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Editorial

This edition of the Newsletter contains a number of articles arising from the Seventh Genstat Conference
at Papendal. First there is a report on the many activities that took place during the conference. This
is followed by an exposition of different ways of using the FITNONLINEAR directive. Thefirst article from
the conference is about the application of FITNONLINEAR to piecewise linear regression. There is then
an introduction to the new facilities in Release 3 for fitting smoothing splines, providing the analysis of
generalized additive models. Two new procedures, now available in Library 2[3], are described next: the
first carries out calculations for modelling the development of temperature-dependent processes, and the
second tests fixed effects in an unbalanced mixed model. The topic of smoothing is continued in two
more articles, applied in the problem of fitting mixtures of Normal distributions and in the diagrammatic

representation of two-dimensional data. Finally, there is an article giving advice on using Genstat on a
PC.

While you now have a chance to examine in detail some of the new ideas given at the last Genstat
Conference, we would like to remind you that the Second Australasian Genstat Conference is about to
take place in Rotorua during 14-15 December and that the Eighth Genstat Conference, which will take
place in Canterbury, England, 19-23 July 1993, is now being planned. Further details are enclosed with
this Newsletter.

Erratum: Procedure for conditional logistic analysis, CONDML

There is an error in the procedure CONDML on Page 9 of Newsletter 26, in the article by John Thompson
on “Conditional Logistic Regression in Genstat”. The 12th line of the procedure (the contents of the
second FOR loop) should read

CALCULATE i = i + 1 : & j = CF$[i] : & a = a + j*X[i]

In the printed version, the last i was omitted: this causes no problem if the parameter NP is 1, but the
procedure fails if NP is greater than 1.

The editors apologize for this error, introduced during publishing.
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Seventh Genstat Conference, Papendal (Arnhem) 23-27 September 1991

J Withagen

Centre for Agrobiological Research (CABO-DLO)
Wageningen

The Netherlands

The papers and presentations shown at the Seventh Genstat Conference once more demonstrated the
flexibility of Genstat. The wide, and still increasing, range of possible analyses in Genstat and the ability
to add new statistical analyses using the procedure facilities or by linking Fortran programs to it, makes
Genstat a very powerful system. From the constantly growing number of procedures in the Genstat

Procedure Library we learn that many users work with these facilities and build procedures for use in
special areas of work.

At the Conference, new facilities in Release 3 were described and demonstrated. New directives were
added and several directives have extra options or parameters providing new interfaces to more statistics.
Also the user interface is improved. Roger Payne told us that Release 3 will have a graphical user interface
to any Genstat command, and there will also be a ‘spreadsheet’ for entering and editing data. Especially
for interactive users, this will be a welcome improvement of the user interface.

Many talks and posters were about theory and application of statistical techniques from different areas
of work. They concerned mainly regression analysis, generalized linear models, the use of REML, and
nonlinear regression. Also, many new procedures were described for a wide range of purposes such as
fitting special models, analysis of repeated measurement experiments, least-median-squares regression
and visualizing three-dimensional biplots.

A very interesting extension to Genstat’s regression section was described by Trevor Hastie from AT&T
Bell Labs: “Generalized Additive Models” (GAMs) can be fitted using the MODEL and FIT directives. A
statement of the form

FIT SMOOTH(variate; df)

fits smooth curves from linear (df=1) to a rather flexible curve (df=number of unique values of the variate).
(Ed: the name SMOOTH has been replaced by SSPLINE in Release 3.1, or S for short.) The current state
of the implementation in Release 3 was demonstrated later by Peter Lane. I believe this new facility
will prove to be a very useful extension to what Genstat already has to offer. Another extension to the
regression section in Release 3 will be the possibility to fit an ordinal response model with the standard
directives; up to Release 2 this can be done only using the procedure ORDINALLOGISTIC.

The subject of teaching Genstat was again one of the topics of the conference. Gillian Arnold of the
Long Ashton Research Station described how they use the interactive package Instat for teaching basic
statistics. Later on, a conversion course from Instat to Genstat is offered to the students who want
this. She talked about the experiences in teaching this course for three years. Jan Oude Voshaar of the
Agricultural Mathematics Group in Wageningen described how he uses Genstat for teaching statistics to
Dutch agricultural researchers in post-academic courses.

On Tuesday we had a special session. Since we were staying at the National Sport Centre Papendal,
Mr J A Vos, connected to this centre, gave a lecture on Statistics and Sport. After dinner we were
invited to go to the Sports Hall to do some training with or without supervision. Some of us even came
away with a graph to prove how hard we had worked.

On Wednesday afternoon a coach took us to the National Park ‘De Hoge Veluwe’ where we could
choose from several activities such as visiting the Kroeller—Mueller Museum with its art gallery (Vin-
cent van Gogh and others), the sculpture garden and special expositions, or a cycling tour in the nature
reserve. A number of participants, myself included, chose the cycling tour; the weather, however, did not
cooperate and we got wet through. Looking at the grasses and trees, I do believe they welcomed the rain
a lot more than we did. But back at the museum restaurant our cycling tour made the coffee taste even
better.

The conference dinner on Thursday night was on a boat going from Arnhem to Nijmegen on the rivers
Rhine and Waal. While enjoying the meal, we had good views of the city of Nijmegen.

For their excellent local organization, thanks are due to Paul Goedhart of the Agricultural Mathematics
group (GLW-DLO) and Valentijn van den Berg of the Institute of Agricultural Engineering (IMAG-DLO)
at Wageningen.
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Using the FITNONLINEAR Directive

Ruth Butler

Department of Agricultural Sciences
University of Bristol

AFRC Institute of Arable Crops Research
Long Ashton Research Station

Bristol

United Kingdom BS18 9AF

1. Introduction

FITNONLINEAR is a very powerful command which can be used for a wide range of applications. This great
flexibility can make the command difficult to use in that there are several ways in which the FITNONLINEAR
directive and associated MODEL, RCYCLE and EXPRESSION directives can be set up; it is not always easy
to see exactly how to produce the required analysis. There are other problems in using FITNONLINEAR:
in nearly all cases, good initial parameter values must be found because otherwise the iterative process
may fail. Some solutions to these problems are discussed below.

There are three main uses for FITNONLINEAR: function minimization, fitting of empirical distributions to
frequency data, and the fitting of nonlinear models. Several types of nonlinear model can be fitted: those
which include linear parameters, and those which do not; and also those for which linear or nonlinear
parameters vary with the levels of a factor. The type of model that is fitted depends on the settings of
the parameters and options in the FITNONLINEAR and MODEL directives as well as the specification of the
EXPRESSION to be used. Each type of analysis has a standard format for the directives, and once it is
understood which format is needed FITNONLINEAR becomes very much easier to use. These basic formats
are outlined below, with examples to illustrate their use. All references are to the Genstat 5 Reference
Manual unless otherwise stated.

2. Function minimization

The general format is as follows (reference: Section 8.6.4, p385):

EXPRESSION e; VALUE=!e(f = F(theta))
MODEL [FUNCTION=f]

RCYCLE theta; INITIAL=77
FITNONLINEAR [CALC=e]

A scalar value £, which is the result of calculating function F with parameters theta, can be minimized
with respect to theta. The function, defined with an EXPRESSION directive, is passed to FITNONLINEAR
using its CALCULATION option, and the parameters theta are indicated using the RCYCLE directive. In this
case there is no response variate, so the MODEL statement has no parameter; instead Genstat is informed
of the name of the scalar to be minimized using the FUNCTION option of MODEL. The result of the function
must be a scalar, but the function itself may include variates or factors as well as the scalar parameters
to be estimated.

For example, the following statements find the value of z that minimizes f = z2.

EXPRESSION e; VALUE=e!(f = x**2)
MODEL [FUNCTION=f]

RCYCLE x; INITIAL=0.5
FITRONLINEAR [CALC=el

*x*+* Results of optimization #**#**
*** Minimum function value: #***
0.10381E-20
*** Estimates of parameters ***
8q. root of

estimate 2nd derivs
x 0.000 1.000
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Note: The estimated minimum value of the function f is not exactly 0, because the process has converged
within the tolerances of the convergence process (p358).

The manual gives another example (8.6.4a on p385), and more information is given in the article by Lane
(1991).

3. Fitting empirical distributions

The general format is as follows (reference: 8.6.3, p384):

EXPRESSION e; VALUE=!e(c = DIFF(f(x; theta))*num)
MODEL [DISTRIBUTION=multinomiall] count

RCYCLE theta; INITIAL=7??

FITNONLINEAR [CALC=e]

There are many experiments where the aim is to estimate the distribution (with parameters theta) of a
continuous variable. For example, the length of 100 seeds may be found, and the distribution of these
lengths estimated. Instead of recording each individual length, the numbers of seeds falling into each
of several length intervals (eg Omm to lmm, 1mm to 2mm etc) should be recorded (individual lengths
could be tabulated to give a variate of counts). These counts are used as the response variate to estimate
the parameters of the distribution of the lengths. The variate z contains the interval limits in ascending
order, and an expression is set up using z to define the cumulative distribution. This distribution must
then be differenced to give the predicted proportion of seeds falling in the intervals defined by z, and
then multiplied by the total number (num) of seeds to give the predicted counts.

It is sometimes necessary to make sure that the last count is 0 (to allow proper definition of the distri-
bution) so the last interval of £ must reflect this. Also, since the DIFFERENCE function is used in the
expression, the first fitted value will be missing; thus the first value of z is really the lower value of the
first interval, so the count for this should be a missing value.

The DISTRIBUTION option of MODEL is set to ‘multinomial’ to indicate that a distribution is being fitted;
it does not indicate that the distribution of the counts is multinomial! There is no parameter for the
FITNONLINEAR statement, because the calculated variate £ is to be fitted directly to the counts. More
information about this type of distribution fitting can be found in Brain and Butler (1988); see also
Butler and Brain (1991).

For example, say z is the length of a seed in mm, the distribution to be fitted is Normal, and the data
are as follows:

length 0 <1 <2 <3 <4 <5 <6 <7 <8 <9 <10 <20 >20
count  * 1 3 4 4 7 8 6 6 4 1 5 0

The counts are for length > z;_, and length < z;; for example, there are four seeds > 3 and < 4mm.
The parameters of the distribution to be estimated are ‘mean’ and ’SD’.

VARIATE [VALUE=0...10,20,50] length

VARIATE count; VALUE=!(%,1,3,4,4,7,8,6,6,4,1,5,0)

CALC num = SUM(count)

MODEL [DISTRIBUTION=multinomiall count; FITTED=f

EXPRESSION e; VALUE=!e(f = DIFF(NORHAL((1ength—mean)/SD))*num)
RCYCLE mean,SD; INITIAL=5.5,3

FITNONLINEAR [CALC=e]

This gives the following output.

**x*** Nonlinear regression analysis *#***

Response variate: count
Distribution: Multinomial
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**+ Summary of analysis #**=*
Dispersion parameter is 1

mean deviance

d.f. deviance deviance ratio
Regression 2 * *
Residual 9 3.190 0.3545
Total 11 * *

*+* Estimates of parameters #*x*

estimate s.e.
mean 5.699 0.492
SD 2.999 0.412

*MESSAGE: s.e.s are based on dispersion parameter with value 1

Note that only the residual deviance is given, which is a measure of the goodness-of-fit of the distribution,
rather than an estimate of random variation or variation left unexplained, as in regression.

The example in the Manual (p384, 8.6.3b) shows an alternative method for fitting an empirical distribu-
tion. The new DISTRIBUTION directive in Release 3 of Genstat 5 will give a simpler method for fitting
distributions.

4. Fitting nonlinear models

Unlike the other two uses of FITNONLINEAR, the fitting of nonlinear models is the exact analogue of a
linear fitting process, in that there is a response variate Y to be described by an explanatory variate (or
variates) X. The difference is that Y is described by a nonlinear function of X so that, as well as the

linear parameters (constant A and slope B in our examples below), there are also nonlinear parameters
N:

Y =A+4 B.f(X;N)

The MODEL, FITNONLINEAR, RCYCLE, and EXPRESSION statements needed to fit such a nonlinear model
depend on whether the parameters vary with the levels of a factor, and whether the constant and slope
parameters (A and B) are to be included.

The basic format is as follows:

MODEL Y

EXPRESSION e; VALUE=!e(f = £(X; N))
RCYCLE N; INITIAL=??

FITNONLINEAR [CALC=e] £

This fits a basic model where there is no factor involved. It is important that initial values of the
parameters are supplied using the RCYCLE directive, since the iterative search will usually fail without
them. Some methods for choosing initial parameter values are described in Section 3. If the parameter
estimates are displayed using the RDISPLAY directive or the PRINT option of FITNONLINEAR, then the
constant parameter A will be labelled ‘Constant’ and the slope parameter B will be labelled by the
parameter of FITNONLINEAR (f in the example).

Below are shown the variations to this basic format needed to allow parameters to vary between the levels
of a factor F with nlevF levels, or to omit either A or B.

4.1. No constant (A = 0)
The model is: y = B.f(z; N)

MODEL Y

EXPRESSION e; VALUE=!e(f = £(X; N))
RCYCLE N; INITIAL=??

FITNONLINEAR [CALC=e; CONSTANT=omit] f

If A is to be fixed at a value other than 0, then subtract this value from the data, and fit the model as
above.

-1
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4.2. Constant A varies with the levels of F
The model is: y = 4; + B.f(z; N)

This model can be fitted in two ways: the first method gives the constant for the first level of F, and then
the differences between this constant and those for the other levels of F; the second gives each constant.

