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Editorial

Following the request in the editorial of Issue 21, we are glad to see several short articles in this issue,
focussing on particular applications and details of Genstat. We hope this will encourage more users to
write similar articles for future issues.

This issue also contains a report on the one-day conference on ‘The analysis of repeated measure in
Genstat’, held at Rothamsted on 6 October 1988. Following this, from 21-23 November 1988 there
was a three-day Genstat conference in Melbourne, Australia, attended by over 60 users from Australia
and New Zealand. We hope to see a report on this in the next issue, but note now that a decision was
taken at that conference to set up an Australasian users’ group, based on communication by electronic
mail. How about some more of these? If you would be interested in laying the groundwork for such
a group, please contact the editors. It is, of course, essential for healthy activity that users’ groups are
set up independently from the developers and distributors of Genstat, so we ask you to give the idea
serious consideration. We will be glad to publish in this newsletter any news about user groups.

Two more implementations of Genstat 5 have recently been completed and are now available. These
are for the HPS000 800 Series HP-UX and Sun 3 SunOS systems. The Sun 3 version has interfaces to
the SunCGI and GKS graphical systems. Regretably, the HPS000 800 series version does not have any
graphics interfaces in this release, although it is still planned that a later release will have the standard
interfaces. Versions for the Sun 386i and Sun 4 should follow the Sun 3 version quite soon and in fact
a version has been formed on a Sun 4 although it had not been fully tested at the time of writing this
editorial.

Also at the time of writing, Genstat 5 Release 1.3 for VAX VMS was about to be sent to sites and
should arrive within a few weeks of this Newsletter, depending on the Christmas post. The main
features are the inclusion of interfaces to the Regis, GKS, Ghost80 and Gino-F graphical systems and
the updated Procedure Library, which is described fully in Roger Payne’s article in this issue.

The PC version has quickly become the second most popular version (in terms of numbers of sites),
in spite of it not having a graphics capability yet. We are pleased to report that progress has been made
with incorporating graphics, but it is tco early to say when this will be available to sites. Also, some
users have told us of problems regarding the size of free memory required by Genstat (about 582 Kb)
and we are looking at ways of improving the situation.

The next Genstat training course run by NAG will be held from 18-20 January 1988 in Birmingham.
Further courses will be organized: contact NAG to find out details.

Arrangements are being made for the Genstat Conference in Edinburgh from 11-15 September 1988.
Details of registration, and an invitation to submit an abstract for a presentation at the conference, are
in an enclosure distributed with this issue.

One-day Conference on the Analysis of Repeated Measures in Genstat,
6 October 1988

P W Lane

AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden

Hertfordshire

United Kingdom ALS 2JQ

This was the second in what is intended to be a series of conferences about selected topics in Genstat.
(The first was held on 28 April 1988, and was about the new methods for extending Genstat with
Fortran.) It was again held in the new Conference Hall at Rothamsted, and attracted over 100
participants. As well as the eight invited presentations, there was the opportunity to see and try out
Genstat on an Opus PC-V, an IBM PS/2 and two Sun workstations.
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D.E. Walters, of the Institute of Animal Physiology and Genetic Research, started the proceedings
with an overview of available methods for analysing repeated measures. These range from what some
authors misleadingly call the ‘usual method’, which means totally ignoring the effects of correlation
between observations, through the modified split-plot analysis, to detailed models for the covariance
structure of the observations. His opinion was that the analysis of summary statistics, derived for the
set of repeated measurements on each subject, was nearly always the best approach, being
straightforward to comprehend, compute and communicate.

M.G. Kenward, of the University of Reading, followed with a detailed look at one of the more
recently developed methods, called ‘ante-dependence analysis’. This involves the use of covariance
analysis, treating previous observations in the series for each subject as the covariates. The method is
readily implementable in Genstat, as was shown later by M.S. Ridout of the Institute of Horticultural
Research. He has developed a procedure with R.W. Payne of Rothamsted for selection of a suitable
order of ante-dependence; that is, the number of covariates to include in the analysis. This procedure
will be added to the Genstat Procedure Library.

A. Keen, of the Agricultural Science Group at Wageningen in The Netherlands, gave several examples
to illustrate ante-dependence analysis. He concentrated particularly on techniques of curve analysis,
where polynomial curves are fitted for each subject and the resulting scores are assessed by analysis
of variance or covariance, using lower-degree scores as the covariates.

G. Tunnicliffe Wilson, of the University of Lancaster, showed how some problems in repeated
measures could be tackled using standard methods available in Genstat for analysing time series.
Models for autoregressive or moving-average behaviour of a series of observations for a subject can
be assessed, with the distinction between subjects being made by including a ‘seasonal’ effect in the
model.

Two speakers from the Glasshouse Crops Research Institute talked about specific projects with which
they had been involved. R. Edmondson described the analysis of growth curves for data from tomato
experiments, where many successive harvests are taken from individual plants during the growing
season. He fitted linear polynomials to provide an analysis of the cumulative yield curves with respect
to the effects of treatments and the variation of treatment effects over environments. Then J.S. Fenlon
described the analysis of time-to-response in insect assays, where quantal data are collected at a series
of times after application of an insecticide to monitor its effectiveness. Often, a statistic such as the
time taken to destroy 50% of the insects, is the goal of an analysis, but such statistics should not be
produced by standard methods such as probit analysis, which ignore correlation.

R.W. Payne, of Rothamsted, concluded the meeting by summarizing the facilities available in Genstat
for the analysis of repeated measures. As well as standard techniques available in all the major
statistical areas (regression analysis, analysis of variance, multivariate analysis and analysis of time
series) there was considerable scope for the use of Genstat procedures to provide more complicated,
recent techniques. He stressed the convenience of the standard facilities for data handling and
presentation, particularly the use of high-resolution graphics to display data and models for repeated
measures, as had been demonstrated by many of the speakers.
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Genstat Procedure Library for Release 1.3

R W Payne

AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden

Hertfordshire

United Kingdom ALS 2JQ

The second release of the Library, which will be sent out with Release 1.3, contains 51 procedures and
covers many of the more popular analyses in the Genstat 4 Macro Library — as well as some new
facilities. Index lines for the procedures in the Library are as follows:

ALIAS
AONEWAY
APLOT
BARCHART
BIPLOT
CANCOR
CENSOR
CHECKARGUMENT
CLASSIFY
CONCORD
CORRESP
DDENDROGRAM
DESCRIBE
DISCRIMINATE
DSHADE
FIELLER
GENPROC
GLM

GRBETA
GRCHI

GRF
GRGAMMA
GRLOGNORMAL
GRNORMAL
GRT
GRWEIBULL
KOLMOG2
KRUSKAL
LATTICE
LIBEXAMPLE
LIBHELP
LIBINFORM
LIBMANUAL
MANCOVA

finds out information about aliased model terms in analysis of variance
provides one-way analysis of variance for inexperienced users
plots residuals from an ANOVA analysis

plots a bar chart using line-printer or high-quality graphics
produces a biplot from a set of variates

does canonical correlation analysis

pre-processes censored data before analysis by aNnova

checks the arguments of a procedure

obtains a starting classification for non-hierarchical clustering
calculates Kendall’s Coefficient of Concordance for a set of variates
does correspondence analysis, or reciprocal averaging

draws dendrograms with control over structure and style

saves and/or prints summary statistics for variates

performs discriminant analysis

produces a shaded similarity matrix by high-quality graphics
calculates effective doses or relative potencies

performs a generalized Procrustes analysis

analyses non-standard generalized linear models

generates pseudo-random numbers from the beta distribution
generates pseudo-random numbers from the chi-square distribution
generates pseudo-random numbers from the F distribution
generates pseudo-random numbers from the gamma distribution
generates pseudo-random numbers from the log-Normal distribution
generates pseudo-random numbers from the Normal distribution
generates pseudo-random numbers from Student’s t distribution
generates pseudo-random numbers from the Weibull distribution
performs a Kolmogarov-Smimoff two-sample test

carries out a Kruskal-Wallis one-way analysis of variance

analyses square and rectangular lattice designs

accesses examples and source code of Genstat S Library procedures
provides help information Genstat S Library procedures

prints information about the contents of the Procedure Library
prints a manual containing information about Library procedures
performs a multivariate analysis of covariance
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MANNWHITNEY performs a Mann-Whitney U test

MANOVA performs a multivariate analysis of variance

MULTMISS estimates missing values for units in a multivariate data set
NOTICE gives access to the Genstat Notice Board (news, errors etc.)
NPCHECK checks the validity of input data for nonparametric procedures
NPRANK produces ranks, allowing for ties, for the nonparametric procedures
ORTHPOL calculates orthogonal polynomials

PERCENT expresses the body of a table as percentages of one of its margins
QUANTILE calculates quantiles of the values in a variate

RCHECK checks the fit of a linear or generalized linear regression

REPMEAS checks if a set of repeated measures can be analysed as a split plot
SKEWSYMM provides an analysis of skew-symmetry for an asymmetric matrix
SPEARMAN calculates Spearman’s Rank Correlation Coefficient

SUBSET forms vectors containing subsets of the values in other vectors
TTEST performs a one-sample or two-sample t-test

VHOMOGENEITY tests homogeneity of variances

WILCOXON performs a Wilcoxon Matched-Pairs (Signed-Rank) test

These were produced from within Genstat by the library procedure LIBINFORM, the relevant statement
being
LIBINFORM [PRINT=index]

It is also possible to produce a ‘manual’ collating the Help information on the Library, using the
procedure LIBMANUAL. (Full details of the syntaxes of these or any of the other procedures in the
Library can be obtained using procedure LIBHELP, as explained on page 597 of the Genstat 5
Reference Manual.)

Most of the procedures in the current library have been written by authors or have involved co-authors
from Rothamsted, but procedures are beginning to be submitted from other sites and others would be
very welcome. Aspiring authors are encouraged to contact the secretary of the Library’s Editorial
Committee, at Rothamsted, for advice and to try to avoid duplication of effort. Instructions for authors
were published in Genstat Newsletter No. 20. Authors may also find it useful to study some of the
existing procedures; procedure LIBEXAMPLE has been revised to allow the source code of any Library
procedure to be copied into a Genstat text.

The next release of the Library will be formed in January 1989. Among the additions will be
procedures to help with the analysis of time series, using graphical displays to select and check the fit
of suitable Box-Jenkins models; also further procedures for analysing repeated measures data,
produced for the one-day meeting described elsewhere in this issue.
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Comparison of Algorithms for Generalised Procrustes Analyses

G M Arnold

Department of Agricultural Sciences
University of Bristol

AFRC Institute of Arable Crops Research
Long Ashton Research Station

Bristol

United Kingdom BS18 9AF

Generalised Procrustes analysis is a method for matching several two-way configurations, such as data
on V variables observed on N subjects. The method makes use of translation to a common origin,
rotation/reflection of axes and, possibly, an isotropic scale change. With more than two configurations
this matching is done iteratively to a common consensus configuration to minimize a goodness-of-fit
statistic which is the sum of the Procrustes statistics of each adjusted configuration to the consensus.
In recent years this technique has been used extensively in sensory work, particularly for analysis of
profile data [1,2). In this context each of the M configurations represents the scores for one assessor
of N samples on V sensory attributes. With the possibility of many assessors, samples and attributes,
large data sets may be generated and, in these circumstances, a generalised Procrustes analysis can be
very expensive in computing time.

The Genstat 4 Macro Library contained a macro, GENPROC, for generalised Procrustes analysis which
used the method described by Gower [3]. Other approaches to the rotation/reflection and scaling
stages of the analysis have been described in the literature [4,5,6). This article discusses the
programming of some of these algorithms in Genstat 5 and compares their performance on three large
data sets of dimensions typical of those produced in sensory profiling.

