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Editorial

The editors would like to take the opportunity to remind Genstat users that this is a conference year; the Ninth
International Conference of Genstat Users having taken place at University College Dublin in July. The
conference offered an ideal opportunity for Genstat users to discuss ideas and influence the future development
of Genstat, and to view a test version of the eagerly-awaited Genstat for Windows system. Papers arising from
this conference will appear in future issues of the Newsletter. To give users some idea of exactly what happens
at a Genstat Conference, over the page we have reprinted Jane Speijers report of the Third Australasian Genstat
Conference which was hosted by Agriculture New South Wales in Wagga Wagga at the end of last year, and
several articles in this issue are based on the presentations given by Chris Glasbey and David Smith at the
conference.

This issue begins as usual with another helping of Genstat Talk - a selection of the diverse set of topics aired
on the Genstat discussion list. Users should note that the address of the list has changed, due to action by the
list administrators. Everyone currently on the list should have been changed over automatically, and users
wishing to join the list should now send the message

SUBSCRIBE Genstat first-name last-name

to the new address

LISTSERVGLXSTSERV.RL.AC.UK.

Genstat Talk is followed by more detailed articles discussing a wide variety of Genstat facilities and applications.
The first of these articles is a short paper, illustrating how Genstat's generalized linear modelling facilities can
be used to describe the colour preference of insects. Multivariate techniques are represented in the Newsletter
once again, when the second article describes a method for simplifying single and complete linkage dendrograms
for cluster analysis.

Next comes a detailed paper explaining the use of the new distribution directive when fitting the negative
binomial distribution, with examples and including a helpful interpretation of the Poisson and Negative Binomial
Indexes. Then continuing the Newsletter theme of introducing external programs which may be used in
conjunction with Genstat, the next article introduces TWOD, a standalone program which now has an interface
to Genstat via procedures, and which is used to produce efficient analyses of field experiments using two-
dimensional spatial models.

The experimental design capabilities of Genstat are discussed next in detail, and some of the new design
procedures in the 3 [2] proc^ure library, which is about to be distributed, are introduced. This issue is then
rounded off by two articles discussing the computation of generalized estimating equations (GEEs) for general
repeated measurements, and repeated ordinal measurements respectively.

As usual, the code for any procedure listed in any Genstat Newsletter will be made available via the NAG
bulletin board, which is run under the Gopher server. Connection details may be obtained on the inside of the
front cover of the Genstat Newsletter.

A software repository has now been set up as part of the Statlib system at Carnegie Mellon University. Anyone
can submit material, and anyone can access it by email, gopher or WWW:

WWW location: http://lib.stat.cmu.edu/genstat

gopher: connect to port 70 on lib.stat.cmu.edu
(This gets you to the top level of Statlib)

email address: statlib@lib.stat.cmu.edu
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Statistical conference for Genstat users, November 1994

J Speijers
Biometrics Section

Department of Agriculture
Baron-Hay Court
South Perth 6150

Australia

Charles Sturt University in beautiful Wagga Wagga, the largest inland town in NSW, was the venue for this
conference which was attended by eighty eight statistical types from Australia, New Zealand and the United
Kingdom. Twenty-two participants were from the NSW Department of Agriculture who sponsored the
conference along with the Statistical Consulting unit at ANU, the CSIRO Biometrics Unit and CEANET,
distributors of Genstat in Australia. New Zealand (9) and Great Britain (8) were also well represented but there
were only three of us from the West, that is if you include South Australia. But then, as we discovered, Perth
is further than New Zealand from Wagga.

Congratulations to Brian Cullis and other members of the program committee and the local organising committee
for an interesting and well organised conference. Fiona Thompson, the conference secretary, was looking very
harassed on the Friday before everyone arrived, but relaxed as events proceeded successfully. In contrast, those
that attended the pre-conference weekend of trout fishing or walking in the Brindabellas, organised by Ross
Cunningham, looked relaxed right from the start. Talks included very clear expositions of several new modules
in Genstat 5.3 given by Peter Lane, Roger Payne and Sue Welham, more theoretical talks by John Nelder and
Robin Thompson and a presentation by John Deaker from CEANET regarding their approach to Genstat support
in Australia. Bob Murison from NSW Ag gave an entertaining talk on the analysis of correlated ordered
categorical responses in the isolation of Tarnworth and Phil McCloud amused us all with his self-indulgent (his
words) description of applying the EM algorithm to incomplete categorical repeated measurements. I have a
lasting memory of John Nelder with a recent model laptop perched in front of him, baring his teeth in frustration
as his newest Genstat macro failed to work.

The need for a good implementation of Genstat under Windows was stressed by all those using Genstat on a
PC. It was comforting to hear that this project will be tackled very soon at Rothamsted with the help of David
Baird from Ag Research, New Zealand, who impressed us all with his proforma windows interface to Genstat.

Interspersed with the serious business of statistics we managed a few social and sporting activities. The Charles
Sturt University swimming pool, adjacent to the convention centre and our accommodation, was very popular,
particularly at lunchtimes when the days were very hot. On the first evening of the conference we were invited
to a barbecue where we were introduced to the very drinkable wines produced by the University's winery which
recently won an award as the best boutique winery in Australia. The wine flowed freely, tongues were loosened
and, as I remember, we all had a very pleasant evening. The organising committee must have presumed that
we had really come to Wagga to taste the wines, because the conference dinner was held at the Wagga Wagga
winery on the following evening. Another night of drinking and eating with a few interlocking metal link
puzzles thrown in for those who had not had enough mental activity. At our table past and present residents of
Perth were particularly successful at solving these. I'm sure that like myself most of those who attended the
conference returned to work full of enthusiasm for using the new ideas to which we had been exposed. In Perth
we have begun to make use of Genstat's high resolution graphics but as yet have not come to grips with John
Nelder's double generalised linear models. On the question of suitable attire for Genstat users, our Department
has ruled against canary yellow jackets as worn by Robin Thompson on the grounds that they would not match
our corporate uniform.

Acknowledgement

This article first appeared in the March 1995 issue of the Statistical Society of Australia Newsletter.



Genstat Newsletter 32

Genstat Talk

Extracts from the Genstat electronic discussion list, May to December 1994, summarized and edited by
Peter Lane, Rothamsted. To join the discussion, send the message:

SUBSCRIBE Genstat fzrst-ziame last-name

to the address: listserv@listserv.rl.ac.uk

The opinions expressed here are not necessarily endorsed by either NAG or Rothamsted, and statements
may not have been checked for accuracy. However, members of the Genstat development team and of
NAG's Statistics Section are contributors to the discussion.

Re-ordering text
Query: A simple task that does not seem to admit
a simple solution: take a text t and construct a
second text s with the same elements but in a

(given) arbitrarily permuted order. The use of $
as in

CALC S s T$[l(3,2,l)]

does not work with text. Ugly solutions can be
found using edit and equate; but there must be
a better way.

Triggs@mat.aukmi.ac.nz
Reply: Use sort, as in
sort [INDEX=1(3,2,1)] T; S

rod@maths.marc.cri.nz

Inconsistent structures

Query: I get some more or less incomprehensible
messages when I use delete. For example,
DELETE [REDEFINEsyes; LISTsall]

after using procedure glum gives a warning VA19
about inconsistent structures, and lists 23
identifiers including glmm and several beginning
with underline. Is there a way of suppressing these
messages? Are they telling me something I ought
to take account of?

j^@ canopy.biom.csiro.au
Reply: The warning message is generated because
there are some structures remaining after the
DELETE operation that are "inconsistent". This
means that they have been set up to refer to other
structures that have now disappeared or changed.
Such messages can be generated by, for example,
deleting a text structure that has been used to
define labels for a factor. However, in the reported
case, the inconsistency is caused by undeleted
structures in the glmm procedure that point to
deleted structures. The message can safely be
ignored, and it can be suppressed by switching off
warnings temporarily using the diagnostic
option of the set directive.
peter.lane@bbsrc.ac.uk

Analysis of covariance
Query: I'm trying to do an analysis of covariance,
but Genstat doesn't seem to be doing anything
with my covariate. I have only one covariate value
for each factor combination in a fractional

factorial. The Manual says that the adjusted
analysis of variance is the extra sum of squares
removed by the covariates after eliminating all
that can be ascribed by the treatments - but in my
case, if I fit all the factors I can, there isn't any
variation left for the covariate to account for.

What I'd like to do is fit the covariate first.

duncan. hedderley @ bbsrc.ac. uk
Reply: You could try using the regression
directives, since there is only a single stratum. The
covariate effect is completely confounded with
treatments, so you will have to be very careful
with the interpretation. But the pit directive will
fit the effects in the order you include them in the
parameter. You can use predict to produce
tables of means adjusted for the covariate (setting
the ALIAS option to deal with aliasing).
peter. lane@bbsrc.ac. uk

Fitting distributions
Query: I've never used fithonlinear before,
but I want to use it to fit Normal, LogNormal,
Weibull and Gamma distributions. The Release 1

Manual (Page 384) shows how to deal with the
Normal distribution; is there a quick and easy way
to deal with the others? I don't want anyone to

expend a lot of energy on this.
sparks@vaxa.nerc-monkswood.ac.uk
Reply: You can use the directive distribution
in Release 3.1.

van.biezcn@ibn.agro.surf.nl
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Macros in procedures
Query: Can anybody help me with using macros
inside a procedure? Maybe there is an altemative
which doesn't require using them. I have about 25
lines of Genstat code that I want to repeat over

and over inside a procedure. If I use the macro in
a normal program there are no problems. Once I
try to use it inside a procedure I get an error that
the text is an improper structure.
p. baker® prospect, anprod. csiro. au
Reply: The problem is that macro substitution
takes place when the procedure is being defined,
not when it is being executed. The contents of the
procedure are not interpreted until it is being
executed, so no definitions of texts inside the
procedure can be used. You can, however, define
a text, say T, before defining the procedure, and
then use the macro substitution ##t in the
definition of the procedure. In Release 3 there is
no problem: you can use the new execute
directive which provides execute-time substitution
of the contents of a text.

peter. lane@bbsrc.ac. uk

Limits on text

Query: Does anyone know what is the maximum
number of elements in a text? I could be looking
at typing in 800+ adjectives for a Procrustes
analysis: am I likely to run into problems with
storage or the maximum length of a values
option?
duncan.hedderley@bbsrc.ac. uk
Reply 1: I don't think you are going to hit
problems with even 2000 adjectives. I tried a
dummy run trying to read in a text of length 2000,
with entry 'browny-green' 2000 times, and found
the dataspace before and after with
HELP env,space

and there was plenty of space left on our system.
ian@sass.sari.ac. uk

Reply 2: The size of character space is fixed in
each implementation of Genstat. In Release 3.1
there is space for 102,400 characters for
VaxA^S and 204,800 for PC and Sun/SunOs.
This space is not used for identifiers (another
block allows up to 8000 or 16000 respectively)
but is just for storing texts. However, procedures
are stored as texts, so you can soak up space if
you use many procedures in a job.
peter.lane@bbsrc.ac. uk

S.e.s for variance components
Query: We are currently using Genstat to analyse
results from measurement capability studies. The
vcossPONEMTS and reml directives produce
estimates of variance components and their s.e.s.
How reliable are the rehl s.e.s?

icox@theraj.enet.dec.com

Reply: The s.e.s come from the inverse
information matrix of the estimated variance

components and so cannot generally be used for
reliable tests unless based on very large samples.
One approach you could take is to perform
likelihood-ratio tests on the components: since
REHL calculates (residual) maximum-likelihood
estimates of the variance parameters, you can drop
these in tiim from the model (analogous to testing
fixed effects using normal maximum likelihood)
allowing one d.f. for each variance parameter
estimated. You then look at the difference in

deviance (-2xlog-likelihood) between nested
variance models compared to the appropriate chi-
squared distribution. Note that you must keep the
same fixed model throughout.
sue.welham@bbsrc.ac.uk

Comparing PCAs
Query: Suppose I have a set of intercorrelated
variables which I measure on a number of units.