MODEL Y
EXPRESSION e; VALUE=!e(f = £f(X; N))
RCYCLE N; INITIAL=7?
FITNONLINEAR [CALC=e] F+f
"this gives A1, A2-A1, A3-Al etc labelled F 1, F 2, F 3 etc"

MODEL Y
EXPRESSION e; VALUE=!e(f = £(X; N))
RCYCLE N; INITIAL=7?7?
FITNONLINEAR [CALC=e; CONSTANT=omit] F+f
"this give parameters A1, A2, A3 etc labelled F 1, F 2, F 3 etc"

4.3. No slope (B is a fixed value k, A is omitted)
The model is: y = k. f(X; N)

MODEL Y; FITTED=f

EXPRESSION e; VALUE='e(f = k*f(X; N))
RCYCLE N; INITIAL=77

FITNONLINEAR [CALC=e]

Note: The parameter of FITNONLINEAR is not set because no linear parameters are being estimated (8.6.3,
p382).

4.4. No slope (B fixed with value k), A is estimated
The model is: y = A+ k.f(X; N)

There is no straight-forward method of fitting this model. A needs to be specified in the expression and is
treated as a nonlinear parameter. Therefore, this method does not use linear estimation for the constant,
which can make estimation slow.

MODEL Y; Fitted=f

EXPRESSION e; VALUE=!e(f = A+k.f(X; N))

RCYCLE A,N; INITIAL=77?
FITNONLINEAR [CALC=e]

Note: The parameter of FITNONLINEAR is not set. In Release 3, this model will be able to be fitted by
using the OFFSET option of MODEL.

4.5. Slopes (B) vary with the levels of F
The model is: ¥ = A+ B,.f(X;N)

MODEL Y

POINTER [NVALUES=nlevF] £

EXPRESSION e; VALUE=!e(£[] = (F.EQ.1...nlevF)*f(x; N))
RCYCLE N; INITIAL=77

FITHONLINEAR [CALC=e] £[]

A dummy variate £ [i] of 1s and 0s must be set up for each factor level i. These are multiplied by the
nonlinear function to give a set of dummy variates, effectively giving a separate regression for each level
of the factor. In output, the slope parameter for level i is labelled using the name of the relevant dummy
variate (£ [i] in this case).
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4.6. Nonlinear parameter(s) vary with F
The model is: ¥ = A+ B.f(X; N;)
MODEL Y; fitted=f
POINTER [NVALUES=nlevF] N,tempN
EXPRESSION e[1]; VALUE=!e(tempN{J = (F.EQ.1...nlevF)*N[])
& e[2]; VALUE=!e(sumN = VSUM(tempN))
& e[3]); VALUE=!e(f = f(x; sumlN))
RCYCLE N(J; INITIAL=?7?
FITNONLINEAR [CALC=e]

The structures called tempN[] are dummy variates used to form sumN which is a variate containing
different N[i] for each level of the factor, so that the nonlinear function uses a different N[i] according
to the factor level that is applicable for each unit of the response variate. --

4.7. All parameters vary with the levels of F.
The model is: Y = 4; + B;.f(X; N;)

The best method of fitting this is to restrict Y to each level of F in turn, and estimate the model separately.
This is easily done in a FOR loop:

MODEL Y
RCYCLE N; INITIAL=7??
FOR i=1...nlevF
RESTRICT Y; F.EQ.i
FITNONLINEAR [CALC=e] £
ENDFOR

If the nonlinear parameters are very different for each level of F, then obviously the loop must include
the RCYCLE statement with the different initial parameter values included as parameters of the FOR
statement.

MODEL Y

FOR i=1...nlevF; initial=?7...77
RESTRICT Y; F.EQ.i
RCYCLE N; INITIAL=#initial
FITNONLINEAR [CALC=e] £

ENDFOR

The procedure FITPARALLEL in the Genstat Procedure Library fits this model, pooling the results over
all factor levels, and also the separate constants, separate slopes and single curve models. The results
are combined in order to mimic FITCURVE used sequentially to produce'a ‘parallel curve’ analysis, but
for non-standard curves.

4.8. Examples

All the examples below fit variants of the following logistic function of log-concentration (Figure 1):

y = A+ C/(1+ Conc * exp(—M)B)

This function is equivalent to using FITCURVE [CURVE=logistic] logConc, but the parameterization
above allows zero concentrations to be included. This cannot be done with FITCURVE, since log(0) is not
defined. Also, some of the models fitted below cannot be fitted with FITCURVE, even if zero concentration
is not included. The variate Y stores the dry weight of weed, and Conc is the concentration of a herbicide
used to control them. The treatment factor GroTemp is the temperature at which the plants were grown,
with three levels.

UNIT [24]

VARIATE [VALUE=3(0,0.01,0.03,0.1,0.3,1,3,10)] Conc

FACTOR [LEVELS=3; LABELS=!t(lo,med,hi); VALUES=(1...3)8] GroTemp
READ [PRINT=data,summary] y

11.338 12.550 12.279
10.766 12.804 11.543
10.725 12.590 11.621
9.556 10.575 11.695
4.293 5.357 10.274
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1.933 2.705 5.590
1.440 2.466 2.513
1.481 2.238 1.854 :

The following statements fit the model with A = 0, allowing C to vary between the levels of F; B and M
are common (Figure 2).

MODEL y
POINTER [NVALUES=3] f

EXPRESSION e; VALUE=!e(f[] = (GroTemp.EQ.1...3)/(1+(Conc*EXP(-M))**-B))
RCYCLE B,M; INITIAL=-2,-1
FITNONLINEAR [CALC=e; CONSTANT=omit] f£[J]

The output is as follows.

*k*k* Nonlinear regression analysis #¥***

Response variate: y
Fitted terms: f[1], £[2], £[3]

**x*x Summary of analysis ***

d.f. s.s. m.s. v.r.
Regression 3 1785.13 357.026 203.21
Residual 19 33.38 1.757
Total 24 1818.51 75.771

Percentage variance accounted for 91.3

*** Estimates of parameters *¥x*

estimate s.e.
B -0.908 0.183
M -0.793 0.226
* Linear
£[1] 10.94
(2] 12.68
£[3] 13.28

The following statement lets A, B and M vary with the levels of F, but C is constant between levels
(Figure 3).

MODEL y

POINTER [NVALUES=3] M,B,tempM,tempB

EXPRESSION e[1]; VALUE='e(tempB[],tempH[] = (GroTemp.EQ.1...3)*B[],M[])
& e[2]; VALUE=!e(sumB,sumM = VSUM(tempB,tempM))

& e[3]; VALUE=!e(f = 1/(1+(Conc*exp(-sumM))**-sumB))

RCYCLE B[] ,M[J; INITIAL=3(-0.9,-0.8)

FITNONLINEAR [CALC=e; CONSTANT=omit] GroTemp+f

The output is as follows.

*xx*% Nonlinear regression analysis #****x*

Response variate: y
Fitted terms: £, GroTemp

***% Summary of analysis ***

d.f. s.s. m.s. v.r.
Regression 10 1817.400 181.73996 2287.29
Residual 14 1.112 0.07946
Total 24 1818.512 75.77134

Percentage variance accounted for 99.6

10



*** Estimates of parameters ***

estimate s.e.
B[1] -2.018 0.195
B[2] -2.209 0.211
B[3] -1.867 0.180
M[1] ~-1.5784 0.0634
M[2] -1.6398 0.0609
M[3] -0.2773 0.0693
* Linear
f 9.986
GroTemp lo 1.256
GroTemp med 2.543
GroTemp hi 1.834
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The following statements fit the model with A and C omitted (fixed at 0 and cw), lets M vary with the
levels of GroTemp but keeps B constant between levels (Figure 4).

SCALAR cw; VALUE=12
MODEL y; fitt=f
POINTER [NVALUES=3] M,tempH

EXPRESSION e(1]; VALUE=!e(tempM[] = (GroTemp.EQ.1...3)*M[])

& e[2]; VALUE=!e(sumM = VSUM(tempM))

& e[3]; VALUE=!e(f = cw/(1+(Conc*exp(-sumM))**-B))

RCYCLE B,M[]; INITIAL=-2,-1.6,-1.6,-0.3
FITNONLINEAR [CALC=e; CONSTANT=omit]

The output is as follows.

*xk*%x Nonlinear regression analysis ¥*x¥**

Response variate: y

**x*x Summary of analysis #*#

da.f. 8.s. m.s.
Regression 4 1799.79 449.9464
Residual 20 18.73 0.9363
Total 24 1818.51 75.7713

Percentage variance accounted for 95.4

* MESSAGE: The following units have large standardized residuals:

23 2.02

*** Estimates of parameters ***

estimate s.e.
B -1.125 0.130
M[1] -1.465 0.199
M[2] -1.003 0.200
M[3] 0.044 0.200

480.54

11
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5. Using the RFUNCTION directive

This directive was introduced in Genstat 5, Release 2 and is described in the Reference Manual Supple-
ment 8.4 p64. RFUNCTION can be used to calculate functions of the parameters estimated by FITNONLINEAR
and their standard errors. Parameters that are explicitly mentioned in the expressions can be used in the
expression for RFUNCTION as they stand, but the constant and slope parameters are more difficult. These
can be included in the expression by using the name that appears in the output from PRINT=estimates,
but encased in single quotes.

The examples below are based on finding the LD10, the concentration giving y = A+0.9C, for the logistic
in the first two examples of 3.7, and also the value of y at the LD50 (y = A + 0.5C). A third example is
given for these two parameters when the model fitted was a logistic with no factor involved and both A
and C estimated. Note that the SELINEAR option of FITNONLINEAR must be set to yes if standard errors
are required for functions involving linear parameters, as Y50 does.

LD10 = exp(M + log(9)/B)
¥50= A+ C/2

12
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5.1. A=0, B, M comuon, C varies with the levels of GroTemp (see first fitted model)

EXPRESSION 110; !'e(LD10 = exp(M+log(9)/B))
RFUNCTION [CALC=110; PRINT=estimates,se] LD10

*xx*%* Estimates of functions of parameters ****x*
*** Estimates and standard errors ***

estimate s.e.
LD10 0.0402 0.0214

POINTER [NVALUES=3] Y50
EXPRESSION y50; VALUE='e(Y50[] = *£(1]’,’f[2]’,°£[3]°/2)
RFUNCTION [CALC=y50; PRINT=estimates,se] Y50[]

**xkk Estimates of functions of parameters ****x

*%x* Estimates and standard errors **x*

estimate s.e.
Y50([1] 5.469 0.384
Y50[2] 6.339 0.400
Y50([3] 6.639 0.406

5.2. A, B, M vary with the levels of GroTemp, C does not (see second fitted model)

POINTER [NVALUES=3] LD10
EXPRESSION 110; VALUE=!e(LD10[] = exp(M[1+log(9)/8[(1) )
RFUNCTION [CALC=110; PRINT=estimates,se] LD10[]

**++x Estimates of functions of parameters *****

*** Estimates and standard errors **x*

estimate s.e.
LD10[1] 0.06934 0.00878
LD10[2] 0.07171 0.00839
LD10[3] 0.2335 0.0319

POINTER [NVALUES=3] Y50
EXPRESSION y50; VALUE=!e(Y50[]=’GroTemp lo’,’GroTemp med’,’GroTemp hi’+’£’/2)
RFUNCTION [CALC=y50; PRINT=estimates,se] Y50[]

*x+*x Estimates of functions of parameters ***x*

*x* Estimates and standard errors ¥*x*

estimate s.e.
Y50[1] 6.250 0.122
Yso0[2] 7.536 0.120
Y50[3] 6.827 0.129

5.3. All parameters estimated with none varying with GroTemp

MODEL y

EXPRESSION e; VALUE=!e(f = 1/(1+(Conc*exp(-M))**-B))
RCYCLE B,M; INITIAL=-2,-1

FITNONLINEAR [PRINT=estimates; CALC=e; SELINEAR=yes] £

**x* Estimates of parameters #***

estimate s.e.
B -1.573 0.491
M -1.226 0.213
* Linear
£ 10.032 0.887
Constant 1.915 0.641

EXPRESSION 110; VALUE=!e(LD10 = EXP(M+log(9)/B))

13
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RFUNCTION [CALC=110; PRINT=estimates,se] LD10
*x**k* Estimates of functions of parameters #*#*x
**x* Estimates and standard errors ***

estimate s.e.
LD10 0.0726 0.0332

EXPRESSION y50; VALUE=!e(Y50 = ’Constant’+’f’/2)
RFUNCTION [CALC=y50; PRINT=estimates,se] Y50

*x*x+x Estimates of functions of parameters ****#
*** Estimates and standard errors **#

estimate s.e.
Y50 6.931 0.368

6. Choosing initial parameter values

For many models, the choice of initial parameter values is crucial to the success of the fitting process.
Some methods are given here to help make this choice.

6.1. Plot the response variate against the explanatory variate(s)

For example, a graph of the data for the logistic model used above will give fairly obvious initial values
for M, and B can be estimated by finding the slope at M.

6.2. Fit an approximate model using FITCURVE

Sometimes a nonlinear model is similar, but not identical, to one that can be fitted using FITCURVE. The
logistic model above can be fitted using FITCURVE [curve=logistic] with explanatory variate logConc,
replacing the value for concentration zero with a large negative number in logConc. The results of this
can be used by RCYCLE.

6.3. Linearize the data

Some models can be linearized if approximate values for the linear parameters are known. For the logistic
model above, if A and C are guessed, then:

ly=log (C;I-%E_Y) = BM = Blog(conc)

ly can be calculated and then linearly regressed on logConc using FIT; the resulting parameter estimates
can be used to find initial values for B and M to use with RCYCLE.