The steps for all the algorithms compared herein can be summarised similarly:
1. Centre each input matrix X; (i = 1..M) and scale each X, by M
)) trace(X;X;)
2. Evaluate an initial estimate of the centroid C by setting C = X,; then for i = 2...M rotate X; to C
and re-evaluate C as the mean of the new X, ...X;.

3. Calculate the initial residual sum-of-squares and set the scaling factors p; (i = 1..M) to have
initial values of 1.

4. Fori = 1..M, rotate the current X; to C. Evaluate the new centroid as the mean of the new X; and
calculate a new residual sum-of-squares.

5. If isotropic scaling is not required, go to step 7.

6. Fori = 1..M, evaluate the new scaling factors p;. Calculate the new X; as p;X;. Evaluate the new
centroid as the mean of these new X; (i = 1..M) and calculate a new residual sum-of-squares.

7. If the reduction in residual sum-of-squares from step 3 is greater than a preset tolerance (e.g.
0.0001) save the current residual sum-of-squares from the previous step and go to step 4 to repeat
~ the process.

8. Refer the final centroid to its principal axes to give the final consensus configuration. Refer the
individual final configurations X; (i = 1...M) to the same axes and print results.

Steps 1-3, 5, 7 and 8 are common to all the approaches. The algorithms differ only in the method of
rotation/reflection in step 4, and the calculation of the scaling factors in step 6; all methods converge
to the same solution.

The differences in the approaches will now be described and the respective Genstat 5 statements
given, operating on the following data structures:
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Scalars

Nconfig ~ number of configurations/assessors (M)

Nrows — number of rows/samples (N)

Ncols — number of columns/attributes (V)

Nentry — number of values per configuration (NV)

s2 ~ trace of C'C where C is the current centroid

S — calculated new scaling factor for a configuration
Variates of length NV

Xvar([1l...Nconfig] — each current X; stored as a variate
Variate of length M

ScalingF — scaling factors for all configurations stored as a variate

Matrices of dimension N and V
Xout [1...Nconfig] — current X;, the configuration for assessor i

X — dummy for X; in FOR loops

2X;
Y —~ current centroid C = 7‘
z — current 3X; or zero

For the rotation/reflection stage (step 4) Gower [3] rotates each current X; (i = 1...M) to the initial
centroid C. After these M rotations the new centroid is calculated as the mean of the new
X; (i = 1..M). At the start of these calculations, z holds the sum of the current X; and ¥ the current
centroid.

CALCULATE 2 = 0
FOR Config=1l...Nconfig
ROTATE [STANDARDIZE=centre] XINPUT=Y; \
YINPUT=Xout [Config]; YOUTPUT=Xout [Config]
CALCULATE 2 = Z+Xout [Config]
ENDFOR
CALCULATE Y = Z/Nconfig

Kiristof and Wingersky [4] suggest that instead of updating the centroid after each cycle of M passes,
it should be updated after each pass.

FOR Config=1l...Nconfig
CALCULATE Z = Z-Xout [Config]
ROTATE [STANDARDIZE=centre] XINPUT=Y; \
YINPUT=Xout [Config]; YOUTPUT=Xout [Config]
CALCULATE Y = (Z = 2+Xout [Config])/Nconfig
ENDFOR

If p; is the current scaling factor for configuration X;, Gower [3] calculates the new estimate of the
scaling factor, p, by

, trace(X;;C)
Pi = Pigltrace(C0) trace(X:X ;)
CALCULATE 2 = 0
FOR X=Xout [l...Nconfig];Config=l...Nconfig
CALCULATE 2 = 2 + (X = X* \
(S = SQRT(TRACE(TRANSPOSE(X)*+Y)/(S2*SUM(X*X)))))
CALCULATE ScalingF$([Config] = ScalingF$[Config]*S
ENDFOR
CALCULATE Y = 2/Nconfig
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The values of the scaling factors p; thus calculated are not the best possible estimates at this stage.
Langron [5] suggests amending this calculation to estimate the p; more accurately by inserting an
extra test of the differences in residual sums-of-squares. If the reduction in residual sums-of-squares
before and after step 6 as calculated by the Gower method above is greater than a preset tolerance, this
step is repeated until the reduction obtained is less than the tolerance.

Ten Berge [6] gives an alternative method of estimating the scaling factors at step 6, as well as
recommending the use of the rotation/reflection procedure of Kristof and Wingersky [4). Writing each
configuration X; as a variate of length NV, the matrix of correlation coefficients between these
variates is calculated. If E, is the eigenvector corresponding to the largest eigenvalue of this
correlation matrix, the new best estimate of the scaling factor, p;, is given by

! = . __M__e,
Pi =P trace(X'X;)

where e;; is the i* element of E,.

SSPM [TERMS=Xvar[l...Nconfig]] XvarSSPM
LRV [ROWS=Nconfig; COLUMNS=1] XcorLRV
CALCULATE 2 = 0
EQUATE OLD=Xout[l...Nconfigl; NEW=Xvar(l...Nconfig]
FSSPM XvarSSPM
CALCULATE XvarSSPM[’Sums’] = CORRMAT(XvarSSPM[’/Sums’])
FLRV XvarSSPM[’Sums’]; LRV=XcorLRV
FOR X=Xout [1l...Nconfig]:; Config=1l...Nconfig
CALCULATE 2 = 2 + (X = X* \
(S = ABS(SQRT(Nconfig/SUM(X*X))*XcorLRV[’Vectors’]$[Config;1])))
CALCULATE ScalingF$[Config] = ScalingF$([Config]*S
ENDFOR
CALCULATE Y = Z/Nconfig

The comparison of timings for these different methods programmed in Genstat 5 has been carried out
on three large data sets with the same overall number of elements.

Dataset No. of configurators | No. of rows No. of columns Total
Number (assessors: M) (samples: N) (attributes: V) clements
1 32 48 25 38400
2 16 48 50 38400
3 8 192 25 38400
Table 1

Dimensions of Datasets used for timing comparisons

Firstly the two methods of rotation/reflection were compared with no isotropic scaling allowed. Then
the methods of rotation/reflection were compared simultaneously with the three different scaling
methods, giving six possible combinations. The timings presented are for Genstat 5 Release 1.3,
running on a VAX 11/750, with the tolerance in step 7 set to 0.0001.
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Method Dataset
Rotation/
Reflection Scaling 1 2 3
Gower - 100  (208) 100  (184) 100 (87)
K&W - 82 90 90
Gower Gower 100  (319) 100 (271) 100  (136)
Gower Ten Berge 92 71 86
Gower Langron 109 92 112
K&W Gower 75 %0 94
K&W Ten Berge 67 63 79
K&W Langron 87 84 111
(Note: K & W refers to Kristof and Wingersky)
Table 2

Comparative timings (CPU) presented as a percentage of the baseline method (Gower). Absolute
timings in minutes for these baseline runs are given in parentheses.

For each of the datasets used, the quickest run was for the method of Ten Berge which incorporates the
rotation/reflection method of Kristof and Wingersky. Percentage savings in time ranged from 21% for
dataset 3 to 37% for dataset 2. Kristof and Wingersky’s rotation/reflection method gave greatest
savings for dataset 1 which has the largest number of configurations (assessors). Comparing scaling
methods, that of Ten Berge gave the greatest percentage reduction for dataset 2, which has the largest
number of columns (attributes). The alternative scaling method of Langron does not appear to be
efficient. These results suggest that the algorithm for generalised Procrustes analysis described by Ten
Berge can reduce computation time considerably compared to that suggested by Gower, parncularly
for data sets with large numbers of configurations and/or columns.

Care should be taken in extending these results to programming languages other than Genstat. For
example, if one were programming at the Fortran level, the number of program statements executed in
the eigenvector calculations required by Ten Berge might well dominate the timings. Eigenvectors are
calculated as a single Genstat statement, so the algorithmic part of the calculation is dominated by
similar overheads to those required for the more simple executable arithmetic statements.

These findings have been taken into account in the design of the Genstat 5 procedure GENPROC, for
generalized Procrustes analysis (written by G.M. Amold and R.W. Payne) in the Library that
accompanies Release 1.3, with the method of Ten Berge being made available as an altemative to that
of Gower. Other options can request isotropic scaling, set the required tolerance and set a limit on the
number of iterations allowed. Various results can be printed using the print option and/or saved via
several parameters. Full details can be obtained when running Genstat 5 Release 1.3, by using the
statement

LIBHELP [PRINT=index,authors,description,options,parameters,method] \

* GENPROC'

Acknowledgement
Long Ashton Research Station is financed through the Agriculture and Food Research Council.
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Plotting Shade Diagrams and Cluster Dendrograms

C W Ramm

Department of Forestry
Michigan State University
East Lansing

Michigan

USA

Hierarchical cluster analysis in Genstat is a useful tool for the detection of natural groups. It can be
difficult, however, to interpret individual clusters. A shade diagram, based on the similarity matrix
used for clustering, may aid interpretation. This note reviews some Genstat 5 procedures, available in
the standard Library with Release 1.3, for the joint plotting of a dendrogram and a shade diagram.

The most time-intensive procedures are those involved in building a similarity matrix and the
dendrogram structure. Define a symmetric matrix (S1) and construct it using the FSIMILARITY
directive. Use si1 in the HCLUSTER directive to do hierarchical cluster analysis and save the
amalgamations (A1), which will be used in the DDENDROGRAM procedure to construct the dendrogram.
The similarity matrix (S1), amalgamations (a1), dendrogram structure (dd1) and permutations
(P1) should be saved in a backing-store file. The permutations are used to sort the units within the
similarity matrix so that their order matches the dendrogram. An example program is shown in Table
1; it constructs a dendrogram for 20 plots using a similarity matrix based on the relative abundence of
30 species [3].

OPEN ‘Shadyden.bak’; CHANNEL=5; FILETYPE=backing

RETRIEVE [CHANNEL=5] SPP[1...30]

SYMMETRICMATRIX [ROWS=20] S1

FSIMILARITY ([SIMILARITY=S1) SPP[1l...30]}; TEST=3

HCLUSTER [METHOD=groupaverage] S1l; AMALGAMATIONS=Al

DDENDROGRAM [STYLE=centroid; GRAPHICS=lineprinter] Al; \
TITLE='Dune Meadows’; PERMUTATIONS=P1l; SAVE=ddl

STORE [CHANNEL=5; SUBFILE=dendro] S1,Al,Pl,ddl

STOP

Table 1
Formation of similarity matrix and dendrogram structure.

The example program uses the option setting GRAPHICS=lineprinter rather than plotting the
dendrogram. The lineprinter is faster, and the printout can be used to evaluate the ordering and style
selected for the dendrogram. There are four possible settings for the STYLE option in the
DDENDROGRAM procedure to choose from. It is suggested that average be used with average linkage;
centroid with group linkage; lower with single linkage; and full with complete linkage.

OPEN ’Shadyden.bak’; CHANNEL=5; FILETYPE=backing

RETRIEVE [CHANNEL=5; SUBFILE=dendro] S1,P1l,ddl

OPEN ’Shadyden.grd’; CHANNEL=1; FILETYPE=graphics

DEVICE 1

PEN 1...4; COLOUR=1; BRUSH=1,9,5,6

" define frame for shade diagram, key, dendrogram *

FRAME WINDOW=1,2,3; YLOWER=0.2,0.8,0.2; YUPPER=0.8,1,0.8; \
XLOWER=2(0.5),0; XUPPER=2(1),.5

DSHADE S1; NGROUPS=4; PERMUTATIONS=P1l

DDENDROGRAM [CHANGE=display; ORIENT=east; SCREEN=keep] \
ddl; WINDOW=3; TITLE=’ Dune Meadow '

STOP

Table 2
Example of program to plot dendrogram and shade diagram.
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Shade diagrams may be plotted on any side of the dendrogram. The program given in Table 2 will plot
the dendrogram on the left and the shade diagram on the right (Figure 1). The DSHADE procedure
does not have the option of defining altemnative windows: it will plot the shade diagram in window 1
and its key in window 2. Digby and Kempton [2] discuss alternative ways of combining shade
diagrams and dendrograms. Their recommended format has the shade diagram plotted above the
dendrogram, which is inverted or ‘hanging’ (Figure 2). As long as windows 2 and 3 have the same
lower and upper limits in X, the two plots will line up. The windows for Figure 2 were defined by:
FRAME WINDOW=1,2,3; YLOWER=2(0.5),0.1; YUPPER=2(0.9),0.5; \
XLOWER=0.25,0.75,0.25; XUPPER=0.75,1.0,0.75

and the DDENDROGRAM procedure call was revised to include the options REVERSE=yes and
ORIENT=north. The details on the procedures DDENDROGRAM (written by P.G.N. Digby) and
DSHADE (written by S.A. Harding) are available through the procedure LIBHELP in Genstat Release

1.3.