The units are classified into groups, and I want to
know if the interrelationships between the
variables are the same for each group. If I do a
principal components analysis on each group
separately, can anyone think how I might compare
the loadings from each group?
duncan.hedderley@bbsrc.ac. uk

Reply 1: You could carry out PCA on all the
units together and follow with analysis of variance
using the component scores.
ccsphc@sunserverl.bath.ac.uk
Reply 2: The interrelationships are summarized in
a covariance matrix for each group. I would then
think of Bartlett's test for equality of covariance
matrices.

h.van.der.voet@glw.agro.nl
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Pentium PC

Query: One of iiy colleagues who runs Genstat
on a 486 is planning to get a Pentium. What sort
of improvement in performance can he expect?
jejf@canopy.biom.csiro.au

Reply: I compared a standard Genstat job on my
486 DX33 having 8Mb of memory with a Pentium
machine with a large memory. It ran in about a
quarter of the time. We estimated that the
improvement was split about 50-50 in number-
crunching and data access, but this is only a rough
guess. Don't forget, however, that there are
different speeds both of DXs and Pentia, as well
as differences between SX and DX.

j.nelder@ma.ic.ac.uk
Postscript: A footnote to my previous posting on
behalf of a scientist who was thinking of getting
a Pentium machine. He now has a Pentium and is
delighted with the performance of Genstat, even
running under Windows. Thanks for the helpful
comments.

jejf@canopy.biom.csiro.au

Rejoinder: Hopefully he has a bug-free version of
the Pentium chip - if not, ring Intel for a
replacement. Check to see whether your Pentium
chip wears a fan or a heat-sink - they need to
know when you order the replacement.
bairdd@agresearch.cri.nz

Continuing after a fault
Query: I want to perform an operation repeatedly
within a loop. Each operation takes a long time,
so I run the job overnight. I know that
occasionally there will be a fault in the operation.
I would like simply a report, and continue with
the next pass of the loop. However, it crashes at
the first fault. This means that to get any further
I have to remove that case and run the job again
the next night (when it crashes at the next fault,
and so on.) The statement
SET [ERRORsO]

doesn't help. Any ideas?
graham@sass.sari.ac.uk
Reply: The only way to continue execution after
a fault in batch mode is to set the dxagnostic

option of the job or set directive. If you give
SET [diagnostics:*]

then Genstat will not report messages, wamings or
faults, and, as a side effect, will continue
execution after a fault. This facility is intended
primarily for writers of procedures, but works
outside as well. The run option of set does not
affect continuation after faults. The errors option
of SET controls the number of faults that are

reported, and does not affect subsequent
execution.

peter. lane@bbsrc.ac. uk

Rounding in calculations
Query: I'm looking at an experiment where each subject tastes a number of juices from a number of
packs. I want to construct a variable indicating the juice/pack combinations for each subject. I tried to code
the juice number for each pack in successive digits of a single number as follows
CALC code = juice*(10**pack)

but this doesn't seem to work. What am I doing wrong?
duncan.hedderley@bbsrc.ac.uk

Reply 1: I cannot see anything wrong with the code, but I suggest you try using tabulate as an
alternative.

mcnulty@hri.sari.ac.uk
Reply 2: The problem is caused by rounding errors. The calculation produces some very large and some
very small values; consequently, adding them together depends on the number of significant places Genstat
can cope with.
ian@sass.sari.ac.uk

Reply 3: The calculation is trying to do integer arithmetic in real numbers, and on most computers real
number arithmetic is accurate only to seven digits.
rodger. white@bbsrc.ac. uk
Reply 4:1 am not sure why you want the new variate, since if you wanted a compact way to see who got
what you should be able to tabulate and get more informative output. On the other hand, if you wanted
to see if any subjects had got the same sequence, maybe you could equate the table to eight variates and
create a subject code, then sort on the eight variates and subject code, using all eight variates in the index
option of SORT.
p. baker@prospect, anprod. csiro. au
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Generalized Procrustes

Query; I'm trying \o interpret a GPA and wondering what the "Analysis of variation for the configuration"
bit means. The first column (labelled "Scaling") is presumably the isotropic scaling factor, but what do the
"Residual" and "Total" columns represent? Can I use them to judge if one or two assessors are not well
represented by the consensus?
duncan.hedderley@bbsrc.ac.uk
Reply: The "Total" column is the total sum of squares for each of the configurations. If no external
preliminary scaling nor isotropic scaling has been carried out then this may well represent large differences
in overall "size". The "Residual" column is the residual sum of squares for each configuration after the
Procrustes transformation. If you do have large size differences this is likely to be apparent also in the
residual, but if these have been corrected for, then a large residual indicates a configuration that is not in
agreement with the rest after the Procrustes transformations.
gillian.amold@bbsrc.ac. uk

Labels for factors

Query: I have a list of about 50 names which
have been given to clones in a breeding trial. I
want to set up a factor to have levels
corresponding to these names by reading the
names from a file and then proceed to read the
data file from my experiment where the actual
names appear. Subsequently I will use this
information in the ANOVA.

clarkep @ cc. unp. unineLzja
Reply 1: One thing you might try (with Release
3.1) is just declaring a factor (no levels or
T.aTOT.g defined) and then reading the data file.
Every new bit of text will be entered as
representing a new level of the factor. So long as
you enclose the names in single quotes, you can
even have level names with odd characters (such

as spaces) in them.
duncan.hedderley @ bbsrc.ac. uk
Reply 2: In Release 3.1, you can define the labels
of the factor from what occurred in the data:
OPEN ' data. dat'; CH2UlNELs2
FACTOR clone

READ [CHANNELb2] clone; FR£P=labels
If you want to check the data against a master set
of names, then read the master set first into a text:
OPEN 'master.dat','data.dat'; \

CHaNNELs2,3
TEXT nolone

READ [CHANNELS2] nclone
FACTOR [LABELSsnclone] clone
READ [CHANNEL=3] clone; FREPslaDels

The clone names are allowed to be any quoted
string, or any unquoted string that does not
include a space, single or double quote, tab, colon,
asterisk or backslash (Manual, Page 79). You may
be able to avoid quoting complicated strings in the
data file by using read with a fixed format.
peter.lane@bbsrc.ac.uk

Premultipliers
Query: Can anyone explain why this works:
SCALAR n; VALUE06
FACTOR [LEVELS°6; VALUESs4(1...n)] £

but this does not:

SCALAR n; VALUEa4
FACTOR [LEVELSsG; VALUESsnd... 6) ] £

ccsphc@sunserverl.bath.ac. uk
Reply 1: The solution is that #n will work in both
cases. Why n works in the first case but not the
second, I cannot explain!
ian@sass.sari.ac.uk

Reply 2: There are two uses of n in the given
example: as a list element in l.. .n and as a list-
multiplier in #n(1...6). The following simple
example illustrates why the # is necessary.
Suppose you have a list in an expression
CALC v[1...12] o 6(a,b)

then it would be nice to generalize it to
SCALAR n; VALtJE=6
CALC v[1...12] = n(a,b)

But supposing the scalar was called max, not n:
CALC v[l.. .12] s max(a,b)

How does Genstat know whether you are using
the scalar max or the function called max?
simon.harding@ bbsrc.ac. uk

Formal levels of factors

Query: We used to find formal levels useful in
earlier versions of Genstat. Can anyone suggest an

elegant way of forming them from actual levels;
for example, converting 1,3,78 to 1,2,3?
Fred.potter@ bbsrc. ac. uk
Reply: Use the newlevels function:
FACTOR [LEVELS^!(1,3,78);VALUESs...]

£1

FACTOR [LEVELSb3] £2
CALC £2 = NEWLEV(£1; 1(1...3))

ian@sass.sari.ac.uk and fillmore@nsrske.agr.ca
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Negative binomial in GLM
Query: I am analysing some count data using a
generalized linear model with a log link function and
Poisson distribution. The residual deviance is much

greater than 1. I now wish to try the negative
binomial distribution. Has anyone experience of
fitting such models using Genstat?
tony@sass.sari.ac. uk
Reply 1: A good (sometimes very good)
approximation to the negative binomial within
Genstat is to remember the relationship with the
gamma distribution. If you specify that, together
with a log link (not the canonical link for gamma),
this seems to be very satisfactory in terms of a
residual/fitted-values plot. You can call it a quasi-
likelihood model, if you like. You will need to
consider zero values quite carefully.
acadvml.uottawcLca

Reply 2: John Nelder has programmed model-fitting
using the negative binomial. It is available in his K-
system — a highly interactive environment within
Genstat for fitting and checking GLMs with minimal
typing, using procedures. It is available on the NAG
gopher: www.nag.co.uk.
peter.lane@bbsrc.ac.uk
STOP PRESS: The negative binomial will be
available as a standard option in Release 3.2. Editor

Diallel and NC designs
Query: Does anyone have any Genstat code to
analyse the subject of Mather and Jinks, Chapter 8
- diallel crosses. North Carolina designs 1 and 2 -
beyond that of getting the variance components?
agl44stat@ ncccot. agr. ca
Reply: I have a Genstat procedure for analysing full
and half diallels according to the methods of Hayan,
Jinks and Jones. I haven't done NC designs yet.

Fred, potter© bbsrc. ac. uk
Rejoinder: Just to let you know that I have had
some conununication with Trevor Hohls in Natal,

who has software for NC designs. I have placed
your diallel code in my local library.
agl44stat@ncccot.agr.ca

Bootstrap
Query: Has anyone attempted to do any
resampling statistics (bootstrap etc.) using
Genstat? Are there any procedures or example
programs around, please?
awm@pcmail.nerc-bas.ac.uk
Reply 1: I have written two procedures using
Mantel's test of the significance of the
correlation between distance matrices. They use
randomization rather than his original test
statistic. One is for the simple correlation
between two matrices and the other for

partialling out the effects of a third matrix. I
also have two procedures for computing F-
statistics by Weit and Cockerham's method,
which ̂ e tested by bootstrap and jackknife. All
procedures are rather slow!
lschmitt@anhb. uwa. edu.au

Reply 2:1 have an ad hoc translation of the S
function BcauiON obtainable from the FTP site

mentioned in the book by Hastie and Tibshirani.
The procedure implements the bias-corrected
accelerated bootstrap which is the one the
authors seem to favour in many applications. I
have not elaborated on niceties.

h.van.der.voet@glw.agro.nl
Reply 3: Roger Payne and I have completed
two procedures for the 3 [2] Library, one for
jack-knifing- and one for bootstrapping. To use
them, you need to write a short procedure
(copied from a template) to calculate whatever
statistic(s) you want to estimate from a set of
data vectors; then call BOOTSTRAf or

JACKKNZFE to Carry out the resampling. The
Library will be distributed to sites with 3.1 of
Genstat (and the support service!) by NAG in
due course.

peter.lane@bbsrc.ac.uk

The K System
Notice: The K System for Release 3.1 is now
available on the NAG Bulletin Board and can

be downloaded by anyone who can reach the
gopher:
www.nag.co.uk 70

I would appreciate comments on the process of
getting the code, the comprehensibility of the
documentation, and the usefulness of the

system. The K system provides a highly
interactive environment for fitting and checking
GLMs, with minimal typing. Please try it and
let me know what you think.
j. nelder@ ma. ic. ac. uk
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Positioning of graphs
Query; I am usin^ Genstat to generate PostScript
graphics. Is there anyone else who finds it irritating
that Genstat will write only to a square area at the
left of a landscape page or bottom of a portrait
page? Although die facility to write to the whole
page would be nice, all I really want is to be able
to write to the middle of the page. Have I
overlooked a command that will let me centre my

output? Is it possible to alter the PostScript code to
tell the printer where on the page I want the graph?
ian.wakeling@bbsrc.ac.uk
Reply 1: I also find this irritating. A few years
ago the Cambridge Computing Service patched the
source code of Genstat 2.2 to make plots fill the
whole A4 page, but unfortunately it has not been
ported to later versions.
tim.cole@mrc-dunn.cam.ac.uk

Reply 2: PostScript writes on a nominal x-y plane
with 0,0 at the bottom left comer. EPS is an even
better option because it assumes the picture will be
embedded, so makes it self-contained. However, for
both PS and BPS you will find a "comment" near
the start of the graphics file
%%BoundingBox xl yl x2 y2

where xl-x2 and yl-y2 define the plotting area, in
units of about 1/72 inch. Unfortunately, many
packages that generate PS files get the bounding-
box values wrong! This may not matter if you just
print the file as it is, but it's a real bummer if you
want to merge the graph inside some text. You can
edit the BoundingBox line, aided by a file called
bbfig.ps (available from most network archives)
and the GhostScript program.
r.areese@ucc.hull.ac.uk

Reply 3: You are obviously not using Genstat 3.1
on Sun/SunOs which lets you set the yupper
parameter of frame up to 1.4 when using Device
4 or 5. This was not possible with Release 2.2, but
when I took it up with Rothamsted they told me
how to alter the code. They have obviously
incorporated the change into 3.1.
vdjall @ hermes.cambridge.ac.uk
Rejoinder: Thanks to everyone who replied. I had
trusted the Manual when I read the bit about
FRAME only being able to define a square area
(page 303). In fact, my version of 3.1 on Vax/VMS
can write PS or EPS graphs that cover the whole
page by setting yupper (portrait) or xupper
(landscape) to 1.41. Unfortunately, this facility does
not extend to the other devices that are available, so

it is not possible to preview the image on a screen
using Genstat. However, the GhostScript program
could to do this.

ian.wakeling@bbsrc.ac. uk

Need for coprocessor
Query: I would be grateful to anyone who could
advise me on the following. I wish to load
Genstat 3.1 on a Viglen 486SX:
(1) Am I right that Genstat does not run on

this machine?