7. Problems with the iterative process

If several attempts have been tried using different initial values, and the iterative process has failed to
converge each time, a solution can sometimes be found if the optimization method is changed. The
standard method is the Gauss-Newton, but the Newton-Raphson method will often converge when this
fails. The method can be changed using the RCYCLE directive:

RCYCLE [METHOD=newton] B,M; INITIAL=77
Alternatively, some parameters can be held constant, whilst the rest are estimated. This is useful if
parameters are highly correlated, or if there are many parameters to be estimated relative to the amount

of data. It can be done by setting the STEPLENGTH parameter of RCYCLE to zero for those to be held
constant:

RCYCLE B,M; INITIAL=1,0.5; STEPLENGTH=0,*

14
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If the fitting process converges, then the parameter estimates obtained can be used as initial values
in a new RCYCLE statement, either setting the steplengths for other parameters to zero (to hold these
constant), or setting all steplengths to * (to estimate all parameters).

In the above process, it is useful to note that all the nonlinear parameters are set up by RCYCLE to be
scalars, and that at the end of the fitting process they contain the final estimates for the parameters. If
the same parameters are used in a later FITNONLINEAR statement, without reinitializing their values in
an RCYCLE statement, then the previously estimated values are used as initial values.

RCYCLE B,M; INITIAL=1,*; step=*,0
Sometimes the iterative process crashes completely, producing a ‘Fatal Fortran’ error. This is not (usually)
due to a program fault, but due to calculations attempted by Genstat. Changing the initial values or

the iterative method can solve this problem; alternatively, the expression can be re-parameterized, for
instance replacing a parameter that must be positive by exp(parameter). For example, replace

y=1/(1+exp(=b*(z —m)))
by

y = 1/(1+ exp(— exp(lb) * (z — m))).

8. Problems with functions used in expressions

In the fitting process, Genstat can produce values that are too large or too small for the functions (eg
LOG, EXP) used in the expression to deal with. This usually causes a large number of warnings of the
type:

‘Invalid value for function...’

These warnings can be prevented, and the iterative process kept ‘on track’ if logicals are included in the
expression to prevent invalid values being produced.

For example, the largest value that the EXP function can take is machine dependent, on a PC the value
is 87. If the expression included the calculation is
EXP(M)

then the argument for EXP can be prevented from exceeding 87 by replacing the calculation with:
EXP( 87+*(M.GT.87)+M*(M.LE.87) )

9. References
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Piecewise Linear Regression With Genstat

J B van Biezen

Institute for Forestry and Nature Research (IBN-DLO)
PO Box 9102

6800 HB Arnhem

The Netherlands

A piecewise linear regression is a model for the relationship between two variables that is made up of
line segments. Fitting such a model is a “normal” regression analysis if the positions, on the axis of
the explanatory variable, of the intersection points of the segments are known and fixed before fitting.
When they are not fixed one cannot fit a piecewise regression by means of FIT statements alone. A
first approach for the estimation of the position of intersection points is to use one or more loops of
X-values and FIT and RKEEP statements. A second more exact fit can then be obtained using RCYCLE and
FITNONLINEAR. Asymptotic standard errors of the positions, and correlation coefficients between them,
can also be estimated. An asymptotic confidence ellipse of an intersection point can also be calculated.

It is not easy to write a general Genstat procedure for fitting piecewise linear regression models as tuning
of the fitting process is necessary. The output below shows the fitting of a model with three segments, the
intermediate segment being constrained to be horizontal. It should be fairly easy to modify the program
to work with other models, such as two segments, with or without a constraint that one of them should
be horizontal.

Fit of non-horizontal, horizontal and non-horizontal segments

20} *
15}
10}
x
x * X
» x :
t
st *
o e
=
1 1 A 1 4 A Il I
2.5 5 7.5 10 12.5 15 17.5 20
——— gitted v X
. « YvXx
Figure 1

Fit of non-horizontal, horizontal and non-horizontal segments

Because the statistical aspects of piecewise linear regression models are easily understood, these models
can be used to introduce the RCYCLE and FITNONLINEAR directives in Genstat courses. The program
shown below has been used in this way, though for the purpose of this article the original program has
been rewritten somewhat and simulated observations are used. The original version of this program was
used to examine real observations made by a research worker.
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The model can be extended in several ways. It is possible to include a horizontal line in the model: further,
it is possible to fix the " value of the horizontal line. Estimating such a value is another possibility. Also,
extension to a generalized linear model is possible.

The program makes use of the SORT directive to divide the set of X values into groups for the initial
search. The search is time-consuming, running through many possibilities to find a good and reliable
starting point for the final fit. Estimates of standard errors and correlation coefficients are calculated.
However it is doubtful whether these estimates are good ones; they give rough indications of the precision
of each estimate and the relationship between these estimates. It is possible to add a sixth step, using
the RFUNCTION directive to get standard errors and correlation coefficients of functions of the primary,
estimated parameters.

It is possible to use Newton-Raphson, Gauss-Newton or Fletcher—Powell algorithms in Stcp 4. If one
algorithm does not converge, one of the others may do so.

Note that the graph that is drawn does not display the model completely correctly. This is because the
line is drawn by joining up fitted values rather than by calculating points from the fitted equation.

Appendix: Output from the Genstat Program

1 JOB ’'Fit a horizontal segment between two non-horizontal segments’

2 " Simulate Y values instead of real observed values:"

3 CALCULATE X,Y = !(2(1...20)),!(2(1...6,8(7),9,11...19))

4 & Y = Y+NED(URAND(368412;40))

5

6 " STEP 1: group X values and calculate the number of different X values"
7 SORT [INDEX=X; GROUPS=help]

8 CALCULATE nn= NLEVELS(help)

9

10 " STEP 2: calculate an initial residual sum of squares"

11 MODEL Y; FITTED=fitted
12 FIT [PRINT=x] X
13 RKEEP Y; DEVIANCE=ss

15 " STEP 3: rough first fit"

16 TABULATE [CLASS=help] X; MEAN=tmx
17 SCALAR mx[1...nn]; VALUE=#tmx

18 FOR I=1...nn

19 CALCULATE X1 = (X-mx[I])#*(help<I)
20 FOR J=I...nn

21 CALCULATE X2 = (X-mx[J])*(help>J)

22 FIT [PRINT=*; NOHESSAGE=aliasing] X1,X2
23 RKEEP Y; DEVIANCE=ss2

24 IF ss2<ss

25 SCALAR ss,left,right; VALUE=ss2,mx[I,J]
26 ENDIF

27 ENDFOR

28 ENDFOR

29 " Output of first rough search:"
30 CALCULATE X1 = (X-left)*(X<left)
31 & X2 = (X-right)*(X>right)

32 FIT X1,X2

**¥+* Regression Analysis #¥***

Response variate: Y
Fitted terms: Constant, X1, X2
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*** Summary of analysis ***

d.f. S.S. m.s. v.r.
Regression 2 1002.58 501.288 410.44
Residual 37 45.19 1.221
Total 39 1047.77 26.866

Percentage variance accounted for 95.5

* MESSAGE: The following units have large standardized residuals:
1 -2.79

* MESSAGE: The following units have high leverage:

1 0.205
2 0.205
39 0.205
40 0.205

***x Estimates of regression coefficients #x*

estimate s.e. t
Constant 7.010 0.243 28.80
X1 1.1906 0.0993 11.99
X2 2.0683 0.0993 20.82

34 ' STEP 4: Gauss—Newton fit"

35 EXPRESSION calc3[1]; VALUE=!e(lcoef = (X-left)*(X<left))

36 & calc3[2]; VALUE=!e(rcoef = (X-right)*(X>right))

37 RCYCLE [METHOD=gaussnewton] left,right

38 FITNONLINEAR [PRINT=model,summary,estimates,correlations; \
39 CALCULATION=calc3; SELINEAR=yes] lcoef,rcoef

..............................................................................

*+*%* Nonlinear regression analysis ****#

Response variate: Y

*** Summary of analysis ***

d.f. s.S. m.s. v.r.
Regression 4 1003.65 250.913 199.07
Residual 35 44 .11 1.260
Total 39 1047.77 26.866

Percentage variance accounted for 95.3

* MESSAGE: The following units have large standardized residuals:
1 -2.51

*** Estimates of parameters ***

estimate s.e.
left 7.271 0.564
right 14.310 0.342
* Linear
lcoef 1.151 0.150
rcoef 2.193 0.190
Constant 7.162 0.300
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**x* Correlations **x*

estimate ref correlations

left 1 1.000

right 2 0.185 1.000

lcoef 3 -0.756 0.000 1.000

rcoef 4 0.000 0.808 0.000 1.000

Constant 5 0.462 0.400 0.000 0.000 1.000
1 2 3 4 5

40

41 1IF right<left

42 " STEP 5: extra fit if there is not a horizontal segment”

43 CALCULATE limit = (left+right)/2

44 RCYCLE limit

45 EXPRESSION calc2[1]; VALUE='e(lcoef = (X-limit)#*(X<limit))
46 & calc2[2]; VALUE=!e(rcoef = (X~limit)*(X>1limit))

47 FITNONLINEAR [PRINT=model,summary,estimates,correlations; \

48 CALCULATION=calc2; SELINEAR=yes] lcoef,rcoef

49 DGRAPH [TITLE=title] fitted,Y; X; PEN=1,2

50 ENDIF

51

62 TEXT title; VALUES=\

63 ’Fit of non-horizontal, horizontal and non-horizontal segments’

64 PEN 1,2; METHOD=line,point; SYMBOL=0,1
55 DGRAPH [TITLE=title] fitted,Y; X; PEN=1,2

56 STOP
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Generalized Additive Models in Genstat: flexible nonparametric
modelling extensions

Trevor J Hastie

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

Peter W Lane

Statistics Department, AFRC Institute of Arable Crops Research, Rothamsted Experimental Station,
Harpenden, Herts, United Kingdom, AL5 2JQ

and

Rob J Tibshirani

Department of Preventive Medicine and Biostatistics, and Department of Statistics, University of Toronto,
Ontario, Canada

1. Additive models

An additive model is a multivariate regression model that is composed of a sum of lower dimensional
components. Each component relates the response variable to some of the explanatory variables —
usually just one — and the form of the relationship is general. So, an additive model whose components
each involve just one explanatory variable can be represented by

Y = fi(z)) + folzg)... + e

where f;( ) are arbitrary functions. These models are described in detail in Hastie and Tibshirani (1990).

The usual multiple linear regression model is a simple example of an additive model:
Y=oa+p62,+Brz,..+e

where the individual components are just linear effects of each explanatory variable. Polynomial regression
models are also additive; for example

Y = a+ {62, + Bro2i} + {By135 + Poaz3 + Bagz3} + €

where each component is a polynomial function of an explanatory variable.

More importantly, the components may be non-parametric, typically modelling the relationship between
the response and an explanatory by some smoothing device. A simple model involving one explanatory
model is

Y=Ff(z)+e

where f( ) is a smooth function produced by a scatterplot smoother. Estimates of f can vary between the
simple running mean, or a function more expensive to calculate, such as a kernel smooth or a smoothing
spline. The individual components of a model need not be all parametric, or all non-parametric; semi-
parametric models can also be considered, such as

Y =a+bz,+ Bz, + f3(z3) +e

This extension to include general functions of explanatory variables provides the data analyst with a
powerful tool to explore data. Non-parametric components can be included initially in a model to
suggest a suitable parametric form for the component. Alternatively, they can be included permanently
to adjust for the effect of explanatory variables for which an explicit parametric form is of no interest, or
for which a smooth data-generated effect is preferred to an imposed parametric form.
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2. Generalized additive models

The additive structure described above can be embedded in a richer class of models than just those
of multiple linear regression. In conjunction with the link function and exponential-family distribution
of generalized linear models, an additive model is more suitably called a “generalized additive model”.
This of course includes additive models as a subclass, just as linear regression models are a subclass of
generalized linear models. Generalized additive models can also be based on quasi-likelihood, rather than
on likelihood for explicit distributions from the exponential family.

For example, a logistic regression model can be modified to include smooth contributions from explanatory
variables.

Y is distributed as Binomial(1, p(X))
logit(p(X)) = log(p(X)/(1 — p(X)) = a + fi(z)) + fr(z,)---

Other examples where the extension can be made include:

e Log-linear models

o Transformation models, using the ACE algorithm, Breiman and Friedman (1985)
9(Y)=a+ fi(z)) + fr(z,)... + e

e The Cox model for censored survival data
I(X,t) = ly(t) exp(fi(z,) + fo(zq)...)

o Resistant additive models, using tapered likelihoods

e Semiparametric additive models for designed experiments

e Additive decomposition of time series

3. Fitting additive models

Additive models can be fitted by straightforward application of an iterative technique to solve a suitable
set of estimating equations. For a model with p explanatory variables, the equations have the form

Hlzy) =S y- folzs)- fa(-"'s)‘ cee fp(xp))
fa(ze) =Sy - filz))- fa(zg)— ...— fp(xp))
fp(-"-'p) =Sp(y_f1(-7-'1)- folzp)— "'-fp—l(zp—l))

where SJ- represent either linear regression operators, or univariate regression smoothers such as kernel
smoothers or smoothing splines.

The iterative technique known as Gauss—Seidel iteration, or “back-fitting” solves these by successively
carrying out the operations for each equation, refining the estimates for one component at a time; conver-
gence is checked by monitoring the change in the estimates. This can be set up as a simple loop around
existing code for fitting a linear regression, together with algorithms to carry out whatever smoothing
operations are required.

