); default \\
summ, esti \\
GROUPS \(=\) factor & Grouping factor for different samples \\
NBOOT \(=\) scalar & A scalar defining the number of bootstrap samples to be
\end{tabular}
```

SEED $=$ scalar
SEED $=$ scalar
Seed for random number generator; default 0

```
performed; default 100
Parameters
DATA \(=\) variates, matrices or pointers

ESTIMATE \(=\) variates or pointer
\(\mathrm{SE}=\) variates or pointers

BSE \(=\) variates or pointers
A variate containing abundances of species or a pointer or matrix specifying the individuals for each species for different sites/samples
Saves the estimated species richness in a variate, or in a pointer if GROUPS are specified
Saves the analytic standard errors in a variate, or in a pointer if groups are specified
Saves the bootstrap standard errors in a variate, or in a pointer if groups are specified

\section*{ECRAREFACTION procedure}

Calculates individual or sample-based rarefaction (D.A. Murray).

Options
```

PRINT = string token
METHOD = string token
PLOT = string token
SAMPLESIZES = scalar or variate

```
CIPROBABILITY \(=\) scalar
Parameters
DATA \(=\) variates, matrices or pointers
EXPECTED \(=\) variates
VARIANCE \(=\) variates
LOWER \(=\) variates
UPPER \(=\) variates

Controls printed output (summary); default summ
Controls the type of rarefaction (individual, sample); default indi
Controls plot type (expected); default expe
A scalar defining a step between sample sizes or number of samples to estimate the number of species; alternatively, a variate specifing the actual sample size values or number of samples
Probability for the confidence interval; default 0.95
For individual-based rarefaction, a variate containing the number of individuals for each species; for sample-based rarefaction, a pointer or matrix specifying the number of individuals for each species for different sites/samples Saves the expected number of species at each sample size Saves the variance for the expected number of species Saves the lower confidence limit at each sample size Saves the upper confidence limit at each sample size

\section*{EDDUNNETT procedure}

Calculates equivalent deviates for Dunnett's simultaneous confidence interval around a control (R.W. Payne).

\section*{Options}

METHOD \(=\) string token Form of the alternative hypothesis (twosided,
NTREATMENTS \(=\) scalar greaterthan, lessthan); default twos
\(\mathrm{DF}=\) scalar Number of treatments being compared

REPTREATMENTS = scalar or variate
REPCONTROL \(=\) scalar
TOLERANCE \(=\) scalar

\section*{Parameters}

CIPROBABILITY \(=\) scalars
\(\mathrm{ED}=\) scalars

Number of residual degrees of freedom
Specifies the replication of the treatments Specifies the replication of the control Tolerance for the difference between the probability for the calculated equivalent deviate and that requested by
CIPROBABILITY; default 0.0001
Specifies the probability for the confidence interval
Saves the equivalent deviate

\section*{EDFTEST procedure}

Performs empirical-distribution-function goodness-of-fit tests (V.M. Cave).

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Controls printed output (summary, tests); default summ,
PLOT \(=\) string tokens
TEST \(=\) string tokens
\({ }^{\dagger}\) DISTRIBUTION \(=\) string tokens

CONSTANT \(=\) string tokens

TMETHOD \(=\) string tokens
PARAMETERS \(=\) scalar or variate

NAMES \(=\) text

CDFCALCULATION \(=\) expression

MCPARAMETERS \(=\) string tokens
\[
\begin{aligned}
& \text { NTIMES = scalar } \\
& \text { SEED = scalar } \\
& \text { TITLE = text } \\
& \text { YTITLE = text } \\
& \text { XTITLE = text } \\
& \text { WINDOW = scalar } \\
& \text { SCREEN = string tokens }
\end{aligned}
\]

\section*{Parameters}

DATA \(=\) variate
STATISTIC = pointer
MCSTATISTICS \(=\) pointer

PROBABILITY \(=\) pointer

\section*{test}

What graphs to plot (kerneldensity, histogram); default *
Specifies the type of goodness-of-fit test to perform
(andersondarling, cramervonmises, kolmogorovsmirnov); default ande, cram, kolm Continuous distribution that is hypothesized to have generated the DATA; (beta, b2, burr, cauchy, chisquare, ev1 (or gumbel), ev2 (or frechet), ev3, expnormal, exponential, fdistribution, gamma, gev, gpareto, iburr, igamma, invnormal, iweibull, laplace, loggamma, logistic, loglogistic, lognormal, normal, paralogistic, pareto, skewnormal, stdnormal, stduniform, tdistribution, ubetamix, ugammamix, uniform, weibull, calculated); default norm Whether to estimate a constant for the distribution, when the parameter values are estimated from the DATA (estimate, omit); default omit
Specifies the method used to perform the goodness-of-fit tests
(likelihoodratio, traditional); default like Parameter values for the hypothesized distribution; if this is not set, parameter values are estimated from the DATA Names to identify the parameters in PARAMETERS; if this is not set, the default parameter ordering is assumed
Expression, formed using argument x , that defines the cumulative distribution function of the hypothesized distribution; must be specified when DISTRIBUTION \(=\) calculated
Whether the parameters are re-estimated or fixed during the Monte-Carlo simulations, when the parameter values are estimated from the DATA (fix, estimate); default esti Number of Monte-Carlo simulations to perform; default 999 Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically Title for the graphs; default generates the title automatically Y -axis title for the graphs; default generates the title automatically
X -axis title for the graphs; default generates the title automatically
Window to use for the graphs; default 3
Whether to clear the screen before plotting the graph or to continue plotting on the old screen, when a single graph is requested (clear, keep); default clear

Identifier of the variate holding the data
Pointer to scalar(s) to save the test statistic(s)
Pointer to variates(s) to save the Monte-Carlo simulated test statistic(s)
Pointer to scalar(s) to save the probability value(s) of the test statistic(s)

\section*{EDIT directive}

Edits text vectors.

\section*{Options}

CHANNEL \(=\) scalar or text

Text structure containing editor commands or a scalar giving the number of a channel from which they are to be read; default is the current input channel
\begin{tabular}{ll} 
END \(=\) text & \begin{tabular}{l} 
Character(s) to indicate the end of the commands read from an \\
input channel; default is the character colon \((:)\)
\end{tabular} \\
WIDTH = scalar & \begin{tabular}{l} 
Limit on the line width of the text; default \(*\)
\end{tabular} \\
SAVE \(=\) text & Text to save the editor commands for future use; default * \\
Parameters & Texts to be edited \\
OLDTEXT \(=\) texts \\
NEWTEXT \(=\) texts
\end{tabular}\(\quad\)\begin{tabular}{l} 
Text to store each edited text; if any of these is omitted, the \\
corresponding OLDTEXT is used
\end{tabular}

\section*{ELPOISSON procedure}

Calculates expected values of the lower parts of Poisson distributions (R.W. Payne).

\section*{Option}

BOUND \(=\) string tokens \(\quad\) Boundary of upper part of distribution

\section*{Parameters}

MEANS \(=\) variates or scalars \(\quad\) Means of the distributions
EXPECTEDVALUES \(=\) variates or scalars
Saves the expected values
CLPROBABILITIES \(=\) variates or scalars
Saves the cumulative lower probabilities

\section*{ELSE directive}

Introduces the default set of statements in block-if or in multiple-selection control structures.
No options or parameters

\section*{ELSIF directive}

Introduces a set of alternative statements in a block-if control structure.

\section*{No options}

Parameter
expression Logical expression to indicate whether or not the set of statements is to be executed.

\section*{ENDBREAK directive}

Returns to the original channel or control structure and continues execution.
No options or parameters

\section*{ENDCASE directive}

Indicates the end of a "multiple-selection" control structure.

\section*{No options or parameters}

\section*{ENDDEBUG directive}

Cancels a DEBUG statement.

\section*{No options or parameters}

\section*{ENDFOR directive}

Indicates the end of the contents of a loop.
No options or parameters

\section*{ENDIF directive}

Indicates the end of a block-if control structure.

\section*{No options or parameters}

\section*{ENDJOB directive}

Ends a Genstat job.
No options or parameters

\section*{ENDPROCEDURE directive}

Indicates the end of the contents of a Genstat procedure.

\section*{No options or parameters}

\section*{ENQUIRE directive}

Provides details about files opened by Genstat.

\section*{No options}

\section*{Parameters}
\(\left.\begin{array}{ll}\text { CHANNEL = scalars } & \begin{array}{l}\text { Channel numbers to enquire about; for FILETYPE=input or } \\
\text { output, a scalar containing a missing value will be set to the } \\
\text { number of the current channel of that type and a negative value }\end{array} \\
\text { can be used to check the existence of a file that is not yet } \\
\text { connected to a channel }\end{array}\right]\)\begin{tabular}{l} 
Type of each file (input, output, unformatted, \\
backingstore, procedurelibrary, graphics); default \\
inpu
\end{tabular}

\section*{EQUATE directive}

Transfers data between structures of different sizes or types (but the same modes i.e. numerical or text) or where transfer is not from single structure to single structure.

\section*{Options}
\begin{tabular}{|c|c|}
\hline OLDFORMAT \(=\) variate & Format for values of OLDSTRUCTURES; within the variate, a positive value \(n\) means take \(n\) values, \(-n\) means skip \(n\) values and a missing value means skip to the next structure; default * i.e. take all the values in turn \\
\hline NEWFORMAT \(=\) variate & Format for values of NEWSTRUCTURES; within the variate, a positive value \(n\) means fill the next \(n\) positions, \(-n\) means skip \(n\) positions and a missing value means skip to the next structure; default * i.e. fill all the positions in turn \\
\hline FREPRESENTATION \(=\) string token & How to interpret factor values (labels, levels, ordinals) default leve \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline OLDSTRUCTURES \(=\) identifiers & Structures whose values are to be transferred; if values of several structures are to be transferred to one item in the NEWSTRUCTURES list, they must be placed in a pointer \\
\hline NEWSTRUCTURES \(=\) identifiers & Structures to take each set of transferred values; if several structures are to receive values from one item in the oldstructures list, they must be placed in a pointer \\
\hline
\end{tabular}

\section*{ESTIMATE directive}

Estimates parameters in Box-Jenkins models for time series (synonym of TFIT).

\section*{Options}
```

PRINT = string tokens
LIKELIHOOD = string token
CONSTANT = string token
RECYCLE = string token
WEIGHTS = variate
MVREPLACE = string token
FIX = variate

```
METHOD \(=\) string token
MAXCYCLE \(=\) scalar
TOLERANCE \(=\) scalar
SAVE = identifier

\section*{Parameters}

SERIES = variate
\(\mathrm{TSM}=T S M\)
BOXCOXMETHOD \(=\) string token

RESIDUALS \(=\) variate
```

Time series to be modelled (output series)
What to print (model, summary, estimates,
correlations, monitoring); default mode,summ,esti
Method of likelihood calculation (exact, leastsquares,
marginal); default exac
How to treat the constant (estimate, fix); default esti
Whether to continue from previous estimation (yes, no);
default no
Weights; default *
Whether to replace missing values by their estimates (yes,
no); default no
Defines constraints on parameters (ordered as in each model, tf
models first): zeros fix parameters, parameters with equal
numbers are constrained to be equal; default *
Whether to carry out full iterative estimation, to carry out just
one iterative step, to perform no steps but still give parameter
standard deviations, or only to initialize for forecasting by
regenerating residuals (full, onestep, zerostep,
initialize); default full
Maximum number of iterations; default 15
Criterion for convergence; default 0.0004
To name save structure, or supply save structure with
transfer-functions; default * i.e. transfer-functions taken from
the latest model
Time series to be modelled (output series)
Model for output series
How to treat transformation parameter in output series (fix,
estimate); default fix
To save residual series

```

\section*{\({ }^{\dagger}\) EUPOISSON procedure}

Calculates expected values of the upper parts of Poisson distributions (R.W. Payne).

\section*{Option}
\begin{tabular}{l} 
BOUND = string tokens \(\quad\) Boundary of upper part of distribution \\
Parameters \\
MEANS \(=\) variates or scalars \(\quad\) Means of the distributions \\
EXPECTEDVALUES \(=\) variates or scalars \\
\multicolumn{2}{l}{\(\quad\) Saves the expected values } \\
CUPROBABILITIES \(=\) variates or scalars
\end{tabular}

Saves the cumulative upper probabilities

\section*{EXAMPLE procedure}

Obtains and runs a Genstat example program, PC Windows only (R.W. Payne).
Option

EXECUTE \(=\) string token

\section*{Parameters}

EXTYPE \(=\) texts
Types of example
EXNAME \(=\) texts
SOURCE \(=\) texts
STATEMENT \(=\) texts
Names of example

Whether to run the example when Genstat is running interactively (no, yes); default no

Texts to store the source code of each example
Saves a command to obtain each example (useful if the name and type information has been specified in response to questions from EXAMPLE)

\section*{EXECUTE directive}

Executes the statements contained within a text.

\section*{No options}

\section*{Parameter} texts

Statements to be executed

\section*{EXIT directive}

Exits from a control structure.

\section*{Options}
\begin{tabular}{|c|c|}
\hline NTIMES \(=\) scalar & Number of control structures, \(n\), to exit (if \(n\) exceeds the number of control structures of the specified type that are currently active, the exit is to the end of the outer one; while for \(n\) negative, the exit is to the end of the \(-n^{\prime}\) th structure in order of execution); default 1 \\
\hline CONTROLSTRUCTURE \(=\) string token & Type of control structure to exit (job, for, if, case, procedure); default for \\
\hline REPEAT = string token & Whether to go to the next set of parameters on exit from a FOR loop or procedure (yes, no); default no \\
\hline EXPLANATION \(=\) text & Text to be printed if the exit takes place; default * \\
\hline \multicolumn{2}{|l|}{Parameter} \\
\hline expression & Logical expression controlling whether or not an exit takes place \\
\hline
\end{tabular}

\section*{EXPORT procedure}

Saves data structures in Genstat, Excel, R, Quattro, dBase, SPlus, Gauss, MatLab, SAS, Instat, Image or text files (D.B. Baird).

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT = string token } \\
\text { OUTFILE }=\text { text }\end{array} \quad \begin{array}{l}\text { What to print (summary); default summ } \\
\text { METHOD = string token } \\
\text { Data file to be written } \\
\text { Action to take if the file already exists (add, append, } \\
\text { concatenate, merge, overwrite, prompt, fail, } \\
\text { replace); default prompt in interactive mode, fail in batch } \\
\text { mode }\end{array}\right]\)\begin{tabular}{l} 
Whether to leave the column names in the file in plain form \\
rather than decorating them with the column type information \\
i.e. ! for factors, : for dates etc (yes, no) default no
\end{tabular}
\begin{tabular}{ll} 
GLABEL \(=\) texts & \begin{tabular}{l} 
Labels for the GROUPS factor for the current appended section, \\
and also for the original section if no previous sections have
\end{tabular} \\
& been appended
\end{tabular}

\section*{EXPRESSION directive}

Declares one or more expression data structures.

\section*{Options}
\begin{tabular}{ll} 
VALUE \(=\) expression & Value for all the expressions; default \(\star\) \\
MODIFY \(=\) string token & Whether to modify (instead of redefining) existing structures \\
& (yes, no); default no \\
IPRINT = string tokens & Information to be used by default to identify the expressions in \\
& output (identifier, extra); if this is not set, they will be
\end{tabular}
identified in the standard way for each type of output

\section*{Parameters}

IDENTIFIER = identifiers
VALUE \(=\) expression structures
Identifiers of the expressions

EXTRA \(=\) texts
Expression data structures providing values for the expressions Extra texts associated with the identifiers

\section*{EXTRABINOMIAL procedure}

Fits the models of Williams (1982) to overdispersed proportions (M.S. Ridout \& P.W. Goedhart).

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { What to print if iterative estimation process converges } \\
\text { successfully and whether to monitor the iterations (model, } \\
\text { summary, accumulated, estimates, correlations, } \\
\text { fittedvalues, monitoring); default * }\end{array} \\
\text { CONSTANT = string token } & \text { How to treat constant (estimate, omit); default esti }\end{array}\right\}\)\begin{tabular}{l} 
Limit for expansion of model terms; default 3
\end{tabular}

\section*{FACAMEND procedure}

Permutes the levels and labels of a factor (J.T.N.M. Thissen).

\section*{Option}

DIRECTION = string token

\section*{Parameters}
\(\mathrm{FACTOR}=\) factor
NEWLEVELS \(=\) variate or text

Order into which to sort the levels or labels of FACTOR
(ascending, descending); default asce
Factor whose levels or labels are to be permuted
To specify the new order of the factor levels or labels

\section*{FACCOMBINATIONS procedure}

Forms a factor to indicate observations with identical values of a set of variates, texts or factors (R.W. Payne).

\section*{Options}

FLABELS \(=\) string token

SEPARATOR \(=\) text
ISEPARATOR \(=t e x t\)

IMETHOD \(=\) string token

\section*{Parameters}

VECTORS = pointers
\(\mathrm{FACTOR}=\) factors

When to form labels (always, ifredeclared, only, never); default ifre
Separator to use when constructing labels; default ' '
Separator to use between identifiers and levels or labels; default ' '
Whether to include identifiers in the labels (include, omit); default omit

Pointers containing sets of vectors (variates, and/or factors, and/or texts)
Saves a factor for each set of vectors with a level for every different combination of their values

\section*{FACDIVIDE procedure}

Represents a factor by factorial combinations of a set of factors (R.W. Payne).

\section*{Option}

OLDFACTOR \(=\) factor \(\quad\) Factor whose levels are to be represented by the factorial combinations of the NEWFACTORS

\section*{Parameters}

NEWFACTOR = factors
Factors formed to represent OLDFACTOR
LEVELS \(=\) scalars or variates
Levels of the NEWFACTORS

\section*{FACEXCLUDEUNUSED procedure}

Redefines the levels and labels of a factor to exclude those that are unused (R.W. Payne).

\section*{No options}

\section*{Parameters}
FACTOR = factors Factors with unused levels

NEWFACTOR = factors New factors, with levels (and labels) that exclude those that are unused; if unset, the original factor is redefined

\section*{FACGETLABELS procedure}

Obtains the labels for a factor if it has been defined with labels, or constructs labels from its levels otherwise (V.M. Cave).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token & Controls printed output (labels); default * \\
PREFIX \(=\) text & Supplies a single line of text to be used as a prefix when \\
constructing labels from the factor levels; default * i.e. none
\end{tabular}

\section*{Parameters}
```

FACTOR $=$ factors

```

LABELS \(=\) texts
\(\mathrm{EXIST}=\) scalars

Controls printed output (labels); default * constructing labels from the factor levels; default * i.e. none

Factor whose labels are to be obtained
Specifies text structures to save the labels of each factor Specifies a scalar for each factor, set to the value 1 if its labels already existed or 0 if they had to be constructed

\section*{FACLEVSTANDARDIZE procedure}

Redefines a list of factors to coordinate their levels or labels (R.W. Payne).

\section*{Options}

FREPRESENTATION = string token

DIRECTION \(=\) string token
\(\mathrm{CASE}=\) string token

\section*{REMOVEUNUSED \(=\) string token}

\section*{Parameters}

FACTOR = factors
NEWFACTOR \(=\) factors

Whether to coordinate the factors to have the same levels, labels or (ordinal) number of levels (levels, labels, ordinals); default leve
How to sort the levels or labels (ascending, descending, given); default asce
Case to use for labels (given, lower, upper, sentence, title); default give
Whether to remove unused levels (yes, no); default no
Factors to be coordinated
New factors, redefined to share the same levels or labels; if unset, the original FACTOR is redefined

\section*{FACMERGE procedure}

Merges levels of factors (S.D. Langton).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token & Controls printed output (summary); default * i.e. none \\
OLDFACTOR \(=\) factor & Original factor \\
NEWFACTOR \(=\) factor & New factor with merged levels \\
Parameters & \\
MERGE \(=\) variates or texts & Levels to merge \\
LEVMERGED \(=\) variates & Level to assign to the merged levels
\end{tabular}

LABMERGED \(=\) texts
Label to assign to the merged levels

\section*{FACPRODUCT procedure}

Forms a factor with a level for every combination of other factors (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline FLABELS \(=\) string token & When to form labels (always, ifredeclared, only, never); default ifre \\
\hline SEPARATOR \(=\) text & Separator to use when constructing labels; default ' \\
\hline LMETHOD \(=\) string token & Whether to define levels for all combinations or only for those present in the data (all, present); default pres \\
\hline ISEPARATOR \(=\) text & separator to use between identifiers and levels or labels; default ' \\
\hline IMETHOD \(=\) string token & Whether to include identifiers in the labels (include, omit); default omit \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline FACTORS = pointers or formulae & Factors contributing to each product \\
\hline PRODUCT \(=\) factors & Factors to be formed \\
\hline
\end{tabular}

\section*{FACROTATE directive}

Rotates factor loadings from a principal components, canonical variates or factor analysis.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Printed output required (communalities, loadings, orthogonalrotationmatrix, rotation); default * i.e. no printing \\
\hline METHOD \(=\) string token & Criterion (varimax, quartimax); default vari \\
\hline NROOTS = scalar & Sets the number of dimensions to rotate from the original loadings; default * i.e. all \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline OLDLOADINGS \(=\) matrices & Original loadings \\
\hline NEWLOADINGS \(=\) matrices & Rotated loadings for each set of OLDLOADINGS \\
\hline COMMUNALITIES \(=\) matrices & Communalities of the variables in each rotation \\
\hline ROTATION \(=\) matrices & Saves the orthogonal rotation from the original solution to the rotated space \\
\hline
\end{tabular}

\section*{FACSORT procedure}

Sorts the levels of a factor according to an index vector (R.W. Payne).

\section*{Options}

DIRECTION \(=\) string token \(\quad\) Direction in which to sort the index (ascending, descending); default asce
SETATTRIBUTES \(=\) string tokens

\section*{Parameters}

FACTOR = factors Which aspects of each NEWFACTOR to define (levels, labels, values); default * i.e. labels and values if defined for FACTOR, also levels if not the integers \(1,2 \ldots\)

Factors whose levels are to be reordered
INDEX \(=\) variate, text or one-way table Index vectors defining the ordering of the levels of each factor
NEWFACTOR = factors
New factors with reordered levels; if unset, the original FACTOR is redefined
NEWLEVELS \(=\) variates \(\quad\) Saves the (reordered) levels as defined for each NEWFACTOR

\section*{FACTOR directive}

Declares one or more factor data structures.

\section*{Options}

NVALUES \(=\) scalar or vector \(\quad\) Number of units, or vector of labels; default * takes the setting from the preceding UNITS statement, if any
LEVELS \(=\) scalar or vector \(\quad\) Number of levels, or series of numbers which will be used to
```

VALUES = numbers
LABELS = text
MODIFY = string token
REFERENCELEVEL = scalar
IPRINT = string tokens

```

\section*{Parameters}

IDENTIFIER \(=\) identifiers
VALUES \(=\) identifiers
DECIMALS = scalars
CHARACTERS \(=\) scalars
EXTRA \(=\) texts
DREPRESENTATION \(=\) scalars or texts
refer to levels in the program; default *
Values for all the factors, given as levels; default *
Labels for levels, for input and output; default *
Whether to modify (instead of redefining) existing structures (yes, no); default no
Defines the reference level used e.g. to define the parameterization of regression models Information to be used by default to identify the factors in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the factors
Values for each factor, specified as levels or labels
Number of decimals for printing levels
Number of characters for printing labels
Extra text associated with each identifier
Default format to use when the contents represent dates and times

\section*{FACUNIQUE procedure}

Redefines a factor so that its levels and labels are unique (R.W. Payne).

\section*{Options}

MERGESAME \(=\) string tokens

INCREMENT \(=\) scalar

ADDTO \(=\) string token

\section*{Parameters}

OLDFACTOR = factors
NEWFACTOR \(=\) factors
CHANGED \(=\) scalars

What must be the same for groups defined by the factor to be merged (levels, labels); default * i.e. no groups are merged
Value to use to modify duplicate levels; default * i.e. a suitable (small) value is determined automatically Whether to add the increment to the value or the absolute value of duplicated levels (value, absolutevalue); default abso

Factors whose levels and labels are to be made unique New factors with unique levels; if unset, the original OLDFACTOR is redefined
Indicates whether the factor has changed

\section*{FALIASTERMS procedure}

Forms information about aliased model terms in analysis of variance (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens
TREATMENTSTRUCTURE \(=\) formula

BLOCKSTRUCTURE = formula

FACTORIAL \(=\) scalar
RESTRICTION \(=\) variate

\section*{Parameters}

TERMS = formula
ALIASTERMS = formula or pointer

Controls printed output (aovtable, aliasedterms); default alia
Treatment model for the design; if this is not set, the default is taken from any existing setting defined by the TREATMENTSTRUCTURE directive
Block model for the design; if this is not set, the default is taken from any existing setting defined by the BLOCKSTRUCTURE directive
Limit on number of factors in a treatment term; default 3 Defines a restriction on the units for the analysis; default * i.e. none

Model terms whose aliased terms are to be identified; the default is to take all the terms in the treatment model Saves the aliased terms

\section*{FARGUMENTS directive}

Forms lists of arguments involved in an expression.

\section*{Options}
\begin{tabular}{ll} 
EXPRESSION = expression structure & Expression whose arguments are required \\
NRESULTS \(=\) scalar & Number of results generated by the expression \\
NCALCULATIONS \(=\) scalar & Number of calculations in the expression
\end{tabular}

\section*{Parameters}

ICALCULATION = scalars
RESULT = dummies
ARGUMENTS \(=\) pointers

Number of results generated by the expression
Number of calculations in the expression
The calculation from which to save the result and arguments
Stores the result structure for calculation ICALCULATION
Stores the arguments in calculation ICALCULATION

\section*{FAULT directive}

Checks whether to issue a diagnostic, i.e. a fault, warning or message.

\section*{Options}

DIAGNOSTIC \(=\) string token \(\quad\) Severity of the diagnostic (fault, warning, message); default faul
FAULT \(=\) text
EXPLANATION \(=\) text
NCALLS \(=\) scalar

\section*{Parameter}
expression

Diagnostic code; default 'UF 1' for fault, 'UF 2'for warning
Explanatory information
Number of calls from the main procedure (whose name should be used in fault or warning messages); default 0

Logical expression to test whether or not to give the diagnostic

\section*{FBASICCONTRASTS procedure}

Breaks a model term down into its basic contrasts (R.W. Payne).

\section*{Options}

TERM = formula
PSEUDOFACTORS \(=\) pointer
NEWTERMS \(=\) formula structure

Model term to split into basic contrasts
Pseudo-factors representing the basic contrasts Model formula containing the term followed by the pseudofactors

\section*{No parameters}

\section*{FBETWEENGROUPVECTORS procedure}

Forms variates and classifying factors containing within-group summaries to use e.g. in a between-group analysis (R.W. Payne).

\section*{Options}
\(\left.\begin{array}{ll}\text { CLASSIFICATION = factors } & \begin{array}{l}\text { Factors defining the groups; must be set } \\
\text { COUNTS }=\text { variate } \\
\text { Saves a variate counting the number of units with each factor } \\
\text { combination; default * }\end{array} \\
\text { WEIGHTS }=\text { variate } & \begin{array}{l}\text { Weights to be used to calculate the within-group summaries; } \\
\text { default * indicates that all units have weight } 1\end{array} \\
\text { METHOD }=\text { string token } & \begin{array}{l}\text { How to summarize the data variates (totals, } \\
\text { nobservations, means, minima, maxima, variances, } \\
\text { quantiles, sds, skewness, kurtosis, semeans, }\end{array} \\
\text { seskewness, sekurtosis); default mean }\end{array}\right]\)\begin{tabular}{l} 
Percentage point for quantiles; default 50
\end{tabular}

\section*{FCA directive}

Performs factor analysis.

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Printed output required (communalities, loadings, coefficients, scores, residuals, cresiduals, vresiduals, tests); default * i.e. no printing
```

NDIMENSIONS = scalar
METHOD = string token

```
```

MAXCYCLE = scalar

```
TOLERANCE \(=\) scalar

\section*{Parameters}
```

LRV = LRVS
SSPM=SSPMs
COMMUNALITIES = variates
COEFFICIENTS = matrices
SCORES = matrices or pointers
RESIDUALS = matrices or pointers
CRESIDUALS = symmetric matrices
VRESIDUALS = variates

```
DATA \(=\) pointers or matrices or symmetric matrices or SSPMs
Pointer of variates forming the data matrix, or matrix storing
the variate values by columns, or symmetric matrix storing
their variances and covariances, or SSPM giving their sums of
squares and products
NUNITS \(=\) scalars \(\quad\) When DATA is set to a symmetric matrix of variances and
Number of factors to fit; no default, must be specified
Whether to use correlations or variances and covariances
(correlation, vcovariance, variancecovariance);
default vcov
Maximum number of iterations; default 50
Minimum value to assume for the unique component \(\psi_{i}^{2}\) of
each observed variable; default \(10^{-6}\)
covariances, NUNITS must specify the number of units from
which they were calculated if tests are required
Saves the loadings, latent roots and trace from each analysis
Saves the SSPM formed from a DATA matrix or pointer
Saves the communalities
Saves the factor score coefficients
Saves the factor analysis scores
Saves residuals from the dimensions fitted in the analysis
Saves the residual correlation or covariance matrix
Saves the residual variances

\section*{FCLASSIFICATION directive}

Forms a classification set for each term in a formula, breaks a formula up into separate formulae (one for each term), and applies a limit to the number of factors and variates in the terms of a formula.

\section*{Options}
\begin{tabular}{|c|c|}
\hline FACTORIAL = scalar & Limit on the number of factors and variates in each term; default * i.e. no limit \\
\hline NTERMS \(=\) scalar & Outputs the number of terms in the formula \\
\hline CLASSIFICATION = pointer & Saves a list of all the factors and variates in the TERMS formula \\
\hline OUTFORMULA = formula structure & Identifier of a formula to store a new formula, omitting terms with too many factors and variates \\
\hline INCLUDEFUNCTIONS \(=\) string token & Whether or not to include functions in the formulae saved by the OUTFORMULA option or the OUTTERMS parameter (yes, no); default no \\
\hline REORDER \(=\) string token & When to reorder the terms in the model (always, standard, never); default stan \\
\hline DROPTERMS \(=\) string token & Whether to include only terms that can be dropped individually from the formula (yes, no); default no \\
\hline CHECKFUNCTIONS \(=\) scalar & Indicator, set to one if the TERMS formula contains any functions, and zero if it contains none \\
\hline FUNCTIONDEFINITIONS \(=\) pointer & Saves details of the functions defined for each factor and variate in the TERMS formula \\
\hline EXCLUDEPSEUDOTERMS = string token & Whether to omit pseudo-terms from the numbers of terms and the formulae saved by the OUTFORMULA option and OUTTERMS parameter (yes, no); default no \\
\hline
\end{tabular}

\section*{Parameters}

TERMS \(=\) formula

CLASSIFICATION = pointers

OUTTERMS \(=\) formula structures
MAINTERMS = formula structures

Formula from which the classification sets, individual model terms and so on are to be formed
Identifiers for pointers to store the factors and variates composing each model term of the TERMS formula Identifiers for formulae to store each individual term of the TERMS formula
Identifiers for formulae to store the main term for each individual term of the TERMS formula

\section*{FCOMPLEMENT procedure}

Forms the complement of an incomplete block design (W. van den Berg).

\section*{Option}

PRINT \(=\) string token

\section*{Parameters}
```

TREATMENTS = factors
REPLICATES = factors
BLOCKS = factors
NEWTREATMENTS = factors
NEWREPLICATES = factors

```
NEWBLOCKS \(=\) factors
NEWUNITS \(=\) factors
SEED \(=\) scalars

Controls whether or not to print a plan of the design (design); default desi

Specifies the treatment factor of the original design Specifies the replicate factor of the original design when this is a resolvable design Specifies the block factor of the original design Saves the treatment factor of the complement design Saves the replicate factor of the complement design when this is a resolvable design
Saves the block factor of the complement design Saves the treatment factor of the complement design Seed for the random-numbers to randomize the design; default 0

\section*{FCONTRASTS procedure}

Modifies a model formula to contain contrasts of factors (R.W. Payne).

\section*{Options}
```

FORMULA = formula
NEWFORMULA = formula structure
FACTORIAL = scalar

```

\section*{Parameters}
\(\mathrm{FACTOR}=\) factors
CONTRASTTYPE \(=\) string tokens
ORDER = scalars
XCONTRASTS \(=\) variates or matrices
DEVIATIONS \(=\) string tokens
ORTHOGONALIZE \(=\) string tokens
SAVECONTRASTS \(=\) pointers

Formula to modify to contain contrasts
Modified formula
Limit on the number of variates or factors in terms generated from FORMULA; default 3

Factors over which to define contrasts
Type of contrast (polynomial, regression); default poly Number of contrasts to define for each FACTOR
X-values defining the contrasts for each FACTOR
Whether to include deviations (yes, no); default no
Whether to orthogonalize the contrasts (yes, no); default no
Pointer to save the contrast variates defined for each FACTOR

\section*{FCOPY directive}

Makes copies of files.
No options
Parameters
\begin{tabular}{ll} 
OLD \(=\) texts & Name of each file to copy \\
NEW \(=\) texts & Name for the new copy of each file \\
OVERWRITE \(=\) string tokens & Whether to overwrite any existing files (yes, no); default no
\end{tabular}

\section*{FCORRELATION procedure}

Forms the correlation matrix for a list of variates (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Printed output (correlations, test); default corr \\
Type of test to make (against zero) for the correlations \\
(twosided, greater, lessthan); default twos
\end{tabular} \\
WEIGHTS = variate & \begin{tabular}{l} 
Provides weights for the units of the variates; default * \\
assumes that they all have weight one
\end{tabular} \\
CORRELATIONS = symmetric matrix & \begin{tabular}{l} 
Saves the correlations
\end{tabular} \\
PROBABILITIES = symmetric matrix & \begin{tabular}{l} 
Saves the test probabilities \\
SOBSERVATIONS = scalars
\end{tabular} \\
\begin{tabular}{l} 
Saves the number of observations from which the correlations \\
have been calculated
\end{tabular} \\
Parameter & Variates for which the matrix is to be calculated
\end{tabular}

\section*{FCOVARIOGRAM directive}

Forms a covariogram structure containing auto-variograms of individual variates and crossvariograms for pairs from a list of variates.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (statistics, variograms, autovariograms); default stat \\
\hline METHOD \(=\) string token & \begin{tabular}{l}
Specifies what to do when the measurements are not all made at the same locations (allwithcrossnugget, \\
allnocrossnugget, commonpoints); default comm
\end{tabular} \\
\hline COVARIOGRAM \(=\) pointer & Pointer to store the variograms, cross-variograms and associated information for use in MCOVARIOGRAM \\
\hline MAXLAG \(=\) scalar & Maximum lag in all directions \\
\hline STEPLENGTHS \(=\) scalar or variate & Length of the step or steps in which lag is incremented \\
\hline DIRECTIONS \(=\) scalar or variates & Directions along which to form the variogram, scalar for a single direction in 2 dimensions, variate for several directions in 2 dimensions, and pairs of variates for 3 dimensional data \\
\hline SEGMENTS \(=\) scalar & Angle subtended by each segment along the DIRECTIONS \\
\hline COORDSYSTEM = string token & Coordinate system used for the geometry for discretizing the lag (mathematical, geographical); default math \\
\hline MAXCONEDIAMETER \(=\) scalar & Diameter at which the segments over which averaging is to be done should cease to expand; default * implies no limit \\
\hline MINCOUNT \(=\) scalar & Minimum number of points required at a particular lag point for the cross-variogram to be estimated there; default 1 \\
\hline DRIFT \(=\) string token & Mean function (constant, linear, quadratic); default cons \\
\hline Parameters & \\
\hline DATA \(=\) variates & Measurements as a variate \\
\hline \(\mathrm{x} 1=\) variates & Locations of each set of measurements in the first dimension \\
\hline \(\mathrm{x} 2=\) variates & Locations of each set of measurements in the second dimension (if recorded in more than 1 dimension) \\
\hline X3 \(=\) variates & Locations of each set of measurements in the third dimension (if recorded in 3 dimensions) \\
\hline
\end{tabular}

\section*{FDELETE directive}

Deletes files

\section*{No options}

\section*{Parameter}

NAME \(=\) texts

Controls printed output (statistics, variograms,
autovariograms); default stat Specifies what to do when the measurements are not all made at the same locations (allwithcrossnugget, allnocrossnugget, commonpoints); default comm Pointer to store the variograms, cross-variograms and associated information for use in MCOVARIOGRAM in lam Directions along which to form the variogram, scalar for a single direction in 2 dimensions, variate for several directions in 2 dimensions, and pairs of variates for 3 dimensional data e subtended by each segment along the DIRECTIONS lag (mathematical, geographical); default math Diameter at which the segments over which averaging is to be done should cease to expand; default * implies no limit mumber of points required at a particular lag point for Mean function (constant, linear, quadratic); default Measurements as a variate Locations of each set of measurements in the first dimension Locations of each set of measurements in the second Locations of each set of measurements in the third dimension (if recorded in 3 dimensions)

Names of the files to delete

\section*{FDESIGNFILE procedure}

Forms a backing-store file of information for AGDESIGN (R.W. Payne).

\section*{Option}

PRINT \(=\) string tokens \(\quad\) Controls printed output (catalogue, data,

\section*{Parameters}

DATAFILE \(=\) texts \(\quad\) Name of the data file containing the information required to form each backing-store subfile
BSFILE \(=\) texts
Name of the backing-store file
SUBFILE \(=\) identifiers

> filestructure); default * i.e. none

\section*{FDIALLEL procedure}

Forms the components of a diallel model for REML or regression (R.W. Payne).

\section*{No options}

\section*{Parameters}
MALEPARENTS \(=\) factors \(\quad\) Specifies the male parents

FEMALEPARENTS \(=\) factors
PARENTS \(=\) matrices
COMPPARENTS \(=\) matrices
PUREVSCROSS \(=\) factors
CROSSPAIR \(=\) factors

Specifies the male parents
Specifies the female parents
Saves design matrices for the overall parental effects
Saves comparison matrices for overall parental effects
Saves factors to represent the comparison between pure and crossed lines
Saves factors to represent the comparison between types of pairs of parent (ignoring the individual genders)

\section*{FDISTINCTFACTORS procedure}

Checks sets of factors to remove any that define duplicate classifications (R.W. Payne).

\section*{No options}

Parameters
SET1 \(=\) pointers \(\quad\) First set of factors
SET2 \(=\) pointers \(\quad\) Second set of factors
DISTINCTSET \(=\) pointers \(\quad\) Saves the distinct factors

\section*{FDRBONFERRONI procedure}

Estimates false discovery rates by a Bonferroni-type procedure (A.I. Glaser).

\section*{Options}
```

PRINT = string token
METHOD = string token
LOGP = string token
DF = scalar
PLOT = string token

```
WINDOW \(=\) scalar
KEYWINDOW = scalar

\section*{Parameters}

\section*{PROBABILITIES \(=\) variates}

LAMBDA \(=\) scalars or variates
\(\mathrm{FDR}=\) variates
\(\mathrm{FRR}=\) variates

Controls printed output (pi0); default pio
Controls the method used for calculating \(\pi_{0}\) (smoother, bootstrap); default smoo
Whether to take logs of \(\pi_{0}\) when METHOD=smoother (yes, no); default no
Degrees of freedom for smoothing spline; default 3
Controls plots (phistogram, qhistogram, pi0vslambda, qvsp, tests, expfalsepositive, inference, loginference); default phis, qhis, pi0v, qvsp, test, expf, infe, logi
Window for the graphs; default 1
Window for the key (zero for none); default 2
Significance values, must lie between 0 and 1
Values of tuning parameter \(\lambda\), equivalent to significance levels at which to test the PROBABILITIES; default! (0, 0.05....0.9)

Saves the False Discovery Rates (i.e. q-values) at the sorted pvalues in PROBABILITIES
Saves the False Rejection Rates at the sorted p-values in PROBABILITIES
\(\mathrm{PIO}=\) scalars
LOWER = scalars
\(\mathrm{UPPER}=\) scalar

Saves the value of \(\pi_{0}\), i.e. the maximum value of the FDR Lower bound of \(q\)-values to use with PLOT settings qvsp, tests and expfalsepositive; default 0
Upper bound of \(q\)-values to to use with PLOT settings qvsp, tests and expfalsepositive; default 1, which indicates maximum q-value

\section*{FDRMIXTURE procedure}

Estimates false discovery rates using mixture distributions (J.W. McNicol \& D.B. Baird).

\section*{Options}
PRINT = string token
DISTRIBUTION \(=\) string token
INITIAL \(=\) variate
LOWER \(=\) variate
UPPER \(=\) variate
PLOT \(=\) string token
```

WINDOW = scalar
KEYWINDOW = scalar
MAXCYCLE = scalar
TOLERANCE = scalar or variate

```

\section*{Parameters}

PROBABILITIES \(=v\) variates
ESTIMATES \(=\) variates
FDR \(=\) variates
\(\mathrm{FRR}=\) variates
POWER \(=\) variates
POSTHA \(=\) variates
LOGLIKELIHOOD = scalars
NCYCLES \(=\) scalars
What to print (monitoring, estimates); default esti
Which distribution to mix with Uniform (beta, gamma);
default beta
Initial values for mixing proportion \((\varphi)\) and Beta or Gamma
parameters \((A\) and \(B)\); default ! \((0.90,0.30,2)\)
Lower limits for parameters; default! \(0.00001,0.001\),
0.001 )
Upper values for parameters; default ! (0.99999, 5, 1000)
What to plot (histogram, density, logdensity,
inference, loginference); default hist, dens, logd,
infe, logi

Window for graphs; default 1
Key window for Inference plot; default 2
Maximum iteration cycles; default 50
Tolerance for convergence of parameters; default 0.01 for Beta, and 0.001 for Gamma

Significance values, must lie between 0 and 1
Saves the estimates of mixture parameters \(\varphi, A\) and \(B\)
Saves the False Discovery Rates at the \(p\)-values in PROBABILITIES i.e. \(q\)-values
Saves the False Rejection Rates at the \(p\)-values in PROBABILITIES
Saves the power estimates as a function of the \(p\)-values in PROBABILITIES
Saves the Posterior Probability of \(\mathrm{H}_{\mathrm{a}}\) at the \(p\)-values in PROBABILITIES
Value of the loglikelihood at end of the iteration process Number of iterations taken to convergence

\section*{FEXACT2X2 procedure}

Does Fisher's exact test for \(2 \times 2\) tables (M.S. Ridout \& M.W. Patefield).

\section*{Option}

PRINT = string tokens

\section*{Parameters}

TABLE \(=\) tables or variates

PROBABILITIES = variates

Controls printed output (probabilities, tables); default prob

The numbers in each \(2 \times 2\) table, ordered row by row or column by column
Saves the probabilities for each table in a variate of length 6 (to store in positions 1,3 and 5 one-tailed, two-tailed calculated as twice the one-tailed probability, and as the sum of the probabilities of all tables with probability less than that of the observed table with the corresponding mid-p values stored in positions 2, 4 and 6)

\section*{FFRAME procedure}

Forms multiple windows in a plot-matrix for high-resolution graphics (P.W. Goedhart).

\section*{Options}
```

PRINT = string tokens
ARRANGEMENT = string token
ROWS = scalar
COLUMNS = scalar
DIAGONALWINDOWS = string token

```
SQUARESHAPES \(=\) string token
STARTWINDOW = scalar
TESTGRAPH \(=\) variate
NUMBERING \(=\) string token
DEFINE \(=\) string token
CLEARWINDOW \(=\) scalar or variate
RLOWER = scalar
RUPPER \(=\) scalar
CLOWER = scalar
CUPPER = scalar
RSKIP = scalar
CSKIP \(=\) scalar
MARGIN \(=\) string tokens
YMLOWER \(=\) scalar
YMUPPER \(=\) scalar
XMLOWER \(=\) scalar
XMUPPER \(=\) scalar
RMLOWER \(=\) scalar
RMUPPER \(=\) scalar
CMLOWER \(=\) scalar
CMUPPER \(=\) scalar
BACKGROUND \(=\) text or scalar

\section*{Parameters}

NGRAPHS = scalar
SWINDOW = pointer
SYLOWER \(=\) pointer

Whether to display the layout and numbering of the plotmatrix in a table or in a high-resolution test-graph on the current device (table, testgraph); default *
Type of plot-matrix (rectangle, square, lowersymmetric, uppersymmetric, diagonal); default rectangle
Number of rows of plot-matrix; default 3
Number of columns of plot-matrix; default 3 Whether to include or exclude the diagonal in symmetric plotmatrices (include, exclude); default include Whether to force the individual windows, excluding margins for annotation, to be square (yes, no); default no Specifies the number of the first window; default 1 Specifies windows to be displayed in a test-graph (if this option is set, only a test-graph is produced and all other settings are ignored); default *
Controls the way in which the individual windows are numbered (rowwise, columnwise); default rowwise Whether to define the windows within the procedure (windows, nothing); default wind
Defines the windows for which the screen should be cleared; i.e. specifies the elements of the SCREEN pointer which are set to the single-values text 'clear', other element of SCREEN are set to 'keep'; default 1
Lowest y device coordinate; default 0
Highest y device coordinate; default 1
Lowest x device coordinate; default 0
Highest \(x\) device coordinate; default 1
Space between windows along the y-axis; default 0
Space between windows along the x -axis; default 0
Sets the size of the margins for labels and titles (xtitle, ytitle, none, small); default *
Size of bottom margin ( x -axis labelling) in each window; default *
Size of upper margin (overall title) in each window; default * Size of left-hand margin (y-axis labelling) in each window; default *
Size of right-hand margin in each window; default *
Additional size of bottom margin ( \(x\)-axis labelling) in windows at the bottom of the plot-matrix; default 0
Additional size of upper margin (overall title) in windows at the top of the plot-matrix; default 0
Additional size of left-hand margin (y-axis labelling) windows at the left of the plot-matrix; default 0
Additional size of right-hand margin in windows at the right of the plot-matrix; default 0
Specifies the colour to be used for the background in each window (where allowed by the graphics device); default
'background'
To save the number of windows in the plot-matrix Pointer to save scalars with window numbers Pointer to save scalars with lower y device coordinates for each window
\begin{tabular}{ll} 
SYUPPER \(=\) pointer & \begin{tabular}{l} 
Pointer to save scalars with upper y device coordinates for \\
each window \\
Pointer to save scalars with lower x device coordinates for \\
each window
\end{tabular} \\
SXLOWER \(=\) pointer & \begin{tabular}{l} 
Pointer to save scalars with upper x device coordinates for \\
each window \\
Pointer to save single-valued texts with value 'clear' or \\
' keep'; this depends only on the setting of the CLEARWINDOW \\
option
\end{tabular} \\
SSCREEN = pointer & \begin{tabular}{l} 
Pointer to save scalars with size of bottom margins for each \\
window
\end{tabular} \\
SMYLOWER = pointer & \begin{tabular}{l} 
Pointer to save scalars with size of upper margins for each \\
window
\end{tabular} \\
SMYUPPER = pointer & \begin{tabular}{l} 
Pointer to save scalars with size of left-hand margin for each \\
window
\end{tabular} \\
SMXLOWER = pointer & \begin{tabular}{l} 
Pointer to save scalars with size of right-hand margin for each \\
window
\end{tabular} \\
SMXUPPER = pointer &
\end{tabular}

\section*{FFREERESPONSEFACTOR procedure}

Forms multiple-response factors from free-response data (R.W. Payne).

Options
```

MRESPONSE = pointer
RESPONSECODES = text
LABELCODES = text
DUPLICATECODES = factor
EXCLUDENULL = string token
SUFFIXNULL = scalars
LABELNULL = text
DATAFORMAT = string token

```
CASE \(=\) string token
MULTISPACES \(=\) string token
DISTINCT \(=\) string tokens
SEPARATOR \(=\) text

\section*{Parameter}
\(\mathrm{DATA}=\) texts

Pointer with a factor for each RESPONSECODE, indicating which of the DATA texts contain that response Specifies the codes to look for in the DATA texts Strings to label the factors within the MRESPONSE pointer; default Responsecodes
Defines groupings of duplicate or alternative codes within the ReSponsecodes text
Whether to exclude the factor recording which DATA contain none of the RESPONSECODES (yes, no); default no
Suffix to use to represent the null factor in MRESPONSE; default 0
Label to use to represent a the null factor in MRESPonse; default 'none'
Whether the data for the respondents is given line-by-line within the DATA text(s) or whether there is a separate text for each respondent (linebyline, textbytext); default line Whether to treat the case of letters (small or capital) as significant when searching for the codes (significant, ignored); default igno
Whether to treat differences between multiple spaces and single spaces as significant, or to treat them all like a single space (significant, ignored); default igno
Whether to require each RESPONSECODE to have one or more separators to its left or right within each DATA text (left, right); default left, righ
Characters to use as separators; default ' , ; : .'
Information from the respondents

\section*{FHADAMARDMATRIX procedure}

Forms Hadamard matrices (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token \\
METHOD \(=\) string token & Controls printed output (monitoring); default * i.e. none \\
& Method of construction (firstpaley, secondpaley, \\
stored, sylvestre, tensorproduct, turyn,
\end{tabular}
williamson); default * i.e. determined automatically

\section*{Parameters}

NROWS \(=\) scalars
HADAMARDMATRIX \(=\) matrices
ERROR \(=\) scalars
Number of rows of the matrices
Saves the Hadamard matrices
Returns 0 if the matrix has been formed successfully and 1 if not

\section*{FHAT procedure}

Calculates an estimate of the F nearest-neighbour distribution function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

\section*{Option}

PRINT = string token
Parameters
\(\mathrm{Y} 1=\) variates
\(\mathrm{x} 1=\) variates
\(\mathrm{Y} 2=\) variates
\(\mathrm{x} 2=\) variates
\(\mathrm{S}=\) variates
FVALUES \(=\) variates
NNDISTANCES \(=\) variates

What to print (summary); default summ
Vertical coordinates of the first spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the first spatial point patterns; no default - this parameter must be set
Vertical coordinates of the second spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the second spatial point patterns; no default - this parameter must be set
Vectors of distances to use; no default - this parameter must be set
Variates to receive the estimated F nearest-neighbour distribution functions
Variates to receive the nearest-neighbour distances

\section*{FIELLER procedure}

Calculates effective doses or relative potencies (P.W. Lane).

\section*{Options}
```

PRINT = string token
ESTIMATES = variate
VCOVARIANCE = symmetric matrix
%LIMIT = scalar
RELATIVE = string token
LINK = string token

```
LOGBASE \(=\) string token
DF \(=\) scalar

\section*{Parameters}

TREATMENT \(=\) variates or scalars
SLOPE \(=\) variates or scalars
\(\%\) DOSE \(=\) variates or scalars
VALUE \(=\) variates or scalars

What to output (value); default valu
Parameter estimates; default extracts these with RKEEP Variances and covariances; default extracts these with RKEEP Percentage points for limits; default 95, thus giving \(95 \%\) confidence limits
Whether to calculate relative potencies (no, yes); default no Which link function to assume when forming effective doses (probit, logit, complementaryloglog); default obtained using RKEep, if the EStimates or VARIANCES are obtained in that way, otherwise prob
Base of antilog transformation to be applied to value and limits, (ten, e); default * i.e. none
If this has a non-missing value, a \(t\)-distribution is used instead of a Normal distribution to calculate the confidence limits; default obtained using RKEEP if the ESTIMATES or VARIANCES are obtained in that way (setting DF to the number of residual d.f. when the dispersion factor is estimated, or a missing value when it is fixed), otherwise the default is a missing value

Positions of intercept parameters in list of estimates; default first estimate
Positions of slope parameters in list of estimates; default last estimate
Percentage dose; default 50, thus giving LD50
To store estimated values

LOWER \(=\) variates or scalars
UPPER \(=\) variates or scalars
\(\mathrm{SE}=\) variates or scalars

To store lower limits
To store upper limits
To store approximate s.e.s of values

\section*{FILEREAD procedure}

Reads data from a file (P.W. Lane).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What output to display (summary, groups, comments, firstline); default summ, grou, comm, firs \\
\hline NAME \(=\) text & External name of the data file; no default in batch mode, name is prompted for in interactive mode \\
\hline END \(=\) text & What string terminates data; default ' : ' (the end of file also terminates data for any setting); the setting END \(=*\) is not allowed \\
\hline MISSING \(=\) text & What character represents missing values; default ' *' \\
\hline SKIP \(=\) scalar or text & Number of lines to skip at the start of the file, or string to indicate the record before the first record of data; default 0 \\
\hline MAXCATEGORY \(=\) number & The maximum number of categories for which a structure is defined to be a factor unless otherwise specified by FGROUPS; default 10 \\
\hline COMMENTSYMBOLS \(=\) text & What characters to treat as introducing comments if found in the first column at the start of the file; default double-quote character (") \\
\hline IMETHOD \(=\) string token & How identifiers are to be specified for the data structures to be read (supply, read, none); default supp \\
\hline ISAVE \(=\) pointer & To store the identifiers, whether read or supplied, and to provide suffixed identifiers for data with no specified identifiers \\
\hline SEPARATOR \(=\) text & What (single) character separates successive values; default is the space character \\
\hline Parameters & \\
\hline IDENTIFIER = identifiers & Names for the data structures that are to be read; these are prompted for if this is unset when running interactively with IMETHOD=supply; identifiers are redefined if they have been used previously \\
\hline FGROUPS \(=\) string tokens & Whether to form each data structure into a factor (check, form, leave); default chec, which causes FILEREAD when running interactively to ask about any structure whose number of distinct values is less than or equal to MAXCATEGORY, and when running in batch to define as factors all structures with MAXCATEGORY or fewer distinct values (note: for compatibility with earlier releases, yes and no can be used as synonyms of form and leave) \\
\hline REPRESENTATION \(=\) string tokens & What representation to assume for each data structure (numbers, characters); default unset - representation is determined by whether the first value is a number; if set for one structure, this parameter must be set for all structures \\
\hline
\end{tabular}

\section*{FILTER directive}

Filters time series by time-series models (synonym of TFILTER).

\section*{Option}

PRINT \(=\) string tokens

\section*{Parameters}

OLDSERIES \(=\) variates
NEWSERIES \(=\) variates
FILTER \(=T S M s\)

What to print (series); default *

Time series to be filtered
To save filtered series
Models to filter with respect to

ARIMA \(=T S M s\)
ARIMA models for time series

\section*{FIT directive}

Fits a linear, generalized linear, generalized additive or generalized nonlinear model.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, grid, confidence); default mode, summ, esti or grid if NGRIDLINES is set \\
\hline CALCULATION \(=\) expression structures & Calculation of explanatory variates involving nonlinear parameters \\
\hline OWN \(=\) scalar & Option setting for own directive if this is to be used rather than CALCULATE to calculate explanatory variates \\
\hline CONSTANT \(=\) string token & How to treat the constant (estimate, omit, ignore); default esti \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of model terms; default as in previous TERMS statement, or 3 if no TERMS given \\
\hline POOL \(=\) string token & Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no \\
\hline DENOMINATOR \(=\) string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms ); default ss \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t -statistics (yes, no); default no \\
\hline SELECTION \(=\) string tokens & Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \(\% \mathrm{cv}\) only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%cv if DIST=gamma, and disp for other distributions \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline NGRIDLINES \(=\) scalar & Number of values of each nonlinear parameter for a grid of function evaluations \\
\hline SELINEAR = string token & Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no \\
\hline INOWN \(=\) identifiers & Setting to be used for the IN parameter of own if used to calculate explanatory variates \\
\hline OUTOWN \(=\) identifiers & Setting to be used for the OUT parameter of OwN if used to calculate explanatory variates \\
\hline AOVDESCRIPTION \(=\) text & Description for line in accumulated analysis of variance (or deviance) table when POOL=yes \\
\hline Parameter & \\
\hline formula & List of explanatory variates and factors, or model formula \\
\hline
\end{tabular}

\section*{FITCURVE directive}

Fits a standard nonlinear regression model.

\section*{Options}

PRINT \(=\) string tokens \(\quad\) What to print (model, deviance, summary, estimates,

CURVE \(=\) string token

SENSE \(=\) string token
ORIGIN = scalar
NONLINEAR \(=\) string token
CONSTANT \(=\) string token
FACTORIAL = scalar
POOL \(=\) string token
DENOMINATOR \(=\) string token

NOMESSAGE \(=\) string tokens

FPROBABILITY \(=\) string token
SELECTION = string tokens

\section*{Parameter}
formula
monitoring); default mode, summ, esti
Type of curve (exponential, dexponential,
cexponential, lexponential, logistic, glogistic, gompertz, ldl, qdl, qdq, fourier, dfourier, gaussian, dgaussian, emax, gemax); default expo
Sense of curve (right, left); default righ
Constrained origin; default *
How to treat nonlinear parameters between groups (common, separate); default comm
How to treat the constant (estimate, omit); default esti
Limit for expansion of model terms; default as in previous TERMS statement, or 3 if no TERMS given
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ); default ss
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical); default *
Printing of probabilities for variance ratios (yes, no); default no
Statistics to be displayed in the summary of analysis produced by PRINT=summary (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob

Explanatory variate, list of variate and factor, or variate \(*\) factor

\section*{FITINDIVIDUALLY procedure}

Fits regression models one term at a time (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

CONSTANT \(=\) string token
FACTORIAL = scalar
POOL \(=\) string token
DENOMINATOR \(=\) string token

NOMESSAGE \(=\) string tokens

FPROBABILITY \(=\) string token
TPROBABILITY \(=\) string token SELECTION \(=\) string tokens

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti How to treat the constant (estimate, omit); default esti Limit for expansion of model terms; default 3
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ); default ss
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes, no); default no
Printing of probabilities for t-statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \%cv only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%cv if DIST=gamma, and disp for other distributions

PROBABILITY \(=\) scalar

DEVIANCE \(=\) scalar
\(\mathrm{DF}=\) scalar
LACKOFFIT \(=\) string token

\section*{Parameter}

TERMS = formula

Probability level for confidence intervals for parameter estimates; default 0.95
Saves the residual deviance
Saves the residual d.f.
Whether to use observations with replicated values of the explanatory variables to split the final residual term into a 'true' residual and lack of fit (estimate, omit); default omit

Terms to be fitted

\section*{FITMULTINOMIAL procedure}

Fits generalized linear models with multinomial distribution (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

RESPONSEFACTOR \(=\) factor

CLASSIFICATION \(=\) factors

FACTORIAL \(=\) scalar
POOL \(=\) string token

DENOMINATOR \(=\) string token

NOMESSAGE \(=\) string tokens

FPROBABILITY \(=\) string token

TPROBABILITY \(=\) string token
SELECTION \(=\) string tokens

PROBABILITY \(=\) scalar

FULL \(=\) string token

\section*{Parameter}

TERMS = formula

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti
Factor representing the response categories of the multinomial distribution
Factors classifying the subjects; default uses the factors in TERMS
Limit for expansion of model terms from TERMS; default 3 Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ); default ss
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes, no); default no
Printing of probabilities for t -statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary (\%variance, \%ss, adjustedr2, r2, dispersion, \%meandeviance, \%deviance, aic, bic, sic); default disp
Probability level for confidence intervals for parameter estimates; default 0.95
Whether to assign all possible parameters to factors and interactions (yes, no); default no

Terms to be fitted

\section*{FITNONLINEAR directive}

Fits a nonlinear regression model or optimizes a scalar function.

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
What to print (model, deviance, summary, estimates, \\
correlations, fittedvalues, accumulated, \\
monitoring, grid); default mode, summ, esti or grid if
\end{tabular} \\
CALCULATION = expression structures & NGRIDLINES is set
\end{tabular} \begin{tabular}{l} 
Calculation of fitted values or of explanatory variates \\
involving nonlinear parameters; default * (valid only if OWN \\
set)
\end{tabular}
```

FACTORIAL $=$ scalar
POOL $=$ string token
DENOMINATOR $=$ string token
NOMESSAGE $=$ string tokens
FPROBABILITY $=$ string token
SELECTION $=$ string tokens
NGRIDLINES $=$ scalar
SELINEAR $=$ string token
INOWN $=$ identifiers
OUTOWN = identifiers

```

\section*{Parameter}
``` formula
Limit for expansion of model terms; default as in previous TERMS statement, or 3 if no TERMS given Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss , ms); default ss
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df); default *
Printing of probabilities for variance and deviance ratios (yes, no); default no
Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \%cv only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \% Cv if DIST=gamma, and disp for other distributions
Number of values of each parameter for a grid of function evaluations; default *
Whether to calculate s.e.s for linear parameters (yes, no); default no
Setting to be used for the IN parameter of own if used in place of CALCULATE; default *
Setting to be used for the OUT parameter of own if used in place of CALCULATE; default *
List of explanatory variates and/or one factor to be used in linear regression, within nonlinear optimization
```


## FKEY directive

Forms design keys for multi-stratum experimental designs, allowing for confounded and aliased treatments.

Options
BASICFACTORS $=$ factors
ADDEDFACTORS $=$ factors
KEY = matrix
INKEY $=$ matrix

HIERARCHIES $=$ matrix

SEED $=$ scalar

ROWPRIMES $=$ variate
COLPRIMES $=$ variate
ROWMAPPINGS $=$ variate

COLMAPPINGS $=$ variate

Factors indexing the units of the design Factors to be allocated to the units of the design Stores the design key (ADDEDFACTORS $\times$ BASICFACTORS) Can be used to input existing allocations for some of the added factors
Can be used to specify that some of the factors must be constant within each combination of levels of other factors; the matrix has a row for each added factor and columns first for the basic factors and then for the added factors, ones in the entries where the row factor must be constant within the combinations of the column factors, zero elsewhere Can provide a seed to generate a random permutation of the sets of basic effects that may be allocated to each added factor, thus producing design randomly selected from all those that might be possible; default * i.e. no permutation Prime numbers for the rows of the KEY matrix Prime numbers for the columns of the KEY matrix Mappings from the rows of the KEY to the TREATMENTFACTORS
Mappings from the columns of the KEY to the BLOCKFACTORS

SAVE $=$ identifier

## Parameters

REQUIRED $=$ formula structures
NONNEGLIGIBLE $=$ formula structures

Structure to save all the information about the formation of the design; this can then be input later to give a different design (if possible) with the same properties

Formulae each defining a list of terms that are to be estimated in the analysis
Formulae each specifying terms that cannot be ignored in the context of the corresponding REQUIRED formula

## FLRV directive

Forms the values of LRV structures.

## Options

```
PRINT = string tokens
NROOTS = scalar
SMALLEST = string token
TOLERANCE = scalar
```


## Parameters

INMATRIX $=$ matrices or symmetric matrices
Matrices whose latent roots and vectors are to be calculated
$L R V=L R V S \quad$ LRV to store the latent roots and vectors from each INMATRIX
WMATRIX = symmetric matrices
$I L R V=L R V s \quad$ LRV to store the imaginary parts of the latent roots and vectors arising from the decomposition of a non-symmetric matrix
Printed output required (roots, vectors); default * i.e. no printing
Number of roots or vectors to print; default * i.e. print them all Whether to print the smallest roots instead of the largest (yes, no); default no
Tolerance for detecting zero roots (Generalized) within-group sums of squares and products matrix used in forming the two-matrix decomposition; if any of these is omitted, it is taken to be the identity matrix, giving the usual spectral decomposition

## FMEGAENVIRONMENTS procedure

Forms mega-environments based on winning genotypes from an AMMI-2 model (D.A. Murray \& M. Malosetti).

## Option

PRINT $=$ string tokens

## Parameters

DATA $=$ variates
GENOTYPES $=$ factors
ENVIRONMENTS $=$ factors
YEARS $=$ factors
MEGAENVIRONMENTS $=$ factors

What to print (summary); default summ
Provides the data to be analysed
Specifies the genotypes
Specifies the environments (or locations when years are supplied)
Specifies years within locations
Saves the mega-environments

## FMFACTORS procedure

Forms a pointer of factors representing a multiple-response (R.W. Payne).

## Options

MRESPONSE $=$ pointer
RESPONSECODES $=$ text or variate
CODENULL $=$ text or variate

EXCLUDENULL $=$ string token
SUFFIXNULL $=$ scalar

LABELNULL $=$ text

Pointer with a factor for each code, indicating the units where it occurs in the CODE texts or variates
Saves the set of distinct multiple-response codes
Code(s) used to represent a null value in the CODE texts or variates; default * or ' '
Whether to exclude the null factor recording the respondents that made no reply (yes, no); default no
Suffix to use to represent the null factor in MRESPONSE; default 0
Label to use to represent the null factor in MRESPONSE; default
'none'

## LDIRECTION $=$ string token

## Parameter

CODE $=$ texts, variates or factors

How to order the labels from textual codes (ascending, given); default asce

Codes from the respondents

## FNCORRELATION procedure

Calculates correlations from variances and covariances, together with their variances and covariances (S.A. Gezan).

## Options

PRINT $=$ string token	Output required (summary); default summ
IVARIANCES $=$ variate	Indexes of the two variances in the ESTIMATES variate; no default - must be set
ICOVARIANCE $=$ scalar	Index of the covariance in the ESTIMATES variate; no default - must be set
Parameters	
ESTIMATES $=$ variates	Estimated values of the variances and covariances
VCOVARIANCE $=$ symmetric matrices	Variance-covariance matrix of the variances and covariances
FUNCTIONESTIMATE $=$ scalars	Saves the estimated value of the function
SE $=$ scalars	Saves the standard error of the function estimate
NEWESTIMATES = variates	Saves new vectors of estimates, including the estimated value of the function
NEWVCOVARIANCE $=$ symmetric matrices	

Saves variance-covariance matrices for the new vectors (including the function estimate)

## FNLINEAR procedure

Estimates linear functions of one or more random variables, and calculates their variances and covariances (S.A. Gezan).

## Options

PRINT = string token	Output required (summary); default summ   CONSTANTVALUE $=$ scalar
COEFFICIENTS $=$ scalar	Linear coefficients for the random variables in the function; no   default - must be set
Parameters	Estimated values of the random variables
ESTIMATES $=$ variates	Variance-covariance matrix of the random variable estimates   VCOVARIANCE $=$ symmetric matrices   FUNCTIONESTIMATE $=$ scalars
Saves the estimated value of the function   SE $=$ scalars	Saves the standard error of the function estimate   Saves new vectors of estimates, including the estimated value   of the function
NEWESTIMATES = variates	

Saves variance-covariance matrices for the NEWESTIMATES

## FNPOWER procedure

Estimates products of powers of two random variables, and calculates their variances and covariances (S.A. Gezan).

## Options

PRINT $=$ string token	Output required (summary); default summ
CONSTANTVALUE $=$ scalar	Constant value for the function; default 0
POWERS $=$ variate	Specifies the powers of the two random variables   INDEXES $=$ variate
Specifies the locations of the random variables corresponding   to the elements of the POWERS variate	
CORRECTION = string token	Whether to apply an additional correction to the variance of a   product, using terms from the second-order approximation;   default no

## Parameters

ESTIMATES $=$ variates
VCOVARIANCE $=$ symmetric matrices
FUNCTIONESTIMATE $=$ scalars
$\mathrm{SE}=$ scalars
NEWESTIMATES $=$ variates
Estimated values of the random variables
Variance-covariance matrix of the random variable estimates
Saves the estimated value of the function
Saves the standard error of the function estimate
Saves new vectors of estimates, including the estimated value of the function
NEWVCOVARIANCE $=$ symmetric matrices
Saves variance-covariance matrices for the new vestors (including the function estimate)

## FOCCURRENCES procedure

Counts how often each pair of treatments occurs in the same block (W. van den Berg).

## Options

PRINT = string tokens	Controls printed output (concurrences, efficiency);   default conc, effi
DIAGONAL = string token	What to store on the diagonal of the concurrence matrix   (missingvalues, replication); default repl
Parameters	Supplies the treatment factor
TREATMENTS = factors	Supplies the replicates factor
REPLICATES = factors	Supplies the block factor
BLOCKS = factors	CONCURRENCES = symmetric matrices
Saves the concurrence matrix, recording the number of times	
each pair of treatments occurs together in a block	

## FOR directive

Introduces a loop; subsequent statements define the contents of the loop, which is terminated by the directive ENDFOR.

## Options

NTIMES $=$ scalar $\quad$ Number of times to execute the loop; default is to execute as many times as the length of the first parameter list or once if the first list is null

```
INDEX = scalar
```

    Records the loop index
    START $=$ scalar $\quad$ Defines an integer initial value for the loop index; default 1
END $=$ scalar $\quad$ Defines an integer final value for the loop index
STEP $=$ scalar $\quad$ Defines an integer amount by which to increase the index each
time the loop is executed; default 1
Defines a set of values to be taken successively by the loop
index (overrides START, END and STEP if these are specified
too)

## Parameters

Any number of parameter settings of the form identifier $=$ list of data structures; the identifier is set up as a dummy which is then used within the loop to refer, in turn, to the structures in the list

## FORECAST directive

Forecasts future values of a time series (synonym of TFORECAST).

## Options

PRINT = string tokens	What to print (forecasts, limits, setransform, sfe);   default fore, limi
CHANNEL $=$ scalar	Channel number for output; default * i.e. current output   channel
ORIGIN $=$ scalar	Number of known values to be incorporated; default 0
UPDATE $=$ string token	Whether to update the forecast origin to the end of the new


	observations (yes, no); default no
NEWOBSERVATIONS $=$ variate	Variate of length $\geq$ ORIGIN providing new values of the time series to be incorporated (must be set if ORIGIN $>0$ )
SFE $=$ variate	Saves standardized forecast errors; default *
MAXLEAD $=$ scalar	Maximum lead time i.e number of forecasts to be made; default * defines the number as the length of FORECAST variate
FORECAST $=$ variate	Variate of length MAXLEAD to save forecasts of output series; default *
SETRANSFORM = variate	Saves standard errors of the forecasts (on transformed scale, if defined); default *
LOWER $=$ variate	Saves lower confidence limits; default *
UPPER $=$ variate	Saves upper confidence limits; default *
PROBABILITY $=$ scalar	Probability level for confidence limits; default 0.9
COMPONENTS $=$ pointer	Contains variates (of length ORIGIN + MAXLEAD) to save components of the forecast
SAVE $=$ identifier	Save structure to supply fitted model; default * i.e. that from last model fitted
Parameters	
FUTURE = variates	Variates (of length ORIGIN + MAXLEAD) containing future values of input series
METHOD $=$ string tokens	How to treat future values of input series (observations, forecasts); default obse

## FORMULA directive

Declares one or more formula data structures.

## Options

VALUE $=$ formula
MODIFY $=$ string token
IPRINT $=$ string tokens

## Parameters

IDENTIFIER $=$ identifiers $\quad$ Identifiers of the formulae
VALUE $=$ formula structures
Value for each formula
EXTRA $=$ texts
Value for all the formulae; default * Whether to modify (instead of redefining) existing structures (yes, no); default no
Information to be used by default to identify the formulae in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

## FOURIER directive

Calculates cosine or Fourier transforms of real or complex series.

## Option

PRINT = string tokens	What to print (transforms); default *
Parameters	
SERIES $=$ variates	Real part of each input series
ISERIES $=$ variates	Imaginary part of each input series
TRANSFORM = variates	To save real part of each output series
ITRANSFORM $=$ variates	To save imaginary part of each output series
PERIODOGRAM = variates	To save periodogram of each transform

## FPARETOSET procedure

Forms the Pareto optimal set of non-dominated groups (W. van den Berg).

## Options

$\mathrm{PRINT}=$ string token
$\mathrm{PLOT}=$ string token

NGROUPS $=$ scalar

Controls whether to print the groups (groups); default grou Controls whether to plot the data, using different coloured points to indicate the groups (data); default data
Number of groups to form; default 1

```
GROUPS = factor
TITLE = text
LABELS = text, variate or factor
```


## Parameters

DATA $=$ variates
SIGN $=$ scalars

TITLE $=$ texts

Saves the group allocations
Title for the plot; default * i.e. none
Labels for the items; default * i.e. none
Data variates, defining the properties of the items
Value by which to multiply each DATA variate: for example, this can be set to set to -1 if the variate is to be minimized instead of being maximized; default 1
Title to use for the axis of each DATA variate in the plot; if unset, its identifier is used

## FPLOTNUMBER procedure

Forms plot numbers for a row-by-column design (K. Punyawaew).

## Options

FIRSTPLOT $=$ string token

PLOTORDER $=$ string token

## Parameters

NROWS = scalars
NCOLUMNS $=$ scalars
PLOTNUMBER $=$ factors

Defines the starting location for numbering the plots (lowleft, lowright, upleft, upright); default uple Defines the order in which the numbers are allocated (colserpentine, colbycol, rowserpentine, rowbyrow); default rowb

Number of rows in the design
Number of columns in the design
Saves the plot numbers

## FPROJECTIONMATRIX procedure

Forms a projection matrix for a set of model terms (R.W. Payne).

## No options

Parameters

TERMS = formula structure

PROJECTION = symmetric matrix

Defines the model terms corresponding to the design matrices whose projection matrices are required
Saves the projection matrix for each formula structure

## FPSEUDOFACTORS directive

Determines patterns of confounding and aliasing from design keys, and extends the treatment model to incorporate the necessary pseudo-factors.

## Options

TREATMENTSTRUCTURE = formula Treatment model for the design
BLOCKSTRUCTURE = formula Block model for the design
FACTORIAL $=$ scalar
LROWS $=$ factors or scalars
LCOLUMNS $=$ factors or scalars
NEWTREATMENTSTRUCTURE $=$ identifier
Store the extended treatment model
PSEUDOFACTORS = pointer NPSEUDOFACTORS = scalar KEYPSEUDOFACTORS $=$ matrix KEYCONTRASTS $=$ matrix

## Parameters

KEY $=$ matrices
KEYINVERSE $=$ matrices
ALIASSETS $=$ variates

Pseudo-factors required for the keys
Number of pseudo-factors required for the keys
Key to generate the pseudo-factors from the treatment factors Key partitioning the treatment terms into orthogonal sets of contrasts

Design keys
Store the inverses of the design keys
Stores aliasing information about the orthogonal sets of treatment contrasts

Saves the resolution number of the design constructed by each key

## FRAME directive

Defines the positions and appearance of the plotting windows within the frame of a high-resolution graph.
Options

GRID $=$ string tokens	Specifies grid lines $(\mathrm{xy}, \mathrm{xz}, \mathrm{yx}, \mathrm{yz}, \mathrm{zx}, \mathrm{zy})$
BOXFRAME $=$ string tokens	Whether to include a box enclosing the entire frame
(include, omit)	

BACKGROUND $=$ scalars or texts

RESET $=$ string token

## Parameters

```
WINDOW = scalars
YLOWER = scalars
YUPPER \(=\) scalars
XLOWER \(=\) scalars
XUPPER \(=\) scalars
YMLOWER \(=\) scalars
YMUPPER = scalars
XMLOWER \(=\) scalars
XMUPPER \(=\) scalars
BACKGROUND \(=\) scalars or texts
```

BOX $=$ string tokens
BOXSURFACE $=$ string token
BOXKEY $=$ string token
PENTITLE $=$ scalars
PENKEY = scalar
PENGRID $=$ scalar
SCALING $=$ string token
TPOSITION $=$ string token
CINTERIOR $=$ scalars or texts
CFRAME $=$ scalars or texts
CTITLE $=$ scalars or texts
AXES $=$ identifiers or pointers
SAVE $=$ pointers

Specifies grid lines ( $x y, x z, y x, y z, z x, z y$ )
Whether to include a box enclosing the entire frame (include, omit)
Specifies the colour to be used for the background of the whole frame (where allowed by the graphics device)
Whether to reset the axis definition to the default values (no, yes); default no

Window numbers
Lower y device coordinate for each window
Upper y device coordinate for each window
Lower x device coordinate for each window
Upper x device coordinate for each window
Size of bottom margin (for x -axis labels)
Size of upper margin (for overall title)
Size of left-hand margin (for y -axis labels)
Size of right-hand margin
Specifies the colour to be used for the background in each window (where allowed by the graphics device)
Whether to include a box enclosing the plotted graphic
(include, omit)
Box to include in a surface plot (full, bounded, omit)
Box to draw around key (full, bounded, omit)
Pen to use to write the overall title
Pen to use for the key
Pen to use to draw the grid lines
How to scale the axis in each window (xyequal, xzequal, yzequal, xyzequal)
Position of title (right, left, center, centre)
Specifies the colour to be used for the interior of each window (where allowed by the graphics device)
Specifies the colour to be used for the frame of each window (where allowed by the graphics device)
Specifies the colour to be used for the title bar of each window (where allowed by the graphics device)
Additional oblique axes to include in each window
Saves details of the current settings for the window concerned

## FREGULAR procedure

Expands vectors onto a regular two-dimensional grid (R.W. Payne).

## Options

ROWS $=$ factor
COLUMNS $=$ factor
NEWROWS $=$ factor
NEWCOLUMNS = factor
SORT $=$ string token

Original row factor
Original column factor
New row factor expanded onto the full grid
New column factor expanded onto the full grid
Whether to sort the new values into row $\times$ column order (yes, no); default no

## Parameters

OLDVECTOR $=$ variates, factors or texts Original data vectors

NEWVECTOR $=$ variates, factors or texts New vector with values, provided by the VALUES parameter, inserted in the units added to complete the grid
VALUES $=$ variates, scalars or texts Values to insert in the units added to complete the grid; default is to insert missing values

## FRENAME directive

Renames files.
No options

## Parameters

OLD $=$ texts	Name of each file to rename
NEW $=$ texts	New name for each file
OVERWRITE $=$ string tokens	Whether to overwrite any existing files (yes, no); default no

## FRESTRICTEDSET procedure

Forms vectors with the restricted subset of a list of vectors (R.W. Payne).

## Options

METHOD $=$ string token $\quad$ Whether to form the new vectors only when the old vectors are restricted or aways (always, whenrestricted); default alwa
RESTRICTED $=$ scalar $\quad$ Scalar set to 1 or 0 according to whether or not the old vectors are found to be restricted
VRESTRICTED $=$ variate
Variate with each unit set to 1 or 0 according to whether or not that unit is restricted in any of the OLDVECTORS

## Parameters

OLDVECTOR $=$ factors, variates or texts
List of vectors, one or more of which may be restricted
NEWVECTOR $=$ factors, variates or texts
New vectors which will contain only the unrestricted units of the old vectors
SETLEVELS $=$ string token

Whether to reform the levels (and labels) of factors to exclude those that do not occur in the restricted subset (yes, no); default no

## FRIEDMAN procedure

Performs Friedman's nonparametric analysis of variance (S. Langton).

## Options

PRINT $=$ string tokens	Output required (test, ranks); default test
TREATMENTS $=$ factor	Treatment factor
BLOCKS $=$ factor	Block factor
Parameters	
DATA $=$ variates	Identifier of the variate holding the data values
RANKS $=$ variates	Saves the ranks
STATISTIC $=$ scalars	Saves the test statistic
DF $=$ scalars	Saves the degrees of freedom for the chi-square approximation
PROBABILITY $=$ scalars	Saves the probability value for the chi-square statistic

## FROWCANONICALMATRIX procedure

Puts a matrix into row canonical, or reduced row echelon, form (C.J. Brien).

## Option

PRINT $=$ string token Controls printed output (rowcanonicalmatrix); default *

## Parameters

MATRIX = matrices
ROWCANONICALMATRIX = identifiers
i.e. none

Matrix to be put into row canonical form
Matrix in row canonical form

## FRQUANTILES directive

Forms regression quantiles.

## Options

Y = variate	Response variate
DESIGNMATRIX $=$ matrix	
TOLERANCE $=$ scalar	
Parameters	Design matrix for the regression model
PRQUANTILE $=$ scalars	Tolerance for the algorithm; default $10^{-12}$
RESIDUALS $=$ variates	Values for which to perform the quantile regressions
ESTIMATES $=$ variates	Parameter estimates from each quantile regression
XBARQUANTILES $=$ variates	Estimates from each quantile regression
	When PRQUANTILE is set to a missing value, saves the sum of   the mean of each design column multiplied by its regression
CUMPROBABILITIES = variates	quantile for all the quantile solutions   When PRQUANTILE is set to a missing value, saves the   cumulative probabilitiy values at which the estimated   regression quantiles change
EXIT = scalars	Saves an exit code, with 0 to indicate success

## FRTPRODUCTDESIGNMATRIX procedure

Forms summation, or relationship, matrices for model terms (C.J. Brien).

## No options

## Parameters

$\mathrm{TERM}=$ formula structures $\quad$ Model terms corresponding to design matrices whose summation matrices are required
MATRIX $=$ symmetric matrices

## ${ }^{\dagger}$ FRUITMACHINE procedure

Runs a fruit machine using pop-up menus and Genstat graphics (R.W. Payne).

## Options

```
PRINT = string tokens What to print (display, reels, summary, transcript);
 default * i.e. nothing
CREDIT = scalar Credit for the game; default *
NTIMES = scalar Limit on the number of pulls in the current session; default 999
PICTURES = string token Which pictures to use (cards, fruit); default frui
REPLICATION = scalar or variate Number of times each picture should occur on each reel;
 default 1
WINS = scalar or variate Amount to win on a complete line of each picture; default 5
SEED = scalar Seed for random numbers to form the reels and execute the
 pulls; default 0
SAVE = pointer Saves or specifies the state of a game so that it can be
 continued
```


## No parameters

## FSIMILARITY directive

Forms a similarity matrix or a between-group-elements similarity matrix or prints a similarity matrix.

## Options

PRINT = string token	Printed output required (similarity, summary); default *   i.e. no printing
STYLE $=$ string token	Print percentage similarities in full or just the $10 \%$ digit   (full, abbreviated); default full
METHOD = string token	Form similarity matrix or rectangular between-group-element   similarity matrix (similarity,   betweengroupsimilarity); default simi

SIMILARITY = matrix or symmetric matrix Input or output matrix of similarities; default *

GROUPS $=$ factor

PERMUTATION $=$ variate

UNITS $=$ text or variate MINKOWSKI = scalar

## Parameters

$\mathrm{DATA}=$ variates or factors
$\mathrm{TEST}=$ string tokens

RANGE $=$ scalars

Grouping of units into two groups for between-group-element similarity matrix; default *
Permutation of units (possibly from HCLUSTER) for order in which units of the similarity matrix are printed; default * Unit names to label the rows of the similarity matrix; default * Index $t$ for use with TEST=minkowski

The data values
Test type, defining how each DATA variate or factor is treated in the calculation of the similarity between each unit (simplematching, jaccard, russellrao, dice, antidice, sneathsokal, rogerstanimoto, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variate or factor Range of possible values of each DATA variate or factor; if omitted, the observed range is taken

## FSPREADSHEET procedure

Creates a Genstat spreadsheet file (GWB or GSH) from specified data structures, PC Windows only (D.B. Baird).

## Options

OUTFILE $=$ text
SHEET $=$ number
$\mathrm{METHOD}=$ string token
READONLY $=$ string token

TITLE $=$ text
POINTER $=$ pointer or text

ANALYSIS = text
ASETUP $=$ text

ADUMMY $=$ text

CURSOR $=$ variate

NOUNITS $=$ string token
$\mathrm{BOOK}=$ number

PAGENAME $=$ text
ROWCOLOURS $=$ factor
TABLEFORMAT $=$ string token

FILEFORMAT $=$ string token
MARGINNAME $=$ text
FROZENCOLUMNS $=$ scalar

Name of GSH file to store data in
Sequence number of existing sheet, if this is set to 0 the data will be added to the first compatible spreadsheet open in the Windows interface
What to do with any existing columns with the same names as the new columns (replace, rename); default rena Whether to make the complete sheet read-only (yes, no); default no
The title associated with the spreadsheet
A pointer or a name of a pointer to the columns in the spreadsheet
Genstat directives to analyse columns in the spreadsheet Genstat directives to be run once before the analysis of any columns in the spreadsheet
The name of the dummy (if any) used in the ANALYSIS directives
A variate of length 2 giving the active cell position ( $\mathrm{x}, \mathrm{y}$ ) when the spreadsheet is first displayed
Whether to stop the inclusion of a units column in the spreadsheet (yes, no); default no
Window number of existing book, if this is set to 0 the sheet
will be created in a new book, if to -1 it will be created in the last book formed with $B O O K=0$, and if set to -2 it will be created in the last book created in the Windows interface. The 32 character text to be displayed on the sheet tab The factor to be used for colouring the rows (the factor must have colours defined by the FACCOLOURS parameter)
The format to use when displaying tables with two or more classifying factors (page, column); default page
The format to use for the spreadsheet file (GWB, GSH); default GWB
The 60 character text to be displayed for the margin labels The number of columns to freeze on the left hand side of the spreadsheet; default 0 i.e. none

## Parameters

DATA $=$ identifiers
PROTECT $=$ string tokens
Data to write to the spreadsheet
Whether to protect each data column by making it read-only (yes, no); default no
FACCOLOURS $=$ variates, texts or pointers
Specifies background colours for factor columns
FOREGROUND $=$ variate, text, scalar or pointer
Specifies foreground colours for columns
BACKGROUND $=$ variate, text, scalar or pointer
Specifies background colours for columns
HIDDEN $=$ string tokens $\quad$ Whether to hide each DATA column (yes, no); default no

## FSSPM directive

Forms the values of SSPM structures.

## Options

PRINT = string tokens	Printed output required (correlations, wmeans, SSPM);   default * i.e. no printing
WEIGHTS = variate or symmetric matrix	Variate of weights for weighted SSP, or symmetric matrix of   weights (one row and column for each unit of data); default *
SEQUENTIAL = scalar	i.e. all units with weight one
Used for sequential formation of SSPMs; a positive value   indicates that formation is not yet complete (see READ   directive); default * i.e. not sequential	
SSPMs	Structures to be formed

## FSTRING procedure

Forms a single string from a list of strings in a text (R.W. Payne).

## No options

## Parameters

TEXT $=$ texts $\quad$ Texts containing the lists of strings to put into single strings

STRING $=$ texts
SEPARATOR $=$ texts

LASTSEPARATOR $=$ texts

PREFIX $=$ texts

END $=$ texts

Text to store the strings in each TEXT
Characters to separate all except last two strings of each TEXT; default ', '
Characters to separate last two strings of each TEXT; default SEPARATOR
Characters to insert at the start of each STRING; default ' ' (i.e. none)

Characters to put at the end of each STRING; default ' ' (i.e. none)

## FTEXT procedure

Forms a text structure from any Genstat data structure (A. Keen \& J.T.N.M. Thissen).

## Option

MISSING $=$ text $\quad$ What to print for missing value; default ' ${ }^{*}$ '

## Parameters

STRUCTURE $=$ identifiers	Structure (scalar, variate, factor, text, table, matrix,   symmetricmatrix, diagonalmatrix, pointer) from which the text   structure is to be formed
TEXT $=$ texts	Saves the text structure
DECIMALS $=$ scalars	Number of decimals to use when forming the text structure;   default $*$ uses the number required to provide 4 significant   figures, but unnecessary trailing zeros are ignored

FREPRESENTATION = string tokens

How factor values are to be represented in the text structure (labels, levels, ordinals); default is to use labels if available and levels otherwise

## FTSM directive

Forms preliminary estimates of parameters in time-series models.

## Option

PRINT = string tokens
Parameters
$\mathrm{TSM}=T S M s$
CORRELATIONS $=$ variates
BOXCOXTRANSFORM = scalars
CONSTANTTERM = scalars
VARIANCE $=$ scalars

What to print (models); default *
Models whose parameters are to be estimated
Auto- or cross-correlations on which to base estimates for each model
Box-Cox transformation parameter
Constant term
Variance of ARIMA model, or ratio of input variance to output variance for transfer model

## FUNIQUEVALUES procedure

Redefines a variate or text so that its values are unique (R.W. Payne).

## Options

INCREMENT $=$ scalar

ADDTO $=$ string token

## Parameters

OLDVECTOR $=$ variates or texts
NEWVECTOR $=$ variates or texts

CHANGED $=$ scalars

## FVARIOGRAM directive

Forms experimental variograms.

## Options

PRINT = string token
$\mathrm{Y}=$ variate
$\mathrm{X}=$ variate
YMAX $=$ scalar
XMAX $=$ scalar
METHOD = string token
STEPLENGTH = scalar or variate
DIRECTIONS = scalar or variate
SEGMENTS = scalar or variate

## Parameters

DATA $=$ variates or matrices

VARIOGRAMS $=$ variates or matrices
COUNTS $=$ variates or matrices

DISTANCES $=$ variates or matrices

Increment to use to modify duplicated numbers; default * i.e. a suitable (small) value is determined automatically Whether to add the increment to the value or the absolute value of duplicated numbers (value, absolutevalue); default abso

Vectors whose values are to be made unique
New vectors with unique values; if unset, the values of the corresponding OLDVECTOR are replaced
Indicates whether the values have changed

Controls printed output (statistics); default stat Y positions (needed only for 2-dimensional irregular data) X positions or interval (not needed for 2-dimensional regular data i.e. when DATA is a matrix)
Maximum lag in the y direction (2-dimensional regular data only)
Maximum lag in the x direction
How to estimate the variogram (moments, cressiehawkins, dowd, genton); default mome
Length(s) of the steps in which lag is incremented
Directions (degrees) along which to form the variogram (relevant only for 2-dimensional irregular data)
Angles subtended by the segments (degrees) over which averaging is to be done (relevant only for 2-dimensional irregular data)

Measurements as a variate or, for data on a regular grid, as a matrix
Structure to store the sample variogram
Numbers of comparisons involved in the calculation of each variogram
Mean lag distances at each step

Saves lag classes, indexes to observations and directions to plot in an h-scattergram

## FVCOVARIANCE procedure

Forms the variance-covariance matrix for a list of variates (W. van den Berg).

## Options

\(\left.\begin{array}{ll}PRINT = string tokens \& Printed output (df, vcovariance); default df, vcov <br>
WEIGHTS = variate \& Provides weights for the units of the variates; default * <br>

assumes that they all have weight one\end{array}\right]\)| VCOVARIANCE = symmetric matrix |
| :--- |
| SF = scalar |
| Parameter the variance-covariance matrix |
| DATA = variates |$\quad$ Saves the number of degrees of freedom of the (co)variances

## FVSTRING procedure

Forms a string listing the identifiers of a set of data structures (R.W. Payne).

## Options

STRING = text	Saves the string   If all the structures are belong to the same pointer, this saves   its name
ELEMENTNAMES = text or variate	Saves the elements of the pointer, in a text if they have labels,   otherwise in a variate
Parameter	Data structures to be used to form the string

## FWITHINTERMS procedure

Forms factors to define terms representing the effects of one factor within another factor (R.W.
Payne).
Options

LEVNULL = scalar	Numerical value to represent the null level assigned to units not involved in the comparison of the levels of one of the factors within a particular level of the other factor; default 0
LABNULL $=$ text	String to label the null level; default ' - '
Parameters	
$\mathrm{F} 1=$ factors	First factor
$\mathrm{F} 2=$ factors	Second factor
F1WITHINF2 = pointers	Pointer containing a factor for each level of the second factor, used to estimate the effects of the first factor within that level
F2WITHINF1 = pointers	Pointer containing a factor for each level of the first factor, used to estimate the effects of the second factor within that level

## FZERO procedure

Gives the F function expectation under complete spatial randomness (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token
Parameters
DENSITY = scalars
$\mathrm{S}=$ variates

FVALUES $=$ variates

What to print (summary); default summ
Densities to use i.e. numbers of points per unit area; no default

- this parameter must be set

Vectors of distances to use; no default - this parameter must be set
Variates to receive the expected values of the F nearestneighbour distribution function under CSR

## F2DRESIDUALVARIOGRAM procedure

Calculates and plots a 2-dimensional variogram from a 2-dimensional array of residuals (S.J. Welham).

## Options

PLOT $=$ string token	What to plot (surface); default surf
ROWS $=$ factor	Factor defining the rows of the grid
COLUMNS $=$ factor	Factor defining the columns of the grid
REPLICATES $=$ factor	Factor defining the replicate grids (if any)
RMAX $=$ scalar	Maximum lag to include in variogram in row direction (default determined by procedure)
CMAX $=$ scalar	Maximum lag to include in variogram in column direction (default determined by procedure)
RSCALE $=$ scalar	Actual distance represented by 1 unit in row direction (default 1)
CSCALE $=$ scalar	Actual distance represented by 1 unit in column direction (default 1)
MINREP $=$ scalar	Minimum replication required for position to be included in variogram (default 30)
TITLE $=$ text	Title for surface/graph; default * i.e. none
WINDOW = scalar	Graphics window to be used for plotting; default 1
SCREEN $=$ string token	Whether to keep or clear screen before plotting variogram (clear, keep); default clear
METHOD $=$ text	Whether to use Fortran DLL or Genstat code to calculate variogram (dll, genstat); default dll
SCALEPLOT $=$ string token	Whether to scale variogram to 0-1 (i.e. unit) scale for plotting (unit, none); default unit
Parameters	
RESIDUALS $=$ variates	Variate of residuals to form variogram
VARIOGRAM $=$ matrices	Calculated variogram (trimmed)
FULLVARIOGRAM $=$ matrices	Calculated variogram (all values)
COUNTS $=$ matrices	Number of comparisons contributing to each variogram position
COMPONENTS $=$ pointers	Components used to calculate variogram (only available when METHOD=genstat)

## GALOIS procedure

Forms addition and multiplication tables for a Galois finite field (I. Wakeling \& R.W. Payne).

## Option

METHOD = string token

## Parameters

ORDER $=$ scalars
ADDITION $=$ symmetric matrices
MULTIPLICATION $=$ symmetric matrices
Saves the field's multiplication table
PRIMITIVE $=$ variates $\quad$ Saves the primitive irreducible polynomial
ERROR $=$ scalars

Whether to choose the primitive polynomial to generate the Galois field with the least number of higher terms or whether to make a random choice (minimal, random); default rand

Order of the required Galois field
Saves the addition table of the field

Returns 0 or 1 according to whether or not the tables have been formed successfully

## GBGRIDCONVERSION procedure

Converts GB grid references to or from latitudes and longitudes or to or from UTM coordinates (R.W. Payne).

## Options

```
GRIDREFERENCES = texts
LATITUDES = scalars or variates
LONGITUDES = scalars or variates
EASTINGS = scalars or variates
NORTHINGS = scalars or variates
GRIDACCURACY = string token
GRIDREFERENCES \(=\) texts
LATITUDES \(=\) scalars or variates
LONGITUDES \(=\) scalars or variates
EASTINGS \(=\) scalars or variates
NORTHINGS \(=\) scalars or variates
GRIDACCURACY \(=\) string token
```

(gridreference, geographical, utm); default geog
(gridreference, geographical, utm); default geog
Grid references
Latitudes
Longitudes
UTM easting references
UTM northing references
The accuracy for saving grid references (kilometres, hectometres, dekametres, metres); default hect

## No parameters

## GEE procedure

Fits models to longitudinal data by generalized estimating equations (D.M. Smith \& M.G.Kenward). Options
PRINT $=$ string token
DISTRIBUTION $=$ string token
LINK $=$ string token
EXPONENT $=$ scalar
TERMS $=$ formula
CONSTANT $=$ string token
FACTORIAL $=$ scalar
AGGREGATION $=$ scalar
KLOGRATIO $=$ scalar
QUADESTIMATION = string token
SCALEFACTOR = string token

SFVALUE $=$ scalar
CRTYPE $=$ string token

ORDER $=$ scalar
TIMEDEPENDENT $=$ string token

## Parameters

$\mathrm{Y}=$ variates
NBINOMIAL $=$ variates or scalars
FITTEDVALUES $=$ variates
RESIDUALS $=$ variates
SUBJECT = factors
OUTCOME $=$ factors
COUNT $=$ variates
TIME $=$ factors
WEIGHT = variates
OFFSET $=$ variates
SAVE = pointers

What to display (estimates, correlations, scalefactor, wald, monitoring); default esti, corr, scal
Distribution of response (normal, Poisson, binomial, gamma, inversenormal, negativebinomial); default * Link function (identity, logarithm, logit, reciprocal, power, squareroot, probit, complementaryloglog, logratio); default *
Exponent for power link; default -2
Explanatory variates, factors etc
How to treat constant (estimate, omit); default esti
Limit for expansion of model terms; default 3
Fixed parameter for negative binomial distribution (parameter $k$ as in variance function var $=$ mean + mean $^{2} / k$ ); default 1 Parameter for logratio link, in form $\log ($ mean $/($ mean $+k)$ ); default as set in AGGReGATION option
Whether to use quadratic estimation (used, notused); default used
How to calculate the scale factor (fixed, constant, varytime); default varies with distribution, fixed for Poisson and binomial, constant for rest
Value for scale factor when SCALEFACTOR=fixed; default 1.0 for Poisson and binomial, missing for rest

Form of correlation matrix (independence, unstructured, exchangeable, autoregressive, dependence, antedependence); default *
Order in dependence and ante-dependence form of correlation matrix; default 1
Whether correlation in dependence model changes with time (no, yes); default no

Response variate for each analysis
Denominator in binomial
To store fitted values
To store residuals
Identifier of subjects
Identifier of outcomes
Variate of counts of no. outcomes
Times of repeated measures variate
Weight variate
Offset variate
Structure to save output variables

## GENERATE directive

Generates factor values for designed experiments: with no options set, factor values are generated in standard order; the options allow treatment factors to be generated using the design-key method, or pseudo-factors to be generated to describe the confounding in a partially balanced experimental design.
Options

TREATMENTS $=$ formula
REPLICATES $=$ formula
BLOCKS $=$ formula
$\mathrm{KEY}=$ matrix

## BASEVECTOR = variate

## Parameter

factors

Model term for which pseudo-factors are to be generated; default *
Factors defining replicates of the design; default * Block formula (for design-key generation) or term (for generation of pseudo-factors); default *
Key matrix (number of factors in the parameter list by number of factors in the BLOCKS formula) to generate the factors by the design key method; default *
Base vector for design key generation; default *

Factors whose values are to be generated

## GENPROCRUSTES procedure

Performs a generalized Procrustes analysis (G.M. Arnold \& R.W. Payne). Options

PRINT $=$ string tokens	Printed output required (analysis, centroid, column, individual, monitoring); default anal, cent
SCALING $=$ string token	Type of scaling to use (none, isotropic, separate); default none
METHOD $=$ string token	Method to be used (Gower, TenBerge); default Gowe
NROOTS $=$ scalar	Number of roots (i.e. dimensions) to print for the output configurations, consensus and rotation matrices, and number of dimensions to save with the XOUTPUT, CONSENSUS and ROTATIONS paramaters if their matrices have alread not been defined; default is to print and save all the dimensions
PLOT $=$ string tokens	Controls which graphs to display (consensus, individuals, projections); default * i.e. none
NDROOTS $=$ scalar	Number of dimensions to display in the consensus and individuals plots; default 3
TOLERANCE $=$ scalar	The algorithm is assumed to have converged when (last residual sum of squares) - (current residual sum of squares) $<$ TOLERANCE $\times$ (number of configurations); default 0.00001
MAXCYCLE $=$ scalar	Limit on number of iterations; default 50
Parameters	
XINPUT $=$ pointers	Each pointer points to a set of matrices holding the original input configurations
XOUTPUT $=$ pointers	Each pointer points to a set of matrices to store a set of final (output) configurations
CONSENSUS $=$ matrices	Stores the final consensus configuration from each analysis
ROTATIONS $=$ pointers	Each pointer points to a set of matrices to store the rotations required to transform each set of XINPUT configurations to their final (scaled) XOUTPUT configurations
RESIDUALS $=$ pointers	Each pointer points to a set of matrices to store the distances of a set of scaled XINPUT configurations from its consensus
RSS $=$ scalars	Stores the residual sum of squares from each analysis
ROOTS $=$ diagonal matrices	Stores the latent roots from referring the centroid configuration to its principal axis form (consensus) for each analysis
WSS $=$ scalars	Stores the initial within-configuration sum of squares from each analysis
SCALINGFACTOR $=$ variates	Stores the isotropic scaling factors for configurations from

each analysis
Each pointer points to a set of matrices to store a set of projection matrices

## GESTABILITY procedure

Calculates stability coefficients for genotype-by-environment data (R.W. Payne).
Options

PRINT $=$ string tokens	Controls printed output (means, stability, sortedstability, quantiles); default stab, quan
METHOD $=$ string tokens	Methods to use to calculate stability (superiority, static, wricke, ranks); default supe
BESTMETHOD = string token	How to define the best genotype (minimum, maximum); default maxi
$\mathrm{PLOT}=$ string tokens	What graphs to plot (stability); default * i.e. none
NBEST $=$ string tokens	Number of best genotypes to print in tables of sorted stability coefficients; default * i.e. print all of them
DIRECTION $=$ string token	Direction to sort tables of sorted stability coefficients (ascending, descending); default asce
PERCENTQUANTILES $=$ scalar or variate	
	Percentage points for which quantiles are required; default ! (50,5,1,0.1)
NTIMES = scalar	Number of permutations to make; default 999
BLOCKSTRUCTURE $=$ formula	Model formula defining any blocking to consider during the permutation test; default none
EXCLUDE $=$ factors	Factors in the block formula whose levels are not to be randomized in the permutation test
Parameters	
$\mathrm{Y}=$ variates	Yields (or other measurements) made on the genotypes in the environments
GENOTYPES $=$ factors	Genotype corresponding to each yield
ENVIRONMENTS = factors	Environment where each yield was recorded
SEED = scalar	Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically
STABILITY $=$ tables or pointers	Saves stability coefficients
QUANTILES $=$ tables or pointers	Saves quantiles of the stability coefficients
TITLE $=$ texts	Overall title for the graphs; default * i.e. none

## GET directive

Accesses details of the "environment" of a Genstat job.

## Options

ENVIRONMENT = pointer	Pointer given unit labels 'inprint', 'outprint',   'diagnostic','errors', 'pause','prompt',   'newline', 'case','run', 'wordlength', 'captions',   'typeset', 'cmethod', 'dataspace','algorithms',   'actionafterfault', 'unsetdummy','language',   'year2digitbreak' and 'timewithseconds' to save the current settings of those options of SET; default *
SPECIAL $=$ pointer	Pointer given unit labels 'units', 'blockstructure', 'treatmentstructure', 'covariate', 'asave',   'dsave','rsave', 'tsave','vsave' and   'vcomponents', used to save the current settings of those options of SET; default *
LAST $=$ text	To save the last input statement; default *
FAULT $=$ text	To save the last fault code; default *
FIELDWIDTH $=$ scalar	Saves the fieldwidth currently defined as the default minimum

SIGNIFICANTFIGURES $=$ scalar

SEEDS = pointer
$\mathrm{EPS}=$ scalar
$\mathrm{NJOB}=$ scalar
VERSION = pointer
$\mathrm{PID}=$ scalar

WORKINGDIRECTORY $=$ text

## No parameters

## GETATTRIBUTE directive

Accesses attributes of structures.

## Option

ATTRIBUTE $=$ string tokens

## Parameters

STRUCTURE $=$ identifiers SAVE $=$ pointers
for PRINT and other output commands
Saves the minimum number of significant figures currently to be supplied in the default formats determined by PRINT and other output commands
Saves a pointer to variates defining the seeds currently used as defaults by random-number functions, the RANDOMIZE directive, and internally by various other directives To obtain the value of the smallest $x$ (on this computer) such that $1+x>1$; default *
Number of the current job within the program; default * Information about the version of Genstat that is being used; default *
Gets an integer value unique in the current job to use, for example, in names of temporary files
Saves the name of the current working directory

Which attributes to access (nvalues, nlevels, nrows, ncolumns, type \{type number\}, levels, labels \{of a factor or pointer\}, nmv, present, identifier, refnumber \{structure number\}, extra, decimals, characters, minimum, maximum, restriction, mode \{integer code 1-5 denoting type of values: double real, real, integer, character and word $\}$, maxline $\{o f$ a text or factor\}, rows, columns, classification, margins \{of a table\}, associatedidentifier $\{$ of a table $\}$, unknown $\{$ cell of a table\}, suffixes \{of a pointer\}, owner, terms \{of an SSPM $\}$, groups $\{$ of an SSPM $\}$, weights $\{$ of an SSPM $\}$, SSPMauxiliary, SSPrst, tsmmodel, rstat \{of an RSAVE\}, stype \{type as a character string\}, referencelevel \{of a factor\}, drepresentation, unitlabels \{of a vector\}, iprint, datavariate $\left\{\begin{array}{l}\text { of a }\end{array}\right.$ table\}, summarytype \{of a table $\}$, percentquantile \{of a table of quantiles $\}$, omargin $\{$ of a table of percentages $\}$, coding $\{$ of a text $\}$ ); default * i.e. none

Structures whose attributes are to be accessed Pointer to store copies of the attributes of each structure; these are labelled by the ATTRIBUTE strings

## GETLOCATIONS directive

Finds locations of an identifier within a pointer, or a string within a factor or text, or a number within any numerical data structure.

## Options

CASE $=$ string token

TOLERANCE $=$ scalar
SUBSTITUTE $=$ string token

## Parameters

DATA $=$ identifiers

Whether to treat the case of letters (small or capital) as significant when searching for a string (significant, ignored); default sign
Tolerance for comparing numbers
Whether to substitute dummies within pointers in DATA or FIND (yes, no); default no

Variates, scalars, matrices, tables, factors, texts or pointers to be searched

FIND $=$ scalars, texts or pointers
NLOCATIONS $=$ scalars
LOCATIONS $=$ variates or pointers

CLASSIFICATION = pointers

LEVELS = pointers

Numbers, strings or identifiers to be located in DATA Saves the number of times that FIND occurs in DATA Saves the locations where FIND occurs as one of the values in DATA, in a variate if DATA is a one-dimensional data structure like a variate or text, or in a pointer containing a variate for each dimension if DATA is a multi-dimensional data structure like a matrix or table Saves the classifying factors for a DATA table, in the same order as the corresponding variates in the LOCATIONS and LEVELS pointers
Saves the levels of the classifying factors where FIND occurs as one of the values of a DATA table, the information is saved in a pointer containing a variate for each factor

## GETNAME procedure

Forms the name of a structure according to its IPRINT attribute (A.R.G. McLachlan).

## No options

## Parameters

STRUCTURE $=$ identifiers
NAME $=$ texts
IDENTIFIER $=$ texts
EXTRA $=$ texts
IPRINT $=$ texts

Structures whose names are to be obtained
Saves the names of the structures
Saves the identifiers of the structures
Saves the extra texts of the structures
Saves (or forms) IPRINT attributes

## GETRGB procedure

Gets the RGB values of the standard graphics colours (R.W. Payne).

## No options

## Parameters

COLOUR $=$ scalars or variates $\quad$ Colour numbers
RGB $=$ scalars or variates
RGB values
NAME $=$ texts

## GETTEMPFOLDER procedure

Gets gets the location of the folder used by Genstat for temporary files (R.W. Payne).

## Option

PRINT $=$ string token $\quad$ Controls printed output (tempfolder); default temp
Parameter
TEMPFOLDER $=$ text Saves the name of the temporary folder

## GGEBIPLOT procedure

Plots displays to assess genotype + genotype-by-environment variation (A.I. Glaser).

## Options

PRINT $=$ string tokens	What to print (variation); default * i.e. nothing
DIMENSIONS $=$ scalars	Which dimensions to display; default 1,2
PLOT $=$ string token	Type of plot (scatter, ranking, compare, joint, centred); default scat
METHOD $=$ string token	Whether the names in LEV1 (and LEV2) are from the ENVIRONMENTS or GENOTYPES factor (environments, genotypes); default envi
SCPLOT $=$ string token	Features to add to a scatter plot (hull, sector, megaenvironment, vector, linear); default * i.e. none
SCALING $=$ string tokens	What scaling to use (genotype, environment, symmetric); default envi
NORMALIZE $=$ string token	Whether to scale the data using the within-environment standard deviation (yes, no); default no

```
CULL \(=\) variate or text
QUANTILE \(=\) scalar
DIVISIONS \(=\) scalar
RANKINGLINES \(=\) string token
GENREVERSE \(=\) string token
ENVREVERSE = string token
WINDOW \(=\) scalar
KEYWINDOW = scalar
```

```
Parameters
\(\mathrm{DATA}=\) variates or tables
GENOTYPES \(=\) factors
ENVIRONMENTS \(=\) factors
LEV1 \(=\) texts or scalars
LEV2 \(=\) texts or scalars
LABGENOTYPES \(=\) texts
LABENVIRONMENTS \(=\) texts
TITLE \(=\) texts
MEGAGROUPS \(=\) variates or texts
```

Specifies environments at which to examine the performance of the genotypes in order to decide which genotypes to cull Proportion at which to calculate quantile for CULL; default 0.5. Number of parallel lines or concentric circles to use when ranking genotypes or environments; default 10 Whether the ranking lines drawn with PLOT setting ranking or joint are perpendicular to the biplot axis or projected onto the axis (perpendicular, projection); default perp Whether to reverse the order of the genotype scores (yes, no); default no
Whether to reverse the order of the environment scores (yes, no); default no
Which graphical window to use; default 1
Window number for the key (zero for no key); default 2
Provides the data to be analysed
Specifies the genotypes
Specifies the environments
First environment (or genotype) to use with PLOT settings centred, compare, joint or ranking, or with scatter when SCPLOT=linear
Second environment (or genotype) to use with PLOT settings centred, compare or joint
Labels for genotypes
Labels for environments
Titles for the plots; if this is unset, an appropriate title is formed auomatically
Specifies or saves the groupings to use for the plot produced by SCPLOT=megaenvironment

## GHAT procedure

Calculates an estimate of the G nearest-neighbour distribution function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

$\mathrm{Y}=$ variates
$\mathrm{x}=$ variates
$\mathrm{S}=$ variates

GVALUES $=$ variates

NNDISTANCES $=$ variates
NNUNITS $=$ variates

What to print (summary); default summ
Vertical coordinates of each spatial point pattern; no default this parameter must be set
Horizontal coordinates of each spatial point pattern; no default

- this parameter must be set

Vectors of distances to use with each pattern; no default - this parameter must be set
Variates to receive the estimated G nearest-neighbour distribution functions
Variates to receive the nearest-neighbour distances
Variates to receive the unit numbers of the nearest neighbours

## GINVERSE procedure

Calculates the generalized inverse of a matrix (S.K. Haywood).

## Options

PRINT $=$ string token	Printed output from the procedure (inverse); default *, i.e. no printing
METHOD $=$ string token	Method to be used to invert symmetric matrices (svd, lrv); default lrv
TOLERANCE $=$ scalar	How close a number must be be to zero before it is recognised as zero; default $1.0^{-6}$

## Parameters

INMATRIX $=$ matrices
INVERSE $=$ matrices

The matrix whose inverse is to be calculated Matrix to save the generalized inverse

## GLDISPLAY procedure

Displays further output from a GLMM analysis (R.W. Payne).

## Options

PRINT = string token	What output to display (model, components, effects, fittedvalues, means, backmeans, vcovariance, waldtests, missingvalues, covariancemodels, deviance); default *
PTERMS $=$ formula	Formula specifying fixed terms for which means or backtransformed means are to be printed; default * prints all the fixed model terms
PSE $=$ string token	Standard errors to print with tables of means (se, sesummary, sed, sedsummary, vcovariance, differences, estimates, alldifferences, allestimates); default seds
OFFSET $=$ scalar	Offset value to use when calculating predicted means; default 0
RMETHOD = string token	Which random terms to use when calculating RESIDUALS (final, all); default fina
CFORMAT $=$ string token	Whether printed output for covariance models gives the variance matrices or the parameters (variancematrices, parameters); default vari
FMETHOD $=$ string token	Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto

## GLSAVE $=$ pointer

Save structure from the GLMM analysis

## No parameters

## GLKEEP procedure

Saves results from a GLMM analysis (R.W. Payne).

FACTORIAL = scalar	Limit on number of factors in the model terms generated from
the TERMS parameter; default 3	


WMETHOD $=$ string token	Controls which Wald statistics are saved (add, drop); default drop
OFFSET $=$ scalar	Offset value to use when calculating predicted means; default 0
ITERATIVEWEIGHTS $=$ variate	Saves the iterative weights from the generalized linear model fitting
LINEARPREDICTOR = variate	Linear predictor from a generalized linear model
YADJUSTED $=$ variate	Adjusted response variate
ZADJUSTED $=$ variate	Adjusted dependent variate on the linear predictor scale
LPRESIDUALS $=$ variate	Residuals from the fit on the linear predictor scale
SELPRESIDUALS $=$ variate	Standard errors for the residuals from the fit on the linear predictor scale
EXIT $=$ scalar	Exit status of the fit (0 if successful)
GLSAVE $=$ pointer	Save structure from the GLMM analysis
Parameters	
TERMS = formula	Model terms for which information is required
COMPONENTS $=$ scalar or pointer to scalars	
	Estimated variance components
MEANS $=$ table or pointer to tables	Predicted means for each term
BACKMEANS $=$ table or pointer to tables	Back-transformed means
SEDMEANS $=$ symmetric matrix or pointer to symmetric matrices	
	Standard errors of differences between means
VARMEANS $=$ symmetric matrix or pointer to symmetric matrices	
	Variance-covariance matrix for the means
EFFECTS $=$ table or pointer to tables	Effects for each term
SEDEFFECTS $=$ symmetric matrix or pointer to symmetric matrices	
	Standard errors of differences between effects
VAREFFECTS $=$ symmetric matrix or pointer to symmetric matrices	
	Variance-covariance matrix for the effects
CADJUSTMENT $=$ scalar or pointer to scalars	
	For a term involving covariates, saves the adjustment made to its values during the analysis
WALD $=$ scalar or pointer to scalars	Wald statistic (fixed terms only)
FSTATISTIC $=$ scalar or pointer to scalars	
	F statistics (fixed terms only)
NDF $=$ scalar or pointer to scalars	Numerator d.f. (fixed terms only)
DDF $=$ scalar or pointer to scalars	Denominator d.f. (fixed terms only)

## GLM procedure

Analyses non-standard generalized linear models (P.W. Lane).

## Options

\(\left.$$
\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { What to display (deviance, estimates, correlations, } \\
\text { monitoring); default devi, esti }\end{array}
$$ <br>
DISTRIBUTION = string token \& Distribution of response (Normal, Poisson, binomial, <br>
gamma, inversenormal); default * indicates calculations <br>

supplied for non-standard distribution via procedure\end{array}\right]\)| GLMDISTRIBUTION (see the details of the procedures called |
| :--- |
| by GLM) |

## INITIALLINEAR = variate

## Parameters

$\mathrm{Y}=$ variates
NBINOMIAL $=$ variates

FITTEDVALUES $=$ variates
esti
Initial guess at linear predictor, if specifying own link function and not defining procedure GLMINITIAL

Response variate; this parameter must be set
Totals for use when DISTRIBUTION=binomial; must then be set
To store correct fitted values

## GLMM procedure

Fits a generalized linear mixed model (S.J. Welham).

## Options

PRINT $=$ string token

DISTRIBUTION $=$ string token
LINK $=$ string token

DISPERSION $=s c a l a r$

RANDOM $=$ formula
FIXED = formula
ABSORB $=$ factor
CONSTANT $=$ string token
FACTORIAL $=$ scalar
PTERMS $=$ formula

PSE $=$ string token

MVINCLUDE $=$ string tokens

MAXCYCLE $=$ scalar
TOLERANCE $=$ scalar
FMETHODGLMM $=$ string token

OFFSET $=$ variate
CADJUST $=$ string token
AGGREGATION $=$ scalar
KLOGRATIO $=$ scalar

What output to display (model, components, effects, fittedvalues, means, backmeans, monitoring, vcovariance, waldtests, missingvalues, covariancemodels, deviance); default mode, comp, effe, mean, back, moni, vcov, cova
Error distribution (binomial, poisson, normal, gamma, negativebinomial); default bino
Link function (identity, logarithm, logit, reciprocal, probit, complementaryloglog, logratio); default * gives the canonical link
Value at which to fix the residual variance, if missing the variance is estimated; default 1 for binomial, Poisson and negative binomial distributions, a missing value otherwise Random model excluding bottom stratum; this must be set Fixed model; default *
Absorbing factor to be used at the REML step of the iterations Whether to estimate or omit constant term in fixed model (omit, estimate); default esti
Limit on number of factors/covariates in a model term; default 3
Formula specifying fixed terms for which means or backtransformed means are to be printed; default * prints all the fixed model terms
Standard errors to print with tables of means (se, sesummary, sed, sedsummary, vcovariance, differences, estimates, alldifferences, allestimates); default seds
Whether to include units with missing values in the explanatory factors and variates and/or the $y$-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or $y$ variates
Maximum number of iterations of the GLMM algorithm; default 20
Convergence criterion for iterative procedure; default 0.0001
Specifies fitting method (all, fixed): all indicates the method of Schall (1991); fixed indicates the marginal method of Breslow \& Clayton (1993) ; default all
Variate holding values to be used as an offset on the linear predictor scale; default *
What adjustment to make to covariates for the REML analysis (mean, none); default mean
Fixed parameter for negative binomial distribution (parameter $k$ as in variance function var $=$ mean + mean $\left.^{2} / k\right)$; default 1 Parameter $k$ for logratio link, in form $\log ($ mean $/($ mean $+k)$ );

OWNDIST $=$ text	For non-standard distributions only: text specifying the   variance function to be used with dummy variable DUM, e.g.
	OWNDIST = DUM'

## GLPERMTEST procedure

Does random permutation tests for generalized linear mixed models (R.W. Payne).

## Options

```
PRINT = string tokens
NTIMES = scalar
NRETRIES = scalar
BLOCKSTRUCTURE = formula
EXCLUDE = factors
SEED = scalar
```

BINMETHOD $=$ string token

WMETHOD = string token

Controls printed output (prwald, criticalwald, ownstatistics, monitoring); default prwa, crit Number of permutations to make; default 99 Maximum number of extra samples to take when some analyses fail to converge; default NTIMES Model formula defining any blocking to consider during the randomization; default none
Factors in the block formula whose levels are not to be randomized
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically
How to permute binomial data (individuals, units; default indi
Controls which Wald statistics are used (add, drop); default

	add
OWNMETHOD $=$ string token	Type of test required for own statistics (twosided, greaterthan, lessthan); default twos
CIPROBABILITY $=$ scalar	Probability level for the confidence interval for own statistics; default 0.95
Parameters	
GLSAVE $=$ pointers	Save structure of the original analysis from GLMM; default * uses the save structure from the most recent GLMM analysis
WALD $=$ pointers	Saves a pointer with a variate for each of the fixed terms containing the Wald statistics from the permuted data sets
PRWALD $=$ pointers	Saves a pointer with a scalar for each of the fixed terms, containing the test probability obtained from the position of its Wald statistic within those from the permuted data sets
CRITICALWALD $=$ pointers	Saves a pointer with variates for the $5 \%, 1 \%$ and $0.1 \%$ significance levels containing the corresponding critical values for the fixed terms, obtained from the quantiles of the Wald statistics from the permuted data sets
NNOTCONVERGED $=$ scalars	Saves the number of permuted data sets whose analyses failed to converge
OWNDATA $=$ pointers	Data required to calculate own statistics
OWNOBSERVEDVALUES $=$ variates	Saves observed values of the own statistics
OWNPROBABILITIES $=$ variates	Saves bootstrap probabilities for the own statistics
OWNESTIMATES $=$ variates	Saves bootstrap estimates for the own statistics
OWNSES $=$ variates	Saves bootstrap standard errors for the own statistics
OWNLOWERCIS $=$ variates	Saves bootstrap lower values of the confidence intervals for the own statistics
OWNUPPERCIS $=$ variates	Saves bootstrap upper values of the confidence intervals for the own statistics
OWNSTATISTICS $=$ pointers	Saves the own statistics obtained from the permuted data sets, in a pointer with a variate for each statistic

## GLPLOT procedure

Plots residuals from a GLMM analysis (R.W. Payne).

