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Microarray example files 
 

The microarray data files must be downloaded separately from https://kb.vsni.co.uk/wp-

content/uploads/Microarrays.zip. These should then be unzipped to the folder C:\Program Files\Gen21Ed 

\Data (this will create a Microarrays folder under Data). If you do not have rights to unzip files to that 

directory, then they can be placed in any directory, but will not be found in the File | Open Example Data 

Sets menu. If you are unsure of how to unzip the files, then opening the Microarrays.zip file with File | 

Open will let you select a file from the zip file. The Microarrays folder should contain the following files:  
 

File Description 

APoAIGeneNames.tab Gene names for APO knock-out mouse expr as downloaded from web 

APoAIGenes.gsh Gene names for APO Knock-out mouse expt in Genstat format 

ApoAIKnockOut.gsh Data for spots on all slides in APO knockout expt in unstacked format 

ApoAIKnockOutContrast.gsh Matrix holding contrast between knock-out & standard treatments 

ApoAIKnockOutEffects.gsh Estimated effects for APO knock-out expt 

ApoAIKnockOutSlides.gsh Description of 16 slides used in APO knock-out expt 

ApoAIKnockOutStacked.gsh All data in APO knock-out expt  

APoAISlides.csv Data for spots on all slides in APO knock-out expt as downloaded 

13-6-data.gpr – 3-9-data.gpr 4 GenePix analysis results files 

Contrasts13-6-9.gsh Matrix holding contrast between GenePix treatments 

Data13-6-9.gwb Combined data set containing 4 GenePix slides 

Slides13-6-9.gsh Treatments on each of the 4 GenePix slides 

Estimates13-6-9.gsh Estimated effects for GenePix expt 

ATH1-121501B.CDF Chip information (layout and probes) for Affymetrix Arabidopis expt 

Hyb1191.CEL – Hyb1400.CEL Affymetrix files containing image analysis results for Arabidopis chips 

Hyb-AllData.gwb All data for Arabidopis expt emerged into a single file 

Hyb-PM_MM.gwb Arabidopis data reorganised into PM/MM columns 

Hyb-ANOVA.gwb Results of ANOVA from Arabidopis expt 

HybContrasts.gsh Matrix holding contrasts between treatments for Arabidopis expt 

Hyb-Expressions.gsh Estimated expression values for Arabidopis expt 

HybFiles.gsh Description of 9 chips used in Arabidopis expt 

Swirl1.csv – Swirl4.csv Data on 4 slides for Zebra Fish Swirl expt as downloaded 

Swirl_layout.csv Layout of slides for Zebra Fish Swirl expt as downloaded 

Swirl_layout.gwb Layout of slides for Zebra Fish Swirl expt in Genstat format 

SwirlSample.csv Samples on slides for Zebra Fish Swirl expt as downloaded 

SwirlSample.gsh Samples on slides for Zebra Fish Swirl expt in Genstat format 

Swirl.gsh Combined data for Zebra Fish Swirl expt in Genstat format 
 

You can also open these files using the File | Open 

Example Data Sets menu. If you select the 

Analysis of Microarray data filter, this will only 

show the files that are associated with this guide.  

If you do use the File | Open method to access the 

files, once you have navigated to the Microarrays 

folder, click the Working directory Set as button 

so that this will be 

the default 

directory accessed 

while working 

through the guide.  

https://kb.vsni.co.uk/wp-content/uploads/Microarrays.zip
https://kb.vsni.co.uk/wp-content/uploads/Microarrays.zip
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Introduction 
 

DNA is used to carry the instructions for cell processes. DNA is made up of four 

nucleotide bases: adenine, cytosine, guanine and thymine (abbreviated as A, C, G 

and T respectively). These bases join into two complementary pairs, with A only 

binding to T and C with G. The bases are arranged in a double stranded helix (the 

backbone of the strands being made up of phosphate, the 5-carbon sugar 

deoxyribose) with complementary pairs of bases on each strand.  Two single strands 

of DNA that have complementary bases at all matching positions (such as 

ACTGTGA and TGACACT) are known as complementary sequences. In a solution 

of the right temperature, these two single stands will bind together, to form a single 

double stranded section of DNA. If the temperature of the solution is raised the 

doubled stranded DNA will split back into two single stranded 

sections of DNA.  

 

To reproduce, a cell must copy and transmit its genetic information 

(DNA) to its progeny. To do so, DNA replicates, following the 

process of semi-conservative replication. The two strands separate 

and each strand of the original molecule acts as a template for the 

synthesis of a new complementary DNA molecule.  

 

DNA is a permanent/long term copy of the cells information kept 

in the cell’s nucleus. To express the information in the DNA, a 

single stranded copy of the bases is made. This single strand is 

known as RNA, and it uses the base uridine (U), in place of the 

base T. DNA serves as the template to make RNA. This process is 

known as transcription where information in the form of a 

sequence of bases is transferred from a double stranded DNA 

molecule to a single stranded RNA molecule, as shown to the 

right. Each group of three bases in RNA (a codon) code for a 

protein (see the diagram below right). The amino acids and the 

codons that code for each are given in Table 1.  

 

The RNA code is converted to a sequence of proteins in the 

ribosome in a process called translation. The section of the 

DNA that is transcribed as a unit is known as a gene, and starts 

with a start sequence (start codon, e.g. AUG or GUG) and 

finishes with an end sequence (stop codon, e.g. UAG etc). 
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Table 1: The 20 amino acids used in proteins and the codons that code for each amino acid. 

 

Amino acid Code Codon    

Ala A GCU, GCC, GCA, GCG Leu L UUA, UUG, CUU, CUC, CUA, CUG  

Arg R CGU, CGC, CGA, CGG, AGA, AGG Lys K AAA, AAG 

Asn N AAU, AAC Met M AUG 

Asp D GAU, GAC Phe F UUU, UUC 

Cys C UGU, UGC Pro P CCU, CCC, CCA, CCG 

Gln Q CAA, CAG Ser S UCU, UCC, UCA, UCG, AGU, AGC 

Glu E GAA, GAG Thr T ACU, ACC, ACA, ACG 

Gly G GGU, GGC, GGA, GGG Trp W UGG 

His H CAU, CAC Tyr Y UAU, UAC 

Ile I AUU, AUC, AUA Val V GUU, GUC, GUA, GUG 

Start  AUG, GUG Stop  UAG, UGA, UAA 

 

 

In eukaryotes (multi-cellar organisms which have a cell nucleus, as opposed to 

prokaryotes which are singular celled organisms with no nucleus, such as 

bacteria), not all of the DNA is copied to the RNA, as some bases in so called 

introns are spliced out of the RNA after it is copied. The sections of DNA 

which code for the protein coding sections in this case are known as exons (see 

the diagram below right for details of introns/exons). 

 

The central dogma of genetics is displayed in the diagram below. DNA is the 

basis of passing on the cellular information from one cell to another. DNA will 

replicate itself by each strand creating a new copy. In the nucleus, DNA is 

transcribed to RNA, which then moves out of the nucleus, where it is translated 

to proteins in the ribosomes. The expression of proteins controls the cell’s 

mechanisms. 
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Microarrays 
 

A microarray is a glass slide or silicon chip that has had a library (a collection of DNA sequences) of 

single stranded DNA fragments laid down on its surface. The size of the libraries can be very large from 

1000 to 150,000 on the highest density slides. The set of single stranded DNA fragments laid out on the 

surface are known as the probes, and these can be arrayed as a series of spots or squares in a grid 

depending on the procedure used to lay the DNA down. Robotic printing with pins or an inkjet printer 

gives rise to circular spots of DNA, and in situ creation of the DNA will create squares, as seen in 

Affymetrix chips. The DNA library can be created in various manners, as either complementary DNA 

(cDNA) that has been captured from cells as messenger RNA (mRNA) and sequenced to create expressed 

sequence tags (ESTs), or artificial sequences of DNA known as oligionucleotides (oligios).  Oligios of a 

given length are often called n-mers, so for example an oligionucleotides of 25 bases as used on 

Affymetrix chips is a 25-mer. 

 

The microarray is then used to detect whether a sample of DNA or RNA contains sections of DNA that 

are complementary to the members of the library of DNA printed onto the slide. The DNA/RNA from the 

sample is known as the target. The target DNA is labelled with a fluorescent dye or an antibody that will 

bind to a dye. In two colour microarrays, two dyes, a red (Cy5) and a green (Cy3) dye are used, whereas 

in Affymetrix chips an antibody to biotin is used. The dyed samples are then added to the slide, and left to 

allow the pairing of complementary sections of DNA in 

the target to bind to the probes on the slide 

(hybridization). After the DNA has bound, the slide is 

washed to remove unbound DNA, and the resulting levels 

of DNA bound to each spot are read off with a laser 

scanner. For two colour slides, two samples of RNA 

from different cell lines, cells under different conditions, 

different tissues types or individuals are added, one dyed 

red and the other green. In future three or more dyes may 

be able to be used to allow more samples per slide to be 

added.  For the Affymetrix antibody based staining, 

labelled biotin is added to the slide, and this will stick to 

the bound antibody on each spot. Various effects can 

cause errors in the level read to each spot, including non-

specific hybridization where DNA that closely matches 

the probe also binds to the probe, and various artefacts 

and sources of noise that cause trends in the levels of the 

dyes across the microarray.  

 

Glass Microarray slide    Robot printing microarrays   Affymetrix Silicon Chip 
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When the two levels of red and green are combined in a combined image, spots with high levels of red and 

green will display as yellow, spots with high red and low green as red, low red and high green as green 

and low in both red and green as black as shown below. 

 

Table 2. The combinations of red and green dye levels displayed as in a microarray image. 
 

 
 

The layout of Affymetrix chips is more complex than other 

slides, as sets of probes are chosen for each gene of interest. 

Each gene is represented on the array by a series of different 

oligonucleotide probes. Each probe pair consists of a 

perfect match oligonucleotide (PM) and a mismatch 

oligonucleotide (MM). The perfect match probe has a 

sequence exactly complimentary to the particular gene and 

thus measures the expression of the gene. The mismatch 

probe differs from the perfect match probe by a single base 

substitution at the centre base position, disturbing the binding 

of the target gene transcript. This helps to determine the 

background and non-specific hybridization that contributes to the signal 

measured for the perfect match oligio. The GeneChip Operating 

Software MAS algorithm subtracts the hybridization intensities of the 

mismatch probes from those of the perfect match probes to determine 

the absolute or specific intensity value for each probe set. Probes are 

chosen based on current information from Genebank and other 

nucleotide repositories. The sequences on the expression arrays are 

believed to recognize unique regions of the 3’ end of the gene. The 

diagrams to the right shows a schematic of a probe set. 

 

The image files that are produced by the laser must be analysed by 

image analysis to give an intensity for each sample on every 

spot. This involves locating each spot of the slide, and then 

deciding which pixels should be read for that spot. The image 

to the right shows the estimated locations of the spots from one 

package. A wide range of image analysis packages used for 

this, including GenePix, Imagene, Spot. Each package uses its 

own algorithm, for example, Spot uses adaptive segmentation, 

where each spot can have its own shape and size which is 

estimated from the image (as shown in the coloured image to 

the right). The packages will also estimate the background 

level for each spot, and the image to the level shows the 

regions used for this for three packages. Each package tends to 

produce the results in its own format, and these have been 

allowed for in the Genstat menu that reads in the results. 

High Red & Green 
= Yellow/White 

High Red & Low Green 
= Red 

Low Red & High Green 
= Green 

Low Red & Green 
= Black 
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Design of two-colour microarray experiments 
 

In a two-colour microarray experiment, many slides are needed to allow assessment of several treatments. 

The design of the experiment is the choice of which pair of target samples (treatments) to put on each 

slide, and which colour to assign to each treatment in the pair. Technically, if the dye effects are estimated 

and removed, and since only the difference between the two samples is used from each slide (as we 

calculate log-ratios to estimate differential expression), the design is a row-column design with each row 

being a slide, and the two columns being the red and green dyes. Thus, obtaining an efficient row-column 

design for the number of target treatments will give an efficient microarray design. In terms of the 

efficiencies of particular treatment comparisons, the more often two treatments are on the same slide, the 

higher the precision of that comparison. However, even if two treatments do not appear on the same slide, 

they can still be compared indirectly through common treatments that appear with them both. For 

example, A and B can be compared if they both occur with C (A, C put on one slide and B, C on another). 

An indirect comparison has twice the variance of a direct comparison. The number of indirect 

comparisons typically grows much faster than the number of direct comparisons, and so can have a large 

impact on the efficiency of the design. If two treatments have no direct or indirect comparisons, then the 

design is said to be disconnected, as there are some comparisons that cannot be calculated from the 

design. A design may also be disconnected if there are no dye swaps in the trial, so that the dye and a 

treatment effect are confounded. In this case, you can drop the estimation of the dye effect, but this is in 

general poor practice.  

 

Also, in terms of efficiency, if the slides are paired so that each pair has the same two treatments on each 

slide, but the two dyes are swapped between targets on the slides (a dye swap pair, e.g. S-T & T-S), then 

the treatment effects will be unconfounded with the dye effects (i.e. orthogonal to the dye effects). There 

is a less strict requirement for full efficiency of treatment estimation relative to dye effects, which is that 

each treatment only need to occur an equal number of times on each dye. There are a number of simple 

types of design that have been used in microarray experiments.  