(2) Will it run if I add a 487SX coprocessor?
(3) Will it run without a coprocessor if I

replace the 486SX CPU with a 486DX?
(4) Are there any other reasons for choosing

one rather than the other?

djall @ central-unix-service. Cambridge, ac. uk
Reply 1: (1) Yes and no. Genstat was compiled
to run only on machines with a coprocessor,
which a 386SX does not have. There is Public

Domain or Shareware software that emulates a

coprocessor, but at best you can expect a marked
reduction in speed. (2) Yes. (3) Yes. The 486DX
has a coprocessor built in. (4) No. The 487SX
coprocessor should work out cheaper.
Stephen @nag. co. uk
Reply 2: We have recently discovered a 387
emulator called Q387. It is much cheaper ($25)
than a hardware upgrade and will prove
satisfactory in many cases. It is distributed as
shareware so you can try it before paying. We
have tested it with Genstat and it appears to
function correctly, at reasonable speed. A copy of
Q387 has been placed on the NAG bulletin board
(URL http://www.nag.co.uk:70) and Genstat users
are encouraged to take copies. Of course, Q387
will be of use for any software requiring a
coprocessor.

simon.harding@bbsrc.ac.uk

Rejoinder: Have you checked the price of
coprocessors recently? My impression is that a
387 intended for use with a 386/40 processor will
also work well with any 486SX. I'm told that the
new price for a 387 in NZ is $25.1 could not get
a sale for my discarded 387 when I advertised it
recently for $151
john@maths.marc.cri.nz
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Formulation of a model to describe the colour preference of insects

K Phelps, G Edmonds, S Finch
Horticulture Research International

Wellesboume

Warwick CV35 9EF, UK

V Kostal

Institute of Entomology
Czech Academy of Science
Branisovska 31

370 05 Ceske Budejovice
Czech Republic

1. Introduction

In a sequence of behavioural studies, the question of interest was: do insects exhibit a consistent colour
preference and, if so, can it be quantified? Colour preferences were ascertained using plant models and water
traps coloured with paint of known reflectance properties. Colours were tested in pairs; each experiment
involved presenting insects with pairs of differently coloured traps an<f counting the number of insects landing
in each trap. Exact details of designs are beyond the scope of this article.

A simple example illustrates the model fitted, based on that proposed by Bradley and Terry (1952). Say we have
three colours A,B,C which we test in pairs and 12 flies are trapped each time. If 3 and 9 flies respectively are
caught when traps coloured A and B are used and sinularly 4,8 flies from A v C we can infer the results from
B V C. To do this it is natural to think in terms of the ratio of flies choosing one colour compared with another.
Since the ratio of flies on A to flies on B was 1/3 and the ratio of flies on A to flies on C was 1/2 , in a test
of B V C we would expect the ratio of flies on B to flies on C to be 3/2.

2. Formulating the Model as a GLM

If ©,- is the ratio of the number of flies landing on colour i to the number landing on colour j, then the
corresponding ratio for colour k against colour I is In a test where traps 1 and 2 are coloured k and
I respectively, if n flies are trapped r of which are in trap 1, Gju is estimated by r/(n-r). Hence, ignoring the
error terms

log( r/(n-r) ) = \og{©^) - log(G,^)

and the problem becomes a GLM with binomial errors and a logit link function. In the example there are two
parameters to be estimated, G^y and G^,, but in general the parameters will be G^, h=l to (c-1), where c is the
number of colours. G^ will be the ratio of landings on colour h to landings on colour c, where the choice of
c is arbitrary but conveniently represents a control colour, yellow, which is included in all experiments.

3. Fitting the model in Genstat

For each test we arbitrarily label each trap 1 or 2. This allows us to assign each test to a unit and form variates
r and n as defined above. We generate variates corresponding to each colour parameter, G;,, which take the
value 1 if trap 1 was colour h, -1 if trap 2 was colour h and 0 otherwise .

The fit of the model can be tested by the residual deviance and the parameters estimated are logCG^), ft=l to
(c-1). These parameters can be interpreted as the log of the ratio of landings on a trap of a given colour to
landings on the control.

11
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4. Example

The following progrin fits the model to a small subset of the data from an experiment where pairs of coloured
objects were exposed for sixty minutes to cabbage root flies. Note that is not necessary to test all possible pairs.

FACT [NVAL=5 ; LAB= !T(Blue,Greon,Orange,Yollow)] COLOtIR[l,2]
VARZ [NVAL=5] NXni[l,2]
READ [PRINbD] COLOlJR[l], NDH[1], COLOUR[2], Ntni[2]
Blue 11 Green 42

Green 47 Yellow 65

Yellow 64 Orange 72

Blue 14 Yellow 71

Green 33 Orange 74

CALC N o NUM[1] + NUM[2]

& H[l...3] B (COLODRCl].EQ.(1..
MODEL [DZST°B1N] NtIH[l] ; MBZN°N
TERMS H[1...3]
FIT [CONST=OMIT] H[1...3]

The parameter estimates were -1.688 for Blue, -0.43 for Green, +0.224 for Orange. Thus die estimated ratios
of landing on Blue, Green, Orange to landings on Yellow were 0.18, 0.65,and 1.25 respectively. The residual
deviance was 1.34 on 2df. The results from such a small sample of colours can be inferred directly from the
data but the modelling procedure is extremely useful when there are many colours. It was interesting to note
the underdispersion that occurred where flies could land on a coloured object and then take off again. In
experiments where the flies were drowned in coloured water-traps, the residual mean deviances were very close
to 1.

The model can be easily extended to include other factors such as sex of flies or background colour:

FIT [CONSTbOMIT] SEX*BACKGROXn]D*H[]

References
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A method for simplifying single and complete linkage dendrograms

C A Glasbey
Scottish Agricultural Statistics Service
JCMB, King's Buildings
Edinburgh EH9 3JZ, UK

1. Introduction

In many forms of clustering 'two basic ideas are involved: internal cohesion and external isolation' (Cormack,
1971). Most clustering techniques seek partitions which satisfy both conditions. However, two commonly used
methods, single and complete linkage, simply concentrate on one. They both take as their starting point a
symmetric matrix of similarities between dl pairs of objects in a set, and they operate agglomeratively, to
produce a hierarchy of partitions in a dendrogram. Initially, every object is placed in a separate cluster. At each
subsequent step, two clusters are selected and pooled to form a new cluster, with this process continuing until
all the objects are in a single cluster. In single linkage the two clusters are chosen so that the maximum,
similarity between any object in one cluster and any object in another cluster is made as small as possible in the
new partition (i.e. minimax); in complete linkage the clusters are chosen so that the minimum similarity between
any two objects in the same cluster is as large as possible (i.e. maximin). Therefore isolated clusters and
compact clusters are sought respectively by the two methods. In contrast, Ward's (1963) method seeks both
compact and isolated clusters. The sum of squares of similarities within clusters, a measure of cohesion, is
maximized at each agglomeration. At the same time the sum of squares of similarities between clusters, a
measure of isolation, is minimized because the two terms sum to a constant.

2. Review of single and complete linkage

The single linkage method has many attractive features. It can be computed very quickly and can therefore be
used with large data sets (Sibson, 1973). Gower and Ross (1969) pointed out its connection with the spanning
tree of minimum length (i.e. maximum similarity). Also, single linkage solutions are optimal in the sense that,
for any specified number of clusters, no partition exists which has a smaller maximum simil^ity between objects
in different clusters. Therefore no other method for optimizing the particular criterion of minimum separation
need be considered. Further, single linkage clustering is a method known to satisfy a set of axioms specified
by Jardine and Sibson (1968) and it meets all but one of the conditions given by Fisher and Van Ness (1971).
However, it frequently produces diffuse clusters, a phenomenon known as 'chaining' (Lance and Williams,
1967). This is not surprising as the method takes no account of the size of similarities within clusters.

Complete linkage clustering is, in a sense, the dual of single linkage. An efficient algorithm exists, similar to
Sibson's, due to Defays (1977). However the agglomerative procedure is not necessarily optimal: other partitions
may exist which contain the same number of clusters but have a larger minimum similarity within a cluster. The
criterion of maximizing the minimum similarity within a cluster may be used divisively, to produce another
hierarchy of partitions. Initially, all objects are placed in the same cluster. At each subsequent step, one cluster
is selected to split into two, with this process continuing until all the objects are in separate clusters. The cluster
chosen for splitting is the one containing the minimum similarity between two objects in the same cluster. The
spanning tree of maximum length is constructed for the objects in this cluster, using a method analogous to the
one for constructing the minimum spanning tree. Then, one arbitrarily chosen object in the cluster is placed in
one of the two new clusters. All objects adjacent to this one in the spanning tree are placed in the other new
cluster. All objects adjacent to these ones are placed in the first cluster, and so on until all objects have been
allocated to one or other of the new clusters. By this method, no two objects in the same new cluster are
adjacent in the spanning tree. This algorithm was proposed by Rao (1971). Again, the partitions may not be
optimal.

The complete linkage partitions which, for each different number of clusters, have the largest minimum similarity
between two objects in the same cluster are not necessarily nested; that is, they cannot be formed from one
another by either a sequence of agglomerations or divisions. Baker and Hubert (1976) showed the connection
between complete linkage clustering and the graph colouring problem, where linked points in a graph have to
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be coloured differently using the minimum number of colours. In essence, if a graph is constructed by joining
all objects which are less, similar dian a certain value and this graph is coloured, then a partition formed from
the colouring will have a minimum internal similarity which is greater than this specified value. Hansen and
Delattre (1978) gave an algorithm which produces optimal partitions for fixed numbers of clusters. Although
the clusters which are formed are compact they are sometimes close together and find a dissection of compact
groups of points.

3. Synthesized criterion

In order to retain the benefits of single and complete linkage, whilst obtaining clusters which are both compact
and well separated, I proposed a synthesized criterion (Glasbey, 1980). Partitions are found which minimize
f(b,w), where / is a fonction of the maximum similiarity (b) between objects in different clusters and the
minimum similarity (w) within clusters. Any function can be chosen, subject to the restriction that/decreases
both as w increases for fixed b and as b decreases for fixed w. I showed that the criterion could be used in
hierarchical clustering although, as with complete linkage, the results are not necessarily optimal. I also gave
an algorithm for relocating points between clusters in order to find a locally-optimal partition for a fixed number
of clusters. In a subsequent paper (Glasbey, 1987) I showed that all partitions which optimize the synthesized
criterion are partitions in the single linkage dendrogram. In effect, complete linkage is used to provide a multiple
stopping rule for single linkage clustering.

In this article I show how measures and w can be combined graphically in Genstat, and the results used to
simplify both the single linkage and complete linkage dendrograms.

4. Illustrative data

To illustrate the approach, I have used amino acid sequences for the protein 'cytochrome c' for twenty four
animal species (Dayhoff, 1972). Sequences are between 100 and 120 in length, with missing values inserted
where necessary to ensure correct alignment. McNicol et at (1993) derived similarities between species as the
proportion of sequence positions with matching amino acids. They also produced displays like those shown
in Figures 1-3.
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Figure 1

Figure 1 shows a plot of the first two principal coordinates obtained from the similarity matrix, together with
the minimum spanning tree, produced by the procedure dhst.
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Figure 2 shows the single linkage dendrogram output by the procedure ddendroctam based on the tree produced
by the Genstat command bdisbiay. Figure 3 shows the complete linkage dendrogram from the Genstat
command hcluster and the procedure ddendrograh.
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There are similarities between the dendrograms, such as the four insect species forming a separate cluster which
is only amalgamated with the rest at the final level of aggregation. However, complete linkage groups all the
mammals whereas single linkage includes birds and turtles as well.

5. Simplified single linkage dendrogram

Figure 4 shows minimum within-group similarity plotted against maximum between-group similarity for the
partitions in the single linkage dendrogram.
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Figure 4

The Genstat code for obtaining a lineprinter version of this graph, given an Ndata by Ndata similarity matrix
slsnnat is as follows:

15



Genstat Newsletter 32

BDISPLAY [PRINTS*] simmat; TREEsHstree
GALCX7IATE Ustt = TRANSPOSE <M8tree)
EQUATE Hstt;'' IP(Clus2,Between)
FACTOR [LEVELSsNdata; VALUESsNdata...1] Nclus
VARIATE [VALUESsl.. .Ndata] Clusl,Within,Labels,Dusray
SORT [DIRECTIONsdescending] Between, Clusl,Clus2
CALCULATE Between » CIRCULATE(Between;-1)

CALCULATE Hinsim=l

CALCULATE Index^l

CALCULATE NdatazsNdata-1

FOR [NTIHESsNdataz]
CALCULATE IndexsIndex+1
CALCULATE Labi = ELEMENTS (Labels;ELEMENTS (Clusl;Index) )
CALCULATE Lab2 = ELEMENTS(Labels;ELEMENTS(Clus2;Index))
CALCXn<ATE Veclabl s MIN(Labl)*(I>uiQiiy>0)
CALCULATE Veclab2 = MIN(Lab2)*(Duiinny>0)
RESTRICT Dummy; CONDITIONS (LabelsssVeclabl); SAVESET=Loc8l
RESTRICT Dummy; CONDITIONS(LabelsssVeclab2); SAVESETsLocs2
RESTRICT Diumny

CALCULATE Hinnew s HIN(ELEMENTS(Simmat; Locsl; Locs2))
IF Minsim>Mizm6w

CALCULATE MinsimsMinnew

ENDIF

CALCULATE ELEMENTS (Within; Index) s Minsim
CALCULATE Veclab2a s MIN(Lab2) * (Loc8l>0)
CALCULATE ELEMENTS (Labels ;Locsl) s Veclab2a
DELETE [REDEFINEsyes] Locsl,LOCS2,Veclab2a

ENDFOR

GRAPH [YTITLEs'minimum within-groups similarity'; \
XTITLEs'maximum between-groups similarity'] YsWithin; XsBetween; SYHBOLSsNclus

snjks inkoge vth stopping nieThe first block of commands reformats the matrix

Mstree output by hdisplay so that amalgamations are
in order. The maximum similarities between clusters is

stored in the variate Between. In the second block of

commands, the minimum similarity within each newly
formed partition of clusters is obtained by extracting
submatrices from the similarity matrix, calculating their
minimum value (Hiimew) and comparing this with the
current minimum, Minsim. This is stored as an element
in the variate within. In Figure 4 we look for
partitions which have high within-group similarity and
low between-group similarity, i.e. towards the top left
comer of the figure. Ideally, partitions should lie above
the 1:1 line which is included in Figure 4, because then
all similarities within clusters exceed all similarities

between objects in different clusters.