## Options

RMETHOD = string token
BACKTRANS FORM = string token
INDEX = variate or factor
OFFSET = scalar
GRAPHICS = string token
TITLE $=$ text
GLSAVE = pointer
Parameters
METHOD = string tokens
PEN = scalars, variates or factors

OFFSET = scalar
GRAPHICS $=$ string token
$\mathrm{EN}=$ scalars, variates or factors

Which random terms to use when calculating the residuals (final, all); default all
Whether to plot residuals on the natural scale (calculated using back-transformed fitted values) or standardized residuals on the linear-predictor scale (link, none); default none X-variable for an index plot; default! $(1,2 \ldots)$
Value of offset to use when calculating the residuals; default 0 What type of graphics to use (lineprinter, highresolution); default high
Overall title for the plots; the default is to form a title displaying the identifier of the $y$-variate and the type of residual
Save structure from the GLMM analysis; default * uses the GLSAVE structure from the most recent GLMM analysis

Type of residual plot (fittedvalues, normal, halfnormal, histogram, absresidual, index); default fitt, norm, half, hist Pen(s) to use for each plot

GLPREDICT procedure
Forms predictions from a GLMM analysis (R.W. Payne).
Options

PRINT $=$ string tokens	What to print (description, predictions, backpredictions, se, sesummary, sed, sedsummary, vcovariance); default desc, pred, back, seds
MODEL $=$ formula	Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms
OMITTERMS $=$ formula	Specifies terms to be excluded from the MODEL; default * i.e. none
FACTORIAL $=$ scalar	Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3
PRESENTCOMBINATIONS = factors	Lists factors for which averages should be taken across combinations that are present
WEIGHTS $=$ tables	One-way tables of weights classified by factors in the model; default *
OFFSET $=$ scalar	Value of offset on which to base predictions; default 0
NBINOMIAL $=$ scalar	Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value $n$ greater than one allows predictions to be made of the number of "successes" out of $n$, whereas the value one predicts the proportion of successes); default 1
PREDICTIONS $=$ table or scalar	To save the predictions; default *
BACKPREDICTIONS $=$ table or scalar	To save back-transformed predictions; default *
$\mathrm{SE}=$ table or scalar	To save standard errors of predictions; default *
SED $=$ symmetric matrix	To save standard errors of differences between predictions; default *
VCOVARIANCE $=$ symmetric matrix	To save variances and covariances of predictions; default *
GLSAVE $=$ pointer	Save structure from the GLMM analysis; default * uses the SAVE structure from the most recent GLMM analysis
Parameters	
CLASSIFY $=$ vectors	Variates and/or factors to classify table of predictions
LEVELS $=$ variates, scalars or texts	To specify values of variates and/or levels of factors for which predictions are calculated
PARALLEL $=$ identifiers	For each vector in the CLASSIFY list, allows you to specify another vector in the CLASSIFY list with which the values of this vector should change in parallel (you then obtain just one dimension in the table of predictions for these vectors)
NEWFACTOR $=$ identifiers	Identifiers for new factors that are defined when LEVELS are specified

## GLRTEST procedure

Calculates likelihood tests to assess the random terms in a generalized linear mixed model (R.W. Payne).

## Options

PRINT $=$ string tokens	Controls printed output (tests); default test
SELECTION = string tokens	Specifies information to print with the tests (aic, sic, bic,   critical); default crit
CRITICAL = variate	Saves the critical values
GLSAVE = pointer	Save structure of the original analysis from GLMM; default *
uses the save structure from the most recent GLMM analysis	
Parameters	
TERMS = formula	Random terms to be tested; default is to test them all
TESTSTATISTIC $=$ scalar or pointer to scalars	
	Test statistics for each term

$\mathrm{DF}=$ scalar or pointer to scalars
AIC $=$ scalar or pointer to scalars SIC $=$ scalar or pointer to scalars

Degrees of freedom of the test statistics
Akaike information coefficients for each term
Schwarz (Bayesian) information coefficients for each term

## GLTOBITPOISSON procedure

Uses the Tobit method to fit a generalized linear mixed model with censored Poisson data (R.W. Payne).
Options

PRINT $=$ string token

DISPERSION $=s c a l a r$
RANDOM = formula
FIXED $=$ formula
CONSTANT $=$ string token
FACTORIAL $=$ scalar
PTERMS $=$ formula
$\mathrm{PSE}=$ string token

MVINCLUDE $=$ string tokens

MAXCYCLE $=$ scalar
TOLERANCE = scalar
DIRECTION $=$ string token
GLMAXCYCLE $=$ scalar
GLTOLERANCE $=$ scalar
FMETHODGLMM $=$ string token

CADJUST $=$ string token
WORKSPACE $=$ scalar
VCONSTRAINTS $=$ string token
VMETHOD $=$ string token

## VMAXCYCLE $=$ scalar

## Parameters

$\mathrm{Y}=$ variate

What output to display (model, components, effects, fittedvalues, means, backmeans, monitoring, vcovariance, waldtests, missingvalues, covariancemodels, deviance, censored; default mode, comp, mean, back, cens
Value at which to fix the residual variance, if missing the variance is estimated; default 1
Random model excluding bottom stratum; this must be set Fixed model; default *
Whether to estimate or omit constant term in fixed model (omit, estimate); default esti
Limit on number of factors/covariates in a model term; default 3

Formula specifying fixed terms for which means or backtransformed means are to be printed; default * prints all the fixed model terms
Standard errors to print with tables of means (se, sesummary, sed, sedsummary, vcovariance, differences, estimates, alldifferences, allestimates); default seds
Whether to include units with missing values in the explanatory factors and variates and/or the $y$-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or $y$ variates
Maximum number of iterations of the E-M algorithm; default 100
Convergence criterion for the E-M algorithm; default 0.001
Whether the data are left or right censored (left, right); default righ
Maximum number of iterations of the GLMM algorithm; default 20
Convergence criterion for iterative procedure; default 0.0001
Specifies fitting method (all, fixed): all indicates the method of Schall (1991); fixed indicates the marginal method of Breslow \& Clayton (1993) ; default all What adjustment to make to covariates for the REML analysis (mean, none); default mean
Number of blocks of internal memory to be set up for use by the REML algorithm; default 1
Whether to constrain variance components to be positive (none, positive); default posi
Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI
Limit on the number of iterations; default 30
Response variate to be analysed; must be set

```
BOUND = scalar
INITIAL = scalar or variate
NEWY = variate
OFFSET = variate
EXIT = scalar
SAVE =REML save structure
GLSAVE = pointer
```

Censoring threshold; must be set
Scalar or a variate providing starting values for the censored observations in the E-M algorithm; default BOUND+1 Saves a copy of the response variate with the censored observations replaced by their estimates
Offset variate
Exit status ( 0 for success, 1 for failure in the E-M algorithm, 2 for failure to fit the generalized linear mixed model) REML save structure from the analysis of the data with censored observations replaced by their estimates GLMM save structure from the analysis of the data with censored observations replaced by their estimates

## GPREDICTION procedure

Produces genomic predictions (breeding values) using phenotypic and molecular marker information (M. Malosetti, M.P. Boer \& S.J. Welham).

## Options

PRINT $=$ string token	What to print (summary); default summ
$\mathrm{PLOT}=$ string token	What to plot (scatterplot, pco); default scat, pco
MODELTYPE $=$ string token	Model to use to obtain the predictions (gblup, gaussian, exponential); default gblu
THETA $=$ variate	Values to use for the tuning parameter $\theta$ when the model is Gaussian or exponential
SIMILARITY $=$ symmetric matrix	Similarity matrix between individuals of the whole population
Parameters	
TRAIT $=$ variates	Quantitative trait to be analysed; must be set
GENOTYPES $=$ factors	Genotype factor; must be set
MKSCORES $=$ pointers	Marker scores
IDMGENOTYPES $=$ texts	Labels of the tested and untested genotypes
PREDICTIONS $=$ variates	Saves the predictions
NEWGENOTYPES $=$ factors	Factor to index the predictions
TESTED $=$ factors	Factor that classifies NEWGENOTYPES as part of the tested or the untested set
SAVE $=$ pointers	Pointer to REML save structures to save details of the analyses

## GRANDOM procedure

Generates pseudo-random numbers from probability distributions (D.M. Roberts \& P.W. Lane). Options

```
`}\mp@subsup{}{}{\dagger}\mathrm{ DISTRIBUTION = string token
```

NVALUES = scalar
$\mathrm{SEED}=$ scalar
MEAN $=$ scalar
VARIANCE $=$ scalar
LOWER $=$ scalar
UPPER $=$ scalar
LOCATION = scalar
${ }^{\dagger}$ SCALE $=$ scalar

Type of distribution required (beta, chisquare, exponential, F, gamma, logNormal, Normal, t, uniform, Weibull, expNormal, invNormal, skewNormal, Laplace, GEV, binomial, hypergeometric, Poisson); default Norm Number of values to generate; default 1
Seed to start random number generation; default set by CALCULATE or continued from previous generation Mean for distribution, except for Weibull or hypergeometric); default 0 for Normal distribution and 1 for Poisson and exponential, otherwise *
Variance for distribution, except for the Weibull or hypergeometric; must be positive; default *, except for Normal when default is 1
Lower bound for the uniform or beta distribution; default 0 Upper bound for the uniform or beta distribution; default 1 Location parameter for the log-Normal, gamma or Weibull distribution; default 0
Scale parameter for the Weibull distribution and exponentially

${ }^{\dagger}$ SHAPE $=$ scalar	Shape parameter for the Weibull, GEV and skew Normal distributions, must be positive; default 0 for GEV and 1 otherwise
ABETA $=$ scalar	First shape parameter for the beta distribution; must be positive; default 1
BBETA $=$ scalar	Second shape parameter for the beta distribution; must be positive; default 1
AGAMMA $=$ scalar	Location-scale parameter for the gamma distribution, must be positive, usually denoted by alpha or theta; default 1
BGAMMA $=$ scalar	Shape parameter for the gamma distribution, must be positive, usually denoted by beta or kappa; default 1
DF $=$ scalar	Number of degrees of freedom for the $t$ or chi distribution, must be 1 or greater; default 1
DFNUMERATOR $=$ scalar	Number of degrees of freedom of the numerator for the F distribution, must be 1.0 or greater; default 1
DFDENOMINATOR $=$ scalar	Number of degrees of freedom of the denominator for the $F$ distribution, must be 1.0 or greater; default 1
NBINOMIAL $=$ scalar	Number of binomial trials for the binomial distribution, must be positive; default 1
PROBABILITY $=$ scalar	probability of success for the binomial or hypergeometric distribution, must be positive and not greater than 1 ; default 0.5
NHYPERGEOMETRIC $=$ scalar	Number of elements for the hypergeometric distribution, must be positive; default 1
SSHYPERGEOMETRIC $=$ scalar	Sample size for the hypergeometric distribution, must be positive and less than NHYPERGEOMETRIC; default 1
Parameter	
NUMBERS $=$ scalar or variate	The generated numbers are returned here; if the length of the supplied structure is defined, it must equal the setting of the NVALUES option

modified Normal, must be positive, default 1
hape parameter for the Weibull, GEV and skew Norma otherwise
First shape parameter for the beta distribution; must be positive; default 1
econd shape parameter for the beta distribution; must be

Location-scale parameter for the gamma distribution, must be positive, usually denoted by alpha or theta; default 1
Shape parameter for the gamma distribution, must be positive nally denoted by beta or kappa, default must be 1 or greater; default 1
Number of degrees of freedom of the numerator for the F distribution, must be 1.0 or greater; default 1

恠 Number of binomial trials for the binomial distribution, must be positive; default 1
probability of success for the binomial or hypergeometric 0.5

Number of elements for the hypergeometric distribution, must be positive; default 1
Sample size for the hypergeometric distribution, must be positive and less than NHYPERGEOMETRIC; default 1

The generated numbers are returned here; if the length of the supplied structure is defined, it must equal the setting of the NVALUES option

## GRAPH directive

Produces scatter and line graphs on the terminal or line printer.
This directive was replaced in Release 10 by the directive LPGRAPH (with exactly the same options and parameters). It is currently retained as a synonym of LPGRAPH, but may be removed in a future release.

## GRCSR procedure

Generates completely spatially random points in a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

```
YPOLYGON = variates
```

YPOLYGON = variates
XPOLYGON = variates
XPOLYGON = variates
NPOINTS = scalars
NPOINTS = scalars
YCSR = variates
YCSR = variates
XCSR = variates
XCSR = variates
SEED = scalars

```
SEED = scalars
```

Vertical coordinates of each polygon; no default - this parameter must be set Horizontal coordinates of each polygon; no default - this parameter must be set
How many points to generate in each polygon; no default this parameter must be set
Variates to receive the vertical coordinates of the points that have been generated
Variates to receive the horizontal coordinates of the points that have been generated
Seeds for the random numbers used to generate the points; default 0

## GREJECTIONSAMPLE procedure

Generates random samples using rejection sampling (W. van den Berg).

## Options

PLOT $=$ string tokens
NVALUES $=$ scalar
PRDENSITY $=$ expression structure
$\mathrm{X}=$ identifier
XLOWER $=$ scalar

XUPPER $=$ scalar

PRENVELOPE $=$ expression structure

GRENVELOPE $=$ expression structure

MULTIPLIER $=$ scalar

NTRIES $=$ scalar

## Parameters

NUMBERS = variates
SEED $=$ scalars

What to plot (density, sample); default dens, samp
Size of each random sample; no default, must be set Calculation defining the probability density function $\mathrm{f}(x)$ to sample; no default, must be set
Data structure used inside PRDENSITY for the x-coefficient of the density function $\mathrm{f}(x)$ no default, must be set Lower bound of the region in which $\mathrm{f}(x)$ is non-negligible; default - 10
Upper bound of the region in which $\mathrm{f}(x)$ is non-negligible; default 10
Calculation defining the probability density function $\mathrm{g}(x)$ used to generate the sample; default !e (PRT (X; 60) )
Calculation to sample from the probability density $\mathrm{g}(x)$ used to generate the sample (note, PRENVELOPE and GRENVELOPE must either be both set, or both unset); default !e(GRT (NTRIES; 60))
Multiplier $M$ used in the definition of the envelope $M \times \mathrm{g}(x)$ that must always be greater than $\mathrm{f}(x)$; default 10
Number of random samples to take in each sampling step; default * i.e. determined automatically

Saves each random sample
Seed to use for the random numbers used to generate each random sample; default 0

## GRIBIMPORT procedure

Reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file (D.B. Baird).

```
PRINT = string token
OUTTYPE = string token
METHOD = string token
SERIAL = string token
LONGITUDERANGE = string token
```

MISSING $=$ scalar
GRID $=$ variate
ENDTIME $=$ string token
SCOPE $=$ string token

## Parameters

FILE $=$ texts
OUTFILE $=$ texts

RECORDS $=$ scalars or variates

MATCH $=$ texts
What information to print (catalogue); default cata Output file type (GEN, GSH, GWB, XLS, XLSX, TXT, CSV, RECORDS); default GWB
Whether to load data into the Genstat server after creating the file, or merely to create the file (create, load); default load Whether to store the records in series, in a single column, instead of in parallel columns (no, yes); default no What range to use for longitude (negative, positive); default posi
What value represents a missing value; default -999
Specifies limits on the longitude and latitude for the data to be read; default * i.e. read all grid points
Whether to keep the end time for each period when SERIAL = yes (yes, no); default no
Whether to create the data locally in a procedure that is using GRIBIMPORT, or globally in the whole program (local, global); default loca

Input file or URL to be read
Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded
The numbers of the records to read; default is to read all the records in the file
Text strings to match in the record descriptions; default *

## COLUMNS $=$ texts

ISAVE $=$ pointers
requests all the records selected by RECORDS
Names and/or type codes for the columns that are read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, \# for a variate, and \$ for a text), using a name of $' * '$ will cause a column to be dropped Saves the identifiers of the columns

## GRLABEL procedure

Randomly labels two or more spatial point patterns (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Options

```
PRINT = string token
```

SEED = scalar

## Parameters

OLDY $=$ variates

OLDX $=$ variates

NEWY $=$ variates

NEWX $=$ variates

What to print (summary); default summ
Seed for the random numbers used to create the random labellings; default 0

Vertical coordinates of two or more spatial point patterns; no default - this parameter must be set Horizontal coordinates of two or more spatial point patterns; no default - this parameter must be set Variates to receive the vertical coordinates of the spatial point patterns created by random labelling Variates to receive the horizontal coordinates of the spatial point patterns created by random labelling

## GRMNOMIAL procedure

Generates multinomial pseudo-random numbers (D.B. Baird).

## Options

NVALUES $=$ scalar	Number of values to generate   SEED $=$ scalar
Seed to generate the random numbers; default 0 continues an   existing sequence or initializes the sequence automatically if   no random numbers have been generated in this job	
Parameters	Probabilities for the categories
PROBABILITIES = variates or tables	Praves the random numbers   SUMBE $=$ factors
COUNTS $=$ tables	Saves counts of the numbers generated in each category

## GRMULTINORMAL procedure

Generates multivariate Normal pseudo-random numbers (P.W. Goedhart \& K.L. Moore). Options
\(\left.\left.$$
\begin{array}{ll}\text { NVALUES }=\text { scalar } & \begin{array}{l}\text { Number of values to generate; default } 1 \\
\text { MEANS }=\text { variate }\end{array} \\
\text { The mean for the multivariate Normal distribution; default is a } \\
\text { variate with values all equal to 0 }\end{array}
$$\right] \begin{array}{l}The variance/covariance matrix for the multivariate Normal <br>

distribution; default is to use an identity matrix\end{array}\right]\)| Seed to generate the random numbers; default 0 continues an |
| :--- |
| existing sequence or initializes the sequence automatically if |
| no symmetric matrix $=$ scalar |
| nom numbers have been generated in this job |

## Parameters

NUMBERS = pointers or matrices
Saves the random numbers as either a pointer to a set of variates or a matrix

## GROUPS directive

Forms a factor (or grouping variable) from a variate or text, together with the set of distinct values that occur.

NGROUPS $=$ scalar

LMETHOD $=$ string token

DECIMALS $=$ scalar

BOUNDARIES $=$ string token

REDEFINE $=$ string token

CASE $=$ string token

LDIRECTION $=$ string token

## OMITUNBOUNDED $=$ string token

## Parameters

VECTOR = variates or texts
$\mathrm{FACTOR}=$ factors

LIMITS $=$ variates or texts
LEVELS $=$ variates

LABELS $=$ texts

Number of groups to form when LIMITS is not specified; if NGROUPS is also unspecified, each distinct value (allowing for rounding) defines a group; default *
Defines how to form the levels variate if the setting of the VECTOR parameter is a variate, or the labels if it is a text; if LMETHOD=* no levels/labels are formed, and existing levels (for a variate VECTOR) or labels (for a text VECTOR) of an already declared FACTOR will be retained if still appropriate (given, minimum, median, maximum, limit); default medi Number of decimal places to which to round the VECTOR before forming the groups; default * i.e. no rounding Whether to interpret the LIMITS as upper or lower boundaries (upper, lower); default lowe Whether to allow a structure in the FACTOR list that has already been declared (e.g. as a variate or text) to be redefined (yes, no); default no
Whether the case of letters (small and capital) in text should be regarded as significant or ignored (significant, ignored); default sign
How to define the levels (for a variate VECTOR) or labels (for a text VECTOR) when LMETHOD = minimum, median or maximum (ascending, given); default asce
Whether to omit the (unbounded) group that occurs below the lowest limit when BOUNDARIES=lower, or above the final limit when BOUNDARIES=upper (yes, no); default no

Vectors whose values are to define the groups Structures to be defined as factors to save details of the groups; default * will, if REDEFINE=yes, cause the corresponding VECTOR itself to be defined as a factor Limits to define the groups
Variate to define the levels of each FACTOR if LMETHOD=give, or to save them otherwise
Text to define the labels of each FACTOR if LMETHOD=give, or to save them otherwise

## GRTHIN procedure

Randomly thins a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

OLDY $=$ variates
OLDX $=$ variates
NPOINTS $=$ scalars

NEWY $=$ variates

NEWX $=$ variates
SEED $=$ scalars

What to print (summary); default summ
Vertical coordinates of each spatial point pattern; no default this parameter must be set
Horizontal coordinates of each spatial point pattern; no default - this parameter must be set

How many points to return from each pattern; no default - this parameter must be set
Variates to receive the vertical coordinates of the randomly thinned patterns
Variates to receive the horizontal coordinates of the randomly thinned patterns
Seeds for the random numbers used to select the thinned points; default 0

## GRTORSHIFT procedure

Performs a random toroidal shift on a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

```
OLDY = variates
OLDX = variates Horizontal coordinates of each spatial point pattern; no default
 - this parameter must be set
 Vertical coordinates of the toroidal regions
 Horizontal coordinates of the toroidal regions
 Variates to receive the vertical coordinates of the randomly
 shifted patterns
 Variates to receive the horizontal coordinates of the randomly
 shifted patterns
 Seeds for the random numbers used to perform the shifts;
 default 0
```


## GSTATISTIC procedure

Calculates the gamma statistic of agreement for ordinal data (A.W. Gordon).

## Options

PRINT = string token	Whether to print the statistic with its associated information   and the resulting test (test); default test   Type of test required (twosided, positive, negative);   default twos
METHOD = string token	Tables of data each classified by the two variables (factors) of
Parameters $=$ tables	interest
STATISTIC = scalars	Save the value of gamma for each data table   SARIANCE $=$ scalars

## G2AEXPORT procedure

Forms a dbase file to transfer ANOVA output to Agronomix Generation II (R.W. Payne).

## Options

\(\left.$$
\begin{array}{ll}\text { PRINT = strings } \\
\text { REPLICATETERMS = formula } & \begin{array}{l}\text { Controls printed output (columns); default * i.e. none } \\
\text { Specifies the term or terms that define the replication in the } \\
\text { design }\end{array} \\
\text { METHOD = string } & \begin{array}{l}\text { How to form the means (loweststratum, comb ined); } \\
\text { default lowe }\end{array} \\
\text { ALPHALEVEL = scalar } & \begin{array}{l}\text { Alpha value to use when calculating least significant } \\
\text { differences; default 0.05 }\end{array}
$$ <br>
Number of tails in the calculation of least significant <br>

differences (1, 2); default 1\end{array}\right]\)| Save structure for the analysis from which the means \&c are to |
| :--- |
| be saved; default * takes the information from the most recent |
| ANOVA analysis |

## G2AFACTORS procedure

Redefines block and treatment variables as factors (R.W. Payne).

## No options

Parameter
FACTOR $=$ variates or texts $\quad$ Other variates or texts to convert into factors (if required)

## G2VEXPORT procedure

Forms a dbase file to transfer REML output to Agronomix Generation II (R.W. Payne).

## Options

PRINT $=$ strings	Controls printed output (columns); default * i.e. non
REPLICATETERMS $=$ formula	Specifies the term or terms that define the replication in the design
MODEL $=$ formula	Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms
OMITTERMS $=$ formula	Specifies terms to be excluded from the MODEL; default * i.e. none
FACTORIAL $=$ scalar	Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3
PRESENT $=$ identifiers	Lists factors for which averages should be taken across combinations that are present
WEIGHTS $=$ tables	One-way tables of weights classified by factors in the model; default *
ALPHALEVEL $=$ scalar	Alpha value to use when calculating least significant differences; default 0.05
TAIL $=$ scalar	Number of tails in the calculation of least significant differences (1, 2); default 1
SAVE $=$ REML save structure	Save structure for the analysis from which the means \&c are to be saved; default * takes the information from the most recent REML analysis
Parameters	
MEANTERM = formula	Defines the treatment term whose means are to be saved; no default (must be specified)
OUTFILE $=$ text	Name of the output file (dbf) to form; default * i.e. file not formed

## HANOVA procedure

Does hierarchical analysis of variance/covariance for unbalanced data (P.W. Lane).

## Options

\(\left.\left.$$
\begin{array}{ll}\text { PRINT = string token } \\
\text { INCHANNEL = scalar } & \begin{array}{l}\text { Which analyses to print (all, some, none); default all } \\
\text { Channel from which to read data; default * specifies that the } \\
\text { data values are already stored in the factors and variates }\end{array} \\
\text { specified by the parameters of HANOVA }\end{array}
$$\right] $$
\begin{array}{l}\text { Format for reading data; default * requests free format } \\
\text { ANALYSIS = symmetric matrix } \\
\text { SSPM = SSPM } \\
\text { FOE PRINT = some, this indicates which analyses to print } \\
\text { Parameters }\end{array}
$$ \begin{array}{l}Stores the corrected sums of squares and products; default * <br>
Stores the estimated variance and co-variance components; <br>

default *\end{array}\right]\)| Variates to be analysed |
| :--- |
| VARIATES = pointers |
| FACTORS = pointers |

## HBOOTSTRAP directive

Performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis (R.W. Payne).

## Options

\(\left.$$
\begin{array}{ll}\text { PRINT }=\text { string token } & \begin{array}{l}\text { Controls printed output (clusters, dendrograms; default * } \\
\text { i.e. none }\end{array}
$$ <br>
Criterion for forming clusters (singlelink, <br>
nearestneighbour, completelink, <br>
furthestneighbour, averagelink, mediansort, <br>

groupaverage); default sing\end{array}\right]\)	Similarity value below which clusters are not recorded; default

## HCLUSTER directive

Performs hierarchical cluster analysis.

## Options

PRINT $=$ string tokens	Printed output required (dendrogram, amalgamations); default * i.e. no printing
METHOD $=$ string token	Criterion for forming clusters (singlelink, nearestneighbour, completelink, furthestneighbour, averagelink, mediansort, groupaverage); default sing
CTHRESHOLD $=$ scalar	Clustering threshold at which to print formation of clusters; default * i.e. determined automatically
Parameters	
SIMILARITY $=$ symmetric matrices	Input similarity matrix for each cluster analysis
GTHRESHOLD $=$ scalars	Grouping threshold where groups are formed from the dendrogram
GROUPS $=$ factors	Stores the groups formed
PERMUTATION = variates	Permutation order of the units on the dendrogram
AMALGAMATIONS $=$ matrices	To store linked list of amalgamations

## HCOMPAREGROUPINGS procedure

Compares groupings generated, for example, from cluster analyses (R.W. Payne).

## Options

PRINT = string tokens	Controls printed output (indexes, tests); default inde
PLOT $=$ string	What to plot (histogram); default $*$
METHOD $=$ string tokens	Which indexes to calculate (arand, jaccard, rand); default
NTIMES = scalar	arand

## Parameters

```
FIRSTGROUPING = factors
SECONDGROUPING = factors
ESTIMATES = pointers
```

SEED $=$ scalars

PERMUTATIONESTIMATES = pointers

First set of groupings
Second set of groupings
Saves the values of the indexes calculated from the original data set
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically Saves the values of the indexes calculated from the permuted data sets

## HDISPLAY directive

Displays results ancillary to hierarchical cluster analyses: matrix of mean similarities between and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the most typical elements from each group.

## Option

PRINT $=$ string tokens Printed output required (neighbours, tree, typicalelements, gsimilarities); default tree

## Parameters

SIMILARITY $=$ symmetric matrices
NNEIGHBOURS $=$ scalars
NEIGHBOURS $=$ matrices
GROUPS $=$ factors
TREE $=$ matrices

GSIMILARITY $=$ symmetric matrices

Input similarity matrix for each cluster analysis
Number of nearest neighbours to be printed
Matrix to store nearest neighbours of each unit Indicates the groupings of the units (for calculating typical elements and mean similarities between groups)
To store the minimum spanning tree (as a series of links and corresponding lengths)
To store similarities between groups

## HEATUNITS procedure

Calculates accumulated heat units of a temperature dependent process (R.J. Reader, R.A. Sutherland \& K. Phelps).

## Options

METHOD $=$ string token
LATITUDE $=$ scalar
RATE $=$ variate
TEMPERATURE $=$ variate
PARAMETERS $=$ variate

## Parameters

MINTEMPERATURE $=$ variates
MAXTEMPERATURE $=$ variates
FIRSTDAY $=$ scalars
HEATUNITS $=$ variates

Temperature/time relationship to be used (sawtooth, cosine, linsine, expsine); default sawt
Latitude at which temperatures were measured; default 52.205 N \{Wellesbourne, U.K.\}
Value of rate relationship at cardinal temperatures
Cardinal temperatures
Parameters $a, b, c$ ( $a, c$ in hours) for the expsine method
Minimum temperature on each day
Maximum temperature on each day
Day of year of first temperature recorded
Development on each day

## HELP directive

Provides help information about Genstat commands and functions.

## No options

## Parameter

TOPIC $=$ texts
Single-valued texts indicating the command or function about which the information is required

## HFAMALGAMATIONS procedure

Forms an amalgamations matrix from a minimum spanning tree (R.W. Payne).

## No options

## Parameters

TREE $=$ matrices
AMALGAMATIONS $=$ matrices

Minimum spanning tree
Saves the amalgamation matrices formed from the minimum spanning trees

## HFCLUSTERS procedure

Forms a set of clusters from an amalgamations matrix (R.W. Payne).

Options

CLIMIT = scalar	Similarity value below which clusters are not formed; default 0   ORDERING = string token
Now to order the clusters (join, lexicographic); default   lexi	
Parameters	Saves the number of clusters that have been formed
AMALGAMATIONS = matrices	Amalgamation matrices
CLUSTERS = pointers	Saves the clusters
SIMILARITIES = variates	Saves the similarity values at which the clusters are formed

Similarity value below which clusters are not formed; default 0
How to order the clusters (join, lexicographic); default lexi
Saves the number of clusters that have been formed
Amalgamation matrices

Saves the similarity values at which the clusters are formed

## HGANALYSE procedure

Analyses data using a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

PRINT $=$ string tokens	Controls printed output (model, fixedestimates, randomestimates, dispersionestimates, likelihoodstatistics, deviance, waldtests, fittedvalues, monitoring, dhgmonitoring); default mode, fixe, disp, like, devi, moni
LMETHOD $=$ string token	Whether to use exact likelihood or extended quasi likelihood to obtain the $y$-variate and weights for the dispersion model (exact, eql); default exac
SEMETHOD = string token	Method to use to calculate the se's for the dispersion estimates (approximate, profilelikelihood); default appr
DMETHOD $=$ string token	Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto
EMETHOD = string token	Extrapolation method to use (aitken, adjustedaitken); default aitk
MLAPLACEORDER $=$ scalar	Order of Laplace approximation to use in the estimation of the mean model ( 0 or 1 ); default 0
DLAPLACEORDER $=$ scalar	Order of Laplace approximation to use in the estimation of the dispersion components ( 0,1 or 2 ); default 0
MAXCYCLE $=$ scalars	Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50
EXIT $=$ scalar	Exit status ( 0 for success, 1 for failure to converge)
TOLERANCE $=$ scalar	Criterion for convergence; default 0.0005
ETOLERANCE $=$ scalar	Maximum size of ratio of the original to the new estimates

## GROUPTERM $=$ formula

## Parameters

$\mathrm{Y}=$ variate
NBINOMIAL $=$ variate
RESIDUALS $=$ variate
FITTEDVALUES $=$ variate
SAVE $=$ pointer
allowed in Aitken extrapolation; default 7.5
Random term to use as groups when fitting the augmented mean model; default * i.e. none

Response variate (must be one only)
Total numbers for binomial data
Saves the residuals
Saves the fitted values
Saves details of the analysis for use in subsequent HGDISPLAY, HGKEEP, HGPLOT or HGPREDICT statements

## HGDISPLAY procedure

Displays results from a hierarchical or double hierarchical generalized linear model analysis (R.W.
Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

PRINT = string tokens	Controls printed output (model, fixedestimates,   randomestimates, dispersionestimates,   likelihoodstatistics, deviance, waldtests,
SEMETHOD = string token	fittedvalues); default *
Method to use to calculate the se's for the dispersion estimates	
(approximate, profilelikelihood); default appr	
DMETHOD = string token	Method to use for the adjusted profile likelihood when   calculating the likelihood statistics (automatic, choleski,
lrv); default auto	

## No parameters

## HGDRANDOMMODEL procedure

Defines the random model in a hierarchical generalized linear model for the dispersion in a double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

DISTRIBUTION $=$ string token
LINK $=$ string token
RANDOMTERM $=$ formula

PHIMETHOD $=$ string token

## Parameters

> TERMS $=$ formula DLINK $=$ string tokens  DFORMULA $=$ formula structures DOFFSET $=$ variates LMATRIX $=$ matrices

DDISPERSION $=$ scalar
FDISPERSION $=$ scalar

Distribution for the random model (beta, normal, gamma, inversegamma); default norm
Link for the random model (identity, logarithm, logit, reciprocal); default iden
Random term whose dispersion is being modelled; if unset, the model is assumed to be for the residual dispersion parameter (phi)
Whether to fix or estimate the residual dispersion parameter in the dispersion HGLM (fix, estimate); default fix

Random model
Link for the dispersion model for each random term
(logarithm, reciprocal); default loga
Dispersion model for each random term; default * i.e. none
Offset variate for dispersion model for each random term; default * i.e. none
Linear transformation to apply to design matrix $\mathbf{Z}$ of each random term, in order to define correlations between its effects; default * i.e. none
Dispersion parameter to use in the dispersion model for each random term; default 1
Fixed value for the dispersion parameter of each random term; default $!s(*)$ i.e. dispersion is estimated

## HGFIXEDMODEL procedure

Defines the fixed model for a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

DISTRIBUTION $=$ string token	Distribution of the data (binomial, poisson, normal, gamma); default norm
LINK $=$ string token	Link for the fixed model (identity, logarithm, logit, reciprocal, probit, complementaryloglog); default iden
DLINK $=$ string token	Link for the dispersion model (logarithm, reciprocal); default loga
DISPERSION $=$ scalar	Value of dispersion parameter in calculation of s.e.s etc; default * for DIST=norm or gamm, and 1 for DIST=pois or bino
DTERMS $=$ formula	Dispersion model; default * i.e. none
CONSTANT $=$ string token	How to treat the constant (estimate, omit) default esti
FACTORIAL $=$ scalar	Limit on number of variates and/or factors in a fixed model term; default 3
WEIGHTS = variate	Prior weights; default * i.e. 1
OFFSET $=$ variate	Offset variate; default * i.e. none
DOFFSET $=$ variate	Offset variate for dispersion model; default * i.e. none
DDISPERSION $=$ scalar	Dispersion parameter to use in a dispersion model for the residual dispersion parameter phi; default 1
IDISPERSION $=$ scalar	Initial value for the residual dispersion parameter phi; default * i.e. formed automatically
Parameter	
TERMS $=$ formula	Fixed model

Distribution of the data (binomial, poisson, normal, gamma); default norm
Link for the fixed model (identity, logarithm, logit, reciprocal, probit, complementaryloglog); default Link for the dispersion model (logarithm, reciprocal); default loga
Value of dispersion parameter in calculation of s.e.s etc;
default * for DIST=norm or gamm, and 1 for DIST=pois or bino

How to treat the constant (estimate, omit) default esti
Limit on number of variates and/or factors in a fixed model term; default 3
Prior weights; default * i.e.

Offset variate for dispersion model; default * i.e. none
Dispersion parameter to use in a dispersion model for the residual dispersion parameter phi; default 1
Initial value for the residual dispersion parameter phi; default

Fixed model

## HGFTEST procedure

Calculates likelihood tests for fixed terms in a hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

PRINT $=$ string token	Controls printed output (tests); default test
FACTORIAL $=$ scalar	Limit on number of factors in the model terms generated from the TERMS parameter
LMETHOD $=$ string token	Whether to use exact likelihood or extended quasi likelihood to obtain the $y$-variate and weights for the dispersion model (exact, eql); default is to use the same setting as in the original analysis
DMETHOD $=$ string token	Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto
EMETHOD $=$ string token	Extrapolation method to use (aitken, adjustedaitken); default is to use the same setting as in the original analysis
MLAPLACEORDER $=$ scalar	Order of Laplace approximation to use in the estimation of the mean model ( 0 or 1 ); default is to use the same setting as in the original analysis
DLAPLACEORDER $=$ scalar	Order of Laplace approximation to use in the estimation of the dispersion components ( 0,1 or 2 ); default is to use the same setting as in the original analysis
MAXCYCLE $=$ scalars	Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50
EXIT $=$ scalar	Exit status ( 0 for success, 1 for failure to converge with any of the fixed terms)

```
TOLERANCE \(=\) scalar
ETOLERANCE \(=\) scalar
SAVE \(=\) pointer
```


## Parameters

```
TERMS = formula
TESTSTATISTIC = pointer or scalar
DF \(=\) pointer or scalar
Criterion for convergence; default is to use the same setting as in the original analysis
Maximum size of ratio of the original to the new estimates
allowed in Aitken extrapolation; default is to use the same setting as in the original analysis
Save structure from the original analysis
Terms to test
Saves the test statistics
Saves the degrees of freedom
```


## HGGRAPH procedure

Draws a graph to display the fit of an HGLM or DHGLM analysis (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

Options
GRAPHICS $=$ string token

TITLE $=$ text

WINDOW $=$ number

SCREEN $=$ string token

BACKTRANSFORM = string token

OMITRESPONSE $=$ string token

SAVE $=$ pointer

## Parameters

INDEX $=$ variates or factors

GROUPS $=$ factors

Type of graphics to use (lineprinter, highresolution); default high
Title for the graph; default * sets an appropriate title automatically
Which high-resolution graphics window to use; default 4 (redefined if necessary to fill the frame)
Whether to clear the graphics screen before plotting (clear, keep); default clea
What back-transformation to make (link, none, axis); default none
Whether to omit the adjusted response values (no, yes); default no
Specifies the save structure (from HGANALYSE) of the analysis from which to predict; default uses the most recent analysis

Which variate or factor to display along the x -axis; default * if GROUPS is set, otherwise INDEX is set to the first variate in the fixed model
Factor to define groups of points to display; default * if INDEX is set, otherwise GROUPS is set to the first factor in the fixed model

## HGKEEP procedure

Saves information from a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

MODELTYPE $=$ string token
RMETHOD $=$ string token
DMETHOD $=$ string token

IGNOREFAILURE $=$ string token
SAVE $=$ pointer

## Parameters

RANDOMTERM = formula

Type of model from which to save information (mean, dispersion); default mean
Type of residuals to save using the RESIDUALS parameter (deviance, Pearson, simple); default devi Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto
Whether to save information even if the fitting of the HGLM failed to converge (yes, no); default no
Save structure (from HGANALYSE) to provide details of the analysis; if omitted, information is saved from the most recent analysis

Random model terms from whose analysis the information is to be saved

```
DHGRANDOMTERM = formula
RESIDUALS \(=\) variates
FITTEDVALUES \(=\) variates
LEVERAGES \(=\) variates
ESTIMATES \(=\) variates
SE \(=\) variates
VCOVARIANCE = symmetric matrices
DEVIANCE \(=\) scalars or tables
DF \(=\) scalars or tables
ITERATIVEWEIGHTS = variates
LINEARPREDICTOR = variates
YADJUSTED \(=\) variates
LIKELIHOODSTATISTICS = variates
LDF \(=\) variates
Random model terms in a DHGLM from whose (HGLM) analysis the information is to be saved
RESIDUALS \(=\) variates Residuals
FITTEDVALUES = variates
Fitted values
Leverages
ESTIMATES \(=\) variates
Estimates of parameters
Standard errors of the estimates
Variance-covariance matrix of each set of estimates
Scaled deviances (in a table) for a mean model, or residual
deviance (in a scalar) for a dispersion model
Residual degrees of freedom
Iterative weights
Linear predictors
Adjusted responses
Likelihood statistics
Numbers of fixed and random parameters in the mean and dispersion models
```


## HGNONLINEAR procedure

Defines nonlinear parameters for the fixed model of a hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

CALCULATION $=$ expression structures	Calculation of explanatory variates involving nonlinear
	parameters
METHOD $=$ string token	Algorithm for fitting the nonlinear model (GaussNewton,
NewtonRaphson, FletcherPowell); default Gaus	
NewS $=$ variates	Vectors involved in the calculations (data vectors or factors or
	derived vectors that appear in the fixed model)

## Parameters

PARAMETER $=$ scalars
LOWER $=$ scalars Lower bound for each parameter
UPPER = scalars
STEPLENGTH = scalars
INITIAL $=$ scalars
DELTA $=$ scalars

Calculation of explanatory variates involving nonlinear meters NewtonRaphson, FletcherPowell); default Gaus Vectors involved in the calculations (data vectors or factors or derived vectors that appear in the fixed model)

Nonlinear parameters in the model Upper bound for each parameter Initial step length for each parameter Initial value for each parameter Parameter increment to use when calculating numerical derivatives

## HGPLOT procedure

Produces model-checking plots for a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

MODELTYPE $=$ string token

RANDOMTERM $=$ formula
DHGRANDOMTERM $=$ formula
RMETHOD $=$ string token
INDEX $=$ variate or factor
GRAPHICS $=$ string token
TITLE $=$ text
SAVE $=$ pointer

Type of model for which plots are required (mean, dispersion); default mean
Random term whose residuals are to be plotted; default * i.e. the residuals from the full model
Random model term in a DHGLM whose residuals are to be plotted; default *
Type of residual to use (deviance, Pearson, simple); default devi
X-values to use for an index plot; default! (1,2...)
What type of graphics to use (lineprinter, highresolution); default high
Overall title for the plots; if unset, the identifier of the yvariate is used
Specifies the analysis (by HGANALYSE) from which the residuals and fitted values are to be taken; by default they are
taken from the most recent analysis

## Parameters

METHOD $=$ string tokens

PEN $=$ scalars, variates or factors

Types of graph (up to four out of the six possible) to be plotted (histogram, fittedvalues, absresidual, normal, halfnormal, index); default hist, fitt, norm, absr Pen(s) to use for each plot

## HGPREDICT procedure

Forms predictions from a hierarchical or double hierarchical generalized linear model analysis (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

PRINT $=$ string token	What to print (description, predictions, se, sed, vcovariance); default desc, pred, se
COMBINATIONS $=$ string token	Which combinations of factors in the current model to include (full, present, estimable); default esti
ADJUSTMENT $=$ string token	Type of adjustment (marginal, equal); default marg
WEIGHTS = table	Weights classified by some or all of the factors in the model; default *
OFFSET $=$ scalar	Value of offset on which to base predictions; default mean of offset variate
METHOD $=$ string token	Method of forming margin (mean, total); default mean
ALIASING $=$ string token	How to deal with aliased parameters (fault, ignore); default faul
BACKTRANSFORM $=$ string token	What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default none
NOMESSAGE $=$ string tokens	Which warning messages to suppress (dispersion, nonlinear); default *
NBINOMIAL $=$ scalar	Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value $n$ greater than one allows predictions to be made of the number of "successes" out of $n$, whereas the value 1 predicts the proportion of successes); default 1
PREDICTIONS $=$ table or scalar	To save the predictions; default *
$\mathrm{SE}=$ table or scalar	To save standard errors of predictions; default *
SED $=$ symmetric matrix	To save matrices of standard errors of differences between predictions; default *
VCOVARIANCE $=$ symmetric matrix	To save variance-covariance matrices of predictions; default *
SAVE $=$ pointer	Specifies the save structure (from HGANALYSE) of the analysis from which to predict; default uses the most recent analysis
Parameters	
CLASSIFY $=$ vectors	Variates and/or factors to classify table of predictions
LEVELS = variates or scalars	To specify values of variates, levels of factors
NEWFACTOR = identifiers	Identifiers for new factors that are defined when LEVELS are specified

## HGRANDOMMODEL procedure

Defines the random model for a hierarchical or double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

DISTRIBUTION $=$ string token $\quad$ Distribution for the random model (beta, normal, gamma, inversegamma); default norm
LINK $=$ string token

## Parameters

TERMS $=$ formula

Link for the random model (identity, logarithm, logit, reciprocal); default iden

Random model

DLINK $=$ string tokens	Link for the dispersion model for each random term (logarithm, reciprocal); default loga
DFORMULA $=$ formula structure	Dispersion model for each random term; default * i.e. none
DOFFSET $=$ variates	Offset variate for dispersion model for each random term; default * i.e. none
LMATRIX $=$ matrices	Linear transformation to apply to design matrix $\mathbf{Z}$ of each random term, in order to define correlations between its effects; default * i.e. none
DDISPERSION $=$ scalar	Dispersion parameter to use in the dispersion model for each random term; default 1
FDISPERSION $=$ scalar	Fixed value for the dispersion parameter of each random term; default ! $s(*)$ i.e. dispersion is estimated
IDISPERSION $=$ scalar	Initial value for the dispersion parameter for each random term; default * i.e. formed automatically

## HGRTEST procedure

Calculates likelihood tests for random terms in a hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

PRINT $=$ string token
LMETHOD $=$ string token

DMETHOD $=$ string token

EMETHOD = string token
MLAPLACEORDER = scalar

DLAPLACEORDER $=$ scalar

MAXCYCLE $=$ scalars

EXIT $=$ scalar
TOLERANCE $=$ scalar

ETOLERANCE $=$ scalar

GROUPTERM $=$ formula

SAVE $=$ pointer

## Parameters

TERMS = formula
TESTSTATISTIC = pointer or scalar
DF $=$ pointer or scalar

Controls printed output (tests); default test
Whether to use exact likelihood or extended quasi likelihood to obtain the $y$-variate and weights for the dispersion model (exact, eql); default is to use the same setting as in the original analysis
Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto
Extrapolation method to use (aitken, adjustedaitken); default is to use the same setting as in the original analysis Order of Laplace approximation to use in the estimation of the mean model ( 0 or 1 ); default is to use the same setting as in the original analysis
Order of Laplace approximation to use in the estimation of the dispersion components ( 0,1 or 2 ); default is to use the same setting as in the original analysis
Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50
Exit status ( 0 for success, 1 for failure to converge for any of the random terms)
Criterion for convergence; default is to use the same setting as in the original analysis
Maximum size of ratio of the original to the new estimates allowed in Aitken extrapolation; default is to use the same setting as in the original analysis
Random term to use as groups when fitting the augmented mean model; default is to use the same setting as in the original analysis
Save structure from the original analysis
Terms to test
Saves the test statistics
Saves the degrees of freedom

## HGSTATUS procedure

Displays the current HGLM model definitions (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh). Option
SAVE $=$ pointer $\quad$ Save structure (from HGANALYSE) to provide details of the HGLM; if omitted, information is printed for the most recently defined or fitted HGLM

## No parameters

## ${ }^{\dagger}$ HGTOBITPOISSON procedure

Uses the Tobit method to fit a hierarchical generalized linear model with censored Poisson data (R.W. Payne).

## Options

PRINT $=$ string tokens

LMETHOD $=$ string token

SEMETHOD = string token

DMETHOD $=$ string token

EMETHOD = string token

MLAPLACEORDER $=$ scalar

DLAPLACEORDER $=$ scalar

MAXCYCLE $=$ scalar

TOLERANCE $=$ scalar
DIRECTION $=$ string token
HGMAXCYCLE $=$ scalars

HGTOLERANCE $=$ scalar
ETOLERANCE $=$ scalar
GROUPTERM $=$ formula

## Parameters

$\mathrm{Y}=$ variate
BOUND $=$ scalar
INITIAL $=$ scalar or variate

NEWY $=$ variate
$\mathrm{EXIT}=$ scalar

SAVE $=$ pointer

> Controls printed output (model, fixedestimates, randomestimates, dispersionestimates, likelihoodstatistics, deviance, waldtests, fittedvalues, monitoring, hgmonitoring, dhgmonitoring, censored); default mode, fixe, disp, devi, like, cens

Whether to use exact likelihood or extended quasi likelihood to obtain the $y$-variate and weights for the dispersion model (exact, eql); default exac Method to use to calculate the se's for the dispersion estimates (approximate, profilelikelihood); default appr Method to use for the adjusted profile likelihood when calculating the likelihood statistics (automatic, choleski, lrv); default auto Extrapolation method to use (aitken, adjustedaitken); default aitk
Order of Laplace approximation to use in the estimation of the mean model ( 0 or 1 ); default 0
Order of Laplace approximation to use in the estimation of the dispersion components ( 0,1 or 2 ); default 0
Maximum number of iterations of the E-M algorithm; default 100
Convergence criterion for the E-M algorithm; default 0.001
Whether the data are left or right censored (left, right); default righ
Maximum number of iterations of the hierarchical generalized linear model fits, and maximum number of iterations in the fitting of the mean and dispersion models; default 99,50
Criterion for convergence; default 0.0005
Maximum size of ratio of the original to the new estimates allowed in Aitken extrapolation; default 7.5
Random term to use as groups when fitting the augmented mean model; default * i.e. none

Response variate to be analysed; must be set Censoring threshold; must be set Scalar or a variate providing starting values for the censored observations in the E-M algorithm; default BOUND+1
Saves a copy of the response variate with the censored observations replaced by their estimates
Exit status ( 0 for success, 1 for failure in the E-M algorithm, 2 for failure to fit the generalized linear mixed model)
Saves details of the analysis for use in subsequent HGDISPLAY, HGKEEP, HGPLOT or HGPREDICT statements

## HGWALD procedure

Prints or saves Wald tests for fixed terms in an HGLM (R.W. Payne, Y. Lee, J.A. Nelder \& M. Noh).

## Options

```
PRINT = string token Controls printed output (waldtests); default wald
FACTORIAL = scalar
SAVE = pointer Specifies the save structure (from HGANALYSE) of the analysis
 from which to calculate the tests; default uses the most recent
 analysis
Parameters
TERMS = formula
 Model terms for which tests are required
WALDSTATISTIC = scalar or pointer to scalars
 Saves Wald statistics
DF = scalar or pointer to scalars Saves d.f. of Wald statistics
```


## HISTOGRAM directive

Produces histograms of data on the terminal or line printer.
This directive was replaced in Release 10 by the directive LPHISTOGRAM (with exactly the same options and parameters). It is currently retained as a synonym of LPHISTOGRAM, but may be removed in a future release.

## HLIST directive

Lists the data matrix in abbreviated form.

## Options

\(\left.$$
\begin{array}{ll}\text { GROUPS }=\text { factor } & \begin{array}{l}\text { Defines groupings of the units; used to split the printed table at } \\
\text { appropriate places and to label the groups; default * }\end{array} \\
\begin{array}{l}\text { UNITS }=\text { text } \text { or variate } \\
\text { Parameters }\end{array} & \text { Names for the rows (i.e. units) of the table; default * } \\
\text { DATA }=\text { variates or factors } \\
\text { TEST }=\text { string tokens }\end{array}
$$ \quad \begin{array}{l}The data variables <br>
Test type, defining how each variable is treated in the <br>
calculation of the similarity between each unit <br>

(simplematching, jaccard, russellrao, dice,\end{array}\right\}\)| antidice, sneathsokal, rogerstanimoto, cityblock, |
| :--- |
| manhattan, ecological, euclidean, pythagorean, |
| minkowski, divergence, canberra, braycurtis, |
| RANGE = scalars |
| soergel); default *ignores that variable <br> Range of possible values of each variable; if omitted, the <br> observed range is taken |

## HPCLUSTERS procedure

Prints a set of clusters (R.W. Payne).

## Option

UNITS $=$ variate or text
Names to use for the units in the clusters

## Parameters

CLUSTERS $=$ pointers	Clusters to print
EXTRA $=$ pointers	Extra information to print

## HREDUCE directive

Forms a reduced similarity matrix (referring to the GROUPS instead of the original units).

## Options

PRINT $=$ string token	Printed output required (similarities); default * i.e. no
METHOD $=$ string token	Method used to form the reduced similarity matrix (first,

```
last, mean, minimum, maximum, zigzag); default
firs
```


## Parameters

SIMILARITY $=$ symmetric matrices $\quad$ Input similarity matrix REDUCEDSIMILARITY = symmetric matrices

Output (reduced) similarity matrix
GROUPS $=$ factors $\quad$ Factor defining the groups
PERMUTATION $=$ variates
Permutation order of units (for METHOD = firs, last or zigz)

## HSUMMARIZE directive

Forms and prints a group by levels table for each test together with appropriate summary statistics for each group.

## Option

GROUPS $=$ factor $\quad$ Factor defining the groups; no default i.e. this option must be specified

## Parameters

```
DATA = variates or factors
TEST = string tokens
```

RANGE $=$ scalars

The data variables
Test type, defining how each variable is treated in the calculation of the similarity between each unit (simplematching, jaccard, russellrao, dice, antidice, sneathsokal, rogerstanimoto, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variable Range of possible values of each variable; if omitted, the observed range is taken

## IDENTIFY procedure

Identifies an unknown specimen from a defined set of objects (R.W. Payne).
Options

PRINT $=$ string tokens	Controls printed output (identification, transcript); default iden, tran
$\mathrm{METHOD}=$ string token	Type of run (batch, interactive); if this is not set IDENTIFY checks whether the run of Genstat itself is batch or interactive
TAXA $=$ text or factor	Names for the taxa (i.e. the objects); default uses the positive integers 1, 2...
NMISTAKE $=$ scalar	Number of mistakes to allow for; default 0
IDENTIFICATION = text	Saves the names of the taxa that are identified; default * i.e. not saved
DIFFERENCES = variate	Saves the number of differences between the observed character states and those that can be displayed by each taxon; default * i.e. not saved
Parameters	
CHARACTER $=$ factors or tables	Define the characteristics of the taxa; must be set
OBSERVATION $=$ scalars or texts	Can define an observation for each character; default * i.e. none
COST $=$ scalars	Costs of observing each character; default 1

## IF directive

Introduces a block-if control structure.

## No options

Parameter
expression
Logical expression, indicating whether or not to execute the first set of statements.

## IFUNCTION procedure

Estimates implicit and/or explicit functions of parameters (W.M. Patefield).

## Options

PRINT $=$ string token	What to print (estimates, correlations, monitoring); default esti
NOMESSAGE $=$ string token	Which warning messages to suppress (parameter, convergence); default *
NPARAMETER $=$ scalar	Number of parameters; default zero
MAXCYCLE $=$ scalar	Maximum number of iterations; default 20
STRINGENCY $=$ scalar	Stringency of tests for convergence, $0,1,2 \ldots$ etc; default 5
EXITCONTROL $=$ string token	Control for exit on fault detection (job, procedure); default job for batch jobs, proc for interactive
ZCALCULATION $=$ expression structures Specify the calculation of ZERO and DZBIMPLICIT	
DZPCALCULATION = expression structures	
	Specify the calculation of DZBPARAMETER
ECALCULATION = expression structures	Specify the calculation of EXPLICIT, DEBPARAMETER and DEBIMPLICIT

## Parameters

	Implicit functions
INITIAL $=$ variate	Initial values for IMPLICIT functions
LOWER $=$ variate	Lower bounds to IMPLICIT functions; default - $10^{10}$
UPPER $=$ variate	Upper bounds to IMPLICIT functions; default $+10^{10}$
VCOVARIANCE $=$ symmetric matrix	Variance-covariance matrix of parameter estimates
zERO $=$ variate	Equations defining implicit functions (values calculated by ZCALCULATION)
DZBIMPLICIT $=$ matrix	First derivatives of equations ZERO with respect to implicit functions IMPLICIT (values calculated by ZCALCULATION); rows correspond to ZERO, columns correspond to IMPLICIT
DZBPARAMETER $=$ matrix	First derivatives of equations ZERO with respect to parameters (must not be set for NPARAMETER=0; values calculated by DZPCALCULATION); rows correspond to ZERO, columns to parameters
DIBPARAMETER $=$ matrix	First derivatives of IMPLICIT functions with respect to parameters (must not be set for NPARAMETER=0); rows correspond to IMPLICIT, columns correspond to parameters
EXPLICIT $=$ variate or pointer to scalars	
	Explicit functions of parameters and/or implicit functions (values calculated by ECALCULATION)
DEBPARAMETER $=$ matrix	First partial derivatives of EXPLICIT functions with respect to parameters (values calculated by ECALCULATION); rows correspond to EXPLICIT, columns correspond to parameters
DEBIMPLICIT $=$ matrix	First partial derivatives of EXPLICIT functions with respect to IMPLICIT functions (values calculated by ECALCULATION); rows correspond to EXPLICIT, columns correspond to IMPLICIT
DFBPARAMETER $=$ matrix	First derivatives of ESTIMATES with respect to parameters; rows correspond to ESTIMATES, columns correspond to parameters
ESTIMATES $=$ variate	Estimates of IMPLICIT and EXPLICIT functions
$\mathrm{SE}=$ variate	Standard errors of ESTIMATES
CORRELATIONS $=$ symmetric matrix	Correlation matrix of EStimates
FCOVARIANCE $=$ symmetric matrix	Variance-covariance matrix of ESTIMATES

## IMPORT procedure

Reads data from a foreign file format and loads it or converts it to a spreadsheet file (D.B. Baird). Options
PRINT $=$ string token
OUTTYPE $=$ string token
METHOD $=$ string token
IMETHOD $=$ string token

## ENDSTATEMENT $=$ string token

SPSSMV $=$ string token

MISSING $=t e x t$

FORDER $=$ string token
TEXTCONVERSION $=$ string token

KEEPEMPTY $=$ string tokens

NAMEROW $=$ scalar

EMETHOD = string token

EXTRAROW $=$ scalar

PREFIX $=$ text

TEMPMISSING $=$ string token

INOPTIONS $=$ text

OUTOPTIONS $=$ text
RGBMETHOD $=$ string token

SEPARATORS $=$ text
$\mathrm{SCOPE}=$ string token

> IPREFIX $=$ text
> TRANSPOSE $=$ string token

UNICODE $=$ string token

COLUNICODENAMES $=$ string token

UNINAME $=t e x t$

What to print (catalogue, summary); default cata Output file type (GEN, GSH, GWB, XLS, XLSX, TXT, CSV, SHEETS); default GWB
Whether to load data into the Genstat server after creating the file, or merely to create the file (create, load); default load How identifiers are to be specified for the columns (read, supply, none, overlay); default supply if coLumis is set (and specifies names rather than just types), otherwise read Ending statement for a type GEN output file (return, endbreak); default retu
What to do with SPSS missing value codes (ignore, convert); default conv
What labels represent missing values in Excel, Quattro or Lotus files; default ' *'
The order in which to define the labels or levels of a factor (sorted, unsorted); default sort
How to convert text to numbers for the columns (strict, single, common, standard, lax); default stan Whether to retain any empty rows or columns found in the data (rows, columns, none); default none
The row number within an Excel or Quattro spreadsheet which contains the column names (IMETHOD must be unset or set to read); default, the first row in CELLRANGE
Whether to read column descriptions/extra from Excel, SigmaPlot or Quattro spreadsheets (read, none); default none
The row number within an Excel or Quattro spreadsheet which contains the column descriptions (EMETHOD must be set to read); default, the second row in CELLRANGE
The string with which to prefix numerical column names; default ' $\%$ '
Whether to read temporarily missing values as missing (yes, no); default no
Optional input file arguments to be passed to the Dataload.dll
Optional output file arguments to be passed to the Dataload.dll
How to read colour values (combined, separate, matrix); default sepa
Alternative separators to use in text or csv files
Whether to create the data locally in a procedure that is using IMPORT, or globally in the whole program (local, global); default loca
Prefix to use with unnamed columns, default ' C ' Whether to transpose the rows and columns of the input file (yes, no); default no
What to do with Unicode characters found e.g. in Excel XLSX input files (utf8, typeset, ascii, remove); default utf8
How to convert Unicode column names (suffix, extra, ignore) default suff
Name of the pointer for Unicode column names used as suffixes; default ' C'
What content to read from an Excel XLSX file (values,

	formulae, forecolour, backcolour, fontname, style, size); default valu
Parameters	
FILE $=$ texts	Input file or URL to be read
OUTFILE $=$ texts	Name of the output file to be created; if this is not provided a temporary file will be created, and then deleted if the data are loaded
SHEETNAME $=$ texts or scalars	Name of a spreadsheet worksheet or named range, or number of a worksheet within the file; default is the first sheet in the file
CELLRANGE $=$ texts	Cell range within a worksheet, giving the top left and bottom right cell in the format XXNN : XXNN where XX = A -IV , NN $=1$ - 64384; default * requests all data on the sheet
COLUMNS $=$ texts	Names and/or type codes for the columns read (the type of column can be forced by ending the column name, if supplied, with the code ! for a factor, \# for a variate, and \$ for a text), using a name of ' ${ }^{\prime}$ ' will cause a column to be dropped
ISAVE $=$ pointers	Saves the identifiers of the columns
START $=$ texts	Contents of a cell in a spreadsheet file or a line in a text file from which to start reading
END $=$ texts	Contents of a cell in a spreadsheet file or a line in a text file at which to end reading
ANCILLARY $=$ texts	Extra information returned by some file formats (currently only population type from QTL location files)
ROWSELECTION = variates	Numbers of the rows to import; if unset, all rows are imported
COLSELECTION $=$ variates or texts	Numbers or names of the columns to import; if unset, all the columns are imported

## INPUT directive

Specifies the input file from which to take further statements.

## Options

PRINT $=$ string tokens

REWIND = string token
Parameter
scalar

What output to generate from the statements in the file
(statements, macros, procedures, unchanged); default stat
Whether to rewind the file (yes, no); default no

Channel number of input file

## INSIDE procedure

Determines whether points lie within a specified polygon (S.A. Harding).

## Option

TOLERANCE $=$ scalar

## Parameters

$Y=$ variates $\quad Y$ coordinates of points
$X=$ variates $\quad X$ coordinates of points
YPOLYGON $=$ variates
XPOLYGON $=$ variates
INSIDE $=$ variates
Y coordinates of polygon
X coordinates of polygon

Value used for testing against zero; default $10^{-4}$

Indicate whether points are inside (1) the polygon, outside $(-1)$ or on an edge (0)

## INTERPOLATE directive

Interpolates values at intermediate points.

## Options

CURVE $=$ string token

METHOD = string token

Type of curve to be fitted to calculate the interpolated value
(linear, cubic); default line
Type of interpolation required (interval, value,
missing): for METHOD=valu, values are interpolated for each point in the NEWINTERVAL variate and stored in the NEWVALUE variate; for METHOD=inte, points are estimated in the NEWINTERVAL variate for the observations in the NEWVALUE variate; while for METHOD=miss, the NEWVALUE and NEWINTERVAL lists are irrelevant, INTERPOLATE now interpolates for missing values in the OLDVALUE and OLDINTERVAL variates (except those missing in both variates); default inte

## Parameters

OLDVALUES $=$ variates
Observations from which interpolation is to be done
NEWVALUES $=$ variates
Results of each interpolation
OLDINTERVALS $=$ variates
Points at which each set of OLDVALUES was observed
NEWINTERVALS $=$ variates

## IRREDUNDANT directive

Forms irredundant test sets for the efficient identification of a set of objects.

## Options

PRINT $=$ string tokens	Controls printed output (numbers, diagram, notdistinguished, messages); default numb, diag, notd, mess
BESTSET $=$ pointer	Saves the best set
SETS $=$ matrix	Saves details of the available sets
NOTDISTINGUISHED $=$ matrix	Saves details of the objects that cannot be distinguished
METHOD $=$ string token	Algorithm to use (exact, sequential); default exac
TAXONNAMES $=$ text, variate or factor	Defines labels for the objects (or taxa) to be identified; default uses the unit labels vector of the CHARACTER factors
GROUPS $=$ factor	Defines groupings of the objects so that the sets are constructed to distinguish only between the objects that belong to different groups; default constructs sets to distinguish between individual objects
OBJECT $=$ scalar or text	If this is specified, sets are constructed just to distinguish the specified object (or taxon) from the other objects
NDISTINCTIONS $=$ scalar	Number of factors required in each set to distinguish between each pair of objects; default 1
MAXPREFERENCE $=$ scalar	Maximum preference of the factors to be included in the sets
MAXSIZE = scalar	Limit on number of factors in a set (sets containing more than this are discarded); default * i.e. none
NPRINT $=$ scalar	Number of sets to print (a positive number specifies the number to print, a negative number sets a tolerance on the difference between the sizes of the sets printed and the size of the best set); default * prints them all
NSAVE $=$ scalar	Number of sets to save in the SETS matrix; default * saves them all
LIMSETS $=$ variate	Variate containing two numbers $n_{1}$ and $n_{2}$, if this is specified then every time that there are more than $n_{1}$ sets under construction using the exact method, the sets are arranged in order of increasing size and all sets containing more factors than set $n_{2}$ are deleted
DISTINCTIONS $=$ string token	Whether or not to store the distinctions or recalculate them at every stage in the exact algorithm (store, calculate); default stor
CRITERION $=$ string token	Function to be use to select factors by the sequential method (ndistinctions, weightedndistinctions); default ndis
MAXCYCLE $=$ scalar	Maximum number of improvement cycles to perform during

## EQUIVALENCE $=$ scalar

## Parameters

CHARACTER $=$ identifiers
COST $=$ scalars
PREFERENCE $=$ scalar

VARIABLE $=$ scalar or text
INAPPLICABLE $=$ scalar or text
the sequential method; default 20
Value for determining equivalence of the selection criteria of tests selected during the sequential method

Factors, and/or tables classified by a single factor, defining the properties of the objects to to be identified
Cost associated with each factor; default 1
Preference rating for each factor (1 representing most preferred etc.); default 1
Factor level used to represent variable information; default is to use a missing value
Factor level used to indicate that the information provided by that factor is inapplicable for a particular object

## JACKKNIFE procedure

Produces Jackknife estimates and standard errors (R.W. Payne).

## Options

PRINT $=$ string token	Controls printed output (estimates, vcovariance); default   esti
DATA $=$ variates, factors or texts	Data vectors from which the statistics are to be calculated   ANCILLARY $=$ any type
Other relevant information needed to calculate the statistics	
PCOVARIANCE $=$ symmetric matrix	Saves the variance-covariance matrix for the statistics
LABEL $=$ texts	Texts, each containing a single line, to label the statistics
ESTIMATE $=$ scalars	Saves the Jackknife estimate for each statistic
SE $=$ scalars	Saves Jackknife estimates of the standard errors
PSEUDOVALUES $=$ variates	Saves the Jackknife pseudo-values
ACCELERATION $=$ scalars	Saves the acceleration parameter for bias-corrected and   accelerated bootstrap confidence intervals

## JOB directive

Starts a Genstat job.

## Options

INPRINT $=$ string tokens
OUTPRINT $=$ string tokens
DIAGNOSTIC $=$ string tokens

```
ERRORS = scalar
```

PROMPT $=$ text
WORDLENGTH $=$ string token

## Parameter

text

Printing of input as in PRINT option of INPUT (statements, macros, procedures, unchanged); default unch Additions to output as in PRINT option of OUTPUT (dots, page, unchanged); default unch
Defines the least serious class of Genstat diagnostic which should still be generated (messages, warnings, faults, extra, unchanged); default unch
Limit on number of error diagnostics that may occur before the job is abandoned; default * i.e. no change
Characters to be printed for the input prompt
Length of word ( 8 or 32 characters) to check in identifiers, directives, options, parameters and procedures (long, short); default * i.e. no change

Name to identify the job

## JOIN procedure

Joins or merges two sets of vectors together, based on the values of sets of classifying keys (C.F. Johnston \& D.B. Baird).

Options

```
NINDEX = scalar
METHOD = string token
```

REPEATS $=$ string token

Number of index vectors in structures (up to 10); default 1
Type of join (inner, left, right, full); default full
How to handle repeats of matches (combinations, single);

INCLUDE $=$ string token

SORT = string token

## Parameters

LEFTVECTORS $=$ pointer $\quad$ Pointer to a list of vectors in left set (keys and variables)
RIGHTVECTORS $=$ pointer
NEWVECTORS = pointer
default sing outputs one row per match
How to handle restrictions on the input vectors (all, nonrestricted); default all uses all the data rows Whether NEWVECTORS should be sorted on the index vectors (ascending, descending, unsorted); default unsorted keeps the same ordering as the input sets

Pointer to a list of vectors in right set (keys and variables) Pointer to a list of output vectors (keys and variables)

## KALMAN procedure

Calculates estimates from the Kalman filter (A.I. Glaser).

## Option

PRINT $=$ string tokens	Controls printed output (xpredicted, xfiltered, deviance, residuals, gain, varpredictions, varfiltered, varresiduals); default *
Parameters	
$\mathrm{Y}=$ variates, matrices or pointers	Time series data
YTRANSITIONMATRIX $=$ scalars, matrices or pointers	
	Observation transition matrix, mapping the relationship between the current value of the state vector and the observation
YVCOVARIANCE $=$ scalars, symmetricmatrices or pointers	
	Observation error covariance matrix
XSTATETRANSITIONMATRIX $=$ scalars, matrices or pointers	
	State transition matrix, mapping the relationship between the current value of the state vector and its previous value
BXVCOVARIANCE $=$ scalars, matrices or pointers	
	State noise coefficient matrix
XVCOVARIANCE $=$ scalars, symmetricmatrices or pointers	
	State error covariance matrix
MEANINITIAL $=$ scalars, variates or matrices	
	Initial value of the mean of the state vector
VARINITIAL $=$ scalars or symmetricmatrices	
	Initial value of the variance-covariance matrix of the state vector
DEVIANCE $=$ scalars	To save the deviance of the model
XPREDICTED $=$ matrices	Saves the predicted (a priori) state estimate matrix
XFILTERED $=$ matrices	Saves the filtered (a posteriori) state estimate matrix
RESIDUALS $=$ matrices	Saves the matrix of residuals
GAIN $=$ pointers	Saves the Kalman gain matrix at each iteration
VARPREDICTIONS $=$ pointers	Saves the variances of the predicted state estimate matrix at each iteration
VARFILTERED $=$ pointers	Saves the variances of the filtered state estimate matrix at each iteration
VARRESIDUALS $=$ pointers	Saves the variances of the residuals at each iteration
SAVE $=$ pointers	Save structure which provides information for use in DKALMAN

## KAPLANMEIER procedure

Calculates the Kaplan-Meier estimate of the survivor function (J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens	Whether to print the estimates or to display the Kaplan-Meier   estimate in a graph (estimate, mean, quantiles, summary,   graph); default esti, grap
GRAPHICS = string token	Type of graphics to use (lineprinter, highresolution);


	fault high
TITLE $=$ text	General title for the graph; default *
WINDOW $=$ scalar	Window number for the high-resolution graph; default 1
KEYWINDOW = scalar	Window number for the key (zero for no key); default 2
SCREEN $=$ string token	Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea
PROBABILITY $=$ scalar	Probability level of the confidence interval for the KaplanMeier estimates; default 0.95
XLOWER $=$ scalar	Lower bound for x -axis; default 0
XUPPER $=$ scalar	Upper bound for x -axis; default * i.e. a value slightly larger than the maximum of the TIME parameter (or EVENT parameter if TIME is not set) is used
PLOT $=$ string tokens	What additional plotting features to include (referenceline, censored); default * i.e. none
PERCENTILES $=$ variate or scalar	Percentiles at which to estimate quantiles of survival times; default 25,50,75
Parameters	
TIME $=$ variates	Observed timepoints
CENSORED $=$ variates	Variate specifying whether the corresponding element of TIME is censored (1) or not (0); default is to assume no censoring
GROUPS $=$ factors	Factor specifying the different groups for which the survivor function is estimated
EVENT $=$ variates	Saves the distinct TIME values when TIME is set; otherwise supplies an input variate specifying the endpoint of each interval
NDEATH $=$ variates	Saves the number of deaths at each EVENT when TIME is set; otherwise supplies an input variate specifying the number of deaths in each interval
NATRISK $=$ variates	Saves the number of units at risk at each EVENT when TIME is set; otherwise supplies an input variate with the number at risk in each interval
ESTIMATE $=$ variates	Saves the Kaplan-Meier estimates of the survivor function
NEWGROUPS $=$ factors	Saves the grouping of the EVENT, NDEATH, NATRISK and ESTIMATE variates when TIME is set

## KAPPA procedure

Calculates a kappa coefficient of agreement for nominally scaled data (A.J. Rook).

## Option

PRINT $=$ string token

## Parameters

DATA $=$ tables

STATISTIC $=$ scalars
VARIANCE $=$ scalars

Whether to print kappa and its associated information (test); default test

Data sets, each consisting of an object $\times$ category table whose entries are the number of judges assigning the $i$ th object to the $j$ th category
Save the value of kappa for each data table
Save the corresponding variances

## KCONCORDANCE procedure

Calculates Kendall's Coefficient of Concordance; synonym concord (S.J. Welham, N.M. Maclaren \& H.R. Simpson).

## Options

PRINT $=$ string tokens

GROUPS $=$ factor

Output required (test, ranks): test produces the relevant test statistics, ranks produces the vector of mean ranks and the ranks for each sample; default test
Defines the variable stored in each unit if only one variate is specified by DATA

STATISTIC $=$ scalar
CHISQUARE $=$ scalar

MEANRANKS = variate
DF $=$ scalar
Parameters
$\mathrm{DATA}=$ variates

RANKS $=$ variates

Scalar to save the coefficient of concordance
Scalar to save the chi-square approximation to the coefficient (calculated only if the sample size is at least 8)
Variate to save the mean ranks for individuals over variables
Scalar to save the degrees of freedom for CHISQUARE
List of variables to be compared, or a single variate containing the data for all the variables (the GROUPS option must then be set to indicate the variable recorded in each unit belongs) Save the ranks of the variables

## KCROSSVALIDATION procedure

Computes cross validation statistics for punctual kriging (D.A. Murray \& R. Webster).

Options	
PRINT $=$ string tokens	Controls printed output (statistics, correlation); default stat
PLOT $=$ string token	Whether to produce a scatter plot of the predicted against the true values (scatter); default * i.e. none
$\mathrm{Y}=$ variate or scalar	Y positions or interval (not needed for 2D regular data i.e. when DATA is a matrix)
$\mathrm{x}=$ variate	X positions (needed only for 2D irregular data)
YOUTER $=$ variate	Variate containing 2 values to define the Y -bounds of the region to be examined (bottom then top); by default the whole region is used
XOUTER $=$ variate	Variate containing 2 values to define the $x$-bounds of the region to be examined (bottom then top); by default the whole region is used
RADIUS $=$ scalar	Maximum distance between target point and usable data
SEARCH $=$ string token	Type of search (isotropic, anisotropic); default isot
MINPOINTS $=$ scalar	Minimum number of data points from which to compute elements; default 7
MAXPOINTS $=$ scalar	Maximum number of data points from which to compute elements; default 20
DRIFT $=$ string token	Amount of drift (constant, linear, quadratic); default cons
YXRATIO $=$ scalar	Ratio of Y interval to X interval
SAVE $=$ pointer	Pointer containing model estimates saved from MVARIOGRAM
Parameters	
DATA $=$ variates or matrices	Observed measurements as a variate or, for data on a regular grid, as a matrix
ISOTROPY $=$ string tokens	Form of variogram (isotropic, Burgess, geometrical); default isot
MODELTYPE $=$ string tokens	Model fitted to the variogram (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, cubic, stable, cardinalsine, matern); default *
NUGGET $=$ scalars	The nugget variance
SILLVARIANCES $=$ scalars or variates	Sill variances of the spatially dependent component
RANGES $=$ scalar or variates	Ranges of the spatially dependent component
GRADIENT $=$ scalars or variates	Slope of the unbounded component
EXPONENT $=$ scalars or variates	Power of the unbounded component or power for the stable model
SMOOTHNESS $=$ scalar	Value of $v$ parameter for the Matern model
PHI $=$ scalars or variates	Phi parameters in anisotropic model (ISOTROPY $=$ burg or geom)
RMAX $=$ scalars or variates	Maximum gradient of an anisotropic model

RMIN $=$ scalars or variates
MEASUREMENTERROR $=$ scalars
PREDICTIONS $=$ variates or matrices

VARIANCES $=$ variates or matrices

STATISTICS $=$ variates

Minimum gradient of an anisotropic model
Variance of measurement error
Saves the kriged estimates in matrices for 2D Regular data, otherwise in variates
Saves the estimation variances in matrices for 2D Regular data, otherwise in variates
Saves the cross validation statistics

## KCSRENVELOPES procedure

Simulates K function bounds under complete spatial randomness (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string tokens

## Parameters

YPOLYGON $=$ variates

XPOLYGON $=$ variates

NPOINTS $=$ scalars

NSIMULATIONS $=$ scalars
$\mathrm{S}=$ variates

KLOWER $=$ variates

KUPPER $=$ variates
SEED $=$ scalars

What to print (summary, monitoring); default summ, moni
Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
How many points to generate in each simulation; no default this parameter must be set
How many simulations of CSR to use; no default - this parameter must be set
Vectors of distances to use; no default - this parameter must be set
Variates to receive the values of the lower bound of the K function
Variates to receive the values of the upper bound of the K function
Seeds for the random numbers used in the simulations; default 0

## KERNELDENSITY procedure

Uses kernel density estimation to estimate the underlying density of a sample (P.W. Goedhart). Options

PRINT $=$ string token	What to print (integral, summary, monitoring, graph); default inte
METHOD = string token	Which automatic bandwidth selection method should be used when the BANDWIDTH option is not set ( $s 1, s 2, s 3, s j$ ); default sj
BANDWIDTH $=$ scalar or variate	Which bandwidth value or values are to be used; default *
NGRIDEXPONENT2 = scalar	Defines the number of grid points as $2 * *$ NGRIDEXPONENT2; default 11
SAVEGRIDEXTENT = scalar	Defines the lower and upper limit of the interval on which the kernel density is saved; the default value of 4 uses the full interval on which the kernel density is calculated
NFOURIER $=$ scalar	Defines the upper limit of the sample size for which the kernel density is calculated directly (when the sample size exceeds the setting of this option, the fast Fourier transform is used to calculate the kernel density); default 100
PROPORTION $=$ variate	Proportions at which to calculate quantiles of the kernel density estimate; default ! ( $0.025,0.25,0.5,0.75,0.975$ )
WINDOW = scalar or variate	Window number(s) for the graph(s); default 1
SCREEN = string token	Whether to clear the screen before plotting into the first window, or whether to or continue plotting on the old screen (clear, keep); default clea

## Parameters

SAMPLE = variates
GRID $=$ variates

DENSITY = variates or pointers
CUMULATIVE $=$ variates or pointers
QUANTILE $=$ variates or pointers
SAVEBANDWIDTH $=$ scalars

The sample for which to calculate the kernel density estimate Saves the grid of equidistant points at which the kernel density is calculated
Saves the kernel density estimate
Saves the estimated cumulative distribution
Saves the quantiles calculated from the estimated cumulative distribution
Saves the automatically selected bandwidths as specified by the METHOD option

## KHAT procedure

Calculates an estimate of the K function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token
Parameters
$\mathrm{Y}=$ variates
$\mathrm{x}=$ variates

YPOLYGON $=$ variates
XPOLYGON $=$ variates
$\mathrm{S}=$ variates

KVALUES $=$ variates

What to print (summary); default summ
Vertical coordinates of each spatial point pattern; no default this parameter must be set
Horizontal coordinates of each spatial point pattern; no default - this parameter must be set

Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
Vectors of distances to use; no default - this parameter must be set
Variates to receive the estimated values of the K function

## KLABENVELOPES procedure

Gives bounds for K function differences under random labelling (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Options

PRINT $=$ string tokens
Parameters
$\mathrm{Y} 1=$ variates
$\mathrm{x} 1=$ variates
$\mathrm{Y} 2=$ variates
$\mathrm{x} 2=$ variates

YPOLYGON $=$ variates
XPOLYGON $=$ variates
NSIMULATIONS $=$ scalars
$\mathrm{S}=$ variates

KLOWER $=$ variates
KUPPER $=$ variates

What to print (summary, monitoring); default summ, moni
Vertical coordinates of the first spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the first spatial point patterns; no default - this parameter must be set
Vertical coordinates of the second spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the second spatial point patterns; no default - this parameter must be set
Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
How many simulations of random labelling to use; no default - this parameter must be set

Vectors of distances to use; no default - this parameter must be set
Variates to receive the values of the lower bound of the difference between the K functions
Variates to receive the values of the upper bound of the difference between the K functions

Seeds for the random numbers used to generate the random labellings; default 0

## KNEARESTNEIGHBOURS procedure

Classifies items or predicts their responses by examining their $k$ nearest neighbours (R.W. Payne). Options

PRINT $=$ string tokens	Printed output required (neighbours, predictions); default pred
SIMILARITY $=$ matrix or symmetric matrix	
	Provides the similarities between the training and prediction sets of items
NEIGHBOURS $=$ pointer	Pointer with a variate for each prediction item to save the numbers of its nearest neighbours in the training set
GROUPS $=$ factor	Defines groupings to identify the training and prediction sets of items when SIMILARITY is a symmetric matrix
LEVTRAINING $=$ scalar or text	Identifies the level of GROUPS or dimension of SIMILARITY that represents the training set; default 1
LEVPREDICTION $=$ scalar or text	Identifies the level of GROUPS or dimension of SIMILARITY that represents the prediction set; default 2
$\mathrm{METHOD}=$ string token	How to calculate the prediction from a DATA variate (mean, median); default medi
MINSIMILARITY $=$ scalar	Cut-off minimum value of the similarity for items to be regarded as neighbours; default 0.75
MINNEIGHBOURS $=$ scalar	Minimum number of nearest neighbours to use; default 5
MAXNEIGHBOURS $=$ scalar	Maximum number of nearest neighbours to use; default 10
SEED = scalar	Seed for the random numbers used to select neighbours when more than MAXNEIGHBOURS are available; default 0
Parameters	
DATA $=$ variates or factors	Data values for the items in the training set
PREDICTIONS $=$ variates or factors	Saves the predictions

## 'KNNTRAIN procedure

Evaluates and optimizes the $k$-nearest-neighbour algorithm using cross-validation (D.B. Baird).

## Options

PRINT $=$ string tokens	Printed output required (error, confusion, predictions); default erro, conf
SIMILARITY $=$ symmetric matrix	Provides the similarities between the observations
METHOD $=$ string token	How to calculate the prediction from a DATA variate (mean, median); default medi
MINSIMILARITY $=$ scalar or variate	Cut-off minimum value of the similarity for items to be regarded as neighbours; default 0.75
MINNEIGHBOURS $=$ scalar or variate	Minimum number of nearest neighbours to use; default 5
MAXNEIGHBOURS $=$ scalar or variate	Maximum number of nearest neighbours to use; default 10
NSIMULATIONS $=$ variate	Number of cross-validation sets to use; default 1
NCROSSVALIDATIONGROUPS $=$ scalar	Number of groups for cross-validation, default 10
SEED = scalar	Seed for the random numbers used to select cross-validation groups; default 0
Parameters	
DATA $=$ variate or factor	Data values for the items in the data set
PREDICTIONS $=$ variate or factor	Saves the predictions using the optimal options
ERROR = scalar	Cross-validation error rate for the optimal combination
CONFUSION $=$ matrix	Confusion matrix for the cross-validation predictions from the optimal options
OPTIMAL $=$ pointer	Pointer to the optimal options

## KOLMOG2 procedure

Performs a Kolmogorov-Smirnoff two-sample test (S.J. Welham, N.M. Maclaren \& H.R. Simpson). Options
PRINT $=$ string tokens $\quad$ Output required (test, differences, ranks): test gives the test statistic, differences gives signed differences, and ranks produces the ranks for each sample; default test
GROUPS $=$ factor

## Parameters

$\mathrm{Y} 1=$ variates
$\mathrm{Y} 2=$ variates
R1 $=$ variates
R2 $=$ variates
STATISTIC $=$ scalars

CHISQUARE $=$ scalars
DIFFERENCES $=$ variates

Defines the groups for a two-sample test if only the Y1 parameter is specified

Identifier of the variate holding the first sample Identifier of the variate holding the second sample Saves the ranks of the first sample Saves the ranks of the second sample
Scalar to save the test statistic (the maximum absolute difference between the cumulative distribution functions) Scalar to save the chi-square approximation to the test statistic Variate to save the signed differences between the cumulative distribution functions

## KRIGE directive

Calculates kriged estimates using a model fitted to the sample variogram.

## Options

PRINT $=$ string token	Controls printed output (description, search, weights, monitor, data); default desc
$\mathrm{Y}=$ variate	Y positions (not needed for 2-dimensional regular data i.e. when DATA is a matrix)
$\mathrm{x}=$ variate	X positions (needed only for 2-dimensional irregular data)
YOUTER = variate	Variate containing 2 values to define the Y-bounds of the region to be examined (bottom then top); by default the whole region is used
XOUTER $=$ variate	Variate containing 2 values to define the X -bounds of the region to be examined (left then right); by default the whole region is used
YINNER $=$ variate	Variate containing 2 values to define the Y-bounds of the interpolated region (bottom then top); no default
XINNER $=$ variate	Variate containing 2 values to define the X -bounds of the interpolated region (left then right); no default
BLOCK $=$ variate	Dimensions (length and height) of block; default ! $(0,0)$ i.e. punctual kriging
RADIUS $=$ scalar	Maximum distance between target point in block and usable data
SEARCH $=$ string token	Type of search (isotropic, anisotropic); default isot
MINPOINTS $=$ scalar	Minimum number of data points from which to compute elements; default 7
MAXPOINTS $=$ scalar	Maximum number of data points from which to compute elements ( $2<$ MINPOINTS $\leq$ MAXPOINTS $<41$ ); default 20
NSTEP $=$ scalar	Number of steps for numerical integration; ( $3<$ NSTEP $<11$ ); default 8
DRIFT $=$ string token	Amount of drift (constant, linear, quadratic); default cons
YXRATIO $=$ scalar	Ratio of Y interval to X interval; default 1.0
INTERVAL $=$ scalar	Distance between successive interpolations; default 1.0
Parameters	
DATA $=$ variates or matrices	Observed measurements as a variate or, for data on a regular grid, as a matrix
ISOTROPY $=$ string tokens	Form of variogram (isotropic, Burgess, geometrical);


	default isot
MODELTYPE $=$ string tokens	Model fitted to the variogram (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, cubic, stable, cardinalsine, matern); default powe
NUGGET $=$ scalars	The nugget variance
SILLVARIANCES $=$ variates	Sill variances of the spatially dependent component; default none
RANGES = variates	Ranges of the spatially dependent component; default none
GRADIENT $=$ variates	Slope of the unbounded component; default none
EXPONENT $=$ variates	Power of the unbounded component or power for the stable model; default none
SMOOTHNESS $=$ scalar	Value of $v$ parameter for the Matern model; defalt none
PHI $=$ variates	Phi parameters of an anistropic model (ISOTROPY = Burg or geom)
RMAX $=$ variates	Maximum gradient or distance parameter of an anistropic model
RMIN $=$ variates	Minimum gradient or distance parameter of an anistropic model
PREDICTIONS $=$ matrices	Kriged estimates
VARIANCES $=$ matrices	Estimation variances
LAGRANGEMULTIPLIER = matrices or pointers	
	Saves the Lagrange multipliers from each kriging solution
MEASUREMENTERROR = scalar	Specifies the variance of the measurement error
SAVE $=$ pointers	Supplies the model name and estimates, as saved from MVARIOGRAM

## KRUSKAL procedure

Carries out a Kruskal-Wallis one-way analysis of variance (S.J. Welham, N.M. Maclaren \& H.R. Simpson).

## Options

PRINT $=$ string tokens $\quad$ Output required (test, ranks): test produces the relevant test statistics, ranks produces a vector of ranks for each sample relative to the whole data set; default test

```
GROUPS = factor
```

STATISTIC $=$ scalar
MEANRANKS $=$ variate
$\mathrm{DF}=$ scalar

Defines the sample membership if only one variate is specified by DATA
Scalar to save the Kruskal-Wallis test statistic
MEANRANKS $=$ variate
Variate to save the mean ranks of the samples
Scalar to save the degrees of freedom for the statistic

## Parameters

DATA $=$ variates

RANKS $=$ variates
List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs)
Allow the ranks to be saved (relative to the combined data)

## KSED procedure

Calculates the standard error for K function differences under random labelling (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

## PRINT $=$ string token

## Parameters

$\mathrm{Y} 1=$ variates
$\mathrm{X} 1=$ variates

Controls printed output (summary); default summ

Vertical coordinates of the first spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the first spatial point patterns; no default - this parameter must be set

```
\(\mathrm{Y} 2=\) variates
\(\mathrm{x} 2=\) variates
YPOLYGON \(=\) variates
XPOLYGON \(=\) variates
\(\mathrm{S}=\) variates
KSED \(=\) variates
VCOVARIANCE \(=\) symmetric matrices
\(\mathrm{VK1}=\) variates
\(\mathrm{VK} 2=\) variates
vK12 \(=\) variates
```

Vertical coordinates of the second spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the second spatial point patterns; no default - this parameter must be set Vertical coordinates of the polygons; no default - this parameter must be set Horizontal coordinates of the polygons; no default - this parameter must be set
Vectors of distances to use; no default - this parameter must be set
Variates to receive the values of the standard error of the difference between the K functions for the two patterns under random labelling
Saves the variance-covariance matrix
Saves the variance of Khat for first spatial point pattern Saves the variance of Khat for second spatial point pattern Saves the covariance of Khat for the two samples

## KSTHAT procedure

Calculates an estimate of the K function in space, time and space-time (D.A. Murray, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

$\mathrm{Y}=$ variates
$\mathrm{X}=$ variates
TIMES $=$ variates
YPOLYGON $=$ variates

XPOLYGON $=$ variates
$\mathrm{S}=$ variates
TVALUES $=$ variates
TLOWER = variates
TUPPER $=$ variates
$\mathrm{KS}=$ variates
$\mathrm{KT}=$ variates
$\mathrm{KST}=$ variates

Controls printed output (summary); default summ
Vertical coordinates of the spatial point patterns; no default this parameter must be set Horizontal coordinates of the spatial point patterns; no default - this parameter must be set Times for each event Vertical coordinates of the polygons; no default - this parameter must be set Horizontal coordinates of the polygons; no default - this parameter must be set Vectors of distances to use; no default - this parameter must be set
Time scales for the analysis
Lower temporal domain
Upper temporal domain
Saves the spatial K function estimates
Saves the spatial K function estimates
Saves the space-time K function estimates

## KSTMCTEST procedure

Performs a Monte-Carlo test for space-time interaction (D.A. Murray, P.J. Diggle \& B.S.
Rowlingson).

## Options

PRINT $=$ string token $\quad$ Controls printed output (statistic, rank); default stat,
$\mathrm{PLOT}=$ string token
NTIMES $=$ scalar
SEED = scalar

## Parameters

$\mathrm{Y}=$ variates
rank
Whether to produce a plot of the test statistic (histogram); default hist
Number of simulations for Monte-Carlo test; default 49
Seed for random number generator; default 0 continues from previous generation or uses system clock

Vertical coordinates of the first spatial point patterns; no default - this parameter must be set

$\mathrm{X}=$ variates	Horizontal coordinates of the first spatial point patterns; no   default - this parameter must be set
TIMES $=$ variates	Times for each event
YPOLYGON $=$ variates	Vertical coordinates of the polygons; no default - this   parameter must be set
XPOLYGON $=$ variates	Horizontal coordinates of the polygons; no default - this   parameter must be set
S = variates	Vectors of distances to use; no default - this parameter must   be set
TVALUES $=$ variates	Time scales for the analysis
TLOWER $=$ variates	Lower temporal domain
TUPPER $=$ variates	Upper temporal domain
STATISTIC $=$ scalars	Saves the Monte-Carlo statistic

## KSTSE procedure

Calculates the standard error for the space-time K function (D.A. Murray, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token $\quad$ Controls printed output (summary); default summ

## Parameters

$\mathrm{Y}=$ variates
$\mathrm{X}=$ variates $\quad$ Horizontal coordinates of the spatial point patterns; no default

- this parameter must be set

TIMES $=$ variates
YPOLYGON $=$ variates

XPOLYGON $=$ variates
$\mathrm{S}=$ variates

TVALUES $=$ variates
TLOWER = variates
Times for each event
Vertical coordinates of the polygons; no default - this
parameter must be set
Horizontal coordinates of the polygons; no default - this parameter must be set
Vectors of distances to use; no default - this parameter must be set
Time scales for the analysis
Lower temporal domain
TUPPER $=$ variates Upper temporal domain
$\mathrm{SE}=$ variates

## KTAU procedure

Calculates Kendall's rank correlation coefficient $\tau$ (R.W. Payne \& D.B. Baird).

## Options

PRINT $=$ string tokens	Output required (correlations, probabilities); default corr, prob
GROUPS $=$ factor	Defines the sample membership if only one variate is specified by DATA
CORRELATIONS $=$ scalar or symmetric matrix	
	Scalar to save the rank correlation coefficient if there are two samples, or symmetric matrix to save the coefficients between all pairs of samples if there are several
PROBABILITIES $=$ scalar or symmetric matrix	
	Scalar to save the probability for the correlation coefficient if there are two samples, or symmetric matrix to save the probabilities for all pairs of samples if there are several
NORMAL = scalar or symmetric matrix	Scalar to save a transformation of tau that approximately follows a Normal distribution with mean zero and variance if there are two samples, or symmetric matrix to save the transformation for all pairs of samples if there are several

## Parameter

$\mathrm{DATA}=$ variates

List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs)

## KTORENVELOPES procedure

Gives bounds for the bivariate K function under independence (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string tokens
Parameters
$\mathrm{Y} 1=$ variates
$\mathrm{x} 1=$ variates

Y2 $=$ variates
$\mathrm{x} 2=$ variates
YPOLYGON $=$ variates

XPOLYGON $=$ variates
NSIMULATIONS $=$ scalars
$\mathrm{S}=$ variates
KLOWER $=$ variates
KUPPER $=$ variates
SEED $=$ scalars

What to print (summary, monitoring); default summ, moni
Vertical coordinates of the first spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the first spatial point patterns; no default - this parameter must be set
Vertical coordinates of the second spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the second spatial point patterns; no default - this parameter must be set
Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
How many simulations of independence to use; no default this parameter must be set
Vectors of distances to use; no default - this parameter must be set
Variates to receive the values of the lower bound of the bivariate K function
Variates to receive the values of the upper bound of the bivariate K function
Seeds for the random numbers used to generate the random shifts; default 0

## K12HAT procedure

Calculates an estimate of the bivariate K function (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

$\mathrm{Y} 1=$ variates
$\mathrm{X1}=$ variates
$\mathrm{Y} 2=$ variates
$\mathrm{x} 2=$ variates
YPOLYGON $=$ variates
XPOLYGON $=$ variates
$\mathrm{S}=$ variates

What to print (summary); default summ
Vertical coordinates of the first spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the first spatial point patterns; no default - this parameter must be set
Vertical coordinates of the second spatial point patterns; no default - this parameter must be set
Horizontal coordinates of the second spatial point patterns; no default - this parameter must be set
Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
Vectors of distances to use; no default - this parameter must be set

Variates to receive the estimated values of the bivariate K functions

## LCONCORDANCE procedure

Calculates Lin's concordance correlation coefficient (R.W. Payne \& M.S. Dhanoa). Options

INT $=$ string token	Controls printed output (concordance); default conc
GROUPS $=$ factor	Defines the sets of measurements when they are all supplied in a single DATA variate
CONCORDANCE $=$ scalar or variate	Saves Lin's the concordance coefficient
LOWER = scalar or variate	Saves the lower confidence limit for the coefficient
UPPER = scalar or variate	Saves the upper confidence limit for the coefficient
CORRELATION $=$ scalar or variate	Saves the correlation coefficient
$\mathrm{CB}=$ scalar or variate	Saves the bias correction factor
ZTRANSFORMATION $=$ scalar or variate	Saves the Z transformation of the coefficient
ZSD $=$ scalar or variate	Saves the standard deviation of the Z transformation
CIPROBABILITY $=$ scalar	Defines the size of the confidence interval; default 0.95 i.e. 95\%
REFERENCELEVEL $=$ scalar or text	Defines the set of measurements to be used as the control if there are more than two variates or groups; default 1
Parameter	
DATA $=$ variates	List of variates specifying the sets of measurements to be compared, or a single variate containing all the measurements (the GROUPS option must then be set to indicate the set to which each unit belongs)

## LIBEXAMPLE procedure

Accesses examples and source code of library procedures (R.W. Payne).

## No options

Parameters
PROCEDURE $=$ texts Single-valued texts indicating the procedures about which the information is required
EXAMPLE $=$ texts $\quad$ Identifiers of text structures to store the example for each procedure
SOURCE $=$ texts Identifiers of text structures to store the source code of each procedure

## LIBFILENAME procedure

Supplies the names of information files for library procedures (R.W. Payne).

## No options

## Parameters

\(\left.\begin{array}{ll}FILENAME=texts \& Text in which to store the name of the backing-store file <br>

containing the required information\end{array}\right]\) CONTENTS $=$ string tokens $\quad$| Indicates which file is required (procedures, adesign, |
| :--- |
| afraction, acyclic, agenerator); default proc |

## LIBHELP procedure

Provides help information about library procedures (R.W. Payne).

## No options

## Parameter

PROCEDURE $=$ texts

Single-valued texts indicating the procedures about which the information is required; if this is not set, information is given about LIBHELP itself

## LIBSOURCE procedure

Obtains the source code of a Genstat procedure, PC Windows only (R.W. Payne).

## No options

## Parameters

PROCEDURE $=$ texts Procedure names
SOURCE $=$ texts
Texts to store the source code of each procedure
STATEMENT $=$ texts Saves a command to obtain the source of each procedure (useful if the name has been specified in response to questions from PROCEDURE)

## LIBVERSION procedure

Provides the name of the current Genstat Procedure Library (R.W. Payne).

## Option

PRINT $=$ string token $\quad$ Controls printed output (release); default rele

## Parameter

RELEASENAME $=$ text Text in which to store the name of the currently available release of the Genstat 5 Procedure Library

## ${ }^{\dagger}$ LIFE procedure

Plays John Conway's Game of Life (W. van den Berg).

## Options

NROWS = scalar
NCOLUMNS $=$ scalar
$\mathrm{Y}=$ variate
$\mathrm{X}=$ variate
NEWY $=$ variate
NEWX $=$ variate
NTIMES $=$ scalar
TITLE $=$ text
COLOURS $=$ text or variate
PAUSE $=$ scalar

Number of rows in the grid (must greater than 5); default 51
Number of columns in the grid (must greater than 5); default 51
Inputs the $y$-coordinates of the cells in the initial configuration Inputs the x -coordinates of the cells in the initial configuration Saves the final $y$-coordinates
Saves the final x -coordinates Number of times to update the configuration; default 200 Title for the plot
Colours for the live and dead cells; default !t(SpringGreen, Black)
Time in seconds to pause before displaying the next plot; default 0.5

## No parameters

## LINDEPENDENCE procedure

Finds the linear relations associated with matrix singularities (J.H. Maindonald).
Option
PRINT = string tokens Printed output (dependent, coefficients); default depe

## Parameters

DATA $=$ symmetric matrices
Specifies the positive semi-definite matrix for which the information is required
COEFFICIENTS $=$ matrices

## LIST directive

Lists details of the data structures currently available within Genstat.

## Options

\(\left.$$
\begin{array}{ll}\text { PRINT = string tokens } & \text { What to print (identifier, attributes); default iden, } \\
\text { attr }\end{array}
$$ \quad \begin{array}{l}Channel number of file, or identifier of a text to store output; <br>

default current output file\end{array}\right]\)| Whether to include "system" structures with prefix _ (yes, |
| :--- |
| SYSTEntifier $=$ string token |
| no); default no |

NSTRUCTURES $=$ scalar
SAVE = pointer

## Parameter

strings
structures in the program that called the procedure (SCOPE=external), or in the main program itself (SCOPE=global), rather than those within the procedure (local, external, global); default loca
Saves the number of structures of the requested types Saves a pointer containing the structures of the requested types

Types of structure to list (all, diagonal, dummy, expression, factor, formula, lrv, matrix, pointer, scalar, sspm, symmetric, table, text, tsm, variate); default all

## LORENZ procedure

Plots the Lorenz curve and calculates the Gini and asymmetry coefficients (R.W. Payne).

## Options

PRINT $=$ string tokens	Controls printed output (gini, lorenz, asymmetry); default   gini, lore, asym
PLOT $=$ string token	
TITLE $=$ string	Controls graphical output (curve); default curv
NBOOT $=$ scalar	Title for the graph; default uses the identifier of the DATA   variate
SEED $=$ scalar	Number of samples to make to construct the bootstrap   confidence intervals; default 100
CIPROBABILITY = scalar	Seed for the random number generator used to construct the   bootstrap samples; default 0 i.e. continue an existing sequence   of random numbers or, if none, initialize the generator   automatically
Parameters	Probability for the bootstrap confidence interval; default 0.95
DATA $=$ variates	Specifies sets of data values
GINI $=$ scalars	
ASYMMETRY $=$ scalars	Saves the Gini coefficient for each DATA variate

## LPCONTOUR directive

Produces contour maps of two-way arrays of numbers using character (i.e. line-printer) graphics.

## Options

```
CHANNEL = scalar
INTERVAL = scalar
TITLE = text
YTITLE = text
XTITLE = text
YLOWER = scalar
YUPPER = scalar
XLOWER = scalar
XUPPER = scalar
YINTEGER = string token
XINTEGER = string token
LOWERCUTOFF = scalar
UPPERCUTOFF = scalar
```


## Parameters

GRID $=$ identifiers

Channel number of output file; default is current output file Contour interval for scaling; default * i.e. determined automatically
General title; default *
Title for y -axis; default *
Title for x -axis; default *
Lower bound for $y$-axis; default 0
Upper bound for $y$-axis; default 1
Lower bound for x -axis; default 0
Upper bound for x -axis; default 1
Whether y-labels integral (yes, no); default no
Whether x-labels integral (yes, no); default no
Lower cut-off for array values; default *
Upper cut-off for array values; default *
Pointers (of variates representing the columns of a data matrix), matrices or two-way tables specifying values on a regular grid
Annotation for key

## LPGRAPH directive

Produces point and line graphs using character (i.e. line-printer) graphics.

## Options

CHANNEL $=$ scalar	Channel number of output file; default is current output file
TITLE $=$ text	General title; default *
YTITLE $=$ text	Title for y -axis; default *
XTITLE $=$ text	Title for x -axis; default *
YLOWER = scalar	Lower bound for y -axis; default *
YUPPER $=$ scalar	Upper bound for y-axis; default *
XLOWER $=$ scalar	Lower bound for x -axis; default *
XUPPER = scalar	Upper bound for x -axis; default *
MULTIPLE $=$ variate	Numbers of plots per frame; default * i.e. all plots are on a single frame
JOIN $=$ string token	Order in which to join points (ascending, given); default asce
EQUAL $=$ string tokens	Whether/how to make bounds equal (no, scale, lower, upper); default no
NROWS $=$ scalar	Number of rows in the frame; default * i.e. determined automatically
NCOLUMNS $=$ scalar	Number of columns in the frame; default * i.e. determined automatically
YINTEGER $=$ string token	Whether y-labels integral (yes, no); default no
XINTEGER $=$ string token	Whether x-labels integral (yes, no); default no
Parameters	
$\mathrm{Y}=$ identifiers	Y-coordinates
$\mathrm{X}=$ identifiers	X-coordinates
METHOD $=$ string tokens	Type of each graph (point, line, curve, text); if unspecified, poin is assumed
SYMBOLS $=$ factors or texts	For factor SYMBOLS, the labels (if defined), or else the levels, define plotting symbols for each unit, whereas a text defines textual information to be placed within the frame for METHOD=text or the symbol to be used for each plot for other METHOD settings; if unspecified, * is used for points, with integers 1-9 to indicate coincident points, ' and . are used for lines and curves
DESCRIPTION $=$ texts	Annotation for key

## LPHISTOGRAM directive

Produces histograms using character (i.e. line-printer) graphics.

## Options

```
CHANNEL = scalar
TITLE = text
LIMITS = variate
NGROUPS = scalar
```

LABELS $=$ text
SCALE $=$ scalar
Parameters
DATA $=$ identifiers
NOBSERVATIONS $=$ tables

Channel number of output file; default is the current output file General title; default *
Variate of group limits for classifying variates into groups; default *
When LIMITS is not specified, this defines the number of groups into which a data variate is to be classified; default is the integer value nearest to the square root of the number of values in the variate
Group labels
Number of units represented by each character; default 1
Data for the histograms; these can be either a factor indicating the group to which each unit belongs, a variate whose values are to be grouped, or a one-way table giving the number of units in each group
One-way table to save numbers in the groups

```
GROUPS = factors
SYMBOLS = texts
DESCRIPTION = texts
```

Factor to save groups defined from a variate
Characters to be used to represent the bars of each histogram Annotation for key

## LRIDGE procedure

Does logistic ridge regression (A.I. Glaser).

Options
PRINT $=$ string token
PLOT $=$ string tokens
LINK $=$ string token
DISPERSION $=$ scalar
TERMS = formula
FACTORIAL = scalar
LAMBDA $=$ variate or scalar
CROSSVALIDATION $=$ string token

What output to print (correlation, crossvalidation, ridge, scaledridge, standarderrors); default corr
What graphs to plot (correlation, ridgetrace, buildup); default * i.e. none
Link function (logit, probit, complementaryloglog); default logi
Value of the the dispersion parameter; default 1
Explanatory model
Limit on number of factors/covariates in a model term; default 3
Values for the ridge parameter lambda
Whether to use cross-validation to find an optimal value of lambda (yes, no); default no
NCROSSVALIDATIONGROUPS $=$ scalar Number of groups for cross-validation; default 10
CVMETHOD = string token

SEED $=$ scalar
Parameters
$\mathrm{Y}=$ variates
NBINOMIAL $=$ scalars or variates
YVALIDATION $=$ variates
XVALIDATION = pointers
$\mathrm{XDATA}=$ pointers

NVALIDATION $=$ variates or scalars

BESTLAMBDA $=$ scalars
CVSTATISTICS = matrices
RESIDUALS $=$ variates
FITTEDVALUES = variates
ESTIMATES = variates
$\mathrm{SE}=$ variates

DEVIANCE $=$ scalars
LINEARPREDICTOR $=$ variates

Which method to use for cross-validation (deviance, squarederror, countingerror); default devi
Seed for random numbers to use in cross-validation; default 0
Response variate
Number of binomial trials for each unit; default 1
Response variate for validation
Explanatory variables for validation
Pointer containing the original explanatory variables in the same order as in XVALIDATION; default takes the variables in the order in which they occur in TERMS
Number of binomial trials for the units of each YVALIDATION variate; default 1
Saves the optimal lambda value from cross-validation
Saves the cross-validation statistics
Saves residuals when LAMBDA is a scalar
Saves fitted values when LAMBDA is a scalar
Saves parameter estimates when LAMBDA is a scalar
Saves standard errors of the parameter estimates when LAMBDA is a scalar
Saves the residual deviance when LAMBDA is a scalar
Saves the linear predictor when LAMBDA is a scalar

## LRV directive

Declares one or more LRV data structures.

## Options

ROWS $=$ scalar, vector or pointer
COLUMNS $=$ scalar, vector or pointer

Number of rows, or row labels, for the matrix; default * Number of columns, or column labels, for matrix and diagonal matrix; default *

Identifiers of the LRVs
Matrix to contain the latent vectors for each LRV
Diagonal matrix to contain the latent roots for each LRV Trace of the matrix

## LRVSCREE procedure

Prints a scree diagram and/or a difference table of latent roots (P.G.N. Digby).

## Option

PRINT = string tokens	Printed output (scree, differences); default scre
PLOT $=$ string token	What to plot in high-resolution graphics (scree); default
	scre
TITLE $=$ text	Title for the graph; default * i.e. none
WINDOW = scalar	Window to use for the graph; default 1

## Parameters

ROOTS $=L R V s$ or any numerical structures
Latent roots to be displayed; if an LRV is supplied the trace will also be extracted from it
TRACE $=$ scalars $\quad$ Supplies or saves the total of the latent roots
DIFFERENCES = pointers
Contains 3 variates to save the difference table

## LSIPLOT procedure

Plots least significant intervals, saved from SEDLSI (M.C. Hannah).

## Options

WINDOW = scalar
TITLE = text

YTITLE = text

## Parameters

LSI $=$ pointers
SYMBOL $=$ texts or scalars
CSYMBOL $=$ texts or scalars
SMSYMBOL $=$ scalars
SMLABEL = scalars

Window in which to plot the graph
Title for the graph; default 'Estimates with LSIs by Treatment ${ }^{\prime}$
Title for the y-axis; default 'Estimates'
Defines the least significant intervals
Symbol to use to plot each set of estimates
Colour for each symbol
Multiplier to use in the calculation of the size of each symbol Multiplier to use in the calculation of the size of the labels in each plot

## LSPLINE procedure

Calculates design matrices to fit a natural polynomial or trigonometric L-spline as a linear mixed model (S.J. Welham).

## Options

KMETHOD = string token

NSEGMENTS $=$ scalar

INKNOTS $=$ variate
CORE $=$ string token

PERIOD $=$ scalar

LOWER $=$ scalar

UPPER $=$ scalar

ORTHOGONALIZETO = variate

SCALING $=$ scalar

## Parameters

$\mathrm{X}=$ variates
$\mathrm{XFIXED}=$ matrices

Method for constructing the set of knots (equal, quantile, given); default equa
Specifies the number of segments between boundaries; default * obtains a value automatically

Provides the set of internal knots when KMETHOD=given
The form of core function to use; (cossin, intcossin, lincossin, intercept, linear, quadratic) default linc Defines the period for trigonometric functions (not required for polynomial splines)
Specifies the lower boundary when KMETHOD=equal; default takes the minimum value in x
Specifies the upper boundary when KMETHOD=equal; default takes the maximum value in X
Variate to use to get an orthogonalized basis; default * i.e. orthogonalization with respect to X
Scaling of the XRANDOM terms (automatic, none); default auto

The explanatory variate for which the spline values are required
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the L-spline

```
XRANDOM = matrices
KNOTS = variates
PX = variates
PFIXED = matrices
PRANDOM = matrices
```

Saves the design matrix to define the random terms for fitting the L-spline
Saves the internal knots and boundaries used to form the basis for the spline
Specifies x-values at which predictions are required
Saves the design matrix for the fixed terms (excluding the constant) for the spline at the prediction points Saves the design matrix for the random terms for the spline at the prediction points

## LVARMODEL procedure

Analyses a field trial using the Linear Variance Neighbour model (D.B. Baird).

## Options

PRINT = string tokens	Controls printed output (data, effects, sed, residuals, variances); default effe, sed, vari
$\mathrm{METHOD}=$ string token	Indicates which version of the LV model to use (full, reduced); default full
LAMBDA $=$ scalar	Number between 0 and 1 which defines the value for the variance parameter $\lambda$ (if METHOD=full and LAMBDA=0, the value is estimated by REML); default 0
VARMETHOD = string token	Specifies which estimator of residual variance to use to calculate the sed's of treatment effects (RMS2, GLS) default RMS2
TOLERANCE $=$ scalar	Defines the precision to which the variance parameter $\lambda$ should be estimated; default 0.01
Parameters	
$\mathrm{Y}=$ variates	Y-values (usually plot yields) row by row
TREATMENTS $=$ factors	Plot treatments for each y-variate
BLOCKS $=$ factors	Block factor, defining groups of plots to be de-trended independently
UNITS $=$ factors	Unit-within-block factor, defining the order of plots within each block
EFFECTS $=$ tables	To save the estimated treatment effects from each analysis
$\mathrm{SED}=$ matrices or symmetric matrices	To save the estimated standard errors of differences between treatments
WNOISE $=$ variates	To save the estimated white noise component
TREND $=$ variates	To save the estimated trend component
COMPONENTS $=$ variates	To save the estimated variance components: the tuning parameter $\lambda$, and either the variance of the random walk innovations ( $\lambda<0.9$ ) or the white noise variance $(\lambda \geq 0.9)$

## MAANOVA procedure

Does analysis of variance for a single-channel microarray design (R.W. Payne \& D.B. Baird).

## Options

PRINT = string tokens	Controls printed output (summary, monitoring); default *   i.e. none
TREATMENTSTRUCTURE = formula	Treatment formula for the analysis; if this is not set, the default   is taken from the setting (which must already have been   defined) of the TREATMENTSTRUCTURE directive
BLOCKSTRUCTURE = formula	Block formula for the analysis; if this is not set, the default is   taken from any existing setting specified by the
BLOCKSTRUCTURE directive and if neither has been set the	
design is assumed to be unstratified (i.e. to have a single error	
term)	
COVARIATE = variates	Defines any covariates
FACTORIAL = scalar	Limit on the number of factors in a treatment term

```
SAVETERMS = formula
REPLICATION = pointer
SPREADSHEET = string tokens
```

CONTRASTSLIMIT $=$ scalar
DEVIATIONSLIMIT $=$ scalar

## Parameters

$\mathrm{Y}=$ variates or pointers
PROBES $=$ factors or texts
SLIDES $=$ factors or texts
CHECK $=$ texts or variates

IDS $=$ texts

RESIDUALS $=$ matrices
FITTEDVALUES = matrices
MEANS $=$ pointers
VCMEANS $=$ pointers
EFFECTS $=$ pointers
VAREFFECTS $=$ pointers
SEEFFECTS = pointers
TEFFECTS = pointers
PREFFECTS $=$ pointers
$\mathrm{DF}=$ pointers
$\mathrm{SS}=$ pointer $s$
$\mathrm{MS}=$ pointers
$\mathrm{RDF}=$ pointers
RSS $=$ pointers
RMS $=$ pointers
$\mathrm{VR}=$ pointers
$\mathrm{PRVR}=$ pointers
CONTRASTS $=$ pointers
SECONTRASTS $=$ pointers
TCONTRASTS $=$ pointers
PRCONTRASTS $=$ pointers

Treatment terms for which to save information; if this is not set, information is saved for all the treatment terms Pointer to tables saving the replication of the SAVETERMS What results to save in spreadsheets (aov, means, vcmeans, effects, vareffects, seeffects, teffects, preffects, contrasts, secontrasts, tcontrasts, prcontrasts); default * i.e. none
Limit on the order of a contrast of a treatment term; default 4 Limit on the number of factors in a treatment term for the deviations from its fitted contrasts to be retained in the model; default 9

Y-variates for each analysis
Defines the probe information for each analysis
Defines the slide information for each analysis
Slide ID's that can be compared with the labels or levels of the SLIDES factor to ensure that the slide order is correct in each analysis
Saves the probes names that have been generated to label the rows of the output structures from each analysis
Saves the residuals
Saves the fitted values
Pointer to a matrix for each of the SAVETERMS, saving the means from each analysis
Pointer to matrices saving variances and covariances for the means
Pointer to matrices saving effects
Pointer to variates saving unit variances for effects
Pointer to variates saving standard errors of effects
Pointer to variates saving $t$-statistics of effects
Pointer to variates saving probabilities for $t$-statistics of effects
Pointer to variates saving degrees of freedom
Pointer to variates saving sums of squares
Pointer to variates saving mean squares
Pointer to variates saving degrees of freedom for the residual corresponding to each of the SAVETERMS
Pointer to variates saving residual sums of squares
Pointer to variates saving residual mean squares
Pointer to variates saving variance ratios
Pointer to variates saving probabilities for the variance ratios
Pointer to matrices saving estimates of contrasts
Pointer to matrices saving standard errors of contrasts
Pointer to matrices saving $t$-statistics for contrasts Pointer to matrices saving probabilities for t -statistics of contrasts

## MABGCORRECT procedure

Performs background correction of Affymetrix slides (D.B. Baird).

## Options

$$
\begin{aligned}
& \text { PRINT = string token } \\
& \text { METHOD = string token } \\
& \text { WEIGHTING = string token } \\
& \text { POWER = scalar }
\end{aligned}
$$

What to print (quantiles); default quan
Method of establishing grid background (mean, quantile); default mean
Weighting method to use (affymetrix, distance); default affy
Power applied to distance; default 2 i.e. square

SMOOTH = scalar

## Parameters

DATA $=$ variates or pointers
SLIDES $=$ factors or texts
ROWS $=$ factors
COLUMNS $=$ factors
NEWDATA $=$ variates or pointers

Smoothing parameter applied to weights; default 100
Data values
Defines the slides
Defines the rows within each slide
Defines the columns within each slide
Saves the corrected values; if unset, they replace the original DATA values

## MACALCULATE procedure

Corrects and transforms two-colour microarray differential expressions (D.B. Baird).

## Options

PRINT $=$ string token	What to print (summary); default summ
BMETHOD = string token	How to correct for spot foreground for background values (subtract, smooth, none); default subtracts
	REDBACKGROUND and GREENBACKGROUND if set
TRANSFORMATION $=$ string token	Type of transformation to apply to the red/green ratios (log, glog); default log
MINIMUM $=$ scalar	Minimum value per channel; if RSDBACKGROUND and
	GSDBACKGROUND are supplied, this is the multiplier of these per spot, default 0
PERSPOTMINIMUM = string token	Use a single minimum value per spot rather than per slide (yes, no); default no
CONSTANTVALUE $=$ scalar	Constant to add to red and green foreground values; default 0
$\mathrm{DF}=$ scalar	Degrees of freedom to use for loess smoothing of background; default 20
Parameters	
RFOREGROUND $=$ variates or pointers	Red foreground values per spot
GFOREGROUND $=$ variates or pointers	Green foreground values per spot
RBACKGROUND $=$ variates or pointers	Red background values per spot
GBACKGROUND $=$ variates or pointers	Green background values per spot
RSDBACKGROUND $=$ variates or pointers	Standard deviation of red background
GSDBACKGROUND $=$ variates or pointers	Standard deviation of green background
SLIDES $=$ factors or texts	Defines the slide to which each spot belongs for smoothing, or per slide minima
ROWS $=$ factors	Defines the row position of each spot for background smoothing
COLUMNS $=$ factors	Defines the column position of each spot for background smoothing
LOGRATIOS $=$ variates or pointers	Saves the differential expression per spot
INTENSITIES $=$ variates or pointers	Saves the intensity of each spot
RCORRECTED $=$ variates or pointers	Saves the corrected red values per spot
GCORRECTED $=$ variates or pointers	Saves the corrected green values per spot

## MADESIGN procedure

Assesses the efficiency of a two-colour microarray design (D.B. Baird).

## Options

PRINT $=$ string tokens	What to print (design, sed, secontrasts, vcovariance, summary); default desi, sed, seco, vcov, summ
DYEBIASMETHOD $=$ string token	Whether to estimate dye bias effects (estimate, omit); default esti
SPREADSHEET $=$ string tokens	What results to put in spreadsheets (sed, secontrasts, vcovariance); default sed, seco
Parameters	
$\mathrm{RED}=$ factors	Targets on red dye
GREEN $=$ factors	Targets on green dye

XCONTRASTS $=$ matrices
SED $=$ symmetric matrices
VCOVARIANCE $=$ symmetric matrices
SECONTRASTS $=$ symmetric matrices

Contrasts to estimate
Saves standard errors of differences
Saves variance and covariances of treatments
Saves standard errors of contrasts specified in XCONTRASTS

## MAEBAYES procedure

Modifies $t$-values by an empirical Bayes method (D.B. Baird).

## Options

```
PRINT = string tokens
PLOT = string tokens
DATATYPE = string token
METHOD = string token
DEVICE = scalar
GRAPHICSFILE = text
```


## Parameters

DATA $=$ pointers or variates
$S D=$ variates
$\mathrm{DF}=$ variates

SD0 $=$ scalars
$\mathrm{DF} 0=$ scalars

TMODIFIED $=$ variates
SDMODIFIED $=$ variates
PMODIFIED $=$ variates

What to print (estimates); default esti
What to plot (phistograms, thistograms, pvalues, tvalues); default * i.e. nothing
Type of data specified by the DATA parameter when it is a variate (means, tvalues); default tval
Type of test to use to form probability values (twosided, greaterthan, lessthan); default twos
Device number on which to plot the graphs
What graphics filename template to use to save the graphs; default *

Pointers of variates or variates of means or $t$-values to be summarized
Supplies standard deviations of the data when DATA is a variate of means or $t$-values
or scalars Supplies degrees of freedom when DATA is a variate of means or $t$-values
Saves the estimated prior standard deviation
Saves the estimated number of degrees of freedom assigned to the prior standard deviation
Saves the modified $t$-values
Saves the shrunken SD values
Saves the modified probability values

## MAESTIMATE procedure

Estimates treatment effects from a two-colour microarray design (D.B. Baird).

## Options

PRINT $=$ string tokens	What to print (design, summary, monitoring); default desi, summ, moni
DYEBIASMETHOD = string token	Whether to estimate dye bias effects (estimate, omit); default esti
SPREADSHEET $=$ string tokens	What results to put in spreadsheets (estimates, df, rsd, dyebias, seestimates, tvalues, probabilities, contrasts, secontrasts, tcontrasts, prcontrasts); default esti, df, rsd, dyeb, sees, tval, prob, cont, seco, tcon, prco
Parameters	
LOGRATIOS $=$ variates or pointers	Log-ratios
PROBES $=$ factors or texts	Probes for the log-ratios
SLIDES $=$ factors or texts	Slides for the log-ratios
REDTREATMENTS = factors	Targets on red dye for slides
GREENTREATMENTS = factors	Targets on green dye for slides
CHECK $=$ texts or variates	Slide ID's of the red and green treatments for a check matching the slide order with the labels or levels of SLIDE
XCONTRASTS $=$ matrices	Contrasts to estimate
IDPROBES $=$ texts	Saves the probe names for each output row
$\mathrm{DF}=$ variates	Saves degrees of freedom for t-values
$\mathrm{RSD}=$ variates	Saves the residual standard deviation

```
DYEBIAS = variates
ESTIMATES = pointers
SEESTIMATES = pointers
TVALUES = pointers
PROBABILITIES = pointers
CONTRASTS = pointers
SECONTRASTS = pointers
TCONTRASTS = pointers
PRCONTRASTS = pointers
```

Saves estimated dye swap bias effects
Saves the estimates
Saves the standard errors of the estimates
Saves t-values of the estimates
Saves probabilities for the $t$-values
Saves estimates of the contrasts
Saves the standard errors of the contrasts
Saves $t$-values for the contrasts
Saves probabilities for the contrasts

## MAHISTOGRAM procedure

Plots histograms of microarray data (D.B. Baird).