1. Reference designs 

 

In a reference design, each treatment is compared with a standard treatment. In some reference designs, 

the standard is not even a treatment of interest, in which case the comparisons between the treatments are 

all indirect, being made only through the standard. A reference design is typically less efficient than other 

designs, especially if the standard is not of interest in its own right. A reference design may make sense if 

there are a large number of treatments and there are only limited amounts of DNA available for each 

treatment. 

Example reference design 

 

This design compares B, C and D with the standard treatment A. Each comparison has a dye swap so that 

the design is balanced for dye effects. 

 
Slide Red Green 

1 A B 

2 B A 

3 A C 

4 C A 

5 A D 

6 D A 



Analysis of Microarray Data in Genstat 

 

8 

2. Loop designs 

 

In a loop design, the treatments flow from one slide on to another, with one treatment moving to the next 

slide, but changing dye, and a new one being introduced. When the treatments are exhausted, the 

treatment on the first slide is put on the final slide to provide a loop back to the first slide. For three 

treatments, this is equivalent to the balanced incomplete block design. One property of this design is that 

treatments must be balanced on the two dyes as each treatment occurs twice in each loop, one on each dye. 

 

Example loop design 

 

This experiment compares every treatment of A, B, C, D with every other treatment.  

 
Slide Red Green 

1 A B 

2 B C 

3 C D 

4 D A 

 

3. Balanced incomplete block designs 

 

A balanced incomplete block design compares each treatment with every other treatment an equal number 

of times. Due to the high level of linking between treatments, the number of indirect comparisons grows 

very quickly in a balanced incomplete block design, normally leading to high efficiencies. In addition, 

every treatment comparison has the same level of precision. 

 

Example balanced incomplete block design 

 

This experiment compares every treatment of A, B, C, D with every other treatment. Note that as each 

treatment occurs 3 times, they cannot be completely balanced for dye, but are even as possible occurring 

once on one dye and twice on the other.  

 
Slide Red Green 

1 A B 

2 C A 

3 A D 

4 B C 

5 D B 

6 C D 

Structured treatments 

 

If there is a higher order structure to the treatment targets, then estimates of particular comparisons 

between the treatments (contrasts) can be made. The contrasts give the coefficients of the treatment means 

when they are summed to give the summary statistic. Typically, as we are interested in differences 

between treatments, the sum of the contrast coefficients is zero. For example, if we were interested in the 

difference between the mean of two treatments A & B and two other treatments C & D we would calculate 

this difference (A + B)/2 – (C + D)/2 so that the contrast coefficients would be (½, ½, -½, -½). Often, we 

work with a multiple of the contrast to avoid fractions, so we could use the equivalent contrast for this of 

(1, 1, -1, -1). The common treatment structures that are used are treatments associated with a quantitative 

measure (time, concentration of chemical etc) and factorial combinations of two or more terms (e.g. cell 

type by cell age, animal line by experimental intervention). If we want to explore changes with the 
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quantitative treatment and the differential expression, often polynomial contrasts are used to measure 

linear trend, curvature (the quadratic component) etc. 

 

Examples of contrast matrices 

 

The following illustrate three types of contrasts and the matrices set up to estimate these.  

 

Comparing the mean of two treatments with another treatment 

 
  Treatment    A    B    C    D   

 A vs. B, C -2 1 1 0 

 

2 x 2 Factorial treatments structure - main effects and interaction 

 
 Treatment  A1B1  A1B2  A2B1  A2B2 

 A main effect -1 -1 1 1 

 B main effect -1 1 -1 1 

 A×B interaction -1 1 1 -1 

 

Polynomial contrast for 4 treatments with uniform spacing 

 
 Treatment  T1  T2  T3  T4 

 Linear -3 -1 1 3 

 Quadratic 1 -1 -1 1 

 Cubic -1 3 -3 1 

 

The Genstat procedure ORTHPOLYNOMIAL can be used to generate the values needed to define a set 

of orthogonal polynomials with any spacing of points. 

 

Example using the Microarray Design menu 

 

The menu Stats | Microarray | Design | Check 

Two Channel Design opens a dialog that 

allows you to examine the precision of the 

treatment comparison and optionally creates 

contrasts for a given design. The number of 

treatments, slides and contrasts are entered into 

the dialog, and then the targets for each slide 

and dye are entered. Any labels can be used for 

the treatments, but the dialog checks that the 

number of distinct labels equals that specified 

in the Number of Treatments edit box. You 

need to be careful to keep the case the same 

between cells, as B and b are taken as separate 

treatments. To save typing, cell labels can be 

put on the clipboard with Ctrl+C and pasted back to a new cell with Ctrl+V. Multiple cells can be selected 

by holding down the Shift key while using the arrow keys, or clicking with the mouse in a cell and 

dragging the selection over the required cells.  
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For example, if we enter three replicates for 

four treatments (A, B, C, D) in an incomplete 

block design, we would complete the dialog as 

shown to the left. Notice that with three 

replicates of each treatment, we cannot get dye 

balance, but each treatment is used twice with 

one dye and once on the other, making the 

design as balanced as possible.  If we have a 

series of contrasts between the four treatments, 

we fill in the name of a matrix in the Contrasts 

Name edit box, and the number of rows in the 

matrix in the Number of Contrasts edit box. 

The matrix has a row for each contrast, and a 

column for each treatment. If the matrix does 

not exist, we can create this by clicking the 

Contrasts button, which creates a matrix with the columns labelled by the treatment labels used in the 

design spreadsheet and with the number of rows specified. If the name of the contrast matrix or the 

number of rows has not been entered, you will be prompted for these.  

 

If the four treatments A-D where actually a 2 x 2 factorial combination of two 2 level treatments, we could 

create a matrix to estimate the main effects of both treatments and the two-way interactions as follows. 

Initially, the matrix would have 

default values as shown to right, 

and then you would complete it 

to obtain the values as shown to 

the far right.  

 

Clicking the Run button will 

generate some output in the 

Output window and the following 

two spreadsheets, as the Display 

in spreadsheet option was set. 

 

The first spreadsheet gives the precision of each pairwise comparison between the four treatments. The 

leading diagonal is missing, as you do not want to compare a treatment with itself. The comparisons A-C 

and B-D are slightly more accurate that the others, because A and C have the same pattern across Red and 

Green (2-1) and B and D having the other pattern (1-2). However, the variation in SEDs is quite small (< 

5%). Note these SEDs assume a variance of 1 between slides, and so in the actual experiment, the SEDs 

will depend on the achieved error variance between slides.  The second spreadsheet gives the precision of 

the contrast that were set up in the matrix above. The T2 main effect is not as precisely estimated as the 

T1 main effect and the interaction. The output in the Output window is displayed on the next page. 



Analysis of Microarray Data in Genstat 

 

11 

 

 

The design is printed out again 

for reference. 

 

 

 

 

The variance-covariance matrix 

shows confounding between 

treatment terms. Here for 

example the Dye – treatment 

terms of 0.05 show that the 

treatments are not balanced on 

the two dyes. 

 

This repeats the information in 

the SED spreadsheet. 

 

 

 

This gives a summary over all 

the SEDs. 

 

 

This repeats the information 

displayed in the SED of contrasts 

matrix. 

 

 

Once you have a design that you are happy with you can save it to a 

spreadsheet, by clicking the Save button. This will create the 

spreadsheet to the right. You can save this to disk with the File | Save 

menu. This can be copied back to the design dialog later by selecting all 

the cells (Ctrl+A) and copying them with Edit | Copy (Ctrl+C). Back in 

the design dialog, set the correct number of treatments and slides, and 

then paste the labels in with the Ctrl+V key combination (note that you 

cannot use the menu bar for this, but must use the keyboard). 

Microarray design efficiencies 

 

Microarray design 

 
 Slide  Red_Trt  Green_Trt 
 1 A  B 
 2 C  A 
 3 A  D 
 4 B  C 
 5 D  B 
 6 C  D 
 

Variance covariance matrix 

 
 A  0.2000     
 B  -0.0750  0.2000    
 C  -0.0500  -0.0750  0.2000   
 D  -0.0750  -0.0500  -0.0750  0.2000  
Dye  -0.0500  0.0500  -0.0500  0.0500  0.2000 
  A  B  C  D  Dye 
 

Standard errors of differences 

 
 A  *    
 B  0.7416  *   
 C  0.7071  0.7416  *  
 D  0.7416  0.7071  0.7416  * 
  A  B  C  D 
 

Summary statistics of SEDs 

 
 Minimum  Mean  Maximum 
 0.7071  0.7301  0.7416 
 

Standard errors of contrasts 

 
 T1 Main  1.0000 
 T2 Main  1.0954 
 T1x2 Int  1.0000 
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Blocking and randomization in microarray designs 

 

When running the slides in a microarray experiment, it is possible to group the slides so that they fall into 

blocks, ensuring that if there is variation throughout the experiment due to differences between operators, 

days, lab kits, printing variation on the slides, then these effects will be balanced out over the treatments. 

As always, it is best to include some randomization in the order of processing the slides so that treatment 

effects are not confounded with trends over the trial.  

 

The design to the right has 3 treatments, each containing 2 individual 

animals. The microarray experiment is designed in 3 replicates, and within 

each replicate, the slides have been grouped into blocks of 3 slides. Each 

block contains dye-balanced comparisons between A-B, A-C, B-C with each 

animal used once. The replicates contain dye-balanced comparisons of every 

animal compared with every other animal in the other treatments, (e.g. A1 is 

compared with B1, B2, C1 and C2). Over the 3 replicates, the individual 

animal comparisons are as dye balanced as possible (A1-B1 occurs twice 

and B1-A1 occurs once). Note in the figure, the treatment assigned to the red 

dye is in the left-hand column and that assigned to the green dye in the right-

hand column.  

Microarray design exercises 

 

The following exercises can be attempted with Microarray Design menu. The solutions are given on the 

following page. 

 

1. With 12 slides produce at design with 4 treatments that maximizes the overall precision of the 

treatment comparisons. 

 

2. Compare the design you have found with a standard reference design (all treatments vs. a common 

control where a, the control is treatment 1, and b, the control is not one of the treatments), and with 

the loop design. 

 

3. If the 4 treatments represent a 2 x 2 factorial design, find the design which maximizes the precision 

of estimating the interaction (assuming treatments 1-4 are A1B1, A1B2, A2B1, and A2B2, contrast 

levels for A & B main effects and interaction are (-1, -1, 1, 1), (-1, 1, -1, 1) and (1, -1, -1, 1). 

 

4. If the 4 treatments represent 4 times in a time course experiment, find a design optimizes the 

estimation of the linear effect (contrast levels = (-3, -1, 1, 3)) while still allowing estimation of the 

changes between adjacent times. Which arrangement of a loop design makes the linear contrast the 

most accurate? 

 

5. If you can add 2 more slides to the designs in 1 and 3, which allocation to the 2 slides would you 

use? 

 

6. If you have 2 treatments each with 4 animals, design a trial with 8 slides which optimizes the 

calculation of the animal-animal variation, while optimally measuring the between treatment 

difference. Can you make this design balanced with respect to dye swaps for each animal? Also, 

design a trial with 12 slides, and compare the gain in precision between the 2 designs. 

Rep 1 Rep 2 Rep 3 

A1 C2 C2 A1 A1 B2 

B2 A2 A2 B2 B1 C1 

C1 B1 B1 C1 C2 A2 

A2 C2 C2 A2 A1 C1 

B1 A1 A1 B1 C2 B1 

C1 B2 B2 C1 B2 A2 

A1 C1 C1 A1 B1 A1 

C2 B2 B2 C2 A2 C2 

B1 A2 A2 B1 C1 B2 

B2 A1 A1 B2 A2 B1 

C2 B1 B1 C2 B2 C2 

A2 C1 C1 A2 C1 A1 
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Solutions to design exercises 

 

1. The optimal design to give the largest average standard error of a difference is a 

balanced incomplete block design, which compares every treatment with every other 

one twice. The second replicate should 

be a dye swap of the first to obtain dye 

balance. Every comparison between 

treatments has the same standard error of 

0.5 

 

 

 

 

 

2. The standard reference design is given below. The comparisons with A have the 

same precision as the incomplete block design, but the indirect comparisons 

between B, C and D have a lower precision (0.7071). 

 

 

 

 

 

 

 

 

The loop design, using the order A, B, C and D is given to the right. This has 3 

loops, one that is a dye swap of the other two. This has adjacent treatments 

compared with the same accuracy as the balanced incomplete block design, and a 

slightly lower precision for the other comparisons (0.5774) 

 

 

 

 

 

 

3. The previous loop design optimizes the interaction precision if the substitution A = 

A1B2, B = A1B1, C = A2B1, and D = A2B2 is made. The precision of the main effect 

and interaction contrast as given in the following table. 

