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Introduction

Multivariate analysis is useful when you have several different measurements on a set of
n objects. In Genstat the measurements would usually be stored in separate variates, and
these would have a unit for each object. The objects are often regarded as being a set of
n points in p dimensions (p being the number of variates).

Many techniques, for example principal components analysis (Chapter 2) and canonical
variates analysis (Chapter 3) are aimed at reducing the dimensionality. That is, they aim
to find a smaller number of dimensions (usually 2 or 3) that exhibit most of the variation
present in the data. This can help you determine patterns or structure in the data, as well
as identify the relative importance of individual variables. Genstat has several menus for
producing graphical representations, for example principal coordinates analysis (Chapter
4) and multidimensional scaling (Chapter 5). It also has facilities for modelling
multivariate data, including multivariate analysis of variance (Chapter 8) and partial least
squares.

Another important requirement is to take a set of units and classify them into groups
based on their observed characteristics. Hierarchical cluster analysis (Chapter 6) starts
with a set of groups each of which contains one of the units. These initial groups are
successively merged into larger groups, according to their similarity, until there is just
one group containing all the observations. Genstat also provide menus for non-
hierarchical classification (Chapter 7), where the aim is to form a single grouping of the
observations that optimizes some criterion such as the within-class dispersion, or the
Mahalanobis squared distance between the groups, or the between-group sum of squares.

Chapter 9 describes the facilities for constructing classification trees, which allow you
to predict the classification of unknown objects using multivariate observations.
Regression trees, which predict the value of a response variate from multivariate
observations are described in Chapter 10.

Finally, Chapter 11 describes how generalized Procrustes analysis can be used to obtain
a consensus from assessors in activities such as wine tasting.

The book works through a series of straightforward examples, with frequent practicals
to allow you to try the methods for yourself. The examples work mainly through the
menus of Genstat for Windows, so there is no need for prior knowledge of the Genstat
command language. Details of the commands for multivariate analysis can be found in
Chapter 6 of the Guide to the Genstat Command Language, Part 2, Statistics.



Figure 1.1

Figure 1.2

Figure 1.3

1 Exploratory data analysis

Before you begin a multivariate
analysis, it is sensible to
investigate the properties of the
data by looking at some plots
and summary statistics.

We illustrate some of the
insights that can be obtained by
examining seven variables
recorded in 41 towns in the
USA, stored in the  Spreadsheet
file Pollution.gsh shown in
Figure 1.1: 

SO2 sulphur dioxide
Temp temperature in degrees Fahrenheit
Manuf number of enterprises with 20+ staff
Pop population size in thousands
Wind average annual wind speed (miles per

hour)
Precip average annual rainfall in inches
Days average number of days with rain per year

(For more details, see Everitt, 2005, An R and S-PLUS Companion to Multivariate
Analysis.)

This file (and the others in this
Guide) can be opened using the
Example Data Sets menu (Figure
1.3). You can open this by
clicking on the Open Example Data

Sets  option of the File menu on
the menu bar (Figure 1.2)
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Figure 1.4

Figure 1.5

First we open the Summary

Statistics menu by clicking on
the Summary Statistics sub-
option of the Summary Statistics

option of the Stats menu on the
menu bar (see Figure 1.4).

In the menu (Figure 1.5), we
have entered all seven variates
into the Variates box, selected
the required summary statistics
in the Options box, and checked
the Histogram and Boxplot boxes
in the Graphics box. The
resulting output is shown below,
and the plots are in Figures 1.6 -
1.19.

 

Summary statistics for Days
 

Number of observations =  41
Number of missing values =  0

Mean =  113.9
Median =  115

Minimum =  36
Maximum =  166

Lower quartile =  102.2
Upper quartile =  128.2

Standard deviation =  26.51

Summary statistics for Manuf
 

Number of observations =  41
Number of missing values =  0

Mean =  463.1
Median =  347

Minimum =  35
Maximum =  3344



4 1  Exploratory data analysis

Lower quartile =  170
Upper quartile =  488.8

Standard deviation =  563.5

Summary statistics for Pop
 

Number of observations =  41
Number of missing values =  0

Mean =  608.6
Median =  515

Minimum =  71
Maximum =  3369

Lower quartile =  293.5
Upper quartile =  723.8

Standard deviation =  579.1

Summary statistics for Precip
 

Number of observations =  41
Number of missing values =  0

Mean =  36.77
Median =  38.74

Minimum =  7.05
Maximum =  59.8

Lower quartile =  30.93
Upper quartile =  43.17

Standard deviation =  11.77

Summary statistics for SO2
 

Number of observations =  41
Number of missing values =  0

Mean =  30.05
Median =  26

Minimum =  8
Maximum =  110

Lower quartile =  12.75
Upper quartile =  35.25

Standard deviation =  23.47

Summary statistics for Temp
 

Number of observations =  41
Number of missing values =  0

Mean =  -55.76
Median =  -54.6

Minimum =  -75.5
Maximum =  -43.5

Lower quartile =  -59.32
Upper quartile =  -50.55

Standard deviation =  7.228
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Figure 1.6 Figure 1.7

Figure 1.8 Figure 1.9

Summary statistics for Wind
 

Number of observations =  41
Number of missing values =  0

Mean =  9.444
Median =  9.3

Minimum =  6
Maximum =  12.7

Lower quartile =  8.7
Upper quartile =  10.6

Standard deviation =  1.429
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Figure 1.10 Figure 1.11

Figure 1.12 Figure 1.13

Figure 1.14 Figure 1.15
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Figure 1.16 Figure 1.17

Figure 1.18 Figure 1.19

Figure 1.20

The main thing to notice in the plots and statistics show that the variables are on very
different scales !and we will need to remember this in the later multivariate analyses.

To study the inter-relationships
between the variates, we can select
the Scatter Plot Matrix option of the
Graphics menu on the menu bar. In
the resulting menu (Figure 1.20), we
just need to select the variates to
plot and click on Run. The plot is
useful for showing variates that are
positively and negatively correlated,
extreme observations and any
clusters of the units.

The pollution data are plotted in
Figure 1.21).
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Figure 1.21

Figure 1.22

1.1 Practical

Genstat spreadsheet file Exam.gsh
(Figure 1.22) contains examination
marks for 88 students in the subjects
Mechanics, Vectors, Algebra, Analysis
and Statistics. (For details, see Mardia,
Kent and Bibby, 1979, Multivariate
Analysis, Academic Press, London.)
Print summary statistics and plot graphs
to study the data.



Figure 2.1

Figure 2.2

2 Principal components analysis

A major problem with multivariate data is that there are generally too many variates for
you to be able to visualise the properties and inter-relationships of the data units easily.
Principal components analysis (or PCP) provides one way to overcome this “curse of
dimensionality". It aims to find linear combinations of the data variates that contain most
of the variation between the units. The combinations (or principal components) indicate
relationships between the variates, and also define planes in multi-dimensional space
where the relationships between the units can be studied effectively. We shall illustrate
this using the pollution data from Chapter 1.

The Principal Components Analysis

menu (Figure 2.1) is obtained by
clicking on the Principal Components

line in the Multivariate Analysis

section of the Stats menu on the
menu bar. You  first need to enter
the data variates into the Data to be

analysed window. Here we have
chosen to enter all of the variates
except SO2, which we will be
treating as a response variate later in
this Guide.

One important issue is to decide
whether to base the analysis on
sums of squares and products, or
variances and covariances or
correlations. The first two produce essentially the same analysis (there is just a common
scaling of %(n!1) applied to the variates, to convert from sums of squares to variances).
The final setting, Correlation matrix standardizes each variate (by subtracting its mean and
dividing by its standard deviation). This can be very useful if the variates do not share a
common scale and show very different amounts of variation.

In the pollution data set, the variates are
not only on different scales (see Chapter1),
they are of inherently different types. So we
have chosen to use the correlation matrix
(which Genstat will calculate for us
automatically, from the variates).

Clicking on the Options button produces
the Principal Components Analysis Options

menu (Figure 2.2), which controls the
printed output from the analysis. We have
set Display box to print Latent roots and
Loadings, we have requested a scree plot,
and we have set the Number of dimensions

box to 6 which will give all the available
latent roots and vectors. If you choose to
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have less than the full number of dimensions, the Residuals check box can print residuals
representing the information in the dimensions that have been excluded. The Number of

dimensions setting also applies to results saved from the Principal Components Save Options

menu, which is obtained by clicking on the Save button on the Principal Components

Analysis menu.
The output is shown below.

Principal components analysis
 
 

Latent roots
 

1 2 3 4 5 6
2.196  1.500  1.395  0.760  0.115  0.034

 
 

Percentage variation
 

1 2 3 4 5 6
36.60  25.00  23.24  12.67  1.91  0.57

 
 

Trace
 

6.000
 
 

Latent vectors (loadings)
 

1 2 3 4 5

Days  0.23792  0.70777  0.09309  0.31131  0.58000
Manuf  0.61154  -0.16806  -0.27289  0.13684  -0.10204

Pop  0.57782  -0.22245  -0.35037  0.07248  0.07807
Precip  -0.04081  0.62286  -0.50456  -0.17115  -0.56818
Temp  0.32965  0.12760  0.67169  0.30646  -0.55806
Wind  0.35384  0.13079  0.29725  -0.86943  0.11327

 
6

  
Days  0.02196

Manuf  0.70297
Pop  -0.69464

Precip  -0.06062
Temp  -0.13619
Wind  0.02453
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Figure 2.3

The first principal component defines the direction in which the towns exhibit the
greatest variation. The second component defines the direction with the greatest variation
of the directions orthogonal to the first component. The third component defines the
direction with the greatest variation of the directions orthogonal to the first two
components, and so on. Here, the first component contains about 37% of the variation,
and the first and second components contain about 62%.

It is often interesting to interpret the directions. Those with mainly positive or mainly
negative loadings represent “averages” while those with a mixture of signs represent
“comparisons". Here, the first component is in the direction

0.23792 × Days + 0.61154 × Manuf + 0.57782 × Pop
! 0.04081 × Precip + 0.32965 × Temp + 0.35384 × Wind

and seems to represent “quality of life". The second component is
0.23792 × Days + 0.61154 × Manuf + 0.57782 × Pop
! 0.04081 × Precip + 0.32965 × Temp + 0.35384 × Wind

and seems to be related to the wetness of the climate.
We have not printed the significance tests for equality of the final K roots as these

cannot be used when the analysis is based on correlations. When the analysis is based on
variances or on sums of squares, they can be useful for deciding how many roots are
needed. Asymptotically (that is, as the number of units becomes large) these have chi-
square distributions. However, this is not true for analyses based on correlations. To use
the tests, we start by testing for equality of all the roots, then all except the first, all except
the first and second, and so on, until the test is non-significant. The rationale is that, if we
are to omit the final dimension, we should also omit all dimensions that are no more
variable than that dimension.

