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Editorial

Newsletter 26 we announced that Rrofessor Vic Bamett had been appointed as the Head of the
Statisucs Department at Rothamsted; as promised, this edition starts with an article in which he gives
his views on Genstat. The second article lists the new procedures in Procedure Library 2[2] which is
or soon wiU be, available for implementations of Release 2 of Genstat. For those writing procedures
there is sometimes a need to refer to more information about a regression model than can be obtained
using R^EP; the tlmd article gives details of the regression save structure which stores this
mformation. The main part of this Newsletter consists of articles describing how Genstat can be
a^pted for particular appUcations. These are: fitting digit-preference models, fitting discrete-
dismbution models by maximum entropy, the provision of extra output from a principal components
analysis, and minimizing a general fiinction using the non-linear regression directives. Finally, there is
the first of a series of articles based on talks given at the Seventh International Genstat Conference;
this article describes techniques for dealing with collinear data.

Genstat News

A preliininaiy version of Release 3 of Genstat was demonstrated at the Genstat Conference. Some of
the Mgiiificant new features on display were: a new directive to estimate parameters in a wide range
of distributions, the extension of the regression section to fit generalized additive models and ordinal
response models, the combination of information in generally balanced designs, and the testing of
fixed effects in analyses by residual likelihood (REML). Further details about Release 3 wiU be given
m a subsequent edition of the Newsletter.

Implementation News
Since the last Newsletter, the implementations of Release 2 for SUN 4, HP 9000/800, IBM RS 6000
and Sequent Symmetry have become available; those for Data General MV and ICL 2900/3900 VME
^ould be available shortly. Staff at NAG are working hard to finish the delayed implementation for
IBM 386 PCs, which will include a split screen interface; this implementation should be available in
the near future.

Genstat Courses

The next Genstat Introductory Course will take place in March or April in Southampton. We are
sending out a short questiomiaire to find out the types of courses that are best suited to your needs. We
are lool^g at several possible arrangements and we would be grateful for your help in selecting the
most suitable options. For details of Genstat Courses please contact Lesley Austen at NAG.
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Genstat - A Tool for Professionals

V Barnett

AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden
Hei^ordshire
United Kingdom AL5 2JQ

It is a great pleasure for me to have recently taken over the reins of the Biomathematics Division at
lACR, including the Statistics Department at Rothamsted with its line of impressive heads of
department who contributed so much to the development of the subject. Not least in this heritage is of
course Genstat, which is so firmly placed within the international panoply of professional statistical
software systems.

Genstat has come of age - it reached its 21st birthday this year (or 18th in 1988, depending on your
national view of the age of maturity). As with any adult mmber of society, we have reason to expect
much of it. Indeed much is planned - with constant refinement of the basic system, an impressive and
ever-growing procedure library, further menu-driven options, enhancement of graphics facilities and
intercommunicability with other systems, and timely developments into new hardware (and
operating) environments. I shall certainly do all that I can to promote it and to keep it at the forefront
of service as a fully professional system, providing a modem computational environment for the
statistician and for the research worker across all the disciplines that use statistical methods.

The watchwords must continue to be professionalism and accessibility. Genstat has to seek to cover
all the statistical needs of its various groups of users, but it must do so in a user-friendly manner,
which does not deter those who do not see themselves as professional statisticians per se.

Genstat looked very different, of course, 21 years ago when John Nelder began to develop his
impressive symbolic-algebraic approach to the categorisation and representation of experimental
designs. When he implemented these in computer-algorithmic terms, a unique facility was bom. The
statistician, or statistically-able experimentalist, could at last instruct the computer in a few relatively
simple statements to carry out the analysis of highly complicated and complex designed experiments.
Initially, these could be crossed or nested but had to be of balanced and complete form. Progressively
the frontiers were extended and the statistical analyst was liberated from the labour and tedium of the
split-plot, or lattice design, or one sixty-fourth replicate of a 2^^ experiment in 16 blocks. As someone
who started work in a research station with a room full of young girls doing Yates* algorithm hour
after hour on large sheets of paper, I am well placed to understand the computational revolution
wrought by the Nelder approach and its implementation in the first form of the Genstat system.

Of course the system originally contained more than the analysis of designed experiments: the Manual
of 1970 shows sections for regression, classification and multivariate analysis as well as analysis of
variance. The system also rapidly expanded to other areas, and continues to do so. The developments
of Genstat in the Statistics Department at Rothamsted continued an already long-established tradition
of statistical computing which John Gower in these pages (in 1984) rightly attributed to the influence
of Frank Yates in the early 1950s. John remarks of Genstat that, by 1984, it *has changed enormously,
by the addition of new statistical features, developments in the language, the provision of basic
graphics, etc. Many of these extensions have been of an od hoc nature, some opportunistic. The upshot
is a language with many inconsistencies which make it difficult to learn, teach and remember - hence
the Genstat 5 revision, whose specification is complete and whose implementation is in progress. The
PROCEDURE facility in particular, with its similarity to the specification of directives, will make the
new Genstat even easier to extend than is the current version and, hence, much increase the power of
the language in providing new statistical facilities.'

Genstat has indeed faced up to and solved the majority of these problems and shortcomings in the last
six years in a most impressive way, and we are now poised for further refinements in terms of the
new-generation prospects I have described above.

I have only one minor reservation ... a feeling that, in spite of sound credentials and a glowing future,
our young adult may still not be quite as well known in the best circles as some of the other members
of the 'smart set'. I shall do all I can to remedy this; I am sure that NAG will also do so. As dedicated
and (dare I say) largely satisfied users, you can also play your part in introducing Gei^tat to
colleagues. Will you? After all, why should we keep the good news to ourselves?
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Genstat Procedure Library News
R W Payne
AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden, Hertfordshire
United Kingdom AL5 2JQ

In the first two revisions of the Procedure Library for Genstat 5 Release 2, 30 new procedures have
been added. The index lines of the new procedures are as follows.

Release 2[1]

prints histograms with improved definition of groups
calculates probabilities from the binomial distribution
creates or updates a backing-store subfile
sets the number of decimals for a structure, using its round-off
calculates Most Probable Numbers from dilution series data

carries out analysis of parallelism for non-linear functions
fits a general 4 parameter growth model to a non-decreasing Y-variable
forms a text structure from a variate

calculates the generalized inverse of a matrix
calculates probabilities from the inverse normal distribution
finds the linear relations associated with matrix singularities
calculates probabilities from the lognormal distribution
initiates a menu system
performs r-tests for pairwise differences
calculates probabilities from the Poisson distribution
produces ranks, from the values in a variate, allowing for ties
gives r-tests for all pairwise differences of means from regression/GLM
calculates probabilities from Student* s r-distribution
calculates functions of variance components from a REML analysis
plots residuals from a REML analysis

AKAIKEHISTOGRAM

BINOMIAL

BSUPDATE

DECIMALS

DILUTION

FITPARALLEL

FITSCHNUTE

FTEXT

6INVERSE

INVNORMAL

LINDEPENDENCE

LOGNORMAL

MENU

PAIRTEST

POISSON

RANK

RPAIR

STUDENT

VFUNCTION

VPLOT

Release 2[2]

ABIVARIATE

AUDISPLAY

AUNBALANCED

LVARMODEL

MPOWER

NORMTEST

PROBITANALYSIS

SAMPLE

VTABLE

WADLEY

Fifteen of these are fi'om

Zealand.

produces graphs and statistics for bivariate analysis of variance
produces further output for an unbalanced design
performs analysis of variance for unbalanced designs
analyses a field trial using the Linear Variance Neighbour model
forms integer powers of a square matrix
performs tests of univariate and/or multivariate normality
fits probit models allowing for natural mortality & immunity
samples from a set of units, possibly stratified by factors
forms a variate and set of classifying factors from a table
fits models for Wadley's problem, allowing alternative links & errors

British authors, thirteen are from the Neth^lands, and two from New

There are also minor amendments to help information or source code of several of the existing
procedures. In particular, in Release 2[2], the procedures libinform and libmanual have been
modified to allow procedures to be allocated to more than one module (for example to *bioassay* as
well as to *glm*, and so on). Releases 2[2] onwards will also have three new modules:

NEWHELP to indicate the procedures whose help information has changed since the
last release of the library

NEWSOURCE to indicate those whose source code has been modified to improve
efficiency or correct errors

NEW to denote additions in the current release.

Thus, to find out the procedures whose help information has been updated, you can type:

LIBINFORM [CONTENTS] 'NEWHELP'

In addition, you can use procedure notice to check on other Genstat news.
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The Regression Save Structure

PWUne

AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden
Hertfordshire
United Kingdom AL5 2JQ

The regression save structure (or rsave structure) is a system structure that stores information about
a regression model. It is used implicitly by all the regression directives, which access information
from it and store results into it. For example, the rkeep directive is designed to extract many
components of the structure, such as fitted values and the residual sum of squares, into simpler Genstat
structures like variates and scalars. The intention is that most users of Genstat will be able to extract
all the information they require by using rkeep: therefore they need know nothing more about the
RSAVE structure.

However, there is much more information stored in the rsave structure, which can be particularly
useful to writers of procedures. It is possible to extract such information as the identifier of the
response variate, or the code of the link function in a generalized linear model. For examples of use
within a procedure, look at the source of the procedure rcheck that is in the Procedure Library. The
somce can be displayed by the statements:

LIBEXAMPLE 'RCHECK'; SOURCE«-»tt
PRINT tt; JUSTIFICATION=left; SKIP=0

The constiment structures of the rsave structure are detailed below. Any of these can be accessed in
a Genstat program just like the constituent structures of pointers. For example, to access the identifier
of the respon^ variate (or the first response variate if there are several), use the identifier
r[2] [1] [1] in Release 2 of Genstat, where r is the identifier given to the rsave structure in the
MODEL statement Thus

model [SAVE=r] Y=yield
PRINT r[2][1][1]

has the same effect as:

PRINT yield

If the RSAVE structure has not been explicitly named, it can be accessed by the get directive:
GET [SPECIAL=s]
PRINT s['rsave'][2][1][1]

Some of the constituent structures that are system-defined are also non-standard, and cannot be used
directly in most Genstat directives. However, the attributes and contents of all Ae structures can be
inspected with the dump directive; for example,

DUMP [PRINT=attribute3,values] r[4][1]

will show the attributes and values of a special long real structure. The print directive will not
display values of long real structures like this, but will display system structures that store integer
values; for example,

PRINT r[l][3]

will show the values of a special integer structure.

The CALCULATE and equate directives can be used with system structures that have real or integer
values; for example,

SCALAR Tdf

CALCULATE Tdf = r[l][3]$[6]

will set up Tdf as a scalar with the total number of degrees of freedom.

The RSAVE structure is subject to variation between releases of Genstat Usually, the only changes will
be additions, and that is the case between Releases 1.3, 2.1 and 2.2.
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[1] Common pointer

[ 1] [ 1 ] Double precision variables
(Not used)

Real variables (variate)
RDISPR dispersion parameter; from model [dispersion] ;

* if unset, or 1 for Foisson, binomial, multinomial
power for *power* link frmction; from model [exponent] ;
* if unset, or —2 for default power link, —1 for reciprocal link,
0.S for square root
convergence criterion; from rcycle [tolerance] ;
0.0004 if unset

Residual deviance from GLM or nonlinear model;
* if unset

origin for curves; flom pitcurvb [origin] ;
* if unset

criterion for aliasing; from terms [tolerance] ;
if unset, 10*EPS for mixed precision implementations, 10000*EPS
for double precision implementations

Integer variables (special integer structure)

1.

$[1]

$[2]

$[3]

$[4]

$[5]

$[6]

[1][3]
$[1]

RPOWER

RC^CR

RDVRES

RORIGN

RSMPCR

$[2]

$[3]

$[4]

$[5]

$[6]
$[7]
$[8]
$[9]

$[10]
$[11]
$[12]
$[13]
$[14]

$[15]
$[16]
$[17]

$[18]

$[19]

$[20]

$[21]

KDIST

KLINK

KLINKR

MCXCLE

KMETH

NDFTOT

NDFRES

NTRCM

NALPR

NRWSS

NTRSS

LRWPR

LTRBF

JCONST

NENTRY

LACCUM

NDFCH

JLIK

KCURVE

JSENSE

NPARN

Count of distribution; from model [distribution] ;
1 Normal, 2 Poisson, 3 binomial, 4 ganuna, 5 inverse Normal,
6 multinomial

Count of link function; from model [link] ;
1 identify, 2 log, 3 logit, 4 reciprocal, 5 power, 6 square root,
7 probit, 8 complementary log-log
Recoded count of link function including special powers; as klink
except for link 5: 5 negative integ^, 6 positive inverse integer,
9 positive or negative real, 10 positive integer, 11 negative inverse
integer
Maximum number of cycles, from rcycle [maxcycle] ;
* if unset, interpreted later as 10 for GLM, 20 for nonlinear
Count of optimizing method, from rcycle [method] ;
1 Gauss-Newton, 2 Newton-Raphson, 3 Fletcher-POwell
(3 introduced in Release 2)
Number of total degrees of freedom in maitifnfli model
Number of residual degrees of freedom in current model
Number of terms in current model
Number of aliased parameters in current model
Number of rows in working DSSP
Number of terms in maTimai model
Length of row-parameter assignment array
Length of term-buffer assigiunent array
Whether a constant term is estimated, from constant option;
0 no constant, 1 constant
Number of entries in accumulated summary
Length of accumualted summary
Number of degrees of freedom associated with last change to
model

Code for likelihood calculation; from model [distribution] ;
1 explicit optimization, 2 Normal no linear, 3 Normal with linear,
4 Poisson no linear, 5 Poisson with linear, 6 binomial,
7 multinomial, 9 gamma, 10 inverse Normal
Count of curve-type, from fitcurve [curve] ;
1 exp, 2 dexp, 3 cexp, 4 lexp, 5 log, 6 glog, 7 gomp, 8 Idl, 9 qdl,
10 qdq
Code for sense of curve; from fitcurve [sense] ;
1 right, 2 left
Number of nonlinear parameters
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$[22] NPARSE Number of parameters for which standard errors have been
calculated