Partitions of size 2, 8, 13 and 23 can be identified in
this figure as having better combined measures of Figure 5
compactness and separation than other nearby partitions.
Figure 5 gives the simplified single linkage dendrogram, consisting only of these partitions. This is achieved
by modifying the matrix Mstree as follows:

VARIATE [VALUES=23,13,8,2,1] Select
CALCULATE lndex=0

CALCULATE Nselect = NVALUES(Select)
FOR [NTIHESsNselect]

CALCULATE Indexcindex-t-l
CALCITLATE Threshold s ELEMENTS(Between; Ndata - ELEMENTS(Select; Index))
CALCULATE Index2=l

FOR [NTIMES=:Ndataz]
CALCXmATE Index2clndex2-fl

IF ELEMENTS(Mstree; Index2; 2) > Threshold - 0.0001
CALCULATE ELEMENTS(Mstree; Index2; 2) s -Threshold
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ENDIF

ENDFOR

EMDFOR

CALCniATE Indexsl

FOR [NTIHESsNdataz]
CALCULATE Index=Index-i-l
CALCULATE ELEMENTS(Hstree; Index; 2) s

ENDFOR

-ELEMENTS(Hstree; Index; 2)

DDENDR06RAH [STYLE=centroid; REVERSE=yes; GRAPHZCSsHneprlnter] Hstree; \
TITLES'single linkage with stopping rule'; LABELSsSpecnam

The grouping into eight clusters is:

• Whale, Pig, Rabbit, Horse, Dog, Kangaroo, Pigeon, Duck, Penguin, Chicken, Turtle, Monkey, Human
•  Bonito, Tuna, Carp
• Tobacco horn-worm Moth, Silk worm

•  Screw worm. Fruit fly

and the other species (Bullfrog, Lamprey, Snake, Dogfish) form single clusters.

6. Simplified complete linkage dendrogram

It is also possible to reverse the procedure, and plot minimum within-group similarity plotted against maximum
between-group similarity for the partitions in the complete linkage dendrogram, although this has less theoretical
justiBcation. Figures 6 and 7 show results analogous to the above.
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The Genstat code is similar, but now has to use the matrix array disk output by hcluster.

HCLUSTER [MBTHODsCOXBplete] Simmat; AHALGAHATZONSsCllnk
VARIATE [Ndataz] Clusl,Clus2,Between,within
CALCULATE Clinkt « TRANSPOSE(Clink)
EQUATE Clinkt; !P(Clusl,dus2,Within)
FACTOR [LEVELSsNdata; VALUESsNdata...2] Nclus
VARIATE [VALUESsl.. .Ndata] Labels,Dunmiy
CALCULATE Within = CIRCULATE (Within; 1)
CALCULATE ELEMENTS(Within;1) « 1

CALCULATE lndex=0

FOR [NTIMESsNdata]
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CALCUUITE Indexsindesc-fl

CAIiCULATE EZiEHEI]TS(Siinmat; Index; Index) = -EZiEHENTS(Sixmnat; Index; Index)
ENDFOR V
CALCXTIiRTE lndex°0

FOR [MTIHESsNdataz]
CALCUIATE Indexsindex+l
CALCULATE ELEMENTS (Between; Index) » HZkX(Siinmat)
CALCULATE Labi = ELEMENTS (Labels;ELEMENTS (Clusl; Index))
CALCULATE Lab2 s ELEMENTS (Labels;ELEMENTS (Clus2; Index))
CALCULATE Veclabl s HIN(Labl)*(Duimiv>0)
CALCULATE Veclab2 o HIN(Lab2) * (Duim^F>0)
RESTRICT Dussny; CONDITIONe>(LabelSBaVeclabl); SAVESETsLocsl
RESTRICT Dusfiny; COin>ITION°(Label8BBVeclab2); SAVESETsLocs2
RESTRICT Dumny
CALCULATE ELEMENTS(Sinmat; Locsl; Locs2) » -ELEMENTS(Slmmat; Local; Locs2)
CALCULATE Veclab2a = MIN(Lab2)*(Locsl>0)
CALCULATE ELEMENTS (Labels ;Loc8l) = Veclab2a
DELETE [REDEFINEsyes] Loc8l,Loc82,Veclab2a

ENDFOR

GRAPH [YTITLEs'mlninxum withln-groups similarity'; \
vpTiT.igia* tmiTn similarity'] Y=Within; XcBetween; SYHBOLSsNclus

VARIATB [VALUBS°23,13,2] Select
CALCULATE lndox=0

CALCULATE NselectsNVALUES(Select)
FOR [NTIMESsNselect]
CALCULATE IndexsIndex-i-1
CALCULATE Threshold = ELEMENTS (Within; Ndata +-1 - ELEMENTS (Select; Index))
CALCULATE Index2sO

FOR [NTIMBSeNdataz]
CALCULATE Index2 =Index2+1
IF ELEMESNTS(Clink; Index2; 3) > Threshold - 0.0001
CALCULATE ELEMENTS(Clink; Index2; 3) s -Threshold

ENDIF

ENDFOR

ENDFOR

CALCULATE lndex=0

FOR [NTIHBS°Ndataz]
CALCULATE Indexslndex-f 1
CALCULATE ELEMENTS (Clink; Index; 3) » -ELEMENTS (Clink; Index; 3)

ENDFOR

• CALCULATE ELEMENTS (Clink; Ndataz; 3) = -ELEMENTS (Clink; Ndataz; 3)

DDENDR06RAH [STYLRscentroid; RBVBRSE=yes; 6RAPHICS=lineprinter] Clink; \
TITLES' con^lete linkage with stopping rule'; LABELSsSpecnam

The same partition into thirteen clusters is identified. This partition is the largest grouping for which all species
within a cluster are at least as similar to each other as they are to any species in other clusters. The grouping
is:

• Dog, Pig, Rabbit, Whale, Horse
• Pigeon, Duck, Penguin, Chicken
• Monkey, Human
• Bonito, Tuna

• Tobacco horn-worm moth. Silk worm

• Screw worm, Fruit fly

and the other species (Kangaroo, Snake, Turtle, Bullfrog, Carp, Lamprey, Dogfish) form single clusters. This
partition shows good agreement with the spatial distribution of species in the principal coordinates plot in Figure
1.
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Fitting the negative binomial distribution
V

D A Preece
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Comwallis Building, The University
Canterbury, Kent CT2 7NF, UK

G J S Ross

Statistics Department

I A CR-Rothamsted

Harpenden, Herts AL5 2JQ, UK

1. Introduction

In a detailed paper on the negative binomial distribution, Ross and Preece (1985) discussed use of the Maximum
Likelihood Program MLP (Ross, 1980) for fitting the distribution to data. As the relevant section of MLP has
subsequently been incorporated in Genstat 5 Release 3, parts of Ross and Preece's paper are now offered in a
rewritten form for Genstat users, particularly for the many students who find textbook accounts of the negative
binomial distribution to be bewildering.

The illustrative examples in the present note are (a) the two biological examples discussed by Ross and Preece
(1985) and taken from, respectively. Bliss (1953) and Fisher (1941), and (b) the actuarial example given by
Cunie (1993, pp. 31-33). Indeed, one of the aims of this note is to indicate that very simple use of Genstat
could enhance teaching of the Actuarial Statistics component of the examination syllabuses of the Institute of
Actuaries. For the Genstat analyses described in this note, only six Genstat directives are essential, namely
FACTOR, TABLE, READ, PRINT, DISTRIBUTION and STOP.

2. Notation

Genstat has the negative binomial distribution set up with

r+it-1
r(  «, V1 ^hl]

k
\  y

k'\
V  > ym+k ̂

as the probability of the random variable taking the value r (r = 0,1,2,...). This is the formulation of, for example,
Anscombe (1949). Here, the parameters m (the mean) and k are both positive, and neither is necessarily an
integer. When k is not an integer, the above formula is taken to represent

(r+k-l)(r+i!:-2) . . . (k*\)k m

m+k

(  ̂\-k

I *11
kr\

If we use X instead of r for a value of the random variable, and write

p = kl(m+k) , q = 1 - p ,

then the formula becomes

(x+k-l){x^k-2) . . . ik^Dk

^ ̂ '

This is the notation used by the Institute of Actuaries (1980) for "subject 5". With k rewritten as a, we have the
notation of Currie (1993, pp. 30-31). As pointed out by Ross and Preece (1985, p. 325), various authors have
used p as just defined, whereas others, including Fisher (1941), have used p = m/k. As with other distributions
in the examination syllabuses of the Institute of Actuaries, work on a negative binomial distribution must always
include careful checking of how the distribution's parameters have been defined.
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3. Sample statistics

In Genstat S Release 3, standard discrete and continuous distributions are fitted by use of the directive
DZSTRXBUTZON (Genstat 5 Committee, 1993, pp. 330-343). For discrete distributions, this directive first causes
the printing of various Sample Statistics for the data values jc, (i = 1 , 2 ,..., n), namely the mean m,, variance
5^, Skewness rn^l ̂  , and the two "scale-free" indices:

Poisson Index - m,) / m/

Negative Binomial Index m/mj - 3j^ + 2m,) f ( ̂

where mj is the sample's third moment about the sample mean.

The Poisson Index and the Negative Binomial Index were devised by G J S Ross and are not to be found in
standard textbooks. The Poisson Index was defined because of the difficulty of using the sample mean and
sample variance alone to judge intuitively whether the Poisson distribution is likely to provide an adequate fit
to an observed discrete distribution. The sample distribution of the Poisson Index is veiy similar for various
common two-parameter discrete distributions; it behaves better than the sample distributions of the standard
defining parameters for the two-parameter distributions; it is approximately Normal for moderate sample sizes.

The Negative Binomial Index was devised as a discriminator of long- and short-tailed distributions. It allows
interpretation of the third moment in terms of the first two moments, and so is a sort of "discrete coefficient of
skewness". As the numerator of the Poisson Index occurs in the denominator of the Negative Binomial Index,
the latter index is very unreliable for data with a small Poisson Index; roughly speaking, the Negative Binomial
Index is of value only if the Poisson Index is greater than, say, 0.5. Nor should the Negative Binomial Index
be used if the sample mean or sample size is small; the sample size has to be at least 200 for the probability of
encountering seemingly discrepant values of the Negative Binomial Index to be small.

For the negative binomial distribution, the theoretical values of the Sample Statistics printed by Genstat are, in
the notations of Genstat and the Institute of Actuaries,

Genstat Institute of Actuaries

Mean = m = kq I p,
Variance = m (1 + mA) = kq I ,

Skewness = (1 + 2m/k) / /(m(l+m//:)) = (2/p - 1) / /{kq / p^},

Poisson Index = 1 / k , Negative Binomial Index = 2.

For sample data, the value of the Negative Binomial Index can (as implied above) differ greatly from 2 even
when the data are well fitted by a negative binomial distribution.

If the sample data have been grouped into classes, e.g. with all values 5, 6 and 7 of the variate put into a single
class, and all values 8, 9, 10 and 11 put into the next class, then the Sample Statistics are calculated using
mid-points of classes. For the final class covering the right-hand tail of the distribution, the notional mid-point
is taken to be 1.25 times the smallest value in the class; thus if the tail is for the values 12, 13, 14, ... , the
contribution of the tail is assumed to be equivalent to concentrating the tail-observations at the value 15; this may
of course lead to gross underestimation of the variance and third moment, especially for long-tailed distributions.
No corrections are made to the calculated Sample Statistics to compensate for the grouping.