An appealing non-parametric smoother for the effect of a single explanatory variable is the smoothing
spline. This is a cubic spline with knots at the unique values of the explanatory variable, and with
constraints to ensure continuity and smoothness (continuity of gradient). This spline function arises as
the solution of the penalized least-squares problem: to minimize the function

z{y.- - fz)P + A /{f”(t)}’“’dt

i=1]

for some values of the Lagrange multipliers A;. Thus, the smoothing spline minimizes a criterion which
is the sum of squared deviations from the fitted values, plus a penalty for non-smoothness. The values
of the multipliers (known as the smoothing parameters) allow the smooth function to vary between the
extremes of being very “wiggly” and passing through all the data points, and of being very smooth — in
fact, being a straight line.
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4. Implementation in Genstat

The regression section is being extended in Release 3 to allow smooth terms in model formulae. So it
will be possible to give statements of the form

FIT SSPLINE(age)
or

ADD number + SSPLINE(start; 3)

The SSPLINE function (or S for short) specifies that the effect of an explanatory variate should be
represented by a smoothing spline. By default, four (effective) degrees of freedom will be assigned to
the smoothing operation, including the linear component. The second argument of the function can be
set to specify any other number of degrees of freedom — from 1, equivalent to a linear effect, up to the
number of distinct values of the variate. One uses these effective degrees of freedom as an alternative
and more intuitive way of specifying the amount of smoothing A;, and they are based on the expected
residual sum-of-squares for a null model (see Hastie and Tibshirani (1990) for more details).

Initially, the function may be used only for the effects of variates; but smooth effects for interactions
between smoothed variates and factors may also be added. It is also intended to allow smooth terms in
nonlinear models with Normal likelihood.

This extension has been integrated as far as possible with the existing regression facilities without disturb-
ing them. Thus there is no other syntax addition or change required to fit generalized additive models.
The maximum number of iterations made in backfitting can be controlled by specifying the MAXCYCLE
option of RCYCLE: this same limit is applied both to the backfitting algorithm and to the iterative weighted
algorithm used for generalized linear models. After the fit, the nonlinear components of each smoothed
term is available in variates attached to the regression save structure; a change will be made to the RKEEP
directive to allow access to these structures in the same way as to fitted values and residuals.

1F » X XX X X XX X XXM X X
6.8
(.6
c4r
0.2

0 F 200000@00GE X X 30CNCXI0MK XKMNAIONMK X X W X X X

é 5'0 160 1;0 2!;0 2;0
% x kyphosis v age
Figure 1

Plot of kyphosis vs age
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5. Example

The following example illustrates the fitting of a series of generalized additive models to binomial data.
The pictures are produced by a test version of procedure RGRAPH: a simpler version of this procedure is
in Procedure Library 2[3}, and this will be extended for Release 3.

Some other new features of Release 3 are also evident. Further checks are made on fitted models, and
messages printed if the residuals appear to have a distinctly non-random pattern. However, with a binary
response variable as in this example, it is not at all surprising that such patterns appear.

Genstat 5 Release 3.0 (Vax/VMS5) 2-MAR-1992 10:37:48.13
Copyright 1990, Lawes Agricultural Trust (Rothamsted Experimental Station)

1 " Data on 83 patients undergoing corrective spinal surgery;
-2 determine risk factors for kyphosis (forward flexion of the spine).
-3 Data from Hastie & Tibshirani p301."

4

5 " Open data file, and procedure library file containing test version

-6 of procedure RGRAPH."
7 OPEN ’kyphosis.dat’,’test.glb’; CHANNEL=2,1; FILE=input,procedure
8 READ [CHANNEL=2; SETNVALUES=yes] unit,kyphosis,age,number,start

Identifier Minimum Mean Maximum Values Missing
unit 1.00 42.00 83.00 83 0
kyphosis 0.0000 0.2169 1.0000 83 0 Skew
age 1.00 84.71 243.00 83 0
number 2.000 4.217 14.000 83 0 Skew
start 1.00 11.34 18.00 83 0

9 DGRAPH kyphosis; age

11 " Choose binomial distribution (logit link by default);
-12 note that NBINOMIAL can be set to a scalar in Release 3."
13 MODEL [DISTRIBUTION=binomial] kyphosis; NBINOMIAL=1
14 " Specify explanatories, and that smooth effects may be fitted."
15 TERMS SSPLINE(age,start)+number
16 " Fit smooth effect of age. "
17 FIT SSPLINE(age)

**%k* Regression Analysis *#d*x*

Response variate: kyphosis
Binomial totals: 1
Distribution: Binomial
Link function: Logit
Fitted terms: Constant + age
Functions: SSPLINE(age; 4)

*** Summary of analysis ***
Dispersion parameter is assumed fixed, with value 1

mean deviance

d.f. deviance deviance ratio
Regression 4 9.31 2.3265 2.34
Residual 78 77.50 0.9936
Total 82 86.80 1.0586
Change -4 -9.31 2.3265 2.34

* MESSAGE: The error variance does not appear to be constant:
large responses are more variable than small responses
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*x* Estimates of regression coefficients *¥*

estimate s.e. t
Constant -1.617 0.620 -2.61
age 0.00591 0.00611 0.97

* MESSAGE: s.e.s are based on dispersion parameter with value 1

19 " Display fitted model with procedure RGRAPH."
20 RGRAPH [GRAPHICS=high] age

22 " Add linear effect of number."
23 ADD number

***%* Regression Analysis *##¥*

Response variate: kyphosis
Binomial totals: 1
Distribution: Binomial
Link function: Logit
Fitted terms: Constant + age + number
Functions: SSPLINE(age; 4)

*** Summary of analysis **¥x*
Dispersion parameter is assumed fixed, with value 1

mean deviance

d.f. deviance deviance ratio
Regression 5 23.37 4.6750 5.68
Residual 77 63.43 0.8238
Total 82 86.80 1.0586
Change -1 -14.07 14,0688 17.08

* MESSAGE: The error variance does not appear to be constant:
intermediate responses are more variable than small or large responses
* MESSAGE: The following units have high leverage:

15 0.289
28 0.223
45 0.190

**+* Estimates of regression coefficients #**

estimate s.e. t
Constant -4.51 1.31 -3.46
age 0.00940 0.00767 1.23
number 0.8583 0.189 3.08

* MESSAGE: s.e.s are based on dispersion parameter with value 1

24

25 " Add smooth effect of start, specifying explicitly 4 d.f."
26 ADD SSPLINE(start; 4)

**kkk Regression Analysis #x**x

Response variate: kyphosis
Binomial totals: 1
Distribution: Binomial
Link function: Logit
Fitted terms: Constant + age + number + start
Functions: SSPLINE(age; 4)
SSPLINE(start; 4)
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**%* Summary of amalysis *##
Dispersion parameter is assumed fixed, with value 1

mean deviance

d.f. deviance deviance ratio
Regression 9 39.95 4.4387 6.92
Residual 73 46.86 0.6419
Total 82 86.80 1.0586
Change -4 -16.57 4.1433 6.46

* MESSAGE: The residuals do not appear to be random;
for example, fitted values in the range 0.00 to 0.07
are consistently larger than observed values
and fitted values in the range 0.61 to 0.85
are consistently smaller than observed values
* MESSAGE: The error variance does not appear to be constant:
intermediate responses are more variable than small or large responses
* MESSAGE: The following units have high leverage:
15 0.59
28 0.46

*** Estimates of regression coefficients ***

estimate s.e. t
Constant -2.29 1.63 -1.49
age 0.01278 0.00858 1.49
number 0.410 0.196 2.09
start -0.1673 0.0780 -2.14

* MESSAGE: s.e.s are based on dispersion parameter with value 1

27 RDISPLAY [accumulated]

***** Regression Analysis *#k#x*

*xx Accumulated analysis of deviance ***

Change mean deviance
d.f. deviance deviance ratio

+ age 4 9.3060 2.3265 3.62

+ number i 14.0688 14.0688 21.92

+ start 4 16.5734 4.1433 6.46

Residual 73 46.8556 0.6419

Total 82 86.8038 1.0586

28

29 " Display smoothing spline for start alone."
30 RGRAPH [GRAPHICS=high] start

31

32 STOP

6. References

Breiman L and Friedman J H (1985) Estimating optimal transformations for multiple regression and
correlation J. Amer. Statist. Assoc. 80 580-619.
Hastie T J and Tibshirani R J (1990) Generalized Additive Models Chapman and Hall, London.
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Modelling the Development of Temperature-dependent Processes

R J Reader and K Phelps
Biometrics Department
Horticulture Research International
Wellesbourne

Warwick

United Kingdom CV35 9EF

1. Introduction

The development of many biological organisms can often be regarded as an ordered sequence of processes
which take place over a period of time, punctuated by more-or-less discrete events (Thornley and Johnson
1990). Examples of these processes are seed germination, larval development and spore production for
plants, insects and fungi respectively.

Much modelling work on development is based on the idea that it is possible to associate a scalar variable
k with each phase, and to use the value of A to denote progression through that phase. If we assume that
the development of the process proceeds at a rate k (day~!) then

h= / k dt (1)

where ¢ is the time variable (day) and time ¢ = 0 is the beginning of the developmental phase under
consideration.

It is more usual to assume that the developmental rate k, and hence the variable h, depend directly upon
the environmental variables. In our case we assume that they depend solely upon temperature so that

k= »(T) (2)
and temperature varies with time so that
T=T() (3)
and hence .
h= /0 r(T(2))dt. (4)

The temperature-sum hypothesis has been widely used for many years. In this it is assumed that the
rate depends on temperature according to
_[k(T-Ty) T>T,

n(T) = {00, ’ othem(r)ise ()
where k; is a constant and Tj is a base temperature below which development ceases. The quantity h
can then be obtained by integration, but it is more usual to approximate it using summation because
temperature data are available as daily maxima and minima. Some authors use mean temperature for
each day to complete the summation, but this is highly inaccurate if temperatures lie either side of the
threshold. More often the concept of day-degrees (Meteorological Office, 1946) is used. This assumes
that temperatures each day follow a sine wave with period one day where the maximum and minimum
define the amplitude and mean. The properties of the sine curve make it convenient to calculate the
temperature-sum by hand.

. Equation (5) is not appropriate for some processes because the rate/temperature relationships are nonlin-
ear or non-monotonic. It is also well known that the sine wave does not describe the diurnal temperature
variation particularly well (Reicosky et al 1989). Although the day-degree approximations are accurate
enough to be useful in many applications, we have found several examples of processes where a more
sophisticated approach is needed.

In most cases we are interested simply in the day on which a process was completed rather than the exact
time at which it was completed. We therefore define the change in development on day i as being

1
Ah; = /0 r(T;(t)) dt (6)

and the total development is then .
i 1
h; =Z/ r(T;(t)) dt ()
j=0 0 _

where Tj(?) relates temperature, T, to time, {, on day j
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2. A Genstat procedure to calculate development

We have written a Genstat procedure, HEATUNITS, (Reader, Sutherland and Phelps 1991), also available
in Fortran, to allow for any rate function that can be described by a linear spline and a selection of
relationships for diurnal temperature variation discussed by Reicosky et al (1989). The possible diurnal
temperature variation functions are as follows, where X and N denote maximum and minimum temper-

atures, S and R denote sunset and sunrise times (in days) and subscripts p and n denote previous and
next days:

Sawtooth (9424t)(X,-N)
_ 2 p= S
:L'p 13 0<t S 24
_ 241-5)(X-N) 5 15
T(t)=( N+ CE=BX-N) 5 cyc s
;o (241215(X-Na) 15
X 14 24 <t S 1
Cosine Xo+N |, X,=N
- - 241410
—H— + T cos (#i10'+2_4n)) O<isk
) xan  x-n 24%(t—-R) 14
T(t)=q 2% - 458 cos (91:—2412)) R<isnm
X4N X=N w(24t1—-14 14
._'2Lm+—21cos(m%) —4'<tS1
LinSine (T(Sp)-N)(t+1-5;)
B - 2
T(S,) - (-5, 4R+ Z) - 0<t<(R+4)
. m(t-R-
Tt)=K N+(X - N)sm(m—)%') (R+ ’2'23) <t<S
(T(S)=Na)(t=S
vﬂsr“ﬁﬁﬁm+§) s<isld
ExpSine

705 (o (ZE55822) rp(2552)) v 1 252280
l—exp(—z-\—'b(zl"'c’)

T(t) = 4 N+(X—N)sin(ﬁ;%l) (R+c)<t< S

75 o (24521) ey (24522 04 1o 252))
L l—exp(—zi'—-'”z?""’)

0<t<(R+c)

S<t<l1

where for the ExpSine method Z, = 1—- S,+R, Z,=1-S+R,, Y = S— R and the parameters a, b, ¢
control the period of the sine wave, the rate of decay of the exponential and the offset of the sine wave

respectively. This is a slight modification of that used by Reicosky et al (1989) to constrain it to pass
through the next day’s minimum.

Our procedure calculates the contribution for each day as the analytic solution of using the maximum
and minimum temperatures for days i — 1, 7, ¢ + 1.

Integration of these functions was approached as follows. First we defined a general linear spline rate

function
0 T<T,
~T) = rj-l+”‘__7'%i)_(72§ﬂ T,_,<T<LT; j=1l...n (8)
0 T>T,

in terms of its n+ 1 cardinal temperatures, T ... T,,, and the rate, ry...7,, at those temperatures (Figure
1); this allowed Equation (6) to be integrated directly.
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T, T, Temperature T

Figure 1

Example of rate/temperature relationship approximated by a linear spline.
T, ... T, are cardinal temperatures and ry...r, are the corresponding rates.

Next the integral for each day is broken down into three or four sections depending on the temperature-
time relationship chosen (Figure 2). The endpoints of the sections are defined by the start and end of each
day, the times of the maximum and minimum temperature and, for the ExpSine and LinSine method,
the time at which the sinusoidal function ends. The contribution from all sections is then given by

3orid

T3 f H(T(t)) dt (9)

section=1 j=1

where u; is the earliest time that the temperature falls within the interval defined by the cardinal
temperatures and v; is the latest time. The earlier time limit, u;, is defined by the first occurrence
of cardinal temperature T]_l when the temperature is increasing and T,,_; ., when the temperature is
decreasing and the later time limit, v;, is defined by T; when the temperature is increasing and T,,_;
when the temperature is decreasing.