$[23] NPARTT Number of parameters, linear and nonlinear
$[24] JSEPNL Whether to fit separate nonlinear parameters; from nonlinear

option; 1 no, 2 yes
$[25] jexit Code for exit status; as accessed by rkeep exit;

0 success, 1 limit on number of cycles, 2 out of bounds, 3 constant
function, 4 failure to progress, 5 no s.e. due to singularity,
6 limiting form

$[26] NGRiD Number of gridlines; from fitnonlinear [ngridlines] ;
* if unset

$[27] JRESID Code for type of residuals; from model [rmethod] ;
0 none, 1 deviance, 2 Pearson

[2] Model pointer

[2][1] Pointer to response variates (y-variates)
Release 1: if there is 1 y-variate, [2][1] is its identifier
Release 2: pointer always formed, even if only 1 y-variate

[2] [2] Variate of binomial totals; from model nbin

[2][3] Variate of weights; from model [weights]

[2][4] Variate of offsets; from model [offset]

[2][5] Factor for grouping; from model [groups]

[2][6] Variate of initial fitted values; fix)m rcycle [fitted]

[2][7] Scalar to store function value; from model [function]
[3] Output pointer

[3][1] Pointer to residual variates; named if in model res id
Release 1: if 1 y-variate, [3][1] is identifier of residual variate
Release 2; pointer always formed, even if only 1 y-variate

[3] [2] Pointer to fitted-values variates; named if in model fitted
Release 1; if 1 y-vaiiate, [3] [2] is identifier of fitted-values variate
Release 2: pointer always formed, even if only 1 y-variate

[3] [3] Variate of leverages; as accessed by rkeep lever
[3] [4] Variate of accumulated model summaries

[3] [5] Pointer to gradient variates; as accessed by rkeep grad
[3] [6] Variate of grid values; as accessed rkeep grid

[3] [7] Linear predictor variate; as accessed by rkeep linear (Not in Release 1)
[3] [8] Iterative weights variate; as accessed by rkeep iter (Not in Release 1)
[3][9] Variate storing working vector in GLM calculations (Not in Release 1)
[3] [10] Text storing parameter labels (Not in Release 1)

[4] Working DSSP (special pointer structure)

[4][1] Double-precision working matrix (special long real structure)

[4] [2] Double-precision group means for response variate

[4][ ] Double precision group means, one for each term
[5] GLM pointer (all sub-structures are special integer structures)

[5][1] Positions of y-variates in variate set (special integer structure)
[5][2] Positions of y-variates in maximal model (special integer structure)
[5] [3] Positions of current model terms in maximal model (special integer structure)
[5] [4] Indicators of working matrix rows: 0 unswept, 1 swept (special integer

structure)

[5][5] Row-parameter assignment array for maximal model (special integer structure)
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[5][6] First and last rows for maximal model (special integer structure)
[5][7] Row numbers of ̂ '-variates in SSPM (special integer structure) (Not in

Release 1)

[6] Linear model pointer

[^[1] Variate of original diagonal values of SSPM
[6] [2] Variate of original means of SSPM

Vanate of latest diagonal values of working matrix for y-variates
[7] Cycle pointer

[7][1] Pointer of parameters; from rcycle parameter

[7] [2] Variate of lower boimds; from rcycle lower

[7] [3] Variate of upper bounds; from rcycle upper
[7] [4] Variate of initial steps; from rcycle step

[7] [5] Variate of initial values; from rcycle initial

[8] Nonlinear pointer

[8][1] Current parameter values (special long real structure)
[8] [2] Working steplengths (special long real structure)
[8][3] Inverse matrix (special long real structure)
[8] [4] X-variate for fitcurve or pointer to parameter names for fitnonlinear
[8] [5] Factor for fitcurve

[8] [6] Compiled-code structure for calculations from fitnonlinear
[CALCULATION]
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Fitting Digit-Preference Models to Fecundability Data
M S Ridout

Horticulture Research International

East Mailing
West Mailing
Kent

United Kingdom MEW 6BJ

1. Introduction

Fecundability is defined as 'the monthly probability of conception in the absence of
contraception, outside the gestation period and the temporary sterile period following the
termination of a pregnancy' (Jain [1]). Fecundability can be studied by observing the number
of cycles needed to achieve pregnancy by couples who are actively t^ing to conceive. Such
data are often collected retrospectively, during or after pregnancy. One problem with
retrospective data is that the number of cycles may be misreported; in particular digit-preference
often occurs, with unexpectedly high frequencies of couples reporting that pregnancy occurred
in the 6th, 12th, 18th,... month/cycle. Similar patterns of digit-preference occur in other types
of retrospectively collected duration data, for example duration of breast-feeding (Diamond
et al [2] or of unemployment Torelli and Itivellato [3]).

Ridout and Morgan [4] fitted simple digit-preference models to two sets of fecundability data
using the NAG Library optimization routine E04UCF. This note shows how these models, and
some that are more complex, can be fitted using the fitnonlinear command in Genstat.

The techniques developed may be useful in other situations where a model is to be fitted to
several data sets and one wants to be able to constrain parameters to be equal for some of the
data sets.

2. Data

Let X denote the number of cycles to conception and suppose that the data consist of the
numbers of couples reporting values of X = 1,2,..., 12, together with the number reporting
values of X > 12. This grouping of values greater than 12 is common in fecundability work,
because medical intervention often occurs if conception is not achieved within one year. For
reasons that will become clear later, the frequencies of X = 1,2,..., 12 are input in a variate of
length 17, whose last 5 values are zero. The variates must be called Freq [i.. .NSets] where
NSets is the number of sets of data being studied. Tail frequencies (i.e. of values X > 12) are
similarly entered in scalars TaiiFreq[i.. .NSets].

The four data sets used in [4] (fi'om two studies, each comparing two types of individual) are
entered as follows:

UNIT [17]
CALCULATE NSets = 4

READ [SERIAL°yes] Freq[1...NSets]
29 16 17 4 3 9 4 5 1 11 3 00000

198 107 55 38 18 22 7 9 5 3 6 6 0 0 0 0 0

383 267 209 86 49 122 23 30 14 11 2 43 00000

1674 790 480 206 108 263 54 56 21 33 8 130 00000

SCALAR TailFreq[l...NSets]; VALUE=7,12,35,191
CALCULATE TotFreq[l...NSets] = SUM(Freq[]) + TailFreq[]

The last line evaluates the total number of couples in each data set.

3. Models

The models are specified in two parts. The first part specifies the distribution of X in the
absence of misreporting, whilst the second part specifies the way in which misreporting occurs.
The two parts are combined to give a model that can be fitted to observed data.

3.1. Distribution of X in the Absence of Misreporting

We assume that each couple has fecundability p that remains constant over time. The number of
cycles to conception for that couple is then geometric with parameter p. However, fecundability

Smokers

Non-smoker
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varies between couples and we assume that p has a beta distribution with mean p. Then X has
a beta-geometric distribution with

Pr{X=k) =

ph [l-/z+(/-l)^
fsl

h [i+(i-i)^
0

where 11=0 and 9is a parameter related to the variance of the beta distribution {9 = 0 gives

the ordinary geometric distribution).

Weinberg and Gladen [5] reviewed the use of the beta-geometric distribution in fecundability
work and showed how the distribution can be fitted as a binomial generalized linear model,
albeit with a non-standard (reciprocal) link function. This could be implemented in Genstat, but
it is easier, and probably more efficient, to use fitnonlinear. The real advantage of the
generalized linear model formulation is that one can introduce into the model covariates that
may affect fecundability (e.g. type of previous contraceptive use). But unfortunately there
seems to be no simple way of modifying this approach to incorporate digit-preference.

3.2. Digit-Preference Models

A simple digit-preference model is as follows:

(i) When the true value of X is 6 or 12, this is always reported correctly.

(ii) When the true value of X is 1,2,3,4 or 5, this is either misreported as 6, with probability
or is reported correctly.

(iii) When the true value of X is 7,8,9,10 or 11, this is either misreported as 6, with
probability ̂ 2~^, or misreported as 12, with probability ̂ 3^, or it is reported correctly.

(iv) When the true value of X is 13,14,15,16 or 17, this is either misreported as 12, with
probability ̂ 4"", or is reported correctly.

Thus, the true number of cycles may, if it is not already a multiple of 6 cycles, be misreported
forwards or backwards to the nearest multiple of 6 cycles. The different ̂ parameters allow one
to model, for example, a greater likelihood of misreporting to 12 cycles than to 6 cycles and/or
a greater likelihood of niisrq>orting backwards than forwards. Ridout and Morgan [4]
considered models with = ̂2 ~ ̂  ~ ~ fi (their model 2), and also with
a = p, i.e. = 02 = 03 = 0^ (their model 3).

4. Fitting the Models

4.1. Preliminaries

Before fitting any models there are some commands that need to be executed. These are stored
in a file init . inp and executed using an input command:

OPEN 'init.inp'; CHANNEL»2
INPUT [PRINT=*] 2
CLOSE 2

A listing of init . inp is given in the Appendix.

4J. Specifying the Model

Models can be fitted to some or all of the datasets. A variate vset is declared to indicate which
datasets are to be included. For example,

VARIATE VSet; VALUES=!(1,3)

indicates datasets 1 and 3.

The INIT.INP file defines separate parameters p and 6 for each data set, called
Mu[i.. .NSets] and Theta[l.. .NSets]. Variates MSet and TSet must be declared to
specify which of these parameters are involved in the current model. Since we are using datasets
1 and 3, we could use

VARIATE MSet,TSet; VALUES=!(1,3),!(1,3)

This will result in separate values of p and 9 being fitted to the two datasets.
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However, the values of MSet and TSet need not be distinct, and this allows one to specify
models in which some parameters are constrained to be equal for some data sets. For example

VARIATE MSet,TSet; VALUES-!(1,3),!(1,1)

specifies a model in which there is a separate parameter ̂  for each data set, but a single
common parameter 6 (which will be labelled Theta [l] in the output).

Similarly, for example,

VARIATE VSet,MSet,TSet; VALUES-!(1,2,4),!(1,1,4),!(1,2,1)

indicates a model involving data sets 1,2 and 4 with parameters

Mu [1] - data sets 1 and 2
Mu[4] -data set4
Theta [1] - data sets 1 and 4
Theta [ 2 ] - data set 2

After the model is fitted, variates vset, MSet and TSet are automatically deleted and must be
redefined for the next model.

A similar device is used to specify digit-preference parameters. It is assumed that the same
digit-preference parameters apply to all data sets included in the fit. There are nominally 4
parameters called Phi[i.. .4]. In the model the parameters are referred to as Phi [One],
Phi [Two], Phi [Three] and Phi [Four] and the values of the scalars One, Two, Three and
Four must be assigned values before fitting the model. By assigning the same value more than
once, one can impose various constraints, for example

SCALAR One,Two,Three,Four; VALUE-1,2,3,4

gives foin distinct parameters. These will be labelled Phi [1,2,3,4] in the
output.

SCALAR One,Two,Three,Four; VALUE—1,1,3,3

gives = 02 03 ~ 04* 1^0 parameters will be labelled Phi [1,3] in the
output.

SCALAR One,Two,Three,Four; VALUE-1,1,1,1

gives 01 = 02 = 03 = 04- The single parameter will be labelled Phi [i] in the
output.

Unlike the variates vset, MSet and TSet, the scalars One, Two, Three and Four do not need
to be redefined after each successive fit (unless, of course, different constraints on the
0-parameters are wanted).

The last thing that needs to be done before fitting the model is to use the rcycle command to
give boimds and initial estimates for the parameters. The bounds required are as follows:

Parameter Lower bound Upper bound

All //-parameters 0.000001 0.999999

All ^parameters 0

All 0-parameters 0 0.75

Strictly, the only constraint on the 0-parameters is that the total probability that any true value
is misreported should not exceed one. Constraining all 0-parameters to be less than 0.7S is
convenient and ensures that this constraint is not violated, but it is unnecessarily stringent in
that large values of some 0-parameters are acceptable provided that other 0-parameters are
sufficiently small. Therefore, if an estimated 0-parameter is equal to its upper bound, the model
should be refitted with the upper bound for this parameter increased slightly, but with reduced
upper bounds for other parameters. This problem has not so far arisen in practice.

Suggested initial parameter estimates are as follows:

all //-parameters : 0.35
all ^parameters : 0.1
all 0-parameters : 0.2

For the datasets and models considered here, convergence is usually achieved within 10
iterations from these starting values, though of course if better initial estimates are available
these should be used instead.
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The commands for fitting the model are stored in a file fitmodel.inp and can be
(repeatedly) accessed with an input command:

OPEN ' fitmodel. inp' ; CH««2
INPUT [PRINT=*] 2
CLOSE 2

A listing of fitmodel . inp is given in the Appendix.

5. Examples

5.1. Smokers Versus Non-smokers

For both of these data sets, Ridout and Morgan [4] found that the model with

01 = 02 = ̂3 = 04 (their model 3) fitted almost as well as the model with
01 = 02 ̂  03 = 04 (their model 2). Both models fitted better than a model with no
misreporting. The following code fits their model 3 to each data set in tum:

SCALAR One, Two, Three, Four; VALUE«=1,1,1,1

VARIATE VSet,MSet,TSet; VALUE=!(1)
RCYCLE Mu[l],Theta[l],Phi[l]; INITIAL =0.33,0.1,0.2; \

LOWER = 0.000001,0,0.000001; UPPER = 0.999999, *,0.75
OPEN 'fitmodel.inp'; CH=2 : INPUT [PRINT=*] 2 ; CLOSE 2

VARIATE VSet,MSet,TSet; VALUE=!(2)
RCYCLE Mu[2],Theta[2],Phi[l]; INITIAL = 0.33,0.1,0.2; \

LOWER = 0.000001,0,0.000001; UPPER = 0.999999,*,0.75
OPEN 'fitmodel.inp'; CH=2 : INPUT [PRINT=*] 2 : CLOSE 2

The output consists of

(a) Minus two times the maximized log-likelihood function.