## Options

SLIDES $=$ factor or text

SLIST $=$ variate or text
NGROUPS $=$ scalar

COLOUR $=$ text or scalar
TRANSFORMATION $=$ string token

SCALING $=$ string token
NROWS $=$ scalar
NCOLUMNS $=$ scalar
TITLE $=$ text
YTITLE $=$ text
XTITLE $=$ text
ARRANGEMENT $=$ string token

```
WINDOW \(=\) scalar
DEVICE = scalar
GRAPHICSFILE \(=\) text
```

YMINIMUM $=$ scalar
YMAXIMUM $=$ scalar
XMINIMUM $=$ scalar
XMAXIMUM $=$ scalar

## Parameter

DATA $=$ variates or pointers

Defines the slides when the DATA variate contains data from more then one slide
Subset of slides to plot; default * i.e. all
Number of groups into which to classify the DATA units; default 100
Colour to use for the bars of the histogram; default 'red '
Whether to transform data to logarithms base 2 (log2, none); default none
Whether to use a common scale when not using Trellis plots (common, none); default comm
Number of rows on a page in a trellis plot Number of columns on a page in a trellis plot
Title for the graph
Title for the $y$-axis
Title for the x -axis
Whether to use trellis or single plots when the DATA variate contains data from more then one slide (single, trellis); default trel
Window number for the graphs; default 3
Device number on which to plot the graphs
What graphics filename template to use to save the graphs; default *
Minimum value on the $y$-axis of the histogram
Maximum value on the $y$-axis of the histogram
Minimum value on the x -axis of the histogram
Maximum value on the x -axis of the histogram
Data values to plot

## MANNWHITNEY procedure

Performs a Mann-Whitney U test (S.J. Welham, N.M. Maclaren \& H.R. Simpson).

## Options

```
PRINT = string tokens
METHOD = string token
GROUPS = factor
```

CIPROBABILITY $=$ scalar

CONTROL $=$ scalar or text

Output required (test, ranks, hodgeslehmann, confidence); default test
Type of test required (twosided, greaterthan, lessthan); default twos
Defines the samples for a two-sample test if the Y2 parameter is not set
Probability for the confidence interval for the median difference between the samples; default 0.95 Identifies the control group against which to make comparisons if GROUPS is set; default uses the reference level of GROUPS

## Parameters

$\mathrm{Y} 1=$ variates
$\mathrm{Y} 2=$ variates
R1 $=$ variates

R2 $=$ variates
STATISTIC $=$ scalars or tables
PROBABILITY $=$ scalars or tables
SIGN $=$ scalars or tables
HODGESLEHMANN $=$ scalars or tables

LOWER $=$ scalars or tables
UPPER $=$ scalars or tables

Identifier of the variate holding the first sample if Y 2 is set, or both samples if $Y 2$ is unset (the GROUPS option must then also be set)
Identifier of the variate holding the second sample
Saves the ranks of the first sample if Y2 is set, or both samples if $Y 2$ is unset
Saves the ranks of the second sample if Y 2 is set
Saves the test statistics $U$
Probability values for the test statistics
Saves indicators: 1 if the first sample scores the highest ranks on average, 0 otherwise
Saves the Hodges-Lehmann estimates for the differences in location of the two samples (i.e. the median differences between the samples)
Saves lower confidence values for median differences between the samples
Saves upper confidence values for median differences between the samples

## MANOVA procedure

Performs multivariate analysis of variance and covariance (R.W. Payne \& G.M. Arnold).

## Options

```
PRINT = string tokens
APRINT = string tokens
UPRINT = string tokens
CPRINT = string tokens
TREATMENTSTRUCTURE = formula
```

BLOCKSTRUCTURE = formula
COVARIATES $=$ variates
FACTORIAL $=$ scalar
$\mathrm{LRV}=$ pointer
FPROBABILITY $=$ string token
SELECTION $=$ string tokens
NTIMES $=$ scalar

Printed output required from the multivariate analysis of covariance ( ssp , tests); default test
Printed output from the univariate analyses of variance of the y -variates (as for the ANOVA PRINT option); default * Printed output from the univariate unadjusted analyses of variance of the $y$-variates (as for the ANOVA UPRINT option); default *
Printed output from the univariate analyses of variance of the covariates (as for the ANOVA CPRINT option); default * Treatment formula for the analysis; if this is not set, the default is taken from the setting (which must already have been defined) by the TREATMENTSTRUCTURE directive Block formula for the analysis; if this is not set, the default is taken from any existing setting specified by the BLOCKSTRUCTURE directive and if neither has been set the design is assumed to be unstratified (i.e. to have a single error term)
Covariates for the analysis; by default MANOVA uses those listed by a previous COVARIATE directive (if any)
Limit on the number of factors in a treatment term
Contains elements first for the treatment terms and then the covariate term (if any), allowing the LRV's to be saved from one of the analyses; if a term is estimated in more than one stratum, the LRV is taken from the lowest stratum in which it is estimated
Printing of probabilities for F statistics and Chi-square variables (no, yes); default no
Which test statistics to print when PRINT=test
(lawleyhotellingtrace, pillaibartletttrace, roysmaximumroot, wilkslambda\}; default lawl, pill, roys, wilk
Number of permutations to make when PRINT=perm; default 999

EXCLUDE $=$ factors
SEED $=$ scalar

## Parameter

$\mathrm{Y}=$ variates

Factors in the block model of the design whose levels are not to be randomized
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically

Y -variates for an analysis

## MANTEL procedure

Assesses the association between similarity matrices (J.W. McNicol, E.I. Duff \& D.A. Elston).

## Options

PRINT $=$ string token	Controls printed output (test); default * i.e. none
METHOD $=$ string token	The type of metric by which to compare the distance matrices (correlation, rankcorrelation, mantel); default corr
NPERMUTATIONS $=$ scalar	The number of permutations of the units in the second distance matrix X on which the significance of the correlation between $Y$ and $X$ is to be based; default 100
Parameters	
$\mathrm{Y}=$ symmetric matrices	The first distance or similarity matrix: the order of the units of this matrix is held fixed
$\mathrm{X}=$ symmetric matrices	The second distance or similarity matrix: the rows of $x$ are permuted to allow the significance of the correlation between $Y$ and $X$ to be assessed
SEED $=$ scalars	Random number seed for the permutations; default set by RANDOMIZE
$\mathrm{M}=$ scalars	Association between $Y$ and $X$
MPERMUTED $=$ variates	Associations between $Y$ and the permuted X's
CUPROB $=$ scalars	The proportion of MPERMUTED values greater than or equal to M
YOFFDIAGONAL $=$ variates	Variate to save the off-diagonal elements of the distance/similarity matrix Y
XOFFDIAGONAL $=$ variates	Variate to save the off-diagonal elements of the distance/similarity matrix $X$

METHOD $=$ string token

NPERMUTATIONS $=$ scalar

## Parameters

$\mathrm{Y}=$ symmetric matrices
$\mathrm{X}=$ symmetric matrices

$$
\text { SEED }=\text { scalars }
$$

$\mathrm{M}=$ scalars
MPERMUTED $=$ variates
CUPROB $=$ scalars

YOFFDIAGONAL $=$ variates

XOFFDIAGONAL $=$ variates

Controls printed output (test); default * i.e. none The type of metric by which to compare the distance matrices (correlation, rankcorrelation, mantel); default corr The number of permutations of the units in the second distance matrix $X$ on which the significance of the correlation between $Y$ and $X$ is to be based; default 100

The first distance or similarity matrix: the order of the units of this matrix is held fixed
The second distance or similarity matrix: the rows of $x$ are permuted to allow the significance of the correlation between $Y$ and $X$ to be assessed
Random number seed for the permutations; default set by Association between $Y$ and $X$
Associations between $Y$ and the permuted $X$ 's
The proportion of MPERMUTED values greater than or equal to M

Variate to save the off-diagonal elements of the re/similarity matrix distance/similarity matrix X

## MAPCLUSTER procedure

Clusters probes or genes with microarray data (D.B. Baird).

## Options

PRINT $=$ string tokens
PLOT $=$ string tokens
METHOD $=$ string token
DMETHOD $=$ string token
LMETHOD $=$ string token

CRITERION $=$ string token
NGROUPS $=$ scalar
GTHRESHOLD $=$ scalar
PERCENT $=$ scalar
DTITLE $=$ text
GTITLE $=$ text

What to print (cluster, groups, summary); default clus What to plot (dendrogram, groups, meangroups); default dend, grou
Type of clustering to use (hierarchical, kmeans); default hier
Distance method to use for hierarchical clustering
(euclidean, cityblock); default eucl
What type of link to use in hierarchal clustering
(singlelink, nearestneighbour, completelink, furthestneighbour, averagelink, mediansort, groupaverage); default aver
Criterion to use in forming groups when LMETHOD=kmeans
(sums, predictive, within, Mahalanobis); default sums
Number of groups to form when LMETHOD=kmeans
Grouping threshold for forming groups from the dendrogram; default *
Percentage of the probes/genes to use; default 100
Title for the dendrogram
Title for the groups plot

ARRANGEMENT $=$ string token

```
WINDOW \(=\) scalar
DEVICE \(=\) scalar
GRAPHICSFILE \(=\) text
SPREADSHEET \(=\) string token
```


## Parameters

DATA $=$ variates or pointers
SLIDES $=$ factors, texts or variates
PROBES $=$ factors, texts or variates
SIMILARITY $=$ symmetric matrices
GROUPS $=$ factors
AMALGAMATIONS $=$ matrices

Whether to use a trellis or single plot (single, trellis); default trel
Window number for the graphs; default 3
Device number on which to plot the graphs
What graphics filename template to use to save the graphs; default *
What results to put in spreadsheets (top\%probes); default * i.e. none

Data values (i.e. log-ratios)
Identifies the slides
Identifies the probes or genes
Saves the pair-wise similarities between probes or genes when METHOD=hier
Saves the group membership for each probe Saves the probe or gene amalgamation data when METHOD=hier

## MAPLOT procedure

Produces two-dimensional plots of microarray data (D.B. Baird).

## Options

SLIDES $=$ factor or text	Defines the slides when the X and Y variates contain data from more than one slide
SLIST $=$ variate or text	Subset of slides to plot; default * i.e. all
GROUPS $=$ factor	Specifies groups within slides
COLOURS $=$ text, scalar or variate	Colours to use for the plots
SYMBOLS = scalar or variate	Symbols to use for the plots
REFERENCELINECHOICE = string token	
	Reference line to include (identity, zero, none); default none
TRANSFORMATION $=$ string token	Whether to transform data to logarithms base 2 (log2, none); default none
SCALING $=$ string token	Whether to use a common scale when not using Trellis plots (common, none); default comm
BANDS $=$ string token	Whether to plot approximate confidence bands (confidence, none); default none
SMOOTHEDMEAN $=$ string token	Whether to plot spline smooth of mean (yes, no); default no
NROWS $=$ scalar	Number of rows on a page in a trellis plot
NCOLUMNS = scalar	Number of columns on a page in a trellis plot
TITLE $=$ text	Title for the graph
YTITLE $=$ text	Title for the $y$-axis
XTITLE $=$ text	Title for the x -axis
ARRANGEMENT $=$ string token	Whether to use trellis, single or multiple plots when the x and $Y$ variates contain data from more than one slide (separate, overlaid, trellis); default trel
WINDOW = scalar	Window number for the graphs; default 3
KEYWINDOW = scalar	Window number for the key; default 0
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE $=$ text	What graphics filename template to use to save the graphs; default *
Parameters	
$\mathrm{Y}=$ variates or pointers	Y-coordinates
$\mathrm{X}=$ variates or pointers	X-coordinates

## MAREGRESSION procedure

Does regressions for single-channel microarray data (P. Brain, R.W. Payne \& D.B. Baird).

## Options

PRINT $=$ string tokens	Controls printed output (model, summary); default * i.e. none
TERMS $=$ formula	Defines the regression model over the slides
WEIGHTS = variate	Weights for the regression; default 1
OFFSET = variate	Offset; default * i.e. none
CONSTANT $=$ string token	How to treat the constant (estimate, omit); default esti
FACTORIAL $=$ scalar	Limit for expansion of model terms; default 3
FULL $=$ string token	Whether to assign all possible parameters to factors and interactions (yes, no); default no
$\mathrm{POOL}=$ string token	Whether to pool the information on each term in the analysis of variance (yes, no); default no
RMETHOD $=$ string token	Type of residuals to form (deviance, Pearson, simple); default devi
SPREADSHEET $=$ string tokens	What results to save in a book of spreadsheets (aov, residuals, fittedvalues, estimates, se, testimates, prestimates); default * i.e. none
Parameters	
$\mathrm{Y}=$ variates or pointers	Y-values for each set of analyses
PROBES $=$ factors or texts	Defines the probe information for each analysis
SLIDES $=$ factors or texts	Defines the slide information for each analysis
CHECK= texts or variates	Slide ID's that can be compared with the labels or levels of the SLIDES factor to ensure that the slide order is correct in each analysis
IDS $=$ texts	Saves the probes names that have been generated to label the rows of the output structures from each analysis
RESIDUALS $=$ matrices	Saves residuals from each set of analyses
FITTEDVALUES = matrices	Saves fitted values from each set of analyses
ESTIMATES $=$ matrices	Saves estimates from each set of analyses
$\mathrm{SE}=$ matrices	Saves s.e.'s of estimates
TESTIMATES = matrices	Saves $t$-statistics of estimates
PRESTIMATES $=$ matrices	Saves t-probabilities of estimates
DF $=$ pointers	Saves degrees of freedom for the model terms or variates in each analysis of variance
SS $=$ pointers or variates	Saves sums of squares for the model terms in each analysis of variance
MS $=$ pointers or variates	Saves mean squares for the model terms in each analysis of variance
$\mathrm{RDF}=$ variates	Saves degrees of freedom from the "residual" lines in each analysis of variance
RSS $=$ variates	Saves sums of squares from the "residual" lines
RMS $=$ variates	Saves mean squares from the "residual" lines
TDF $=$ variates	Saves degrees of freedom from the "total" lines in each analysis of variance
TSS $=$ variates	Saves sums of squares from the "total" lines
TMS $=$ variates	Saves mean squares from the "total" lines
$\mathrm{VR}=$ pointers or variates	Saves variance ratios for the model terms in each analysis of variance
PRVR $=$ pointers or variates	Saves probabilities of the variance ratios

## MARGIN directive

Forms and calculates marginal values for tables.

## Option

CLASSIFICATION $=$ factors

Factors classifying the margins to be formed; default * requests all margins to be formed

## Parameters

OLDTABLE $=$ tables
Tables from which the margins are to be taken or calculated
NEWTABLE $=$ tables New tables formed with margins
METHOD $=$ string tokens

Way in which the margins are to be formed for each table (totals, means, minima, maxima, variances, medians, deletion, or a null string to indicate that the marginal values are all to be set to the missing value); default tota

## MARMA procedure

Calculates Affymetrix expression values (D.B. Baird).

## Options

PRINT = string token
METHOD = string token
NORMALIZED $=$ string token

## Parameters

DATA $=$ variates or pointers
SLIDES $=$ factors or texts
NEWDATA $=$ variates or pointers
ESTIMATES $=$ variates

What to print (estimates, monitoring); default esti Method of establishing grid background (rma, rma2); default rma Whether slides have been normalized (yes, no); default no

Perfect-match data
Defines the slides
Saves the corrected values; if this is unset, they replace the original values in DATA
Saves the estimated parameters of the model

## MAROBUSTMEANS procedure

Does a robust means analysis for Affymetrix slides (D.B. Baird).

## Options

TRANSFORMATION = string token
MAXCYCLE $=$ scalar
TOLERANCE $=$ scalar

## Parameters

DATA $=$ variates or pointers
SLIDES $=$ factors or texts
PROBES $=$ factors
IDPROBES $=$ factors
MEDIANS $=$ variates or pointers
SEM $=$ variates or pointers

How to transform the data (log2, none); default none
Maximum number of iterations; default 50
Tolerance for convergence; default 0.0001
Expression data to be summarized
Defines the slides
Defines the probes
Saves the probe IDs
Saves the robust means
Saves approximate standard errors of the robust means

## MASCLUSTER procedure

Clusters microarray slides (D.B. Baird).

## Options

\(\left.$$
\begin{array}{ll}\text { PRINT }=\text { string tokens } & \begin{array}{l}\text { What to print (cluster, pco, correlations, distances); } \\
\text { default clus, pco, corr, dist }\end{array} \\
\text { PLOT }=\text { string tokens } \\
\text { DMETHOD }=\text { string token } & \text { What to plot (dendrogram, mst); default dend, mst }\end{array}
$$ \quad \begin{array}{l}What distance method to use to form the similarity matrix <br>

(correlation, euclidean, cityblock); default corr\end{array}\right]\)| Percentage of the probes/genes to use to calculate correlations; |
| :--- |
| default 100 |

PROBES $=$ factors, texts or variates
CORRELATION = symmetric matrices
DISTANCE $=$ symmetric matrices

Identifies the probes or genes
Saves the correlation matrix
Saves the distance matrix

## MASHADE procedure

Produces shade plots to display spatial variation of microarray data (D.B. Baird).

## Options

SLIDES $=$ factor or text	Defines the slides when the DATA variate contains data from   more than one slide
SLIST $=$ variate or text	Subset of slides to plot; default * i.e. all
ROWS $=$ factor or variate	Row to which each DATA unit belongs
COLUMNS $=$ factor or variate	Column to which each DATA unit belongs
COLOURS $=$ text, scalar or variate	Colours to use for the plots; default ! t (blue, red)
SHADING = string token	Shading scale (natural, percentiles); default natu
TITLE $=$ text	Title for the graph
YTITLE $=$ text	Title for the y-axis
XTITLE $=$ text	Title for the x-axis
WINDOW $=$ scalar	Window number for the graphs; default 3
DEVICE $=$ scalar	Device number on which to plot the graphs
GRAPHICSFILE $=$ text	What graphics filename template to use to save the graphs;
Parameter	default *
DATA $=$ variates or pointers	

## MATRIX directive

Declares one or more matrix data structures.

## Options

ROWS = scalar, vector, pointer or text Number of rows, or labels for rows; default *
COLUMNS $=$ scalar, vector, pointer or text
Number of columns, or labels for columns; default *
VALUES $=$ numbers $\quad$ Values for all the matrices; default *
MODIFY $=$ string token $\quad$ Whether to modify (instead of redefining) existing structures (yes, no); default no
IPRINT $=$ string tokens

## Parameters

IDENTIFIER $=$ identifiers	Identifiers of the matrices
VALUES $=$ identifiers	Values for each matrix
DECIMALS $=$ scalars	Number of decimal places for printing
EXTRA $=$ texts	Extra text associated with each identifier
MINIMUM $=$ scalars	Minimum value for the contents of each structure
MAXIMUM $=$ scalars	Maximum value for the contents of each structure
DREPRESENTATION $=$ scalars or texts	Default format to use when the contents represent dates and   times

## MAVDIFFERENCE procedure

Applies the average difference algorithm to Affymetrix data (D.B. Baird).

## Options

PRINT $=$ string token

SDLIMIT $=$ scalar
Parameters
DATA $=$ variates or pointers
GROUPS $=$ factors
MEANS $=$ variates

Whether to print monitoring information (monitoring); default *
Maximum number of iterations; default 50
Data values
Groupings of the data values
Saves the means
$\mathrm{SE}=$ variates $\quad$ Saves standard errors

## MAVOLCANO procedure

Produces volcano plots of microarray data (D.B. Baird).

## Options

NGROUPS $=$ scalar	Number of groupings for a Z variate; default 10
COLOURS $=$ text, scalar or variate	Colours to use for the plots; default ! (blue, red)
SYMBOL = scalar	Symbol to use for the points; default 1
TRANSFORMATION $=$ string token	Whether to transform data to logarithms base $2(\log 10$, none); default log10
TITLE $=$ text	Title for the graph
YTITLE $=$ text	Title for the y -axis
XTITLE $=$ text	Title for the x -axis
WINDOW = scalar	Window number for the graphs; default 3
KEYWINDOW = scalar	Window number for the graphs; default 0
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE $=$ text	What graphics filename template to use to save the graphs; default *
Parameters	
$\mathrm{X}=$ variates	X-coordinates
$\mathrm{Y}=$ variates or factors	Y-coordinates
$\mathrm{z}=$ variates or factors	Z-coordinates

## MA2CLUSTER procedure

Performs a two-way clustering of microarray data by probes (or genes) and slides (D.B. Baird).

## Options

PRINT $=$ string tokens	What to print (cluster, groups, summary); default clus
PLOT $=$ string tokens	What to plot (dendrogram, shade, meanshade); default dend, shad
METHOD $=$ string token	Type of clustering to use (hierarchical, kmeans); default hier
DMETHOD $=$ string token	Distance method to use for hierarchical clustering (euclidean, cityblock); default eucl
LMETHOD $=$ string token	What type of link to use in hierarchal clustering (singlelink, nearestneighbour, completelink, furthestneighbour, averagelink, mediansort, groupaverage); default aver
CRITERION $=$ string token	Criterion to use in forming groups when LMETHOD $=$ kmeans (sums, predictive, within, Mahalanobis); default sums
PNGROUPS $=$ scalar	Number of probe groups to form when LMETHOD=kmeans
SNGROUPS $=$ scalar	Number of target (slide) groups to form when LMETHOD=kmeans
GTHRESHOLD $=$ scalar	Grouping threshold for forming probe groups from the dendrogram; default *
SGTHRESHOLD $=$ scalar	Grouping threshold for forming target (slide) groups from the dendrogram; default *
MINOBSERVATIONS $=$ scalar	Smallest number of observations before probes are dropped; default *
PERCENT $=$ scalar	Percentage of the probes/genes to use; default 100
STANDARDIZE $=$ string token	Allows you to centre the values by slide and probe (centre); default * i.e. no centring
COLOURS $=$ text, scalar or variate	Colours to use for shade plot; default ! t (blue, red)
DTITLE $=$ text	Title for the dendrogram
STITLE $=$ text	Title for the shade plot
WINDOW = scalar	Window number for the graphs; default 3
DEVICE $=$ scalar	Device number on which to plot the graphs

```
GRAPHICSFILE \(=\) text
SPREADSHEET \(=\) string token
```


## Parameters

DATA $=$ variates or pointers
SLIDES $=$ factors, texts or variates
PROBES $=$ factors, texts or variates
GMEANS $=$ matrices

PGROUPS $=$ factors
SGROUPS $=$ factors
PAMALGAMATIONS $=$ matrices

SAMALGAMATIONS $=$ matrices

What graphics filename template to use to save the graphs; default *
What results to put in spreadsheets (top\%probes); default * i.e. none

Data values (i.e. log-ratios)
Identifies the slides
Identifies the probes or genes
Saves the tabulation of the data by probe groups and target groups, as a two-way matrix
Saves the group membership for each probe (or gene)
Saves the group membership for each slide (or target)
Saves the probe (or gene) amalgamation data when METHOD=hier
Saves the slide (or target) amalgamation data when METHOD=hier

## MCNEMAR procedure

Performs McNemar's test for the significance of changes (R.W. Payne \& D.A. Murray).

## Options

\(\left.$$
\begin{array}{ll}\text { PRINT = string tokens } \\
\text { METHOD }=\text { string token } & \begin{array}{l}\text { Controls printed output (test, table); default test } \\
\text { Type of test required (twosided, greaterthan, lessthan); } \\
\text { default twos }\end{array}
$$ <br>
Parameters \& Y1 factors or tables <br>
Factor containing the responses obtained before the treatment <br>
(with 1 indicating a positive response) or two-by-two table <br>
(classified by factors representing the two occasions of testing) <br>

summarizing the responses before and after treatment\end{array}\right\}\)| Factor containing the responses obtained after the treatment |
| :--- |
| (need not be specified if Y1 is a table) |

## MCOMPARISON procedure

Performs pairwise multiple comparison tests within a table of means (D.M. Smith).

## Options

PRINT $=$ string tokens
$\mathrm{METHOD}=$ string token
DIRECTION $=$ string token
PROBABILITY $=$ scalar
STUDENTIZE = string token

## Parameters

MEANS $=$ tables
SED $=$ symmetric matrix or scalar $\mathrm{DF}=$ symmetric matrix or scalar VMEANS $=$ pointer or variate

DIFFERENCES $=$ symmetric matrix
LABELS $=$ text
LETTERS $=$ text

SIGNIFICANCE $=$ symmetric matrix
Controls printed output (comparisons, critical, description, lines, letters, plot, mplot, pplot); default lett
Test to be performed (flsd, bonferroni, sidak); default flsd
How to sort means (ascending, descending); default asce
The required significance level; default 0.05
Whether to use the alternative LSD test where the Studentized Range statistic is used instead of Student's t (yes, no); default no

Means to be compared
Standard errors of differences of the means
Degrees of freedom for the standard errors of differences Saves the means in a variate, sorted as requested by the DIRECTION option
Saves differences between the (sorted) means
Saves labels for the (sorted) means
Saves letters indicating groups of means that do not differ significantly
Indicators to show significant comparisons between (sorted)

```
CIWIDTH = symmetric matrix
TERMNAME = texts
```

AME $=$ texts
means

## MCORANALYSIS procedure

Does multiple correspondence analysis (A.I. Glaser).

## Options

PRINT $=$ string tokens

ROWMETHOD $=$ string token
COLMETHOD $=$ string token
NROOTS = scalar
\%METHOD $=$ string token
NDIMENSIONS $=$ scalar
TOLERANCE $=$ scalar

## Parameters

DATA $=$ pointers
ROOTS $=$ diagonal matrices
ROWSCORES $=$ matrices
COLSCORES $=$ matrices
ROWINERTIAS $=$ matrices
COLINERTIAS $=$ matrices
ROWQUALITY $=$ matrices
COLQUALITY $=$ matrices
SUBINERTIAS $=$ matrices
FREQUENCY $=$ variates
SAVE $=$ pointers

Printed output from the analysis (roots, rowscores, rowinertias, rowchisquare, rowmass, rowquality, colscores, colinertias, colchisquare, colmass, colquality); default * i.e. no output
Analysis method for rows i.e. units (indicator); default indi
Analysis method for columns i.e. factors (adjusted, burt, indicator); default adju
Number of latent roots for printed output; default * requests them all to be printed
How to represent proportions or \%s in quality statistics
(permills, percentages, proportions); default prop
Number of dimensions for which quality statistics are required; default 2
Tolerance criteria for zero eigenvalues; default $10^{-6}$
Data to be analysed
Saves the squared singular values from each analysis
Saves the scores for the rows of the data
Saves the scores for the columns of the data
Saves the total inertias for the rows of the data
Saves the total inertias for the columns of the data
Saves the quality statistics for rows of the data
Saves the quality statistics for columns of the data
Saves the inertias of the subtables of the Burt matrices
Frequencies for elements of DATA
Saves details of the analysis for use by CABIPLOT

## MCOVARIOGRAM directive

Fits models to sets of variograms and cross-variograms.

## Options

PRINT $=$ string tokens

WEIGHTING $=$ string token
MAXLAG $=$ scalar
MINCOUNT $=$ scalar

MAXCYCLE $=$ scalar
TOLERANCES $=$ variate
COORDSYSTEM $=$ string token
COVARIOGRAM $=$ pointers

Controls printed output from the fit (model, summary, estimates, fittedvalues, monitoring); default mode, summ, esti
Method to be used for weighting (counts, equal); default coun
Maximum lag distance of points to be included in the modelling
Minimum number of points required at a particular lag point for a pair of variables for this to be used to model their crossvariogram; default 30 for equal weighting and 10 for counts Maximum number of iterations for model fitting; default 30 Tolerances for model fitting; default * i.e. appropriate default values
Coordinate system used for the geometry for discretizing the lag (mathematical, geographical); default math Experimental variograms, cross-variograms and associated information defining the data for fitting the model

## Parameters

MODELTYPE = string tokens

INITIAL $=$ scalars or variates

ISOTROPY $=$ string tokens
ESTIMATES $=$ pointers
LOWER $=$ scalars
UPPER $=$ scalars
STEPLENGTH $=$ scalars
SMOOTHNESS $=$ scalars

Defines the model structures to be fitted (nugget, power, boundedlinear, circular, spherical, pentaspherical, cubic, stable, besselkl, cardinalsine, dampenedcosine); no default i.e. must be specified
Scalar defining the initial distance parameter for fitting an isotropic model structure or a variate defining initial values for an anisotropic ellipse or ellipsoid for fitting an geometrical anisotropic model
Specifies the zonal anisotropy to be used for model structure (isotropic, $x, y, z, x y, x z, y z$ ); default isot
Structures to store the estimated non-linear parameters and sill values
Lower bound for each non-linear distance parameter Upper bound for each non-linear distance parameter Initial step length for each non-linear distance parameter Value of exponent parameter for the power and stable models, or theta parameter for the dampened-cosine model

## MCROSSPECTRUM procedure

Performs a spectral analysis of a multiple time series (G. Tunnicliffe Wilson \& R.P. Littlejohn).

## Options

PRINT $=$ string token
PLOT $=$ string tokens
CORRECT $=$ string token
BANDWIDTH $=$ scalar
MAXLAG $=$ scalar
PROBABILITY $=$ scalar
TAPER $=$ scalar
YLOG $=$ string token
Parameters
Y = variates
X $=$ variates or pointers
ALIGN $=$ variates
SPECTRUM $=$ pointers
FREQUENCY = variate
VARSPECTRUM = pointers

ULICOHERENCYSQUARED = pointers Saves estimates, significance limits, lower and upper confidence limits for the squared multiple coherency between the response and explanatory series

## PARTIALCOHERENCYSQUARED = pointers

Saves estimates, significance limits, lower and upper confidence limits for the squared partial coherency of the response series with each explanatory series

## NOISESPECTRUM $=$ variates

IMPULSERESPONSE $=$ pointers

LAGS $=$ variates
ACFNOISE = variates
of response series from each of the explanatory series
Saves the estimated spectrum of the noise process
Saves the impulse response from -maxlag to +maxlag: estimates and significance limit
Saves the lags for the impulse response
Saves the ACF of the noise process

## MC1PSTATIONARY procedure

Gives the stationary probabilities for a 1st-order Markov chain (R.P. Littlejohn).

## Option

PRINT $=$ string token

## Parameters

DATA $=$ matrices or factors
What to print (transitions, pstationary); default psta

STATES $=$ texts
PSTATIONARY $=$ variates
Specifies the Markov chain as a factor, or matrix of transitions
Labels for the states
Saves the stationary probabilities
TRANSITIONS $=$ matrices

## MDS directive

Performs non-metric multidimensional scaling.
Options

PRINT = string tokens	Printed output required (coordinates, roots, distances, fitteddistances, stress, monitoring); default * i.e. no printing
DATA $=$ symmetric matrix	Distances amongst a set of units
$\mathrm{METHOD}=$ string token	Whether to use non-metric scaling, or metric scaling with linear regression of the fitted distances to the actual distances (nonmetric, linear); default nonm
SCALING $=$ string token	Whether least-squares, least-squares-squared, or log-stress scaling is to be used (ls, lss, logstress); default ls
$\mathrm{TIES}=$ string token	Treatment of tied data values (primary, secondary, tertiary); default prim
WEIGHTS = symmetric matrix	Weights for each distance value; default * i.e. all distances with weight one
INITIAL $=$ matrix	Initial configuration; default * i.e. a principal coordinate solution is used
NSTARTS $=$ scalar	Number of starting configurations to be used, by making random perturbations to the initial configuration; default 10
SEED = scalar	Seed for the random-number generator; default 0
MAXCYCLE $=$ scalar	Maximum number of iterations; default 30
Parameters	
NDIMENSIONS $=$ scalars	Number of dimensions for each solution
COORDINATES $=$ matrices	To store the coordinates of the units for each solution
STRESS = scalars	To store the stress value for each solution
DISTANCES $=$ symmetric matrices	To store the distances amongst the points for the units in the fitted number of dimensions
FITTEDDISTANCES $=$ symmetric matrices	
	To store the fitted distances from the monotonic (METHOD=nonmetric) or linear (METHOD=linear) regression

## MEDIANTETRAD procedure

Gives robust identification of multiple outliers in 2-way tables (J.K.M. Brown).

## Options

```
PRINT = string tokens
Printed output required (graph, table); default grap, tabl
GRAPHICS = string tokens
```

Printed output required (graph, table); default grap, tabl Type of graph required (highresolution, lineprinter); default high

## SORT $=$ string tokens

## Parameters

TABLE $=$ tables
ROWS = factors
COLUMNS $=$ factors
$\mathrm{DATA}=$ variates
MEDIANTETRADS $=$ variates
RANKS $=$ variates
HALFNORMALSCORES = variates
TESTOUTLIERS = scalars

Sorting of printed output, in order of absolute value of median tetrad (ascending, descending, none); default none

Specifies the two-way table of data
Saves the factor classifying the table rows
Saves the factor classifying the table columns
Saves the data values in the body of the table
Saves median tetrads for each cell in the table Saves ranks of absolute values of median tetrads Saves half-Normal scores of absolute values of median tetrads Specifies the number of cells, with the highest absolute median tetrads, to be set to their predicted values before re-running the analysis

## META procedure

Combines estimates from individual trials (R.W. Payne \& S. Senn).

Options
PRINT = string tokens
SELECTION = string tokens
RMETHOD = string token
XLABEL = text
SMETHOD = string token
CIPROBABILITY = scalar
CIMETHOD = string token
PRMETHOD = string token
MAXCYCLE = scalar
TOLERANCE = scalar

## Parameters

ESTIMATES $=$ variates
SEESTIMATES $=$ variates
LABELS $=$ texts
FIXEDESTIMATE $=$ scalars

SEFIXEDESTIMATE = scalars
PRFIXEDESTIMATE $=$ scalars

RANDOMESTIMATE $=$ scalars
SERANDOMESTIMATE $=$ scalars

PRRANDOMESTIMATE $=$ scalars

QSTATISTIC $=$ scalars

Controls output (estimates, overalltest, heterogeneity, confidenceplot, galbraithplot, monitoring); default esti, over, hete, conf
Which combined estimates to include in the output (fixed, random); default fixe, rand
How to form the random estimate (maxlikelihood, maxremllikelihood, moments, reml); default reml
Label for the x -axis of the confidence plot; default
'treatment effect'
How to set the sizes of symbols on the confidence plot
(equal, inversese); default inve
Probability level to use for the confidence intervals; default 0.95

Method to use for calculating the confidence interval for random estimates formed by maximum likelihood or REML (approximate, profile); default prof
Type of test to use for the overall probability values
(greaterthan, lessthan, twosided); default grea
Maximum number of iterations to use with RMETHOD settings
maxlikelihood and maxremllikelihood; default 100
Convergence criterion to use with RMETHOD settings maxlikelihood and maxremllikelihood; default $10^{-6}$

Supplies the estimates to combine
Specifies the standard errors of the estimates
Labels to use for each variate of ESTIMATES in the output Saves the combined estimate for each variate of ESTIMATES, treating them as fixed effects
Saves the standard error of the combined estimate for each variate of ESTIMATES, treating them as fixed effects Saves the probability of the combined estimate for each variate of ESTIMATES, treating them as fixed effects
Saves the combined estimate for each variate of ESTIMATES, treating them as random effects
Saves the standard error of the combined estimate for each variate of ESTIMATES, treating them as random effects Saves the probability of the combined estimate for each variate of ESTIMATES, treating them as random effects
Saves the statistic $Q$ for the test of heterogeneity across trials

QDF $=$ scalars
RVARIANCE $=$ scalars
LOWER $=$ variates
UPPER $=$ variates

Saves the degrees of freedom of the statistic $Q$
Saves the random effect variance
Saves lower values of the confidence interval
Saves upper values of the confidence interval

## MICHAELISMENTEN procedure

Fits the Michaelis-Menten equation for substrate concentration versus time data (M.C. Hannah).

## Options

PRINT $=$ string tokens
$\mathrm{PLOT}=$ string tokens
WINDOW = scalar
TITLE $=$ text
TTIMES $=$ text

TCONCENTRATIONS $=$ text

TRATES $=$ text
WEIGHTS $=$ variate

## Parameters

TIMES $=$ variates
CONCENTRATIONS $=$ variates
STEPLENGTHS $=$ variates
INITIAL $=$ variates
RESIDUALS $=$ variates
FITTEDVALUES $=$ variates
ESTIMATES $=$ variates
$\mathrm{SE}=$ variates
VCOVARIANCE $=$ symmetric matrix
OBSRATES $=$ variates
FITRATE $=$ variates

What to print (model, deviance, summary, estimates, correlations, fittedvalues, monitoring); default mode, summ, esti
What to plot (concentration, rate); default conc
Window in which to plot the graphs; default 1
Title for the graphs; default 'Michaelis-Menten process'
Title for the times axis; if this is unset, the identifier of the TIMES variate is used
Title for the concentrations axis; if this is unset, the identifier of the CONCENTRATIONS variate is used if available, otherwise 'Concentration'
Title for the rates axis; if this is unset, the identifier of the RATES variate is used if available, otherwise 'Rate' Weights for the observations, to use in the fit, if required; default * i.e. all observations with weight one

Times at which substrate concentration data were measured Substrate concentration data
Variate with four values defining initial step lengths for the parameters $S_{0}, V_{\max }, K_{m}$ and $K_{1}$ (in that order)
Variate containing initial values for the parameters, similarly to STEPLENGTHS
Saves the residuals from each fit
Saves the fitted concentration values
Saves the parameter estimates
Saves the standard errors of the estimates
Saves the variance-covariance matrix of the estimates Saves reaction rates, calculated from the observed concentrations
Saves fitted reaction rates

## MINFIELDWIDTH procedure

Calculates minimum field widths for printing data structures (R.W. Payne).

## Option

IPRINT $=$ string tokens

## Parameters

STRUCTURE $=$ identifiers
FIELDWIDTH = scalars
DECIMALS $=$ scalars

SKIP $=$ scalars
What identifier and/or text to print for the structure
(identifier, extra); default is to take the IPRINT setting of each STRUCTURE

Data structures to be printed
Saves the minimum field widths
Number of decimal places to be used for numerical data structures; if unset, a default is obtained using the DECIMALS procedure
Number of spaces to leave before each value of the structure; default 1

How to represent factor values (labels, levels, ordinals); default is to use labels if available, otherwise levels

## MINIMIZE procedure

Finds the minimum of a function calculated by a procedure (R.W. Payne).

## Options

PRINT = string tokens	What output to produce (minimum, monitoring); default   mini
FUNCTIONVALUE $=$ scalar	Saves the minimum function value
DATA $=$ any type	Data to be used with procedure_MINFUNCTION
MAXCYCLE = scalar	Maximum number of iterations; default 2000
NSTARTS = scalar	Maximum number of restarts; default 4
STEPADJUSTMENT = scalar	Adjustment to step lengths at each restart; default 0.1
EXIT $=$ scalar	Indicates whether there has been convergence (zero) or non-
	convergence (non-zero)
TOLERANCE $=$ scalar	Convergence criterion; default 0.0001
METHOD $=$ string token	Algorithm for fitting nonlinear model (GaussNewton,
	NewtonRaphson, FletcherPowell); default Newt
PARAMeters	Parameters to be estimated
PARAMETER $=$ scalars	Lower bound for each parameter
LOWER $=$ scalars	Upper bound for each parameter
UPPER $=$ scalars	Step length for each parameter
STEPLENGTH $=$ scalars	Initial value for each parameter
INITIAL $=$ scalars	

## MIN1DIMENSION procedure

Finds the minimum of a function in one dimension (R.W. Payne).
Options

PRINT = string tokens	What output to produce (minimum, monitoring, plot); default mini
CALCULATION $=$ expression structures	Expressions to calculate the target function
FUNCTIONVALUE $=$ scalars	Identifier of the scalar, calculated by CALCULATION, whose value is to be minimized
DATA = any type	Data to be used with procedure _MIN1DFUNCTION
CRITERION $=$ string token	Criterion for convergence (function, parameters); default func
MAXCYCLE $=$ scalars	Maximum number of iterations; default 250
$\mathrm{EXIT}=$ scalars	Indicates whether there has been convergence (0) or nonconvergence (1)
TOLERANCE $=$ scalars	Convergence criterion; default $10^{-6}$ or variate
Parameters	
PARAMETER = scalars	Parameters to be estimated
LOWER = scalars	Lower bound for each parameter
UPPER = scalars	Upper bound for each parameter
STEPLENGTH = scalars	Step length for each parameter
INITIAL $=$ scalars	Initial value for each parameter

## MERGE directive

Copies subfiles from backing-store files into a single file.

## Options

PRINT $=$ string token	What to print (catalogue); default $*$
OUTCHANNEL $=$ scalar	Channel number of the backing-store file where the subfiles
are to be stored; default 0, i.e. the workfile	

## PASSWORD $=$ text

## Parameters

SUBFILE = identifiers
INCHANNEL = scalars
NEWSUBFILE $=$ identifiers
a fault (note: replace overwrites the complete file)
Password to be checked against that stored with the file; default *

Identifiers of the subfiles
Channel number of the backing-store file containing each subfile
Identifier to be used for each subfile in the new file

## MMPREDICT procedure

Predicts the Michaelis-Menten curve for a particular set of parameter values (M.C. Hannah). Options

$\mathrm{PLOT}=$ string tokens	What to plot (concentration, rate); default conc
WINDOW = scalar	Window in which to plot the graphs; default 1
TITLE $=$ text	Title for the graphs; default 'Michaelis-Menten process'
TTIMES $=$ text	Title for the times axis; if this is unset, the identifier of the TIMES variate is used
TCONCENTRATIONS $=$ text	Title for the concentrations axis; if this is unset, the identifier of the CONCENTRATIONS variate is used if available, otherwise 'Concentration'
TRATES $=$ text	Title for the rates axis; if this is unset, the identifier of the RATES variate is used if available, otherwise 'Rate'
Parameters	
PARAMETERS $=$ variates	Variate with four values specifying the values of the parameters $S_{0}, V_{\max }, K_{m}$ and $K$ to use to form the predictions
TIMES $=$ variates	Times at which to make predictions
CONCENTRATIONS $=$ variates	Saves the predicted substrate concentrations
RATES $=$ variates	Saves the predicted reaction rates

## MNORMALIZE procedure

Normalizes two-colour microarray data (D.B. Baird).

## Options

PRINT $=$ string tokens	What to print (summary, slidesummary, monitoring); default summ, slid, moni
PLOT $=$ string tokens	What plots to produce (pineffects, roweffects, columneffects, intensityeffects, rowxcoleffects, ma, standardizedma, spatialresiduals); default * i.e. none
METHOD $=$ string token	What type of model components to fit (spline, loess); default spli
MODELTERMS $=$ string tokens	What model components to fit (pins, rows, columns, intensity, pinxintensity, ar1, rowxcolumn, pinxrow, pinxcolumn); default pins, rows, colu, inte
DFINTENSITY $=$ scalar	Degrees of freedom for intensity cubic spline; default 24
DFROWXCOLUMN $=$ scalar	Degrees of freedom for row $\times$ col thinplate spline; default 49
POORFLAGS $=$ text or variate	Levels of FLAGS that are poor quality spots
BADFLAGS $=$ text or variate	Levels of FLAGS that are bad spots
ARRANGEMENT $=$ string token	Whether to use trellis or single plots (single, trellis); default trel
WINDOW $=$ scalar	Window number for the graphs; default 3
DEVICE = scalar	Device number on which to plot the graphs
GRAPHICSFILE $=$ text	What graphics filename template to use to save the graphs; default *

## Parameters

LOGRATIOS $=$ variates or pointers

```
INTENSITIES = variates or pointers
SLIDES \(=\) factors or texts
PINS \(=\) factors
SROWS = factors
SCOLUMNS = factors
PROWS = factors
PCOLUMNS = factors
FLAGS \(=\) factors or pointers
CLOGRATIOS \(=\) variates or pointers
SLOGRATIOS \(=\) variates or pointers
SDSMOOTH \(=\) variates or pointers
PINEFFECTS = tables
ROWEFFECTS \(=\) tables
COLEFFECTS \(=\) tables
INTEFFECTS \(=\) variates or pointers
CLRED \(=\) variates or pointers
CLGREEN \(=\) variates or pointers
VAREXPLAINED \(=\) variates
```

Spot intensities
Slides
Pins
Rows across whole slide
Columns across whole slide
Rows within pins
Columns within pins
Quality flags
Save corrected log-ratios
Save standardized log-ratios
Save smoothed deviations
Save estimated pin effects
Save estimated row effects
Save estimated column effects
Save estimated intensity effects
Save corrected $\log 2$ red values
Save corrected log2 green values
Save the variance explained by slide

## MODEL directive

Defines the response variate(s) and the type of model to be fitted for linear, generalized linear, generalized additive, and nonlinear models.

## Options

DISTRIBUTION $=$ string token	Distribution of the response variable (normal, poisson, binomial, gamma, inversenormal, multinomial, calculated, negativebinomial, geometric, exponential, bernoulli); default norm
LINK $=$ string token	Link function (canonical, identity, logarithm, logit, reciprocal, power, squareroot, probit, complementaryloglog, calculated, logratio); default cano (i.e. iden for DIST=norm or calc; loga for DIST=pois; logi for DIST=bino, bern or mult; reci for DIST=gamm or expo; powe for DIST=inve; logr for DIST=nega or geom)
EXPONENT $=$ scalar	Exponent for power link; default -2
AGGREGATION $=$ scalar	Fixed parameter for negative binomial distribution (parameter $k$ as in variance function Var $=$ mean + mean $\left.^{2} / k\right)$; default 1
KLOGRATIO $=$ scalar	Parameter for logratio link, in form $\log ($ mean $/($ mean $+k)$ ); default as set in AGGREGATION option
DISPERSION $=$ scalar	Value of dispersion parameter in calculation of s.e.s etc; default * for DIST=norm, gamm, inve or calc, and 1 for DIST=pois, bino, mult, nega, geom, expo or bern
WEIGHTS $=$ variate or symmetric matrix	Variate of weights for weighted regression, or symmetric matrix of weights (one row and column for each unit of data) for generalized least squares; default *
OFFSET $=$ variate	Offset variate to be included in model; default *
GROUPS $=$ factor	Absorbing factor defining the groups for within-groups linear or generalized linear regression; default *
RMETHOD $=$ string token	Type of residuals to form, if any, after each model is fitted (deviance, Pearson, simple); default devi
DMETHOD $=$ string token	Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default devi
FUNCTIONVALUE $=$ scalar	Scalar whose value is to be minimized by calculation; default
YRELATION $=$ string token	Whether to analyse the y-variates separately, as in ordinary regression, or to analyse them cumulatively as counts in

successive categories of a multinomial distribution
(separate, cumulative); default sepa
DCALCULATION $=$ expression structures Calculations to define the deviance contributions and variance function for a non-standard distribution; must be specified when DIST=calc
LCALCULATION $=$ expression structures Calculations to define the fitted values and link derivative for a non-standard link; must be specified when LINK=calc
DFDISPERSION $=$ scalar $\quad$ Allows you to specify the number of degrees of freedom for a dispersion parameter specified by the DISPERSION option; if this is not set, the supplied dispersion is assumed to be known exactly
SAVE $=$ identifier
To name regression save structure; default *

## Parameters

$\mathrm{Y}=$ variates
Response variates; only the first is used in nonlinear models and in generalized linear models except when DIST=mult, when they specify the numbers in each category of an ordinal response model
NBINOMIAL $=$ variate or scalar
Total numbers for DIST=bino
RESIDUALS $=$ variates
To save residuals for each y variate after fitting a model
FITTEDVALUES $=$ variates
To save fitted values, and provide fitted values if no terms are given in FITNONLINEAR
LINEARPREDICTOR $=$ variate

DERIVATIVE $=$ variate

DEVIANCE $=$ variate

VFUNCTION $=$ variate
Specifies the identifier of the variate to hold the linear predictor
Specifies the identifier of the variate to hold the derivative of the link function at each unit
Specifies the identifier of the variate to hold the contribution to the deviance from each unit
Specifies the identifier of the variate to hold the value of the variance function at each unit

## MONOTONIC directive

Fits an increasing monotonic regression of y on x .

## No options

## Parameters

$\mathrm{Y}=$ variates
Y-values of the data points
$\mathrm{X}=$ variates
X -values of the data points; default is to assume that the x values are monotonically increasing
RESIDUALS $=$ variates
Variate to save the residuals from each fit
FITTEDVALUES $=$ variates
Variate to save the fitted values from each fit

## MOVINGAVERAGE procedure

Calculates and plots the moving average of a time series (R.P. Littlejohn, G. Tunnicliffe Wilson \& D.B. Baird).

## Options

PRINT = string token
NSAMPLES = scalar
METHOD $=$ string token
ORDER $=$ scalars
$\operatorname{TRIM}=$ string token
$\mathrm{PLOT}=$ string token
ALPHA $=$ scalar

What to print (parameters); default * i.e. nothing Number of samples used to calculate each moving average How to calculate the averages (past, centred, exponential, filter, holtwinters) default past Order for polynomial smoothing ( $0,1,2,3,4$ ); default 0 i.e. ordinary moving-averages calculated from means Whether to trim transients with METHOD settings past or centre when ORDER=0 (yes, no); default no What to plot (components, movingaverages); default * i.e. nothing
Allows the smoothing parameter for the contribution of the last value in the series to the moving average to be specified for

BETA $=$ scalar	Allows the smoothing parameter for the trend to be specified   for the Holt-Winters method
GAMMA $=$ scalar	Allows the smoothing parameter for the seasonal component to   be specified for the Holt-Winters method
MULTIPLICATIVE = string token	Controls whether the seasonal component is multiplicative in   the Holt-Winters method (yes, no); default no
Parameters	Time series whose moving averages are required
SERIES $=$ variates	Saves the moving averages for the defined ORDER settings
MASERIES $=$ pointers	Title for the graph
TITLE $=$ texts	Factor for seasonal adjustment   SEASONAL $=$ factors   SAVE $=$ pointers
	Saves results from the Holt-Winters method or from seasonal   adjustment

## MPOLISH procedure

Performs a median polish of two-way data (D.B. Baird).

## Options

MAXCYCLE $=$ scalar	Maximum number of iterations; default 50
TOLERANCE $=$ scalar	Tolerance for convergence; default 0.0001

## Parameters

DATA $=$ variates or pointers or matrices or tables
Two-way data to be polished
ROWS $=$ factors $\quad$ Row definitions for a DATA variate
COLUMNS $=$ factors $\quad$ Column definitions for a DATA variate
ROWEFFECTS = variate Row effects removed from polished results
COLEFFECTS $=$ variate Column effects removed from polished results
POLISH $=$ variates or pointers or matrices or tables
Polished result in same format as DATA
CENTRE $=$ scalars $\quad$ Estimate of overall centre point

## MPOWER procedure

Forms integer powers of a square matrix (P.W. Lane).

## No options

## Parameters

MATRIX $=$ matrices, symmetric matrices or diagonal matrices
Matrix from which to form the power
POWER = scalars $\quad$ Power to which each matrix is to be raised
RESULT $=$ identifiers $\quad$ Structure to store the result

## MSEKERNEL2D procedure

Estimates the mean square error for a kernel smoothing (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token   Parameters   $\mathrm{Y}=$ variates	What to print (summary); default summ
	Vertical coordinates of each spatial point pattern; no default -
$\mathrm{X}=$ variates	this parameter must be set
YPOLYGON $=$ variates	Horizontal coordinates of each spatial point pattern; no default      - this parameter must be set
XPOLYGON $=$ variates	Vertical coordinates of each polygon; no default - this   parameter must be set
NSTEP $=$ scalars	Horizontal coordinates of each polygon; no default - this   parameter must be set
	How many values of the kernel width to use; no default - this   parameter must be set

HMAX $=$ scalars

HVALUES = variates
$\mathrm{MSE}=$ variates

Maximum values for the kernel width; no default - this parameter must be set Variates to receive the values of the kernel width Variates to receive the estimated mean square error for each value of the kernel width

## MTABULATE procedure

Forms tables classified by multiple-response factors (R.W. Payne).

## Options

$\left.\begin{array}{ll}\text { PRINT = string token } & \begin{array}{l}\text { Controls printed output (counts, totals, nobservations, } \\ \text { means, minima, maxima, variances, quantiles, sds, }\end{array} \\ & \text { skewness, kurtosis, semeans, seskewness, } \\ \text { sekurtosis); default * i.e. none }\end{array}\right\}$

Percentages for which quantiles are required; default 50 i.e. median

## Parameters

DATA $=$ variates
Data values to be tabulated
TOTALS = tables Tables to contain totals
NOBSERVATIONS $=$ tables

MEANS $=$ tables
MINIMA $=$ tables
MAXIMA $=$ tables
VARIANCES $=$ tables Tables containing the numbers of non-missing values in each cell Tables of means
Tables of minimum values in each cell
Tables of maximum values in each cell Tables of cell variances
QUANTILES $=$ tables or pointers

SDS $=$ tables	Tables of standard deviations
SKEWNESS $=$ tables	Tables of skewness coefficients
KURTOSIS $=$ tables	Tables of kurtosis coefficients
SEMEANS $=$ tables	Tables of standard errors of means
SESKEWNESS $=$ tables	Tables of standard errors of skewness
SEKURTOSIS $=$ tables	Tables of standard errors of kurtosis

## MULTMISSING procedure

Estimates missing values for units in a multivariate data set (H.R. Simpson \& R.P. White).

## Option

MAXCYCLE $=$ scalar $\quad$ Defines the maximum allowed number of iterations; default 10

## Parameters

$D A T A=$ pointers

OUT $=$ pointers

Each pointer contains a set of variates whose missing values are to be estimated; these will be overwritten by the estimates unless the OUT parameter is specified
Each pointer contains a set of variates to hold the results

## MVAOD procedure

Does an analysis of distance of multivariate data (R.W. Payne \& R.P. White).

## Options

PRINT = string tokens	Controls printed output (aodtable, permutationtest);   default aodt
TERMS = formula	Model terms to fit in the analysis; must be specified
FACTORIAL = scalar	Limit on the number of factors or variates in a term for it to be   included in the analysis; default 3
NTIMES = scalar	Number of permutations to use in the permutation test; default   999
SEED = scalar	Seed for the random number generator used to make the   permutations; default 0 continues from the previous generation   or (if none) initializes the seed automatically
Parameters	Supplies the squared distances between the data points
DATA = symmetric matrices	Saves the sums of squared distances
SSD = variates	
DF = variates	Saves the numbers of degrees of freedom
PRPERMUTATION = variates	Saves probabilities from the permutation test   Contains a symmetric matrix of distances for each model term
DISTANCES = pointers	

## MVARIOGRAM procedure

Fits models to an experimental variogram (S.A. Harding \& R. Webster).

## Options

PRINT $=$ string tokens

MODELTYPE $=$ string token

WEIGHTING = string token

CONSTANT $=$ string token
SMOOTHNESS = scalar

ISOTROPY = string token
WINDOW $=$ scalar
TITLE $=$ text
XUPPER $=$ scalar
PENDATA = scalar
PENMODEL $=$ scalar
Parameters
VARIOGRAM $=$ variates or matrices

COUNTS $=$ variates or matrices

DISTANCE $=$ variates or matrices
DIRECTION = variates
INITIAL $=$ scalars or variates

Controls printed output from the fit (model, summary, estimates, correlations, fittedvalues, monitoring); default mode, summ, esti
Defines which model to fit (power, boundedlinear, circular, spherical, doublespherical, pentaspherical, exponential, besselk1, gaussian, affinepower, linear, cubic, stable, cardinalsine, matern); default powe
Method to be used for weighting (counts, cbyvar, equal); default coun
How to treat the constant (estimate, omit); default esti Value of power parameter for the stable model, or $v$ parameter for the Matern model; default * i.e. estimate
Defines whether to fit an isotropic or geometrical anisotropic model (isotropic, geometrical); default isot
Window in which to plot a graph; default 0 i.e. no graph
Title for the graph
Upper limit for the $x$-axis in the graph
Pen to be used to plot the data; default 1
Pen to be used to plot the model; default 2
Experimental variogram to which the model is to be fitted, as a variate if in only one direction or as a matrix if there are several
Counts for the points in each variogram (not required if WEIGHTING=equal)
Mean lag distances for the points in each variogram Directions in which each variogram was computed Scalar defining initial distance parameter for an isotropic model, or variate with two values for a double-spherical isotropic model, or a variate with three values for a geometrical anisotropic model
Estimated parameter values

## FITTEDVALUES = variates <br> EXIT $=$ scalars <br> $\mathrm{SAVE}=$ pointer $s$

Fitted values
Exit status from the nonlinear fitting Saves the model name and estimates in a pointer that can be used in KRIGE

## MVFILL procedure

Replaces missing values in a vector with the previous non-missing value in that vector (J.T.N.M.
Thissen).

## No options

## Parameter

VECTORS $=$ vectors
Variates, texts or factors whose missing values are replaced by the previous non-missing value of that vector

## NAG directive

Calls an algorithm from the NAG Library.

## Options

PRINT $=$ string token	Controls printed output (algorithms, monitoring); default * i.e. none
NAME $=$ string token	Name of the algorithm to call; default * i.e. none
$\mathrm{ZDZ}=$ string token	Value to be given to zero divided by zero in Genstat expressions defined in the ARGUMENTS (missing, zero); default miss
TOLERANCE $=$ scalar	If the scalar is non missing, this defines the smallest non-zero number for use in Genstat expressions defined in the ARGUMENTS; otherwise it accesses the default value, which is defined automatically for the computer concerned
SEED $=$ scalar	Seed to use for any random number generation in Genstat expressions defined in the ARGUMENTS; default 0
INDEX $=$ scalar	If a Genstat expression defined in the ARGUMENTS has a list of structures before the assignment operator (=), the scalar indicates the position within the list of the structure currently being evaluated
Parameters	
ARGUMENTS = pointer	Arguments for the call
RESULT $=$ scalar	Stores the result for algorithms that take the form of a function rather than a subroutine

## NCONVERT procedure

Converts integers between base 10 and other bases (R.W. Payne).

## Options

\(\left.\begin{array}{ll}PRINT=string token \& Controls printed output (number); default numb <br>
METHOD=string token \& Whether to convert NUMBER to DIGITS or vice versa (tobase, <br>

frombase); default toba\end{array}\right\}\)| BASE $=$ scalars | Base to which to convert number; default 2 |
| :--- | :--- |
| Parameters | Number in base 10 |
| NUMBER $=$ scalars | Digits of the NUMBER in the base specified by the BASE option <br> DIGITS $=$ pointers |
| SIGN $=$ scalars | Sign of the NUMBER |

## NCSPLINE procedure

Calculates natural cubic spline basis functions for use e.g. in REML (S.J. Welham).

## Options

INKNOTS $=$ variate
METHOD $=$ string token

Defines a set of knots to use to construct the spline
Whether to produce a basis suitable for use with independent or correlated random effects; (independent, correlated);

ORTHOGONALIZETO = variate	default inde   Variate to use to get an orthogonalized basis; default * i.e.   orthogonalization with respect to KNOTS
Parameters	Values for which the basis functions are calculated
X = variates	Non-linear part of spline basis for use as design matrix for
BASIS = pointers	random effects in REML analysis
DBASIS = pointers	First derivative of BASIS functions
D2BASIS = pointers	Second derivative of BASIS functions
INVCOVARIANCE $=$ symmetric matrices	Inverse covariance matrix for use with correlated spline   random effects
SECONDDIFFERENCES = matrices	Scaled second divided difference matrix associated with   KNOTS
KNOTS = variates	Knots used in construction of basis
DISTANCES = variates	Inter-knot distances used in construction of basis
SCALE = scalars	Saves the appropriate value for scaling design matrix

## NEIGHBOURS procedure

Finds the neighbours of cells in a multi-dimensional array (R.W. Payne).

## Options

DIAGONALS $=$ string token	Whether to include diagonal cells (include, exclude);   default incl
SNEIGHBOURS $=$ scalar	Saves the number of neighbours that have been found
Parameters	Dimensions of the array
DIMENSION $=$ scalars	Locations of the cells in each dimension
CELLS $=$ variates	Locations of the neighbours in each dimension
NEIGHBOURS $=$ variates	

## NLAR1 procedure

Fits curves with an AR1 or a power-distance correlation model (R.W. Payne).
Options
\(\left.\begin{array}{ll}PRINT = string tokens \& What to print (model, deviance, summary, estimates, <br>
\& correlations, fittedvalues, accumulated, <br>
monitoring, cparameter, cmonitoring, cplot); default <br>

mode, summ, esti, cpar\end{array}\right]\)| Which standard curve to fit (exponential, dexponential, |
| :--- |
| cexponential, lexponential, logistic, glogistic, |
| gompertz, ldl, qdl, qdq, fourier, dfourier, gaussian, |
| dgaussian); default expo |


	vertical, df, inflation); default *
FPROBABILITY $=$ string token	Printing of probabilities for variance and deviance ratios (yes, no); default no
SELECTION $=$ string tokens	Statistics to be displayed in the summary of analysis produced by PRINT=summary (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob
SELINEAR $=$ string token	Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no
WEIGHTS = variate	Prior weights for the units
CPARAMETER $=$ scalars	Correlation parameter
CPOSITIONS $=$ variate	Correlation positions
CGROUPS $=$ factor	Groupings of correlation positions
MAXCYCLE $=$ scalars	Maximum number of iterations; default 100
TOLERANCE $=$ scalars	Convergence criterion; default $10^{-5}$
Parameter	
TERMS $=$ formula	Terms to be fitted

## NLCONTRASTS procedure

Fits nonlinear contrasts to quantitative factors in ANOVA (R.C. Butler).

## Options

PRINT $=$ string tokens	Printed output required (aovtable, information, covariates, effects, residuals, contrasts, means, \%cv, missingvalues); default aovt, info, cova, mean, miss
CURVE $=$ string token	Curve (as in FITCURVE) to use for nonlinear regression (exponential, dexponential, cexponential, lexponential, logistic, glogistic, gompertz, ldl, qdl, qdq); default expo
FPROBABILITY $=$ string token	Printing of probabilities for variance ratios (yes, no); default no
PSE $=$ string token	Standard errors to print with means tables (differences, means); default diff
WEIGHT $=$ variate	Variate of weights for each unit; default * (no weights)
Parameters	
$\mathrm{Y}=$ variates	Data to be analysed
XFACTOR $=$ factors	Factor with quantitative levels for which contrasts are to be found
XLEVELS $=$ variates	Variate of values to use for the levels of XFACTOR; if unset, the factor levels themselves are used
GROUPFACTOR $=$ factors	Factor whose interaction with XFACTOR is to be assessed
CONTRASTS $=$ pointers	Structures to hold the estimates of the fitted contrasts:
	CONTRASTS [1] is a pointer with two values, labelled
	'Curve' (parameter estimates for a single fitted curve) and
	means for XFACTOR); CONTRASTS [2] has three values, labelled 'Common NonLin' (parameter estimates for curves fitted with common nonlinear parameters for all levels of
	GROUPFACTOR), 'Separate Curves' (parameter estimates for curves fitted with all parameters varying with the levels of GROUPFACTOR) and 'Deviations' (differences between the
	treatment means and the Separate Curves); the order of the parameters is as in the output of the procedure, the variates of estimated contrasts are labelled by the parameter names as used in the printed output, while the 'Deviations' are both tables, labelled by the relevant factors
SECONTRASTS $=$ pointers	Structures to save the standard errors for the contrast

estimates, including 'deviations'; the pointer has the same form as the CONTRASTS pointer
Structures to save the degrees of freedom for the contrast estimates; the pointer has the same form as the CONTRASTS pointer, except that the variates and tables are replaced by scalars

## NNDISPLAY directive

Displays output from a multi-layer perceptron neural network fitted by NNFIT.

## Option

PRINT $=$ string tokens

## Parameter

pointers

Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ

Save structure with details of the network and the estimated parameters

## NNFIT directive

Fits a multi-layer perceptron neural network.

## Options

PRINT $=$ string tokens	Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ
NHIDDEN $=$ scalar	Number of functions in the hidden layer; no default, must be set
HIDDENMETHOD $=$ string token	Type of activation function in the hidden layer (logistic, hyperbolictangent); default logi
OUTPUTMETHOD = string token	Type of activation function in the output layer (linear, logistic, hyperbolictangent); default line
GAIN $=$ scalar	Multiplicative constant to use in the functions; default 1
NTRIES = scalar	Number of times to search for a good initial starting point for the optimization; default 5
NSTARTITERATIONS $=$ scalar	Number of iterations to use to find a good starting point for the optimization; default 30
VALIDATIONOPTIONS = variate	Variate containing three integers to control validation for early stopping; default * i.e. no early stopping; default ! $(10,4,16)$
SEED $=$ scalar	Seed for random numbers to generate initial values for the free parameters; default 0
MAXCYCLE $=$ scalar	Maximum number of iterations of the conjugate-gradient algorithm; default 50
Parameters	
$\mathrm{Y}=$ variates	Response variates
$\mathrm{X}=$ pointers	Input variates
YVALIDATION $=$ variates	Validation data for the dependent variates
XVALIDATION $=$ pointers	Validation data for the independent variates
FITTEDVALUES $=$ variates	Fitted values generated for each y-variate by the neural network
NCOMPLETED $=$ scalars	Number of completed iterations of the conjugate-gradient algorithm
$\mathrm{EXIT}=$ scalars	Saves the exit code
$\mathrm{SAVE}=$ pointers	Saves details of the network and the estimated parameters

## NNPREDICT directive

Forms predictions from a multi-layer perceptron neural network fitted by nNFIT.

## Option

PRINT $=$ string tokens $\quad$ Controls fitted output (description, predictions); default desc, pred

## Parameters

$\mathrm{X}=$ pointers	Input variates
PREDICTIONS $=$ variates	Predictions
SAVE $=$ pointers	Details of the network

## NORMTEST procedure

Performs tests of univariate and/or multivariate normality (M.S. Ridout).

## Option

PRINT $=$ string tokens

## Parameter

DATA $=$ variates or pointers

Allows the required printed output to be selected: test statistics, tables of critical values and the flagging of significant values with stars (marginal, bivariateangle, radius, critical, stars); default marg, biva, radi

Variates whose univariate normality is to be tested or pointers, each to a set of variates whose normality and/or multivariate normality are to be tested

## NOTICE procedure

Provides news and other information about Genstat (R.W. Payne).

## Option

PRINT $=$ string tokens
Indicates what information is required (news, release, errors, instructions); default news

## No parameters

## 'NOUGHTSANDCROSSES procedure

Plays a game of noughts and crosses (R.W. Payne).

## Options

PLAY $=$ string token $\quad$ Which symbol to play (noughts, crosses); default * sets
DIFFICULTY $=$ scalar

SEED $=$ scalar

## No parameters

## OPEN directive

Opens files.

## No options

Parameters
NAME $=$ texts
CHANNEL $=$ scalars

FILETYPE $=$ string tokens

WIDTH $=$ scalars
INDENTATION $=$ scalar
PAGE $=$ scalars
ACCESS $=$ string token
STYLE $=$ string token
HTMLHEAD $=$ texts
this by a question when you run the procedure Level of difficulty, either $0,1,2$ or 3 ; default * sets this by a question when you run the procedure Seed for the random numbers used by Genstat to select its choice of squares; default 0

External names of the files
Channel number to be used to refer to each file in other statements (numbers for each type of file are independent); if this is set to a scalar containing a missing value, the first available channel of the specified type is opened and the scalar is set to the channel number
Type of each file (input, output, unformatted, backingstore, procedurelibrary, graphics); default inpu
Maximum width of a record in each file; default 80
Number of spaces to leave at the start of each line; default 0 Number of lines per page (relevant only for output files)
Allowed type of access (readonly, writeonly, both); default both
Style in which to write to an output file (plaintext, html, latex, rtf); default plai
Text structures containing custom content for the header of an
${ }^{\dagger}$ UNICODE $=$ string token
HTML document
Content of an input file is Unicode (no, yes); default no

## OPLS procedure

Performs orthogonal partial least squares regression (V. M. Cave).

Options
PRINT $=$ string tokens
PCPRINT = string tokens
PLOT $=$ string token
NORTHOGONALROOTS $=$ scalar
NROOTS $=$ scalar
STANDARDIZE = string tokens

NGROUPS $=$ scalar

SEED $=$ scalar or factor

LABELS $=$ text

PLABELS $=$ text
PCMETHOD $=$ string tokens

WINDOW $=$ scalar

## Parameters

$\mathrm{Y}=$ pointers
$\mathrm{X}=$ pointers

YLOADINGS $=$ pointers

XLOADINGS $=$ pointers

PLOADINGS $=$ pointers

YSCORES $=$ pointers

XSCORES $=$ pointers
$B=$ diagonal matrices
YPREDICTIONS $=$ pointer

Printed output required (data, xloadings, yloadings, ploadings, scores, leverages, xerrors, yerrors, scree, xpercent, ypercent, predictions, groups, estimates, fittedvalues, summary); default esti, xper, yper, scor, xloa, yloa, ploa, summ
Controls printed output from principal components analysis of orthogonal X matrix (loadings, roots, scores, tests); default root
What graphs to plot (pcplot); default * (i.e. none)
Number of orthogonal components to extract; default 1
Number of predictive (i.e. PLS) components to extract; default 1
Whether to standardize the $\mathrm{Y}, \mathrm{X}$ and filtered X variables to unit variance and zero mean ( Y , X , filteredX); default * (i.e. no standardizing)
Number of cross-validation groups used by PLS; default 1 (i.e. no cross-validation performed)
A scalar indicating the seed value used for dividing the data randomly into NGROUPS groups for cross-validation by PLS, or a factor indicating a specific set of groupings to use for cross-validation by PLS; default 0
Sample labels for $X$ and $Y$ to use in output; default uses the integers $1 \ldots n$ where $n$ is the length of the variates in X and Y Labels for XPREDICTIONS; default uses P1, P2 etc. Method used by PCP to perform principal components analysis on the orthogonal X matrix (ssp, correlation, vcovariance, variancecovariance); default * (i.e. principal components analysis not performed)
Window to use for graph (available only when NORTHOGONALROOTS = 1); default 3

Pointer to variates containing the dependent variable(s) for each analysis
Pointer to variates containing the independent variables for each analysis
Pointer to variates containing the $Y$ component loadings, for the predictive (i.e. PLS) dimensions, extracted from the filtered x matrix
Pointer to variates containing the component loading weights for the predictive dimensions, extracted from the filtered x matrix
Pointer to variates containing the bilinear model loadings for the predictive dimensions, extracted from the filtered X matrix Pointer to variates containing the $Y$ component scores, for each predictive dimension extracted from the filtered x matrix Pointer to variates containing the component scores for each predictive dimension, extracted from the filtered x matrix Saves the regression coefficients of YSCORES on XSCORES, for the predictive dimensions, extracted from the filtered X matrix Pointer to variates used to store predicted y-values for samples

	in the prediction set   Pointer to variates containing data for the independent   variables in the prediction set
EPREDICTIONS $=$ pointer	
An $n_{X}+1$ by $n_{Y}$ matrix (where $n_{X}$ and $n_{Y}$ are the number of	
variates contained in X and Y, respectively) to store the PLS	
regression coefficients	
Pointer to variates used to store the fitted values for the Y	
variates	

## OPTION directive

Defines the options of a Genstat procedure with information to allow them to be checked when the procedure is executed.

## No options

## Parameters

NAME $=$ texts
MODE $=$ string tokens
NVALUES $=$ scalars or variates
VALUES $=$ variates or texts

DEFAULT = identifiers
SET $=$ string tokens
DECLARED $=$ string tokens

TYPE $=$ texts

COMPATIBLE $=$ texts

PRESENT $=$ string tokens
LIST $=$ string tokens

Names of the options
Mode of each option (e, $f, p, t, v$, as for unnamed structures); default p
Specifies allowed numbers of values
Defines the allowed values for a structure of type variate or text
Default values for each option
Indicates whether or not each option must be set (yes, no);
default no
Indicates whether or not the setting of each option must have been declared (yes, no); default no
Text for each option, whose values indicate the types allowed (ASAVE, datamatrix \{i.e. pointer to variates of equal lengths as required in multivariate analysis\}, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, tree, TSAVE, TSM, variate, VSAVE); default * meaning no limitation

Defines aspects to check for compatibility with the first parameter of the directive or procedure (nvalues, nlevels, nrows, ncolumns, type, levels, labels \{of factors or pointers\}, mode, rows, columns, classification, margins, associatedidentifier, suffixes \{of pointers\}, restriction)
Indicates whether or not each structure must have values (yes, no); default no
Whether to allow a list of identifiers (MODE=p) or of values
(MODE=v or $t$ ) instead of just one (yes, no); default no
Whether the option only supplies input information to the procedure (yes, no); default no

## OR directive

Introduces a set of alternative statements in a "multiple-selection" control structure.

## No options or parameters

## ORTHPOLYNOMIAL procedure

Calculates orthogonal polynomials (P.W. Lane).

## Options

MAXDEGREE $=$ scalar	Maximum degree of polynomial to be calculated; default is the   number of identifiers in the pointer specified by the   POLYNOMIAL parameter
WEIGHTS $=$ variate	Weights to be used in orthogonalization; default * gives an   equal weight to each unit
Parameters	Values from which to calculate the polynomials; no default -   this parameter must be set
POLYNOMIAL $=$ pointers	Identifiers of variates to store results; no default - this   parameter must be set

## OUTPUT directive

Defines where output is to be stored or displayed.
Options

PRINT = string tokens	Additions to output (dots, page, unchanged); default   dots, page
DIAGNOSTIC = string tokens	What diagnostic printing is required (messages, warnings,   faults, extra, unchanged); default faul, mess, warn
WIDTH = scalar	Limit on number of characters per record; default width of   output file
INDENTATION = scalar	Number of spaces to leave at the start of each line; default 0   PAGE = scalar   STYLE = string token   Pamber of lines per page
Parameter	Style for future output to the channel (plaintext,   formatted); default * i.e. unchanged
	Channel number of output file

## OWN directive

Does work specified in Fortran subprograms linked into Genstat by the user.

## Option

SELECT $=$ scalar $\quad$ Sets a switch, designed to allow OWN to be used for many applications; standard set-up assumes a scalar in the range $0-9$; default 0

## Parameters

IN $=$ identifiers

OUT $=$ identifiers

Supplies input structures, which must have values, needed by the auxiliary subprograms
Supplies output structures whose values or attributes are to be defined by the auxiliary subprograms

## PAGE directive

Moves to the top of the next page of an output file.

## Option

CHANNEL = scalar Channel number of file; default * i.e. current output file

## No parameters

## PAIRTEST procedure

Performs t-tests for pairwise differences (P.W. Goedhart).

## Options

PRINT $=$ string tokens	What to print (differences, sed, tvalues, tprobabilities); default diff, sed, tval
$\mathrm{DF}=$ scalar	Degrees of freedom for calculation of TPROBABILITIES from TVALUES; default 10000, approximates to the normal distribution
SORT $=$ string token	Whether ESTIMATES (and other output) are sorted in ascending order (yes, no); default no
Parameters	
ESTIMATES $=$ variates	Estimates to be compared
VCOVARIANCE $=$ symmetric matrices	Symmetric matrix containing the variance-covariance matrix of the estimates
LABELS $=$ texts	Text vector naming the elements of ESTIMATES; if unset, the numbers $1,2 \ldots$ are used as labels
DIFFERENCES = symmetric matrices	To save the pairwise differences (ESTIMATES on the diagonal)
SED $=$ symmetric matrices	To save the standard errors of the pairwise differences (missing values on the diagonal)
TVALUES = symmetric matrices	To save the t-values (missing values on the diagonal)
TPROBABILITIES = symmetric matrices	
	To save the t-probabilities (missing values on the diagonal)

## PARAMETER directive

Defines the parameters of a Genstat procedure with information to allow them to be checked when the procedure is executed.

## No options

## Parameters

NAME $=$ texts	Names of the parameters
MODE $=$ string tokens	Mode of each parameter (e, f, p, t, v, as for unnamed structures); default p
NVALUES $=$ scalars or variates	Specifies allowed numbers of values
VALUES $=$ variates or texts	Defines the allowed values for a structure of type variate or text
DEFAULT = identifiers	Default values for each parameter
SET $=$ string tokens	Indicates whether or not each parameter must be set (yes, no); default no
DECLARED = string tokens	Indicates whether or not the setting of each parameter must have been declared (yes, no); default no
TYPE $=$ texts	Text for each option, whose values indicate the types allowed (ASAVE, datamatrix \{i.e. pointer to variates of equal lengths as required in multivariate analysis\}, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, TSAVE, TSM, variate); default * meaning no limitation
COMPATIBLE $=$ texts	Defines aspects to check for compatibility with the first parameter of the directive or procedure (nvalues, nlevels, nrows, ncolumns, type, levels, labels \{of factors or pointers\}, mode, rows, columns, classification, margins, associatedidentifier, suffixes \{of pointers\}, restriction)
PRESENT $=$ string tokens	Indicates whether or not each structure must have values (yes, no); default no
INPUT $=$ string token	Whether the parameter only supplies input information to the procedure (yes, no); default no

## PARTIALCORRELATIONS procedure

Calculates partial correlations for a list of variates (S. Langton).

## Options

PRINT $=$ string token	Output required (correlations); default corre
CORRELATIONS $=$ symmetric matrix	Saves the partial correlations
WEIGHTS $=$ variate	
Parameters	
DATA $=$ variates	Supplies weights for the units; default *i.e. all 1
	Set of variates whose partial correlations are to be calculated

## PASS directive

Performs tasks specified in subprograms supplied by the user, but not linked into Genstat; this directive may not be available on some computers.

## Option

NAME $=t e x t$
Parameter pointers

Filename of external executable program; default 'GNPASS '
Structures whose values are to be passed to the external program, and returned

## PCO directive

Performs principal coordinates analysis, also principal components and canonical variates analysis (but with different weighting from that used in CVA) as special cases.

Options	
PRINT $=$ string tokens	Printed output required (roots, scores, loadings, residuals, centroid, distances); default * i.e. no printing
NROOTS $=$ scalar	Number of latent roots for printed output; default * requests them all to be printed
SMALLEST $=$ string token	Whether to print the smallest roots instead of the largest (yes, no); default no
Parameters	
DATA $=$ identifiers	These can be specified either as a symmetric matrix of similarities or transformed distances or, for the canonical variates analysis, as an SSPM containing within-group sums of squares and products etc or, for principal components analysis, either as a pointer containing the variates of the data matrix or as a matrix storing the variates by columns
$L R V=L R V S$	Latent vectors (i.e. coordinates or scores), roots, and trace from each analysis
CENTROID $=$ diagonal matrices	Squared distances of the units from their centroid
RESIDUALS $=$ matrices or variates	Distances of the units from the fitted space
LOADINGS $=$ matrices	Principal component loadings, or canonical variate loadings
DISTANCES $=$ symmetric matrices	Computed inter-unit distances calculated from the variates of a data matrix, or inter-group Mahalanobis distances calculated from a within-group SSPM
SAVE $=$ pointers	Saves details of the analysis; if unset, an unnamed save structure is saved automatically (and this can be accessed using the GET directive)

## PCOPROCRUSTES procedure

Performs a multiple Procrustes analysis (P.G.N. Digby).

## Options

PROTATE $=$ string tokens	Printed output required from each Procrustes rotation   (rotations, coordinates, residuals, sums); default *
$\mathrm{PPCO}=$ string tokens	i.e. no output
Printed output required from the PCO analysis (roots,	

SCALING $=$ string token
STANDARDI ZE $=$ string tokens

## Parameters

DATA $=$ pointers
LRV $=$ LRVS
CENTROID $=$ diagonal matrices

DISTANCES $=$ symmetric matrices
scores, centroid); default root, score, cent
Whether isotropic scaling should be used for the Procrustes rotations (no, yes); default no
Whether to centre the configurations and/or normalize them to unit sums-of-squares for the Procrustes rotations (centre, normalize); default cent, norm

Each pointer points to a set of matrices holding the original input configurations
Stores the latent vectors (i.e. coordinates), roots and trace from the PCO analysis
Stores the squared distances of the points representing the input configurations from their overall centroid from the PCO analysis
Stores the residual sums-of-squares from the Procrustes rotations

## PCORELATE directive

Relates the observed values on a set of variates or factors to the results of a principal coordinates analysis.

## Options

COORDINATES $=$ matrix

NROOTS $=$ scalar

## Parameters

DATA $=$ variates or factors
TEST $=$ string tokens

Points in reduced space; no default i.e. this option must be specified
Number of latent roots for printed output; default * requests them all to be printed

The data variables
Test type, defining how each variable is treated in the calculation of the similarity between each unit
(simplematching, jaccard, russellrao, dice, antidice, sneathsokal, rogerstanimoto, cityblock, manhattan, ecological, euclidean, pythagorean, minkowski, divergence, canberra, braycurtis, soergel); default * ignores that variable Range of possible values of each variable; if omitted, the observed range is taken

## PCP directive

Performs principal components analysis.

## Options

PRINT $=$ string tokens
NROOTS $=$ scalar
SMALLEST $=$ string token
METHOD $=$ string token

Printed output required (loadings, roots, residuals, scores, tests); default * i.e. no printing
Number of latent roots for printed output; default * requests them all to be printed
Whether to print the smallest roots instead of the largest (yes, no); default no
Whether to use sums of squares, correlations or variances and covariances (ssp, correlation, vcovariance, variancecovariance); default ssp

## Parameters

DATA $=$ pointers or matrices or SSPMs
Pointer of variates forming the data matrix, or matrix storing the variate values by columns, or SSPM giving their sums of squares and products (or correlations) etc
$\mathrm{LRV}=L R V S \quad$ To store the principal component loadings, roots, and trace from each analysis
To store the computed sum-of-squares-and-products or

SCORES = matrices
RESIDUALS $=$ matrices or variates

SAVE $=$ pointers
correlation matrix
To store the principal component scores
To store residuals from the dimensions fitted in the analysis (i.e. number of columns of the SCORES matrix, or as defined by the NROOTS option)
Saves details of the analysis; if unset, an unnamed save structure is saved automatically (and this can be accessed using the GET directive)

## 'PCPCLUSTER procedure

Forms groups of units using the densities of their PCP scores (R.W. Payne).

## Options

PRINT $=$ string tokens	What to print (cellclusters, density, summary); default summ
$\mathrm{PLOT}=$ string tokens	What to plot (cellclusters, density, histogram, summary); default cell, dens, hist
NROOTS $=$ scalars	Numbers of dimensions to use; default 2
NPARTITIONS = scalars	Numbers of partitions in each dimension; default 10
CLUSTERS = pointer	Saves variates defining the clusters for each minimum number of points
CELLCLUSTERS $=$ pointer	Saves tables containing the clusters of cells for each minimum number of points
DENSITY $=$ table	Saves the table of cell densities
SUMMARY $=$ pointer	Saves the summary table
MINUNITS $=$ variate or scalar	Minimum numbers of units within cells at which to form clusters
Parameter	
SAVE $=$ pointer	Save structure from the PCP analysis to use; default uses the most recent analysis

## PDESIGN procedure

Prints or stores treatment combinations tabulated by the block factors (R.W. Payne).

## Options

PRINT = string token
BLOCKSTRUCTURE = formula

TREATMENTSTRUCTURE $=$ formula

TABLES = pointer

FREPRESENTATION = string token

Controls the printing of the design (design); default desi Defines the block factors for the design; the default is to take those specified by the BLOCKSTRUCTURE directive Defines the treatment factors for each design; the default is to take those specified by the TREATMENTSTRUCTURE directive Contains tables to store the tabulated factor values for printing outside the procedure in some other format How to represent the factor values (labels, levels); default leve

## No parameters

## PDUPLICATE procedure

Duplicates a pointer, with all its components (R.W. Payne).

## No options

## Parameters

OLDPOINTER $=$ pointers	Pointers to duplicate
NEWPOINTER $=$ pointers	Duplicated pointers

## PEAKFINDER procedure

Finds the locations of peaks in an observed series (D.B. Baird).

## Options

PRINT $=$ string token	Controls printed output (peaks); default peak
CURVE $=$ string token	Shape of curve to fit to peaks (normal, exponential);

```
PLOT = string tokens
METHOD = string token
BANDWIDTH =scalar
```

MINPEAK $=$ scalar
MINGAP $=$ scalar
MINFALL $=$ scalar
MINCOHERENCY $=$ scalar
MAXSIGMA $=$ scalar
MAXRESIDUAL $=$ scalar
WINDOW $=$ scalar
SCREEN $=$ string token

## Parameters

$\mathrm{Y}=$ variates
$\mathrm{x}=$ variates
YPEAKS $=$ variates
XPEAKS $=$ variates
FITTEDYPEAKS $=$ variates
SIGMA $=$ variates
COHERENCY $=$ variates

TITLE $=$ texts
default norm
What to plot (peaks, trace); default peak
The method for finding the peaks (additive, local); default addi
Width of window to use when fitting peaks locally, or the number of low points at the edge of each zone when fitting peaks additively; default takes the number of points divided by ten, or six if this is greater
Minimum height of a peak; no default (must be set)
Minimum number of points between two peaks when METHOD=additive; default 5
Minimum fall around a peak before a new peak will be found when METHOD=additive; default MINPEAK/10
Minimum coherency (i.e. proportion of variation explained) for a peak to be selected when METHOD=local; default 0.1 The maximum value of sigma for peaks when METHOD=local; default 4*BANDWIDTH
Limit on the absolute size of any residual for the adding of peaks to stop when METHOD=additive; default MINPEAK/3 Window number for the plots; default 3
Whether to clear the screen before plotting or continue plotting on the old screen (clear, keep); default clea

Series to search for peaks
X-coordinates for the series; default! (1...n) where $n$ is the number of $Y$ values
Saves the y-values of the peaks
Saves the positions of the peaks
Saves the heights of the peaks predicted by the fitted models Saves the sigma values of the fitted Normal or exponential models, which provide a measure of the widths of the peaks Saves the coherency (i.e. the proportion of variation accounted for) of the model fitted to identify each peak model Titles for the plots

## PEN directive

Defines the properties of "pens" for high-resolution graphics.

## Option

RESET $=$ string token
BOXUNITS $=$ string token

## Parameters

NUMBER = scalars	Numbers associated with the pens
COLOUR $=$ texts or scalars	Colour to use with each pen unless otherwise specified by the CSYMBOL, CLINE, CFILL or CAREA parameters
LINESTYLE $=$ texts or scalars	Style for line used by each pen when joining points
METHOD $=$ string tokens	Method for determining line (point, line, monotonic, closed, open, fill, spline, polygon)
SYMBOL $=$ texts, scalars, pointers or matrices	
	Defines the plotting symbol for each pen, by a text or scalar for a pre-defined symbol, a pointer for a user-defined symbol, or a matrix to supply a bitmap
LABELS $=$ texts or factors	Define labels that will be printed alongside the plotting symbols
ROTATION $=$ scalars or variates	Rotation required for the plotting symbols and labels (in

COLOUR $=$ texts or scalars
LINESTYLE $=$ texts or scalars METHOD $=$ string tokens

Whether to reset the pen definitions to their default values (yes, no); default no
Units to use for text boxes (characters, distance); the default is to retain the existing setting

Numbers associated with the pens
Colour to use with each pen unless otherwise specified by the CSYMBOL, CLINE, CFILL or CAREA parameters
Style for line used by each pen when joining points
Method for determining line (point, line, monotonic, closed, open, fill, spline, polygon)

SYMBOL $=$ texts, scalars, pointers or matrices
Defines the plotting symbol for each pen, by a text or scalar for a pre-defined symbol, a pointer for a user-defined symbol, or a matrix to supply a bitmap
Define labels that will be printed alongside the plotting symbols
Rotation required for the plotting symbols and labels (in


## PENSPLINE procedure

Calculates design matrices to fit a penalized spline as a linear mixed model (S.J. Welham).

Options

```
KMETHOD = string token
NSEGMENTS = scalar
```

Method for constructing the set of knots (equal, quantile, given); default equa
Specifies the number of segments between boundaries; default

* obtains a value automatically

Provides the set of knots when KMETHOD=given

```
DEGREE \(=\) scalar
LOWER \(=\) scalar
UPPER \(=\) scalar
ORTHOGONALIZETO \(=\) variate
SCALING \(=\) scalar
```


## Parameters

```
\(\mathrm{X}=\) variates
\(\mathrm{XFIXED}=\) matrices
XRANDOM \(=\) matrices
KNOTS \(=\) variates
\(\mathrm{PX}=\) variates
PFIXED \(=\) matrices
PRANDOM = matrices
```

Degree of polynomial used to form the underlying spline basis functions; default 1
Specifies the lower boundary when KMETHOD=equal; default takes the minimum value in X
Specifies the upper boundary when KMETHOD=equal; default takes the maximum value in X
Variate to use to get an orthogonalized basis; default * i.e. orthogonalization with respect to X
Scaling of the XRANDOM terms (automatic, none); default auto

The explanatory variate for which the spline values are required
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the penalized spline
Saves the design matrix to define the random terms for fitting the penalized spline
Saves the internal knots and boundaries used to form the basis for the spline
Specifies x-values at which predictions are required
Saves the design matrix for the fixed terms (excluding the constant) for the spline at the prediction points
Saves the design matrix for the random terms for the spline at the prediction points

## PERCENT procedure

Expresses the body of a table as percentages of one of its margins (R.W. Payne).

## Options

CLASSIFICATION $=$ factors $\quad$ Factors classifying the margin over which the percentages are to be calculated; if this is not set, the percentages are over the final margin (grand mean or grand total etc.)
METHOD $=$ string token

HUNDRED $=$ string token

## Parameters

$\begin{array}{ll}\text { OLDTABLE }=\text { tables } & \text { Tables containing the original values } \\ \text { NEWTABLE }=\text { tables } & \text { Tables to store the percentage values; if any of these is unset, } \\ \text { the new values replace those in the original table }\end{array}$

## PERIODTEST procedure

Gives periodogram-based tests for white noise in time series (R.P. Littlejohn).

## Option

LENGTH $=$ scalar or variate

## Parameters

SERIES = variates
PERIODOGRAM $=$ variates

Scalar specifying that the first $N$ units of the series are to be used, or a variate specifying the first and last units of the series to be used

Specify the time series to be analysed Save periodograms of the time series

## PERMUTE procedure

Forms all possible permutations of the integers $1 \ldots n$ (J.W. McNicol \& R.W. Payne).

## Option

SORT $=$ string token $\quad$ Whether or not to sort the permutations (no, yes); default no

## Parameters

NVALUES $=$ scalars

PERMUTATIONS $=$ pointers

Specifies the final number, $n$, in the sequence of integers $1 \ldots n$ to be permuted
Pointer to a set of variates of length NVALUES storing the permutations

## PFACLEVELS procedure

Prints levels and labels of factors (R.W. Payne).

## No options

## Parameter

FACTOR $=$ factors
Factors whose levels and labels are to be printed

## PLINK procedure

Prints a link to a graphics file into an HTML file (D.A. Murray).

## Options

CHANNEL $=$ scalar
EXCLUDEPATH = string token

## Parameter

FILENAME $=$ texts

Output channel number of file; default current output channel Whether to remove path information when printing the link (yes, no); default no

Name of the graphics file to be linked within the html file

## PLS procedure

Fits a partial least squares regression model (Ian Wakeling \& Nick Bratchell).

## Options

PRINT $=$ string tokens	Printed output required (data, xloadings, yloadings, ploadings, scores, leverages, xerrors, yerrors, scree, xpercent, ypercent, predictions, groups, estimates, fittedvalues); default esti, xper, yper, scor, xloa, yloa, ploa
NROOTS = scalar	Number of PLS dimensions to be extracted
YSCALING $=$ string token	Whether to scale the $Y$ variates to unit variance; (yes, no); default no
XSCALING $=$ string token	Whether to scale the X variates to unit variance; (yes, no); default no
NGROUPS $=$ scalar	Number of cross-validation groups into which to divide the data; default 1 (i.e. no cross-validation performed)
SEED $=$ scalar or factor	A scalar indicating the seed value to use when dividing the data randomly into NGROUPS groups for the cross-validation or a factor to indicate a specific set of groupings to use for the cross-validation; default 0
LABELS $=$ text	Sample labels for X and Y that are to be used in the printed output; defaults to the integers $1 . . n$ where $n$ is the length of the variates in X and Y
PLABELS $=$ text	Sample labels for XPREDICTIONS that are to be used in the printed output; default uses the integers $1,2 \ldots$
Parameters	
$\mathrm{Y}=$ pointers	Pointer to variates containing the dependent variables
$\mathrm{X}=$ pointers	Pointer to variates containing the independent variables
YLOADINGS $=$ pointers	Pointer to variates used to store the $Y$ component loadings for each dimension extracted
XLOADINGS $=$ pointers	Pointer to variates used to store the $X$ component loadings for each dimension extracted
PLOADINGS $=$ pointers	Pointer to variates used to store the loadings for the bilinear model for the $X$ block
YSCORES $=$ pointers	Pointer to variates used to store the $Y$ component scores for each dimension extracted

XSCORES $=$ pointers
$B=$ matrices

YPREDICTIONS = pointers
XPREDICTIONS $=$ pointers

ESTIMATES $=$ matrices

FITTEDVALUES = pointers

LEVERAGES $=$ variates

PRESS $=$ variates

RSS $=$ variates

YRESIDUALS $=$ pointers

XRESIDUALS $=$ pointers

XPRESIDUALS $=$ pointers

FTEST = pointers

Pointer to variates used to store the $X$ component scores for each dimension extracted
A diagonal matrix containing the regression coefficients of YSCORES on XSCORES for each dimension
A pointer to variates used to store predicted $Y$ values for samples in the prediction set
A pointer to variates containing data for the independent variables in the prediction set
An $n_{X}+1$ by $n_{Y}$ matrix (where $n_{X}$ and $n_{Y}$ are the numbers of variates contained in $X$ and $Y$ respectively) used to store the PLS regression coefficients for a PLS model with nROOTS dimensions
Pointer to variates used to store the fitted values for each $Y$ variate
Variate used to store the leverage that each sample has on the PLS model
Variate used to contain the Predictive Residual Error Sum of Squares for each dimension in the PLS model, available only if cross-validation has been selected
Variate used to store the Residual Sum of Squares for each dimension extracted
Pointer to variates used to store the residuals from the $Y$ block after NROOTS dimensions have been extracted, uncorrected for any scaling applied using YSCALING
Pointer to variates used to store the residuals from the $X$ block after NROOTS dimensions have been extracted, uncorrected for any scaling applied using XSCALING
Pointer to variates used to store the residuals from the XPREDICTIONS block after NROOTS dimensions have been extracted
Pointer to save the results from the Osten F test (when NGROUPS $>1$ )

## PNTEST procedure

Calculates one- and two-sample Poisson tests (D.A. Murray).

## Options

PRINT $=$ string tokens	Controls printed output (test, summary, confidence); default test, summ, conf
METHOD $=$ string token	Type of test required (twosided, greaterthan, lessthan); default twos
$\mathrm{TEST}=$ string token	Form of the test for one-sample test (exact, normalapproximation); default norm
S1 $=$ scalar	Sample size for sample 1; default 1
S2 = scalar	Sample size for sample 2; default 1
CIPROBABILITY = scalar	The probability level for the confidence interval; default 0.95
NULL $=$ scalar	The value of the probability of success under the null hypothesis for the one-sample test
Parameters	
MU1 = scalars	Number recorded in the first sample
$\mathrm{MU} 2=$ scalars	Number recorded in the second sample
$\mathrm{R} 2=$ scalars	Sample size of the second sample
NORMAL = scalars	Saves the Normal approximation
PROBABILITY $=$ scalars	Saves the probability value from the one-sample or twosample tests
LOWER = scalars	Saves the lower limit of the confidence interval
UPPER = scalars	Saves the upper limit of the confidence interval

## POINTER directive

Declares one or more pointer data structures.

## Options

NVALUES = scalar or text	Number of values, or labels for values; default *
VALUES = identifiers	Values for all the pointers; default *
SUFFIXES $=$ variate or scalar	Defines an integer number for each of the suffixes; default * indicates that the numbers $1,2, \ldots$ are to be used
CASE $=$ string token	Whether to distinguish upper and lower case in the labels of the pointers (significant, ignored); default sign
ABBREVIATE $=$ string token	Whether or not to allow the labels to be abbreviated (yes, no); default no
FIXNVALUES $=$ string token	Whether or not to prohibit automatic extension of the pointers (yes, no); default no
RENAME $=$ string token	Whether to reset the default names of elements of the pointer if they do not have their own identifiers (yes, no); default no
MODIFY $=$ string token	Whether to modify (instead of redefining) existing structures (yes, no); default no
IPRINT $=$ string tokens	Information to be used by default to identify the pointers in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output
EXTEND $=$ string token	Whether to extend (instead of redefining) an existing pointer (yes, no); default no
Parameters	
IDENTIFIER = identifiers	Identifiers of the pointers
VALUES = pointers	Values for each pointer
EXTRA $=$ texts	Extra text associated with each identifier

## POSSEMIDEFINITE procedure

Calculates a positive semi-definite approximation of a non-positive semi-definite symmetric matrix (L.C.P Keizer, M. Malosetti \& J.T.N.M. Thissen).

## Options

PRINT = string tokens Controls printed output (approximation, eigenvalues, epsilon); default * i.e. none
EPSILON $=$ scalar

Specifies the lowest eigenvalue for the positive semi-definite matrix; default 0.0001

## Parameters

OLDSYMMETRICMATRIX = symmetric matrices
Symmetric matrices to approximate
NEWSYMMETRICMATRIX = symmetric matrices
Positive semi-definite approximations to the old symmetric matrices

## PPAIR procedure

Displays results of t-tests for pairwise differences in compact diagrams (P.W. Goedhart, H. van der Voet \& D.C. van der Werf).
PRINT = string token What to print (items, groups); default grou
PROBABILITY $=$ scalar or symmetric matrix
Level of significance of pairwise comparison tests; default 0.05

## Parameters

TPROBABILITIES = symmetric matrices
Probabilities of tests of pairwise comparisons
DIFFERENCES $=$ symmetric matrices, variates or tables
What to print alongside the labels of TPROBABILITIES; default *

LABELS $=$ texts

ITEMLETTERS $=$ texts

GROUPLETTERS $=$ texts

Text vector labelling the output; if unset the row labels of TPROBABILITIES and the diagonal of DIFFERENCES (if set) are used
Saves the letters showing the items not significantly different from each item
Saves the letters showing groups of items not significantly different from each other

## PRCORRELATION procedure

Calculates probabilities for product moment correlations (R.W. Payne).

## Option

NOBSERVATIONS $=$ scalar $\quad$ Number of observations from which the correlation(s) were calculated

## Parameters

DATA $=$ scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Correlations for calculating probabilities or cumulative lower probabilities for calculating equivalent deviates
CLPROBABILITY $=$ scalars, variates, tables, matrices, diagonal matrices or symmetric matrices Saves cumulative lower probabilities
CUPROBABILITY $=$ scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves cumulative upper probabilities
PROBABILITY $=$ scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves probability densities
CORRELATION $=$ scalars, variates, tables, matrices, diagonal matrices or symmetric matrices
Saves correlations

## PRDOUBLEPOISSON procedure

Calculates the probability density for the double Poisson distribution (V.M. Cave).

## Options

PRINT $=$ string tokens	Controls printed output (probability, summary); default prob
$\mathrm{PLOT}=$ string token	Whether to plot the $k$ terms used to approximate the normalizing constant by the kpartialsum method (yes, no); default no
METHOD $=$ string token	How to approximate the normalizing constant (kpartialsum, edgeworth); default kpar
LOCATION = scalar or variate	Location parameter; no default, must be set
SHAPE $=$ scalar or variate	Shape parameter; default 1
MAXCYCLE $=$ scalar or variate	Limits the number of terms, $k$, used to approximate the normalizing constant by the kpartialsum method; default MAX (1000, 2*LOCATION)
TOLERANCE $=$ scalar	Convergence criterion used when approximating the normalizing constant by the kpartialsum method; default 1E-12
Parameters	
DATA $=$ scalar or variate	Non-negative integer values for which the double Poisson probabilities are to be calculated
DECIMALS $=$ scalars	Number of decimal places for printing; default *
PROBABILITY = variate	Saves the probabilities

## PREDICT directive

Forms predictions from a linear or generalized linear model.

## Options

PRINT $=$ string token	What to print (description, lsd, predictions, se, sed,
	vcovariance); default desc,pred, se
CHANNEL $=$ scalar	Channel number for output; default * i.e. current output


COMBINATIONS $=$ string token	Which combinations of factors in the current model to include (full, present, estimable); default esti
ADJUSTMENT $=$ string token	Type of adjustment (marginal, equal); default marg
WEIGHTS = table	Weights classified by some or all of the factors in the model; default *
OFFSET $=$ scalar	Value of offset on which to base predictions; default mean of offset variate
METHOD $=$ string token	Method of forming margin (mean, total); default mean
ALIASING $=$ string token	How to deal with aliased parameters (fault, ignore); default faul
BACKTRANSFORM $=$ string token	What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default link
SCOPE $=$ string token	Controls whether the variance of predictions is calculated on the basis of forecasting new observations rather than summarizing the data to which the model has been fitted (data, new); default data
NOMESSAGE $=$ string tokens	Which warning messages to suppress (dispersion, nonlinear); default *
DISPERSION $=$ scalar	Value of dispersion parameter in calculation of s.e.s; default is as set in the MODEL statement
DMETHOD $=$ string token	Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement
NBINOMIAL $=$ scalar	Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value $n$ greater than one allows predictions to be made of the number of "successes" out of $n$, whereas the value one predicts the proportion of successes); default 1
PREDICTIONS $=$ tables or scalars	Saves predictions for each y variate; default *
SE $=$ tables or scalars	Saves standard errors of predictions for each y variate; default
SED $=$ symmetric matrices	Saves standard errors of differences between predictions for each y variate; default *
LSD $=$ symmetric matrices	Saves least significant differences between predictions for each y variate (models with Normal errors only); default *
LSDLEVEL $=$ scalar	Significance level (\%) to use in the calculation of least significant differences; default 5
VCOVARIANCE $=$ symmetric matrices	Saves variance-covariance matrices of predictions for each y variate; default *
SAVE $=$ identifier	Specifies save structure of model to display; default * i.e. that from latest model fitted
Parameters	
CLASSIFY $=$ vectors	Variates and/or factors to classify table of predictions
LEVELS $=$ variates, scalars or texts	
	To specify values of variates, levels of factors
PARALLEL $=$ identifiers	For each vector in the CLASSIFY list, allows you to specify another vector in the CLASSIFY list with which the values of this vector should change in parallel (you then obtain just one dimension in the table of predictions for these vectors)
NEWFACTOR $=$ identifiers	Identifiers for new factors that are defined when LEVELS are specified

## PREWHITEN procedure

Filters a time series before spectral analysis (A.W.A. Murray).
Option

PHI $=$ scalar

## Parameters

SERIES $=$ variates Input series
FILTERED $=$ variates $\quad$ Output series 0.99

Specifies the value of the parameter used in filtering; default

## PRIMEPOWER procedure

Decomposes a positive integer into its constituent prime powers (I. Wakeling \& R.W. Payne).

## Option

PRINT $=$ string token
Controls printed output (decomposition); default *

## Parameters

NUMBER $=$ scalars $\quad$ Number to be decomposed
PRIMES $=$ pointers Prime factors of NUMBER
POWERS $=$ pointers $\quad$ Powers of the prime factors in NUMBER

## PRINT directive

Prints data in tabular format in an output file, unformatted file or text.

## Options

CHANNEL = identifier
SERIAL $=$ string token
IPRINT $=$ string tokens
RLPRINT $=$ string tokens
CLPRINT $=$ string tokens
RLWIDTH $=$ scalar
INDENTATION = scalar
WIDTH $=$ scalar
SQUASH $=$ string token
MISSING $=$ text
ORIENTATION $=$ string token
ACROSS $=$ scalar or factors

[^1]Channel number of file, or identifier of a text to store output; default current output file
Whether structures are to be printed in serial order, i.e. all values of the first structure, then all of the second, and so on (yes, no); default no, i.e. values in parallel
What identifier and/or text to print for the structure
(identifier, extra, associatedidentifier), for a table associatedidentifier prints the identifier of the variate from which the table was formed (e.g. by TABULATE), IPRINT $=$ * suppresses the identifier altogether; default iden What row labels to print (labels, integers, identifiers), RLPRINT=* suppresses row labels altogether; default labe, iden
What column labels to print (labels, integers, identifiers), CLPRINT=* suppresses column labels altogether; default labe, iden
Field width for row labels; default 13
Number of spaces to leave before the first character in the line; default 0
Last allowed position for characters in the line; default width of current output file
Whether to omit blank lines in the layout of values (yes, no); default no
What to print for missing value; default uses '*' for numbers and blanks in texts
How to print vectors or pointers (down, across); default down, i.e. down the page
Number of factors or list of factors to be printed across the page when printing tables; default for a table with two or more classifying factors prints the final factor in the classifying set and the notional factor indexing a parallel list of tables across the page, for a one-way table only the notional factor is printed across the page
Number of factors or list of factors to be printed down the page when printing tables; default is to print all other factors

	down the page
WAFER $=$ scalar or factors	Number of factors or list of factors to classify the separate "wafers" (or slices) used to print the tables; default 0
PUNKNOWN $=$ string token	When to print unknown cells of tables (present, always, zero, missing, never); default pres
UNFORMATTED $=$ string token	Whether file is unformatted (yes, no); default no
REWIND $=$ string token	Whether to rewind unformatted file before printing (yes, no); default no
WRAP $=$ string token	Whether to wrap output that is too long for one line onto subsequent lines, rather than putting it into a subsequent "block" (yes, no); default no
STYLE $=$ string token	Style to use for an output file (plaintext, formatted); default * uses the current style of the channel
PMARGIN $=$ string tokens	Which margins to print for tables (full, columns, rows, wafers); default full
OMITMISSINGROWS $=$ string token	Whether to omit rows of tables that contain only missing values (yes, no); default no
VSPECIAL $=$ scalar or variate	Special values to be modified in the output
TSPECIAL $=$ text	Strings to be used for the special values; must be set if VSPECIAL is set
Parameters	
STRUCTURE $=$ identifiers	Structures to be printed
FIELDWIDTH $=$ scalars	Field width in which to print the values of each structure (a negative value $-n$ prints numbers in E-format in width $n$ ); if omitted, a default is determined (for numbers, this is usually 12 ; for text, the width is one more character than the longest line)
DECIMALS $=$ structures	Number of decimal places for numerical data structures, a scalar if the same number of decimals is to be used for all values of the structure, or a data structure of the same type and size to use different numbers of decimals for each value; if omitted or set to a missing value, a default is determined which prints the mean absolute value to 4 significant figures
CHARACTERS $=$ scalars	Number of characters to print in strings
SKIP $=$ scalars or variates	Number of spaces to leave before each value of a structure (* means a new line before structure)
FREPRESENTATION $=$ string tokens	How to represent factor values (labels, levels, ordinals); default is to use labels if available, otherwise levels
JUSTIFICATION $=$ string tokens	How to position values within the field (right, left, center, centre); if omitted, right is assumed
MNAME $=$ string tokens	Name to print for table margins (margin, total, nobservd, mean, minimum, maximum, variance, count, median, quantile); if omitted, "Margin" is printed
DREPRESENTATION $=$ scalars or texts	Format to use for dates and times (stored in numerical structures)
HEADING $=$ texts	Heading to be used for vectors printed in columns down the page; default is to use the information requested by the IPRINT option
TLABELS $=$ texts	If this is specified for a table STRUCTURE, the values of the table are interpreted as references to lines within the TLABELS text that are to be printed instead of the values of the table itself

## PRKTAU procedure

Calculates probabilities for Kendall's rank correlation coefficient $\tau$ (D.B. Baird).

## No options

Parameters
$\mathrm{N}=$ scalars
TAU = scalars
CLPROBABILITY = scalars
CUPROBABILITY $=$ scalars
PROBABILITY $=$ scalars
LPROBABILITIES $=$ variates
LTAU $=$ variates
Sizes of the first groups of observations
Values of Kendall's $\tau$ statistic
Cumulative lower probability of TAU
Cumulative upper probability of TAU
Probability density of TAU
Probability densities of -1 ...TAU
Values of Tau at corresponding values of LPROBABILITIES

## PRMANNWHITNEYU procedure

Calculates probabilities for the Mann-Whitney U statistic (D.B. Baird).

## No options

## Parameters

$\mathrm{N} 1=$ scalars $\quad$ Sizes of the first groups of observations
$\mathrm{N} 2=$ scalars $\quad$ Sizes of the second groups of observations
$\mathrm{U}=$ scalars
TIES $=$ scalars
Values of the U statistic
Number of tied observations; default 0
Cumulative lower probability of $U$
CLPROBABILITY $=$ scalars
CUPROBABILITY $=$ scalars
PROBABILITY $=$ scalars
LPROBABILITIES $=$ variates
$\mathrm{EXIT}=$ scalars

Cumulative upper probability of $U$
Probability density of $u$
Probability densities of $0 \ldots$ U
Set to 1 if it has not been possible to calculate the probabilities when there are ties, otherwise 0

## PROBITANALYSIS procedure

Fits probit models allowing for natural mortality and immunity (R.W. Payne).

## Options

PRINT $=$ string tokens	Printed output required (model, summary, estimates, correlations, fittedvalues, monitoring, effectivedoses); default mode, summ, esti, fitt
TRANSFORMATION $=$ string token	Transformation to be used (probit, logit, complementaryloglog); default prob
MORTALITY $=$ string token	Whether to estimate natural mortality (omit, estimate); default omit
IMMUNITY $=$ string token	Whether to estimate natural immunity (omit, estimate); default omit
GROUPS $=$ factor	Defines groups for an analysis of parallelism; default * i.e. no groups
SEPARATE $=$ string tokens	Which parameters (apart from intercept) should be estimated separately for different groups (slope, mortality, immunity, notintercept); default * i.e. none
$\mathrm{LD}=$ scalar or variate	Effective, or lethal, doses to be estimated, other than 50
CIPROBABILITY $=$ scalar	Probability level for the confidence interval of effective doses; default 0.95 , i.e. a $95 \%$ confidence interval
LOGBASE $=$ string token	Base of antilog transformation to be applied to LD's (ten, e); default * i.e. none
DISPERSION $=$ scalar	Controls the use of a heterogeneity factor in the calculation of s.e.s etc; with the default of 1 no factor is used, a missing value * estimates the heterogeneity from the residual deviance
FITMETHOD $=$ string token	Method to use to fit the model (generalizednonlinear, nonlinear) default nonl for Wadley's problem, otherwise gene

```
MAXCYCLE = scalar Maximum number of iterations for fitting the model; default
30
Parameters
Y = variates Number of subjects responding in each batch
DOSE = variates Dose received by each batch of subjects
NBINOMIAL = variates, scalars or factors
Variate specifying the number of subjects in each batch, or
factor specifying groupings of the observations assumed to
have equal expected total numbers of subjects in Wadley's
problem; if omitted, assumes Wadleys's problem with all
observations having the same expected total number of
subjects
INITIAL = variates Initial values for parameters
STEPLENGTHS = variates
LDESTIMATES = variates
LDLOWER = variates
LDUPPER = variates
Step lengths for parameters
Saves estimates of the effective, or lethal, doses
Saves lower values of the confidence intervals for the
estimates of the effective, or lethal, doses (for
FITMETHOD=gene only)
Saves upper values of the confidence interval values for the estimates of the effective, or lethal, doses (for
FITMETHOD=gene only)
```


## PROCEDURE directive

Introduces a Genstat procedure.
Options

PARAMETER = string token	Whether to process the structures in each parameter list of the procedure sequentially using a dummy to store each one in turn, or whether to put them all into a pointer so that the procedure is called only once (dummy, pointer); default dumm
RESTORE $=$ string tokens	Which aspects of the Genstat environment to store at the start of the procedure and restore at the end (inprint, outprint, outstyle, diagnostic, errors, pause, prompt, newline, case, run, units, blockstructure, treatmentstructure, covariate, asave, dsave, msave, rsave, tsave, vsave, vcomponents, seeds, captions, cmethod, actionafterfault, unsetdummy, all); default *
$\mathrm{SAVE}=$ text	Text to save the contents of the procedure (omitting comments and some spaces)
WORDLENGTH $=$ string token	Length of word ( 8 or 32 characters) to check in identifiers, directives, options, parameters and procedures within the procedure (long, short); default * i.e. no change
Parameter	
text	Name of the procedure

## PRSPEARMAN procedure

Calculates probabilities for Spearman's rank correlation statistic (D.B. Baird).

## No options

## Parameters

```
N = scalars
CORRELATION = scalars
CLPROBABILITY = scalars
CUPROBABILITY = scalars
PROBABILITY = scalars
UPROBABILITIES = variates
```

Numbers of pairs of observations
Values of the signed rank statistic
Cumulative lower probability of CORRELATION
Cumulative upper probability of CORRELATION
Probability density of CORRELATION
Probability densities of CORRELATION... 1

Values of CORRELATION at corresponding elements of UPROBABILITIES

## PRWILCOXON procedure

Calculates probabilities for the Wilcoxon signed-rank statistic (D.B. Baird).

## No options

Parameters

$\mathrm{N}=$ scalars	Sizes of the first groups of observations
SIGNEDRANK $=$ scalars	Values of the signed rank statistic
CLPROBABILITY $=$ scalars	Cumulative lower probability of SIGNEDRANK
CUPROBABILITY $=$ scalars	Cumulative upper probability of SIGNEDRANK
PROBABILITY $=$ scalars	Probability density of SIGNEDRANK
LPROBABILITIES $=$ variates	Probability densities of 0...SIGNEDRANK

## PSPLINE procedure

Calculates design matrices to fit a P-spline as a linear mixed model (S.J. Welham).

Options
NSEGMENTS $=$ scalar

DEGREE $=$ scalar

DIFFORDER $=$ scalar
LOWER = scalar

UPPER $=$ scalar

ORTHOGONALIZETO = variate

SCALING $=$ scalar

## Parameters

$\mathrm{X}=$ variates

XFIXED $=$ matrices

XRANDOM $=$ matrices

KNOTS $=$ variates
$\mathrm{PX}=$ variates
$\mathrm{PFIXED}=$ matrices

PRANDOM $=$ matrices

Specifies the number of segments between boundaries; default * obtains a value automatically

Degree of polynomial used to form the underlying spline basis functions; default 3
Differencing order for penalty; default 2
Specifies the lower boundary; default takes the minimum value in $X$
Specifies the upper boundary; default takes the maximum value in X
Variate to use to get an orthogonalized basis; default * i.e. orthogonalization with respect to X
Scaling of the XRANDOM terms; (automatic, none); default auto

The explanatory variate for which the basis functions are required
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the P -spline
Saves the design matrix to define the random terms for fitting the P -spline
Saves the internal knots and boundaries used to form the basis functions
Specifies x-values at which predictions are required
Saves the design matrix for the fixed terms (excluding the constant) for the spline at the prediction points
Saves the design matrix for the random terms for the spline at the prediction points

## PTAREAPOLYGON procedure

Calculates the area of a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S.
Rowlingson).

## Option

PRINT $=$ string token

## Parameters

YPOLYGON $=$ variates
XPOLYGON $=$ variates
AREA $=$ scalars

What to print (summary); default summ
Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set Scalars to receive the areas of the polygons

## PTBOX procedure

Generates a bounding or surrounding box for a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Options

PRINT $=$ string token   METHOD $=$ string token	What to print (summary); default summ   Type of box to form (bounding, surrounding); default   boun
Parameters	Vertical coordinates of each spatial point pattern; no default -   this parameter must be set
$\mathrm{X}=$ variates	Horizontal coordinates of each spatial point pattern; no default   - this parameter must be set
YBOX = variates	Variates to receive the vertical coordinates of the bounding or   surrounding boxes
XBOX = variates	Variates to receive the horizontal coordinates of the bounding   or surrounding boxes
YFRACTION = scalars	How much to extend the extremes of the vertical coordinates   of each surrounding box as a fraction of the range of the   vertical coordinates; default 0.1
XFRACTION = scalars	How much to extend the extremes of the horizontal   coordinates of each surrounding box as a fraction of the range   of the horizontal coordinates; default 0.1

## PTCLOSEPOLYGON procedure

Closes open polygons (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

OLDYPOLYGON $=$ variates

OLDXPOLYGON $=$ variates

NEWYPOLYGON $=$ variates
NEWXPOLYGON $=$ variates

What to print (summary); default summ
Vertical coordinates of each polygon; no default - this parameter must be set Horizontal coordinates of each polygon; no default - this parameter must be set Vertical coordinates of the closed polygons Horizontal coordinates of the closed polygons

## PTDESCRIBE procedure

Gives summary and second order statistics for a point process (R.P. Littlejohn \& R.C. Butler).

## Options

PRINT $=$ string token
SELECTION $=$ string tokens

REPRESENTATION = string token
GRAPHICS $=$ string token

## Parameters

DATA $=$ variates
START $=$ scalars
LENGTH $=$ scalars
CITAU $=$ scalars
V TTAU $=$ scalars

Whether to print (statistics); default stat
What to print (interval, trend, poisson, icorrelation, ispectrum, cspectrum, cintensity, vtcurve, all); default inte
How the point process is represented in the DATA variate
(time, interval, zeroone); default time
Style of graphical output, or GRAPHICS=* to avoid any graphs
(lineprinter, highresolution); default high
Variate containing point process to be analysed
Initial time (if REPRESENTATION=time); default 0
Length of time over which process is observed; default takes the time of the last event
Window width for calculating count intensity; default $0.5 \times$ mean interval length
Window width for calculating variance-time curve; default 0.5

SAVE $=$ pointers
Pointer to save calculated values

## PTGRID procedure

Generates a grid of points in a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

YPOLYGON $=$ variates

XPOLYGON $=$ variates
NPOINTS $=$ scalars
YSTEP $=$ scalars
$\mathrm{XSTEP}=$ scalars
YGRID $=$ variates
$\mathrm{XGRID}=$ variates

What to print (summary); default summ
Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
How many points to generate
Spacings to use between columns of the grid
Spacings to use between rows of the grid
Variates to receive the vertical coordinates of the points in the grid
Variates to receive the horizontal coordinates of the points in the grid

## PTINTENSITY procedure

Calculates the overall density for a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y.
Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

$\mathrm{Y}=$ variates
$\mathrm{x}=$ variates
YPOLYGON $=$ variates

XPOLYGON $=$ variates
DENSITY $=$ scalars

What to print (summary); default summ
Vertical coordinates of each spatial point pattern; no default this parameter must be set
Horizontal coordinates of each spatial point pattern; no default

- this parameter must be set

Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set Scalars to receive the density of the spatial point patterns, i.e. the number of points per unit area

## PTKERNEL2D procedure

Performs kernel smoothing of a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string tokens

## Parameters

$\mathrm{Y}=$ variates
$\mathrm{x}=$ variates
YPOLYGON $=$ variates

XPOLYGON $=$ variates
HZERO $=$ scalars
$\mathrm{NY}=$ scalars

What to print (grid, monitoring); default grid, moni
Vertical coordinates of each spatial point pattern; no default this parameter must be set
Horizontal coordinates of each spatial point pattern; no default

- this parameter must be set

Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
What kernel width to use for each pattern; no default - this parameter must be set
Numbers of rows to use in the grid of kernel density estimates; default 20

```
\(\mathrm{NX}=\) scalars
YGRID \(=\) variates
XGRID \(=\) variates
\(\mathrm{ZGRID}=\) matrices
```

Numbers of columns to use in the grid of kernel density estimates; default 20
Variates to receive the vertical coordinates at which each kernel function has been evaluated
Variates to receive the horizontal coordinates at which each kernel function has been evaluated Matrices of dimension NY by NX to receive the grid of density estimates

## PTK3D procedure

Performs kernel smoothing of space-time data (D.A. Murray, P.J. Diggle \& B.S. Rowlingson).