4. How Genstat fits the negative binomial distribution

Genstat uses the maximum likelihood method to fit the negative binomial distribution. The algorithm first
estimates the two 'working parameters' for the distribution, these being the mean m and variance m(l + m/k),
which are chosen as they are stable functions of the 'defining parameters' m and k . Estimates of the defining
parameters are then obtained from the estimates of the working parameters.
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Standard errors (s.e.s) are printed for the estimates of the parameters and are the usual asymptotic approximations
obtainable from maximum likelihood theory. Although the estimates of m and k are independent, the estimated
s.e. for k is not reliable, as a confidence interval for k is skew (i.e. the point estimate of k does not lie at the
centre of the interval).

5. Example 1 (Bliss, 1953)

The data of Bliss (1953) were obtained from apple trees. Twenty five leaves were selected at random from each
of six similar trees in an orchard, and the adult female red mites on each of the leaves were counted;

No. of mites

per leaf 0 1 2 3 4 5 6 7 >7 Total

No. of leaves

(frequency) 70 38 17 10 9 3 2 1 0 150

For a Genstat run, we REitD the frequencies

70 38 17 10 9 0

into a one-way table that is classified by a nine-level factor whose first eight levels are 0, 1 , ... , 7 for
the non-zero frequencies. The ninth level is for the zero frequency in the tail of the distribution. As the
numerical value of this level is not used in any of Genstat's calculations, any convenient value can be chosen,
e.g. 8, or 99, or 1000, according to taste; we here choose 8, for ease of coding the input. The corresponding
output (incorporating the input, except for the data for the read directive) is as follows.

Genstat 5 Release 3.1 (Vax/VMSS) 13-OCT-1994 15:34:47.02
Copyright 1994, Lawes Agricult\iral Trust (lACR-Rothamsted)

JOB 'NEGATIVE BINOMIAL'

OUTPUT [WIDTHb76] 1

"Analyses of data of Bliss (1953)"

1

2

3

4

-5

6

7  "Analysis without any grouping, emd with zero frequency for tail.
8  FACTOR [LEVELS°I(0...8)] Hltes; DECIHALS=0
9  TABLE [CLASSIFICATIONsHltes] Leaves; DECIHALS=0
10 READ [PRINTS*] Leaves
12 PRINT [ACROSSsHltes] Leaves; FIELDWIDTHs6

Hltes

Leaves

0  1

70 38

2

17

3

10

13 DISTRIBUTION [DISTRIBUTIONsnegatlveblnoolal] Leaves

13 -

***** Pit discrete distribution *****

*** Saiiq>le Statistics ***

Saiople Size 150
Mean 1.15
Skewness 1.53

Polsson Index 0.85

Variance

Negative Binomial Index

2.26

0.66

*** Summary of analysis ***

Observations:

Distribution:

Leaves

Parameter estimates from tabulated data values
Negative Binomial
Pr(X=r) = (r+k-l)C(k-l). (m/(m+k))**r.(l+m/k)**(-k)

Deviance: 4.22 on 6 d.f.
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*** Estimates of working parameters ***

V  estimate s.e. Correlations
mean 1.1467 0.1273 1.0000
variance 2.4301 0.5379 0.7663 1.0000

*** Estimates of defining parameters ***

estimate s.e. Correlations
m  1.1467 0.1273 1.0000
k  1.0246 0.2758 0.0001 1.0000
1/k 0.9760 0.2628 Poisson Index

*** Fitted values (expected frequencies) and residuals ***

r Number Number Weighted
Observed Expected Residual

0 70 69.49 0.06

1 38 37.60 0.07

2 17 20.10 -0.71

3 10 10.70 -0.22

4 9 5.69 1.28

5 3 3.02 -0.01

6 2 1.60 0.30

7 1 0.85 0.16

8+ 0 0.95 -1.38

Here the sample variance, 2.26, is roughly twice the sample mean, 1.15, indicating that a Poisson distribution
would not have fitted very well; this fact is expressed in the Poisson Index, whose value of 0.85 indicates that
the moment estimator of k (i.e. the estimator obtained from the sample moments) is 1 / 0.85 = 1.18. The
value 0.66 of the Negative Binomial Index is smallish for a negative binomial distribution, indicating that a better
fit might have been obtained from some other two-parameter discrete distribution. However, the value 4.22 of
the residual deviance indicates a good fit, the number of degrees of freedom (d.f.) for this deviance being

9  the number of classes

- 1 for the constraint that the fitted class probabilities must sum to 1
- 2 for the 2 fitted parameters

=  6

For an approximate test of goodness-of-fit, the residual deviance can be compared with tabulated critical
chi-squared values for 6 d.f. The correlation 0.0001 between the estimates of m and k is very close to its
theoretical value of zero.

The above Genstat output shows that the expected frequency is less than 1 for each of the top two classes, and
is less than 5 for each of the top four classes. This raises the question of whether there should have been some
grouping of classes, as recommended in many textbooks. This matter was discussed by Ross and Preece (1985),
who concluded:

There are no hard and fast rules about when to group. It is preferable to have some values
in the tail, and not too many cells with small frequencies.

Ross and Preece made no attempt to define 'too many' here, but they illustrated the differences of outcome that
can arise from difierent groupings by producing two further analyses of the Bliss data. Firstly they merely
assigned all leaves with 5 or more mites to a class for the tail of the distribution. Genstat output for this variant
of the analysis is as follows; as the value 5 would now be misleading for the sixth level of the factor for the
TABLE of frequencies, the arbitrary value 100 has been chosen instead.

14

15 "Analysis with a tail £reguency o£ 6."
16 FACTOR [XiEVELS=l(0. . .4,100)] Mitesl; DECIHftLS=0
17 TABLE [CLASSIFICATZONsHitesl] Leavesl; DECIHALS«0
18 READ [PRINTS*] Leavesl
20 PRINT [ACROSSsMitesl] Leavesl; FIELDWIDTH°7
Leavesl

23



Genstat Newsletter 32

Hltesl 0 1 2 3 4 100

70 38 17 10 9 6

21 DISTRZBX7TI0N [DZSTRZBXTTIONsnegatlveblnosiial] Leavesl

21

***** Pit discrete distribution *****

*** Sample Statistics ***

San^le Size 150
Mean 1.17 Variance 2.46
Skewness 1.64

Poisson Index 0.94 Negative Binomial Index 0.90

*** Summary o£ analysis ***

Observations: Leavesl
Parameter estimates from tabulated data values

Distribution: Negative Binomial
Pr(X=r) = (r+k-l)C(k-l).(m/(m+k))**r.(l+m/k)**(-k)

Deviance: 2.13 on 3 d.f.

*** Estimates of working parameters ***

estimate s.e. Correlations
mean 1.1686 0.1350 1.0000
variance 2.6073 0.6328 0.7851 1.0000

*** Estimates of defining parameters ***

estimate s.e. Correlations
m  1.1686 0.1350 1.0000
k  0.9492 0.2593 -0.0745 1.0000
1/k 1.0535 0.2878 . Poisson Index

*** Fitted values (expected frequencies) and residuals ***

r Number Number Weighted

Observed Expected Residual

0 70 70.03 0.00

1 38 .36.68 0.22

2 17 19.72 -0.63

3 10 10.70 -0.22

4 9 5.83 1.22

5+ 6 7.04 -0.40

In this output (unlike in the corresponding output given by Ross and Preece for MLP), the sample statistics differ
from those obtained previously, as they have now been calculated as described above for grouped data. The
umber of d.f. for the residual deviance is, of course, now reduced to 3. Also, because of the grouping, the
correlation between the estimates of m and k is no longer theoretically zero, and is in fact -0.0745.

In their final analysis of the Bliss data, Ross and Preece (1985) assigned the classes for 5,6 and 7 mites per leaf
to a group of their own, leaving a tail class with a zero frequency. For Genstat, the factor level for the class
for 5, 6 and 7 mites per leaf must be the largest incorporated number of mites per leaf, namely 7. Genstat
output for this variant of the analysis is as follows.

22

23 "Analysis with a group before the tail, and with zero
frequency for tail."

24 FACTOR [LEVELSsl(0...4,7,100)] Mites2; DECIHALS=0
25 TABLE [CLASSIFICATI0Ns3Hites2] Leaves2; DECIHALS=0
26 READ [PRINTS*] Leave82
28 PRINT [ACROSSsHites2] Leaves2; FIELDWIDTHs7

Leaves2

Hites2 0 1 2 3 4 7 100
70 38 17 10 9 6 0
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29 DISTRIBUTION [DZSTRIBUTZONsnegativebinomial] Leave82

29

***** Pit discrete distribution *****

*** Seuople Statistics ***

Sample Size 150
Moan 1.16 Variance 2.36

Skewness 1.56
Poisson index 0.89 Negative Binomial index 0.72

*** Summary of analysis ***

Observations: Leaves2
Parameter estimates from tabulated data values

Distribution: Negative Binomial
Pr(X=r) = (r+k-l)C(k-l).(m/(m+k))**r.(l+m/k)**(-k)

Deviance: 4.16 on 4 d.f.

*** Estimates of working parameters ***

estimate s.e. Correlations
mean 1.1441 0.1275 1.0000
variance 2.4103 0.5415 0.7670 1.0000

*** Estimates of defining parameters ***

estimate s.e. Correlations
m  1.1441 0.1273 1.0000
k  1.0336 0.2833 -0.0148 1.0000
1/k 0.9675 0.2651 Poisson Index

*** Fitted values (esqpected frequencies) and residuals ***

r  Number Number Weighted
Observed Expected Residual

0  70 69.43 0.07
1  38 37.70 0.05
2  17 20.14 -0.72
3  10 10.70 -0.22
4  9 5.67 1.29
5-7 6 5.42 0.25
84- 0 0.93 -1.37

This last analysis almost meets the .'working rule' of Cochran (1954) that grouping for a unimodal distribution
should be such that the expectation for a tail is at least 1.

6. Example 2 (Fisher, 1941)

The frequency table of Fisher (1941) was obtained from counting ticks on each of 82 sheep. For this example.
Fisher's own estimate of k can be obtained from ungrouped data, with a zero frequency for the tail of the
distribution. Genstat output for this analysis is as follows.

30

31 "Analyses of data of Fisher (1941)
-32 "
33

34 "Analysis without any grouping, and with zero frequency for tail."
35 FACTOR [LEVEIiS=l (0. . .26) ] Ticks; DECZHALSsQ
36 TABLE [CLASSZFZCATZONsTicks] Sheep; DECZHALS=0
37 READ [PRZNTb*] Sheep
41 PRZNT [ACROSSsTicks] Sheep; FZEIiDWZDTH°6
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S

Ticks

.  Ticks

Ticks

42 DISTRIBUTION [DISTRIBUTIONanegativobinomial] Sheep

0 1 2 3 4 5 6 7 8 9 10

4  V 5 11 10 9 11 3 5 3 2 2

11 12 13 14 15 16 17 18 19 20 21

5 0 2 2 1 1 0 0 1 0 1

22 23 24 25 26

1 1 0 2 0

42

***** Pit discrete distribution *****

*** Sample Statistics ***

Saxcple Size 82
tSean 6.56 Variance 34.34
Skewness 1.53
Poisson Index 0.65 Negative Binomial Index 1.86

*** Sumsary of analysis ***

Obsecrations: Sheep
Parameter estimates from tabulated data values

Distribution: Negative Binomial
Pr(X=r) = (r+k-l)C(k-l).(m/(m+k))**r.(l+m/k)**(-k)

Deviance: 30.75 on 24 d.f.

*** Estimates of working parameters ***

estimate s.e. Correlations
isean 6.5611 0.6132 1.0000
variance 30.7804 7.0377 0.7317 1.0000

*** Estimates of defining parameters ***

estimate s.e. Correlations

m 6.5611 0.6126 1.0000

k 1.7774 0.3515 0.0002 1

1/k 0.5626 0.1113 Poisson Index

*** Fitted values (e:9ected frequencies) and residuals ***

r Number Number Weighted

Observed E3q>ected Residual

0 4 5.26 -0.57

1 5 7.35 -0.92

2 11 8.03 0.99

3 10 7.96 0.70

4 9 7.48 0.54

5 11 6.80 1.48

6 3 6.04 -1.37

7 5 5.28 -0.12

8 3 4.56 -0.78

9 2 3.90 -1.06

10 2 3.31 -0.78

11 5 2.79 1.19

12 0 2.33 -2.16

13 2 1.95 0.04

14 2 1.62 0.29

15 1 1.34 -0.31

16 1 1.10 -0.10

17 0 0.91 -1.35

18 0 0.75 -1.22

19 1 0.61 0.46

20 0 0.50 -1.00

21 1 0.41 0.78

22 1 0.33 0.93

23 1 0.27 1.08

24 0 0.22 -0.66

25 2 0.18 2.46

26+ 0 0.75 -1.22
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Fisher himself, having obtained his fitted frequencies, used them as the basis of a grouping for his chi-squared
test, with the total expected frequency being at least 5 for each group (including the tail group). A Genstat
analysis for this grouping is as follows.