 

 

 

 

 

4. The allocation of A, B, C, and D that optimises the linear contrast precision is the one that 

maximizes the changes between adjacent times. This gives A, B, C, D = Times 2, 3, 1, 4 with 

differences of 1,2,3,2 as you run around the loop (returning from 4 to 2). The standard error of the 

linear contrast with this ordering is 1.414 whereas using the natural ordering of 1,2,3,4 with 

differences of 1,1,1,3 gives a standard error of 1.732, and the worst order of 2,1,3,4 with 

differences of 1,2,1,2 gives a standard error of 1.826. 

SEDs of Treatment 

Comparisons 

Target A B C D 

A *    

B 0.5 *   

C 0.5 0.5 *  

D 0.5 0.5 0.5 * 

Red  Green  

A B 

B C 

C D 

D A 

A D 

D C 

C B 

B A 

A C 

C A 

B D 

D B 

Red  Green  

A B 

A C 

A D 

B A 

C A 

D A 

A B 

A C 

A D 

B A 

C A 

D A 

Target A B C D 

A *    

B 0.5 *   

C 0.5 0.7071 *  

D 0.5 0.7071 0.7071 * 

Red Green 

A B 

B C 

C D 

D A 

B A 

C B 

D C 

A D 

A B 

B C 

C D 

D A 

Target A B C D 

A *    

B 0.5000 *   

C 0.5774 0.5000 *  

D 0.5000 0.5774 0.5000 * 

Effect SE Contrasts 

A 0.8165 

B 0.8165 

AB 0.5774 
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5. In design 1, any two independent allocations (say A-B and C-D) will give an optimal design. The 

two comparisons represented on the extra slides will have a higher precision that the rest. In design 

3, the extra slides A1B1 – A2B1, and A1B2 - A2B2 give the best standard error for the interaction of 

0.535. 

 

6. The only possible connected design is a loop through all the animals, alternating between the two 

treatments. The individual animals are not compared very precisely, with the SED matrix shown 

below. The contrast matrix of (-0.25, -0.25, -0.25, -0.25, 0.25, 0.25, 0.25, 0.25) for the mean of B – 

A has a standard error or 0.354. Adding 4 extra slides allows more accurate comparisons of 

individuals, and the 4 slides shown below reduce the between-animal comparisons 

average SED from 1.210 to 0.838 (and the maximum from 1.414 to 0.913). The 

treatment standard error is reduced to 0.289, an 18% reduction.  

 

 

 

 

 

 

 

 

 

 

 

Automatic generation of designs 

 

The Stats | Microarrays | Design | Generate Two 

Channel design menu allows you to automatically 

generate reference, loop and balanced incomplete 

block designs. You just need to specify the type of 

design, the number of treatments, and either the loop 

increment (1 always works), or the reference level. 

With a loop design, you can specify more than one 

loop increment to get two complementary loops. 

Using the Treatments in 2 columns by colour 

option puts the design in a format appropriate for 

pasting into the Stats | Microarrays | Design | 

Generate Two Channel design menu. The 

spreadsheet to the right shows the resulting balanced 

incomplete block design with 4 treatments. 

 

For single channel designs, the Stats | Microarrays | Design | Generate 

Single Channel design menu just opens the Generate Standard Design 

menu, as there are no complications with these designs, as each slide is 

an independent unit, as in any standard experimental design. 

Red Green 

A1 B1 

B1 A2 

A2 B2 

B2 A3 

A3 B3 

B3 A4 

A4 B4 

B4 A1 

Target A1 A2 A3 A4 B1 B2 B3 B4 

A1 *        

A2 1.225 *       

A3 1.414 1.225 *      

A4 1.225 1.414 1.225 *     

B1 0.935 0.935 1.369 1.369 *    

B2 1.369 0.935 0.935 1.369 1.225 *   

B3 1.369 1.369 0.935 0.935 1.414 1.225 *  

B4 0.935 1.369 1.369 0.935 1.225 1.414 1.225 * 

Added Slides 

A1 B2 

B3 A2 

A3 B4 

B1 A4 
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Reading microarray data 
 

Microarray data can be read in via the usual File | Open menu in 

Genstat if it is in one of the standard file formats supported by 

Genstat (Excel, CSV, text etc). However, in microarray experiments 

you often have a file for each slide in the experiment and need these 

amalgamated into a single data set. 

The Microarrays Data menu has a dialog that is designed for this, 

which also supports the common formats produced by image 

analysis software (GenePix, GenePix, Imagene, Spot, TIGR MEV, 

ScanAlyze, QuantArray, Affymetrix and generic CSV files). The 

Data menu contains a list of the supported file 

types, so chose the file type you have. These 

all open the same dialog, but just pre-select 

type of file on this menu (note if you have not 

set the working directory as explained on page 

2, you will need to navigate to the microarray 

files in the Genstat Data\Microarrays folder). 

You can change between file types once the 

dialog is open. The selected files should all be 

of the same format, but some may have extra 

columns, in which case missing values will be 

inserted in the files with these columns missing. The file names may be typed in and added to the file list 

using the Add button, but more commonly the browse button ( ) is used. 

For example, to read in the 4 GenePix GPR files in the 

Ma2Examples directory, use the menu Stats | Microarray | Data 

| GenePix GPR files and click the browse button as shown. 

Now select the 4 GPR files required in the Select Microarray 

files dialog (as shown below, right), and click Open. To select 

multiple files, hold down the control key (Ctrl) or to select a 

range hold down the Shift key when clicking with the mouse. 

Note Windows (before version 7) does not enter the filenames 

selected in a natural order in the Filename box, so the resulting 

file names in the Open Microarray Files window are not in 

numerical order (as below). To arrange the files in the correct 

order, select the file to move (in this case “13-9-data.gpr”) and 

use the Up or Down button to move it within the list (Down 3 

times in this case to put it at the end of the list). 

The option to read data in parallel format creates a new column for each slide rather than appending slides 

and uses a pointer to these columns for each slide which be used in menus that allow a pointer data format. 

On clicking Open, the files are appended into a combined 

spreadsheet with an extra factor created to index the file the 

data came from. You may be prompted for some extra 

information, such as which columns are factors, dates and in the 

case of a GPR file, the arrangement of pins on the slide, as this 

information is not within the data. The final spreadsheet is 

shown on the next page. 
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With Imagene files, the red and green channels are stored in two files. To read in this data you will need to 

give two lists of files, one for the red channel and one for the green channel. The order of files should be 

such that files 

corresponding to the 

same slide are in the 

same position in the 

list. The dialog below 

shows Imagene files 

being selected for 

input. 

 

 

 

 

 

With Affymetrix CEL files, 

the option of merging the 

chip layout data that is 

stored in CDF file format is 

available. When opening 

cell CEL files, you also get 

the option of what columns 

are read in (to save space as 

CEL files are very large), 

and then the option to batch 

process the results rather 

than opening them into a 

spreadsheet, which is much 

faster and more memory 

efficient. The Affymetrix 

CEL Read Options dialog opens to specify these options. The Affymetrix analysis methods are described 

in the next section. 

Once the microarray data are in a spreadsheet, they can be plotted and manipulated as with any other 

spreadsheet in Genstat. The file can be saved permanently in Genstat Spreadsheet or Workbook format 

using the File | Save As menu. Note that the GWB format is more compact than the GSH format. 

The Spread menu can be used to sort, filter, and edit the data, and the Graphics menu can be used to plot 

the data. There are some specialized Graphics menus for microarray in the Microarray | Explore menu, 

which is explained next. 
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Exploration of microarray data 
 

The Explore submenu of the Microarray menu allows various customized plots of microarray data. The 4 

explore menus are Histograms, Density, 2D Plots and Spatial Plot. These are standard Genstat graphics 

types, which may be found under the Graphics menus, but the microarray menus are customized to allow 

separate graphs for each slide, with subsets of slides to be displayed being able to set, as well as doing the 

data manipulation into the format required for the graphs.  

 

Explore histogram 

The Histogram menu allows you to look at the 

distribution of the measurements from several slides in 

the experiment to look for odd slides that have a 

differential response to the other slides.  For example, if 

we open the file “Data13-6-9.gwb” that was saved from 

the 4 GenePix files opened in the previous example, then 

we can plot the histograms of various measurements for 

each slide. To look at the quality and level of the slide 

backgrounds, we could plot the variates B1_Mean and 

B2_Mean, which are the mean levels of red and green 

respectively around each spot. The menu allows either 

log2 transformed or non-transformed values to be plotted, and log2 values 

have been selected for the following plots. Completing the Histogram 

menu as shown to the right, and using the options button to request 

multiple histograms per page as to the right, gives the plots below.   

From these, it can be seen that the background levels on slide 13-6 cover a 

narrower range than the other slides, and that there is a higher background 

level on slide 13-7, with a long tail of very high backgrounds around some 

spots. Slide 13-9 has lower levels of background than the other slides, but 

a broader distribution. The red backgrounds tend to be lower than the 

green ones.  
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Explore density 

The Density menu allows you to look at the distribution of 

the measurements as either a kernel smoothed probability 

density or as a cumulative density function. The first is like 

the Histogram display, but the slides can be plotted on the 

same graph for easier comparisons between slides. For 

example, using that data from the Histogram example 

above, and plotting the variate B1_Mean (the mean 

background levels of red) with the Density menu, 

completed as shown to the right, and with options set as right, gives the 

following plots.  

The first graph gives the probability density function (pdf) of the log2 transformed red background values 

as estimated by a kernel density function for each slide. This shows similar trends as the Histogram menu, 

but as the pdf curves can be superimposed on the same graph, the comparisons are easier to make. 

However, these curves require smoothing of the data, and may miss small-scale features that a histogram 

may detect. The second curve is cumulative density function (cdf), again estimated from a kernel density 

estimator, and allows estimates of the quantiles of the distributions, so for example the median values of 

the logged values can be read off by obtaining the points on the curves where the cumulative percentage is 

50. 

Explore 2d plots 

The Density menu allows you to look at the 

relationship between 2 measurements for each 

slide. Common plots used for microarray are the 

M-A plot that plots the log of ratio of red to green 

against the combined intensity of the two colours. 

These two statistics can be calculated using the 

Calculate | Log-ratios menu covered in the next 

section.  For example, using that data from the 

Histogram example above, and plotting the variate 

F1_Mean against F2_Mean on the log2 scale (the 

mean foreground levels of red and green 

respectively) with the 2D Plots menu, completed as shown to the right, and with options set as on the next 

page, gives the following plot. Note, Block indexes the print tips that printed the slide, and so on each 

slide, the different print tips will be plotted in separate colours, allowing us to look for print tip effects. 



Analysis of Microarray Data in Genstat 

 

19 

It can be seen that the relationship between red and green is 

different on the different slides. On slide 13-6, the relationship 

curves down, whereas on 13-7 it curves up. In addition, the spread 

around the mean curve on slide 13-8 and 13-9 is less than that on 13-6 and 13-7. The M-A plot is a 45-

degree rotation of the red vs. green plot and is obtained by plotting the log-ratio versus the intensity. The 

M-A plot corresponding to the graphs above is shown below.  

The truncation of the points at low 

levels of intensity comes from limiting 

the red and green values to be above a 

minimum value in the Calculate Log-

ratios menu. The increased scatter at 

the low intensity is due to the 

background levels having been 

subtracted from the foreground values, 

giving unstable log-ratios when the 

foreground and background levels are 

very similar.  
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Explore spatial plots 

The Spatial plots menu creates a shade plot of the 

selected variate, with its level being plotted as a 

coloured cell in a two-way spatial layout, typically 

using the row and column information from the 

slide. This allows you to look for trends over the 

slides, and for areas of the slides where there may 

be problems due to high backgrounds, scratches, or 

printing problems (e.g. a pin blocking). The 

colours representing high and low values can be 

selected in the options dialog, and the colours used 

for a given level are interpolated between the two 

extreme colours chosen. For example, the menu to 

the right gives a spatial plot of the log-ratio for 

slide 13-6. The options are set on the Options dialog (right), 

and here the colour chosen for low values is blue (which 

represents a higher level of the green dye), and for high 

values, yellow was chosen (blue and yellow are 

complementary colours and the scale is visible for colour-

blind people). Alternatively, the natural colouring of green for 

low, and red for high, could be chosen. One option to improve 

sensitivity around the centre of the distribution is rescaling the 

log-ratio shading steps from equal steps on the natural scale, to 

equal steps on the percentile scale. When a measurement 

follows a normal distribution, most of the colour range will be 

used in the sparser tails. A rescaling of the data by effectively 

plotting ranks rather than the raw data, will give more 

sensitivity around the median and can be achieved by selecting 

the Percentile option for the Shading Scale. The graph below right uses this scaling and the green/red 

colours for the plot.  With this scaling, you can see the band of green through the centre of the slide more 

clearly. In the blue/yellow scaling, you can see the lines of blank spots, which are biased toward green 

more clearly, and the block of greenish spots around row 30, columns 45-70. 
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Calculations for microarray data 
 

The Calculate menu allows you to calculate measurements of differential expression for two channel 

microarrays (log-ratios), or levels of expression for Affymetrix microarrays (Affymetrix expression 

values). The two types of slides (two colours/single colour) have very different methods of calculating 

expression levels. Two colour microarrays use relative expression levels, whilst the single colour 

Affymetrix microarrays calculate an absolute value, averaged over the probes belonging to the gene.  