## Option

PRINT $=$ string token

## Parameters

$\mathrm{Y}=$ variates
$\mathrm{X}=$ variates
TIMES $=$ variates
XGRID $=$ variates
$\mathrm{YGRID}=$ variates
ZGRID $=$ variates
$\mathrm{HXY}=$ scalars
$\mathrm{HZ}=$ scalars
GRID $=$ pointers

Controls printed output (grid, monitoring); default grid
Vertical coordinates of the spatial point pattern
Horizontal coordinates of the spatial point pattern
Times for each event
The values of x to compute kernel function
The values of $y$ to compute kernel function
The values of z , or time dimension, to compute kernel function What quartic kernel width to use in the XY direction What quartic kernel width to use in the Z or time direction Pointer to matrices containing the kernel smoothed values

## ${ }^{\dagger}$ PTFCLUSTERS procedure

Forms clusters of points from their densities in multi-dimensional space (R.W. Payne).

## Options

PRINT = string tokens	What to print (cellclusters, density, summary); default   summ
PLOT = string tokens	What to plot (cellclusters, density, histogram,   summary); default cell, dens, hist
CLUSTERS = pointer	Saves variates defining the clusters for each minimum number   of points
CELLCLUSTERS = pointer	Saves tables containing the clusters of cells for each minimum   number of points
DENSITY = table	Saves or supplies the table of cell densities
SUMMARY = pointer	Saves the summary table
INITIALCELLCLUSTERS = table	Defines clusters of cells to use to start the clustering   Minimum numbers of points within cells at which to form   clusters
PARPINTS = variate or scalar	Coordinates of the points
DATA = variates	Numbers of partitions in each dimension; default 10
NPARTITIONS = scalars	

## 'PTFILLCLUSTERS procedure

Fills holes within clusters of points in multi-dimensional space (R.W. Payne).

## Options

PRINT $=$ string tokens
DIAGONALS $=$ string token

DISTANCE $=$ scalar
NUNCLASSIFIED = scalar
NNEWCELLS $=$ scalar

## Parameters

CELLCLUSTERS $=$ tables

Controls printed output (cellclusters); default * .e. none
Whether to include diagonal cells (include, exclude); default incl
Maximum distance between cells and adjacent cells; default 1
How many adjacent cells may be unclassified; default 0
Saves the number of cells that have been added to clusters
Clusters of cells containing holes to be filled

NEWCELLCLUSTERS = tables

Clusters with filled holes; if unset, the CELLCLUSTERS table itself is updated

## PTREMOVE procedure

Removes points interactively from a spatial point pattern (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Options

\(\left.\left.$$
\begin{array}{ll}\begin{array}{l}\text { PRINT }=\text { string token } \\
\text { WINDOW }=\text { scalar }\end{array} & \begin{array}{l}\text { What to print (summary, monitoring); default summ, moni } \\
\text { Parameters } \\
\text { OLDY }=\text { variates }\end{array} \\
\text { Which graphics window to use for the plot; default 1 }\end{array}
$$\right\} $$
\begin{array}{l}\text { Vertical coordinates of each spatial point pattern; no default - } \\
\text { OLDX }=\text { variates } \\
\text { this parameter must be set }\end{array}
$$ \quad \begin{array}{l}Horizontal coordinates of each spatial point pattern; no default <br>

- this parameter must be set\end{array}\right]\)| Variates to receive the vertical coordinates of the original |
| :--- |
| NEWX $=$ variates | | points minus the deleted points of each pattern |
| :--- |
| Variates to receive the horizontal coordinates of the original |
| points minus the deleted points of each pattern |

## PTROTATE procedure

Rotates a point pattern (W. van den Berg).

## Options

ANGLE $=$ scalar

HUB $=$ string token

## Parameters

OLDY $=$ variates
OLDX $=$ variates
NEWY $=$ variates

NEWX $=$ variates

ROTATION $=$ matrices

Angle, in degrees over which the point pattern is to be rotated; no default - must be set
Whether the point pattern is to be rotated around the origin or around the centroid (origin, centroid); default orig

Vertical coordinates of each spatial point pattern Horizontal coordinates of each spatial point pattern Save the vertical coordinates of the rotated point patterns; if this unset, these replace the original values in OLDY Save the horizontal coordinates of the rotated point patterns; if this unset, these replace the original values in OLDX
Save the rotation matrices

## PTSINPOLYGON procedure

Returns points inside or outside a polygon (M.A. Mugglestone, S.A. Harding, B.Y.Y. Lee, P.J. Diggle \& B.S. Rowlingson).

## Options

```
PRINT = string token
METHOD = string token
```


## Parameters

```
OLDY = variates
OLDX = variates
YPOLYGON = variates
XPOLYGON = variates
NEWY = variates
NEWX = variates
```

What to print (summary); default summ
Whether to select points inside or outside the polygon
(inside, outside); default insi
Vertical coordinates of each spatial point pattern; no default this parameter must be set
Horizontal coordinates of each spatial point pattern; no default

- this parameter must be set

Vertical coordinates of each polygon; no default - this parameter must be set
Horizontal coordinates of each polygon; no default - this parameter must be set
Variates to receive the vertical coordinates of points inside (or outside) the polygons
Variates to receive the horizontal coordinates of points inside (or outside) the polygons

## QBESTGENOTYPES procedure

Sorts individuals of a segregating population by their genetic similarity with a defined target genotype, using the identity by descent (IBD) information at QTL positions for one or more traits (M. Malosetti \& F.A. van Eeuwijk).

## Options

PRINT $=$ string tokens	What to print (summary); default summ
$\mathrm{PLOT}=$ string tokens	What to plot (haplotypes); default hapl
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL); default F2
IBDWINDOW $=$ scalar	Size of the window around the QTL position to use to construct the haplotypes; default 10
TRAITS $=$ text	Names of the traits whose QTL information is to be used; default is to use all the traits
SELECTION $=$ variate	Indicator variate with values defining whether each trait should be maximized (1), minimized (-1) or remain unchanged (0); if unset, the default is to maximize every trait
\%BESTGENOTYPES $=$ scalar	Specifies the percentage of the best genotypes to display in the output and plots; default 10
Parameters	
GENFILENAME $=$ texts	Name of a Flapjack genotype file
MAPFILENAME $=$ texts	Name of a Flapjack map file
FJQTLFILENAME $=$ texts	Name of a file to supply the QTL results
QTRAITS $=$ texts	Names of the traits affected by each QTL
QCHROMOSOMES = factors	Factor defining the linkage group of each QTL
QPOSITIONS = variates	Position of each QTL within the linkage group
QNAMES = texts	Name of each QTL
QEFFECTS $=$ variates	Individual QTL effects
QBESTSAVE = pointers	Saves similarities with the target genotype, and their ranks, across and per trait

## QCANDIDATES procedure

Selects QTLs on the basis of a test statistic profile along the genome (M.P. Boer \& J.T.N.M. Thissen)

## Options

PRINT $=$ string token	What to print (summary); default summ
THRESHOLD $=$ scalar	Threshold for the test statistic; default 0
QTLWINDOW = scalar	Minimum distance in CM between two peaks to be selected as
	two QTLs; default 10

## Parameters

STATISTICS $=$ variates
CHROMOSOMES = factors
POSITIONS = variates
IDLOCI $=$ texts
QTLCANDIDATES $=$ variates

What to print (summary); default summ Threshold for the test statistic; default 0 two QTLs; default 10

Test statistic along the genome; must be set Chromosome for each locus; must be set Position on the chromosome for each locus; must be set Labels for the loci
Saves the index numbers of the selected QTLs

## QCOCHRAN procedure

Performs Cochran's $Q$ test for differences between related samples (D.A. Murray).

## Options

PRINT $=$ string token	Controls printed output (test); default test
METHOD $=$ string token	Form of the test $($ exact, chisquare); default exac for small   samples, otherwise chis
GROUPS $=$ factor	Defines the groups if there only one variable supplied for the      DTATISTIC $=$ scalar
PROBABILITY $=$ scalar	Scalar to save the Q value
MAXTIME $=$ scalar	Scalar to save the probability for the Q Test
	Defines a limit for the maximum time for calculating the exact   test; default * i.e. no limit.

## Parameter

$\mathrm{DATA}=$ variates

List of related samples, or variate containing all the samples (the GROUPS option must then be set to indicate the variable recorded in each unit belongs)

## QDESCRIBE procedure

Calculates descriptive statistics of molecular markers (M.P. Boer \& J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens
DISTANCE $=$ scalar

## Parameters

CHROMOSOMES $=$ factors
POSITIONS $=$ variates
IDLOCI $=$ texts
CUMPOSITIONS $=$ variates
NLOCI $=$ variates
FIRST $=$ variates
LAST $=$ variates
LENGTHS $=$ variates
MIDDLEPOSITIONS $=$ variates

SEPARATION $=$ variates

GENOMELENGTH $=$ scalars
TOTLENGTH $=$ scalars

What to print (chromosomes, genome); default chro Distance between chromosomes (for plotting purposes); default 10

Chromosome for each locus; must be set Position on the chromosome for each locus; must be set Labels for the loci
Saves the cumulative positions of the loci along the genome Saves the number of loci on each chromosome
Saves the index number of the first locus of each chromosome Saves the index number of the last locus of each chromosome Saves the lengths of the chromosomes
Saves the middle positions of the chromosomes (as cumulative positions)
Saves the positions of the gaps between chromosomes (as cumulative positions)
Saves the length of the genome
Saves the total length of the genome, including added gaps between chomosomes

## QDIALOG procedure

Produces a modal dialog box to obtain a response from the user.

## Options

DIALOG = string token Type of dialog box (checkbox, pushbutton, radiobutton, text, integer, real, variable, query, message); no default, must be specified

```
TITLE = text
PREAMBLE = text
```

LABEL $=$ text
RESPONSE $=$ identifier
STATUS = scalar
DEFAULT = identifier
LIST $=$ string token
HELP $=$ texts $\quad$ Help on the menu, to be displayed in a pop-up window; default
$\mathrm{ICON}=$ string token
TIMEOUT $=$ scalar
MINIMUM $=$ scalar
MAXIMUM $=$ scalar

## Parameters

BOXLABEL $=$ texts
BOXRESPONSE $=$ scalars

Title for the dialog box; default * i.e. none
Informative text that appears above any controls on the dialog; default * i.e. none
Label for the data entry field; default * i.e. none
Structure to store the response
Stores the exit status as 1 for OK, 2 for cancel, 3 for no, or 4 for yes
Default setting or settings to appear in the menu; default * i.e. none
Whether an interger, real or variable entry field can contain a list of settings (yes, no); default no
Help on the menu, to be displayed in a pop-up window; default * i.e. none

Type of icon to display in the dialog box (information, warning, error, query); default * i.e. none
Permits the dialog to continue and return a default value after a specified period (in seconds); default * i.e. no timeout Minimum value for numerical input fields; default * i.e. none Minimum value for numerical input fields; default * i.e. none

Label for each checkbox or radio button Indicates the selection status of each checkbox or radio button

## QDISCRIMINATE procedure

Performs quadratic discrimination between groups i.e. allowing for different variance-covariance matrices (D.B. Baird).
Options

PRINT $=$ string tokens	Printed output from the analysis (allocation, counts,   distance, probabilities, specificity, summary,		
table, validation, vcovariance); default spec, summ,			
vali		,	Validation method to use to calculate error rates (bootstrap,
:---			
crossvalidation, jackknife, prediction); default			
cros	,		

Save posterior probabilities of membership of the groups (in the columns of a matrix or the variates in a pointer) for the units in the training set (in the rows)

## QEIGENANALYSIS procedure

Uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables (M. Malosetti \& J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens	What to print (summary, scores); default summ
NROOTS $=$ scalar	Number of principal components to retain; default saves the significant components
PLOT $=$ string tokens	What to plot (eigenvalues, \%variance); default eige, \%var
PROBABILITY $=$ scalar	Specifies the significance level; default 0.05
SCALING $=$ string token	Whether to scale the principal component scores by the square roots of their singular values (singularvalues, none); default none
STANDARDIZE $=$ string token	How to standardize the DATA variates (frequency, none); default freq
TITLE $=$ text	General title for the plots
Parameters	
DATA $=$ pointers	Data variates; must be set
SCORES $=$ pointers	Pointer of variates to store the scores of the significant axes for each set of DATA variates
EVALUES $=$ variates	Saves the eigenvalues of the significant principal components
NEFFECTIVE = scalars	Saves the effective number of columns of the marker data matrix
\%VARIANCE $=$ variates	Saves the percentage variances explained by the significant principal components
CUM\%VARIANCE $=$ variates	Saves the cumulative percentage variances explained by the significant principal components

## QEXPORT procedure

Exports genotypic and phenotypic data for QTL analysis (D.A. Murray).

## Options

OUTFILENAME $=$ text	Name of the file to receive the data
MAPFILENAME $=$ text	Name of the associated map file for Flapjack or MapQTL ${ }^{(R)}$
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
NGENERATIONS $=$ scalar	Number of generations for a RIL population
NAME $=$ text	Name for the header in a . loc file
MISSING $=$ text	Character to represent a missing genotype in Flapjack or R/QTL format; default ' - '
SEPARATOR $=$ text	Character to separate data values in Flapjack format; default separates them by tabs
ASEPARATOR $=$ text	Character to separate allele values in Flapjack format; default '/'
FJROWS $=$ string token	Specifies whether the genotypes or markers are to be stored on the rows in Flapjack format (genotypes, markers); default geno

## Parameters

MKSCORES $=$ pointers
CHROMOSOMES = factors
Genotype codes for each marker

POSITIONS $=$ variates
Linkage groups for the markers

MKNAMES $=$ texts
Positions within the linkage groups of markers

MKSETS = factors
Marker names

IDMGENOTYPES $=$ texts
Marker sets

PARENTS $=$ pointers
Labels for genotypes

IDPARENTS $=$ texts
Parent information
Labels used to identify the parents

## QFACTOR procedure

Allows the user to decide to convert texts or variates to factors (R.W. Payne).

## Options

PRINT $=$ string tokens	Controls printed output (replication, summary); default
summ	
MAXCATEGORY $=$ scalar	Maximum number of distinct values that a VECTOR may
contain if it is be converted; default 10	
QUERY $=$ string token	Whether to ask the user if each VECTOR with no more than
	MAXCATEGORY distinct values is to be converted

## Parameter

VECTOR = variates or texts
Vectors to be converted into factors

## QFLAPJACK procedure

Creates a Flapjack project file from genotypic and phenotypic data (D.A. Murray).

## Options

WORKDIRECTORY $=$ text	Working directory to use for files; default current Genstat working directory
FJPATH $=$ text	Path specifying the location of Flapjack; by default
	QFLAPJACK searches for a version of Flapjack installed within
	C: \program files (x86) \Flapjack or C:\program files $\backslash$ Flapjack
DECIMALSYMBOL $=$ string token	Controls whether to use the locale (automatic) or English (dot) representation of decimal marks (automatic, dot); default auto
Parameters	
FJFILENAME $=$ texts	Name of the Flapjack project file to create
TRAITS $=$ pointers	Pointer to variates containing the phenotypic trait data

```
GENOTYPES = factors
ENVIRONMENTS \(=\) factors
GENFILENAME \(=\) texts
MAPFILENAME \(=\) texts
FJTRAITFILENAME \(=\) texts
FJQTLFILENAME \(=\) texts
```

QSAVE $=$ pointers

Genotype factor associated with the traits Environment factor
Name of a Flapjack genotype file
Name of a Flapjack map file
Name of a file to supply the trait data, or to save them if the TRAITS and GENOTYPES parameters are also set
Name of a file to supply the QTL results, or to save them if the QSAVE parameter is also set
Information and results saved from an earlier QTL analysis

## QGSELECT procedure

Obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization (J. Jansen \& J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens
NCLUSTERS $=$ scalar
METHOD $=$ string token

## Parameters

GENOTYPES $=$ factors
SIMILARITY $=$ symmetric matices
PRIORGROUPS $=$ factors
SELECTED $=$ variates

NEIGHBOURS $=$ variates
DISTANCES $=$ variates

SEED $=$ scalars

What to print (summary, monitoring); default summ The number of genotypes to be selected; must be set Method to be used (sampling, optimization); default samp

Genotype factor; must be set
Input similarity matrix for each selection; must be set
Defines prior groupings of the genotypes
Logical variate indicating whether a genotype is selected (1) as cluster centre or not (0)
Saves the nearest cluster centres of the genotypes
Saves the distances of the genotypes to the nearest cluster centre
Seed for randomization at the start; default 0

## QIBDPROBABILITIES procedure

Reads molecular marker data and calculates IBD probabilities (M.P. Boer \& J.T.N.M. Thissen).

## Options

```
PRINT = string tokens
STEPSIZE = scalar
\(\mathrm{METHOD}=\) string token
POPULATIONTYPE = string token
NGENERATIONS \(=\) scalar
NBACKCROSSES \(=\) scalar
NSELFINGS = scalar
MAPPINGFUNCTION = string token
```


## Parameters

```
MKSCORES = pointers
```

MKSCORES = pointers
CHROMOSOMES = factors
CHROMOSOMES = factors
POSITIONS = variates
POSITIONS = variates
MKNAMES = texts
MKNAMES = texts
IDMGENOTYPES = texts
IDMGENOTYPES = texts
PARENTS = pointers
PARENTS = pointers
IDPARENTS = texts
IDPARENTS = texts
PEDIGREE = pointers
PEDIGREE = pointers
ADDITIVEPREDICTORS = pointers
ADDITIVEPREDICTORS = pointers
ADD2 PREDICTORS = pointers

```
ADD2 PREDICTORS = pointers
```

What to print (summary, loci); default summ
Maximum stepsize along the genome; default $10^{6}$, i.e. the IBD probabilities are calculated only at the marker positions
Method of calculation for IBD probabilities of RIL
populations (approximate, exact); default appr
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
Number of generations of selfing for a RIL population
Number of backcrosses for a BCxSy population
Number of selfings for a BCxSy population
Mapping function (haldane, kosambi); default hald
Genotype codes for each marker; must be set
The chromosome where each marker is located; must be set
The position on the chromosome of each marker; must be set
Marker names; must be set
Labels for the genotypes
Parent information; must be set
Labels used to identify the parents; must be set
Defines the parents of the offspring
Saves the additive genetic predictors
Saves the second (paternal) additive genetic predictors if POPULATIONTYPE is CP

DOMINANCEPREDICTORS $=$ pointers
SCHROMOSOMES $=$ factors
SPOSITIONS $=$ variates
LOCI $=$ variates
IDLOCI $=$ texts
MKLOCI $=$ variates
$\mathrm{NLOCI}=$ scalars
NGENOTYPES = scalars
APROBABILITIES = pointers
BPROBABILITIES $=$ pointers
HPROBABILITIES = pointers
ACPROBABILITIES $=$ pointers

ADPROBABILITIES = pointers
BCPROBABILITIES $=$ pointers

BDPROBABILITIES $=$ pointers

OUTFILENAME $=$ texts

Saves the dominance genetic predictors if POPULATIONTYPE is $F 2, R I L, B C x S y$ or CP
Saves the chromosome where each locus is located
Saves the position on the chromosome of each locus
Saves the index number of each locus
Saves the locus labels
Saves a logical variate indicating whether each locus is a marker
Saves the number of loci
Saves the number of genotypes
Saves probabilities of the genotypes being equal to parent A Saves probabilities of the genotypes being equal to parent B Saves the probabilities of the genotypes being heterozygous Saves the probabilities of the genotypes being AC when POPULATIONTYPE is CP
Saves the probabilities of the genotypes being AD when POPULATIONTYPE is CP
Saves the probabilities of the genotypes being BC when POPULATIONTYPE is CP
Saves the probabilities of the genotypes being BD when POPULATIONTYPE is CP
Name of the Genstat workbook file (*.gwb) to be created

## QIMPORT procedure

Imports genotypic and phenotypic data for QTL analysis (D.A. Murray).

## Options

PRINT = string token
POPULATIONTYPE = string token
MISSING = text
SEPARATOR = text
ASEPARATOR = text
FJROWS = string token
NPARENTS = scalar

## Parameters

FILENAME $=$ texts
MAPFILENAME $=$ texts
PHEFILENAME $=$ texts
MKSCORES $=$ pointers
TRAITS = pointers
CHROMOSOMES $=$ factors
POSITIONS $=$ variates
MKNAMES $=$ texts
MKSETS $=$ factors
IDMGENOTYPES $=$ texts
PARENTS $=$ pointers
IDPARENTS $=$ texts
IDFILENAME $=t e x t s$

## QKINSHIPMATRIX procedure

Forms a kinship matrix from molecular markers (L.C.P. Keizer \& J.T.N.M. Thissen).

## Options

PRINT $=$ string token
$\mathrm{METHOD}=$ string token

## Parameters

MKSCORES = pointers
IDMGENOTYPES $=$ texts
KMATRIX $=$ symmetric matrices
OUTFILENAME $=$ texts

What to print (summary); default summ
Method to use for the calculation (correlation, dice); default dice

Pointer with the marker scores; must be set
Labels for the genotypes
Saves the kinship matrix
Name of the file to receive the kinship matrix

## QLDDECAY procedure

Estimates linkage disequilibrium (LD) decay along a chromosome (M. Malosetti \& J.T.N.M. Thissen).

## Options

PRINT $=$ string token	What to print (progress); default *
PLOT $=$ string tokens	What to plot (ldmatrix, lddecay); default ldde

RELATIONSHIPMODEL $=$ string token

SCORES $=$ pointer
SUBPOPULATIONS = factor
CHRANALYSE $=$ scalar
MAX $\%$ MISSING $=$ scalar
MAXDISTANCE $=$ scalar

TITLE $=$ text
YTITLE $=$ text
XTITLE $=$ text

## Parameters

MKSCORES = pointers
CHROMOSOMES $=$ factors
POSITIONS $=$ variates
DISTANCES $=$ symmetric matrices
$\mathrm{R} 2=$ symmetric matrices

What to plot (ldmatrix, Iddecay); default Idde

What model to use to account for genetic relatedness
(eigenanalysis, subpopulations, null); default eige
Provides the scores of significant principal components, obtained from an eigenvalue analysis
Defines groupings of genotypes into subpopulations
Defines which chromosome to analyse, using a level of the CHROMOSOMES factor
Markers with more than the specified $\%$ of missing values will be excluded from the LD calculations; default 20
Defines the maximum distance between markers to show in LD plots; default 30
General title for the plots
Title for the $y$-axis
Title for the x -axis
Genotype codes for each marker; must be set
Linkage groups for the markers; must be set
Positions within the linkage groups of markers; must be set Saves the distances between markers
Saves the value of $\mathrm{r}^{2}$ between markers

## QLINKAGEGROUPS procedure

Forms linkage groups using marker data from experimental populations (J. Jansen, J.T.N.M. Thissen \& M.P. Boer).

## Options

PRINT $=$ string token
POPULATIONTYPE = string token
USEPENALTY $=$ string token

THRESHOLD $=$ scalar or variate

## Parameters

MKSCORES $=$ pointers
CHROMOSOMES $=$ factors or pointers
MKNAMES $=$ texts
PARENTS $=$ pointers

What to print (summary); default summ
Type of population (BC1, DH1, F2, RIL, CP); must be set Whether to increase the number of recombinations by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no Threshold for the recombination frequency at which markers are said to be linked; default 0.2

Marker scores for each marker; must be set Saves the linkage groups of the markers Names of the markers; must be set Marker scores of the parents; must be set

SMKSCORES $=$ pointers
SCHROMOSOMES = factors or pointers
SMKNAMES $=$ texts or pointers

SPARENTS $=$ pointers

Saves the marker scores factors according to the SMKNAMES parameter
Saves the sorted linkage groups
Saves the names of the markers according to the SCHROMOSOMES parameter
Saves the parent information according to the SMKNAMES parameter when POPULATIONTYPE=CP

## QLIST procedure

Gets the user to select a response interactively from a list (R.W. Payne).

## Option

HELP = text Help information for the QUESTION

## Parameters

ALTERNATIVES $=$ texts
CODES $=$ texts
PREAMBLE $=$ texts

CHOICE $=$ texts
$\mathrm{NCHOICE}=$ scalars

Alternatives from which each choice is to be made
Codes to use to represent each set of alternatives Preamble for the question used to select from each set of alternatives
Alternative chosen from each set
Numbers of the chosen alternatives ( 0 if exit has been chosen instead)

## QMAP procedure

Constructs genetic linkage maps using marker data from experimental populations (J. Jansen, J.T.N.M. Thissen \& M.P. Boer).

## Options

PRINT $=$ string token	What to print (map, monitoring, summary); default summ
PLOT $=$ string token	What to plot (frequiencies, map); default map
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, CP); must be set
USEPENALTY = string token	Whether to increase the number of recombinations by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no
SPATIALMETHOD $=$ string token	Which method to use for clustering (sampling, optimization, none); default opti for population CP, samp otherwise
NGROUPS $=$ scalar	Number of groups for clustering; default 10
MAPCHROMOSOMES $=$ variate, text or scalar	
	Allows a subset of chromosomes to be mapped; default * i.e. all the chromosomes
LINKAGEPHASES $=$ string token	Controls estimation of linkage phases for population type CP (estimate, omit); default esti
TITLE $=$ text	General title for the graph
OUTFILENAME $=$ text	Name (without extension) of the Flapjack files to be created
Parameters	
MKSCORES $=$ pointers	Marker scores for each marker; must be set
CHROMOSOMES $=$ factors	Factor defining the linkage groups
POSITIONS $=$ variates	Saves the positions of markers
MKNAMES $=$ texts	Names of the markers; must be set
IDMGENOTYPES $=$ texts	Names of the genotypes
PARENTS $=$ pointers	Marker scores of the parents; must be set
IDPARENTS $=$ texts	Labels to identify the parents
SMKSCORES $=$ pointers	Saves the scores of the markers, sorted according to the markers in the SCHROMOSOMES factor (if CHROMOSOMES is set) and the SPOSITIONS variate
SCHROMOSOMES $=$ factors	Saves the sorted linkage groups
SPOSITIONS $=$ variates	Saves the sorted positions of markers (within the sorted linkage groups if CHROMOSOMES is set)

```
SMKNAMES = texts
SPARENTS = pointers
SEED = scalars
Saves the names of the markers, sorted according to the SCHROMOSOMES factor (if CHROMOSOMES is set) and the SPOSITIONS variate
Saves the marker scores of the parents, sorted according to the markers in the SCHROMOSOMES factor (if CHROMOSOMES is set) and the SPOSITIONS variate
SEED \(=\) scalars
Seed for the random numbers used for spatial sampling; default 0
```


## QMASSOCIATION procedure

Performs multi-environment marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers (M. Malosetti \& J.T.N.M. Thissen).

## Options

PRINT = string tokens
PLOT $=$ string tokens
RELATIONSHIPMODEL = string token

VCMODEL $=$ string token

CRITERION $=$ string token

MINORALLELE $=$ scalar THRESHOLD = scalar

SUBPOPULATIONS = factor
MODELPART $=$ string token

SCALING $=$ string token

STANDARDIZE $=$ string token

TITLE $=$ text
YTITLE $=$ text
XTITLE $=$ text

## Parameters

TRAIT $=$ variates
GENOTYPES $=$ factors
ENVIRONMENTS = factors
MKSCORES $=$ pointers
CHROMOSOMES $=$ factors
POSITIONS $=$ variates
MKNAMES $=$ texts
WALDSTATISTICS = variates
NDF $=$ variates
MINLOG10P $=$ variates

QSAVE $=$ pointers

DFILENAME $=$ texts

What to print (summary, progress); default summ
What to plot (profile, map); default prof, map What model to use to account for genetic relatedness (eigenanalysis, subpopulations, null); default eige Specifies the variance-covariance model for the set of environments (identity, diagonal, cs, hcs, outside, fa, unstructured, best); default best
Defines which criterion is used to compare the different covariance structures (aic, sic); default sic
Frequency of minor alleles; default 0.05
Threshold value for significant LD, on the - $\log 10$ scale; default 2
Defines groupings of genotypes into subpopulations Defines which part of the model should include SUBPOPULATIONS if RELATIONSHIPMODEL is set to subpopulations, or the principal components scores if RELATIONSHIPMODEL is set to eigenanalysis (fixed, random); default rand
Whether to scale the scores by the square roots of their singular values if RELEATIONSHIPMODEL is set to
eigenanalysis (singularvalues, none); default sing
Whether to standardize the marker scores according to their
frequencies (frequency, none); default freq
General title for the plots
Title for the $y$-axis
Title for the x -axis

Phenotypic trait to analyse; must be set
Genotype factor; must be set
Environment factor; must be set
Genotype codes for each marker; must be set
Linkage groups for the markers; must be set
Positions within the linkage groups of markers; must be set Marker names
Saves the Wald test statistics
Saves the degrees of freedom associated to the Wald test Saves the associated probability values of the Wald test statistics, on a $-\log 10$ scale
Saves a pointer with information and results for the significant effects
Name of the graphics file for the plots

## QMATCH procedure

Matches different data structures to be used in QTL estimation (L.C.P. Keizer \& J.T.N.M. Thissen). Options
PRINT = string tokens
GEN\%MISSING = scalar
MK\%MISSING $=$ scalar
MK\%EXTREME $=$ scalar
GENSELECTION $=$ variate

MKSELECTION $=$ variate

POPULATIONTYPE = string token

OUTFILEPREFIX = text

## Parameters

TRAITS = pointers or variates
GENOTYPES = factors
ENVIRONMENTS = factors
MKSCORES $=$ pointers
CHROMOSOMES $=$ factors
POSITIONS $=$ variates
MKNAMES $=$ texts
IDMGENOTYPES $=$ texts
PARENTS $=$ pointers
IDPARENTS = texts
KMATRIX $=$ symmetric matrices
SUBPOPULATIONS $=$ factors
STRAITS = pointers or variates
SGENOTYPES = factors
SENVIRONMENTS = factors
SMKSCORES $=$ pointers
SCHROMOSOMES $=$ factors
SPOSITIONS $=$ variates

SMKNAMES $=$ texts
SIDMGENOTYPES $=$ texts
SPARENTS = pointers
SIDPARENTS $=$ texts
SKMATRIX $=$ symmetric matrices
SSUBPOPULATIONS = factors

What to print (summary, details); default summ Percentage of missing values allowed for a genotype; default 50
Percentage of missing values allowed for a marker; default 50 Extreme allele percentage allowed for a marker; default 5 Logical variate containing the value one for the genotypes to retain and zero for those to remove (supersedes the options GEN $\%$ MISSING, MK $\%$ MISSING and MK $\%$ EXTREME)
Logical variate containing the value one for the markers to retain and zero for those to remove (supersedes the options GEN\%MISSING, MK \%MISSING and MK\%EXTREME)
Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
Prefix for the output file names; default * i.e. files not saved
Quantitative traits
Genotype factors corresponding to the traits
Environment factors corresponding to the traits
Marker scores; must be set
Chromosomes corresponding to the markers
Positions on the chromosomes corresponding to the markers
Names of the markers
Labels for the genotypes corresponding to the markers
Parent information
Labels used to identify the parents
Kinship matrices containing coefficients of coancestries
Groups of genotypes
Saves the sorted quantitative traits
Saves the sorted genotype factors
Saves the sorted environment factors
Saves the sorted marker scores; must be set
Saves the sorted chromosomes corresponding to the markers
Saves the sorted positions on the chromosomes corresponding to the markers
Saves the sorted names of the markers
Saves the sorted labels for the genotypes
Saves the sorted parent information
Saves the sorted labels used to identify the parents
Saves the sorted kinship matrices
Saves the sorted groups of genotypes

## QMBACKSELECT procedure

Performs a QTL backward selection for loci in multi-environment trials or multiple populations
(M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

## Options

PRINT = string tokens
POPULATIONTYPE = string token
ALPHALEVEL = scalar
VCMODEL $=$ string token

What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
Defines a significance level; default 0.05
Defines the variance-covariance model for the set of

VCPARAMETERS $=$ string token

VCSELECT $=$ string token
CRITERION $=$ string token
FIXED = formula
UNITFACTOR $=$ factor

MVINCLUDE $=$ string tokens

MAXCYCLE $=$ scalar
WORKSPACE = scalar

## Parameters

TRAIT $=$ variates
GENOTYPES = factors
ENVIRONMENTS = factors
POPULATIONS $=$ factors

UNITERROR $=$ variates

VCINITIAL $=$ pointers

SELECTEDMODEL = texts
ADDITIVEPREDICTORS $=$ pointers
ADD2PREDICTORS = pointers
DOMINANCEPREDICTORS = pointers
CHROMOSOMES $=$ factors

POSITIONS $=$ variates

IDLOCI $=$ texts
IDMGENOTYPES $=$ texts

QTLCANDIDATES $=$ variates

QTLSELECTED $=$ variates
INTERACTIONS $=$ variates

DOMSELECTED $=$ variates

DOMINTERACTIONS $=$ variates

WALDSTATISTICS = variates
PRWALD $=$ variates
environments (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs for multi-environment trials, and diagonal for multiple populations
Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti
Whether to re-select the variance-covariance model (no, yes); default no
Criterion to use for model selection (aic, sic); default sic Defines extra fixed effects
Saves the units factor required to define the random model when UNITERROR is to be used
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates
(explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by
the REML algorithm; default 100

Quantitative trait to be analysed; must be set
Genotype factor; must be set
Environment factor; must be set for a multi-environment trial Population factor; must be set for a multiple-population analysis
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
Initial values for the parameters of the variance-covariance model
VCMODEL setting for the selected covariance structure
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
Chromosomes corresponding to the genetic predictors; must be set
Positions on the chromosomes corresponding to the genetic predictors; must be set
Labels for the loci
Labels for the genotypes corresponding to the genetic predictors
Specifies the locus index numbers from which to start the selection; must be set
Saves the index numbers of the selected QTLs
Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) QTL-byenvironment or QTL-by-population interaction Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) effect of the DOMINANCEPREDICTORS
Saves a logical variate indicating whether each selected QTL
showed a significant (1) or non-significant (0) dominance-byenvironment or dominance-by-population interaction
Saves the Wald test statistics
Saves the associated Wald probabilities

## QMESTIMATE procedure

Calculates QTL effects in multi-environment trials or multiple populations (M.P Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens

POPULATIONTYPE = string token

NGENERATIONS $=$ scalar
NBACKCROSSES $=$ scalar
NSELFINGS = scalar
VCMODEL $=$ string token

VCPARAMETERS $=$ string token
VCSELECT $=$ string token

CRITERION $=$ string token
FIXED = formula
UNITFACTOR $=$ factor
MVINCLUDE $=$ string tokens

MAXCYCLE $=$ scalar
WORKSPACE $=$ scalar

## Parameters

TRAIT $=$ variates
GENOTYPES = factors
ENVIRONMENTS $=$ factors
POPULATIONS $=$ factors

UNITERROR $=$ variates

VCINITIAL $=$ pointers

SELECTEDMODEL = texts
ADDITIVEPREDICTORS $=$ pointers
ADD2 PREDICTORS = pointers
DOMINANCEPREDICTORS = pointers
CHROMOSOMES = factors

POSITIONS $=$ variates

IDLOCI $=$ texts
MKLOCI $=$ variates

IDMGENOTYPES = texts

IDPARENTS $=$ texts

What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
Number of generations of selfing for a RIL population
Number of backcrosses for a BCxSy population
Number of selfings for a BCxSy population
Specifies the variance-covariance model for the set of environments or populations (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs for multienvironment trials, and diagonal for multiple populations Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti
Whether to re-select the variance-covariance model (no, yes); default no
Criterion to use for model selection (aic, sic); default sic Defines extra fixed effects
Saves the units factor required to define the random model when UNITERROR is to be used
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates
(explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative trait to be analysed; must be set
Genotype factor; must be set
Environment factor; must be set for a multi-environment trial Population factor; must be set for a multiple-population analysis
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
Initial values for the parameters of the variance-covariance model
VCMODEL setting for the selected covariance structure
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
Chromosomes corresponding to the genetic predictors; must be set
Positions on the chromosomes corresponding to the genetic predictors; must be set
Labels for the loci; must be set
Logical variate containing the value 1 if the locus is a marker, otherwise 0 ; must be set
Labels for the genotypes corresponding to the genetic predictors
Labels to identify the parents

QTLSELECTED $=$ variates
INTERACTIONS $=$ variates

DOMSELECTED $=$ variates

DOMINTERACTIONS $=$ variates

RESIDUALS $=$ variates
FITTEDVALUES = variates
WALDSTATISTICS $=$ variates
PRWALD $=$ variates
DFWALD $=$ variates
QEFFECTS = pointers
QSE = pointers
OUTFILENAME $=$ texts
QSAVE $=$ pointers

SAVE $=$ REML save structures

Index numbers of the selected QTLs; must be set
Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-environment or QTL-by-population interaction
Logical variate indicating whether the dominance predictor of each selected QTL must be present (1) or absent (0) in the model
Logical variate indicating whether the dominance-byenvironment or dominance-by-population interaction of each selected QTL must be present (1) or absent (0) in the model Residuals from the analysis
Fitted values from the analysis
Saves the Wald test statistics
Saves the associated Wald probabilities
Saves the degrees of freedom for the Wald test
Saves the estimated QTL effects
Saves the standard errors of the QTL effects
Name of the Genstat workbook file (*.gwb) to be created
Saves a pointer with information and results for the significant effects
Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

## QMKDIAGNOSTICS procedure

Generates descriptive statistics and diagnostic plots of molecular marker data (D.A. Murray, S.J. Welham, M. Malosetti, M.P. Boer, L.C.P. Keizer \& J.T.N.M. Thissen).

## Options



DCHROMOSOMES $=$ variate, text or scalar
Specifies a subset of the linkage groups to be displayed
PDIRECTION $=$ string token

## Parameters

MKSCORES $=$ pointers
CHROMOSOMES = factors
POSITIONS $=$ variates
How to sort the probabilities when PRINT=frequencies with BC1, DH1, F2, RIL and BCxSy populations (ascending, descending); default * i.e. no sorting

MKNAMES $=$ texts
Genotype codes for each marker; must be set
Linkage groups for the markers; must be set
Positions within the linkage groups of markers; must be set
Marker name; must be sets

```
IDMGENOTYPES = texts
PARENTS = pointers
IDPARENTS = texts
GENCHECK = variates
```

MKCHECK $=$ variates
SUMMARY $=$ pointers

Labels for genotypes corresponding to the marker scores Parent information Labels to identify the parents Logical variates containing the value one for genotypes with missing value problems, according to the setting of the GEN\%MISSING option, and zero otherwise Logical variates containing the value one for markers with missing or extreme value problems, as defined by the MK $\%$ MISSING and MK\%EXTREME options, and zero otherwise Saves a summary of counts and probabilities for the chi-square tests for BC1, DH1, F2, RIL and BCxSy populations

## QMKRECODE procedure

Recodes marker and/or parental scores into separate alleles (L.C.P. Keizer \& J.T.N.M. Thissen). Options

PRINT = string tokens	What to print (alleles, summary); default alle
POPULATIONTYPE = string token	Type of population (BC1, DH1, F2, RIL, BCxSy, CP, AMP); must be set
MISSING $=$ text	Character representing a missing genotype; default ' -'
USEFIRSTGENOTYPE = string token	Makes all the first (and second) labels of the LABALLELES pointer from the first genotype of the population (yes, no); default no
ASEPARATOR $=$ text	Character separating allele values; default '/'
Parameters	
MKSCORES $=$ pointers	Marker scores; must be set
MKALLELES = pointers	Saves the marker scores per allele
LABALLELES $=$ pointers	Saves the allele labels
MKLABALLELES = pointers	Saves the allele labels per marker
NALLELES = variates	Saves the number of alleles per marker
MKNAMES $=$ texts	Names of the markers

## QMKSELECT procedure

Obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization (J. Jansen \& J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens $\quad$ What to print (summary, monitoring); default summ
NCLUSTERS = scalar
METHOD $=$ string token

## Parameters

MKNAMES $=$ texts
RECFREQUENCY $=$ symmetric matices
PRIORGROUPS $=$ factors
SELECTED $=$ variates

NEIGHBOURS $=$ variates
DISTANCES $=$ variates
SEED $=$ scalars The number of markers to be selected; must be set Method to be used (sampling, optimization); default samp

Names of the markers; must be set
Input recombination frequencies matrix for each selection; must be set
Defines prior groupings of the markers
Logical variate indicating whether a marker is selected (1) as cluster centre or not (0)
Saves the nearest cluster centres of the markers
Saves the distances of the markers to the nearest cluster centre
Seed for randomization at the start; default 0

## QMQTLSCAN procedure

Performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multienvironment trials or multiple populations (M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens
What to print (summary, progress, model, components,

PLOT $=$ string token
POPULATIONTYPE $=$ string token
ALPHALEVEL $=$ scalar
VCMODEL $=$ string token

VCPARAMETERS $=$ string token
QTLMODEL $=$ string token
COFACTORS $=$ variate

COFWINDOW $=$ scalar

THRMETHOD $=$ string token
THRESHOLD = scalar
DISTANCE $=$ scalar
FIXED $=$ formula
UNITFACTOR $=$ factor
STATISTICTYPE $=$ string token
COLOURS $=$ scalar, variate or text

TITLE $=$ text
YLOWERTITLE $=$ text

YUPPERTITLE $=t e x t$

XTITLE $=$ string
MVINCLUDE $=$ string tokens

## MAXCYCLE $=$ scalar

WORKSPACE $=$ scalar

## Parameters

TRAIT $=$ variates
GENOTYPES $=$ factors
ENVIRONMENTS $=$ factors
POPULATIONS = factors
UNITERROR $=$ variate
effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
Whether to plot the profile along the genome (profile); default prof
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
Defines a genome-wide significance level to calculate the threshold; default 0.05
Specifies the variance-covariance model for the set of environments or populations (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs for multienvironment trials, and diagonal for multiple populations Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti
Type of QTL model (q, qqe); default qqe
Index numbers of loci to be used as cofactors for the genetic background
Specifies a window for cofactor exclusion from the model; default $10^{6}$ which means that all cofactors on the same chromosomes are excluded
Which method to use to calculate the threshold for QTL detection (bonferroni, liji, given); default liji
Threshold value for test statistic when THRMETHOD=given
Distance between loci when THRMETHOD=bonferroni; default 4
Formula with extra fixed terms
Saves the units factor required to define the random model when UNITERROR is to be used
Which test statistic to plot and save using the STATISTICS
parameter (wald, minlog10p); default minl
Colours to use for the chromosomes; default * uses the colours of pens 1,2 up to the number of chromosomes
General title for the plot
Title for the y-axis of the lower graph; default
'Environments' for multi-environment trials, and
'Populations' for multiple populations
Title for the $y$-axis of the upper graph; default uses the identifier of the STATISTICS variate or pointer
Title for the x-axis; default 'Chromosomes '
Whether to include units with missing values in the explanatory factors and variates and/or the $y$-variates (explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative trait to be analysed; must be set Genotype factor; must be set
Environment factor; must be set for a multi-environment trial Population factor; must be set for a multiple-population analysis
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
Initial values for the parameters ofthe variance-covariance
ADDITIVEPREDICTORS = pointers
ADD2PREDICTORS $=$ pointers
DOMINANCEPREDICTORS = pointers
CHROMOSOMES $=$ factors
POSITIONS $=$ variates
IDLOCI $=$ texts
IDMGENOTYPES $=$ texts
IDEFFECTS $=$ texts
IDPARENTS $=$ texts
QSTATISTICS $=$ variates
QEFFECTS $=$ pointers
QSE $=$ pointers
OUTFILENAME $=$ texts
DFILENAME $=$ texts
model
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
Chromosomes corresponding to the genetic predictors; must be set
Positions on the chromosomes corresponding to the genetic predictors; must be set
Labels for the loci
Labels for the genotypes corresponding to the genetic predictors
Labels for the effects along the y-axis, in the frame below the profile plot
Labels to use to identify the parents
Saves test statistics for QTL effects along the genome
Saves QTL effects along the genome
Saves standard errors of the QTL effects
Name of the Genstat workbook file (*. gwb) to be created
Name of the graphics file for the plots

## QMTBACKSELECT procedure

Performs a QTL backward selection for loci in multi-trait trials (M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

## Options

PRINT $=$ string tokens

POPULATIONTYPE $=$ string token
ALPHALEVEL $=$ scalar
VCMODEL $=$ string token

VCPARAMETERS $=$ string token
VCSELECT $=$ string token
STANDARDIZE $=$ string token
CRITERION = string token
FIXED = formula
UNITFACTOR = factor
MVINCLUDE $=$ string tokens

MAXCYCLE $=$ scalar
WORKSPACE $=$ scalar

## Parameters

$\mathrm{Y}=$ variates
GENOTYPES $=$ factors
FTRAITS $=$ factors
UNITERROR $=$ variates

What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
Type of population (BC1, DH1, F2, RIL, BCxSy , CP); must be set
Defines a significance level; default 0.05
Defines the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs
Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti
Whether to re-select the variance-covariance model (no, yes); default no
How to standardize the traits (none, normalize) ; default norm
Criterion to use for model selection (aic, sic); default sic Defines extra fixed effects
Saves the units factor required to define the random model when UNITERROR is to be used
Whether to include units with missing values in the explanatory factors and variates and/or the $y$-variates (explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100 Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative traits to be analysed; must be set Genotype factor; must be set Factor indicating the trait of each y-value; must be set Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e.

```
```

VCINITIAL = pointers

```
```

VCINITIAL = pointers
SELECTEDMODEL = texts
SELECTEDMODEL = texts
ADDITIVEPREDICTORS = pointers
ADDITIVEPREDICTORS = pointers
ADD2PREDICTORS = pointers
ADD2PREDICTORS = pointers
DOMINANCEPREDICTORS = pointers
DOMINANCEPREDICTORS = pointers
CHROMOSOMES = factors
CHROMOSOMES = factors
POSITIONS = variates
POSITIONS = variates
IDLOCI = texts
IDLOCI = texts
IDMGENOTYPES = texts
IDMGENOTYPES = texts
QTLCANDIDATES = variates
QTLCANDIDATES = variates
QTLSELECTED = variates
QTLSELECTED = variates
INTERACTIONS = variates
INTERACTIONS = variates
DOMSELECTED = variates
DOMSELECTED = variates
DOMINTERACTIONS = variates
DOMINTERACTIONS = variates
WALDSTATISTICS = variates
WALDSTATISTICS = variates
PRWALD = variates

```
PRWALD = variates
```

Initial values for the parameters of the variance-covariance model
VCMODEL setting for the selected covariance structure
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
Chromosomes corresponding to the genetic predictors; must be set
Positions on the chromosomes corresponding to the genetic predictors; must be set
Labels for the loci
Labels for the genotypes corresponding to the genetic predictors
Specifies the locus index numbers from which to start the selection; must be set
Saves the index numbers of the selected QTLs
Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) QTL-by-trait interaction
Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) effect of the DOMINANCEPREDICTORS
Saves a logical variate indicating whether each selected QTL showed a significant (1) or non-significant (0) dominance-bytrait interaction
Saves the Wald test statistics
Saves the associated Wald probabilities

```
omitted

\section*{QMTESTIMATE procedure}

Calculates QTL effects in multi-trait trials (M.P Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ \\
\hline POPULATIONTYPE = string token & Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set \\
\hline NGENERATIONS \(=\) scalar & Number of generations of selfing for a RIL population \\
\hline NBACKCROSSES \(=\) scalar & Number of backcrosses for a BCxSy population \\
\hline NSELFINGS = scalar & Number of selfings for a BCxSy population \\
\hline VCMODEL \(=\) string token & Specifies the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs \\
\hline VCPARAMETERS \(=\) string token & Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti \\
\hline VCSELECT \(=\) string token & Whether to re-select the variance-covariance model (no, yes); default no \\
\hline STANDARDIZE \(=\) string token & How to standardize the traits (none, normalize) ; default norm \\
\hline CRITERION \(=\) string token & Criterion to use for model selection (aic, sic); default sic \\
\hline FIXED = formula & Defines extra fixed effects \\
\hline UNITFACTOR \(=\) factor & Saves the units factor required to define the random model when UNITERROR is to be used \\
\hline MVINCLUDE \(=\) string tokens & Whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates \\
\hline
\end{tabular}
```

MAXCYCLE = scalar
WORKSPACE = scalar

```

\section*{Parameters}
\(\mathrm{Y}=\) variates
GENOTYPES = factors FTRAITS = factors
UNITERROR \(=\) variate

\section*{VCINITIAL \(=\) pointers}

SELECTEDMODEL \(=\) texts
ADDITIVEPREDICTORS = pointers
ADD2PREDICTORS = pointers
DOMINANCEPREDICTORS = pointers
CHROMOSOMES \(=\) factors
POSITIONS \(=\) variates
IDLOCI \(=\) texts
MKLOCI \(=\) variates

IDMGENOTYPES \(=\) texts
IDPARENTS \(=\) texts
QTLSELECTED \(=\) variates
INTERACTIONS \(=\) variates

DOMSELECTED \(=\) variates

DOMINTERACTIONS \(=\) variates

RESIDUALS \(=\) variates
FITTEDVALUES \(=\) variates
WALDSTATISTICS \(=\) variates
PRWALD = variates
DFWALD \(=\) variates
QEFFECTS = pointers
QSE = pointers
OUTFILENAME \(=\) texts
QSAVE \(=\) pointers

SAVE \(=\) REML save structures
(explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative traits to be analysed; must be set
Genotype factor; must be set
Factor indicating the trait of each \(y\)-value; must be set Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
Initial values for the parameters of the variance-covariance model
VCMODEL setting for the selected covariance structure
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
Chromosomes corresponding to the genetic predictors; must be set
Positions on the chromosomes corresponding to the genetic predictors; must be set
Labels for the loci; must be set
Logical variate containing the value 1 if the locus is a marker, otherwise 0 ; must be set
Labels for the genotypes corresponding to the genetic predictors
Labels to identify the parents
Index numbers of the selected QTLs; must be set
Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-trait interaction Logical variate indicating whether the dominance predictor of each selected QTL must be present (1) or absent (0) in the model
Logical variate indicating whether the dominance-by-trait interaction of each selected QTL must be present (1) or absent (0) in the model

Residuals from the analysis
Fitted values from the analysis
Saves the Wald test statistics
Saves the associated Wald probabilities
Saves the degrees of freedom for the Wald test
Saves the estimated QTL effects
Saves the standard errors of the QTL effects
Name of the Genstat workbook file (*. gwb) to be created
Saves a pointer with information and results for the significant effects
Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

\section*{QMTQTLSCAN procedure}

Performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multitrait trials (M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

\section*{Options}

PRINT \(=\) string tokens
What to print (summary, progress, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues,
\begin{tabular}{|c|c|}
\hline PLOT \(=\) string token & Whether to plot the profile along the genome (profile); default prof \\
\hline POPULATIONTYPE \(=\) string token & Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set \\
\hline ALPHALEVEL \(=\) scalar & Defines a genome-wide significance level to calculate the threshold; default 0.05 \\
\hline VCMODEL \(=\) string token & Specifies the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs \\
\hline VCPARAMETERS \(=\) string token & Whether to re-estimate the variance-covariance model parameters (estimate, fix); default esti \\
\hline STANDARDIZE \(=\) string token & How to standardize the traits (none, normalize) ; default norm \\
\hline COFACTORS \(=\) variate & Index numbers of loci to be used as cofactors for the genetic background \\
\hline COFWINDOW = scalar & Specifies a window for cofactor exclusion from the model; default \(10^{6}\) which means that all cofactors on the same chromosomes are excluded \\
\hline THRMETHOD \(=\) string token & Which method to use to calculate the threshold for QTL detection (bonferroni, liji, given); default liji \\
\hline THRESHOLD \(=\) scalar & Threshold value for test statistic when THRMETHOD=given \\
\hline DISTANCE \(=\) scalar & Distance between loci when THRMETHOD=bonferroni; default 4 \\
\hline FIXED = formula & Formula with extra fixed terms \\
\hline UNITFACTOR \(=\) factor & Saves the units factor required to define the random model when UNITERROR is to be used \\
\hline STATISTICTYPE \(=\) string token & Which test statistic to plot and save using the STATISTICS parameter (wald, minlog10p); default minl \\
\hline COLOURS \(=\) scalar, variate or text & Colours to use for the chromosomes; default * uses the colours of pens 1,2 up to the number of chromosomes \\
\hline TITLE \(=\) text & General title for the plot \\
\hline YLOWERTITLE \(=\) text & Title for the y-axis of the lower graph(s); default 'Traits ' \\
\hline YUPPERTITLE \(=\) text & Title for the \(y\)-axis of the upper graph; default uses the identifier of the STATISTICS variate or pointer \\
\hline XTITLE \(=\) string & Title for the x-axis; default 'Chromosomes ' \\
\hline MVINCLUDE \(=\) string tokens & Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar \\
\hline MAXCYCLE \(=\) scalar & Limit on the number of iterations; default 100 \\
\hline WORKSPACE = scalar & Number of blocks of internal memory to be set up for use by the REML algorithm; default 100 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Quantitative traits to be analysed; must be set \\
\hline GENOTYPES \(=\) factors & Genotype factor; must be set \\
\hline FTRAITS \(=\) factors & Factor indicating the trait of each y-value; must be set \\
\hline UNITERROR \(=\) variate & Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted \\
\hline VCINITIAL \(=\) pointers & Initial values for the parameters ofthe variance-covariance model \\
\hline ADDITIVEPREDICTORS = pointers & Additive genetic predictors; must be set \\
\hline ADD2 PREDICTORS \(=\) pointers & Second (paternal) set of additive genetic predictors \\
\hline DOMINANCEPREDICTORS \(=\) pointers & Dominance genetic predictors \\
\hline CHROMOSOMES \(=\) factors & Chromosomes corresponding to the genetic predictors; must be set \\
\hline POSITIONS \(=\) variates & Positions on the chromosomes corresponding to the genetic \\
\hline
\end{tabular}
covariancemodels); default summ
Whether to plot the profile along the genome (profile); default prof
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be
Defines a genome-wide significance level to calculate the threshold; default 0.05
Specifies the variance-covariance model for the set of traits (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs
Whether to re-estimate the variance-covariance model
parameters (estimate, fix); default esti
norm
Index numbers of loci to be used as cofactors for the genetic
Specifies a window for cofactor exclusion from the model;
default \(10^{6}\) which means that all cofactors on the same chromosomes are excluded
Which method to use to calculate the threshold for QTL
(bonferroni, liji, given), deault 11

Distance between loci when THRMETHOD=bonferroni; default 4
Formula with extra fixed terms when UNITERROR is to be used
Which test statistic to plot and save using the STATISTICS
parameter (wald, minlog10p); default minl
Colours to use for the chromosomes; default * uses the colours General title for the plot
Title for the \(y\)-axis of the lower graph(s); default 'Traits' Title for the \(y\)-axis of the upper graph; default uses the identifier of the STATISTICS variate or pointer Whether to include units with missing values in the explanatory factors and variates and/or the y -variates
(explanatory, yvariate); default expl, yvar
on the number of iterations; default 100
or or upe by

Quantitative traits to be analysed; must be set Genotype factor; must be set

位 plot error) to be included in QTL analysis; default * i.e. omitted
ial values for the parameters ofthe variance-covariance
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
set
Positions on the chromosomes corresponding to the genetic
```

IDLOCI = texts
IDMGENOTYPES = texts
IDEFFECTS = texts
IDPARENTS = texts
QSTATISTICS = variates
QEFFECTS = pointers
QSE = pointers
OUTFILENAME = texts
DFILENAME = texts

```
predictors; must be set
Labels for the loci
Labels for the genotypes corresponding to the genetic predictors
Labels for the effects along the \(y\)-axis, in the frame below the profile plot
Labels to use to identify the parents
Saves test statistics for QTL effects along the genome
Saves QTL effects along the genome
Saves standard errors of the QTL effects
Name of the Genstat workbook file (*.gwb) to be created
Name of the graphics file for the plots

\section*{QMVAF procedure}

Calculates percentage variance accounted for by QTL effects in a multi-environment analysis (S.J. Welham, M.P. Boer, M.Malosetti \& J.T.N.M. Thissen).

\section*{Options}
```

PRINT = string token
SELECTION = string tokens
METHOD = string tokens
VCMODEL = string token
FIXED = formula
UNITFACTOR = factor
MVINCLUDE = string tokens

```
MAXCYCLE \(=\) scalar
WORKSPACE \(=\) scalar

\section*{Parameters}

TRAIT \(=\) variates
GENOTYPES = factors
ENVIRONMENTS = factors
UNITERROR \(=\) variate

VCINITIAL \(=\) pointers
ADDITIVEPREDICTORS = pointers
CHROMOSOMES \(=\) factors
POSITIONS \(=\) variates

IDLOCI \(=\) texts
QTLSELECTED \(=\) variates
INTERACTIONS \(=\) variates

OUTFILENAME \(=t e x t s\)

What to print (summary); default summ
What types of statistics to calculate (add, drop,
cumulative); default add, drop, cumu
What methods to use to calculate the percentage variance accounted for (trace, determinant); default trac, dete Specifies the variance-covariance model for the set of environments (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default cs
Defines extra fixed effects
Saves the units factor required to define the random model when UNITERROR is to be used
Whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates
(explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by
the REML algorithm; default 100
Quantitative trait to be analysed; must be set
Genotype factor; must be set
Environment factor; must be set
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
Initial values for the parameters of the variance-covariance model
Additive genetic predictors; must be set
Chromosomes corresponding to the genetic predictors; must be set
Positions on the chromosomes corresponding to the genetic predictors; must be set
Labels for the loci
Index numbers of the selected QTLs; must be set
Logical variate indicating whether each selected QTL has a significant (1) or non-significant (0) QTL-by-environment interaction
Name of the Genstat workbook file (*. gwb) to be created

\section*{QMVESTIMATE procedure}

Replaces missing molecular marker scores using conditional genotypic probabilities (D.A. Murray \& M. Malosetti).

\section*{Options}
\begin{tabular}{ll}
POPULATIONTYPE \(=\) string token & Type of population (BC1, DH1, F2, RIL, BCxSy); must be set \\
NGENERATIONS \(=\) scalar & Number of generations of selfing for a RIL population \\
NBACKCROSSES \(=\) scalar & Number of backcrosses for a BCxSy population \\
NSELFINGS = scalar & Number of selfings for a BCxSy population
\end{tabular}

\section*{Parameters}

\section*{MKSCORES = pointers}

CHROMOSOMES \(=\) factors
POSITIONS \(=\) variates
MKNAMES \(=\) texts
IDMGENOTYPES \(=\) texts
PARENTS = pointers
IDPARENTS \(=\) texts
NEWMKSCORES = pointers

Genotype codes for each marker; must be set
The chromosome where each marker is located; must be set The position on the chromosome of each marker; must be set Marker names; must be set
Labels for the genotypes
Parent information; must be set
Labels used to identify the parents; must be set
Saves the imputed genotype codes for each marker; if this is not set, the imputed values overwrite those in MKSCORES

\section*{QMVREPLACE procedure}

Replaces missing marker scores with the mode scores of the most similar genotypes (L.C.P. Keizer, J.T.N.M. Thissen \& F.A. van Eeuwijk).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string tokens & \begin{tabular}{l}
What to print \((\) summary, similarity, neighbours, \\
details); default summ
\end{tabular} \\
NNEIGHBOURS \(=\) scalar & Number of nearest neighbours; default 5 \\
MAXDISTANCE \(=\) scalar & Maximum similarity difference; default 0.1 \\
Parameters & \\
MKSCORES \(=\) pointers & Pointer with the original marker scores; must be set \\
MKNAMES \(=\) texts & Marker names \\
IDMGENOTYPES \(=\) texts & Labels for genotypes \\
NEWMKSCORES \(=\) pointers & Pointer to store the new marker scores; must be set
\end{tabular}

\section*{QNORMALIZE procedure}

Performs quantile normalization (D.B. Baird).

\section*{Options}
\begin{tabular}{ll}
PRINT = string token \\
PLOT = string tokens & \begin{tabular}{l}
What to print (summary); default summ \\
What to plot (cdf, histogram, ncdf, nhistogram); default \\
hist, nhis
\end{tabular} \\
METHOD = string token & \begin{tabular}{l}
Whether to use means, medians or geometric means for the \\
averaged normalized distribution (means, medians, \\
geometricmeans); default mean
\end{tabular} \\
ARRANGEMENT = string token & \begin{tabular}{l}
Whether to use trellis or single plots for PLOT=cdf or ncdf \\
(single, trellis); default trel
\end{tabular} \\
DEVICE = scalar \\
GRAPHICSFILE = text & \begin{tabular}{l}
Device number on which to plot the graphs \\
What graphics filename template to use to save the graphs; \\
default *
\end{tabular} \\
Parameters & Data values \\
DATA = variates or pointers \\
GROUPS = factors or texts \\
NEWDATA = variates or pointers & \begin{tabular}{l}
Groupings of the data values \\
Saves the normalized values; if this is unset, they replace the \\
original values in DATA
\end{tabular}
\end{tabular}

\section*{QRD directive}

Calculates QR decompositions of matrices.

\section*{Option}

PRINT \(=\) string tokens Printed output required (orthogonalmatrix, uppertriangularmatrix); default * i.e. no printing

\section*{Parameters}

INMATRIX \(=\) matrices or symmetric matrices
Matrices to be decomposed
ORTHOGONALMATRIX = matrices Orthogonal matrix of each decomposition
UPPERTRIANGULARMATRIX = matrices Upper-triangular matrix of each decomposition

\section*{QRECOMBINATIONS procedure}

Calculates the expected numbers of recombinations and the recombination frequencies between markers (J. Jansen, J.T.N.M. Thissen \& M.P. Boer).

\section*{Options}
```

PRINT $=$ string tokens $\mathrm{PLOT}=$ string token
POPULATIONTYPE = string token
METHOD = string token
USEPENALTY = string token

```
TITLE \(=\) text

\section*{Parameters}
\begin{tabular}{|c|c|}
\hline MKSCORES \(=\) pointers & Marker scores for each marker; must be set \\
\hline CHROMOSOMES = factors & Factor defining the linkage groups \\
\hline POSITIONS \(=\) variates & Saves the positions of the markers when METHOD=multipoint \\
\hline MKNAMES \(=\) texts & Names of the markers; must be set \\
\hline PARENTS \(=\) pointers & Marker scores of the parents; must be set \\
\hline ORDER \(=\) variates & Order of the markers for METHOD=multipoint \\
\hline \multicolumn{2}{|l|}{NRECOMBINATIONS = symmetric matrices or pointers} \\
\hline & Saves the number of recombinations \\
\hline \multicolumn{2}{|l|}{RECFREQUENCIES = symmetric matrices or pointers} \\
\hline & Saves the recombination frequencies \\
\hline PHASESWITCHES = pointers & Saves the phase switches for pairs of markers when POPULATIONTYPE=CP \\
\hline INHERITANCEVECTORS = pointers & Saves the inheritance vectors when METHOD=multipoint \\
\hline GENNRECOMBINATIONS \(=\) variates & Saves the numbers of recombinations of the genotypes when METHOD=multipoint \\
\hline
\end{tabular}

\section*{QREPORT procedure}

Creates an HTML report from QTL linkage or association analysis results (D.A. Murray).

\section*{Options}

What to print (summary, positions); default summ
What to plot (frequencies); default freq
Type of population (\(\mathrm{F} 2, \mathrm{BC} 1, \mathrm{RIL}, \mathrm{DH} 1, \mathrm{CP}\)); must be set Which method to use (twopoint, multipoint); default twop
Whether to increase the number of recombinations when METHOD=twopoint by 0.5 recombination per informative meiosis for each missing marker score (yes, no); default no General title for the plot

Marker scores for each marker; must be set
Factor defining the linkage groups
Saves the positions of the markers when D=multipoint

Marker scores of the parents; must be set
Order of the markers for METHOD=multipoint
es or pointers
Saves the number of recombinations

Saves the recombination frequencies
Saves the phase switches for pairs of markers when
Saves the inheritance vectors when METHOD=multipoint
Saves the numbers of recombinations of the genotypes when METHOD=multipoint
```

OUTFILEPREFIX = text
WORKDIRECTORY = text
CHROMOSOMES = factor
POSITIONS = variate
HTMLHEAD = text
OUTFILEPREFIX $=$ text
WORKDIRECTORY $=$ text
CHROMOSOMES $=$ factor
POSITIONS $=$ variate
HTMLHEAD = text

```

\section*{Parameter}

QSAVE = pointers

Prefix to use for the files that are generated
Working directory to use for files; default current Genstat working directory
Factor defining linkage groups for the genetic map
Positions of markers within the linkage groups for the genetic map
Text structure containing custom content for the header of the HTML report file

Information and results saved from an earlier QTL analysis

\section*{QSASSOCIATION procedure}

Performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers (M. Malosetti \& J.T.N.M. Thissen).

\section*{Options}
PRINT = string tokens
PLOT \(=\) string tokens
RELATIONSHIPMODEL \(=\) string token

SCORES \(=\) pointer

METHOD \(=\) string token
ALPHALEVEL = scalar

THRMETHOD \(=\) string token
THRESHOLD = scalar

DISTANCE \(=\) scalar

MINORALLELE \(=\) scalar
KMATRIX \(=\) symmetric matrix
KMETHOD \(=\) string token
SUBPOPULATIONS = factor
MODELPART \(=\) string token

SCALING \(=\) string token
STANDARDIZE \(=\) string token
COLOURS \(=\) scalar, variate or text

TITLE \(=\) text
YTITLE \(=\) text
XTITLE \(=\) text

\section*{Parameters}

TRAIT \(=\) variates
GENOTYPES = factors
MKSCORES \(=\) pointers
CHROMOSOMES = factors
POSITIONS \(=\) variates
MKNAMES \(=\) texts
IDMGENOTYPES \(=\) texts
GENFILENAME \(=\) texts

MAPFILENAME \(=\) texts

WALDSTATISTICS = variates
NDF \(=\) variates
MINLOG10P \(=\) variates

What to print (summary, progress); default summ What to plot (profile, qq, map); default prof, qq What model to use to account for genetic relatedness (eigenanalysis, kinship, subpopulations, null); default kins
Provides the scores of significant principal components, obtained from an eigenvalue analysis
What model to use for GWAS (exact, fast); default fast
Defines a genome-wide significance level to calculate the threshold; default 0.05
Method to define the threshold for significance (neffective, bonferroni, given); default neff
Threshold value for significant LD, on the \(-\log 10\) scale; default 2
Minimum distance gap between independent tests (i.e. distance beyond which loci are expected to be in linkeage equilibrium) when THRMETHOD=bonferroni; default * Frequency of minor alleles; default 0.05 Kinship matrix containing coefficients of coancestries Method to use to estimate kinship matrix if not supplied by KMATRIX (correlation, dice); default dice Defines groupings of genotypes into subpopulations Defines which part of the model should include SUBPOPULATIONS if RELATIONSHIPMODEL is set to subpopulations, or the principal components scores if RELATIONSHIPMODEL is set to eigenanalysis (fixed, random); default rand
Whether to scale the scores by the square roots of their singular values (singularvalues, none); default none Whether to standardize the marker scores according to their frequencies (frequency, none); default freq
Colours to use for the chromosomes; default * uses the colours of pens 1,2 up to the number of chromosomes
General title for the plots
Title for the \(y\)-axis
Title for the x -axis

Phenotypic trait to analyse; must be set
Genotype factor
Genotype codes for each marker; must be set
Linkage groups for the markers; must be set
Positions within the linkage groups of markers; must be set Marker names
Labels for the genotypes corresponding to the markers Name of a comma-delimited file (*. csv) containing marker scores (with markers in the rows and genotypes in the columns)
Name of a comma-delimited file (*. csv) with map information
Saves the Wald test statistics
Saves the degrees of freedom associated with the Wald test Saves the associated probability values of the Wald test
```

LAMBDA = scalars
QSAVE = pointers
DFILENAME = texts

```
statistics, on a \(-\log 10\) scale
Saves the inflation factor i.e. slope of the QQ plot of \(-\log 10(\mathrm{P})\) values
Saves a pointer with information and results for the significant effects
Name of the graphics file for the plots

\section*{QSBACKSELECT procedure}

Performs a QTL backward selection for loci in single-environment trials (M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ \\
\hline POPULATIONTYPE \(=\) string token & Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set \\
\hline ALPHALEVEL \(=\) scalar & Defines a significance level; default 0.05 \\
\hline FIXED \(=\) formula & Formula with extra fixed effects \\
\hline UNITFACTOR \(=\) factor & Saves the units factor required to define the random model when UNITERROR is to be used \\
\hline MVINCLUDE \(=\) string tokens & Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default expl, yvar \\
\hline MAXCYCLE \(=\) scalar & Limit on the number of iterations; default 100 \\
\hline WORKSPACE \(=\) scalar & Number of blocks of internal memory to be set up for use by the REML algorithm; default 100 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline TRAIT \(=\) variates & Quantitative trait to be analysed; must be set \\
\hline GENOTYPES \(=\) factors & Genotype factor; must be set \\
\hline UNITERROR \(=\) variates & Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted \\
\hline ADDITIVEPREDICTORS = pointers & Additive genetic predictors; must be set \\
\hline ADD2 PREDICTORS = pointers & Second (paternal) set of additive genetic predictors \\
\hline DOMINANCEPREDICTORS \(=\) pointers & Dominance genetic predictors \\
\hline CHROMOSOMES \(=\) factors & Chromosomes corresponding to the genetic predictors; must be set \\
\hline POSITIONS \(=\) variates & Positions on the chromosomes corresponding to the genetic predictors; must be set \\
\hline IDLOCI \(=\) texts & Labels for the loci \\
\hline IDMGENOTYPES \(=\) texts & Labels for the genotypes corresponding to the genetic predictors \\
\hline QTLCANDIDATES \(=\) variates & Specifies the locus index numbers from which to start the selection; must be set \\
\hline QTLSELECTED \(=\) variates & Saves the index numbers of the selected QTLs; must be set \\
\hline DOMSELECTED \(=\) variates & Logical indicator variable storing one where the selected QTLs show a significant effect of the dominance predictor, zero otherwise \\
\hline WALDSTATISTICS \(=\) variates & Saves the Wald test statistics \\
\hline PRWALD \(=\) variates & Saves the associated Wald probabilities \\
\hline
\end{tabular}

\section*{QSELECTIONINDEX procedure}

Calculates (molecular) selection indexes by using phenotypic information and/or molecular scores of multiple traits (M. Malosetti \& F.A. van Eeuwijk).

\section*{Options}

PRINT \(=\) string tokens
\(\mathrm{METHOD}=\) string token

INTENSITY \(=\) scalar

\section*{Parameters}

TRAITS = pointers

MOLECULARSCORES = pointers
GENOTYPES \(=\) factors
IDMGENOTYPES \(=\) texts
WEIGHTS \(=\) variates

What to print (summary); default summ
Defines which index to calculate (simple, smithhazel, landethompson); default smit
Specifies the selection intensity expressed as the percentage of individuals of the population to select; default 10

Pointer with a variate for each trait, supplying the phenotypic values for the genotypes; must be set Pointer with a variate for each trait, supplying QTL-based predictions or genomic predictions Genotype factor, must be set Labels of the genotypes Specifies economic weights for the traits; if unset, all traits have weight one Specifies the phenotypic variance-covariance matrix of the traits Specifies the genotypic variance-covariance matrix of the traits Specifies the heritabilities and coheritabilities of the traits Saves the selection index

\section*{QSESTIMATE procedure}

Calculates QTL effects in single-environment trials (M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

\section*{Options}
```

PRINT = string tokens
POPULATIONTYPE = string token
NGENERATIONS = scalar
NBACKCROSSES = scalar
NSELFINGS = scalar
FIXED = formula
UNITFACTOR = factor
MVINCLUDE = string tokens

```
MAXCYCLE \(=\) scalar
WORKSPACE \(=\) scalar

\section*{Parameters}

TRAIT = variates
GENOTYPES \(=\) factors
UNITERROR \(=\) variates

ADDITIVEPREDICTORS \(=\) pointers ADD2 PREDICTORS = pointers DOMINANCEPREDICTORS = pointers CHROMOSOMES = factors

What to print (summary, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set

Number of generations of selfing for a RIL population
Number of backcrosses for a BCxSy population
Number of selfings for a BCxSy population
Defines extra fixed effects
Saves the units factor required to define the random model when UNITERROR is to be used
Whether to include units with missing values in the explanatory factors and variates and/or the y-variates
(explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative trait to be analysed; must be set
Genotype factor; must be set
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e omitted
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
Chromosomes corresponding to the additive genetic
```

POSITIONS = variates
IDLOCI = texts
MKLOCI = variates
IDMGENOTYPES = texts
IDPARENTS = texts
QTLSELECTED = variates
DOMSELECTED = variates
RESIDUALS = variates
FITTEDVALUES = variates
WALDSTATISTICS = variates
PRWALD = variates
QEFFECTS = pointers
QSE = pointers
OUTFILENAME = texts
QSAVE = pointers
SAVE = REML save structures

```
predictors; must be set
Positions on the chromosomes corresponding to the additive genetic predictors; must be set
Labels for the loci
Logical variate containing the value 1 if the locus is a marker, otherwise 0 ; must be set
Labels for the genotypes corresponding to the the additive genetic predictors
Labels to identify the parents
Index numbers of the selected QTLs; must be set
Logical variate indicating whether the dominance predictor of each selected QTL must be present (1) or absent (0) in the model
Residuals from the analysis
Fitted values from the analysis
Saves the Wald test statistics
Saves the associated Wald probabilities
Saves the estimated QTL effects
Saves the standard errors of the QTL effects
Name of the Genstat workbook file (*. gwb) to be created Saves a pointer with information and results for the significant effects
Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

\section*{QSIMULATE procedure}

Simulates marker data and QTL effects for single and multiple environment trials (M.P. Boer \& J.T.N.M. Thissen).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT = string token & What to print (summary); default summ \\
\hline POPULATIONTYPE \(=\) string token & Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set \\
\hline NGENERATIONS \(=\) scalar & Number of generations for a RIL population; default 3 \\
\hline NBACKCROSSES = scalar & Number of backcrosses for a BCxSy population; default 2 \\
\hline NSELFINGS = scalar & Number of selfings for a BCxSy population; default 3 \\
\hline GENOMELENGTH \(=\) variate & Length in cM for each chromosome \\
\hline DISTANCE \(=\) scalar & Distance between the markers in cM; default 1 cM \\
\hline COMPLETE \(=\) string token & Complete marker information, i.e. all parents have a different allele (yes, no); default no \\
\hline FRACTIONMISSING \(=\) scalar & Fraction of the markers with missing values; default 0 \\
\hline NGENOTYPES = scalar & Number of genotypes; must be set \\
\hline NCHROMOSOMES = scalar & Number of chromosomes \\
\hline NPOSITIONS \(=\) scalar & Number of positions per chromosome \\
\hline IDPARENTS \(=\) texts & Labels used to identify the parents \\
\hline MEAN \(=\) scalar or variate & Mean of the trait for each environment; must be set if TRAIT is set \\
\hline VARIANCE \(=\) scalar or variate & Variance of the trait for each environment; must be set if TRAIT is set \\
\hline
\end{tabular}

Additive effects of each QTL for each environment; must be set if TRAIT is set
\begin{tabular}{ll}
ADD2 PREDICTORS = pointers & \begin{tabular}{l}
Second (paternal) set of additive genetic predictors of each \\
QTL for each environment if POPULATIONTYPE is CP; must
\end{tabular} \\
be set if TRAIT is set
\end{tabular}

QTLCHROMOSOMES = variate

QTLPOSITIONS \(=\) variate

\section*{Parameters}

TRAIT = variates
GENOTYPES = factors
ENVIRONMENTS = factors
MKSCORES \(=\) pointers
CHROMOSOMES = factors
POSITIONS \(=\) variates MKNAMES \(=\) texts
IDMGENOTYPES \(=\) texts
PARENTS \(=\) pointers
SEED = scalars

TRAIT is set
Chromosome number for each QTL; must be set if TRAIT is set
Position on the QTLCHROMOSOMES for each QTL; must be set if TRAIT is set

Saves the quantitative trait values
Saves the genotype factor
Saves the environment factor
Saves the marker scores for each marker
Saves the linkage groups of the markers
Saves the position on the chromosome for each marker Names of the markers
Labels of the genotypes
Saves the parent information
Specifies a seed to use for the random number generator; default 0 continues from the previous generation or (if none) initializes the seed automatically

\section*{QSQTLSCAN procedure}

Performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in singleenvironment trials (M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

\section*{Options}

PRINT = string tokens
PLOT = string token
POPULATIONTYPE = string token
ALPHALEVEL = scalar
COFACTORS = variate
COFWINDOW = scalar

THRMETHOD \(=\) string token

THRESHOLD = scalar
DISTANCE \(=\) scalar

FIXED = formula
UNITFACTOR \(=\) factor

STATISTICTYPE = string token
COLOURS \(=\) scalar, variate or text

TITLE \(=\) text
YTITLE \(=\) text

XTITLE \(=\) text
MVINCLUDE \(=\) string tokens

What to print (summary, progress, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default summ
Whether to plot the profile along the genome (profile); default prof
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
Defines a genome-wide significance level to calculate the threshold; default 0.05
Index numbers of loci to be used as cofactors for the genetic background
Specifies a window for cofactor exclusion from the model; default \(10^{6}\) which means that all cofactors on the same chromosomes are excluded
Which method to use to calculate the threshold for QTL detection (bonferroni, liji, given); default liji
Threshold value for test statistic when THRMETHOD=given Distance between loci when THRMETHOD=bonferroni; default 4
Formula with extra fixed terms
Saves the units factor required to define the random model when UNITERROR is to be used
Which test statistic to plot and save using the STATISTICS
parameter (wald, minlog10p); default minl
Colours to use for the chromosomes; default * uses the colours of pens 1,2 up to the number of chromosomes General title for plot
Title for the y-axis; default uses the identifier of the STATISTICS variate or pointer
Title for the x-axis; default 'Chromosomes '
Whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates
```

MAXCYCLE = scalar
WORKSPACE = scalar

```

\section*{Parameters}
```

TRAIT = variates
GENOTYPES = factors
UNITERROR = variates
ADDITIVEPREDICTORS = pointers
ADD2 PREDICTORS = pointers
DOMINANCEPREDICTORS = pointers
CHROMOSOMES = factors
POSITIONS = variates
IDLOCI = texts
IDMGENOTYPES = texts
IDEFFECTS = texts
IDPARENTS = texts
QSTATISTICS = variates
QEFFECTS = pointers
QSE = pointers
OUTFILENAME = texts
DFILENAME = texts
TRAIT = variates
WORKSPACE = scalar
GENOTYPES $=$ factors
UNITERROR $=$ variates

```
```

POSITIONS $=$ variates

```

\section*{QTHRESHOLD procedure}

Calculates a threshold to identify a significant QTL (M.P. Boer \& J.T.N.M. Thissen).

\section*{Options}

PRINT \(=\) string token
POPULATIONTYPE = string token
THRMETHOD = string token
STATISTICTYPE \(=\) string token
ALPHALEVEL = scalar
DISTANCE \(=\) scalar
DF \(=\) scalar

\section*{Parameters}

CHROMOSOMES \(=\) factors
POSITIONS = variates
ADDITIVEPREDICTORS = pointers
ADD2PREDICTORS \(=\) pointers

DOMINANCEPREDICTORS = pointers
THRESHOLD \(=\) scalars
(explanatory, yvariate); default expl, yvar
Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative trait to be analysed; must be set
Genotype factor; must be set
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
Additive genetic predictors; must be set
Second (paternal) set of additive genetic predictors
Dominance genetic predictors
Chromosomes corresponding to the genetic predictors; must be set
Positions on the chromosomes corresponding to the genetic predictors; must be set
Labels for the loci
Labels for the genotypes corresponding to the genetic predictors
Labels for the effects along the \(y\)-axis, in the frame below the profile plot
Labels to use to identify the parents
Saves test statistics for QTL effects along the genome
Saves QTL effects along the genome (additive effects,and, if specified, also second additive and dominance effects)
Saves standard errors of the QTL effects
Name of the Genstat workbook file (*.gwb) to be created
Name of the graphics file for the plots

What to print (summary); default summ
Type of population (BC1, DH1, F2, RIL, BCxSy, CP); must be set
Which method to use (bonferroni, liji); default liji
Which type of test statistic to use (wald, minlog10p); default minl
Defines the genome-wide significance level; default 0.05
Distance between evaluation points for
THRMETHOD=bonferroni; default 4
Degrees of freedom for the Wald test; default 1
Chromosome for each locus; must be set
Position on the chromosome for each locus; must be set
Additive genetic predictors
The second (paternal) additive genetic predictors if POPULATIONTYPE is CP
The dominance genetic predictors if POPULATIONTYPE is F2 or CP
Saves the calculated threshold

\section*{QUANTILE procedure}

Calculates quantiles of the values in a variate (P.W. Lane).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & What to print (quantiles); default quan \\
\hline METHOD \(=\) string token & Type of quantile to form (population, sample); default samp \\
\hline PROPORTION \(=\) variate or scalar & Proportions at which to calculate quantiles; default
\[
!(0,0.25,0.5,0.75,1)
\] \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA \(=\) variates & Values whose quantiles are required; this parameter must be specified \\
\hline QUANTILES \(=\) variates or scalars & Identifiers of structures to store results, if required \\
\hline
\end{tabular}

\section*{QUESTION procedure}

Obtains a response using a Genstat menu (S.A. Harding \& R.W. Payne).
Options
\begin{tabular}{|c|c|}
\hline PREAMBLE \(=\) text & Text posing a question; (no default) \\
\hline PROMPT \(=\) text & Text to be used as final prompt; the default prompt specifies the mode of response and lists the default values (if any), in brackets, followed by ">" \\
\hline RESPONSE \(=\) identifier & Structure to store response; default * allows a menu to be saved without being executed \\
\hline MODE \(=\) string token & Mode of response (\(\mathrm{p}, \mathrm{t}, \mathrm{v}\)) ; default p \\
\hline DEFAULT \(=\) identifier & Response to be assumed if just <RETURN> is given; default is to repeat the prompt until a response is obtained \\
\hline LIST \(=\) string token & Whether a list of responses, rather than a single response, is valid (yes, no); default no \\
\hline DECLARED \(=\) string token & Whether identifiers must already be declared (yes, no); default no \\
\hline TYPE \(=\) string tokens & Allowed types for identifiers (ASAVE, datamatrix i.e. pointer to variates of equal lengths as required in multivariate analysis, diagonalmatrix, dummy, expression, factor, formula, LRV, matrix, pointer, RSAVE, scalar, SSPM, symmetricmatrix, table, text, tree, TSAVE, TSM, variate, VSAVE); default *, meaning no limitation \\
\hline PRESENT \(=\) string token & Whether the identifier must have values (yes, no); default no \\
\hline LOWER = scalar & Lower limit for numbers; default *, meaning no check \\
\hline UPPER \(=\) scalar & Upper limit for numbers; default *, meaning no check \\
\hline HELP \(=\) text & Text to be used in response to a general query for the question; default * \\
\hline SAVE \(=\) pointer & Previously allowed you to save or reinput the specification of the menu, but is now no longer supported \\
\hline Parameters & \\
\hline VALUES \(=\) texts & Possible codes for MODE \(t\); (no default for MODE \(t\); not relevant for others) \\
\hline CHOICE \(=\) texts & Text giving explanation of each letter code; (no default for MODE \(t\); not relevant for others) \\
\hline HELP \(=\) texts & Text to be used in response to a specific query for a code; default * \\
\hline
\end{tabular}

\section*{RADIALSPLINE procedure}

Calculates design matrices to fit a radial-spline surface as a linear mixed model (S.J. Welham \& D.B. Baird).

\section*{Options}

SCALING \(=\) scalar

\section*{Parameters}
\(\mathrm{X} 1=\) variates or factors
\(\mathrm{x} 2=\) variates or factors
XFIXED \(=\) matrices

XRANDOM \(=\) matrices
\(\mathrm{X1KNOTS}=\) variates
\(\mathrm{X} 2 \mathrm{KNOTS}=\) variates

PX1 \(=\) variates

PX2 \(=\) variates

PFIXED \(=\) matrices

PRANDOM = matrices

Scaling of the XRANDOM terms (automatic, none); default auto

Coordinates in the first dimension for which spline values are required
Coordinates in the second dimension for which spline values are required
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the radial spline
Saves the design matrix to define the random terms for fitting the radial spline
Specifies the coordinates in the first dimension of the internal knots used to form the basis for the spline
Specifies the coordinates in the second dimension of the internal knots used to form the basis for the spline Specifies the coordinates in the first dimension at which to predict
Specifies the coordinates in the second dimension at which to predict
Saves the design matrix for the fixed terms (excluding the constant) for the radial spline at the prediction points Saves the design matrix for the random terms for the radial spline at the prediction points

\section*{RANDOMIZE directive}

Randomizes the units of a designed experiment or the elements of a factor or variate.

\section*{Options}

BLOCKSTRUCTURE = formula Block model according to which the randomization is to be
EXCLUDE \(=\) factors
SEED = scalar carried out; default * i.e. as a completely-randomized design (Block) factors whose levels are not to be randomized

\section*{Parameters}
factors or variates
Structures whose units are to be randomized according to the defined block model

\section*{RANK procedure}

Produces ranks, from the values in a variate, allowing for ties (J.B. van Biezen \& C.J.F. ter Braak).

Option
\(\mathrm{OMIT}=\) string token

\section*{Parameters}

DATA \(=\) variates
RANKS \(=\) variates
TIESIZE \(=\) variates

Whether units excluded by a restriction on the DATA variate should be omitted from the RANKS variate (restricted); default *, i.e. the units are not omitted, and their values are left unchanged

Variate containing values to be ranked
Variate to save vector of ranks
Variate to save the sizes of ties

\section*{RAR1 procedure}

Fits regressions with an AR1 or a power-distance correlation model (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, cparameter, cmonitoring, cplot); default mode, summ, esti, cpar
Calculation of explanatory variates involving nonlinear parameters
\begin{tabular}{|c|c|}
\hline CONSTANT \(=\) string token & How to treat the constant (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalars & Limit for expansion of model terms; default 3 \\
\hline POOL \(=\) string token & Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no \\
\hline DENOMINATOR \(=\) string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss , ms); default ss \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t -statistics (yes, no); default no \\
\hline SELECTION = string tokens & Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \(\% \mathrm{cv}\) only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%CV if DIST=gamma, and disp for other distributions \\
\hline SELINEAR = string token & Whether to calculate s.e.s for linear parameters when nonlinear parameters are also estimated (yes, no); default no \\
\hline WEIGHTS \(=\) variate & Prior weights for the units \\
\hline CMETHOD \(=\) string token & Estimation method (maximumlikelihood, reml); default maxi \\
\hline CPARAMETER \(=\) scalars & Correlation parameter \\
\hline CPOSITIONS \(=\) variate & Correlation positions \\
\hline CGROUPS \(=\) factor & Groupings of correlation positions \\
\hline MAXCYCLE \(=\) scalars & Maximum number of iterations; default 100 \\
\hline TOLERANCE \(=\) scalars & Convergence criterion; default \(10^{-5}\) \\
\hline Parameter & \\
\hline TERMS = formula & Terms to be fitted \\
\hline
\end{tabular}

\section*{RBDISPLAY directive}

Displays output from a radial basis function model fitted by RBFIT.

\section*{Option}

PRINT \(=\) strings

\section*{Parameter}
pointers

\section*{RBFIT directive}

Fits a radial basis function model.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls fitted output (description, estimates, fittedvalues, summary); default desc, esti, summ \\
\hline RBTYPE \(=\) string token & Type of radial basis function (linear, cubic, thinplate, gaussian, multiquadric, inversemultiquadric, cauchy); default line \\
\hline METRIC \(=\) string token & How to calculate distances for the radial basis functions (euclidean, cityblock, manhattan, pythagorean); default eucl \\
\hline SCALING \(=\) string token & Type of scaling used to compute distances (sd, mahalanobis, supplied); default sd \\
\hline ALPHA \(=\) scalar & Specifies the value for the constant \(\alpha\), used to calculate radial \\
\hline
\end{tabular}
fittedvalues, summary); default desc, esti, summ Type of radial basis function (linear, cubic, thinplate, gaussian, multiquadric, inversemultiquadric, cauchy); default line
(euclidean, cityblock, manhattan, pythagorean); default eucl
Type of scaling used to compute distances (sd, Specifies the value for the constant \(\alpha\), used to calculate radial
distances for RBTPYE settings multiquadric, inversemultiquadric and cauchy; default 1
LAMBDA \(=\) scalar
TOLERANCE = scalar
Specifies the value of the penalty constant \(\lambda\)
Tolerance for setting eigenvalues equal to zero in the singular value decomposition; default 0.000001

\section*{Parameters}
\(\mathrm{Y}=\) variates
Response variates
\(\mathrm{x}=\) pointers
Independent variates
CENTRES = pointers
RBSCALING \(=\) scalars or variates
Centres of the radial basis functions for the dependent variates
Scaling parameters for the radial distance calculations when SCALING=supplied; default 1
FITTEDVALUES \(=\) variates
Fitted values generated for each \(y\)-variate by the model
ESTIMATES \(=\) variates
\(\mathrm{EXIT}=\) scalars
Saves the estimated model parameters

SAVE \(=\) pointers
Saves the exit code
Saves details of the model and the estimated parameters for RBDISPLAY or RBPREDICT

\section*{RBPREDICT directive}

Forms predictions from a radial basis function model fitted by RBFIT.

\section*{Option}

PRINT \(=\) strings

\section*{Parameters}
\(\mathrm{X}=\) pointers
PREDICTIONS \(=\) variates
SAVE \(=\) pointers

Controls fitted output (description, predictions); default desc, pred

X -values at which to predict
Predictions
Details of the fitted model

\section*{RBRADLEYTERRY procedure}

Fits the Bradley-Terry model for paired-comparison preference tests (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, preferenceprobabilities); default mode, summ, esti \\
\hline GROUPS \(=\) factor & Factor representing different test circumstances \\
\hline COVARIATE \(=\) variates & Other covariates to include in the model \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t -statistics (yes, no); default no \\
\hline SELECTION \(=\) string tokens & Statistics to be displayed in the summary of analysis produced by PRINT=summary (\%variance, \%ss, adjustedr2, r2, dispersion, \%meandeviance, \%deviance, aic, bic, sic); default disp \\
\hline DISPERSION \(=\) scalar & Dispersion parameter to be used as estimate for variability in s.e.s etc; default 1 \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline WINNERS = factors & Specifies the winners in the tests \\
\hline LOSERS \(=\) factors & Specifies the loser in the tests \\
\hline NWINS \(=\) variates or scalars & Number of wins; default 1 \\
\hline NBINOMIAL \(=\) variates or scalars & Number of trials; default 1 \\
\hline
\end{tabular}

PREFERENCEPROBABILITIES = matrices or pointers
Saves the estimated probability that each object is preferred to other objects
LOWERPREFERENCEPROBABILITIES = matrices or pointers
Saves the lower values of the confidence intervals for the preference probabilities
UPPERPREFERENCEPROBABILITIES = matrices or pointers
Saves the upper values of the confidence intervals for the preference probabilities
SAVE \(=\) identifiers \(\quad\) To save the regression save structure

\section*{RCATENELSON procedure}

Performs a Cate-Nelson graphical analysis of bivariate data (V.M. Cave).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT = string tokens & Controls printed output (summary, quadrants, errorquadrants); default summ, quad \\
\hline \(\mathrm{PLOT}=\) string tokens & What graphs to plot (catenelson, criticalvalues); default cate \\
\hline DIRECTION \(=\) string token & Direction of the association between the \(y\) and \(x\) values (ascending, descending); default asce i.e. a positive trend \\
\hline YCRITICAL \(=\) scalar & Pre-specified critical value of \(y\); default * i.e. the critical value of y is estimated) \\
\hline XCRITICAL \(=\) scalar & Pre-specified critical value of \(x\); default * i.e. the critical value of \(x\) is estimated \\
\hline TITLE \(=\) text & Title for the Cate-Nelson plot; if unset, the title is generated automatically \\
\hline YTITLE \(=\) text & Y -axis title for the Cate-Nelson plot; if unset, the title is generated automatically \\
\hline XTITLE \(=\) text & X -axis title for the Cate-Nelson plot; if unset, the title is generated automatically \\
\hline WINDOW = scalar & Window to use for the graphs; default 3 \\
\hline SAVE = identifier & Specifies the save structure of regression model holding the yvalues, distribution, link function and weights; default * i.e. that from last regression fitted \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{X}=\) variates & Supplies the x -values for each analysis \\
\hline RESULTS \(=\) pointers & Saves the critical value of \(x\), the critical value of \(y\) and the quadrant allocations for each x variate \\
\hline
\end{tabular}

\section*{RCHECK procedure}

Checks the fit of a linear, generalized linear or nonlinear regression (P.W. Lane, R. Cunningham \& C. Donnelly).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (index, \(y\), residuals, leverages, Cook); default * \\
\hline RMETHOD \(=\) string token & Type of residual to use (deviance, Pearson, simple, deletion); default * i.e. as set in MODEL \\
\hline INDEX \(=\) variate or factor & Which variable to use as index; default ! (1...n) \\
\hline ENVELOPE \(=\) string token & Type of envelope with Normal and half-Normal plots (none, rough, smooth, asymptotic); default none \\
\hline PROBABILITY \(=\) scalar & Approximate probability level for envelope; default 0.95 \\
\hline NSIMULATIONS \(=\) scalar & How many simulations to generate for rough or smooth envelopes; default (\(1+\) PROB)/(\(1-\) PROB) \\
\hline SHADE \(=\) string token & Whether to show shaded envelope rather than boundaries (no, yes); default no \\
\hline RESIDUALS \(=\) variate & To store chosen type of residuals; default * \\
\hline
\end{tabular}

LEVERAGES = variate
COOK \(=\) variate
GRAPHICS \(=\) string token
TITLE \(=\) text
WINDOW \(=\) numbers
SCREEN \(=\) string token
SAVE \(=\) regression save structure

\section*{Parameters}

YSTATISTIC \(=\) string tokens
XMETHOD \(=\) string tokens

To store leverages; default *
To store modified Cook's statistics; default *
Type of graphics to use (lineprinter, highresolution); default high
Title for graph; default identifier of response Window or series of windows in which to display graphs; default 4, or \(5 \ldots 8\) for composite
Treatment of previous graphics screen (clear, keep); default clea
Specifies which model to check; default *
What to display in the graph (residuals, cook, leverages, absresiduals); default resi
What type of graph (fittedvalues, index, normal,
halfnormal, histogram, composite); default comp

\section*{RCIRCULAR procedure}

Does circular regression of mean direction for an angular response (P.W. Goedhart).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, summary, estimates, fittedvalues, monitoring); default mode, summ, esti \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of model terms; default 3 \\
\hline RESIDUALS \(=\) variate & To save the residuals \\
\hline FITTEDVALUES = variate & To save the fittedvalues, i.e. the fitted mean directions \\
\hline LEVERAGES \(=\) variate & To save the leverages \\
\hline ESTIMATES = variate & To save estimates of linear parameters \\
\hline SE \(=\) variate & To save standard errors of the estimates \\
\hline VCOVARIANCE \(=\) symmetric matrix & To save the variance-covariance matrix of the estimates \\
\hline MU0 \(=\) scalar & To save the estimate of the mean parameter \(\mu_{0}\) \\
\hline SEMU0 \(=\) scalar & To save the standard error of the estimated mea parameter \(\mu_{0}\) \\
\hline KAPPA \(=\) scalar & To save the estimate of the concentration parameter \(\kappa\) of the von Mises distribution \\
\hline SEKAPPA \(=\) scalar & To save the standard error of the estimated concentration parameter \(\kappa\) \\
\hline _2LOGLIKELIHOOD = scalar & To save the value of minus twice the maximized log likelihood \\
\hline \(\overline{\mathrm{DF}}=\) scalar & To save the residual degrees of freedom \\
\hline ITERATIVEWEIGHTS \(=\) variate & To save the iterative weights \\
\hline LINEARPREDICTOR = variate & To save the linear predictor \\
\hline YADJUSTED = variate & To save the adjusted dependent variate \\
\hline I_2LOGLIKELIHOOD = variate & To save the contribution of each unit to the value of minus twice the maximized log likelihood \\
\hline MAXCYCLE \(=\) scalar & Maximum number of iterations for see-saw algorithm; default 30 \\
\hline TOLERANCE \(=\) scalar & Convergence criterion; default \(10^{-5}\) \\
\hline
\end{tabular}

\section*{Parameter}

TERMS = formula

What to print (model, summary, estimates, fittedvalues, monitoring); default mode, summ, esti Limit for expansion of model terms; default 3
save the residuals

To save the leverages
To save estimates of linear parameters
To save standard errors of the estimates
o save the variance-covariance matrix of the estimates

To save the standard error of the estimated mea parameter \(\mu_{0}\) To save the estimate of the concentration parameter \(\kappa\) of the von Mises distribution
save the standard error of the estimated concentration To save the value of minus twice the maximized log likelihood To save the residual degrees of freedom
To save the iterative weights
o save the linear predictor

To save the contribution of each unit to the value of minus twice the maximized log likelihood
Maximum number of iterations for see-saw algorithm; default Convergence criterion; default \(10^{-5}\)

List of explanatory variates and factors, or model formula

\section*{RCOMPARISONS procedure}

Calculates comparison contrasts amongst regression means (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens
COMBINATIONS \(=\) string token
ADJUSTMENT \(=\) string token
PSE \(=\) string tokens

Controls printed output (aov, contrasts); default aov, cont Factor combinations for which to form the predicted means (present, estimable); default esti Type of adjustment to be made when forming the predicted means (marginal, equal, observed); default marg Types of standard errors to be printed with the contrasts
\begin{tabular}{|c|c|}
\hline WEIGHTS = table & Weights classified by some or all of the factors in the model; default * \\
\hline OFFSET \(=\) scalar & Value of offset on which to base predictions; default mean of offset variate \\
\hline METHOD \(=\) string token & Method of forming margin (mean, total); default mean \\
\hline ALIASING \(=\) string token & How to deal with aliased parameters (fault, ignore); default faul \\
\hline BACKTRANSFORM \(=\) string token & What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default link \\
\hline SCOPE \(=\) string token & Controls whether the variance of predictions is calculated on the basis of forecasting new observations rather than summarizing the data to which the model has been fitted (data, new); default data \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, nonlinear); default * \\
\hline DISPERSION \(=\) scalar & Value of dispersion parameter in calculation of s.e.s; default is as set in the MODEL statement \\
\hline DMETHOD \(=\) string token & Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement \\
\hline NBINOMIAL \(=\) scalar & Supplies the total number of trials to be used for prediction with a binomial distribution (providing a value \(n\) greater than one allows predictions to be made of the number of "successes" out of \(n\), whereas the value one predicts the proportion of successes); default 1 \\
\hline LSDLEVEL \(=\) scalar & Significance level (\%) for least significant differences; default 5 \\
\hline SAVE \(=\) identifier & Regression save structure for the analysis from which the comparison contrasts are to be calculated \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline FACTOR \(=\) factors & Factor whose levels are compared \\
\hline CONTRASTS \(=\) matrices & Defines the comparisons to be estimated \\
\hline ORDER \(=\) scalars & Number of comparisons to estimate; default is the number of rows of the CONTRASTS matrix \\
\hline GROUPS \(=\) factors or pointers & Set if comparisons are to be made at different combinations of another factor or factors \\
\hline ESTIMATES \(=\) variates or pointers & Saves the estimated contrasts in a variate if GROUPS is unset, or in a pointer to a set of tables \\
\hline SE \(=\) variates or pointers & Saves standard errors of the contrasts in a variate if GROUPS is unset, or in a pointer to a set of tables \\
\hline SED \(=\) pointers & Pointer to a set of symmetric matrices to save standard errors for differences between the contrasts estimated for different levels of the GROUPS factor(s) \\
\hline LSD \(=\) pointers & Pointer to a set of symmetric matrices to save least significant differences for the contrasts estimated for different levels of the GROUPS factor(s) \\
\hline DF \(=\) variates & Saves degrees of freedom for the contrasts \\
\hline SS \(=\) variates & Saves sums of squares of the contrasts \\
\hline
\end{tabular}

\section*{RCURVECOMMONNONLINEAR procedure}

Refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Printed output from the analysis (model, deviance,

MAXCYCLE \(=\) variate
METHOD = string token

STEPLENGTHS = scalar or variate
SAVE \(=\) regression save structure
INSAVE \(=\) regression save structure
summary, estimates, correlations, fittedvalues, accumulated, monitoring); default mode, summ, esti Maximum number of iterations; default 30 Algorithm for fitting nonlinear model (gaussnewton, newtonraphson, fletcherpowell); default newt Initial step lengths for the parameters
Save structure from this analysis Save structure for the curve fitted by FITCURVE, default takes the most recent regression analysis

\section*{No parameters}

\section*{RCYCLE directive}

Controls iterative fitting of generalized linear, generalized additive, and nonlinear models, and specifies parameters, bounds etc for nonlinear models.

\section*{Options}

MAXCYCLE \(=\) scalars \(\quad\) Maximum number of iterations for Fisher-scoring algorithm (used in generalized linear models), back-fitting algorithm (used in additive models) and nonlinear algorithms; single setting implies the same limit for all; default \(15,15,30\)

TOLERANCE \(=\) scalar or variate

FITTEDVALUES = variate
METHOD \(=\) string token

LINEARPARAMETERS \(=\) scalars

\section*{Parameters}

PARAMETER = scalars
LOWER = scalars
UPPER \(=\) scalars
STEPLENGTH = scalars
INITIAL \(=\) scalars

Scalar or first unit of a variate defines the convergence criterion for the relative change in deviance and, if required, the second element of a variate defines the criterion for convergence to a zero deviance; default ! (0.0001, 1.0E-11)
Initial fitted values for generalized linear model; default * Algorithm for fitting nonlinear model (GaussNewton, NewtonRaphson, FletcherPowell); default Gaus, but Newt for scalar minimization
Scalars to hold current values of linear parameters used in nonlinear model, for reference within model calculations

Nonlinear parameters in the model Lower bound for each parameter Upper bound for each parameter Initial step length for each parameter Initial value for each parameter

\section*{RDA procedure}

Performs redundancy analysis (A.I. Glaser).

\section*{Options}

PRINT \(=\) string tokens

NROOTS \(=\) scalar

NORMALIZE \(=\) string tokens
SCALING = string token
TOLERANCE \(=\) scalar

\section*{Parameters}
\(\mathrm{Y}=\) pointers
\(\mathrm{X}=\) pointers
\(\mathrm{Z}=\) pointers

What to print (variance, loadings, roots, evalues, evectors, speciesscores, sitescores, fitsitescores, correlations, fitcorrelations, weights); default vari, root
Number of eigenvalues and eigenvectors to include in output; default * takes all the non-zero eigenvalues Whether to normalize the \(Y, X\) and/or \(Z\) variates to have unit sums-of-squares before the analysis (\(x, y, z\)); default \(x, z\) Scaling for species and site scores (none, both); default none Tolerance for detecting non-zero eigenvalues; default \(10^{-5}\)

Each pointer defines a set of response variates to be modelled Explanatory variates or factors to use for for each pointer of \(y\) variates
Conditioning variates or factors to remove ("partial out") before the analysis
```

LRV = LRVS
SPECIESSCORES = matrices
SITESCORES = matrices
FITSITESCORES = matrices
CORRELATIONS = matrices
FITCORRELATIONS = matrices
WEIGHTS = matrices
SAVE = pointers

```

LRV structure from each analysis, storing the eigenvectors, eigenvalues and total variance
Saves the "species scores" from each analysis
Save the "site scores" from each analysis
Save the fitted "site scores" from each analysis
Saves the correlations between the site scores and the x variates
Saves the correlations between the fitted site scores and the x variates
Save the weights of the x -variates in the formation of the site scores
Save structure which provides information for use in CRBIPLOT and CRTRIPLOT

\section*{RDESTIMATES procedure}

Plots one- or two-way tables of regression estimates (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline GRAPHICS \(=\) string token & Type of graph (highresolution, lineprinter); default high \\
\hline METHOD \(=\) string token & What to plot (estimates, lines); default esti \\
\hline XFREPRESENTATION \(=\) string token & How to label the x-axis (levels, labels); default labels uses the XFACTOR labels, if available \\
\hline PSE \(=\) string token & What s.e. to plot to represent variation (average, individual); default aver \\
\hline SAVE \(=\) regression save structure & Save structure of the analysis to display; default * shows the most recently fitted regression \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline XFACTOR \(=\) factors & Factor providing the x -values for each plot \\
\hline GROUPS \(=\) factors & Factor identifying the different sets of points from a two-way table of estimates \\
\hline XVARIATES \(=\) variates & X-variates for regression coefficients or pointer \\
\hline NEWXLEVELS = variates & Values to be used for XFACTOR instead of its existing levels \\
\hline TITLE \(=\) texts & Title for the graph; default defines a title automatically \\
\hline YTITLE \(=\) texts & Title for the y -axis; default ' \({ }^{\text {' }}\) \\
\hline XTITLE \(=\) texts & Title for the x -axis; default is to use the identifier of the XFACTOR \\
\hline
\end{tabular}

\section*{RDISPLAY directive}

Displays the fit of a linear, generalized linear, generalized additive or nonlinear model.

\section*{Options}
```

PRINT = string tokens
CHANNEL = identifier
DENOMINATOR = string token
NOMESSAGE = string tokens
FPROBABILITY = string token
TPROBABILITY = string token
SELECTION = string tokens

```

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, confidence); default mode, summ, esti
Channel number of file, or identifier of a text to store output; default current output file
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss , ms); default ss
Which warning messages to suppress (dispersion, leverage, residual, vertical, df, inflation); default

Printing of probabilities for variance and deviance ratios (yes, no); default no
Printing of probabilities for t-statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \(\% \mathrm{cv}\) only for a gamma-
\begin{tabular}{|c|c|}
\hline & distributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%CV if DIST=gamma, and disp for other distributions \\
\hline DISPERSION \(=\) scalar & Dispersion parameter to be used as estimate for variability in s.e.s; default is as set in the model statement \\
\hline RMETHOD \(=\) string token & Type of residuals to display (deviance, Pearson, simple); default is as set in the MODEL statement \\
\hline DMETHOD \(=\) string token & Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline DFDISPERSION \(=\) scalar & Allows you to specify the number of degrees of freedom for a dispersion parameter specified by the DISPERSION option; default is as set in the MODEL statement \\
\hline SAVE \(=\) identifier & Specifies save structure of model to display; default * i.e. that from latest model fitted \\
\hline
\end{tabular}

\section*{No parameters}

\section*{'RDLOESSGROUPS procedure}

Displays results from a locally weighted regression model (loess) fitted to data with groups (D.B.
Baird).
Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default * - no output \\
\hline PLOT \(=\) string tokens & What to plot (fittedvalues, residuals); default * - no plots \\
\hline DENOMINATOR \(=\) string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss , ms); default ss \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t-statistics (yes, no); default no \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline Parameter & \\
\hline SAVE \(=\) pointer & Save structure from the analysis of a loess with groups model by RLOESSGROUPS; default uses the model fitted most recently by RLOESSGROUPS \\
\hline
\end{tabular}

\section*{READ directive}

Reads data from an input file, an unformatted file or a text.

\section*{Options}
```

PRINT = string tokens
CHANNEL = identifier
SERIAL = string token

```

SETNVALUES \(=\) string token

What to print (data, errors, summary); default erro, summ Channel number of file, or text structure from which to read data; default current file Whether structures are in serial order, i.e. all values of the first structure, then all of the second, and so on (yes, no); default no, i.e. values in parallel
Whether to set number of values of vectors from the number of values read (yes, no); default no causes the number of values to be set only for structures whose lengths are not defined already (e.g. by declaration or by UNITS)
\begin{tabular}{ll}
LAYOUT \(=\) string token & How values are presented (separated, fixedfield); \\
default sepa \\
END \(=\) text & \\
& What string terminates data (* means there is no terminator); \\
default ':'
\end{tabular}

\section*{RECORD directive}

Dumps a job so that it can later be restarted by a RESUME statement.

\section*{Option}

CHANNEL \(=\) scalar \(\quad\) Channel number of the backing-store file where information is to be dumped; default 1

\section*{No parameters}

\section*{REDUCE directive}

Forms a reduced similarity matrix (referring to the GROUPS instead of the original units).
This directive was replaced in Release 14 by the directive HREDUCE (with exactly the same options and parameters). It is currently retained as a synonym of HREDUCE, but may be removed in a future release.

\section*{REFORMULATE directive}

Modifies a formula or an expression to operate on a different set of data structures.

\section*{Options}

OLDFORMULA \(=\) formula or expression structure
Original formula or expression
NEWFORMULA \(=\) formula or expression structure
New formula or expression, modified to operate on the new structures

\section*{Parameters}

OLDSTRUCTURE = identifiers
NEWSTRUCTURE \(=\) identifiers

Data structures in the OLDFORMULA to be replaced in the NEWFORMULA
Identifier of the new data structure to replace each OLDSTRUCTURE

\section*{RELATE directive}

Relates the observed values on a set of variates or factors to the results of a principal coordinates analysis.
This directive was replaced in Release 14 by the directive PCORELATE (with exactly the same options and parameters). It is currently retained as a synonym of PCORELATE, but may be removed in a future release.

\section*{REML directive}

Fits a variance-components model by residual (or restricted) maximum likelihood.

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { What output to present (model, components, effects, } \\
\text { means, stratumvariances, monitoring, vcovariance, } \\
\text { deviance, Waldtests, missingvalues, } \\
\text { covariancemodels); default mode, comp, Wald, cova }\end{array} \\
\text { Terms (fixed or random) for which effects or means are to be } \\
\text { printed; default * implies all the fixed terms }\end{array}\right]\)\begin{tabular}{l}
Standard errors to be printed with tables of effects and means \\
(differences, estimates, alldifferences, \\
allestimates, none); default diff
\end{tabular}

METHOD \(=\) string token

MAXCYCLE \(=\) scalar
TOLERANCES \(=\) variate

PARAMETERIZATION = string token

CFORMAT \(=\) string token

FMETHOD \(=\) string token

WORKSPACE \(=\) scalar

\section*{Parameters}
\(\mathrm{Y}=\) variates
RESIDUALS \(=\) variates
FITTEDVALUES \(=\) variates
EXIT \(=\) scalar
SAVE \(=\) REML save structures
(final, all, notspline); default fina
Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI
Limit on the number of iterations; default 30
Tolerances for matrix inversion; default * i.e. appropriate default values
Parameterization to use for the variance component estimation (gammas, sigmas); default * i.e. use whichever is most appropriate for the model
Whether printed output for covariance models gives the variance matrices or the parameters (variancematrices, parameters); default vari
Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto
Number of blocks of internal memory to be allocated for use by the estimation algorithm when METHOD=AI; default 1

Variates to be analysed
Residuals from each analysis
Fitted values from each analysis
Exit status of the fit (0 if successful)
Saves the details of each analysis for use in subsequent VDISPLAY and VKEEP directives

\section*{RENAME directive}

Assigns new identifiers to data structures.

\section*{No options}

\section*{Parameters}

OLDIDENTIFIER = identifiers
Specifies the data structures to rename
NEWIDENTIFIER = identifiers
Specifies a new identifier for each data structure

\section*{REPPERIODOGRAM procedure}

Gives periodogram-based analyses for replicated time series (R.P. Littlejohn).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & What to print (pair, randomization, glm); default * i.e. none \\
\hline \(\mathrm{PLOT}=\) string token & What graphs to plot (group, mean, logmean, cumulative, cv, pair); default mean, logm \\
\hline TITLE \(=\) text & Title for each page of graphs \\
\hline REPRESENTATION = string token & Form of data in SERIES (timeseries, meanperiodogram); default time \\
\hline LENGTH \(=\) scalar or variate & Scalar specifying that the first N units of the series are to be used, or a variate specifying the first and last units of the series to be used \\
\hline SEED \(=\) scalar & Seed for randomization; default 0 \\
\hline NRANDOMIZATIONS \(=\) scalar & Number of randomizations; default 99 \\
\hline TREATMENTS = factor & Contains ordered classification of SERIES \\
\hline PAIR \(=\) variates & Treatment pair levels for pairwise comparisons \\
\hline COLOUR \(=\) text or variate & Colours for each level of TREATMENTS; default * sets suitable colours automatically \\
\hline MEANPERIODOGRAM = pointer & Saves mean periodograms according if REPRESENTATION=timeseries \\
\hline REPLICATION \(=\) scalar or variate & Inputs or saves number of replicate series if \\
\hline & REPRESENTATION=timeseries; scalar can be used for equal \\
\hline
\end{tabular}

What to print (pair, randomization, glm); default * i.e. none
What graphs to plot (group, mean, logmean, cumulative, v, pair); default mean, logm

Form of data in SERIES (timeseries, meanperiodogram); default time
Scalar specifying that the first \(N\) units of the series are to be used, or a variate specifying the first and last units of the series sed

Number of randomizations; default 99
Contains ordered classification of SERIES
Treatment pair levels for pairwise comparisons
Colours for each level of TREATMENTS; default * sets suitable colours automatically
Saves mean periodograms according if
隹

REPRESENTATION=timeseries; scalar can be used for equal
replication

\section*{Parameter}

SERIES \(=\) variates
Specify the time series to be analysed

\section*{RESHAPE procedure}

Reshapes a data set with classifying factors for rows and columns, into a reorganized data set with new identifying factors (D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & What to print (results); default *, i.e. none \\
\hline \multicolumn{2}{|l|}{ROWCLASSIFICATION \(=\) factors, texts, variates or pointer} \\
\hline & Factors classifying the rows in the data; default a factor called Rows with a level for each row \\
\hline \multicolumn{2}{|l|}{COLCLASSIFICATION \(=\) factors, texts, variates or pointer} \\
\hline & Factors or texts classifying the columns in the data; default a factor called Columns with labels formed from the column identifiers in DATA \\
\hline \multicolumn{2}{|l|}{MEANFACTORS \(=\) factors, texts, variates or pointer} \\
\hline & Row or column factors whose groups are averaged in the output data set \\
\hline \multicolumn{2}{|l|}{TOTALFACTORS \(=\) factors, texts, variates or pointer} \\
\hline & Row or column factors whose groups are totalled in the output data set \\
\hline FIRSTSUMMARY \(=\) string token & Which summaries to form first (means, totals) default means \\
\hline NEWROWFACTORS = factors & Factors to index the new rows \\
\hline \multicolumn{2}{|l|}{NEWCOLUMNFACTORS \(=\) factors, texts or variates} \\
\hline & Factors to indexing the columns in the new data set \\
\hline REDEFINE \(=\) string token & Whether to redefine the NEWROWFACTORS factors and DATA columns, if NEWROWFACTORS or NEWDATA are not set or use names used in the input data (yes, no); default no \\
\hline MVINCLUDE \(=\) string token & Whether to include factor combinations with no observations in the output data set (*,rows, columns); default *; i.e. remove missing rows and columns \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA \(=\) pointers & Pointer containing data to be reshaped \\
\hline NEWDATA \(=\) pointers & Pointer containing the reshaped data columns \\
\hline
\end{tabular}

\section*{RESTRICT directive}

Defines a restricted set of units of vectors for subsequent statements.

\section*{No options}

Parameters
```

VECTOR = vectors
CONDITION = expression

```
SAVESET = variates
NULL = scalars

Vectors to be restricted
Logical expression defining the restriction for each vector; a zero (false) value indicates that the unit concerned is not in the set
List of the units in each restricted set
Indicator for each restricted set, set to 1 or 0 according to whether or not it contains no units

\section*{RESUME directive}

Restarts a recorded job.

\section*{Options}

CHANNEL \(=\) scalar \(\quad\) Channel number of the backing-store file where the information was dumped; default 1
CLOSE \(=\) string token
Whether to close the file afterwards (yes, no); default no

\section*{No parameters}

\section*{RETRIEVE directive}

Retrieves structures from a subfile.

\section*{Options}

CHANNEL \(=\) scalar

SUBFILE = identifier
LIST \(=\) string token
MERGE \(=\) string token

FILETYPE \(=\) string token

\section*{Parameters}

IDENTIFIER = identifiers

STOREDIDENTIFIER = identifiers

Specifies the channel number of the backing-store or procedure-library file containing the subfile (FILETYPE settings 'back' or 'proc'); default 0 (i.e. the workfile) for FILETYPE=back, no default for FILETYPE=proc, not relevant with other FILETYPE settings
Identifier of the subfile; default SUBFILE
How to interpret the list of structures (inclusive, exclusive, all); default incl
Whether to merge structures with those already in the job (yes, no); default no, i.e. a structure whose identifier is already in the job overwrites the existing one, unless it has a different type
Indicates the type of file from which the information is to be retrieved (backingstore, procedurelibrary, siteprocedurelibrary, Genstatprocedurelibrary); default back

Identifiers to be used for the structures after they have been retrieved
Identifier under which each structure was stored

\section*{RETURN directive}

Returns to a previous input stream (text vector or input channel).

\section*{Options}
\begin{tabular}{ll}
NTIMES = scalar \\
CLOSE = string token & \begin{tabular}{l}
Number of streams to ascend; default 1 \\
Whether to close the channel (or text) after the return (yes, \\
no); default no
\end{tabular} \\
DELETE = string token & \begin{tabular}{l}
Whether to delete the text or the file to which the channel was \\
attached (only relevant if CLOSE=yes) after the return (yes, \\
no); default no
\end{tabular} \\
Parameter \\
\(\quad\) expression & \begin{tabular}{l}
Logical expression controlling whether or not to return to the \\
previous input stream; default 1 (i.e. true)
\end{tabular}
\end{tabular}

\section*{RFFAMOUNT procedure}

Fits harmonic models to mean rainfall amounts for a Markov model (J.O. Ong'ala \& D.B. Baird). Options
\begin{tabular}{ll}
PRINT = string tokens & \begin{tabular}{l}
Controls printed output for each fitted model (model, \\
deviance, summary, estimates, correlations, \\
fittedvalues, accumulated, monitoring, \\
confidence); default mode, summ, esti, accu
\end{tabular} \\
PLOT = string token \\
NHARMONICS = scalar \\
SPREADSHEET = string tokens \\
Parameters \\
COUNTS = table & \begin{tabular}{l}
What plots to display (results); default resu \\
Defines the number of harmonics to fit (1...4); default 2 \\
What to save in a spreadsheet (results); default *
\end{tabular} \\
AMOUNTS = tables & \begin{tabular}{l}
Supplies the table of counts by Markov class and day number \\
within the year (1...366)
\end{tabular} \\
WINDOW = scalars & \begin{tabular}{l}
Supplies the table of mean rainfall by wet Markov class and \\
day
\end{tabular} \\
TITLE = texts & \begin{tabular}{l}
Window for the graph; default 3 for a single class and 1 \\
otherwise
\end{tabular} \\
& Title for the graph; default forms an automatic description
\end{tabular}

RESULTS \(=\) pointers

OUTFILE \(=\) texts

Saves a pointer to the variates of fitted rainfall means by day for each wet class
File(with extension.gwb, or .xlsx) to save the spreadsheet of results

\section*{RFFPROBABILITY procedure}

Fits harmonic models to rainfall probabilities for a Markov model (J.O. Ong'ala \& D.B. Baird).

\section*{Options}
```