The PEN statement used in these examples defines four groups with specific brush selections to
produce a gradient of shadings for the similarity matrix. A maximum of three to four groups is
suggested. Use brush pattern 16 and different pen colours with a colour monitor.

The graphics file produced should be checked on a graphics terminal before plotting to ensure that
labels and titles are legible. A fourth window can be defined to contain a title for the entire plot. Be
aware that the shade diagram is generated by plotting individual histograms. Lines along the diagonal
of the shade diagram are drawn repeatedly; when plotted, the ink may bleed into the paper. A heavier
weight paper and thinner pens can help reduce the problem.

Joint plots appear to work best for relatively small data sets. Sixty or more observations appears to be
the upper limit for one joint plot, both for legibility and for understanding the dendrogram. Figure 3,
for example, shows the shade diagram and dendrogram based on relative abundence across 141 upland -
hardwood stands in Michigan of 56 species of ground flora. Anderberg [1] gives several methods to
split large data sets for clustering. Finally, cluster analysis is primarily a technique for exploratory data
analysis. Cluster analysis may not find pattemns in data where they exist, and it may discover patterns
where there are none. A single dendrogram, no matter how unique the clusters or complex the plot,
should not be accepted as proof.

References
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Multivariate Analysis of Ecological Communities.
Chapman and Hall, 1987.

[3] Jongman, R.G.H., ter Braak, C.J.F. and van Tongeren O.F.R.
Data Analysis in Community and Landscape Ecology.
PUDOC, Wageningen. 1987.

Page 13



Genstat Newsletter No. 22

0.7079
0. 7588

FEFEFEEER 0. 8673

FtZZ74 0.6314

(]

L

uuE

/ 13

07
g

6 15 16 20 8 9 12 13 17 19 6 S 7 11 18 2 W 4 1 3

DA
Samz \\\)@ \\
o ow

= R o o om o~

14
15 1

Dune Meadow

Page 14

Figure 1
Side-by-side dendrogram and shade diagram for 20 plots,

based on abundance values for 30 plant species.
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Motor Vehicle Speeds in Built-up Areas: Some Comparisons of the Logit,
the Log-linear Poisson, and the Log-linear Binomial Models

L K Thomsen

Danish Council of Road Safety Research
Ermelundsvej 101

DK-2820 Gentofte

Denmark

Introduction

This paper describes the use of three models all relevant for road safety research. The three
models are the log-linear Poisson model, the logit model, and what is called the log-linear
binomial model.

The structure of this paper is a brief presentation of the models, their use, and finally some
concluding remarks.

The Three Models
Expressed as formulae, the three models considered are:
the log-linear Poisson

log(uy) = a; + B (1)
the logit
Pi \ _
1°g(1-p,.,.) =7+ (2)
and the log-linear binomial
log(p;) = & + g (3)

Almost any textbook on categorical data deals with the models (1) and (2) often leaving out
the log-linear binomial model. A discussion and application of (3) to Bartlett’s data is provided
by Thyregod and Spliid [7].

A Simple Example

Fienberg [3, p. 8] uses, as an introduction to his book on log-linear Poisson and logit models,
the example treated below. The point in this paper is that the data presented by Fienberg, shown
here as Table 1, is analysed with advantage (in terms of interpretation of results) by the
log-linear binomial model.

Cold No Cold Totals
Treatment Placebo 31 109 140
Ascorbic Acid 17 122 139
Totals 48 231 279
Table 1

Incidence of common colds in a double-blind study involving 279 French skiers.
Pauline’s data as given by Fienberg [3].

Application of the log-linear binomial model leads under the hypothesis of no treatment effect
to

log(p;) = ¢ “4)
simply saying that the proportion of skiers catching a cold does not change due to the treatment.
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Another hypothesis could be to include a parameter allowing the treatment to affect the
proportion of skiers catching a cold, i.e.

log(p;) =c + ¢ (S)
The formulation and use of these models is simple by means of packages such as Genstat and

GLIM, [4], although it demands the involvement of macros as shown in the Appendix. Table 2
provides the output from fitting models (4) and (5) using GLIM.

$F $L %X2 $D MER $CA $EXP(-1.760) $

scaled deviance = 4.8717 at cycle 2
d.f. =1

4.811
Current model:

number of units is 2
y-variate COLD
weight *

offset *

probability distribution is defined via the macros M1, M2, M3 and M4
scale parameter is 1.000

terms = 1
estimate s.e. parameter
1 -1.760 0.1313 1
scale parameter taken as 1.000
unit observed fitted residual
1 31.00 24.09 1.548
2 17.00 23.91 -1.554
0.1720

$F +TREA S$L %X2 $D ER $CA %EXP(-1.508) : %EXP(-.5936) $

scaled deviance 0.00000 (change -4.872) at cycle 4

d.f. =0 (change = -1 )
4.441e-16 )
estimate s.e. parameter
1 ~-1.508 0.1585 1
2 -0.5936 0.2770 TREA(2)

scale parameter taken as 1.000

unit observed fitted residual
1 31.00 31.00 -0.000
2 17.00 17.00 -0.000
0.2214
0.5523
Table 2

Results from fitting médels (4) and (5) to the data of Table 1.
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A lot of information can be gleaned from Table 2, but of most interest are the two last parameter
estimates telling that in the placebo group, 22% catch a cold and after that we are told that this
proportion is 55% of this figure in the treated group. This is another way of saying that the
proportion of the skiers with colds in the treatment group is reduced by 45% compared to the
placebo group.

The above demonstrates that the parameters of the binomial model are easily interpreted. After
this the logit model is applied in the form

P;
logl — | =¢ (6)
g(l-m)
and with treatment effect allowed
Pi \ _
log(t’:) =Cc + Ti (7)

SF $L %X2 $D ER $CA %EXP(-1.571) $

scaled deviance = 4.8717 at cycle 3
d.f. =1

4,810

estimate s.e. parameter
1 -1.571 0.1586 1
scale parameter taken as 1.000

unit observed out of fitted residual

1 31 140 24.09 1.548

2 17 139 23.91 -1.554
0.2078

SF +TREA $D ER $CA %EXP(-1.257) : $EXP(-.7134) $

scaled deviance = 0.0000000 (change = -4.872) at cycle 3
d.f. =0 {change = -1 )
estimate s.e. parameter
1 -1.257 0.2035 1
2 -0.7134 0.3293 TREA(2)
scale parameter taken as 1.000
unit observed out of fitted residual
1 31 140 31.00 -0.000
2 17 139 17.00 -0.000
0.2845
0.4900
Table 3

Results from GLIM fitting the logit-models (6) and (7).
In this case the two last figures have to be interpreted in terms of odds-ratios, this being 28% for

the control group and being reduced to 49% of that by the treatment. The interpretation of this
is quite troublesome. Trying to express this in terms of skiers catching a cold, one obtains
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_ exp(-1.257)
Peold = 11 exp(-1.257)
for the control group and
_ exp(—1.257-0.7134)
Peod = T exp(-1.257-0.7134)
for the ascorbic acid group. This is of course in accordance with the results found above.

This example illustrates that the log-linear binomial model copes with the parameters of interest
i.e. the proportion of skiers catching a cold and the change in this proportion due to treatment.

= 0.2215

= 0.1223

4. Choosing a Model

In Sections 5, 6, and 7, three road safety analyses are presented. They represent the three models
treated in this paper; the Poisson model, the logit model and the log-linear binomial model.

Poisson

In many accident studies the Poisson distribution is applied. This is also the case in Section 5
where the trend in Danish fatal road accidents is analysed.

The final model chosen becomes
A; =T® . SL13; . SL19, . SL85,, . YEAR! (8)

where A; is the number of total accidents in year i, and 7; the corresponding car traffic flow.
The three factors SL73, SL79 and SL85 correspond to the changes in speed-limits in Denmark
and YEAR is the year under consideration.

Logit
In the Poisson model mentioned above we are fortunate to have information on the car traffic

flow. This is often not the case, and in the situation where we want to evaluate the change in the
general speed-limit in built-up areas we have to rely on the logit model.

Our reasoning is as follows. The ideal situation would be to have a case-control study
[2, p. 94] with accidents and traffic flow data. Table 4 shows the situation.

period
before after
area | urban Ay T, Ay T,
rural A, T, A, T,
Table 4
Case-control study involving accidents and traffic flows.

The hypothesis is that the reduction in the speed-limit in urban (built-up) areas should only
affect the number of accidents in urban areas in the after-period. Defining the accident rate as

A
=4 9
A=z %
one can formulate the hypothesis of no speed-limit effect as
Aa
A
H,: =1 (10)
Y .
A’rb
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with the alternative

ub
A’ra

'q'rb
If we were in the situation where we knew the four traffic flow figures of Table 4, we could test
by means of the weighted Poisson model. See, for example, Anderson, [1] and Thomsen and
Thyregod, [5, 6].
In the present case we have no information on traffic flow and thus make the assumption that
the proportion of kilometres travelled in urban areas is the same before and after the change of
law from 60 to SO KMH.

It is convenient to reformulate H,, into (12)

Ay _

T=C'5" Hy: 6, =1 (12)
n

where we apply a parameterization yielding J,,.,, = 1 recalling that A is the accident rate we

obtain

H,: =1 (11)

Aw’ Tr'
2—; . ‘T—m =C. 8'- (13)

The assumption that the proportion of kilometres travelled in urban areas is the same before and
after can be expressed as

T, T

- 1
E = T, k (14)
Combining (13) and (14) yields
Ay c
A—ﬂ—,—(.é',-—e.é} ) (15)

Taking logs leaves us with

A
log (A—'“) = loge + log §; . (16)

n
which is a logit model.

The hypothesis and model formulation above is based on the simple case with only a time factor
(6;) included. The example below in Section 6 starts off with the model

Ay «
Y SL79xQUAR+YEAR (17)
n

where SL79 is a factor designating the change in the accident ratio before and after the
speed-limit change on 15 March, 1979. QUAR is a four-level factor allowing each quarter of the
year to have its own accident ratio. YEAR is a continuous variable allowing general trends in the
safety situation to take place. Finally, "*" indicates that the model (17) includes a three-factor
interaction plus all the lower-order effects as the model is hierarchical.

Our main concern is to study the change in traffic safety due to the 50 KPH-limit introduced on
1 October, 1985. We thus add a new factor SL8S to (18) and get

Am‘ _ a
5 = SLT9*QUAR«YEAR® . SL85 (18)
ri

The change in the goodness-of-fit statistic is thus a test of the effect of the speed-limit.
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Log-linear Binomial

In the logit model we used the accidents in rural areas as a control group adjusting for general
trends in the number of accidents. We now move to another design leading us to the log-linear
binomial model.

In Denmark, collisions between bus passengers and bicyclists is a well known problem. Often
bus stops are located at the kerb of the bicycle path and the bus passengers thus have to cross
the bicycle path. In certain situations the bicycle riders have to give way, but sometimes do not
thus leading to an accident. To avoid these accidents one measure has been to place rumble lines
on the bicycle path. The idea is to slow down the bicycle riders and make them stop when a bus
is present. All this leads to the model

10g (Py0p) = € + 7; + @ .log (x}) (19)
where p g, is the proportion of bicycle riders stopping, ¢ is a general level, 7; is the

before/after factor of main interest, ¢ is a parameter to be estimated, and x; is the number of
bus passengers crossing the path.