An alternative, visual way of deciding
how many roots are needed is to
examine the scree plot. The plot for the
pollution data, shown in Figure 2.3,
shows the pattern that you would hope
to find, with a clear jump up from the
final roots (with low eigenvalues) to the
earlier roots (with larger eigenvalues).
This is more in line with the attitude
that significance tests are not really
relevant if you view principal
components analysis mainly as a
descriptive technique, where the aim is
to find dimensions in which you can
most effectively study the inter-
relationships of the data units.
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Figure 2.4

Figure 2.5

Here it seems that four principal
components are needed. So, we change the
number of dimensions in the Principal

Components Analysis Options menu to four,
check the box to plot the principal
component scores, and select Label to 
label the points. Clicking on OK here, and
then Run in the Principal Components Analysis

menu, produces the plot in Figure 2.5.

The menu uses the PCP directive, which is described in Section 6.2.1 of the Guide to the
Genstat Command Language, Part 2 Statistics.
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Figure 2.6

2.1 Principal-component biplot

Several of the multivariate analysis
menus have a Biplot button, that
becomes available once the analysis
has been run. Biplots provide a
convenient way of assessing the
relationships between the individual
observations in the analysis (here
the towns), and their characteristics
with respect to the variables in the
data.

Clicking on the button in the
Principal Components Analysis menu
opens the menu in Figure 2.6, which
has options to control the labelling
of the plot, and the way in which the
variables are represented. Here we
enter the text vector Label to provide labels, and click on Run to produce the graph in
Figure 2.7.

The display plots the individuals in the space defined by the first two dimensions of the
multivariate analysis (from a PCP these will be the first two principal components). The
plot also contains an “axis” for each variable (its biplot axis) that allows you to see how
each individual's projection into this plane relates to its value for the variable concerned.
Figure 2.7 shows the default, predictive axes. These show the values of the variables that
are predicted by the projection into 2-dimensions that is defined for each point by the
analysis; essentially this is done by taking an orthogonal projection of the point onto each
the biplot axis. Genstat defines a hot point at the point for each individual. If you click
on the hot point icon at the right-hand end of the Graphics Toolbar, and then click on one
of the points, lines will be drawn from the point to the predictions. In Figure 2.7, we have
done this for Phoenix, so you can see how this differs from the other towns. The lines can
be removed again by clicking on the hot point a second time.

The angles between the biplot axes represent the correlations between the variables,
and lines in opposite directions indicate negative correlation. So here we can see that
temperature and wind have a strong negative correlation. The % variance of the principal
components show the extent to which the plot summarizes the entire data set.
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Figure 2.7

The alternative, interpolative axes show the values of the variables that would lead to a
point being placed at the position of the selected point on the graph. So here the point is
being predicted by the variables, rather than the variables by the point. This is done by
taking the sum of a set of vectors, one in the direction of each variable, with lengths equal
to the values of the variables for that point. To obtain interpolative axes, you should
select the Interpolative button from  the Type of axes radio buttons in the Biplot menu.

The Biplot menu uses the DBIPLOT procedure, which is described in Section 6.16.1 of
the Guide to the Genstat Command Language, Part 2 Statistics.
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Figure 2.8

2.2 Practical

Genstat spreadsheet file Exam.gsh
(Figure 2.8) contains examination
marks for 88 students in the subjects
Mechanics, Vectors, Algebra, Analysis
and Statistics. (See Practical 1.1 and
Mardia, Kent and Bibby, 1979,
Multivariate Analysis, Academic Press,
London.)

Perform a principal components
analysis. How would you interpret the
directions in which the student marks
exhibit the greatest variation? How
important is Statistics in distinguishing
the abilities of the students?

Display a biplot from the analysis,
and use the hotpoints to see how the strongest and weakest students differ from the other
students.



Figure 3.1

Figure 3.2

3 Canonical variates analysis

Canonical variates analysis is
appropriate when the units are classified
into groups. The aim is to find linear
combinations of the data variates that
represent most of the variation between
the groups (rather than between the
individual units, as in principal
components analysis; Chapter 2). We
illustrate the analysis using a classic
data set, Fisher’s Iris Data, which
consists of measurements of sepal and
petal lengths and widths on iris plants of
three different species. This is available
in Genstat spreadsheet Iris.gsh

(Figure 3.1).

The Canonical Variates Analysis menu
(Figure 3.2) is obtained by clicking on
the Canonical Variates line in the
Multivariate Analysis section of the Stats

menu on the menu bar. You  need to
enter the data variates into the Data to be

analysed window, and the factor
defining the groups into the Grouping

factor window. Clicking on the Options

button produces the Canonical Variates

Analysis Options menu, which controls
the printed output from the analysis.
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Figure 3.3

In the Options menu (Figure 3.3), we
have set the Display box to print Latent

roots, Loadings, Canonical variate means

and Distances. The Number of dimensions

box is set to 2, which is the maximum
possible here as there are only three
species of iris in the data set. If you
choose to have less than the full number
of dimensions, the Residuals check box
can print residuals representing the
information in the dimensions that have
been excluded. The Number of

dimensions setting also applies to results
saved from the Canonical Variates Save

Options menu, which is obtained by
clicking on the Save button on the
Canonical Variates Analysis menu. The
Graphics section of the menu is set to
plot the data with the first canonical
variate along the x-axis, and the second
along the y-axis.

The output from the analysis is shown below.

Canonical variate analysis
 
 

Latent roots
 

1 2
32.19  0.29

 
 

Percentage variation
 

1 2
99.12  0.88

 
 

Trace
 

32.48
 
 

Latent vectors (loadings)
 

1 2
1  0.829  0.024
2  1.534  2.165
3  -2.201  -0.932
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Figure 3.4

4  -2.810  2.839
 
 

Canonical variate means
 

1 2
1  7.608  0.215
2  -1.825  -0.728
3  -5.783  0.513

 
 

Adjustment terms
 

1 2
1  -2.105  6.661

 
 

Inter-group distances
 

1  0.000
2  9.480  0.000
3  13.393  4.147  0.000

1 2 3

The results show that 99% of the between-group variation is in the direction of the first
canonical variate:

0.829 × Sepal-Length + 1.534 × Sepal-Width ! 2.201 × Petal-Length
! 2.810 × Petal-Width

(using the coefficients in column 1 of the latent-vectors matrix). This is confirmed by the
plot in Figure 3.4.

The matrix of canonical
variate means presents the
coordinates (or scores) for each
group in the direction of each
canonical variate. These are
adjusted so that the centroid of
the points, weighted by sizes of
the groups, is at the origin. The
adjustment term for each
canonical original variates in
order to achieve this. (See Guide
to the Genstat Command
Language, Part 2 Section 6.3.1
for more details.)
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Figure 3.5

3.1 Practical

Genstat spreadsheet file
Skull.gsh (Figure 3.5)
contains data on 150 male
Egyptian skulls from five
different epochs (see pages 4
and 5 of Manly, 1986,
Multivariate Statistical Methods
a Primer, Chapman & Hall,
London).

Perform a canonical variates
analysis. Plot the first two
canonical variates and study
how the skulls differ between
epochs.



Figure 4.1

Figure 4.2

4 Principal coordinates analysis

Principal coordinates analysis
differs from principal components
and canonical variates analysis in
that the focus is more on the data
units than the data variables. So the
basic input is a symmetric matrix
representing the “associations”
between the data units. The menu
(Figure 4.1) has radio buttons that
you can use to specify how the the
associat ions  are suppl ied.
Similarities are on a range from zero
(completely different) to one (absolutely identical).  The alternative is to specify
dissimilarities or distance which are zero when the two units are identical. Distances d
are converted automatically to similarities s by the menu, using the transformation

s  =  !d2

(See the Guide to the Genstat Command Language, Part 2, Section 6.10 for more
information.)

As an example, spreadsheet file Voting.gsh contains the number of times that 15
congressmen from New Jersey voted differently in 19 environmental bills (see Table 10.3
of Manly, 1986, Multivariate Statistical Methods a Primer, Chapman & Hall, London).
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Figure 4.3

Figure 4.4

We shall analyse these as
similarities, and so we first use
the Calculations menu to convert
the differences to proportions of
times that they congressmen
voted in the same way i.e.

(19-Diffvote)/19

(see Figure 4.3). We then enter
the resulting symmetric matrix,
Similarity ,  in to  the
Association matrix box in Figure
4.1.

The Principal Coordinates Analysis Options

menu (Figure 4.4) allows you to select the
output to display, and specify the number of
dimensions to fit. Here we have chosen to
fit only two dimensions.

Principal coordinates analysis
 
 

Latent roots
 

1 2
2.824  0.972

 
 

Percentage variation
 

1 2
38.22  13.15

 
 

Trace
 

7.389
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Figure 4.5

Figure 4.6

In interpreting the plot (Figure 4.5), it is interesting to note that congressmen Daniels,
Helstoki, Howard, Minish, Patten, Rodino, Roe and Thompson were Democrats, while
congressmen Forsythe, Frelinghuysen, Hunt, Maraziti, Rinaldo, Sandman, Widnall were
Republicans.

4.1 Practical

Genstat spreadsheet file
Galaxy.gsh (Figure 4.6)
contains distances between ten
types of Galaxy. Use principal
coordinates analysis to represent
them in three dimensions.



Figure 5.1

Figure 5.2

5 Multidimensional scaling

Multidimensional scaling operates on a symmetric matrix which is assumed to represent
distances between a set of units. It aims to construct coordinates of points, in a defined
number of dimensions, whose distances are approximately the same as those in the
original matrix. To illustrate the analysis we will try to recreate the locations of some
British towns, based on figures for the shortest distances between each of them by road.
The data are in the Genstat spreadsheet Roaddist.gsh (Figure 5.1). This is a symmetric
matrix spreadsheet (as shown by the blanks above the diagonal).

The Multidimensional Scaling menu is
obtained by clicking on the
Multidimensional Scaling line in the
Multivariate Analysis section of the
Stats menu. In Figure 5.2, we have
entered Distances as the distance
matrix to use, and set the required
number of dimensions to 3.