J’

3. Example of calculation of u; and v;

The middle part of the Sawtooth relationship results in the following definitions for u; and v; in terms
of X\.NandT,_;,,

e T;., <N
§ , 10(T,_,=N) .

U;S s+ =aoremy N<To <X (10)
= Tiaa>4X
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a) Sawtooth b) Cosine

c) LinSine d) ExpSine

Temperature

0 05 ' i 0 o5 i

Time (Days)

Temperature-time relationships. Vertical lines represent boundaries for integration.

5 ,
24 Tn—j+l <N
5 4 10(Ta_,41=N) .

V; \ 21+ Tt N<T, ;s <X (11)
15 .
2 Tjpn>A

Full details of the calculation of the limits for all temperature-time relationships and sections of the day
are not reproduced here but copies are available from the authors.

4. Example of use of HEATUNITS

This example, using data taken from Collier et al (1991), demonstrates the use of HEATUNITS with a
nonlinear rate-temperature relationship approximated by a linear spline. This is then used to show the
difference in time to 50% emergence of the cabbage root fly that would be expected if there was a 1-3°C
increase in temperatures due to global warming.

6 SCALAR StartDate; VALUE=32

7 VARIATE [NVALUES=150] SoilMax[0, 1, 3], SoilMin[0, 1, 3]

8 "Typical soil maxima and minima"

9 READ SoilMax[0], SoilMin[0]
Identifier Minimum Mean Maximum Values Missing
SoilMax [0] 3.62 12.29 28.80 150 0
SoilMin[0] 0.589 7.652 17.543 150 0]

41 VARIATE Params, Dayno, Temperature; !(2, 1.75, 3.5), \

42 1(32...181), 1(7,9,12...30)

43

44 "Approximate nonlinear late spring emergence rate
-45 equation by a linear spline"

46 CALCULATE CRF = 0.592 + 2.2525 * EXP(-EXP(-0.274 * \
47 (Temperature - 12.49)))
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48 GRAPH [NROWS=20; TITLE=’ Rate/Temperature relationship’; \
49 YTITLE=’Rate’; XTITLE=’Temperature’] 2(!(0,#CRF,0)); \
50 !(7,#Temperature,30); METHOD=line, point

Rate/Temperature relationship
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51 "Show effect of 1 or 3 degree rise in temperature on time

-52 of emergence of cabbage root fly"

53 CALCULATE SoilMax[1, 3], SoilMin[1, 3] = \
54 2(SoilMax[0], SoilMin[0]) + 1, 3

56 HEATUNITS [LATITUDE=52.205; METHOD=expsine; RATE=CRF; \
57 TEMPERATURE=Temperature; PARAMETERS=Params] \

58 MINTEMPERATURE=So0ilMin[0}; MAXTEMPERATURE=SoilMax[0]; \
89 FIRSTDAY=StartDate; HEATUNITS=Heatunits[0]

60 HEATUNITS [LATITUDE=52.205; METHOD=expsine; RATE=CRF; \
61 TEMPERATURE=Temperature; PARAMETERS=Params] \

62 MINTEMPERATURE=SoilMin[1]; MAXTEMPERATURE=SoilMax[1]; \
63 FIRSTDAY=StartDate; HEATUNITS=Heatunits([1]

64 HEATUNITS [LATITUDE=52.205; METHOD=expsine; RATE=CRF; \
65 TEMPERATURE=Temperature; PARAMETERS=Params] \

66 MINTEMPERATURE=SoilMin[3]; MAXTEMPERATURE=SoilMax[3]; \
67 FIRSTDAY=StartDate; HEATUNITS=Heatunits[3]

69 "Restrict out missing values at start and end of variate \

-70 before cumulating"

71 RESTRICT Heatunits[]; Heatunits[] .NE. CONSTANTS(’*?)
72 CALCULATE CHeatunits[0, 1, 3] = CUM(Heatunits[])

73 RESTRICT Heatunits[J], CHeatunits[]

74 RESTRICT CHeatunits[]; CHeatunits[J.LE.100

76 GRAPH [NROWS=25; YLOWER=0; YUPPER=100; \

77 YTITLE=% Development’; XTITLE=’Day of year’; \

78 TITLE=’Late spring emerging cabbage root fly larvae’] \

79 CHeatunits[]; Dayno; METHOD=line; SYMBOLS='0’, 10, 230\
80 DESCRIBE=’Actual Temperatures’, ’ + 1 degree’, ’ + 3 degrees’
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Late spring emerging cabbage root fly larvae
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A Genstat Procedure for Testing Main Effects and Interactions in an
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and
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1. Introduction

One of the major extensions of Genstat 5 in Release 2.1 is the analysis of an unbalanced mixed model.
Variance components are estimated by restricted (or residual) maximum likelihood (REML), fixed effects
are estimated by generalized least squares (GLS) and random effects are predicted by regression (BLUP).
For details and references see Engel (1990). Facilities for testing treatment effects (or fixed effects) are
restricted to paired comparisons between means corresponding to levels of a factor or to a combination of
factors. Therefore, the procedure VHALD has been written in order to produce Wald tests for main effects
and interactions. These tests may be used in the same way as F-tests in balanced ANOVA models.

2. The Wald test

Suppose that we have the following mixed model:
y=Xa+Zb)+...+2.b, +e,

where a is a vector of fixed effects, b, ...b, are vectors of random effects and e is a vector of residual error

terms. The elements of b, ..., and e are assumed to be independently Normally distributed with zero

means and variances o ...o2 and o2 respectively.

A simple example is a split-plot model where ¢ = 1, b; represents variation between whole-plots with
variance o7, and e represents variation between split-plots within whole-plots with residual variance o?.

Suppose that a = (a,,@a,)’ and the hypothesis of interest is H, : @, = 0. Sub-vector a, may for instance
represent the set of highest order interactions in the model.

The Wald test is based on approximate Normality of the estimators for the fixed effects:
a=(a,,a,) ~ N((ay,a,), V),
where V is the estimated covariance matrix
- Vi, ¥
V= ( Y11 A12) ]
Var Vo
The hypothesis Hy may be tested by referring the statistic
t=aVji'e
to a y2-distribution with p, degrees of freedom, where p, is the number of free parameters associated

with H; i.e. for a full rank design matrix X, p, is the number of elements of a,.

For the special case where a, represents a single contrast, i.e. p; = 1, the statistic ¢ is simply the square
of the standardized estimate a, / s.e.(@,), and may be compared with (1.96)2 = 3.84 = X os.

The Normal approximation for a single contrast may be replaced by an approximate t-test (Giesbrecht
and Burns 1985), accounting for the variability in the REML estimates of the variance components which
are used to evaluate the standard error s.e.(a,). For p; > 1 a similar procedure, for instance replacing
the x3-distribution by an appropriate F-distribution, is not known, except for some special cases. In the
procedure VWALD the y2-distribution is used in all cases.
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3. Example
As an illustration the procedure will be applied to a reproductive study of rats (Dempster et al 1984).

Weights of offspring (pups) of rats are measured. The mothers (dams) have been randomly allocated to
three treatment groups: control, low dose and high dose of an experimental compound. The weights may
depend on litter size and sex. Litter sizes vary from 2 to 18 pups with an average of 11.9.

Treatment  No of litters No of pups Mean Weight
Male Female Male Female

Control 10 77 54 6.47 6.12

Low 10 61 65 6.03 5.84

High 7 33 32 5.92 5.85
Table 1

Numbers of pups and mean weight

There are two sources of variation: variation between litters, represented by the dams, comprising both
genetic and common environment effects, and residual variation within litters. The mixed model is:
weight = u + dose + 3 * (littersize — 12) + €4,,, + sex + dose.sex + ¢

UNITS [NVALUES=322]

FACTOR [LEVELS=322] Pup

GENERATE Pup

FACTOR [LEVELS=27] Dam

FACTOR [LEVELS=2; LABELS=!T(’Male ’,’Female’)] Sex

FACTOR [LEVELS=3; LABELS=!T(’Control ’,’Lowdose ’,’Highdose’)] Dose

OPEN NAME=’DEMPSTER.DAT’; CHANNEL=2

READ [CHANNEL=2; LAYOUT=fized; FORMAT=!(8,3,3,-1,6,5,%)] \
Dose,Dam,Littersz,Sex,Weight; FREPRESENT=labels, (*)2,labels,*

VCOMPONENT [FIXED=Dose#*Sex+Littersz; ABSORB=Dam] RANDOM=Dam+Pup

REML Weight

VWALD [FIXED=Dose*Sex+Littersz]

residual

We start by inspecting the highest order interaction: sex.dose. The Wald test indicates that this inter-
action is not important and it is consequently dropped from the model.

Fixed Model : Constant +
(Dose * Sex) + Littersz
Wald tests

CHIsq. df. Prob.
0.931 2 0.628 Dose . Sex »

By default procedure VWALD produces only a test on the highest-order interaction(s); tests for lower-order
interactions or main effects are optional. Note that the latter tests are difficult to interpret because main

effects or lower-order interactions will be tested in the presence of higher-order interactions. All test
results are reproduced below.

VWALD [ALLEFFECTS=yes; FIXED=Dose*Sex+Littersz]

CHIsq. df. Prob.

0.931 2 0.628 Dose . Sex
23.669 2 0.000 Dose
31.671 1 0.000 Sex
46.855 1 0.000 Littersz

For the reduced model, tests for main effects are produced. Observe that there are (at least) two possi-
bilities here: the components of variance may be fixed to their estimates obtained from the largest model
fitted or they may be estimated again for the reduced model. The latter approach is followed in this
example.
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VCOMPONENT [FIXED=Dose+Sex+Littersz; ABSORB=Dam] RANDOM=Dam+Pup
REML Weight
VWALD [FIXED=Dose+Sex+Littersz]

CHIsq. daf. Prob.

23.184 2 0.000 Dose
57.182 1 0.000 Sex
47.109 1 0.000 Littersz

For the effects of dose and littersize, which are both related to the dams, differences with the optional
test results as obtained before are small. For sex, which relates to the individual pups, the test statistic
is almost doubled relative to the optional result.

4. Procedure VWALD

The procedure VWALD is in Procedure Library 2[3] (Buist and Engel 1992). At Release 3 of Genstat the
Wald test will become available within the REML directives, possibly together with a modified likelihood-
ratio test.

PROCEDURE ’VWALD’

Procedure for testing main effects and interactions in an unbalanced mixed
model (the Wald test) after using REML.

The Wald test is based on approximate Normality of the estimators for the
fixed effects. The test uses a chi-square distribution.

By default VWALD produces only a test on the highest order interaction(s);
tests for lower order interactions or main effects are optional.

VWALD expects REML to have been used earlier in the program.
There is

no check for REHL being used.

no check for the fixed model definition in VCOMPONENTS.

You may use the procedure remlWALD for controlling VWALD.

OPTION ’FIXED’, " (formula) treatment formula for the design"\
'ALLEFFECTS’, " (string) yes=tests for lower order interactions
or main effects ;
DEFAULT=NO : only highest order interactions"\
’FACTORIAL’ " (scalar) limit on the number of factors or variates
in each fixed term ; DEFAULT=3";\
SET =yes, (no)2;\
MODE =f,t,v;\
DEFAULT =#,!T(no),3;\
TYPE =’formula’,’text’, ’scalar’
Break the formula for fixed-effects (FIXED) up into separate formulae
(one for each term)

FCLASSSIFICATION [NTERM=Nt] #FIXED

FCLASSIFICATION #FIXED ; CLASS=Pt[1...Nt] ; OUTTERM=Ft[1...Nt]

FOR PT=Pt[1...Nt] ; NTlev=Nlev[i...Nt] ; df=Df[1...Nt] ; inter=Nint[1...Nt]
CALC NTlev,df=1
GETATTRIBUTE [ATTRIBUTE=type] #PT ; SAVE=Ptype "Get type of term S"

IF Ptype[] ==

CALC inter=1 "Type 4 : Covariate"
ELSIF Ptype[] ==

CALC inter=NVALUES(PT) "Type 2 : Factor"

IF inter <= FACTORIAL
FOR i=1...inter

CALC N1=NLEVELS(PT[i]) “inter =1 : main-effect"

& HNTlev=NTlev*Nl " =2 : interaction (a.b)"

& df=df=(N1-1) " =3 : interaction (a.b.c)"
ENDFOR
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ELSE
CALC inter ,NTlev=0,0
ENDIF
ELSE
PRINT ’Incorrect definition FIXED-effects’
EXIT [CONTROL=Procedure]) "Wrong type"
ENDIF
ENDFOR
CALC NTfix=VSUM(Nlev) "Total number of levels"
gALC maxINT=VMAX(Nint) "Highest order interaction"

Store FULL variance/covariance matrix into VC.
Constant term in model ?
Wald tests for all fixed terms ?

VKEEP [FULLVCOV=VC]

GETATTRIBUTE [ATTRIBUTE=row] VC ; Prow

CASE begin=!t(’Constant’) .in. Prow[]
PRINT [IPRINT=*] !T(’Fixed Model :’),!T(’Constant +’),FIXED
CALC NTfix=NTfix+1

ELSE
PRINT [IPRINT=#] !T(’Fixed Model :’),FIXED

ENDCASE

SCALAR CHIsq,pCHI,nb,ne,v[1...NTfix],minINT ; VALUE=(0)4, (0O)#NTfix,1
POINTER PvFIXED ; VALUES=!P(v[1...NTfix]) '

SYMMETRIC [ROWS=PvFIXED] Vfixed

EQUATE VC ; Vfixed

DELETE [REDEFINE=yes] VC

CASE ALLEFFECTS .in. !t(’Y’,’y’,’yes’,’YES’)
CALC minINT=1

ELSE
CALC minINT=maxINT

ENDCASE

VWALD tests
PRINT [SERIAL=yes] !T(*Wald tests’),\
IT(* CHIsq. df. Prob.’) ; FIELDWIDTH=20,22
FOR KINT=maxINT...minINT
CALC ne=begin "Skip CONSTANT"
FOR FT=Ft[1...Nt] ; NTlev=Nlev[1...Nt] ; df=Df[1...Nt] ; inter=Nint[1...Nt]
CALC nb=ne+i
& ne=nb+NTlev-1
IF inter == KINT
"Current effect is m, say"

VKEEP TERMS=#FT; EFFECT=ef_B "Save table of effects"

MATRIX [ROWS=NTlev; COLUMNS=1] b "and change type from"

EQUATE ef_B ; b “table to matrix."