(b) Parameter estimates and standard errors.

(c) Correlation matrix of parameter estimates.

(d) Table of observed frequencies and two sets of fitted frequencies. The fitted
frequencies in the first colunm are those that would be expected, given the estimated
values of fX and 9, in the absence of digit-preference. The second column gives
modified frequencies based on the estimated digit-preference parameters.

(e) Two statistics, comparing the two sets of fitted frequencies to the observed
frequencies.

When there is more than one data set, items (d) and (e) are given for each data set in tum.

The estimates of the parameter 0^ are quite similar for the two data sets and Ridout and Morgan
suggested that a common value of 0^ could be adopted for smokers and non-smokers. This
model can be fitted with the command:

VARIATE VSet,MSet,TSet; VALUE=!(1,2)
SCALAR One,Two,Three,Four; VALUE=1,1,1,1
RCYCLE Mu[l,2],Theta[l,2],Phi[l]; \

INITIAL = 0.33,0.33,0.1,0.1,0.2; \
LOWER = 0.000001,0.000001,0,0,0.000001; \
UPPER = 0.999999,0.999999,*,*,0.75

OPEN 'fitmodel.inp'; CH=2
INPUT [PRINT=*] 2

Minus two times the maximized log-likelihood for this model is 2207.8. The corresponding
values for fitting a separate value of 0^ to the two data sets are 431.3 and 1775.4. The
log-likelihood-ratio statistic for testing the hypothesis that 0^ is the same for both data sets is
therefore

2207.8-(431.3+l775.4) )=1.1

which, with 1 degrees of freedom, is clearly not significant.
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5.2. Pill-users Versus Users of Other Contraceptives

The other data set studied in [4] compared fecundability of couples where the woman had
previously used the pill with fecundability of couples who had used other types of
contraceptive. This data set shows much stronger digit-preference and the following modified
digit preference model was considered.

(i) When the true value of X is 1,2,3,6 or 12, this is always reported correctly.

(ii) When the true value of X is 4 or 5, this is either misreported as 3, with probability ,

or misreported as 6, with probability 0f~*, or it is reported correctly.
(iii) As in Section 3.2.

(iv) As in Section 3.2.

Only minor changes are required to fit this model. First, the following commands should be
added to init.inp, immediately before the return statement:

VARIATE [NVALUES=17] To3[1...NSets],V3a,Wt3a
READ [SERIAL»=yes; PRINT=*] V3a, Wt3a, Wt6b
0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 : V3a
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 : Wt3a

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 : Wt6b

Secondly, in the file fitmodel. inp, expressions are modified as follows:

(i) Replace

EXPRESSION model[1...6]; VALUE= \

by

EXPRESSION model[l...7]; VALUE" \

(ii) Replace

!E( Prob[#VSet] = TrueProb[#VSet] - \
To6[#VSet] + SUM(To6[#VSet] ) * (MCycle=6) - \
Tol2[#VSet] + SUM(Tol2[#VSet] ) * (MCycle=12) ),

by

!E{ To3[#VSet] » TrueProb[#VSet] * Wt3a * Phi[Five] ** V3a), \
!E( Prob[#VSet] = TrueProb[#VSet] - \

To3[#VSet] + SUM(To3[#VSet] ) * (MCycle=3) - \
To6[#VSet] + SUM(To6[#VSet] ) * (MCycle=6) - \
Tol2[#VSet] + SUM(Tol2[#VSet]) * (MCycle"»12) ),

Lastly, before fitting the model, the scalar Five must be set, in addition to the scalars One, Two,
Three and Four.

Model fitting is then straightforward, for example the following Genstat code fits a model to the
two data sets, with common digit-preference parameters but separate values of the parameters //
and 6.

VARIATE VSet, MSet,TSet; VALUE"!(3,4)
SCALAR One,Two,Three,Four,Five; VALUE=1,1,3,3,5
RCYCLE Mu[3,4],Theta[3,4],Phi[l,3,5]; \

INITIAL = 2(0.33, 0.1), 3(0.2); \
LOWER = 2(0.000001, 0), 0.000001, 0, 0; \
UPPER = 2(0.999999, *), 3(0.75)

OPEN 'fitmodel.inp'; CH=2
INPUT [PRINT"*] 2
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7. Appendix

Listing of file init. inp

File INIT.INP

Define and initialize various data-structures

used in fitting fecundability models
— — —— _ — — —

SCALAR Mu[l...NSets],Theta[l...NSets],LL[1...NSets]; VALUE=1
VARIATE [NVALUES=17] To6[1...NSets],Tol2[1...NSetS], \

TrueProb[1...NSets],Prob[1...NSets], \
MCycle, WtProb, V6a, Wt 6a, V6b, Wt 6b, V12a, Wt 12 a, V12b, Wtl2b

READ [SERIAL=yes; PRINT=*] \
MCycle, WtProb, V6a, Wt 6a, V6b, Wt 6b, V12a, Wt 12 a, V12b, Wt 12b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 MCycle
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 WtProb

0 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 0 V6a

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Wt6a

5 4 3 2 1 0 1 2 3 4 5 0 0 0 0 0 0 V6b

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 Wt6b

0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 V12a

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 Wtl2a

0 0 0 0 0 0 5 4 3 2 1 0 0 0 0 0 0 V12b

0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 Wtl2b

CALCULATE MCycle_l = MCycle - 1
&  Multiplier = MCycle-2+(MCycle.eq.1)
MODEL [FUNCTION=LogLik]
RETURN

Listing of fUe fitmodel . inp

File FITMODEL.INP

Fits various fecundability models

+ \

EXPRESSION model[l...6]; VALUE= \
!E( TrueProb[#VSet] = Mu[#MSet] / (1-Mu[#MSet] ) * EXP( CUM( \

LOG(l-Mu[#MSet] + Multiplier*Theta[#TSet] ) - \
L0G(1 + MCycle_l*Theta[#TSet]) ) ) ), \

=  TrueProb[#VSet] * (Wt6a * Phi[One] ** V6a +
Wt6b * Phi[Two] ** V6b ) ), \

=  TrueProb[#VSet] * (Wtl2a * Phi[Three] ** V12a
Wtl2b * Phi[Four] ** V12b ) ), \

= TrueProb[#VSet] - \
To6[#VSet] + SUM{To6[#VSet]) * (MCycle
Tol2[#VSet] + SUM(Tol2[#VSet]) * (MCycle

-(SUM(Freq[#VSet] * LOG(Prob[#VSet])) + \
TailFreq[#VSet] * LOG(l-SUM(WtProb*Prob[#VSet])) ) ), \

!E( LogLik = 2 * VSUM(!P(LL[#VSet])) )

!E(

!E(

!E(

To6[#VSet]

Tol2[#VSet]

Prob[#VSet]

!E( LL[#VSet]

\

=6) - \
=12) ),

FITNONLINEAR [PRINT=summary,estimate,monitoring, corr;
CALCULATION=model]

\
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"Display fitted values and chi-squared statistic"
CALCULATE FitFreql[#VSet] " TotFreq[#VSet] * WtProb * TrueProb[#VSet]
&  FitFreq2[#VSet] " TotFreq[#VSet] * WtProb * Prob[#VSet]
&  FitTaill[#VSet] = TotFreq[#VSet] * \

{l-SUM(WtProb*TrueProb[#VSet]))
&  FitTail2[#VSet] = TotFreq[#VSet] * \

(l-SUM(WtProb*Prob[#VSet]))
&  ChiSql[#VSet] = SUM( (Freq[#VSet] - FitFreql[#VSet]) ** 2 / \

FitFreql[#VSet] ) + \
(TailFreq[#VSet] - FitTaill[#VSet]) ** 2 / \
FitTaill[#VSet]

&  ChiSq2[#VSet] = SUM( (Freq[#VSet] - FitFreq2[#VSet]) ** 2 / \
FitFreq2[#VSet] ) + \
(TailFreq[#VSet] - FitTail2[#VSet]) ** 2 / \
FitTail2[#VSet]

FOR Observed=Freq[#VSet]; Fittedl«=FitFreql[#VSet]; \
Fitted2=FitFreq2[#VSet]; Tl=TailFreq[#VSet]; \
T2=FitTaill[#VSet]; T3=FitTail2[#VSet]; \
Xl=ChiSql[#VSet]; X2=ChiSq2[#VSet]
RESTRICT MCycle,Observed,Fittedl,Fitted2; MCycle<=12
PRINT MCycle,Observed,Fittedl,Fitted2; DECIMALSbQ,0,1,1
PRINT [IPRINT"*] '> 12',T1,T2,T3; D-0,0,1,1
PRINT ' ',X1,X2; DECIMALS=0,0,2,2
RESTRICT MCycle,Observed,Fittedl,Fitted2

ENDFOR

DELETE [REDEFINE=yes] MSet,VSet,TSet

RETURN

Page 16



Genstat Newsletter No, 27

Extra Output for Principal Components Analysis
A Bar-Hen

Institute of Agricultural Research
BJP. 2123, Yaounde, Cameroon.

G McLaren

ODA Biometrician IRA

do FCO(Yaounde)
King Charles Street
London

United Kingdom SWIA 2AH

1. Introduction

The interpretation of a Principal Components Analysis often seeks to explain structure amongst
variables and the individuals on which they are measured. The Genstat PCP directive provides
the basic calculations of the eigenstructure of the covariance or correlation matrix but there are
other derived statistics more useful for the interpretation. The PGA procedure uses the POP
directive and then computes measures of the contribution of each variable and each individual
to selected principal axes. These statistics can be printed, saved or both. Graphs of correlations
between variables and axes and of die projection of individuals on the basic planes of the
principal component space can also be printed.

The data for the procedure consists of a set of variates, specified in a pointer given by the DATA
parameter of PGA. Input from an SSPM structure is not supported because information about
the individuals is required. Galculations, printing and plotting are controlled by options and
storage of results by further parameters. These are explained in full in the procedure listing.

2. Description of Methods used in Procedure

2.1. Basic Gomputations

Given the basic data matrix X of n individuals by p variables, the basic eigenstructure of the
covariance or correlation matrix, depending on the METHOD option, is calculated by the PGP
directive. If the pyp covariance or correlation matrix is C, and V is the pyJc matrix of
eigenvectors corresponding to the k eigenvalues in the diagonal matrix D, we have the
relationship: CV = VD. The number of components computed, k, is controlled by the NROOTS
option of PGA. The values of D, the percentage of variation accounted for by each component,
a test of the smallest roots, the eig^vectors or loadings, V, and the principal component scores,
ZV, (where Z is the centralised or standardised data matrix derived from X depending on the
METHOD option), can all be printed, saved or both, with options and parameters exactly as for
the PGP directive.

2.2. Gontribution of Variables

The correlation between the n observations on the ith original variable and the n scores of the
yth principal component is given by the (iV)th element of the matrix where S'^ is a
diagonal matrix of reciprocals of the sample standard errors for each variable and the is the
diagonal matrix of square roots of the k eigenvalues.

These correlations are used to assess the strength and direction of the linear relationships
between the variables and the principal components. The squares of these coefficients measure
the proportion of the variability of each variable accounted for by each principal component.
The sum of these squared coefficients over the set of components for each variable is the
squared multiple correlation between the variable and the k principal components.

23. Gontribution of Individuals

The correlation between the p measurements on the /th individual and the p coefficients of the
yth principal component are given by the (jV)th element of the matrix Q^ZV. Z is either the
centralised or standardised nyp data matrix, depending on the value of option METHOD, and Q
is a diagonal matrix of entries 1/-^ where is the sum of squared values in the ith row of Z.
ZV is the matrix of principal component scores and is calculated by the PGP directive.
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These correlations indicate how well each individual is represented on each principal axis. The
sum of squared coefficients across the k axes gives the squared multiple correlation between the
/th individual and the k axes and so is a measure of the quality of rq)res^tation of each point
by the k axes. Small multiple correlations indicate individuals that are not well represented by
the k chosen axes.

2.4. Graphical Representation of Structure of Individuals

Graphs of the projections of all individuals on the plane of each pair of chosen principal axes
can be printed according to the PRINT option. These plots are scatter plots of the principal
component scores and are labelled with case numbers of the individuals. Coincident points are
listed below the plot.

The main reason for viewing these graphs, and the scores from which they are produced, is to
determine which individuals contribute most to each axis and whether any axis is almost
entirely due to outlying individuals. The scores should be Normally distributed with zero mean
and variance equal to die corresponding eigenvalue. Oudying individuals are easily detected by
looking at those with large absolute scores, and oudying groups are easily seen on the graphs.
However, even when there appear to be no outlying groups it is possible that individuals are
poorly represented on certain axes. An interpretation of the structure of the individuals which
ignores the quality of the representation on the axes is likely to detect spurious relationships.
The quality of representation of an individual on an axis is essentially determined by the angle
between the axis and the vector to the point. If this angle is small then the point is well
represented on the axis, if it is large, near a right angle, it is poorly represented. The correlations
computed as the contribution of individuals are the cosines of these angles. The sum of squares
of these cosines for any group of axes gives the multiple squared correlation coefficient for that
individual and those axes. Therefore individuals that have small squared multiple correlations
with the two axes forming a particular plot are poorly represented and should only be included
in interpretations of structure with care.

2.5. Graphical Representation of the Correlations of Variables

Using the magnitude of coefficients of the eigenvectors to interpret the principal axes in terms
of the variates suffers the same disadvantage as the interpretation of individuals in terms of the
magnitude of their scores; that is, poorly represented variables can have large coefficients. It is
necessary to consider the magnitude of coefficients only for those variables that are well
represented; that is, highly correlated with the pincipal axes.