The algorithm starts with an
initial configuration of points which
it then modifies using a method
known as steepest descent, until no further improvements are possible (see the Guide to
the Genstat Command Language, Part 2 Section 6.12). To evaluate the configuration, it
does a regression of the inter-point distances, calculated from the current configuration,
against the supplied distances. The Method setting on the menu controls whether this is
a “monotone regression” (which corresponds to what is known as non-metric scaling) or
an ordinary linear regression (corresponding to metric scaling). It then compares the fitted
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Figure 5.3

distances from the regression with the original distances using a quantity known as the
stress.

The Scaling section of the
Multidimensional Scaling Options

menu (Figure 5.3) allows you to
specify what to display from the
analysis. Here we have asked to
display the latent roots and the
coordinates. It also controls whether
the stress is calculated on a least-
squares scale, a least-squares-
squared scale or a logarithmic scale.
The Treatment of ties section of the
options menu allows you to vary the
way in which tied values in the
supplied distances are treated. With
the Primary setting, no restrictions
are placed on the inter-point distances corresponding to tied distances. In the Secondary

setting, the inter-point distances corresponding to tied distances are required to be as
nearly equal as possible. The Tertiary setting is a compromise between the primary and
secondary approaches to ties: the block of ties corresponding to the smallest distance are
handled by the secondary method, and the remaining blocks of ties are handled by the
primary method. This is particularly useful when the supplied distance matrix contains
only a distinct values. Further information is given in the Guide to the Genstat Command
Language, Part 2 Section 6.12, which describes the MDS directive that is used by these
menus. The directive also has some additional facilities, for example the ability to try
several automatically-generated initial configurations, or to supply your own.

If we click on OK here, and on Run in the Multidimensional Scaling menu itself, Genstat
produces the output below.

Message: Default seed for random number generator used with value 33633 

Multidimensional scaling
 
 

Least-squares scaling criterion
 
Distances fitted using monotonic regression (non-metric MDS).
Primary treatment of ties.
 

Coordinates
 

1 2 3
 Name    

Aberdeen  -1.5498  -0.1754  -0.0455
Aberystwyth  0.3087  0.3597  -0.3365
Birmingham  0.3114  -0.0462  -0.0424
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Figure 5.4

Blackpool  -0.2214  0.0591  -0.1727
Bournemouth  0.8882  -0.0407  0.2126

Bristol  0.6224  0.1741  0.0695
Cardiff  0.6422  0.3121  -0.0901

Carlisle  -0.5888  0.0634  -0.0696
Dover  0.9364  -0.7146  -0.0893

Edinburgh  -1.0006  -0.0158  0.0541
Exeter  0.8894  0.3092  0.3292

Fishguard  0.5061  0.5383  -0.4924
Fort William  -1.4431  0.3719  0.2468
Gloucester  0.5245  0.0843  0.0032

Great Yarmouth  0.3566  -0.9353  -0.0210
Harwich  0.5698  -0.7701  0.1975

Holyhead  0.1291  0.2137  -0.7365
Inverness  -1.6910  0.1129  0.2851

John O Groats  -2.2088  0.1106  0.4087
Hull  -0.1110  -0.4433  -0.1190

Lands End  1.2693  0.6009  0.6692
Lincoln  0.0800  -0.3966  0.0124

Liverpool  -0.0530  0.1262  -0.1838
Newcastle  -0.5933  -0.2389  0.0496
Plymouth  1.0069  0.4264  0.4607

Portsmouth  0.9079  -0.2205  0.1607
Sheffield  0.0046  -0.1912  -0.0319
Stranraer  -0.9726  0.2432  -0.4059
Swansea  0.6916  0.3303  -0.3322

York  -0.2118  -0.2478  0.0095
 
 

Latent roots
 

1  23.36
2  4.15
3  2.49

The Multidimensional Scaling Options menu
has a check box to plot the coordinates (or
scores) in a scatter-plot matrix showing all
the pairs of dimensions. If you want to plot
a single pair of  dimensions, you first need
to save the coordinates, using the
Multidimensional Scaling Save Options menu
(Figure 5.4) which is obtained by clicking
on the Save button on the Multidimensional

Scaling menu. Here we have asked to save
the coordinates in a matrix called
Locations, and to display these in a
spreadsheet.
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Figure 5.5

Figure 5.6

Figure 5.7

To plot the points, we need to convert the
rectangular matrix spreadsheet of locations
to a vector spreadsheet, by making this the
active window and then selecting the
Convert sub-option of the Sheet option of the
Spread menu on the menu bar. In the
resulting Convert Sheet menu (Figure 5.5),
we change the radio button from Matrix to
Vector, and click on OK to make the change.
The columns will then be become variates,
probably with names C1,  C2 and  C3,
which can be used in the graphics menus in
the usual way.

We can then plot the points
using the 2D Scatter Plot wizard
in the usual way. First we use
the initial Data menu (Figure
5.6) to select C1 for the y-
coordinates, and C2 for the x-
coordinates.

Then we select the Lines and

Symbols tab of the Attributes

menu (Figure 5.7), and arrange
to label the points using the text
Name. We also cancel the key
on the Options tab.

Figure 5.8 shows the resulting
plot of the first two dimensions,
and Figure 5.9 shows a similar
plot of the first dimension
against the third dimension
(showing some of the distortion
in the data from a 2-dimensional
solution).
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Figure 5.8 Figure 5.9

Figure 5.10

5.1 Practical

Genstat spreadsheet file
Galaxy.gsh (Figure 5.10)
contains distances between ten
types  of  Galaxy.  Use
multidimensional scaling to
represent them in three
dimensions.



Figure 6.1

Figure 6.2

Figure 6.3

6 Hierarchical cluster analysis

The hierarchical cluster analysis facilities in Genstat provide ways of grouping n objects
into classes according to their similarity. It starts with a set of n clusters (or groups), each
containing a single object. These initial clusters are successively merged into larger
clusters, according to their similarity, until there is just one cluster (containing all the
objects).

We shall use a set of data concerning mean mandible measurements  of various types
of modern and prehistoric dog (Higham, Kijngam & Manly, 1980, An analysis of
prehistoric canid remains from Thailand, Journal of Archaeological Science, 7, 149-165).
This data set is also discussed by Manly (1986, Multivariate Statistical Methods a
Primer, Chapman & Hall, London). The data are in the Genstat spreadsheet Dog.gsh
(Figure 6.1).

The Hierarchical Cluster Analysis menu is
obtained by clicking on the Hierarchical

line in the Cluster Analysis subsection in
the Multivariate Analysis section of the
Stats menu on the menu bar. If you have
already formed a similarity matrix, or a
distance matrix or a dissimilarity
matrix, you can enter its name straight
into the Similarity matrix field in the menu
(Figure 6.2). With a distance matrix,
you would usually check the Use square

root transform box.
Alternatively, you can click

on the Form Similarity Matrix

button and use the Form Similarity

Matrix menu (Figure 6.3). The
names of the variates need to be
entered into the Data values

window, and you need to define
a name (here dogmat) for the
resulting symmetric matrix. You
must also select the way in
which the similarities are to be
calculated from each variate.



6  Hierarchical cluster analysis 29

Figure 6.4

Here we have chosen the default type to be “euclidean”, which uses  the geometric
distance between the points representing each pair of objects. (A formal definition of this,
and the other possibilities is in the Guide to the Genstat Command Language, Part 2,
Section 6.1.2, where it describes the METHOD option of the FSIMILARITY directive, used
by the menu.) You can change the types of individual data variables by double-clicking
on their lines in the right-hand box. Finally, you can specify a vector (here the text called
type from the first column of the spreadsheet) to label rows and columns of the matrix.
When you click Run, the name of the matrix is automatically entered into the Similarity

matrix field in the Hierarchical Cluster Analysis menu.
The Method field in the Hierarchical Cluster Analysis menu (Figure 6.2) contains a drop-

down list box to specify the method of clustering to use. These differ according to the
way in which they define the similarity between clusters containing more than one object:

Single link defines the similarity to be the maximum
similarity between any pair of objects (taken one
from each cluster);

Nearest neighbour is a synonym for Single link;
Complete link defines the similarity between two clusters as the

minimum similarity between any pair of objects;
Furthest neighbour is a synonym for Complete link;
Average link defines the similarity, between a cluster and a new

cluster formed by merging two clusters, as the
average of the similarities with each of the original
clusters;

Group average is similar to Average link, except that the average is
over all the objects in the two merging clusters;

Median sorting if we regard the clusters as points in a
multidimensional space, when two clusters join
the new cluster is represented by the midpoint of
the original cluster points.

Output from the analysis is controlled by
the Hierarchical Cluster Analysis Options

menu (Figure 6.4). For the dog example,
we will simply print, and plot, the
dendrogram. This displays the points at
which the various clusters combine,
allowing you to assess the relationships
between the objects. If you specify a
threshold in the Forming groups field of the
options menu, Genstat will form a factor
grouping all the objects that have been
combined into a single cluster at that level
of similarity. You can arrange to save the
factor using the Hierarchical Cluster Analysis

Save Options menu, obtained by clicking on
the Save button in the Hierarchical Cluster

Analysis menu (Figure 6.2).
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Figure 6.5

Figure 6.6

Single linkage cluster analysis
 

Dendrogram
 
       ** Levels   100.0  90.0

Modern dog          1  ..
Prehistoric dog     7  ..)
Cuon                5  ..)..
Dingo               6  .....)
Golden jackal       2  .....)
Chinese wolf        4  .....)
Indian wolf         3  .....)...........

The dendrogram for the dogs, printed
above and plotted (with better
resolution) in Figure 6.5, shows that
the modern and prehistoric dogs are
most closely related, and that both of
these are related to the Cuon and to
the Dingo and Golden  jackal. The
Indian and Chinese wolves are
related to each other more than any
of the other dogs, but the similarity is
not close.

Bootstrapping provides a way to assess
the reliability of the clustering. Does a
cluster rely on just a few of the variables, or
does it have wider support? Once you have
run the cluster analysis, you can open the 
Bootstrap Hierarchical Cluster Analysis menu
(Figure 6.6) by clicking the Bootstrap button
in the Hierarchical Cluster Analysis menu.
This takes a sample, with replacement, from
the available variables. It forms a similarity
matrix using the same settings as in the
original analysis. It then does a cluster
analysis, and records whether each of the
original clusters is included.
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Figure 6.7

Here we have left the default,
which will form samples with the
same number of variables as in the
original analysis (6). We shall take
100 bootstrap samples, with seed
zero meaning that Genstat will
choose the seed for the random
numbers automatically. As we have
not used any random numbers earlier
in this run, Genstat will initialise the
random number generator from the
system clock. Different seeds will
give different results. So you should
remember the seed (and enter it into
the Randomization seed box), if you
want to redo the bootstrapping and
obtain same results in future. 