PLOT = string token
NHARMONICS = scalar
SPREADSHEET = string tokens
Parameters
COUNTS = table
WINDOW = scalars
TITLE = texts
RESULTS = pointers
OUTFILE = texts

```

Controls printed output for each fitted model (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti, accu What plots to display (results); default resu Defines the number of harmonics to fit (1...4); default 2 What to save in a spreadsheet (results); default *

Supplies the table of counts by Markov class and day within the year (1...366)
Window to plot the graph; default 3 for a single class and 1 otherwise
The title for the plot; default forms an automatic description Saves a pointer to variates of fitted rainfall probabilities by day for each wet state
File (with extension .gwb, or .xlsx) to save the selected spreadsheet components

\section*{RFINLAYWILKINSON procedure}

Performs Finlay and Wilkinson's joint regression analysis of genotype-by-environment data (P.W.
Lane \& K. Ryder).

\section*{Options}

PRINT \(=\) string tokens

PLOT \(=\) string tokens
NBEST \(=\) scalar

DIRECTION \(=\) string token

TOLERANCE \(=\) scalar
MAXCYCLE \(=\) scalar
SAVE \(=\) regression save structure

\section*{Parameters}

GENOTYPES \(=\) factors
ENVIRONMENTS \(=\) factors
SENSITIVITIES \(=\) tables
GENMEANS \(=\) tables
ENVMEANS = tables
ENVEFFECTS = tables
SESENSITIVITIES \(=\) tables
SEGENMEANS \(=\) tables
SEENVEFFECTS = tables
MSDEVIATIONS \(=\) tables
DEVIANCE \(=s c a l a r\)

What to print (model, summary, estimates, sortedsensitivities, monitoring); default mode, summ, esti, sort
What graphs to plot (lines, trellislines, sensitivities); default *
Number of best genotypes to print in table of sorted sensitivities; default * i.e. print all of them
Direction to sort table of sorted sensitivities (ascending, descending); default asce
Convergence criterion; default 0.001
Maximum number of cycles; default 15
Save structure from MODEL statement defining the model; default is to use the structure from the latest MODEL statement

The genotype factor; no default
The environment factor; no default
Saves the estimates of sensitivities; default *
Saves the estimates of genotype means; default *
Saves the estimates of environment means; default *
Saves the estimates of environment effects; default *
Saves the s.e.s of sensitivities; default *
Saves the s.e.s of genotype means; default *
Saves the s.e.s of environment effects; default *
Saves the mean square deviations about the line fitted to each genotype; default *
Saves the residual deviance
\(\mathrm{DF}=\) scalar
TITLE \(=\) text
YTITLE \(=\) text
XTITLE \(=\) text
EXIT \(=\) scalar

Saves the residual d.f
Overall title for the graphs
Y -axis title for the graph of the lines
X -axis title for the graph of the lines
Exit status: set to 0 if the analysis converged, 1 otherwise

\section*{RFSUMMARY procedure}

Forms summaries for a Markov model from rainfall data (J.O. Ong'ala \& D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (counts, amounts, probabilities); default * \\
\hline \(\mathrm{PLOT}=\) string token & What plots to display (probabilities); default prob \\
\hline DAY \(=\) variate or factor & Day as a date or a day number within the year \\
\hline LIMITS \(=\) scalar or variate & Values to define the daily rainfall states; default 0.85 \\
\hline ORDER = scalar & Defines the order of the Markov chain (0...5); default 1 \\
\hline HIGHORDER = scalar & Whether to use a high-order Markov chain; (no, yes); default no \\
\hline INITIAL \(=\) scalar or variate & The amounts of rainfall prior to the first day; default * \\
\hline SPREADSHEET \(=\) string tokens & What to save in a spreadsheet (counts, amounts, probabilities); default * \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA \(=\) variates & The daily rainfall amounts \\
\hline WINDOW = scalars & Window to plot the graph; default 3 for ORDER=0 and 1 otherwise \\
\hline TITLE \(=\) texts & The title for the plot; default uses an automatic description \\
\hline COUNTS = tables & Saves the counts by Markov state and day \\
\hline AMOUNTS \(=\) tables & Saves the mean rainfall by Markov wet states and day \\
\hline PROBABILITIES = pointers & Saves a pointer to variates of probabilities of a wet day by class \\
\hline CATEGORIES = factors & Saves the Markov class for each day \\
\hline STATECOUNTS = pointers & Saves a pointer to tables of counts for each state \\
\hline OUTFILE \(=\) texts & File (with extension .gwb, or .xlsx) to save selected spreadsheet components \\
\hline
\end{tabular}

\section*{RFUNCTION directive}

Estimates functions of parameters of a linear, generalized linear, generalized additive or nonlinear model.
Options
\begin{tabular}{ll}
PRINT = string tokens & \begin{tabular}{l}
What to print (estimates, se, correlations); default \\
esti, se
\end{tabular} \\
CHANNEL = identifier & \begin{tabular}{l}
Channel number of file, or identifier of a text to store output; \\
default current output file
\end{tabular} \\
CALCULATION = expression structures & \begin{tabular}{l}
Calculation of functions involving nonlinear and/or linear \\
parameters; no default
\end{tabular} \\
SE = variate & \begin{tabular}{l}
To save approximate standard errors; default *
\end{tabular} \\
VCOVARIANCE \(=\) symmetric matrix & \begin{tabular}{l}
To save approximate variance-covariance matrix; default * \\
Specifies save structure of regression model; default * i.e. that \\
from last model fitted
\end{tabular} \\
Parameter & Identifier \\
scalars & \begin{tabular}{l}
Identiers of scalars assigned values of the functions by the \\
calculations
\end{tabular}
\end{tabular}

\section*{RGRAPH procedure}

Draws a graph to display the fit of a regression model (P.W. Lane).

\section*{Options}

GRAPHICS \(=\) string token \(\quad\) Type of graphics to produce (lineprinter,
```

TITLE = text
WINDOW = number
SCREEN = string token
CIPLOT = string token
CIPROBABILITY = scalar
BACKTRANSFORM = string token

```

SAVE \(=\) regression save structure

\section*{Parameters}

INDEX \(=\) variate

GROUPS \(=\) factor
highresolution); default high
Title for the graph; default 'Fitted and observed relationship'
Which high-resolution graphics window to use; default 4 (redefined if necessary to fill the frame)
Whether to clear the graphics screen before plotting (clear, keep); default clea
Whether to plot confidence intervals (no, yes); default no
Probability for confidence interval; default 0.95
What back-transformation to make (link, none, axis); default link
Save structure of the model to display; default * uses the most recently fitted regression model

Which explanatory variate to display; default * if GROUPS is set, otherwise INDEX is set to the first variate in the fitted model (must be set for nonlinear models other than standard curves)
Which explanatory factor to display; default * if INDEX is set, otherwise GROUPS is set to the first factor in the fitted model (ignored for nonlinear models)

\section*{RIDGE procedure}

Produces ridge regression and principal component regression analyses (A.J. Rook \& M.S. Dhanoa). Options
\begin{tabular}{ll}
PRINT \(=\) string token & What to print (correlation, pcp, ridge); default corr \\
PLOT \(=\) string token & Graphical output required (ridgetrace); default * \\
Parameters & \\
\(\mathrm{Y}=\) variates & Response variate in regression model \\
\(\mathrm{X}=\) pointers & Containing explanatory variates in regression model
\end{tabular}

\section*{RJOINT procedure}

Does modified joint regression analysis for variety-by-environment data (P.W. Lane \& K. Ryder).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, summary, estimates, monitoring, graph); default mode, summ, esti \\
\hline TITLE \(=\) text & Overall title for graph \\
\hline YTITLE \(=\) text & Y-axis title for graph \\
\hline XTITLE \(=\) text & X-axis title for graph \\
\hline TOLERANCE \(=\) scalar & Convergence criterion; default 0.001 \\
\hline MAXCYCLE = scalar & Maximum number of cycles; default 15 \\
\hline SAVE = regression save structure & Save structure from MODEL statement defining the model; default is to use the structure from the latest MODEL statement \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline ENVIRONMENT = factors & The environment factor; no default \\
\hline VARIETY = factors & The variety factor; no default \\
\hline SENSITIVITIES = variates & To store estimates of sensitivities; default * \\
\hline VARMEANS \(=\) variates & To store estimates of variety means; default * \\
\hline ENVEFFECTS \(=\) variates & To store estimates of environment effects; default * \\
\hline ENVMEANS \(=\) variates & To store estimates of environment means; default * \\
\hline SESENSITIVITIES \(=\) variates & To store s.e.s of sensitivities; default * \\
\hline SEVARMEANS \(=\) variates & To store s.e.s of variety means; default * \\
\hline SEENVEFFECTS = variates & To store s.e.s of environment effects; default * \\
\hline DEVIANCE = scalar & To store the residual deviance \\
\hline \(\mathrm{DF}=\) scalar & To store the residual d.f \\
\hline EXIT \(=\) scalar & Exit status - set to 0 if the analysis converged, 1 otherwise \\
\hline
\end{tabular}

\section*{RKEEP directive}

Stores results from a linear, generalized linear, generalized additive or nonlinear model.
Options
\begin{tabular}{|c|c|}
\hline EXPAND \(=\) string token & Whether to put estimates in the order defined by the maximal model for linear or generalized linear models (yes, no); default no \\
\hline DISPERSION \(=\) scalar & Dispersion parameter to be used as estimate for variability in s.e.s; default as set in the MODEL directive \\
\hline RMETHOD = string token & Type of residuals to form if parameter RESIDUALS is set (deviance, Pearson, simple); default as set in MODEL \\
\hline DMETHOD \(=\) string token & Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default as set in MODEL \\
\hline PROBABILITY = scalar & Probability level for confidence limits; default 0.95 \\
\hline OMODEL = pointer & Pointer to settings of options of the current MODEL statement, given unit labels corresponding to the option names of MODEL (starting with 'distribution') \\
\hline PMODEL \(=\) pointer & Pointer to settings of parameters of the current MODEL statement, given unit labels corresponding to the parameter names of MODEL (starting with ' y '), only refers to the first setting of Y, FITTEDVALUES and RESIDUAL \\
\hline STATISTICS \(=\) variates & Saves all the statistics that could be displayed for the first \(Y\) variate by the ' summary' setting of the PRINT option of the fitting directives FIT, ADD etc \\
\hline CIMETHOD \(=\) string token & Method to use to calculate confidence intervals for nonlinear models (exact, quadratic); default quad \\
\hline IGNOREFAILURE \(=\) string & Whether to ignore failure to fit a generalized linear model (yes, no); default no \\
\hline MAXIMALMODEL = formula structure & Saves the maximal model (as defined by TERMS) \\
\hline FITMODEL = formula structure & Saves the currently-fitted model (including any contrast functions) \\
\hline FITCONSTANT \(=\) scalar & Saves a scalar containing the value one if the constant is included in the fitted model, or zero otherwise \\
\hline FITTYPE \(=\) scalar & Saves a scalar to indicate the type of model that has been fitted \\
\hline SAVE = identifier & Specifies save structure of model; default * i.e. that from latest model fitted \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Response variates for which results are to be saved; default is the list of response variates in the most recent MODEL statement \\
\hline RESIDUALS \(=\) variates & Residuals for each Y variate, as specified by the RMETHOD option \\
\hline FITTEDVALUES \(=\) variates & Fitted values for each \(Y\) variate \\
\hline LEVERAGES \(=\) variate & Leverages of the units for each \(Y\) variate \\
\hline ESTIMATES \(=\) variates & Estimates of parameters for each \(Y\) variate \\
\hline \(\mathrm{SE}=\) variates & Standard errors of the estimates \\
\hline INVERSE = symmetric matrix & Inverse matrix from a linear or generalized linear model, inverse of second derivative matrix from a nonlinear model \\
\hline VCOVARIANCE \(=\) symmetric matrix & Variance-covariance matrix of the estimates \\
\hline DEVIANCE \(=\) scalars & Residual ss or deviance \\
\hline \(\mathrm{DF}=\) scalar & Residual degrees of freedom \\
\hline TERMS = pointer or formula structure & Fitted terms (excluding constant) \\
\hline ITERATIVEWEIGHTS = variate & Iterative weights from a generalized linear model \\
\hline LINEARPREDICTOR = variate & Linear predictor from a generalized linear model \\
\hline YADJUSTED = variate & Adjusted response of a generalized linear model \\
\hline EXIT \(=\) scalar & Exit status from a generalized linear or nonlinear model \\
\hline GRADIENTS \(=\) pointer & Derivatives of fitted values with respect to parameters in a \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \(n \mathrm{n}\) in \\
\hline GRID \(=\) variate & Grid of function or deviance values from a nonlinear model \\
\hline DESIGNMATRIX \(=\) matrix & Design matrix whose columns are explanatory variates and dummy variates \\
\hline PEARSONCHISQUARE \(=\) scalar & Pearson chi-square statistic from a generalized linear model \\
\hline STERMS \(=\) pointer & Saves the identifiers of the variates that have been smoothed in the current model \\
\hline SCOMPONENTS \(=\) pointer & Saves a pointer to variates holding the nonlinear components of the variates that have been smoothed \\
\hline NOBSERVATIONS \(=\) scalar & Number of units used in regression, excluding missing data and zero weights and taking account of restrictions \\
\hline SEFITTEDVALUES = variate & Saves standard errors of the fitted values \\
\hline SELINEARPREDICTOR \(=\) variate & Saves standard errors of the linear predictor \\
\hline INFLATION = variate & Saves the variance inflation factors of the parameter estimates \\
\hline UPPER \(=\) variates & Saves upper confidence limits for the parameter estimates \\
\hline LOWER \(=\) variates & Saves lower confidence limits for the parameter estimates \\
\hline MEANDEVIANCE \(=\) scalars & Saves the residual mean deviance (or mean square) \\
\hline TDEVIANCE = scalars & Saves the total deviance (or sum of squares) \\
\hline TDF \(=\) scalars & Saves the total degrees of freedom (corrected for the mean or uncorrected as displayed by the fitting directives) \\
\hline TMEANDEVIANCE \(=\) scalars & Saves the total mean deviance (or mean square) \\
\hline SUMMARY = pointer & Saves the summary analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc) \\
\hline ACCUMULATED \(=\) pointer & Saves the accumulated analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc) \\
\hline STATISTICS \(=\) variates & Saves all the statistics that could be displayed for the \(Y\) variate by the 'summary' setting of the PRINT option of the fitting directives FIT, ADD etc \\
\hline
\end{tabular}

\section*{RKESTIMATES directive}

Saves estimates and other information about terms in a regression analysis.

\section*{Options}
FACTORIAL = scalar \(\quad\)\begin{tabular}{l}
Limit on number of factors and variates in a model term; \\
default 3
\end{tabular}
\(\mathrm{Y}=\) variate

SAVE \(=\) identifier

\section*{Parameters}
```

TERMS = formula
ESTIMATES $=$ tables or scalars

```
\(\mathrm{SE}=\) tables or scalars

VCOVARIANCE \(=\) symmetric matrices
\(\mathrm{DF}=\) scalars
POSITIONS \(=\) tables or scalars

Limit on number of factors and variates in a model term; default 3
Response variate for which results are to be saved; default is the last response variate in the save structure
Provides the regression save structure for the analysis from which the estimates are to be saved; default * takes the save structure from the most recent regression

Model terms for which information is required
Table or scalar to store the estimated regression coefficients for each term
Table or scalar to store the standard errors of the estimated regression coefficients
Symmetric matrix or scalar to store the variances and covariances between the estimates of each term Number of degrees of freedom for each term Positions of the estimates in the variate of estimates as saved from RKEEP when option EXPAND=yes

\section*{'RKLOESSGROUPS procedure}

Stores results from a locally weighted regression (loess) with groups model fitted to data with groups (D.B. Baird).

\section*{Options}
\begin{tabular}{ll}
RMETHOD \(=\) string token & \begin{tabular}{l}
Type of residuals to form if parameter RESIDUALS is set \\
(deviance, simple); default devi
\end{tabular} \\
SAVE \(=\) identifier & \begin{tabular}{l}
Save structure from the analysis of a loess with groups model \\
by RLOESSGROUPS; default uses the model fitted most recently \\
by RLOESSGROUPS
\end{tabular}
\end{tabular}

\section*{Parameters}

RESIDUALS \(=\) variates
FITTEDVALUES \(=\) variates
Residuals, as specified by the RMETHOD option

LEVERAGES \(=\) variate
Fitted values
Leverages of the units
Estimates of parameters
Standard errors of the estimates
\(\mathrm{SE}=\) variates
VCOVARIANCE \(=\) symmetric matrix
Variance-covariance matrix of the estimates
CORRELATIONS = symmetric matrix
DEVIANCE = scalars
Correlation matrix of the estimates
Residual ss or deviance
Residual degrees of freedom
Saves the accumulated analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc)

\section*{RLASSO procedure}

Performs lasso using iteratively reweighted least-squares (D.A. Murray \& P.H.C. Eilers).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & What output to print (correlation, crossvalidation, estimates, best); default best \\
\hline PLOT \(=\) string tokens & What graphs to plot (correlation, coefficients); default * i.e. none \\
\hline TERMS \(=\) formula & Explanatory model \\
\hline FACTORIAL \(=\) scalar & Limit on number of factors/covariates in a model term; default 3 \\
\hline LAMBDA \(=\) variate or scalar & Values for the parameter lambda; must be set \\
\hline VALIDATIONMETHOD \(=\) string token & Which cross-validation method to use (crossvalidation, gcv); default gcv \\
\hline NCROSSVALIDATIONGROUPS \(=\) scalar & Number of groups for k-fold cross-validation; default 10 \\
\hline NBOOT \(=\) scalar & Number of times to bootstrap data to estimate standard errors and confidence limits for fitted values; default 100 \\
\hline SEED \(=\) scalar & Seed for random numbers to use in cross-validation and then in bootstrapping; default 0 \\
\hline CIPROBABILITY \(=\) scalar & Probability level for confidence interval for fitted values; default 0.95 \\
\hline MAXCYCLE \(=\) scalar & Maximum number of iterations for the iterative process \\
\hline TOLERANCE \(=\) variate & Contains two values to define the convergence criterion for iterative least-squares and the adjustment to avoid division by zero in the penalty term; default! (0.0001,1e-08) \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Response variate \\
\hline BESTLAMBDA \(=\) scalars & Saves the optimal lambda value from cross-validation \\
\hline CVSTATISTICS \(=\) matrices & Saves the cross-validation statistics \\
\hline RESIDUALS \(=\) variates & Saves residuals for the optimal LAMBDA \\
\hline FITTEDVALUES = variates & Saves fitted values for the optimal LAMBDA \\
\hline ESTIMATES \(=\) variates & Saves parameter estimates for the optimal LAMBDA \\
\hline SE \(=\) variates & Saves standard errors of the parameter estimates for the optimal LAMBDA \\
\hline
\end{tabular}

SEFITTED \(=\) variates

LOWER \(=\) variates

UPPER \(=\) variates

Saves standard errors of the fitted values, from bootstrapping, for the optimal LAMBDA
Saves lower confidence limits for the fitted values, from bootstrapping, for the optimal LAMBDA
Saves upper confidence limits for the fitted values, from bootstrapping, for the optimal LAMBDA

\section*{RLFUNCTIONAL procedure}

Fits a linear functional relationship model (M.S. Dhanoa \& D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (summary, estimates, fittedvalues, confidencelimits, grouptests); default summ, esti, conf, grou \\
\hline \({ }^{\dagger} \mathrm{METHOD}=\) string tokens & Specifies what methods to use to fit the regression (bartlett, majoraxis, errorsinvariables, yonx, xony, reducedmajoraxis, standardmajoraxis, rangedmajoraxis, geometricmean, bisector, medyonx, medxony, qgeometricmean, qbisector, qmajoraxis, theisenbartlett); default bart \\
\hline PLOT \(=\) string tokens & Controls what to plot (fitted, residuals, bootestimates, confidencelimits); default fitt \\
\hline TITLE \(=\) text & The title for the analysis; default title uses the \(Y\) and \(X\) identifiers \\
\hline NBOOT \(=\) scalar & The number of samples to take for the bootstrap confidence limits; default 200 \\
\hline SEED = scalar & Seed for bootstrap randomization; default 0 \\
\hline CIPROBABILITY \(=\) scalar & Defines the size of the confidence interval; default 0.95 i.e. 95\% \\
\hline CIMETHOD \(=\) string token & Method for confidence limits (parametric, bootstrap); default boot \\
\hline GMETHOD \(=\) string token & Method for comparing slopes, elevations and locations between groups (majoraxis, standardmajoraxis); default uses standardmajoraxis for METHOD settings standardmajoraxis, reducedmajoraxis, rangedmajoraxis, geometricmean or bisector, and majoraxis otherwise \\
\hline VRATIO \(=\) scalar & Ratio between variance of Y and X variables for METHOD=errorsinvariables; default 1 \\
\hline YRANGEMETHOD \(=\) string token & Type of range used for \(Y\) when METHOD=rangedmajoraxis (relative, interval); default rela \\
\hline XRANGEMETHOD \(=\) string token & Type of range used for X when METHOD=rangedmajoraxis (relative, interval); default rela \\
\hline WINDOW = scalar & Graphics window to use for fitted-value plots; default 1 \\
\hline KEYWINDOW = scalar & Graphics window to use for key; default 2 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Y-variate for each model \\
\hline \(\mathrm{X}=\) variates & X-variate for each model \\
\hline SLOPE \(=\) scalars, variates or matrices & Saves the estimated slopes \\
\hline \multicolumn{2}{|l|}{INTERCEPT \(=\) scalars, variates or matrices} \\
\hline & Saves the estimated intercepts \\
\hline GROUPS \(=\) factors & Defines groups of units \\
\hline \multicolumn{2}{|l|}{RESIDUALS \(=\) variates, matrices or pointers} \\
\hline & Saves the residuals from the fitted models \\
\hline \multicolumn{2}{|l|}{FITTEDVALUES \(=\) variates, matrices or pointers} \\
\hline & Saves the fitted values \\
\hline
\end{tabular}

ESTIMATES \(=\) variates, matrices or pointers
Saves the estimates
SE \(=\) variates, matrices or pointers \(\quad\) Saves the standard errors of the estimates
LOWER = variates, matrices or pointers Saves lower values of confidence intervals for the estimates UPPER \(=\) variates, matrices or pointers Saves upper values of confidence intervals for the estimates LOWFITTEDVALUES \(=\) variates, matrices or pointers

Saves the lower confidence limits from a bootstrap analysis of fitted values
UPPFITTEDVALUES \(=\) variates, matrices or pointers
Saves the upper confidence limits from a bootstrap analysis of fitted values
TESTPROBABILITIES = pointers
Saves the between-group test probabilities (in a symmetric matrix) for differences in slopes, elevations and locations

\section*{RLIFETABLE procedure}

Calculates the life-table estimate of the survivor function (D.A.Murray).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (lifetable); default life \\
\hline PLOT \(=\) string tokens & Type of graph to be plotted (survivor, hazard, pdf); default surv, haza, pdf \\
\hline INTERVAL \(=\) scalar or variate & A scalar defining the width of the intervals or a variate containing the boundaries of the intervals \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline TIMES \(=\) variates & Observed timepoints \\
\hline CENSORED \(=\) variates & Variate specifying whether the corresponding element of each TIMES variate is censored (1) or represents failures (0) \\
\hline FREQUENCY \(=\) variates & Variate containing frequencies for the elements of TIMES; by default these are all assumed to be 1 \\
\hline GROUPS \(=\) factors & Factor specifying the different groups for which to estimate life tables \\
\hline LIFETABLE \(=\) pointers & Pointer to variates to save the information from each life table \\
\hline
\end{tabular}

\section*{\({ }^{\dagger}\) RLOESSGROUPS procedure}

Fits locally weighted regression models (loess) to data with groups (D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, groups, submodels); default mode, summ, esti \\
\hline \(\mathrm{PLOT}=\) string tokens & What to plot (fittedvalues, residuals); default * - no plots \\
\hline FINALMODEL \(=\) string token & What to model to fit as the final model (common, parallel, separateslopes, full); default full \\
\hline CONSTANT \(=\) string token & How to treat the constant (estimate, omit); default esti \\
\hline DENOMINATOR = string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss , ms); default ss \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t-statistics (yes, no); default no \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline MAXCYCLE \(=\) scalar & Maximum number of iterations for the back-fitting algorithm; \\
\hline
\end{tabular}

DEVIANCE \(=\) scalar
\(\mathrm{DF}=\) scalar

\section*{Parameters}
\(\mathrm{x}=\) variate
GROUPS = factor
SMOOTH \(=\) scalar
SMTYPE \(=\) string token
ORDER = scalar
RESIDUALS \(=\) variates
FITTEDVALUES \(=\) variates
ACCUMULATED \(=\) pointer

SAVE \(=\) pointer
default 100
Saves the residual deviance
Saves the residual d.f.
Explanatory x-variate to be fitted
Groups to be fitted
Smoothing value to be used in the loess term; default 4
Type of value provided in SMOOTH (df, smoothing); default df
Order of regression used in loess term (1 or 2); default 1
Simple residuals from the fitted loess model
Fitted values from the fitted loess model
Saves the accumulated analysis-of-variance (or deviance) table as a pointer with a variate or text for each column (source, d.f. etc.)
Save structure for the fitted model

\section*{RMGLM procedure}

Fits a model where different units follow different generalized linear models (R.W. Payne). Options

PRINT \(=\) string tokens
\(\mathrm{Y}=\) variate
TERMS \(=\) formula
NBINOMIAL \(=\) variate
DISPERSION \(=\) scalar
```

WEIGHTS = variate
OFFSET = variate
CONSTANT = string token
FACTORIAL = scalar
FULL = string token
DATASET = factor
LINEARPREDICTOR = variate
MAXCYCLE = scalar
MVINCLUDE = string token

```
SAVE \(=\) identifier
Parameters
NVALUES = scalars
DISTRIBUTION \(=\) string tokens
LINK \(=\) string tokens

Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default mode, summ, esti
Response variate
Terms in the model
Binomial totals
Dispersion parameter; default * for DIST=norm, gamm, inve or calc, and 1 for DIST=pois, bino, mult, nega, geom, expo or bern
Prior weights; default 1
Offset variate to be included in model; default * i.e. none
How to treat the constant (estimate, omit, ignore); default esti
Limit for expansion of model terms; default 3
Whether to assign all possible parameters to factors and interactions (no, yes); default no
Indicates which generalized linear model to apply to each unit; default defined from NVALUES
Initial values for linear predictor
Maximum number of iterations; default 30
Whether to include units with missing values in the explanatory factors and variates (explanatory); default * i.e. omit these

To name the regression save structure; default *
Number of units for each generalized linear model
Error distributions (normal, poisson, binomial, gamma, inversenormal, multinomial, calculated, negativebinomial, geometric, exponential, bernoulli); default norm
Link functions (canonical, identity, logarithm, logit, reciprocal, power, squareroot, probit, complementaryloglog, calculated, logratio); default cano (i.e. iden for DIST=norm or calc; loga for DIST=pois; logi for DIST=bino, bern or mult; reci for DIST=gamm or expo; powe for DIST=inve; logr for

\section*{EXPONENT \(=\) scalars}

DIST=nega or geom)
Exponent for power links

\section*{\({ }^{\dagger}\) RMPLCONFIDENCE procedure}

Estimates profile likelihood confidence intervals of predicted group means from a linear or generalized linear model analysis (V.M. Cave).

\section*{Options}
```

PRINT = string token
BACKTRANSFORM = string token

```
\(\mathrm{PLOT}=\) string tokens
DECIMALS = scalar
CIPROBABILITY \(=\) scalar
RANGE \(=\) scalar, variate or matrix

NPOINTS \(=\) scalar

NEXTRAPOINTS \(=\) scalar

SAVE \(=\) regression save structure

\section*{Parameter}

CISAVE \(=\) pointer

Controls printed output (intervals); default inte What back-transformation to apply to the intervals on the linear scale (link, none); default link (i.e. the intervals are presented on the natural scale)
What to plot (profiles, intervals); default * i.e. no plots Number of decimal places for printing
Probability for the confidence intervals; default 0.95
Defines the range of values over which to evaluate the profile likelihoods; default 3
Defines the number of values at which to evaluate the profile likelihoods initially; default 10
Defines the number of extra values to evaluate the profile likelihoods at, within the neighbourhoods of the confidence limits identified during the initial scan as defined by RANGE and NPOINTS; default 10
Regression save structure to provide the information on the regression model; default * uses the most recently fitted regression model

Pointer that saves the lower and upper limits of the profile likelihood intervals, along with the estimated group means, labels identifying the groups, and an indicator variable for one-sided intervals

\section*{RMULTIVARIATE procedure}

Performs multivariate linear regression with accumulated tests; synonym FITMULTIVARIATE (H. van der Voet).

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Controls printed output (model, summary, accumulated);
\[
\text { RPRINT }=\text { string tokens }
\]

FACTORIAL \(=\) scalar
NOMESSAGE \(=\) string tokens

RESULTS = pointer

\section*{Parameter}

TERMS \(=\) formula

Controls printed output from the univariate regression analyses (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default *
Limit for expansion of model terms; default 3
Which warning messages to suppress when fitting the complete model - messages are always suppressed when fitting models for individual tests (aliasing, marginality); default *
To save results from accumulated and summary tests in a pointer containing terms, degrees of freedom of terms, Wilks' Lambda, Rao's F-statistic, degrees of freedom for numerator and denominator of Rao's F and P-value of Rao's F

List of explanatory variates and factors, or model formula

\section*{RNEGBINOMIAL procedure}

Fits a negative binomial generalized linear model estimating the aggregation parameter (R.M. Harbord \& R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

AGGREGATION \(=\) scalar
2LOGLIKELIHOOD = scalar
\(\overline{\text { CONSTANT }}=\) string token
FACTORIAL \(=\) scalar
POOL \(=\) string token
NOMESSAGE \(=\) string tokens

FPROBABILITY = string token
TPROBABILITY \(=\) string token SELECTION \(=\) string tokens

PROBABILITY \(=\) scalar
SEAGGREGATION \(=\) scalar
MAXCYCLE \(=\) variate

TOLERANCE \(=\) variate

\section*{Parameter}

TERMS = formula

Printed output from the analysis (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, aggregation, loglikelihood); default mode, summ, esti, aggr
Saves the estimate of the aggregation parameter
Saves the value of \(-2 \times \log\)-likelihood
How to treat the constant (estimate, omit); default esti
Limit on number of factors in a treatment term; default 3
Whether to pool the deviance for the terms in the accumulated
summary (yes, no); default no
Warnings to suppress from FIT (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
Printing of probabilities for variance ratios (yes, no); default no
Printing of probabilities for t-statistics (yes, no); default no
Statistics to be displayed in the summary of analysis produced by PRINT=summary (\%variance, \%ss, adjustedr2, r2, dispersion, \%meandeviance, \%deviance, aic, bic, sic); default disp
Probability level for confidence intervals for parameter estimates; default 0.95
Saves the standard error of the estimated aggregation parameter
Maximum number of iteration for main and Newton-Raphson estimations; default ! \((15,15)\)
Convergence criteria for deviance and \(k\); default
! (1E-4, 1E-4)
List of explanatory variates and factors, or model formula (as for FIT)

\section*{RNONNEGATIVE procedure}

Fits a generalized linear model with nonnegativity constraints; synonym FITNONNEGATIVE (P.W. Goedhart \& C.J.F. ter Braak).

\section*{Options}
```

PRINT = string tokens
CONSTANT = string token
POOL = string token
DENOMINATOR = string token
PRINT $=$ string tokens
CONSTANT $=$ string token
POOL $=$ string token
DENOMINATOR $=$ string token

```
NOMESSAGE \(=\) string tokens
FPROBABILITY \(=\) string token
TPROBABILITY = string token
MAXCYCLE = scalar
TOLERANCE \(=\) scalar

NOMESSAGE \(=\) string tokens

FPROBABILITY \(=\) string token
TPROBABILITY = string token
MAXCYCLE = scalar
TOLERANCE \(=\) scalar

Printed output required (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default mode, summ, esti How to treat the constant (estimate, omit); default esti Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss , ms); default ss
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality); default * Printing of probabilities for variance ratios (yes, no); default no
Printing of probabilities for \(t\)-statistics (yes, no); default no
Maximum number of iterations; default 100
Value against which the Kuhn-Tucker values are tested;

INITIALMODEL \(=\) string token

OWNINITIAL \(=\) variates
FORCED = formula

Parameter
\(\mathrm{X}=\) variates
default \(10^{-8}\)
Initial model from which to start the iterative procedure (null, full, positive, own); default null
Specifies the variates that compose your own initial model; this option must be set when INITIALMODEL=own; default * Model formula which is fitted irrespective of nonnegativity constraints; default *

List of predictors which are subject to nonnegativity constraints

\section*{ROBSSPM procedure}

Forms robust estimates of sum-of-squares-and-products matrices (P.G.N. Digby).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & ```
Controls printed output (sspm, distances, weights,
vcovariance, means, correlations, outliers); default
* i.e. no output
``` \\
\hline \(\mathrm{B} 1=\) scalar & The value from which the threshold distance is derived (see the Method Section); default 2 \\
\hline \(\mathrm{B} 2=s c a l a r\) & The value indicating the decline in weight as the distance of a unit above the threshold increases, (see the Method Section); default 1.25 \\
\hline MAXCYCLE \(=\) scalar & Maximum number of iterations; default 100 \\
\hline TOLERANCE \(=\) scalar & The minimum change in the average squared-weight that has to be achieved for the iterative process to converge; default \(1.0^{-8}\) \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA \(=\) pointers & Supplies the set of variates in each datamatrix \\
\hline SSPM \(=\) SSPMs & SSPM structure to contain the robust estimates of the sums of squares and products, the robust estimates of the means, and the sum of the weights for each datamatrix \\
\hline DISTANCES \(=\) variates & To contain the Mahalanobis distances of the units from the mean \\
\hline WEIGHTS \(=\) variates & To contain the weights used for each unit when forming the robust estimates \\
\hline VCOVARIANCE \(=\) symmetric matrices & To contain the robust estimates of the matrices of variances and covariances \\
\hline CORRELATIONS \(=\) symmetric matrices & This contains on output the correlations from the robust estimates of the variances and covariances \\
\hline
\end{tabular}

\section*{ROTATE directive}

Does a Procrustes rotation of one configuration of points to fit another.

\section*{Options}

PRINT \(=\) string tokens
SCALING \(=\) string token
STANDARDIZE \(=\) string tokens

Printed output required (rotations, coordinates, residuals, sums); default * i.e. no printing
Whether or not isotropic scaling is allowed (yes, no); default no Whether to centre the configurations (at the origin), and/or to normalize them (to unit sum of squares) prior to rotation (centre, normalize); default cent, norm
SUPPRESSREFLECTION = string token Whether to suppress reflection (yes, no); default no

\section*{Parameters}

XINPUT \(=\) matrices
YINPUT \(=\) matrices
XOUTPUT \(=\) matrices
YOUTPUT \(=\) matrices

Inputs the fixed configuration
Inputs the configuration to be fitted
To store the (standardized) fixed configuration
To store the fitted configuration
```

ROTATION = matrices
RESIDUALS = matrices or variates

```

RSS \(=\) scalars

To store the rotation matrix
To store distances between the (standardized) fixed and fitted configurations
To store the residual sum of squares

\section*{RPAIR procedure}

Gives t-tests for all pairwise differences of means from a regression or generalized linear model (J.T.N.M. Thissen \& P.W. Goedhart).
\begin{tabular}{|c|c|}
\hline Options & \\
\hline PRINT \(=\) string tokens & What to print (differences, sed, tvalues, tprobabilities); default diff, sed, tval \\
\hline SORT \(=\) string token & Whether to sort the means into ascending order (no, yes); default no \\
\hline COMBINATIONS \(=\) string token & Which combinations of factors in the current model to include (full, present, estimable); default esti (similar to the PREDICT directive) \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment with linear regression models (marginal, equal); default marg (similar to the PREDICT directive) \\
\hline WEIGHTS \(=\) table & Weights classified by some or all standardizing factors; default * (similar to the PREDICT directive) \\
\hline METHOD \(=\) string token & Method of forming margin (mean, total); default mean (similar to the PREDICT directive) \\
\hline ALIASING \(=\) string token & How to deal with aliased parameters (fault, ignore); default faul (similar to the PREDICT directive) \\
\hline SAVE \(=\) identifier & Specifies save structure of model to display; default * (i.e. that of the latest model fitted) \\
\hline Parameters & \\
\hline TREATFACTORS \(=\) pointers & Each pointer contains a list of treatment factors classifying the table of means to be compared (the right-most factor changes fastest, then the second from the right, etc.); this parameter must be set \\
\hline LABELS \(=\) texts & Structures containing strings to label rows (and columns) of the symmetric matrices of pairwise differences etc; the length of the text must equal the product of the numbers of factor levels as implied by the factor list in the TREATFACTORS pointer \\
\hline NEWLABELS \(=\) texts & To save the row labels of the DIFFERENCES, SED, TVALUES and TPROBABILITIES matrices \\
\hline DIFFERENCES \(=\) symmetric matrices & To save pairwise differences (treatment means on the diagonal) \\
\hline SED \(=\) symmetric matrices & To save standard errors of the pairwise differences (missing values on the diagonal) \\
\hline TVALUES = symmetric matrices & To save t -values (missing values on the diagonal) \\
\hline \multicolumn{2}{|l|}{TPROBABILITIES \(=\) symmetric matrices} \\
\hline & To save t-probabilities (missing values on the diagonal) \\
\hline
\end{tabular}

\section*{RPARALLEL procedure}

Carries out analysis of parallelism for nonlinear functions; synonym FITPARALLEL (R.C. Butler). Options
\(\left.\begin{array}{ll}\text { PRINT = string tokens } & \begin{array}{l}\text { What to print (model, summary, accumulated, estimates, } \\ \\ \text { correlations, fittedvalues, monitoring); default }\end{array} \\ \text { mode, summ, accu, esti }\end{array}\right\}\)

CONSTANT = string token

\section*{Parameters}
\(\mathrm{X}=\) variates \(\quad\) Explanatory variate; must be set
GROUPS \(=\) factors
RESULTS \(=\) pointers

How to treat constant (estimate, omit); default esti

Grouping factor for data; must be set
To save results from model nonlinearseparate, if fitted; should be set only if METHOD=nonl

\section*{RPERMTEST procedure}

Does random permutation tests for regression or generalized linear model analyses (R.W. Payne).

\section*{Options}
PRINT \(=\) string tokens
CONSTANT \(=\) string token
FACTORIAL \(=\) scalar
NTIMES \(=\) scalar
BLOCKSTRUCTURE = formula
EXCLUDE \(=\) factors
SEED \(=\) scalar

SUMMARY \(=\) pointer

ACCUMULATED \(=\) pointer
BINMETHOD \(=\) string token

\section*{Parameter}

TERMS \(=\) formula
Controls printed output (probability, accumulated, summary, critical); default prob
How to treat the constant (estimate, omit); default esti
Limit on the number of variates and/or factors in the terms to be fitted; default 3
Number of permutations to make; default 999
Model formula defining any blocking to consider during the randomization; default none
Factors in the block formula whose levels are not to be randomized
Seed for the random number generator used to make the permutations; default 0 continues from the previous generation or (if none) initializes the seed automatically
Saves the summary analysis-of-variance (or deviance) table with permutation probabilities and critical values Saves the accumulated analysis-of-variance (or deviance) table with permutation probabilities and critical values
How to permute binomial data (individuals, units; default indi

List of explanatory variates and factors, or model formula, defining the model to fit

\section*{RPHCHANGE procedure}

Modifies a proportional hazards model fitted by RPhFIT (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & Controls printed output (model, deviance, summary, \\
estimates, correlations, fittedvalues, \\
& accumulated, monitoring, loglikelihood); default \\
& mode, summ, esti
\end{tabular}

METHOD \(=\) string token
POOL \(=\) string token

\section*{Parameter}

TERMS = formula

How to change the model (add, drop, switch); default add Whether to pool terms in the accumulated summary generated by the fit

Model specifying the change

\section*{RPHDISPLAY procedure}

Prints output for a proportional hazards model fitted by RPHFIT (R.W. Payne).

\section*{Option}

PRINT \(=\) string tokens
Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, loglikelihood); default mode, summ, esti

\section*{No parameters}

\section*{RPHFIT procedure}

Fits a proportional hazards model to survival data as a generalized linear model (R.W. Payne). Options
PRINT \(=\) string tokens \(\quad\) Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, loglikelihood); default mode, summ, esti
MAXIMALMODEL = formula
SUBJECTS = factor
TIMES \(=\) factor or variate
CENSORED \(=\) variate

OFFSET \(=\) variate
POOL \(=\) string token

\section*{Parameter}

TERMS \(=\) formula
Defines the full model to explore (using RPHCHANGE); default uses the model defined by the TERMS parameter Subject corresponding to each observation Time of each observation
Contains the value 1 for censored observations, otherwise 0 ; if unset it is assumed that there is no censoring
Offset to include in the model
Whether to pool terms in the accumulated summary generated by the fit

\section*{RPHKEEP procedure}

Saves information from a proportional hazards model fitted by RPHFIT (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
RESIDUALS \(=\) variate & Saves the standardized residuals \\
FITTEDVALUES \(=\) variate & Saves the fitted values \\
ESTIMATES \(=\) variate & Saves estimates of the parameters \\
SE = variate & \begin{tabular}{l} 
Saves standard errors of the estimates \\
RESPONSE \(=\) variate
\end{tabular} \\
Saves the response variate defined for the generalized linear \\
OFFSET \(=\) variate & model \\
& \begin{tabular}{l} 
Saves the offset variate defined for the generalized linear \\
model
\end{tabular} \\
INDEX \(=\) variate & \begin{tabular}{l} 
Index variate used to produce the expanded covariates and \\
\\
factors
\end{tabular} \\
RISKSET \(=\) factor & \begin{tabular}{l} 
Saves the expanded time factor
\end{tabular} \\
2LOGLIKELIHOOD \(=\) scalar & Saves \(-2 \times\) log-likelihood for the fitted model
\end{tabular}

\section*{No parameters}

\section*{RPHVECTORS procedure}

Forms vectors for fitting a proportional hazards model as a generalized linear model (R.W. Payne).

\section*{Options}

SUBJECTS = factor
TIMES \(=\) factor or variate
CENSORED \(=\) variate

RESPONSE \(=\) variate
OFFSET = variate
INDEX \(=\) variate
NEWSUBJECTS = factor
NEWTIMES \(=\) factor or variate
NEWOFFSET = variate

\section*{Parameters}
\(\mathrm{X}=\) variates or factors
NEWX \(=\) variates or factors

Subject corresponding to each observation
Time of each observation
Contains the value 1 for censored observations, otherwise 0 ; if unset it is assumed that there is no censoring
Response variate for the generalized linear model
Offset variate
Mapping variate used to produce the expanded variables
Expanded subjects factor
Expanded times factor
Offset variate for fitting the proportional hazards model
Lists the x -variables that are to be expanded
Identifiers to store the expanded x -variables; if no NEWX is specified, the expanded values overwrite the original values of x

\section*{'RPLCONFIDENCE procedure}

Estimates profile likelihood confidence intervals of parameters in a linear or generalized linear model (V.M. Cave).
```

Options

```
\begin{tabular}{ll} 
PRINT = string token & Controls printed output (intervals); default inte \\
PLOT \(=\) string tokens & What to plot (profiles, intervals); default * i.e. no plots \\
DECIMALS = scalar & Number of decimal places for printing \\
CIPROBABILITY = scalar & Probability for the confidence intervals; default 0.95 \\
RANGE = scalar, variate or matrix & \begin{tabular}{l} 
Defines the range of values over which to evaluate a \\
parameter's profile likelihood; default 3
\end{tabular} \\
NPOINTS = scalar & \begin{tabular}{l} 
Defines the number of values at which to evaluate a \\
parameter's profile likelihood initially; default 10
\end{tabular} \\
NEXTRAPOINTS = scalar & \begin{tabular}{l} 
Defines the number of extra values to evaluate the profile \\
likelihoods at, within the neighbourhoods of the confidence
\end{tabular} \\
& \begin{tabular}{l} 
limits identified during the initial scan as defined by RANGE \\
and NPOINTS; default 10
\end{tabular} \\
SAVE = regression save structure & \begin{tabular}{l} 
Regression save structure to provide the information on the \\
regression model; default * uses the most recently fitted
\end{tabular} \\
& regression model
\end{tabular}

\section*{Parameters}

TERMS = formula

CISAVE \(=\) pointer

Controls printed output (intervals); default inte What to plot (profiles, intervals); default * i.e. no plots Number of decimal places for printing Probability for the confidence intervals; default 0.95 eve the range of values over which to evaluate Defines the number of values at which to evaluate a parameter's profile likelihood initially; default 10 Defines the number of extra values to evaluate the profile ikelihoods at, within the neighbourhoods of the confidence and NPOINTS; default 10 regression model; default * uses the most recently fitted regression model

Model terms for which profile likelihood confidence intervals of their parameters are to be estimated; if unset, intervals are produced for all parameters in the model
Pointer that saves the lower and upper limits of the profile likelihood intervals, along with the parameter estimates and a label identifying the parameters

\section*{RPOWER procedure}

Calculates the power (probability of detection) for regression models (R.W. Payne).

\section*{Options}

PRINT \(=\) string token TERMS \(=\) formula

FACTORIAL \(=\) scalar

PROBABILITY \(=\) scalar

TMETHOD = string token

SAVE = rsave

\section*{Parameters}

RESPONSE = variates
\(\mathrm{RDF}=\) scalars

RSS \(=\) scalars

POWER \(=\) scalars or variates

Prints the power (power); default powe Specifies the terms (x-variates, factors or model terms) to be fitted in the analysis when the responses to be detected are specified by the RESPONSE parameter Limit on the number of factors or variates in a model term generated from TERMS; default 3
Significance level at which the response is required to be detected (assuming a one-sided test); default 0.05
Type of test to be made (onesided, twosided, equivalence, noninferiority, fratio, chisquare); default ones
Regression save structure to provide the information about the regression model

Variate of fitted values calculated using regression parameters of the size to be detected; default * implies that the information is to be taken from a regression save structure Number of residual degrees of freedom; if unset, this is obtained from the analysis of RESPONSE or from the regression save structure
Anticipated residual sum of squares; if unset, this is obtained from the analysis of RESPONSE or from the regression save structure
Saves the power

\section*{RPROPORTIONAL procedure}

Fits the Cox proportional hazards model to survival data (A.I. Glaser \& R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & ```
Controls printed output (estimates, vcovariance,
residuals, survivor,_2loglikelihood); default esti,
    2lo
``` \\
\hline FACTORIAL \(=\) scalar & Sets a limit on the number of factors in the terms formed from the TERMS formula \\
\hline TIMES \(=\) factor or variate & Time of each observation \\
\hline CENSORED \(=\) variate & Contains the value 1 for censored observations, otherwise 0 ; if unset it is assumed that there is no censoring \\
\hline OFFSET = variate & Offset to include in the model \\
\hline BLOCKS \(=\) factor & Blocking factor defining groups of observations with different baseline hazard functions \\
\hline INITIAL \(=\) scalar or variate & Initial values for the parameters in the model \\
\hline RESIDUALS \(=\) variate & Saves the Cox-Snell residuals \\
\hline ESTIMATES \(=\) variate & Saves the parameter estimates \\
\hline SE = variate & Saves standard errors of the estimates \\
\hline VCOVARIANCE \(=\) symmetric matrix & Saves the variance-covariance matrix of the estimates \\
\hline _2LOGLIKELIHOOD = scalar & Saves \(-2 \times \log\)-likelihood for the fitted model \\
\hline DFTERMS \(=\) scalar & Saves the number of d.f. in the model specified by TERMS \\
\hline SURVIVOR \(=\) variate or matrix & Saves estimates of the survivor function, in a variate if BLOCKS is unset, otherwise in a matrix with a column for each block \\
\hline EXIT \(=\) scalar & Exit code, set to zero if the fit was successful \\
\hline MAXCYCLE = scalar & Maximum number of iterations to use; default 50 \\
\hline TOLERANCE \(=\) scalar & Defines the convergence criterion; default 0.000001 \\
\hline Parameter & \\
\hline TERMS \(=\) formula & Defines the model to fit \\
\hline
\end{tabular}

\section*{RQLINEAR procedure}

Fits and plots quantile regressions for linear models (D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, estimates, summary, fittedvalues, correlations, wald, jointqtest, separateqtest); default mode, esti, summ, wald \\
\hline \(\mathrm{PLOT}=\) string tokens & What to plot (rhistogram, phistograms, fittedvalues, estimates, bootestimates); default rhis, phis, fitt \\
\hline TERMS = formula & Terms to be fitted \\
\hline WEIGHTS = variate & Weights for data values; default equally weighted \\
\hline CONSTANT \(=\) string token & Whether to include a constant in the model (omit, estimate); default esti \\
\hline FACTORIAL \(=\) scalar & Limit on number of factors or variates in a term; default 3. \\
\hline FITINDIVIDUALLY = string token & Whether to fit the regression model one term at a time (yes, no); default no \\
\hline \(\mathrm{FULL}=\) string token & Whether to assign all possible parameters to factors and interactions (yes, no); default no \\
\hline BMETHOD \(=\) string token & Bootstrap method (xy, weightedxy); default xy \\
\hline \(\mathrm{NBOOT}=\) scalar & Number of times to bootstrap data to estimate confidence limits; default 200 \\
\hline SEED \(=\) scalar & Seed for bootstrap randomization; default 0 \\
\hline CIPROBABILITY \(=\) scalar & Probability level for confidence interval; default 0.95 \\
\hline XPLOT \(=\) variate & Variate to plot fitted values against; default 1st variate in model \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Response variate \\
\hline PRQUANTILES \(=\) scalars or variates & Proportions at which to calculate quantiles; default 0.5 \\
\hline
\end{tabular}

What to print (model, estimates, summary, fittedvalues, correlations, wald, jointqtest, separateqtest); default mode, esti, summ, wald estimates, bootestimates); default rhis, phis, fitt
Terms to be fitted
Weights for data values; default equally weighted Whether to include a constant in the model (omit, estimate), defaut esti

Whether to fit the regression model one term at a time (yes, no); default no
Whether to assign all possible parameters to factors and actions (yes, no), default no

Number of times to bootstrap data to estimate confidence limits; default 200
Seed for bootstrap randomization; default 0
Probability level for confidence interval; default 0.95
Variate to plot fitted values against; default 1st variate in model

Response variate
Proportions at which to calculate quantiles; default 0.5
\begin{tabular}{|c|c|}
\hline RESIDUALS \(=\) variates or pointers & Residuals from regression for each quantile \\
\hline FITTEDVALUES \(=\) variates or pointers & Fitted values from regression for each quantile \\
\hline ESTIMATES \(=\) variates or pointers & Estimated coefficients of model terms for each quantile \\
\hline \(\mathrm{SE}=\) variates or pointers & Standard errors of the estimated coefficients for each quantile \\
\hline \multicolumn{2}{|l|}{VCOVARIANCE \(=\) symmetric matrices or pointers} \\
\hline & Variance-covariance matrix of estimates for each quantile \\
\hline DF \(=\) scalars or variates & Numbers of degrees of freedom fitted by the model \\
\hline LOWER \(=\) variates or pointers & Lower confidence limit of coefficients for each quantile \\
\hline UPPER \(=\) variates or pointers & Upper confidence limit of coefficients for each quantile \\
\hline \multicolumn{2}{|l|}{LOWFITTEDVALUES \(=\) variates or pointers} \\
\hline & Lower confidence limit of fitted values for each quantile \\
\hline \multicolumn{2}{|l|}{UPPFITTEDVALUES \(=\) variates or pointers} \\
\hline & Upper confidence limit of fitted values for each quantile \\
\hline OBJECTIVE \(=\) scalars or variates & Optimal values of the objective function \\
\hline EXIT \(=\) scalars or variates & Exit codes indicating whether the estimation was successful \\
\hline
\end{tabular}

\section*{RQNONLINEAR procedure}

Fits and plots quantile regressions for nonlinear models (D.B. Baird).

\section*{Options}

PRINT \(=\) string tokens

PLOT \(=\) string tokens
\(\mathrm{X}=\) variates
\(\mathrm{DATA}=\) variates or factors

CONSTANT \(=\) string token
CALCULATION \(=\) expression structures
PARAMETERS \(=\) pointer
INITIAL \(=\) variate
LOWPARAMETERS \(=\) variate
UPPPARAMETERS \(=\) variate
STEPLENGTHS = variate LINEARPARAMETERS = pointer

METHOD \(=\) string token

NBOOT \(=\) scalar

SEED = scalar
CIPROBABILITY \(=\) scalar
MAXCYCLE \(=\) scalar
XPLOT \(=\) variate

\section*{Parameters}
\(\mathrm{Y}=\) variates
PRQUANTILE \(=\) scalars

RESIDUALS \(=\) variates
FITTEDVALUES \(=\) variates

What to print (model, estimates, summary, fittedvalues, correlations, monitoring); default mode, esti, summ
What to plot (rhistogram, phistograms, fittedvalues, confidencelimits); default phis, fitt, conf
Variates to fit in the model
Data to bootstrap in parallel with \(Y\); default takes the variates and factors of the same length as \(Y\) involved in the CALCULATION expressions
Whether to include a constant in the model (omit, estimate); default esti
Calculation of explanatory variates involving nonlinear parameters
Pointer to scalars representing the nonlinear parameters to be optimized in the expressions
Initial values for parameters
Lower bound for parameters
Upper bound for parameters
Step sizes for parameters
Pointer to scalars representing the linear parameters in the model (including the constant)
Which optimization method to use (gaussnewton, newtonraphson, fletcherpowell, simplex); default gaus
Number of times to bootstrap data to estimate confidence limits; default 100
Seed for bootstrap randomization; default 0
Probability level for confidence interval; default 0.95
Maximum number of iterations for optimization; default 200
Variate to plot fitted values against; default is the first variate on the right-hand side of the CALCULATION expressions

\section*{Response variates}

Proportion at which to calculate the quantile for each response variate; default 0.5
Residuals from the nonlinear model
Fitted values from the nonlinear model

ESTIMATES \(=\) variates
\(\mathrm{SE}=\) variates
VCOVARIANCE \(=\) symmetric matrices
LOWER \(=\) variates
UPPER \(=\) variates
LOWFITTEDVALUES \(=\) variates
UPPFITTEDVALUES \(=\) variates
OBJECTIVE = scalars
TITLE \(=\) texts

Estimates of the parameters in the model (nonlinear, linear and constant)
Standard errors of the parameters
Variance-covariance matrix for the parameters
Lower confidence limits for the parameters
Upper confidence limits for the parameters
Lower confidence limits for the fitted values
Upper confidence limits for the fitted values
Optimal values of the objective function
Titles for fitted value graphs

\section*{RQSMOOTH procedure}

Fits and plots quantile regressions for loess or spline models (D.B. Baird).

\section*{Options}

PRINT \(=\) string tokens
PLOT \(=\) string tokens
METHOD \(=\) string token
\(\mathrm{DF}=\) scalar
KNOTS \(=\) variate

KERNEL \(=\) string token

LMETHOD \(=\) string token
BANDWIDTH \(=\) scalar
ORDER = scalar
NGRIDPOINTS \(=\) scalar
NBOOT \(=\) scalar
SEED \(=\) scalar
CIPROBABILITY \(=\) scalar
TITLE \(=\) text
ARRANGEMENT \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) variates
\(\mathrm{x}=\) variates
PRQUANTILES \(=\) scalars or variates
GROUPS \(=\) factors
GRID \(=\) variates
OUTGROUPS \(=\) factors
SMOOTH \(=\) variates or pointers
SLOPE \(=\) variates or pointers RESIDUALS \(=\) variates or pointers FITTEDVALUES \(=\) variates or pointers LOWSMOOTH \(=\) variates or pointers UPPSMOOTH \(=\) variates or pointers
SESMOOTH \(=\) variates or pointers

What to print (model, summary, fittedvalues); default mode, summ
What to plot (rhistogram, fittedvalues); default fitt
Smoothing method (loess, spline); default spli
Spline Degrees of Freedom (3-40); default 4
Knot points for smoothing splines; default * uses equally spaced percentiles of the x variate
What Kernel to use for Loess (normal, epanechnikov, quadratic, triweight, tukeybiweight, quartic, linear, uniform); default norm
Span method for Loess (constant, adaptive); default adap
Bandwidth for smoothing between 0 and 1 ; default 0.4
Order of local polynomial; default 1
Number of points on smooth curve; default 100
Number of times to bootstrap data to estimate confidence limits; default 0 i.e. no bootstrapping
Seed for bootstrap randomization; default 0
Probability level for confidence interval; default 0.95
Title for plots; default * generates titles from the structure names
Whether to plot fitted regressions by the GROUPS parameter in a trellis plot (single, trellis); default sing

Response variate
Explanatory variate
Proportions at which to calculate quantiles; default 0.5
Groups for which independent curves are fitted
Grid of equidistant points at which the smooth is calculated
Groups for the fitted smoothed values saved by the Sмоотн parameter
Fitted smooth estimated at the NGRIDPOINTS points given in GRID
Fitted slope from model for the same points as SMOOTH
Residuals from regression for each quantile
Fitted values from regression for each quantile
Lower confidence limit of smooth for each quantile
Upper confidence limit of smooth for each quantile
Standard error of coefficients for each quantile

\section*{RQUADRATIC procedure}

Fits a quadratic surface and estimates its stationary point (R.W. Payne).

\section*{Options}
\({ }^{\dagger}\) PRINT \(=\) string tokens
```

CONSTANT = string token
FACTORIAL = scalars
POOL = string token
DENOMINATOR = string token

```
NOMESSAGE \(=\) string tokens
FPROBABILITY = string token
TPROBABILITY \(=\) string token
SELECTION \(=\) string tokens
PROBABILITY \(=\) scalar
STATIONARY \(=\) scalars
SESTATIONARY \(=\) scalars
TYPESTATIONARY = scalars
PREDICTIONS = matrix
\(\mathrm{PLOT}=\) string tokens
COLOURS \(=\) text or variate

\section*{Parameters}
\(\mathrm{X}=\) variates

ESTIMATE \(=\) scalars
SE = scalars

LEVELS \(=\) variates
What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, predictions, stationary); default mode, summ, esti
How to treat the constant (estimate, omit); default esti
Limit for expansion of model terms; default 3
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual \(\mathrm{ms}(\mathrm{ss}\), ms); default ss
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes, no); default no
Printing of probabilities for t-statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \(\% \mathrm{cv}\) only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \% Cv if DIST=gamma, and disp for other distributions
Probability level for confidence intervals for parameter estimates; default 0.95
Saves the estimated value of \(y\) at the stationary point Saves the standard error of the estimated value of \(y\) at the stationary point
Identifies the type of stationary point (2 for maximum, 1 for maximum on a ridge, -2 for minimum, -1 for minimum on a ridge, or 0 for saddle point)
Saves predictions
What to plot (contour, surface); default * i.e. nothing
Colours for the plots
X -variates whose linear, quadratic and product terms define the quadratic surface
Estimated value of each \(x\)-variate at the stationary point
Standard error of the estimated value of each \(x\)-variate at the stationary point
Values at which to evaluate each x for plots and predictions

\section*{RRETRIEVE procedure}

Retrieves a regression save structure from an external file (R.W. Payne).

\section*{No options}

\section*{Parameters}

FILENAME = texts
\(\mathrm{EXIT}=\) scalars

SAVE = regression save structures

Name of the file storing the save structure Scalar that contains the value one if the save structure could not be retrieved successfully, otherwise zero
Save structure that has been retrieved

\section*{RSCHNUTE procedure}

Fits a general 4 parameter growth model to a non-decreasing Y-variate; synonym FITSCHNUTE (A. Keen).

\section*{Options}

PRINT \(=\) string tokens
\(\mathrm{T} 1=\) scalar
\(\mathrm{T} 2=\) scalar

NGRID \(=\) scalar

PLUS \(=s c a l a r\)
\(\mathrm{A}=\) scalar
\(\mathrm{B}=\) scalar
ALOWER = scalar

AUPPER \(=\) scalar

BLOWER \(=\) scalar

BUPPER = scalar
MAXCYCLE \(=\) scalar
TOLERANCE = scalar
Parameters
\(\mathrm{T}=\) variates
MGRID \(=\) matrices
\(\mathrm{RT}=\) pointers
OWNT \(=\) variates

ROWNT \(=\) pointers
EXTRA \(=\) pointers

What to print (model, summary, estimates, correlations, fittedvalues, accumulated, monitoring); default mode, summ, esti
Timepoint defining \(y_{1}\); default the first timepoint with \(\mu>0.4\) \(\times y_{2}\left(\mu\right.\) and \(y_{2}\) are obtained by an approximating model)
Timepoint defining \(y_{2}\); default * takes the last observed timepoint
The number of points for a grid search with parameters \(a\) and/or \(b\); default 7
The constant added to the observed and fitted values, in order to obtain a suitable variance function in case of other than normal error distribution; default * takes the smallest possible value for the response given the rounding off
Fixed value for parameter \(a\) of the growth model, defining a submodel; only 0 is appropriate; default *
Fixed value for parameter \(b\) of the growth model; default * Lower bound for parameter \(a\) of the growth model; default \(-40 /\left(t_{2}-t_{1}\right)\)
Upper bound for parameter a of the growth model; default \(40 /\left(t_{2}-t_{1}\right)\)
Lower bound for parameter \(b\) of the growth model; default -20
Upper bound for parameter \(b\) of the growth model; default 20
Maximum number of iterations; default 20
Convergence criterion; default 0.0004
Observed timepoints for each fit
Deviances from the gridsearch in \(a\) and/or \(b\)
Pointer of two variates: the fitted growth rates and relative growth rates at the observed timepoints
A variate of arbitrary timepoints to be specified by the user e.g. for obtaining a smooth plot of fitted values Pointer of three variates: the fitted values, growth rates and relative growth rates at the timepoints specified in OWNT Pointer of eight scalars, with: 1) the starting point of the curve below which the response equals 0,2) the endpoint of the curve where the reponse is infinite, 3) the lower asymptote of the curve, 4) the upper asymptote of the curve, 5) the inflexion point, 6) the fitted value at the point of inflexion, 7) the growth rate at the point of inflexion, 8) the relative growth rate at the point of inflexion; if no finite value for a scalar exists, the value is set to be missing

\section*{RSCREEN procedure}

Performs screening tests for generalized or multivariate linear models (H. van der Voet).

\section*{Options}

PRINT \(=\) string tokens
```

CONSTANT = string token
FACTORIAL = scalar
NOMESSAGE = string tokens

```

Printed output required (model, pool, starscheme, tests, pvalues); default mode, pool, star
How to treat the constant (estimate, omit); default esti Limit for expansion of model terms; default 3
Which warning messages to suppress when fitting the complete model (aliasing, marginality): warning

\author{
EXCLUDEHIGHER = string token \\ FORCED \(=\) formula \\ TESTED = text \\ NELEMENTS = variate \\ MARGINAL \(=\) pointer
}

CONDITIONAL \(=\) pointer

MVINCLUDE \(=\) string token

\section*{Parameter}

FREE = formula
messages are always suppressed when fitting models for individual tests; default *
Whether to exclude higher-order interactions in the conditional regression model for each tested term (yes, no); default no Terms always included in the model (no tests on these terms); default *
To save the names of individual terms which are tested
To save the number of identifiers composing each individual term
To save results from marginal tests for each tested term in a pointer containing the test statistic, corresponding degrees of freedom and the calculated probability
To save results from conditional tests for each tested term in a pointer containing the test statistic, corresponding degrees of freedom and the calculated probability
Whether to include units with missing values in non-relevant explanatory variates or factors when calculating conditional and marginal tests (yes, no); default no

List of explanatory variates and factors, or model formula; each term from the expanded FREE formula is tested in a marginal and in a conditional test, unless the term is also part of the FORCED formula

\section*{RSEARCH procedure}

Helps search through models for a regression or generalized linear model (P.W. Goedhart).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Printed output required (model, results); default mode, resu \\
\hline METHOD \(=\) string tokens & Model selection method to employ (allpossible, forward, backward, fstepwise, bstepwise, accumulated, pooled); default allp \\
\hline FORCED = formula & Model formula to include in every model; default * \\
\hline CONSTANT \(=\) string token & How to treat the constant (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of all model terms; default 3 \\
\hline DENOMINATOR \(=\) string token & Whether to base ratios in accumulated summaries on rms from model with smallest residual ss or smallest residual ms (ss , ms); default s s \\
\hline INRATIO \(=\) scalar & Criterion for inclusion of terms for forward selection, backward elimination and stepwise regression; default 1.0 \\
\hline OUTRATIO \(=\) scalar & Criterion for exclusion of terms for forward selection, backward elimination and stepwise regression; default 1.0 \\
\hline MAXCYCLE \(=\) scalar & Limit on number of times to repeat stepwise selection methods, unless no change is made; default 50 \\
\hline CRITERION \(=\) string token & Criterion for selecting best models among all possible models (r2, adjusted, cp, ep, aic, bic, sic, meandeviance, deviance); default adju \\
\hline EXTRA \(=\) string token & Criterion which is also printed for the selected best models (r2, adjusted, cp, ep, aic, bic, sic, meandeviance, deviance); default cp when DISPERSION=*, and mean otherwise \\
\hline AFACTORIAL \(=\) scalar & Limit for expansion of FREE model terms for the fitting of all possible models; default 3 \\
\hline PENALTY \(=\) scalar & Penalty for Mallows Cp and Akaike's information criterion AIC; default 2 \\
\hline NTERMS \(=\) scalar & Limit on the number of terms to be fitted when fitting all \\
\hline
\end{tabular}

NBESTMODELS \(=\) scalar
PPROBABILITY \(=\) scalar

FINALMODELS = pointer

ALLMODELS \(=\) pointer

ESTIMATES = pointer
\(\mathrm{SE}=\) pointer

RESULTS \(=\) pointer

STATISTICS = pointer
\(\mathrm{DF}=\) pointer \(\quad\) Pointer to save variates for all possible regression models

PROBABILITIES \(=\) pointer

MARGINALTERMS \(=\) string token

\section*{Parameter}

FREE = formula
containing the degrees of freedom for the numerator of the test statistics
possible models; default 16
Number of best models printed for each subset size; default 8 When METHOD=allpossible, only models with all probabilities less than PPROBABILITY are printed; default 1 i.e. all models are printed

Pointer to save the final models for forward, backward, fstepwise and bstepwise regression methods
Pointer to save formulae for all possible regression models containing the fitted terms of all the models; every formula includes the FORCED formula if set
Pointer to save variates for all possible regression models containing the parameter estimates
Pointer to save variates for all possible regression models containing standard errors of the parameter estimates
Pointer to save variates for all possible regression models containing the criteria (r2, adjusted, cp, ep, aic, sic or bic, deviance, meandeviance), degrees of freedom for residual and the total number of fitted parameters \(p\) Pointer to save variates for all possible regression models containing the test statistics. These are F-to-delete statistics (i.e. deviance ratios) when the DISPERSION option of the MODEL directive is set to *, and Chi-square-to-delete statistics (i.e. deviance differences scaled by the dispersion parameter) for a fixed dispersion parameter

Pointer to save variates for all possible regression models containing the probabilities of the test statistics
How to treat terms that are marginal to other terms in the FREE formula (forced, free); default forc

Model formula specifying the candidate model terms

\section*{RSPREADSHEET procedure}

Puts results from a regression, generalized linear or nonlinear model into a spreadsheet (R.W.
Payne).
Options
\begin{tabular}{|c|c|}
\hline DISPERSION \(=\) scalar & Dispersion parameter to be used as estimate for variability in s.e.s; default as set in MODEL \\
\hline RMETHOD = string token & Type of residual to use (deviance, Pearson, simple, deletion); default * i.e. as set in MODEL \\
\hline DMETHOD = string token & basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default * i.e. as set in MODEL \\
\hline SPREADSHEET \(=\) string tokens & Which spreadsheets to form (summary, estimates, fittedvalues, accumulated); default summary, estimates, fittedvalues \\
\hline SPESTIMATES \(=\) string tokens & What to include in the estimates spreadsheet (estimates, se, testimates, prestimates); default esti, se, test, pres \\
\hline SPFITTEDVALUES = string tokens & What to include in the fitted-values spreadsheet (y , fittedvalues, residuals, leverages, sefittedvalues); default \(y\), fitt, resi, leve \\
\hline
\end{tabular}

SAVE \(=\) regression save structure

\section*{Parameters}
\(\mathrm{Y}=\) variates
Specifies which analysis to save; default * i.e. most recent regression

Y-variate of the analysis to be saved
```

RESIDUALS $=$ variates
FITTEDVALUES = variates
LEVERAGES $=$ variates
ESTIMATES $=$ variates
$\mathrm{SE}=$ variates
TESTIMATES $=$ variates
PRESTIMATES $=$ variates
SEFITTEDVALUES = variates
SUMMARY = pointers
ACCUMULATED $=$ pointers
OUTFILENAME = texts
Identifier of variate to save the residuals from each analysis; default residuals
Identifier of variate to save the fitted values from each analysis; default fittedvalues
Identifier of variate to save the leverages from each analysis; default leverages
Identifier of variate to save the estimates from each analysis; default estimates
Identifier of variate to save s.e.'s of the estimates from each analysis; default se
Identifier of variate to save the $t$-statistics of the estimates from each analysis; default t_statistics
Identifier of variate to save the t-probabilities of the estimates from each analysis; default t_probabilities
Identifier of variate to save s.e.'s of the fitted values from each analysis; default sefittedvalues
Identifier of pointer to save the summary analysis-of-variance (or deviance) from each analysis; default summary Identifier of pointer to save the accumulated analysis-ofvariance (or deviance) from each analysis; default accumulated
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

```

\section*{RSTEST procedure}

Compares groups of right-censored survival data by nonparametric tests (D.A. Murray).

\section*{Options}
```

PRINT = string token Controls printed output (test); default test
METHOD = string tokens Types of test required (logrank, breslow, petoprentice,
taroneware); default logr, bres, peto, taro
BLOCKS = factor

```

\section*{Parameters}

TIMES \(=\) variates
CENSORED \(=\) variates

GROUPS \(=\) factors
TESTS \(=\) pointers \(\quad\) Pointer to variates (length 3) to save test statistic, d.f. and probability value for each chosen method

\section*{RSTORE procedure}

Stores a regression save structure in an external file (R.W. Payne).

\section*{No options}

Parameters
FILENAME \(=\) texts \(\quad\) Name of the file to store the save structure
\(\mathrm{EXIT}=\) scalars \(\quad\) Scalar that contains the value one if the save structure could not be stored successfully, otherwise zero
SAVE \(=\) regression save structures

Save structure to be stored; default stores the save structure from the most recent regression analysis

\section*{RSURVIVAL procedure}

Models survival times of exponential, Weibull, extreme-value, log-logistic or lognormal distributions (R.W. Payne \& D.A. Murray).

\section*{Options}
```

PRINT = string tokens
Controls printed output (model, deviance, summary,

``` estimates, correlations, fittedvalues,
TIMES \(=\) variate
DISTRIBUTION \(=\) string token
CENSORED \(=\) variate
GRAPHICS \(=\) string token
ALPHA \(=\) scalar
2LOGLIKELIHOOD \(=\) scalar
SIGMA \(=\) scalar
SURVIVOR = variate
PARAMETERIZATION = string token
MAXCYCLE = scalar
TOLERANCE = scalar
Parameter
TERMS \(=\) formula
accumulated, loglikelihood); default mode, summ, esti
Time of each observation
Distribution of the survival times (exponential, weibull, extremevalue, loglogistic, lognormal); default expo
Indicator for censored observations: 0 if uncensored, 1 if right censored (subject survived the whole trial), -1 if left censored (log-logistic distribution only); default assumes no censored observations
Controls the plotting of diagnostic graphs of the empirical survivor function against the estimate produced by the model (lineprinter, highresolution) default * i.e. none Saves the estimated value of the parameter \(\alpha\) of the Weibull and extreme-value distributions, if the scalar is input with a non-missing value this provides the initial estimate for \(\alpha\) (which will also be the final estimate if MAXCYCLE=1) Saves - 2 multiplied by the log-likelihood Saves the estimated value of the shape parameter sigma of the log-logistic and lognormal distributions Saves estimates of the survivor function
Controls the parameterization used when saving the survivor function for the Weibull distribution (ph, aft); default ph Maximum number of iterations to use to estimate \(\alpha\); default 20 Convergence limit for \(\alpha\); default \(10^{-5}\)

Defines the model to fit

\section*{RTCOMPARISONS procedure}

Calculates comparison contrasts within a multi-way table of means (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (contrasts); default cont \\
\hline COMBINATIONS \(=\) string token & Factor combinations for which to form the predicted means (full, present, estimable); default esti \\
\hline ADJUSTMENT \(=\) string token & Type of adjustment to be made when forming the predicted means (marginal, equal, observed); default marg \\
\hline WEIGHTS = table & Weights classified by some or all of the factors in the model; default * \\
\hline OFFSET \(=\) scalar & Value of offset on which to base predictions; default mean of offset variate \\
\hline \(\mathrm{METHOD}=\) string token & Method of forming margin (mean, total); default mean \\
\hline ALIASING \(=\) string token & How to deal with aliased parameters (fault, ignore); default faul \\
\hline BACKTRANSFORM \(=\) string token & What back-transformation to apply to the values on the linear scale, before calculating the predicted means (link, none); default link \\
\hline SCOPE \(=\) string token & Controls whether the variance of predictions is calculated on the basis of forecasting new observations rather than summarizing the data to which the model has been fitted (data, new); default data \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, nonlinear); default * \\
\hline DISPERSION \(=\) scalar & Value of dispersion parameter in calculation of s.e.s; default is as set in the MODEL statement \\
\hline DMETHOD = string token & Basis of estimate of dispersion, if not fixed by DISPERSION option (deviance, Pearson); default is as set in the MODEL statement \\
\hline NBINOMIAL \(=\) scalar & Supplies the total number of trials to be used for prediction \\
\hline
\end{tabular}

SAVE \(=\) identifier

\section*{Parameters}

CONTRAST \(=\) tables
ESTIMATES \(=\) scalars
\(\mathrm{SE}=\) scalars
with a binomial distribution (providing a value \(n\) greater than one allows predictions to be made of the number of "successes" out of \(n\), whereas the value one predicts the proportion of successes); default 1
Regression or ANOVA save structure for the analysis from which the comparisons are to be calculated

Defines the comparisons to be estimated
Saves the estimated contrasts
Saves standard errors of the contrasts

\section*{'RTOBITPOISSON procedure}

Uses the Tobit method to fit models to censored Poisson data (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, censored); default mode, summ, esti \\
\hline TERMS \(=\) formula & Defines the model to be fitted \\
\hline CONSTANT \(=\) string token & How to treat the constant (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of model terms; default 3 \\
\hline POOL \(=\) string token & Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no \\
\hline DENOMINATOR \(=\) string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss , ms); default ss \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t-statistics (yes, no); default no \\
\hline SELECTION \(=\) string tokens & Statistics to be displayed in the summary of analysis produced by PRINT=summary (\%variance, \%ss, adjustedr2, r2, dispersion, \%meandeviance, \%deviance, aic, bic, sic); default disp \\
\hline DISPERSION \(=\) scalar & Dispersion parameter; default 1 \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline WEIGHTS = variate & Variate of weights for weighted regression; default * \\
\hline GROUPS \(=\) factor & Absorbing factor defining the groups for within-groups regression; default * \\
\hline MAXCYCLE \(=\) scalar & Sets a limit on the number of iterations performed by the E-M algorithm; default 100 \\
\hline TOLERANCE \(=\) variate & Sets tolerance limits for convergence of the E-M algorithm on the estimates of the censored observations; default 0.001 \\
\hline DIRECTION \(=\) string token & Whether the data are left or right censored (left, right); default righ \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variate & Response variate to be analysed; must be set \\
\hline BOUND = scalar & Censoring threshold; must be set \\
\hline INITIAL \(=\) scalar or variate & Scalar or a variate providing starting values for the censored observations in the E-M algorithm; default Bound+1 \\
\hline NEWY \(=\) variate & Saves a copy of the response variate with the censored observations replaced by their estimates \\
\hline OFFSET \(=\) variate & Offset variate \\
\hline
\end{tabular}

EXIT \(=\) scalar
SAVE \(=\) regression save structure

Exit status (0 for success, 1 for failure to converge)
Save structure from the analysis of the data with censored observations replaced by their estimates

\section*{RUGPLOT procedure}

Draws "rugplots" to display the distribution of one or more samples (P.W. Lane).

\section*{Options}
\begin{tabular}{|c|c|}
\hline GRAPHICS \(=\) string token & What type of graphics to use (highresolution, lineprinter); default high \\
\hline TITLE \(=\) text & Title for diagram; default * \\
\hline AXISTITLE \(=\) text & Title for axis; default * \\
\hline WINDOW \(=\) scalar & Window in which to draw high-resolution plot; default *, taken as 11 if SCREEN=clear, or 1 if SCREEN=keep \\
\hline SCREEN \(=\) string token & Whether to clear screen before high-resolution plot (clear, keep); default clea \\
\hline ORIENTATION \(=\) string token & Orientation of plots (down, across); default down \\
\hline JITTER \(=\) number & Ratio of jitter width to range of data in high-resolution plot; default 0.01 \\
\hline SEED \(=\) number & Seed for generating random numbers used in jittering; default 0 , i.e. continue from last generation, or initialize from system clock \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA \(=\) variates & Data to be summarized; no default \\
\hline GROUPS \(=\) factor & Factor to divide values of a single variate into groups; default \\
\hline RUGLABELS \(=\) texts & Labels for individual rugs; default *, i.e. identifiers of variates or labels or levels of factor \\
\hline POSITION \(=\) scalar or variate & Position on \(x\)-axis (or on \(y\)-axis if ORIENTATION=across) at which to plot each rug; if GROUPS is set, positions for each level of the factor are taken from a variate; default is to draw a single rug on the axis, and to spread multiple rugs across the window \\
\hline
\end{tabular}

\section*{RUNTEST procedure}

Performs a test of randomness of a sequence of observations (P.W. Goedhart).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string token & Controls printed output (results); default resu \\
NULL \(=\) scalar & Defines the boundary between the two types; default 0
\end{tabular}

\section*{Parameters}

DATA \(=\) variates \(\quad\) Sequences of observations
SAVE \(=\) pointers \(\quad\) To save the number of runs, the number of positive and negative observations and the lower and upper tail probabilities of the test

\section*{'RVALIDATE procedure}

Fits regression models to validate predictions, for example from a deterministic model, against observed data (R.W. Payne).

\section*{Options}
```

PRINT = string tokens
RPRINT = string tokens

```

What to print (summary, tests, nullmodel, slopeone, constantzero, fullmodel); default summ, test What to print from the regressions (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence, graph, checks); default mode, summ, esti
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss ,

NOMESSAGE \(=\) string tokens

FPROBABILITY \(=\) string token

TPROBABILITY \(=\) string token
SELECTION \(=\) string tokens

PROBABILITY = scalar

\section*{Parameters}

OBSERVATIONS \(=\) variates
PREDICTIONS = variates
\(\mathrm{SAVE}=\) pointers
ms); default s
Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes, no); default no
Printing of probabilities for t-statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \(\% \mathrm{cv}\) only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \% Cv if DIST=gamma, and disp for other distributions
Probability level for confidence intervals for parameter estimates; default 0.95

Observed data
Predictions from the model
Saves information from the analysis

\section*{RWALD procedure}

Calculates Wald and F tests for dropping terms from a regression (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (waldtests); default wald \\
\hline FACTORIAL \(=\) scalar & Limit on number of factors in the model terms generated from the TERMS parameter; default 3 \\
\hline \(\mathrm{Y}=\) variate & Y-variate from whose analysis to calculate the statistics; default is the last \(y\)-variate in SAVE \\
\hline \(\mathrm{RDF}=\) scalar & Saves the residual d.f. used to calculate F probabilities when the dispersion is not fixed \\
\hline SAVE \(=\) regression save structure & Specifies the save structure (from MODEL) containing the analysis for which to calculate the tests; default is the save structure from the most recent regression \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline TERMS \(=\) formula & Model terms for which tests are required \\
\hline \multicolumn{2}{|l|}{WALDSTATISTIC = scalar or pointer to scalars} \\
\hline & Saves Wald statistics \\
\hline DF \(=\) scalar or pointer to scalars & Saves d.f. of Wald statistics \\
\hline \multicolumn{2}{|l|}{PROBABILITY \(=\) scalar or pointer to scalars} \\
\hline & Saves the probabilities for the Wald statistics if the dispersion is fixed, or the corresponding F statistics if it is estimated \\
\hline
\end{tabular}

\section*{RXGENSTAT procedure}

Submits a set of commands externally to R and reads the output (M.F. D'Antuono \& D.A. Murray). Options
\begin{tabular}{ll}
PRINT \(=\) string tokens & Controls printed output (summary, output); default outp \\
RPATH \(=\) text & Path specifying the location of the R executable; by default \\
& Genstat searches for a version of R installed within \\
& C: \(\backslash\) program files \((x 86) \backslash\) Ror \(C: \backslash\) program files \(\backslash \mathrm{R}\) \\
REXE \(=\) text & Name of the R executable to run; default 'Rterm.exe' \\
RARGS \(=\) text & Command line arguments to be used with the R executable; \\
& default '--no-restore -- no-save' \\
SCRIPT \(=\) text & A set of R commands to run within \(R\) \\
SFILE \(=\) text & A file containing a set of \(R\) commands to run within R
\end{tabular}

RGEN \(=\) text
ROUT \(=\) text
Parameters
WORKDIRECTORY \(=\) texts

IDATA \(=\) pointers
IRDAFILE \(=\) texts
ISAVE \(=\) texts

ORDAFILE \(=\) text

Name of a file to save the full set of commands used within R Name of a file to save the output from R

Working directory to use within R ; default current Genstat working directory
Pointer to data structures to export to R (the data are exported into the file specified by the IRDAFILE parameter)
Name of an \(R\) data (rda) file to import into \(R\)
Pointer to data structures to import from \(R\) (the data are imported from the file specified by the ORDAFILE parameter) Name of an \(R\) data (rda) file used to export data from \(R\)

\section*{RYPARALLEL procedure}

Fits the same regression model to several response variates, and collates the output (P. Brain, R.W. Payne \& D.B. Baird).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string tokens & Controls printed output (model, summary); default * i.e. none \\
TERMS \(=\) formula & Defines the regression model to fit on each variate \\
WEIGHTS \(=\) variate or symmetric matrix & Weights for the regression; default 1 \\
OFFSET \(=\) variate & Offset; default * i.e. none \\
CONSTANT \(=\) string token & How to treat the constant (estimate, omit); default esti \\
FACTORIAL = scalar & Limit for expansion of model terms; default 3 \\
FULL = string token & Whether to assign all possible parameters to factors and \\
& interactions (yes, no); default no \\
POOL = string token & Whether to pool the information on each term in the analysis \\
& of variance (yes, no); default no \\
RMETHOD = string token & \begin{tabular}{l}
Type of residuals to form (deviance, Pearson, simple); \\
default devi
\end{tabular} \\
SPREADSHEET = string tokens & \begin{tabular}{l}
What results to save in a book of spreadsheets (aov, \\
\\
\\
\\
residuals, fittedvalues, estimates, se, testimates, \\
prestimates); default * i.e. none
\end{tabular}
\end{tabular}

\section*{Parameters}
\(\mathrm{Y}=\) variates or pointers
RESIDUALS \(=\) matrices FITTEDVALUES \(=\) matrices
ESTIMATES \(=\) matrices
\(\mathrm{SE}=\) matrices
TESTIMATES \(=\) matrices
PRESTIMATES \(=\) matrices
\(\mathrm{DF}=\) pointers
SS \(=\) pointers or variates
MS \(=\) pointers or variates
RDF \(=\) variates
RSS \(=\) variates
RMS \(=\) variates
TDF \(=\) variates
TSS \(=\) variates
TMS \(=\) variates
\(\mathrm{VR}=\) pointers or variates
PRVR \(=\) pointers or variates
Y-values for each set of analyses
Saves residuals from each set of analyses
Saves fitted values from each set of analyses
Saves estimates from each set of analyses
Saves s.e.'s of estimates
Saves t-statistics of estimates
Saves t-probabilities of estimates
Saves degrees of freedom for the model terms or variates in each analysis of variance
Saves sums of squares for the model terms in each analysis of variance
Saves mean squares for the model terms in each analysis of variance
Saves degrees of freedom from the "residual" lines in each analysis of variance
Saves sums of squares from the "residual" lines
Saves mean squares from the "residual" lines
Saves degrees of freedom from the "total" lines in each analysis of variance
Saves sums of squares from the "total" lines
Saves mean squares from the "total" lines
Saves variance ratios for the model terms in each analysis of variance
Saves probabilities of the variance ratios

Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

\section*{ROINFLATED procedure}

Fits zero-inflated regression models to count data with excess zeros (D.A. Murray).

\section*{Options}
PRINT = string token
DISTRIBUTION \(=\) string token
METHOD \(=\) string token
CONSTANT \(=\) string token
ZCONSTANT = string token
XTERMS \(=\) formula
ZTERMS \(=\) formula
WEIGHTS = variate
OFFSET \(=\) variate
MAXCYCLE = scalar
TOLERANCE = scalar or variate

\section*{Parameters}
\(\mathrm{Y}=\) variates \(\quad\) Response variate
RESIDUALS \(=\) variates \(\quad\) Saves the simple residuals
FITTEDVALUES \(=\) variates
ESTIMATES \(=\) variates
\(\mathrm{SE}=\) variates
RSAVE \(=\) identifiers
ZSAVE \(=\) identifiers
Controls printed output (model, summary, estimates, fittedvalues, monitoring); default mode, summ, esti
Distribution of response variable (poisson, negativebinomial); default pois
Method used for model fitting (em, conditional); default em
How to treat constant for count state (estimate, omit); default esti
How to treat constant for zero-inflation state (estimate, omit); default esti
List of explanatory variates and factors, or model formula for count state of model
List of explanatory variates and factors, or model formula for zero-inflation state of model
Variate of weights for weighted zero-inflated regression (Lambert model only)
Offset variate to be used in the model (Lambert model only)
Maximum number of iterations for EM algorithm; default 100
Convergence criteria for EM algorithm, k and in the
generalized linear models; default! (1.E-4, 1.E-4, 1.E-4)

Saves the fitted values
Saves the estimates of the parameters
Saves the standard errors of the estimates
Saves the regression structure for the final generalized model fitted for the count model
Saves the regression structure for the final binomial regression fitted for the zero-inflation model

\section*{ROKEEP procedure}

Saves information from a zero-inflated regression model for count data with excess zeros fitted by R0inflated (D.A. Murray).

Options
\begin{tabular}{ll}
RESIDUALS = variate & \begin{tabular}{l}
Saves the simple residuals \\
FITTEDVALUES = variate \\
ESTIMATE \(=\) variate
\end{tabular} \\
SE = variate & \begin{tabular}{l}
Saves the fitted values
\end{tabular} \\
VCOVARIANCE = symmetric matrix & \begin{tabular}{l}
Saves the sarameter estimates \\
Saves the variance-cors of the parameter estimates matrix of estimates for the ZIP \\
Saves \\
and ZINB models
\end{tabular} \\
XFITTEDVALUES = variate & \begin{tabular}{l}
Saves the fitted values for the count model \\
XSEFITTEDVALUES = variate
\end{tabular} \\
\begin{tabular}{l}
Saves the standard errors of the fitted values for the fitted \\
values of the count model
\end{tabular} \\
ZFITTEDVALUES = variate & \begin{tabular}{l}
Saves the fitted values for the zero model \\
ZSEFITTEDVALUES = variate
\end{tabular} \\
\begin{tabular}{l}
Saves the standard errors of the fitted values for the fitted \\
values of the zero model
\end{tabular} \\
2LOGLIKELIHOOD = scalar & Saves -2 times the log-likelihood
\end{tabular}

FITTEDVALUES = variate
ESTIMATE = variate
\(\mathrm{SE}=\) variate

XFITTEDVALUES \(=\) variate
XSEFITTEDVALUES = variate

\section*{No parameters}

Saves the simple residuals
Saves the fitted values
Saves the parameter estimates
Saves the standard errors of the parameter estimates
and ZINB models
Saves the fitted values for the count model
Saves the standard errors of the fitted values for the fitted Salues of the count model

Saves the standard errors of the fitted values for the fitted values of the zero model
Saves - 2 times the log-likelihood

\section*{R2LINES procedure}

Fits two-straight-line (broken-stick) models to data (A.W.A. Murray \& J.T. Wood). Options
\begin{tabular}{|c|c|}
\hline PRINT = string token & What to print (model, summary, estimates, \\
\hline & fittedvalues, intercepts); default mode, summ, esti \\
\hline \(\mathrm{PLOT}=\) string tokens & What to plot (breakpoint, lines, residuals); default * i.e. nothing \\
\hline HORIZONTAL \(=\) string token & Forces either the left- the or right-hand line to be horizontal (left, right); default * i.e. neither \\
\hline CIPROBABILITY \(=\) scalar & Sets the probability level of the confidence interval about the x value at the intersection; default 0.95 \\
\hline NGRIDLINES \(=\) scalar & Controls the number of points used in the initial search for the intersection of the lines; default 100 \\
\hline TERMS \(=\) variates & Additional \(x\)-variates to include in the model; default none \\
\hline \(\mathrm{METHOD}=\) string token & Optimization method (gaussnewton, newtonraphson, fletcherpowell); default newt \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Response variates to be modelled \\
\hline \(\mathrm{X}=\) variates & Explanatory variable for each response variate \\
\hline TITLE = texts & Title to use on the graphs for each response variate \\
\hline FITTEDVALUES \(=\) variates & Saves fitted values \\
\hline RESIDUALS \(=\) variates & Saves standardized residuals \\
\hline ESTIMATES \(=\) variates & Saves estimates from each model (i.e. intersection coordinates and slopes of the fitted lines) \\
\hline \(\mathrm{SE}=\) variates & Saves standard errors of the estimates \\
\hline INTERCEPTS = variates & Saves the intercepts \\
\hline LOWER \(=\) scalars & Saves the lower bound of the confidence interval about the \(x\) value at the intersection \\
\hline UPPER \(=\) scalars & Saves the upper bound of the confidence interval about the \(x\) value at the intersection \\
\hline PARTIALLIKELIHOOD = pointers & Saves the partial likelihood and grid values for partial likelihood plots \\
\hline
\end{tabular}

\section*{SAGRAPES procedure}

Produces statistics and graphs for checking sensory panel performance (D.I. Hedderley).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string tokens & \begin{tabular}{l}
Controls printed output (aovtables, graphs, \\
summarystatistics, tables); default grap, tabl
\end{tabular}
\end{tabular}

TREATMENTS \(=\) factor
SESSIONS = factor

ASSESSORS \(=\) factor
SCALING \(=\) string token

DESCRIPTION \(=\) text

\section*{Parameter}

DATA \(=\) variates
summarystatistics, tables); default grap, tabl

Factor defining the different treatments that are being assessed Factor defining the sessions on which the assessments were done
Factor defining the individual assessors
Equal scaling for x and y axes on Drift-Unreliability and Discrimination-Disagreement graphs (equal, nome); default none
Extra information to print on graphs
Variate for each attribute, containing the recorded score

\section*{SAMPLE procedure}

Samples from a set of units, possibly stratified by factors (P.W. Lane).

\section*{Options}

SEED \(=\) scalar

NVALUES \(=\) scalar

Seed for the random number generator; default 0 i.e. continue from previous generation
Number of units from which a simple sample is to be taken; default * i.e. as defined by UNITS statement

\section*{Parameters}

NSAMPLE \(=\) scalars or tables

SAMPLE \(=\) identifiers

Number of values in simple sample, or table of numbers of values at each combination of levels of its classifying factors; no default
Structure to store the result; no default

\section*{SBNTEST procedure}

Calculates the sample size for binomial tests (R.W. Payne \& D.A. Murray).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT = string token & What to print (replication, power); default repl, powe \\
\hline PRMETHOD \(=\) string token & Method to be used to calculate the probabilities for the binomial test (angular, normalapproximation, exact); default norm \\
\hline PROBABILITY \(=\) scalar & Significance level for the test; default 0.05 \\
\hline POWER = scalar & The required power (i.e. probability of detection) of the test; default 0.9 \\
\hline TMETHOD = string token & Type of test to be done (onesided, twosided); default ones \\
\hline NULL = scalar & Probability under the null hypothesis for the one-sample test; default 0.5 \\
\hline RATIOREPLICATION \(=\) scalar & Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1 \\
\hline REPLICATION \(=\) variate & Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{P} 1=\) scalars & Probability to detect in sample 1 \\
\hline \(\mathrm{P} 2=\) scalars & Probability to detect in sample 2 \\
\hline NREPLICATES = scalars & Saves the required number of replicates \\
\hline VREPLICATION = variates & Numbers of replicates for which powers have been calculated \\
\hline VPOWER = variates & Power (i.e. probability of detection) for the various numbers of replicates \\
\hline
\end{tabular}

\section*{SCALAR directive}

Declares one or more scalar data structures.

\section*{Options}

VALUE = scalar
MODIFY \(=\) string token
IPRINT = string tokens

\section*{Parameters}

IDENTIFIER = identifiers
VALUE \(=\) scalars
DECIMALS \(=\) scalars
EXTRA \(=\) texts
MINIMUM \(=\) scalars
MAXIMUM = scalars
DREPRESENTATION \(=\) scalars or texts

Value for all the scalars; default is a missing value Whether to modify (instead of redefining) existing structures (yes, no); default no
Information to be used to identify the scalars in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the scalars
Value for each scalar
Number of decimal places for printing
Extra text associated with each identifier
Minimum value for the contents of each structure
Maximum value for the contents of each structure
Default format to use when the contents represents a date and time

\section*{SCORRELATION procedure}

Calculates the sample size to detect specified correlations (R.W. Payne).

\section*{Options}

PROBABILITY \(=\) scalar

POWER \(=\) scalar

TMETHOD \(=\) string token

RATIOREPLICATION \(=\) scalar

REPLICATION \(=\) variate

\section*{Parameters}

COR1 \(=\) scalars
COR2 = scalars
NREPLICATES = scalars
VREPLICATION \(=\) variates
VPOWER \(=\) variates

Significance level at which the correlation or difference between correlations is to be tested; default 0.05
The required power (i.e. probability of detection) of the test; default 0.9
Whether to a one- or two-sided test is to be made (onesided, twosided); default ones
Ratio of replication sample2:sample1 (i.e. the size of sample for group 2 should be RATIOREPLICATION times the size of sample for group 1); default 1
Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Anticipated correlation in group 1
Anticipated correlation in group 2
Saves the required number of replicates
Numbers of replicates for which powers have been calculated Power (i.e. probability of detection) for the various numbers of replicates

\section*{SDISCRIMINATE procedure}

Selects the best set of variates to discriminate between groups (D.B. Baird, L.H. Schmitt \& J.W. McNicol).

\section*{Options}

PRINT \(=\) string tokens

PLOT \(=\) string tokens
DDISCRIMINANT \(=\) string tokens

METHOD \(=\) string token
NSELECT \(=\) scalar
CRITERION \(=\) string token
MODELCHOICE \(=\) string token
VALIDATIONMETHOD = string token

NSIMULATIONS \(=\) variate

NCROSSVALIDATIONGROUPS \(=\) scalar
SEED = scalar
YROOT \(=\) scalar
XROOT \(=\) scalar

\section*{Parameters}

DATA = pointers

GROUPS \(=\) factors
FORCED = pointers
SELECTED = pointers
STEPS = pointers
ERRORRATE \(=\) scalars
SPECIFICITY = matrices

Printed output from the analysis (summary, steps, validation, specificity, discrimination, monitoring); default summ, vali, spec, disc
What plots to produce (errorrate, steps, specificity, discriminant); default erro, steps, spec, disc
What to display on the discriminant plot (means, mlabels, scores, polygons, confidencecircle); default means, mlabels, scores, conf
The variable selection method to use (forward, backward); default forw
Number of variates to select; default 4
Criterion to use to select variables (wilkslambda, crossvalidation, bootstrap, jackknife); default wilk Which model to save (optimal, nselect); default opti
Validation method to use to calculate error rates (bootstrap, crossvalidation, jackknife, prediction); default cros
Number of bootstraps or cross-validation sets to use for selection and for validation; default ! \((10,50)\)
Number of groups for cross-validation, default 10
Seed for random number generation; default 0
Specifies the root for plotting on the \(y\)-axis
Specifies the root for plotting on the x -axis
Each pointer contains a set of variates that are available to be selected
Define groupings for the units in each training set
Variates that must be included in the model
Saves the variates in the final model
Saves the criterion values for each step in the model selection
Saves the validation error rate for the final model
Saves the specificity table for the final model

ALLOCATION \(=\) factors
\(\mathrm{LRV}=L R V S\)
SCORES \(=\) matrices or pointers

Saves the groups allocated by the final model Saves the LRVs from the final discriminant analysis Save discriminant scores for unit from the final model

\section*{SEDLSI procedure}

Calculates least significant intervals (M.C. Hannah).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (delta, lsi, fittedsed, discrepancy, maxdiscrepancy, \%discrepancy); default delta, lsi, maxd \\
\hline METHOD \(=\) string token & Selects the method for computing the deltas (leastsquares, max, maxpse); default leas \\
\hline PLOT \(=\) string tokens & What to plot (sed, lsi); default sed, lsi \\
\hline CHECKFIT \(=\) string token & Which pairwise contrasts to use in printed output or plots involving the fitted SEDs (specified, all); default spec \\
\hline PROBABILITY \(=\) scalar & Significance level for the least significent intervals; default 0.05 . \\
\hline DF \(=\) scalar & Degrees of freedom for the \(t\)-distribution use in calculation of the least significent intervals; default * assumes an infinite number of degrees of freedom (i.e. a Normal rather than a tdistribution) \\
\hline WINDOW = scalar & Window in which to plot the graphs \\
\hline TITLE \(=\) text & Title for the graphs; default 'Estimates with LSIs by Treatment' \\
\hline YTITLE \(=\) text & Title for the y-axis; default 'Estimates ' \\
\hline Parameters & \\
\hline ESTIMATES \(=\) tables or variates & Parameter estimates; if these are not supplied SEDLSI can calculate the parameters \(\left\{\delta_{i}\right\}\) but not the LSIs \\
\hline SED \(=\) symmetric matrices & Matrix containing standard errors of (pairwise) differences between estimates \\
\hline VCOVARIANCE \(=\) symmetric matrices & Matrix containing variances and covariances of estimates \\
\hline WEIGHTS = symmetric matrices & Weight (or importance) to be used for each pairwise difference; default is a matrix of ones (i.e. all pairwise differences of equal interest) \\
\hline LABELS \(=\) texts & Text vector (e.g. treatment labels) for labelling output; default takes the labels of levels of the factor classifying an ESTIMATES table or (if ESTIMATES is a variate or unset) row labels from SED or VCOVARIANCE \\
\hline DELTA \(=\) variates & Saves the estimated parameters \(\left\{\delta_{i}\right\}\) \\
\hline LSI \(=\) pointers & Saves details of the least significant intervals \\
\hline FITTEDSED \(=\) symmetric matrices & Saves the fitted SED matrices \\
\hline
\end{tabular}

What to print (delta, lsi, fittedsed, discrepancy, maxdiscrepancy, \%discrepancy); default delta, lsi, maxd
Selects the method for computing the deltas (leastsquares, max, maxpse); default leas
What to plot (sed, lsi); default sed, lsi involving the fitted SEDs (specified, all); default spec Significance level for the least significent intervals; default 0.05 .
 number of degrees of freedom (i.e. a Normal rather than a t distribution)
Window in which to plot the graphs
Title for the graphs; default 'Estimates with LSIs by Treatment'

Parameter estimates; if these are not supplied SEDLSI can calculate the parameters \(\left\{\delta_{i}\right\}\) but not the LSIs
Matrix containing standard errors of (pairwise) differences between estimates

Matrix containing variances and covariances of estimates difference; default is a matrix of ones (i.e. all pairwise differences of equal interest)
Text vector (e.g. treatment labels) for labelling output; default akes the labels of levels of the factor classifying an labels from SED or VCOVARIANCE
Saves the estimated parameters \(\left\{\delta_{i}\right\}\)
Saves the fitted SED matrices

\section*{SED2ESE procedure}

Calculates effective standard errors that give good approximate standard errors of differences (R.W. Payne).

\section*{Option}

PRINT \(=\) string token

\section*{Parameters}

SED \(=\) symmetric matrices
ESE \(=\) variates or tables DISCREPANCY \(=\) symmetric matrices
\%ACCOUNTED \(=\) scalars

Controls printed output (ese, discrepancy, maxdiscrepancy, \%discrepancy, \%accounted); default * i.e. none

Standard errors of differences to be approximated Saves the effective standard errors
Saves the discrepancies between the standard errors of differences and the approximate values calculated from the effective standard errors
Percentage of variation amongst the standard errors of
differences accounted for by the approximate values calculated from the effective standard errors
Table that can be duplicated to provide a table to store the effective standard errors

\section*{SET directive}

Sets details of the "environment" of a Genstat job.

Options
\begin{tabular}{|c|c|}
\hline INPRINT \(=\) string tokens & Printing of input as in PRINT option of INPUT (statements, macros, procedures, unchanged); default unch \\
\hline OUTPRINT \(=\) string tokens & Additions to output as in PRINT option of OUTPUT (dots, page, unchanged); default unch \\
\hline DIAGNOSTIC \(=\) string tokens & Defines the least serious class of Genstat diagnostic which should still be generated (messages, warnings, faults, extra, unchanged); default unch \\
\hline ERRORS \(=\) scalar & Number of errors that a job may contain before it is abandoned (0 implies no limit); default is to leave unchanged \\
\hline FAULT \(=\) text & Sets the Genstat fault indicator (for example, FAULT=* clears the last fault); default is to leave the indicator unchanged \\
\hline PAUSE \(=\) scalar & Number of lines to output before pausing (interactive use only; 0 implies no pausing); default is no change \\
\hline PROMPT \(=\) text & Characters to be printed for the input prompt; default is to leave unchanged \\
\hline NEWLINE \(=\) string token & How to treat a new line ((significant, ignored);); default is no change \\
\hline CASE \(=\) string token & Whether lower- and upper-case (small and capital) letters are to be regarded as identical in identifiers (significant, ignored); default is no change \\
\hline FIELDWIDTH \(=\) scalar & Fieldwidth to be used as a default minimum by PRINT and other output commands \\
\hline SIGNIFICANTFIGURES \(=\) scalar & Minimum number of significant figures to be supplied in the default formats determined by PRINT and other output commands \\
\hline SEEDS \(=\) pointer or scalar & Defines the current default seeds to be used for random numbers in various parts of Genstat \\
\hline RUN \(=\) string token & Whether or not the run is interactive (interactive, batch); by default the current setting is left unchanged \\
\hline UNITS \(=\) identifier & To (re)set the current units structure; default is to leave unchanged \\
\hline BLOCKSTRUCTURE \(=\) identifier & To (re)set the internal record of the most recent \\
\hline & BLOCKSTRUCTURE statement; default is to leave unchanged \\
\hline TREATMENTSTRUCTURE \(=\) identifier & To (re)set the internal record of the most recent \\
\hline & TREATMENTSTRUCTURE statement; default is to leave unchanged \\
\hline COVARIATE \(=\) identifier & To (re)set the internal record of the most recent COVARIATE statement; default is to leave unchanged \\
\hline ASAVE \(=\) identifier & To (re)set the current ANOVA save structure; default is to leave unchanged \\
\hline DSAVE \(=\) identifier & To (re)set the current save structure for the high-resolution graphics environment; default is to leave unchanged \\
\hline MSAVE \(=\) identifier & To (re)set the current save structure for multivariate analysis; default is to leave unchanged \\
\hline RSAVE \(=\) identifier & To (re)set the current regression save structure; default is to leave unchanged \\
\hline TSAVE \(=\) identifier & To (re)set the current time-series save structure; default is to leave unchanged \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VSAVE \(=\) identifier & To (re)set the current REML save structure; default is to leave unchanged \\
\hline VCOMPONENTS \(=\) identifier & To (re)set the current REML model definitions, as specified by VCOMPONENTS and VSTRUCTURE; default is to leave unchanged \\
\hline WORDLENGTH \(=\) string token & Length of word (8 or 32 characters) to check in identifiers, directives, options, parameters and procedures (long, short); default * i.e. no change \\
\hline CAPTIONS \(=\) string tokens & Controls which captions are displayed (minor, major, meta, unchanged); default unch \\
\hline TYPESET \(=\) string tokens & Controls when typesetting commands within textual strings are used (output, graphics); if unset, the existing setting is left unchanged \\
\hline CMETHOD \(=\) string token & Controls whether number settings for colour options and parameters are interpreted as RGB values or as numbers of standard colours (rgb, standard); if unset, the existing setting is left unchanged \\
\hline DATASPACE \(=\) scalar or variate & Updates the current data space allocations; if unset, the existing allocations are left unchanged \\
\hline WORKINGDIRECTORY \(=\) text & Sets the working directory; default is to leave this unchanged \\
\hline ALGORITHMS \(=\) string token & Controls the use of enhanced computing algorithms (standard, mkl); if unset, the existing setting is left unchanged \\
\hline ACTIONAFTERFAULT \(=\) string token & Controls what happens after a fault (continue, stop); if unset, the existing setting is left unchanged \\
\hline UNSETDUMMY \(=\) string token & Controls what happens if you specify an unset dummy as the setting of an option or parameter that expects another type of data structure (fault, ignore, warn); if unset, the existing setting is left unchanged \\
\hline LANGUAGE \(=\) text & Text with either one or two values to specify a preferred language for output and (optionally) a second choice in case the preferred language is unavailable \\
\hline YEAR2DIGITBREAK \(=\) scalar & Controls how 2 digits can be used to specify years \\
\hline TIMEWITHSECONDS \(=\) string token & Controls whether seconds are included with the time12 and time 24 date representations; (absent, present, unchanged); default unch \\
\hline
\end{tabular}

\section*{No parameters}

\section*{SETALLOCATIONS directive}

Runs through all ways of allocating a set of objects to subsets.

Options
```

NREQUIRED = scalar
UNIQUE = string token
NFOUND = scalar
NPOSSIBLE = scalar
GROUPS = factor or pointer
UNITS = variate
START = factor

```

\section*{Parameters}

SETSIZE = scalars
ELEMENTS \(=\) variates or pointers

Number of allocations that are required; default 1 Whether only unique allocations are to be formed, allowing the reordering of the subsets (yes, no); default no
Number of allocations that has been found
Saves the total of allocations that can be formed
Saves the allocations, in a single factor if NREQUIRED \(=1\), otherwise in a pointer to NFOUND factors
Supplies numbers for the objects; if unset, the positive integers \(1,2 \ldots\) are used
Previous allocation; if unset the allocations start as a partitioning of the objects in the ordering in the UNITS variate

Number of objects in each subset
Saves the objects allocated to each subset, in a single variate if NREQUIRED \(=1\), otherwise in a pointer to NFOUND variates

\section*{SETCALCULATE directive}

Performs Boolean set calculations on the contents of vectors or pointers.

\section*{Options}
\begin{tabular}{|c|c|}
\hline NULL = scalar & Returns either 1 or 0 according to whether or not the result is a null (i.e. empty) set \\
\hline FREPRESENTATION = string token & How to represent factors in a calculation that contains only factors (levels, labels); default leve \\
\hline TOLERANCE \(=\) scalar & Tolerance to use when comparing numerical values; default \(10^{-6}\) \\
\hline SUBSTITUTE \(=\) string token & Whether to substitute dummies within pointers in the expression (yes, no); default no \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (novalues); default * i.e. none \\
\hline Parameter & \\
\hline expression & Expression defining the calculation to be performed \\
\hline
\end{tabular}

\section*{SETDEVICE procedure}

Opens a graphical file and specifies the device number on basis of its extension (M.P. Boer \& J.T.N.M. Thissen).

\section*{No options}

Parameters
FILENAME \(=\) texts \(\quad\) Name of the graphical file including one of the possible extensions .bmp, .emf, .eps, .gmf, .jpg, .jpeg, .pdf, .png, .tif or .tiff; must be set
NUMBER \(=\) scalars \(\quad\) Saves the device number corresponding to the graphical format specified by parameter FILENAME
ACTION \(=\) string token \(\quad\) How to create graphs for file types such as .emf, .jpg, .tif or .png (asynchronous, synchronous); default asyn

\section*{SETOPTION directive}

Sets or modifies defaults of options of Genstat directives or procedures.

\section*{Option}

DIRECTIVE = string token \(\quad\) Directive (or procedure) to be modified

\section*{Parameters}
\begin{tabular}{ll}
NAME \(=\) string tokens & Option names \\
DEFAULT \(=\) identifiers & New default values
\end{tabular}

\section*{SETPARAMETER directive}

Sets or modifies defaults of parameters of Genstat directives or procedures.

\section*{Option}

DIRECTIVE \(=\) string token
Directive (or procedure) to be modified

\section*{Parameters}

NAME \(=\) string tokens \(\quad\) Parameter names
DEFAULT \(=\) identifiers \(\quad\) New default values

\section*{SETRELATE directive}

Compares the distinct values contained in two data structures.

\section*{Options}
\begin{tabular}{ll}
FREPRESENTATION = string token & \begin{tabular}{l}
How to represent factors in a comparison between two factors \\
(levels, labels, ordinals); default leve
\end{tabular} \\
LFACTORIAL = scalar & Limit on number of factors or variates in the terms formed \\
from a LEFT formula; default * i.e. none \\
RFACTORIAL = scalar & Limit on number of factors or variates in the terms formed
\end{tabular}
\begin{tabular}{|c|c|}
\hline TOLERANCE \(=\) scalar & Tolerance to use when comparing numerical values; default \(10^{-6}\) \\
\hline SUBSTITUTE \(=\) string token & Whether to substitute dummies within LEFT or RIGHT pointers and formulae (yes, no); default no \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline LEFT \(=\) identifiers & First structures in each comparison \\
\hline RIGHT \(=\) identifiers & Second structures in each comparison \\
\hline CONTAINS \(=\) scalars & Returns 1 or 0 according to whether or not LEFT contains RIGHT \\
\hline EQUALS \(=\) scalars & Returns 1 or 0 according to whether or LEFT and RIGHT contain exactly the same distinct set of items \\
\hline INCLUDEDIN \(=\) scalars & Returns 1 or 0 according to whether or not LEFT is included in RIGHT \\
\hline DISTINCT \(=\) scalars & Returns 1 or 0 according to whether or not LEFT and RIGHT are distinct \\
\hline
\end{tabular}

\section*{SET2FORMULA directive}

Forms a model formula using a set of structures supplied in a pointer.

\section*{Option}

METHOD \(=\) string token \(\quad\) Relationship of the structures within the formula (combined,

\section*{Parameters}

POINTER \(=\) pointers crossed, nested); default comb

FORMULA \(=\) formula structures
Sets of structures to be used to form the formulae Formulae constructed from the sets

\section*{SHELLEXECUTE directive}

Launch executables or open files in another application using their file extension, PC Windows only.

\section*{No options}

\section*{Parameters}
\begin{tabular}{ll}
FILE = text & Name of the file to execute \\
STATUS = scalar & Indicates whether the execution of the file was successful (0) \\
or not (1) \\
MESSAGE \(=\) text & \begin{tabular}{l}
Saves the error message associated with a failure to execute \\
the file
\end{tabular}
\end{tabular}

\section*{SIGNTEST procedure}

Performs a one or two sample sign test (E. Stephens \& P.W. Goedhart).

\section*{Options}
```

PRINT = string token
METHOD = string token
GROUPS = factor
NULL = scalar

```

\section*{Parameters}
\(\mathrm{Y} 1=\) variates

\section*{Y2 = variates}

STATISTIC \(=\) scalars
NBINOMIAL \(=\) scalars
PROBABILITY \(=\) scalars

Whether to print the test statistic with the associated probability and sample size (test); default test
Type of test (twosided, greaterthan, lessthan); default twos
Defines the groups for a two-sample test if only the Y1 parameter is specified
Median value or difference in medians under the null hypothesis; default 0

Data values for a one-sample sign test (neither Y2 nor GROUPS specified), or for the first sample of a two-sample test (Y2 also specified) or the values in both samples of a two-sample test (GROUPS specified but not Y2)
Data values for the second sample of a two-sample test
To save the sign test statistic
To save the effective sample size
To save the probability level of the test

\section*{SIMPLEX procedure}

Searches for the minimum of a function using the Nelder-Mead simplex algorithm (J.A. Nelder \& W. van den Berg).
Options
\begin{tabular}{ll}
PRINT = string tokens & \begin{tabular}{l}
Controls printed output (results, monitoring); default \\
resu
\end{tabular} \\
CALCULATION = expression structures & \begin{tabular}{l}
Expressions to calculate the target function \\
FUNCTIONVALUE = scalar
\end{tabular} \\
& \begin{tabular}{l}
Identifier of the scalar, calculated by CALCULATION, whose \\
value is to be minimized
\end{tabular} \\
DATA = any type & Data to be used with procedure SIMPLEXFUNCTION \\
POINTS = pointer & Saves the points of the final simplex \\
FVALUES = pointer & Saves the function values at the points \\
MAXCYCLE = scalar & Maximum number of iterations; default 500 \\
TOLERANCE = scalar & Convergence criterion; when standard deviation of function \\
& values is lower than TOLERANCE convergence is assumed to be \\
Parameters & reached; default 1. E-9 \\
PARAMETER = scalars & Parameters to be estimated \\
LOWERINITIAL = scalars & Lower starting values for the parameters \\
UPPERINITIAL = scalars & Upper starting values for the parameters
\end{tabular}

\section*{SKEWSYMMETRY procedure}

Provides an analysis of skew-symmetry for an asymmetric matrix (P.G.N. Digby).

\section*{Option}

PRINT \(=\) string tokens \(\quad\) Printed output from the analysis (roots, scores); default *

\section*{Parameters}

DATA \(=\) matrices
ROOTS \(=\) diagonal matrices

\section*{SCORES \(=\) matrices}
i.e. no output

Asymmetric (square) matrices to be analysed Stores the squared singular values from the analysis; the structure has one value for each plane fitted in the analysis (e.g. if the DATA matrix has 11 rows and columns, the ROOTS diagonal matrix will have 5 values)
Stores the coordinates of the points from the analysis; each matrix has the same number of rows as the corresponding DATA matrix, and has 2 columns for each plane fitted in the analysis (e.g. if the DATA matrix has 11 rows and columns, the SCORES matrix will have 11 rows and 10 columns)

\section*{SKIP directive}

Skips lines in input or output files.

\section*{Options}
\begin{tabular}{ll}
CHANNEL = scalar & \begin{tabular}{l}
Channel number of file; default current channel of the \\
specified type \\
FILETYPE = string token \\
STYLE \(=\) string token
\end{tabular} \\
\begin{tabular}{l}
Type of the file concerned (input, output); default inpu \\
Style to use when skipping output (plaintext, formatted); \\
default * uses the current style of the channel
\end{tabular} \\
\(\quad\) identifiers & \begin{tabular}{l}
How many lines to skip; for input files, a text means skip until \\
the contents of the text have been found, further input is then \\
taken from the following line
\end{tabular}
\end{tabular}

\section*{SLCONCORDANCE procedure}

Calculates the sample size for Lin's concordance correlation coefficient (R.W. Payne).

\section*{Options}

PRINT \(=\) string token
What to print (replication, power); default repl, powe
```

PROBABILITY = scalar
Parameters
CORRELATION $=$ scalars
CONCORDANCE $=$ scalars
MEANSHIFT $=$ scalars
SDRATIO $=$ scalars
NREPLICATES $=$ scalars
VREPLICATION $=$ variates
VPOWER $=$ variates
Significance level at which the non-reproducibility is to be tested; default 0.05

```
```

POWER = scalar

```
POWER = scalar
REPLICATION = variate
```

REPLICATION = variate

```
```

The required power (i.e. probability of detection) of the test; default 0.9
Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates
Correlation for two samples with the smallest amount of nonreproducibility required to be detected
Value of Lin's concordance for two samples with the smallest amount of non-reproducibility required to be detected Value of the shift in means (divided by the harmonic mean of the standard deviations) for two samples with the smallest amount of non-reproducibility required to be detected Value of the ratio of the standard deviations for two samples with the smallest amount of non-reproducibility required to be detected
Saves the required number of replicates
Numbers of replicates for which powers have been calculated Power (i.e. probability of detection) for the various numbers of replicates

```

\section*{SMANNWHITNEY procedure}

Calculates the sample sizes for the Mann-Whitney test (R.W. Payne).

\section*{Options}

PRINT = string token
PROBABILITY = scalar
POWER = scalar

TMETHOD = string token

RATIOREPLICATION = scalar

REPLICATION \(=\) variate

\section*{Parameters}

NULLPROBABILITIES \(=\) variates
ODDSRATIO = scalars
NREPLICATES = scalars
VREPLICATION = variates
VPOWER \(=\) variates

What to print (replication, power); default repl, powe Significance level at which the test is to be made; default 0.05 The required power (i.e. probability of detection) of the test; default 0.9
Whether to a one- or two-sided test is to be made (onesided, twosided); default twos
Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1
Sample sizes for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Probabilities under null hypothesis
Odds ratio for test group vs. control Saves the required sample size
Sample sizes for which powers have been calculated Power (i.e. probability of detection) for the various numbers of replicates

\section*{SMCNEMAR procedure}

Calculates sample sizes for McNemar's test (R.W. Payne).

\section*{Options}

PRINT = string token
PRMETHOD \(=\) string token

PROBABILITY \(=\) scalar
POWER = scalar

TMETHOD = string token

What to print (replication, power); default repl, powe Method to be used to calculate the power of the McNemar test (normalapproximation, exact); default exac Significance level at which the test is to be made; default 0.05 The required power (i.e. probability of detection) of the test; default 0.9
Whether a one- or two-sided test is to be made (onesided,
```

REPLICATION = variate

```

\section*{Parameters}

CHANGEPROBABILITY = scalars
RATIOPROBABILITIES = scalars
NREPLICATES \(=\) scalars
VREPLICATION \(=\) variates
VPOWER \(=\) variates
twosided); default twos
Sample sizes for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Probability of any sort of change
Ratio of the two probabilities of change
Saves the required sample size
Sample sizes for which powers have been calculated Power (i.e. probability of detection) for the various numbers of replicates

\section*{SMOOTHSPECTRUM procedure}

Forms smoothed spectrum estimates for univariate time series (G. Tunnicliffe Wilson \& S.J. Welham).

\section*{Options}
\[
\begin{aligned}
& \text { PRINT = string token } \\
& \text { METHOD = string token } \\
& \text { BANDWIDTH = scalar } \\
& \text { MAXLAG = scalar }
\end{aligned}
\]
\[
\text { DIVISIONS }=\text { scalar }
\]

PROBABILITY \(=\) scalar
TAPER \(=\) scalar

SHAPE \(=\) scalar
\(\mathrm{YLOG}=\) string token
\(\mathrm{XLOG}=\) string token

GRAPHICS \(=\) string token
WINDOW \(=\) scalar
PENS = variate

\section*{Parameters}

SERIES = variates
LENGTH \(=\) scalars or variates

SPECTRUM \(=\) variates

LOWER \(=\) scalars or variates

Controls printed output (description); default desc Method to be used for smoothing (lagwindow, direct, YuleWalker, exactautoregressive); default lagw Frequency domain bandwidth for the smoothing window; must be set if METHOD=dire
Specifies the cut-off lag (i.e. the maximum lag of autocovariance used in the spectrum calculation) for METHOD=lagw, or the order of the autoregression for METHOD=Yule or exac; if this option is not set then BANDWIDTH must be set, and will be used to determine an appropriate value of MAXLAG
Determines the number of frequency divisions into which the range \([0.0,0.5]\) is divided for calculating the spectrum; the default is chosen so that the bandwidth covers about four intervals
Probability value used for confidence limits; default 0.9
The proportion of data to be tapered (applied for all settings of METHOD except exac); default 0.0
The shape of the trapezium window (a value of 1.0 specifies a rectangular, and 0.0 a triangular window); default 0.5
Whether to plot with a log-transformed Y-axis (yes, no); default no
Whether to plot with a log-transformed X-axis (yes, no); default no
What sort of graphics to use (lineprinter, highresolution); default high Window to be used for plotting; default 1
The two pens to be used (after being defined appropriately) for drawing the plots; default! \((1,2)\)

The series for which the spectrum is to be calculated Scalar specifying that the first \(N\) units of the series are to be used, or a variate specifying the first and last units of the series to be used
Saves the smoothed spectrum; need not be declared in advance, but will be set up as a variate of the appropriate length within the procedure
Scalar to save the multiplier of the spectrum used to calculate the lower limit, or a variate to save the values of the lower limit

UPPER \(=\) scalars or variates

FREQUENCY \(=\) variates

Scalar to save the multiplier of the spectrum used to calculate the upper limit, or a variate to save the values of the upper limit
Saves the frequency values at which the spectrum is calculated

\section*{SOM procedure}

Declares a self-organizing map (R.W. Payne).

\section*{No options}

\section*{Parameters}
\begin{tabular}{ll}
IDENTIFIER \(=\) identifiers & Identifiers of the SOMs \\
VARIABLENAMES \(=\) texts & Names of variables corresponding to the weights of each SOM \\
ROWS \(=\) scalars or variates & Number of rows or row coordinates for the map \\
COLUMNS \(=\) scalars or variates & Number of columns or column coordinates for the map \\
DMETHOD \(=\) string tokens & \begin{tabular}{l}
Method for calculating the distances of data points from the \\
modes (euclidean, cityblock); default eucl
\end{tabular} \\
WMETHOD \(=\) string tokens & \begin{tabular}{l}
Method for calculating the contribution of a data point to each \\
node when revising the weights (gaussian, neighbour); \\
default gaus
\end{tabular}
\end{tabular}

\section*{SOMADJUST procedure}

Performs adjustments to the weights of a self-organizing map (R.W. Payne).

\section*{Options}
```