POINTER PvarB ; VALUES=!P(v[nb...nel]) "Extract part from"

SYMM [ROWS=PvarB] varB "Variance/Covar-matrix"

CALC varB=SUBMAT(Vfixed) “corresponding to m"
llCHIsq=ll

& CHIsq=LTPROD(b; PROD(INV(varB); b)) " TRANSP(b)"

& pCHI=1-CHISQ(CHIsq; df) " *INVERSE(var)*b"

PRINT [SQUASH=yes; SERIAL=yes; IPRINT=*;\
ORIENT=across] CHIsq,df,pCHI,’ ’,FT ;\
SKIP=(1)5 ; FIELDWIDTH=8,6,7,1,10 ;\
DECIMALS=3,0,3,(0)2
DELETE [REDEFINE=yes] PvarB,varB,b,ef_B
ENDIF
ENDFOR
ENDFOR
ENDPROCEDURE
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5. Procedure remIWALD

An alternative way for calling VWALD is via the procedure remlWALD. Instead of

VCOMPONENT [FIXED=Dose+Sex+Littersz; ABSORB=Dam] RANDOM=Dam+Pup
REML Weight
VWALD [FIXED=Dose+Sex+Littersz]

you may use

remlWALD [FIXED=Dose+Sex+Littersz; ABSORB=Dam; RANDOM=Dam+Pup] Weight
The procedure rem1WALD is available, by e-mail or on floppy disk, from the first author.
EROCEDURE ’remlWALD’

Procedure for controlling the VWALD procedure

directives used :
VCOMPONENTS for model definition
REML for unbalanced mixed model analysis
VWALD for tests for interactions or main effects (Wald tests)

OPTION ’FIXED’ , " (formula) treatment formula for the design "\
*RANDOM’, " (formula) block formula for the design "\
>ABSORB’, " (factor) the absorbing factor "\
’CONSTANT’, " (string) how to treat the constant term

(estimate, omit) ; def=e "\
’MVINCLUDE’, " (string) include units with missing values ;
def=no"\
’ALLEFFECTS’, " (string) yes=tests for lower order interactions
or main effects ; def=no "\
MAXCYCLE’, * (scalar) 1limit on the number of iteratioms;
def=10"\
FACTORIAL’, " (scalar) 1limit on the number of factors or
covariates in each fixed term ; default=3 "\
JINITIAL’, " (scalars) initial values for each var.-compoment "\
’CONSTRAINTS’," (strings) how to constrain each var.-component "\
TOLERANCES’ " (variate) tolerances for matrix inversion "N\
SET =yes, (no)10;\

MODE =(£)2,p,(t)3,(v)3,t,p;\
DEFAULT =(*)3,!T(e), !T(no),!T(no),10,3,1,!T(p),*;\

TYPE =(’formula’)2,’factor’,(’text?)3, (’scalar’)3, *text’, ’variate’
PARAMETER °’Y’, " (pointer) the variate to be analysed " \
’WEIGHTS’ " (variate) a weight for each unit in the anmalysis";\
SET =yes,no;\
MODE =p,p;\
TYPE =’vyariate’,’variate’

GET [ENVIRONMENT=Env]

SET [OUTPRINT=dots]

PAGE

PRINT [IPRINT=#] !t(’ Response variate =’),!p(Y)

VCOMPONENTS , REML and VWALD
IF .NOT. UNSET(RANDOM)
IF .NOT. UNSET(ABSORB)
VCOMPONENTS [FIXED=#FIXED; ABSORB=ABSORB; CONSTANT=#CONSTANT] \
RANDOM=#RANDOM ; INITIAL=#INITIAL ; CONSTRAINTS=#CONSTRAINTS
ELSE
VCOMPONENTS [FIXED=#FIXED; CONSTANT=#CONSTANT] \
RANDOM=#RANDOM ; INITIAL=#INITIAL ; CONSTRAINTS=#CONSTRAINTS
ENDIF
ELSE
IF .NOT. UNSET(ABSORB)
VCOMPONENTS [FIXED=#FIXED; ABSORB=ABSORB; CONSTANT=#CONSTANT] \
INITIAL=#INITIAL ; CONSTRAINTS=#CONSTRAINTS
ELSE
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VCOMPONENTS [FIXED=#FIXED; CONSTANT=#CONSTANT] \
INITIAL=#INITIAL ; CONSTRAINTS=#CONSTRAINTS
ENDIF
ENDIF

IF UNSET(TOLERANCE)
IF UNSET(WEIGHTS)
REML [PRINT=monitor,components; MVINCLUDE=#MVINCLUDE; \
FACTORIAL=FACTORIAL; MAXCYCLE=MAXCYCLE] Y
ELSE
REML [PRINT=monitor,components; MVINCLUDE=#MVINCLUDE; \
FACTORIAL=FACTORIAL; MAXCYCLE=MAXCYCLE; WEIGHTS=WEIGHTS] Y
ENDIF
ELSE
IF UNSET(WEIGHTS)
REML [PRINT=monitor,components; MVINCLUDE=#MVINCLUDE; \
FACTORIAL=FACTORIAL; MAXCYCLE=MAXCYCLE; TOLERANCE=TOLERANCE] Y
ELSE
REML [PRINT=monitor,components; MVINCLUDE=#HVINCLUDE; \
FACTORIAL=FACTORIAL; MAXCYCLE=MAXCYCLE; WEIGHTS=WEIGHTS; \
TOLERANCE=TOLERANCE] Y
ENDIF
ENDIF

VWALD [ALLEFFECTS=#ALLEFFECTS; FACTORIAL=FACTORIAL] #FIXED
SET [OUTPRINT=#Env[’outprint’]]
ENDPROCEDURE
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Finite Mixture Distributions

C J Whitaker

Centre for Applied Statistics
School of Mathematics

University College of North Wales
Dean Street

Bangor

Gwynedd

United Kingdom LL57 1UT

1. Introduction

Mixtures of distributions have been fitted to data for over 100 years. The typical problem is that
observations are available on units each of which may belong to one of a number of populations; the aim is
to predict which population each unit belongs to, using only the available observations. Statistical analysis
of such data usually requires numerical methods, because explicit estimators of the model parameters do
not usually exist. In the method that follows only univariate observations will be used.

2. Mixtures of Normal distributions

Consider the following probability model for data. The observations z,,i = 1...n, are independent and
identically distributed observations from a super population G which is a mixture of K populations
G,...Gg in some proportions 7,...mx. The density function for z; can be written as

f@)=mfi(z) + ..+ 7 fi(=z;)

where f;(z;) is the probability density function corresponding to population G ;. Here the density function
will be taken to have the specific form

1

e—(zt‘l‘t)?/2°=
V2ro? )

fi(zy) =

Aitken and Tunnicliffe Wilson (1980) showed how the maximum-likelihood estimates of the parameters
u;j, 0; and 7;, J = l...K, are the solution of the likelihood equations

;= Zf’(j/x.-)/n (1)
B = =Pl [ 3 Pz 2)
A;.’ = Z(T,‘ - ﬂ_,)"’f’(]/:r,)/z P(]/ZL‘,) (3)

where P(j/z;) = ijfj(:c,-)/Zirjfj (zi) and P(j/z;) are the ML estimators of the posterior probability
that the ith observation conj'nes from the jth population. This forms a simple iteration scheme. From
the P(j/z;) the estimates of 7;, p; and o']? can be calculated easily; then from the estimates of Ty Hj
and a;f’ the estimates of P(j/z;) can be calculated. This has been shown to be an example of the EM
algorithm (Dempster ef al 1977). Initial values for P(j/z;) can be made by splitting the range of the
z; into j non-overlapping intervals and assigning the value 1 to P(j/z;) if z, falls in the jth interval
and 0 otherwise. If the populations are reasonably distinct then convergence is acceptably quick. This

algorithm has been implemented in a Genstat procedure, with a limit of up to three populations, and
the variances can be optionally constrained to be the same for each population. In this case equation (3)

is replaced by
0% =D (& =) P(j/z)/n.
I
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The observations are stored in a variate and supplied using the DATA parameter. The number of popula-

ti(?ns. is also needed, supplied using the NMIXTURE parameter. If only one population is being fitted then
this is all that is required to use the procedure.

For the more usual situation where a mixture of two or three populations are to be fitted, the INITIAL
parameter needs to be set. Having ’eyeballed’ the distribution of the observations, a ‘guesstimate’ is

made as to where the modes of the distribution are. Then the INITIAL parameter can be estimated as
halfway between the modes.

The remaining PROB parameter allows the estimated posterior probability (15( J/1)) to be saved in a pointer
if desired.

The options allow the iterations to be monitored (TRACE), whether you wish to have equal or unequal
variance estimates (EQUAL), how many iterations should be used (ITERATIONS), and how to stop the
iteration scheme (ACCURACY). By default the iterations will stop when the change in deviance (= ~2xlog-
likelihood) is less than 0.001 multiplied by the deviance.

The output consists of the estimated means and variances of the model together with the deviance. The
difference in deviances between fitting, say, one and two populations can be used as an indication of
which model is to be preferred, but the large sample x? test with d.f. defined as the difference in the
number of parameters is not valid. Aitken and Rubin (1985) describe an approach to estimation as well
as testing of finite mixture models.

The procedure MIXTURE checks the options and parameters for consistency and accuracy and then uses a
second procedure MIXITER which performs the numerical calculations.

3. Visual assessment of the mixture

In the practical situation where a theory suggests that some data may have arisen from a mixture of two
or three populations, a natural first step is to draw a graph to assess visually the potential validity of
the theory. The obvious candidate is a histogram. However if the data do not show clear multimodality
then the choice of origin and number of classes can lead to different visual impressions which leads even
experienced data analysts astray.

Kernel estimates of the density function, as suggested by Silverman (1986), can be used to present
and explore data while overcoming some of the problems associated with the histogram. Basically this
technique produces a smoothed version of the histogram. One advantage this technique has is that the
smooth curve produced leaves the eye to concentrate on the overall shape, in contrast to a histogram
where haphazard peaks and troughs can distract the eye. The estimate of the density function f(z) with
kernel K for data z, ...z, is defined as

f(2) = (1/nk) 3K (@ = 2)/h)

where h is the window width or smoothing parameter. If the kernel K is a probability density function
then f will be a probability density. A kernel that is often used in a variety of situations is the Normal
or Gaussian kernel (see Silverman (1986) for details), as it performs reasonably well under a wide range
of circumstances. Of course the window width, h, needs to be determined and does affect the visual
impression of the resulting density. A value for h can be chosen automatically from the data to provide
reasonable density estimates for a wide range of types of distribution for the observed data. Silverman
gives the value as
h = 0.9 (min(sd, interquartilerange/1.34))n=*/5.

A Genstat procedure has been written which uses this as the default window width but which allows
the user to set an alternative. The procedure works by finding the minimum and maximum values for
the data and then extending the plotting range by three times the window width. The multiplier three
is used because the density function of a standard Normal distribution is essentially zero beyond three
standard deviations from the mean. By default, 100 grid points are then equipositioned over the plotting
range. For each grid point the densities from the Normal distributions placed on each data point are
summed to give the density estimate of the observations. Then a smooth curve is plotted through these
density estimates.
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A different approach for graphical representation of data is to use a quantile quantile (Q-Q) plot. This
plots the quantiles of the data against the quantiles of a Normal distribution. If the data are Normally
distributed, a straight line should be observed. If the data are from a mixture of two Normals, two straight
lines joined by an S-shaped curve should be observed. With a mixture of three Normals, a double S-
shaped curve should be observed. This approach works well when there is relatively large separation
between the populations, but with relatively little separation, information about the possible mixtures
occurs mainly in the middle of the plot.

To try to overcome this, Fowlkes (1979) suggested a variation of the percentile-percentile (P-P) plot.
Taking the quantiles of the data to be 2(1) < Z(3) < .. < T, and letting p; = (i — %)/n be the sample
probabilities, then plot

®((z(;) — )/s) —p; against (ziy—2)/s

where Z and s are the mean and standard deviation of the data and & is the standard Normal distribution
function. Fowlkes termed this a ® — p versus Q plot. When there is only a single Normal distribution,
the plot should be a horizontal straight line. When there is a mixture of Normals, there should be a
pronounced peak or trough in the plot, or both, depending on the proportions of the mixtures. Its use
was suggested by the observation that P-P plots are sensitive to departures from the assumption of there
being only one population in the middle values.

Two procedures are shown which use these techniques. DENSITY will produce density estimates and
requires only a variate containing the data. A WINDOW parameter allows the user to specify a value for h,
as defined above; by default, the value suggested by Silverman is used. One hundred points throughout
the range of the observations are used for plotting although NGRIDPTS can be changed. The procedure
PLOTMIXTURE will produce the @Q-Q and ® — p versus Q plots; it requires just a variate containing the
data to be supplied. Shown below are the use of these procedures for simulated data using the data
generation facilities of Genstat. '

The Genstat output showing the density estimates does show the expected shape for one or two Normal
distributions. However the mixture of three Normals does not clearly show the third peak: only a
flattening of the curve is seen. The Normal plot for a single Normal does look reasonably straight, and
the plot for two Normals does suggest an S-shaped curve. However the plot for three Normals does not
look like a double S-shaped curve: a single S-shaped curve is all that is suggested. The ® — p versus Q
plot for a single Normal does produce a moderately flat line, but only when compared to the plot for the
mixture of two Normals where the trough is much more pronounced. However the plot for three Normals
is not markedly different from the mixture of two Normals.