The box for the Minimum similarity

for forming clusters allows you to
ignore clusters that have low similarities. In our example, as all the clusters have a
similarity greater than 0.9 (see Figure 6.5), it seems unnecessary to change this from the
default of zero. We have chosen to print the clusters (with their replications over the
samples), and to add these to the dendrogram, as shown in Figure 6.7. You can see that
the cluster of modern dog with prehistoric dog occurs in almost all of the samples (97 out
of 100), but the inclusion of Cuon has less support (only 54 samples).

Message: Default seed for random number generator used with value 955562
 

Clusters
 

Replication  97  64  54  60
Cluster  {               {               {                {              
  Modern dog  Indian wolf  Modern dog  Modern dog
  Prehistoric dog  Chinese wolf  Cuon   Cuon
   }               }              Prehistoric dog  Dingo
         }               Prehistoric dog
           }             

         
         
Replication  72  100
Cluster  {               {              
  Modern dog  Modern dog
  Golden jackal  Golden jackal
  Cuon  Indian wolf
  Dingo  Chinese wolf
  Prehistoric dog  Cuon
   }              Dingo
     Prehistoric dog
       }             
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Figure 6.8

6.1 Practical

Genstat spreadsheet file
Goblet.gsh (Figure 6.8)
contains data on 25 goblets from
prehistoric sites in Thailand (see
page 147 of Manly, 1986,
Multivariate Statistical Methods
a Primer, Chapman & Hall,
London). Perform a principal
components analysis to study
the relationships between the
goblets. Then perform a cluster analysis of the goblets. How does the dendrogram reflect
the closeness of the goblets in the principal-component plot?



Figure 7.1

Figure 7.2

7 Non-hierarchical cluster analysis

Non-hierarchical cluster analysis aims to find a single grouping of a set of n objects by
optimizing a criterion, for example by maximizing the between-group sum of squares.
Other criteria in Genstat include maximizing the total between-groups Mahalanobis
distance, minimizing the within-class dispersion or a criterion known as maximal
predictive classification, which is designed specifically for binary data. For full
definitions, see the Guide to the Genstat Command Language, Part 2 Section 6.20. This
form of clustering includes the technique known as K-means clustering, where the
criterion is usually the within-class dispersion.

To illustrate the menus we shall use some measurements taken on 30 bronze brooches
(Doran & Hodson, 1975, Mathematics and Computers in Archaeology, Edinburgh
University Press, Table 9.1). These are stored in Genstat spreadsheet Brooch.gsh
(Figure 7.1).

Before doing the cluster analysis, to counteract skewness in the variables, we transform
each column of measurements  x to log10(x+1). This can be done using the Calculate

menu in the usual way. Alternatively, to save time, the transformed data are available in
spreadsheet Logbrooch.gsh.

To obtain the Non-hierarchical Cluster

Analysis menu you click on the Non-

hierarchical line in the Cluster Analysis

subsection in the Multivariate Analysis

section of the Stats menu on the menu
bar.

Figure 7.2 shows the menu set to use
all the measurements to form four
groups using the between-group sum of
squares criterion.
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Figure 7.3

Figure 7.4

The Non-hierarchical Cluster Analysis Options menu (Figure 7.3) controls the way in
which the search for the best grouping is carried out, and the output that is produced.

In Figure 7.3, we have asked
Genstat to form the initial
classification by finding the four
objects that are furthest apart in the 7-
dimensional space defined by the
measurements, using these objects as
the “cores” of the initial groups, and
allocating the other objects to the
group with the nearest core. (Note:
this is feasible only if the number of
groups does not exceed the number of
variates.) The Between-group

interchanges box controls how Genstat
generates new groupings from the
initial classification. Here we are
allowing objects both to be swapped between groups, and to be transferred from group
to group. The setting Swap only would constrain the group sizes to remain the same
throughout the search (which might be useful, for example, if you wanted groups of equal
sizes, and chosen the Equal-sized groups, by unit order option for the Initial classification), and
the setting Fix at initial configuration makes no changes.

You can arrange to store the final
classification by using the Non-hierarchical

Cluster Analysis Store Options menu (Figure 7.4),
which is obtained by clicking on the Store

button in the Non-hierarchical Cluster Analysis

menu (Figure 7.2). To save the a factor defining
the groups, you check the Grouping box, and
type the name of a factor into the In box.

Output from the clustering shown below.

Non-hierarchical clustering
 
 

Sums of squares criterion
 
 

Initial classification
 
Number of classes = 4 
 
 

Class contributions to criterion
 

1 2 3 4
0.5471  0.2434  1.4189  0.3416



7  Non-hierarchical cluster analysis 35

 
Criterion value = 2.55101 
 
 

Classification of units
 

Unit 1 2 3 4 5 6 7 8 9 10
Group  1  4  3  3  3  4  3  3  2  3

 
Unit 11 12 13 14 15 16 17 18 19 20

Group  1  1  2  3  3  3  3  3  2  3
 

Unit 21 22 23 24 25 26 27 28 29 30
Group  1  2  2  3  3  3  4  4  3  1

 
 
 

Class mean values
 

Bow_height Bow_thickness Bow_width Coil_diameter
1  1.303  0.768  0.828  1.093
2  1.217  0.514  1.102  0.899
3  1.243  0.728  0.818  0.912
4  1.112  0.564  0.619  0.874

 
Element_diameter Foot_length Length

1  0.992  1.819  1.994
2  0.756  1.402  1.710
3  0.959  1.298  1.674
4  0.540  1.259  1.623

 
 

Units rearranged into class order
 
Group 1 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

1  1.398  0.653  0.653  1.230
11  1.380  0.833  0.919  1.079
12  1.255  0.756  0.833  1.041
21  1.204  0.724  0.724  1.114
30  1.279  0.875  1.013  1.000

 
Element_diameter Foot_length Length

 Unit    
1  1.146  1.973  2.061

11  1.176  1.623  1.857
12  0.954  1.681  1.898
21  1.079  1.978  2.111
30  0.602  1.839  2.045

 
Group 2 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

9  1.146  0.380  1.270  0.903
13  1.204  0.690  1.104  0.845
19  1.279  0.519  0.959  1.000
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22  1.279  0.602  0.991  0.903
23  1.176  0.380  1.185  0.845

 
Element_diameter Foot_length Length

 Unit    
9  0.778  1.505  1.740

13  0.845  1.477  1.681
19  0.778  1.342  1.699
22  0.778  1.362  1.778
23  0.602  1.322  1.653

 
Group 3 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

3  1.204  0.623  0.690  0.903
4  1.431  0.940  0.857  1.000
5  1.380  0.792  0.940  0.903
7  1.230  0.708  0.851  1.000
8  1.279  0.653  0.653  1.041

10  1.255  0.881  1.009  0.845
14  1.146  0.568  0.792  0.845
15  1.204  0.763  0.756  0.778
16  1.230  0.653  0.785  0.903
17  1.204  0.681  0.813  0.903
18  1.146  0.732  0.732  0.778
20  1.255  0.556  0.544  1.041
24  1.204  0.748  0.778  0.903
25  1.362  0.869  0.892  1.000
26  1.204  0.699  0.964  1.041
29  1.146  0.778  1.025  0.699

 
Element_diameter Foot_length Length

 Unit    
3  0.954  1.531  1.785
4  1.114  1.380  1.875
5  0.954  1.322  1.839
7  0.903  1.041  1.663
8  0.778  1.204  1.613

10  0.845  1.301  1.602
14  1.041  1.380  1.623
15  1.114  1.322  1.591
16  0.954  1.255  1.653
17  0.845  1.322  1.708
18  1.041  1.322  1.568
20  0.954  1.462  1.732
24  1.146  1.362  1.681
25  1.000  1.114  1.663
26  1.000  1.447  1.732
29  0.699  1.000  1.462

 
Group 4 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

2  0.9031  0.4314  0.6532  0.8451
6  1.2041  0.6532  0.6721  0.9031

27  1.3010  0.6532  0.6721  0.9031
28  1.0414  0.5185  0.4771  0.8451

 
Element_diameter Foot_length Length
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 Unit    
2  0.4771  1.3424  1.5563
6  0.6021  1.4472  1.7482

27  0.6021  1.2041  1.7559
28  0.4771  1.0414  1.4314

 
 

Optimum classification
 
Number of classes = 4 
 
 

Class contributions to criterion
 

1 2 3 4
0.5471  0.2434  0.9901  0.7254

 
Criterion value = 2.50611 
 
 

Classification of units
 

Unit 1 2 3 4 5 6 7 8 9 10
Group  1  4  3  3  3  4  3  4  2  3

 
Unit 11 12 13 14 15 16 17 18 19 20

Group  1  1  2  3  3  3  3  3  2  3
 

Unit 21 22 23 24 25 26 27 28 29 30
Group  1  2  2  3  3  3  4  4  4  1

 
 
 

Class mean values
 

Bow_height Bow_thickness Bow_width Coil_diameter
1  1.303  0.768  0.828  1.093
2  1.217  0.514  1.102  0.899
3  1.247  0.730  0.815  0.917
4  1.146  0.615  0.692  0.873

 
Element_diameter Foot_length Length

1  0.992  1.819  1.994
2  0.756  1.402  1.710
3  0.991  1.326  1.694
4  0.606  1.207  1.594

 
 

Units rearranged into class order
 
Group 1 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

1  1.398  0.653  0.653  1.230
11  1.380  0.833  0.919  1.079
12  1.255  0.756  0.833  1.041
21  1.204  0.724  0.724  1.114
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30  1.279  0.875  1.013  1.000
 

Element_diameter Foot_length Length
 Unit    

1  1.146  1.973  2.061
11  1.176  1.623  1.857
12  0.954  1.681  1.898
21  1.079  1.978  2.111
30  0.602  1.839  2.045

 
Group 2 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

9  1.146  0.380  1.270  0.903
13  1.204  0.690  1.104  0.845
19  1.279  0.519  0.959  1.000
22  1.279  0.602  0.991  0.903
23  1.176  0.380  1.185  0.845

 
Element_diameter Foot_length Length

 Unit    
9  0.778  1.505  1.740

13  0.845  1.477  1.681
19  0.778  1.342  1.699
22  0.778  1.362  1.778
23  0.602  1.322  1.653

 
Group 3 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

3  1.204  0.623  0.690  0.903
4  1.431  0.940  0.857  1.000
5  1.380  0.792  0.940  0.903
7  1.230  0.708  0.851  1.000