We are by (19) back among the skiers in Section 3. Our factor 7; is then easily interpretable as
the change of the proportion of stopping bike riders. A logit model will not offer this ease in
interpretation.

5. The General Road Safety Trend — The Poisson Model

Table 5 shows for the years 1972 to 1986 the number of fatal road accidents and car traffic flow
index as provided by the national authorities. The accident rate (defined as the number of
accidents divided by the car-flow) is also shown.

year accidents flow accident-

rate
1972 1040 100.0 10.4
1973 1003 104.1 9.6
1974 724 100.1 7.2
1975 779 104.4 1.5
1976 789 110.1 7.2
1977 784 113.6 6.9
1978 787 115.4 6.8
1979 667 1133 59
1980 625 107.3 58
1981 610 104.7 58
1982 606 105.8 5.7
1983 615 109.4 5.6
1984 616 115.4 53
1985 697 120.7 5.8
1986 655 126.4 52

Table §

The number of fatal accidents, car-flow, and the accident rate for the period 1972-1986.

Plotting the accidents as a function of the years (Figure 1) and the accident rate as a function
of the years (Figure 2) give interesting patterns.
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Figure 1
Fatal accidents as a function of the years.
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Figure 2
Fatal accident-rate as a function of the years.
Figure 2 in particular reflects the use of general speed limits: the introduction late in 1973, the

lowering in rural areas in early 1979, and finally the lowering in late 1985 in urban areas. The
model (8) reflects this.
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The result of fitting (8) with a = 1 is shown as Table 6.

year observed fitted
values values
1972 1040 1035.8
1973 1003 1007.8
1974 724 745.7
1975 779 756.0
1976 789 780.0
1977 784 790.5
1978 787 790.9
1979 667 666.8
1980 625 624.2
1981 610 602.8
1982 606 603.5
1983 615 618.7
1984 616 647.5
1985 697 672.3
1986 655 655.0
Table 6

Observed and fitted fatal accidents, where fitted values are estimated by the model (8).

The fit of the model seems good. The corresponding likelihood-ratio test statistic has a value of
4.11 being equal to ;(2 (10) .06 thus confirming a good description of the fatal accidents.

The parameter estimates of (8) are shown in Table 7.

Parameter Estimate and 95%
confidence limits
general level 10.3605
0.8884
SL73 (60/90/110) 0.8012 |
0.7226
0.9353
SL79 (60/80/100) 0.8701 |
0.8095
1.0200
SL85 (50/80/100) 0.9366 |
0.8600
-0.0267
B —0.0984 |
-0.1700
Table 7

Parameter estimates from the model designated (8).
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After the names of the speed-limit parameters, the limits in urban areas, rural areas and
motorways are shown in parentheses. The introduction of 60/90/100 KPH reduced the accident
rate (accidents adjusted for changes in flow) by 1-0.8012 = 0.20 i.e. 20%. Together with these
three safety improvements we see a general trend estimated by S and during the 15 years
included accounts for 23% decrease in the accident rate.

In terms of evaluating the 50 KPH limit the analysis above is quite crude and more detailed
work can be found in Section 6.

As stated in Section 4 the analysis of Section 6 is based on the same trend in traffic flow inside
urban areas and rural areas. Can we check this assumption?

To some extent, yes. The index of the car traffic flow is mainly counted on rural roads and few
urban roads always carrying through going traffic, so the index could be claimed to be a ‘rural
index’.

Analysis following the lines of the Poisson model above, but using fatalities instead leads to the
conclusion that no general time trend is present in the rural fatality rate (i.e. the number of
fatalities per flow unit).

Evaluation of the S0 KPH Limit — the Logit Model
Table 8 gives the basic structure of the personal injury accidents in the following study.

The first model fitted is (17) allowing interaction between YEAR, the speed limit of 1979, and
the quarter considered. This model has a likelihood-ratio test value of 44.4 with 28 degrees of
freedom thus corresponding to the 0.9746 fractile of the x2 distribution. The plot of the
Pearsonian residuals is given as Figure 3.
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Figure 3
Pearsonian residuals as a function of the number of the quarter.
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Quarter

Year | January April July October
Rate 2231 2232 2.031 2425
1976 Urban 2233 2864 2979 2913
All 3234 4147 4446 4114
Rate 2.050 2.134 1.965 2.243
1977 Urban 1954 2834 3063 2940
All 2907 4162 4622 4251
Rate 1.954 2.046 1.999 2.015
1978 Urban 2040 2809 2898 2734
All 3084 4182 4348 4091
Rate 1.691 2.184 2.200 2.552
1979 Urban 1512 2564 2693 2447
All 2406 3738 3917 3406
Rate 2.379 2.286 2.294 2433
1980 Urban 1525 2414 2443 2255
All 2166 3470 3508 3182
Rate 2.278 2.344 2.045 2.346
1981 Urban 1490 2178 2155 1961
All 2144 3107 3209 2797
Rate 1.985 2.145 2.076 2.323
1982 Urban 1229 2061 2184 2160
All 1848 3022 3236 3090
Rate 2.278 2.239 2.063 2273
1983 Urban 1476 2058 2131 1975
All 2124 2977 3164 2844
Rate 1.927 2.159 1.935 2.053
1984 Urban 1447 2066 2158 2014
All 2198 3023 3273 2995
Rate 1.861 1.929 1.980 1.927
1985 Urban 1323 1983 2315 1925
All 2034 3011 3484 2924
Rate 1.692 1.843 1.768 1.933
1986 Urban 1403 1872 1957 1950
All 2232 2888 3064 2959

Table 8

For the years 1976 to 1986 the ratio between accidents in built-up areas and the accidents in
rural areas is given together with the number of accidents in built-up areas and the total number
of accidents. The columns represent the four quarters of each of the eleven years considered.
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The five last quarters all having the 50 KPH limit show negative residuals suggesting a 50 KPH
factor (SL85) to be included. Doing this changes the likelihood-ratio to 30.6 with 27 degrees of
freedom corresponding to the 0.7114 fractile. Dropping the three-factor interaction yields a
likelihood-ratio of 33.2 and a fractile of 0.6847 thus improving the fit. The exclusion of effects
from this model does not improve the fit. Table 9 gives the log parameter estimates and Figure
4 shows the plot of the residuals.

estimate s.e. parameter

1 0.8325 0.03260 1

2 0.4628 0.07854 SL79(2)

3 -0.04224 0.04154 QUAR(2)

4 -0.1155 0.04079 QUAR(3)

5 0.05011 0.04187 QUAR(4)

6 -0.1910 0.03380 YEAR

i -0.08845 0.02378 SL85(2)

8 -0.2124 0.06956 SL79(2).QUAR(2)
9 -0.2031 0.06855 SL79(2) .QUAR(3)
10 -0.07879 0.07021 SL79(2).QUAR(4)
11 -0.08641 0.03428 SL79(2).YEAR
12 0.1383 0.04494 QUAR(2) .YEAR
13 0.1487 0.04421 QUAR(3).YEAR
14 0.04939 0.04539 QUAR(4).YEAR
scale parameter taken as 1.000

Table 9

Parameter estimates based on the model (17) without the three-factor interaction, but with the
50 KPH effect SL85 added.
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Figure 4
Plot of the residuals from the model described by Table 9.
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The plot of residuals (Figure 4) seems quite satisfactory with no alarming outliers. Unit 7 in
Table 9 yields the estimate of the change in accidents. Calculating exp(—0.08845) = 0.9153
leading to a 8.5% decrease in the urban accident rate as consequence of our model. The
corresponding 95% confidence limits are 4.2% and 12.6%.

7. Rumble Lines at Bus Stops — the Log-linear Binomial Model
We now leave the accidents, and turn to behaviour that sometimes leads to accidents.

As stated in Section 4 and model (19) our main concem is the proportion of bicycle riders
stopping when a bus is present. Table 10 gives an idea of what the data look like.

STOP N PEDE TIME
0 3 7 1
0 2 3 1
0 2 5 1
0 3 4 1
0 1 6 1
0 2 1 1
0 1 4 1
0 2 10 1
0 1 3 1
0 6 2 1
0 1 3 1
0 5 4 1
0 1 4 1
0 2 1 1
0 2 0 1
1 5 9 1

Table 10

The four columns give the number of stopping bicycle riders (STOP), the total number of bike
riders in the sequence (N), the number of bus passengers and pedestrians crossing the path
(PEDE), and a time-period factor indicating before (=1) and after (=2) (TIME).

The intention was to analyse the data by Genstat, but the macro used (GLMODEL) could not

include interactions. This should be possible when Genstat 5 is ready. GLIM can include
interactions, and some of the results are shown as Table 11.
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Model 1
scaled deviance = 89.511 at cycle 2
d.f. = 111
197.6
estimate s.e. parameter
1 -2.807 0.1714 1

scale parameter taken as 1.000

Model 2
scaled deviance = 64.777 (change = -24.73) at cycle 5
d.f. = 110 (change = -1 )
144.1
estimate s.e. parameter
1 -6.986 0.8483 1
2 2.109 0.3681 PEDE

scale parameter taken as 1.000

Model 3
scaled deviance = 64.139 (change = -0.6381) at cycle 3
d.f. = 109 (change = -1 )
140.6
estimate s.e. parameter
1 -7.001 0.8620 1
2 2.160 0.3886 PEDE
3 -0.1686 0.3439 TIME(2)
scale parameter taken as 1.000
Model 4
scaled deviance = 62.464 (change = -1.675) at cycle 6
d.£f. = 108 {change = -1 )
123.0
estimate s.e. parameter
1 -5.528 1.341 1
2 1.449 0.6537 PEDE
3 -2.322 1.768 TIME(2)
4 0.9889 0.8020 PEDE.TIME(2)

scale parameter taken as 1.000

Model 5
scaled deviance = 62.465 at cycle 2
d.£f. = 108
estimate s.e. parameter
1 -5.528 1.341 1
2 -2.322 1.768 TIME(2)
3 1.449 0.6537 TIME(1l).PEDE
4 2.438 0.4645 TIME(2).PEDE
scale parameter taken as 1.000

Table 11
Output from GLIM fitting five models to the data shown (in part) in Table 10.

The first model of Table 11 is the result of having a constant proportion of bicycle riders
stopping, not taking into account period (before/after) and the number of pedestrians.

Page 29



Genstat Newsletter No. 22

The second model is of more interest as it includes the number of bus passengers and
pedestrians crossing the bicycle path. The estimate becomes 2.109 saying that the number of
pedestrians squared explains the proportion of bike riders stopping. It is seen that this effect is
quite important having a likelihood-ratio test-statistic of 24.73 corresponding t0 ¥ (1) 3.99999-

In the third model (19) we here include the time-period-factor TIME. The value
exp(-0.1686) = 0.8448 tells that the proportion of stopping bicycle-riders is
(non-significantly) 16% lower (!) in the after-period. We shall not go into details here, but the
fact that the speeds decreased from before to after might make it unnecessary to stop as merging
is then possible. The last two models including interaction are only included for the sake of
completeness as the significance probability becomes 0.8044.

8. Concluding Remarks

This paper presents three examples illustrating the use of the log-linear Poisson model, the logit
model, and the log-linear binomial model.

The examples show that the choice of model shall ensure parameters that are intuitively
interpretable.

To apply models without thought directed towards the communication and application of the
results can easily be a waste of time.
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Appendix

All analyses presented have been carried out by means of either GLIM or Genstat. The use of
the log-linear binomial model necessitates use of macros M1, M2, M3 and M4 in GLIM, and
macros GLMODEL, LINK, WEIGHT, and INVLINK in Genstat.