 

Calculate log-ratios 
 

For a two-colour microarray experiment, we need to calculate the relative level of differential expression 

between the two targets on the slide. The log-ratio of red to green is the usual measure of differential 

expression. The base used for the logarithm is usually base 2 so that +1 is equivalent to a double, -1 to half 

the quantity of red relative to green, and a value 0 indicates equal amounts of the two dyes. The data are 

log transformed to stabilize the variance of the data. The log-ratio is also equivalent to the difference 

between the log red and log green values. Another useful statistic, which is independent of the log-ratio, is 

the intensity (on the log scale) which is calculated as 

the mean of the log red and log green. In fact, the 

transform from log red and log green to log-ratio and 

intensity corresponds to a 45-degree rotation of the 

variates. Generally, it is found that there is a 

relationship between the mean and variance of log-

ratio and intensity, and this should be corrected for in 

any analysis. The process of normalization adjusts the 

log-ratios so that mean relationship with intensity is 

removed, as there is no reason that low or high 

abundance spots should be differentially expressed, 

and this is normally a differential response in the dyes 

to binding to the probes, or problems with background 

levels of one of the dyes. The log-ratios and intensity 

for each spot can be calculated with the Calculate | 

Log-ratio menu which gives the dialog shown to the 

right. This calculation has a range of options that will 

be discussed below. 

Background correction 

 

One approach when calculating log-ratios is to remove the estimated background levels of red and green 

to allow for trends across the slide in the backgrounds. It is hoped that by doing this, that the log-ratios 

will be more accurate through the removal of unwanted noise. The background correction will often have 

the effect of increasing the variance of the log-ratios at the low intensities. The Calculate Log-ratios dialog 

above right shows this being done for the data introduced in the Histograms menu. One consequence of 

background correction is that the log-ratios will become undefined where spots may have foreground 

levels that are below their background, as you cannot take the log of a negative number. Where this 

happens for both red and green, then there is no valid information on the level of differential expression, 

and we can insert a missing value for the log-ratio in this circumstance with no loss of information. 

However, where one channel is above background and the other below, making the log-ratio missing will 

lose information. In this case, there are options to set a minimum value on each channel. The options are: 
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1. Set a single minimum value on both colours, 

2. Set the minimum value per spot, based on the standard 

deviation of the background of each colour around the spot, 

3. Use an average of the standard deviation of the backgrounds 

over the whole slide to set the minimum value per colour. 

 

These options can be set by clicking the Options button on the menu 

window. The dialog to the right will appear. To use option 1 above, 

set “Set a Minimum value on both channels” to on (ticked); for option 

2, additionally set Use Multiplier with Background Std Deviations 

and give the background standard errors, and for option 3, set Single 

Minimum per Slide to on. 

 

To reduce variance for log-ratios at low intensities, you can add a 

given constant to each channel. The effects some of these options can be seen in the following series of 

graphs, which are for the slide 13-6 from the earlier example. 

 

  

  
 

It can be seen that including background correction reduces the scatter from the first to the second graph. 

Adding in a minimum value for each colour reduces the scatter/tail at the low intensities, and using value 

based on the standard deviations of the backgrounds means that the minimum value for the green is larger 

than that for the red.  
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You can also add a constant to both colours to reduce the increase in 

variance at the lower intensities, by specifying this in the Calculate 

Log-Ratios Options dialog as shown to the right. The graph below 

right shows the M-A plot for the data in “Swirl.gsh” for the second 

slide (swirl2). If you add a constant of 100 to each colour, you obtain the graph to the left, which has 

roughly constant variance over the range of intensities.  

 

 

Once you have calculated the differential expression you are ready to analyse the data. The curvature in 

some of the previous M-A plots indicate that normalization with respect to the intensity is required. Once 

you have calculated log-ratios, the next step is then normalization. 

 

Calculate Affymetrix expression values 

 

For Affymetrix data that has been loaded into a spreadsheet, 

we can use the menu Stats | Microarrays | Calculate | 

Affymetrix to summarize the results (pairs of PM/MM per 

gene) to a single expression value per gene. The CEL files 

“hyb1191.CEL” – “hyb1400.CEL” will be used in the 

examples in this section. These chips are for the Arabidopis 

plant and are laid out with a 712 x 712 grid, giving over 

500,000 cells per slide. Reading this data into a spreadsheet is 

very demanding on RAM and requires 300MB. For this 

reason, this type of data is normally handled through a batch 

process that only holds one slide in memory at a time. The 

dialog to the right shows the 9 CEL files being loaded, along 

with the CDF file for these chips “ATH1-121501B.CDF”. On 

clicking Open, the Affymetrix CEL Read Options dialog 

appears (as on the following page), which allows the batch 

processing, which is much faster than creating a spreadsheet. The batch processing options are fewer than 

provided in the Affymetrix Expression value dialog, which may be a reason not to use batch processing.  
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There are two optional columns of data that can be read in from a cell file, 

the standard deviation of the pixels in each cell, and the number of pixels 

used in calculating the mean of each cell. If you need these columns, select 

them under the CEL Data Read in options, but not selecting these columns 

considerably reduces the memory required. The CEL files also contain 

information on cells that have been masked out as bad cells or detected as 

outliers by the image analysis software. A factor that holds these flags can 

be created if the option for Masked Cells and Outliers is set to Report 

units with a factor, otherwise the cell intensities will be set to a missing 

value when a cell is flagged as masked or an outlier (Set intensities to 

missing). On clicking OK, we get the spreadsheet below. 

The column Slide in this spreadsheet indexes the file 

that the data came from, Row and Col are the spatial 

position of the cell on the chip and Intensity is the 

amount of biotin dye bound to the cell (averaged over 

the pixels in the cell). The Atom factor indexes the 

pairs of PM/MM cells within a gene, and the factor 

PM_MM indicates whether the cell is a perfect match 

(PM) or mismatch (MM) cell. The factor Type gives 

the type of cell on the chip, with a range of quality 

control cells on the chips (which are actually not used 

currently in the analysis). The cells used to detect genes 

are of type ‘Expression’, ‘Genotyping’ or ‘CustomSeq’ 

depending on the type of chip. 

 

Note, with large Affymetrix data sets, if you do not 

have enough memory, it is better to use the “Spread | 

Update | Using fast load” menu to update the server. 

This closes the spreadsheet before reading the data into 

the server using the SPLOAD directive, which is much faster and saves having the data twice in memory.  

 

The columns are now entered into the Calculate Affymetrix Expression values menu as shown to the 

above right. There are 3 main algorithms for summarizing the Affymetrix data, RMA (with an alternative 

algorithm for estimating the parameters called RMA2), MAS4 and MAS5 which are algorithms developed 

by Affymetrix. MAS4 is an older algorithm and is only provided for completeness, and has been 

superseded by MAS5. These algorithms are explained in the next section. 

RMA algorithm 

 

RMA stands for robust means analysis, and it involves 3 steps, background correction - where an error 

component of the intensities is estimated and eliminated; quantile normalization – where every slide is 

normalized to have the same cumulative frequency distribution; and summarization – where the median 

value per probe set, adjusted for slide differences are calculated. This results in an expression value for 

every gene on every slide. These steps will be explained briefly below.  
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Background correction  

The option of removing a background value 

allowing for trends across the slide is available 

with all algorithms. This uses the mean of the 

lowest 2% of cells in 16 zones (in a 4 x 4 

layout) over the slide, and then forms the 

weighted average of these for each cell, with 

the weights depending on the squared distance 

from the zone centroids to the cell. There are 

two weighting schemes available as options: 

the Affymetrix weighting which adds a smoothing constant to the denominator of the weights (i.e. 

1/(d2+S)); and Distance weighting which smooths by not letting the weights go above a certain minimum 

constant (i.e. 1/(min(d2, S)). The alternative weighting to the Affymetrix standard is provided since the 

addition of the constant induces strange effects around the edges of the chip, particularly in the corners.  

 

The next background correction step in RMA is to fit a noise 

model to the intensities from the PM cells. The RMA analysis 

ignores the MM cells as it assumes that these actually contain 

gene information, rather than just cross hybridization levels, and 

so removing these reduces the signal in the gene expression data. 

The PM intensities are assumed to come from the sum of a 

normal distribution (noise) and an exponential distribution 

(signal). Thus, if z is the observed intensity, then z = x + y, where 

x ~ N(μ, σ) and y ~ Exp(α). The parameters, μ, σ and α, are 

estimated by maximum likelihood estimators (which can have 

problems with convergence in some cases). The RMA2 

algorithm just uses different estimators for the parameters μ, σ 

and α based on moments, which is faster and does not have 

convergence problems. 

Normalization 

The next step in the RMA analysis is normalizing the background corrected results over the slides so that 

each slide’s results have the same cumulative density (quantile normalization). This seems an extreme 

normalization, but is performed so that the levels of 

differential expression on each slide have the same 

profile. It is justified from the application of the 

technique to a few studies with known outcomes 

giving results that are more accurate.  The algorithm 

for this is to sort the intensities on each slide, average 

the results at each rank over the slides (using a 

median, mean or geometric mean), and then replace 

the values on all slides with the averages.  The graph 

above shows a set of slides to be quantile normalized. 

All the individual slides will be normalized to the 

black curve that is the average profile. 

Summary over Probes 

The final step in the RMA analysis is to create an average of the 11-20 probes representing a gene. The 

algorithm used for this is to take the medians over the probes and adjust for any overall slide effects. The 

joint estimation of the probe and slide medians requires an iterative algorithm that switches between 
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estimating the probe and slide medians, removing these from the results sequentially until convergence. 

The use of medians is regarded as providing robustness, which gives the algorithm its name. 

MAS 4.0 algorithm 

 

The MAS 4.0 algorithm uses the same background correction as described in the RMA algorithm, where 

the lowest 2% of intensities are used to adjust the data. The PM values are then corrected for cross-

hybridization by subtracting the corresponding MM value. The resulting intensities for each gene are then 

averaged over the probes by using a winsorized average, where the minimum and maximum intensities are 

eliminated along with any intensity greater than 3 standard deviations from the mean. The final restriction 

using 3 standard deviations from the mean is actually redundant unless a gene has more than 13 probes.  

MAS 5.0 algorithm 

 

The MAS 5.0 algorithm uses the same background correction as described previously. The PM values are 

then corrected for cross-hybridization by subtracting an ideal MM value, which is calculated using the 

values of all the probes. The ideal mismatch is the actual MM if it is less than 

PM. The robust average of the MM for the gene is used if this is less than the 

PM; otherwise, a value just less than the PM is used. The resulting intensities 

for each gene are then averaged over the probes by using a Tukey-Biweight 

average, where the intensities are weighted according to their distance from the 

median. If s is the median absolute deviance from the median, m, then the 

weights are 0 if |x - m| > 5, and (1 – (|x - m|/5s)2)2 otherwise (plotted to the right). 

 

The algorithm to use is selected from the dropdown list in the 

Calculate Affymetrix Expression values menu. The options for this 

menu (shown right) control the iteration cycles and convergence 

criterion (tolerance) for the median calculations in the RMA 

analysis, the background correction used in all analyses, and the 

quantile normalization used in the RMA analysis. This dialog also 

controls what output is displayed in the Output window. 

 

Performing an RMA analysis on the Arabidopis dataset read in 

previously took 55 minutes CPU time on a 2 GHz Pentium 4 PC. 

The results are displayed in a spreadsheet as bellow.  
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Normalization of microarray data 
 

One channel (Affymetrix)  

 

The quantile normalization, which is part of the RMA analysis described previously, can be applied to any 

single variable over a set of slides. This menu allows you to apply the quantile normalization to any data 

set.  

 

The following dataset in “Hyb-PM_MM.gwb” was obtained by 

restricting the “Hyb-AllData.gwb” file to Type equal to 

Expression using the Spread | Restrict/Filter | To groups menu (as 

shown to the right) and then unstacking the data using the Spread 

| Manipulate | Unstack menu. We put the PM and MM values into 

two columns by specifying that we unstack Intensity using the 

factor PM_MM, with the ID factors Slide, Probe and Atom. We 

drop the ROW, COL and Type factors as these are now not 

required. The completed Unstack menu is shown below.   

However, using the Spread menu is very slow compared with creating this spreadsheet with a set of 

commands. The following short program will create the same spreadsheet in much less time. 

 

 
 

This will generate the spreadsheet to 

the right (saved as “Hyb-

PM_MM.gwb”). The quantile 

normalization of the PM values in 

this spreadsheet can be done as 

follows. 

SORT   [INDEX=Slide,Probe,Atom] \ 

       Slide,Probe,Atom,Type,PM_MM,Intensity 

SUBSET [PM_MM .in. 'MM' .and. Type .in. 'Expression'] \ 

       Intensity; MM  

SUBSET [PM_MM .in. 'PM' .and. Type .in. 'Expression'] \ 

       Slide,Probe,Atom, Intensity; Slides,Probes,Atoms,PM 

FSPREAD Slides,Probes,Atoms,MM,PM 
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The Normalize One Channel menu is completed as to the right. In the options we select Geometric Means 

as the Summary Method, as below.  

 

Clicking the Run button will now add a new 

column nPM to the spreadsheet.  