The correlations between the variables and the principal axes produced for the contribution of
variables can be plotted for each pair of chosen axes according to the PRINT option. These
plots indicate the quality of representation of each variable by the axes. The further a point lies
from the origin of the plot the better represented is the corresponding variable. Since the points
are correlations, all points lie within the unit circle. The interpretation of the axes depends on
the closeness of the points corresponding to well represented variables to the axes. Variables
plotted far from the origin but close to one axis indicate a practical interpretation of the axis.
Those that lie between two axes indicate a contribution to the ordinations in both directions.

3. Example

In a study of the morphology of Cacao pods, 10 different measurements were made on pods
from 33 different sources. The objective was to see if differences in morphology could be
described by few variables, and whether these could be interpreted. The data plus four derived
variates and the Genstat job to perform the principal components analysis are given in
Appendix 1.

Because of the varying units and magnitudes of variables, the analysis is perfomed on the
standardised data; that is, on the correlation matrix, with METHOD=CORRELATION. A
preliminary run with NROOTS set to 4 shows that the fourth eigenvalue is only 0.803 and
accounts for 6% of the variability in the sample, and furthermore no variable or individual was
particularly well represented by the fourth axis. It was therefore decided to adopt three axes.
Results are shown in Appendix 2.
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3.1. Structure of the Variables

The first three axes account for 85% of the variability in the data. Looking at the contribution
of variables and the circle of correlations of variables with the first two axes, we see that the
masses (MS, MC and MB) and the dimensions of the pods (LG, WD, and LW) are very well
represented on the first axis while the thickness of cortex (TX and TN) and the ratio of bean
mass to pod mass (PC) are well represented on the second axis. The first axis can therefore be
interpreted as a measure of overall size of pod. These measures of size are all correlated in the
same sense with this axis. The second axis appears to measure the internal structure, thickness
of cortex and amount of beans; these are correlated in opposite s^es with the axes. There are
no well represented variables on the third axis, but the best represented are the ratio of cortex
thickness (XN) and the number of wilted beans (NW). The count of nonnal beans (NN) is
best represented on the first axis with the measures of pod size. The bean size (MN) is not well
represented on any of the first three axes which account for only 50% of the variability in this
measurement.

3.2. Structure of the Individuals

Considering the above interpretation of the variables we can look at the principal component
scores, the contributions of individuals and the projections on the principal axes planes to check
that the structure of the individuals accords with the variables. Given that the scores are central
variates with variance estimated by the corresponding eigenvalues, we can see that individuals
8 and 24 have abnormally large scores on the first axis. One can drop these individuals from the
analysis to see if the axes are very sensitive to them. In fact the axes change very little; the large
values are just extremes of the general axis trend. Similarly the large scores of variables 13, 21
and 24 on axis two represent pods with a small proportion of beans (PC) and thicker thgn
average cortex (TX and TN) again following the general trend of the axis and not overly
influential. There is a group of individuals, 3,12,28,30 and 31 at the centre of each plot which
are poorly represented.

4. The Procedure PCA

Editors' Note. The values of the options print and method need to be in UPPER CASE. This
procedure has been modified to work with Release 2. For use with Release 1.3 see the comment
in the section on 'compute contribution of individuals*.

PROCEDURE 'PCA':"EXTRA OUTPUT FOR PRINCIPAL COMPONENTS ANALYSIS"

OPTION NAME='PRINT','SMALLEST','METHOD','NROOTS','NROWS',\
'NCOLUMNS','WEIGHTS'; MODE= 3(t),3(v),p;\
DEFAULT"' ','NO','S',2,2l,61,*

PARAMETER NAME"' DATA' , ' LRV , ' SSPM' , ' SCORES' , ' RESIDUALS' , \
'VARCORR','INDIVCORR'; MODE"?(p)

" Description
This procedure provides a principal component analysis, with
extra options for the contribution of variables, contribution of
individuals and plots of correlations between variables and axes
and projections of individuals on the chosen axes. The data for
the procedure consist of a set of variates, specified in a
pointer given by the DATA parameter. Correlations between
individuals or variables and the axes can be printed using
the PRINT option or saved with the VARCORR and INDIVCORR
parameters. The projections of individuals onto the principal axes
are labelled by case numbers on the graphical output and those of
the variables by the first two letters of the variable names. A
list of coincident points follows each graph.

Action with RESTRICT

The input data may be restricted. The analysis is based only on the
units retained by the restriction.

OPTIONS

PRINT = text What to output;LOADINGS,ROOTS,
RESIDUALS,SCORES,TESTS as for PCP directive,
VARCORR for the correlation between variables and
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the principal axes,
INDIVCORR for the correlation between individuals
and the principal axes,
GRAPH to plot the projection of and correlations
variables on the principal axes;
default * i.e. no output.

NROOTS = scalar Number of latent roots to compute,
as for PC? directive; default 2

SMALLEST^ string Whether to print smallest instead of the largest,
as for PCP directive; default no.

METHOD = string Whether to use SSCP matrix of correlations,
as for PCP directive; default SSPM

WEIGHTS «= vector weightings for the units; default *
i.e. all units have weight one

NROWS = scalar nuxnber of rows in the graph frame; default 21
NCOLUMNS= scalar number of rows in the graph frame; default 61

PARAMETERS

DATA = pointer of variates forming the data matrix, unlike PCP
an SSPM structure is not permitted for input.

LRV " Irv to store the eigen structure as for PCP directive
SSPM = sspm to store SSCP or correlation matrix as for PCP
SCORES = matrix to store scores as for PCP directive

RESIDUAL" matrix to Store residuals as for PCP directive
VARCORR = matrix to store the contribution of variables.

INDIVCOR" matrix to store the contribution of individuals."

"set the environment"

GET [ENVIRONMENT"ENV]: SET (DIAGNOSTIC-F;CASE"I]
"set parameters"

GETATTRIBUTE [ATTRIBUTE"type] DATA;NB
IF NB['type'].NE.14

PRINT '***********DATA must BE A POINTER**************';\
JUSTIFICATION=LEFT

EXIT [CONTROL-PROCEDURE]
ENDIF

GETATTRIBUTE [ATTRIBUTE-NVALUES] DATA[1],DATA;NB,NBl
IF NROOTS.NI.!(2...#NB1[])

PRINT '***********ILLEGAL NUMBER OF ROOTS**************';\
JUSTIFICATION-LEFT

EXIT [CONTROL-PROCEDURE]
ENDIF

IF UNSET(LRV)
ASSIGN DLrv ; POINTER-LRV
LRV [ROWS-DATA;COHJMNS=#NROOTS] LRV

ENDIF

IF UNSET(WEIGHTS)

ASSIGN DWeights; POINTER-WEIGHTS: CALC WEIGHTS-!(#NB[](1))
ENDIF

IF UNSET(SSPM): ASSIGN DSspm; POINTER-SSPM: ENDIF
SSPM [TERMS-DATA[]] SSPM: FSSPM [WEIGHTS-WEIGHTS;PRINT-*] SSPM
IF UNSET(SCORES)

ASSIGN DScores ; POINTER-SCORES
MATRIX [ROWS-#NB[];COLUMNS=#NROOTS] SCORES

ENDIF

IF UNSET(RESIDUALS)
ASSIGN DResiduals; POINTER-RESIDUALS
MATRIX [ROWS-#NB[];COLUMNS-l] RESIDUALS

ENDIF

IF SMALLEST.NI.!T(NO,N,YES,YE,Y,no)
PRINT '*********ILLEGAL VALUE FOR SMALLEST OPTION************';\

JUSTIFICATION-LEFT

EXIT [CONTROL-P ROCEDURE]
ENDIF

"separate values of print options"
SCALAR [VALUE-0] OPT[1...3]
FOR J- IT(VARCORR,VARCOR,VARCO,VARC,VAR,VA,V),\

! T( INDIVIDU, INDIVID, INDIVI, INDIV, INDI, IND, IN, I) , \
!T(GRAPH,GR7kP,GRA,GR,G);K»l. . .3

IF MAX(PRINT.IN.J): CALC 0PT[K]=1: ENDIF
RESTRICT PRINT;PRINT.NI.J
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EXIT .NOT.NVALUES(PRINT)
ENDFOR

IF NVALUES(PRINT)
PRINT [CH»=IMP; IPRINT"*] PRINT; JUSTIFICATION=LEFT; SKIP«=0
RESTRICT PRINT;PRINT.NI.!T(ROOTS,ROOT,ROO,RO,R,\

LOADINGS,LOADING,LOADIN,LOADI,LOAD,LOA,LO,L,\
SCORES,SCORE,SCOR,SCO,SC,S,\
RESIDUALS,RESIDUAL,RESIDUA,RESIDU,RESID,RESI,RES,RE,\
TESTS,TEST,TES,TE, T,' ')

ENDIF

IF NVALUES(PRINT)
PRINT '*********ILLEGAL value IN PRINT OPTION*********'; \
JUSTIFICATION=LEFT
EXIT [CONTROL=PROCEDURE]

ENDIF

"compute the pop"
PCP [PRINT"#IMP;METH0D-»#METH0D;SMALLEST-#SMALLEST;NR00TS'»#NR00TS] \

SSPM;LRV-LRV;SCORES«=SCORES;RESIDUALS-RESIDUALS

"compute the contribution of variables"
IF .NOT.UNSET(VARCORR).OR.OPT[1].0R.0PT[3]

IF UNSET(VARCORR): ASSIGN DVARCORR; POINTER-VARCORR: ENDIF
IF METHOD.NI.!T('SSPM','SSP','SS','S')

CALC A[l. . .#NB1[] ]=.#NB1[] (1)
ELSE

CALC A[l...#NB1[]]=l/SQRT(#SSPM['Sums']$[l...#NB1[]])
ENDIF

CALC D=SQRT(LRV['Root s'])
DIAGONALMATRIX [ROWS—#NROOTS] DIAG ; VALUES—D
&  [ROWS=#NBl[]] STAND; VALUES-!(A[])
CALC VARCORR-PRODUCT(LRV['Vectors'];DIAG)
& VARCORR-PRODUCT ( STAND ; VARCORR)
IF OPT[l]
PRINT [CH-TT;SQUASH-Y;IPRINT-*;SERIAL-Y] 1...#NROOTS,'SUM';\
JUSTIFICATION-LEFT
MATRIX [ROWS-DATA;COLUMNS-!T(#TT)] PRTCORR
CALC PRTCORR$[*;1...#NROOTS]=VARCORR$[*;1...#NROOTS]
& PRTCORR$[*;' SUM']-PRODUCT(VARCORR**2;!(#NROOTS(1)))*100
PRINT [SERIAL-Y;SQUASH—Y] 'CONTRIBUTION OF VARIABLES',\

'(Correlation between variables and principal axes and multiple',\
'squared correlation coefficient for each variable on chosen axes)'

PRINT [IPRINT-*] PRTCORR;DECIMALS-4
ENDIF

ENDIF

"compute contribution of individuals"
IF .NOT.UNSET(INDIVCORR).OR.OPT[2]
IF UNSET(INDIVCORR): ASSIGN DINDIVCORR;POINTER=INDIVCORR; ENDIF
IF METHOD.NI.!T('SSPM','SSP','SS','S')
" For Release 1 use the following line "
CALC Z[1...#NB1[]]=((DATA[]-MEAN(DATA[]))/SQRT(VAR(DATA[])))**2"
" For Release 2 use the following lines"
CALC Z [1. . .#NB1 [] ]»(DATA[] -MEAN(DATA[] .) )**2
CALC Z[l...#NB1[]]=Z[]/SUM(Z[])

ELSE

CALC Z[l. . .#NB1[] ]«(DATA[]-MEAN(DATA[] ) )**2
ENDIF

CALC P-1/SQRT(VSUMS(Z))
DIAGONALMATRIXRIX [ROWS—#NB[]] YDIAG ;VALUES=P
CALC INDIVCORR-PRODUCT(YDIAG;SCORES)
IF OPT[2]
PRINT [CH-TT;SQUASH-Y;IPRINT-*;SERIAL-Y] 1...#NROOTS,'SUM';\
JUSTIFICATION-LEFT
MATRIX [ROWS=#NB[];COLUMNS-!T(#TT)] PRTINDIV
CALC PRTINDIV$[*;1...#NROOTS]—INDIVCORR$[*;1...#NROOTS]
& PRTINDIV$[*;!T(' SUM')]-PRODUCT(INDIVCORR**2*100;\
!(#NROOTS(l)))
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PRINT [SERIAL=Y;SQUASH=y] 'CONTRIBUTION OF INDIVIDUALS',\
(Correlation between individuals and principal axes and multiple',\

'squared correlation coefficient for each individual on chosen axes)'
PRINT [IPRINT-*] PRTINDIV;DECIMALS-4

ENDIF

ENDIF

"do graphs"
IF OPT[3]
PRINT [CH=TE;SQUASH=Y;IPRINT«*] DATA;JUSTIFICATION=LEFT;SKIP=0
FACTOR [LABELS=TE;VALUES=1...#NB1[]] VLABELS
FACTOR [LEVELS=#NB[];VALUES=1...#NB[]] ILABELS
CALC comp[1...#NROOTS]=SCORES$[*;1...#NROOTS]
& dim[1...#NROOTS] '=VARCORR$[*;1...#NROOTS]
CALC TEMP=»NR00TS-1
FOR 1=1...TEMP

CALC TEMP1=1+1

FOR J=TEMP1...NROOTS

PRINT[CH=TIT] 'PROJECTION OF INDIVIDUALS ON PRINCIPAL AXES '\
,I,'AND',J;DECIMALS=0;FIELDWIDTH=46,2,3,2
GRAPH [TITLE=TIT;EQUAL=SCALE;NROWS=#NROWS;NCOLUMNS=#NCOLUMNS]\
comp[J];comp[I]; SYMBOLS=ILABELS