GLIM

SMAC M1 $CAL $FV=N*$EXP(%LP) S$ENDMAC

$MAC M2 $CAL $%DR=1/%FV S$ENDMAC

SMAC M3 S$CAL %VA=%FVx(1-%FV/N) S$SENDMAC

SMAC M4 SCAL $DI=2*(%YV*3ILOG($YV*(N-%FV)/(%FVx(N-%YV)))
+N*$LOG( (N-%YV)/(N-%FV))) SENDMAC

SOWN M1 M2 M3 M4

$sC 1

$CAL %LP=%LOG(PROBFIT/N)

SFIT ROW+COLSDI ER$

Genstat

f REFER/NUNN=1000, NID=1000’ BINREG
'GET/FILE=1’ GLMODELS$GLMODEL
r INPUT’ 2
/UNIT’ SEKVENS $ 112
’VARIATE’ STOPPING, N, NUMPED
READ’ STOPPING,N,NUMPED, PERIODE
/ INPUT’ 1
IRUN'
CALC’ INTERACT=(NUMPED+0.1)**PERIODE
CALC’ INTERACT=LOG(INTERACT+0.1)
’ CALC’ NUMPED=LOG(NUMPED+.1)
*PRINT/P’ STOPPING, N, NUMPED,PERIODE $ 10.0,10.0,10.0,10.0
'VARIATE’ LIM=0.5
FACTOR’ PERIODEN $ 2
’ GROUPS’ PERIODEN=LIMITS(PERIODE;LIM)
14 RUN'
' CALC’ PHAT=STOPPING/(N)
' CALC’ STOPPING=STOPPING+.000
PRINT/P’ STOPPING,N,NUMPED,PHAT $ 14.0,15.1,10.0,15.3
r RU’NI
" TERMS /PRINT=SCG, TOTAL=N’ STOPPING+NUMPED+PERIODEN+INTERACT
fMACRO’ LINK $
’CALC’ LINPRED=LOG(FVAL/N)
’ ENDMACRO'
'MACRO’ WEIGHT $
CALC’ W=1.0/FVAL
" ENDMACRO’
*MACRO’ INVLINK $
CALC’ FVAL=N*EXP(LINPRED)
’ ENDMACRO’
’ SET/ ERROR=BINOMIAL
fPRINT’ LINK,WEIGHT, INVLINK
' SET’ DEVPRN=YES
: Y=STOPPING
: MODEL=NUMPED, PERIODEN
r R‘UN'
'USE’ GLMODEL $
[ 4 RUNI
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! SET’ MODEL=NUMPED
’ RUNI
‘USE’ GLIMODEL $
14 RUNI
! SET’ MODEL=NUMPED, PERIODEN, INTERACT
’ RUNI
USE’ GLMODEL $
L4 RUNI
! TERMS/PRINT=SCG, TOTAL=N’ STOPPING+NUMPED*PERIODEN
! Y/ERROR=BINOMIAL, LINK=LOGIT’ STOPPING
'FIT/PRINT=ACF, INT=N’ NUMPED
' ADD/PRINT=ACF, INT=Y'
¢ PERIODEN
: NUMPED.PERIODEN ; FVAL=FITTED
' HEADING’ H='‘'LP’’
GRAPH’ FITTED,STOPPING ; NUMPED $ H
14 le
DROP’ NUMPED*PERIODEN
'GRAPH’ PHAT ; NUMPED
’ RUNI
CLOSE’
! STOP'
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Genstat for Flexible Summaries of Data
or... When is a Genstat User not a Genstat User?

P J Colman

Pfizer Central Research
Sandwich

Kent

United Kingdom CTI3 9NJ

1. Background

Pfizer Central Research (in Sandwich, UK) conducts research into veterinary medicinal
products as well as human medicinals. Clinical trials in animals typically result in high-quality
data (no problems with patient non-appearance!) for a number of treatment groups. The types
of data encountered are as varied as the research areas involved; faecal egg counts (from
parasitology trials) and temperatures (from antibacterial studies) being just two examples.
Weight and (to a lesser degree) feed consumption are frequently measured, as changes in them
can be sensitive indicators of the animal’s general welfare. A common feature of the trials is the
repeated measures nature of much of the data; for example, weights may be taken weekly over
a six-month grazing season or temperatures may be taken daily over a two-week treatment
period. A natural requirement of the investigator running the trial is to see his data summarised
as it becomes available and, from time to time, to present the up-to-date situation to his
management. To fulfill these repetitive requests used to result in the statisticians having
sufficent time to provide only basic analyses of data from completed trials. It was in order to try
and improve this situation that this Genstat program was created.

2. Designing the Program
The basic rules of system design are as follows:
(i) analyse the needs of the system user;

(ii) construct a structured specification of the system which is expected to meet the users’
needs;

(iii) walk through the structured specification with the users to ensure suitability;

(iv) implement the system.
There is, of course, the opportunity for iteration between the first three steps so that the
specification that is eventually implemented is definitely that which will meet the users’ needs.

Unfortunately, I am unable to report that this is the strategy that I followed. My approach was
more that of the ongoing prototype! However, I did endeavour to analyse the actions required
within the program to produce the output that I believed to be what was wanted.

3.  Designing the Program — Needs

The driving force of program design was the output requirements; it clearly makes no sense to
produce a program that does not meet the needs for which it was written. The main output
requirements were as follows:

(i) protocol summary, including:

— key dates (e.g. the start and end of the treatment period),
— people (investigator, statistician),

— location,

— objective (of experiment or trial),

— treatments (including description of treatment structure);

(ii) raw data listings by treatment group;
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(iii) summaries by treatment group (which must be flexible, to allow specification by
investigator);
(iv) flat-file of data in a format suitable for local plotting software.
Secondary requirements for output were as follows:
(i) detect and mark abnormal values;
(ii) standardise units (e.g. weight may have been recorded in pounds or kilograms);
(iii) neat format to enable direct incorporation of the output into the investigator’s trial
report;
(iv) sensible English-language descriptions of summaries and sensible numerical formats
for data and summary output;
(v) ability to produce just plots, just tables or both.
The data input required to fulfill these needs is then:
(i) control data (scalars);
(ii) protocol data (read in as a header and printed straight out again);

(iii) dates of observations and corresponding days (since there is no date function in Genstat
4.04);

(iv) raw data to be listed and summarised.

4. Designing the Program — Structure
A somewhat simplified version of the structure of the program follows.

Read control information (scalars), protocol information (header), dates and day numbers
(variates);
Calculate the number of days for which data are available using the NVAL function.

Read raw data (one variate for each day/date);
Calculate number of animals.

Set number of units;

Standardise missing values as * (other codes acceptable prior to this step);

Standardise units of measurement;

Calculate and tabulate variates to achieve desired summaries and changes from previous value;
If plots required then output plot data to file;

If tables not required then exit.

Set up headings for tables and descriptions of summary statistics.

For each day:
For each variable to be summarised and for the change from previous value:
Calculate the pooled estimate of the standard deviation;
Flag value as + or — if the value is more than 2 s.d. away from the treatment group
mean. (The value 2 is easily changed if desired.)
Next variable;
Join this day’s data and bits of table to the existing list;
Next day.
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Print protocol details etc;
For each treatment group:
For each page of output for the treatment group:
Calculate page number;
Calculate number of days’ data on the page;
Set print formats accordingly;
Print table header;
Restrict to treatment group;
Print raw data and flags;
Derestrict data;
For each summary statistic:
Print summary statistic description and values;
Next summary statistic;
Next Page;
Next Treatment Group.

Finish.

Using the Program

The summary program is usually accessed through the Animal Health Database; the user is
generally unaware of the software he is using (hence the altemnative title for this talk). The user
(who may be an investigator or a statistician) enters the database system and, having selected
the trial on which to work, he requests the report options available for that trial. Let us assume
that one of the report options available to him is this summary program; in fact several versions
may be available — one for each of a number of different data-types. By selecting a summary
report, a database query language program is invoked which extracts the data required and then
sets up a subprocess (using the Vax VMS facility to spawn a subprocess) to run the Genstat
job. Finally, the user may choose to see the report at the terminal, to file it for future reference
or to print it on the printer of his choice. When the printer selected is a laser printer (such as the
DEC LNO1 or LN03), we find that the quality of output is sufficient to allow direct
incorporation of the summary table into trial reports and other documents. Alternatively, the file
may be incorporated into a word-processing package.

An example of the output of the program is given in Table 1.

The example concems animal weights which were recorded throughout a parasitology trial. The
first output consists of the protocol information which usually occupies the first page of the
summary. This is useful for checking and identifying the summary. In the body of the table (on
the next page), note the flagged extreme values; recall that these may be due to an abnormally
high or low value for a particular time or they may refer to an abnormally high or low change
from the previous time. In this example, we produce simple summary statistics only, but other,
more complex calculations have been performed with other variables.

Future Developments

As has already been hinted, there are several different versions of the program at large which
results in the process of bug-correction and improvement being extremely difficult. The next
major step (apart perhaps from conversion to Genstat 5!) will be to put the variable- and
trial-specific information into macros. This would then allow there to be just one copy of the
driving Genstat program, while the provision of the specific macros would still allow flexibility
in individual situations.
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BODYWEIGHTS to day 168 Page : 1

Trial type :Cattle parasitology trials

Trial number :5231E-03-85-002

Location code s - Not specified

1st Investigator :022 - Dr I.A.M. Investigator

2nd Investigator :024 - Dr M.E. Too

Statistician :051 - Mr I.M. Numerate

Projected start :01-APR-85

Projected end :01-0CT-85

To assess the efficacy of the treatment administered at spring turnout in the

control of gastrointestinal parasites throughout the grazing season.

Treatment Detalls
TREATMENT COMPOUND DOSE PRINC/TRACER

CODE
T1 CONTROL —-—- PRINCIPAL
T2 WONDER_DRUG 1 only PRINCIPAL
BODYWEIGHTS to day 168 Page : 2
Trial Number : 5231E-03-85-002
Treatment Group : Tl
Units : Kg
| Animal pate | 16MAYS85 | 30MAYBS | 13JUNBS | 27JUNB5 | 11JUL85 | 25JUL8S | OSAUGSS | 22AUGS5 | O5SEP85 | 19SEPSS |
[} Code Day | [ ] 14 | 28 | 42 | 56 | 701 84 1 98 | 112 | 126
| 806 | 162 { 161 | 182 ] 190 | 200 1 204 t 214 L} 204 - 1| 193 | *
] 809 | 149 | 148 | 164 | 170 | 187 i 196 ] 200 ! 204 | 192 | 187
| 814 | 143 | 143 | 152 | 162 | 17 ) 1713 i 170 ] 167 | 173+ | 176
| 819 | 158 | 151 | 165 | 183 | 189 1 198 ] 198 i 204 | 192 | 190
| 820 | 145 | 145 } 149 | 161 | 168 1 170 1 18 I 182 | 167 | 162
| 824 | 155 [} 165 [} 172 ] 177 | 170 - | 175 1 181 | 179 | 177 | 170
| 826 ] 176 | 17 1 183 ] 193 i 205 | 200 - | 199 | 200 ! 198 | "
i 830 1 164 | 156 | 170 i 185 [} 192 | 198 | 198 | 202 1 200 1 195
i 832 | 164 | 155 | 165 | 174 | 182 § 185 | 190 | 184 | 163 - | 165
] 834 | 168 | 143 | 166 | 180 | 193 ] 199 | 205 | 206 | 194 | "
| 836 | 160 | 160 | 174 | 184 | 201 | 198 | 206 | 207 | 210 | .
] 837 | 147 1 133 ] 147 | 155 | 166 ] 168 | 161 — | 167 | 162 | -
| 849 [} 155 1 166 1 177 | 190 | 202 | 204 1 212 | 211 I 188 - | 187
| 8583 1 162 1 160 [} 170 | 184 i 194 | 202 | 202 I 208 [} 208 1 195
{ 855 ] 180 | 164 | 184 ] 195 1 193 - ¢ 198 | 196 | 197 i 195 | 183
| 857 1 165 | 183 | 170 i 182 1 198 ) 195 | 201 | 195 | 192 1 161
) 661 | 174 | 178 | 183 [} 205 + | 209 [} 213 | 217 | 216 | 202 | 198
] 863 | 168 | 158 | 175 | 181 | 195 i 197 ! 199 ! 190 -~ | 189 | 182
I 864 | 166 { 157 | 176 | 185 | 197 1 204 1 210 | 209 | 190 | 185
| 869 | 195 + | 172 1§ 162 - | lsl | 193 | 196 ! 200 1 206 | 203 | 189
| Total Weight| 3256.0 | 3139.0 | 3386.0 | 3617.0 | 3802.0 | 3873.0 | 3940.0 | 3935.0 | 3785.0 | 2745.0
| Number of Animalsl| 20 | 20 | 20 ) 20 | 20 | 20 | 20 | 20 | 20 | 15 |
| Mean Weight| 162.8 | 156.9 | 169.3 | 180.8 | 190.1 | 193.7 | 197.0 | 196.8 | 189.3 | 183.0
|Standard Deviation| 12.6 | 11.1 | 10.9 | 12.0 | 12.5 | 12.6 | 14.3 | 14.1 | 13.9 | 10.8
| Mean Weight Gaini 0.0 | -5.9 1| 12.4 | 11.6 | 9.3 | 3.5 1 3.4 | -0.3 | -7.5 1 =5.5
] Mean Cumulative) 0.0 | ~5.9 1 6.5 ¢ 18.0 | 27.3 | 30.8 | 34.2 | 343.0 | 26.5 | 20.1
| Weight Gain) | ] § 1 | | | | | |
Table 1
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Following on from this development, it should then be possible to set up default summaries for
specific data-types. This would allow users to summarise their data in a standard manner,
without having to get further macros set up for each new trial.