43

44 "Analysis with Fisher's grouping."
45 FACTOR [LEVELScl(0...6,8,11,15,100)] Ticksl; DECZMALSsO
46 TABLE [CIiASSIFICATION°Ticksl] Sheepl; DECIHALSsO
47 READ [PRINTS*] Sheepl
49 PRINT [ACROSSsTicksl] Sheepl; FIELDWIDTHs?

Sheepl
Ticksl 0 1 2 3 4 5 6 8 11 15 100

4  5 11 10 9 11 3 8 9 5 7

50 DISTRIBUTION [DISTRIBUTIONsnegativebinooial] Sheepl

50.

***** Fit discrete distribution

*** Sao^le Statistics ***

Saiople Size 82
Mean 6.38
Skewness 1.29
Poisson Index 0.56

Variance

Negative Binomial Index

29.09

1.59

*** Summary of analysis ***

Observations: Sheepl
Parameter estimates from tabulated data values

Distribution: Negative Binomial
Pr(Xsr) a (r+k-l)C(k-l).(m/{m+k))**r.(l+m/k)**(-k)

Deviance: 8.17 on 8 d.f.

*** Estimates of working parameters ***

mean

variance

estimate

6.3468

27.2680

s.e.

0.5992

6.7936

Correlations

1.0000

0.7379 1.0000

*** Estimates of defining parameters

m

k

1/k

estimate

6.3468

1.9254

0.5194

0.5991

0.4241

0.1144

Correlations

1.0000

-0.1004 1.0000

Poisson Index

*** Fitted values (eag?ected frequencies) and residuals ***

r Number Number Weighted
Observed E:^ected Residual

0 4 4.95 -0.44

1 5 7.32 -0.91

2 11 8.21 0.92

3 10 8.24 0.59

4 9 7.79 0.42

5 11 7.08 1.36

6 3 6.27 -1.46

7-8 8 10.11 -0.69

9-11 9 10.00 -0.32

12-15 5 6.91 -0.77

16-1- 7 5.11 0.79

The goodness-of-fit test on 8 d.f. here is more reliable than one on 24 d.f., particularly because, with 24 d.f.,
there are so many small expected frequencies.
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For a first run using the distribittion directive, the user cannot know in advance what the fitted frequencies
will be, and so must make soinewhat arbitrary grouping decisions based on the observed frequencies. For the
Fisher data, Ross and Preece (1985) suggested the grouping adopted in the following Genstat output.

51

52 "Analysis with Ross & Preece's grouping."
53 FACTOR [IiEVELS=I (0. ..8,10,12,15,19,100) ] Ticks2; DEClMAIiS=0
54 TABLE [CLASSIFICATZON=Ticfcs2] Sheep2; DECISIALSbO
55 READ [PRZNT=*] Sheep2
57 PRINT [ACROSS°Ticks2] Sheep2; FZELDWZDTHs?

Sheep2
Ticks2 0 1 2 3 4 5 6 7 8 10

4 5 11 10 9 11 3 5 3 4

Ticks2 12 15 19 100

5 5 2 5

58 DZSTRZBtJTZON [DZSTRZBUTZONsnegativebinomial] Sheep2

58

***** Pit discrete distribution

*** Saxople Statistics ***

Seuaple Size 82
Mean 6.71 Variance 38.38
Skewness 1•62
Poisson Index 0.70 Negative Binomial Index 1.90

*** Summary of analysis ***

Observations: Sheep2
Parameter estimates from tedsulated data values

Distribution: Negative Binomial
Pr(X=r) = {r+k-l)C(k-l).{m/(m+k))**r.(l+m/k)**(-k)

Deviance: 11.56 on 11 d.f.

*** Estimates of working parameters ***

estimate s.e. Correlations
mean 6.6616 0.6493 1.0000
variance 32.7155 8.1238 0.7538 1.0000

*** Estimates of defining parameters ***

estimate s.e. Correlations
m  6.6616 0.6484 1.0000
k  1.7033 0.3492 -0.0712 1.0000
l/k 0.5871 0.1204 Poisson Zndex

*** Pitted values (e:qpected frequencies) and residuals ***

r Number Number Weighted
Observed E^qpected Residual

0 4 5.45 -0.65

1 5 7.40 -0.94

2 11 7.96 1.02

3 10 7.83 0.74

4 9 7.33 0.60

5 11 6.66 1.54

6 3 5.92 -1.33

7 5 5.19 -0.08

8 3 4.50 -0.75

9-10 4 7.15 -1.29

11-12 5 5.14 -0.06

13-15 5 5.00 0.00

16-19 2 3.53 -0.89

20+ 5 2.95 1.08

The grouping in this last variant of the analysis of the Fisher data is satisfactory.
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7. Example 3 (Currie, 1993)

The frequency table of Currie (1993, p.31) is for the number of claims made on each of 100,(X)0 car insurance
policies in one year, the policies all belonging to the same portfolio:

Number of claims

Number of policies (frequency)

0  1

81056 16174

2

2435

3

295

4

36

>4

4

Total

100000

Here, the tail is already grouped; we are not told exactly how many policies produced, respectively, 5, 6, 7 ,...,
claims.

Currie (1993, p.32) fitted the negative binomial distribution by the method of moments. Genstat output for
maximum likelihood fitting of the distribution is as follows; as a reminder of the arbitrariness of the value chosen
for the last level of the factor for the table of frequencies, the value 99 has now been chosen.

59

60 "Analysis of actuarial data of Currie (1993)
-61
62

63 FACTOR [IiEVELS=! (0.. .4,99) ] Claims; DECZHALSsO
64 TABLE [CLASSIFZCATZON°Claims] Policies; DECZUALSsQ
65 READ [PRINTS*] Policies
67 PRINT [ACROSSsClaims] Policies; FIELDWIDTH=7

Policies

Claims 0 1 2 3
81056 16174 2435 295

4

36

99

4

68 DISTRIBUTION [DISTRIBUTION=negativebinomial] Policies

68.

***** Fit discrete distribution

*** Sample Statistics ***

Sample Size
Mean

Skewness

Poisson indeK

100000

0.22

2.46

0.48

*** Summary of analysis ***

Observations:

Distribution:

Deviance:

Polici

Variance

Negative Binomial Index

0.24

2.36

es
Parameter estimates from tabulated data values
Negative Binomial
Pr(X=r) s (r+k-l)C(k-l).(m/(m+k))**r.(l+m/lc)**(-k)
6.45 on 3 d.f.

*** Estimates of working parameters ***

mean

variance

estimate

0.2210

0.2441

s.e.

0.0016

0.0023

Correlations
1.0000

0.8197 1.0000

*** Estimates of defining parameters ***

m

k

1/k

estimate

0.2210

2.1103

0.4739

s.e.

0.0016

0.1220

0.0274

Correlations

1.0000

-0.0150 1.0000

Poisson Index
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*** Fitted values (es^ected frequencies) and residuals ***

r V  Number Number Weighted

Observed Es^ected Residual

0 81056 81040.44 0.05

1 16174 16211.66 -0.30

2 2435 2389.92 0.92

3 295 310.40 -0.88

4 36 37.59 -0.26

5+ 4 10.00 -2.16

0 1 2 3 4 >4

81056 16174 2435 295 36 4

81034 16234 2383 307 37 5

81040 16212 2390 310 38 10

The following table permits a comparison of expected frequencies from the two methods of fitting:

Number of claims

Observed number of policies
Expected number (moments)
Expected number (max. like'd)

In this example, neither method of fitting produces a poor fit. In assessing the maximum likelihood fit, we must
recall that Genstat took all 4 tail observations to have been for (1.25 x 5) = 6.25 claims.
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Efficient analysis of field experiments using two-dimensional spatial models

Arthur Gilmour

NSW Agriculture
Agricultural Research and Veterinary Centre
Forest Road, Orange, NSW, 2800, Australia

Sue Welham, Simon Harding
I A CR-Rothamsted

Harpenden AL5 2JQ, UK

1. Introduction

For several years, NSW Agriculture has used variance models based on the spatial arrangement of plots for the
analysis of cereal trials. These include models in which the plot covariance is modelled in two dimensions by
the class of separable ARIMA processes (Cullis and Gleeson, 1991; Martin, 1990). ARIMA models are often
more efficient then incomplete-block models (Patterson and Hunter, 1983; Cullis and Gleeson, 1989; Gilmour
and Cullis, 1995).

The program TwoD (Gilmour, 1992) is widely used in Australia to fit spatial models. It is distributed with a
procedure, twod, to run TwoD from within Genstat 5. This article provides a basic description of spatial models,
comments on when and why they are appropriate and discusses some practical issues in variance modelling
through an example using the twod procedure.

2. What are spatial models?

Crop variables such as yield and protein levels usually contain variation which is associated with the actual
location of the plots. Spatial models seek to remove this variation to obtain a more efficient analysis.
Incomplete-block designs are popular spatial models but neighbour models are often more efficient (Gilmour and
Cullis, 1995). In neighbour models, the covariance between plots depends directly on the distance between plots.
For incomplete-block designs, the block boundaries are often artificial so, in one dimension, some contiguous
plots are assumed independent, being in different blocks, but most are not.

The neighbour model of Gleeson and Cullis (1987) assumes that the plot errors are a realisation of a random
ARIMA process. Cullis and Gleeson (1991) extended these models to two dimensions by assuming separability
of the random row and column processes. The size of field experiments typically permits only low-order models.
We find that autoregressive models normally suffice but ARIMA (0,1,1), (1,1,1) and/or row/column effects are
sometimes required. Lill et al (1988) showed improved accuracy of treatment estimates, low levels of bias in
the treatment F ratio and approximate validity of SEDs from spatial analyses.

Cullis and Gleeson (1989) reported an average efficiency of 1.73 over 1019 trials using ARIMA (0,1,1) in one
dimension relative to the complete block analysis. They reported an efficiency of 1.50 over 239 trials for
incomplete-block analysis. Patterson and Hunter (1983) reported similar values of 1.79 and 1.43 respectively.

Differencing was advocated in the neighbour models of Wilkinson et al (1983), Besag and Kempton (1986) and
Gleeson and Cullis (1987). The ARIMA (0,2,2) model is similar to that proposed by Wilkinson et al (1983);
the ARIMA (0,1,1) model is equivalent to the first difference model of Besag and Kempton (1986) and
programmed in Genstat by Baird (1987).

Kempton et al (1994) found no gain in average efficiency, relative to incomplete-block analysis, from fitting
ARIMA (0,1,1) in both directions: but here the differencing discarded treatment information when there was little
trend since treatments were not orthogonal to differencing. Gilmour and Cullis (1995), using the same data,
reported an average efficiency of 1.71 from fitting ARIMA (1,0,0) in both directions compared with 1.43 for
the incomplete-block analyses. Differencing was advocated to remove non-stationarity in spatial variation.
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However, we currentiy have no reliable test for non-stationarity, and differencing is counter-productive when it
discards treatment information. Also, it is difficult to objectively compare the efficiency using differencing with
efficiency for other spatial models. Therefore, while differencing may sometimes be necessary, we usually avoid
it. If differencing is used, a moving average term should always be included in the spatial model.

3. The linear model

We consider the general linear mixed model
y = XP + Zm + e

where X [Z] is a design matrix for fixed [random] effects p [«], « is N(0, (fT), e is N(0, C5^Z). Assume the
observations y are in plot order, rows nested within columns, so that L = 0 where and are
proportional to variance matrices for column and row processes respectively, and ® indicates the matrix cross
product operator.

In the program TwoD, the user nominates the form of Zr and Z^ (Identity, Autoregressive, etc.). TwoD
estimates the variance parameters using restricted maximum likelihood (REML, Cullis and Gleeson, 1991) and
forms the GLS (generalised least squares) solution ^ for p, the BLUP (best linear unbiased predictor) u for u
and the residuals

e = y -Xj^ -Zu.

To check that the spatial model is adequate, we examine the residuals for outliers and patterns. One tool for
this is the spatial correlation matrix advocated by Cullis and Gleeson (1991) (see Martin, 1990). The elements
r,.. of this matrix are the correlations between pairs of residuals i rows and j columns apart. Note that rgg is
always 1 and ro, = ro_,. Under the separability assumption, r, ] should be close to r,o x rgj. If based on
whitened residuals.

e' e.

which are adjusted for trend, all the correlations should be low. If we are not satisfied, we repeat the process
with an alternate variance model. These tools are not definitive diagnostics for choosing a spatial model, and
likelihood ratio tests can also be used to help choose between certain spatial models (see Section 5). However,
the estimates of treatment effects appear robust to mild misspecification of the variance model (Gilmour and
Cullis, 1995).