SOM = pointer
DATA = matrix or pointer
DMETHOD = string token
WMETHOD = string token

```

\section*{Parameters}

ALPHA = scalars
SIGMA \(=\) scalars
THRESHOLD \(=\) scalars
ERRORS \(=\) matrices

TOTALERROR = scalars
FITNODES \(=\) factors

Self-organizing map
Data values for training the map
Method for calculating the distances of data points from the modes (euclidean, cityblock); default eucl Method for calculating the contribution of a data point to each node when revising the weights (gaussian, neighbour); default gaus

Alpha value for each iteration
Sigma value for each iteration when WMETHOD=gaussian
Threshold for each iteration when WMETHOD=neighbour Saves the reconstruction errors at the nodes of the map after each iteration
Saves the total reconstruction error after each iteration Saves the nodes allocated to the data points after each iteration

\section*{SOMDESCRIBE procedure}

Summarizes values of variables at nodes of a self-organizing map (R.W. Payne).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string token & \begin{tabular}{l}
Controls whether or not the summaries are printed \\
(summaries); default summ
\end{tabular} \\
DATA \(=\) matrix or pointer & \begin{tabular}{l}
Data values to identify the positions of the samples on the map \\
SOM \(=\) pointer
\end{tabular} \\
\begin{tabular}{l}
Specifies the map
\end{tabular} \\
PEWSOM = pointer \\
Y = varamerates or factors & Saves the map, augmented by the summary information \\
METHOD = string tokens & \begin{tabular}{l}
Data values to be summarized \\
How to summarize each Y (mean, mode, median, minimum, \\
maximum, sd, variance); default mode for factors, mean for \\
variates
\end{tabular}
\end{tabular}

\section*{SOMESTIMATE procedure}

Estimates the weights for self-organizing maps (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls output (weights, errors, monitoring, report); default weig, repo \\
\hline PLOT \(=\) string token & Controls what to plot (fit, totalerror); default fit \\
\hline DMETHOD \(=\) string token & Method for calculating the distances of data points from the modes (euclidean, cityblock); default eucl \\
\hline WMETHOD \(=\) string token & Method for calculating the contribution of a data point to each node when revising the weights (gaussian, neighbour); default gaus \\
\hline ALPHA \(=\) scalar or variate & Initial alpha value for each set of iterations; default ! (1, 0.1) \\
\hline SIGMA \(=\) scalar or variate & Initial sigma value for each set of iterations when WMETHOD=gaussian; default! (1, 0.01) multiplied by the maximum distance between nodes \\
\hline THRESHOLD \(=\) scalar or variate & Initial distance threshold for each set of iterations when WMETHOD=neighbour; default! \(0.5,0.1\)) multiplied by the maximum distance between nodes \\
\hline NCYCLE \(=\) scalar or variate & Number of cycles in each set of iterations; default 500 \\
\hline NSTOP = scalar & Number of consecutive cycles with no changes required for convergence; default 10 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline SOM \(=\) pointers & Save the information about each map \\
\hline DATA \(=\) matrices or pointers & Data values for training each map \\
\hline ERRORS = matrices & Reconstruction errors at the nodes of each map \\
\hline FITROWS \(=\) factors & Save the positions of the rows allocated to the data points \\
\hline FITCOLUMNS \(=\) factors & Save the positions of the columns allocated to the data points \\
\hline \(\mathrm{Y}=\) variates & Save y-values used to plot the data points \\
\hline \(\mathrm{X}=\) variates & Save x -values used to plot the data points \\
\hline PEN \(=\) scalars, variates or factors & Pens used to plot the maps \\
\hline SEED \(=\) scalars & Seed for the random numbers used to initialize the weights in each map \\
\hline
\end{tabular}

\section*{SOMIDENTIFY procedure}

Allocates samples to nodes of a self-organizing map (R.W. Payne).

\section*{No options}

\section*{Parameters}

DATA \(=\) matrices or pointers \(\quad\) Data values used to allocate the samples to the nodes of the map
SOM = pointers \(\quad\) Save the information about each map
FITNODES \(=\) factors \(\quad\) Save nodes allocated to the data points
FITROWS \(=\) factors \(\quad\) Save the positions of the rows allocated to the data points
FITCOLUMNS \(=\) factors

\section*{SOMPREDICT procedure}

Makes predictions using a self-organizing map (R.W. Payne).

\section*{Options}

PRINT \(=\) string token
```

SOM = pointer

```
YNAMES \(=\) text
METHODS \(=\) string tokens
YSAVE \(=t e x t\)

Controls whether or not the predictions are printed
(predictions); default pred
Specifies the map
Names of variables to predict; default * gives predictions for all the variables
Types of predictions to give (mean, mode, median, minimum, maximum, sd, variance); default mean, mode, medi, mini, maxi, sd, vari
Saves a text with a unit for each set of predictions giving the
\(\mathrm{MSAVE}=t e x t\)

\section*{Parameters}

DATA \(=\) matrices or pointers
UNITLABELS \(=\) variates or texts

PREDICTIONS \(=\) variates or pointers
name of the corresponding \(y\)-variable
Saves a text with a unit for each set of predictions giving the name of the corresponding method

Data values to identify the positions of the new samples on the map
Labels for the predictions (to identify the samples); default takes the row labels if DATA is a matrix or any unit labels if DATA is a pointer to a set of variates
Save the predictions

\section*{SORT directive}

Sorts units of vectors according to an index vector.

\section*{Options}
\begin{tabular}{ll}
INDEX = vectors & \begin{tabular}{l}
Variates, texts or factors whose values are to define the \\
ordering; default is to use the first vector in the OLDVECTOR \\
list
\end{tabular} \\
DIRECTION = string token & \begin{tabular}{l}
Order in which to sort (ascending, descending); default \\
asce
\end{tabular} \\
DECIMALS = scalar & \begin{tabular}{l}
Number of decimal places to which to round before sorting \\
numbers; default * i.e no rounding
\end{tabular} \\
Parameters & OLDVECTOR = vectors or pointers \\
NEWVECTOR = vectors or pointers & \begin{tabular}{l}
Factors, pointers, texts, or variates whose values are to be \\
sorted \\
Structure to receive each set of sorted values; if any are \\
omitted, the values are placed in the corresponding \\
OLDVECTOR
\end{tabular}
\end{tabular}

\section*{SPCAPABILITY procedure}

Calculates capability statistics (R.W. Payne).

\section*{Option}

PRINT \(=\) string tokens \(\quad\) Controls output (cpk, ppk, histogram); default cpk , ppk

\section*{Parameters}

DATA \(=\) variates or pointers
SAMPLES \(=\) factors or scalars
LOWERLIMIT \(=\) scalars
UPPERLIMIT \(=\) scalars
CPK \(=\) scalars \(\quad\) Saves the index \(C_{p k}\)
PPK \(=\) scalars \(\quad\) Saves the index \(P_{p k}\)

\section*{SPCCHART procedure}

Plots \(c\) or \(u\) charts representing numbers of defective items (A.F. Kane \& R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & What to print (warnings); default * i.e. nothing \\
\hline \(\mathrm{PLOT}=\) string token & Type of chart to plot (\(\mathrm{c}, \mathrm{u}\)); default c \\
\hline METHOD \(=\) string token & Method to use to obtain the control limits (given, loglinear, untransformed); default untr \\
\hline TOLERANCEMULTIPLIER = scalar & Multiplier to use to test whether to use mean sample size for control limits; default 1 \\
\hline WINDOW \(=\) scalar & Which high-resolution graphics window to use; default 3 \\
\hline SCREEN \(=\) string token & Whether or not to clear the graphics screen before plotting (clear, keep); default clea \\
\hline Parameters & \\
\hline NDEFECTIVE \(=\) variates & Number of defective items \\
\hline \(\mathrm{NTESTED}=\) scalars or variates & Number of items tested \\
\hline
\end{tabular}

CENTRELINE \(=\) scalars \(\quad\) Sets or saves centre line
LOWERCONTROLLIMIT \(=\) scalars or variates
Sets or saves lower control limit
UPPERCONTROLLIMIT \(=\) scalars or variates
Sets or saves upper control limit

\section*{SPCOMBINE procedure}

Combines spreadsheet and data files, without reading them into Genstat (D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline OUTFILENAME \(=\) text & Name of the output file \\
\hline METHOD \(=\) string token & How to add the new data from the files specified by the FILENAME parameter (add, append, concatenate, merge); default appe \\
\hline COLMATCH \(=\) string token & How to match columns when appending (name, position); default posi \\
\hline GROUPS \(=\) factor & Factor to identify sections of appended files \\
\hline OLDGLABEL \(=\) texts & Label to use in the GROUPS factor for the original data if GROUPS has not already been defined \\
\hline MATCH \(=\) text or pointer & Up to four columns in the files specified by the FILENAME parameter to use as keys when merging files; default * uses the first column in the file \\
\hline WITH \(=\) text or pointer & Columns in the OUTFILENAME file to use as keys when merging files; default * uses as many columns of the initial columns in OUTFILENAME as are needed to give a column for each MATCH column \\
\hline UPDATE \(=\) string token & Whether to use columns with matching names to replace existing columns when concatenating or merging files (yes, no); default no changes the names of columns with the same name as existing columns so that they become unique \\
\hline UPDATE \(=\) string token & Whether to use columns with matching names to replace existing columns when concatenating or merging files (yes, no); default no changes the names of columns with the same name as existing columns so that they become unique \\
\hline Parameters & \\
\hline FILENAME \(=\) texts & Names of files containing new data to be combined with the data in the OUTFILENAME file \\
\hline SHEETNAME \(=\) texts & Name of a worksheet or a named range within an Excel, Quattro, 123 or Open Office spreadsheet file; default takes the first sheet \\
\hline CELLRANGE \(=\) texts & Cell range giving the top left and bottom right cells within a worksheet; default takes all the data that it contains \\
\hline ROWSELECTION \(=\) variates & Row numbers of the units of data to be included into the outfilename file; default takes all the rows \\
\hline COLSELECTION \(=\) variates & Numbers of the columns of data to be combined with the OUTFILENAME file; default takes all the columns \\
\hline PAGENAME \(=\) texts & Page name for each new sheet when METHOD=add; default 'SHEET<n>' where n is the number of the sheet in the OUTFILENAME file, unless the sheet is already named in the FILENAME file \\
\hline GLABEL \(=\) texts & Label to use in the GROUPS factor to identify the data from each FILENAME file; if this is unset, GROUPS is defined with only levels \\
\hline
\end{tabular}

\section*{SPCUSUM procedure}

Prints CUSUM tables for controlling a process mean (A.F. Kane \& R.W. Payne).

\section*{Options}

REFERENCEVALUE \(=\) scalars

THRESHOLD \(=\) scalars

HEADSTART \(=\) scalars

\section*{Parameters}
\(\mathrm{DATA}=\) variates or pointers
SAMPLES \(=\) factors or scalars
MEANTARGET \(=\) scalars
SIGMA \(=\) scalars

Specifies the upper and then the lower reference values, or just one of these if they are both the same; default 0.5
Detection thresholds, upper and then the lower, or just one of these if they are both the same; default 5
Headstart values, upper and then the lower, or just one of these if they are both the same; default 0

Data measurements
Factor identifying samples or scalar indicating the size of each sample
Specifies the target value for the sample means
Specifies or saves the standard deviation of the observations

\section*{SPEARMAN procedure}

Calculates Spearman's Rank Correlation Coefficient (S.J. Welham, N.M. Maclaren \& H.R.
Simpson).
Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Output required (test, correlations, ranks): test produces the correlation coefficient/matrix and relevant test statistics, correlations prints out just the correlation coefficients for each pair of variates; ranks produces the vectors of ranks for each sample; default test \\
\hline GROUPS \(=\) factor & Defines the sample membership if only one variate is specified by DATA \\
\hline \multicolumn{2}{|l|}{CORRELATION \(=\) scalar or symmetric matrix} \\
\hline & Scalar to save the rank correlation coefficient if there are two samples, or symmetric matrix to save the coefficients between all pairs of samples if there are several \\
\hline \(\mathrm{T}=\) scalar or symmetric matrix & Scalar to save the Student's \(t\) approximation to the correlation coefficient if there are two samples, or symmetric matrix to save the \(t\) approximations for all pairs of samples if there are several (calculated only if the sample size is 8 or more) \\
\hline DF \(=\) scalars & Scalar to save the degrees of freedom for each t-statistic \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{DATA}=\) variates & List of variates containing the data for each sample, or a single variate containing the data from all the samples (the GROUPS option must then be set to indicate the sample to which each unit belongs) \\
\hline RANKS \(=\) variates & Saves the ranks \\
\hline
\end{tabular}

\section*{SPEWMA procedure}

Plots exponentially weighted moving-average control charts (A.F. Kane \& R.W. Payne).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string token & What to print (warnings); default * i.e. nothing \\
TOLERANCEMULTIPLIER = scalar & \begin{tabular}{l}
Multiplier to use to test whether to use mean sample size for \\
control limits; default 1
\end{tabular} \\
WEIGHT \(=\) scalar & \begin{tabular}{l}
Weight parameter used in the calculation of the exponentially \\
weighted moving-average statistic; default 0.25
\end{tabular} \\
NSIGMA \(=\) scalar & \begin{tabular}{l}
Number of multiples of sigma to use for control limits; default \\
\\
WINDOW \(=\) scalar \\
SCREEN \(=\) string token
\end{tabular} \\
& Which high-resolution graphics window to use; default 3 \\
& \begin{tabular}{l}
Whether or not to clear the graphics screen before plotting \\
\((c l e a r, ~ k e e p) ; ~ d e f a u l t ~ c l e a ~\)
\end{tabular}
\end{tabular}

\section*{Parameters}

DATA \(=\) variates or pointers
SAMPLES \(=\) factors or scalars
MEAN \(=\) scalars
SIGMA \(=\) scalars

Data measurements
Factor identifying samples or scalar indicating the size of each sample
Sets or saves the sample mean value
Sets or saves the sample standard deviation

\section*{SPLINE procedure}

Calculates a set of basis functions for M-, B- or I-splines (P.W. Goedhart).

Options
KNOTS = scalar or variate

ORDER \(=\) scalar
TYPE = string token
LOWER \(=\) scalar

UPPER \(=\) scalar

NOMESSAGE \(=\) string token

\section*{Parameters}
\(\mathrm{X}=\) variates
BASIS \(=\) pointers

DBASIS = pointers

Defines the interior knot values; no default i.e. this option must be set
Defines the order of the piecewise polynomial; default 3
Controls which spline basis is calculated (\(\mathrm{m}, \mathrm{b}, \mathrm{i}\)); default m Left-hand limit \(L\) of the interval \([L, U)\); default * i.e. the minimum of the X parameter is used
Right-hand limit \(U\) of the interval \([L, U\)); default * i.e. a value slightly larger than the maximum of the x parameter is used Which warning messages to suppress (warning); default *

Values for which the basis spline functions are calculated Pointer to save variates containing the values of the basis spline functions
Pointer to save variates containing the values of the first order derivatives of the basis spline functions

\section*{SPLOAD directive}

Loads Genstat spreadsheet files.

\section*{Options}

PRINT = string token What to print (catalogue, directory, summary); default
SCOPE \(=\) string token

REDEFINE \(=\) string token
SYSTEM = string token
UNNAMED \(=\) string token

TEMPMISSING \(=\) string token

\section*{Parameters}

FILENAME \(=\) texts \(\quad\) Names of spreadsheet files
SHEETNAME \(=\) texts, variates or scalars Names or numbers of the sheets to read from each file; default * reads them all

ISAVE \(=\) pointers \(\quad\) Stores the identifiers of the structures loaded from each file

\section*{SPNTEST procedure}

Calculates the sample size for a Poisson test (R.W. Payne \& D.A. Murray).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string token & What to print (replication, power); default repl, powe \\
PRMETHOD \(=\) string token & Method to be used to calculate the probabilities for the test \\
(normalapproximation, exact); default norm
\end{tabular}

PROBABILITY = scalar
POWER = scalar

TMETHOD = string token
NULL \(=\) scalar

RATIOREPLICATION = scalar

REPLICATION = variate

\section*{Parameters}

MU1 = scalars
MU2 \(=\) scalars
NREPLICATES \(=\) scalars
VREPLICATION = variates
VPOWER = variates

Significance level for the test; default 0.05
The required power (i.e. probability of detection) of the test; default 0.9
Type of test to be done (onesided, twosided); default ones Mean under the null hypothesis for the one-sample test; must be set when MU2 is unset
Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1
Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Mean to detect in sample 1
Mean to detect in sample 2
Saves the required number of replicates
Numbers of replicates for which powers have been calculated Power (i.e. probability of detection) for the various numbers of replicates

\section*{SPPCHART procedure}

Plots \(p\) or \(n p\) charts for binomial testing for defective items (A.F. Kane \& R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & What to print (warnings); default * i.e. nothing \\
\hline PLOT \(=\) string token & Type of chart to plot (\(\mathrm{p}, \mathrm{np}\)); default p \\
\hline METHOD \(=\) string token & Method to use to obtain the control limits (complementaryloglog, given, logit, probit, untransformed); default untr \\
\hline TOLERANCEMULTIPLIER = scalar & Multiplier to use to test whether to use mean sample size for control limits; default 1 \\
\hline WINDOW \(=\) scalar & Which high-resolution graphics window to use; default 3 \\
\hline SCREEN \(=\) string token & Whether or not to clear the graphics screen before plotting (clear, keep); default clea \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline NDEFECTIVE \(=\) variates & Number of defective items \\
\hline NTESTED \(=\) scalars or variates & Number of items tested \\
\hline CENTRELINE = scalars & Sets or saves centre line \\
\hline \multicolumn{2}{|l|}{LOWERCONTROLLIMIT \(=\) scalars or variates} \\
\hline & Sets or saves lower control limit \\
\hline \multicolumn{2}{|l|}{UPPERCONTROLLIMIT \(=\) scalars or variates} \\
\hline & Sets or saves upper control limit \\
\hline
\end{tabular}

\section*{SPRECISION procedure}

Calculates the sample size to obtain a specified precision (R.W. Payne).

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT = string token } & \begin{array}{l}\text { What to print (replication, precision); default repl, } \\
\text { prec }\end{array} \\
\text { NSAMPLES }=\text { scalar } & \text { Number of samples (1 or 2); default } 2 \\
\text { Probability level for the confidence interval to indicate the } \\
\text { Precision; default } 0.95\end{array}\right]\)\begin{tabular}{l}
Ratio of replication sample2:sample1 (i.e. the size of sample 2 \\
RATIOREPLICATION = scalar \\
should have be RATIOREPLICATION times the size of sample \\
REPLICATION = variate \\
\\
1); default 1 \\
Replication values for which to calculate and print or save the \\
precision; default * takes 11 replication values centred around \\
the required number of replicates
\end{tabular}

\section*{Parameters}

PRECISION \(=\) scalars \(\quad\) Required precision
VAR1 \(=\) scalars \(\quad\) Anticipated variance of sample 1
VAR2 \(=\) scalars \(\quad\) Anticipated variance of sample 2; default * assumes the same

NREPLICATES \(=\) scalars variance as sample 1
Saves the required number of replicates
VREPLICATION \(=\) variates
Numbers of replicates for which precisions have been calculated
VPRDETECTION \(=\) variates
Precision for the various numbers of replicates

\section*{SPSHEWHART procedure}

Plots control charts for mean and standard deviation or range (A.F. Kane \& R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & What to print (warnings); default * i.e. nothing \\
\hline \(\mathrm{PLOT}=\) string token & Type of chart to plot to accompany the chart of sample means (range, standarddeviation); default stan \\
\hline METHOD \(=\) string token & Type of control limits (probability, sigma); default sigm \\
\hline TOLERANCEMULTIPLIER = scalar & Multiplier to use to test whether to use mean sample size for control limits; default 1 \\
\hline PROBABILITY \(=\) scalars & Probability value(s) to use to calculate control limits when METHOD=probability; default \(0.01,0.025\) \\
\hline WINDOWS \(=\) scalar & Which high-resolution graphics windows to use; if unset SPSHEWHART automatically sets up two windows containing the upper and lower halves of the screen \\
\hline SCREEN \(=\) string token & Whether or not to clear the graphics screen before plotting (clear, keep); default clea \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA \(=\) variates or pointers & Data measurements \\
\hline SAMPLES \(=\) factors or scalars & Factor identifying samples or scalar indicating the size of each sample \\
\hline MEAN \(=\) scalars & Sets or saves the sample mean value \\
\hline SIGMA \(=\) scalars & Sets or saves the sample standard deviation \\
\hline
\end{tabular}

\section*{SPSYNTAX procedure}

Puts details about the syntax of commands into a spreadsheet (R.W. Payne).
Option
OUTFILENAME \(=\) texts \(\quad\) Name of Genstat file (.gsh or .gwb) or Excel (.xls or .xlsx) file

\section*{Parameter}

COMMAND \(=\) texts
to create

Single-line texts specifying the commands

\section*{SSIGNTEST procedure}

Calculates the sample size for a sign test (R.W. Payne).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string token & What to print (replication, power); default repl, powe \\
PROBABILITY = scalar & \begin{tabular}{l}
Significance level at which the response is to be tested; default
\end{tabular} \\
POWER \(=\) scalar & \begin{tabular}{l}
0.05
\end{tabular} \\
The required power (i.e. probability of detection) of the test; \\
TMETHOD = string token & \begin{tabular}{l}
Whether to a one- or two-sided test is to be made (onesided, \\
REPLICATION \(=\) variate
\end{tabular} \\
\begin{tabular}{l}
twosided); default twos \\
Replication values for which to calculate and print or save the \\
power; default * takes 11 replication values centred around the \\
required number of replicates
\end{tabular} \\
Parameters & Probability of response (i.e. the probability that an observation
\end{tabular}

NREPLICATES \(=\) scalars
VREPLICATION \(=\) variates
VPOWER = variates
in one sample will be greater than the equivalent observation in the other sample) that should be detectable
Saves the required number of replicates
Numbers of replicates for which powers have been calculated Power (i.e. probability of detection) for the various numbers of replicates

\section*{SSPM directive}

Declares one or more SSPM data structures.

\section*{Options}
\begin{tabular}{ll}
TERMS \(=\) formula & \begin{tabular}{l}
Terms for which sums of squares and products are to be \\
calculated; default *
\end{tabular} \\
FACTORIAL \(=\) scalar & Maximum number of vectors in a term; default 3 \\
FULL \(=\) string token & Full factor parameterization \((y e s\), no \()\) default no \\
GROUPS \(=\) factor & Groups for within-group SSPMs; default * \\
DF = scalar & Number of degrees of freedom for sums of squares; default *
\end{tabular}

\section*{Parameters}

IDENTIFIER = identifiers
Identifiers of the SSPMs
SSP \(=\) symmetric matrices
MEANS \(=\) variates \(\quad\) Variate to contain the means for each SSPM
NUNITS \(=\) scalars \(\quad\) Number of units or sum of weights for each SSPM
WMEANS \(=\) pointers \(\quad\) Pointers to variates of group means for each SSPM

\section*{STACK procedure}

Combines several data sets by "stacking" the corresponding vectors (R.W. Payne).

\section*{Option}

DATASET \(=\) factor \(\quad\) Factor to indicate the data set to which each unit originally belonged

\section*{Parameters}

STACKEDVECTOR = variates, factors or texts
New vectors combining the corresponding members of the data sets specified by parameter V 1 , or parameters V1-V100
\(\mathrm{V} 1=\) pointers, variates, factors, texts or scalars
Pointers defining (all) the components to be stacked into each STACKEDVECTOR, or contents of the first data set
\(\mathrm{V} 2-\mathrm{V} 100=\) variates, factors, texts or scalars Data sets 2-100
FREPRESENTATION \(=\) string token \(\quad\) How to match the values of factors (levels, labels, ordinals, renumbered); default leve

\section*{STANDARDIZE procedure}

Standardizes columns of a data matrix to have mean zero and variance one (S.A. Harding \& D.A. Murray).

\section*{No options}

\section*{Parameters}

OLD \(=\) variates or matrices
Structures containing data to be standardized
NEW \(=\) variates or matrices \(\quad\) Structures to contain output; by default the OLD structures are overwritten

\section*{STEEL procedure}

Performs Steel's many-one rank test (R.W. Payne).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string token & Controls printed output (description, sumranks, \\
critical, permutationtest); default desc, sumr, crit
\end{tabular}
\(\mathrm{METHOD}=\) string token
TREATMENTS \(=\) factor
CONTROL \(=\) scalar or text

NTIMES \(=\) scalar
SEED = scalar

\section*{Parameters}

DATA \(=\) variates
SUMRANKS = tables
RANKS \(=\) variates

Form of the alternative hypothesis (twosided, greaterthan, lessthan); default twos
Defines the treatments
Treatment level corresponding to the control; default takes the reference level of TREATMENTS
Number of permutations for the permutation test; default 999
Seed to use to generate the random numbers for the permutation test; default 0

Data values for the tests
Saves the sum of the ranks within the treatments from each test Saves the ranks of the data values for each test

\section*{STEM procedure}

Produces a simple stem-and-leaf chart (J. Ollerton \& S.A. Harding).

\section*{No options}

\section*{Parameters}

DATA \(=\) variates
NDIGITS = scalars
STEMUNITS \(=\) scalars

Data values for each plot
Number of digits in the leaves of each plot Scale units for the stem values in each plot

\section*{STEP directive}

Selects terms to include in or exclude from a linear, generalized linear or generalized additive model according to the ratio of residual mean squares.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & ```
What to print (model, deviance, summary,
estimates, correlations, fittedvalues,
accumulated, monitoring, changes, confidence);
default mode,summ,esti,chan
``` \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of model terms; default * i.e. that in previous TERMS statement \\
\hline \(\mathrm{POOL}=\) string token & Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no \\
\hline DENOMINATOR \(=\) string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms (ss, ms ); default ss \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY \(=\) string token & Printing of probabilities for t -statistics (yes, no); default no \\
\hline SELECTION \(=\) string tokens & Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \(\% \mathrm{cv}\) only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%CV if DIST=gamma, and disp for other distributions \\
\hline INRATIO \(=\) scalar & Criterion for inclusion of terms; default 1.0 \\
\hline OUTRATIO \(=\) scalar & Criterion for exclusion of terms; default 1.0 \\
\hline MAXCYCLE \(=\) scalar & Limit on number of times to repeat stepwise selection, unless no change is made; default 1 \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline
\end{tabular}

\section*{Parameter}
formula List of explanatory variates and factors, or model formula

\section*{STOP directive}

Ends a Genstat program.

\section*{No options or parameters}

\section*{STORE directive}

To store structures in a subfile of a backing-store file.

\section*{Options}
```

PRINT = string token
CHANNEL = scalar
SUBFILE = identifier
LIST = string token
METHOD = string token

```
PASSWORD = text
PROCEDURE \(=\) string token
UNNAMED \(=\) string token
MERGE \(=\) string token

\section*{Parameters}

IDENTIFIER = identifiers
STOREDIDENTIFIER = identifiers

What to print (catalogue); default *
Channel number of the backing-store file where the subfile is to be stored; default 0 , i.e. the workfile Identifier of the subfile; default SUBFILE How to interpret the list of structures (inclusive, exclusive, all); default incl
How to append the subfile to the file (add, overwrite, replace, update); default add, i.e. clashes in subfile identifiers cause a fault (note: replace overwrites the complete file)
Password to be stored with the file; default *
Whether subfile contains procedures only (yes, no); default no
Whether to list unnamed structures (yes, no); default no Whether or not to merge the structures with the existing contents of the subfile (yes, no); default no

Identifiers of the structures to be stored
Identifier to be used for each structure when it is stored

\section*{STRUCTURE directive}

Defines a compound data structure.

\section*{Options}

NAME \(=\) text

\section*{STRUCTURELIST \(=\) string token}

\section*{Parameters}
```

LABEL = texts
SUFFIX=scalars
TYPE = texts
COMPATIBLE = texts

```

Single-valued text defining a name for the type of structure, which must not clash with the name of any existing type of structure
Whether or not the structure consists of a list (of any length) of structures of the same type or types (yes, no); default no

Single-valued texts defining the labels of the elements of the structure
Suffix numbers for the elements; default assumes the numbers 1, \(2 \ldots\)
Texts defining the allowed types for each element Defines aspects to check for compatibility with the first element

\section*{STTEST procedure}

Calculates the sample size for t-tests, including equivalence tests (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token & What to print (replication, power); default repl, powe \\
NSAMPLES \(=\) scalar & Number of samples for the t-test \((1\) or 2); default 2 \\
PROBABILITY \(=\) scalar & Significance level at which the response is to be tested; default \\
& 0.05 \\
POWER \(=\) scalar & The required power (i.e. probability of detection) of the test; \\
& default 0.9
\end{tabular}

TMETHOD = string token
RATIOREPLICATION \(=\) scalar

REPLICATION = variate

\section*{Parameters}

\section*{RESPONSE = scalars}

VAR1 \(=\) scalars
VAR2 \(=\) scalars
NREPLICATES \(=\) scalars
VREPLICATION = variates
VPOWER \(=\) variates

Type of test to be done (onesided, twosided, equivalance, noninferiority); default ones
Ratio of replication sample2:sample1 (i.e. the size of sample 2 should be RATIOREPLICATION times the size of sample 1); default 1
Replication values for which to calculate and print or save the power; default * takes 11 replication values centred around the required number of replicates

Response to be detected
Anticipated variance of sample 1
Anticipated variance of sample 2; default * assumes the same variance as sample 1
Saves the required number of replicates
Numbers of replicates for which powers have been calculated Power (i.e. probability of detection) for the various numbers of replicates

\section*{SUBSET procedure}

Forms vectors containing subsets of the values in other vectors (R.W. Payne).
Options

CONDITION \(=\) expression
SETLEVELS \(=\) string token

\section*{Parameters}

OLDVECTOR \(=\) vectors
NEWVECTOR \(=\) vectors

Logical expression to define which units are to be included; no default - this option must be set
Whether to reform the levels (and labels) of factors to exclude those that do not occur in the subset (yes, no); default no

Vector from which the subset is to be formed
Vector to store the subsets if none is specified, the OLDVECTOR is redefined to store the subset

\section*{SUSPEND directive}

Suspends execution of Genstat to carry out commands in the operating system; this directive may not be available on some computers.

\section*{Options}

SYSTEM = text

CONTINUE \(=\) string token

MINIMIZE \(=\) string token

Commands for the operating system; default: prompt for commands (interactive mode only)
Whether to continue execution of Genstat without waiting for commands to complete (yes, no); default no
Whether to minimize the console window (yes, no); default no

\section*{No parameters}

\section*{SVBOOT procedure}

Bootstraps data from random surveys (S.D. Langton).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string token & Controls printed output (summary); default * i.e. none \\
SEED \(=\) scalar & Seed for random numbers; default 0 \\
STRATUMFACTOR \(=\) factor & Stratification factor \\
SAMPLINGUNITS \(=\) factor & Sampling units (default single stage design) \\
WEIGHTS \(=\) variates & Weights variates (not required for simple bootstrap) \\
METHOD \(=\) string token & Method (simple, sarndal); default simp \\
POPULATION \(=\) pointers & Units in the population \\
SAVEUNITS \(=\) variate & Units in the bootstrapped sample \\
BSTRATUMFACTOR \(=\) factor & Bootstrapped stratification factor \\
BSAMPLINGUNITS \(=\) factor & Bootstrapped sampling units
\end{tabular}

\section*{Parameters}

DATA \(=\) variates or factors
Data to bootstrap
\(\mathrm{BOOT}=\) variates or factors
Saves bootstrap sampling units

\section*{SVCALIBRATE procedure}

Performs generalized calibration of survey data (S.D. Langton).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (summary, totals, monitoring); default summ, tota \\
\hline \(\mathrm{PLOT}=\) string token & Controls which high-resolution graphs are plotted (weights); default * i.e. none \\
\hline STRATUMFACTOR \(=\) factor & Stratification factor; default * i.e. unstratified \\
\hline SAMPLINGUNITS = factor & Factors indicating the sampling units in a two-stage design; default *, i.e. single-stage design \\
\hline TCONSTRAINTS = scalars & Constraint totals or tables \\
\hline \(\mathrm{X}=\) variates & Variates corresponding to TCONSTRAINTS; * implies the equivalent constraint relates to a count \\
\hline WEIGHTS = variate & Initial weights \\
\hline OUTWEIGHTS = variate & Final (calibration) weights \\
\hline METHOD = string token & Method to use (linear, truncatedlinear, logistic, fittedvalues); default line \\
\hline LOWER = scalar & Lower bound for g-weights; default 0.1 \\
\hline UPPER = scalar & Upper bound for g-weights; default 10 \\
\hline MAXCYCLE = scalar & Maximum number of iterations; default 50 \\
\hline TOLERENCE = scalar & Tolerence for convergence; default 0.0001 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Response data for analysis \\
\hline TOTALS = scalars & Saves estimated totals \\
\hline SETOTALS = scalars & Saves standard errors of totals \\
\hline FITTEDVALUES \(=\) variates & Saves fitted values from the regression \\
\hline
\end{tabular}

\section*{SVD directive}

Calculates singular value decompositions of matrices.

\section*{Option}

PRINT \(=\) string tokens \(\quad\) Printed output required (left, singular, right); default * i.e. no printing

\section*{Parameters}

INMATRIX \(=\) matrices \(\quad\) Matrices to be decomposed
LEFT \(=\) matrices \(\quad\) Left-hand matrix of each decomposition
SINGULAR = diagonal matrices
Singular values (middle) matrix
RIGHT \(=\) matrices

\section*{SVGLM procedure}

Fits generalized linear models to survey data (S.D. Langton).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string token & What output to display (model, summary, estimates, wald, \\
& predictions, monitor); default mode, esti, wald, pred \\
DISTRIBUTION = string token & \begin{tabular}{l} 
Error distribution (binomial, poisson, normal, gamma); \\
default norm
\end{tabular} \\
LINK = string token & \begin{tabular}{l} 
Link function (identity, logarithm, logit, reciprocal, \\
probit, complementaryloglog, canonical); default \\
cano
\end{tabular} \\
DISPERSION = scalar & \begin{tabular}{l} 
Value at which to fix the residual variance, if missing the \\
variance is estimated; default 1 for binomial or Poisson, \\
otherwise *
\end{tabular} \\
TERMS = formula & Explanatory model
\end{tabular} predictions, monitor); default mode, esti, wald, pred Error distribution (binomial, poisson, normal, gamma); efault norm
Link function (identity, logarithm, logit, reciprocal, probit, complementaryloglog, canonical); default cano

Value at which to fix the residual variance, if missing the otherwise *
Explanatory model
```

CONSTANT $=$ string token
FACTORIAL $=$ scalar
PFACTORS $=$ factors or variates
PLEVELS $=v$ variates or scalars

```
PTERMS = formula
STRATUMFACTOR = factor
NUNITS \(=\) variate or table
SAMPLINGUNITS \(=\) factor
WEIGHTS \(=\) variates
\(\mathrm{METHOD}=\) string token
\(\mathrm{NBOOT}=\) scalar
SEED = scalar
CIPROBABILITY \(=\) scalars
CIMETHOD = string token

\section*{Parameters}
```

Y}=\mathrm{ variates
NBINOMIAL = scalars or variates
RESIDUALS = variates
FITTEDVALUES = variates
ESTIMATES = variates
SE = variates
VCOVARIANCE = symmetric matrices
LOWER = variates
UPPER = variates
WALD = pointers

```
PREDICTIONS = pointers
SEPREDICTIONS = pointers
LOWPREDICTIONS \(=\) variates
UPPREDICTIONS \(=\) variates
VCPREDICTIONS \(=\) symmetric matrices Variance-covariance matrix for the predictions

\section*{SVHOTDECK procedure}

Performs hot-deck and model-based imputation for survey data (S.D. Langton).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string token & Controls printed output (summary, monitoring, check, \\
& list, regression); default summ \\
METHOD = string token & Imputation method (hotdeck, modelbased); default hotd \\
DMETHOD = string token & Method for calculating distances (mean, minimax, \\
& regression); defaule mini \\
\%THRESHOLD = scalar & Percentage threshold for matches \\
THRESHOLD = scalar & Absolute threshold for matches \\
DVARIABLES = variates or factors & Variables to use for distance calculation or factors
\end{tabular}

Whether to estimate or omit constant term in fixed model
(omit, estimate); default esti
Limit on number of factors/covariates in a model term; default 3
Variables for which predictions are to be formed; default *, or as specified in PTERMS
Levels or values at which predictions are to be made corresponding to PFACTORS; default (weighted) mean for variates, all levels for factors
Formula specifying fixed terms for which predicted means are to be printed; default *, unless PFACTORS is set, in which case it is all main effects of and interactions between PFACTORS Stratification factor; default *, i.e. unstratified Number of primary sampling units in each stratum
Factor indicating the primary sampling units; default *, i.e. single stage design
Survey weights
Bootstrapping method (simple, csimple, sarndal); default simp
Number of bootstrap samples to use; default 0 uses a Taylor series approximation
Seed for random number generator for bootstrap; default 0
The probability level for the confidence intervals; default 0.95
Method for forming confidence intervals (automatic,
tdistribution, percentile); default auto
Dependent variates
Number of binomial trials for each unit (must be set if
DISTRIBUTION=binomial)
Variates to save residuals
Variates to save fitted values
Estimates of parameters for each \(Y\) variate
Standard errors of the estimates
Variance-covariance matrix for the estimates
Lower confidence limits for estimates
Upper confidence limits for estimates
Pointers to save Wald statistics for each term (pointer contains name of term, Wald statistic, F statistic, degrees of freedom, and P -value)
Pointers to tables of predictions
Pointers to tables of standard errors of predictions
Lower confidence limits for predictions
Upper confidence limits for predictions
VCPREDICTIONS \(=\) symmetric matrices Variance-covariance matrix for the predictions
```

METHOD = string token
DMETHOD = string token
*HRESHOzD = scalar
DVARIABLES = variates or factors

```
```

DRANGES = scalars
LABELS $=$ variate, factor or text
SEED $=$ scalar
IMPUTE $=$ variate or scalar

```
DONORS \(=\) variate
RSAVE = rsave
URECEPTORS = variate
UDONORS \(=\) variate
DISTANCES \(=\) variate

\section*{Parameters}

OLDSTRUCTURES \(=\) variates or factors NEWSTRUCTURES \(=\) variates or factors OVERWRITE = string tokens

Ranges to use for distance calculations with each of the DVARIABLES; default * uses the observed range
Provides labels for the cases
Seed for random numbers; default 0
The variate provides logical ( 0 or 1 ) values to indicate whether each unit is to be imputed, alternatively the scalar specifies a number of rows to be selected at random to be imputed to allow the effectiveness of the imputation process to be studied; default * imputes values for any units where an OLDSTRUCTURE contains a missing value
Logical variate indicating whether each unit can be used as a donor; default * implies that all units are used with complete data for each OLDSTRUCTURE
Regression analysis to use for METHOD=model or DMETHOD=regression
Saves unit numbers of receptor (imputed) cases
Saves unit numbers of donor cases
Saves the distances for the chosen receptor-donor pairs

Structure containing missing values
New structures with imputed values
Whether to overwrite any existing data for imputed cases (yes, no); default no

\section*{SVMERGE procedure}

Merges strata prior to survey analysis (S.D. Langton).

Options
PRINT \(=\) string token

OLDFACTOR = factor
NEWFACTOR = factor
Parameters
MERGELABELS = texts
NEWLABEL \(=t e x t s\)

Controls printed output (summary, intable, outtable, twowaytable); default summ
Factor defining the original strata
Factor to save the merged strata
Labels of strata to merge
Label for merged stratum

\section*{SVMFIT procedure}

Fits a support vector machine (D. B. Baird).

\section*{Options}

PRINT = string tokens

SVMTYPE \(=\) string token

KERNEL \(=\) string token

PENALTY \(=\) scalar or variate

GAMMA \(=\) scalar or variate
\(\mathrm{NU}=\) scalar or variate
EPSILON = scalar or variate
BIAS \(=\) scalar

DEGREE = scalar
CONSTANTVALUE = scalar
LOWER = scalar or variate
\(\mathrm{UPPER}=\) scalar or variate

Printed output from the analysis (summary, predictions, allocations, debug); default summ, alloc
Type of support vector machine to fit (svc, svr, nusvc, nusvr, lsvc, lsvr, lcs, svm1); default svc
Type of kernel to use (linear, polynomial, radialbasis, sigmoid); default radi
Penalty or cost for points on the wrong side of the boundary; default 1
Gamma parameter for types with non-linear kernels; default 1 Nu parameter for types nusvc, nusvr, and svm1; default 0.5 Epsilon parameter for types svr and lsvr; default 0.1
Bias for allocations to groups for types lsve and lsvr; default - 1 i.e. no bias
Degree for polynomial kernel; default 3
Constant for polynomial or sigmoid kernel; default 0
Lower limit for scaling data variates when SCALING = given; default - 1
Upper limit for scaling data variates when SCALING = given;

\section*{SVMPREDICT procedure}

Forms the predictions using a support vector machine (D. B. Baird).

\section*{Options}
```

SCALE = texts or pointers
SCALE $=$ texts or pointers

```
SAVEFILE \(=\) texts

\section*{Parameters}
\(\mathrm{X}=\) pointers
PREDICTIONS \(=\) factors or variates
GROUPDEFINITIONS \(=\) factors
SAVEFILE = texts
```

SCALING = string token
NOSHRINK =string token
OPTMETHOD =string token
REGULARIZATIONMETHOD = string token
Regularization method for SVMTYPE = 1svc or 1svr (11, 12);
default l2
LOSSMETHOD = string token Loss method for SVMTYPE = lsvc or lsvr (logistic, 11,
12); default logi
DUALMETHOD = string token Whether to use the dual algorithm for SVMTYPE = 1 svc or
lsvr (yes, no); default no
NCROSSVALIDATIONGROUPS = scalar Number of groups for cross-validation; default 10
SEED = scalar Seed for random number generation; default 0
TOLERANCE = scalar Tolerance for termination criterion; default 0.001
WORKSPACE = scalar Size of workspace needed for data; default is to calculate this
from the number of observations and variates
Parameters
Y factors or variates Define groupings for the units in each training set, or missing
values for the units to be allocated; or y-variate to be predicted
via regression
X= pointers Each pointer contains a set of explanatory variates or factors
WEIGHTS = variates Weights to multiply penalties for each group when SVMTYPE =
svc, nusvc, lsvc or lcs
PREDICTIONS = factors or variates Saves allocations to groups or predictions from regression
ERRORRATE = scalars, variates or matrices
Saves the error rate for the combinations of parameters
specified for the support vector machine
OPTPENALTY = scalars Saves the optimal value of penalty parameter
OPTGAMMA = scalars Saves the optimal value of gamma parameter
OPTNU = scalars Saves the optimal value of nu parameter
OPTEPSILON = scalars Saves the optimal value of epsilon parameter
OPTERRORRATE = scalars
Saves the minimum error rate
SCALE = texts or pointers Saves the scaling used for the x variates, in a file if a text is
given, or otherwise in a pointer to a pair of variates
SAVEFILE = texts File in which to save the model, for use by SVMPREDICT
default 1
Type of scaling to use (none, uniform, given); default unif Whether to suppress the shrinkage of attributes to exclude unused ones (no, yes); default no
Whether to optimize probabilities or allocations
(allocations, probabilities); default allo
Regularization method for SVMTYPE $=1$ svc or $1 \mathrm{svr}(11,12)$; default 12
LOSSMETHOD = string token Loss method for SVMTYPE = lsvc or lsvr (logistic, 11, 12); default logi
Whether to use the dual algorithm for SVMTYPE $=1 \mathrm{sVc}$ or lsvr (yes, no); default no
Number of groups for cross-validation; default 10
Seed for random number generation; default 0
Tolerance for termination criterion; default 0.001
Size of workspace needed for data; default is to calculate this from the number of observations and variates
Define groupings for the units in each training set, or missing values for the units to be allocated; or y-variate to be predicted via regression
Each pointer contains a set of explanatory variates or factors Weights to multiply penalties for each group when SVMTYPE = svc, nusvc, lsvc or lcs
Saves allocations to groups or predictions from regression
Saves the error rate for the combinations of parameters specified for the support vector machine
Saves the optimal value of penalty parameter
Saves the optimal value of gamma parameter
aves the optimal value of nu parameter
er parameter
Saves the scaling used for the x variates, in a file if a text is given, or otherwise in a pointer to a pair of variates
File in which to save the model, for use by SVMPREDICT

```

Gives scaling used for the x variates
Gives support vector machine model file; default is to use the model from the last support vector machine

Each pointer contains a set of variates defining the attributes for the predictions
Saves the classification groupings or predicted values for each observation in X
Supplies levels and labels for predicted groups; default uses ordinal levels

\section*{SVREWEIGHT procedure}

Modifies survey weights for particular observations, adjusting other weights in the sampling unit or stratum to ensure that the overall sum of the weights remains unchanged (S.D. Langton).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (summary); default summ \\
\hline METHOD \(=\) string tokens & What to reweight over (all, stratum, samplingunits, lowest); default lowe \\
\hline WEIGHTS \(=\) variate & Initial weights \\
\hline OUTWEIGHTS \(=\) variate & Final weights \\
\hline STRATUMFACTOR = factor & Stratification factor; default * i.e. unstratified \\
\hline OUTSTRATUMFACTOR \(=\) factor & Saves a modified stratification factor with the reweighted observations in their own stratum \\
\hline SAMPLINGUNITS \(=\) factor & Factor indicating the primary sampling units; default *, i.e. single stage design \\
\hline LABELS \(=\) variate, text or factor & Labels for each unit \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \multicolumn{2}{|l|}{OBSERVATIONS \(=\) scalars, variates or texts} \\
\hline & Observation to reweight \\
\hline NEWWEIGHTS \(=\) scalars or variates & New weight (default inserts a missing value, indicating that the observation should be removed) \\
\hline
\end{tabular}

\section*{SVSAMPLE procedure}

Constructs stratified random samples (S.D. Langton).

\section*{Options}

PRINT \(=\) string token
SAMPLE = variate

STRATUMFACTOR \(=\) factor
CLUSTERS = factor
NUNITS \(=\) table, scalar or variate
NSAMPLE \(=\) table, scalar or variate

SFLEVELS \(=\) variate

SFLABELS \(=\) text

METHOD \(=\) string token

NUMBERING \(=\) string token

SEED \(=\) scalar

Controls printed output (list, summary); default summ Saves the sample, as unit numbers of sampled units when METHOD=sample, or as a logical ( 1 or 0 ) variable indicating sampled or unsampled units when METHOD=population Saves the stratification factor Specifies a factor indicating groupings of units for a cluster sample; default * i.e. sample individual rows Numbers of units in the full data set for each level of the STRATUMFACTOR
Numbers, or proportions, of units to sample for each level of the STRATUMFACTOR
Levels for the stratum factor, if it has not already been declared
Labels for the stratum factor, if it has not already been declared
Whether SAMPLE should contain the numbers of the units sampled from the population, or be a variate with a value for every unit of the full population containing 0 or 1 for unsampled and sampled units respectively (population, sample); default samp
Whether to number units within each stratum, or across the whole population (withinstratum, population); default with
Seed for the random number generator; default 0 i.e. continue from previous generation

\section*{Parameters}

OLDVECTOR \(=\) variates, factors or texts Data from the full survey
NEWVECTOR \(=\) variates, factors or texts Data for the sample

\section*{SVSTRATIFIED procedure}

Analyses stratified random surveys by expansion or ratio raising (S.D. Langton).

\section*{Options}
```

PRINT = string token
PLOT = string token
XMISSING = string token
RESTRICTED = string token
STRATUMFACTOR = factor
NINFLUENCE = scalar
METHOD = string token

```
SAVESUMMARY \(=\) string token
COMBINEDSTRATUM = scalar
ROWS \(=\) scalars
COLUMNS \(=\) scalars
\(\mathrm{NBOOT}=\) scalar
SEED = scalar
CIPROBABILITY = scalars
CIMETHOD \(=\) string token
COMPACT \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) variates
\(\mathrm{X}=\) variates
LABELS \(=\) variates, factors or texts
NUNITS \(=\) tables, scalars or variates
XTOTALS \(=\) tables, scalars or variates
TOTALS \(=\) tables or scalars
SETOTALS \(=\) tables or scalars
MEANS \(=\) tables or scalars
SEMEANS \(=\) tables or scalars
RATIOS = tables
FITTEDVALUES = variates
INFLUENCE \(=\) variates
LTOTALS \(=\) tables or scalars
UTOTALS \(=\) tables or scalars
LMEANS \(=\) tables or scalars
UMEANS \(=\) tables or scalars
VARIANCES \(=\) tables or scalars

Controls printed output (summary, totals, means, influence, ratios, extra); default summ, tota, infl Controls which high-resolution graphs are plotted (single, separate); default * i.e. none
Action if x -variable contains missing values (estimate, fault); default esti
Action with restricted (or filtered) observations (omit, add); default omit
Stratification factor; default * i.e. unstratified
Number of influential points to print; default 10
Method for ratio analysis (separate, combined, classicalcombined); default sepa
Whether to save just the overall summaries instead of those for each stratum (yes, no); default no
Stratum for which the ratio should be set to the combined ratio estimate; default *
Number of rows of plot-matrix; default * i.e. set automatically
depending on number of levels of STRATUMFACTOR
Number of columns of plot-matrix; default * i.e. set automatically depending on number of levels of STRATUMFACTOR
Number of bootstrap samples to use; default 0
Seed for random number generator for bootstrap; default 0
The probability level for the confidence intervals; default 0.95
Method for forming confidence intervals (automatic,
tdistribution, percentile); default auto
Whether to produce output in a compact (plaintext) format (yes, no); default no

Response data
Base data; if unset expansion raising is used
Structure for labelling influential points
Numbers of units in each stratum in the population
Population totals of the base data in each stratum
Saves total estimates
Saves standard errors of estimates
Saves mean estimates
Saves standard errors of mean estimates
Saves estimates of ratios
Saves fitted values for the observations
Saves influence statistics
Saves lower confidence limit for total
Saves upper confidence limit for total
Saves lower confidence limit for mean
Saves upper confidence limit for mean
Saves residual variances in each stratum

\section*{SVTABULATE procedure}

Tabulates data from random surveys, including multistage surveys and surveys with unequal probabilities of selection (S.D. Langton).

\section*{Options}

PRINT = string token Controls printed output (summary, stratumsummary,
\begin{tabular}{|c|c|}
\hline PLOT \(=\) string token & Controls which high-resolution graphs are plotted (single, separate, weights, influence); default * i.e. none \\
\hline STRATUMFACTOR \(=\) factor & Stratification factor; default *, i.e. unstratified \\
\hline NUNITS \(=\) table, scalar or variate & Numbers of units in each STRATUMFACTOR level (for a multistage design these will be the number of primary sampling units) \\
\hline SAMPLINGUNITS \(=\) factor & Factor indicating the primary sampling units; default *, i.e. single stage design \\
\hline \multicolumn{2}{|l|}{NSECONDARYUNITS \(=\) table, scalar or variate} \\
\hline & Numbers of secondary sampling units for the levels of the SAMPLINGUNITS factor \\
\hline CLASSIFICATION \(=\) factors & Domains for which separate estimates are required \\
\hline NINFLUENCE = scalar & Number of influential points to print; default 10 \\
\hline MRFACTOR \(=\) identifiers & Identifier of factors to index the sets of multiple responses in the tables \\
\hline WEIGHTS = variate & Survey weights \\
\hline FPCOMIT \(=\) string token & Whether to omit the finite population correction from calculation of variances (yes, no); default no \\
\hline METHOD \(=\) string token & Method of bootstrapping (simple, sarndal); default simp \\
\hline NBOOT \(=\) scalar & Number of bootstrap samples to use; default 0 uses a Taylor series approximation \\
\hline SEED \(=\) scalar & Seed for random number generator for bootstrap; default 0 \\
\hline CIPROBABILITY = scalar & The probability level for the confidence intervals; default 0.95 \\
\hline CIMETHOD = string token & Method for forming confidence intervals (automatic, tdistribution, percentile); default auto \\
\hline
\end{tabular}

Percentage points for which quantiles are required; default 50 (i.e. median)

\section*{Parameters}
\(\mathrm{Y}=\) variates
\(\mathrm{X}=\) variates
LABELS \(=\) variates or texts
OUTWEIGHTS = tables
TOTALS = tables or scalars
SETOTALS = tables or scalars
\(\mathrm{VCTOTALS}=\) symmetric matrices
MEANS \(=\) tables or scalars
SEMEANS \(=\) table or scalars
VCMEANS = symmetric matrices
RATIOS \(=\) tables or scalars
SERATIOS \(=\) tables or scalars
\(\mathrm{VCRATIOS}=\) symmetric matrices
NOBSERVATIONS \(=\) tables or scalars
SUMWEIGHTS = tables or scalars
FITTEDVALUES \(=\) variates
INFLUENCE \(=\) variates
WALD \(=\) variates
QUANTILES \(=\) tables or pointers
SEQUANTILES \(=\) tables or pointers
VCQUANTILES \(=\) tables or pointers
LQUANTILES \(=\) tables or pointers
UQUANTILES \(=\) tables or pointers
LTOTALS \(=\) tables
UTOTALS \(=\) tables

Response data
Base data for ratio estimation
Labels for influential points
Saves weights
Saves total estimates
Saves standard errors of estimates
Saves variance-covariance matrix of total estimates or scalars Saves mean estimates
Saves standard errors of mean estimates
Saves variance-covariance matrix of mean estimates
Saves estimates of ratios
Saves standard errors of ratios
Saves variance-covariance matrix of ratio estimates
Saves numbers of (non-missing) observations
Saves sums of weights
Supplies fitted values for each observation
Saves influence statistics
Saves Wald statistics
Table to contain quantiles at a single PERCENTQUANTILE or pointer of tables for several PERCENTQUANTILEs
Saves standard errors of quantiles
Saves variance-covariance matrix of quantiles
Saves lower confidence limits of quantiles
Saves upper confidence limits of quantiles
Saves lower confidence limits of totals
Saves upper confidence limits of totals

LMEANS \(=\) tables
UMEANS \(=\) tables
LRATIOS \(=\) tables
URATIOS \(=\) tables
CELLINFLUENCE \(=\) variates

Saves lower confidence limits of means
Saves upper confidence limits of means
Saves lower confidence limits of ratios
Saves upper confidence limits of ratios
Saves influence statistics for individual cells

\section*{SVWEIGHT procedure}

Forms survey weights (S.D. Langton).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string token & \begin{tabular}{l} 
Controls printed output (summary, stratumsummary, \\
psusummary); default summ, stra, psus
\end{tabular} \\
PLOT = string token & \begin{tabular}{l} 
Controls which high-resolution graphs are plotted (weights); \\
default * i.e. none
\end{tabular} \\
STRATUMFACTOR = factor & \begin{tabular}{l} 
Stratification factor; default *, i.e. unstratified \\
NUNITS = tables, scalars or variates \\
Numbers of units in each STRATUMFACTOR (for a multistage \\
design these will be the number of primary sampling units)
\end{tabular} \\
SAMPLINGUNITS = factor & \begin{tabular}{l} 
Factor indicating the primary sampling units; default *, i.e. \\
single stage design.
\end{tabular} \\
NSECONDARYUNITS = tables, scalars or variates \\
Numbers of secondary sampling units for each level of the \\
Parameters & SAMPLINGUNITS factor
\end{tabular}

\section*{SWITCH directive}

Adds terms to, or drops them from a linear, generalized linear, generalized additive or nonlinear model.

\section*{Options}

PRINT = string tokens
NONLINEAR = string token
CONSTANT = string token
FACTORIAL = scalar
POOL = string token
DENOMINATOR = string token

NOMESSAGE \(=\) string tokens

FPROBABILITY \(=\) string token

TPROBABILITY \(=\) string token
SELECTION \(=\) string tokens

What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, confidence); default mode, summ, esti
How to treat nonlinear parameters between groups (common, separate, unchanged); default unch
How to treat the constant (estimate, omit, unchanged, ignore); default unch
Limit for expansion of model terms; default * i.e. that in previous TERMS statement
Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ) ; default ss
Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality, vertical, df, inflation); default *
Printing of probabilities for variance and deviance ratios (yes, no); default no
Printing of probabilities for t -statistics (yes, no); default no Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \%cv only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance,
\%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%CV if DIST=gamma, and disp for other distributions

PROBABILITY \(=\) scalar

AOVDESCRIPTION \(=\) text

\section*{Parameter}
formula

Probability level for confidence intervals for parameter estimates; default 0.95
Description for line in accumulated analysis of variance (or deviance) table when POOL=yes

\section*{SYMMETRICMATRIX directive}

Declares one or more symmetric matrix data structures.

\section*{Options}

ROWS \(=\) scalar, vector, pointer or text
VALUES \(=\) numbers
MODIFY \(=\) string token
IPRINT \(=\) string tokens

\section*{Parameters}

IDENTIFIER = identifiers
VALUES \(=\) identifiers
DECIMALS = scalars
EXTRA \(=\) texts
MINIMUM = scalars
List of explanatory variates and factors, or model formula

MAXIMUM = scalars
DREPRESENTATION \(=\) scalars or texts

Number of rows, or labels for rows (and columns); default * Values for all the symmetric matrices; default * Whether to modify (instead of redefining) existing structures (yes, no); default no
Information to be used by default to identify the symmetric matrices in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the symmetric matrices
Values for each symmetric matrix
Number of decimal places for printing
Extra text associated with each identifier
Minimum value for the contents of each structure
Maximum value for the contents of each structure Default format to use when the contents represent dates and times

\section*{SYNTAX directive}

Obtains details of the syntax of a command and the source code of a procedure.

\section*{No options}

\section*{Parameters}

COMMAND \(=\) texts
NOPTIONS \(=\) scalars
NPARAMETERS \(=\) scalars
NAME \(=\) texts
MODE \(=\) texts
NVALUES \(=\) pointers
VALUES = pointers
DEFAULT \(=\) pointers
SET \(=\) texts
DECLARED \(=\) texts
TYPE \(=\) pointers
COMPATIBLE \(=\) pointers
PRESENT \(=\) texts
LIST \(=\) texts

INPUT \(=\) texts

DEFINITION \(=\) texts

Single-line texts specifying the commands
Number of options for each command
Number of parameters for each command
Names of the options, and then the parameters, of each command
Modes of the options and parameters
Number of values allowed for the options and parameters
Allowed values for the options and parameters
Default values for the options and parameters
Whether the options and parameters must be set
Whether the options and parameters must have been declared
Allowed types for the options and parameters
Aspects of the options and parameters that must be compatible with the first parameter
Whether the options and parameters must have values
Whether the options have more than one setting (not relevant for the parameters
Whether the options and parameters only supply input information
Saves statements to define the syntax

SOURCE \(=\) texts
Saves the source code of a procedure

\section*{TABINSERT procedure}

Inserts the contents of a sub-table into a table (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
OLDTABLE \(=\) tables & Table containing the original values \\
SUBTABLE \(=\) tables & Sub-table to insert into the original table \\
NEWTABLE \(=\) tables & Tables to store the new values; if this is not set, these replace \\
& those in the original table
\end{tabular}

\section*{Parameters}

OLDFACTOR = factors
SUBFACTOR \(=\) factors
Factors classifying the dimensions of the old table that are smaller in the sub-table
Specifies the factors classifying the corresponding dimensions of the sub-table
FREPRESENTATION \(=\) string token \(\quad\) How to match the values of each OLDFACTOR and SUBFACTOR (levels, labels); default leve

\section*{TABLE directive}

Declares one or more table data structures.

\section*{Options}

CLASSIFICATION \(=\) factors \(\quad\) Factors classifying the tables; default *
MARGINS \(=\) string token
Whether to add margins (yes, no); default no
VALUES = numbers
Values for all the tables; default *
MODIFY \(=\) string token

IPRINT \(=\) string tokens

\section*{Parameters}

IDENTIFIER = identifiers
VALUES \(=\) identifiers
DECIMALS = scalars
EXTRA \(=\) texts
UNKNOWN = identifiers
MINIMUM \(=\) scalars
MAXIMUM = scalars
DREPRESENTATION = scalars or texts
DATAVARIATE \(=\) variates

SUMMARYTYPE \(=\) string tokens

PERCENTQUANTILE = scalars
\%MARGIN \(=\) pointers
(yes, no); default no
Information to be used by default to identify the tables in output (identifier, extra, associatedidentifier); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the tables
Values for each table
Number of decimal places for printing
Extra text associated with each identifier
Identifier for scalar to hold summary of unclassified data associated with each table
Minimum value for the contents of each structure
Maximum value for the contents of each structure
Default format to use when the contents represent dates and times
Records the identifier of the variate whose summaries are in the table
Records the type of summary that the table contains (counts, totals, nobservations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, semeans, seskewness, sekurtosis); default * i.e. not recorded
Records the percentage points for which quantiles have been formed; default * i.e. not recorded
Records the factors defining the margin over which the table has been converted to percentages

\section*{TABMODE procedure}

Forms summary tables of modes of values (R.W. Payne).
Options

CLASSIFICATION \(=\) factors

\section*{Parameters}

DATA \(=\) variates or factors
MODES \(=\) tables or scalars
* i.e. no printing

Factors classifying the tables; if unset, the overall mode is formed for all the values in each DATA vector

Data values whose modes are to be formed Save the modes for each DATA vector

\section*{TABSORT procedure}

Sorts tables so their margins are in ascending or descending order (R.W. Payne).

\section*{Options}
PRINT \(=\) string tokens
DIRECTION \(=\) string token
METHOD \(=\) string token

FACTORS \(=\) pointer

NEWFACTORS \(=\) pointer
EXCLUDE \(=\) pointer
NBEST \(=\) string tokens

\section*{Parameters}

TABLE \(=\) tables
NEWTABLE= tables
TITLE \(=\) texts
FIELDWIDTH \(=\) scalars
DECIMALS = scalars

Controls output (tables, histograms); default * i.e. none Direction of sorting (ascending, descending); default asce
Method to use to construct a marginal table for the sorting of a factor when there is no one-way table classified by the factor in the table list, and the first table in the table list classified by the factor has no margins (totals, means, minima, maxima, variances, medians); default tota
Specifies or saves a list of classifying factors of the tables in the table list
Specifies or saves a list of classifying factors of the new tables, corresponding to those in the FACTORS pointer
Factors to exclude from sorting
Number of (best) levels to include from each sorted factor; default * i.e. all of them

Tables to be sorted
Allows the new sorted tables to be saved
Title to be used when displaying each table
Field width for printing each table
Decimal places for each table

\section*{TABTABLE procedure}

Opens a tabbed-table spreadsheet in the Genstat client, PC Windows only (D.B. Baird).

\section*{Options}

IDENTIFIER \(=\) identifier

PAGEFACTOR \(=\) factor

\section*{Parameter}

TABLE \(=\) tables

Identifier for the combined table when several tables are specified by TABLE
Specifies the the classifying factor to go across the tabs in the spreadsheet when TABLE is set to a single table, or gives the identifier of the factor to be created to index the tables when TABLE supplies several tables

Tables to be placed into a tabbed-table spreadsheet

\section*{TABULATE directive}

Forms summary tables of variate values.

\section*{Options}

PRINT \(=\) string tokens

CLASSIFICATION \(=\) factors
COUNTS \(=\) table
SEQUENTIAL \(=\) scalar

Printed output required (counts, totals, nobservations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, semeans, seskewness, sekurtosis); default * i.e. no printing
Factors classifying the tables; default * i.e. these are taken from the tables in the parameter lists
Saves a table counting the number of units with each factor combination; default *
Used for sequential formation of tables; a positive value
\begin{tabular}{ll} 
& \\
& indicates that formation is not yet complete (see READ) ; \\
default *
\end{tabular}

\section*{TALLY procedure}

Forms a simple tally table of the distinct values in a vector (D.B. Baird \& R.D. Stern).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print out for each vector (frequencies, percentages, cumfrequencies, cumpercentages, cumgraph, all); default freq, perc \\
\hline GRAPH \(=\) string tokens & What to display as graphs (cumulative, \%cumulative); default * i.e. no graphs \\
\hline NGROUPS \(=\) scalar & Number of groups to form from a DATA variate or factor (ignored for texts); default * forms a group for each distinct value allowing for rounding (see DECIMALS) \\
\hline DECIMALS \(=\) scalar & Number of decimal places to which to round the DATA before forming the groups; default * i.e. no rounding \\
\hline BOUNDARIES \(=\) string token & Whether to interpret the LIMITS as upper or lower boundaries \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & (upper, lower), default lowe \\
\hline DIRECTION \(=\) string token & Order in which to sort (ascending, descending); default asce \\
\hline OMITEMPTY \(=\) string token & Whether empty groups are omitted (yes, no); default no \\
\hline WEIGHTS = variate & Weights to be used in the tabulations; default * indicates that all units have weight 1 \\
\hline PQUANTILES \(=\) string token & Whether to include quantiles on the plot (yes, no); default no \\
\hline WINDOW = scalar & Window in which to plot the graphs; default 1 if GROUPS is set, or 3 otherwise \\
\hline KEYWINDOW \(=\) scalar & Window in which to display the key when GROUPS is set; default 2 \\
\hline SCREEN \(=\) string token & Whether to clear screen before the plot (clear, keep); default clea \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline DATA \(=\) variates, factors or texts & Data to be tallied \\
\hline GROUPS \(=\) factors & Defines groupings of the data, to be tallied into separate tables; default * i.e. none \\
\hline LIMITS \(=\) variates or texts & Limits to define the groups within the tally tables \\
\hline FREPRESENTATION \(=\) string tokens & Specifies the representation used to define the sort order of a DATA factor (ordinals, levels, labels); default leve \\
\hline VALUES \(=\) variates, texts or pointers & Saves the distinct groups formed for the tally tables \\
\hline FREQUENCIES \(=\) variates or pointers & Saves the frequencies of the groups in the tally tables \\
\hline PERCENTAGES \(=\) variates or pointers & Saves the percentage occurrences of the groups \\
\hline \multicolumn{2}{|l|}{CUMFREQUENCIES \(=\) variates or pointers} \\
\hline & Saves the cumulative frequencies of the groups \\
\hline \multicolumn{2}{|l|}{CUMPERCENTAGES \(=\) variates or pointers} \\
\hline & Saves the cumulative percentages of the groups \\
\hline TITLE \(=\) texts & Title for plot; default automatically forms a title containing the identifiers of the DATA vector and any GROUPS factor \\
\hline XTITLE \(=\) texts & Title for the axis representing data values; default uses the identifier of the DATA vector \\
\hline
\end{tabular}

\section*{TDISPLAY directive}

Displays further output after an analysis by ESTIMATE.

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT }=\text { string tokens } & \text { What to print (model, summary, estimates, } \\
\text { CHANNEL }=\text { scalar } & \begin{array}{l}\text { correlations); default mode, summ, esti }\end{array} \\
\text { Channel number for output; default * i.e. current output } \\
\text { Channel }\end{array}\right\}\)\begin{tabular}{l} 
chane
\end{tabular}

\section*{No parameters}

\section*{TENSORSPLINE procedure}

Calculates design matrices to fit a tensor-spline surface as a linear mixed model (S.J. Welham \& P.H.C. Eilers).

\section*{Options}

METHOD \(=\) string token

PENALTYMETHOD = string token

NX1SEGMENTS \(=\) scalar

NX2SEGMENTS \(=\) scalar

DEGREE \(=\) scalar

Type of spline to use to construct the basis (pspline, penalizedspline); default pspl Which tensor-spline penalty to use (isotropic, semiconstrained, unconstrained); default unco Specifies the number of segments between boundaries in the X1 dimension; default * obtains a value automatically Specifies the number of segments between boundaries in the X2 dimension; default * obtains a value automatically Degree of polynomial used to form the underlying spline basis
```

DIFFORDER = scalar
X1LOWER $=$ scalar
X1UPPER $=$ scalar
X2LOWER $=$ scalar
X2UPPER $=$ scalar

```
ORTHOGONALIZATION \(=\) string token
SCALING \(=\) scalar

\section*{Parameters}
\(\mathrm{X1}=\) variates or factors
\(\mathrm{x} 2=\) variates or factors

XFIXED \(=\) matrices

XRANDOM = pointers

X1KNOTS \(=\) variates
\(\mathrm{X} 2 \mathrm{KNOTS}=\) variates
\(\mathrm{PX1}=\) variates
\(\mathrm{PX} 2=\) variates

PFIXED = matrices

PRANDOM = pointers
functions; default 1 for METHOD=pena and 3 for METHOD=pspl
Differencing order for P-spline penalty; default 2
Specifies the lower boundary in the X 1 dimension; default takes the minimum value of \(\mathrm{X1}\)
Specifies the upper boundary in the X 1 dimension; default takes the maximum value of x 1
Specifies the lower boundary in the x 2 dimension; default takes the minimum value of x 2
Specifies the upper boundary in the x 2 dimension; default takes the maximum value of x 2
How to orthogonalize the random basis (fixed, none); default fixe
Scaling of the XRANDOM terms (automatic, none); default auto

Coordinates in the first dimension for which spline values are required
Coordinates in the second dimension for which spline values are required
Saves the design matrix to define the fixed terms (excluding the constant) for fitting the tensor spline
Saves the design matrices to define the random terms for fitting the tensor spline
Saves the coordinates in the first dimension of the internal knots used to form the basis for the spline
Saves the coordinates in the second dimension of the internal knots used to form the basis for the spline
Specifies the coordinates in the first dimension at which to predict
Specifies the coordinates in the second dimension at which to predict
Saves the design matrix for the fixed terms (excluding the constant) for the tensor spline at the prediction points Saves the design matrices for the random terms for the tensor spline at the prediction points

\section*{TEQUIVALENCE procedure}

Performs equivalence, non-inferiority and non-superiority tests (R.W. Payne).

Options
```

PRINT = string tokens
PLOT = string token
CLASSIFICATION = pointer
METHOD = string token
CIPROBABILITY = scalar
EQLIMITS = scalar or variate
TITLE = text
WINDOW = scalar
SCREEN = string token

```
```

Controls printed output (confidence, description, test);
default desc, test
Controls plotting of the confidence intervals (confidence);
default *
Specifies the factors classifying the table of means; must be
supplied for a multi-way table
Type of test required (equivalence, noninferiority,
nonsuperiority); default equi
The probability level for the confidence interval; default 0.95
Limits for equivalence, non-inferiority or non-superiority
Title for the graph of confidence intervals; default
'Confidence plot'
Window for the graph of confidence intervals; default uses a
window defined to fill the screen
Whether to clear the screen before plotting the confidence
intervals (clear, keep); default clea

```

\section*{Parameters}

MEANS \(=\) tables or variates
CONTROL \(=\) scalars, texts or pointers
SED \(=\) symmetric matrix or scalar
DF = symmetric matrix or scalar
TSTATISTICS = tables or variates
PROBABILITIES \(=\) tables or variates
DIFFERENCES \(=\) tables or variates
SEDCONTROL \(=\) tables or variates
DFCONTROL \(=\) tables or variates
LOWER \(=\) tables or variates
UPPER \(=\) tables or variates

Means to be compared
Specifies the control treatment
Standard errors of differences of the means
Degrees of freedom for the standard errors of differences
Saves the t -statistics for the tests
Saves the probabilities from the tests
Saves the differences from the control
Saves the standard errors for the differences from the control Saves the degrees of freedom for the differences from the control
Saves the lower limits of the confidence intervals
Saves the upper limits of the confidence intervals

\section*{TERMS directive}

Specifies a maximal model, containing all terms to be used in subsequent linear, generalized linear, generalized additive, and nonlinear models.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (correlations, wmeans, SSPM, monitoring); default * \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of model terms; default 3 \\
\hline FULL \(=\) string token & Whether to assign all possible parameters to factors and interactions (yes, no); default no \\
\hline SSPM \(=\) SSPM & Gives sums of squares and products on which to base calculations; default * \\
\hline TOLERANCE \(=\) scalar & Criterion for testing for linear dependence; default is \(10^{7} \varepsilon\), where \(\varepsilon\) is the smallest real value such that \(1+\varepsilon\) is greater than 1 on the computer \\
\hline DESIGNMATRIX \(=\) matrix & Saves the design matrix for the maximal model \\
\hline MVINCLUDE \(=\) string token & Whether to include units with missing values in the explanatory factors and variates (explanatory); default * i.e. omit these \\
\hline RIDGE \(=\) scalar or variate & Supplies values to add to the diagonal of the sums-of-squares-and-products matrix, to enable ridge methods to be used; default 0 \\
\hline CLDESIGNMATRIX \(=\) text & Saves the column labels of the design matrix for the maximal model i.e. the names of the parameters estimated in the maximal model \\
\hline CLSSP \(=\) text & Saves the labels of the sum-of-squares-and-products matrix \\
\hline Parameter & \\
\hline formula & List of explanatory variates and factors, or model formula \\
\hline
\end{tabular}

\section*{TEXT directive}

Declares one or more text data structures.

\section*{Options}

NVALUES \(=\) scalar or vector

VALUES \(=\) strings
MODIFY \(=\) string token

IPRINT \(=\) string tokens

\section*{Parameters}

IDENTIFIER = identifiers
VALUES \(=\) texts

Number of strings, or vector of labels; default * takes the setting from the preceding UNITS statement, if any Values for all the texts; default * Whether to modify (instead of redefining) existing structures (yes, no); default no Information to be used by default to identify the texts in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the texts
Values for each text

CHARACTERS \(=\) scalars
\(\mathrm{EXTRA}=\) texts

Numbers of characters of the lines of each text to be printed by default
Extra text associated with each identifier

\section*{TFILTER directive}

Filters time series by time-series models.

\section*{Option}

PRINT \(=\) string tokens \(\quad\) What to print (series); default *

\section*{Parameters}

OLDSERIES \(=\) variates
Time series to be filtered
NEWSERIES = variates
FILTER = TSMS
ARIMA \(=T S M s\)

To save filtered series
Models to filter with respect to
ARIMA models for time series

\section*{TFIT directive}

Estimates parameters in Box-Jenkins models for time series.

\section*{Options}
```

PRINT = string tokens
LIKELIHOOD = string token
CONSTANT = string token
RECYCLE = string token
WEIGHTS = variate
MVREPLACE = string token
FIX = variate

```
\(\mathrm{METHOD}=\) string token
MAXCYCLE \(=\) scalar
TOLERANCE = scalar
SAVE \(=\) identifier

\section*{Parameters}

SERIES \(=\) variate
\(\mathrm{TSM}=T S M\)
BOXCOXMETHOD \(=\) string token

RESIDUALS \(=\) variate

What to print (model, summary, estimates, correlations, monitoring); default mode, summ, esti Method of likelihood calculation (exact, leastsquares, marginal); default exac How to treat the constant (estimate, fix); default esti Whether to continue from previous estimation (yes, no); default no Weights; default * Whether to replace missing values by their estimates (yes, no); default no
Defines constraints on parameters (ordered as in each model, tf models first): zeros fix parameters, parameters with equal numbers are constrained to be equal; default *
Whether to carry out full iterative estimation, to carry out just one iterative step, to perform no steps but still give parameter standard deviations, or only to initialize for forecasting by regenerating residuals (full, onestep, zerostep, initialize); default full
Maximum number of iterations; default 15
Criterion for convergence; default 0.0004
To name save structure, or supply save structure with transfer-functions; default * i.e. transfer-functions taken from the latest model

Time series to be modelled (output series)
Model for output series
How to treat transformation parameter in output series (fix, estimate); default fix
To save residual series

\section*{TFORECAST directive}

Forecasts future values of a time series.

\section*{Options}
\(\left.\left.\begin{array}{ll}\text { PRINT }=\text { string tokens } & \text { What to print (forecasts, limits, setransform, sfe); } \\
\text { default fore, limi }\end{array}\right] \begin{array}{l}\text { Channel number for output; default * i.e. current output } \\
\text { channel }\end{array}\right]\)\begin{tabular}{l} 
Number of known values to be incorporated; default 0 \\
ORIGIN \(=\) scalar \\
UPDATE \(=\) string token
\end{tabular}\(\quad\) Whether to update the forecast origin to the end of the new
\begin{tabular}{|c|c|}
\hline & observations (yes, no); default no \\
\hline NEWOBSERVATIONS \(=\) variate & Variate of length \(\geq\) ORIGIN providing new values of the time series to be incorporated (must be set if ORIGIN \(>0\) ) \\
\hline SFE \(=\) variate & Saves standardized forecast errors; default * \\
\hline MAXLEAD \(=\) scalar & Maximum lead time i.e number of forecasts to be made; default * defines the number as the length of FORECAST variate \\
\hline FORECAST \(=\) variate & Variate of length MAXLEAD to save forecasts of output series; default * \\
\hline SETRANSFORM = variate & Saves standard errors of the forecasts (on transformed scale, if defined); default * \\
\hline LOWER \(=\) variate & Saves lower confidence limits; default * \\
\hline UPPER \(=\) variate & Saves upper confidence limits; default * \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence limits; default 0.9 \\
\hline COMPONENTS \(=\) pointer & Contains variates (of length ORIGIN + MAXLEAD) to save components of the forecast \\
\hline SAVE \(=\) identifier & Save structure to supply fitted model; default * i.e. that from last model fitted \\
\hline Parameters & \\
\hline FUTURE = variates & Variates (of length ORIGIN + MAXLEAD) containing future values of input series \\
\hline METHOD \(=\) string tokens & How to treat future values of input series (observations, forecasts); default obse \\
\hline
\end{tabular}

\section*{THINPLATE procedure}

Calculates the basis functions for thin-plate splines (D.B. Baird).

\section*{No options}

\section*{Parameters}
\(\mathrm{Y}=\) variates or factors \(\quad \mathrm{Y}\)-coordinates of the data points
\(\mathrm{X}=\) variates or factors \(\quad \mathrm{X}\)-coordinates of the data points
YKNOTS \(=\) variates or factors Y-coordinates of the knots
XKNOTS \(=\) variates or factors \(\quad\) X-coordinates of the knots
TPSPLINE \(=\) variates or matrices \(\quad\) Thin-plate spline basis, as either a pointer of variates (default if not already declared) or a matrix

\section*{TKEEP directive}

Saves results after an analysis by ESTIMATE.

\section*{Option}

SAVE \(=\) identifier

\section*{Parameters}

OUTPUTSERIES = variate
RESIDUALS \(=\) variate
ESTIMATES \(=\) variate
\(\mathrm{SE}=\) variate
INVERSE = symmetric matrix
VCOVARIANCE \(=\) symmetric matrix
DEVIANCE \(=\) scalar
DF \(=\) scalar
MVESTIMATES = variate
SEMV = variate
COMPONENTS = pointer
SCORES \(=\) variate

Save structure to supply fitted model; default * i.e. that from last model fitted

Output series to which model was fitted
Residual series
Estimates of parameters
Standard errors of estimates
Inverse matrix
Variance-covariance matrix of parameters
Residual deviance
Residual degrees of freedom
Estimates of missing values in series
Standard errors of estimates of missing values
Variates to save components of output series
To save scores (derivatives of the log-likelihood with respect to the parameters)

\section*{TOBIT procedure}

Performs a Tobit linear mixed model analysis on data with fixed-threshold censoring (M.C. Hannah \& V.M. Cave).

\section*{Options}

PRINT \(=\) string token
\(\mathrm{VPRINT}=\) string tokens

PSE \(=\) string token
\(\mathrm{PLOT}=\) string token

MAXCYCLE \(=\) scalar

TOLERANCE \(=\) variate

RMETHOD = string token

DIRECTION \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) variate
BOUND \(=\) scalar
CENSORED \(=\) variate

INITIAL \(=\) scalar or variate

NEWY = variate

YCENSORED = variate
SAVE \(=\) REML save structure

Controls printed output (summary); default summ Controls printed output from the REML analysis of the data with censored observations replaced by their estimates
(model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues); default mode, comp, Wald
Standard errors to be printed with tables of effects and means
from the REML analysis (differences, estimates,
alldifferences, allestimates, none); default diff
To display a scatter plot of the data with censored observations replaced by their estimates against the observed data(scatterplot); default *
Sets a limit on the number of iterations performed by the E-M algorithm; default 30
Sets tolerance limits for convergence of the E-M algorithm on the treatment means and the variance components; default 0.1 and 0.05 for the treatment means and variance components, respectively
Which random terms to use when calculating the residuals during the E-step of the E-M algorithm (final, all); default final
The direction of the censoring (left, right); default left (i.e., the true values for the censored observations are less than or equal to the BOUND)

Response variate to be analysed; no default, must be set Censoring threshold; no default, must be set Indicator variable for censored observations, with values of one where the response values are censored and zero otherwise Scalar or a variate providing starting values for the censored observations in the E-M algorithm
Saves a copy of the response variate with the censored observations replaced by their estimates
Saves a logical variate indicating which \(Y\) values are censored REML save structure from the analysis of the data with censored observations replaced by their estimates

\section*{TRANSFERFUNCTION directive}

Specifies input series and transfer-function models for subsequent estimation of a model for an output series.

\section*{Option}

SAVE = identifier

\section*{Parameters}

SERIES = variates
TRANSFERFUNCTION \(=T S M s\)
BOXCOXMETHOD \(=\) string tokens
PRIORMETHOD \(=\) string tokens
ARIMA \(=T S M s\)

To name time-series save structure; default *
Input time series
Transfer-function models; if omitted, model with 1 moving-average parameter, lag 0
How to treat transformation parameters (fix, estimate); default fix
How to treat prior values (fix, estimate); default fix ARIMA models for input series

\section*{TREATMENTSTRUCTURE directive}

Specifies the treatment terms to be fitted by subsequent ANOVA statements.

\section*{No options}

Parameter
formula Treatment formula, specifies the treatment model terms to be fitted by subsequent ANOVAs

\section*{TREE directive}

Declares one or more tree data structures and initializes each one to have a single node known as its root.

\section*{No options}

\section*{Parameter}

IDENTIFIER \(=\) identifiers \(\quad\) Identifiers of the trees

\section*{TRELLIS procedure}

Does a trellis plot (S.J. Welham \& S.A. Harding).

\section*{Options}
\begin{tabular}{|c|c|}
\hline GROUPS \(=\) factors or variate & Factors or variate defining the classification for the plots \\
\hline GMETHOD \(=\) string token & Determines the method used to partition the range when GROUPS is set to a variate (equalspacing, quantiles, distinct, limits); default equal \\
\hline NGROUPS \(=\) scalar & Determines the number of plots to be formed when GROUPS is set to a variate and GMETHOD is set to quantiles or equalspacing \\
\hline LIMITS \(=\) variate & Limits to use to form groups from a GROUPS variate when GMETHOD=limits \\
\hline OVERLAP \(=\) scalar & Proportion by which a GROUPS variate should overlap between plots (scalar in range 0-0.5); default 0 \\
\hline OMITEMPTY \(=\) string token & Whether to omit all empty plots from the array (all), or omit levels of a GROUPS factor where all plots are empty (levels), or keep all plots in the array (none); default level \\
\hline PENGROUP \(=\) factors & Defines factor combinations to be plotted in different colours, note that the number of colours available may differ between devices \\
\hline NROWS \(=\) scalar & Specifies number of rows of plots to appear on one page; default determined automatically from GROUPS \\
\hline NCOLUMNS \(=\) scalar & Specifies number of columns of plots to appear on one page; default determined automatically from GROUPS \\
\hline TITLE \(=\) text & Supplies a title for the plot \\
\hline FIRSTPICTURE \(=\) string token & Whether to put the first picture at bottom or top left of the grid (bottomleft, topleft); default topl \\
\hline TMETHOD \(=\) string token & Whether to give plot titles as factor names with labels or just labels (names, labels); default names \\
\hline YTITLE \(=\) text & Supplies an overall y-axis title \\
\hline XTITLE \(=\) text & Supplies an overall x -axis title \\
\hline YMARGIN \(=\) scalar & Relative size of margins for the \(y\)-axis labels on individual plots; default 0.04 \\
\hline XMARGIN \(=\) scalar & Relative size of margins for the x -axis labels on individual plots; default 0.04 \\
\hline TMARGIN \(=\) scalar & Relative size of margin for titles of individual plots; default 0.04 \\
\hline PENSIZE \(=\) scalar & Proportionate adjustment to the pen size for individual plot titles and axis labels; default 1 \\
\hline USEPENS \(=\) string token & Whether to use current pen definitions in the procedure (no, yes); default no \\
\hline USEAXES \(=\) string token & Which aspects of the current axis definitions of window 1 to \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline NRMAX \(=\) scalar & Maximum number of rows on page; default 8 for a square frame, 7 for a landscape frame and 10 for a portrait frame \\
\hline NCMAX \(=\) scalar & Maximum number of columns on page; default 8 for a square frame, 10 for a landscape frame and 7 for a portrait frame \\
\hline KEYHEIGHT = scalar & Space in y-direction to use for key ( 0 to suppress key); default * i.e. determined automatically \\
\hline YPENMETHOD \(=\) string token & Whether to use the same or different pens for each \(y\)-variate (different, same); default diff \\
\hline FRAMESHAPE \(=\) string token & Shape of the plotting frame (landscape, portrait, square); default squa \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Y-values of the data to be plotted \\
\hline \(\mathrm{X}=\) variates or factors & X-values of the data to be plotted \\
\hline METHOD \(=\) string tokens & Type of plot (point, line, mean, median, histogram, boxplot, spline, schematicboxplot); default poin \\
\hline DESCRIPTION \(=\) texts & Annotation for key \\
\hline
\end{tabular}

\section*{TRY directive}

Displays results of single-term changes to a linear, generalized linear or generalized additive model.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, deviance, summary, estimates, correlations, fittedvalues, accumulated, monitoring, changes, confidence); default chan \\
\hline FACTORIAL \(=\) scalar & Limit for expansion of model terms; default * i.e. that in previous TERMS statement \\
\hline \(\mathrm{POOL}=\) string token & Whether to pool ss in accumulated summary between all terms fitted in a linear model (yes, no); default no \\
\hline DENOMINATOR = string token & Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ); default ss \\
\hline NOMESSAGE \(=\) string tokens & Which warning messages to suppress (dispersion, leverage, residual, aliasing, marginality, vertical, df, inflation); default * \\
\hline FPROBABILITY \(=\) string token & Printing of probabilities for variance and deviance ratios (yes, no); default no \\
\hline TPROBABILITY = string token & Printing of probabilities for t-statistics (yes, no); default no \\
\hline SELECTION \(=\) string tokens & Statistics to be displayed in the summary of analysis produced by PRINT=summary, seobservations is relevant only for a Normally distributed response, and \(\% \mathrm{cv}\) only for a gammadistributed response (\%variance, \%ss, adjustedr2, r2, seobservations, dispersion, \%cv, \%meandeviance, \%deviance, aic, bic, sic); default \%var, seob if DIST=normal, \%cv if DIST=gamma, and disp for other distributions \\
\hline PROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline Parameter & \\
\hline & List of explanatory variates and factors, or model formula \\
\hline
\end{tabular}

\section*{TSM directive}

Declares one or more TSM data structures.
Option
MODELTYPE \(=\) string token \(\quad\) Type of model (arima, transfer); default arim

\section*{Parameters}
\begin{tabular}{ll} 
IDENTIFIER \(=\) identifiers & Identifiers of the TSMs \\
ORDERS \(=\) variates & Orders of the autoregressive, integrated, and moving-average \\
& parts of each TSM \\
PARAMETERS \(=\) variates & Parameters of each TSM \\
LAGS \(=\) variates & Lags, if not default
\end{tabular}

\section*{TSUMMARIZE directive}

Displays characteristics of time series models.

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & What to print (autocorrelations, expansion, \\
impulse, piweight, psiweight); default *
\end{tabular},

\section*{TTEST procedure}

Performs a one- or two-sample t-test (S.J. Welham).

Options
PRINT \(=\) string token
\(\mathrm{METHOD}=\) string token

GROUPS \(=\) factor

CIPROBABILITY \(=\) scalar

NULL = scalar
VMETHOD \(=\) string token

NTIMES \(=\) scalar

SEED \(=\) scalar

EQLIMITS = scalar or variate

\section*{Parameters}

Y1 \(=\) variates
Y2 \(=\) variates
TESTRESULTS = variates

Controls printed output (confidence, summary, test, variance, permutationtest); default conf, summ, test, vari
Type of test required (twosided, greaterthan, lessthan, equivalence, noninferiority, nonsuperiority); default twos
Defines the groups for a two-sample test if only the Y1 parameter is specified
The probability level for the confidence interval; for a onesided test this will be for the mean and for a two-sided test for the difference in means; default *, i.e. no confidence interval is produced
The value of the mean under the null hypothesis; default 0 Selects between the standard two-sample \(t\)-test, with a pooled estimate of the variances of the samples, and the use of separate estimates for the sample variances (automatic, pooled, separate); default auto uses a pooled estimate unless there is evidence of unequal variances
Number of random allocations to make when PRINT=perm; default 999
Seed for the random number generator used to make the allocations; default 0 continues from the previous generation or (if none) initializes the seed automatically
Limits for equivalence, non-inferiority or non-superiority
Identifier of the variate holding the first sample Identifier of the variate holding the second sample Identifier of variate (length 3) to save test statistic, d.f. and
```

LOWER = scalars
UPPER = scalars
w1 = variates
W2 = variates
$\mathrm{w} 2=$ variates

```
probability value
Identifier of scalar to save the lower limit of each confidence interval
Identifier of scalar to save the upper limit of each confidence interval
Weights (replications) of the values in Y1; default * i.e. all 1
Weights (replications) of the values in Y2; default * i.e. all 1

\section*{TUKEYBIWEIGHT procedure}

Estimates means using the Tukey biweight algorithm (D.B. Baird).
Options
CUTPOINT = scalar
TOLERANCE \(=\) scalar
Cut point after which weight is set to zero; default 5
Parameters
Tolerance to avoid division by zero; default 0.00001
DATA \(=\) variates or pointers
Data values
GROUPS \(=\) factors
Groupings of the data values
MEANS \(=\) variates
Saves the means
\(\mathrm{SE}=\) variates
Saves standard errors

\section*{TVARMA procedure}

Fits a vector autoregressive moving average (VARMA) model (A.I. Glaser).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (model, summary, estimates, correlations); default mode, summ, esti \\
\hline LIKELIHOOD \(=\) string token & Method of likelihood calculation (exact, conditional); default exac \\
\hline CONSTANT \(=\) string token & How to treat the constant (estimate, fixtozero); default esti \\
\hline ARMA \(=\) variate & Variate of length two, containing the number of AR and MA parameters respectively \\
\hline ARFIXED = pointer & Specifies fixed values of the AR parameters \\
\hline MAFIXED \(=\) pointer & Specifies fixed values of the MA parameters \\
\hline MUFIXED = variate & Specifies fixed values of the constant parameters \\
\hline NDIFFERENCING \(=\) variate or scalar & Specifies the order of differencing for each series; default 0 \\
\hline NCROSSRESIDUAL \(=\) scalar & Number of residual cross-correlation matrices to be computed for calculating the modified portmanteau statistic; default 20 \\
\hline MAXCYCLE \(=\) scalar & Maximum number of iterations; if this is not set, an appropriate default is determined automatically according to the number of parameters \\
\hline TOLERANCE \(=\) scalar & Convergence criterion; default 0.0001 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline SERIES = pointers & Time series to be modelled (output series) \\
\hline RESIDUALS \(=\) pointers & Saves the residual series \\
\hline ESTIMATES \(=\) pointers & Saves estimates of parameters for each SERIES variate \\
\hline SEESTIMATES \(=\) pointers & Saves standard errors of the estimates \\
\hline VCRESIDUALS \(=\) symmetric matrices & Variance-covariance matrix of the residuals \\
\hline DEVIANCE = scalars & Saves the residual sum of squares or deviance \\
\hline CORRELATIONS \(=\) symmetric matrices & Saves the correlation matrix of the estimates \\
\hline GRADIENTS = variates & Saves the first derivative of the loglikelihood function \\
\hline SAVE \(=\) pointers & Saves information for use with TVGRAPH or TVFORECAST \\
\hline
\end{tabular}

\section*{TVFORECAST procedure}

Forecasts future values from a vector autoregressive moving average (VARMA) model (A.I. Glaser). Options
```

PRINT = string tokens
What to print (forecasts, se); default fore, se
MAXLEAD = scalar
Maximum lead time i.e. number of forecasts to be made;

```
default 1

\section*{Parameters}

FORECASTS \(=\) matrices
\(\mathrm{SE}=\) matrices
SAVE \(=\) pointers

Saves the forecasts
Saves standard errors of the forecasts
Save structure from a previous TVARMA

\section*{TVGRAPH procedure}

Plots a vector autoregressive moving average (VARMA) model (A.I. Glaser).

\section*{Options}

TIMEPOINTS \(=\) variate
TITLE \(=\) texts
YTITLE \(=\) texts

XTITLE \(=\) texts

NROWS \(=\) scalar

NCOLUMNS \(=\) scalar

\section*{Parameter}

SAVE \(=\) pointers

X-coordinates for the graphs; default uses the integers \(1,2 \ldots\)
Overall title for the graphs
Titles for the \(y\)-axes; default * forms titles automatically from the identifiers or labels of the \(y\)-variables
Title for the x -axis in each set of graphs; default * uses the identifier of TIMEPOINTS (if set)
Specifies the number of rows of graphs to appear on the graphics screen; default * takes the number of \(y\)-variables Specifies the number of columns of graphs to appear on the graphics screen; default 1

Save structure from TVARMA with information about the analysis; default plots information from the most recent TVARMA analysis

\section*{TXBREAK directive}

Breaks up a text structure into individual words.

\section*{Option}

SEPARATOR = text

\section*{Parameters}

TEXT \(=\) texts
WORDS \(=\) texts

COLUMNS \(=\) variates

LINES \(=\) variates
PLACESINLINES \(=\) variates

Defines the characters separating the words in the original text; default ' , ;: .'

Text to break into words
Saves the words contained in each text (in the order in which they occur)
Saves the number of the column in the TEXT where each word began
Saves the number of the line where each word was found Saves the place of each word (first, second \&c) within the line where it was found

\section*{TXCONSTRUCT directive}

Forms a text structure by appending or concatenating values of scalars, variates, texts, factors, pointers or formulae; allows the case of letters to be changed or values to be truncated and reversed.

\section*{Options}

TEXT \(=\) text
\(\mathrm{CASE}=\) string token

METHOD \(=\) string token

SEPARATOR \(=\) string

LASTSEPARATOR \(=\) string

PREFIX = string

Stores the text that is formed
Case to use for letters (given, lower, upper, changed, sentence, title); default give leaves the case of each letter as given in the original texts
Whether to append or concatenate the values of the structures (append, concatenate) default conc
Characters to separate all except last two strings in each line when concatenating; default ' ' (i.e. none)
Characters to separate last two strings in each line when concatenating; default uses the charactors defined by SEPARATOR
Characters to put at the start of each line when concatenating; default ' ' (i.e. none)

END = string
SIGNIFICANTFIGURES \(=\) scalar

Parameters
STRUCTURE \(=\) scalars, variates, factors, texts, pointers or formulae
Structures whose values are to be appended or concatenated WIDTH \(=\) scalars or variates \(\quad\) Number of characters to take from the strings formed from the units of each STRUCTURE, a negative value takes all the (unskipped) characters other than trailing spaces; if omitted or set to a missing value, all the (unskipped) characters are taken

DECIMALS \(=\) scalars or variates

SKIP \(=\) scalars or variates

FREPRESENTATION = string tokens

DREPRESENTATION = scalars or texts

REVERSE \(=\) string tokens

MISSING \(=\) texts

Characters to put at the end of each line when concatenating; default ' ' (i.e. none)
Specifies the number of significant figures to include for numerical data; default 4 Number of decimal places to use for numerical structures; if omitted or set to a missing value, a default is used which aims to print the value to the precision defined by the SIGNIFICANTFIGURES option
Number of characters to skip at the left-hand side of the strings formed from the units of each STRUCTURE, a negative value skips all initial spaces; if omitted or set to a missing value, no characters are skipped
How to represent factor values (labels, levels, ordinals); default is to use labels if available, otherwise levels
Format to use for dates and times (stored in numerical structures)
Whether to reverse the strings of characters formed from the units of each structure (yes, no); default no
String to use to represent missing values of numerical structures; default ' *'

\section*{TXFIND directive}

Finds a subtext within a text structure.

\section*{Options}
```

CASE = string token
REVERSE = string token
MULTISPACES = string token

```
DISTINCT \(=\) string tokens
SEPARATOR = string
SAMELINE \(=\) string token

\section*{Parameters}

\section*{TEXT = texts}

SUBTEXT = texts
COLUMN \(=\) scalars
\(\mathrm{LINE}=\) scalars

ICOLUMN \(=\) scalars
ILINE = scalars
ENDCOLUMN \(=\) scalars

Whether to treat the case of letters (small or capital) as significant when searching for the SUBTEXT within the TEXT (significant, ignored); default sign
Whether to reverse the search to work from the end of the TEXT (yes, no); default no
Whether to treat differences between multiple spaces and single spaces as significant, or to treat them all like a single space (significant, ignored); default sign Whether to require the SUBTEXT to have one or more separators to its left or right within the TEXT (left, right; default *
Characters to use as separators; default ' , ; : ' Whether to ignore matches in the TEXT where the SUBTEXT is not all on the same line (yes, no); default no

Texts to be searched
Text to look for in each TEXT
Position of the column within TEXT where the first character of SUBTEXT has been found
Number of the line within TEXT where the first character of SUBTEXT has been found
Column within TEXT at which to start the search
Line within TEXT at which to start the search
Position of the column within TEXT where the last character of

SUBTEXT has been found
Number of the line within TEXT where the last character of SUBTEXT has been found

\section*{TXINTEGERCODES directive}

Converts textual characters to and from their corresponding integer codes.

\section*{Options}
\begin{tabular}{ll} 
CONVERTTO = string token & \begin{tabular}{l} 
Whether to convert from text characters to integer codes or \\
integer codes to text characters (codes, text); default code
\end{tabular} \\
REPRESENT \(=\) string token & \begin{tabular}{l} 
How to treat code values \(128-255(\) extendedascii, utf8); \\
default exte if CODES defines no characters that can be \\
represented only in UTF-8, otherwise utf8
\end{tabular} \\
Parameters & Text structures (each with a single line only) \\
TEXT = texts & Integer codes corresponding to the characters in each text
\end{tabular}

\section*{TXPAD procedure}

Pads strings of a text structure with extra characters so that their lengths are equal (J.T.N.M. Thissen).

\section*{Options}

PADDINGCHARACTERS \(=\) string token \(\quad\) Character(s) used for padding; default uses the dot character

METHOD \(=\) string token

REMOVESPACES \(=\) string tokens

\section*{Parameters}
```

OLDTEXT = texts
NEWTEXT = texts
WIDTH = scalars

```
'.'
Whether the character(s) of PADDINGCHARACTERS should be placed before or after the strings of OLDTEXT (before, after); default afte
Whether to remove initial and/or trailing spaces in the strings of OLDTEXT (leading, trailing); default * i.e. none

Texts to be padded; must be set Saves the padded texts
Sets a limit on the length of the strings in the padded texts; default is the width of the largest string in OLDTEXT

\section*{TXPOSITION directive}

Locates strings within the lines of a text structure.

Options
CASE \(=\) string token

REVERSE \(=\) string tokens

MULTISPACES \(=\) string token

DISTINCT \(=\) string tokens

SEPARATOR = text

\section*{Parameters}

TEXT = texts
SUBTEXT = texts
POSITION = variates
\(\mathrm{WIDTH}=\) scalars or variates

SKIP \(=\) scalars or variates

Whether to treat the case of letters as significant when searching for lines of the SUBTEXT within the TEXT (significant, ignored); default sign Whether to reverse the search to work from the end of the lines of the TEXT (yes, no); default no Whether to treat differences between multiple spaces and single spaces as significant, or to treat them all like a single space (significant, ignored); default sign Whether to require the SUBTEXT to have one or more separators to its left or right within the TEXT (left, right; default *
Characters to use as separators; default ' , ; : .'

Texts whose strings are to be searched
Specifies a string or strings to find in each TEXT
Position of the SUBTEXT strings within the TEXT
Right-most character(s) to search in the lines of each TEXT; default * searches up to the end of each line Number of characters to skip at the left-hand side of the lines of each TEXT; default 0

\section*{TXPROGRESSION procedure}

Forms a text containing a progression of strings (R.W. Payne).

\section*{Options}

INCLUDECHARACTERS \(=\) string tokens Defines the set of characters to include in the progression (lower, upper, digits, , \%, space); default lowe
DIRECTION \(=\) string token
FIRSTLETTERS \(=\) string token
OWNCHARACTERSET \(=\) text Direction of the progression (ascending, descending); default asce
Controls which letters come first (alllower, allupper, lower, upper); default uppe

\section*{Parameters}
\begin{tabular}{ll} 
FIRST \(=\) texts & \begin{tabular}{l} 
Single-valued text specifying the first string in each \\
progression
\end{tabular} \\
SECOND \(=\) texts & \begin{tabular}{l} 
Single-valued text specifying the second string in each \\
progression
\end{tabular} \\
LAST \(=\) texts & \begin{tabular}{l} 
Single-valued text defining the end of each progression
\end{tabular} \\
PROGRESSION \(=\) texts & Saves the progression
\end{tabular}

\section*{TXREPLACE directive}

Replaces a subtext within a text structure.

\section*{Options}
\begin{tabular}{|c|c|}
\hline NTIMES \(=\) scalar & Number of times to search for the OLDSUBTEXT and replace it; default 1 \\
\hline CASE \(=\) string token & Whether to treat the case of letters (small or capital) as significant when searching for the OLDSUBTEXT within the OLDTEXT (significant, ignored); default sign \\
\hline MULTISPACES \(=\) string token & Whether to treat differences between multiple spaces and single spaces as significant when locating the OLDSUBTEXT within the OLDTEXT, or to treat them all like a single space (significant, ignored); default sign \\
\hline DISTINCT \(=\) string tokens & Whether to require the OLDSUBTEXT to have one or more separators to its left or right within the OLDTEXT (left, right); default * \\
\hline SEPARATOR = string & Characters to use as separators; default ' , ; . ' \\
\hline SAMELINE \(=\) string token & Whether to ignore matches in the OLDTEXT where the \\
\hline & OLDSUBTEXT is not all on the same line (yes, no); default no \\
\hline Parameters & \\
\hline OLDTEXT \(=\) texts & Texts to be edited \\
\hline NEWTEXT = texts & Texts with OLDSUBTEXT replaced by NEWSUBTEXT; if no NEWTEXT is supplied, the new values replace those in the corresponding OLDTEXT \\
\hline OLDSUBTEXT \(=\) texts & Text to look for in each OLDTEXT \\
\hline NEWSUBTEXT = texts & Text to replace OLDSUBTEXT \\
\hline COLUMN \(=\) scalars & Position of the column within OLDTEXT where the first character of NEWSUBTEXT has been placed \\
\hline LINE \(=\) scalars & Number of the line within OLDTEXT where the first character of NEWSUBTEXT has been placed \\
\hline ICOLUMN \(=\) scalars & Column within OLDTEXT at which to start the search \\
\hline ILINE \(=\) scalars & Line within OLDTEXT at which to start the search \\
\hline ENDCOLUMN \(=\) scalars & Position of the column within OLDTEXT where the last character of NEWSUBTEXT has been placed \\
\hline ENDLINE \(=\) scalars & Number of the line within OLDTEXT where the last character of NEWSUBTEXT has been placed \\
\hline NREPLACED \(=\) scalars & Number of subtexts replaced \\
\hline
\end{tabular}

\section*{TXSPLIT procedure}

Splits a text into individual texts, at positions on each line marked by separator character(s) (R.W. Payne).

\section*{Options}

SEPARATOR \(=\) text \(\quad\) Defines the character( \(s\) ) that indicate where to split each line; default ','
Whether to retain the separator at the end of a split text, or any spaces at its start and end (separators, spaces) ; default * i.e. include neither

\section*{Parameters}

TEXT = texts
Text to split
SPLITTEXTS \(=\) texts
Saves the texts into which TEXT is split

\section*{TX2VARIATE directive}

Converts text structures to variates.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string token & Controls printed output (conversions) ; default * (i.e. none) \\
\hline NONNUMERIC \(=\) string token & How to treat non-numeric values (bestmatch, missing) default miss \\
\hline YEAR \(=\) scalar & Year to use when calculating the day within year for the date formats that specify only months and days; default is to assume that this is any year that is not a leap year \\
\hline REDEFINE \(=\) string token & Whether to allow a structure in the VARIATE list that has already been declared (e.g. as a text) to be redefined (yes, no); default no \\
\hline Parameters & \\
\hline TEXT \(=\) texts & Text structures to convert \\
\hline VARIATE \(=\) variates & Variate for each text, containing the numbers in each of its lines \\
\hline DREPRESENTATION \(=\) scalars & Format to use for dates and times (stored in numerical structures) \\
\hline MISSING \(=\) texts & Strings used to represent missing values in each text; default \\
\hline STATUS \(=\) variates & Code to indicate whether the number in each unit was read successfully (1), or with conversions (2), or unsuccessfully (0) \\
\hline
\end{tabular}

\section*{T\%CONTROL procedure}

Expresses tables as percentages of control cells (R.W. Payne).

\section*{Option}

PRINT \(=\) string token \(\quad\) Controls printed output (percentages); default perc

\section*{Parameters}

OLDTABLE \(=\) tables \(\quad\) Tables containing the original values
NEWTABLE \(=\) tables \(\quad\) Tables to store the percentage values
FACTOR \(=\) factors or pointers \(\quad\) Factor, or pointer of factors, with control levels
CONTROL \(=\) scalars, vaiates, texts or pointers
Identifies the control level or levels of each FACTOR (if more than one is specified for a factor, their mean is used); default uses the reference level

\section*{UNITS directive}

Defines an auxiliary vector of labels and/or the length of any vector whose length is not defined when a statement needing it is executed.

\section*{Option}

NVALUES \(=\) scalar \(\quad\) Default length for vectors

\section*{Parameter} variate or text

Vector of labels

\section*{UNSTACK procedure}

Splits vectors into individual vectors according to levels of a factor (R.W. Payne).

\section*{Options}
\(\left.\begin{array}{ll}\text { DATASET }=\text { factor } & \text { Factor identifying the unstacked data sets } \\
\text { IDSTACKED }=\text { factors } & \text { Factors identifying how the units of the unstacked data sets } \\
\text { should be matched }\end{array}\right]\)\begin{tabular}{l} 
Factors defined to identify these units in the unstacked vectors \\
IDUNSTACKED \(=\) factors \\
MVINCLUDE \(=\) strings
\end{tabular}

\section*{Parameters}

STACKEDVECTOR = variates, factors or texts
Vectors to be unstacked
DATASETINDEX \(=\) scalars or texts \(\quad\) Level or label of the DATASET factor indicating the group whose units are to be stored in the UnSTACKEDVECTOR; default takes the levels of DATASET one at a time (and then recycling this list to match the other parameters)
UNSTACKEDVECTOR \(=\) variates, factors or texts
Unstacked vectors

\section*{UTMCONVERSION procedure}

Converts between geographical latitude and longitude coordinates and UTM eastings and northings (D.B. Baird).

\section*{Options}
\begin{tabular}{|c|c|}
\hline CONVERTTO = string token & Whether to convert to UTM eastings and northings from geographical latitude and longitude coordinates, or to geographical coordinates from UTM (geographical, utm); default utm \\
\hline DATUM \(=\) string token & The datum to use when constructing the grid for eastings and northings (WGS84, NAD83, GRS80, OSGB36, WGS72, AUSTRALIAN1965, KRASOVSKY1940, NORTHAMERICAN1927, INTERNATIONAL1924, HAYFORD1909, CLARKE1880, CLARKE1866, AIRY1830, BESSEL1841, EVEREST1830); default WGS8 \\
\hline CENTRALMERIDIAN \(=\) scalar & Central meridian in degrees for the UTM coordinates \\
\hline SINGLEZONE = string token & Whether to convert to easting and /northings in a single zone (yes, no); default no \\
\hline EORIGIN \(=\) string token & False origin for easting; default 500000 \\
\hline NORIGIN \(=\) string token & False origin for northing; default 0 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline LATITUDE \(=\) scalars or variates & Latitudes \\
\hline LONGITUDE \(=\) scalars or variates & Longitudes \\
\hline DIRECTION \(=\) scalars or variates & Directions of the angles of latitude and longitude coordinates (NE, NW, SE, SW); default NE \\
\hline EASTING \(=\) scalars or variates & UTM easting grid references \\
\hline NORTHING \(=\) scalars or variates & UTM northing grid references \\
\hline \(\mathrm{ZONE}=\) scalars or variates & UTM zones \\
\hline
\end{tabular}

\section*{VABLOCKDESIGN procedure}

Analyses an incomplete-block design by REML, allowing automatic selection of random and spatial correlation models (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

PBEST \(=\) string tokens

Controls what summary output is produced about the models (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best, description; default best, desc
Controls the output from the REML analysis with the best
\begin{tabular}{|c|c|}
\hline & model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none \\
\hline \(\mathrm{PTRY}=\) string tokens & Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none \\
\hline FIXED \(=\) formula & Fixed model terms; default * i.e. none \\
\hline RANDOM = formula & Additional random model terms; default * i.e. none \\
\hline CONSTANT \(=\) string token & How to treat the constant term (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors or covariates in each fixed term; default 3 \\
\hline REPLICATES \(=\) factor & Replicate factor \\
\hline BLOCKS \(=\) factor & Block factor; no default (must be specified) \\
\hline ROWS \(=\) factor & Row factor for spatial analysis \\
\hline COLUMNS \(=\) factor & Column factor for spatial analysis \\
\hline ROWCOORDINATES \(=\) variate or factor & Row coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the ROWS factor \\
\hline COLCOORDINATES \(=\) variate or factor & Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the columns factor \\
\hline PLOTEACTOR \(=\) factor & Factor numbering the plots in the design; if unset, a local factor is defined automatically \\
\hline PTERMS \(=\) formula & Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff \\
\hline MVINCLUDE \(=\) string tokens & Whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or \(y\) variates \\
\hline VCONSTRAINTS \(=\) string token & Whether to constrain variance components to be positive (none, positive); default none \\
\hline RSTRATEGY \(=\) string token & Strategy for selecting the random model (all, allfeasible, optimal, automatic, full); default allf \\
\hline METHOD \(=\) string token & Criterion to choose the best random model (aic, sic, bic); default sic \\
\hline TRYSPATIAL \(=\) string token & Whether to try spatial models (always, ifregular); default * i.e. no spatial models \\
\hline TRYTRENDS \(=\) string token & Whether to see whether row and column trends are needed in the fixed model (yes, no); default no \\
\hline SPATIALFACTOR \(=\) factor & Factor to use to define the term for a 2-dimensional powerdistance model; if unset, a local factor is defined automatically \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Response variates \\
\hline BESTMODEL \(=\) pointers & Saves a model-definition structure for the best model for each \(y\)-variate \\
\hline EXIT \(=\) scalars & Exit status of the best model for each y-variate \\
\hline SAVE \(=\) REML save structures & Save structure from the analysis of the best model for each \(y\) variate \\
\hline
\end{tabular}

\section*{VAIC procedure}

Calculates the Akaike and Schwarz (Bayesian) information coefficients for REML (R.W. Payne \& V.M. Cave).

\section*{Options}

PRINT \(=\) string tokens

INCLUDE \(=\) string tokens

DMETHOD \(=\) string token

LMETHOD \(=\) string token
REPEAT \(=\) string token

\section*{Parameters}

DEVIANCE \(=\) scalars
AIC \(=\) scalars
\(\mathrm{SIC}=\) scalars
DFFIXED \(=\) scalars
DFRANDOM \(=\) scalars

CHANGES \(=\) variates

SAVE \(=\) REML save structures
Controls printed output (deviance, aic, bic, sic, dffixed, dfrandom, changes); default aic
When LMETHOD=residual, which constants to include that depend only on the fixed model (determinant, pi); default pi
Method to use to calculate \(\log \left(\operatorname{determinant}\left(\mathrm{X}^{\prime} \mathrm{X}\right)\right)\) (choleski, lrv); default chol
Whether the residual or full log-likelihood is used to calculate the information coefficients (residual, full); default resi Whether to repeat output from the previous VAIC (yes, no); default no

Saves the deviance
Saves the Akaike information coefficient
Saves the Schwarz (Bayesian) information coefficient Saves the number of parameters fitted in the fixed model saves the number of parameters fitted in the random model (and any covariance models)
Saves changes since the previous VAIC; the units of the variates are labelled by the names of the coefficients (deviance, aic, sic, dffixed and dfrandom) Save structure for which to calculate the coefficients; default uses the save structure from the most recent REML

\section*{VALLSUBSETS procedure}

Fits all subsets of the fixed terms in a REML analysis (R.W. Payne).

\section*{Options}
```

PRINT = string tokens
FORCED = formula
FACTORIAL = scalar
SELECTION = string tokens

```

NBESTMODELS \(=\) scalar
BESTMODEL = pointer
RESULTS = pointer
MARGINALTERMS = string token

SAVE \(=\) REML save structure

Controls printed output (results); default resu Terms to include in every model
Limit for expansion of FORCED terms; default 3
One or two criteria to be printed with the models ( r 2 ,
adjusted, cp, ep, aic, sic, bic, rss, rms); default aic, sic
Number of models to print; default * i.e. all Saves the best model according to the selected criteria Pointer to save variates containing the criteria for the sets, and F and Wald statistics for the terms that they contain How to treat terms that are marginal to other terms (forced, free); default forc
Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent REML

\section*{No parameters}

\section*{VALINEBYTESTER procedure}

Provides combinabilities and deviances for a line-by-tester trial analysed by VABLOCKDESIGN or varowcolumndesign (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls what summary output is produced about the models \\
(combinability, tests); default comb, test
\end{tabular} \\
LINES = factor & \begin{tabular}{l} 
Specifies the line (usually female parent); no default (must be \\
specified)
\end{tabular} \\
TESTERS = factor & Specifies the tester (usually male parent); no default (must be
\end{tabular}
CONTROLS = factor
PCOMBINABILITYTERMS = formula

MVINCLUDE \(=\) string tokens

\section*{Parameters}
\(\mathrm{Y}=\) variates
MODELSTRUCTURE \(=\) pointers

COMBINABILITY \(=\) pointers
SECOMBINABILITY \(=\) pointers

DEVIANCES \(=\) variates
SAVE \(=\) REML save structures
specified)
Distinguishes between control and test (line \(\times\) tester) genotypes; default is that there are no controls Terms whose combinability effects are to be printed (LINES and/or LINES.TESTERS; default is to print both of them When the SAVE parameter is unset, this specifies whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates in the analyses (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or \(y\) variates

Response variates
Model-definition structure used for the analysis of each yvariate
Pointer to tables of combinability effects for each y-variate Pointer to tables of standard errors of combinability effects for each y-variate
Saves deviances for LINES and LINES.TESTERS
Save structure from the analysis of each \(y\)-variate

\section*{VAMETA procedure}

Performs a REML meta analysis of a series of trials, , previously analysed by VASERIES (R.W. Payne).
Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default mode, comp, Wald \\
\hline PTRY \(=\) string tokens & Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none \\
\hline PRECOVERY \(=\) string tokens & Controls what summary output is produced about the models that are tried during recovery (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best); default devi, aic, sic, dfra, best \\
\hline FIXED \(=\) formula & Fixed model terms; if unset, these are taken from the MODELSTRUCTURES \\
\hline RANDOM = formula & Additional random model terms; default * i.e. none \\
\hline CONSTANT \(=\) string token & How to treat the constant term (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors or covariates in each fixed term; default 3 \\
\hline PTERMS \(=\) formula & Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff \\
\hline RECOVER \(=\) string token & Whether to try to recover with a simpler random model if REML cannot fit the model (yes, no); default no \\
\hline METHOD \(=\) string token & How to choose the best model during recovery (aic, sic, bic); default sic \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Response variates \\
\hline
\end{tabular}

MODELDEFINITIONS = pointers
EXIT \(=\) scalars
SAVE \(=v\) saves

Descriptions of the models for each y-variate, saved from VASERIES
Exit status for the fit (zero if successful)
REML save structure from the analysis of each \(y\)-variate

\section*{VAOPTIONS procedure}

Defines options for the fitting of models by VARANDOM and associated procedures (R.W. Payne). Options
\(\left.\begin{array}{ll}\text { MAXCYCLE }=\text { scalar } & \begin{array}{l}\text { Limit on the number of iterations in REML analyses; default } \\
100\end{array} \\
\text { WORKSPACE }=\text { scalar } & \text { Number of blocks of internal memory to be set up for use by } \\
\text { the REML algorithm }\end{array}\right]\)\begin{tabular}{l} 
Minimum number of different coordinates in a direction for a \\
spatial model to be fitted by VAROWCOLUMNDESIGN; default 4 \\
LIMPRTREND \(=\) scalar \\
Critical value for the probability of a row or column trend in \\
the initial basic REML analysis (with replicates but no other \\
random terms) for this to be included in the later analyses) by \\
REPORTFAILURES = string token \(\quad\)\begin{tabular}{l} 
VAROWCOLUMNDESIGN; default 0.01 \\
Whether the accumulated summary should include models that \\
fail to fit or that have bound variance parameters (yes, no) ; \\
default no
\end{tabular}
\end{tabular}

\section*{No parameters}

\section*{VARANDOM procedure}

Finds the best REML random model from a set of models defined by VFMODEL (R.W. Payne). Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls what summary output is produced about the models (best, deviance, aic, bic, sic, dffixed, dfrandom, change, exit); default devi, aic, sic, dfra, best \\
\hline PBEST \(=\) string tokens & Controls the output from the REML analysis with the best model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none \\
\hline PTRY \(=\) string tokens & Controls the output to present to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none \\
\hline MODELSTRUCTURES \(=\) pointer & Model-definition structures specifying the models to try \\
\hline PTERMS \(=\) formula & Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff \\
\hline MVINCLUDE \(=\) string tokens & Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or \(y\) variates \\
\hline METHOD \(=\) string token & How to choose the best model (aic, sic, bic); default sic \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Response variates \\
\hline NBESTMODEL \(=\) scalars & Saves the number of the best model for each \(y\)-variate, returning a missing value if no models could be fitted successfully \\
\hline
\end{tabular}

Save structure from the analysis of the best model for each \(y\) variate

\section*{VARECOVER procedure}

Recovers when REML, is unable to fit a model, by simplifying the random model (R.W. Payne). Options

PRINT \(=\) string tokens

PBEST \(=\) string tokens
\(\mathrm{PTRY}=\) string tokens

PLOTFACTOR \(=\) factor

FORCED = formula
PTERMS \(=\) formula
PSE \(=\) string token

MVINCLUDE \(=\) string tokens

METHOD \(=\) string token
PROHIBIT \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) variates
MODELSTRUCTURE \(=\) pointers
BESTMODEL \(=\) pointers

EXIT \(=\) scalars
SAVE \(=\) REML save structures

Controls what summary output is produced about the simpler random models that are tried (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best); default devi, aic, sic, dfra, best
Controls the output from the REML analysis with the best simpler model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none Controls the output to present to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none Factor numbering the plots in the design, required if VARECOVER needs to try a null random model; if unset, a local factor is defined automatically
Specifies terms that must not be removed from the random model; by default any of the random terms can be removed Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms
Standard errors to be printed with tables of effects and means
(differences, estimates, alldifferences,
allestimates, none); default diff
Whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or \(y\) variates
Criterion to choose the best model (aic, sic, bic); default sic
Whether to exclude models where any estimated variance parameters are held at a bound (bound); default *

Response variates Model-definition structure for the unsuccessful analysis of each y-variate
Saves a model-definition structure for the best model for each y-variate
Exit status of the best model for each \(y\)-variate
Save structure from the analysis of the best model for each \(y\) variate

\section*{VARIATE directive}

Declares one or more variate data structures.