Large data sets currently cause problems which depend on the nature of the largeness:

(i) if we have many time points, performance suffers quite markedly because of the
single-day handling of each time;

(ii) if we have many treatment groups (no matter what the size of each group),
performance suffers because of the looping through treatment groups;

(ili) if we have many (i.e. greater than about 20) animals in a treatment group, the output
format currently spills over onto the next page in a controlled but untidy manner.

Conclusion

A flexible structure for a Genstat program has been developed, to cope with the common
requirement of summarising repeated measures data. This allows the statistician to spend more
time on design and analysis of trials to the benefit of all. Whilst some elementary form of
systems analysis took place before production of the Genstat code, the author intends to
undertake a more thorough analysis before embarking on the next stages of development.
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Cumulative Count Data

P Brain and R Butler

Department of Agricultural Sciences
University of Bristol

AFRC Institute of Arable Crops Research
Long Ashton Research Station

Bristol

United Kingdom BS18 9AF

1. Introduction

Suppose a process is observed and cumulative counts are recorded at various times after the
start of the experiment. Typical examples of this include studies on cumulative mortality of
insects after innoculation with a virus [5], cumulative counts of insects caught in traps [2] and
data from germination tests [6]. In all cases the obvious way to present the data is as a plot of
cumulative counts versus time. This has led to a variety of inappropriate analyses in the
literature. Glen and Brain [2] used a more appropriate method for analysing cumulative trap
catch data. Hunter, Glasbey and Naylor [3] presented this method formally, but they wrote their
own program in Fortran. In this article the theory of their method is outlined and a procedure
which analyses this type of data using Genstat 5 is presented. Possible extensions to the original
method are also discussed.

2.  Analysis Using Maximum Likelihood

Cumulative count data are not amenable to ordinary least-squares methods for two reasons.
Firstly, there is a serial correlation between the value at a given time and the values at all
previous times, and secondly the data are in the form of counts which are not Normally
distributed. In the literature both these points have largely been ignored and typical analyses
have included fitting the logit transformation of percentage count against time [1], and
nonlinear regression of cumulative count against time directly [4]. Other previous methods are
noted by Hunter, Glasbey and Naylor.

However, if we look more closely at what is being observed in an investigation of this kind we
note that we are recording how many individuals from a population respond in a given time
interval, where the response may be, for example, seed germination, insect death or number of
insects trapped. In the first two examples we are crudely measuring an underlying continuous
variable, the time an individual from the population takes to respond; in the third, we are
measuring a composite time variable which is made up of the time until the insect hatches and
the subsequent time until it is trapped. In the first two examples we also know the size of the
population being sampled whereas in the third we do not. However in all three cases the
underlying variate is the time to an event. The plot of cumulative count against time is thus
proportional to an underlying cumulative distribution function corresponding to the time to an
event. The method of analysis presented here is a more general form of that presented by
Hunter, Glasbey and Naylor.

2.1. Maximum-likelihcod Analysis for a Single Subpopulation

We define the probability distribution function of the time to the event for an individual that is
capable of responding by g(t), and the proportion of individuals that are capable of responding
by p (in the three cases mentioned above, the individuals not capable of responding are the
proportion of seeds that are non-viable, the proportion of insects that are either resistant or not
infected, and the insects that will not be trapped during their lifetime). We denote the number
that respond in (¢,_;,¢;) by n;, fori = 1..k, where t, is the start of the experiment and the final
measurement is made at time ¢,. All individuals that respond after this time are thus not
recorded. Let us denote the cumulative distribution function by G(¢). Then the set of counts
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G(t;)-G(1;,)
G(t,)

the k cells. (Note that we are dealing with a censored population so that the divisor is required

to ensure that the probabilities sum to unity.)

If we know the size of the population from which we are sampling (N) then the
maximum-likelihood estimate of p, the proportion capable of responding, is

Xn;
P = NGty

This type of estimation problem is readily solved by Genstat 5 using a combination of the
MODEL directive with a multinomial distribution, and the FITNONLINEAR directive with the
relevant calculation to define the cumulative distribution function, G(¢). Note that G(t) will
contain parameters that need to be estimated. In the example presented (Table 2, Hunter,
Glasbey and Naylor) an appropriate formulation for G(¢) is

G(t) = NORMAL{b(In(t—lag)—m)}
where lag is the lag time, m is the mean of In(T—lag), and 1/b is the variance of In(T-lag) (T

is the time to germination). This is a three-parameter model and estimates can be made of all
three parameters using FITNONLINEAR.

(ny,ny...n,) are multinomially distributed with probabilities (i = 1..k) for

Maximum-likelihood Analysis for Several Subpopulations

The population under investigation may be made up of subpopulations which behave
differently. The response time for individuals in the different subpopulations will have different
cumulative distribution functions (CDFs), so that if we have s populations we have a set of
CDFs, G, (8),G,(1)..G,(¢).

Each of these will have some different parameters. Again we have a proportion of the
population that are not capable of responding. We denote the proportion of the responding
population in subpopulation i by p;, so thatp, + ... + p, = 1.

Then the joint distribution of the n; is still multinomial, but the i*® cell probabilities is now of

the form
Y p'Gj(t,-)-Gj(t,-_,)
e G(1y)
Again, provided the number of parameters is less than the number allowed by Genstat it is

possible to fit this model for a given set of CDFs G, (t), estimating both the proportions p; and
the parameters implicit in the formula for the CDF.

Practical Problems: Detecting Lack of Fit and Multiple Populations

With this method there is a temptation to use the whole set of measurements, as we would do
if we were fitting a logistic curve to the growth of a plant with time. However, the time intervals
in which very few events are predicted may need pooling to ensure that they contain a
reasonable number of predicted events.

In practice it may be difficult to fit the model with multiple subpopulations, and the choice of
initial estimates will generally be crucial.

As we are fitting the model using the multinomial distribution and maximum-likelihood
estimation we can use the deviance directly to detect whether there is significant lack of fit.
Lack of fit can be caused by an inappropriate model for G(¢) (in which case a plot of the
predicted CDF and the actual CDF against time may suggest an improved formula), or by
multiple subpopulations. (Alternatively it may be caused by bad data!) If multiple
subpopulations are suspected it may be possible in the first instant to assume that there are two
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3.1.

3.2.

3.3.

34.

populations and refit; the deviance may then be non-significant. Extra subpopulations may be
added sequentially and the decrease in deviance tested against the residual mean deviance using
an approximate F-test if the residual deviance is significant, or a xz -test if it is not.

A Genstat Procedure to Analyse Cumulative Count Data

A general procedure has been developed to deal with this type of data using the statistical
theory outlined above. The procedure fits models with any combination of the following
attributes:

a choice of link functions;

a choice of distribution functions;

single or multiple subpopulations of individuals capable of responding.
The attributes are discussed in more detail below.

Link Functions

The procedure uses time as its explanatory variate. In practice transformations of time have
been used to ‘Normalise’ the time to response in some way. For example, Weaver, Tan and
Brain [6] used Z = In(T-lag). We define Z to be the transformed time, ie. in general
Z = f(t;a), where a is an unknown parameter such as lag. For ease of use and flexibility the
procedure uses this type of transformation as a link function; the following links are available:

Identity: z=t

Log: z = In(¢)

Shifted log: z = In(s—lag), where lag is the lag minus the time

Own: z = f(t, ownp), where ownp is an unknown parameter and the user is
allowed to define his own link

For the case where a lag is present it is estimated by the procedure.

Distribution Functions

A choice of distributions of Z (the transformed time, defined above) is allowed; they are as
follows:

Normal: CDF = NORMAL(b(z-m))
Complementary log-log: CDF = exp(—exp(b(z-m))
Logistic: CDF = 1/(1+exp(-b(z—m))

Note that for all the above distributions the formulation is in terms of inverse standard error; this
parameterization is used to enable comparability with the usual growth curves to which this
process is analogous.

Number of Subpopulations

As noted above it is theoretically possible to subdivide a population of individuals into
subpopulations. If the number of subpopulations is given the procedure attempts to fit a mixture
of distributions. The distributions of each subpopulation are assumed to be of the same family,
but with different values of b and m. If a lag is used in the link function it is assumed to be the
same for all subpopulations.

Output

The procedure gives the ‘standard’ rahge of output options allowed by FITNONLINEAR, but also
includes an option to produce a graph of the cumulative counts and the cumulative fitted curve.
This is included to allow a visual inspection of how well the model describes a given set of data.
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Example

In their paper, Hunter, Glasbey and Naylor [3] present a ‘typical’ data set, and this is analysed
using the procedure to illustrate its use and output (for further details of the data see the paper).
They assume that the link is In(time—48); in our example we assume that the lag value of 48 is
known. We then re-analyse estimating the lag as one of the parameters. Finally, we compare the
results against that obtained by the inappropriate probit analysis, with the count being the
number that germinated by the last measurement time.