4. The Genstat TWOD interface to the TwoD program

The TWOD procedure has arguments that specify the field layout, fixed and random effects in the linear model
and the variance structure to be applied to rows and columns. It sorts the observations into field order,
constructs the design matrix, X, writes the information TwoD needs to the file g52d.g2a and runs TwoD using
SUSPEND. TwoD reads g52d.g2a, fits the model and stores the results in g52d.o2d. Genstat retrieves the
results into structures that the user can access using twodispiay and twokeep. For circumstances where
Genstat and TwoD cannot be run concurrently, there is an option to tell Genstat to stop while TwoD runs;
tworesuhe is then used to retrieve all relevant information when Genstat is restarted.

4.1 Procedure TWOD

The field layout is specified with options rows and columns. If the data is already sorted rows within columns,
these may be integers specifying the number of rows and number of columns. Otherwise they must be factors
and are used to sort the data.

The FIXED option supplies the fixed effects model formula, twod uses the regression directives model and fit
to form the design matrix, X, for up to about 150 effects. Up to six random factors may be declared using the
RANDOM option; starting values for their variance ratios, relative to the residual variance, are given with the
GAMMAS option. Random factors often represent blocks, rows, columns or plots in an analysis. A random factor
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may contain missing values as in the analysis of unreplicated early generation trials proposed by Cullis et at
(1989). In their analysis, the factor denoting the test lines is random and has missing values for plots where
check varieties were grown. A fixed factor codes for the check varieties and includes an extra level to represent
the mean of the test lines.

The variance structures Er and Zq are specified by options bhodel and cssodel respectively. The following
settings are available:

identity no spatial correlation (default)
arl first order autoregressive
ar2 second order autoregressive
armall first order autoregressive + moving average
mal first order moving average

ina2 second order moving average
uniform uniform variance pattern across field, I+(j)J
linearvariance linear variance model

iar first order autoregressive + independent random error
digglel autoregressive on irregular grid (based on distance)
diggle2 autoregressive on irregular grid (based on squared distance)

The diggle models provide for autoregression when plots are not on a regular grid (Diggle, 1988), in which
case options rposition and cposition are used to give the plot coordinates for rows and columns
respectively. Initial values for the parameters can be supplied using the iHiTiitL option.

Differencing the data or fitting fixed row/column effects or trends is controlled by the rdifference and
CDIFFERENCE Options: values 0, 1 or 2 specify the degree of differencing; —1, —2 or —3 specify a linear,
quadratic or cubic trend and -4 requests that row/column effects be fitted as fixed effects.

Other useful options include: model names a pointer to hold the model specification; haxcycle specifies the
number of REML iterations required; batch controls whether alternate models can be fitted interactively in
TwoD before returning to Genstat; size is used to request more memory in TwoD if needed for large problems;
and STOPoyos means that Genstat is stopped (rather than suspended) so that TwoD is run independently.

The Y parameter specifies the dependent variable and the save parameter names a pointer to hold the results.
Missing data values are estimated from the fixed and random models by covariarice.

4.2 Other procedures used with TWOD

Procedure tworesdme has one option, model, corresponding to the tmod model option and one parameter,
SAVE, corresponding to the twod save parameter. When STOPayes is used in twod, then Genstat is stopped,
TwoD is run and then returns to the operating system (rather than back to Genstat with STOP=no). The user then
restarts Genstat and uses procedure tworesdme to get back all the information on the TwoD fit. Full instructions
are given on screen or in the output file, as appropriate, before Genstat stops.

Procedure twodisplay is used to display results from a TwoD fit. The print option has settings: model prints
a description of the model fitted, stinmary gives summary statistics from the fit, fixed prints estimates of fixed
effects plus standard errors, Wald tests for each fixed model term and predicted means for each fixed model
term, random prints BLUP estimates of random effects, residuals gives raw (e) and whitened (e') residuals
and correlations prints the raw and whitened spatial correlation matrix. The save and model options name
the corresponding structures declared in the twod procedure.

Procedure twokeep extracts components of the analysis into vectors and scalars from the pointer structure
identified with the save option (the twod save parameter). The parameters are: estimates of spatial
parameters; likelihood value at final iteration; residual dp; niteration number of iterations; vcovariance
for spatial parameters; fixed estimates of full set of fixed effects; fvcovariance covariance matrix for full
set of fixed effects; random pointer to effects for each random term; sedrandoh pointer to sed for each random
term; nrows; ncoluhns; residuals as nrows x ncols matrix; wresiduals whitened residual matrix; spatial
correlations; and spse, the standard errors for the spatial correlations, nrows and ncoltosns are the
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dimensions of the residuals matrix; they will be less than the field dimensions if differencing has occurred.

5. Example

Below is a Genstat job fitting three 3 spatial models to wheat yields obtained in 1976 at Slate Hall Farm. The
data and treatment codes are in Gilmour et at (1995). The output produced from the TwoD program and the
TWOD procedure is considered for each model separately below:

Example 3: Slate Hall Farm 1976
reps laid out as 1111122

Balanced Lattice Design
2 2 3 3 3 3 3

44444555556666 6

Data fields: Replicate rowblock columnblock variety yield
1:6 1:30 1:30 1:25

factor rep,rowblkfColblk/variety; dec^o
open 'shfbld.dat'; inchan
read [ch=inchan] rep, rowblk, colblk, variety, yield
close inchan

■ Model 1: *** Balanced Lattice Analysis ***"
twod [rowssl5; colxunnsolO; fixedavariety; \
random=rep,rowblk,colblk; gainmas=0.2,0.5,0.5] yield

twodisplay [printsstodel, sum, fixed, corr]

■ Model 2: *** ARl by ARl Analysis *** "
twod [rom3Bl5; columnsslO; fixedovariety ;\

mtodsarl; cmodaarl] yield
twodisplay [printBxsodel, sum, fixed, corr]

" Model 3: *** (ARl by ARl) + independent error ***"
factor [levelsl50;valuessl...150] plot
twod [rowssl5; columnsslO; fixedsvariety; \

randomsplot; gammasBO.l; imtodsarl; cmodsarl] yield
twodi splay [print smode 1, sum, f ixed, corr ]

In this program, the option settings rows=l5; columnsslO indicates the data is ordered row-wise with respect
to the layout displayed; the 15 rows are nested within the 10 columns. Spatial analysis requires correct
specification of the field plan. If the data is not already in this order, then factors specifying the layout can be
given in the rows and columns options, and the procedure will get the correct ordering from these factors.

Below is the TwoD output from model 1, a balanced lattice analysis with reps, row and column random factors,
no spatial model:

3 2-bit Power for Lahey Coniputer Systems
Phar Lap's 386|DOS-Extender(tm) Version 5.1
Copyright (C) 1986-93 Phar Lap Software, Xnc.

Available Memory = 17344 Kb

Two Dimensional Spatial
Min Mean Mcuc of yield
Work space: Using
Iter- LogLike- Error
ation lihood Variance
1  -654.2 0.1452B4-05

-645.9

-645.3

-645.3

-645.3

9164.

8176.

8063.

8062.

Analysis (C) NSW Agriculture,
917.000 1470.440 2119.000

94 of 7969 K bytes
DP Rows model Columns model

Identity Identity
125 0.0000 0.0000 0.0000 0.0000 0

125 0.0000 0.0000 0.0000 0.0000 0

125 0.0000 0.0000 0.0000 0.0000 0

125 0.0000 0.0000 0.0000 0.0000 0
125 0.0000 0.0000 0.0000 0.0000 0

2800, Australia

Rand«a

VU/Ve

.2000 0.5000 0.5000

,3846 1.3816 1.3601

.4995 1.8549 1.7828

.5275 1.9333 1.8374

.5287 1.9344 1.8373
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Analysis of residuals (trend component included)
Residual Plot and Autocorrelations
<LOo- •fxXH> V [se 0.089]
-oxO-i- X-i-x 1 -0.128 -0.169 1.000 -0.169 -0.128
++03C0 — -'!■+— + 2 —0.036 0.106 -0.067 0.158 —0.136
00-+-I- * -f-t-ox 3 0.118 0.004 -0.204 -0.010 0.064
X—IiXX+ +— ++ o 4 0.075 —0.006 —0.128 —0.043 0.128
OH-0++-0+0 -x+ 5 -0.031 0.004 0.053 -0.009 -0.028
xX- 0++- 4—o+
+  XX+-0—++0-

00+++-X +0-0

- -X —X- 0++ +
-X- ox -

After displaying the banner and range of the data values, TwoD displays the likelihoods and parameter values
for the iterations. In this first model, there are no parameters associated with Z. The last three columns refer
to random factors rep, rowblk and colblk respectively. There is then a symbolic plot of the residuals and a
matrix of spatial autocorrelations among residuals. The symbols < and > indicate the corresponding residual is
less (more) than -2.25 (2.25) standard deviations. The symbols 'LOo- +xXH' represent intervals of 0.5 standard
deviations between -2.25 and 2.25 in order. The description "trend component included" indicates that these
are the raw residuals e.

The spatial correlations from this block analysis are reasonably good given their approximate standard error of
0.089; the next model is better. The value of -0.169 indicates moderate negative correlation between residuals
in the smaller dimension based on 135 pairs. In the long dimension (ie. rows here), the rj ̂  and q values of
-0.204 and -0.128 show a similar pattern based on 130 and 120 pairs respectively. The correlations r, _, and
r, 1 of 0.106 and 0.158 are based on 126 diagonally associated pairs in the negative (✓) or positive (%) directions.

The Genstat output from procedure twodisplay follows:

30 tvodlsplay [prlntssmodel,eat, sum, fixed,corr]

***** TwoD Analysis *****

***** Fitted Model *****

Y Variate: yield
Fixed Terms: variety
Random Terms: rep * rowblk * colblk

Estimated gammas: 0.529 1.934 1.837

Row Factor

Row Model

Column Factor

Column Model

15 rows

Identity
10 columns

Identity

Summairy of TwoD Fit

sigma**2 8062
log-likelihood -645.3

df 125

iterations 5

***** Fixed Effects with Standard Errors *****

Constant 1283.6 60.20
variety 2 265.4 62.02
variety 3 137.3 62.02
variety 4 168.3 62.02
variety 5 249.7 62.02

intermediate values omitted to save space

variety 21 209.9 62.02
variety 22 360.8 62.02
variety 23 45.5 62.02
variety 24 262.9 62.02
variety 25 347.0 62.02

*** Wald statistics for fixed model terms ***
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Term

variety

Wald test

;  212.26

d.£.

24

p-value

0.000

Note: These tests are relevant to dropping terxas out of the fixed model
They are not valid for any term which is marginal to other terms
in the fixed model.
Eg. FIXED=A*B => tests for A and B main effects are not valid

*** Predicted means for variety ***

Average SED of effects <3 62.02

variety
1 1284 60.20

2 1549 60.20

3 1421 60.20

.
intermediate values omitted to save space

23 1329 60.20

24 1546 60.20

25 1631 60.20

Correlations

1 2 3 4 5

1 -0.1276 -0.1690 1.0000 —0.1690 -0.1276

2 -0.0362 0.1060 -0.0675 0.1576 -0.1360

3 0.1184 0.0035 -0.2039 -0.0098 0.0645

4 0.0753 -0.0056 -0.1277 -0.0425 0.1282

5 -0.0308 0.0035 0.0527 -0.0093 -0.0280

s.e. 0.08944

TWODiSPiiAY is used to present the infonnation from the TwoD analysis. The only additional information in this
output is for the fixed effects: the estimated effects (parameterised as for regression, with first levels of factors
constrained to zero) are printed together with a Wald test for the fixed term variety and predictions for the
variety means, obtained through regression directives using the correct covariance matrix for the parameters.

The second model fits an autoregressive term of order 1 (ARl) across both rows and columns:

Two Dimensional Spatial Analysis (C) NSW Agriculture, 2800, Australia
Mtrt Mean Heuc of yield 917.000 1470.440 2119.000
Work space: Using 24 of 7969 K bytes
Iter- LogLike- Error DF
ation lihood Variance
1-641.3 0.1789E+05 125

2-637.8 0.1631E-I-05 125

3-637.8 0.1630E-I-05 125
4-637.8 0.1630E'i-05 125

Rows model
AutoRegressive
0.5000 0.0000

0.6786 0.0000

0.6835 0.0000

0.6837 0.0000

Columns model

AutoRegres s ive
Rand«a

VU/Ve

0.5000

0.4625

0.4593

0.4587

0.0000

0.0000

0.0000

0.0000

Analysis of residuals (trend component removed)
and AutocorrelationsResidual Plot

<L0o- •fxXH>

O +0+H+H0 X

+XOHO +++++

L -++ -+0-X ox

OXX+-++—+ o

X>X 0++-0+- OX+

X 0++X+000+-0+-

X+ -ooo- -o

L-X+- XooL-O -O

+-X X xO- X ++

+ Ho - 0-L> -+

Analysis of residuals (trend coxqponent included)

[se 0.089]

1 0.055 0.006 1.000 0.006 0.055

2 -0.004 0.129 0.008 0.108 -0.063

3 0.071 0.058 0.042 0.021 0.006

4 0.039 -0.012 -0.040 -0.026 -0.017

5 -0.032 0.027 0.058 0.000 -0.011

Residual Plot and

<IiOo- •fXXH>

O- o XX>x++ -+

X X -f+X-l-^X-l-XXX

ItOO + —++ +

- o+xx+^-t- -++ -

x>>Hxxx+ - -

xHxxxXX oO O

Autocorrelations

[se 0.089]

1 0.250 0.540 1.000 0.540 0.250

2 0.209 0.444 0.702 0.401 0.168

3 0.178 0.329 0.461 0.254 0.101

4 0.085 0.167 0.226 0.081 -0.017

5 -0.004 0.056 0.078 -0.002 -0.065
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++++XXX oLOOOOO

OO 0<L<OOL

-  X+XXx-OO- V

Xx4"t><f- 0<

Here, the log likelihood of -637.8 (after fitting 2 variance parameters) is significantly higher than -645.3 (with
three parameters) from the previous analysis. Note that log-likelihoods are not comparable between models with
different fixed effects or different levels of differencing.