\section*{Options}

NVALUES \(=\) scalar or vector
VALUES \(=\) numbers
MODIFY \(=\) string token

Number of units, or vector of labels; default * takes the setting from the preceding UNITS statement, if any
Values for all the variates; default *
Whether to modify (instead of redefining) existing structures
```

IPRINT = string tokens

```

\section*{Parameters}

IDENTIFIER = identifiers
VALUES = identifiers
DECIMALS = scalars
EXTRA \(=\) texts
MINIMUM = scalars
MAXIMUM = scalars
DREPRESENTATION \(=\) scalars or texts
(yes, no); default no
Information to be used by default to identify the variates in output (identifier, extra); if this is not set, they will be identified in the standard way for each type of output

Identifiers of the variates
Values for each variate
Number of decimal places for output
Extra text associated with each identifier
Minimum value for the contents of each structure
Maximum value for the contents of each structure
Default format to use when the contents represent dates and times

\section*{VAROWCOLUMNDESIGN procedure}

Analyses a row-and-column design by REML, with automatic selection of the best random and spatial covariance model (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls what summary output is produced about the models (best, description, deviance, aic, bic, sic, dffixed, dfrandom, change, exit); default best, desc \\
\hline PBEST \(=\) string tokens & Controls the output from the REML analysis with the best model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none \\
\hline \(\mathrm{PTRY}=\) string tokens & Controls the output to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none \\
\hline FIXED = formula & Fixed model terms; default * i.e. none \\
\hline RANDOM = formula & Additional random model terms; default * i.e. none \\
\hline CONSTANT \(=\) string token & How to treat the constant term (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors or covariates in each fixed term; default 3 \\
\hline REPLICATES \(=\) factor & Replicate factor, if relevant \\
\hline ROWS \(=\) factor & Row factor; default * i.e. must be specified \\
\hline COLUMNS \(=\) factor & Column factor; default * i.e. must be specified \\
\hline ROWCOORDINATES \(=\) variate or factor & Row coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the Rows factor \\
\hline COLCOORDINATES \(=\) variate or factor & Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the columns factor \\
\hline PLOTFACTOR \(=\) factor & Factor numbering the plots in the design; if unset, a local factor is defined automatically \\
\hline PTERMS \(=\) formula & Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff \\
\hline MVINCLUDE \(=\) string tokens & Whether to include units with missing values in the explanatory factors and variates and/or the y-variates (explanatory, yvariate); default * i.e. omit units with \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VCONSTRAINTS \(=\) string token & Whether to constrain variance components to be positive (none, positive); default none \\
\hline RSTRATEGY \(=\) string token & Strategy for selecting the random model (all, allfeasible, set, setfeasible, fastoptimal, optimal, automatic, comprehensive, full, given); default allf \\
\hline METHOD \(=\) string token & Criterion to choose the best random model (aic, sic, bic); default sic \\
\hline TRYSPATIAL \(=\) string token & Whether to try spatial models (always, ifregular); default * i.e. no spatial models \\
\hline TRYTRENDS \(=\) string token & Whether to see whether row and column trends are needed in the fixed model (yes, no); default no \\
\hline SPATIALFACTOR \(=\) factor & Factor to use to define the term for a 2-dimensional powerdistance model; if unset, a local factor is defined automatically \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Response variates \\
\hline BESTMODEL \(=\) pointers & Saves a model-definition structure for the best model for each y-variate \\
\hline EXIT \(=\) scalars & Exit status of the best model for each y-variate \\
\hline SAVE \(=\) REML save structures & Save structure from the analysis of the best model for each yvariate \\
\hline
\end{tabular}

\section*{VASDISPLAY procedure}

Displays further output from an analysis by VASERIES (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What output to present (model, components, effects, means, stratumvariances, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default mode, comp, Wald, cova \\
\hline PTERMS \(=\) formula & Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff \\
\hline CFORMAT \(=\) string token & Whether printed output for covariance models gives the variance matrices or the parameters (variancematrices, parameters); default vari \\
\hline FMETHOD \(=\) string token & Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default auto \\
\hline MODELDEFINITIONS \(=\) pointer & Definitions of the models used by VASERIES \\
\hline SAVE \(=\) pointer & REML save structures from the VASERIES analysis \\
\hline Parameter & \\
\hline EXPERIMENT \(=\) scalars or texts & Specifies the experiment, from the series, whose output is to be displayed; no default, must be set \\
\hline
\end{tabular}

\section*{VASERIES procedure}

Analyses a series of trials with incomplete-block or row-and-column designs by REML, automatically selecting the best random models (R.W. Payne).

\section*{Options}
\({ }^{\dagger}\) PRINT \(=\) string tokens

PBEST \(=\) string tokens

Controls what summary output is produced about the models (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best, description, summary); default devi, aic, sic, dfra, best
Controls the output from the REML analysis with the best
PTRY \(=\) string tokens


FIXED \(=\) formula
RANDOM = formula
CONSTANT = string token
FACTORIAL = scalar
EXPERIMENTS = factor
REPLICATES = factor
BLOCKS = factor
ROWS = factor
COLUMNS = factor
ROWCOORDINATES = variate or factor
```

model (model, components, effects, means,
stratumvariances, monitoring, vcovariance,
deviance, Waldtests,missingvalues,
covariancemodels, aic, sic, bic); default * i.e. none

```

Controls the output to present to present from the REML analysis used to try each model (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic); default * i.e. none
Fixed model terms; default * i.e. none
Additional random model terms; default * i.e. none How to treat the constant term (estimate, omit); default esti
Limit on the number of factors or covariates in each fixed term; default 3
Experiment factor
Replicate factor, if required
Block factor, if required
Row factor, if required
Column factor, if required
Row coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the Rows factor
COLCOORDINATES \(=\) variate or factor Column coordinates for fitting trends and spatial models if the design is irregular; if unset, these are defined from the levels of the columns factor
PLOTFACTOR \(=\) factor
PTERMS \(=\) formula
PSE \(=\) string token

MVINCLUDE \(=\) string tokens

VCONSTRAINTS \(=\) string token
RSTRATEGY \(=\) string token
METHOD \(=\) string token
TRYSPATIAL \(=\) string token
TRYTRENDS \(=\) string token
SPATIALFACTOR \(=\) factor

\section*{Parameters}
\(\mathrm{Y}=\) variates
MODELDEFINITIONS \(=\) pointers
EXIT \(=\) variates
SAVE \(=\) pointers

\section*{factor is defined automatically}

Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms
Standard errors to be printed with tables of effects and means
(differences, estimates, alldifferences, allestimates, none); default diff
Whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates (explanatory, yvariate); default * i.e. omit units with missing values in either explanatory factors or variates or \(y\) variates
Whether to constrain variance components to be positive (none, positive); default none
Strategy for selecting the random model (all, allfeasible, fastoptimal, optimal); default allf
How to choose the best random model (aic, sic, bic); default sic
Whether to try spatial models (always, ifregular); default
* i.e. no spatial models

Whether to see whether row and column trends are needed in the fixed model (yes, no); default no
Factor to use to define the term for a 2-dimensional powerdistance model; if unset, a local factor is defined automatically

Response variates
Saves definitions of the best models for use by VAMETA
Exit status of the best models (zero if successful)
REML save structures for the best analysis of each experiment

\section*{VASKEEP procedure}

Copies information from an analysis by VASERIES into Genstat data structures (R.W. Payne).

\section*{Options}

EXPERIMENT \(=\) scalar or text \(\quad\) Specifies the experiment, from the series, whose output is to be

FACTORIAL \(=s c a l a r\)

RESIDUALS \(=\) variate
FITTEDVALUES = variate
DEVIANCE \(=\) scalar
DF \(=\) scalar
AIC \(=\) scalar
SIC \(=\) scalar
RMETHOD = string token

FMETHOD = string token

WMETHOD = string token
MODELDEFINITIONS \(=\) pointer
SAVE = pointer saved; no default, must be set
Limit on the number of factors or covariates in the terms generated from the TERMS parameter; default 3
Residuals from the analysis
Fitted values from the analysis
Residual deviance from fitting the full fixed model
Residual degrees of freedom after fitting the full fixed model
Saves the Akaike information coefficient
Saves the Schwarz (Bayesian) information coefficient
Which random terms to use when calculating RESIDUALS
(final, all); default fina
Controls how to calculate F-statistics for fixed terms
(automatic, none, algebraic, numerical); default auto
Controls which Wald statistics are saved (add, drop); default drop
Definitions of the models used by VASERIES
REML save structures from the VASERIES analysis
Parameters
TERMS = formula
COMPONENTS \(=\) scalars
Terms for which information is to be saved
Estimated variance components
MEANS \(=\) tables
Table of predicted means for each term
Standard errors of differences between the predicted means
SEDMEANS = symmetric matrices
Variance-covariance matrix of the means
Table of estimated regression coefficients for each term
Standard errors of differences between the estimated
parameters of each term

WALD = scalars
Variance-covariance matrix of the effects of a term
Wald statistic (fixed terms only)
F statistics (fixed terms only)
NDF \(=\) scalars \(\quad\) Numerator d.f. (fixed terms only)
DDF \(=\) scalars \(\quad\) Denominator d.f. (fixed terms only)

\section*{VASMEANS procedure}

Saves experiment \(\times\) treatment means from analysis of a series of trials by VASERIES (R.W. Payne).

\section*{Options}

FACTORIAL \(=\) scalar \(\quad\) Limit on the number of factors in the terms generated from the TERMS parameter; default 3
RESIDUALVARIANCES \(=\) table
MODELDEFINITIONS = pointer
SAVE = pointer
Saves residual variances from the experiments
Definitions of the models used by VASERIES

Parameters
TERMS = formula
MEANS \(=\) tables or pointers
SEMEANS = tables or pointers
AVESEDMEANS \(=\) tables or pointers

REML save structures from the VASERIES analysis
Terms for which means are to be saved
Experiment \(\times\) term tables of means
Experiment \(\times\) term tables of standard errors of means
Average standard errors of differences for the experiments

\section*{VAYPARALLEL procedure}

Does the same REML analysis for several y-variates, and collates the output (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & Controls printed output (summary, monitoring); default * \\
MODELDEFINITION \(=\) pointer & i.e. none \\
Defines the model for the analysis
\end{tabular}

FSAVETERMS = formula
RSAVETERMS \(=\) formula
RECOVER \(=\) string token
\(\mathrm{METHOD}=\) string token

SPREADSHEET \(=\) string tokens

SHEETLAYOUT \(=\) string token

\section*{Parameters}
\(\mathrm{Y}=\) pointers
RESIDUALS \(=\) matrices
FITTEDVALUES \(=\) matrices
COMPONENTS = matrices
MEANS = pointers
VCMEANS \(=\) pointers

EFFECTS \(=\) pointers

VCEFFECTS = pointers
WALD \(=\) matrices
FSTATISTIC = matrices
\(\mathrm{NDF}=\) matrices
\(\mathrm{DDF}=\) matrices
PRFIXED = matrices
\(\mathrm{EXIT}=\) pointers

OUTFILENAME \(=\) texts

Fixed terms for which to save information; if this is not set, information is saved for all the fixed terms
Random terms for which to save information; if this is not set, no information is saved for the random terms
Whether to try to recover with a simpler random model if REML cannot fit the model for a particular y-variate (yes, no); default no
How to choose the best model during recovery (aic, sic, bic); default sic
What results to save in spreadsheets (components, fixedtests, means, vcmeans, effects, vceffects, residuals, fittedvalues); default * i.e. none
How to store the results in spreadsheets (yrows, ycolumns, onesheet); default ycol

Y-variates for the analyses
Saves the residuals
Saves the fitted values
Saves the variance components
Pointer to a matrix for each of the terms in FSAVETERMS, saving the predicted means
Pointer to matrices saving variances and covariances for the means
Pointer to matrices saving effects for the terms in FSAVETERMS and RSAVETERMS
Pointer to matrices saving variances and covariances for the effects
Saves the Wald statistics for the terms in FSAVETERMS
Saves the F statistics for the terms in FSAVETERMS
Saves the numerator degrees of freedom for the terms in fSAVETERMS
Saves the denominator degrees of freedom for the terms in fSAVETERMS
Saves the probabilities for the F statistics if available, or otherwise the Wald statistics, for the terms in FSAVETERMS Pointer to scalars saving the exit codes from the initial REML analyses
Name of Genstat workbook file (.gwb) or Excel (.xls or .xlsx) file to create

\section*{VBOOTSTRAP procedure}

Performs a parametric bootstrap of the fixed effects in a REML analysis (C.J. Brien \& R.W. Payne). Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (observedteststatistics, pvalues, vdiagnostics, nnotconverged, monitoring, all, ownstatistics); default obse, pval \\
\hline VPRINT \(=\) string tokens & Controls the output from the REML analysis of each sample (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none \\
\hline PLOT \(=\) string & What to plot (histogram); default * \\
\hline \(\mathrm{NBOOT}=\) scalar & Number of bootstrap samples to take; default 99 \\
\hline NRETRIES \(=\) scalar & Maximum number of extra samples to take when some REML analyses fail to converge; default NBOOT \\
\hline SEED \(=\) scalar & Seed for random number generation; default 0 continues an \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline METHOD \(=\) string token & existing sequence or, if none, selects a seed automatically Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI \\
\hline MAXCYCLE \(=\) scalar & Sets a limit on the number of iterations in the REML analyses; default 30 \\
\hline FMETHOD \(=\) string token & Controls whether and how to calculate F statistics for fixed terms (automatic, none, algebraic, numerical); default none \\
\hline WMETHOD \(=\) string token & Controls which Wald statistics are saved (add, drop); default add \\
\hline WORKSPACE \(=\) scalar & Number of blocks of internal memory to be set up for use by the REML algorithm \\
\hline OWNMETHOD = string token & Type of test required for own statistics (twosided, greaterthan, lessthan); default twos \\
\hline CIPROBABILITY \(=\) scalar & Probability level for the confidence interval for own statistics; default 0.95 \\
\hline Parameters & \\
\hline SAVE \(=\) REML save structures & Specifies the (REML) save structure of the original analysis; default * uses the SAVE structure from the most recent REML analysis \\
\hline UMEANS \(=\) variates & Specifies the expected values for the units under the null hypothesis of no effects from the FIXEDTERMS \\
\hline UVCOVARIANCE \(=\) symmetric matrices & Specifies the variances and covariances of the units under the null hypothesis of no effects from the FIXEDTERMS \\
\hline FIXEDTERMS \(=\) formula & Specifies the fixed terms to test; default * tests all the fixed terms in the original analysis \\
\hline FSTATISTICS \(=\) pointers & Saves a pointer with a variate for each of the FIXEDTERMS, containing the F statistics from the bootstrap samples \\
\hline PVALUES \(=\) pointers & Saves a pointer with a scalar for each of the FIXEDTERMS, containing the test probability obtained from the position of its F statistic within those from the bootstrap samples \\
\hline NNOTCONVERGED \(=\) scalars & Saves the number of bootstrap samples whose REML analysis failed to converge \\
\hline OWNDATA = pointers & Data required to calculate own statistics \\
\hline OWNOBSERVEDVALUES \(=\) variates & Saves observed values of the own statistics \\
\hline OWNPROBABILITIES \(=\) variates & Saves bootstrap probabilities for the own statistics \\
\hline OWNESTIMATES = variates & Saves boostrap estimates for the own statistics \\
\hline OWNSES = variates & Saves boostrap standard errors for the own statistics \\
\hline OWNLOWERCIS \(=\) variates & Saves boostrap lower values of the confidence intervals for the own statistics \\
\hline OWNUPPERCIS \(=\) variates & Saves boostrap upper values of the confidence intervals for the own statistics \\
\hline OWNSTATISTICS \(=\) pointers & Saves the own statistics obtained from the bootstrap samples, in a pointer with a variate for each statistic \\
\hline
\end{tabular}

\section*{VCHECK procedure}

Checks standardized residuals from a REML analysis (R.W. Payne).

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT }=\text { string tokens } & \text { Controls printed output (largeresiduals, similarunits, } \\
\text { stability); default larg }\end{array}\right]\)\begin{tabular}{l} 
Which random terms to use when calculating the standardized \\
RMETHOD \(=\) string token \\
residuals (final, all); default fina \\
Limit for detection of large standardized residuals; if this is not \\
sealar \\
set, the limit is set automatically according to the number of \\
residual degrees of freedom
\end{tabular}
```

REPORTFACTORS = factors
PROBABILITY = scalar

```
NLARGERESIDUALS \(=\) scalar
LARGERESIDUALUNITS = variate
SIMILARINFORMATION = pointer
STABILITYTEST = pointer

SAVE \(=\) REML save structure
the fixed model are used
Additional factors to include in the table of similar units Critical value for the test probabilities to decide whether to generate warning messages from the Levine test for variance stability; default=0.025
Saves the number of large standardized residuals that have been detected
Saves the unit numbers of the large standardized residuals Saves details of large standardized residuals and residuals in similar units
Saves the results of the Levene test for stability of the variance of the standardized residuals
Specifies the analysis to be checked; by default this will be the most recent REML

\section*{No parameters}

\section*{VCOMPONENTS directive}

Defines the variance-components model for REML.

\section*{Options}
\begin{tabular}{|c|c|}
\hline FIXED = formula & Fixed model terms; default * \\
\hline ABSORB \(=\) factor & Defines the absorbing factor (appropriate only when REML option METHOD=Fisher); default * i.e. none \\
\hline CONSTANT \(=\) string token & How to treat the constant term (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors or covariates in each fixed term; default 3 \\
\hline CADJUST \(=\) string token & What adjustment to make to covariates before analysis (mean, none); default mean \\
\hline RELATIONSHIP \(=\) matrix & Defines relationships constraining the values of the components; default * \\
\hline SPLINE \(=\) formula & Defines random cubic spline terms to be generated: each term must contain only one variate, if there is more than one factor in a term, separate splines are calculated for each combination of levels of the factors \\
\hline EXPERIMENTS \(=\) factor & Factor defining the different experiments in a multi-experiment (meta-) analysis \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline RANDOM = formula & Random model terms \\
\hline INITIAL \(=\) scalars & Initial values for each component and the residual variance \\
\hline CONSTRAINTS \(=\) string tokens & How to constrain each variance component and the residual variance (none, positive, fixrelative, fixabsolute); default none \\
\hline
\end{tabular}

\section*{VCRITICAL procedure}

Uses a parametric bootstrap to estimate critical values for a fixed term in a REML analysis (R.W. Payne \& C.J. Brien).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & \begin{tabular}{l} 
Prints the critical values (critical, fcritical, \\
tcritical, wcritical, monitoring); default crit, fcri, \\
tcri, wcri
\end{tabular} \\
VPRINT \(=\) string tokens & \begin{tabular}{l} 
Controls the output from the REML analyses (model, \\
components, effects, means, stratumvariances, \\
monitoring, vcovariance, deviance, Waldtests, \\
missingvalues, covariancemodels); default * i.e. none
\end{tabular} \\
TERM = formula & \begin{tabular}{l} 
Fixed term to be tested
\end{tabular} \\
UMEANS = variate & Specifies the expected values for the units under the null
\end{tabular}

UVCOVARIANCE \(=\) symmetric matrix
```

WCRITICAL = variate
FCRITICAL = variate
$\mathrm{NBOOT}=$ scalar
NRETRIES $=$ scalar
SEED $=$ scalar
PROBABILITIES $=$ scalar or variate
METHOD $=$ string token

```
MAXCYCLE \(=\) scalar
FMETHOD = string token
WMETHOD \(=\) string token
TMETHOD \(=\) string token
WALD = variate
FSTATISTIC = variate
\(\mathrm{NDF}=\) scalar
DDF \(=\) variate
NNOTCONVERGED = scalar
WORKSPACE \(=\) scalar
\(\mathrm{SAVE}=v s a v e\)

\section*{Parameters}

XCONTRASTS \(=\) variates or tables
CONTRASTTYPE \(=\) string tokens
ESTIMATE = variates
\(\mathrm{SE}=\) variates
CRITICAL \(=\) variates
TCRITICAL \(=\) variates
hypothesis of no effects from the TERM; default is to use the constant from the SAVE structure
Specifies the variances and covariances of the units under the null hypothesis of no effects from the TERM; default is to take this from the SAVE structure
Saves the critical values of the Wald statistic
Saves the critical values of the F statistic
Number of bootstrap samples to take; default 99
Maximum number of extra samples to take when some REML analyses fail to converge; default NBOOT
Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically Significance levels for which critical values are required; default 0.05
Indicates whether to use the Fisher-scoring algorithm or the AI algorithm with sparse matrix methods (Fisher, AI); default AI
Sets a limit on the number of iterations in the REML analyses; default 30
Controls how to calculate estimated denominator degrees of freedom when these are to be saved (automatic, none, algebraic, numerical); default auto
Controls which Wald statistics are saved (add, drop); default add
Type of test to be made for the contrasts (twosided, greaterthan, lessthan, equivalence, noninferiority); default twos
Saves the Wald statistics from the samples
Saves the F statistics from the samples
Saves the numerator degrees of freedom for the Wald and F statistics
Saves the estimated denominator degrees of freedom for the F statistics
Saves the number of bootstrap samples whose REML analysis failed to converge
Number of blocks of internal memory to be set up for use by the REML algorithm
REML save structure to provide the information about the analysis

X-variate defining a contrast to be detected
Type of contrast (regression, comparison) default rege Saves the estimated values of the contrasts from the samples Saves the standard errors for the estimates of the contrasts from the samples
Saves the critical values for the contrasts
Saves the critical values for the \(t\)-statistics of the contrasts

\section*{VCYCLE directive}

Controls the operation of the REML algorithm.

Options
CONVERGENCE \(=\) string token

CRITERIONVALUE \(=\) scalar

Type of criterion for assessing convergence (deviance, parameter); default * uses the deviance with the averageinformation algorithm, and the variance parameter values for the Fisher scoring algorithm Sets the convergence criterion value; default * i.e. determined automatically

STEPLENGTH \(=\) scalar

NDENSE \(=\) scalar

EQORDER \(=\) string token

Sets the default relative step size for the average-information algorithm; default * i.e. determined automatically
Number of equations to use as dense in the averageinformation algorithm; default * uses all fixed model terms as dense
Method to use to reorder the mixed model equations for fitting (none, \(\mathrm{a}, \mathrm{b}\) ); default b

\section*{No parameters}

\section*{VDFIELDRESIDUALS procedure}

Display residuals from a REML analysis in field layout (R.W. Payne).

\section*{Options}
\(\left.\left.\begin{array}{ll}\text { PRINT = string tokens } \\
\text { PLOT }=\text { string tokens }\end{array} \quad \begin{array}{l}\text { Controls printed output (table); default * i.e. none } \\
\text { Controls the graphs that are displayed (contour, shade); } \\
\text { default cont }\end{array}\right] \begin{array}{l}\text { Which random terms to use to calculate the residuals (final, } \\
\text { all, notspline, stfinal, stall); default all }\end{array}\right]\)\begin{tabular}{l} 
Type of graph (highresolution, lineprinter); default \\
high
\end{tabular}

\section*{VDISPLAY directive}

Displays further output from a REML analysis.

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What output to present (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default mode, comp, Wald, cova \\
\hline CHANNEL \(=\) identifier & Channel number of file, or identifier of a text to store output; default current output file \\
\hline PTERMS \(=\) formula & Terms (fixed or random) for which effects or means are to be printed; default * implies all the fixed terms \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default diff \\
\hline CFORMAT \(=\) string token & Whether printed output for covariance models gives the variance matrices or the parameters (variancematrices, parameters); default vari \\
\hline FMETHOD \(=\) string token & Controls whether and how to calculate F-statistics for fixed terms (automatic, none, algebraic, numerical); default \\
\hline
\end{tabular}

\section*{Parameter}

\section*{REML save structures}

Save structure containing the details of each analysis; default is to take the save structure from the latest REML analysis

\section*{VEQUATE procedure}

Equates across numerical structures (P.W. Goedhart).

\section*{No options \\ Parameters}

OLDSTRUCTURES \(=\) pointers

NEWSTRUCTURES = pointers

Structures whose values are to be transferred - each pointer should contain a set of structures with the same length and type (either scalar, variate, matrix, diagonal matrix, symmetric matrix, table, text or pointer)
Structures to contain the transferred values - each pointer contains a set of either variates, texts or pointers, as relevant to the type of the OLDSTRUCTURES

\section*{VDEFFECTS procedure}

Plots one- or two-way tables of effects estimated in a REML analysis (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
GRAPHICS = string token & \begin{tabular}{l} 
Type of graph (highresolution, lineprinter); default \\
high
\end{tabular} \\
METHOD \(=\) string token & What to plot (effects, lines); default effe \\
XFREPRESENTATION = string token & \begin{tabular}{l} 
How to label the x-axis (levels, labels); default labels \\
uses the XFACTOR labels, if available
\end{tabular} \\
PSE = string & \begin{tabular}{l} 
What s.e. to plot to represent variation (differences, \\
effects, alleffects); default diff
\end{tabular}
\end{tabular}

SAVE \(=\) REML save structure

\section*{Parameters}
\(\mathrm{XFACTOR}=\) factors
GROUPS \(=\) factors

COVARIATES \(=\) variates
NEWXLEVELS \(=\) variates
TITLE \(=\) texts
YTITLE \(=\) texts
XTITLE \(=\) texts

Type of graph (highresolution, lineprinter); default high
What to plot (effects, lines); default effe
How to label the x-axis (levels, labels); default labels XFACIOR labels, if available effects, alleffects); default diff
Save structure of the analysis to display; the default is to take the most recent REML analysis

Factor providing the x -values for each plot Factor identifying the different sets of points from a two-way table of effects
X-variates for regression coefficients or pointer
Values to be used for XFACTOR instead of its existing levels Title for the graph; default defines a title automatically Title for the \(y\)-axis; default ' '
Title for the x -axis; default is to use the identifier of the XFACTOR

\section*{VFIXEDTESTS procedure}

Saves fixed tests from a REML analysis (R.W. Payne).

\section*{Options}
\(\left.\left.\begin{array}{ll}\text { FIXEDTESTS }=\text { pointer } & \begin{array}{l}\text { Saves the fixed tests } \\ \text { FMETHOD }=\text { string token }\end{array} \\ \text { Controls whether and how to calculate F-statistics } \\ \text { (automatic, none, algebraic, numerical); default auto }\end{array}\right] \begin{array}{l}\text { Controls which tests are saved (add, drop); default drop }\end{array}\right\}\)

\section*{No parameters}

\section*{VFLC procedure}

Performs an F-test of random effects in a linear mixed model based on linear combinations of the responses, i.e. an FLC test (V.M. Cave).
PRINT \(=\) string tokens
Controls printed output (summary, monitoring); default summ
PLOT \(=\) string tokens \(\quad\) What graphs to plot for the bootstrap and fast double bootstrap
```

TEST = string tokens
NBOOT = scalar
SEED = scalar
WINDOW = scalar
SAVE = REML save structure

```

\section*{Parameters}
```

TERMS = formula

```
STATISTIC = scalar
BOOTSTATISTICS \(=\) variate
FASTDOUBLE \(=\) pointer
PROBABILITIES \(=\) pointer

TITLE \(=\) text

FLC tests (kerneldensity, histogram); default * i.e. none Type(s) of test to perform; (flc, bootstrap, fastdoublebootstrap); default flc
Number of bootstrap samples to take; default 99
Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically Window to use for the graphs; default 3 Specifies the save structure of the original analysis; default is to use the save structure from the most recent REML analysis

Random terms to test
Saves the FLC test statistic
Saves the FLC test statistics from the original data set (i.e. the observed FLC test statistic), and then the bootstrap samples Pointer to scalars and variates to save the first-level bootstrap probability value and FLC test statistics, and the second-level fast double bootstrap FLC test statistics and resulting critical value
Pointer to scalar(s) to save the probability value(s) from the test(s)
Title for the graphs

\section*{VFMODEL procedure}

Forms a model-definition structure for a REML analysis (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline MODELSTRUCTURE \(=\) pointer & Specifies the model-definition structure; no default (must be specified) \\
\hline DESCRIPTION \(=\) text & Description of the model (for output) \\
\hline FIXED \(=\) formula & Fixed model terms; default * \\
\hline CONSTANT \(=\) string token & How to treat the constant term (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors or covariates in each fixed term; default 3 \\
\hline CADJUST \(=\) string token & What adjustment to make to covariates before analysis (mean, none); default mean \\
\hline CHANGEITEMS \(=\) string tokens & What changes to make to an existing model-definition structure (description, fixed, constant, factorial, cadjust, random, initial, constraints); if this is unset, the structure is redefined completely \\
\hline IMODELSTRUCTURE \(=\) pointer & Specifies the initial model-definition structure, to modify when \\
\hline & CHANGEITEMS is set; default is to modify the one specified by MODELSTRUCTURE \\
\hline EXPERIMENTS \(=\) factor & Factor defining the different experiments in a multi-experiment (meta-) analysis \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline RANDOM = formula & Random model terms \\
\hline INITIAL \(=\) scalars & Initial values for each component \\
\hline CONSTRAINTS \(=\) string tokens & How to constrain each variance component and the residual variance (none, positive, fixrelative, fixabsolute); must be set unless MODIFY=yes \\
\hline
\end{tabular}

\section*{VFPEDIGREE procedure}

Checks and prepares pedigree information from several factors, for use by VPEDIGREE and REML (S.A. Gezan \& R.W. Payne).

\section*{Options}

FREPRESENTATION \(=\) string token \(\quad\) Whether to match factor values by their levels or their labels

SEX \(=\) string token
UNKNOWN = scalar or string
INVMETHOD \(=\) string token

\section*{Parameters}

INDIVIDUALS \(=\) factors MALEPARENTS \(=\) factors FEMALEPARENTS = factors NEWINDIVIDUALS = factors

NEWMALEPARENTS \(=\) factors
NEWFEMALEPARENTS \(=\) factors
OTHERFACTORS \(=\) pointers

NEWOTHERFACTORS = pointers
INVERSE \(=\) pointer
POPULATION \(=\) variates
(levels, labels); default leve
Possible sex categories of parents (fixed, either); default fixe
Value to be treated as unknown in the pedigree factors
How to represent the INVERSE (full, sparse); default spar
Individuals on which data have been measured
Male parents (or sires) of the progeny
Female parents (of dams) of the progeny
New individuals factor, with levels standardized for use in VPEDIGREE
New males factor, with levels standardized to match those in the NEWINDIVIDUALS factor
New females factor, with levels standardized to match those in the NEWINDIVIDUALS factor
Pointer containing additional factors, that may be used in the REML models, whose levels must also be standardized to match those in the NEWINDIVIDUALS factor
Pointer containing new additional factors, with standardized levels
Inverse relationship matrix in sparse matrix form
Full list of identifiers generated from the individuals and parents

\section*{VFRESIDUALS procedure}

Obtains residuals, fitted values and their standard errors from a REML analysis (S.J. Welham).

\section*{Options}
RESIDUALS = variate
SERESIDUALS = variate
FITTEDVALUES = variate
SEFITTEDVALUES = variate
RMETHOD \(=\) string token
MAXNUNITS \(=\) scalar
EXIT \(=\) scalar
SAVE \(=\) REML save structure

\section*{No parameters}

\section*{VFSTRUCTURE procedure}

Adds a covariance-structure definition to a REML model-definition structure (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
MODELSTRUCTURE = pointer & \begin{tabular}{l} 
Supplies the model-definition structure; no default (must be \\
specified)
\end{tabular} \\
EXPERIMENT \(=\) scalar & \begin{tabular}{l} 
Level of the EXPERIMENTS factor for which a residual is to be \\
defined (using the VRESIDUAL directive)
\end{tabular} \\
TERMS \(=\) formula & \begin{tabular}{l} 
Model terms for which the covariance structure is to be \\
defined
\end{tabular} \\
FORMATION \(=\) string token & \begin{tabular}{l} 
Whether the structure is formed by direct product construction \\
or by definition of the whole matrix (direct, whole); default \\
dire
\end{tabular} \\
COORDINATES \(=\) identifiers & \begin{tabular}{l} 
Coordinates of the data points to be used in calculating \\
distance-based models (list of variates or matrix)
\end{tabular}
\end{tabular}

\section*{Parameters}

MODELTYPE \(=\) string tokens

ORDER \(=\) scalar
HETEROGENEITY \(=\) string token
METRIC \(=\) string token
\(\mathrm{FACTOR}=\) factors
Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, banded, correlation, antedependence, unstructured, diagonal, uniform, FA, FAequal) default iden
Order of model
Heterogeneity for correlation matrices (none, outside); default none
How to calculate distances when MODELTYPE=power (cityblock, squared, euclidean); default city
Factors over which to form direct products

\section*{VFUNCTION procedure}

Calculates functions of variance components from a REML analysis (S.J. Welham).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT = string token & Output required (function); default func \\
\hline RANDOM = formula & Random model (excluding residual stratum) used for the REML analysis \\
\hline NCONSTANT \(=\) scalar & Value to be used as constant in the numerator function; default 0 \\
\hline DCONSTANT \(=\) scalar & Value to be used as constant in the denominator function; default 0 \\
\hline \(\mathrm{SAVE}=\) REML save structure & Specifies the (REML) save structure from which the variance components are to be taken; by default they are taken from the save structure of the most recent REML analysis \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline NUMERATOR = variates & Each variate contains a list of coefficients, one for each variance component, defining a linear combination of the components to use as the numerator of the function \\
\hline DENOMINATOR \(=\) variates & Each variate contains coefficients defining a linear combination of the variance components to use as the denominator of the function \\
\hline FUNCTIONVALUE \(=\) scalars & Saves the calculated value of the function \\
\hline SE \(=\) scalars & Saves the approximate standard error of the function value \\
\hline
\end{tabular}

RANDOM = formula
NCONSTANT \(=\) scalar

DCONSTANT \(=\) scalar
SAVE \(=\) REML save structure

\section*{Parameters}

NUMERATOR \(=\) variates

SE \(=\) scalars

Output required (function); default func
Random model (excluding residual stratum) used for the REML analysis
Value to be used as constant in the numerator function; default 0

Value to be used as constant in the denominator function; default 0
Specifies the (REML) save structure from which the variance mponents are to be taken, by default they are taken from the

Each variate contains a list of coefficients, one for each variance component, defining a linear combination of the conponents to use as the nerar of the fion combination of the variance components to use as the denominator of the function

Saves the approximate standard error of the function value

\section*{VGESELECT procedure}

Selects the best variance-covariance model for a set of environments (M.P. Boer, M. Malosetti, S.J. Welham \& J.T.N.M. Thissen).

\section*{Options}

PRINT \(=\) string tokens

VCMODELS \(=\) string tokens

CRITERION \(=\) string token
FIXED \(=\) formula
UNITFACTOR \(=\) factor

MVINCLUDE \(=\) string tokens

What to print (summary, best, model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, waldtests, missingvalues, covariancemodels); default summ, best, comp, cova Specifies the variance-covariance models that are to be compared for the set of environments (identity, diagonal, cs, hcs, outside, fa, fa2, unstructured); default iden, diag, cs, hcs, outs, fa, fa2, unst
Defines which criterion is used to compare the different covariance structures (aic, sic); default sic
Defines extra fixed effects
Saves the units factor required to define the random model when UNITERROR is to be used
Whether to include units with missing values in the explanatory factors and variates and/or the \(y\)-variates (explanatory, yvariate); default expl, yvar

\section*{MAXCYCLE \(=\) scalar WORKSPACE \(=\) scalar}

\section*{Parameters}

TRAIT \(=\) variates
GENOTYPES = factors
ENVIRONMENTS \(=\) factors
UNITERROR \(=\) variate

SELECTEDMODEL = texts
SAVE \(=\) REML save structures

Limit on the number of iterations; default 100
Number of blocks of internal memory to be set up for use by the REML algorithm; default 100

Quantitative trait to be analysed; must be set Genotype factor; must be set
Environment factor; must be set
Uncertainty on trait means (derived from individual unit or plot error) to be included in QTL analysis; default * i.e. omitted
VCMODELS setting for the best variance-covariance model Save the details of each REML analysis for use in subsequent VDISPLAY and VKEEP directives

\section*{VGRAPH procedure}

Plots tables of means from REML (R.W. Payne).

Options
GRAPHICS = string token
METHOD \(=\) string token
XFREPRESENTATION = string
PSE \(=\) string token
LSDLEVEL = scalar
DFSPLINE \(=\) scalar
YTRANSFORM = string tokens

PENYTRANSFORM \(=\) scalar
\({ }^{\dagger} \mathrm{KEYMETHOD}=\) string token
\({ }^{\dagger}\) PLOTTITLEMETHOD = string token
\({ }^{\dagger}\) PAGETITLEMETHOD = string token
\({ }^{\dagger}\) USEAXES \(=\) string token

SAVE \(=\) REML save structure

\section*{Parameters}
\(\mathrm{XFACTOR}=\) factors or variates
GROUPS \(=\) factors or pointers

TRELLISGROUPS \(=\) factors or pointers

PAGEGROUPS \(=\) factors or pointers

Type of graph (highresolution, lineprinter); default high
What to plot (points, means, linesandpoints, onlylines, data, barchart, splines); default poin when XFACTOR is a factor, and only when it is a variate
How to label the x-axis (levels, labels); default labe uses the XFACTOR labels, if available
What to plot to represent variation when points are plotted at the means (differences, lsd, means, allmeans); default diff
Significance level (\%) to use for approximate least significant differences; default 5
Number of degrees of freedom to use when METHOD=splines Transformed scale for additional axis marks and labels to be plotted on the right-hand side of the \(y\)-axis (identity, log, \(\log 10\), logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden i.e. none Pen to use to plot the transformed axis marks and labels; default * selects a pen, and defines its properties, automatically What to use for the key descriptions when there are GROUPS (labels, namesandlabels); default name What to use for the titles of the plots when there are TRELLISGROUPS (labels, namesandlabels); default name What to use for the titles of the pages when there are PAGEGROUPS (labels, namesandlabels); default name Which aspects of the current axis definitions of window 1 to use (none, limits, marks, mpositions, mlower\%, mupper\%, nsubticks,); default none
Save structure to provide the table of means; default uses the save structure from the most recent REML

Provides the x -values for each plot; by default this is chosen automatically
Factor or factors identifying groups in each plot; by default chosen automatically
Factor or factors specifying the different plots of a trellis plot of a multi-way table
Factor or factors specifying plots to be displayed on different
\begin{tabular}{ll} 
NEWXLEVELS \(=\) variates & \begin{tabular}{l} 
pages \\
Values to be used for XFACTOR; default uses the existing levels \\
if XFACTOR is a factor, and the minimum and maximum values \\
if it is a variate
\end{tabular} \\
TITLE \(=\) texts & \begin{tabular}{l} 
Title for the graph; default is to define a title automatically if \\
GROUPS is set, or to have none if it is unset
\end{tabular} \\
YTITLE \(=\) texts & \begin{tabular}{l} 
Title for the y-axis; default is to use the identifier of the y- \\
variate, or to have no title if this is unnamed
\end{tabular} \\
XTITLE \(=\) texts & \begin{tabular}{l} 
Title for the X-axis; default is to use the identifier of the \\
XFACTOR
\end{tabular} \\
PENS \(=\) variates & \begin{tabular}{l} 
Defines the pen to use to plot the points and/or line for each \\
group defined by the GROUPS factors
\end{tabular}
\end{tabular}

\section*{VHERITABILITY procedure}

Calculates generalized heritability for a random term in a REML analysis (R.W. Payne). PRINT \(=\) string tokens \(\quad\) Controls printed output (heritability); default heri SAVE \(=\) REML save structure Save structure of the analysis from which to calculate the heritabilities; default uses the most recent REML analysis

\section*{Parameters}
TERMS = formula
HERITABILITY \(=\) scalar or variate
EXIT \(=\) scalar or variate

Random terms whose heritabilities are to be calculated Saves the heritabilities
Exit status for the calculations: one if unsuccessful, otherwise zero

\section*{VHOMOGENEITY procedure}

Tests homogeneity of variances and variance-covariance matrices (R.W. Payne).

PRINT \(=\) string tokens \(\quad\) Controls printed output (test, variances); default test
GROUPS \(=\) factors

\section*{Parameters}

DATA \(=\) variates or pointers

VARIANCES \(=\) any numerical structures or pointers
Supplies the variances (in any numerical structure) or variance-covariance matrices in a pointer to a list of symmetric matrices if the DATA parameter is not set, or saves variances (in a table) and variance-covariance matrices (in a pointer to a list of symmetric matrices) if they have been calculated from DATA and GROUPS
\(\mathrm{DF}=\) any numerical structure \(\quad\) Supplies the degrees of freedom for variances (in any numerical structure) or for variance-covariance matrices (as a pointer to a list of scalars) if the DATA parameter is not set, or saves the degrees of freedom for variances (in a table) or variance-covariance matrices (as a pointer to a list of scalars) if they have been calculated from DATA and GROUPS
SAVE \(=\) pointers \(\quad\) Saves the results i.e. type of test, chi-square statistic, degrees of freedom and probability

\section*{VINTERPOLATE procedure}

Performs linear \& inverse linear interpolation between variates (R.J. Reader).

\section*{Options}

METHOD \(=\) string token
Type of interpolation required (interval, value): for METHOD=value, \(y\)-values are interpolated for each point in the NEWINTERVALS variates and stored in the NEWVALUES

RANGEMETHOD \(=\) string token

\section*{Parameters}

\author{
OLDVALUES = pointers \\ NEWVALUES = pointers
}

OLDINTERVALS \(=\) variates

NEWINTERVALS = pointers
variates, while for METHOD=interval, \(x\)-values are estimated for the \(y\)-values in the NEWVALUES variates and stored in the NEWINTERVALS variates; default inte
Whether the smallest value, largest value or the mean of the two is returned if more than one value is valid (first, middle, last); default midd

Each one contains variates specifying the \(y\)-values (data values) with which an interpolation is to be carried out For METHOD=value, each pointer contains variates to store the results of an interpolation; for METHOD=interval, it contains either variates or scalars to specify \(y\)-values for which inverse interpolation is to be carried out
Contains the x -values (intervals) corresponding to the variates in the OLDVALUES pointer
For METHOD=interval, each pointer contains variates to store the results of an inverse interpolation; for METHOD=value, it contains either variates or scalars to specify x -values at which interpolation is to be performed

\section*{VKEEP directive}

Copies information from a REML analysis into Genstat data structures.

\section*{Options}
\begin{tabular}{|c|c|}
\hline RESIDUALS = variate & Residuals from the analysis \\
\hline FITTEDVALUES \(=\) variate & Fitted values from the analysis \\
\hline SIGMA2 \(=\) scalar & Variance component for the lowest stratum \\
\hline VCOVARIANCE \(=\) symmetric matrix & Variance-covariance matrix for the estimates of the variance components \\
\hline VESTIMATES \(=\) variate & Saves a vector of all parameters in the variance model \\
\hline VARESTIMATES \(=\) symmetric matrix & Variance-covariance matrix for the parameters in the variance model (as saved by VESTIMATES) \\
\hline VLABELS \(=\) text & Vector of text labels for the VESTIMATES and VARESTIMATES structures \\
\hline MVESTIMATES = variate & Estimates of missing values \\
\hline MVSE \(=\) variate & Standard errors of missing-value estimates \\
\hline MVUNITS = variate & Unit numbers of missing values \\
\hline ALLEFFECTS \(=\) variate & Full set of estimated fixed and random effects \\
\hline ALLVCOVARIANCE \(=\) symmetric matrix & Variance-covariance matrix for the full set of fixed and random effects not associated with the absorbing factor \\
\hline DEVIANCE \(=\) scalar & Residual deviance from fitting the full fixed model \\
\hline DF \(=\) scalar & Residual degrees of freedom after fitting the full fixed model \\
\hline SUBDEVIANCE \(=\) scalar & Residual deviance after fitting the submodel of the fixed model \\
\hline SUBDF \(=\) scalar & Residual degrees of freedom after fitting the submodel of the fixed model \\
\hline RSS \(=\) scalar & Residual sum of squares from fitting the FIXED model by general least squares with a covariance matrix derived from the estimated variance components \\
\hline INDEX \(=\) variate & Index of units included in the analysis \\
\hline MODELS \(=\) pointer & Pointer to formulae giving the fixed, random, spline and residual terms fitted \\
\hline RMATRIX \(=\) pointer & Saves details of the covariance model fitted to the residual \\
\hline RMETHOD \(=\) string token & Which random terms to use when calculating RESIDUALS (final, all, notspline); default uses the setting from the REML statement \\
\hline CFORMAT \(=\) string token & Whether the covariance matrices or the parameters are saved for a COVARIANCEMODEL (variancematrices, \\
\hline
\end{tabular}
UVCOVARI ANCE = symmetric matrix
DFFIXED = scalar
DFRANDOM = scalar
FMETHOD = string token
WMETHOD = string token
WORKSPACE = scalar
YVARIATE = dummy
EXIT = scalar
SAVE \(=\) REML save structures

\section*{Parameters}
```

TERMS = formula
COMPONENTS = scalars
COVARIANCEMODEL = pointers
MEANS = tables
SEDMEANS = symmetric matrices
VARMEANS = symmetric matrices
EFFECTS = tables
SEDEFFECTS = symmetric matrices
VAREFFECTS = symmetric matrices
DESIGNMATRIX = matrices
SPLBLUP = pointers

```
SPLDESIGN \(=\) pointers
SPLX \(=\) pointers
SPLSMOOTH \(=\) pointers
CADJUSTMENT \(=\) scalars
WALD \(=\) scalars
FSTATISTIC \(=\) scalars
\(\mathrm{NDF}=\) scalars
DDF \(=\) scalars
parameters); default vari
Unit-by-unit variance-covariance matrix Number of degrees of freedom in the fixed model Number of degrees of freedom in the random model Controls how to calculate F-statistics for fixed terms
(automatic, none, algebraic, numerical); default auto
Controls which Wald statistics are saved (add, drop); default drop
Saves the workspace setting that was used by the REML command
Dummy to be set to the \(y\)-variate of the analysis
Exit status of the fit (0 if successful)
Save structure from the required analysis; default * takes the save structure from the latest REML statement

Terms for which information is to be saved
Estimated variance components
Saves details of the covariance model fitted to a random term Table of predicted means for each term
Standard errors of differences between the predicted means Variance-covariance matrix of the means Table of estimated regression coefficients for each term Standard errors of differences between the estimated parameters of each term
Variance-covariance matrix of the effects of a term Saves the design matrix for the term
Best linear unbiased predictors for spline terms, saved in a pointer with a variate for each combination of the levels of the factors in the term
Design matrices ( \(Z\) ) for spline terms, saved in a pointer with a matrix for each combination of the levels of the factors in the term
Knot points for spline terms, saved in a pointer with a variate for each combination of the levels of the factors in the term Smoothing parameters estimated for spline terms, saved in a pointer with a scalar for each combination of the levels of the factors in the term
For a term involving covariates, saves the adjustment made to its values during the analysis
Wald statistic (fixed terms only)
F statistics (fixed terms only)
Numerator d.f. (fixed terms only)
Denominator d.f. (fixed terms only)

\section*{VLINEBYTESTER procedure}

Analyses a line-by-tester trial by REML (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

PRECOVERY \(=\) string tokens

Specifies the output to be produced (model, components, effects, means, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels, aic, sic, bic, combinability, tests); default mode, comp, wald, comb, test
Controls what summary output is produced about the models that are tried during recovery (deviance, aic, bic, sic, dffixed, dfrandom, change, exit, best); default devi, aic,sic, dfra, best
\(\left.\begin{array}{ll}\text { LINES }=\text { factor } & \begin{array}{l}\text { Specifies the line (usually female parent); no default (must be } \\
\text { specified) }\end{array} \\
\text { TESTERS }=\text { factor } & \text { Specifies the tester (usually male parent); no default (must be } \\
\text { specified) }\end{array}\right]\)\begin{tabular}{l} 
Distinguishes between control and test (line \(\times\) tester) \\
genotypes; default is that there are no controls \\
Fixed model terms, in addition to the TESTERS main effect and \\
any control comparisons; default * i.e. none
\end{tabular}

\section*{VLSD procedure}

Prints approximate least significant differences for REML means (R.W. Payne).

\section*{Options}
```

PRINT = string tokens
FACTORIAL = scalar
LSDLEVEL = scalar
DFMETHOD = string token
DFGIVEN = scalar

```

Controls printed output (means, sed, lsd, df); default lsd Limit on the number of factors in each term; default 3 Significance level (\%) to use in the calculation of least significant differences; default 5 Specifies which degrees of freedom to use for the \(t\)-statistics (fddf, given, tryfddf); default fddf Specifies the number of degrees of freedom to use for the \(t\) statistics when DFMETHOD=given, or if d.d.f. are unavailable

FMETHOD \(=\) string token

SAVE \(=\) REML save structure

\section*{Parameters}

TERMS \(=\) formula

MEANS = pointer or table
SED \(=\) pointer or symmetric matrix
\(\mathrm{LSD}=\) pointer or symmetric matrix
\(\mathrm{DF}=\) pointer or scalar
DDF \(=\) pointer or scalar
when DFMETHOD=tryfddf
Controls how to calculate denominator degrees of freedom for the F-statistics, if these are not already available in the REML save structure (automatic, algebraic, numerical); default auto
Save structure to provide the table of means; default uses the save structure from the most recent REML

Treatment terms whose means are to be compared; default * takes the REML fixed model
Saves the means for each term
Saves standard errors of differences between means Saves approximate least significant differences matrix for the means
Saves the degrees of freedom used to calculate the \(t\) critical values for the LSDs
Saves the range of denominator degrees of freedom in the F tests for the term and any terms that are marginal to the term (available only when denominator degrees of freedom of F statistics are being used)

\section*{VMATRIX procedure}

Copies values and row/column labels from a matrix to variates or texts (D.A. Murray).

\section*{No options}

\section*{Parameters}

MATRIX = matrices, symmetric matrices or diagonal matrices

Matrices to copy into variates
VARIATE \(=\) variates \(\quad\) Saves the values from each matrix
ROWS \(=\) variates \(\quad\) Saves the row coordinates
COLUMNS \(=\) variates Saves the column coordinates
ROWLABELS \(=\) texts \(\quad\) Saves the row labels
COLLABELS \(=\) texts \(\quad\) Saves the column labels

\section*{VMCOMPARISON procedure}

Performs pairwise comparisons between REML means (D.M. Smith).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (comparisons, critical, description, lines, letters, plot, mplot, pplot); default lett \\
\hline METHOD \(=\) string token & Test to be performed (fplsd, fulsd, bonferroni, sidak); default fuls \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors in each term; default 3 \\
\hline DIRECTION \(=\) string token & How to sort means (ascending, descending); default asce \\
\hline PROBABILITY = scalar & The required significance level; default 0.05 \\
\hline STUDENTIZE \(=\) string token & Whether to use the alternative LSD test where the Studentized Range statistic is used instead of Student's \(t\) (yes, no); default no \\
\hline DFMETHOD \(=\) string token & Specifies which degrees of freedom to use for the tests (fddf, given, tryfddf); default fddf \\
\hline DFGIVEN \(=\) scalar & Specifies the number of degrees of freedom to use for the tests when \(D F M E T H O D=g i v e n\), or if d.d.f. are unavailable when DFMETHOD=tryfddf \\
\hline FMETHOD \(=\) string token & Controls how to calculate denominator degrees of freedom for the F-statistics, if these are not already available in the REML save structure (automatic, algebraic, numerical); default auto \\
\hline
\end{tabular}

SAVE \(=\) REML save structure

\section*{Parameters}

TERMS = formula
MEANS \(=\) pointer or variate
LABELS = pointer or text
LETTERS \(=\) pointer or text

SIGNIFICANCE \(=\) pointer

Save structure to provide the tables of means and associated information; default uses the save structure from the most recent REML

Treatment terms whose means are to be compared Saves the (sorted) means
Saves labels for the (sorted) means
Saves letters indicating groups of means that do not differ significantly
Indicators to show significant comparisons between or symmetric matrix (sorted) means

\section*{VMETA procedure}

Performs a multi-treatment meta analysis using summary results from individual experiments (V.M. Cave).
Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output from the REML analysis (model, components, effects, means, monitoring, vcovariance, deviance, Waldtests, covariancemodels); default mode, comp, cova, mean \\
\hline PSE \(=\) string token & Standard errors to be printed with tables of effects and means (differences, estimates, alldifferences, allestimates, none); default alle \\
\hline EMETHOD = string token & Specifies whether the EXPERIMENTS main effect is fitted as a fixed or random term in the REML model; default fixe \\
\hline VCMODEL \(=\) string token & Specifies the between-experiment variance-covariance model (identity, diagonal, cs, hcs, unstructured, faequal1, faequal2, fal); default iden for fixed EXPERIMENTS effects and cs for random effects \\
\hline \multicolumn{2}{|l|}{INITIAL \(=\) scalars, variates, matrices, symmetric matrices or pointers} \\
\hline & Initial parameter values for the variance-covariance model specified by VCMODEL (supplied in the structures appropriate for the model concerned); default generates values automatically \\
\hline MAXCYCLE \(=\) scalar & Sets a limit on the number of iterations in the REML analysis; default 30 \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline MEANS \(=\) variates & Supplies the TREATMENTS by EXPERIMENTS means \\
\hline TREATMENTS = factors & Identifier of the treatments factor \\
\hline EXPERIMENTS \(=\) factors & Identifier of the experiments factor \\
\hline SEDMEANS \(=\) variates & Supplies the (average) standard error of differences in each experiment \\
\hline VARIANCES \(=\) variates & Identifier for the variate containing the sampling variance for each experiment \\
\hline MODERATOR \(=\) factors or variates & Identifier for a moderator variable \\
\hline SAVE \(=\) REML save structures & Saves the details of each analysis for use in subsequent VDISPLAY and VKEEP directives \\
\hline
\end{tabular}

\section*{VMODEL procedure}

Specifies the model for a REML analysis using a model-definition structure defined by VFMODEL (R.W. Payne).

\section*{Option}

PRINT \(=\) string tokens

\section*{Parameter}

MODELSTRUCTURE \(=\) pointer

Controls printed output (model, structure); default * i.e. none

Model-definition structure

\section*{VNEARESTNEIGHBOUR procedure}

Analyses a field trial using nearest neighbour analysis (D.B. Baird).

\section*{Options}

PRINT \(=\) string tokens

NDIFFERENCES = scalar

TME THOD \(=\) string token
UMETHOD \(=\) string token

SEDMETHOD \(=\) string token

\section*{NTIMES = scalar}

Parameters
\(\mathrm{Y}=\) variates
TREATMENTS = factors
BLOCKS \(=\) factors

UNITS \(=\) factors
MEANS \(=\) tables
EFFECTS \(=\) tables
SED \(=\) matrices or symmetric matrices
COMPONENTS \(=\) variates

SEED \(=\) scalars

Controls printed output (model, wald, components, means, effects, sed); default mode, wald, comp, mean, effe, sed Specifies the number of neighbours to use in differencing the plots, either 1 for first or 2 for second differences; default 1 Indicates how the treatments effects are to be included in the model (fixed, random); default fixe
Whether to include a unit-error term in the model (include, omit); default incl
Specifies how the estimates of standard errors of differences of treatment effects are to be calculated (REML, simulation); default REML
Specifies the number of simulations to make; default 100
Variates to be analysed
Treatment factor for each \(y\)-variate
Block factor for each \(y\)-variate, defining groups of plots to be detrended independently
Unit-within-block factor for each y-variate, defining the order of plots within each block
Saves the estimated treatment means from each analysis
Saves the estimated treatment effects from each analysis
Saves the estimated standard errors of differences between treatments
Saves the estimated variance components from the fitted model
Seed for the random number generator used in the simulations to calculate standard error of differences; default 0 continues from the previous generation or (if none) initializes the seed automatically

\section*{VORTHPOLYNOMIAL procedure}

Forms orthogonal polynomials over time for repeated measures (J.T.N.M. Thissen).

\section*{Options}

TIMEPOINTS = variate

MAXDEGREE \(=\) scalar

\section*{Parameters}

DATA \(=\) pointers

CONTRAST \(=\) pointers

Variate of timepoints; default uses the suffixes of the DATA pointer
The number of contrasts (excluding the mean); default is the number of identifiers in the CONTRAST pointer minus 1

Each pointer contains the data variates (observed at successive times); must be set
To save the calculated contrasts: the first variate contains the means, the second the linear polynomial contrasts, the third the quadratic polynomial contrasts etc; must be set

\section*{VPEDIGREE directive}

Generates an inverse relationship matrix for use when fitting animal or plant breeding models by REML.

\section*{Options}

SEX \(=\) string token
UNKNOWN = scalar
Possible sex categories of parents (fixed, either); default fixe
Value to be treated as unknown

\section*{Parameters}

INDIVIDUALS \(=\) factors
MALEPARENTS \(=\) factors
FEMALEPARENTS = factors
INVERSE \(=\) pointer
POPULATION \(=\) variates

Individuals on which data has been measured
Male parents of the progeny
Female parents of the progeny
Inverse relationship matrix in sparse matrix form
Full list of identifiers generated from the individuals and parents

\section*{VPERMTEST procedure}

Does random permutation tests for the fixed effects in a REML analysis (R.W. Payne).

Options
PRINT \(=\) string tokens
NTIMES \(=\) scalar
NRETRIES \(=\) scalar
BLOCKSTRUCTURE \(=\) formula
EXCLUDE \(=\) factors
SEED \(=\) scalar
WMETHOD = string token
OWNMETHOD = string token
CIPROBABILITY = scalar

\section*{Parameters}

SAVE \(=\) REML save structures

WALD \(=\) pointers
PRWALD \(=\) pointers

CRITICALWALD = pointers

NNOTCONVERGED \(=\) scalars
OWNDATA \(=\) pointers
OWNOBSERVEDVALUES \(=\) variates
OWNPROBABILITIES \(=\) variates
OWNESTIMATES = variates
OWNSES = variates
OWNLOWERCIS \(=\) variates

OWNUPPERCIS \(=\) variates

OWNSTATISTICS \(=\) pointers

Controls printed output (prwald, criticalwald, ownstatistics, monitoring); default prwa, crit
Number of permutation samples to make; default 99
Maximum number of extra samples to take when some REML analyses fail to converge; default NTIMES
Model formula defining any blocking to consider during the randomization; default none
Factors in the block formula whose levels are not to be randomized
Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically Controls which Wald statistics are used (add, drop); default add
Type of test required for own statistics (twosided, greaterthan, lessthan); default twos
Probability level for the confidence interval for own statistics; default 0.95

Specifies the (REML) save structure of the original analysis; default * uses the SAVE structure from the most recent REML analysis
Wald statistics saved in a pointer with a variate for each term Critical values for Wald statistics saved in a pointer with a scalar for each term
Saves a pointer with variates for the \(5 \%, 1 \%\) and \(0.1 \%\) significance levels containing the corresponding critical values for the fixed terms, obtained from the quantiles of the Wald statistics from the permuted data sets
Saves the number of permutations whose REML analysis failed to converge
Data required to calculate own statistics
Saves observed values of the own statistics
Saves probabilities for the own statistics
Saves estimates for the own statistics
Saves standard errors for the own statistics
Saves lower values of the confidence intervals for the own statistics
Saves upper values of the confidence intervals for the own statistics
Saves the own statistics obtained from the permutation samples, in a pointer with a variate for each statistic

\section*{VPLOT procedure}

Plots residuals from a REML analysis (S.J. Welham).

\section*{Options}

RMETHOD = string token
```

INDEX = variate or factor
GRAPHICS = string token
TITLE = text
SAVE = REML save structure

```

\section*{Parameters}
\(\mathrm{METHOD}=\) string tokens

PEN \(=\) scalars, variates or factors

Which random terms to use when calculating the residuals (final, all, notspline, stfinal, stall); default uses the setting from the REML statement
X-variable for an index plot; default! \((1,2 \ldots)\)
What type of graphics to use (lineprinter, highresolution); default high
Overall title for the plots; if unset, the identifier of the \(y\) variate is used
Specifies the (REML) save structure from which the residuals and fitted values are to be taken; default * uses the SAVE structure from the most recent REML analysis

Type of graph for residuals (fittedvalues, normal, halfnormal, histogram, absresidual, index); default fitt, norm, half, hist
Pens to be used for the plots

\section*{VPOWER procedure}

Uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis (R.W. Payne \& C.J. Brien).

\section*{Options}
```

PRINT = string tokens
VPRINT = string tokens

```
TERM \(=\) formula
UVCOVARIANCE \(=\) symmetric matrix
PROBABILITY \(=\) scalar
TMETHOD \(=\) string token
XCONTRASTS \(=\) variate
CONTRASTTYPE \(=\) string token
CRITICALVALUE \(=\) scalar
NBOOT \(=\) scalar
NRETRIES \(=\) scalar
SEED \(=\) scalar
METHOD \(=\) string token
MAXCYCLE \(=s c a l a r\)
FMETHOD \(=\) string token

Controls printed output (power, nnotconverged, monitoring); default powe
Controls the output from the REML analyses (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none Fixed term to be assessed in the analysis
Specifies the variances and covariances of the units; default is to take this from the SAVE structure
Significance level at which the response is to be detected; default 0.05
Type of test to be made (fratio, wald, twosided, greaterthan, lessthan, equivalence, noninferiority); default frat
X -variate defining a contrast to be detected
Type of contrast (regression, comparison) default rege Supplies a critical value for the test statistic
Number of bootstrap samples to analyse; default 500
Maximum number of extra samples to take when some REML analyses fail to converge; default NBOOT
Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI
Sets a limit on the number of iterations in the REML analyses; default 30
Controls whether and how to calculate F statistics for fixed terms (automatic, none, algebraic, numerical); default auto
Controls which Wald statistics are saved (add, drop); default add
```

WORKSPACE $=$ scalar Number of blocks of internal memory to be set up for use by
the REML algorithm
SAVE $=v s a v e$

```

\section*{Parameters}

RESPONSE = scalars, variates or tables POWER = scalars NCONVERGED = scalars

NNOTCONVERGED = scalars

REML save structure to provide the unit-by-unit variancecovariance matrix if UVCOVARIANCE is not specified
Number of blocks of internal memory to be set up for use by the REML algorithm

Specifies the response to be detected
Saves the power (i.e. probability of detection) for RESPONSE Saves the number of bootstrap samples whose REML analyses converged
Saves the number of bootstrap samples whose REML analyses failed to converge

\section*{VPREDICT directive}

Forms predictions from a REML model.

\section*{Options}
\(\left.\begin{array}{ll}\text { PRINT }=\text { string tokens } & \begin{array}{l}\text { What to print (description, predictions, se, sed, } \\
\text { avesed, vcovariance); default desc, pred, se, aves }\end{array} \\
\text { CHANNEL }=\text { scalar } & \text { Channel number for output; default * i.e. current output } \\
\text { channel }\end{array}\right]\)\begin{tabular}{l} 
Indicates which model terms (fixed and/or random) are to be \\
used in forming the predictions; default * includes all the fixed \\
terms and relevant random terms
\end{tabular}

\section*{VRACCUMULATE procedure}

Forms a summary accumulating the results of a sequence of REML random models (R.W. Payne).
\(\left.\begin{array}{ll}\text { PRINT }=\text { string tokens } & \text { Controls printed output (deviance, aic, bic, sic, dffixed, } \\
\text { dfrandom, change, exit); default devi, aic, sic, dfra }\end{array}, \begin{array}{l}\text { How to accumulate the current analysis (add, printonly, } \\
\text { restart); default add }\end{array}\right]\)\begin{tabular}{l} 
Which constants to include that depend only on the fixed
\end{tabular}

DMETHOD \(=\) string token

ACCUMULATED \(=\) pointer

\section*{Parameters}

DESCRIPTION \(=\) text
SAVE \(=\) REML save structure
model (determinant, pi); default pi
Method to use to calculate \(\log \left(\right.\) determinant \(\left(\mathrm{X}^{\prime} \mathrm{X}\right)\) ) (choleski, lrv); default chol
Saves the summary
Single-line text to describe the analysis; default lists the random terms added or deleted from the previous model Save structure for the REML analysis to put into the summary; default uses the save structure from the most recent REML

\section*{VRADD procedure}

Adds terms from a REML fixed model into a Genstat regression (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & Controls printed output (model, deviance, summary, \\
& estimates, correlations, fittedvalues, \\
& accumulated); default mode, summ, esti, accu \\
FACTORIAL = scalar & Limit for expansion of terms; default 3 \\
DENOMINATOR = string token & Whether to base ratios in accumulated summary on rms from \\
& model with smallest residual ss or smallest residual ms (ss, \\
& ms); default ss \\
SELECTION = string tokens & One or two criteria to be printed with the models (\%variance, \\
& \(\% s s\), adjustedr2, r2, dispersion, aic, sic, bic); default \\
& \(\% v a r\), aic, sic
\end{tabular}

\section*{Parameter}

TERMS = formula
Fixed terms to be added

\section*{VRCHECK procedure}

Checks effects of a random term in a REML analysis (R.W. Payne).
Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (largeblups, stability); default larg \\
\hline TERM \(=\) formula & Random term whose BLUPs are to be assessed; must be set \\
\hline RMETHOD = string token & Which random terms to use to form the residuals that are subtracted from the \(y\)-variate to provide the fitted values (all, term); default all \\
\hline RLIMIT \(=\) scalar & Limit for detection of large standardized BLUPs; if this is not set, the limit is set automatically according to the number of BLUPs \\
\hline NLARGEBLUPS \(=\) scalar & Saves the number of large standardized BLUPs that have been detected \\
\hline LARGEBLUPUNITS \(=\) pointer & Saves the factor levels of the large standardized BLUPs \\
\hline STABILITYTEST \(=\) pointer & Saves the results of the Levene test for stability of the variance of the standardized BLUPs \\
\hline SAVE \(=\) REML save structure & Specifies the analysis from which the BLUPs are to be taken; by default this will be the most recent REML \\
\hline
\end{tabular}

\section*{No parameters}

VRDISPIAY procedure
Displays output for a REML fixed model fitted in a Genstat regression (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (model, deviance, summary, \\
estimates, correlations, fittedvalues, \\
accumulated); default mode, summ, esti, accu
\end{tabular} \\
DENOMINATOR = string token & \begin{tabular}{l} 
Whether to base ratios in accumulated summary on rms from \\
model with smallest residual ss or smallest residual ms (ss, \\
ms); default ss
\end{tabular}
\end{tabular}

SELECTION \(=\) string tokens
One or two criteria to be printed with the models (\%variance, \%ss, adjustedr2, r2, dispersion, aic, sic, bic); default \%var, aic, sic

\section*{No parameters}

\section*{VRDROP procedure}

Drops terms in a REML fixed model from a Genstat regression (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated); default mode, summ, esti, accu
```

FACTORIAL = scalar
DENOMINATOR = string token

```

SELECTION \(=\) string tokens

\section*{Parameter}

TERMS = formula

Limit for expansion of terms; default 3
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ); default s s
One or two criteria to be printed with the models (\%variance, \%ss, adjustedr2, r2, dispersion, aic, sic, bic); default \%var, aic, sic

Fixed terms to be dropped

\section*{VREGRESS procedure}

Performs regression across variates (M.W. Patefield \& D. Tandy).

\section*{No options}

\section*{Parameters}
\(\mathrm{Y}=\) pointers
\(\mathrm{X}=\) pointers
SLOPE \(=\) variates

INTERCEPT \(=\) variates

Pointers each containing a set of \(y\)-variates for each of whose units a regression is to be done
Pointer containing \(x\)-variates for each set of \(y\)-variates Variate to save the estimated slopes from each set of regressions
Variate to save the estimated intercepts from each set of regressions

\section*{\({ }^{\dagger}\) VREPLACE procedure}

Replaces values of vectors and pointers (R.W. Payne).

\section*{No options}

\section*{Parameters}

OLDSTRUCTURE \(=\) vectors or pointers \(\quad\) Variate, factor, text or pointer whose values are to be replaced
NEWSTRUCTURE \(=\) vectors or pointers \(\quad\) Variate, factor, text or pointer to store the new values; if unset
these replace the values in the OLDSTRUCTURE
OLDVALUES \(=\) texts, variates, scalars or pointers
Values to be replaced
NEWVALUES \(=\) texts, variates, scalars or pointers
Replacement values

\section*{VRESIDUAL directive}

Defines the residual term for a REML analysis, or the residual term for an experiment within a metaanalysis (combined analysis of several experiments)

\section*{Options}
\begin{tabular}{ll} 
EXPERIMENT \(=\) scalar & \begin{tabular}{l} 
Level of the EXPERIMENTS factor for which the residual is \\
being defined
\end{tabular} \\
TERM \(=\) formula & Model term to be used as the residual \\
FORMATION \(=\) string token & \begin{tabular}{l} 
Whether the structure is formed by direct product construction \\
or by definition of the whole matrix \((\) direct, whole); default \\
dire
\end{tabular} \\
VARIANCE \(=\) scalar & Allows an initial estimate to be provided for the residual
\end{tabular}
CONSTRAINT \(=\) string token
COORDINATES \(=\) matrix or variates

\section*{Parameters}

MODELTYPE \(=\) string tokens
```

ORDER = scalar
HETEROGENEITY = string token

```
METRIC \(=\) string token
\(\mathrm{FACTOR}=\) factors
MATRIX = identifiers
INVERSE \(=\) identifiers
INITIAL \(=\) identifiers
CONSTRAINTS \(=\) texts
EQUALITYCONSTRAINTS \(=\) variates
variance of the experiment
Allows the residual variance to be fixed at its initial value (fix, positive) default posi
Coordinates of the data points to be used in calculating distance-based models

Type of covariance model associated with the term(s), or with individual factors in the term(s) if FORMATION=direct (identity, fixed, AR, MA, ARMA, power, boundedlinear, circular, spherical, linearvariance, banded, correlation, antedependence, unstructured, diagonal, uniform, FA, FAequal) default iden
Order of model
Heterogeneity for correlation matrices (none, outside); default none
How to calculate distances when MODELTYPE=power (cityblock, squared, euclidean); default city Factors over which to form direct products
To define matrix values for the term or the factors when MODELTYPE=fixed
To define values for matrix inverses (instead of the fixed matrices themselves) when MODELTYPE=fixed Initial parameter values for each correlation matrix Texts containing strings none, fix or positive to define constraints for the parameters in each model Non-zero values in the variate indicate groups of parameters whose values are to be constrained to be equal

\section*{VRFIT procedure}

Fits terms from a REML fixed model in a Genstat regression (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens

FACTORIAL \(=\) scalar
DENOMINATOR \(=\) string token

SELECTION \(=\) string tokens

\section*{Parameter}

TERMS \(=\) formula

Controls printed output (model, deviance, summary, estimates, correlations, fittedvalues, accumulated); default mode, summ, esti, accu
Limit for expansion of terms; default 3
Whether to base ratios in accumulated summary on rms from model with smallest residual ss or smallest residual ms ( ss , ms ); default ss
One or two criteria to be printed with the models (\%variance, \%ss, adjustedr2, r2, dispersion, aic, sic, bic); default \%var, aic, sic

Fixed terms to be fitted

\section*{VRKEEP procedure}

Saves output for a REML fixed model fitted in a Genstat regression (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
FACTORIAL \(=\) scalar & Limit for expansion of terms; default 3 \\
RESIDUALS \(=\) variate & Residuals, as specified by the RMETHOD option \\
FITTEDVALUES = variate & Fitted values \\
RMETHOD \(=\) string token & Type of residuals to form (simple, standardized); default \\
RDF \(=\) scalar & simp \\
RSS \(=\) scalar & Residual degrees of freedom \\
ACCUMULATED \(=\) pointer & Residual sum of squares \\
DENOMINATOR \(=\) string token & Accumulated analysis-of-variance table \\
& Whether to base ratios in accumulated summary on rms from
\end{tabular}
model with smallest residual ss or smallest residual ms (ss, ms ); default ss

\section*{Parameters}

TERMS = formula
Terms whose information is to be saved
ESTIMATES \(=\) table, scalar or pointer to tables or scalars
Estimated regression coefficients for each term
SE = table, scalar or pointer to tables or scalars
Standard errors of estimated regression coefficients for each term
VCOVARIANCE \(=\) symmetric matrix or pointer to symmetric matrices
Variances and covariances between the estimates of each term
NDF \(=\) scalar or pointer to scalars \(\quad\) Numerator degrees of freedom for each term
DDF \(=\) scalar or pointer to scalars \(\quad\) Denominator degrees of freedom for each term

\section*{VRMETAMODEL procedure}

Forms the random model for a REML meta analysis (R.W. Payne).

\section*{Options}

RANDOM = formula structure
EXPERIMENTSFACTOR \(=\) factor
TERMS = formula

Saves the random model
Factor defining which units are in each experiment Specifies terms, if any, to be fitted over the whole data set; default * i.e. none

\section*{Parameters}

EXPERIMENT \(=\) scalars, variates or texts
Experiments on which additional random terms are to be fitted
LOCALTERMS \(=\) formula structures \(\quad\) Random terms that are to be fitted only on the corresponding experiment
SAVEVECTORS = pointers \(\quad\) Saves the factors (and/or any variates) defined to represent the local terms on each experiment

\section*{VRPERMTEST procedure}

Performs permutation tests for random terms in REML analysis (V.M. Cave).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (summary, monitoring, \\
vdiagnostics); default summ
\end{tabular} \\
VPRINT \(=\) string tokens \\
Controls the output from the REML analysis of the full and \\
reduced models (model, components, effects, means, \\
stratumvariances, monitoring, vcovariance, \\
deviance, Waldtests, missingvalues, \\
covariancemodels); default * i.e. none \\
What graphs to plot (kerneldensity, histogram); default \\
* \\
REML model definition structure, defined using the VFMODEL
\end{tabular}

TITLE \(=\) text
\(\mathrm{SAVE}=\) pointers

Title for the graphs
Saves the test statistics and permuted values

\section*{VRSETUP procedure}

Sets up Genstat regression to assess terms from a REML fixed model (R.W. Payne). Option
SAVE \(=\) REML save structure
Specifies the analysis whose fixed terms are to be tested; by default this will be the most recent REML

\section*{No parameters}

\section*{VRSWITCH procedure}

Adds or drops terms from a REML fixed model in a Genstat regression (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (model, deviance, summary, \\
estimates, correlations, fittedvalues, \\
accumulated); default mode, summ, esti, accu
\end{tabular} \\
FACTORIAL = scalar & Limit for expansion of terms; default 3 \\
DENOMINATOR = string token & \begin{tabular}{l} 
Whether to base ratios in accumulated summary on rms from \\
\\
model with smallest residual ss or smallest residual ms (ss, \\
ms); default ss
\end{tabular} \\
SELECTION = string tokens & One or two criteria to be printed with the models (\%variance, \\
& \%ss, adjustedr2, r2, dispersion, aic, sic, bic); default \\
& \%var, aic, sic
\end{tabular}

\section*{Parameter}

TERMS = formula

Fixed terms to be added or dropped

\section*{VRTRY procedure}

Tries the effect of adding and dropping individual terms from a REML fixed model in a Genstat regression (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT \(=\) string tokens & Controls printed output (changes); default chan \\
FACTORIAL \(=\) scalar & Limit for expansion of terms; default 3 \\
CHANGES \(=\) pointer & Saves details of the changes \\
Parameter & \\
TERMS \(=\) formula & Fixed terms to be added or dropped
\end{tabular}

\section*{VSAMPLESIZE procedure}

Estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap (R.W. Payne).

\section*{Options}

PRINT \(=\) string tokens \(\quad\) Controls printed output (power, replication,
```

TERM= formula
REPLICATES = factor
TRYREPLICATION = variate
MAXREPLICATION = scalar
FIXED = formula
RANDOM = formula

```
COMPONENTS \(=\) variate or scalar
FACTORIAL \(=\) scalar
PROBABILITY \(=\) scalar
    Controls printed output (power, replication,
    monitoring); default powe, repl, moni
    Fixed term to be assessed in the analysis
    Factor identifying the replication in the design
    Replication values to try first; default! \((2,4)\)
    Maximum feasible replication; default * i.e. not defined
    Fixed terms in the analysis; if unset, determined automatically
    from the most recent VCOMPONENTS
    Random terms in the analysis; if unset, determined
    automatically from the most recent VCOMPONENTS
    Variate of variance components of the random terms; must be
    set
    Limit on the number of factors or variates in fixed terms;
    default 3
    Significance level at which the term is required to be detected
\begin{tabular}{|c|c|}
\hline POWER \(=\) scalar & The required power (i.e. probability of detection) of the test; default 0.9 \\
\hline TMETHOD \(=\) string token & Type of test to be made (fratio, wald, twosided, lessthan, greaterthan, equivalence, noninferiority; default frat \\
\hline XCONTRASTS \(=\) variate & X -variate defining a contrast to be detected \\
\hline CONTRASTTYPE \(=\) string token & Type of contrast (regression, comparison) default rege \\
\hline CRITICALVALUE \(=\) scalar & Supplies a critical value for the test statistic \\
\hline NBOOT \(=\) scalar or variate & Number of bootstrap samples to analyse, in a variate with 2 values if there is to be preliminary search, otherwise in a scalar; default 1000 \\
\hline NRETRIES \(=\) scalar or variate & Maximum number of extra samples to take when some REML analyses fail to converge, in a variate with 2 values if there is to be preliminary search, otherwise in a scalar; default NBOOT \\
\hline SEED \(=\) scalar & Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically \\
\hline METHOD \(=\) string token & Indicates whether to use the standard Fisher-scoring algorithm or the new AI algorithm with sparse matrix methods (Fisher, AI); default AI \\
\hline MAXCYCLE \(=\) scalar & Sets a limit on the number of iterations in the REML analyses; default 30 \\
\hline FMETHOD \(=\) string token & Controls whether and how to calculate F statistics for fixed terms (automatic, none, algebraic, numerical); default auto \\
\hline WMETHOD \(=\) string token & Controls which Wald statistics are saved (add, drop); default add \\
\hline WORKSPACE \(=\) scalar & Number of blocks of internal memory to be set up for use by the REML algorithm \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline RESPONSE \(=\) scalars or tables & Specifies the response to be detected \\
\hline NREPLICATES \(=\) scalars & Number of replicates required to detect RESPONSE \\
\hline
\end{tabular}

\section*{VSCREEN procedure}

Performs screening tests for fixed terms in a REML analysis (R.W. Payne).

\section*{Options}
\begin{tabular}{ll} 
PRINT = string tokens & \begin{tabular}{l} 
Controls printed output (ftests, waldtests); default ftes, \\
wald
\end{tabular} \\
EXCLUDEHIGHER = string token & Whether to exclude higher-order interactions in the conditional \\
models (yes, no); default no \\
FORCED = formula & \begin{tabular}{l} 
Terms that must always be included in the model (no tests on \\
these terms); default \(*\)
\end{tabular} \\
FSAVE = pointer & \begin{tabular}{l} 
Saves the F tests
\end{tabular} \\
WSAVE = pointer & \begin{tabular}{l} 
Saves the Wald tests \\
SAVE \(=\) REML save structure
\end{tabular} \\
& \begin{tabular}{l} 
Specifies the analysis whose fixed terms are to be tested; by \\
default this will be the most recent REML
\end{tabular}
\end{tabular}

\section*{No parameters}

\section*{VSOM procedure}

Analyses a simple REML variance components model for outliers using a variance shift outlier model (S.J. Welham, F.N. Gumedze \& D.B. Baird).

\section*{Options}

PRINT \(=\) string tokens

VPRINT \(=\) string tokens

Specifies the output to be produced (fdr, outliers); default fdr, outl
Controls the output from the REML analysis of the baseline model (model, components, effects, means,
\begin{tabular}{|c|c|}
\hline & stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default mode, comp, Wald, cova \\
\hline PLOT \(=\) string tokens & Controls which plots are produced (indexplots, residual); default inde, resi \\
\hline INDEXPLOT \(=\) string tokens & Selects the index plots to produce (omega, sigma2, tsquared, lrt, method, all); default meth \\
\hline TERM \(=\) formula & Random term to scan for outliers; default is the residual term \\
\hline METHOD \(=\) string token & Method for calculating the statistics used to indicate an outlier (full, partial, t ); default t \\
\hline THRMETHOD \(=\) string token & Method for obtaining the threshold statistics (approximate, bootstrap); default appr for METHOD=full and boot otherwise \\
\hline NBOOT \(=\) scalar & Number of bootstrap samples to take to form the threshold statistics; default 99 for METHOD=full and 499 otherwise \\
\hline FIXED \(=\) formula & Fixed model terms \\
\hline RANDOM \(=\) formula & Random model terms \\
\hline CONSTANT \(=\) string token & How to treat the constant term (estimate, omit); default esti \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors or covariates in each fixed term; default 3 \\
\hline VCONSTRAINTS \(=\) string token & How to constrain the variance components and the residual variance (none, positive, fixrelative, fixabsolute); default posi \\
\hline INITIAL \(=\) variate & Initial values for the variance components; default 1 \\
\hline SEED \(=\) scalar & Seed for random number generation; default 0 continues an existing sequence or, if none, selects a seed automatically \\
\hline SAVEITEMS \(=\) string tokens & Selects the items to save (residuals, omega, sigma2, gamma, tsquared, lrt, fdr, approxthresholds, thresholdstats, outliers, method, all); default resi, omeg, sigm, meth, fdr, outl \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Response variates \\
\hline TITLE \(=\) texts & Specifies the title or titles to use for the plots \\
\hline SAVE \(=\) pointer S & Saves information from the analysis of each y-variate \\
\hline
\end{tabular}

\section*{VSPECTRALCHECK procedure}

Forms the spectral components from the canonical components, and constrains any negative spectral components to zero (C.J. Brien).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & ```
Controls printed output(relationshipsmatrix,
canonicalcomponentestimates,
spectralcomponentestimates,
nconstrainedcomponents, all); default spec
``` \\
\hline VPRINT \(=\) string tokens & Controls the output from the final REML refit (model, components, effects, means, stratumvariances, monitoring, vcovariance, deviance, Waldtests, missingvalues, covariancemodels); default * i.e. none \\
\hline INITIALMETHOD \(=\) string token & Whether to use the estimates from the unconstrained fit as initial values in constrained fits or the default REML initial values (remldefault, unconstrainedanalysis); default unco \\
\hline MAXCYCLE \(=\) scalar & Sets a limit on the number of iterations in the REML analyses; default 30 \\
\hline TOLERANCE \(=\) scalar & Tolerance for zero values; default \(10^{-10}\) \\
\hline DPRINT \(=\) string tokens & Controls output of diagnostic information \\
\hline
\end{tabular}
(spectralcomponents, canonicalcomponents,
relationshipmatrix, all); default * i.e. none

\section*{Parameters}
\(\mathrm{Y}=\) variates
CORRESPONDENCE \(=\) matrices

SPECTRALESTIMATES = variates
CANONICALESTIMATES \(=\) variates NCONSTRAINEDCOMPONENTS \(=\) scalars

Response variates
Upper-triangular matrix giving the spectral components in terms of the canonical components
Saves estimates of the spectral components
Saves estimates of the canonical components
Saves the number of spectral components constrained to zero, returns a missing value if some components could not be constrained
\(\mathrm{EXIT}=\) scalars
Exit status of the final REML refit
\(\mathrm{SAVE}=\) REML save structures

Supplies the save structure from the prior analysis of each Y variate; this need not be set, if that was the most recent REML analysis

\section*{VSPREADSHEET procedure}

Saves results from a REML analysis in a spreadsheet (R.W. Payne).

\section*{Options}
\(\left.\begin{array}{ll}\text { COMPONENTS = variate } & \begin{array}{l}\text { Variate to contain the variance components; default } \\
\text { components }\end{array} \\
\text { MEANS }=\text { pointer } & \text { Pointer to tables to contain the means; default means } \\
\text { PEDMEANS = pointer } & \begin{array}{l}\text { Pointer to matrices to contain the standard errors of differences } \\
\text { of the means; default sedmeans }\end{array} \\
\text { VARMEANS = pointer } & \begin{array}{l}\text { Pointer to matrices to contain the variance-covariance matrices } \\
\text { of the means; default varmeans }\end{array} \\
\text { EFFECTS = pointer } & \text { Pointer to tables to contain the effects; default effects } \\
\text { Pointer to matrices to contain the standard errors of differences } \\
\text { of the effects; default sedeffects }\end{array}\right]\)\begin{tabular}{l}
Pointer to matrices to contain the variance-covariance matrices \\
of the effects; default vareffects
\end{tabular}

\section*{No parameters}

\section*{VSTATUS directive}

Prints the current model settings for REML.

\section*{Option}

PRINT \(=\) string tokens \(\quad\) What to print (model); default mode
No parameters

\section*{VSTRUCTURE directive}

Defines a variance structure for random effects in a REML model.

\section*{Options}
\begin{tabular}{ll}
TERMS \(=\) formula & \\
FORMATION \(=\) string token & \\
& Model terms for which the covariance structure is to be \\
& defined \\
& Whether the structure is formed by direct product construction \\
& or by definition of the whole matrix (direct, whole); default \\
dire
\end{tabular}

\section*{VSUMMARY procedure}

Summarizes a variate, with classifying factors, into a data matrix of variates and factors (D.B. Baird). Options
\begin{tabular}{ll}
PRINT = string token & What to print (summaries); default * i.e. none \\
CLASSIFICATION = factors & Factors classifying the summary groups \\
NEWCLASSIFICATION = factors & Factors in the data matrix to classify the output variates \\
REDEFINE = string token & Whether to redefine the CLASSIFICATION factors and DATA \\
& variates, if NEWCLASSIFICATION or NEWDATA are not set \\
(yes, no); default no \\
CMETHOD = string token & How to form levels for carried factors (median, minimum,
\end{tabular}

MVINCLUDE \(=\) string token
WARNING \(=\) string token

Parameters
\(\mathrm{DATA}=\) variates, factors or pointers
STATISTIC \(=\) texts
maximum); default median
Whether to include factor combinations with no observations in summaries (yes, no); default no
What warnings to output (carry); default carry warns when carried factors have varying values within classification groups

Data to be summarized
What statistic to calculate (carry, counts, sums, totals, nobservations, means, minima, maxima, variances, quantiles, sds, skewness, kurtosis, semeans, seskewness, sekurtosis); default mean
PERCENTILE \(=\) scalars or variates \(\quad\) Percentile to be used for quantiles; default 50 .
NEWDATA \(=\) variates, factors or pointers Summary statistics as variates or factors for
STATISTIC=carry

\section*{VSURFACE procedure}

Fits a 2-dimensional spline surface using REML, and estimates its extreme point (D.B. Baird). Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What to print (description, model, components, effects, vcovariance, deviance, waldtests, extreme, confidence, monitoring); default desc, mode, comp, wald, extr \\
\hline PLOT \(=\) string tokens & What to plot (contour, surface); default * i.e. nothing \\
\hline BASIS \(=\) string token & Spline basis to use (thinplate, pspline, penalizedspline); default thin \\
\hline KNOTS \(=\) scalar, variate or pointer & Knots to be fitted in spline model, if a scalar, this is the total number of knots to be fitted; if a variate of length 2, this is the number of knots in the X 1 and X 2 directions; and if a pointer to 2 variates, these are the values for knots in the X 1 and x 2 directions; default 16 \\
\hline PENALTYMETHOD \(=\) string token & Which tensor spline penalty to use (isotropic, semiconstrained, unconstrained); default unco \\
\hline DEGREE \(=\) scalars & Degree of polynomial used to form the underlying spline; default 1 for METHOD=penalizedspline and 3 for METHOD=pspline \\
\hline DIFFORDER \(=\) scalars & Differencing order for p-spline penalty; default 2 \\
\hline EXTREME \(=\) scalars & Saves the estimated value of y at the extreme point \\
\hline SEEXTREME \(=\) scalars & Saves the standard error of the estimated value of \(y\) at the extreme point \\
\hline TYPEEXTREME \(=\) string token & Type of extreme to be identified (minimum, maximum); default maxi \\
\hline PREDICTIONS \(=\) matrix or pointer & Saves predictions \\
\hline PMETHOD \(=\) string tokens & Method of returning predictions (grid, list); default grid \\
\hline \(\mathrm{NBOOT}=\) scalars & The number of bootstrap samples to estimate standard errors and confidence limits; default 100 \\
\hline NRETRIES \(=\) scalars & Number of times to retry bootstrap sampling when the REML fit fails; default is the same value as NBOOT \\
\hline SEED \(=\) scalars & The seed used to initialize the randomization in the bootstrap sampling; default 0 continues an existing sequence or, if none, selects a seed automatically \\
\hline CIPROBABILITY \(=\) scalar & Probability level for confidence intervals for parameter estimates; default 0.95 \\
\hline COLOURS \(=\) text or variate & Colours for the plots \\
\hline Parameters & \\
\hline \(\mathrm{Y}=\) variates & Y-variate to which the spline surface will be fitted \\
\hline \(\mathrm{x} 1=\) variates & The first X -variate which defines the spline surface \\
\hline \(\mathrm{x} 2=\) variates & The second X -variate which defines the spline surface \\
\hline
\end{tabular}

ESTIMATE = variates
\(\mathrm{SE}=\) variates

LEVELS \(=\) scalars, variates or pointers

TITLE \(=\) texts

WINDOW \(=\) scalars
SCREEN \(=\) string tokens
\(\mathrm{EXIT}=\) scalars

Estimated value of each \(x\)-variate at the extreme point Standard error of the estimated value of each \(x\)-variate at the extreme point
Number of values or values at which to evaluate each x for plots and predictions
Title to use for graphs; default automatically made from the variate identifiers used for \(\mathrm{Y}, \mathrm{X} 1\) and X 2 .
Window number for the graphs; default 3 Whether to clear the screen before plotting or to continue plotting on the old screen (clear, keep); default clea Exit code from the REML fit and location of extreme point

\section*{VTABLE procedure}

Forms a variate and set of classifying factors from a table (P.W. Goedhart).

\section*{No options}

\section*{Parameters}

TABLE \(=\) tables
VARIATE \(=\) variates
CLASSIFICATION \(=\) pointers
LABELS \(=\) texts

Tables to be copied
New variate to contain the body of each table
Pointer containing the factors by which each new variate is classified
Labels for the new variate, indicating the values of the classifying factors corresponding to each of its units

\section*{VTCOMPARISONS procedure}

Calculates comparison contrasts within a multi-way table of predicted means from a REML analysis (R.W. Payne).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (contrasts, Waldtests); default cont \\
\hline MODEL \(=\) formula & Indicates which model terms (fixed and/or random) are to be used in forming the predictions; default * includes all the fixed terms and relevant random terms \\
\hline OMITTERMS \(=\) formula & Specifies terms to be excluded from the MODEL; default * i.e. none \\
\hline FACTORIAL \(=\) scalar & Limit on the number of factors or variates in each term in the models specified by MODEL or OMITTERMS; default 3 \\
\hline PRESENTCOMBINATIONS \(=\) identifiers & Lists factors for which averages should be taken across combinations that are present \\
\hline WEIGHTS \(=\) tables & One-way tables of weights classified by factors in the model; default * \\
\hline GROUPS \(=\) factors & Groups for which to estimate each contrast \\
\hline DFMETHOD \(=\) string token & Specifies which degrees of freedom to use for the comparisons (fddf, given, tryfddf, none); default fddf \\
\hline DFGIVEN \(=\) scalar & Specifies the number of degrees of freedom to use for the comparisons when DFMETHOD=given, or if d.d.f. are unavailable when DFMETHOD=tryfddf \\
\hline FMETHOD \(=\) string token & Controls how to calculate denominator degrees of freedom for the F-statistics, if these are not already available in the REML save structure (automatic, algebraic, numerical); default auto \\
\hline SAVE \(=\) identifier & REML save structure for the analysis from which the comparisons are to be calculated \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline CONTRAST \(=\) tables & Defines the comparisons to be estimated \\
\hline ESTIMATE \(=\) scalars or variates & Saves the estimated contrasts \\
\hline SE \(=\) scalars or variates & Saves standard errors of the contrasts \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline VCOVARIANCE \(=\) symmetric matrices & Save the variance-covariance matrices of contrasts estimated for GROUPS \\
\hline STATISTIC \(=\) scalars or variates & Saves saves the test statistic (t or Wald) \\
\hline \(\mathrm{DF}=\) scalars or variates & Saves estimated numbers of residual degrees of freedom of the contrasts \\
\hline PROBABILITY \(=\) scalars or variates & Saves the probabilities of the contrasts \\
\hline WALD \(=\) scalars & Wald statistic for each comparison, combining the tests within groups \\
\hline FSTATISTIC \(=\) scalars & F statistics for each comparison, if available, combining the tests within groups \\
\hline NDF \(=\) scalars & Numerator d.f. for FSTATISTIC \\
\hline \(\mathrm{DDF}=\) scalars & Denominator d.f. for FSTATISTIC \\
\hline
\end{tabular}

\section*{VUVCOVARIANCE procedure}

Forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model (R.W. Payne).

\section*{Options}
\begin{tabular}{ll}
FIXED = formula & Fixed model terms; default * \\
CONSTANT = string token & \begin{tabular}{l}
How to treat the constant term (estimate, omit); default \\
esti
\end{tabular} \\
FACTORIAL = scalar & \begin{tabular}{l}
Limit on the number of factors or covariates in each fixed \\
term; default 3
\end{tabular} \\
SEED = scalar & \begin{tabular}{l}
Seed for the random numbers used to generate a dummy y- \\
variate; default 12345
\end{tabular} \\
Parameters & Random model terms \\
RANDOM = formula structures & \begin{tabular}{l}
Values for the variance components and residual variance
\end{tabular} \\
COMPONENTS = variates \\
UVCOVARIANCE = symmetric matrices & Saves the unit-by-unit variance-covariance matrices
\end{tabular}

\section*{WADLEY procedure}

Fits models for Wadley's problem, allowing alternative links and errors (D.M. Smith).

\section*{Options}
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & Controls printed output (deviance, estimates, correlations, monitoring); default devi, esti \\
\hline DISTRIBUTION \(=\) string token & Distribution of the response variate (poisson, negativebinomial, qlnegativebinomial, qlscaledpoisson); default pois \\
\hline LINK \(=\) string token & Link transformation (logit, probit, complementaryloglog, cauchit); default logi \\
\hline TERMS = formula & Model to be fitted \\
\hline CONTROL \(=\) factor & Factor to distinguish the control, or zero, dose (level 1) from the other treatments (level 2) \\
\hline MAXIMAL \(=\) factor & Factor to define the maximal model i.e. with a level for every combination of values of the variates and factors in TERMS \\
\hline RMETHOD \(=\) string token & Type of residuals to be formed (deviance, Pearson); default devi \\
\hline \multicolumn{2}{|l|}{Parameters} \\
\hline \(\mathrm{Y}=\) variates & Response variate for each fit \\
\hline RESIDUALS \(=\) variates & Variate to save the residuals from each fit \\
\hline FITTEDVALUES \(=\) variates & Variate to save the fitted values from each fit \\
\hline
\end{tabular}

\section*{WILCOXON procedure}

Performs a Wilcoxon Matched-Pairs (Signed-Rank) test (S.J. Welham, N.M. Maclaren \& H.R. Simpson).
statistics, ranks prints out the signed ranks for the vector of differences; default test

\section*{Parameters}

DATA \(=\) variates
RANKS \(=\) variates
STATISTIC = scalars
PROBABILITY \(=\) scalars
SIGN \(=\) scalars
Variates holding the differences between each pair of samples
Variate to save the signed ranks
Scalar to save the value of the test statistic
Saves the probability for each test statistic
Scalar to indicate the sign of the total sum of the signed ranks:
1 if the sum is positive, 0 otherwise

\section*{WINDROSE procedure}

Plots rose diagrams of circular data like wind speeds (P.W. Goedhart \& R.W. Payne).

\section*{Options}
\begin{tabular}{ll}
PRINT = string token & What to print (table); default * i.e. nothing \\
SEGMENT = scalar & Width of sectors (in degrees) into which to group an ANGLES \\
& variates before plotting; default 20 \\
MSEGMENT = scalar & Defines the centre (in degrees) of the sectors; default 0 \\
INTERVALS = scalar or variate & \begin{tabular}{l}
Scalar to define the intervals at which to summarize the data \\
values, or a variate defining the boundaries between the \\
intervals; default * i.e. determined automatically
\end{tabular} \\
\%INTERVAL = scalar & \begin{tabular}{l}
Interval (on the percent scale) between the circles drawn to \\
provide a scale on the diagram; default * i.e. determined \\
automatically
\end{tabular} \\
COLOURS = text or variate & \begin{tabular}{l}
Colours to shade the triangles segment for each interval; \\
default * sets suitable colours automatically
\end{tabular} \\
SCREEN = string token & \begin{tabular}{l}
Whether to clear screen before displaying the graphs (keep, \\
clear); default clea
\end{tabular}
\end{tabular}

\section*{Parameters}

DATA \(=\) variates
Data values
ANGLES \(=\) factors or variates
Directions of the data values
TITLE \(=\) text
Title for the graph; default * i.e. identifier of the DATA variate Window for the graph; default 3

\section*{WORKSPACE directive}

Accesses private data structures for use in procedures.

\section*{No options}

\section*{Parameters}

NAME \(=\) texts \(\quad\) Texts, each containing a single line, to give the names used to identify the private data structures
DUMMY \(=\) identifiers \(\quad\) Dummy structure to be used to refer to each private data structure

\section*{WSTATISTIC procedure}

Calculates the Shapiro-Wilk test for Normality (R.W. Payne).

\section*{Option}

PRINT \(=\) string tokens

\section*{Parameters}

DATA \(=\) variates
\(\mathrm{W}=\) scalars
PROBABILITY \(=\) scalars

What to print (test); default test
Samples of data to be tested for Normality
Saves the Shapiro-Wilk W statistic for each sample
Saves the probability for W under the assumption that the data are Normal

\section*{XAXIS directive}

Defines the x -axis in each window for high-resolution graphics.

\section*{Option}

RESET \(=\) string token

\section*{Parameters}
```

WINDOW = scalars
TITLE = texts
TPOSITION = string tokens
TDIRECTION = string tokens
LOWER = scalars
UPPER = scalars
MARKS = scalars or variates
MPOSITION = string tokens

```
LABELS \(=\) texts or variates
LPOSITION = string tokens
LDIRECTION = string tokens
LROTATION \(=\) scalars or variates
NSUBTICKS = scalars
YORIGIN = scalars
ZORIGIN \(=\) scalars
PENTITLE = scalar
PENAXIS = scalar
PENLABELS = scalars
ARROWHEAD = string tokens
ACTION \(=\) string tokens
TRANSFORM = string tokens
LINKED \(=\) scalars
MLOWER\% = scalars
MUPPER\% = scalars
DECIMALS \(=\) scalars or variates
mark
DREPRESENTATION \(=\) scalars, variates or texts
 Format to use for dates and times printed at the marks
VREPRESENTATION = string tokens
YOMETHOD \(=\) string tokens
ZOMETHOD \(=\) string tokens
REVERSE \(=\) string tokens
SAVE \(=\) pointer \(s\)

Whether to reset the axis definition to the default values (no, yes); default no

Numbers of the windows
Title for the axis
Position of title (middle, end)
Direction of title (parallel, perpendicular)
Lower bound for axis
Upper bound for axis
Distance between each tick mark (scalar) or positions of the marks along the axis (variate)
Positioning of the tick marks on the axis (inside, outside, across)
Labels at each major tick mark
Position of the axis labels (inside, outside)
Direction of the axis labels (parallel, perpendicular)
Rotation of the axis labels
Number of subticks per interval (ignored if MARKS is a variate)
Position on y-axis at which the axis is drawn
Position on z-axis at which the axis is drawn
Pen to use to write the axis title
Pen to use to draw the axis
Pen to use to write the axis labels
Whether the axis should have an arrowhead (include, omit)
Whether to display or hide the axis (display, hide)
Transformed scale for the axis (identity, log, log10,
logit, probit, cloglog, square, exp, exp10, ilogit,
iprobit, icloglog, root); default iden
Linked axis whose definitions should be used for this axis in 2dimension graphs; default * i.e. none
How large a margin to set between the lowest \(x\)-value and the lower value of the axis, if not set explicitly by LOWER (expressed as a percentage of the range of the \(x\)-values) How large a margin to set between the largest \(x\)-value and the upper value of the axis, if not set explicitly by UPPER (expressed as a percentage of the range of the \(x\)-values) Number of decimal places to use for numbers printed at the marks
DREPRESENTATION = scalars, variates or texts
Format to use for dates and times printed at the marks
VREPRESENTATION = string tokens
YOMETHOD \(=\) string tokens

ZOMETHOD \(=\) string tokens

REVERSE \(=\) string tokens

SAVE \(=\) pointers

Format to use for numbers printed at the marks (decimal, engineering, scientific); default deci
Method to use to set the position of the origin on the \(y\)-axis if not set explicitly by YORIGIN (upper, lower, center, centre)
Method to use to set the position of the origin on the z -axis if not set explicitly by ZORIGIN (upper, lower, center, centre)
Whether to reverse the axis direction to run from upper to lower instead of the default lower to upper (yes, no); default no
Saves details of the current settings for the axis concerned

\section*{XOCATEGORIES procedure}

Performs analyses of categorical data from cross-over trials (D.M. Smith \& M.G.Kenward). Options

PRINT = string token
\(\mathrm{PDATA}=\) string token
\(\mathrm{METHOD}=\) string token

CARRYOVER \(=\) string token

\section*{Parameters}

SEQUENCE = factors
RESULTS = pointers

NUMBER \(=\) variates
SAVE \(=\) pointers
REUSE = pointers
MODEL = formula

What to print at each fit (model, summary, accumulated, estimates, correlations, fittedvalues, monitoring); default *
Whether or not a display of category combination by sequence is required (yes, no); default no
Type of analysis for which factors are required (subject, loglinear, ownsubject, ownloglinear); default subj Whether or not models with carryover effects in are to be produced (yes, no); default no

The identifier of the sequence of treatments Pointer containing factors (one for each period) giving the category scores observed
Numbers recorded in the sequence/category combinations Saves the factors constructed to do the analysis
To reuse factors saved earlier using SAVE
Additional terms to be fitted to model if OWNSUBJECT or OWNLOGLINEAR options used; default *

\section*{XOEFFICIENCY procedure}

Calculates efficiency of estimating effects in cross-over designs (B. Jones \& P.W. Lane). Options
\begin{tabular}{|c|c|}
\hline PRINT \(=\) string tokens & What reports to produce (summary, efficiency, variance, carryover, contrasts, dummyanalysis, incidence); default summ, effi, cont \\
\hline NPERIODS \(=\) scalar & Number of periods in the design; no default \\
\hline CARRYOVER \(=\) string token & Whether to included effects of carryover (yes, no); default no \\
\hline CONTRASTTYPE = string token & Type of treatment contrasts if POLYNOMIAL and OWN parameters are unset (pairwise, control); default pair \\
\hline INCIDENCE \(=\) pointer & Saves incidence matrices; default * \\
\hline Parameters & \\
\hline SEQUENCES = formula & Text, variate or factor with sequence of levels of a single treatment; no default \\
\hline POLYNOMIAL \(=\) scalars & Order of polynomials to represent each term in the SEQUENCES parameter; default *, i.e. represent effects according to OWN parameter or CONTRASTTYPE option \\
\hline OWN = matrices & Specific contrasts for each term in the sequences parameter; default *, i.e. represent effects according to POLYNOMIAL parameter or CONTRASTTYPE option \\
\hline \multicolumn{2}{|l|}{EFFICIENCY \(=\) symmetric matrices, variates or diagonal matrices} \\
\hline & Saves efficiencies; default * \\
\hline \multicolumn{2}{|l|}{VARIANCE \(=\) symmetric matrices, variates or diagonal matrices} \\
\hline
\end{tabular}

Saves variances; default *

\section*{XOPOWER procedure}

Estimates the power of contrasts in cross-over designs (P.W. Lane \& B. Jones).

\section*{Options}
\begin{tabular}{ll}
PRINT \(=\) string tokens & \begin{tabular}{l}
What reports to produce (summary, contrasts, \\
nonequality, equivalence, noninferiority, \\
superiority); default summ, none
\end{tabular} \\
NPERIODS \(=\) scalar & Number of periods in the design; default 2
\end{tabular}
```

CARRYOVER = string token
CARRYOVER = string token
ALPHALEVEL = scalar
DELTA = scalar
VARWITHIN = scalar
VARBETWEEN = scalar
NSIMULATIONS = scalar
SEED = scalar
MONITOR = string token

```

\section*{Parameters}
SEQUENCES \(=\) texts, variates or factors
POLYNOMIAL \(=\) scalars \(\quad\) Order of polynomials to represent the treatment factor; default
 * i.e. represent effects according to OWN parameter or
 CONTRASTTYPE option
OWN \(=\) matrices \(\quad\) Specific contrasts for the treatment factor; default * i.e.
 represent effects according to POLYNOMIAL parameter or
 CONTRASTTYPE option
MEANS \(=\) variates \(\quad\) Pattern of means for each treatment level for which to establish
 power; default * i.e. all zero

NONEQUALITY \(=\) symmetric matrices or matrices
Structure to save calculated power values for nonequality; default *
EQUIVALENCE \(=\) symmetric matrices or matrices
Structure to save calculated power values for equivalence;
default *
NONINFERIORITY = symmetric matrices or matrices
Structure to save calculated power values for noninferiority; default *
SUPERIORITY \(=\) symmetric matrices or matrices
Structure to save calculated power values for superiority; default *

\section*{YAXIS directive}

Defines the y-axis in each window for high-resolution graphics.
Option
RESET = string token

\section*{Parameters \\ ters}
```

WINDOW = scalars
TITLE = texts
TPOSITION = string tokens
TDIRECTION = string tokens
LOWER = scalars
UPPER = scalars
MARKS = scalars or variates
MPOSITION = string tokens
LABELS = texts or variates
LPOSITION = string tokens

```
Numbers of the windows
Title for the axis
Position of title (middle, end)
Direction of title (parallel, perpendicular)
Lower bound for axis
Upper bound for axis
Distance between each tick mark (scalar) or positions of the
marks along the axis (variate)
Positioning of the tick marks on the axis (inside, outside,
across)
Labels at each major tick mark
Position of the axis labels (inside, outside)

Whether to reset the axis definition to the default values (no, yes); default no

Numbers of the windows
Title for the axis
Position of title (middle, end)
Direction of title (parallel, perpendicular)
Lower bound for axis

Distance between each tick mark (scalar) or positions of the marks along the axis (variate)
Positioning of the tick marks on the axis (inside, outside, oss

Position of the axis labels (inside, outside)

LDIRECTION \(=\) string tokens
LROTATION \(=\) scalars or variates
NSUBTICKS \(=\) scalars
XORIGIN \(=\) scalars
ZORIGIN = scalars
PENTITLE \(=\) scalars
PENAXIS \(=\) scalars
PENLABELS \(=\) scalar
ARROWHEAD \(=\) string tokens
ACTION \(=\) string tokens TRANSFORM = string tokens

LINKED \(=\) scalars
MLOWER \(=\) scalars

MUPPER\% = scalars

DECIMALS \(=\) scalars or variates

Direction of the axis labels (parallel, perpendicular)
Rotation of the axis labels
Number of subticks per interval (ignored if MARKS is a variate)
Position on x -axis at which the axis is drawn
Position on \(z\)-axis at which the axis is drawn
Pen to use to write the axis title
Pen to use to draw the axis
Pen to use to write the axis labels
Whether the axis should have an arrowhead (include, omit)
Whether to display or hide the axis (display, hide)
Transformed scale for the axis (identity, log, log10, logit, probit, cloglog, square, exp, exp10, ilogit, iprobit, icloglog, root); default iden
Linked axis whose definitions should be used for this axis in 2dimensional graphs; default * i.e. none
How large a margin to set between the lowest \(y\)-value and the lower value of the axis, if not set explicitly by LOWER (expressed as a percentage of the range of the \(y\)-values) How large a margin to set between the largest \(y\)-value and the upper value of the axis, if not set explicitly by UPPER (expressed as a percentage of the range of the \(y\)-values) Number of decimal places to use for numbers printed at the marks
DREPRESENTATION \(=\) scalars, variates or texts
Format to use for dates and times printed at the marks
VREPRESENTATION \(=\) string tokens \(\quad\) Format to use for numbers printed at the marks (decimal, engineering, scientific); default deci
XOMETHOD \(=\) string tokens

ZOMETHOD \(=\) string tokens

REVERSE \(=\) string tokens

SAVE \(=\) pointers

Method to use to set the position of the origin on the x -axis if not set explicitly by XORIGIN (upper, lower, center, centre)
Method to use to set the position of the origin on the z-axis if not set explicitly by ZORIGIN (upper, lower, center, centre)
Whether to reverse the axis direction to run from upper to lower instead of the default lower to upper (yes, no); default no
Saves details of the current settings for the axis concerned

\section*{YTRANSFORM procedure}

Estimates the parameter lambda of a single parameter transformation (D.M. Smith).

\section*{Options}

TRANSFORM \(=\) string token
\[
\mathrm{METHOD}=\text { string tokens }
\]
\[
\begin{aligned}
& \text { K = scalar } \\
& \text { LOWER = scalar } \\
& \text { UPPER = scalar } \\
& \text { STEPLENGTH = scalar } \\
& \text { LAMBDA = scalar } \\
& \text { FVBOUND = string token } \\
& \text { GRAPHICS = string token }
\end{aligned}
\]
\[
\mathrm{TERMS}=\text { formula }
\]

Type of transformation (power, modulus, foldedpower, GuerreroJohnson, Aranda1, Aranda2, powerlogit); default powe
Method of evaluating transformation parameter lambda
(Atkinson, Andrews, BoxCox, Robust); default boxc
Cut-off value for robust method; default *
Lower limit of range of lambda; default *
Upper limit of range of lambda; default *
Increment of lambda; default (UPPER - LOWER)/20
Single value of lambda; default *
Replace illegal fitted values by the corresponding boundary
values (no, yes); default no
What sort of graphics to use (lineprinter, highresolution); default high
Terms of model

\section*{Parameters}
\(\mathrm{Y}=\) variates
NBINOMIAL \(=\) variates
Response variate
\(\mathrm{SAVE}=\) pointers
Denominator for a binomial variate
Structures to save the output

\section*{ZAXIS directive}

Defines the z-axis in each window for high-resolution graphics.

\section*{Option}

RESET \(=\) string token

\section*{Parameters}
```

WINDOW = scalars
TITLE = texts
TPOSITION = string tokens
TDIRECTION = string tokens
LOWER = scalars
UPPER = scalars
MARKS = scalars or variates
MPOSITION = string tokens
LABELS = texts
LPOSITION = string tokens
LDIRECTION = string tokens
LROTATION = scalars or variates
NSUBTICKS = scalars
XORIGIN = scalars
YORIGIN = scalars
PENTITLE = scalars
PENAXIS = scalars
PENLABELS = scalar
ARROWHEAD = string tokens
ACTION = string tokens
MLOWER% = scalars

```
MUPPER\% \(=\) scalars
DECIMALS \(=\) scalars or variates
DREPRESENTATION \(=\) scalars variates or texts
DREPRESENTATION \(=\) scalars variates or texts
Format to use for dates and times printed at the marks
VREPRESENTATION \(=\) string tokens
XOMETHOD \(=\) string tokens
YOMETHOD = string tokens
REVERSE \(=\) string tokens
SAVE \(=\) pointers

Whether to reset the axis definition to the default values (no, yes); default no

Numbers of the windows
Title for the axis
Position of title (middle, end)
Direction of title (parallel, perpendicular)
Lower bound for axis
Upper bound for axis
Distance between each tick mark (scalar) or positions of the marks along the axis (variate)
Positioning of the tick marks on the axis (inside, outside, across)
Labels at each major tick mark
Position of the axis labels (inside, outside)
Direction of the axis labels (parallel, perpendicular)
Rotation of the axis labels
Number of subticks per interval (ignored if MARKS is a variate)
Position on x -axis at which the axis is drawn
Position on \(y\)-axis at which the axis is drawn
Pen to use to write the axis title
Pen to use to draw the axis
Pen to use to write the axis labels
Whether the axis should have an arrowhead (include, omit)
Whether to display or hide the axis (display, hide)
How large a margin to set between the lowest z -value and the lower value of the axis, if not set explicitly by LOWER (expressed as a percentage of the range of the z -values) How large a margin to set between the largest \(z\)-value and the upper value of the axis, if not set explicitly by UPPER (expressed as a percentage of the range of the \(z\)-values) Number of decimal places to use for numbers printed at the marks
DREPRESENTATION \(=\) scalars variates or texts
Format to use for dates and times printed at the marks
VREPRESENTATION \(=\) string tokens
XOMETHOD \(=\) string tokens

YOMETHOD \(=\) string tokens

REVERSE \(=\) string tokens

SAVE \(=\) pointers

Format to use for numbers printed at the marks (decimal, engineering, scientific); default deci
Method to use to set the position of the origin on the x -axis if not set explicitly by XORIGIN (upper, lower, center, centre)
Method to use to set the position of the origin on the \(y\)-axis if not set explicitly by YORIGIN (upper, lower, center, centre)
Whether to reverse the axis direction to run from upper to lower instead of the default lower to upper (yes, no); default no
Saves details of the current settings for the axis concerned

\section*{\% CD directive}

Changes current directory, PC Windows only.
No options

\section*{Parameters}

DIRECTORY \(=\) text Directory to change to
CURRENT \(=\) text

> Saves new directory

\section*{\%CLEAR directive}

Clears the client Output window.
No options or parameters

\section*{\%CLOSE directive}

Closes the binary file opened by \%OPEN.

\section*{No options or parameters}

\section*{\% FLUSH directive}

Flushes server output immediately to the client Output window.

\section*{No options or parameters}

\section*{\%FPOSITION directive}

Returns the current position in the binary file opened by \%OPEN.

\section*{No options}

\section*{Parameter} scalar \(\quad\) Number of bytes of the current position from the start of the file

\section*{\%LOG directive}

Adds text into the Input Log window in the Genstat client.

\section*{No options}

\section*{Parameter}
text Text to display in the Input Log window

\section*{\%MESSAGEBOX directive}

Display text in a dialog in the Genstat client.

\section*{Options}

TITLE \(=\) text \(\quad\) Title for the dialog; default 'Genstat '
ICON = string token \(\quad\) Icon to display in the dialog (information, warning, error, question); default info

\section*{Parameter}
text
text to display in the dialog

\section*{\%OPEN directive}

Open a binary file for use with \%WRITE.

\section*{No options}

\section*{Parameter}

NAME \(=\) text

\section*{\%SLEEP directive}

Pauses execution of the server for a time specified in seconds.
No options
Parameter

\section*{\%TEMPFILE directive}

Creates a unique temporary file in the Genstat temporary folder.

\section*{No options}

\section*{Parameters}

PREFIX = string
FILENAME \(=\) text
INDEX \(=\) scalar

Prefix for the filename
Saves the filename
Saves the index number that follows the prefix in the filename

\section*{\%WRITE directive}

Writes values of data structures to a binary file opened by \%OPEN.

\section*{Options}
\begin{tabular}{ll}
SEPARATOR \(=\) scalar or text & Separator character as a literal character or a scalar giving an \\
& ASCII code \((0-255)\); default *i.e. none \\
TERMINATOR \(=\) string token & Terminator to use at the end of a text (null, newline) default \\
null
\end{tabular}

\section*{Parameters}
\(\mathrm{DATA}=\) texts, scalars, variates or matrices
Data structures to write to the file
FORMATTED \(=\) string tokens \(\quad\) Output format to use when writing the structures (bit, byte, shortint, longint, real, double, string, text, rawtext, factor); default depends on the type of data structure

\section*{NBYTES \(=\) scalars}

\subsection*{4.2 Functions for calculations}

\section*{Function name}

ABS (\(x\))
ACOS
ANG
ANGLE (y; x)
ANGULAR (p)
\(\operatorname{ARCCOS}(x)\)
\(\operatorname{ARCSIN}(\mathrm{x})\)
ARCTAN (\(x\))
AREA (y; x)

ASIN
ATAN
BASE (i;n)

BBELOW (t;n;m)

BBRANCHES (t;n)

BDEPTH (t; x)
BETA (a;b;x)

\section*{Description}
the absolute value of \(\mathrm{x}:|\mathrm{x}|\).
synonym for ARCCOS.
synonym of ANGULAR.
inverse tangent of \(y / x\), result in radians in range \((-\pi, \pi]\).
the angular transformation: for a percentage \(p(0<p<100)\), forms
\(x=(180 / \mathrm{pi}) \times \arcsin (\operatorname{sqrt}(\mathrm{p} / 100))\).
inverse cosine of \(x\), where \(-1<=x<=1\).
inverse sine of x , where \(-1<=\mathrm{x}<=1\).
arctangent (inverse tangent) of \(x\), result in radians.
numerically integrates the curve running through the points specified by variates y and x using the trapezoidal method.
synonym for ARCSIN.
synonym for ARCTAN.
column matrix with \(n\) rows, value one in row \(i\) and zero elsewhere.
provides a variate containing numbers of all the nodes below node \(n\) of tree \(t\); if \(\mathrm{m}=1\) this gives only the terminal nodes below n , otherwise it includes internal nodes as well. provides a variate containing the numbers of the branches taken on the path to node \(n\) in tree \(t\) (the result is of the same length as the results of BPATH, and includes a * as the final element, corresponding to \(n\) itself).
calculates the depths of nodes \(x\) in tree \(t\).
Beta function \(B(a, b)\) or, if \(x\) is set, regularized incomplete
```