PRINT[CH=TIT] 'PROJECTION OF VARIABLES ON PRINCIPAL AXES '\
,I,'AND',J;DECIMALS=0;FIELDWIDTH=4 6,2,3,2
GRAPH [TITLE=TIT;NROWS=#NROWS;NCOLUMNS=#NCOLUMNS;XLOWER=-1;\
XUPPER=1;YL0WER=-1;YUPPER=1] dim [J];dim [I];SYMBOLS=VLABELS

ENDFOR

ENDFOR

ENDIF

"reset the environment"
SET [DIAGNOSTIC=#ENV['diagnostic'];CASE=#ENV['case']]
ENDPROCEDURE

5. Appendix 1 - Example
UNITS [33]
VARIATE MS;EXTRA='MASS OF POD (GMS)'

& LG;EXTRA®'LENGTH OF POD (CMS)'
& WD;EXTRA='WIDTH OF POD (CMS)'
& TX;EXTRA='MAXIMUM THICKNESS OF CORTEX (CMS)'
& TN;EXTRA='MINIMUM THICKNESS OF CORTEX (CMS)'
& MC;EXTRA®'MASS OF CORTEX (GMS)'
& MB;EXTRA®'MASS OF FRESH BEANS (GMS)'
& NN;EXTRA®'NUMBER OF NORMAL BEANS'
& NW;EXTRA®'NUMBER OF WILTED BEANS'

READ MS,LG,WD,TX,TN,MC,MB,NN,NW
348 15.19 7.67 1.08 0.81 242 99 38 2
368 14.43 7.81 1.27 0.99 261 98 35 0
327 15.15 7.38 1.23 0.92 216 95 36 2
420 17.09 8.12 1.19 0.97 299 111 33 6
242 13.65 6.75 0.97 0.70 166 68 26 2
280 12.85 7.52 1.22 0.82 209 62 21 1
334 14.55 7.71 1.27 1.02 242 82 26 4
645 19.20 9.70 1.30 1.00 430 195 49 0
387 15.81 7.94 1.32 1.10 281 100 35 3
322 14.78 7.54 1.07 0.83 220 94 36 2
392 14.88 8.01 1.26 0.93 280 99 32 3
331 14.41 7.37 1.28 1.03 239 90 34 2
400 15.93 7.89 1.41 1.19 308 87 31 1
358 14.45 7.91 1.30 1.13 256 91 36 4
292 14.04 6.89 1.08 0.84 209 77 29 5
328 14.44 7.59 1.27 1.05 230 90 34 5
266 13.39 7.09 1.14 0.90 188 71 25 6
227 13.56 6.75 0.99 0.73 154 65 28 5
358 15.93 7.50 1.18 0.98 263 85 31 3
257 13.32 7.14 1.16 0.94 185 67 25 4
409 16.39 7.79 1.31 1.06 321 81 30 7
272 13.19 7.22 1.12 0.84 199 68 26 3
364 15.59 7.69 1.26 1.05 258 95 33 2
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185 11.40 6.00 1.25 0.95 148 33 12 2
352 14.65 7.78 1.34 1.03 240 104 33 0
290 13.48 7.40 1.11 0.89 216 75 24 5
209 12.57 6.53 1.02 0.81 149 56 26 8
330 14.89 7.62 1.16 0.88 230 90 28 8
440 15.20 7.70 1.30 1.00 325 110 45 1
325 14.57 7.70 1.16 0.96 229 90 32 3
334 14.90 7.45 1.17 0.96 232 92 32 3
257 13.40 7.03 1.06 0.80 180 72 29 3
424 17.35 7.98 1.18 0.90 288 126 37 9

VARIATE LW;EXTRA='VOLUME OF POD'
& XN;EXTRA='RATIO OF MAX TO MIN THICKENSS'
& PC;EXTRA='RATIO OF MASS OF BEANS TO MASS OF POD'
& MN;EXTRA='MASS PER NORMM. BEAN'

CALCULATE LW=LG*WD*WD: & XN=TX/TN: & PC=MB/MS: & MN=MB/NN
POINTER [VALUES-MS,LG,WD,LW,TX,TN,XN,MC,MB,NW,NN,PC,MN] VTS
PCA [PRINTER,L,S,G,V,I;METHOD=C;NROOTS-3] VTS
STOP

6. Appendix 2 - Example Results
***** Principal components analysis *****

*** Latent Roots ***

DLRV['Roots']
1 2 3

7.565 2.255 1.223

*** Percentage variation ***

DLRVC Roots' ]
1 2 3

58.19 17.35 9.41

*** Trace ***

DLRV['Trace']
00

lipal Component Scores ***

1 2 3
1 -0.0290 -0.3593 0.0851
2 -0.1906 0.0647 0.2124
3 -0.0112 -0.1635 0.1120
4 -0.4992 -0.0633 -0.2159
5 0.6144 -0.4275 0.1691
6 0.4004 -0.0234 0.5798
7 -0.0585 0.2211 -0.0099
8 -1.7123 -0.4214 0.2264
9 -0.3931 0.2522 -0.0808
10 0.0636 -0.3102 0.0077
11 -0.2321 -0.0411 0.2036
12 -0.0429 0.1467 0.0152
13 -0.4193 0.5999 0.0790
14 -0.2177 0.3568 -0.2166
15 0.3527 -0.1284 -0.1053
16 -0.0635 0.1523 -0.2051
17 0.3760 -0.0143 -0.1534
18 0.6603 -0.3882 -0.0642
19 -0.1006 0.1741 -0.0875
20 0.3725 0.1085 -0.0942
21 -0.2713 0.4202 -0.1682
22 0.4162 -0.0567 0.1260
23 -0.2418 0.1879 -0.0414
24 0.9193 0.5538 0.3078
25 -0.2570 0.0134 0.2343
26 0.2467 -0.0118 -0.0994
27 0.7821 -0.1149 -0.3431
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28 0.0288 -0.1857 -0.1757
29 -0.3918 0.0804 0.1724
30 -0.0330 -0.0010 -0.1121
31 -0.0331 -0.0008 -0.0963
32 0.4656 -0.2416 0.0375
33 -0.5007 -0.3791 -0.2994

Latent Vectors (Loadings) ***

DLRV['Vectors' ]
1

VTS

MS -0.35854 -0.02352 0.03803
LG -0.33590 -0.08956 -0.16082
WD -0.34927 -0.05733 0.04774
LW -0.35338 -0.08937 0.00427
TX -0.22601 0.45659 0.20034
TN -0.21503 0.51089 -0.10015
XN 0.11096 -0.37296 0.58241
MC -0.34924 0.07230 0.04401
MB -0.34207 -0.20713 0.00389
NW 0.08034 -0.07665 -0.72138
NN -0.29534 -0.18933 -0.07383
PC -0.08852 -0.52285 -0.20118
MN -0.24824 -0.09133 0.11295

CONTRIBUTION OF VARIABLES

(Correlation between variables and principal axes and multiple squared
correlation coefficient for each variable on chosen sixes)

1.000 2.000 3.000 SUM
VTS

MS -0.9861 -0.0353 0.0421 97.5483
LG -0.9239 -0.1345 -0.1779 90.3270
WD -0.9607 -0.0861 0.0528 93.3058
LW -0.9719 -0.1342 0.0047 96.2701
TX -0.6216 0.6856 0.2216 90.5625
TN -0.5914 0.7672 -0.1108 95.0619
XN 0.3052 -0.5600 0.6441 82.1658
MC -0.9606 0.1086 0.0487 93.6819
MB -0.9408 -0.3110 0.0043 98.1941
NW 0.2210 -0.1151 -0.7978 69.8541
NN -0.8123 -0.2843 -0.0816 74.7373
PC -0.2435 -0.7851 -0.2225 72.5210
MN -0.6828 -0.1371 0.1249 50.0598

CONTRIBUTION OF INDIVIDUALS

(Correlation between individuals and principal axes and multiple
squared correlation coefficient for each individual on chosen axes)

1.000 2.000 3.000 SUM

1 -0.0672 -0.8318 0.1970 73.5237
2 -0.5474 0.1858 0.6100 70.6200
3 -0.0339 -0.4940 0.3382 35.9594
4 -0.8165 -0.1035 -0.3532 80.2152
5 0.7872 -0.5477 0.2166 96.6643
6 0.5106 -0.0298 0.7394 80.8271
7 -0.1830 0.6912 -0.0310 51.2232
8 -0.9567 -0.2355 0.1265 98.6699
9 -0.8103 0.5200 -0.1665 95.4727
10 0.1623 -0.7907 0.0196 65.1841
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11 -0.6271 -0.1110 0.5500 70.8184
12 -0.1495 0.5115 0.0530 28.6806
13 -0.5622 0.8043 0.1060 97.4188
14 -0.4058 0.6650 -0.4037 76.9861
15 0.8703 -0.3167 -0.2598 92.5169
16 -0.1907 0.4575 -0.6160 62.5125
17 0.8611 -0.0327 -0.3513 86.5913
18 0.8459 -0.4973 -0.0822 96.9523
19 -0.3201 0.5543 -0.2785 48.7349
20 0.8857 0.2579 -0.2239 90.1061
21 -0.3947 0.6114 -0.2447 58.9547
22 . 0.9291 -0.1265 0.2813 95.8262
23 -0.6940 0.5393 -0.1189 78.6719
24 0.7954 0.4792 0.2663 93.3290
25 -0.5231 0.0274 0.4771 50.2027
26 0.6290 -0.0302 -0.2536 46.0876
27 0.8938 -0.1313 -0.3921 96.9887
28 0.0658 -0.4238 -0.4010 34.4807
29 -0.6235 0.1279 0.2744 48.0411
30 -0.1462 -0.0042 -0.4968 26.8161
31 -0.1716 -0.0041 -0.4990 27.8449
32 0.8612 -0.4469 0.0694 94.6243
33 -0.6371 -0.4823 -0.3809 78.3656

PROJECTION OF INDIVIDUALS ON PRINCIPAL AXES 1 AND 2
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PROJECTION OF VARIABLES ON PRINCIPAL AXES 1 AND 2
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PROJECTION OF VARIABLES ON PRINCIPAL AXES 1 AND 3
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PROJECTION OF VARIABLES ON PRINCIPAL AXES 2 AND 3
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A Genstat 5 Procedure for Generating Discrete Distributions Belonging to
an Exponential Family

L P Leficovitch
Statistical Research

Research Program Service
Agriculture Canada
Bldg. 54
Central Experimental Farm
Ottawa

Ontario

Canada KIA OC6

1. Introduction

Suppose that for one of a pair of dice there is evidence that the true mean score is exactly 4.5
(or some other value), but that no reason is known for the departure from the value of 3.5,
consistent with a fair die. In the biased die, a score of 4.5 may have arisen either from faces 1,
2, 3 and 6 each having a probability of zero, with each of faces 4 and 5 having a probability of
0.5, or from several other possibilities in which only two faces have equal or non-equal
non-zero probabilities, or from very many others in which the probability of each of the six
faces may be non-zero. If the only information about the die is the mean score, what
probabilities should be assigned to each face?

Consider some similar questions arising from the following series of examples of contingency
tables.

Example 1: Suppose there is a 2 by 2 contingency table for which only the m^irginal
proportions are known, e.g.

a b 1
c d

1 i 1

which implies

^q
hq q

What value should q take? Let /i = 4; there are just two possible tables satisfying the marginal
proportions:

2  1 3 .

1  . . 1

In considering these two tables, which is to be preferred given ignorance of the actual values?
One way to answer this is to consider how many different ways each table can be generated.
Letting a, b, c and d now denote the frequencies in the table, the number of ways each may be
generated is given by

w = nH {a\b\c\d\)

which are 12 and 4 respectively, i.e. the first table can be realised in the greater number of
ways.

Suppose n = 16; the possible tables satisfying the same marginal proportions are:
8  4 9 3 10 2 11 1 12 .
4  . 3 1 2 2 1 3 . 4

for which the values of w are

900,900 1,601,600 720,720 87,360 1,820

i.e. the second table can be realised in the greatest number of ways.
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Example 2: Consider the foUowmg more elaborate example;

a b i
c d 1
e f 4

\ i n

Assuming n = 16, there are 12 distinct tables, which together with the corresponding values of
w are:

4 4 5  3 6 2 7  1

6  . 5  1 4 2 3  3
2  . 2  . 2  . 2  .

25,225,200 121,080,960 151,351,200 57,657,600

8  . 5  3 6 2 7  1
2 4 6  . 5  1 4 2

2  . 1  1 1  1 1  1

5,405,400 40,360,320 121,080,960 86,486,400

8  . 6 2 7  1 8  .
3  3 6  . 5  1 4 2

1  1 .  2 .  2 .  2

14,414,400 10,090,080 34,594,560 5,405,400

It is the third table in the first row which can be generated in the greatest number of ways.

2. A Generalization

Both the example of the biased die and the contingency table examples lead to the following
generalization. Consider any problem of the following general fonn: there is a hypothesis space
Hq, described by enumerating some perceived possibilities (e.g. various values for the
probabilities of the faces of the die; different probabilities for the body of a contingency table)
which are not regarded as equally likely because there is some additional evidence, E (e.g. the
value of the true mean in the die; the marginal proportions in the contingency tables). Since E
is not an event, it does not have a sampling distribution, and in consequence, cannot be used as
the data, B, in Bayes* theorem

p{A\B) = p{A)p(B\A)/p{B);

nevertheless, the existence of E leads to some constraints on the probabilities assigned to the
elements of Hq which may force them to be non-uniform, but does not fully determine them
(assuming that the number of such constraints is less than the number of elements in //q).
Thus given some *macroscopic' information (the mean score for the die; the marginal
proportions and total in a contingency table), determine a reasonable set of *niicroscopic*
events (the probabili^ of each face of a die; the elem^ts of the contingaicy table) which
imply them. One man's 'reasonable' is another's prejudice; but, intuitively, it is claimed that
choosing that set which can be achieved in the greatest number of ways can be asserted as
avoiding the introduction of more structure than necessary (structure here can be interpreted as
association among the margins, such as in diagonal 2 by 2 tables).