1
2

3
-4
-5
-6
-7
-8
-9
-10
-11
-12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27

31
-32
-33
-34

35

36

37
-38
-39
-40

41

42

JOB ’'TESTING HUNTER, GLASBEY AND NAYLOR DATA’

"
Trial analysis of data presented in Table 2 from Hunter, Glasbey and
Naylor. They derived the Mean and Variance, rather than the Mean and
B-parameter we have used. However variance = 1/B**2, and their values
compare with the results from this program in all cases.
Read in the time values and the counts prior to 49, 55, etc. Note
that the first count must be zero. This gives an indication of the
the length of the lag.
L
READ [PRINT=data,errors,summary; SETNVALUES=yes] Time, COUNT
49 0
55 1
62 7
72 27
79 22
86 8
96 13
103 3
120 6
127 1
144 1
151 1
168 1
Identifier Minimum Mean Maximam Values Missing
Time 49.0 100.9 168.0 13 0
COUNT 0.000 7.000 27.000 13 (o]
”
Calculate 1ln(Time-48), as used by Hunter, Glasbey and Naylor,
also the cumulative counts as required by the procedure.
"
CALCULATE LTIME = LOG(Time—-48)
& COUNT = CUMULATE({COUNT)
Use the procedure, assuming that ln(time to germination -48) is
Normally distributed.
"
FITDIST (PRINT=m,s,e,f; MODEL=normal; LINK=identity] \
DATA=COUNT; TIME=LTIME; INITIAL=!(3,3); SUBPOP=l
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xx%** Cumulative Count Analysis **x**x

Response variate: COUNT

Explanatory variate: LTIME

Distribution : Multinomial

Link : Identity, z{[]l=b[](X-m[])

Model : Normal, c(i]=propl[i]*normal(z(])

Note : Fitted curve passes through cumulative count at last time point

*xx** Nonlinear regression analysis *x**x

*%x% Summary of analysis *xx

d.f. deviance mean deviance
Regression 2 * *
Residual 9 6.885 0.7650
Total 11 * *

xx+%x%x Nonlinear regression analysis *xx*x

*x%x Estimates of parameters *x#**

estimate s.e. Correlations
b(l] 1.814 0.138 1.000
m([1] 3.3301 0.0559 -0.011 1.000

Number of Units capable of responding 91.38

*xx%% Nonlinear regression analysis **%*x

**%x Fitted values and residuals **x

Standardized

Unit Response Fitted value residual
1 0.00 * *

2 1.00 0.55 0.65

3 7.00 9.05 -0.85

4 27.00 26.16 0.20

5 22.00 16.75 1.47

6 8.00 12.49 -1.64

7 13.00 11.45 0.54

8 3.00 4.89 -1.11

9 6.00 6.09 -0.04

10 1.00 1.21 -0.24
11 1.00 1.56 ~-0.58
12 1.00 0.33 1.13
13 1.00 0.45 0.86
Mean 7.00 7.58 0.03

Note - Response is the difference of the Cumulative Counts

4 3 ”
-44 Refit assuming that the lag-time is unknown, when it will be
estimated. Note that in this case the estimated lag is very close
to 48, as used by Hunter, Glasbey and Naylor (1984).
”

-45
46 FITDIST [PRINT=m,s,e,f,g; MODEL=normal; LINK=shift] \
47 DATA=COUNT; TIME=Time; INITIAL=!(48,3,3); SUBPOP=1
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Link : Log with Lag, z[]=b[](log(X-lag)-m[])
Model : Normal, cl[i]=prop([i]*normal(z(])

Note

*%k** Nonlinear regression analysis **xx%

*%% Summary of analysis *xx

d.f. deviance mean deviance
Regression 3 * *
Residual 8 6.885 0.8606
Total 11 * *

**x%x** Nonlinear regression analysis *#*xx#%

**x% Estimates of parameters *x*x

estimate s.e.
lag 47.99 4.16
b[1l] 1.814 0.362
m(l}] 3.330 0.182

Correlations
1.000
-0.913 1.000
-0.945 0.861

Number of Units capable of responding 91.37

**x*x%* Nonlinear regression analysis ***&x*
***x Fitted values and residuals #***

Standardized

Unit Response Fitted value residual

1 0.00 * *

2 1.00 0.55 0.62

3 7.00 9.05 -0.81

4 27.00 26.16 0.19

S 22,00 16.75 1.40

6 8.00 12.50 -1.56

7 13.00 11.45 0.51

8 3.00 4.89 -1.05

9 6.00 6.09 -0.04

10 1.00 1.22 -0.23

11 1.00 1.56 -0.55

12 1.00 0.33 1.07

13 1.00 0.45 0.81

Mean 7.00 7.58 0.03

Note - Response is the difference of the Cumulative Counts

1.000

Fitted curve passes through cumulative count at last time point
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COUNT v. Time using symbol *
Fitted v. Time using symbol .

4 8 ”

-49 Carrying out a pseudo-Probit analysis assuming that at each time point
-50 the cumulative counts are bionomially distributed with a total for
-51 each equal to the total number germinated by the end of the experiment.
_52 "

53 SCALAR NGERM

54 CALCULATE NGERM = MAX(COUNT)

55 & VNGERM = NGERMx* (COUNT/COUNT)

56 MODEL [DISTRIBUTION=binomial; LINK=probit] COUNT; NBINOMIAL=VNGERM

57 FIT LTIME

Ly 2 R cesessecsesssanann

*k%%% Regression Analysis x¥*i#*

Response variate: COUNT
Binomial totals: VNGERM
Distribution: Binomial
Link function: Probit
Fitted terms: Constant, LTIME

**%x Summary of analysis *%x
Dispersion parameter is 1

d.f. deviance mean deviance
Regression 1 * *
Residual 10 3.136 0.3136
Total 11 * *

* MESSAGE: The following units have high leverage:
3 0.40

*x%x Estimates of regression coefficients *xx

estimate s.e. t
Constant -5.981 0.366 -16.36
LTIME 1.803 0.101 17.86

* MESSAGE: s.e.s are based on dispersion parameter with value 1

58 " .
-59 Note the very low Residual Deviance, so that this method (as well

-60 as being incorrect) is very insensitive to lack of fit.
-61
62 STOP
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Appendix: FITDIST, a Procedure for Analysing Cumulative Count Data

A procedure has been written to assist in fitting models to this type of data; a full listing can be
obtained from the authors on request. A description of the four options and six parameters of the
procedure is given below.

Options:
PRINT

MODEL

LINK

OWN

OWNP
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What output to print:

m model, including link

s summary analysis of deviance

e parameter estimates, including their correlations, estimates of the
total number of units capable of responding, and the number in
each subpopulation

£ fitted values, including residuals, and the variate of responses
(the differences of the original accumulated counts in DATA
variate)

mon monitoring of the fitting process

g graph of accumulated fitted values and accumulated counts
against time

* no output

default: m s, e, g

Which CDF to use to fit to the DATA variate:

normal Normal: link (TIME)

comp complementary log-log: exp(—exp(~link(TIME))
logistic logistic: 1/(1+exp(~link(TIME))

default: normal

Which transformation of the TIME variate to use

log b(log(TIME)-m)

shift b(log(TIME-lag)—-m)

identity b(TIME-m)

own link defined by the user, specified in OWN option:

b(own(TIME)—m)
b, m and lag are the parameters to be estimated. Separate values of b and m are
calculated for each suBPOP
default: log

an expression for use when LINK is set to own. The expression must be
declared beforehand, and must include a single parameter which is named by
setting owNP. The expression should be the right-hand side of an equation
only, and should be a function of the TIME variate; for example:

EXPRESSION own; VALUE=!e(LOG(2*TIME-param))

OWN must be set with LINK=own, but does not need to be included otherwise.
OWNP must be set.

This option must be set if LINK is set to own. It must be set to the name of the
parameter used in the expression set in the OWwN option; for example:

FITDIST [LINK=own; OWN=!e(TIME-param); OWNP=param] \
DATA=data; TIME=time '



Parameters:
DATA

TIME

INITIAL

SUBPOP

STEP
SAVEPOP
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A variate containing accumulated counts, the first of which must be zero.
DATA should not contain any missing values. This must be set.

A variate of the same length as DATA containing the time each count was
recorded. TIME should not contain missing values. This must be set.

A variate of initial parameter estimates in the order
lag, b[1...suBpoP ], m[1...sUBPOP], prop[l...(suBpopP-1)]

lag only needs inclusion with LINK = shift. If LINK = own then the initial
value of the parameter used in the expression OwN must be put in first position.
The number of estimates for b and m must equal the number of subpopulations
given by the parameter SUBPOP and the number of prop[] (proportions)
should be one less than this.

prop[] only needs including with suBpop greater than 1; these are the
proportions of the total population of individuals capable of responding in
each subpopulation.

b should be non-negative, and prop[] should lic between O and 1. This
parameter must be set.
Number of subpopulations. With SUBPOP greater than one, the proportion of

the population in each subpopulation is estimated with parameters prop[].
Default 1.

A variate of step-lenghths for the fitting process. Need not be set.

A variate; if SUBPOP = 1, this holds the estimated number of units capable of
responding in the population; if SuBPOP is not 1, it should be of length
SUBPOP + 1, and will also hold the number in each subpopulation.

When calling the procedure, the chosen options should be specified exactly as specified; for
example, MOD=normal not MOD=NORM.

If any of the products of the regression procedure are required at a later stage, they can be
accessed using the RKEEP directive, in the usual manner. However, this does not apply to the
number of units capable of responding, or the number in each subpopulation, which can only be
saved by setting SAVEPOP.

Because the calculations in the procedure involve differencing the DATA vector, and of the
requirement that the first element in DATA is zero, TIME and DATA should not be restricted.
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Use of Genstat for Bootstrap Estimation of Parameters

P M E Altham

Statistics Laboratory

University of Cambridge
Cambridge

United Kingdom CB2 ISB

The following consultancy problem prompted me to consider the topic of bootstrap estimation in
Genstat. Suppose we have data (x;,y;), i = l...n for which we wish to fit the model

y: =f(B; x;) + &, i=1l.n,

where &, ...€, are residuals, here assumed independent with zero mean, and variance o?,fis a known
function, and S the unknown parameter of interest. We can use Gentat to obtain an estimate B say of
B, by using the linear or nonlinear regression facilities of Genstat. In a particular scientific context, it
may be important to look closely at the sampling properties of B, or functions of B This is especially
true in a nonlinear regression problem, for then B is not a linear function of the observation y and so
we cannot obtain its exact distribution. - -

For ease of exposition, bootstrap estimation is illustrated just for the slope in the ordinary linear
regression of y or x, and is applied in the program below to some data kindly supplied by the Welding
Institute, Abington, near Cambridge. The simulations could doubtless, with some extra effort, be
programmed more efficiently in a language other than Genstat. Often, however, the statistician’s time
is more valuable than CPU time, and therefore it is very useful to be able to keep the whole program
in Genstat.

The bootstrap procedure is as follows:

In the usual linear regression y; = & + fx; + €, 1 < i < n, let & and B be the least squares
estimators of o and f and define the fitted values as

fi=a+ fy
and the residuals as
ri=y; —fi

A single simulation consists of taking a random sample with replacement from r,...r,. Call this
sample 7| ...r;, and define ‘new’ y—values, say newy;, by

newy; = f; + r; i=l.n
Now find the least-squares estimate of the slope in the regression of newy; on x;. This estimate is then
stored as an element of the variate slope.

Repeating this simulation say 100 times yields slope,...slope o, Which we can use to study the
precision of our estimate, for example by constructing the histogram of the 100 slope values and hence
obtaining a 95% confidence interval for the parameter S. Efron and Tibshirani [1] give a
comprehensive review of bootstrap methods.

Example

1 "Bootstrap estimation of the slope in linear regression."
2 READ [PRINT=data, summary; SETNVALUES=yes] y,x

.18 52.
.22 97.
.42 200.
.34 142.
.74 253.
.18 323.
.06 294.
.76 412.
.54 398.

o
HFOWVONOU&W
N
NOoOANNWVEHOB®
.
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Identifier Minimum Mean Maximum Values Missing
Y 0.1800 0.8267 1.7600 9 0
x 52.8 241.8 412.0 9 0

12 GRAPH y; x

+
+

+
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*
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+

+ n N
+ T ¥ T

80. 160. 240. 320. 400. 480.
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o

Y V. x using symbol *
13 "Fit linear regression."