10  1.255  0.881  1.009  0.845
14  1.146  0.568  0.792  0.845
15  1.204  0.763  0.756  0.778
16  1.230  0.653  0.785  0.903
17  1.204  0.681  0.813  0.903
18  1.146  0.732  0.732  0.778
20  1.255  0.556  0.544  1.041
24  1.204  0.748  0.778  0.903
25  1.362  0.869  0.892  1.000
26  1.204  0.699  0.964  1.041

 
Element_diameter Foot_length Length

 Unit    
3  0.954  1.531  1.785
4  1.114  1.380  1.875
5  0.954  1.322  1.839
7  0.903  1.041  1.663

10  0.845  1.301  1.602
14  1.041  1.380  1.623
15  1.114  1.322  1.591
16  0.954  1.255  1.653
17  0.845  1.322  1.708
18  1.041  1.322  1.568
20  0.954  1.462  1.732
24  1.146  1.362  1.681
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Figure 7.5

25  1.000  1.114  1.663
26  1.000  1.447  1.732

 
Group 4 

Bow_height Bow_thickness Bow_width Coil_diameter
 Unit     

2  0.9031  0.4314  0.6532  0.8451
6  1.2041  0.6532  0.6721  0.9031
8  1.2788  0.6532  0.6532  1.0414

27  1.3010  0.6532  0.6721  0.9031
28  1.0414  0.5185  0.4771  0.8451
29  1.1461  0.7782  1.0253  0.6990

 
Element_diameter Foot_length Length

 Unit    
2  0.4771  1.3424  1.5563
6  0.6021  1.4472  1.7482
8  0.7782  1.2041  1.6128

27  0.6021  1.2041  1.7559
28  0.4771  1.0414  1.4314
29  0.6990  1.0000  1.4624

 

The output gives details of the initial classification and of the final (optimal)
classification, showing the criterion value, how the objects are allocated to the groups and
the mean values of the measurements in each group. In this example, the initial
classification has been very successful. The optimum classification differs only in that
the eighth object has been transferred from group 3 to group 4, and the 29th object from
group 4 to group 3.

7.1 Practical

Genstat spreadsheet file
Goblet.gsh (Figure 7.5)
contains data on 25 goblets from
prehistoric sites in Thailand (see
page 147 of Manly, 1986,
Multivariate Statistical Methods
a Primer, Chapman & Hall,
London). Perform a non-
hierarchical classification into
five groups. How does this
compare with the dendrogram produced in Practical 6.1?



Figure 8.1

Figure 8.2

8 Multivariate analysis of variance

Multivariate analysis of variance can be viewed as the extension of ordinary analysis of
variance (as in Chapter 6) to handle several response variates at once. So, for example,
instead of making assumptions of Normality for the residuals from a single response
variate, we are now assuming multivariate Normality of residuals from several response
variates.

We illustrate the analysis
using data from an experiment
to investigate sex and
temperature effects on the
growth of tumours in rats (see
page 143 of Chatfield & Collins,
1 9 8 6 ,  I n t r o duc t i o n  t o
Multivariate Analysis, Chapman
and Hall, London). Three rats of
each sex were reared in each of
three temperatures (4, 20 and
34). There was no blocking (i.e.
this is a completely randomized
design). The weights of the rats were measured (prior to sub-cutaneous seeding of the
tumours). The response variates, taken at the end of the experiment, are the tumour
weight and the final weight (excluding the tumour). The data are available in spreadsheet
Tumour.gsh (Figure 8.28).

The MANOVA menu (Figure
8.2) is obtained by clicking on
the MANOVA line in the
Multivariate Analysis section of
the Stats menu on the menu bar.

In Figure 8.2, we have
specified a treatment structure
of Sex*Temperature, to fit
the main effects of sex and
temperature ,  and  the i r
interaction (see Section 6.6).
There is no block structure but
we want to treat the variate
InitialWeight as a covariate
(so we check the Covariates box, and enter its name into the adjacent field). Covariates
are included in the treatment model like variates in a linear regression. So, Genstat
estimates a regression coefficient for them, and adjusts the other estimates and sums of
squares to take account of their presence in the model (see Guide to the Genstat
Command Language, Part 2 Section 4.3).
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Figure 8.3

The MANOVA Options menu, shown in
Figure 8.30, allows you to control the
output from the multivariate analysis, and
also to display output from the univariate
anova’s of the individual response variates.
Here we have asked just to print the various
tests from the multivariate analysis, and
omitted the sums and squares and products
of the treatment effects and residuals (which
are involved in calculating the tests). 

The output, shown below, indicates that
there are sex and temperature effects, but no
interaction and no effect of the covariate.

Multivariate analysis of covariance
 
Y-variates: FinalWt, TumourWt.
Covariate: InitWt.
 

Test statistics
 

Term d.f. Wilks' lambda Rao F n.d.f. d.d.f.  F prob.
Sex  1  0.3485  9.35  2  10  0.005

Temperature  2  0.3269  3.75  4  20  0.020
Sex.Temperature  2  0.7830  0.65  4  20  0.633

Covariate  1  0.8219  1.08  2  10  0.375
 

Term d.f. Pillai-Bartlett Roy's maximum Lawley-Hotelling
trace root test trace

Sex  1  0.6515  0.6515  1.8697
Temperature  2  0.8477  0.4949  1.5249

Sex.Temperature  2  0.2278  0.1605  0.2634
Covariate  1  0.1781  0.1781  0.2167

The analysis uses the MANOVA procedure (see Guide to the Genstat Command Language,
Part 2 Section 6.6.1). This uses the ANOVA directive, which requires the design to be
balanced (see Section 6.7 or Guide to the Genstat Command Language, Part 2 Section
4.7). For unbalanced data, you can use the RMULTIVARIATE procedure, but this is not
currently accessible through the menus.
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Figure 8.4

8.1 Practical

Genstat spreadsheet file
Skull.gsh (Figure 8.4)
contains data on 150 male
Egyptian skulls from five
different epochs (see Practical
3.1 and pages 4 and 5 of Manly,
1986, Multivariate Statistical
Methods a Primer, Chapman &
Hall, London). Perform a
multivariate analysis of
variance. Are there any epoch
differences?



Figure 9.1

Figure 9.2

9 Classification trees

A classification tree is a device for predicting (or identifying) the class to which an
unidentified object belongs. The starting point is a sample of objects from the various
classes. Measurement recorded on the sample may be either continuous (supplied in
variates) or discrete (supplied in factors). Below we shall illustrate the methods using the
iris data from Chapter 3, where the data were all continuous (see Figure 3.1).

The Classification Tree menu (Figure 9.1) is in the Trees sub-option of the Multivariate

Analysis option of the Stats menu on the menu bar.
In Figure 9.1, we have specified

Species as the name of the factor
defining the groups to be predicted, and
entered the names of all the
measurements into the X-variates box.
The Save Tree in box allows you to
specify a name for the tree structure that
Genstat will generate to represent the
classification tree. If you do not do this,
Genstat will use its own private name,
but you will not find it easy to use the
tree outside the menus. Here we have
specified the name IrisTree.

The tree progressively splits the
objects into subsets based on their
values for the measurements.
Construction starts at a node known as
the root, which contains all of the
objects. A factor or variate is chosen to
use there that “best” splits the
individuals into two subsets. For
example, in the tree for the irises, the
first division is done by seeing whether
the petal lengths are less than or greater
then 2.450 (see the output below). The
tree is then extended to contain two new
nodes, one for each of the subsets, and
factors or variates are selected for use at
each of these nodes to subdivide the subsets further. The process stops when either no
factor or variate provides any additional information, or the subset contains individuals
all from the same group, or the subset contains fewer individuals than a limit specified
by the Number of items to stop splitting field of the Classification Tree Options menu (Figure
9.2). The nodes where the construction ends are known as terminal nodes.

Factors may have either ordered or unordered levels, according to whether or not the
X-Variable factor levels ordered box is checked. For example, a factor called Temperature
with levels 5, 10 and 20 would usually be treated as having ordered levels, whereas levels
labelled 'London', 'Moscow', 'New York', 'Ottawa' and 'Paris' of a factor
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called Town would be regarded as unordered. For unordered factors, all possible ways of
dividing the levels into two sets are tried. With variates or ordered factors with more than
2 levels, a suitable value p is found to partition the individuals into those with values less
than or greater than p. The radio buttons in the Method and Anti-end-cut-factor boxes in the
Classification Tree Options menu allow you to choose how to assess the potential splits:
whether to use Gini information or mean posterior improvement, and whether to use
adaptive anti-end-cut factors. Details are given in the Guide to the Genstat Command
Language, Part 2 Section 6.21.1.

The Display box of the Classification Tree Options menu (Figure 9.2) is set to print the
tree only in “indented” format. This is a representation analogous to those used to display
botanical trees. In the iris output, printed below, the first variable to examine is
Petal_Length. If this is less than 2.450, the iris specimen is identified as Setosa.
Otherwise you progress to index 2, and examine Petal_Width. So, a specimen of
Versicolor might be identified by the sequence: (1) Petal_Length > 2.450; (2)
Petal_Width < 1.750; (3) Petal_Length > 4.950; (5) Petal_Width > 1.550
Versicolor. Notice that the same variable can be used several times as the observed
characteristics are refined on the way to an identification.

1 Petal_Length<2.450 Setosa
1 Petal_Length>2.450 2
 2 Petal_Width<1.750 3
 3 Petal_Length<4.950 4 
 4 Petal_Width<1.650 Versicolor  
 4 Petal_Width>1.650 Virginica  
 3 Petal_Length>4.950 5 
 5 Petal_Width<1.550 Virginica  
 5 Petal_Width>1.550 Versicolor  
 2 Petal_Width>1.750 6
 6 Petal_Length<4.850 Virginica 
 6 Petal_Length>4.850 Virginica 

Generally the construction of a classification tree will result in over-fitting. That is, it will
form a tree that keeps selecting factors or variates to subdivide the individuals beyond the
point that can be justified statistically. The solution is to prune the tree to remove the
uninformative sub-branches. The pruning uses accuracy figures, which are stored for
each node of the tree. The tree also stores a prediction for each node, which corresponds
to the group with most individuals at the node. For each node of a classification tree, the
accuracy is the number of misclassified individuals at the node, divided by the total
number of individuals in the data set. It thus measures the “impurity” of the subset at that
node (how far it is from it from being homogeneous i.e. having individuals all from a
single group).
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Figure 9.3

Figure 9.4

You can prune the tree using the Tree

Pruning menu (Figure 9.3), which is
accessible from Tree subsection in the
Multivariate Analysis section of the menu
bar or by clicking on the Prune button
on the Classification Tree menu. As we
have loaded the menu from the
Classification Tree menu, Genstat has
filled in the name of the tree
automatically.