With this assertion, the remaining steps are almost automatic. Define p,. = Hn where
i € [a,b,c4\y and let n = a+b+c+d; from the Stirling approximation to the factorials for large
X, x\ = (2m:) Ve"*, with x = it can be shown that

logw « -nip flog Pi

the right-hand side of which is (Shannon) entropy. Thus the table which has the maTimiim
number of possible realizations is given by the set of p; which maximizes entropy, -i5?,.logp,.,
subject to constraints on the p,- which satisfy the known marginal values; the p,. are used to
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obtain the nearest integer values to npf. For the contingency table of Example 1, the p,- can be
obtained by maximizing entropy subject to

p{a) + p{b) = 0.75
p{a) + p{c) = 0.75
p{a) + p{b) + p{c) + p{d) = 1;

with solution, not surprisingly, p(a) = 9/16, p{b) = p(c) = 3/16, p(</) = ̂ = 1/16. The
entropy, in natural logarithms, is 1.125.

For Example 2, the constraint set on the probabilities is:

p{a) + pib) = 0.5
p(c) + p{d) = 0.375
pW) + p(f) = 0.125
p(a) + p(c) + p(e) = 0.75
pia) + p(b) + p(c) + pid) + p{e) + p(f) = 1

and the solution probabilities and expected values, both of which can be obtained in other ways,
are

IVobabilities Predicted values

0.375 0.125 6 2

0.28125 0.09375 4.5 1.5

0.09375 0.03125 1.5 0.5

from which it can be seen that the expected values differ by only small amounts from the third
table above.

A more usual situation arises in contingency table analysis when the elements of the table have
been observed, and it is desired to find the probabilities associated with each. Modifying the
second example, we have:

ap{a) + bp{b) =
cp(c) + dp(d) = X2
ep{e) + Jp(f) = X3
ap(a) + epic) + epie) = x^
Pia) + Pib) + Pic) + pid) + pie) + pif) = 1

where [a,b,Ctd,eJ] is known, and the Xj are specified expected values perhaps arising from some
unsaturated model, e.g. omitting the 4th equation. The maximum entropy solution to such a set
of equations provides a solution of interest.

3. A Further Generalization

According to Guia§u [2], of all distributions agreeing with a set of constraints, the mflYimiim
entropy principle expresses die enum^ation of the possibilities assuming nnthing beyond the
evidence. Counting arguments show that the vast majority of distributions satisfying the
constraints have entropy close to the maximum, and the entropy concentration theorem (Jaynes,
[3]) allows an accurate estimate of how sharply these are concentrated; in fact, even for gmaii
numbers of observations, those having entropy near the maTimnm predominate. Because of this,
the maximum entropy estimate can be considered as representative of this class.

It is widely known that the distributions which maximize entropy, subject to constraints which
are linear functions of the probabilities, are all members of an exponential family (Kagan,
et al., [6]), often coinciding with a named distribution depending on the measure. Further, most
of the probability distributions commonly encountered in statistics maximize the entropy (van
Campenhout and Cover, [11]), and since in addition there is a solid axiomatic base for the
principle (Shore and Johnson, [9]), its direct use has some moit. It is also well known (e.g.
Feller, [1]) that die complete set of moments uniquely d^ine a probability distribution under a
mild set of conditions.

None of this is remarkable; what is provocative, however, are some characterizations, especially
some special cases. An important one is that: the only (discrete) distribution which maximizes
entropy subject to the single constraint specifying the mean of unbounded non-negative values
is the geometric (see Guia§u, [2]). Using the ̂ pected value of the distribution, the geometric
probabilities for each cell can be obtained by maximization of the entropy, that is.
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subject to the first-order constraint

^Pi = /A i = 04,2,...
as well as the zero-order constraint

Zp. = 1.

Other distributions are obtained if a second-order condition is also included to constrain the
probabilities, e.g.

Zf'p. =

By an appropriate choice of v^, there is a wide class of distributions in which the variance need
not be that of the standard (positive) geometric distribution, which is A/(/f-l), but takes some
other value; it follows that the probabilities will not be Ihose of a geometric distribution. There
is no restriction to first- and second-order moments, so that third and higher order constraints
can also be imposed if there is cause; there can also be more than one constraint of each order.
There can also be a lower and upper limit on the value of i; for example, Lefkovitch [7] gives
the maximum entropy probabilities of the faces for a number of biased dice based on up to
third-order constraints.

Example 3: Returning to the example in the first paragraph, in a die with expected value,
p = 4.5, the probabilities Pi which maximize entropy

-ZPilogPi

subject to

£ip. = p = 4,5 and Zp^ = 1, i = 1...6

are approximately

[0.0054 0.0788 0.1142 0.1655 0.2398 0.3475]

(Lefkovitch, [7]).

Suppose entropy is maximized subject to

Zipi - p, i = 0,1,2,...
Zpi 1,

Zi^p. = = p^ + p,

then it follows that = p; hut the third moment is not equal to /t, nor is the fourth moment
equal to p + 3//^, i.e. this maximum entropy distribution, while a member of an exponential
family, and having its variance equal to the mean, is not the Poisson. The explanation is that this
distribution is the closest to the uniform distribution while satisfying the constraints. Another
way of expressing this is that the non-negative (counting) measure, ;r,-, implicitly assigned to
each of the cells is equal to a constant Including this measure into the entropy function
introduces a more general expression based on the objective function,

JPilogipi/ctti). (2)

K" Zpi = 1, then in extremal problems c is irrelevant. It is convenient, but not necessary, to
choose c so that ZctTi = 1. If tCj = 1, Vi, it is easy to see that minimiTliig this new function
will yield the same estimates as maximizing entropy, that is the geometric family (Lefkovitch,
[8]) of distributions having maximum entropy will be obtained.

It follows immediately that if the measure is not uniform, another family will be obtained. One
important example is given by = 1//!, which can be recognised as being the counting
measure of the FOisson distribution. In fact, one of the characterizations of this distribution
(Guia§u, [2]) is that it minimizes the cross-entropy with the normalized measure, i.e. where ttj
is replaced by tUi/ZtTi and c by 1 in expression (2). Expression (2) with the standardised
measure is known as cross-entropy; its relationship with the KuUback-Leibler measure is well
known, and 2nx(cross-entropy) has an asymptotic ;i^ distribution. Notice that with this
measure there is no need to specify any further constraints in order to obtain the probabilities
associated with the Poisson distribution. However, if second, third, ... order terms are also
included in the constraints, maximum entropy distributions belonging to the Poisson family, as
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defined by Lefkovitch [8], are obtained, including some with smaller variance, while others
with a larger variance may well provide a useful set of probabilities in situations where the
negative binomial or Taylor's power law, Taylor [10], has often been employed. In like manner,
the measure can be such that for some subset of {/}, p. = 0, and so a very wide class of
distributions exist within the family. This is further enl^ged when it is recognised that although
the number of cells in the geometric and Poisson families are unbounded, there is no reason for
excluding finite sets, such as in dice, and so obtain multinomial probabilities with different
measures.

4. The Genstat Procedure

The examples above give rise to a set of linear constraints in the probabilities, and to a
non-linear objective function, which is either entropy or cross-entropy. In most circumstances,
a numerical solution is needed to obtain the probabilities. Procedures to do this have been
published several times (see the citations in Lefkovitch, [8], Section 4); that used in the Genstat
5 procedure in the Appendix is based on the method given by Johnson [4], but modified by
replacing the computation of (A^A)~^A^ by A~, where X~ denotes a generalized inverse (via
a singular decomposition) of X. This modification results in an increase in numerical accuracy,
because of the reduction in the number of computational steps in each cycle, and since there is
protection against singularity arising from redundant constraints, there is no need for any
preprocessing. The Genstat procedure assumes that all constraints are equal, and so standardises
the latter so that each of the expected values is unity. If the constraints are consistent with an
exponential family, this standardisation has no impact on the solution.

While the procedure gives protection against redundancy in the constraints, there is none
against the possibility of their inconsistency, which can occur if the expected values are
wrongly specified, or if the probabilities do not belong to an exponential family. In these
circumstances, the computed solution is the centre of attraction (Jiq>p and Mardia, [5]) of the
algorithm, whch can be considered to be the closest exponential family approximation to the
true distribution.

A listing of the procedure is given in the Appendix, together with a numerical example
(Example 3). The procedure may also be used to provide discrete approximations to continuous
densities.
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6. The Procedure

Editors' Note: this procedure uses the set parameter of the parameter directive introduced
in Release 2.

PROCEDURE 'CRSENT'

" To ob'tain the minimum cross-entropy probabilities for a
discrete distribution having M cells, subject to N constraints.

OPTION 'MAXCYCLE', "SCALAR : THE MAXIMUM NUMBER OP ITERATIONS " \
'TOLERANCE' "SCALAR i A NUMERICAL VALUE FOR CONVERGENCE " \

; MODE=P ; DEFAULT=10, 0.0001

PARAMETER 'N', "I: THE NUMBER OF CONSTRAINTS (SCALAR)" \
THE NUMBER OF CELLS (SCALAR)" \
THE CONSTRAINTS (N BY M MATRIX)" \
THE RI6HT-HAND-SIDE(S) (N BY 1 MATRIX)" \
PRIOR PROBABILITIES (OR MEASURES) (M BY 1 MATRIX)" \

"(A UNIFORM PRIOR MUST BE PROVIDED IN THE ABSENCE OP ANY OTHER)" \
*■" THE ACTUAL NUMBER OF ITERATIONS (SCALAR)" \

THE MINIMUM CROSS-ENTROPY ESTIMATE OF THE
PROBABILITIES (M BY 1 MATRIX)" \

THE ENTROPY IN NATS (SCALAR)" \
THE CROSS-ENTROPY WITH THE PRIOR IN NATS (SCALAR)" \

; MODE=P; SET = 5(yes), 4(no)

" Declare necessary structures "

MATR [ROWS=N;COLU=M] C & [ROWS^N;COLUMN] W & [ROWS=M;COLU=N] A \
&  (R0WS=N;C0LU=1] U & IR0WS"M;C0LU=1] R,Q,PROB

DIAG [ROWS=N] S & [ROWS=M] T
SCAL CYCLE,ENTROPY,XENTROPY,Z

" Computation begins "

EQUATE OLDS=RHS ; NEWS«S
CALC C = ((1/S)*+C0NS)-1 & Z = SUM(PRIOR) & R = SQRT(PRIOR/Z) & PROB = R

&  U = 0 & CYCLE=0
FOR [NTIMES=MAXCYCLE]

EQUATE OLDS = PROB ; NEWS = T & OLDS «= PROB ; NEWS «= Q
CALC A = TRANS(C*+T)
SVD A; SING « S ; LEFT = A ; RIGHT = W
CALC U = U-W*((S.NE.O)/(S+(S.EQ.O)))*+(TRAN(A))*+PROB

&  PROB = R*EXP(0.5*(TRAN(C)*+U)) & CYCLE = CYCLE+1
EXIT SUM(ABS(PROB-Q))/M < TOLERANCE

ENDF
CALC PROB = PROB*PROB & PROB = PROB/SUM(PROB)

&  ENTROPY = -SUM(PROB*LOG(PROB)) & XENTROPY = SUM(PROB*LOG(PROB*Z/PRIOR))
DELETE C,W,A,U,R,Q,S,T,Z
ENDP

'M', "I:
'CONS', "I:
'RHS', "I:
'PRIOR', "I:

"(A UNIFORM
'CYCLE', "0:
'PROB', "0;

'ENTROPY', "0:
'XENTROPY' "0:
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7. Appendix

The Main Pfogram

SCALAR [VALD=2] NN & [VALD=6] MM & [VALU-20] MAXT & [VALU=0.0001] TOLL
MATRIX [R0WS=2;C0LD=6;VALU=1,2,3,4,5,6,1/1,1,1,1,1] CNSTRS

&  [R0WS=2;C0L0=1;VAL0«3.5,13.0] EXVAL
&  [ROWS=6;COLU=1;VALD=6(0.166667)] PRR

"Print the size of the problem, maximum iterations, tolerance, constraints,
the rhs (expected values) and the prior"

PRINT NN ; DECI<»0 & MM ; DECIcO & MAXT ; DECI°0
&  TOLL & CNSTRS & EXVAL & PRR

CRSENT [MAXCYCLE=MAXT; TOLERANCE=TOLL] N-NN; M°MM; CONS=CNSTRS;\
RHS=EXVAL; PRIOR»PRR; PROB»PRBS; CYCLE«ITS ; ENTROPY^ENTNATS; XENTROPY»XENT

"Print the probabilities, the ntimber of iterations actually used,
the entropy and cross entropy in nats"

PRINT PRBS ; DECIo4 & ITS ; DECI»0 & ENTNATS ; DECI«4 & XENT ; DECI=4
STOP

Edited Output
Input: NN = 2; MM = 6; MAXT = 20; TOLL = 0.0001

CNSTRS

1

1 1.000

2 1.000

EXVAL

1 4.500

2 1.000

PRR

1 0.1667

2 0.1667

3 0.1667

4 0.1667

5 0.1667

6 0.1667

Output: ITS =

PRBS

1 0.0544

2 0.0788

3 0.1142

4 0.1654

5 0.2398

6 0.3475

2

2.000

1.000

3

3.000

1.000

4

4.000

1.000

5

5.000

1.000

6

6.000

1.000

4; ENTNATS » 1.6136; XENT « 0.1782
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Minimization of a Function

PWUne

AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden
Herfordshire
United Kingdom AL5 2JQ

Genstat provides the ability to search for parameter values that minimize a function of those
parameters. The method of doing this is described in the Genstat Manual, Chapter 8, Section 8.6.4.
However, because that section is buried at the end of a chapter, and a chapter otherwise devoted to
regression analysis at that, it may escape the notice of someone looking for a minimization technique.
The index does contain entries for 'function minimization* and for 'optimization*, but it is notoriously
difficult to provide index entries to satisfy all the ways that may be tried to look up a subject

This article is intended to summarize briefly the available facilities, leaving out the regression
framework that surrounds them in the Manual. I also give details of some changes made in Genstat 5
Release 2, and of some errors in the Genstat Manual and in output printed by Genstat following a
function minimization.