 

If we had looked at the density of the PM values 

using the Explore | Density menu we would have 

discovered that the 9 slides already had very 

similar density functions, and that a log-transform 

seems to be required. The log-transformed density plot is shown below left. If we plotted the same density 

plot of the quantile normalized data, all the density or cdf curves would conicide as below right.  
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Two channels 

 

This menu allows the log-ratios from a two-colour experiment to be normalized to remove spatial trends, 

and dye intensity effects. Removing noise from various sources should improve the ability to detect 

differential expression for particular genes. The menu is shown to the left. There are two main model-

fitting approaches, using REML with splines (Baird et al. 2004) or FIT with Loess (Yang et al. 2002). The 

REML model is the recommended model as it is more flexible and can fit a wider range of terms, but the 

Loess model is provided if the user wants to fit the standard model used in the Bioconductor package of R. 

Once the model fitting approach has been decided, there is a drop-down list of models that can be fitted, 

sorted roughly in order of complexity. The terms that should be fitted are best chosen by examination of 

the plots from the explore menu, but normally at least the Pins, Rows, Columns and Intensity effects 

would be fitted. 

 

The Normalize Two Channel Microarray data 

menu is shown to the right using the data in 

“Data13-6-9.gwb” examined previously. The 

model to be fitted is chosen as the most complex 

one allowing a smooth 2-dimensional surface over 

the rows and columns, along with pin, row, 

column and intensity effects. The only terms not in 

this model are the AR1 autocorrelation effects and 

the Intensity x Pin effects. These could be added if 

they gave a significant increase in the variation 

explained. The menu is completed as to the above 

right, and the options are completed in the dialog 

to the right. The model parameters control the flexibility of the 

curves to fit to the data. If they are too large, it will considerably 

increase both the time to fit the model and possibly the variance of 

the corrected log-ratios. The other options control the output and 

graphs plotted by the analysis. 

 

There is a graphics 

button on the main 

menu, which opens a window 

(right) that allows the graphics 

output to be save directly to 

files for subsequent output, 

viewing or inclusion into reports. 

 

The Store button on the menu allows the results from the analysis 

to be saved, and generally, the corrected log-ratio would always be 

saved, with the other columns being optional. The standardized 

log-ratio is the corrected log-ratio adjusted for unequal variance 

over the intensity range. The M-A plot produced in the options 

menu (above right) will indicate whether the variance does change 

with intensity, and the standardized M-A plot shows the effect of 

standardizing for the variation over the range of intensities. The 

output from the analysis is shown below right and on the next 

pages.  
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The spatial plots of the residuals for each slide (the one for 

slide 13-6 only is shown to the right) allow you to check for 

spatial effects that have not been taken into account. The 

plot for 13-6 looks quite clean, but there is perhaps an area 

at the bottom around column 20 which has too many bright 

red spots.  

 

The M-A plot for 13-6 shows that there is a variance 

changes with intensity. The blue lines give approximate 

95% confidence curves for the points, and the red line is the 

smoothed mean, which runs along at approximately zero as 

desired.  The standardized M-A plot (below right) has 

divided each log-ratio by the estimated confidence limits 

used in plotting the blue lines in the plot below left. Thus 

95% of the points should lie within +/- 1. If we used the 

log-ratios from the first plot (below left), there would be a 

tendency to select points with low intensity as these have the largest variance, and so will produce extreme 

values more often. Using standardized values would tend to avoid this problem, although in this case the 

behaviour of the confidence curve around the low intensities would be cause for concern.  
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The four graphs above show the estimated pin, row, column and intensity effects removed across the 4 

slides (all plotted in one graph as the Trellis option was selected in Options). They show quite different 

patterns across the 4 slides, although the alternating pin effects show consistency across the slides. As 

there are 4 pins across each slide the alternation in the pin effects is actually a spatial effect in the columns 

(every 4th pin block belongs in the same meta-column). 
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The row x columns effects plot is shown to the right. This 

graph is a shade plot of the fitted 2d spline for rows by 

columns effects. This removes the area of low log-ratios 

through the centre of the slide detected in the graph 

generated with the Explore | Spatial plot menu. 

 

 

 

 

 

 

 

 

 

The output contains the following summary: 

 

 
  

The PreVar column gives the variance of the log-ratio before 

normalization, and the PostVar column gives it afterwards. The 

%VarExpl column gives the percentage of variance explained by 

the model and ResCorr gives the correlation between the adjusted 

log-ratios and the raw log-ratios. NBadSpots and NPoorSpots 

give the number of bad and poor spots on the slide as specified by the Spot Quality Information on the 

Normalize 2 Channel Microarray menu (shown to the right). The quality flags indicate spots that the 

scanning software has marked as either poor or bad. For example, GenePix uses values of  

-25 and -50 to indicate poor spots and -75 and -100 to for bad spots.  

 

The increase in the % variance explained is a rough guide as to whether extra terms in the model are 

explaining more noise. If this does not increase when extra terms are added, then it is not worth adding 

that model term to the model. 

 

Once you have the normalized microarray data, you are now ready carry out the analysis to get the level of 

differential expression of the targets for the probes on the slides.  

Summary of slides 
  

 SlideName  PreVar  PostVar %VarExpl  ResCorr NBadSpots NPoorSpots 
 13-6  1.4160  0.1770  87.5  34.970  0  0 
 13-7  0.4828  0.1751  63.7  59.571  0  0 
 13-8  0.2591  0.0985  62.0  60.997  0  0 
 13-9  0.1771  0.0693  60.8  61.882  0  0 
  

Total analysis time taken = 103.70 seconds 
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Analysis of microarray data 
 

The Stats | Microarrays | Analyse menu 

provides various menus to calculate summary 

statistics over the slides in an experiment. The 

appropriate analysis for the normalized data 

will depend on whether you are using a single 

colour or two-colour microarray. For two-

colour microarrays, you will need to take the 

relative differences between targets on the slides, and obtain the best estimates of all these over all the 

slides using the Estimate Two Channel Effects. For single colour microarrays, you will summarize over 

the replicates using either the Single Channel ANOVA that uses means to summarize the data or the 

Robust Means Analysis that uses medians to summarize the data. 

 

Estimate two-channel effects 

 

This menu summarizes the log-ratios over a series of slides. Apart 

from the normalized log-ratios for the slides, you will need a 

spreadsheet giving the targets (treatments) allocated to the red and 

green dyes on each slide. The spreadsheet requires three columns, 

the green target/treatment as a factor, the red target/treatment as a 

factor and the name of the slide as a text or variate to match the slide labels or levels in the log-ratio 

dataset.  

 

For example, for the 4 slides in the experiment in the “Data13-

6-9.gwb” spreadsheet, the target spreadsheet is shown to the 

right. This experiment has just two targets DM and Control, 

with two replicates of two dye swaps. The data are available in 

the file “Slides13-6-9.gsh” shown to the above right. This 

information can be entered into the Estimate Two Channel 

Effects menu shown to the right (the dialog titled “Microarray 

Estimates from Log-ratios”).  

 

The corrected log-ratio saved from the Normalize menu is 

entered, as well as the factors that index the slides and probes 

for this variate. The target information on the red and green 

dyes is entered from the spreadsheet above. Slide validation order 

given in SlideNo is not required, but is given to check that the order 

and names of the slides in the target spreadsheet match that in the 

log-ratios spreadsheet. If the labels do not match between the Slides 

factor and the Slide Order Validation entries, this will be flagged as an error in the output. If the order 

between the labels and the Slide Order Validation entries do not match, then a warning will be printed in 

the output and the Red and Green Treatment factors will be sorted into the order that matches with the 

Slides factor. If you want to produce some summaries over the treatments (e.g. main effects over factorial 

combinations or particular comparisons between targets), then you can set up a contrast matrix to specify 

these. To create this matrix, enter the matrix name in the Contrasts field, and click the Contrasts button 

to create the matrix. Give the number of contrasts in the dialog that appears (right), and a matrix will be 

created for you with the columns headed with the target labels. 
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In this experiment, which has only two treatments, we only need the 

difference between the two treatments, and so this contrast of DM – 

Control is entered as -1 and 1 (right).  

 

The options menu can now be completed (right). The most important 

option in this menu is the one that specifies whether a dye bias is 

estimated from the dye swaps. If there are no dye swaps in the 

experiment, this must be turned off, as otherwise the treatment estimates 

will be confounded with the dye effect, and you will get an error in the 

output that will say that the design is disconnected. If you have balanced 

dye swaps in your experiment, the means will be the same whether this 

is selected or not, but the variance of the dye effect will be 

removed from the residual variation, and one degree of freedom 

will be taken of the residual degrees of freedom to account for 

this. In a reasonable sized experiment or in one not balanced for 

dyes, it is best to estimate the dye bias effect to get an unbiased 

estimates of effects and their standard errors. In this experiment 

with only 4 slides, the option to estimate dye bias will not be 

used to save a degree of freedom in the statistical tests, which 

decreases the size of effect needed to be significant at the risk of 

an effect being upset by some dye bias.  

 

The Store button allows the results to be saved. Unlike the usual 

Save buttons on other Genstat menus, the columns to be saved 

must be specified before using the Run button. In the Store 

dialog shown to the right, every column possible has been 

specified, and the option to display the results in a spreadsheet 

has been selected. Clicking the Run button will perform the 

analysis and produce the following spreadsheet. Note as no dye-bias has been estimated this column will 

not appear in the spreadsheet. 
 

 
 

This spreadsheet contains a line for each probe, and columns for the 

different targets and contrasts. The spreadsheet is in probe order, but can 

be sorted into various orders using the Spread | Sort menu so that for 

example all the most differentially expressed probes are at the start or end 

of the spreadsheet. The Sort dialog (right) shows the spreadsheet being 

sorted on the values of the Contrast (DM vs. C). The most differentially 

under-expressed probes will be at the start of the spreadsheet, and those 

over-expressed will be at the end. This spreadsheet has been saved as 

“Estimates13-6-9.gsh”. 
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One channel ANOVA 

 

The One Channel ANOVA menu performs an analysis of variance on all the probes/genes in parallel. It 

assumes a single value from each slide, as with Affymetrix chips. The treatment structure across the slides 

needs to be provided in a small spreadsheet that supplements the main spreadsheet. A wide range of 

statistics from the ANOVA can be saved on each gene, and these can be saved in a spreadsheet.  

 

Using the expression values from “Hyb-Expressions.gsh”, we need a spreadsheet 

that gives the treatments on the various slides. This has been entered into the 

spreadsheet to the right, which only contains two columns, FileNames – the labels 

of the slides in the main spreadsheet, and Target – the targets (treatments) applied 

to the 9 slides. This experiment had three replicates of three treatments, a standard 

control line and two experimental lines that were to be compared with the control. 

This Slide information spreadsheet has been saved as “HybFiles.gsh”.  

 

Opening this menu using Stats | Microarrays | Analyse | One Channel ANOVA 

menu, we would complete this as to the right to 

analyse this experiment. The columns from the 

main expression file are entered into the 

Expression, Slides and Probes fields. The column 

FileName is entered into the Slide Validation field, 

and is used to check that the treatment factors 

correspond to the order of the slides in the main 

expression spreadsheet. If the labels do not match 

between the Slides factor and the Slide Order 

Validation entries, this will be flagged as an error in 

the output. If the order between the labels and the 

Slide Order Validation entries do not match, then a 

warning will be printed in the output and the 

Treatment factors used in the Treatment and Block 

Structure fields will be sorted into the order that 

matches with the Slides factor. The Slide 

spreadsheet can contain multiple Treatment and Block factors and the same types of treatment structures 

can be entered in the Treatment and Block Structure fields as in the standard ANOVA menu. For example, 

if the slides had been grouped into three replicates, we could have a factor Rep in the Block Structure field 

to remove between replicate differences. As this trial is being treated as a completely randomized 

experiment, the Block Structure field is left blank. If we had a factorial arrangement of two treatments (A 

and B) we could enter A*B as the Treatment Structure, and if we had 4 separate cell lines, two treated 

with one chemical, and two with another, we could use the nested structure Chemical/CellLine. See the 

Stats | Analysis of Variance | General menu for more details on treatment and block structures. 

 

Contrasts been the treatment levels can also be defined using the 

Contrasts button. These are added to the Treatment Structure field 

as COMP, REG, or POL functions. The COMP and REG 

functions require contrast matrices that are produced when the 

OK button is pressed on the dialog opposite.  
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There are not many options to be set on the dialog opened with the 

Options button. The options control what is printed in the output window, 

and allow restrictions on order of the factorial terms fitted in the ANOVA. 

For example, if the factorial limit is set to 2, all third order interactions 

(e.g. A.B.C) and higher will be omitted from the analysis. 

 

To store the results of the analysis of 

variances for each probe, use the 

Store button (this must be set before 

running the analysis), select the 

results to be saved, and give names to 

contain these. The structures that 

contain results for each treatment 

level (such as means or effects) will 

be stored in matrices. The option to 

display these results as a spreadsheet 

can be selected, in which case the 

results will be saved in multiple 

spreadsheets, unless the 

supplementary option “Save Results 

as variates in a Single spreadsheet” is 

selected. In this case the matrices will be converted to multiple variates, all displayed in one spreadsheet. 

When the Run button is pressed on the main menu, the following spreadsheet will be produced. 
 