In the Display box, we have asked for
the relationship between the impurity
and the number of terminal nodes to be
presented in a graph (Figure 9.4) and a
table (below).

The table and graph show that the
impurity of the pruned trees drops
rapidly as the number of terminal nodes
increases from one up to three, but then
tails off more slowly. This suggests that
we should prune down to three terminal
nodes, but no further. This tree is the
fifth in the sequence of pruned trees
(count from the right of the graph, or
notice the numbering in first column of
the table).

Characteristics of the pruned trees
 
 

Tree RT Number of
no. terminal

nodes
1  0.0133  7
2  0.0133  6
3  0.0200  5
4  0.0267  4
5  0.0400  3
6  0.3333  2
7  0.6667  1



46 9  Classification trees

Figure 9.5

Figure 9.6

By clicking the button Replace with pruned we can
replace contents of the tree IrisTree with this smaller
tree. We simply need to fill in the number of the tree (5)
in the resulting menu (Figure 9.5), click on OK, and
then cancel the Tree Pruning menu.

The pruned tree can be displayed using
the Classification Tree Further Output menu
(Figure 9.6), obtained by clicking on the
Further Output button on the Classification

Tree menu.

Summary of classification tree: IrisTree
 
Number of nodes: 5
Number of terminal nodes: 3
Misclassification rate: 0.040
Variables in the tree: Petal_Length, Petal_Width.
 
 

Details of classification tree: IrisTree
 
1 Current prediction: 1.000
  Number of observations: 150

Species SetosaVersicolor Virginica
Proportions 0.333 0.333 0.333

  Test: Petal_Length<2.450
Next nodes: 2 3

 
 2 Current prediction: 1.000
   Number of observations: 50

Species SetosaVersicolor Virginica
Proportions 1.000 0.000 0.000

   Conclusion: Setosa
 
 3 Current prediction: 2.000
   Number of observations: 100

Species SetosaVersicolor Virginica
Proportions 0.000 0.500 0.500

   Test: Petal_Width<1.750
Next nodes: 4 5

 
  4 Current prediction: 2.000
    Number of observations: 54

Species SetosaVersicolor Virginica
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Figure 9.7

Proportions 0.000 0.907 0.093
    Conclusion: Versicolor
 
  5 Current prediction: 3.000
    Number of observations: 46

Species SetosaVersicolor Virginica
Proportions 0.000 0.022 0.978

    Conclusion: Virginica
 
 
1 Petal_Length<2.450 Setosa
1 Petal_Length>2.450 2
2 Petal_Width<1.750 Versicolor
2 Petal_Width>1.750 Virginica
 
 
Tree diagram 
 
1  2 
-> 3  4 
   -> 5 

The initial summary, generated by the Summary check box, lists the number of nodes (5)
and terminal nodes (3) in the tree, its misclassification rate and which variables it uses.
The details section (from the Details check box) gives information about each node,
referring to the numbering displayed in the tree diagram at the end of the output (which
is generated by the Numbered Diagram check box).

Note, if possible, it is best to use “accuracy” figures that are derived from a different
set or sets of data from that which was used to construct the tree. This cannot be done
through the menus, but you can use the BCVALUES procedure, which is described in the
Guide to the Genstat Command Language, Part 2 Section 6.21.3.

Another useful procedure, which also cannot be accessed currently through the menus
is BCIDENTIFY. This has a convenient interactive interface, that asks you to enter the
information required by the tree as and when it is needed. (For details of the options and
parameters that allow you to use it in batch mode, see the Guide to the Genstat Command
Language, Part 2 Section 6.21.3). To run the procedure in this way, you merely need to
set the TREE option to the name of the tree, here IrisTree. If we type the command

BCIDENTIFY [TREE=IrisTree]

and execute it, for example
by clicking on the Submit

Line line in the Run menu on
the menu bar, Genstat asks
the question in Figure 9.7.
(Our answer is yes.)
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Figure 9.8

Figure 9.9

Figure 9.10

The next question is in
Figure 9.8, to which we
shall answer that the petal
length is greater than 2.450.
(Check the box and click on
OK.)

This generates the
question in Figure 9.9, to
which we shall answer that
the petal width is less than
1.750.

We have now reached the
terminal node, and Genstat
asks if we want to print the
identification (Figure 9.10).
It would be best to take the
default suggestion, of yes,
here as we have not set the
option of BCIDENTIFY that
would save the information!

The output shows first a
transcript of the questions and answers (as requested in Figure 9.7), and then the
identification of Versicolor.

Identification using a classification tree
 
Observations:
Petal_Length>2.450
Petal_Width<1.750
 
Identification:
Versicolor
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Figure 9.11

9.1 Practical

Genstat spreadsheet file
Skull.gsh (Figure 9.11)
contains data on 150 male
Egyptian skulls from five
different epochs (see Practical
3.1 and pages 4 and 5 of Manly,
1986, Multivariate Statistical
Methods a Primer, Chapman &
Hall, London).

Form a classification tree.
Prune down to 20 terminal
n o d e s .  W h a t  i s  t h e
misclassification probability?



Figure 10.1

Figure 10.2

10 Regression trees

Regression trees are very similar to classification trees, except that the attribute to predict
is the value of a response variate rather than the level of a group factor. So the starting
point is now a sample of observations with various values of the response. As in a
classification tree, the measurements recorded on the sample may be either continuous
(supplied in variates) or discrete (supplied in factors). Below we shall illustrate the
methods using the pollution data from Chapters 1 and 2, where the data were all
continuous (see Figure 1.1).

The Regression Tree menu (Figure
10.1) is a sub-option of the Regression

Analysis option of the Stats menu on the
menu bar. In Figure 10.1, we have
specified SO2 as the response variate,
and entered the names of all the
measurements into the X-variates box.
The Save Tree in box allows you to
specify a name for the tree structure that
Genstat will generate to represent the
classification tree. If you do not do this,
Genstat will use its own private name,
but you will not find it easy to use the
tree outside the menus. Here we have specified the name RegTree.

The tree progressively splits the
observations into subsets based on their
values for the measurements.
Construction starts at a node known as
the root, which contains all of the
observations. A factor or variate is
chosen to use there that “best” splits the
observations into two subsets. The aim
is to form subsets that have similar
values for the response variate. The
predicted value of the response variable
at each node of the tree is the mean of its value for the subset of observations at that node.
The accuracy of the node is the squared distance of the values of the response variate
from their mean for the observations at the node, divided by the total number of
observations. The potential splits at the node are assessed by their effect on the accuracy,
that is the difference between the accuracy of the node and the sum of the accuracies of
the two potential successor nodes. The node will become a terminal node if none of the
splits provides any improvement in accuracy, or if the mean square of the observations
at the node is less than a limit that can be specified in the Regression Tree Options menu
(Figure 10.2). As in a classification tree, factors may have either ordered or unordered
levels, according to whether or not the X-Variable factor levels ordered box is checked (see
Chapter 9 for more details).

The menu also allows you to select the output to display. Here we have asked for the
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tree in “indented” format (as we did earlier for the classification tree in Chapter 9). So,
in the output below, the first variable to examine is Manuf. If this is less than 748.0, you
progress to index 2, and examine Pop. Otherwise, you find the other line for index 1,
further down the tree, which tells you to go to index 33 and form another split involving
Manuf. The terminal nodes (at which predictions of SO2 are made) are identified by the
fact that they are followed by real numbers (with decimal points) rather than integers. So,
for example, at index 5, SO2 is predicted to be 13.

1 Manuf<748.0 2
 2 Pop<190.0 3
 3 Wind<9.800 4 
 4 Temp<-50.05 5  
 5 Temp<-58.10 13.   
 5 Temp>-58.10 6   
 6 Wind<8.850 7    
 7 Days<118.5 28.     
 7 Days>118.5 31.     
 6 Wind>8.850 36.    
 4 Temp>-50.05 8  
 8 Days<131.0 56.   
 8 Days>131.0 46.   
 3 Wind>9.800 94. 
 2 Pop>190.0 9
 9 Days<108.0 10 
 10 Temp<-55.55 11 
 11 Wind<10.85 12  
 12 Temp<-59.20 10.   
 12 Temp>-59.20 13   
 13 Days<62.50 11.    
 13 Days>62.50 12.    
 11 Wind>10.85 14  
 14 Days<80.00 9.   
 14 Days>80.00 8.   
 10 Temp>-55.55 15 
 15 Days<101.0 16  
 16 Days<92.00 17.   
 16 Days>92.00 14.   
 15 Days>101.0 17.  
 9 Days>108.0 17 
 17 Temp<-59.35 18 
 18 Manuf<241.0 19  
 19 Manuf<170.0 14.   
 19 Manuf>170.0 20   
 20 Days<120.5 9.    
 20 Days>120.5 10.    
 18 Manuf>241.0 21  
 21 Days<117.0 24.   
 21 Days>117.0 18.   
 17 Temp>-59.35 22 
 22 Wind<11.20 23  
 23 Days<142.0 24   
 24 Pop<831.0 25    
 25 Wind<7.950 26     
 26 Days<123.5 26.      
 26 Days>123.5 23.      
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Figure 10.3

 25 Wind>7.950 27     
 27 Precip<41.00 28      
 28 Manuf<313.5 26.       
 28 Manuf>313.5 29       
 29 Manuf<397.5 28.        
 29 Manuf>397.5 29.        
 27 Precip>41.00 30      
 30 Days<119.5 31.       
 30 Days>119.5 30.       
 24 Pop>831.0 47.    
 23 Days>142.0 31   
 31 Days<155.5 61.    
 31 Days>155.5 29.    
 22 Wind>11.20 32  
 32 Days<144.5 16.   
 32 Days>144.5 11.   
1 Manuf>748.0 33
33 Manuf<2518 34
 34 Precip<32.98 35.
 34 Precip>32.98 35
 35 Days<110.0 56. 
 35 Days>110.0 36 
 36 Days<135.0 69.  
 36 Days>135.0 65.  
33 Manuf>2518 110.
 

As with classification trees (Chapter 9), the construction of a regression tree will
generally result in over-fitting. That is, it will form a tree that keeps selecting factors or
variates to subdivide the individuals beyond the point that can be justified statistically.
The solution is again to prune the tree to remove the uninformative sub-branches. The
pruning uses accuracy of the nodes of the tree, as defined above.