This emphasises the problem with mixtures of Normal distributions: their identification is difficult, and
even if you can be fairly confident that a single Normal is an inappropriate model for the data it is not
always clear which model is most appropriate. This problem is possibly most clearly demonstrated by
the observation that a mixture of Normals with decreasing proportions as the mean increases often looks
like a lognormal distribution. Considering only the Normal plots shown here, it would be reasonable to
conclude that a lognormal distribution is possibly an acceptable model.

4. Conclusion

Mixture models have a long history and no doubt will continue to be used as models for data, but the
identification of the models can be problematic in practice. I suggest that mixtures of Normals with both
relatively large and small separation be simulated and then all three types of plot examined before using
these techniques in the analysis of your own data.
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Appendix 1: The procedures

[Editors’ note: The procedures DENSITY and PLOTMIXTURE have been modified to produce high resolution
graphics; comments give lineprinter version]

PROCEDURE ’MIXITER’
OPTION NAME=’STRACE’,’SEQUAL’,’ITERATION’,’ACCURACY’ ; MODE=P
PARAMETER NAME=’DATA’,’PROB’, ’NMIXTURE’; MODE=P
SCALAR N,NMISS,COUNTER,DEVIANCE,PREVIOUS,ACC
SCALAR P[1...NMIXTURE],MU[1...NMIXTURE],SIGMA2_[1...NMIXTURE]
VARIATE F[1...NMIXTURE],VDUM[1...NMIXTURE],SUMF
CALC ROOT2PI = SQRT(2+%3.1415926536)
CALC COUNTER = 0
CALC N = NVAL(DATA) - ( NMISS = NMV(DATA) )
FOR [NTIMES=ITERATION]
CALC P[] = SUM( PROB[] ) / X
CALC MU[] = SUM( DATA*PROB[] ) / ( SuM( PROB[] ))
CALC SIGMA2_[] = SUM( ((DATA-MU[])=**2)*PROBO] )
IF SEQUAL .EQ. 1
CALC SIGMA2_[] = SIGMA2_[1 / X
CALC SIGMA2 = VSUM(SIGMA2_)
CALC F[] = (1/(RODT2PI*SQRT(SIGMA2)))*EXP(-((DATA-MU[])*%2) \
/(2*SIGMA2))
ELSE
CALC SIGMA2_[] = sIGMA2_[] / ( SuM( PROB[] ))
CALC F[1 = (1/(ROOT2PI*SQRT(SIGMA2_[])))*EXP(-((DATA-MU[])#**2) \
/(2*s1GMA2_[1))
ENDIF
cALc vDUM[] = PO+F[]
CALC SUMF = VSUM( VDUM )
CALC DEVIANCE = -2#SUM( LOG( ROOT2PI*SUMF ) )
CALC PROB[] = ( P[J+F[] ) / SUMF
IF STRACE .EQ.1
IF SEQUAL .EQ. 1
PRINT MU[],SIGMA2,P{],DEVIANCE
ELSE
PRINT MU[],SIGMA2_[],P[],DEVIANCE
ENDIF
ENDIF
CALC ACC = DEVIANCE*ACCURACY
EXIT ABS(PREVIOUS - DEVIANCE) .LT. ACC
CALC PREVIOUS = DEVIANCE
CALC COUNTER = COUNTER + 1
IF COUNTER .EQ. ITERATION
PRINT ’#*%*x% FAILED TO CONVERGE’
ENDIF
ENDFOR
IF STRACE .EQ.0
IF SEQUAL .EQ. 1
PRINT MU[],SIGMA2,P([],DEVIANCE
ELSE
PRINT MU[],SIGMA2_[],P[],DEVIANCE
ENDIF
ENDIF
ENDPROCEDURE

PROCEDURE ’MIXTURE’
OPTION NAME=’TRACE’,’EQUAL’,’ITERATIONS’,’ACCURACY’; \
MODE=T,T,P,P; DEFAULT=’NO’,’YES’,20,0.001
PARAMETER NAME='DATA’,’NMIXTURE’,'INITIAL’,’PROB’; MODE=P
FOR SETTING=TRACE,EQUAL; SSET=STRACE,SEQUAL
IF SETTING .IN. !'T(YES,YEs,Yes,yes,YE,Ye,yE,ye,Y,y)
CALC SSET =1
ELSIF SETTING .IN. !T(NO,No,nO,no,N,n)
CALC SSET = 0

ELSE
PRINT ’*#%*#%* INVALID OPTION SETTINGS FOR TRACE AND/OR EQUAL’
EXIT [CONTROL = P]
ENDIF
ENDFOR
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IF ITERATIONS .LT. 2
PRINT ’###%%*x ITERATIONS MUST BE AT LEAST 2’
EXIT [CONTROL = P]
ENDIF
IF ACCURACY .LE. 0
PRINT ’**x%x ACCURACY MUST BE A POSITIVE VALUE’
EXIT [CONTROL = P]
ENDIF
IF UNSET(DATA)
PRINT ’#*##*%* DATA PARAMETER MUST BE SUPPLIED’
EXIT [CONTROL = P]
ELSE
GETATTRIBUTE [TYPE] DATA ; TYPEDATA
IF TYPEDATA[1] .NE. 4
PRINT ’***%% DATA MUST BE A VARIATE’
EXIT [CONTROL = P]
ENDIF
ENDIF
IF (NMIXTURE .LT. 1) .OR. (NMIXTURE .GT. 3)
PRINT ’#%%%% ONLY 1, 2 OR 3 MIXTURES CAN BE FITTED’
EXIT [CONTROL = P]
ENDIF
IF UNSET(INITIAL)
CALC NINITIAL
ELSE
CALC NINITIAL
ENDIF
CALC SETTINGS = ( (NMIXTURE .EQ. 1) .AND. (NINITIAL .EQ. 0) ) \
.OR. ( (NMIXTURE .EQ. 2) .AND. (NINITIAL .EQ. 1) ) \
.OR. ( (NMIXTURE .EQ. 3) .AND. (NINITIAL .EQ. 2) )
IF SETTINGS .EQ. O
PRINT °’#%*%* INCOMPATIBLE NMIXTURE AND INITIAL PARAMETERS’
EXIT [CONTROL = P]
ENDIF
IF UNSET(PROB)
POINTER UPROB
ASSIGN UPROB ; PROB
ENDIF
IF NMIXTURE .EQ. 1
SCALAR MU,SIGMA2,DEVIANCE
CALC MU = MEAN(DATA)
CALC SIGMA2 = VARIANCE(DATA)
CALC DEVIANCE = -2+LLNORMAL(DATA;MU;SIGMA2)
PRINT MU,SIGMA2,DEVIANCE
ELSIF NMIXTURE .EQ. 2
CALC PROB[1) = DATA .LE. INITIAL
CALC PROB[2] = DATA .GT. INITIAL
MIXITER [STRACE; SEQUAL; ITERATION; ACCURACY] DATA; PROB; NMIXTURE
ELSE
CALC PROB[1]

0

NVALUES(INITIAL)

DATA .LE. MIN(INITIAL)
CALC PROB[2] = ( DATA .GT. MIN(INITIAL) ) .AND. ( DATA .LE. MAX(INITIAL) )
CALC PROB[3] = DATA .GT. MAX(INITIAL)
MIXITER [STRACE; SEQUAL; ITERATION; ACCURACY] DATA; PROB; NMIXTURE
ENDIF
ENDPROCEDURE
PROCEDURE ’DENSITY’
OPTION NAME=’NGRIDPTS’; MODE=P; DEFAULT=100
PARAMETER NAME=’DATA’,'WINDOW’; MODE=P
SCALAR A,B,DELTA,ADELTA,N,NG1,NMISS,H
CALC N = (NOBS = NVALUES(DATA)) - NMV(DATA)
IF UNSET(WINDOW)
CALC S[1] = SQRT( VARIANCE(DATA) )
QUANTILE [PRINT=#; PROP=!(0.25,0.75)] DATA; H_SPREAD
CALC s[2] = ( MAX(H_SPREAD) - MIN(H_SPREAD) ) / 1.349
CALC H = 0.9*xVMINIMA( S ) / N*x(0.2)

ELSE

CALC H = WINDOW
ENDIF
CALC A = MIN(DATA) - 3#H
CALC B = MAX(DATA) + 3#H
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CALC NG1 = NGRIDPTS - 1
CALC DELTA = (B-4) / NGi
CALC ADELTA = A + DELTA
VARIATE [VALUES=A,ADELTA...B] XVALUES
VARIATE [NVALUES=NGRIDPTS] FK
FOR I=1...NGRIDPTS
CALC DUM = EXP( -(((DATA-ELEM(XVALUES;I))/H)**2) / 2 ) \
/ SQRT(2%3.1415926536)
CALC ELEM(FK;I) = SUM( DUM ) / (N*H)
ENDFOR
PRINT ’#***+ WINDOW = ’,H

For lineprinter graphics use the following line:
GRAPH [TITLE=’density plot’] FK; XVALUES; METHOD=CURVE
else for high resolution graphics use:

PEN 1; LINESTYLE=1; METHOD = open; SYMBOLS = 0
DGRAPH [TITLE='density plot’] FK; XVALUES; PEN = 1
ENDPROCEDURE

PROCEDURE ’PLOTMIXTURE’

PARAMETER NAME=’DATA’

CALC NMV = NVAL(DATA) - ( NOBS = NOBSERVATIONS(DATA) )
VARIATE QUANT,YY; VALUES=!(#NMV(*),(1...NOBS)),DATA
SORT YY

CALC PI = (QUANT-0.375) / (NOBS+0.25)

CALC QUANT = NED(PI)

CALC STANYY = (YY - MEAN(YY))/SQRT(VAR(YY))

CALC PHI_P = NORMAL( STANYY ) - PI

For lineprinter graphics use the following lines:

GRAPH [TITLE=’normal plot’] YY; QUANT; METHOD=C

GRAPH [TITLE=’Phi - p versus Q plot’; YLOWER=-0.1; YUPPER=0.1] \
PHI_P; STANYY; METHOD=CURVE

else for high resolution graphics use:

PEN 1; LINESTYLE=1; METHOD = open; SYMBOLS = 0

DGRAPH [TITLE=’normal plot’] YY; QUANT; PEN = 1

AXES 1 ; YLOWER=-0.1; YUPPER=0.1

DGRAPH [TITLE='Phi - p versus Q plot’] PHI_P; STANYY; PEN = 1

AXES 1 ; YLOWER=*; YUPPER=*

ENDPROCEDURE

Appendix 2: An example

The following Genstat directives produced the plots shown below.

"

generate 500 observations from a normal distribution with mean = 10
and sd = 3

VARIATE [NVALUES=500] ONE,TWO,THREE

GRNORMAL [ 500 ; 10 ; 3 ; SEED = 140586] ONE

DHISTOGRAM ONE

DENSITY ONE

PLOTMIXTURE ONE

generate 300 observations from a normal distribution with mean = 7

and sd = 3 and 200 observations from a normal distribution with mean

and sd = 3

GRNORMAL [ 300 ; 7 ; 3] Xx[1]
& [ 200 ; 16 ; 3] x[2]
EQUATE X ; TWO

DHISTOGRAM TWO

DENSITY TWO

PLOTMIXTURE TWO

44

16



Genstat Newsletter 28

generate 250, 150 and 100 observations from normal distributions with

mean = 7, 16, 24 and sd = 3, 3 and 3
GRNORMAL [ 250 ; 7 ; 3 ] Y[1]

g [ 150 ; 16 ; 3 ] Y[2]

& [ 100 ; 24 ; 3] Y[3]
EQUATE Y ; THREE

DHISTOGRAM THREE

DENSITY THREE

PLOTMIXTURE THREE
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Appendix 3: The plots

density plot
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density plot
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density plot
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Patterns of Variability on Terraces in Nepal

Rosie Poultney

AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
Harpenden, Herts, United Kingdom, AL5 2JQ
email: POULTNEYRQUK.AC.AFRC.RESA

In large areas of Nepal, terracing is necessary to provide agricultural land. The conditions on adjacent
terraces can be quite different, especially in the steeper upland areas; as a result, field experiments on
Nepalese terraces are subject to high levels of variability. Terraces can vary in size, shape, orientation,
altitude, gradient, farming practices, soil type, moisture level, age, etc. In addition, within each terrace
there may be differences in soil type, width, orientation, manure application, moisture, gradient and so
on.

For an initial investigation of the patterns of variability between and within terraces, data were collected
from six terraces. Maize and millet were mtercropped on each terrace and the two crops harvested in
1m? plots. The terraces were of different sizes, and, in addition, the width varied within terrace. The
assumption was made that the front edge of the terrace was straight, and the data were stored as a
rectangular matrix with the first column being the front edge. For the narrow sections of the terrace, the
final columns were filled in with missing values.

Figure 1a shows a shaded plot of the matrix of millet yields from one terrace, with the darker squares
indicating higher values. The squares on the right-hand side that are blank indicate the rear of the
terrace, and not areas of very low yield. The code to produce the shaded graph is shown below; it is
simple and could easily be made into a procedure.

Figure 1b shows the same data after smoothing by taking a weighted average of each value and the
surrounding eight points. The code for the procedure SMOOTH which was used to do this is given below.

The shading tends to vary from one plotting device to another. These particular brush settings were
very good on a Digital LJ250 inkjet plotter, but were less useful on an Apple Laserwriter II, as there was
negligible difference between the two darkest shadings. However the brush settings are very easy to alter.