14 MODEL y
15 FIT x

*xxx* Regression RAnalysis *i*i%

Response variate: y
Fitted terms: Constant, x

**x%x Summary of analysis ***

d.f. s.s. m.s.
Regression 1 2.6143 2.61428
Residual 7 0.1409 0.02013
Total 8 2.7552 0.34440

Percentage variance accounted for 94.2

*+* Estimates of regression coefficients **x

estimate s.e. t
Constant -0.252 0.106 -2.38
X 0.004462 0.000392 11.40

16 "Form the unstandardized residuals."”
17 RKEEP FITTEDVALUES=f
18 CALCUIATE r = y-f
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19 PRINT y,f,r

y £ r
0.1800 -0.0165 0.19648
0.2200 0.1825 0.03748
0.4200 0.6408 -0.22075
0.3400 0.3855 -0.04553
0.7400 0.8799 -0.13991
1.1800 1.1922 -0.01224
1.0600 1.0624 -0.00240
1.7600 1.5862 0.17377
1.5400 1.5269 0.01311

20 "Bootstrap: take many samples from the residuals."
21 SCALAR nsample,count; VALUE=100,0

22 VARIATE (NVALUES=nsample] slope

23 CALCULATE size = NVALUES(y)

24 "Initialize the random number generator."

25 & init = URAND(87736; 1)

26 FOR [NTIMES=nsample]

27 CALCULATE count = count+l

28 "Generate a set of random integers in the range (1,size)."
29 & index = 1 + INTEGER(size * URAND(O; size))

30 & newy = £ + r$[index]

31 MODEL newy

32 FIT [PRINT=*] x

33 RKEEP ESTIMATES=beta

34 CALCULATE slope$[count] = beta$[2]

35 ENDFOR

36 "Display the sample distribution of the estimates of slope."
37 HISTOGRAM slope

Histogram of slope

- 0.0038 3 kkk
0.0038 - 0.0040 T hkkkkkk
0.0040 - 0.0042 8 kkkkkkkk
0.0042 — 0.0044 19 *kkkhkkhkhhkkhhkhkkkkk
0.0044 — 0.0046 22 *khkkkkkkhkkkkkhkkkkkkk

0.0046 — 0.0048 17 **xkkkkkkhkhkkkkhkkkk
0.0048 — 0.0050 14 **xkkhkkkkhkkkk
0.0050 - 0.0052 6 kkkkkk

0.0052 - 0.0054 4 kkkk

0.0054 - (v}

Scale: 1 asterisk represents 1 unit.

38 sSTOP
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Features of the Genstat 5 Language: 1

S A Harding

AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden

Hertfordshire

United Kingdom ALS 2JQ

K I Trinder

NAG Lid
Wilkinson House
Jordan Hill Road

Oxford
United Kingdom 0X2 8DR

Introduction

The purpose of this article is to gather together items of practical information about using
Genstat 5 that might be particularly valuable to users. Most of the items can be found in the
Reference Manual, though the practical effects of some aspects of the language are not always
laid out there. The title (perhaps presumptuously) has been given the number 1 since it is
anticipated that there will be similar articles as more features of the Genstat 5 language become
apparent. However, this depends on users, and the authors would welcome suggestions or
contributions for later articles of the same nature. Note that individual items are intended to be
short and that the information might well be about Genstat 5 on specific computer systems, (the
PC version of Genstat S is a likely candidate, given the memory limitations).

Suffixed Identifiers and Pointers

Pointers provide a powerful means of referencing groups of identifiers. The elements of a
pointer structure may be referred to either by the explicit identifier name or by the subscript
equivalent. The penalty of such a facility is that the data space requirements when using
pointers are high. This is not likely to pose a problem on most computer systems with virtual
memory. However, on systems where the data space is limited, such as PCs for example, it may
be necessary to use pointers with caution or avoid them altogether when handling large data
sets.

Users who know Genstat 4 may find themselves using pointers in Genstat 5 without realising it.
In Genstat 4,
' VARIATE! V(1...20)
declares 20 variates named v(1), v(2) through to v(20). However, the Genstat 5 statement
VARIATE VI[1...20]

although superficially similar, is actually quite different since it declares a pointer named v
pointing to 20 unnamed variates which may be referred to as the subscripted elements of v; that
is, v[1], v[2] through to v[20]. This may seem to be unnecessarily pedantic since v(n] in
Genstat 5 is used in very much the same way as v(n) in Genstat 4; however, there are some
important points that should be made.

(a) In Genstat 4, the whole list of variates may be referenced as v(1...20). Similarly, in
Genstat 5, v([1...20] may be used. In addition, in Genstat 5 the notations of v[] and #v
may also be used in the same way. Note that pointer () and #pointer are not the same if
any of the elements of pointer are themselves pointers.

(b) In Genstat 4 it is quite permissable to have a data structure named v which has nothing to
do with v(n). This is not the case in Genstat 5, since v is a pointer structure.
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(d)

Page 52

Chapter 3 of the Genstat 5 Reference Manual (page 70) describes how the first use of a
suffixed identifier results in the implicit declaration of a pointer. For example, the
statement

VARIATE V[1...10]

will result in the pointer v being set up with 10 values, each of which is then declared as
a variate. This will not normally cause any problem; however, it does allow a large number
of new structures to be formed within one statement and in exceptional cases this may
cause the directory to overflow, generating an sp-4 diagnostic. The exact number of new
structures that can be formed will vary according to how much space is available in the
directory and how much workspace is available during the compilation of a statement, but
as a rough guide anything above 200 (or about 50 in the case of the PC version) may cause
an overflow, as in the implicit declaration of v[1...200] orx[1...100],Y[1...100].
The problem can easily be avoided by declaring large pointers in advance of their use in
suffixed identifiers: this will reserve sufficient space for the required structures. For
example:

POINTER [NVALUES=200] V

READ V[1...200]
This is particularly important within procedures, where the number of suffixed identifiers
declared within the procedure may be dependent on an input parameter, as in the following
example:

PROCEDURE ’ SUFFIX’

PARAMETER ‘DATA’

CALCULATE Ndata = NVALUES(DATA)

POINTER [NVALUES=Ndata] Xval
SCALAR Xval[l...Ndata]

EN].)PI;OCEDURE
In normal use, Ndata may not be very large, but in some exceptional cases the procedure
would fail if xval were not first declared as a pointer.
A further problem may arise with suffixed identifiers in a procedure. Consider the
following statements:

PROCEDURE '’ FRED'
PARAMETER ‘DATA'’

CALCULATE Sum[l] = SUM(DATA[1])
ENDPROCEDURE

READ [CHANNEL=2] Var([l...5]

FRED Var
The pointer Var to some variates is passed as a parameter to the procedure and Sum([1] is
assigned the sum of the values of DATA[1]. DATA is a dummy structure pointing to Var, so
DATA[1] refers to Var[1], as required. A problem may arise however if the pointer that
is specified as the procedure parameter does not have suffixes that start at 1, as in the
following case:

READ [CHANNEL=2] Yields[1980...1985]
FRED Yields
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Now the reference to DATA [1] within the procedure will add a new value to the suffix list
of Yields, which will now point to Yields[1,1980,1981...1985]. Yields[1] will
be a new structure, of undefined type and without values, so the CALCULATE statement will
fail.

To protect procedures against this potential problem a local copy should be made of
parameters that are known to be pointers:

POINTER Copy; VALUES=DATA

The suffixes of Copy will be 1 upwards regardless of the actual suffixes specified for the
pointer that DATA refers to. Within the procedure further references to DATA can be made
using Copy (1] and so on, without altering the original structure. This approach does have
one minor side effect, in that the names of the elements of Yields will now be printed as
Copy (11, Copy(2], and so on; this can be dealt with at exit from the procedure by
redeclaring the DATA parameter, as follows:

POINTER DATA; VALUES=DATA

The best solution is to set up dummy structures to point to the elements of the DATA
pointer, thus avoiding any problems with names. For example the following statements
could be inserted at the head of the procedure given above:

CALCULATE Nval = NVALUES (DATA)
POINTER [NVALUES=Nval] Copy
DUMMY Copy([l...Nval]; VALUE=DATA[]

A further note: this problem with suffixes does not arise if use of the pointer is restricted
to the null suffix list, i.e. DATA[], throughout the procedure.

3. Loops

(a) FoR loops allow sequences of statements to be repeated, perhaps with one or more index
structures changing with each pass through the loop. For example,

FOR I=A,B,C
statements
ENDFOR

will execute the statements in the loop three times with the dummy I being successively
set to the structures A, B and C. If a group of statements is to be repeated a number of times
(12, say) without reference to any indexing structures, then it might be tempting to use

FOR I=1...12
Statements
ENDFOR

While this is valid, it is inefficient because it involves setting up unnecessarily the dummy
T and twelve unnamed scalars storing 1 up to 12. It is better to use the NTIMES option of
FOR, as in the following:

FOR [NTIMES=12]
statements
ENDFOR

Setting up unnamed structures, as needed for 1...12 in the above example, requires a
large amount of temporary data space, as with pointers. The following illustrates an
alternative solution which takes less data space:

SCALAR I; VALUE=0

FOR [NTIMES=100]
CALCULATE I = I+l
statements

ENDFOR
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This example assumes that I is to take the values 1 through to 100. It could easily be
adapted so that the values are a different arithmetic progression or any other sequence of
numbers.

(b) For loops along with IF blocks, CASE constructions and procedures make Genstat 5 a fully
structured language. It is worth noting that other structured languages offer repeat-until
loops, which take the form

repeat
statements
until condition is true

and while-do loops, which take the form

while condition is true do
Statements
end do

Both of these constructions can be achieved in Genstat 5 by using FOR with the NTIMES
option set to a large number together with the EXIT directive. The following example

FOR [NTIMES=9999]
statements—1
EXIT logical-expression
statements—2

ENDFOR

is equivalent to a repeat-until loop (when statements—2 is empty) or a while-do loop
(when statements—1 is empty). It may seem inelegant to set NTIMES to 9999 or any other
large number, but this does ensure that an infinite loop cannot accidently be set up in
Genstat. ‘

The Language-Definition Files

An important feature of Genstat 5 is that the command language is defined externally. That is
to say, information about directives (directive names, option names, parameter names,
permitted option settings, default option settings and function names) are held in a file which is
known as the Binary Language-Definition File. When Genstat is executed, this file is retrieved
and each directive and function is defined. The file is not in an ASCII character format and
cannot therefore easily be changed. However, another version of the file, called simply the
Language-Definition File, is in character form and is supplied to sites specifically so that it may
be altered using, say, an editor. A new binary language-definition file can then be formed from
the edited language-definition file: the means of doing this are described in Chapter 12 of the
Manual, and in the appropriate Installers Note for each implementation of Genstat 5.

The main reason for wanting to change the bootstrap file is to increase the internal data space.
When directive definitions have been retrieved from the binary file, they are stored in the
numeric workspace where all numeric data structures created by users are stored. Therefore, if
certain directives are not required, their definitions can be deleted (or commented out) thus
making more of the workspace available for other use. This is likely to be particularly useful for
the PC version of Genstat, where space is seriously limited by the constraints of PCs and the
MS-DOS and PC-DOS operating systems. As an example, W. Slob of RIVM in the Netherlands
has informed us that deleting all directive definitions not required in a specific program resulted
in a reduction in the binary language-definition file by a factor of 2.31 and an increase in the
available data space by a factor of 1.44.

Having made this point, it should be stressed that any changes to the definitions render the
Genstat language at a particular site incompatible with the standard language as given in the
documentation (the Reference Manual, the Reference Summary, etc.) and the on-line help
facility. It will also mean that any procedures which use undefined directives will not work.
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There can also be unexpected problems in deleting directive definitions, because some
directives assume that others have been defined. Here is a list of directives that are needed by
others:

JOB always needed

PRINT needed by TABULATE, PREDICT and directives for multivariate
analysis

GRAPH needed by CORRELATE

SSPM needed by FIT and TERMS

FIT needed by TERMS

TERMS needed by FIT

CALCULATE needed by FITNONLINEAR

OWN needed by FITNONLINEAR

INPUT needed by BREAK

Note that one other use of the Language-Definition File is to define the graphics environment.
This would normally be set up by the installer of Genstat at each site and should not be changed
without consulting that person.
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