You can prune the tree using the Tree

Pruning menu (Figure 10.3), which can
be opened from Tree subsection in the
Multivariate Analysis section of the menu
bar or by clicking on the Prune button
on the Regression Tree menu. As we
have loaded the menu from the
Regression Tree menu, Genstat has filled
in the name of the tree automatically.
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Figure 10.4

In the Display box, we have asked for
the relationship between the accuracy
and the number of terminal nodes to be
presented in a graph (Figure 10.4) and a
table (below). The table and graph show
that the impurity of the pruned trees
drops rapidly as the number of terminal
nodes increases from one up to about
ten, but then tails off more slowly. This
suggests that we should prune down to
ten terminal nodes, but no further. This
tree is the 26th in the sequence of
pruned trees.

Characteristics of the pruned trees
 
 

Tree RT Number of
no. terminal

nodes
1  0.00  37
2  0.01  36
3  0.02  35
4  0.04  34
5  0.05  33
6  0.07  32
7  0.13  31
8  0.24  30
9  0.46  28

10  0.57  27
11  0.70  26
12  0.85  25
13  1.05  24
14  1.25  23
15  1.56  22
16  1.89  21
17  2.33  20
18  3.01  19
19  3.70  18
20  4.92  17
21  6.80  16
22  8.76  15
23  11.69  14
24  18.07  13
25  26.10  12
26  47.70  10
27  62.39  9
28  77.50  8
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Figure 10.5

Figure 10.6

Figure 10.7

29  96.23  7
30  115.24  6
31  146.10  5
32  202.47  4
33  347.87  2
34  537.51  1

You can get the number of the tree from
the index in the first column of the
table, or by counting from the right of
the graph, or by using the Data-info tool
on the graph, as shown in Figure 10.5.
To select the tool, you click on the icon
with the arrow and question mark at the
left-hand end of the Graphics Toolbar.
The viewer will then display details of a
point when you rest the pointer nearby. 

By clicking the button Replace with pruned we can
replace contents of the tree RegTree with this smaller
tree. We simply need to fill in the number of the tree
(26) in the resulting menu (Figure 10.6), click on OK,
and then cancel the Tree Pruning menu.

The pruned tree can be displayed using
the Regression Tree Further Output menu
(Figure 10.7), obtained by clicking on the
Further Output button on the Regression Tree

menu. Here we have asked to print the tree
in indented form again, to print a summary
of its properties and to display it in a graph
(see Figure 10.8).
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Summary of regression tree: RegTree
 
Number of nodes: 19
Number of terminal nodes: 10
Residual sum of squares: 1956
Residual degrees of freedom:  31
Residual mean square: 63.09
Percentage variance accounted for: 88.55
Variables in the tree: Manuf, Pop, Wind, Days, Precip, Temp.
 
 
1 Manuf<748.0 2
 2 Pop<190.0 3
 3 Wind<9.800 4 
 4 Temp<-50.05 27.  
 4 Temp>-50.05 51.  
 3 Wind>9.800 94. 
 2 Pop>190.0 5
 5 Days<108.0 12. 
 5 Days>108.0 6 
 6 Temp<-59.35 15.  
 6 Temp>-59.35 7  
 7 Wind<11.20 32.64   
 7 Wind>11.20 13.50   
1 Manuf>748.0 8
 8 Manuf<2518 9
 9 Precip<32.98 35. 
 9 Precip>32.98 63.33 
 8 Manuf>2518 110.

The initial summary, generated by the Summary check box, lists the number of nodes (19)
and terminal nodes (10) in the tree, its residual sum of squares, degrees of freedom and
mean square, and the variables that it uses. Note, if possible, it is best to use “accuracy”
figures that are derived from a different set or sets of data from that which was used to
construct the tree. This cannot be done through the menus, but you can use the BCVALUES
procedure, which is described in the Guide to the Genstat Command Language, Part 2
Section 6.21.3.
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Figure 10.8
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Figure 10.9

10.1 Practical

Genstat spreadsheet file Water.gsh
(Figure 10.9) contains data about the
water usage of a production plant (last
column of the sheet). There are also
four variates that may be associated
with the amount of water that has been
used: the average temperature, the
amount of production, the number of
operating days and the number of
employees. (See page 352 of Applied
Regression Analysis by Draper &
Smith, 1981, Wiley, New York.)

Form a regression tree to predict
water usage from the other variates.
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11 Generalized Procrustes analysis

Generalized Procrustes
analysis allows you to
produce a consensus
configuration of points from
several input configurations.
It is often used in sensory
analysis, for example of
food or wine, where the
input configurations will be
assessments made of various
attributes of the food or
wine samples.

Figure 11.1 shows an
example data set from an
evaluation of the appearance
of port-wines by Williams &
Langron (1984, Journal of
the Science of Food and Agriculture, 35, 558-568), stored in spreadsheet file Port.gsh.
There were six assessors (labelled A-F in column 1), eight samples of port (columns
Sample1 - Sample8), and the attributes measured by each assessor are described in the
Attribute column. Notice that this is an example of free choice profiling; the assessors
were not required to observe the same attributes, but they could each define their own.
The only constraint is that each assessor must be consistent in their definition of an
attribute over the samples. Also, for the analysis to work, each assessor must observe the
same number of attributes. However, it is valid to include a “null” attribute of zero
observations for assessors that have observed too few (assessors D, E and F here).

The analysis treats the observations from each assessor as a configuration of n points
(one for each sample) in p dimensions (one for each attribute), and forms a centroid
configuration that gives a consensus view of how the assessors perceive the ports. The
basic data for the analysis is a set of attribute × sample matrices, containing the
measurements made by each assessor.
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Figure 11.2

Figure 11.3

Figure 11.4

These can be formed by
f i r s t  d e l e t i n g  t h e
Attribute column (put the
cursor into any cell in the
column, then select the
Current Column sub-option of
the Delete option of the
Spread menu, as shown in
Figure 11.2.

Then open the Split/Subset Sheet menu (Figure
11.3), by selecting the Split/Subset sub-option of the
Manipulate option of the Spread menu. Figure 11.3
is set to split the spreadsheet into multiple sheets
using all levels of the Assessor factor. 

The first of the six new spreadsheets is shown in Figure 11.4.
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Figure 11.5

Figure 11.6

Figure 11.7

We need to delete the assessor column. We
then convert the spreadsheet into a matrix
by selecting the Convert sub-option of the
Sheet option of the Spread menu to open the
Convert Sheet menu. In that menu (Figure
11.5), we select Matrix as the Sheet Type, 
give it a name (here M1), and click on OK.
We now need to transpose the spreadsheet,
by selecting the Transpose sub-option of the
Manipulate option of the Spread menu, and
we can rename the transposed matrix (e.g.
to X1) by using the Sheet Properties menu
(opened by selecting the Properties sub-
option of the Sheet option of the Spread

menu. We then need to repeat the process
for the other new spreadsheets, giving each
transposed matrix a different name (X2 - X6).

However, as spreadsheet manipulation is
not the main point of this Chapter, the
transposed matrices can be found in
spreadsheet book Portmatrices.gwb, as
shown in Figure 11.6. (The original data
were presented in Figure 11.1 in order to
display their structure more clearly.)

The Generalized Procrustes menu
(Figure 11.7) is opened by selecting the
Generalized Procrustes sub-option of the
Multivariate Analysis option of the Stats

menu. The main task is to set the Data to

be analysed to the matrices containing
the configurations (here X1 - X6).

The common centroid configuration
is formed by the operations of
translation to a common origin, rotation
and reflection of axes, and possibly also
scale changes. It is found iteratively,
using either Gower's or Tenberge's
method, by minimizing the sum of the
squared distances between the centroid and each individual configuration. To give a
unique representation, the final centroid is defined using its principal axes.
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Figure 11.8

The Generalized Procrustes Options

menu (Figure 11.8) allows you to select
the type of scaling to be done. Isotropic
scaling, which scales the all the
dimensions of each configuration by an
equal amount, takes place during the
Procrustes analysis. The alternative is to
scale each configuration prior to the
analysis so that the trace of each matrix
is one. If this separate scaling is used,
the subsequent residuals represent pure
lack-of-fit and the scaling factors given
in the results represent differences in
relative size/spread of the original
(centred) configurations, whereas for
overall isotropic scaling the scaling
factor contains components of both size
and lack-of-fit.

The Display boxes control the output:
Monitoring gives monitoring information during the fitting

process;
Column means prints the column (i.e. attribute) means of the

configurations;
Centroid prints the latent roots and coordinates of the

centroid configuration;
Individual configurations prints rotations of the individual configurations to

the principal axes;
Analysis prints an analysis of variation for the

configurations and entities (i.e. samples);
All of these, except monitoring, are shown in the output below.

Generalized Procrustes analysis
 
Isotropic scaling
 

Column means of the configurations
 
 

Configuration 1
 
 

1 2 3 4
4.750  5.375  4.250  0.500
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Configuration 2
 
 

1 2 3 4
5.750  5.000  6.375  4.125

 
 

Configuration 3
 
 

1 2 3 4
3.875  1.000  4.500  5.250

 
 

Configuration 4
 
 

1 2 3 4
2.000  4.375  4.375  0.000

 
 

Configuration 5
 
 

1 2 3 4
3.250  4.250  3.625  0.000

 
 

Configuration 6
 
 

1 2 3 4
6.125  1.625  6.125  0.000

 
 

Rotation of centroid to principal axes
 

Latent roots
 

1 2 3 4
0.714  0.174  0.011  0.006

 

Percentage variance
 

1 2 3 4
78.88  19.25  1.22  0.65

 
 

Coordinates of the consensus configuration
 

1 2 3 4
1  0.6173  -0.1389  -0.0072  0.0143
2  -0.1303  0.1879  0.0438  0.0374
3  0.3595  0.1338  0.0361  -0.0260
4  -0.2390  -0.0142  -0.0166  0.0308
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5  -0.0600  0.0759  -0.0397  0.0094
6  -0.2297  0.0764  0.0040  -0.0491
7  -0.2663  -0.2994  0.0432  -0.0055
8  -0.0516  -0.0213  -0.0636  -0.0113

 
 

Final coordinates for configuration 1
 

Variance
 

1 2 3 4
0.747  0.243  0.011  0.006

 

Percentage variance
 

1 2 3 4
74.19  24.12  1.12  0.56

 

Coordinates
 

1 2 3 4
1  0.5081  -0.0939  -0.0208  0.0072
2  -0.0224  0.2261  0.0610  0.0496
3  0.4854  0.2358  0.0555  -0.0105
4  -0.2349  0.0622  -0.0049  0.0261
5  -0.0872  -0.0149  -0.0407  -0.0158
6  -0.2734  0.0376  -0.0274  -0.0453
7  -0.3373  -0.3246  0.0151  -0.0073
8  -0.0382  -0.1282  -0.0378  -0.0041