BIO (x)
BI1 (x)
BIN(x;n)
BJ0 (x)
BJ1 (x)
BJN(x;n)
BK0(x)
BK1 (x)
BKN(x;n)
BLUE (x)
BMAXNODE (t)
BNBRANCHES(t;x)
BNEXT(t;x;y)
BNNODES(t)
BOUND(x;l;u)
BPATH(t;n)
BPREVIOUS(t;x)
BSCAN(t;x)
BTERMINAL(t;x)
BYO (x)
BY1(x)
BYN (x;n)
C
CED
CEILING(x)
CHARACTERS(g;c)

```
CHISQ
CHOLESKI (x)
CIRCULATE (x;s)
CLBETA (x; a;b)
CLBINOMIAL (j; n; p)

Beta function \(\mathrm{I}(\mathrm{a}, \mathrm{b}, \mathrm{x})\)
modified Bessel function of the first kind \(I_{0}(\mathrm{x})\) modified Bessel function of the first kind \(I_{1}(\mathrm{x})\). modified Bessel function of the first kind \(I_{n}(\mathrm{x} ; \mathrm{n})\). Bessel function of the first kind \(J_{0}(\mathrm{x})\). Bessel function of the first kind \(J_{1}(\mathrm{x})\). Bessel function of the first kind \(J^{n}(\mathrm{x} ; \mathrm{n})\). modified Bessel function of the second kind \(K_{0}(\mathrm{x})\). modified Bessel function of the second kind \(K_{1}(\mathrm{x})\). modified Bessel function of the second kind \(K_{n}(\mathrm{x} ; \mathrm{n})\). calculates the blue components of the RGB colour values in x . provides the maximum node number in tree \(t\). provides the number of branches below nodes \(x\) in tree \(t\) (0 if \(n\) is a terminal node).
finds the numbers of the nodes on branches \(y\) from nodes \(x\) in tree \(t\) (or * for any terminal node).
provides the number of nodes in tree \(t\).
sets values of x less than 1 to \(l\), and values greater than \(u\) to \(u\); missing values can be set in \(l\) or \(u\) to imply no boundary. provides a variate containing the numbers of the nodes on the branch to node n in tree t (includes n itself as the final element).
finds the numbers of the nodes immediately above nodes x in tree \(t\) (or * for the root of the tree).
finds the numbers of the nodes immediately after nodes x in tree \(t\) in an standard branch-by-branch order that visits each node once (or * for the root of the tree).
finds the next terminal nodes after nodes \(x\) in tree \(t\) (or * for the node after the last terminal node).
Bessel function of the second kind \(Y_{0}(\mathrm{x})\).
Bessel function of the second kind \(Y_{1}(\mathrm{x})\).
Bessel function of the second kind \(Y_{n}(\mathrm{x} ; \mathrm{n})\).
synonym of CONSTANTS.
synonym of EDCHI.
ceiling of x : returns for each value \(\mathrm{x}_{j}\) of x the least integer \(i\) such that \(i \geq \mathrm{x}_{j}\).
returns a variate giving the length of each line of text \(t\) : if c is omitted or set to 0 the length is the "raw" length (with no checking for any typesetting commands); if \(\mathrm{c}=1\) it is the formatted length (taking account of typesetting commands, see 1.4.2 for their syntax); finally, if \(c=-1\) it is the number of storage units ("bytes") required to store the text (standard characters like letters and digits require only one, more complicated characters like Chinese or Thai characters may require as many as four).
synonym of CLCHI.
the Choleski decomposition of a symmetric matrix x : such that \(x=L L^{\prime}\) where \(L\) is square with upper off-diagonal elements zero.
shifts the values of x , treating x as a circular stack. If s is omitted, values are shifted one to the right, as for \(s=1\). cumulative lower probability for a beta distribution with parameters a and b. probability of \(j\) or fewer successes out of \(n\) binomial trials with probability of success \(p\). cumulative lower probability for a bivariate normal
\begin{tabular}{|c|c|}
\hline CLCHISQUARE (x;df; \({ }^{\text {) }}\) & cumulative lower probability for a non-central chi-square distribution with noncentrality parameter c ; if the third \\
\hline & parameter c is omitted, it is assumed to be zero, giving the \\
\hline CLF (x;df1; \({ }^{\text {df2 }}\); \()^{\text {) }}\) & cumulative lower probability for a non-central F distrib \\
\hline & with degrees of freedom \(d f 1\) and \(d f 2\), and noncentrality \\
\hline & parameter c; if the fourth parameter c is omitted, it is assumed \\
\hline & to be zero, giving the ordinary (central) F distribution. \\
\hline CLGAMMA (x;k;t) & cumulative lower probability for a gamma distribution with shape parameter \(k\) (kappa) and scale parameter \(t\) (theta). \\
\hline CLHYPERGEOMETRIC (j; \(1 ; \mathrm{m} ; \mathrm{n}\)) & probability of \(j\) or fewer positive samples out of a total sample of size \(m\) from a population of size \(n\) of which \(l\) are positive (hypergeometric distribution). \\
\hline CLINVNORMAL (x;m; \({ }^{\text {a }}\) & cumulative lower probability for an inverse Normal (or inverse Gaussian) distribution with mean m and reciprocal dispersion parameter \(l\) (variance is \(\mathrm{m}^{3} / \mathrm{l}\)). \\
\hline CLLOGNORMAL (x) & cumulative lower probability for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1 . \\
\hline CLNORMAL (x;m; \({ }^{\text {a }}\) & cumulative lower probability for a Normal distribution with mean \(m\) (default 0) and variance \(v\) (default 1). \\
\hline CLOGLOG (p) & takes the complementary log-log transformation of the percentages \(p(0<p<100 \%)\). \\
\hline CLPOISSON(j;m) & probability of value of \(j\) or less for a Poisson distribution with mean \(m\). \\
\hline CLSMMODULUS (x; df; n) & cumulative lower probability for a Studentized maximum modulus distribution with degrees of freedom df and number of means \(n\). \\
\hline CLSRANGE (x ; df ; n) & cumulative lower probability for a Studentized range distribution with degrees of freedom df and number of means n. \\
\hline CLT (x; df; c) & cumulative lower probability for a non-central Student's \(t\) distribution with degrees of freedom df and noncentrality parameter c ; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) \(t\) distribution. \\
\hline CLUNIFORM (x;a;b) & cumulative lower probability for a uniform distribution on [a,b]. \\
\hline COLBIND (x;y) & joins matrices x and y side by side. \\
\hline COLCENTRE (x) & centres the columns of matrix x by subtracting their means. \\
\hline COLMEANS (x) & mean of the non-missing elements of each row of matrix x . \\
\hline COLNOBSERVATIONS (x) & number of non-missing elements in each column of matrix x . \\
\hline COLSUMS (x) & sum of the non-missing elements of each column of matrix x . \\
\hline COL1 (n) & column matrix of 1's with n rows. \\
\hline CONSTANTS (g) & provides the value of various constants, according to the contents of g : e (for a string of 'e' or ' E '), \(\pi\) ('pi' or 'PI'), missing value (\(' *\) '), the conversion factor by which to multiply radians to get degrees (' degrees '), the conversion factor by which to multiply degrees to get radians ('radians') and the number \(\varepsilon\) defined as the smallest number such that the calculation \(1+\varepsilon\) is detectable on the computer as greater than one ('epsilon'). \\
\hline CORRELATION (x;y) & if both x and y are specified, returns a scalar giving the correlation between the values of x and y ; if y is omitted, forms a correlation matrix from a symmetric matrix x of sums of squares and products. \\
\hline
\end{tabular}

CORRMAT
COS (x)
COSH (x)
COV
COVARIANCE (x;y)

CPUTIME (x)

CUBETA (x; a;b)

CUBINOMIAL (j; n; p)

CUBVARIATENORMAL (x;y; r)

CUCHISQUARE (x; df; c)

CUF (x;df1; df2; \(C)\)

CUGAMMA (x; k; t)

CUHYPERGEOMETRIC (j; l; m; n)

CUINVNORMAL (x;m; \()\)

CULOGNORMAL (x)

CUM
CUMULATE (x)

CUNORMAL (x;m;v)

CUPOISSON (j;m)

CUSMMODULUS (x;df;n)

CUSRANGE (x;df;n)

CUT (x; df; \(C\))

CUUNIFORM (x; a;b)

D
DATE (d;m;y)

DAY (\(x\))
synonym of CORRELATION. cosine of \(x\), for \(x\) in radians. hyperbolic cosine of \(x\). synonym of COVARIANCE.
returns a scalar giving the covariance between the values of \(x\) and y .
returns a scalar containing the currently used cpu time in seconds (argument \(x\) is ignored).
cumulative upper probability for a beta distribution with parameters a and b. probability of more than \(j\) successes out of \(n\) binomial trials with probability of success \(p\).
cumulative upper probability for a bivariate normal distribution with means 0 , variances 1 , and correlation \(r\). cumulative upper probability for a non-central chi-square distribution with noncentrality parameter \(c\); if the third parameter \(c\) is omitted, it is assumed to be zero, giving the ordinary (central) chi-square distribution.
cumulative upper probability for a non-central F distribution with degrees of freedom \(d f 1\) and \(d f 2\), and noncentrality parameter \(c\); if the fourth parameter \(c\) is omitted, it is assumed to be zero, giving the ordinary (central) F distribution. cumulative upper probability for a gamma distribution with shape parameter \(k\) (kappa) and scale parameter \(t\) (theta). probability of more than \(j\) positive samples out of a total sample of size \(m\) from a population of size \(n\) of which \(l\) are positive (hypergeometric distribution).
cumulative upper probability for an inverse Normal (or inverse Gaussian) distribution with mean \(m\) and reciprocal dispersion parameter 1 (variance is \(\mathrm{m}^{3} / \mathrm{l}\)).
cumulative upper probability for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1.
synonym of CUMULATE.
forms the cumulative sum of the values of \(x\); i.e. \(x_{1}, x_{1}+x_{2}\), \(x_{1}+x_{2}+x_{3}\), and so on.
cumulative upper probability for a Normal distribution with mean \(m\) (default 0) and variance \(v\) (default 1).
probability of a value greater than \(j\) for a Poisson distribution with mean \(m\).
cumulative upper probability for a Studentized maximum modulus distribution with degrees of freedom df and number of means \(n\).
cumulative upper probability for a Studentized range distribution with degrees of freedom \(d f\) and number of means n.
cumulative upper probability for a non-central Student's t distribution with degrees of freedom df and noncentrality parameter \(c\); if the third parameter \(c\) is omitted, it is assumed to be zero, giving the ordinary (central) \(t\) distribution. cumulative upper probability for a uniform distribution on [a,b]. synonym of DETERMINANT. constructs the date value corresponding to day d , month m and year \(y\).
the day of month corresponding to date-time value \(x\).
\begin{tabular}{|c|c|}
\hline DEGREES (x) & gles x from radians to degr \\
\hline DET & synonym of DETERMINANT. \\
\hline DETERMINANT (x) & the determinant of a square or symmetric matrix \\
\hline DIAGONAL (x;b) & form a diagonal matrix from a variate x , or takes diagonal of a square, symmetric or diagonal matrix \(x\); \(b\) may be set if \(x\) is a matrix, to request a banded diagonal matrix of order \(b\) (returned as a square matrix with the values off the bands set to zero). \\
\hline DIFFERENCE (x;s) & forms the differences of \(x\), i.e. \(x_{i}-x_{i-s}\); if \(s\) is omitted, first differences are formed, as for \(s=1\) \\
\hline DIGAMMA (x) & digamma function of \(\mathrm{x}, \Psi(\mathrm{x})\). \\
\hline DPRODUCT (x;y) & direct or Kronecker product of matric \\
\hline DSUM (x;y) & direct sum of matrices \(x\) and \(y(x \oplus y)\); alternatively, if the second argument is omitted, \(x\) can be a pointer and the function then gives \(x[1] \oplus x[2] \oplus \ldots x[n]\). \\
\hline EDBETA (p;a;b) & equivalent deviate corresponding to cumulative lower probability p for a beta distribution with parameters a and b. \\
\hline EDBINOMIAL (p;n;bp) & equivalent deviate corresponding to cumulative lower probability p for a binomial distribution with n trials and probability of success bp (returns the smallest integer x such that the probability of up to \(x\) successes is greater than or equal to p). \\
\hline EDCHISQUARE (p;df; \({ }^{\text {c }}\) & equivalent deviate corresponding to cumulative lower probability \(p\) for a non-central chi-square distribution with noncentrality parameter c ; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) chisquare distribution. \\
\hline EDF (p ; \(\mathrm{df1}\); \(\mathrm{df2}\); c) & equivalent deviate corresponding to cumulative lower probability \(p\) for a non-central \(F\) distribution with degrees of freedom \(d f 1\) and \(d f 2\), and noncentrality parameter \(c\); if the fourth parameter c is omitted, it is assumed to be zero, giving the ordinary (central) F distribution. \\
\hline EDGAMMA (p; ; t) & equivalent deviate corresponding to cumulative lower probability p for a gamma distribution with shape parameter k (kappa) and scale parameter \(t\) (theta). \\
\hline EDHYPERGEOMETRIC (\(\mathrm{p} ; 1 ; \mathrm{m} ; \mathrm{n}\)) & equivalent deviate corresponding to cumulative lower probability p for a hypergeometric distribution with samples of size \(m\) from a population of size \(n\) of which \(l\) are positive (returns the smallest integer x such that the probability of up to \(x\) successes is greater than or equal to \(p\)). \\
\hline EDINVNORMAL (\(\mathrm{p} ; \mathrm{m} ; \mathrm{l}\)) & equivalent deviate corresponding to cumulative lower probability p for an inverse Normal (or inverse Gaussian) distribution with mean \(m\) and reciprocal dispersion parameter \(l\) (variance is \(\mathrm{m}^{3} / \mathrm{l}\)). \\
\hline EDLOGNORMAL (p) & equivalent deviate corresponding to cumulative lower probability p for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1 . \\
\hline EDNORMAL (p;m; \({ }^{\text {a }}\) & equivalent deviate corresponding to cumulative lower probability p for a Normal distribution with mean m (default 0) and variance \(\vee\) (default 1). \\
\hline EDPOISSON (p;m) & equivalent deviate corresponding to cumulative lower probability p for a Poisson distribution with mean \(m\) (returns the smallest integer x such that the probability of up to x successes is greater than or equal to \(p\)). \\
\hline EDSMMODULUS (p;df;n) & equivalent deviate corresponding to cumulative lower probability p for a Studentized maximum modulus \\
\hline
\end{tabular}

EDSRANGE (p;df;n)

EDT (p; df; c)

EDUNIFORM (p;a;b)

ELEMENTS (x;e1;e2)

EVALUES (x)
EVECTORS (x)
EXP (x)
EXPAND (x;s)

FACTORIAL (x)

FED
FLOOR (x)

FPROBABILITY
FRACTION (x)
FRATIO
GAMMA (a;x)

GCONSTANTS (g)

GETFIRST (g)

GETLAST (g)

GETPOSITION (g1; g2;x)
distribution with degrees of freedom df and number of means n.
equivalent deviate corresponding to cumulative lower probability p for a Studentized range distribution with degrees of freedom \(d f\) and number of means \(n\).
equivalent deviate corresponding to cumulative lower probability \(p\) for a non-central Student's \(t\) distribution with degrees of freedom df and noncentrality parameter c ; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) \(t\) distribution.
equivalent deviate corresponding to cumulative lower probability \(p\) for a uniform distribution on \([a, b]\).
forms a sub-structure of x . If x is a vector or a diagonal matrix, then only e1 should be specified; this then indicates the selected elements of \(x\). If \(x\) is a rectangular matrix, then both \(e 1\) and e2 should be given, to specify respectively the selected rows and columns of x . For a symmetric matrix x , if the same rows and columns are to be selected (giving a symmetric matrix) then only e1 should be specified; otherwise both e1 and e 2 should be given (and the result is a matrix). eigenvalues of \(x\) (as a diagonal matrix).
eigenvectors of x (as a rectangular matrix).
exponential: \(\mathrm{e}^{\mathrm{x}}\).
forms a variate of length \(s\), containing zeroes and ones; if \(s\) is omitted and the length cannot be determined from the context, the length of the current units structure, if any, is taken. The values in x specify the numbers of the units that are to contain the value 1 .
factorial of \(x\) (\(x\) !): the values in \(x\) must be non-negative, missing values are given for results that are too large to be stored.
synonym of EDF.
floor of x : returns for each value \(\mathrm{x}_{j}\) of x the largest integer \(i\) such that \(i \leq \mathrm{x}_{j}\). synonym of CLF.
fractional part of \(x\) i.e. \(x\)-INTEGER (\(x\)).
synonym of CLF.
Gamma function, \(\Gamma(\mathrm{a})\) for \(\mathrm{a}>0\) or, if x is set, lower incomplete Gamma function \(\gamma(a, x)\).
provides type numbers of Genstat data structures. The string \(g\) can therefore be either 'scalar', 'factor', 'text',
'variate', 'matrix','diagonalmatrix',
'symmetricmatrix','table','asave','tsave',
'expression', 'formula','dummy', 'pointer','lrv',
'sspm','tsm','rsave','tree', or 'vsave'.
gives a variate containing the position of the first non-space character in each string of the text \(g\). gives a variate containing the position of the last non-space character in each string of the text \(g\). for each unit, if the string in the text g 2 occurs as a substring of the string in the text g 1 , this returns the position at which the substring starts; otherwise it returns the value zero. The text g 2 may contain a single string (to be checked against every string of g 1). The structure x (scalar or variate) supplies a logical value to indicate whether to ignore the case of any letters; if x is omitted, the logical is assumed to be false (case
\begin{tabular}{|c|c|}
\hline GINVERSE (x) & M \\
\hline GRAY (x) & calculates RGB colour values for the values on the gray (grey) scale in x . \\
\hline GRBETA (\(\mathrm{n} ; \mathrm{a} ; \mathrm{b}\)) & generates n pseudo-random numbers from a Beta distribution with parameters \(a\) and \(b\). \\
\hline GRBINOMIAL (n;t;p) & generates \(n\) pseudo-random numbers from a Binomial distribution with \(t\) trials and probability \(p\). \\
\hline GRCHISQUARE (n ; df ; c) & generates \(n\) pseudo-random numbers from a chi-square distribution with degrees of freedom df and non-centrality parameter c (default \(\mathrm{c}=0\)). \\
\hline GREEN (x) & calculates the green components of the RGB colour values in x. \\
\hline GREY (x) & calculates RGB colour values for the values on the gray (grey) scale in x . \\
\hline GRF (n ; \(\mathrm{df1}\); \(\mathrm{df2}\); c) & generates n pseudo-random numbers from an F distribution with \(d f 1\) and \(d f 2\) degrees of freedom, and non-centrality parameter c (by default \(\mathrm{c} 1=0\)). \\
\hline GRGAMMA (\(\mathrm{n} ; \mathrm{k} ; \mathrm{t}\)) & generates \(n\) pseudo-random numbers from a Gamma distribution with shape parameter k (kappa) and scale parameter \(t\) (theta). \\
\hline GRHYPERGEOMETRIC (n ; l ; m; p) & generates \(n\) pseudo-random numbers from a Hypergeometric distribution representing the number of positive values or successes in samples of size \(m\) from a population of size \(p\) of which 1 are positive. \\
\hline GRLOGNORMAL (n;m;v) & generates \(n\) pseudo-random numbers from a lognormal distribution such that \(\log (\mathrm{x})\) has a Normal distribution with mean \(m\) and variance \(v\). \\
\hline GRNORMAL (n ; m; v) & generates \(n\) pseudo-random numbers from a Normal distribution with mean \(m\) (default 0) and variance \(v\) (default 1). \\
\hline GRPOISSON (n ; m) & generates \(n\) pseudo-random numbers from a Poisson distribution with mean \(m\). \\
\hline GRSAMPLE (n; v; p) & forms a variate of size \(n\) by sampling with replacement from variate \(v\) with probabilities (or relative weights) \(p\); if \(p\) is omitted, the probabilities are assumed to be equal; if v is omitted, sampling is from a variate containing the integers 1...n. \\
\hline GRSELECT (n; v; r) & forms a variate of size n by sampling from a population defined as NEXPAND (\(r\); \(v\)); if \(r\) is omitted, the population contains just one of each element of v ; if v is omitted, sampling is from a variate containing the integers \(1 \ldots \mathrm{n}\). \\
\hline GRT (n ; df ; c) & generates n pseudo-random numbers from a Student's t distribution with degrees of freedom df and non-centrality parameter c (default \(\mathrm{c}=0\)). \\
\hline GRUNIFORM (n ; \(\mathrm{a} ; \mathrm{b}\)) & generates n pseudo-random numbers from a uniform distribution on \([a, b]\). \\
\hline HOURS (x) & the number of hours during the day corresponding to x (i.e. the number of hours recorded on a 24 hour clock at date-time value x). \\
\hline I & synonym of INVERSE. \\
\hline IANGULAR (x) & gives the inverse of the angular transformation (result in percentages). \\
\hline ICLOGLOG (x) & gives the inverse of the complementary log-log transformation (result in percentages). \\
\hline IDENTITY(n) & identity matrix of order \(n\) (returned as a diagonal matrix). \\
\hline ILOGIT (x) & gives the inverse of the logit transformation (result in \\
\hline
\end{tabular}
\begin{tabular}{ll}
& percentages). \\
INT & synonym of INTEGER. \\
INTEGER \((\mathrm{x})\) & integer part of x : \([\mathrm{x}]\). \\
INV & synonym of INVERSE. \\
INVERSE \((\mathrm{x})\) & the inverse of a non-singular square, symmetric or diagonal \\
& matrix \(x\).
\end{tabular}
\begin{tabular}{|c|c|}
\hline LINE & draws a line from point \((x 1, y 1)\) to \((x 2, y 2)\) in colour \(c o\) RGB image in matrix \(r\). \\
\hline IMMCONVOLUTION(r;f;i;cr;cg; & cb ; m) applies the convolution filter in matrix f to RGB image in matrix \(r\); scalar \(i\) (default 1) defines intensity parameter; scalars \(\mathrm{cr}, \mathrm{cg}\) and cb contain 0 or 1 (default) according to whether red, green and blue channels, respectively, are to be modified. If mode defined by scalar \(m\) is 0 (default), the new value at each point is i multiplied by the sum of the values at the point and nearby points multiplied by the convolution matrix. Alternatively, if \(m=1\) (default), the new value at each point is the current value at the point minus i multiplied by the sum of the values at the point and nearby points multiplied by the values in the convolution matrix. \\
\hline IMMEDIANFILTER(r) & performs a median filter on the RGB image in a matrix \(r\). \\
\hline IMOVERLAY(rt;rb;m;mp;p;x;y) & overlays RGB image in matrix \(r t\) over RGB image in matrix rb ; m controls how images are blended \((0=\) fast blend, \(1=\) slower, more accurate blend, \(2=\) pixels combined with logical AND, \(3=\) pixels combined with logical \(O\) R, \(4=\) pixels combined with logical XOR, \(5=\) output pixel is maximum of top and bottom as in Photoshop "Lighten", \(6=\) output pixel is minimum of top and bottom as in Photoshop "Darken", \(7=\) output pixel is sum of top and bottom, \(8=\) output pixel is difference of top and bottom, \(9=\) if top \(>\) mp, output top, \(10=\) if top \(<\mathrm{mp}\), output top, \(11=\) absolute value of the difference of top and bottom, \(12=\) take top \(\times\) bottom \(/\) maximum component, \(13=\) take top \(\times\) bottom \(\times\) ModeParameter \(/\) maxComponent, \(14=\) screen, \(15=\) define bottom to be bottom + top - mp, \(16=\) define bottom to bottom - top - mp, \(17=\) pixels combined with logical NAND, \(18=\) pixels combined with logical NOR, \(19=\) pixels combined with logical NXOR/XNOR, \(20=\) color dodge, \(21=\) color burn, \(22=\) soft dodge, \(23=\) soft burn, \(24=\) Photoshop "overlay", \(25=\) soft light, \(26=\) hard light, \(27=\) XFader reflect, \(28=\) XFader glow, \(29=\) XFader freeze, \(30=\) XFader heat); \(p\) defines the opacity of the blended image; and (\(\mathrm{x}, \mathrm{y}\)) specifies the position of bottom left-hand corner of the top image on the bottom image. \\
\hline & applies a point-to-point warp on RGB image in matrix \(r\), "pushing" point (x1, y1) to (x2, y2). \\
\hline IMRECTANGLE (r;x1;y1;x2;y2;c) & colours rectangle with bottom left corner (\(\mathrm{x} 1, \mathrm{y} 1\)) and top right corner (\(x 2, y 2\)) in RGB image in matrix \(r\) to be colour \(c\). \\
\hline IMROTATE (r;a;b) & rotates RGB image in matrix \(r\); \(a\) is the angle in radians (default \(\pi / 2\)); \(b\) is the background colour to put into the (blank) corners. \\
\hline IMSATURATE (r;s) & adjusts the saturation level of RGB image in matrix \(r\) according to the value of scalar \(s\) (default 1.1): when \(s>1\) the saturation is increased, when \(0<s<1\) saturation is decreased, and when \(s<0\) photo-negative is generated. \\
\hline IMSHARPEN (r;s) & sharpens RGB image in matrix \(r\) by the amount specified in scalar s (\(0 \ll_{s}<100\); default 2). \\
\hline IMSIZE(r;w;h;m) & changes the size of RGB image in matrix \(r\) to have width \(w\) and height h ; m selects the algorithm to use to assign colours in the new image: \(0=\) box filter, \(1=\) triangle filter, \(2=\) Hamming filter, \(3=\) Gaussian filter, \(4=\) bell filter, \(5=\mathrm{B}\)-spline filter, \(6=\) cubic 1 filter, \(7=\) cubic 2 filter, \(8=\) Lanczos 3 filter, \(9=\) Mitchell filter, \(10=\operatorname{sinc}\) filter, \(11=\) Hermite filter, \(12=\) Hanning filter, \(13=\) Catrom filter, \(14=\) fast area-average, \(15=\) \\
\hline
\end{tabular}
area-average, \(16=\) bi-linear interpolation, 17 (default) \(=\) bicubic interpolation, \(18=\) nearest neighbour.
IMSSTRETCH (\(\mathrm{r} ; \mathrm{l} ; \mathrm{h} ; \mathrm{m}\))
performs a histogram stretch of the saturation in RGB image in matrix \(r\); scalar 1 (default 0) specifies percentage of pixels to set to 0 (i.e. black), scalar \(h\) (default 0) specifies percentage of pixels to set to white, and scalar \(m(0 \leq m \leq 255\); default 128) specifies the colour value in each channel to be set to the middle intensity.
\(\operatorname{IMSTEXT}(r ; s t ; c ; f h ; y 1 ; x 1 ; y 2 ; x 2 ; f t ; t r ; s m)\) draws the text in string st with height fh, font ft , colour c , transparency tr and smoothness sm (\(\mathrm{sm}=1\) for none, or 2 or 4) within the bounding rectangle with top left corner at \((x 1, y 1)\) and bottom right corner at \((x 2, y 2)\) on RGB image in matrix \(r\).
\(\operatorname{IMTEXT}(r ; s t ; c ; f h ; y 1 ; x 1 ; y 2 ; x 2 ; f t)\) draws the text in string st with height \(f h\), font ft and colour c within the bounding rectangle with top left corner at (\(\mathrm{x} 1, \mathrm{y} 1\)) and bottom right corner at (\(\mathrm{x} 2, \mathrm{y} 2\)) on RGB image in matrix \(r\).
IMUNSHARPEN (r ; t ; a; s) applies an unsharp mask to RGB image in matrix \(r\) : this first applies a Gaussian blur with standard deviation \(s\); it then finds the difference between pixels in the blurred image and in the original and, if this is greater than \(t\) in each channel, it adds the amount specified by scalar a multiplied by the difference from the original value.
\(\operatorname{IMVFLIP}(r) \quad\) performs a vertical flip on RGB image in a matrix r .
IMXSHEAR (r; \(\mathrm{x} ; \mathrm{b}\))
shears RGB image in matrix \(r\) by moving the top of the image \(|x|\) pixels to the right \((x>0)\) or left \((x<0)\); the blank parts of the new image are given (background) colour b .
\(\operatorname{IMYSHEAR}(\mathrm{r} ; \mathrm{y} ; \mathrm{b}) \quad\) shears RGB image in matrix r by moving the right-hand side of the image \(|y|\) pixels up or down; the blank parts of the new image are given (background) colour b.
IM3CONVOLUTION (r ; f ; i; cr; cg;cb; d) applies convolution filter in the \(3 \times 3\) matrix \(f\) to RGB image in matrix \(r\); scalar \(i\) (default 1) defines intensity parameter; scalars \(\mathrm{cr}, \mathrm{cg}\) and cb contain 0 or 1 (default) according to whether red, green and blue channels, respectively, are to be modified. If the "feedback" defined by scalar d is 0 (default), the new value at each point is i multiplied by the sum of the values at the point and nearby points multiplied by the convolution matrix. Alternatively, if \(d=i\) (default), the new value at each point is calculated by taking (\(1-i\)) multiplied by the current value at the point, and then subtracting i multiplied by the sum of the values at the point and nearby points multiplied by the values in the convolution matrix.
\(\operatorname{IPROBIT}(\mathrm{x}) \quad\) gives the inverse of the probit transformation (result in percentages).
KRONECKER synonym for DPRODUCT.
KURTOSIS (x) kurtosis of the non-missing values in x .
LEAPYEAR (\(x\)) returns 1 if the year corresponding to date-time value x is a leap year, 0 otherwise.
LEVELS (f) forms a variate containing the levels of the factor \(f\).
LLB synonym of LLBINOMIAL.
LLBINOMIAL \((\mathrm{x} ; \mathrm{n} ; \mathrm{p}) \quad \log\)-likelihood function for the Binomial distribution; n is the sample size and \(p\) the mean proportion (or the probability).
LLG
synonym of LLGAMMA.
LLGAMMA (\(\mathrm{x} ; \mathrm{k} ; \mathrm{t}\))
log-likelihood function for the Gamma distribution with shape parameter k (kappa) and scale parameter t (theta).
\begin{tabular}{|c|c|}
\hline LLN & synonym of LLNORMAL. \\
\hline LLNORMAL (x;m; \({ }^{\text {a }}\) & log-likelihood function for the Normal distribution; \(m\) is the mean and v the variance. \\
\hline LLP & synonym of LLPOISSON. \\
\hline LLPOISSON (x;m) & log-likelihood function for the Poisson distribution; \(m\) is the mean. \\
\hline LNFACTORIAL (x) & \(\log\) of \(x\) ! for non-negative integer values \(x\). \\
\hline LNGAMMA (x) & \(\log\)-Gamma function, \(\log _{e}(\Gamma(x))\), for \(x>0\). \\
\hline LOG (x) & natural logarithm of \(x\), for \(x>0\). \\
\hline LOG10 (x) & logarithm to base 10 of x , for \(\mathrm{x}>0\). \\
\hline LOGIT (p) & takes the logit transformation \(\log (\mathrm{p} /(100-\mathrm{p}))\) of the percentages \(\mathrm{p}(0<\mathrm{p}<100 \%)\). \\
\hline LSVECTORS (x) & matrix of vectors from the left-hand side of a singular-value decomposition of \(x\). \\
\hline LTPRODUCT (x;y) & left transposed product of \(x\) and \(y\) : a more efficient way of calculating TRANSPOSE (\(x\))*+y. \\
\hline LTRIANGLE (m; \({ }^{\text {d }}\)) & returns the lower triangle of square matrix \(m\), as a square matrix with the upper triangular set to zero; putting \(d=1\) (default) indicates that the diagonal is to be included, while putting \(\mathrm{d}=0\) excludes the diagonal. \\
\hline MATO & synonym of MzERO. \\
\hline MAT1 (r; c) & matrix of ones of size \(r\) by c. \\
\hline MAX & synonym of MAXIMUM. \\
\hline MAXIMUM (x) & finds the maximum of the values in x . \\
\hline MAXPOSITION(x) & \begin{tabular}{l}
finds the position of the first instance of the maximum value within x . For a variate this is the number of the unit containing the maximum. For a matrix the row of the maximum value can then be calculated as \\
row \(=\) INTEGER((MAXPOSITION (x) -1)/NROWS (x)) + 1 and the column as \\
col \(=\) MAXPOSITION (x) \(-\operatorname{NROWS}(x) *(\) row-1) \\
For a symmetric matrix, the column is col \(=\operatorname{INTEGER}((\operatorname{SQRT}(8 * M A X P O S I T I O N(x)+1)+1) / 2)\) and the row is row \(=\) MAXPOSITION(x) - col*(col-1)/2
\end{tabular} \\
\hline MBASE (r;c;i;j) & matrix of size \(r\) by \(c\) which is zero, except for position(s) \(i, j\) which are set to one. \\
\hline MCENTRE (m) & doubly centres the matrix \(m\) so that its rows and columns have mean zero. \\
\hline MEAN (x) & forms the mean of the values of x . \\
\hline MED & synonym of MEDIAN. \\
\hline MEDIAN (x) & finds the median of the values in x . \\
\hline \(\operatorname{MEXP}(\mathrm{m})\) & calculates the matrix exponential of \(m\). \\
\hline MFRACTION (x;p;m) & returns the period within a month that date-time value x belongs to; \(p\) is the length of the period (e.g. 5 for pentade, 10 for decade), and \(m\) is the starting month (default 1). \\
\hline MIN & synonym of MINIMUM. \\
\hline MINIMUM (x) & finds the minimum of the values in x . \\
\hline MINPOSITION(x) & \begin{tabular}{l}
finds the position of the first instance of the minimum value within x . For a variate this is the number of the unit containing the minimum. For a matrix the row of the minimum value can then be calculated as \\
row \(=\) INTEGER((MINPOSITION(x)-1)/NROWS(x)) + 1 and the column as \\
col \(=\) MINPOSITION (x) - NROWS (x)*(row-1) \\
For a symmetric matrix, the column is col \(=\operatorname{INTEGER}((S Q R T(8 * M I N P O S I T I O N(x)+1)+1) / 2)\) and the row is
\end{tabular} \\
\hline
\end{tabular}

MINSERT (x;m;i;j)

MINUTES (x)

MODULO (x;y)
MONTH (x)
MPOWER (m; n)
MSQRT (m)
MVINSERT (x;y)

MVREPLACE (x;y)

MZERO (r;c)
NCOLUMNS (x)
NCOMBINATIONS (\(n ; r\))

NDAYINYEAR (x;m)

NED
NEWLEVELS (f;x)

NEXPAND (n; v)

NLEVELS (f)
NMV (x)
NOBSERVATIONS (x)

NORMAL
NOW (x)

NPERMUTATIONS (n;r)

NROWS (x)
NVALUES (x)

NVRESTRICTED (x) NVUNRESTRICTED (x)

NWEEKINYEAR (x; s)
```

row = MINPOSITION(x) - col*(col-1)/2

```
inserts matrix m into matrix \(x\), putting its top-left element into row \(i\) and column \(j\) of \(x\); elements of \(m\) that are defined to lie outside x are ignored.
the number of minutes during the hour corresponding to x (i.e. the number of minutes recorded on a clock at date-time value \(\mathrm{x})\).
Form modulus of x to base y .
the month corresponding to date-time value x .
raises matrix \(m\) to the n'th power.
calculates the matrix square root of \(m\).
replaces values in x by missing value wherever the second identifier stores a non-zero value (logical .TRUE.).
replaces missing values in x with the values in the
corresponding units of \(y\).
zero matrix of size \(r\) by c.
gives the number of columns of x .
number of combinations \({ }^{n} \mathrm{C}_{r}\) of \(r\) objects taken from a set of size n .
the number of the day in year corresponding to date-time value \(x\), and starting the year at the beginning of month \(m\) (default 1). synonym of EDNORMAL.
forms a variate from the factor f ; the variate x defines a value for each level and should be the same length as the number of levels of the factor; if the second argument x is omitted, the ordinals (1, 2...) are given.
expands structure v to repeat each value the number of times specified by the corresponding element of \(n\). gives the number of levels of factor \(f\).
counts the number of missing values in x .
counts the number of observations (that is non-missing values)
in x .
synonym of CLNORMAL.
returns a scalar containing the current date and time (argument x is ignored).
number of permutations \({ }^{n} P_{r}\) of \(r\) objects taken from a set of size \(n\).
gives the number of rows of \(x\).
gives the number of values of \(x\) including missing values and taking account of any restriction.
synonym of NVALUES.
number of values of x ignoring any restriction (i.e. gives the full "length" of \(x\)).
number of the week through the year for date-time value x .
The default setting for s is 'iso'; this uses the definition of ISO Standard IS-8601 (1988) in which any week (starting on Monday) that lies in more than one year is assigned a week number for the year in which most of its days occur. The alternative setting, 'simple', takes the first week of the year as the one containing 1st January.
OWN(x; 'name'; p1; p2...pn)
calls an external function with data in a variate x and n scalar parameters; the function is in a DLL defined by the EXTERNAL directive.
PAREA (\(y\); \(x\))
PERCENTILES (x;p)
POSITION (x;y)
PRBETA (x; a;b)
area of a polygon with vertices specified by \(y\) and \(x\).
percentiles (defined in variate \(p\)) of the values of \(x\).
finds the position, within the vector \(y\), of each value of \(x\).
probability density function for a beta distribution with
\begin{tabular}{|c|c|}
\hline PRBINOMIAL (j; \(\mathrm{n} ; \mathrm{p}\)) & probability of \(j\) successes out of \(n\) binomial trials with probability of success \(p\). \\
\hline PRCHISQUARE (x;df; \({ }^{\text {c }}\) & probability density function for a non-central chi-square distribution with noncentrality parameter \(c\); if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) chi-square distribution. \\
\hline PRF (x; df1; df2; c) & probability density function for a non-central F distribution with degrees of freedom \(d f 1\) and \(d f 2\), and noncentrality parameter c ; if the fourth parameter c is omitted, it is assumed to be zero, giving the ordinary (central) F distribution. \\
\hline PRGAMMA (\(\mathrm{x} ; \mathrm{k} ; \mathrm{t}\)) & probability density function for a gamma distribution with shape parameter \(k\) (kappa) and scale parameter \(t\) (theta). \\
\hline PRHYPERGEOMETRIC (j; \(1 ; m ; n)\) & probability of \(j\) successes out of a sample of \(m\) from a population of size n of which l are positive (hypergeometric distribution). \\
\hline PRINVNORMAL (\(\mathrm{x} ; \mathrm{m} ; \mathrm{l}\)) & probability density function for an inverse Normal (or inverse Gaussian) distribution with mean \(m\) and reciprocal dispersion parameter \(l\) (variance is \(\mathrm{m}^{3} / \mathrm{l}\)). \\
\hline PRLOGNORMAL (x) & probability density function for a lognormal distribution corresponding to a normal distribution with mean 0 and variance 1. \\
\hline PRNORMAL (x;m; \({ }^{\text {a }}\) & probability density function for a Normal distribution with mean \(m\) (default 0) and variance \(v\) (default 1). \\
\hline PROBIT (p) & takes the probit transformation of the percentages \(p(0<p<\) \(100 \%)\). This is equal to the Normal equivalent deviate of \(\mathrm{p} / 100\). \\
\hline PRODUCT (\(\mathrm{x} ; \mathrm{y}\)) & forms the matrix product of \(x\) and \(y\) (that is \(x{ }^{*}+\mathrm{y}\)). \\
\hline PRPOISSON (j ; m) & probability of the value \(j\) for a Poisson distribution with mean m. \\
\hline PRSMMODULUS (x;df; \({ }^{\text {a }}\) & probability density function for a Studentized maximum modulus distribution with degrees of freedom df and number of means \(n\). \\
\hline PRSRANGE (\(\mathrm{x} ; \mathrm{df}\); n) & probability density function for a Studentized range distribution with degrees of freedom df and number of means n. \\
\hline PRT (x;df; c) & probability density function for a non-central Student's \(t\) distribution with degrees of freedom df and noncentrality parameter c ; if the third parameter c is omitted, it is assumed to be zero, giving the ordinary (central) \(t\) distribution. \\
\hline PRUNIFORM (p;a;b) & probability density function for a uniform distribution on [a,b]. \\
\hline QPRODUCT (x;y) & forms the quadratic product of x and y (that is \(\left.x{ }^{*}+y *+\operatorname{TRANSPOSE}(x)\right)\), where \(x\) is a rectangular matrix or variate and y is a symmetric or diagonal matrix or a scalar. \\
\hline QTPRODUCT (x;y) & quadratic matrix product of \(x^{\prime}\) and \(y\) (that is TRANSPOSE (\(x\)) *+ \(y\) *+ \(x\)), where \(x\) is a rectangular matrix or variate and \(y\) is a symmetric or diagonal matrix or a scalar. \\
\hline QUANTILES (x;q) & quantiles (defined in variate \(q\)) of the values of \(x\). \\
\hline RADIANS (x) & converts angles x from degrees to radians. \\
\hline RANGE (x) & range of values in \(x\), i.e. MAX (x\()-\mathrm{MIN}(\mathrm{x})\). \\
\hline RANKS (x) & ranks of the values in x . \\
\hline RED (x) & calculates the red components of the RGB colour values in x . \\
\hline REPLACE (x;y;z) & searches \(x\) for all occurrences of each value in \(y\), and replaces them with the corresponding value from z . \\
\hline RESTRICTION(x) & forms a variate with the value 1 in the units to which x is currently restricted. \\
\hline
\end{tabular}

REVERSE (x)
RGB (x;y;z)

RGB (t)

RMEANS (x;p;q)

RNOBSERVATIONS (x;p;q)

ROUND (x)
ROWBIND (x;y)
ROWCENTRE (x)
ROWMEANS (x)
ROWNOBSERVATIONS (x)
ROWSUMS (x)
ROW1 (n)
RQOBJECTIVE (y; d; p; t)

RSVECTORS (x)

RTOTALS (x;p;q)

RTPRODUCT (x;y)

RUNS (x)
SD (x)
SECONDS (x)

SEMEAN (x)
SET (X)

SHIFT(x;s)

SIGN (x)
SIN (x)
SINH (x)
SKEWNESS (x)
SOLUTION (x;y)

SORT (x;y)
reverses the values of x .
calculates RGB colour values from the red, green and blue components in \(\mathrm{x}, \mathrm{y}\) and z , respectively; these components must all be between 0 and 255 .
gives the RGB colour values of the standard Genstat colours in text \(t\). The text can contain the string 'match ' in its second and subsequent units, to repeat the colour in the previous unit. It can also contain strings made up of three pairs of hexadecimal digits (\(00-\mathrm{FF}\)) prefixed by \#, 0 x or 0 x : i.e. '\#rgb', '0xrgb' or '0Xrgb' where rgb are pairs of hexadecimal digits \(00-\mathrm{FF}\) that define the red, green and blue intensities of the colour respectively.
running means of x using a window around each unit that includes \(p\) preceding and \(q\) succeeding observations; \(p\) must be set, default for \(q\) is 0 .
number of observations contributing to the computation of a running mean or total involving \(p\) preceding and \(q\) succeeding observations about each unit of \(x ; p\) must be set, default for \(q\) is 0 .
rounds the values of \(x\) to the nearest integer.
joins matrices x and y vertically (i.e. stacks y below x). centres the rows of matrix \(x\) by subtracting their means. mean of the non-missing elements of each row of matrix \(x\). number of non-missing elements in each row of matrix \(x\). sum of the non-missing elements of each row of matrix \(x\). row matrix of 1 's with \(n\) columns.
returns the objective function from fitting a quantile linear regression with a response variate y , a design matrix d , a probability value specified by the scalar p , and using a tolerance defined by the scalar \(t\); if the fourth argument is omitted, a default tolerance of \(10^{-12}\) is used.
matrix of vectors from the right-hand side of a singular-value decomposition of \(x\).
running totals of x using a window around each unit that includes \(p\) preceding and \(q\) succeeding observations; \(p\) must be set, default for \(q\) is 0 .
forms the right transposed product of x and y (that is x *+ TRANSPOSE (y)).
length of run of identical values up to each unit in \(x\). standard deviation of the non-missing values in x . the number of seconds (including fraction of seconds) during the minute corresponding to date-time value x . standard error of the mean of the non-missing values in x . returns a scalar logical value containing the values 1 or 0 according to whether or not dummy x is set (i.e. the opposite of the function UNSET).
shifts the values of x by s places (to the right or left according to the sign of \(s\)). This is not a circular shift, so some positions lose their values and are given missing values.
sign of \(\mathrm{x}(-1,0\) or 1 for \(\mathrm{x}<0, \mathrm{x}==0\) or \(\mathrm{x}>0\) respectively).
sine of x , for x in radians.
hyperbolic sine of \(x\).
skewness of the non-missing values in \(x\).
finds the solution \(b\) of the set of simultaneous linear equations \(\mathrm{x}{ }^{*}+\mathrm{b}=\mathrm{y}\).
sorts the elements of x into the order that would put the values
```

SQRT(x)
SSPLINE(y;x;df;p)
STANDARIZE (x)
SUBMAT (x)

```
SUM (x)
SVALUES (x)
T
TAN (x)
TANH (x)
TCOLUMN (t)
TDIAGONAL (t)
TIME (h;m;s)
TKURTOSIS (x)
TMATRIX(t;f1; f2)
TMAXIMA (t)
TMEANS (t)
TMEDIANS (t)
TMINIMA (t)
TNMV (t)
TNOBSERVATIONS (t)
TNVALUES (t)
TOTAL (x)
TPROJECT (t)
TRACE (x)
TRANSPOSE (x)
TRIGAMMA (x)
TROW (\(t\))
TSD (t)
TSEMEANS (t)
TSKEWNESS (x)
TSUMS
TTOTALS (t)
TVARIANCES (t)
TVECTOR (t; s; p)
of y into ascending order; if y is omitted, the values of x are sorted.
gives the square root of \(x(x \geq 0)\).
fits a smoothing-spline of \(y\) on \(x\), with df degrees of freedom or (if df is missing) smoothing parameter p .
standardizes \(x\) to (\(x\)-MEAN (\(x\)))/SD (\(x\)).
forms sub-triangles or sub-rectangles of a rectangular or symmetric matrix. The rows and columns to be included are determined by matching the pointers indexing the resultant matrix with the pointers indexing x . (SUBMAT does not allow for indexing by variates or texts.)
forms the sum of the values in x (synonym TOTAL).
singular values of \(x\) (as a diagonal matrix).
synonym of TRANSPOSE.
tangent of \(x\), for \(x\) in radians.
hyperbolic tangent of \(x\).
converts one-way table \(t\) into a matrix with a single column. converts one-way table \(t\) into a diagonal matrix.
constructs the time value (days and fractions of days)
corresponding to \(h\) hours, \(m\) minutes and \(s\) seconds.
forms margins containing the kurtosis of the cells in table \(t\). converts two-way table \(t\) into a matrix, with classifying factor f1 corresponding to the rows, and classifying factor \(£ 2\) corresponding to the columns.
forms margins of maxima for table \(t\).
forms margins of means for table \(t\).
forms margins of medians for table \(t\).
forms margins of minima for table \(t\).
forms margins counting the numbers of missing values in table t.
forms margins counting the numbers of observations (nonmissing values) in table \(t\).
forms margins counting the numbers of values (missing or non-missing) in table \(t\).
forms the total of the values in x (synonym SUM).
converts table \(t\) into a variate, using the values of its classifying factors to determine which value of the table to put into each unit of the variate.
calculates the trace of the square, diagonal, or symmetric matrix \(x\) (that is the sum of all its diagonal elements).
forms the transpose of a rectangular matrix x .
trigamma function of \(x\).
converts one-way table \(t\) into a matrix with a single row. forms margins of between-cell standard deviations for table \(t\). forms margins of standard errors for between-cell means of table \(t\).
forms margins containing the skewness of the cells in table \(t\). synonym of TTOTALS.
forms margins of totals for table \(t\).
forms margins of between-cell variances for table \(t\). copies the values from table \(t\) into a variate. The scalar \(s\) is zero if the margins of the table are to be omitted, or a non-zero (and non-missing) value if they are included. The pointer p contains the classifying factors of the table, defining the order in which the values are to be copied; this can be omitted if \(t\) is a one-way table. If margins are not to be included from a one-
TYPE (x)
UNIQUE (x)
UNSET (d)
URAND (seed; s)

UTRIANGLE (m;d)

VAR
VARIANCE (x)
VCORRELATION (p1; p2)

VCOVARIANCE (p1;p2)

VEC (x)

VECH (x)

VKURTOSIS (x)

VMAXIMA (p)

VMEANS (p)

VMEDIANS (p)

VMINIMA (p)

VNMV (p)

VNOBSERVATIONS (p)

VNVALUES (p)

VPERCENTILES (p; s)
\(\operatorname{VPOSITIONS}(x ; p)\)

VQUANTILES (p; s)

VRANGE (p)
\(\operatorname{VSD}(\mathrm{x})\)

VSEMEANS (x)

VSKEWNESS (x)

VSUMS (p)
way table, s can also be omitted.
gives the type number of the data structure x .
the unique values in \(x\).
returns a scalar logical value according to whether or not the dummy d is set.
provides \(s\) uniform pseudo-random numbers in the range \((0,1)\).
If \(s\) is not supplied and URAND cannot determine the length of the result from the context of the expression, the length of the current units structure (if any) is taken. Scalar seed initializes the generator. If zero in the first use of URAND in a job, the system clock is used to provide a seed; subsequent calls may use zero to continue the sequence of random numbers. returns the upper triangle of square matrix \(m\); as a square matrix with the lower triangular set to zero; putting \(d=1\) (default) indicates that the diagonal is to be included, while putting \(\mathrm{d}=0\) excludes the diagonal.
synonym of VARIANCE.
gives the variance of the values in x .
gives the correlation, at every unit, between the values of the corresponding structures in the pointers p1 and p2.
gives the covariance, at every unit, between the values of the corresponding structures in the pointers p 1 and p 2 .
stacks columns of a matrix x into a single variate (VEC operator).
stacks columns of the lower triangle of a matrix \(\times(V E C H\) operator).
kurtosis of the non-missing values in each unit of the variates (or scalars) in pointer p .
finds the maximum of the values in each unit of the variates (or scalars) in pointer \(p\).
gives the mean of the non-missing values in each unit of the variates (or scalars) in pointer \(p\).
finds the median of the values in each unit of the variates (or scalars) in pointer \(p\).
finds the minimum of the values in each unit of the variates (or scalars) in pointer \(p\).
counts the number of missing values in each unit of the variates (or scalars) in pointer \(p\). counts the number of observations (non-missing values) in each unit of the variates (or scalars) in pointer \(p\). gives the number of values in each unit of the variates (or scalars) in pointer \(p\) : that is the number of values of \(p\). calculates percentiles for the value supplied in scalar \(s\), across the set of variates in pointer \(p\).
gives the suffix of the first vector in the pointer \(p\) containing the value in each unit of the variate or text \(x\).
calculates quantiles for the probability supplied in scalar s, across the set of variates in pointer \(p\).
range of values within the units of the variates in pointer \(p\). standard deviation of the non-missing values in each unit of the variates (or scalars) in pointer p .
standard error of the mean of non-missing values in each unit of the variates (or scalars) in pointer \(p\).
skewness of the non-missing values in each unit of the variates (or scalars) in pointer p .
gives the sum of the non-missing values in each unit of the

VTOTALS (p)

VVARIANCES (p)

WEEKDAY (x

WHERE (x)

WHICH (x)
YEAR (x)
variates (or scalars) in pointer \(p\) (synonym VTOTALS). gives the total of the non-missing values in each unit of the variates (or scalars) in pointer \(p\) (synonym VSUMS). gives the variance of the non-missing values in each unit of the variates (or scalars) in pointer \(p\). the day of the week (where Monday is weekday 1) corresponding to data-time value \(x\). produces a variate listing the units of x that are logically true (i.e. non-zero). synonym of WHERE. the year corresponding to date-time value x .

\subsection*{4.3 Functions for model formulae}

\section*{Function name}

\author{
COMPARISON(f;s;m)
}

LO synonym of LOESS.
LOESS (x;d;s;l)

POL (f;s; v)

POLND(f;s;v)

REG (f; s;m)

\section*{Description}
estimates the comparisons amongst the levels of factor \(f\) specified by the first s rows of the matrix m . In regression models, the first argument may be a variate instead of a factor; COMP (\(\mathrm{v} ; \mathrm{s} ; \mathrm{m}\)) then fits a set of associated variates stored in the first \(s\) rows of the rows of the matrix \(m\). In either case, the comparisons define explanatory variates to be included in the regression, and their parameter estimates are the resulting regression coefficients. In TREATMENTSTRUCTURE formulae (specifying a model for analysis-of-variance), the parameter estimates are the estimates of the comparisons themselves (i.e. \(m^{\star}+e\), where \(e\) is the vector of estimated effects of factor \(f\)). This differs from the use of COMPARISON in regression models (and the use of the REG function in either regression or analysis of variance) as there the parameter estimates are regression coefficients. Another difference is that in analysis of variance each comparison is fitted ignoring the other comparisons, but in regression they are adjusted for each other.
fits a locally weighted regression of order 1 (\(=1\) for linear, 2 for quadratic) with approximately d degrees of freedom or using smoothing parameter \(s\) (regression models only): \(x\) is a variate for univariate smoothing, or a pointer to up to four variates for multivariate smoothing; when x is a variate \(l\) is a scalar, when \(x\) is a pointer it is either a scalar or a variate with an element for each variate in the pointer.
indicates that the effects of factor f are to be partitioned into polynomial contrasts (linear, quadratic etc) up to order s, where \(s\) is a scalar containing an integer between 1 and 4 . Variate v defines a numerical value for each level of the factor; if omitted, the factor levels themselves are used. In a TREATMENT formula, the contrasts are orthogonalized, but they are not in a regression or generalized linear model. In regression models, \(P O L\) (v ; s) can be used to fit simple (nonorthogonalized) polynomials of a variate \(v u p\) to order \(s\). has the same effect as POL, except that no Dev components are fitted for factor f in interactions (TREATMENT formulae only). indicates that the effects of factor \(f\) are to be partitioned into the orthogonal regression contrasts specified by the first s rows of the matrix m. In regression models, the first argument may be a variate instead of a factor; REG (v; ; ; m) then
\(\operatorname{REGND}(f ; s ; m)\)

S
SSPLINE (v;s;p)
orthogonalizes and fits a set of associated variates stored in the first \(s\) rows of the rows of the matrix \(m\). The matrix \(m\) may be omitted in a regression model, in which case orthogonal polynomial contrasts are constructed for either \(f\) or \(v\). Note, though, that the orthogonalization is with respect to the replication of the main effect of the factor or variate, so interactions of the contrasts with other vectors in a regression model may not be orthogonal.
has the same effect as REG, except that no Dev components are fitted for factor \(f\) in interactions (TREATMENT formulae only). synonym of SSPLINE.
indicates that the effect of a variate v is to be fitted by a smoothing spline with approximately s degrees of freedom or using "smoothing parameter" p (only in regression models or expressions).

\section*{5 List of commands}

This lists the directives in Release 23, together with the procedures in the Procedure Library PL31 that accompanies Release 23.

ABIVARIATE produces graphs and statistics for bivariate analysis of variance.
ABLUPS calculates BLUPs for block terms in an ANOVA analysis.
ABOXCOX estimates the power \(\lambda\) in a Box-Cox transformation, that maximizes the partial log-likelihood in ANOVA.
ACANONICAL determines the orthogonal decomposition of the sample space for a design, using an analysis of the canonical relationships between the projectors derived from two or more model formulae.
ACDISPLAY provides further output from an analysis by ACANONICAL.
ACHECK checks assumptions for an ANOVA analysis.
ACKEEP saves information from an analysis by ACANONICAL.
ACONFIDENCE calculates simultaneous confidence intervals for ANOVA means.
ADD adds extra terms to a linear, generalized linear, generalized additive, or nonlinear model.
ADDPOINTS adds points for new objects to a principal coordinates analysis.
ADETECTION calculates the minimum size of effect or contrast detectable in an analysis of variance.
ADISPLAY displays further output from analyses produced by ANOVA.
ADJACENTCELLS finds cells adjacent to other cells in a multi-dimensional array.
ADPOLYNOMIAL plots single-factor polynomial contrasts fitted by ANOVA.
ADSPREADSHEET puts the data and plan of an experimental design into Genstat spreadsheets.
AEFFICIENCY calculates efficiency factors for experimental designs.
AFALPHA generates alpha designs.
AFAUGMENTED forms an augmented design.
AFCARRYOVER forms factors to represent carry-over effects in cross-over trials.
AFCOVARIATES defines covariates from a model formula for ANOVA.
AFCYCLIC generates block and treatment factors for cyclic designs.
AFDISCREPANCY calculates the discrepancy of a design.
AFFYMETRIX estimates expression values for Affymetrix slides.
AFIELDRESIDUALS display residuals in field layout.
AFLABELS forms a variate of unit labels for a design.
AFMEANS forms tables of means classified by ANOVA treatment factors.
AFMINABERRATION forms minimum aberration factorial or fractional-factorial designs.
AFNONLINEAR forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model.
AFORMS prints data forms for an experimental design.
AFPREP searches for an efficient partially-replicated design.
AFRCRESOLVABLE forms doubly resolvable row-column designs, with output.
AFRESPONSESURFACE uses the BLKL algorithm to construct designs for estimating response surfaces.
AFUNITS forms a factor to index the units of the final stratum of a design.
AGALPHA forms alpha designs by standard generators for up to 100 treatments.
AGBIB generates balanced incomplete block designs.
AGBOXBEHNKEN generates Box-Behnken designs.
AGCENTRALCOMPOSITE generates central composite designs.
AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects.
AGCYCLIC generates cyclic designs from standard generators.
AGDESIGN generates generally balanced designs.
AGFACTORIAL generates minimum aberration block or fractional factorial designs.
AGFRACTION generates fractional factorial designs.
AGHIERARCHICAL generates orthogonal hierarchical designs.
AGINDUSTRIAL helps to select and generate effective designs for use in industrial experiments.
AGLATIN generates mutually orthogonal Latin squares.
AGLOOP generates loop designs e.g. for time-course microarray experiments
AGMAINEFFECT generates designs to estimate main effects of two-level factors.
AGNATURALBLOCK forms 1- and 2-dimensional designs with blocks of natural size
AGNEIGHBOUR generates neighbour-balanced designs.
AGNONORTHOGONALDESIGN generates non-orthogonal multi-stratum designs.

AGQLATIN generates complete and quasi-complete Latin squares.
AGRAPH plots tables of means from ANOVA.
AGRCRESOLVABLE forms doubly resolvable row-column designs.
AGREFERENCE generates reference-level designs e.g. for microarray experiments
AGSEMILATIN generates semi-Latin squares.
AGSPACEFILLINGDESIGN generates space filling designs.
AGSQLATTICE generates square lattice designs.
AGYOUDENSQUARE generates a Youden square.
AKAIKEHISTOGRAM prints histograms with improved definition of groups.
AKEEP copies information from an ANOVA analysis into Genstat data structures.
AKEY generates values for treatment factors using the design key method.
ALIAS finds out information about aliased model terms in analysis of variance.
ALIGNCURVE forms an optimal warping to align an observed series of observations with a standard series.
ALLDIFFERENCES shows all pairwise differences of values in a variate or table.
ALLPAIRWISE performs a range of all pairwise multiple comparison tests.
AMCOMPARISON performs pairwise multiple comparison tests for ANOVA means.
AMDUNNETT forms Dunnett's simultaneous confidence interval around a control.
AMERGE merges extra units into an experimental design.
AMMI allows exploratory analysis of genotype \(\times\) environment interactions.
AMTDISPLAY displays further output for a multi-tiered design analysed by AMTIER.
AMTIER analyses a multi-tiered design with up to 3 structures.
AMTKEEP saves information from the analysis of a multitiered design by AMTIER.
ANOVA analyses \(y\)-variates by analysis of variance according to the model defined by earlier
BLOCKSTRUCTURE, COVARIATE, and TREATMENTSTRUCTURE statements.
ANTMVESTIMATE estimates missing values in repeated measurements.
ANTORDER assesses order of ante-dependence for repeated measures data.
ANTTEST calculates overall tests based on a specified order of ante-dependence.
AN1ADVICE aims to give useful advice if a design that is thought to be balanced fails to be analysed by
ANOVA.
AONEWAY performs one-way analysis of variance.
AOVANYHOW performs analysis of variance using ANOVA, regression or REML as appropriate.
AOVDISPLAY provides further output from an analysis by AOVANYHOW.
APAPADAKIS analysis of variance with an added Papadakis covariate, formed from neighbouring
residuals.
APERMTEST does random permutation tests for analysis-of-variance tables
APLOT plots residuals from an ANOVA analysis.
APOLYNOMIAL forms equations for single-factor polynomial contrasts fitted by ANOVA.
APOWER calculates the power (probability of detection) for terms in an aov.
APPEND appends a list of vectors of compatible types.
APRODUCT forms a new experimental design from the product of two designs.
ARANDOMIZE randomizes and prints an experimental design.
ARCSPLITPLOT adds extra treatments onto the replicates of a resolvable row-column design, and
generates factors giving the row and column locations of the plots within the design.
AREPMEASURES produces an analysis of variance for repeated measurements.
ARESULTSUMMARY provides a summary of results from an ANOVA analysis.
ARETRIEVE retrieves an ANOVA save structure from an external file.
ASAMPLESIZE finds the replication to detect a treatment effect or contrast.
ASPREADSHEET saves results from an analysis of variance in a spreadsheet.
ASRULES derives association rules from transaction data.
ASCREEN performs screening tests for designs with orthogonal block structure
ASSIGN sets elements of pointers and dummies.
ASTATUS provides information about the settings of ANOVA models and variates.
ASTORE stores an ANOVA save structure in an external file.
ASWEEP performs sweeps for model terms in an analysis of variance.
AUDISPLAY produces further output for an unbalanced design (after AUNBALANCED).

AUGRAPH plots tables of means from AUNBALANCED.
AUKEEP saves output from analysis of an unbalanced design (by AUNBALANCED).
AUNBALANCED performs analysis of variance for unbalanced designs.
AUMCOMPARISON performs pairwise multiple comparison tests for means from an unbalanced analysis of variance, performed previously by AUNBALANCED.
AUPREDICT forms predictions from an unbalanced design (after AUNBALANCED).
AUSPREADSHEET saves results from an analysis of an unbalanced design (by AUNBALANCED) in a spreadsheet.
AU2RDA saves results from an unbalanced analysis of variance, by AUNBALANCED, in R data frames.
AXES defines the axes in each window for high-resolution graphics.
AXIS defines an oblique axis for high-resolution graphics.
AYPARALLEL does the same analysis of variance for several y-variates, and collates the output.
A2DISPLAY provides further output following an analysis of variance by A2WAY
A2KEEP copies information from an A2WAY analysis into Genstat data structures
A2PLOT plots effects from two-level designs with robust s.e. estimates.
A2RDA saves results from an analysis of variance in \(R\) data frames.
A2RESULTSUMMARY provides a summary of results from an analysis by A2WAY.
A2WAY performs analysis of variance of a balanced or unbalanced design with up to two treatment factors.
A\%VARIANCE calculates the percentage variance and sum of squares accounted for in the strata of an ANOVA analysis.
BACKTRANSFORM calculates back-transformed means with approximate standard errors and confidence intervals.
BAFFYMETRIX estimates expression values from an Affymetrix CED and CDF file.
BANK calculates the optimum aspect ratio for a graph.
BARCHART plots bar charts in high-resolution graphics.
BASELINE estimates a baseline for a series of numbers whose minimum value is drifting.
BASSESS assesses potential splits for regression and classification trees.
BBINOMIAL estimates the parameters of the beta binomial distribution.
BCDISPLAY displays a classification tree.
BCFDISPLAY displays information about a random classification forest.
BCFIDENTIFY identifies specimens using a random classification forest.
BCFOREST constructs a random classification forest.
BCIDENTIFY identifies specimens using a classification tree.
BCKEEP saves information from a classification tree.
BCLASSIFICATION constructs a classification tree.
BCONSTRUCT constructs a tree.
BCUT cuts a tree at a defined node, discarding nodes and information below it.
BCVALUES forms values for nodes of a classification tree.
BGIMPORT imports MCMC output in CODA format produced by WinBUGS or OpenBUGS.
BGPLOT produces plots for output and diagnostics from MCMC simulations.
BGRAPH plots a tree.
BGROW adds new branches to a node of a tree.
BGXGENSTAT runs WinBUGS or OpenBUGS from Genstat in batch mode using scripts.
BIDENTIFY identifies specimens using a tree.
BINGO can be used to set up and then play a game of bingo.
BIPLOT produces a biplot from a set of variates.
BJESTIMATE fits an ARIMA model, with forecast and residual checks.
BJFORECAST plots forecasts of a time series using a previously fitted ARIMA.
BJIDENTIFY displays time series statistics useful for ARIMA model selection.
BJOIN extends a tree by joining another tree to a terminal node.
BKDISPLAY displays an identification key.
BKEY constructs an identification key.
BKIDENTIFY identifies specimens using a key.
BKKEEP saves information from an identification key.
BLANDALTMAN produces Bland-Altman plots to assess the agreement between two variates.

BLOCKSTRUCTURE defines the blocking structure of the design and hence the strata and the error terms. BNTEST calculates one- and two-sample binomial tests.
BOOTSTRAP produces bootstrapped estimates, standard errors and distributions.
BOXPLOT draws box-and-whisker diagrams or schematic plots.
BPCONVERT converts bit patterns between integers, pointers of set bits and textual descriptions.
BPRINT displays a tree.
BPRUNE prunes a tree using minimal cost complexity.
BRDISPLAY displays a regression key.
BREAK suspends execution of the statements in the current channel or control structure and takes
subsequent statements from the channel specified.
BREGRESSION constructs a regression tree.
BRFDISPLAY displays information about a random regression forest.
BRFOREST constructs a random regression forest.
BRFPREDICT makes predictions using a random regression forest.
BRKEEP saves information from a regression tree.
BRPREDICT makes predictions using a regression tree.
BRVALUES forms values for nodes of a regression tree.
CABIPLOT plots results from correspondence analysis or multiple correspondence analysis.
CALCULATE calculates numerical values for data structures.
CALLS lists library procedures called by a procedure.
CANCORRELATION does canonical correlation analysis.
CAPTION prints captions in standardized formats.
CASE introduces a "multiple-selection" control structure.
CASSOCIATION calculates measures of association for circular data.
CATALOGUE displays the contents of a backing-store file.
CATRENDTEST calculates the Cochran-Armitage chi-square test for trend.
CCA performs canonical correspondence analysis.
CCOMPARE tests whether samples from circular distributions have a common mean direction or have identical distributions.
CDESCRIBE calculates summary statistics and tests of circular data.
CDNAUGMENTEDDESIGN constructs an augmented block design, using CycDesigN if the controls are in an incomplete-block design.
CDNBLOCKDESIGN constructs a block design using CycDesigN.
CDNPREP constructs a multi-location partially-replicated design using CycDesigN.
CDNROWCOLUMNDESIGN constructs a row-column design using CycDesigN.
CENSOR pre-processes censored data before analysis by ANOVA.
CHECKARGUMENT checks the arguments of a procedure.
CHIPERMTEST performs a random permutation test for a two-dimensional contingency table.
CHISQUARE calculates chi-square statistics for one- and two-way tables.
CINTERACTION clusters rows and columns of a two-way interaction table.
CLASSIFY obtains a starting classification for non-hierarchical clustering.
CLOSE closes files.
CLUSTER forms a non-hierarchical classification.
cmhtest performs the Cochran-Mantel-Haenszel test.
COKRIGE calculates kriged estimates using a model fitted to the sample variograms and crossvariograms of a set of variates.
COLOUR defines the red, green and blue intensities to be used for the Genstat colours with certain graphics devices.
COMBINE combines or omits "slices" of a multi-way data structure (table, matrix, or variate).
COMMANDINFORMATION provides information about whether (and how) a command has been implemented.
CONCATENATE concatenates and truncates lines (units) of text structures; allows the case of letters to be changed.
CONCORD is a synonym for KCONCORDANCE.
CONFIDENCE calculates simultaneous confidence intervals.
CONTOUR is a synonym for LPCONTOUR.

CONVEXHULL finds the points of a single or a full peel of convex hulls.
COPY forms a transcript of a job.
CORANALYSIS does correspondence analysis, or reciprocal averaging.
CORRELATE forms correlations between variates, autocorrelations of variates, and lagged crosscorrelations between variates.
CORRESP is a synonym for CORANALYSIS.
COVARIATE specifies covariates for use in subsequent ANOVA statements.
COVDESIGN produces experimental designs efficient under analysis of covariance.
CSPRO reads a data set from a CSPro survey data file and dictionary, and loads it into Genstat or puts it into a spreadsheet file.
CUMDISTRIBUTION fits frequency distributions to accumulated counts.
CRBIPLOT plots correlation or distance biplots after RDA, or ranking biplots after CCA.
CRTRIPLOT plots ordination biplots or triplots after CCA or RDA.
CVA performs canonical variates analysis.
CVAPLOT plots the mean and unit scores from a canonical variates analysis.
CVASCORES calculates scores for individual units in canonical variates analysis.
CVATRELLIS displays the distribution of groups over 2 dimensions from a CVA analysis using a trellis of bar or pie charts.
DARROW adds arrows to an existing plot.
DAYLENGTH calculates daylengths at a given period of the year.
DBARCHART produces bar charts for one or two-way tables.
DBCOMMAND runs an SQL command on an ODBC database.
DBEXPORT updates an ODBC database table using data from Genstat.
DBIMPORT loads data into Genstat from an ODBC database.
DBINFORMATION loads information on the tables and columns in an ODBC database.
DBIPLOT plots a biplot from an analysis by PCP, CVA or PCO.
DBITMAP plots a bit map of RGB colours.
DCIRCULAR plots circular data.
DCLEAR clears a graphics screen.
dClose closes windows in the Genstat Graphics Viewer.
DCLUSTERLABELS labels clusters in a single-page dendrogram plotted by DDENDROGRAM.
DCOLOURS forms a band of graduated colours for graphics.
DCOMPOSITIONAL plots 3-part compositional data within a barycentric triangle.
DCONTOUR draws contour plots on a plotter or graphics monitor.
DCORRELATION plots a correlation matrix.
DCOVARIOGRAM plots 2-dimensional auto- and cross-variograms.
DDEEXPORT sends data or commands to a Dynamic Data Exchange server.
DDEIMPORT gets data from a Dynamic Data Exchange (DDE) server.
DDENDROGRAM draws dendrograms with control over structure and style.
DDESIGN plots the plan of an experimental design.
DDISPLAY redraws the current graphical display.
DEBUG puts an implicit BREAK statement after the current statement and after every NSTATEMENTS subsequent statements, until an ENDDEBUG is reached.
DECIMALS sets the number of decimals for a structure, using its round-off.
DECLARE declares one or more customized data structures.
DELETE deletes the attributes and values of structures.
DELLIPSE draws a 2-dimensional scatter plot with confidence, prediction and/or equal-frequency ellipses superimposed.
DEMC performs Bayesian computing using the Differential Evolution Markov Chain algorithm.
DERRORBAR adds error bars to a graph.
DESCRIBE saves and/or prints summary statistics for variates.
DESIGN helps to select and generate effective experimental designs.
DEVICE switches between (high-resolution) graphics devices.
DFINISH ends a sequence of related high-resolution plots.
DFONT defines the default font for high-resolution graphics.
DFOURIER performs a harmonic analysis of a univariate time series.

DFRTEXT adds text to a graphics frame.
DFUNCTION plots a function.
DGRAPH draws graphs on a plotter or graphics monitor.
DHELP provides information about Genstat graphics.
DHISTOGRAM draws histograms on a plotter or graphics monitor.
DHSCATTERGRAM plots an h-scattergram.
DIAGONALMATRIX declares one or more diagonal matrix data structures.
DIALLEL analyses full and half diallel tables with parents.
dILUTION calculates Most Probable Numbers from dilution series data.
DIRECTORY prints or saves a list of files with names matching a specified mask.
DISCRIMINATE performs discriminant analysis.
DISPLAY prints, or reprints, diagnostic messages.
DISTRIBUTION estimates the parameters of continuous and discrete distributions.
DKALMAN plots results from an analysis by KALMAN.
DKEEP saves information from the last plot on a particular device.
DKEY adds a key to a graph.
DKSTPLOT produces diagnostic plots for space-time clustering.
DLOAD loads the graphics environment settings from an external file.
DMADENSITY plots the empirical CDF or PDF (kernel smoothed) by groups.
DMASS plots discrete data like mass spectra, discrete probability functions.
DMOSAIC produces a mosaic plot to display a table of counts.
DMSCATTER produces a scatter-plot matrix for one or two sets of variables.
DMST gives a high resolution plot of an ordination with minimum spanning tree.
DOTHISTOGRAM plots dot histograms.
DOTPLOT produces a dot-plot using line-printer or high-resolution graphics.
DPARALLEL displays multivariate data using parallel coordinates.
DPIE draws a pie chart on a plotter or graphics monitor.
DPOLYGON draws polygons using high-resolution graphics.
DPROBABILITY creates a probability distribution plot of the values in a variate.
DPSPECTRALPLOT calculates an estimate of the spectrum of a spatial point pattern.
DPTMAP draws maps for spatial point patterns using high-resolution graphics.
DPTREAD adds points interactively to a spatial point pattern.
DQMAP displays a genetic map.
DQMKSCORES plots a grid of marker scores for genotypes and indicates missing data.
DQMQTLSCAN plots the results of a genome-wide scan for QTL effects in multi-environment trials.
DQRECOMBINATIONS plots a matrix of recombination frequencies between markers.
DQSQTLSCAN plots the results of a genome-wide scan for QTL effects in single-environment trials.
DREAD reads the locations of points from an interactive graphical device.
DREFERENCELINE adds reference lines to a graph.
DREPMEASURES plots profiles and differences of profiles for repeated measures data.
DRESIDUALS plots residuals.
DROP drops terms from a linear, generalized linear, generalized additive, or nonlinear model.
DRPOLYGON reads a polygon interactively from the current graphics device.
DSAVE saves the current graphics environment settings to an external file.
DSCATTER produces a scatter-plot matrix using high-resolution graphics.
DSEPARATIONPLOT creates a separation plot for visualising the fit of a model with a dichotomous (i.e.
binary) or polytomous (i.e. multi-categorical) outcome.
DSHADE plots a shade diagram of 3-dimensional data.
DSTART starts a sequence of related high-resolution plots.
DSTTEST plots power and significance for \(t\)-tests, including equivalence tests.
DSURFACE produces perspective views of a two-way arrays of numbers.
DTABLE plots tables.
DTEXT adds text to a graph.
DTIMEPLOT produces horizontal bars displaying a continuous time record.
DUMMY declares one or more dummy data structures.
DUMP prints information about data structures, and internal system information.

DUPLICATE forms new data structures with attributes taken from an existing structure.
DVARIOGRAM plots fitted models to an experimental variogram.
DVIEW views windows in the Genstat Graphics Viewer.
DXDENSITY produces one-dimensional density (or violin) plots.
DXYDENSITY produces density plots for large data sets.
DXYGRAPH draws two-dimensional graphs with marginal distribution plots alongside the \(y\) - and \(x\)-axes.
DYPOLAR produces polar plots.
D2GROUPS displays the distribution of groups in a plane using a trellis of bar or pie charts.
D3GRAPH plots a 3-dimensional graph.
D3HISTOGRAM plots three-dimensional histograms.
ECABUNDANCEPLOT produces rank/abundance, ABC and \(k\)-dominance plots
ECACCUMULATION plots species accumulation curves for samples or individuals.
ECANOSIM perform's an analysis of similarities (ANOSIM)
ECDIVERSITY calculates measures of diversity with jackknife or bootstrap estimates
ECFIT fits models to species abundance data
ECNICHE generates relative abundance of species for niche-based models
ECNPESTIMATE calculates nonparametric estimates of species richness.
ECRAREFACTION calculates individual or sample-based rarefaction
EDDUNNETT calculates equivalent deviates for Dunnett's simultaneous confidence interval around a
control.
EDFTEST performs empirical-distribution-function goodness-of-fit tests.
EDIT edits text vectors.
ELPOISSON calculates expected values of the lower parts of Poisson distributions.
ELSE introduces the default set of statements in block-if or in multiple-selection control structures.
ELSIF introduces a set of alternative statements in a block-if control structure.
ENDBREAK returns to the original channel or control structure and continues execution.
ENDCASE indicates the end of a "multiple-selection" control structure.
ENDDEBUG cancels a DEBUG statement.
ENDFOR indicates the end of the contents of a loop.
ENDIF indicates the end of a block-if control structure.
endjob ends a Genstat job.
ENDPROCEDURE indicates the end of the contents of a Genstat procedure.
ENQUIRE provides details about files opened by Genstat.
EQUATE transfers data between structures of different sizes or types (but the same modes i.e. numerical or text) or where transfer is not from single structure to single structure.
ESTIMATE is a synonym for TFIT.
EUPOISSON calculates expected values of the upper parts of Poisson distributions.
EXAMPLE obtains and runs a Genstat example program.
EXECUTE executes the statements contained within a text.
EXIT exits from a control structure.
EXPORT outputs data structures in foreign file formats, including Excel, Quattro, dBase, SPlus, Gauss,
MatLab and Instat, or as plain or comma-delimited text.
EXPRESSION declares one or more expression data structures.
EXTERNAL declares an external function in a DLL for use by the own function.
EXTRABINOMIAL fits the models of Williams (1982) to overdispersed proportions.
FACAMEND permutes the levels and labels of a factor.
FACCOMBINATIONS forms a factor to indicate observations with identical combinations of values of a set of variates, texts or factors.
FACDIVIDE represents a factor by factorial combinations of a set of factors.
FACEXCLUDEUNUSED redefines the levels and labels of a factor to exclude those that are unused.
FACGETLABELS obtains the labels for a factor if it has been defined with labels, or constructs labels
from its levels otherwise.
FACLEVSTANDARDIZE standardizes the levels or labels of a list of factors.
FACMERGE merges levels of factors.
FACPRODUCT forms a factor with a level for every combination of other factors.
FACROTATE rotates factor loadings from a principal components, canonical variates or factor analysis.

FACSORT sorts the levels of a factor according to an index vector.
FACTOR declares one or more factor data structures.
FACUNIQUE redefines a factor so that its levels and labels are unique.
FALIASTERMS forms information about aliased model terms in analysis of variance.
FARGUMENTS forms lists of arguments involved in an expression.
FAULT checks whether to issue a diagnostic, i.e. a fault, warning or message.
FBASICCONTRASTS breaks a model term down into its basic contrasts.
FBETWEENGROUPVECTORS forms variates and classifying factors containing within-group summaries to
use e.g. in a between-group analysis.
FCA performs factor analysis.
FCLASSIFICATION forms a classification set for each term in a formula, breaks a formula up into
separate formulae (one for each term), and applies a limit to the number of factors and variates in the terms of a formula.
FCOMPLEMENT forms the complement of an incomplete block design.
FCONTRASTS modifies a model formula to contain contrasts of factors.
FCOPY makes copies of files.
FCORRELATION forms the correlation matrix for a list of variates.
FCOVARIOGRAM forms a covariogram structure containing auto-variograms of individual variates and
cross-variograms for pairs from a list of variates.
FDELETE deletes files.
FDESIGNFILE forms a backing-store file of information for AGDESIGN.
FDIALLEL forms the components of a diallel model for REML or regression.
FDISTINCTFACTORS checks sets of factors to remove any that define duplicate classifications.
FDRBONFERRONI estimates false discovery rates by a Bonferroni-type procedure.
FDRMIXTURE estimates false discovery rates using mixture distributions.
FEXACT 2 X 2 does Fisher's exact test for \(2 \times 2\) tables.
FFRAME forms multiple windows in a plot-matrix for high-resolution graphics.
FFREERESPONSEFACTOR forms multiple-response factors from free-response data.
FHADAMARDMATRIX forms Hadamard matrices.
FHAT calculates an estimate of the F nearest-neighbour distribution function.
FIELLER calculates effective doses or relative potencies.
FILEREAD reads data from a file.
FILTER is a synonym for TFILTER.
FIT fits a linear, generalized linear, generalized additive, or generalized nonlinear model.
FITCURVE fits a standard nonlinear regression model.
FITINDIVIDUALLY fits regression models one term at a time.
FITMULTINOMIAL fits generalized linear models with multinomial distribution.
FITNONLINEAR fits a nonlinear regression model or optimizes a scalar function.
FITNONNEGATIVE is a synonym for RNONNEGATIVE.
FITPARALLEL is a synonym for RPARALLEL.
FITSCHNUTE is a synonym for RSCHNUTE.
FKEY forms design keys for multi-stratum experimental designs, allowing for confounded and aliased treatments.
FLRV forms the values of LRV structures.
FMEGAENVIRONMENTS forms mega-environments based on winning genotypes from an AMMI-2 model.
FMFACTORS forms a pointer of factors representing a multiple-response.
FNCORRELATION calculates correlations from variances and covariances, together with their variances and covariances.
FNLINEAR estimates linear functions of random variables, and calculates their variances and covariances.
FNPOWER estimates products of powers of two random variables, and calculates their variances and covariances.
FOCCURRENCES counts how often each pair of treatments occurs in the same block.
FOR introduces a loop.
FORECAST is a synonym for TFORECAST.

FORMULA declares one or more formula data structures.
FOURIER calculates cosine or Fourier transforms of real or complex series.
FPARETOSET forms the Pareto optimal set of non-dominated groups.
FPLOTNUMBER forms plot numbers for a row-by-column design.
FPROJECTIONMATRIX forms a projection matrix for a set of model terms.
FPSEUDOFACTORS determines patterns of confounding and aliasing from design keys, and extends the treatment model to incorporate the necessary pseudo-factors.
FRAME defines the positions and appearance of the plotting windows within the frame of a highresolution graph.
FREGULAR expands vectors onto a regular two-dimensional grid.
FRENAME renames files.
FRESTRICTEDSET forms vectors with the restricted subset of a list of vectors.
FRIEDMAN performs Friedman's non-parametric analysis of variance.
FROWCANONICALMATRIX puts a matrix into row canonical, or reduced row echelon, form.
FRQUANTILES forms regression quantiles.
FRTPRODUCTDESIGNMATRIX forms summation, or relationship, matrices for model terms.
FRUITMACHINE runs a fruit machine using pop-up menus and Genstat graphics.
FSIMILARITY forms a similarity matrix or a between-group-elements similarity matrix or prints a
similarity matrix.
fspreadsheet creates a Genstat Spreadsheet file (GSH) from specified data structures.
FSSPM forms the values of SSPM structures.
FSTRING forms a single string from a list of strings in a text.
FTEXT forms a text structure from a variate.
FTSM forms preliminary estimates of parameters in time-series models.
FUNIQUEVALUES redefines a variate or text so that its values are unique.
FVARIOGRAM forms experimental variograms.
FVCOVARIANCE forms the variance-covariance matrix for a list of variates.
FVSTRING forms a string listing the identifiers of a set of data structures.
FWITHINTERMS forms factors to define terms representing the effects of one factor within another factor.
FZERO gives the F function expectation under complete spatial randomness.
F2DRESIDUALVARIOGRAM calculates and plots a 2-dimensional variogram from a 2-dimensional array of residuals.
GALOIS forms addition and multiplication tables for a Galois finite field.
GBGRIDCONVERSION converts GB grid references to or from latitudes and longitudes or to or from UTM coordinates.
GEE fits models to longitudinal data by generalized estimating equations.
GENERATE generates factor values for designed experiments.
GENPROCRUSTES performs a generalized Procrustes analysis.
GESTABILITY calculates stability coefficients for genotype-by-environment data.
GET accesses details of the "environment" of a Genstat job.
GETATTRIBUTE accesses attributes of structures.
GETLOCATIONS finds locations of an identifier within a pointer, or a string within a factor or text, or a
number within any numerical data structure.
GETNAME forms the name of a structure according to its IPRINT attribute.
GETRGB gets the RGB values of the standard graphics colours.
GGEBIPLOT plots displays to assess genotype+genotype-by-environment variation.
GHAT calculates an estimate of the G nearest-neighbour distribution function.
GINVERSE calculates the generalized inverse of a matrix.
GLDISPLAY displays further output from a GLMM analysis.
GLKEEP saves results from a GLMM analysis.
GLM analyses non-standard generalized linear models.
GLMM fits a generalized linear mixed model.
GLPERMTEST does random permutation tests for generalized linear mixed models.
GLPLOT plots residuals from a GLMM analysis.
GLRTEST calculates likelihood tests to assess random terms in a generalized linear mixed model.

GLTOBITPOISSON uses the Tobit method to fit a generalized linear mixed model with censored Poisson data.
GLPREDICT forms predictions from a GLMM analysis.
GPREDICTION produces genomic predictions (breeding values) using phenotypic and molecular marker information.
GRANDOM generates pseudo-random numbers from probability distributions.
GRAPH is a synonym for LPGRAPH.
GRCSR generates completely spatially random points in a polygon.
GREJECTIONSAMPLE generates random samples using rejection sampling.
GRIBIMPORT reads data from a GRIB2 meteorological data file, and loads it or converts it to a spreadsheet file.
GRLABEL randomly labels two or more spatial point patterns.
GRMNOMIAL generates multinomial pseudo-random numbers.
GRMULTINORMAL generates multivariate normal pseudo-random numbers.
GROUPS forms a factor (or grouping variable) from a variate or text, together with the set of distinct
values that occur.
GRTHIN randomly thins a spatial point pattern.
GRTORSHIFT performs a random toroidal shift on a spatial point pattern.
GSTATISTIC calculates the gamma statistic of agreement for ordinal data.
G2AEXPORT forms a dbase file to transfer ANOVA output to Agronomix Generation II.
G2AFACTORS redefines block and treatment variables as factors.
G2VEXPORT forms a dbase file to transfer REML output to Agronomix Generation II.
HANOVA does hierarchical analysis of variance or covariance for unbalanced data.
HBOOTSTRAP performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster analysis.
HCLUSTER performs hierarchical cluster analysis.
HCOMPAREGROUPINGS compares groupings generated, for example, from cluster analyses.
HDISPLAY displays results ancillary to hierarchical cluster analyses: matrix of mean similarities
between and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the most typical elements from each group.
HEATUNITS calculates accumulated heat units of a temperature dependent process.
HELP provides help information about Genstat.
HFAMALGAMATIONS forms an amalgamations matrix from a minimum spanning tree.
HFCLUSTERS forms a set of clusters from an amalgamations matrix.
HGANALYSE analyses data using a hierarchical or double hierarchical generalized linear model.
HGDISPLAY displays results from a hierarchical or double hierarchical generalized linear model.
HGDRANDOMMODEL defines the random model in a hierarchical generalized linear model for the dispersion model of a double hierarchical generalized linear model.
HGFIXEDMODEL defines the fixed model for a hierarchical or double hierarchical generalized linear model.
HGFTEST calculates likelihood tests for fixed terms in a hierarchical generalized linear model
HGGRAPH draws a graph to display the fit of an HGLM or DHGLM analysis.
HGKEEP saves information from a hierarchical or double hierarchical generalized linear model analysis.
HGNONLINEAR defines nonlinear parameters for the fixed model of a hierarchical generalized linear model.
HGPLOT produces model-checking plots for a hierarchical or double hierarchical generalized linear model.
HGPREDICT forms predictions from a hierarchical or double hierarchical generalized linear model.
HGRANDOMMODEL defines the random model for a hierarchical or double hierarchical generalized linear model.
HGRTEST calculates likelihood tests for random terms in a hierarchical generalized linear model.
HGSTATUS displays the current HGLM model definitions.
HGTOBITPOISSON uses the Tobit method to fit a hierarchical generalized linear model with censored Poisson data.
HGWALD prints or saves Wald tests for fixed terms in an HGLM.
HISTOGRAM is a synonym for LPHISTOGRAM.

HLIST lists the data matrix in abbreviated form.
HPCLUSTERS prints a set of clusters.
HREDUCE forms a reduced similarity matrix (referring to the GROUPS instead of the original units).
HSUMMARIZE forms and prints a group by levels table for each test together with appropriate summary
statistics for each group.
IDENTIFY identifies an unknown specimen from a defined set of objects.
IF introduces a block-if control structure.
IFUNCTION estimates implicit and/or explicit functions of parameters.
IMPORT reads data from a foreign file format, and loads it or converts it to a spreadsheet file.
INPUT specifies the input file from which to take further statements.
INSIDE determines whether points lie within a specified polygon.
INTERPOLATE interpolates values at intermediate points.
IRREDUNDANT forms irredundant test sets for the efficient identification of a set of objects.
JACKKNIFE produces Jackknife estimates and standard errors.
JOB starts a Genstat job.
JOIN joins or merges two sets of vectors together, based on classifying keys.
KALMAN calculates estimates from the Kalman filter.
KAPLANMEIER calculates the Kaplan-Meier estimate of the survivor function.
KAPPA calculates a kappa coefficient of agreement for nominally scaled data.
KCONCORDANCE calculates Kendall's Coefficient of Concordance.
KCROSSVALIDATION computes cross validation statistics for punctual kriging.
KCSRENVELOPES simulates K function bounds under complete spatial randomness.
KERNELDENSITY uses kernel density estimation to estimate a sample density.
KHAT calculates an estimate of the K function.
KLABENVELOPES gives bounds for K function differences under random labelling.
KNEARESTNEIGHBOURS classifies items or predicts their responses by examining their \(k\) nearest neighbours.
KNNTRAIN evaluates and optimizes the \(k\)-nearest-neighbour algorithm using cross-validation.
KOLMOG2 performs a Kolmogorov-Smirnoff two-sample test.
KRIGE calculates kriged estimates using a model fitted to the sample variogram.
KRUSKAL carries out a Kruskal-Wallis one-way analysis of variance.
KSED calculates the standard error for K function differences under random labelling.
KSTHAT calculates an estimate of the K function in space, time and space-time.
KSTMCTEST performs a Monte-Carlo test for space-time interaction.
KSTSE calculates the standard error for the space-time K function.
KTAU calculates Kendall's rank correlation coefficient \(\tau\)
KTORENVELOPES gives bounds for the bivariate K function under independence.
K12HAT calculates an estimate of the bivariate K function.
LCONCORDANCE calculates Lin's concordance correlation coefficient.
LIBEXAMPLE accesses examples and source code of library procedures.
LIBFILENAME supplies the names of information files for library procedures.
LIBHELP provides help information about library procedures.
LIBSOURCE obtains the source code of a Genstat procedure.
LIBVERSION provides the name of the current Genstat Procedure Library.
LIfe plays John Conway's Game of Life.
LINDEPENDENCE finds the linear relations associated with matrix singularities.
LIST lists details of the data structures currently available within Genstat.
LORENZ plots the Lorenz curve and calculates the Gini and asymmetry coefficients.
LPCONTOUR produces contour maps of two-way arrays of numbers using character (i.e. line-printer)
graphics.
LPGRAPH produces point and line plots using character (i.e. line-printer) graphics.
LPHISTOGRAM produces histograms using character (i.e. line-printer) graphics.
LRIDGE does logistic ridge regression.
LRV declares one or more LRV data structures.
LRVSCREE prints a scree diagram and/or a difference table of latent roots.
LSIPLOT plots least significant intervals, saved from SEDLSI.

LSPLINE calculates design matrices to fit a natural polynomial or trignometric L-spline as a linear mixed model.
LVARMODEL analyses a field trial using the Linear Variance Neighbour model.
MAANOVA does analysis of variance for a single-channel microarray design.
MABGCORRECT performs background correction of Affymetrix slides.
MACALCULATE corrects and transforms two-colour microarray differential expressions.
MADESIGN assesses the efficiency of a two-colour microarray design.
MAEBAYES modifies \(t\)-values by an empirical Bayes method.
MAESTIMATE estimates treatment effects from a two-colour microarray design.
MAHISTOGRAM plots histograms of microarray data.
MANNWHITNEY performs a Mann-Whitney U test.
MANOVA performs multivariate analysis of variance and covariance.
MANTEL assesses the association between similarity matrices.
MAPCLUSTER clusters probes or genes with microarray data.
MAPLOT produces two-dimensional plots of microarray data.
MAREGRESSION does regressions for single-channel microarray data.
MARGIN forms and calculates marginal values for tables.
MARMA calculates Affymetrix expression values.
MAROBUSTMEANS does a robust means analysis for Affymetrix slides.
MASCLUSTER clusters microarray slides.
MASHADE produces shade plots to display spatial variation of microarray data. MATRIX declares one or more matrix data structures.
MAVDIFFERENCE applies the average difference algorithm to Affymetrix data.
MAVOLCANO produces volcano plots of microarray data.
MA2CLUSTER performs a two-way clustering of microarray data by probes (or genes) and slides.
MCNEMAR performs McNemar's test for the significance of changes.
MCOMPARISON performs pairwise multiple comparison tests within a table of means.
MCORANALYSIS does multiple correspondence analysis.
MCOVARIOGRAM fits models to sets of variograms and cross-variograms.
MCROSSPECTRUM performs a spectral analysis of a multiple time series.
MC1PSTATIONARY gives the stationary probabilities for a 1st-order Markov chain.
MDS performs non-metric multidimensional scaling.
MEDIANTETRAD gives robust identification of multiple outliers in 2-way tables.
MERGE copies subfiles from backing-store files into a single file.
META combines estimates from individual trials.
MICHAELISMENTEN fits the Michaelis-Menten equation for substrate concentration versus time data.
MINFIELDWIDTH calculates minimum field widths for printing data structures.
MINIMIZE finds the minimum of a function calculated by a procedure.
MIN1DIMENSION finds the minimum of a function in one dimension.
MMPREDICT predicts the Michaelis-Menten curve for a particular set of parameter values.
MNORMALIZE normalizes two-colour microarray data.
MODEL defines the response variate(s) and the type of model to be fitted for linear, generalized linear,
generalized additive, and nonlinear models.
MONOTONIC fits an increasing monotonic regression of y on x .
MOVINGAVERAGE calculates and plots the moving average of a time series.
MPOLISH performs a median polish of two-way data.
MPOWER forms integer powers of a square matrix.
MSEKERNEL2D estimates the mean square error for a kernel smoothing.
MTABULATE forms tables classified by multiple-response factors.
MULTMISSING estimates missing values for units in a multivariate data set.
MVAOD does an analysis of distance of multivariate data.
MVARIOGRAM fits models to an experimental variogram.
MVFILL replaces missing values in a vector with the previous non-missing value.
NAG calls an algorithm from the NAG Library.
NCONVERT converts integers between base 10 and other bases.
NCSPLINE calculates natural cubic spline basis functions (for use e.g. in REML).

NEIGHBOURS finds the neighbours of cells in a multi-dimensional array.
NLAR1 fits curves with an AR1 or a power-distance correlation model.
NLCONTRASTS fits nonlinear contrasts to quantitative factors in ANOVA.
NNDISPLAY displays output from a multi-layer perceptron neural network fitted by NNFIT.
NNFIT fits a multi-layer perceptron neural network.
NNPREDICT forms predictions from a multi-layer perceptron neural network fitted by NNFIT.
NORMTEST performs tests of univariate and/or multivariate Normality.
NOTICE provides news and other information about Genstat.
NOUGHTSANDCROSSES plays a game of noughts and crosses.
OPEN opens files.
OPLS performs orthogonal partial least squares regression.
OPTION defines the options of a Genstat procedure with information to allow them to be checked when the procedure is executed.
OR introduces a set of alternative statements in a "multiple-selection" control structure.
ORTHPOLYNOMIAL calculates orthogonal polynomials.
OUTPUT defines where output is to be stored or displayed.
own does work specified in Fortran subprograms linked into Genstat by the user.
PAGE moves to the top of the next page of an output file.
PAIRTEST performs t-tests for pairwise differences.
PARAMETER defines the parameters of a Genstat procedure with information to allow them to be checked when the procedure is executed.
PARTIALCORRELATIONS calculates partial correlations for a list of variates.
PASS does work specified in subprograms supplied by the user, but not linked into Genstat. This directive may not be available on some computers.
PCO performs principal coordinates analysis, also principal components and canonical variates analysis (but with different weighting from that used in CVA) as special cases.
PCOPROCRUSTES performs a multiple Procrustes analysis.
PCORELATE relates the observed values on a set of variables to the results of a principal coordinates analysis.
PCP performs principal components analysis.
PCPCLUSTER forms groups of units using the densities of their PCP scores.
PDESIGN prints or stores treatment combinations tabulated by the block factors.
PDUPLICATE duplicates a pointer, with all its components.
PEAKFINDER finds the locations of peaks in an observed series.
PEN defines the properties of "pens" for high-resolution graphics.
PENSPLINE calculates design matrices to fit a penalized spline as a linear mixed model.
PERCENT expresses the body of a table as percentages of one of its margins.
PERIODTEST gives periodogram-based tests for white noise in time series.
PERMUTE forms all possible permutations of the integers \(1 \ldots n\).
PFACLEVELS prints levels and labels of factors.
PLINK prints a link to a graphics file into an HTML file.
PLS fits a partial least squares regression model.
PNTEST calculates one- and two-sample Poisson tests.
POINTER declares one or more pointer data structures.
POSSEMIDEFINITE calculates a positive semi-definite approximation of a non-positive semi-definite
symmetric matrix.
PPAIR displays results of \(t\)-tests for pairwise differences in compact diagrams.
PRCORRELATION calculates probabilities for product moment correlations.
PRDOUBLEPOISSON calculates the probability density for the double Poisson distribution.
PREDICT forms predictions from a linear or generalized linear model.
PREWHITEN filters a time series before spectral analysis.
PRIMEPOWER decomposes a positive integer into its constituent prime powers.
PRINT prints data in tabular format in an output file, unformatted file, or text.
PRKTAU calculates probabilities for Kendall's rank correlation coefficient \(\tau\)
PRMANNWHITNEYU calculates probabilities for the Mann-Whitney U statistic.
PROBITANALYSIS fits probit models allowing for natural mortality and immunity.

PROCEDURE introduces a Genstat procedure.
PRSPEARMAN calculates probabilities for Spearman's rank correlation statistic.
PRWILCOXON calculates probabilities for the Wilcoxon signed-rank statistic.
PSPLINE calculates design matrices to fit a P-spline as a linear mixed model.
PTAREAPOLYGON calculates the area of a polygon.
PTBOX generates a bounding or surrounding box for a spatial point pattern.
PTCLOSEPOLYGON closes open polygons.
PTDESCRIBE gives summary and second order statistics for a point process.
PTFCLUSTERS forms clusters of points from their densities in multi-dimensional space.
PTFILLCLUSTERS fills holes within clusters of points in multi-dimensional space.
PTGRID generates a grid of points in a polygon.
PTINTENSITY calculates the overall density for a spatial point pattern.
PTKERNEL2D performs kernel smoothing of a spatial point pattern.
PTK3D performs kernel smoothing of space-time data.
PTREMOVE removes points interactively from a spatial point pattern.
PTROTATE rotates a point pattern.
PTSINPOLYGON returns points inside or outside a polygon.
QBESTGENOTYPES sorts individuals of a segregating population by their genetic similarity with a target
genotype, using the identity by descent (IBD) information at QTL positions.
QCANDIDATES selects QTLs on the basis of a test statistic profile along the genome.
QCOCHRAN performs Cochran's \(Q\) test for differences between related-samples
QDESCRIBE calculates descriptive statistics of molecular markers.
QDIALOG produces a modal dialog box to obtain a response from the user.
QDISCRIMINATE performs quadratic discrimination between groups i.e. allowing for different variance-covariance matrices.
QEIGENANALYSIS uses principal components analysis and the Tracy-Widom statistic to find the number of significant principal components to represent a set of variables.
QEXPORT exports genotypic data for QTL analysis.
QFACTOR allows the user to decide to convert texts or variates to factors.
QFLAPJACK creates a Flapjack project file from genotypic and phenotypic data.
QGSELECT obtains a representative selection of genotypes by means of genetic distance sampling or genetic distance optimization.
QIBDPROBABILITIES reads molecular marker data and calculates IBD probabilities.
QIMPORT imports genotypic and phenotypic data for QTL analysis.
QKINSHIPMATRIX forms a kinship matrix from molecular markers.
QLDDECAY estimates linkage disequilibrium (LD) decay along a chromosome.
QLINKAGEGROUPS forms linkage groups using marker data from experimental populations.
QLIST gets the user to select a response interactively from a list.
QMAP constructs genetic linkage maps using marker data from experimental populations.
QMASSOCIATION performs multi-environment marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers.
QMATCH matches different data structures to be used in QTL estimation.
QMBACKSELECT performs a QTL backward selection for loci in multi-environment trials or multiple populations.
QMESTIMATE calculates QTL effects in multi-environment trials or multiple populations.
QMKDIAGNOSTICS generates descriptive statistics and diagnostic plots of molecular marker data.
QMKRECODE recodes marker scores into separate alleles.
QMKSELECT obtains a representative selection of markers by means of genetic distance sampling or genetic distance optimization.
QMQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-environment trials or multiple populations.
QMTBACKSELECT performs a QTL backward selection for loci in multi-trait trials.
QMTESTIMATE calculates QTL effects in multi-trait trials.
QMTQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping) in multi-trait trials.
QMVAF calculates percentage variance accounted for by QTL effects in a multi-environment analysis.

QMVESTIMATE replaces missing molecular marker scores using conditional genotypic probabilities.
QMVREPLACE replaces missing marker scores with the mode scores of the most similar genotypes.
QNORMALIZE performs quantile normalization.
\(Q R D\) calculates QR decompositions of matrices.
QRECOMBINATIONS calculates the expected numbers of recombinations and the recombination
frequencies between markers.
QREPORT creates an HTML report from QTL linkage or association analysis results.
QSASSOCIATION performs marker-trait association analysis in a genetically diverse population using bi-allelic and multi-allelic markers.
QSBACKSELECT performs a QTL backward selection for loci in single-environment trials.
QSELECTIONINDEX calculates (molecular) selection indexes by using phenotypic information and/or molecular scores of multiple traits.
QSESTIMATE calculates QTL effects in single-environment trials.
QSIMULATE simulates marker data and QTL effects for single and multiple environment trials.
QSQTLSCAN performs a genome-wide scan for QTL effects (Simple and Composite Interval Mapping)
in single-environment trials.
QTHRESHOLD calculates a threshold to identify a significant QTL.
QUANTILE calculates quantiles of the values in a variate.
QUESTION obtains a response using a Genstat menu.
RADIALSPLINE calculates design matrices to fit a radial-spline surface as a linear mixed model.
RANDOMIZE randomizes the units of a designed experiment or the elements of a factor or variate.
RANK produces ranks, from the values in a variate, allowing for ties.
RAR1 fits regressions with an AR1 or a power-distance correlation model.
RBDISPLAY displays output from a radial basis function model fitted by RBFIT.
RBFIT fits a radial basis function model.
RBPREDICT forms predictions from a radial basis function model fitted by RBFIT.
RBRADLEYTERRY fits the Bradley-Terry model for paired-comparison preference tests.
RCATENELSON performs a Cate-Nelson graphical analysis of bivariate data.
RCHECK checks the fit of a linear or generalized linear regression.
RCIRCULAR does circular regression of mean direction for an angular response.
RCOMPARISONS calculates comparison contrasts amongst regression means.
RCURVECOMMONNONLINEAR refits a standard curve with common nonlinear parameters across groups to provide s.e.'s for linear parameters.
RCYCLE controls iterative fitting of generalized linear, generalized additive, and nonlinear models, and specifies parameters, bounds etc for nonlinear models.
RDA performs redundancy analysis.
RDESTIMATES plots one- or two-way tables of regression estimates.
RDISPLAY displays the fit of a linear, generalized linear, generalized additive, or nonlinear model.
RDLOESSGROUPS displays results from a locally weighted regression model (loess) fitted to data with groups.
READ reads data from an input file, an unformatted file, or a text.
RECORD dumps a job so that it can later be restarted by a RESUME statement.
REDUCE is a synonym for HREDUCE.
REFORMULATE modifies a formula or an expression to operate on a different set of data structures.
RELATE is a synonym for PCORELATE.
REML fits a variance-components model by residual (or restricted) maximum likelihood.
RENAME assigns new identifiers to data structures.
REPPERIODOGRAM gives periodogram-based analyses for replicated time series.
RESHAPE reshapes a data set with classifying factors for rows and columns, into a reorganized data set
with new identifying factors.
RESTRICT defines a restricted set of units of vectors for subsequent statements.
RESUME restarts a recorded job.
RETRIEVE retrieves structures from a subfile.
RETURN returns to a previous input stream (text vector or input channel).
RFFAMOUNT fits harmonic models to mean rainfall amounts for a Markov model.
RFFPROBABILITY fits harmonic models to rainfall probabilities for a Markov model.

RFINLAYWILKINSON performs Finlay and Wilkinson's joint regression analysis of genotype-byenvironment data.
RFSUMMARY forms summaries for a Markov model from rainfall data.
RFUNCTION estimates functions of parameters of a nonlinear model.
RGRAPH draws a graph to display the fit of a regression model.
RIDGE produces ridge regression and principal component regression analyses.
RJOINT does modified joint regression analysis for variety-by-environment data.
RKEEP stores results from a linear, generalized linear, generalized additive, or nonlinear model.
RKESTIMATES saves estimates and other information about individual terms in a regression analysis.
RKLOESSGROUPS stores results from a locally weighted regression (loess) with groups model fitted to
data with groups.
RLASSO performs lasso using iteratively reweighted least-squares.
RLFUNCTIONAL fits a linear functional relationship model
RLIFETABLE calculates the life-table estimate of the survivor function.
RLOESSGROUPS fits locally weighted regression models (loess) to data with groups.
RMGLM fits a model where different units follow different generalized linear models.
RMPLCONFIDENCE estimates profile likelihood confidence intervals of predicted group means from a
linear or generalized linear model analysis.
RMULTIVARIATE performs multivariate linear regression with accumulated tests.
RNEGBINOMIAL fits a negative binomial generalized linear model estimating the aggregation parameter.
RNONNEGATIVE fits a generalized linear model with nonnegativity constraints.
ROBSSPM forms robust estimates of sum-of-squares-and-products matrices.
ROTATE does a Procrustes rotation of one configuration of points to fit another.
RPAIR gives t-tests for all pairwise differences of means from a regression or generalized linear model.
RPARALLEL carries out analysis of parallelism for nonlinear functions.
RPERMTEST does random permutation tests for regression or generalized-linear-model analyses
RPHCHANGE modifies a proportional hazards model fitted by RPHFIT.
RPHDISPLAY prints output for a proportional hazards model fitted by RPHFIT.
RPHFIT fits the proportional hazards model to survival data as a generalized linear model.
RPHKEEP saves information from a proportional hazards model fitted by RPHFIT.
RPHVECTORS forms vectors for fitting proportional hazards data as a generalized linear model.
RPLCONFIDENCE estimates profile likelihood confidence intervals of parameters in a linear or
generalized linear model.
RPOWER calculates the power (probability of detection) for regression models.
RPROPORTIONAL fits the proportional hazards model to survival data as a generalized linear model.
RQLINEAR fits and plots quantile regressions for linear models.
RQNONLINEAR fits and plots quantile regressions for nonlinear models.
RQSMOOTH fits and plots quantile regressions for loess or spline models.
RQUADRATIC fits a quadratic surface and estimates its stationary point.
RRETRIEVE retrieves a regression save structure from an external file.
RSCHNUTE fits a general 4 parameter growth model to a non-decreasing Y-variate.
RSCREEN performs screening tests for generalized or multivariate linear models.
RSEARCH helps search through models for a regression or generalized linear model.
RSPREADSHEET puts results from a regression, generalized linear or nonlinear model into Genstat spreadsheets.
RSTEST compares groups of right-censored survival data by nonparametric tests.
RSTORE stores a regression save structure in an external file.
RSURVIVAL models survival times of exponential, Weibull, extreme-value, log-logistic or lognormal distributions.
RTCOMPARISONS calculates comparison contrasts within a multi-way table of means.
RTOBITPOISSON uses the Tobit method to fit models to censored Poisson data.
RUGPLOT draws "rugplots" to display the distribution of one or more samples.
RUNTEST performs a test of randomness of a sequence of observations.
RVALIDATE fits regression models to validate predictions, for example from a deterministic model,
against observed data.
RWALD calculates Wald and F tests for dropping terms from a regression.

RXGENSTAT submits a set of commands externally to R and reads the output.
RYPARALLEL fits the same regression model to several response variates, and collates the output.
ROINFLATED fits zero-inflated regression models to count data with excess zeros.
ROKEEP saves information from a zero-inflated regression model for count data with excess zeros fitted
by ROINFLATED.
R2LINES fits two-straight-line (broken-stick) models to data
SAGRAPES produces statistics and graphs for checking sensory panel performance.
SAMPLE samples from a set of units, possibly stratified by factors.
SBNTEST calculates the sample size for binomial tests.
SCALAR declares one or more scalar data structures.
SCORRELATION calculates the sample size to detect specified correlations.
SDISCRIMINATE selects the best set of variates to discriminate between groups.
SEDLSI calculates least significant intervals.
SED2ESE calculates effective standard errors that give good approximate sed's.
SET sets details of the "environment" of a Genstat job.
SETALLOCATIONS runs through all ways of allocating a set of objects to subsets.
SETCALCULATE performs Boolean set calculations on the contents of vectors or pointers.
SETDEVICE opens a graphical file and specifies the device number on basis of its extension.
SETNAME sets the identifier of a data structure to be one specified in a text.
SETOPTION sets or modifies defaults of options of Genstat directives or procedures.
SETPARAMETER sets or modifies defaults of parameters of Genstat directives or procedures.
SETRELATE compares two sets of values in two data structures.
SET2FORMULA forms a model formula using structures supplied in a pointer.
SHELLEXECUTE launches executables or opens files in another application using their file extension.
SIGNTEST performs a one or two sample sign test.
SIMPLEX searches for the minimum of a function using the Nelder-Mead algorithm.
SKEWSYMMETRY provides an analysis of skew-symmetry for an asymmetric matrix.
SKIP skips lines in input or output files.
SLCONCORDANCE calculates the sample size for Lin's concordance coefficient.
SMANNWHITNEY calculates sample sizes for the Mann-Whitney test.
SMCNEMAR calculates sample sizes for McNemar's test.
SMOOTHSPECTRUM forms smoothed spectrum estimates for univariate time series.
SOM declares a self-organizing map.
SOMADJUST performs adjustments to the weights of a self-organizing map.
SOMDESCRIBE summarizes values of variables at nodes of a self-organizing map.
SOMESTIMATE estimates the weights for self-organizing maps.
SOMIDENTIFY allocates samples to nodes of a self-organizing map.
SOMPREDICT makes predictions using a self-organizing map.
SORT sorts units of vectors according to an index vector.
SPCAPABILITY calculates capability statistics.
SPCCHART plots c or u charts representing numbers of defective items.
SPCOMBINE combines spreadsheet and data files, without reading them into Genstat.
SPCUSUM prints CUSUM tables for controlling a process mean.
SPEARMAN calculates Spearman's rank correlation coefficient.
SPEWMA plots exponentially weighted moving-average control charts.
SPLINE calculates a set of basis functions for M-, B- or I-splines.
SPLOAD loads Genstat spreadsheet files.
SPPCHART plots \(p\) or \(n p\) charts for binomial testing for defective items.
SPNTEST calculates the sample size for a Poisson test.
SPRECISION calculates the sample size to obtain a specified precision.
SPSHEWHART plots control charts for mean and standard deviation or range.
SPSYNTAX puts details about the syntax of commands into a spreadsheet.
SSIGNTEST calculates the sample size for a sign test.
SSPM declares one or more SSPM data structures.
STACK combines several data sets by "stacking" the corresponding vectors.
STANDARDIZE standardizes columns of a data matrix to have mean zero and variance one.

STEEL performs Steel's many-one rank test.
STEM produces a simple stem-and-leaf chart.
STEP selects terms to include in or exclude from a linear, generalized linear, or generalized additive
model according to the ratio of residual mean squares.
STOP ends a Genstat program.
STORE to store structures in a subfile of a backing-store file.
STRUCTURE defines a compound data structure.
STTEST calculates the sample size for t-tests (including equivalence tests).
SUBSET forms vectors containing subsets of the values in other vectors.
SUSPEND suspends execution of Genstat to carry out commands in the operating system. This directive
may not be available on some computers.
SVBOOT bootstraps data from random surveys.
SVCALIBRATE performs generalized calibration of survey data.
SVD calculates singular value decompositions of matrices.
SVGLM fits generalized linear models to survey data.
SVHOTDECK performs hot-deck and model-based imputation for survey data.
SVMERGE merges strata prior to survey analysis.
SVMFIT fits a support vector machine.
SVMPREDICT forms the predictions using a support vector machine.
SVREWEIGHT modifies survey weights, adjusting other weights to ensure that their overall sum remains unchanged.
SVSAMPLE constructs stratified random samples.
SVSTRATIFIED analyses stratified random surveys by expansion or ratio raising.
SVTABULATE tabulates data from random surveys, including multistage surveys and surveys with
unequal probabilities of selection.
SVWEIGHT forms survey weights.
SWITCH adds terms to, or drops them from a linear, generalized linear, generalized additive, or
nonlinear model.
SYMMETRICMATRIX declares one or more symmetric matrix data structures.
SYNTAX obtains details of the syntax of a command and the source code of a procedure.
TABINSERT inserts the contents of a sub-table into a table.
TABLE declares one or more table data structures.
TABMODE forms summary tables of modes of values
TABSORT sorts tables so their margins are in ascending or descending order.
TABTABLE opens a tabbed-table spreadsheet in the Genstat client.
TABULATE forms summary tables of variate values.
TALLY forms a simple tally table of the distinct values in a vector.
TCOMBINE combines several tables into a single table.
TDISPLAY displays further output after an analysis by TFIT.
TENSORSPLINE calculates design matrices to fit a tensor-spline surface as a linear mixed model. TERMS specifies a maximal model, containing all terms to be used in subsequent linear, generalized
linear, generalized additive, and nonlinear models.
TEXT declares one or more text data structures.
TFILTER filters time series by time-series models.
TFIT estimates parameters in Box-Jenkins models for time series.
TFORECAST forecasts future values of a time series.
THINPLATE calculates the basis functions for thin-plate splines.
TKEEP saves results after an analysis by TFIT.
TOBIT performs a Tobit linear mixed model analysis on data with fixed-threshold censoring.
TRANSFERFUNCTION specifies input series and transfer-function models for subsequent estimation of a model for an output series.
TREATMENTSTRUCTURE specifies the treatment terms to be fitted by subsequent ANOVA statements.
TREE declares a tree, \& initializes it to have a single node known as the root.
TRELLIS does a trellis plot.
TRY displays results of single-term changes to a linear, generalized linear, or generalized additive model.

TSM declares one or more TSM data structures.
TSUMMARIZE displays characteristics of time series models.
TTEST performs a one- or two-sample \(t\)-test.
TUKEYBIWEIGHT estimates means using the Tukey biweight algorithm.
TVARMA fits a vector autoregressive moving average (VARMA) model.
TVFORECAST forecasts future values from a vector autoregressive moving average (VARMA) model.
TVGRAPH plots a vector autoregressive moving average (VARMA) model.
TXBREAK breaks up a text structure into individual words.
TXCONSTRUCT forms a text structure by appending or concatenating values of scalars, variates, texts,
factors, pointers or formulae; allows the case of letters to be changed or values to be truncated and reversed.
TXFIND finds a subtext within a text structure.
TXINTEGERCODES converts textual characters to and from their corresponding integer codes.
TXPAD pads strings of a text structure with extra characters so that their lengths are equal.
TXPOSITION locates strings within the lines of a text structure.
TXPROGRESSION forms a text containing a progression of strings.
TXREPLACE replaces a subtext within a text structure.
TXSPLIT splits a text into individual texts, at positions on each line marked by separator character(s).
TX2VARIATE converts text structures to variates.
\(T \% C O N T R O L\) expresses tables as percentages of control cells.
UNITS defines an auxiliary vector of labels and/or the length of any vector whose length is not defined when a statement needing it is executed.
UNSTACK splits vectors into individual vectors according to levels of a factor.
UTMCONVERSION converts between geographical latitude and longitude coordinates and UTM eastings and northings.
VABLOCKDESIGN analyses an incomplete-block design by REML, allowing automatic selection of random and spatial covariance models.
VAIC calculates the Akaike and Schwarz (Bayesian) information coefficients for REML.
VALINEBYTESTER provides combinabilities and deviances for a line-by-tester trial analysed by
VABLOCKDESIGN or VAROWCOLUMNDESIGN.
VALLSUBSETS fits all subsets of the fixed terms in a REML analysis.
VAMETA performs a REML meta analysis of a series of trials.
VAOPTIONS defines options for the fitting of models by VARANDOM and associated procedures.
VARANDOM finds the best REML random model from a set of models defined by VFMODEL.
VARECOVER recovers when REML, is unable to fit a model, by simplifying the random model.
VARIATE declares one or more variate data structures.
VAROWCOLUMNDESIGN analyses a row-and-column design by REML, with automatic selection of the best random and spatial covariance model.
VASDISPLAY displays further output from an analysis by VASERIES.
VASERIES analyses a series of trials with incomplete-block or row-and-column designs by REML, automatically selecting the best random models.
VASKEEP copies information from an analysis by VASERIES into Genstat data structures.
VASMEANS saves experiment \(\times\) treatment means from analysis of a series of trials by
VASERIES.
VAYPARALLEL does the same REML analysis for several y-variates, and collates the output.
VBOOTSTRAP performs a parametric bootstrap of the fixed effects in a REML analysis.
VCHECK checks standardized residuals from a REML analysis.
VCOMPONENTS defines the variance-components model for REML.
VCRITICAL uses a parametric bootstrap to estimate critical values for a fixed term in a REML analysis.
VCYCLE controls details of the REML algorithm.
VDEFFECTS plots one- or two-way tables of effects estimated in a REML analysis.
VDFIELDRESIDUALS display residuals from a REML analysis in field layout.
VDISPLAY displays further output from a REML analysis.
VEQUATE equates values across a set of structures.
VFIXEDTESTS saves fixed tests from a REML analysis.
VFLC performs an F-test of random effects in a linear mixed model based on linear combinations of the
responses, i.e. an FLC test.
VFMODEL forms a model-definition structure for a REML analysis.
VFPEDIGREE checks and prepares pedigree information from several factors, for use by VPEDIGREE and REML.
VFRESIDUALS obtains residuals, fitted values and their standard errors from a REML analysis.
VFSTRUCTURE adds a covariance-structure definition to a REML model-definition structure.
VFUNCTION calculates functions of variance components from a REML analysis.
VGESELECT selects the best variance-covariance model for a set of environments.
VGRAPH plots tables of means from REML.
VHERITABILITY calculates generalized heritability for a random term in a REML analysis.
VHOMOGENEITY tests homogeneity of variances and variance-covariance matrices.
VINTERPOLATE performs linear \& inverse linear interpolation between variates.
VKEEP copies information from a REML analysis into Genstat data structures.
VLINEBYTESTER analyses a line-by-tester trial by REML.
VLSD prints approximate least significant differences for REML means.
VMATRIX copies values and row/column labels from a matrix to variates or texts.
VMCOMPARISON performs pairwise comparisons between REML means.
VMETA performs a multi-treatment meta analysis using summary results from individual experiments.
VMODEL specifies the model for a REML analysis using a model-definition structure defined by
VFMODEL.
VNEARESTNEIGHBOUR analyses a field trial using nearest neighbour analysis.
VORTHPOLYNOMIAL forms orthogonal polynomials over time for repeated measures.
VPEDIGREE generates an inverse relationship matrix for use when fitting animal or plant breeding models by REML.
VPERMTEST does random permutation tests for the fixed effects in a REML analysis.
VPLOT plots residuals from a REML analysis.
VPOWER uses a parametric bootstrap to estimate the power (probability of detection) for terms in a REML analysis.
VPREDICT forms predictions from a REML model.
VRACCUMULATE forms a summary accumulating the results of a sequence of REML random models.
VRADD adds terms from a REML fixed model into a Genstat regression.
VRCHECK checks effects of a random term in a REML analysis.
VRDISPLAY displays output for a REML fixed model fitted in a Genstat regression.
VRDROP drops terms in a REML fixed model from a Genstat regression.
VREGRESS performs regression across variates.
VREPLACE replaces values of vectors and pointers.
VRESIDUAL defines the residual term for a REML model.
VRFIT fits terms from a REML fixed model in a Genstat regression.
VRKEEP saves output for a REML fixed model fitted in a Genstat regression.
VRMETAMODEL forms the random model for a REML meta analysis.
VRPERMTEST performs permutation tests for random terms in REML analysis.
VRSETUP sets up Genstat regression to assess terms from a REML fixed model.
VRSWITCH adds or drops terms from a REML fixed model in a Genstat regression.
VRTRY tries the effect of adding and dropping individual terms from a REML fixed model in a
Genstat regression.
VSAMPLESIZE estimates the replication to detect a fixed term or contrast in a REML analysis, using parametric bootstrap.
VSCREEN performs screening tests for fixed terms in a REML analysis.
VSOM analyses a simple REML variance components model for outliers using a variance shift outlier model.
VSPECTRALCHECK forms the spectral components from the canonical components of a multitiered
design, and constrains any negative spectral components to zero.
VSPREADSHEET saves results from a REML analysis in a spreadsheet.
VSTATUS prints the current model settings for REML.
VSTRUCTURE defines a variance structure for random effects in a REML model.

VSUMMARY summarizes a variate, with classifying factors, into a data matrix of variates and factors.
VSURFACE fits a 2-dimensional spline surface using REML, and estimates its extreme point.
VTABLE forms a variate and set of classifying factors from a table.
VTCOMPARISONS calculates comparison contrasts within a multi-way table of predicted means from a REML analysis.
VUVCOVARIANCE forms the unit-by-unit variance-covariance matrix for specified variance components in a REML model.
WADLEY fits models for Wadley's problem, allowing alternative links and errors.
wilcoxon performs a Wilcoxon Matched-Pairs (Signed-Rank) test.
WINDROSE plots rose diagrams of circular data like wind speeds.
WORKSPACE accesses private data structures for use in procedures.
WSTATISTIC calculates the Shapiro-Wilk test for Normality.
XAXIS defines the x -axis in each window for high-resolution graphics.
XOCATEGORIES performs analyses of categorical data from cross-over trials.
XOEFFICIENCY calculates efficiency of estimating effects in cross-over designs.
XOPOWER estimates the power of contrasts in cross-over designs.
YAXIS defines the y-axis in each window for high-resolution graphics.
YTRANSFORM estimates the parameter lambda of a single parameter transformation.
ZAXIS defines the \(z\)-axis in each window for high-resolution graphics.
\%CD changes the current directory.
\%CLEAR clears the client Output window.
\(\%\) CLOSE closes the binary file opened by \%OPEN.
\%FLUSH flushes server output immediately to the client Output window.
\(\%\) FPOSITION returns the current position in the binary file opened by \%OPEN.
\%LOG adds text into the Input Log window in the Genstat client.
\(\%\) MESSAGEBOX displays text in a dialog in the Genstat client.
\%OPEN Open a binary file for use with \%WRITE.
\%SLEEP pauses execution of the server for a time specified in seconds.
\%TEMPFILE creates a unique temporary file in the Genstat temporary folder.
\%WRITE writes values of data structures to a binary file opened by \%OPEN.```

[^0]: plots bar charts
 produces scatter plots and line graphs
 plots histograms
 produces pie charts
 produces contour maps
 plots a bit map of RGB colours
 produces a shade diagram of 3-dimensional data
 draws a perspective plot of a two-way array of numbers

[^1]: DOWN $=$ scalar or factors