I am grateful to Simon Harding for his help in writing these programs. This work was carried out under
funding by the UK Overseas Development Administration.

Appendix 1. Program to draw a shaded plot

" The data file contains the number of rows (n) and columns (p)
of the data matrix, a general title and the data matrix."

OPEN ’original.dat’; CHANNEL=2

SCALAR n,p

TEXT [NVALUES=1] title

READ [CHANNEL=2] n,p

& title

MATRIX [ROWS=n; COLUMNS=p] mat

READ [CHANNEL-2] mat

CLOSE 2

" Define coordinates for boxes."

CALC np = n*p

POINTER [NVALUES=np] boxx,boxy

CALC boxx[] = !(0,0,1,1) + (1...p)#n - 1
CALC boxyl[l = !(0,1,1,0) + #p(i...n) - 1

" Set the thresholds for the shadings, and use them to define which plot
is to be shaded with which density."

VARIATE [VALUES=125,150...275] thresh

VARIATE vmat; VALUES=mat

SORT [INDEX=vmat; GROUP=gpen; LIMIT=thresh]

CALC vgpen = MVREPLACE(gpen; 9)

" Specify axes, define pens, set the frame size and draw the picture."

AXES 3; YMARK=!(1...n); XMARK=!(1i...p); YLOWER=0; YUPPER=n; \
XLOWER=0; XUPPER=p; STYLE=grid
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PEN 1...9; COLOUR=8(1),0; METHOD=fill; BRUSH=1,9,10...13,15,16,1; SYMBOL=0
CALC xup = p/n

FRAME 3; YLOWER=0; YUPPER=1; XLOWER=0; XUPPER=xup

DGRAPH [WINDOW=3; KEY=0] boxy[]; boxx[]; PEN=#vgpen

" The statements can be repeated in a FOR loop to draw the smoothed version;
further statements are needed to draw the key."
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Appendix 2. Smoothing procedure

PROCEDURE ’SMOOTH’

" Procedure SMOOTH calculates a weighted average of each square and the
surrounding eight squares. It has one option, WEIGHT, which by default
is a variate of length 9 with all values set equal to 1, i.e. equal
weighting. The position of the entries of WEIGHT relative to the centre
square 5, is as follows

1 2 3
4 5 6
7 8 o

OPTION ’'WEIGHT’; SET=no; TYPE=’variate’; MODE=v; NVAL=9; DEFAULT=!(9(1))
PARAMETER ’IN’,’OUT’; SET=yes; TYPE=’matrix’; DECLARED=y,n; PRESENT=y,n; \
COMPATIBLE=!T(xrows, columns)
" The procedure has two parameters, IN and OUT, which are respectively the
original and smoothed data."
CALC n = NROW(IN)
CALC p = NCOL(IN)
CALC nv = n*p
MATRIX [ROWS=n; COLUMNS=p] OUT,X[1...9],N,Q
VARIATE vin; VALUES=IN
CALC shifts = p*!(3(1,0,-1)) + !((1,0,-1)3)
CALC tmp[1...9] = SHIFT(vin; #shifts)
EQUATE OLD=tmp[]; NEW=X[]
DELETE tmp[],shifts,vin
SCALAR mv
CALC X[1,2,31$[1;%],x[7,8,9]8[4;*],x[1,4,71$[*;1],X[3,6,9]$[*;3] = mv
CALC N,Q,0UT = 0O
CALC 9(N) = N+(X[].ne.mv)*#WEIGHT
CALC 9(OUT) = OUT+MVREPLACE(X[1...9]; O)+#WEIGHT
CALC Q = q + (IN.ne.mv)
CALC Q = Q/Q
CALC OUT = OUT/N * Q
ENDPROCEDURE
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Customizing the Computing Environment on a 386,/486 Machine for
Genstat

Simon Heisterkamp

National Institute of Public Health and Environmental Protection (RIVM)
Antonie van Leeuwenhoeklaan 9

3720 BA Bilthoven

The Netherlands

1. Introduction

Running Genstat on personal computers has several advantages as compared to Vax or MicroVax ma-
chines. As the computer is dedicated to the user, your program will always run at the same speed, though
admittedly in some cases this means the same slow speed. I personally prefer the use of the 386/486
version, because most of the time the turn-around is much faster than with the MicroVax. Another
advantage is that you may configure Genstat according to your personal needs—for example, by deleting
directives from the bootstrap file or by extensions in Fortran—without being bothered by the system
manager. The disadvantage is of course that your DOS-machine can only do one thing at a time, and
editing and running a Genstat program at the same time is not possible. In this article I make some
suggestions for customizing your machine to get the most out of it.

2. Space requirements

Genstat needs at least 2 Mbytes of RAM memory. As Genstat runs within a special environment, DBOS,
which uses its own mapping of the RAM memory, you cannot use any other extended-memory program
nor a cache-program. For example, using HIMEM.SYS with DOS 5.0 causes a hang-up right after booting.
Some users have reported to me an endless booting of the system when using other extended-memory
managers. [Editor’s Note: this problem has been overcome in DBOS Version 2.60 which is supplied with
Genstat Release 2.2.] On the other hand, the main program of Genstat uses only a few kbytes of memory,
so memory-resident programs such as the Norton Commander, the Dosshell of DOS 5.0, or a useful tool
like Dosedit, and even large Local Area Network programs can run while using Genstat. However, if
Genstat runs out of workspace, you can try the job again, albeit with a substantial loss of speed, using a
type of disk memory called Virtual Memory Swap Space. Details about swap space are given on Pages
5-6 of the Release 1.3 Installers’ Note (see also pages 6-7 of the Release 2.2 Installers’ Note). Although
creating a special disk partition is more efficient, it can only be done on a empty machine, so in most
cases there is no alternative to creating a swap-file.

You should reconfigure the environment of DBOS with the command CONFIGDB, following the instructions
on Pages 6-7 of the Installers’ Note. Make sure that you create the directory where the swap file should
reside before you start the reconfiguration.

MKDIR swap

After that, give the command
CONFIGDB

You will be asked a number of questions, which can be answered by the suggested default by just
hitting the return key until meeting the question "Paging to disk enabled(y/n) : N". Answer this
by typing Y. The next question asks whether you want Disk or a Partition: answer D (for Disk). Next
you are asked for the path of the swap file; you need to specify the path and the name of the swap file:
e.g. c:\swap\sweep. Next you are asked for the amount of swap space required; you need to answer in
units of bytes: so 14000000 will give you about 14 Mbyte of diskspace. After confirming your changes
the program will then start to format the file: this will take some time! Clearly, despite the name Virtual
Swap Space, the amount of space you specify has to be actually available on the hard disk! Rebooting
the machine will give you the new options.

Note that actual use of the SWAP file may slow Genstat down dramatically. The S option in the command
line, for extra workspace (S = 1,2, etc) should be used only when necessary, because if the actual RAM
memory is not sufficient to load all the arrays used by Genstat, it will instantly use the SWAP file, even if
your program would fit. The S option tells the operating system to declare a fixed amount of workspace;
this static use of memory is due to the use of Fortran as programming language.
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3. Using the SUSPEND directive

When using Genstat interactively, the SUSPEND directive is very useful. Suppose you prepare a Genstat
program in the file myprog.gen. This should end with the statement RETURN, and it is usually preferable
not to start with a JOB statement. Then you can execute the statements in the program from within an
interactive session as follows:

OPEN ’myprog.gen’; CHANNEL=2
INPUT [REWIND=yes] 2

If an error occurs, then recover as follows:

CLOSE 2
SUSPEND
{ back to dos }
> {editor} myprog.gen
{ make changes, save and quit the editor }
> EXIT
{ back to Genstat }
INPUT [REWIND=yes] 2
{ etc }

Note that when using a utility such as Dosedit you can recall all the commands by using the arrow keys,
so it would not be necessary to retype the last command. That is why the option REWIND=yes was used
(otherwise unnecessarily) the first time. [Editor’s note: command line recall is included in Release 2.2,
so Dosedit is not required.]

Another potential problem with this style of working is that the statements in the pre-prepared program
may fail when run for a second time because of the work that was done when they ran the first time.
This is particularly likely if you open auxiliary files and do not explicitly close them. However, with a
little care in programming, this problem can be avoided.

SUSPEND is also useful when using external programs to communicate with Genstat using files. For
example, the statement
SUSPEND [SYSTEM=’MYEXT < myinp.dat > myoutp.dat’]

causes DOS to run the program MYEXT.EXE with input MYINP.DAT (which may just have been created by
Genstat) and output MYOUTP . DAT. In the next statement, you can open MYOUTP . DAT and read the contents.
The applications are numerous; however, if you try this in the standard configuration of Genstat, it will
fail. To be fair, you are warned about this on Page 8 of the Installers’ Note, and instructions are given to
allow SUSPEND to work. You can make the change by typing a COMSPACE command at the DOS command
prompt. But to make the change permanent, edit the file GESETUP.BAT in the GENSTAT subdirectory
so that the line

COMSPACE D30000

becomes
COMSPACE D300000

This will reserve 300kbytes for external programs to run. It depends on your particular program and
your particular memory-resident programs how much space in low-memory is needed and/or is free.

4. Extending Genstat

Editor’s note: the following section refers to Release 1.3 only; for instructions for Release 2.2 see the
Installers’ Note. Release 2.2 has space for almost 4 million real data values.

Sometimes you may want to extend Genstat either by defining your own directives or subroutines for
FITNONLINEAR, or by just claiming more workspace than is allowed by the default configuration even
when using the option S=4. For the extension with OWN, you should read Chapter 12 of the Manual. The
creation of a larger Genstat is much simpler to accomplish.

Step 1

Get the correct Salford compiler. The version of the compiler is extremely important, because it must
correspond with the version used for compiling Genstat for the 386/486 machine. Unfortunately this
was not indicated on the Genstat Release 1.3 we used. The proper version for Release 1.3 of Genstat is
Version 1.66 of the Salford compiler; for Release 2.2 it is Version 2.60.
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Step 2
Check whether NAG has shipped the graphical routines to you. Our version of Release 1.3 did not contain

these, but NAG supplied us with them immediately we asked. The source files are named GIA.FOR and
the corresponding object files are GIA.OBJ.

Step 3

Mz.:lke a copy of the file MN.FOR, from the directory GENSTAT\ SETUP, calling it MN.OLD, for example. Then
edit MN.FOR as indicated in the Installers’ Note on Page 10. This involves finding the line containing the
word "PARAMETER", ignoring any lines that have been commented out with a "C" in the first column,

PARAMETER (HLRDAT=262144,HRDAT=2*MLRDAT,MIDAT=HRDAT,MLDAT=MRDAT)

and increasing the first number. For example, you could multiply the amount of space by 10:
PARAMETER (HLRDAT=2621440,HRDAT=2*HLRDAT,HIDAT=HRDAT,HLDAT=HRDAT)

Also another statement has to be changed:
MAXDAT=655360

This number has also been multiplied by 10 in this example. Note that this version of Genstat will allow
you 2.6 million real data values! The SWAP space needed with this version, assuming 6 Mbyte RAM
memory is about 14Mb.

Step 4
Compile the modified files and link the program. This can be done with a batch file; if you call it
G5COMP . BAT, then the whole operation can be done by typing:

G5COMP mn

The batch file GECOMP . BAT reads:

ECHO Relink Genstat: supply the name of a subroutine
KILL_DBOS

CD c:\ftn77

DBOS

CD c:\genstat\setup

FTN77 %1 /intl /nocheck > error.lst

MORE < error.lst

ECHO Do you want to continue with linking?
PAUSE

LINK77 c:\genstat\setup\gsrelink.177

DBOS

The Salford compiler is supposed to be in the directory C:\ FTN77 with the name FTN77. An error listing
of the compiler will appear in the file ERROR.LST. Hopefully there will be no errors, and you can continue
with linking. Note that the command KILL DBOS is really needed, as otherwise you will not be allowed to
recompile Genstat by DBOS! In the process of linking, you may be alarmed by the screenfulls of warnings,
minutes long, about the commons that are misspecified. You need not be concerned: your program will
be correct. Even if you do not have the graphical routines from NAG, the new version of Genstat will run,
except for the high-resolution graphics. Be aware that neither is the old version of Genstat destroyed,
nor is the new version accessed when you type GENSTAT! In fact you have now two different versions of
the Genstat run-time library: GENNEW.LIB and GENLIB.LIB in the GENSTAT\ LIB directory.

Step 5
To invoke either of two versions you can use two batch-files:

Normal mode:

ECHO Change to Genstat normal size mode

COPY c:\genstat\ftn77\librarie.old c:\genstat\ftn77\librarie.dir
KILL_DBOS

DBOS

ECHO The standard library will now be used
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Large, or even Huge, mode:

ECHO Change to Genstat large size mode

COPY c:\genstat\ftn77\librarie.new c:\genstat\ftn77\librarie.dir
KILL_DBOS

c:\£tn77\DBOS

"ECHO The non-standard library will now be used

The file librarie.new has only one line, C:\GENSTAT\LIB\GENNEW.LIB. Also the file 1ibrarie.old has
similar contents, C:\GENSTAT\LIB\GENLIB.LIB. Each of the batch files simply kills DBOS, copies a file
to librarie.dir, which tells the system what version of Genstat to use, and restarts DBOS again. Note
that it is the version of DBOS from the directory FTN77, not the one supplied with the Genstat disks,
because that one allows you only the use of Genstat as it was shipped to you.

Lastly, another warning about the use of this huge Genstat version. Using the S = 4 option will always
start the swapping, even before you type some Genstat statements. The advantage of such a version as
compared to the Vax is clear: on a Vax it is impossible to have such a large memory, at least on our
machine. We tried the same on a Sun 4 workstation; here the huge version of Genstat worked, but you
can’t use more than one such huge Genstat on one workstation at the same time. Who said that the sky
was the limit?
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