 

Rotation matrix
 

1 2 3 4
1  0.439  0.280  0.257  0.814
2  -0.842  0.440  0.204  0.239
3  0.283  0.852  -0.236  -0.372
4  0.137  0.044  0.915  -0.378

 
 

Final coordinates for configuration 2
 

Variance
 

1 2 3 4
0.693  0.184  0.061  0.028

 

Percentage variance
 

1 2 3 4
71.83  19.03  6.28  2.86

 



64 11  Generalized Procrustes analysis

Coordinates
 

1 2 3 4
1  0.6147  -0.1257  -0.0145  0.0315
2  -0.1278  0.0857  0.0445  0.0361
3  0.3291  0.0049  0.0878  -0.0635
4  -0.1837  0.0129  -0.0916  0.0531
5  -0.1463  0.0992  -0.0848  0.0666
6  -0.3401  0.2011  0.0508  -0.1167
7  -0.1411  -0.3280  0.1315  -0.0165
8  -0.0048  0.0498  -0.1237  0.0094

 

Rotation matrix
 

1 2 3 4
1  0.248  0.058  -0.250  -0.934
2  -0.716  0.359  -0.599  -0.007
3  -0.393  -0.906  -0.071  -0.141
4  0.522  -0.218  -0.757  0.327

 
 

Final coordinates for configuration 3
 

Variance
 

1 2 3 4
0.817  0.144  0.025  0.021

 

Percentage variance
 

1 2 3 4
81.17  14.27  2.46  2.10

 

Coordinates
 

1 2 3 4
1  0.6009  -0.1247  0.0045  -0.0076
2  -0.2587  0.1799  0.0926  -0.0067
3  0.3982  0.1224  0.0138  0.0217
4  -0.3332  -0.0110  0.0251  0.1044
5  0.0943  0.1167  -0.0892  0.0108
6  -0.1722  0.0182  -0.0088  -0.0231
7  -0.2808  -0.2537  0.0386  -0.0043
8  -0.0485  -0.0480  -0.0765  -0.0951

 

Rotation matrix
 

1 2 3 4
1  0.650  0.061  -0.752  0.084
2  0.589  -0.097  0.564  0.571
3  -0.369  0.607  -0.195  0.677
4  0.307  0.787  0.278  -0.458
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Final coordinates for configuration 4
 

Variance
 

1 2 3 4
0.678  0.266  0.011  0.031

 

Percentage variance
 

1 2 3 4
68.78  26.98  1.12  3.13

 

Coordinates
 

1 2 3 4
1  0.5996  -0.1990  -0.0120  0.0479
2  -0.0664  0.2300  -0.0580  0.0902
3  0.3452  0.1843  0.0596  -0.1009
4  -0.3017  -0.0458  -0.0210  0.0291
5  -0.0285  0.1086  0.0111  -0.0246
6  -0.1461  -0.0293  0.0296  -0.0552
7  -0.2182  -0.3409  0.0304  -0.0463
8  -0.1840  0.0921  -0.0395  0.0597

 

Rotation matrix
 

1 2 3 4
1  0.480  0.327  -0.403  0.707
2  -0.770  0.602  -0.126  0.172
3  0.421  0.728  0.261  -0.474
4  -0.016  0.020  0.868  0.496

 
 

Final coordinates for configuration 5
 

Variance
 

1 2 3 4
0.885  0.133  0.010  0.000

 

Percentage variance
 

1 2 3 4
86.10  12.91  0.98  0.02

 

Coordinates
 

1 2 3 4
1  0.7446  -0.1389  0.0040  -0.0006
2  -0.1387  0.1825  0.0190  0.0044
3  0.2660  0.1170  0.0028  0.0054
4  -0.2672  0.0248  0.0444  -0.0030
5  -0.0515  0.0985  -0.0609  0.0062
6  -0.2672  0.0248  0.0444  -0.0030
7  -0.3085  -0.2169  -0.0101  -0.0086
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8  0.0224  -0.0919  -0.0436  -0.0007
 

Rotation matrix
 

1 2 3 4
1  0.092  0.734  -0.670  0.061
2  0.794  0.353  0.495  -0.009
3  -0.601  0.579  0.551  -0.013
4  -0.006  -0.034  0.052  0.998

 
 

Final coordinates for configuration 6
 

Variance
 

1 2 3 4
0.709  0.263  0.025  0.010

 

Percentage variance
 

1 2 3 4
70.41  26.14  2.46  0.99

 

Coordinates
 

1 2 3 4
1  0.6363  -0.1511  -0.0045  0.0073
2  -0.1678  0.2228  0.1036  0.0510
3  0.3333  0.1380  -0.0030  -0.0081
4  -0.1135  -0.1284  -0.0513  -0.0249
5  -0.1407  0.0472  0.0262  0.0131
6  -0.1795  0.2060  -0.0644  -0.0509
7  -0.3116  -0.3326  0.0538  0.0497
8  -0.0565  -0.0018  -0.0605  -0.0371

 

Rotation matrix
 

1 2 3 4
1  0.408  0.906  -0.066  -0.087
2  0.686  -0.231  0.582  0.371
3  -0.602  0.351  0.620  0.359
4  -0.003  0.045  -0.522  0.852

 
 

Analysis of variation for the configurations
 

Scaling Residual Total
1  0.771  0.094  1.007
2  0.838  0.126  0.965
3  1.067  0.088  1.007
4  1.148  0.104  0.985
5  1.275  0.068  1.028
6  1.228  0.085  1.007
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Figure 11.9

Analysis of variation for the entities
 

Consensus Residual Total
1  2.405  0.037  2.442
2  0.334  0.072  0.406
3  0.894  0.076  0.970
4  0.351  0.077  0.428
5  0.066  0.069  0.136
6  0.366  0.097  0.463
7  0.975  0.057  1.032
8  0.044  0.080  0.123

 
 
Initial within-configuration sum of squares  463.750
Initial between-configuration sum of squares  509.875
Final residual sum of squares  0.566
Number of steps to convergence 7

The first graph (Figure 11.9)
plots the positions of the eight
port-wines in the consensus 
configuration; the default is to
display the first three principal
axes. This allows you to study
the similarities of the port-
wines, as observed overall by
the assessors.
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Figure 11.10

Figure 11.11

The individuals plot (Figure
11.10) is similar,  but also
shows how the points in each
configuration are mapped to the
equivalent points of the
consensus. This allows you to
assess the consistency of the
assessors.

The projection plot (Figure
11.11) shows the fitted
projections of the attributes, as
observed by each assessor, onto
the first two principal axes. A
different colour is used for each
attribute, taking the standard
order of the Genstat pens (by
default red, green, blue, cyan,
mauve, yellow, brown etc.).
Each line is numbered by its
assessor. This shows how each
of the attributes  contributes to
the consensus picture.

Notice that the fitted
attributes (plotted in cyan) for
the null attributes of assessors 4-
6 are negligible. The scores
fitted to these null attributes can
be regarded as representing
random variation, and used as a yardstick for assessing the other scores. (However, if one
of the null fitted scores were found to be noticeable, this would indicate a large
Procrustes deviation between this assessor and the consensus !which might suggest that
this assessor should treated separately.)
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Figure 11.12

11.1 Practical

Genstat spreadsheet file
Bordeaux.gsh contains results
of a sensory assessment of
aroma attributes of 24 Bordeaux
wines. Do a generalized
Procrustes analysis and examine
a consensus plot of the first two
dimensions. (Hint: use the Ten
Berge method to speed
convergence.) Rows 1-5 are St
Estèphe wines, 6-10 are St
Julien, 11-15 are Margaux, 16-
20 are St Emilion, and 21-24 are
regional  Bordeaux wines (see
the row labels of the matrices). Can you see this structure reflected in the plot?



12 Other facilities

This chapter illustrates menus from most of the main areas of multivariate analysis
provided by Genstat. Other menus are listed below with references to sections in the
Guide to the Genstat Command Language describing the associated commands and
methodology:

Discriminant analysis Part 2 Section 6.5,
Factor analysis Part 2 Section 6.11,
Correspondence analysis Part 2 Section 6.13,
Canonical correlation analysis Part 2 Section 6.9,
Redundancy analysis Part 2 Section 6.14,
Canonical correspondence analysis Part 2 Section 6.15,
Partial least squares regression Part 2 Section 6.8, and
Multivariate analysis of distance Part 2 Section 6.6.3.

Other multivariate facilities, not available through the menus, include ridge and principal-
component regression (procedure RIDGE; Part 2 Section 6.7), analysis of skew symmetry
(procedure SKEWSYMMETRY; Part 2 Section 6.17), the construction of identification keys
(procedure BKEY; Part 2 Section 6.22) and random classification forests (procedure
BCFOREST). 
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Biplot 13
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interpolative 14
predictive 13

Boxplot 3
Canonical correlation analysis 70
Canonical correspondence analysis 70
Canonical variate 18
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Centroid configuration 58
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 over-fitting 44
accuracy 44
identification 48
misclassification rate 47
root 43
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Correspondence analysis 70
Covariate 40
Dendrogram 29, 30
Discriminant analysis 70
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scree plot 11

Euclidean distance 29
Factor analysis 70
Free choice profiling 58
Furthest neighbour 29
Generalized Procrustes analysis 58
assessor 58
consensus  configuration 67
individuals plot 68
projection plot 68
scaling 61

Gini information 44
Graphics Toolbar 13, 54
Data-info tool  54
hot point icon 13

Hierarchical cluster analysis 28
bootstrapping 30
reliability 30

Histogram 3
Hot point 13

Identification key 70
Indented tree 44, 51
Isotropic scaling 61
K-means clustering 33
Mahalanobis distance 33
Maximal predictive classification 33
Mean posterior improvement 44
Median sorting 29
Monotone regression 23
Multidimensional scaling 23
Multivariate analysis of variance 40
Multivariate Normality 40
Nearest neighbour 29
Non hierarchical cluster analysis 33
Non-metric scaling 23
Partial least squares regression 70
Principal component 9, 11
Principal component regression 70
Principal components analysis 9
scores 12

Principal coordinates analysis  20
Pruning a classification tree 44, 52
Pruning a tree 44
pruning 52

Redundancy analysis 70
Regression tree 50
 over-fitting 52
accuracy 50
pruning 52
root 50
terminal node 51

Ridge regression  70
Root 43, 50
Scatter plot matrix 7, 8
Sensory analysis 58
Similarities 20, 28
Single linkage 29
Skew symmetry 70
Summary statistics 2
Tied data 24
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