1. How to Minimize a Function

There are four directives that are usually needed to carry out a function minimization, though
the first of these, the expression directive, is optional in simple cases. Firstly, then, the form
of the function should be given in the form of one or more Genstat expressions; the expressions
should be in the form expected by the calculate directive to calculate the function from
current values of the parameters. All the parameters, and the function value itself, will be
assumed by Genstat to be scalar structures.

For a simple example, consider the problem of minimizing a function of just one parameter, p
say:

f{p) = 2 + p/4 - log(p).

This can be solved algebraically to give the result / = 1.614 when p = 4, with second
derivative 0.0625 at the solution, so it is easy to evaluate the results that Genstat gives. The
required expression in Genstat is specified by the statement:

EXPRESSION [VALUE«=<f=2+p/4-LOG(p) )] ex

This uses the standard function log (natural logaritbm) and the identifiers/and p. The outer
pair of round brackets are optional here.

The function is minimized by the following three statements:
MODEL [FUNCTION=f]
RCYCLE p
FITNONLINEAR [CALCULATION=ex]

2. Output from the fitnonlzmear Directive

The FITNONLINEAR Statement above gives the following output, using Release 2 of Genstat.
***** Results of optimization *****

*** Minimum function value: ***

1.61371

*** Estimates of parameters

estimate

p  4.00

***

sq. root of
2nd derivs

5.64

The solution p = 4 has thus been correctly found, but the associated number 5.64 does not
seem right. In fact, it is the heading that is wrong, because the quantity is, as intended, the
square root of the inverse of the second derivative of half the function. The reason for giving
this particular quantity is discussed in Sections 4 and 5.
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The output can be modified by the print option of fitnonlinear. The available settings are
^summary' and 'estimates*, which give the two default sections of output already shown,
'monitoring* to give information about the search process, and 'correlations* to indicate the
interdependence of the parameter estimates, as in a regression analysis. Here are the two extra
sections of output for the simple function above.

*** Convergence moni'bcring ***

Cycle Eval Move Function value Current p:
0 1 0 2.2500000 1.00000

Steps 0.050000

1 4 0 1.8779203 1.74989

2 8 0 1.6144749 4.1590

3 12 0 1.6137969 3.9462

4 15 0 1.6137056 3.9994

Steps 0.0125000

5 18 1 1.6137056 4.0002

6 22 6 1.6137056 4.0001

Steps 0.39739

1 26 0 1.6137056 4.0001

*** Scaled 2nd derivatives ***

estimate re£ scaled 2nd derivatives

p  1 1.000
1

These 'correlations* are of little use with a single parameter, but can show up potential
problems of parameterization when there are more parameters. Their heading, 'Scaled 2nd
derivatives*, is also wrong and is discussed fiuther in Sections 4 and S.

After the minimization, the scalar /will store the minimum function value, and p will store the
best parameter value.

3. Extensions for More Complicated Functions

If a function has more than one parameter, then a list of parameter names can be given in the
RCYCLE statement. There is no formal limit to the number of parameters in a function to be
minimized in Genstat, but the speed of solution and the likelihood of success decrease as the
number of parameters increases.

When the function is more complicated than in this simple example, it may be difficult to
specify in a single expression; in that case, a series of expressions may be used.

EXPRESSION [VALUE=(fl=LOG(p))] e[l]
&  [VALUE=(f=2+p/4-fl)] e[2]

FITNONLINEAR [CALCULATION=e]

Here, the identifier e is of a pointer that points (automatically, by the syntax of the Genstat
language) to the two expression structures e [l] and e [2].

The minimization process is done by an algorithm known as 'modified Newton-Raphson*. The
modification is evidenced by the absence of the need to specify the derivatives of the function
with respect to the parameters: these are estimated internally by a differencing method. The
process is not guaranteed to succeed, and indeed is likely to fail with complicated functions
unless careful thought is given to the parameterization of the function, to starting values for the
parameters, to initial steplengths for the search process, and to upper and lower bounds to
exclude values of the parameters that would cause the calculations to break down. Initial values,
steplengths and bounds can all be specified in the rcycle directive:

RCYCLE p; STEP=0.1; LOWER=0; UPPER=1000; INITIAL=1

To find the solution, or perhaps one of several solutions, of a function, it may be necessary to
try several starting values. It may be helpful to inspect a grid of values of the function, wMch
can be formed by calculate statements, or by use of the ngrid option of fitnonlinear in
conjimction with the bounds parameters of rcycle:

RCYCLE p; L0WER=1; UPPER=11
FITNONLINEAR [PRINT^grid; NGRID=6; CALCULATION=e]
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This gives the following output.
*** Grid of function values ***

p  1.00 3.00 5.00 7.00 9.00 11.00

2.250 1.651 1.641 1.804 2.053 2.352

4. Errors

There are some errors in the Genstat Manual and in the output from the fitnonlinear
directive.

(1) Page 385, Section 8.6.4, Line 8
Replace 'log likelihood' by iog-likelihood ratio'.

(2) Page 388, Line 4
Replace 'estimated matrix' by 'inverse of the estimated matrix'.

(3) Page 388, Line 7
Replace 'second-derivative matrix' by 'inverse of the second-derivative matrix'.

(4) Page 388, Line 9
Replace 'a likelihood' by 'of the form -log(likelihood ratio)'; but see (8) below for a
further change.

(5) Output from PRlNT=estimates
The title should read 'sq. root of inverse of 2nd derivs' rather than 'sq. root of 2nd derivs';
but see (9) below for a further change.

(6) Output from PRlNT=correlations
The title should read 'Scaled inverse of 2nd derivatives' rather than 'Scaled 2nd

derivatives'.

In Genstat 5 Release 2, the results printed after function minimization for the option setting
PRiNT=estimates were changed. The intention was to print standard errors of the parameters
if the fimction minimized was actually a deviance function. The deviance is -2'<'log(likelihood
ratio); for example, the deviance for the Normal distribution is the residual sum of squares. The
standard errors are, however, based on the second derivatives of log(likelihood ratio), and this
factor of 2 introduces differences to the output. Thus for Release 2, the following further
changes should be made to the Manual:

(7) Page 386, Output from PRINT=estimates
Replace '0.579' by '0.820' and '1.16' by '1.64'.

(8) Page 388, Line 9
Instead of (4) above, replace 'a likelihood' by 'a deviance, of the form -2t'log( likelihood
ratio)'.

(9) Output from PRiNT=estiinates
Instead of (5) above, the title should read 'sq. root of twice the inverse of 2nd derivs'
rather than 'sq. root of 2nd derivs'.

5. Interpretation of the Output

As a result of the statistically motivated change in Release 2, the estimates of variability for
arbitrary frmctions of parameters, like the simple example in this article, are now based on the
inverse second-derivative matrix of half the target function. This is not actually as perverse as
it may seem. One use of the second-derivative of the function at the solution, say, is to
provide an approximate form of the function in the neighbourhood of the solution, using the
Taylor expansion:

fiP) =fiPo) + (P-Po)^*/"(Po)/2 + ...
This expansion also has a factor of 2! So using the quantity displayed by Genstat, called se say,
the formula reduces to:

fiP) =/(Po) + {{p-Po)fse}^ + •
So we can approximate /(4.5) by 1.61371 + {0.5/5.64}^ = 1.622; the actual value is of
course easy to evaluate here as 1.62092. The se can be seen to be the change in p that gives a
one unit increase in this approximation of the target function near the solution.
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Regression Analyses for Multicollinear Data Using Genstat
A J Rook and M S Dhanoa

AFRC Institute of Grassland and Environmental Research
Hurley
Maidenhead

Berks

United Kingdom SL6 5LR

1. Introduction

A major problem arises with ordinary least-squares (OLS) multiple regression analyses when
there is collinearity among the explanatory variables. This leads to unstable estimates of the
regression coefficients which are dif^cult to interpret in terms of the underlying causal
processes and results in poor prediction in independent data sets. Selection of variables by
stepwise procedures is also less efdcient in collinear data. A number of methods have been
proposed to overcome this problem including principal component regression and ridge
regression (Hoerl and Kennard, [2]). This paper summarises these methods and describes their
implementation in a Genstat procedme.

2. Statistical Methods

Apart from examination of correlation coefficients between the explanatory variables, there are
further tests for the degree of collinearity. The variance inflation factors (VIF), which are the
diagonal elements of the inverse of the correlation matrix, may be examined. VIF > 10 indicate
severe collinearity (CHiatteijee and Rrice, [1]). The ratio of the squared error in the ordinary
least-squares regression coefficients to the expected squared error if the data were orthogonal

,^VIF.. ^VIF,.

%p'^ % p
gives an overall measure of the degree of collinearity in the data. Rj values in excess of 5
indicate severe collinearity (Qiatterjee and Rice, [1]).

Let the regression model be represented by

Y = xp + u

where 7 is an nxl vector of observations on a response variable, X is an nxp matrix of
observations on p explanatory variables, ̂  is a pxl vector of regression coefficients and u is nxl
vector of residuals. Let X and Y be scaled such that X'X and X'Y are matrices of correlation

coefficients. The least-squares estimator of p is

jS = {x'xy^xy.
It can be shown that the total mean square error

j=\.

where ^ ^ ^ A^ are the ordered latent roots of X'X. It follows that when one or
more latent roots are small the total mean square error is large indicating imprecision in the
least-squares estimates. The ith latent root. A,-, may be viewed as the sample variance of the ith
principal component. If A,- = 0 then all observations on the corresponding component are also
0. Since the principal component is a linear function of the original variables a latent root » 0
indicates an approximate linear dependence among the original explanatory variables. By
examining the latent vectors associated with small latent roots it is possible to identify which of
the original variables give rise to serious collinearity.

The original regression model can be restated in terms of the principal components as

Y = Wa-¥ u

where 17 is an nxp matrix of principal component scores. It is thus possible to calculate
regression coefficients (a) in terms of the principal components and transform them to the
coefficients on the original scale {P). The collinearity associated with principal components
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with small latent roots may be removed by excluding these components from the regression.
The reduced model can then be transformed to the original scale. Estimated regression
coefficients produced in this way are biased, since some information is excluded, but they
should be more stable and more in line with theoretical expectations.

Ridge regression (Hoerl and Kennard, [2]) allows a unified approach to the detection of
collinearity and the estimation of new coefficients to overcome the problem. The estimates
produced are biased but have a smaller mean square error than OLS estimates and are thus more
stable. Prediction of values outwith the estimation data is thus more precise. Ridge regression
can also be applied to the maximal model and used to assist in variable selection.

The ridge estimates are indexed by a parameter > 0 such that

^{k) = {X'x+kiy^x'Y = {x'x+kiy^xx^
total mean square error is

E{(hk)-P)'0W-P)^ = p-iXTC+kiy^ P

=  + k!^p'(X'X-¥kI)^p.
1=1

The first term in this equation is the total variance of the ̂ (k) while the second term is the
square of the bias. The aim in ridge regression is to select a value of k for which the reduction
in total variance is greater than the increase in bias. This may be achieved by examination of the
ridge trace, a graph of the p regression coefficients plotted against k. Large fluctuations in
estimated coefficients in response to small increments in k indicate instability. Guidelines for
selection of (Hoerl and Kennard, [2]) are: (1) at a certain value of k the system will stabilize;
(2) coefficients will not have theoretically unreasonable values or improper signs; (3) the
residual sum of squares will not have been excessively inflated. Vinod [3] introduced a
quantitative measure of the stability of the ridge trace called the *index of stability of relative
magnitudes*

ISRM = £[0>(A../(A,+ifc))VjA,)-l]'
I

where s = ̂X;/{Xi+k)^. For orthogonal data ISRM = 0. Vinod [3] also pointed out that if

lA l > IjS) I in standardised orthogonal data then |r,.| = |j&;|/s.e.(j9, ) > |r^. | should also hold.
This may be tested by calculating the correlation between the \^; \ and the 1?^ | which Vinod [3]
termed the 'numerical larg^ess of more signfficant regression coefficients* (NLMS). For
orthogonal data NLMS = 1. is thus chosen so as to minimise residual sums of squares and
ISRM and maximise and NLMS, taking account of the theoretical expectations for the
values of the parameters.

Ridge regression can also be applied to the maximal model to assist in variable selection. The
ridge trace of the maximal model is examined and variables are eliminated: (1) if they are
unstable and tend to 0 (i.e. lose their predicting power); (2) if they are stable but very small;
(3) if, after 1 and 2, remaining variables are unstable. TTie final equation is then estimated from
the full model using an appropriate value of k rather than by least-squares using a reduced
model.

Both principal component regression and ridge regression de-emphasize the minor principal
axes in order to overcome collinearity. However in some circumstances the response variate
may be highly correlated with these axes and the methods will then perform poorly. Vinod [3]
proposed an overall quantitative measure of the suitability of data for these methods termed the
'positive correlation spread association*. This is the simple correlation between the absolute
values of the correlations of the standardised response variate with each principal component
and the square root of the latent roots associated with each component This should be close to
1 for these methods to be justified.

Vinod [3] suggested replacing the scale in the ridge trace with a new scale termed the
multicollinearity allowance

m = p -
i

m may be interpreted as the assigned deficiency in the rank of (X'X), that is it is an index of the
degree of de-emphasis of the minor principal components.
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3. Description of Procedure

Procedure ridge has two parameters. The paremeter y is used to pass the response variate to
the procedure. The parameter x is set to a pointer which contains the explanatory variates.
Because the procedure makes use of Genstat*s matrix algebra functions, the parameters must
neither be restricted nor contain missing values.