One Channel Regression Analysis 

 

If the model that you wish to fit to the expression data is not balanced, or contains regression terms, then 

we can use the One Channel Regression Analysis menu. This performs a regression on all the 

probes/genes in parallel. It assumes a single value from each slide, as with Affymetrix chips. The 

regression model terms across the slides are provided in a small spreadsheet that supplements the main 

spreadsheet. A wide range of statistics from the regression can be saved on each gene, and these can be 

displayed in a spreadsheet.  
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Regression analysis 

  
Response variate:    
 Fitted terms:  Constant, StdvTrt 
  

Summary of t and F probabilities 

  
% probes with probabilities in the ranges: 
  
  >10% 5 - 10% 1 - 5% 0.1 - 1% <= 0.1% 
     
 Constant  0.25  0.23  0.65  1.89  96.99 
 StdvTrt  59.70  8.45  13.51  10.40  7.94 
 StdvTrt  59.70  8.45  13.51  10.40  7.94 

Opening this menu using Stats | Microarrays | Analyse | One 

Channel Regression menu, we would complete this as to the right 

to analyse this experiment for the difference between the control 

and the average of the two treatments Line-1 and Line-2, by 

inserting a column called StdvTrt (Spread | Insert Column after 

current column) and entering the values shown. The columns from 

the main expression file are entered in the Expression, Slides and 

Probes fields. The column FileName is entered in the Slide 

Validation field, and is used to check that the regression terms 

correspond to the order of the slides in the main expression 

spreadsheet. If the labels do not match between the Slides factor 

and the Slide Order Validation entries, this will be flagged as an 

error in the output. If the order between the labels and the Slide 

Order Validation entries do not match, then a 

warning will be printed in the output and the 

treatment terms used in the Regression 

Model field will be sorted into the order that 

matches with the Slides factor. The Slide 

spreadsheet can contain multiple variates and 

factors to be used in the Regression model. 

Here a variate with just two values, 0 for 

control entries and 1 for the treated slides has 

been put into the model field, and fitting this 

will create an estimate of the difference 

between the control and the average of Line-

1 and Line-2. The Options button, which 

opens the options dialog shown to the below 

right, can be used to separate out or pool the 

sums of squares of multiple terms in the 

regression and control what is printed and the 

model terms fitted. 

 

Use the Store button to save the results from the regression and to display these in a spreadsheet. This 

dialog is shown on the following page. Clicking the Run button produces the following output in the 

Output window and the spreadsheet on the next page.  
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The spreadsheet will contain multiple pages as many of the 

results are saved in matrices, and each spreadsheet page can 

only contain a single matrix. The page titles specify what is 

contained on each page, and a units’ column is added to 

identify the probes associated with each line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Robust means analysis 

 

The Robust Means Analysis menu produces medians of the probe effects over the slides for a single 

treatment factor, using the same algorithm used in RMA. This is an iterative analysis that removes the 

median slide effects in estimating the median level of each probe over all the slides. Unless you have a 

single treatment in your experiment (unlikely), this menu will be of little use, but is made available in case 

you want to use the algorithm used in the full RMA analysis. You would probably get more power out of 

your experiment using the One Channel ANOVA menu. 
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Empirical Bayes error estimation 

 

With the large number of genes analysed in parallel on the same series of slides, the variation in the results 

for each gene may be thought of as coming from a common error distribution. If all the results were 

generated from a normal error process, we would expect the distribution of standard deviations for each 

gene to follow a Chi-square distribution. If this was the case, considerable extra power could be obtained 

if we model the genes together, borrowing information from the whole distribution of standard deviations. 

The empirical Bayes error estimation does this by modelling the distribution of the standard deviations of 

the results over all probes. The distribution of standard deviations has two components, a single common 

standard deviation of the uniform error process operating on all genes, and a specific component of 

variance unique to each gene. A prior distribution for the standard deviations, or equivalently, the 

variances, is assumed. In this approach, it is assumed that the reciprocal of the variance is distributed with 

a multiple of a Chi-square distribution with d0 degrees of freedom, i.e.  
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If the parameters of this distribution, the prior degrees of freedom and standard deviation, d0 and s0 are 

estimated, more information can be gained on an individual probe, by shrinking it towards the prior 

standard deviation, s0.  The relative amount of information in the prior and individual standard deviation 

of a probe, (s0 and sp respectively) is specified by their degrees of freedom, d0 and dp. The modified 
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A modified t-test can then be performed using the modified standard deviation with d0+dp degrees of 

freedom. The method can also produce the p-values from a test of the differential expression being 

different from zero.  

 

Using the estimates from the 13-6 to 13-9 series (saved in 

“Estimates13-6-9.gsh”), we can create modified t-statistics 

and p-values for the contrast effects of DM vs. Control. 

Opening the menu Stats | Microarrays | Analyse | Empirical 

Bayes Error Estimation gives us the window to the right, 

when the fields are filled in with the appropriate column 

names. The Data Type dropdown list allows the data to be 

given in 3 formats, means (as in this example), T values, or 

a Pointer to a set of columns from which means and 

standard deviations are calculated from each row over the 

set of columns. Note: a pointer is a Genstat structure that 

specifies a list of data structures to be treated as a group, that can be defined using the View | Data View 

menu).  The resulting columns are specified in the Save section, with the option of adding these back to 

the source spreadsheet if it is still open. 

 

Clicking the Options button opens the dialog to the right, which allows 

you to specify whether the output printed in the Output window, which 

graphs are plotted, and the nature of the t-test performed (two sided or 

either of the one sided tests). Here, a two-sided test is used with output 

of the results to the Output window, and just the histogram of the t-

values before and after adjustment using the estimated prior parameters. 

Clicking the Run button creates the following output and graphs: 
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The histogram of P values (right) shows 

overall that the t-values have been shrunken 

towards zero, with the extreme outliers in 

the t-values seeming to be caused by those 

probes that have very small standard errors. 

The adjustment towards a common 

standard deviation has increased the 

degrees of freedom for the t-statistic from 3 

to approximately 7. If we plot histograms 

of the raw and adjusted standard deviations 

together (below left), we can see how the 

modified standard deviations (in red) have 

been shrunk towards the overall mean.  

 

 

 

False discovery rate 

 

With so many significance tests on all the probes being performed together, a large number of the tests 

will be significant by chance, so that we would expect 5% of the tests to be significant at the 5% level 

even if there were no differential expression for any probes. A better way of understanding how successful 

the experiment has been to separate differentially expressed probes from non-differentially expressed 

probes is to estimate the false discovery rate for different levels of significance. The false discovery rate is 

an estimate of the proportion of non-differentially expressed probes among the tests that are significant at 

the given level. If this is low, this means that the experiment has been able to effectively separate the 

Empirical Bayes estimation of modified t values 
  
 Data CEst[1] (variate of Means) 
 Number of tests  3515 
 Mean standard deviation  0.2437 
 Median standard deviation  0.2079 
 Median degrees of freedom 3.000 
 Prior standard deviation  0.2121 
 Prior degrees of freedom  3.988 
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differentially expressed probes from the rest. There are two methods of estimating the FDR, one based on 

a mixture model, and another based on non-parametric methods.  

 

False Discovery Rate using Bonferroni Method 

 

This menu can be used to estimate false discovery rates (defined in the table below) using a Bonferroni-

type procedure. This is a non-parametric approach, where for each value of lambda; the observed 

proportion of the sample that is not differentially expressed (π0) is calculated. The procedure uses two 

methods to get an overall measure of π0. The first uses bootstrapping to choose the value of π0 which 

minimises the mean squared error, and the second uses a spline smoother to smooth the values of π0 

around the maximum value of lambda. Unadjusted q-values are then calculated from the estimate of π0 as 

π0*p*(Proportion of tests < p) (where p is the test probability) for each test value, and then the Bonferroni 

q values are defined as the minimum of the q values above each test value, stepping this procedure down 

through the sorted p values. 

 

The following table defines some random variables related to m hypothesis tests:  

 

Significance Test  # declared non-significant # declared significant Total 

# true null hypotheses  U  V  m0  

# non-true null hypotheses T  S  m1 = m − m0  

Total  W = m − R  R  m  

 

m0 is the number of true null hypotheses.  

m − m0 is the number of false null hypotheses.  

U is the number of true negatives.  

V is the number of false positives.  

T is the number of false negatives.  

S is the number of true positives.  

H1...Hm are the null hypotheses being tested.  

 

In m hypothesis tests of which m0 are true null hypotheses, R is an observable random variable, and S, T, 

U, and V are unobservable random variables. The proportion of tests that are truly null, π0, is m0 divided 

by m. The false discovery rate (FDR), also known as the q-value of a test, is a commonly used error 

measure in multiple-hypotheses, defined as FDR = E(V/R | R > 0) × Pr(R > 0), i.e. the expected 

proportion of false positives findings among all the rejected hypotheses multiplied by the probability of 

making at least one rejection; the FDR is zero when R = 0. Similarly, the false rejection rate (FRR) is 

defined as FRR = E(T/W | W > 0) × Pr(W > 0), i.e. the expected proportion of false negatives findings 

among all the accepted hypotheses times the probability of accepting at least one test. We also define the 

power to be equal to E(S/m1 | m1 > 0) × Pr(m1 > 0).  

 

Opening the Stats | Microarray | Analyse | 

False Discovery Rate by Bonferroni menu 

gives the menu to the right. Using the F 

probability values in the file “Hyb-

ANOVA.gwb” in the Empirical Bayes section 

above, we can fit obtain the esimated false 

discovery rates to FProb[1]. 
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The options and results to be saved are set with the Options and Store dialogs shown next. 

  

The output contains the estimate of π0 of 0.3745. 

 

The plot of π0 vs. lambda shows how the estimate of π0 

flattens off around lambda = 0.4. The estimate of π0 is taken 

at the maximum value of lambda, i.e. at lambda = 0.9. An 

alternative estimate of π0 could be obtained by reducing the 

largest value of lambda in the menu. 

 

Histograms of the p-values and the resulting q-

values are also plotted (above right) which show 

the reduction in significance when we use q-

values. The plot of the q-values vs. the p-values 

also shows this reduction more clearly. The plots 

of the number of tests vs. the q-values and the 

number of expected false positives are also 

provided (see next page), and these could be used 

to select a q-value to give an expected number of 

false positives. Finally, the false discovery and rejection rates are plotted (see next page) on both the 

normal and log scale so that small probabilities can be examined in more detail. These can be compared 

with the same graphs produced by the mixture model for estimating false discovery rates in the next 

section. 
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False Discovery Rate using Mixture Model 

 

The False Discovery Rate menu can be used to fit a 

mixture model to a distribution of probabilities. The 

two components of the mixture can be thought of as 

those probes which are showing differential 

expression (modelled by the Beta/Gamma component 

with probabilities shifted towards zero) and those not 

responding (the Uniform component, whose 

probabilities values then form a random sample from the null/uniform distribution of the test statistic). 

The context is multiple testing, with data from any situation (microarrays here, but also metabolomics and 

proteomics, among others) where the same simple null-hypothesis, H0, is tested many times. These tests 

generate a large number of significance values, which under H0 have a Uniform distribution, and under the 

alternative hypothesis, Ha, can be modelled as a Beta density. The false discovery rate (FDR), false 

rejection rate (FRR) and power of the tests (Allison et al., 2002) with a given level of significance can 

then be estimated from the parameters of two components. The mixture model parameterization takes a 

proportion P from the Uniform distribution, and (1 - P) from either a Beta or a Gamma distribution.  

 

Opening the Stats | Microarray | Analyse | False Discovery Rate by Mixture menu gives the menu to the 

right. Using the Modified p-values generated in the Empirical Bayes section above, we can fit the mixture 

model, providing some initial parameter estimates. 

 

  The output from this model appears in the Output window as: 

 

 

The are two warnings in this output: 

 

1. The parameter estimation did not converge. This is probably because either the initial values are 

too far away from the optimal parameters, or because the model does not fit the probabilty 

distribution well. 

 

2. The beta distribution does not have its mode at zero (A > 1), so that it is an inappropriate 

distribution for describing a False Discovery rate. 

 

Uniform-beta mixture fitted by EM algorithm 
  

Probability variate: Mod_Pr 
  
Warning 1, code UF 2, statement 91 from FDMIXTURE: 
failed to converge by iteration 100 
Only 1 of the 3 parameter estimates within 0.001000 
  

Uniform/beta mixture parameter estimates 
  
 Mixing Proportion  0.9573 
 Beta A  1.96294 
 Beta B  2.41246 
 Log Likelihood  1.305 
  

Warning 2, code UF2, statement 156 from FDRMIXTURE: 
 First Beta parameter > 1 is inappropriate when        
 modelling significance levels by a Uniform/Beta mixture. 
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When one examines the probability histogram with the fitted mixture plotted over this (previous page), 

one can see that in fact it looks as if there are virtually no genes significantly responding. The proportion 

of genes close to zero are less than one would expect from a purely random set of results, and the small 

beta component (approximately 5%) is being used to describe the slight bulge around the mid range of 

probablilities. Thus, it is not worth fitting a False Discovery rate to this set of results, as there are fewer 

than expected responding probes/genes. 