The procedure also has two options. Option print controls the analysis and printing of results
while option dgraph controls the production of high-resolution graphics. Setting PRiNT=corr
produces the correlation matrix among the explanatory variates using the correlate directive,
the variance inflation factors and R^. Setting print^cp produces a principal component
analysis using the statement

PGP [PRINT=loading,roots; method«=corr]

The standardised response variate is then regressed on the principal component scores using the
usual MODEL and fit directives. The correlations of the standardised response variate with each
principal component are also calculated and printed explicitly to increase the clarity of the
output The coefficients of the three smallest principal components are then set to 0
consecutively and each time the regression coefficients are transformed back to those of the
original variate both on standardised and unstandardised scales and printed. The positive
correlation spread association is also printed.

Setting pRiNT=ridge calculates ridge regression coefficients on the standardised scale for
values of k between 0 and 1. These are printed in parallel with k and m. The standard errors of
the coefficients and the coefficients on the unstandardised scale are printed in subsequent
blocks. Finally the residual sum of squares, total variance of the ridge coefficients, ISRM
and NLMS are printed for each k.

Setting DGRAPH=yes produces high-resolution ridge traces of the ridge coefficients against both
k (Hoerl-Kennard trace) and m (Vinod trace). These are output to the graphics device set up
prior to the call by the user. The trace for each explanatory variate is labelled by its ordinal
position in the pointer x.

4. Example

The data for this example are taken from Chatterjee and Price [1] and are shown in Table 1. The
procedure was run using the program shown below

JOB 'test program for procedure ridge'
UNITS [NVALUES=11]
READ import,doprod,stock,consum
POINTER [VALUES=doprod, Stock, consiam] indep
OPEN 'rtrace.dat'; CHANNEL=9; FILE=graphics
DEVICE 9

RIDGE [PRINT=corr,pep,ridge; DGRAPH^yes] Y=import; X=indep
ENDJOB

STOP

Year Imports Domestic Stock Domestic

production formation consumption

49 15.9 149.3 4.2 108.1

50 16.4 161.2 4.1 114.8

51 19.0 171.5 3.1 123.2

52 19.1 175.5 3.1 126.9

53 18.8 180.8 1.1 132.1

54 20.4 190.7 2.2 137.7

55 22.7 202.1 2.1 146.0

56 26.5 212.4 5.6 154.1

57 28.1 226.1 5.0 162.3

58 27.6 231.9 5.1 164.3

59 26.3 239.0 0.7 167.6

Table 1

Milliard of French francs (Chatterjee and Price, [1])
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The ou^ut from the example is shown in the Appendix with the output from DGRAPH=yes as
shown in Figure 1.

S  0.6

S 0.2

H o e r 1 — K e n n a r <1 R ± dl g-e Trace

0.1 0.2 0.3

Ic

0.4 0.5 0.6 0.7 O.B 0.9

Viriod. Rxdge Trace

Z 0.6

S 0.2

1.5 1.75

Figure 1
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6. Appendix
Edited output from example.

The output from PRINTBcorr is shown below.

******* REGRESSION ANALYSES FOR MDLTICOLLINEAR DATA *******

*** Correlation matrix ***

doprod 1.000
stock 0..026 1.000
consum 0.997 0.036 1.000

doprod stock consum

*** Variance Inflation Factors ***

doprod
186.0

stock

1.019

consum

186.1

*** Ratio of squared error in OLS estimates of regression
coefficients to error if data were orthogonal ***
124.4

The output from PRINT=»pcp follows.

***** Principal components analysis *****

*** Latent Roots ***

roots

1

1.999

2

0.998

3

0.003

*** Percentage variation ***

roots

1

66.64

2

33.27

3

0.09

*** Trace ***

trace

3.000

*** Latent Vectors (Loadings) ***

indep
doprod
stock

consum

vectors

1

0.70633

0.04350

0.70654

0.03569

-0.99903

0.02583

-0.70698

-0.00697

0.70720

***** Regression Analysis

Response variate: stany
Fitted terms: pcp[l], pep[2], pep[3]

*** Stimmary of analysis ***

Regression
Residual

Total

d.f.

3

8

11

s.s.

9.91896

0.08103

10.00000

m.s.

3.30632

0.01013

0.90909

V. r. F pr.
326.41 <.001

Percentage variance accounted for 99.0

* MESSAGE: The following units have high leverage:
11 0.70
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*** Estimates of regression coefficients ***

pcptl]
pep [2]
pcp[3]

estimate

2.1819

-0.605

3.67

0.0712

0.101

1.94

t  t pr.
30.65 <.001

-6.01 <.001

1.89 0.095

*** Coefficients of original variables excluding effect of 1, 2 or 3 smallest p

One Principal con^onent(s) excluded

Standardised scale

doprod stock consum
1.520 0.6993 1.526

Original scale
int doprod stock

-76.21 0.2301 1.927

consum

0.3360

Two Principal consonant(s) excluded

Standardised scale

doprod stock consxun
1.541 0.09491 1.542

Original scale
int doprod stock

-71.83 0.2334 0.2615

consum

0.3395

Three Principal con^onent(s} excluded

Standardised scale

doprod stock consum
0  0 0

Original scale
int doprod stock

21.89 0 0

consum

0

*** Correlation of Standardised Response Variable with Principal Component Scor

pcp[l]
0.9756

pep [2]
-0.1911

pep[3]
0.0602

*** Positive correlation spread association ***

0.8180

Output from PRINT=ridge follows.

*** Ridge Coefficients ***

k m doprod stock consum

0.0000 0.000 -0.3393 0.2130 1.3027

0.0010 0.272 -0.1174 0.2150 1.0802

0.0020 0.429 0.0097 0.2161 0.9525

0.0030 0.532 0.0922 0.2167 0.8696

0.0040 0.604 0.1499 0.2171 0.8114

0.0050 0.658 0.1925 0.2173 0.7683

0.0060 0.699 0.2253 0.2174 0.7351

0.0070 0.733 0.2512 0.2175 0.7086

0.0080 0.760 0.2723 0.2175 0.6871

0.0090 0.783 0.2897 0.2174 0.6692

0.0100 0.803 0.3043 0.2174 0.6541
0.0200 0.911 0.3786 0.2161 0.5751

0.0300 0.962 0.4060 0.2144 0.5430

0.0400 0.995 0.4196 0.2127 0.5249

0.0500 1.021 0.4271 0.2109 0.5128

0.0600 1.043 0.4315 0.2091 0.5038

0.0700 1.062 0.4341 0.2073 0.4968

0.0800 1.080 0.4356 0.2055 0.4909

0.0900 1.097 0.4363 0.2038 0.4858

0.1000 1.112 0.4364 0.2021 0.4813

0.2000 1.245 0.4265 0.1864 0.4499
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0.3000 1.353 0.4112 0.1730 0.4274

0.4000 1.446 0.3957 0.1614 0.4082

0.5000 1.528 0.3809 0.1513 0.3911

0.6000 1.602 0.3669 0.1424 0.3755

0.7000 1.668 0.3538 0.1345 0.3613

0.8000 1.727 0.3415 0.1275 0.3482

0.9000 1.782 0.3300 0.1212 0.3360

1.0000 1.831 0.3192 0.1155 0.3247

*** standard Errors of Ridge Coefficients ***

k m doprod stock consum

0.0000 0.000 0.43405 0.03213 0.43418

0.0010 0.272 0.31664 0.03196 0.31673

0.0020 0.429 0.24933 .0.03187 0.24941

0.0030 0.532 0.20572 0.03181 0.20578

0.0040 0.604 0.17517 0.03176 0.17522

0.0050 0.658 0.15260 0.03172 0.15264

0.0060 0.699 0.13524 0.03168 0.13528

0.0070 0.733 0.12149 0.03164 0.12152

0.0080 0.760 0.11033 0.03161 0.11036

0.0090 0.783 0.10109 0.03157 0.10112

0.0100 0.803 0.09333 0.03154 0.09336

0.0200 0.911 0.05381 0.03122 0.05382

0.0300 0.962 0.03901 0.03091 0.03901

0.0400 0.995 0.03149 0.03062 0.03149

0.0500 1.021 0.02706 0.03032 0.02706

0.0600 1.043 0.02421 0.03004 0.02420

0.0700 1.062 0.02225 0.02975 0.02224

0.0800 1.080 0.02083 0.02948 0.02083

0.0900 1.097 0.01978 0.02921 0.01977

0.1000 1.112 0.01896 0.02894 0.01895

0.2000 1.245 0.01559 0.02653 0.01558

0.3000 1.353 0.01438 0.02449 0.01437

0.4000 1.446 0.01359 0.02273 0.01358

0.5000 1.528 0.01295 0.02122 0.01294

0.6000 1.602 0.01240 0.01989 0.01240

0.7000 1.668 0.01191 0.01872 0.01191

0.8000 1.727 0.01147 0.01768 0.01146

0.9000 1.782 0.01106 0.01675 0.01105

1.0000 1.831 0.01068 0.01591 0.01067

*** Ridge Coefficients on Original Scale ***

k m int doprod stock consum

0.0000 0.000 -10.128 -0.05139 0.5869 0.2868

0.0010 0.272 -9.841 -0.01778 0.5924 0.2379

0.0020 0.429 -9.670 0.00148 0.5953 0.2097

0.0030 0.532 -9.553 0.01396 0.5970 0.1915

0.0040 0.604 -9.467 0.02270 0.5980 0.1787

0.0050 0.658 -9.398 0.02915 0.5986 0.1692

0.0060 0.699 -9.342 0.03412 0.5989 0.1619

0.0070 0.733 -9.294 0.03805 0.5991 0.1560

0.0080 0.760 -9.252 0.04124 0.5991 0.1513

0.0090 0.783 -9.215 0.04388 0.5990 0.1474

0.0100 0.803 -9.181 0.04609 0.5989 0.1440

0.0200 0.911 -8.928 0.05734 0.5954 0.1266

0.0300 0.962 -8.734 0.06150 0.5908 0.1196

0.0400 0.995 -8.558 0.06354 0.5859 0.1156

0.0500 1.021 -8.392 0.06469 0.5809 0.1129

0.0600 1.043 -8.231 0.06536 0.5760 0.1109

0.0700 1.062 -8.074 0.06575 0.5711 0.1094

0.0800 1.080 -7.920 0.06598 0.5662 0.1081
0.0900 1.097 -7.768 0.06608 0.5615 0.1070

0.1000 1.112 -7.618 0.06610 0.5568 0.1060

0.2000 1.245 -6.217 0.06459 0.5135 0.0991

0.3000 1.353 -4.952 0.06228 0.4766 0.0941

0.4000 1.446 -3.800 0.05994 0.4446 0.0899

0.5000 1.528 -2.744 0.05769 0.4168 0.0861

0.6000 1.602 -1.773 0.05557 0.3924 0.0827

0.7000 1.668 -0.877 0.05359 0.3706 0.0796

0.8000 1.727 -0.047 0.05173 0.3513 0.0767

0.9000 1.782 0.724 0.04999 0.3338 0.0740

1.0000 1.831 1.442 0.04835 0.3181 0.0715
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*** RIDGE Regression Fit and Stability Parameters ***

k m RSS Rsq TVARB ISRM NLMS
0.0000 0.000 0.0810 0.9919 0.37794 5.928 0.1971
0.0010 0.272 0.0837 0.9916 0.20160 5.865 0.2445
0.0020 0.429 0.0876 0.9912 0.12539 5.784 0.2761
0.0030 0.532 0.0911 0.9909 0.08568 5.686 0.2545
0.0040 0.604 0.0940 0.9906 0.06240 5.572 0.2407
0.0050 0.658 0.0964 0.9904 0.04759 5.443 0.2351
0.0060 0.699 0.0984 0.9902 0.03759 5.301 0.2386
0.0070 0.733 0.1000 0.9900 0.03053 5.147 0.2518
0.0080 0.760 0.1015 0.9899 0.02535 4.983 0.2752
0.0090 0.783 0.1027 0.9897 0.02144 4.810 0.3091

0.0100 0.803 0.1038 0.9896 0.01842 4 .630 0.3533

0.0200 0.911 0.1102 0.9890 0.00677 2.745 0.9037

0.0300 0.962 0.1139 0.9886 0.00400 1.312 0.9951

0.0400 0.995 0.1170 0.9883 0.00292 0.539 1.0000

0.0500 1.021 0.1201 0.9880 0.00238 0.235 0.9998

0.0600 1.043 0.1234 0.9877 0.00207 0.189 0.9995

0.0700 1.062 0.1271 0.9873 0.00187 0.264 0.9994

0.0800 1.080 0.1310 0.9869 0.00174 0.386 0.9994

0.0900 1.097 0.1353 0.9865 0.00164 0.518 0.9995

0.1000 1.112 0.1400 0.9860 0.00156 0.644 0.9995

0.2000 1.245 0.2052 0.9795 0.00119 1.299 0.9998

0.3000 1.353 0.2981 0.9702 0.00101 1.454 0.9999

0.4000 1.446 0.4112 0.9589 0.00089 1.491 1.0000

0.5000 1.528 0.5385 0.9462 0.00079 1.495 1.0000

0.6000 1.602 0.6756 0.9324 0.00070 1.490 1.0000

0.7000 1.668 0.8191 0.9181 0.00063 1.482 1.0000

0.8000 1.727 0.9667 0.9033 0.00058 1.475 1.0000

0.9000 1.782 1.1163 0.8884 0.00052 1.469 1.0000

1.0000 1.831 1.2666 0.8733 0.00048 1.465 1.0000

Editors' Note: the ̂ nal form of the procedure ridge may be different from that illustrated
above
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