 

If we return to the Single Channel ANOVA results from the nine Affymetrix chips, saved in the file “Hyb-

ANOVA.gwb”, and fit a False Discovery Rate to the F-ratio probabilities in column FProb[1] we get the 

following output: 

 

In this we see that the estimation has 

converged, and that a good value of A and B 

have been fitted. The larger the value of B 

and the smaller the value of A, the more the 

p-values are pushed to towards zero.  The 

mixture model only estimates that 41% of 

the genes are showing no response between 

the treatment lines 1 & 2 and the control line 

“Standard”.   

 

The Store button on the menu allows the various estimated results to be saved as usual. 

 

If the estimation does not converge in the default number of iterations you 

can try changing these using the Options button which opens the dialog to 

the right. This also controls the graphs plotted and the output. A range of 

graphs can be plotted after the mixture model has been fitted. These show 

the fitted model (in three formats to allow close inspection of the quality 

of the fit) and the estimated FDR, FRR and Power curves. The following 

graphs come from the fit of the model to FProb[1], as selected to the right.  

 

 

 

 

 

 

This graph shows the majority of probes/genes 

have very small p-values. As so many of the 

values lie close to zero, it is hard to examine the 

goodness of fit of the model to the data over 

values less than 0.5. The second graph (below 

left) produced by the FDR menu (the Density 

on Logit scale option) rescales the x-axis onto a 

logit scale, i.e. plotting log(p/1-p) rather than p. 

This expands the scale near zero and one. The 

third graph rescales the y-axis using a log scale 

for the density in the logit plot to examine in 

even more detail what is happening in the tails 

of the distribution (the Log Density on Logit 

scale option). This gives the graphs on the next 

page. 

Uniform-beta mixture fitted by EM algorithm 
  

Probability variate: FProb[1] 
  

Uniform/beta mixture parameter estimates 
  
 Mixing Proportion  0.4166 
 Beta A  0.37154 
 Beta B  3.58105 
 Log Likelihood 17005.187 
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The final two graphs below plot the FDR, FRR and Power curves versus the level of significant used in 

choosing the genes said to be differentially expressed. In these plots, it can be seen that this experiment 

has high power and reasonably low False Discovery rates. As there are so many genes classified as 

responding (~60%), the False Rejection rates are high for small significance values. The second FDR 

graph plots these curves on a log scale so that values close to zero can be read more accurately.  

 

In addition, an alternative False Discovery Rate menu, is available, which does not use a distribution 

model for the p-values, but estimates the False Discovery rates using a Bonferroni type procedure as 

detailed in Storey (2002). This will give the same type of graphs as the above, plus some others showing 

how the estimated proportion of non-differentially express genes/probes is estimated. 
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Display microarray results 
 

The Display menu contains two menu items that 

allow you to display the results over all the genes. 

The QQ Plot menu displays the results plotted against 

their expected scores from a specified distribution 

(usually a normal or t distribution). The volcano plot 

displays a scatter plot of a measure of differential expression against a measure of significance, with the 

option of colouring the points on a third measure. 

Display QQ plot 

 

This menu opens the same menu as the Graphics | 

Probability Plot menu, which allows a set of values to 

be plotted against the expected values from a specified 

distribution. For example, under the assumption that 

the results over the probes simply come from a random 

noise process, the central limit theorem would suggest 

the probe means would follow a normal distribution. 

Another distribution that could be used is a t-

distribution for the t-values of specific contrasts, with 

the appropriate degrees of freedom specified. Note that 

not all the t-values will have the same degrees of 

freedom, but the graph should give a reasonable 

approximation if the degrees of freedom are not too 

variable (i.e. if the majority of probes have no missing 

values). 

 

The menu opens the window to the right. Specify the 

column to be plotted in the Data Values field, and select the distribution from the dropdown list, 

specifying the degrees of freedom if required. The menu here is completed using the column CEst[1], the 

contrast between DM and Control from the file “Estimates13-6-9.gsh”. 

 

The resulting graph from clicking the Run button is displayed on the next page. 
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In this graph, you can see a departure from the 

normal distribution in the tails, indicating more 

extreme values than expected from a normal 

distribution. The green line is the 1-1 line, giving 

expected values if the distribution was truly 

normal, and the red curves are the 95 percent 

confidence curves around this under the null 

hypothesis that we are sampling from a normal 

distribution. The points cross the confidence 

curves in the tails, particularly in the lower tail. 

To get a closer look at the departures in the tails, 

we could use the Options button and select the 

display Difference from Expected option (as 

shown below) to get the following graph below 

right. 

 

This graph allows the more accurate location of 

where points cross the confidence limits. 

 

If we now plot the t-values in CTVal[1] against 

the expected t-distribution with 3 degrees of 

freedom we get the graph below. Note the very 

wide confidence curves, as a t-value with 3 

degrees of freedom is quite unstable. Also, note 

that the points do not cross the confidence limits. 
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The final example in this section examines the F values in 

the column FRatio[1] from the file “Hyb-ANOVA.gwb”, 

which contains the treatment F-ratio for the results from 

the Single Channel ANOVA for the 9 Affymetrix slides 

considered earlier. These are compared with the expected 

values from an F distribution with 2 and 6 degrees of 

freedom. As F-ratios are very skewed, this comparison is 

best plotted on a probability scale. The resulting graph is 

shown to the right, and this shows the same result as 

found in the False Discovery Rate menu for the same 

data, i.e. many more of the probes shown significant 

differential expression than expected under the null 

hypothesis of no differential expression. 

 

 

 

Display volcano plot 

 

This menu shows jointly the level of differential 

expression and the significance on a single graph. It is 

called a volcano plot as the points typically take up a 

v shape looking like the ash spewing out of a volcano. 

This is because it is rare to get points with very small 

levels of differential expression, but a high level of 

significance, and vice versa. In addition, as the 

significance is only positive, the negative and positive 

expressions are plotted against positive values, 

generally giving a symmetric plot (unless there is a 

big difference in the number of positively and 

negatively expressed log-ratios).  Opening the menu 

gives the window to the right. In this case, we will 

look at the CEst[1], the contrast between DM and 

Control from the file “Estimates13-6-9.gsh”, and 

CPVal[1], the corresponding probability under a two-

sided null hypothesis of no differential expression. To 

demonstrate the ability to colour the points on another 

variate, we will use the mean intensity of the spots for 

a probe over the slides. To add this variate to the 

Estimates spreadsheet, open the full data set “Data13-

6-9.gwb” and use the Spread | Calculate | Summary 

Stats menu to obtain the means of intensity for each 

probe. The completed dialog that does this is shown 

to the right. Clicking OK will create a spreadsheet 

containing the means (shown on the next page).  
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To merge the mean intensities with the Estimate results, the column 

f_Name must be converted to a text to match the type of the column 

Probes in the Estimates spreadsheet. To do this, right click on the 

column and select the popup menu Convert to Text. Now go to the 

Estimates spreadsheet window and use the Spread | Manipulate | Merge 

menu which opens the dialog below. The options are set correctly by 

default, so just click OK to merge the m_Intensity column. 

 

 

 

 

 

 

 Now, complete the Volcano Plot menu 

as shown on the previous page. The 

Options button allows you to set the 

titles, symbols and colours used on the 

plot. The options shown below left were 

used to produce the following graph 

(below right).  
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Cluster microarray probes or targets 
 

This menu allows you to group similar probes or 

targets together through the technique of cluster 

analysis. This can be used to check that the similarity 

between slides reflects that expected from the 

experimental design, and to see which groups of 

genes/probes behave in a similar manner between targets. A two-way clustering using both slides and 

targets can be used to produce a ‘heat map’ of the probe x target matrix.  

Cluster Probes/Genes 
 

This menu can be used to group together probes or genes that behave in a similar manner over the various 

treatments in the experiment. As we often have a very large number of probes on a slide, there is an option 

to restrict the clustering to probes with the largest levels of differential expression. The data can be put 

into the menu in two formats, either as a pointer (see Help | Genstat Guides | Introduction, section 10.7 on 

page 328) to the results by slide or target, or using single variate with all a factor indexing the various 

slides or targets.  
 

 For example, using the probes effects from the 

ANOVA of the nine Affymetrix slides saved in 

“Hyb-ANOVA.gwb”, we can look to see which 

probes have similar responses over the three 

treatments. Opening the Stats | Microarray | Cluster | 

Probes/Genes menu, we get the dialog to the right. 

As the effects are in three columns pointed to by the 

Effects pointer, we select the Pointer Data Format 

as shown. We then select Effects as the Log-Ratios 

and enter IDProbes as the Probes/Genes. With a 

pointer, the Targets or Slides field can be left 

blank. The cluster method we use is K means and 

we specify the number of groups to cluster into as 

20, and that we only want to cluster the top 50% of probes. Note: the 

K-Means algorithm is much more space efficient with large number 

of probes, as a hierarchical cluster analysis must calculate a full n x n 

similarity matrix, where n is the number of probes being clustered.  
 

The Options dialog, shown to the right, controls the graphs and 

output from the clustering. If you use a Trellis plot with large 

numbers of probes, then the graph size in memory is often too large 

for most computers. Selecting the option Display Mean Response 

per group only shows the average over the probes in the groups 

defined by the clustering, considerably reducing the memory 

required to display the graph. The two graphs with and without this 

option are shown on the next page. The option Display Cluster 

Groups in a Spreadsheet 

produces the following 

spreadsheet that gives the probe 

groupings and the effects in 

columns S[1]…S[3] (one 

column for each treatment). 
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If you use the hierarchical cluster algorithm (selected from 

the list under Clustering Method), with an average link, 

using only the top 1% of probes (settings shown below 

right), you will end up with the dendrogram on the left 

below. As you can see, it is difficult to read the probes with 

so many clustered together, even using only the top 1%, but 

the dendrogram does indicate that there are 3 quite distinct 

groupings of the probes. If you specify a Groups Threshold 

(see dialog below) of 90% (i.e. cutting through the dendrogram at a similarity of 0.9), you can see the 

mean responses of these 3 groups (as in the plot bottom right which was made using the trellis option): 

group 1 is high on Standard, group 2 low on Line-2 and group 3 low on Standard.    
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Cluster targets/slides 

 

This menu lets you examine how the slides are related to 

each other in terms of having the same patterns of responses 

over the probes. The measurement used to assess similarity in 

a two colour experiment is usually the log-ratio, but this 

menu can also be used with the intensities from a single 

colour slide. Using the data from the “Data13-6-9.gwb” file, 

we can look at the similarities using the Correlations between 

slides (selected from the Method list) using the menu as 

shown to the right. This generates the dendrogram as shown 

below right (after some editing in the graphics editor). This 

shows slides 13-8 and 13-9 are most similar and 13-6 is most 

dissimilar. Of course the direction of the dye swaps should be 

taken into account, and the signs of the log-ratio could be 

changed on the slides which have a standard treatment on green 

as opposed to which have this treatment on red. 

 

To look at the 9 Affymetrix slides in “Hyb-Expressions.gsh”, 

we could use Expression in the Log-Ratios field with all the 

probes and obtain the following dendrogram (below left). When 

this is compared to the treatments on the slides it can be seen 

that the slide with the same treatments cluster together, and Line 

1 and Line 2 are the most similar treatments. 
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Two-way clustering  

 

This menu combines the previous two menus to allow 

you to jointly cluster on both probes/genes and 

targets/slides. A map of the two-way array of expression 

can then be displayed as a shade plot, which shows the 

pattern of differential expression. Using the example 

data saved in “Data13-6-9.gwb”, open the Stats | 

Microarray | Cluster | Two-way menu to get the dialog to 

the right. Use the corrected log-ratios from the column 

cLogRatio, and enter the Probe and Slide information 

from the columns Name and Slide respectively. 

Completing the dialog as shown. Using a hierarchical 

clustering, only the top 1% of probes with the groups 

thresholds set to 98% for Probes and 100% for Targets (i.e. do not group any slides together), and setting 

the options as shown to the right, we obtain the dendrograms shown below (one for probes (below left) 

and another for slides (below right)) and the shade plot showing the group means by slides (bottom right). 
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Two-channel microarray example 
 

The following example shows how to analyse 

data from a two-channel microarray 

experiment. The data in this experiment are 

from a mouse knock out experiment with 6384 

genes per slide. There were 16 slides, 8 control 

mice and 8 knockout mice all on the red dye 

compared to a standard reference on the green 

dye. Note that this design is not dye balanced, 

as there are no dye swaps, as the reference is 

always on red. The data are stored in the file 

“ApoAISlides.csv” that can be found in the 

Microarrays folder (as explained on page 2). 

The file can be opened in Genstat by selecting Open from 

the File menu and then navigating to and selecting the file 

name. 

When a CSV file is opened in Genstat, you have the 

option of opening it into a text window, or into a 

spreadsheet. In this example, the data are to be opened 

into a spreadsheet: this can be done by clicking on the Read button as shown right. 

 

On opening CSV files, you are prompted with two dialogs where 

additional options can be specified to control how the data are 

opened. The first dialog (as shown right) has options for controlling 

which rows of the data are to be opened. For this example, the 

whole file is read by clicking on the OK button. 

 

The second dialog contains further options for controlling how the 

data are to be opened including data type conversion and location of 

column names. For the example, the default settings can be used by 

clicking on the OK button. 
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Opening the file should result in the following spreadsheet: 

 

 

Within the spreadsheet, the data have two columns for 

each slide. To analyse the data it needs to be in a stacked 

format where all the red values are within one column 

and all the green values are in another. To reorganise the 

data, the stack menu can be used. To open this dialog, 

select Stack from the Manipulate section of the Spread 

menu. The menu right shows the settings for stacking the 

columns together. There are 16 columns being stacked 

together. All the columns c1G-k8R are selected and 

added to the Stacked Columns list (using the ➔ button). 

Then tick the Stack Column Order interleaved box as 

we want alternating columns to go in the Green and Red 

columns. The name Slide has been entered for the factor 

to index the stacked columns. The column ID has been 

selected for the Repeat Columns list and the Use names 

from First stacked column for Factor labels has been 

ticked, so we get the column names as levels of the Slide factor.  

 

Note that the stacked columns can be renamed to Green and Red by double 

clicking the old names in the Stacked Columns Names box and entering 

the new names in the rename dialog (see right). 

 

Clicking OK on the stack menu should produce the 

spreadsheet to the right. 

 

The labels of the factor Slide have been created using the 

original column names. However, it may be preferable to 

change these labels to remove the ‘G’ to display the shorter 

labels c1...c8, k1...k8. The simplest way to do this is to select 

Edit Levels and Labels from the Factor item on the Spread 

menu or by clicking on the  toolbar button.  
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This will open the dialog 

shown right, where the ‘G’ can 

be removed from the labels by 

editing the appropriate cells. 

 

A faster way of doing this is to 

use the Replace button and 

replace G with nothing: 

 

Additional information on the genes and layout of the slides is located within another file, 

“ApoAIGeneNames.tab”. The file can be opened using the Open item on the File menu, and should result 

in the following spreadsheet: 

 
 

The information from the 

“ApoAIGeneNames.tab” data set needs to 

be merged into the stacked spreadsheet. To 

merge two spreadsheets, click on the 

spreadsheet that the data are to be merged 

into (in this case the stacked spreadsheet). 

Select Merge from the Manipulate item on 

the Spread menu, which should open the 

dialog on the right. The two spreadsheets 

are to be merged using the column ID to 

match columns between the spreadsheets. 
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The columns X1, X2, ROW, COL and NAME can be merged into the original 

spreadsheet by clicking on the Select Columns to Transfer button and then 

copying these names to the Selected Columns list and then clicking OK.  

 

The column X1 is the row position of the pins down the slide, and X2 is the 

column position. These can be renamed to more the informative names 

Meta_Row and Meta_Col by clicking on the start of the column name (the 

cursor should change to a pencil when you hover at the start of the column name) and entering the new 

name. The spreadsheet columns which index the row and column layout of the pins (Meta_Row and 

Meta_Col), the rows and columns within pins (ROW and COL) and the Gene Names (NAME) should all 

be converted to factors. To convert columns to factors, right-click the mouse anywhere within the column 

to be converted, and then select the “Convert 

to Factor” from the pop-up menu. Once this 

has been done for each of the columns, the 

factor columns will be indicated by an 

exclamation mark at the start of the column 

name as seen to the right. 

 

The row and column positions across the whole slide are required 

for the analysis. These can be formed by using the combinations of 

Meta_Row with ROW and Meta_Col with COL respectively. To 

form the product of factors, select Product/Combine from the 

Factor item on the Spread menu. This opens the dialog shown 

right, in which the two factors Meta_Row and ROW have been 

selected, and the new name SRow has been entered for the product. 

Similarly, this dialog can be used to form the product of Meta_Col 

with COL with a new name SCol. Note that if the data are to be 

analysed using the normalization menu, the factors Meta_Row and 

Meta_Col will need to be combined to form a factor representing 

the pins. 

 

To measure the level of differential expression 

between the two treatments on a slide the log-ratios 

can be calculated. To calculate the log-ratios select 

Log-ratios from the Calculate sub-menu from the 

Microarrays on the Stats menu. The menu right 

shows the settings that can be used to calculate the 

log-ratios for this data set. 
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If the newly calculated log-ratio and intensity columns are not 

automatically added to your existing spreadsheet, you can 

append them by selecting the “Data in Genstat” item from Add 

on the Spread menu. In the corresponding dialog (right), select 

the two columns to be added to the spreadsheet and click on the 

Add button.  

 

The data on the slides can be explored by using the graphical 

menus available within the Explore sub-menu. For example, 

Histograms can be selected to produce histograms of the data. 

The following shows the settings for plotting a histogram of the 

log-ratios by slide. 

 

 

 

 

 

 

The options button on the menu should be used 

to set the Trellis options as below left, giving 

the graph below right. 
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The spatial variation across the slides can be examined 

by selecting the Spatial Plot item from the Explore sub-

menu. The menu (right) shows the settings that can be 

used to produce a spatial plot for each slide. The spatial 

plot of the first slide is shown below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Dye intensity and spatial effects (pins, rows and columns) can be removed from the slides by using the 

Normalization menu. To open the normalization menu, select Two Channel from the Normalize item on 

the Microarrays menu. The menu below shows the settings that can be used to normalize the data. 

 

Note that the option to include plots is available within the options for this menu. You will need to open 

the options dialog with Options button and set this as below right:  
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   The resulting graphs display the effects that have been estimated:
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To analyse the results across the 16 slides, a small 

data set is required which provides the treatments 

applied to each slide. To do this an empty 

spreadsheet with 3 columns and 16 rows can be 

created using the menu shown right. This menu 

can be opened by selecting New from the File 

menu and then selecting the Spreadsheet tab. 

 

The data can easily be entered into the empty 

spreadsheet. The spreadsheet below right shows 

the data that should be entered, with the three 

columns named SlideName, Red_Treat, and 

Green_Treat. Note that the columns Red_Treat and 

Green_Treat have been converted to factors. The factors 

columns Green_Treat and Red_Treat must contain the same 

set of factor levels or labels. In this example, the columns 

should be created such that they both have three labels 

(KnockOut, Normal and Reference). 

 

To analyse the data select the Estimate Two Channel Effects 

item from Analyse on the Microarray menu. The picture 

below shows the resulting menu containing settings to run the 

analysis.  

 

Results can be saved into data structures simultaneously with 

the analysis by clicking the Store button (before clicking 

Run) and specifying the names of the new structures. These 

structures can also be displayed into spreadsheets by selecting 

the Display in Spreadsheet. Note as no dye bias has been 

estimated, this will not appear in the resulting spreadsheet. 



Analysis of Microarray Data in Genstat 

 

63 

To estimate the difference between the control 

and the knockout treatments, a contrast can be 

defined by clicking on the Contrasts button. 

This prompts for the contrast matrix name 

(KOvsN) and the number of contrasts (1). 

Clicking OK pops-up a spreadsheet where the contrast matrix values can be supplied. The spreadsheet 

above shows a contrast for control versus knockout. Note the reference level is specified as zero as it is 

not used in this contrast. 

 

For this example, the Estimate dye bias from dye swaps option is not 

required and should be removed by making sure the option is not selected 

within options (click on the Options button to view the menu options). 

Clicking on the Run button will run the analysis and display the results 

in a spreadsheet. 

 

If the spreadsheet is sorted by the contrast (using the Spread | Sort menu 

item) it can be seen that the APO gene has the largest level of differential expression (as below). 

 

  

To adjust the estimated standard errors to 

each gene by the use of the information 

across all genes the Empirical Bayes 

Error Estimation menu can be used. This 

shrinks the standard errors towards an 

estimated prior distribution, making the t 

values and probabilities more stable. To 

open this menu, select Empirical Bayes 

Error Estimation from the Analyse 

section of the Microarrays menu, and 

complete the dialog as shown to the right. 
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The false discovery rate can be examined 

by selecting False Discovery Rate from the 

Analyse item on the Microarrays menu. 

The menu right shows the settings that can 

be used to obtain this, and the resulting 

graphs are shown below 
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Affymetrix microarray example 
 

Arabidopis is a simple plant often used in gene studies. Affymetrix Arabidopis chips (ATH1-121501) 

have 22810 probe sets arranged in a 712 x 712 grid. In this experiment, nine of these chips (slides) were 

used. The CEL file data for these chips are stored in the files “hyb1191.CEL”- “hyb11400.CEL” that can 

be found in the Microarrays folder (see page 2). The layout of probes and quality control units (not used in 

the analysis) can be found in the CDF file “ATH1-121501B.CDF”. The nine slides have three replicates of 

three targets applied to them. 

 

To calculate expression values for these 

slides, open them with the Stats | 

Microarrays | Data | Affymetrix CEL files 

menu item as shown top the right. 

 

Now select the CEL files by using the 

Browse button  as shown below.  

 

Select the nine CEL files as shown to the 

right. 

 

Click the Browse button by the CDF file entry 

 to select the CDF file as shown below. 

 

 

 

You may need to use the Up and Down buttons to move 

selected CEL files to the correct location in the list. The 

order the files end up in the list depends on how they are 

selected in the open dialog, but Windows does not always 

seem to give a logical ordering to these. This should give 

you the completed menu to the right.  
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Click the Open button and the dialog to the right will appear.  

 

Select the option for batch processing with the RMA method, and 

provide a filename to save the results. If no file name is provided, the 

results will be popped up in a spreadsheet. When you click OK, Genstat 

will produce the spreadsheet specified. This analysis can be very slow, 

as each CEL file contains over half a million observations. 

 

If you want to skip these steps, you can just open the already saved 

spreadsheet, “Hyb-Expressions.gsh” in the Microarrays folder. 

 

Opening “Hyb-Expression.gsh” should give you the following 

spreadsheet: 

 

  
 

This data may now be summarized with the Stats | Microarrays | Analyse | One Channel ANOVA menu 

item, but first, we need the structure of the Targets applied to the slides. This is found in the file 

“HybFiles.gsh”. Open this with the File | Open menu. You should get the sheet shown to the above right. 

 

Now open the One Channel ANOVA menu, and fill in the details as shown below. 
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To estimate the difference between the Standard treatment and 

the other two cell lines, we can specify a contrast, using the 

Contrast button. This opens the menu to the right.  

 

Completing the menu as shown right and clicking OK creates a 

spreadsheet containing a contrast matrix. Fill this matrix in as 

shown below by clicking in the various cells are typing in the 

entries.  

 
 

Now go back to the Single Channel ANOVA menu (either by clicking on 

it if you can see it or else by selecting it from the Windows menu) and set 

the options and results to be saved. Click the Options button, and 

complete the dialog (right). 

 

To save the results in a spreadsheet, click the Store button and complete the Store dialog as shown below. 
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When you click Run on the Single Channel ANOVA menu, Genstat carry out ANOVAs for each probe 

and pop up the results in a spreadsheet as below. 

 

Alternatively, this data can be analysed with the 

Robust Means Analysis menu as shown to the 

right, using these options shown below. 

 

 

 

 

 

 

 

 

 

 

 

References 
 

Allison, D.B., Gadbury, G.L., Heo, M., Fernandez, J.R., Lee, C.-K., Prolla, T.A., & Weindruch R. (2002). 

A mixture model approach for the analysis of microarray gene expression data. Computational Statistics 

& Data Analysis, 39, 1-16. 

 

Baird, D.B., Johnstone, P. and Wilson T. (2004). Normalization of microarray data using a spatial mixed 

model analysis which includes splines. BioInformatics, 20, 3196–3205. 

 

Storey, J.D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society 

Series B, 64, 479-498. 

 

Yang, Y.H., Dudoit, S., Luu, P., Lin, D.M., Pend, V., Ngai, J. and Speed, T.P. (2002) Normalization of 

cDNA microarray data: a robust composite method addressing single and multiple slide systematic 

variation. Nucleic Acids Res., 30, e15:1–e15:11. 


	Contents
	Microarray example files
	Introduction
	Microarrays
	Design of two-colour microarray experiments
	1. Reference designs
	2. Loop designs
	3. Balanced incomplete block designs
	Structured treatments
	Examples of contrast matrices
	Example using the Microarray Design menu
	Blocking and randomization in microarray designs
	Microarray design exercises
	Solutions to design exercises
	Automatic generation of designs

	Reading microarray data
	Exploration of microarray data
	Explore histogram
	Explore density
	Explore 2d plots
	Explore spatial plots

	Calculations for microarray data
	Background correction
	Calculate Affymetrix expression values
	RMA algorithm
	Background correction
	Normalization
	Summary over Probes

	MAS 4.0 algorithm
	MAS 5.0 algorithm


	Normalization of microarray data
	One channel (Affymetrix)
	Two channels

	Analysis of microarray data
	Estimate two-channel effects
	One channel ANOVA
	One Channel Regression Analysis
	Robust means analysis
	Empirical Bayes error estimation
	False discovery rate
	False Discovery Rate using Bonferroni Method
	False Discovery Rate using Mixture Model


	Display microarray results
	Display QQ plot
	Display volcano plot

	Cluster microarray probes or targets
	Cluster Probes/Genes
	Cluster targets/slides
	Two-way clustering

	Two-channel microarray example
	Affymetrix microarray example
	References