The first residual display (trend removed or whitened residuals, e') should be compared with that in the second
residual display (trend removed). The correlations are all much lower except r, _, and r,, (values 0.129 and
0.108). A pattern, not related to the block effects, is evident in the second display (trend included or raw
residuals e). Under the separability assumption, r, ., and rj , should be approximately equal to 0.36 = 0.702 x
0.540. The agreement is reasonable.

The effect of fitting the spatial model on estimates of fixed effects can be seen in the output from twodispiay:

TwoD Analysis *****

Fixed Effects with Standard Errors

Constant 1258•0 64.62
variety 2 243.5 61.50
variety 3 147.0 61.16
variety 4 154.6 61.70
variety 5 256.5 62.35

intermediate rows omitted to save space

variety 21 259.6 62.94
variety 22 347.1 59.27
variety 23 53.5 61.04
variety 24 328.8 57.50
variety 25 334.0 57.95

*** wald statistics for fixed model terms ***

Term Wald test d.f. p-value

variety 313.07 24 0.000

*** Predicted means for variety ***

Average SED of effects = 59.05

variety
1  1258 64.62
2  1501 64.99
3 1405 64.63

4 1413 64.91

5 1514 65.60

21 1518 64.71

22 1605 64.39

23 1311 64.08

24 1587 64.71

25 1592 63.60

Here, the estimates of variety effects show some small changes, and the average sed of variety effects is reduced,
so that comparisons between varieties are more accurate on average than in the balanced lattice analysis, although
standard errors of predictions are slightly increased.

The third model fits an ARl spatial model to rows and columns plus an independent error term:

Two Dimensional Spatial Analysis (C) NSW Agriculture, 2800, Australia
Min Mean Max of yield 917.000 1470.440 2119.000
Work space: Using 275 of 7969 K bytes
Iter- LogLike- Error DF Rows model Coltimns model Randcm
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atlon lihood Variance AutoRegressive
1-641.7 0.1601B-I-05 125 0.5000 0.0000

*WARNXNQ* Parameter valueis changed from 0.
2-641.3 5865. 125 0.9800 0.0000

3-634.4 6034. 125 0.8729 0.0000

4-634.3 7044. 125 0.8478 0.0000

5-634.3 7011. 125 0.8447 0.0000

AutoRegressive Vu/Ve
0.5000 0.0000 0.1000

9924 0.0000 to 0.9800

0.6874 0.0000 0.8571

0.7120 0.0000 0.9043

0.6887 0.0000 0.6797

0.6839 0.0000 0.6960

0.0000

Analysis of residuals (trend component removed)
and AutocorrelationsResidual Plot

<L0o- 'f3EXH>

0++ xH+ko- —+

X3COXO— +X++++

L -x+ - - X -+

++-X++ —+- o

HH+— OO -X

—+++ Ooo+— -

—++X++O00— —

0-X+ x-OO -

++++ +++--XX+++

+ X H -+

Analysis of residuals (trend coscponent included)

[se
0.043

0.012

0.064

0.053

-0.043

0.089]
0.195 1.000

0.059 0.298

0.026 0.051

-0.044 -0.089

0.031 -0.065

0.1

-0.0

95 0.043

0.051 -0.059

0.002 -0.027

70

0.033

-0.031

-0.007

Residual Plot and Autocorrelations

<L0o- +xXH> [se 0.089]

o  xxXx+++ 1 0.330 0.637 1.000 0.637 0.330

+ ++X+X+++X++X 2 0.278 0.529 0.803 0.488 0.239

Goo + - ++ + 3 0.199 0.378 0.551 0.307 0.126

- -++X+++ + 4 0.093 0.201 0.289 0.110 -0.012

xHHHXXx-f 5 0.001 0.068 0.102 -0.010 -0.086

xXxxxXx -oo-o—

'f+'fxxxx oOOoOoO

OO 4-'t-xx OLIiLOOO

—-i-xxxXx-Go-

+XX+++ oO-

In model 3, we added an independent error term to the model. While the improvement in the log likelihood is
significant (2(-634.3 - -637.8)=7.0 > X^,.o.o5= 3.84), the changes in the solutions for the fixed effects are small,
as can be seen in the twodisplay output:

***** Fixed Effects with Standard Errors

Constant

variety 2
variety 3
variety 4
variety 5

1245.5

270.7

158.4

159.3

225.9

98.28

62.16

61.83

62.46

62.67

variety 21
variety 22
variety 23
variety 24
variety 25

269.2

363.4

71.4

311.9

328.3

62.60

60.77

62.02

58.59

60.33

*** Wald statistics for fixed TOdel terms ***

Term Wald test d.f. p-value

variety 245.24 24 0.000

*** Predicted means for variety ***

Average SBD of effects = 60.51
variety

1  1245 98.28

2  1516 98.27

3  1404 98.66
4  1405 98.41

22

23

24

25

1609

1317

1557

1574

98.64

98.46

98.55

98.41
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The major consequence of including the independent error is to slightly increase the SED of treatment contrasts
(Gilmour and Cullis, 1995) compared to model 2, also the SB of treatment effects increases. Note that the first
update of the parameters was too large but TwoD adjusted them and they subsequently converged.

The trend removed residuals in this analysis, ie. e *, are the lack of fit between the autoregressive trend and the
independent residuals fitted by the random factor. The second plot shows the fitted trend (with independent error
removed), e = y - X^ -Zu.

6. Conclusion

We have described the twod procedure and shown the screen output from the TwoD program when run from
within Genstat. The fitted effects and residuals are returned to Genstat where they can be displayed or
manipulated as desired. Ultimately, these methods will be formally included in Genstat.

The use of twod should result in more efficient analysis of field experiments and greater awareness of the
residuals among experimenters. There is however a learning curve as experimenters discover how spatial models
address features of the data which were previously ignored.

TwoD is available from NSW Agriculture for A$2(X) to licensed Genstat users. It may be obtained by
anonymous ftp from directory /pub/genstat/twod at ftp.res.bbsrc.ac.uk for evaluation and for non-commercial use.
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Design of Experiments iii Genstat

Roger Payne
I A CR-Rothamsted

Harpenden
Herts AL5 2JQ, UK

This article is based on a talk given at the Statistical Conference of Genstat Users that took place at Wagga
Wagga during 28-30 November 1994.

1. Introduction

Recent releases of Genstat and of the Genstat Procedure Library have contained much enhanced facilities for
the design of experiments. In Release 2[3] of the Library a design module was instigated which contained
procedures for the construction of particular designs given suitable generators: for example design keys, initial
blocks for cyclic designs and generating arrays for alpha designs. There was also a procedure for printing
designs, and manipulation procedures for producing a factor equivalent to the dot-product of a set of factors and
for forming the *units* factor required to index the final stratum of a design.

In Release 3.1 of Genstat the generate directive was extended to generate factors using design keys while, in
Release 3[1] of the Procedure Library, procedures were added with both conversational and command-based
interfaces to allow suitable generators to be selected from a stored repertoire. A standard repertoire was provided,
based on that used by the program dsignx (Franklin and Mann 1986), but facilities were also provided to allow
this to be extended or customised (see Payne and Franklin, 1994).

Release 3 [2] extended the standard repertoire, and added further facilities for the manipulation of designs with
procedures to form the product of two designs, to merge two designs, to append several factors together and to
plot an experimental plan.

These facilities are known collectively as the Genstat Design System. Below, we review the philosophy and
structure of the system, and explain some of the underlying methodology.

2. The Genstat Design System

The Genstat design system is intended to provide a coordinated set of facilities for the selection and construction
of effective experimental designs. It aims to give
• a non-technical interface for the non-Genstat user, and a faster (command-based) method for the cognoscenti,
• a good range of standard designs, but without constraining the users just to this pre-defined set,
• display facilities for designs, plans and data forms, and
• manipulation procedures to construct more complicated designs.

Most of the facilities have been implemented as Genstat procedures, using the programming facilities in the
Genstat command language. For example, generate is used to generate factor values in standard order, or from
a design key, randomize to randomize the allocation of treatment factors, calculate to generate more
complicated relationships between factors, restrict to use different generators for different replicates,
QUESTION to implement the menu-driven interface, get to check whether interactive or to use block or treat
directives for defaults, assign to define the factors in the user's programme, outside the procedure, open and
retrieve to recover information including standard generators, fclassification and formula to process
the model formulae, blockstructure, treatmentstructure and anova to produce dummy analyses, and
IF, ELSIF, ELSE, ENDIF, FOR, ENDFOR, CASE, OR, ENDCASE and EXIT for the programming.

The design module of Release 3[2] of the Procedure Library contains the following procedures:

AFALPHA generates alpha designs
AFCYCLIC generates block and treatment factors for cyclic designs
AFORMS prints data forms for an experimental design
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AFUNXTS

AGALPHA

A6CYCLIC

A6DESIGN

AQFRACTION

A6H1ERARCHZCAL

AKEY

AHEROE

APRODUCT

ARANDOHIZE

DDESIGN

DESIGN

FACPRODUCT

FDESIGNFILE

PDESIGN

forms a factor to index the units of the final stratum of a design
forms alpha designs by standard generators for up to 100 treatments
generates cyclic designs from standard generators
generates generally balanced designs
generates fractional factorial designs
generates orthogonal hierarchical designs
generates values for treatment factors using the design key method
merges extra units into an experimental design
forms a new experimental design from the product of two designs
randomizes and prints an experimental design
plots the plan of an experimental design
helps to select and generate effective experimental designs
forms a factor with a level for every combination of other factors
forms a backing-store file of information for agdesign
prints or stores treatment combinations tabulated by the block factors

These can be classified by functionality and type of design as shown in Table 1.

Generation Selection Display Manipulation

Generally
balanced

design

AKEY ! AGDESIGN
A6HIERARCH | AGFRACTION

!
1

FDESIGNFILE

Alpha
design

AFALPHA 1 AGALPHA
1

1

Cyclic
design

AFCYCLIC 1 AGCYCLIC
1

1

Any of
these types
of design

1

1  DESIGN
1

I
1
1
1

PDESIGN

DDESIGN

l^ORHS

AHERGE

APRODUCT

ARl^NDOHIZE

AFUNITS

FACPRODUCT

Table 1.

The non-technical interface is provided by the desigov procedure, which can be used interactively to form
experimental designs of several different types. The process involves answering questions, posed by Genstat, first
to select the particular type of design, then to give details such as names of factors, numbers of treatments, and
so on. Subsidiary procedures are called which depend on the type of design selected. In Release 3[2] of the
Procedure Library the following types are available:

Orthogonal hierarchical designs
Factorial designs (with blocking)
Fractional factorial designs (with blocking)
Lattice designs
Lattice squares
Latin squares
Cyclic designs

AGHIERARCHICAL

AGDESIGN

AGFRACTION

AGDESIGN

AGDESIGN

A6DESIGN

AGCYCLIC

If you wish to avoid some of the question-and-answer process, the subsidiary procedures can be called directly.
They all have options and parameters to supply the information otherwise obtained by the various questions and,
provided you supply all the required information, they can also be used in batch.

Four of the design types are handled as instances of generally balanced designs, using procedure agdesign, and
we now discuss in more detail the facilities for designing these and providing all the necessary information so
that they can later be analysed.
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3. Generally Balanced Designs

Generally balanced designs are very widely applicable and have the particular advantage that they can contain
more than one block (or error) term. The total sum of squares can be partitioned up into components known as
strata, one for each block term. Each stratum contains the sum of squares for the treatment terms estimated
between the units of that stratum, and a residual representing the random variability of those units.

One simple example is the split-plot design, in which there are three strata:

***** Analysis of variance •****

Variate: Yield of oats in cwt. per acre

Source of variation d.f. s.s. m.s. v.r. Fpr.

Blocks stratum 5 506.227 101.245 5.28

Blocks.Wplots stratum
Variety 2 56.963 28.482 1.49 0.272
Residual 10 191.751 19.175 3.40

Blocks.Wplots.Subplots stratum
Ultirogen 3 638.409 212.803 37.69 <.001
Variety. Nitrogen 6 10.260 1.710 0.30 0.932
Residual 45 254.106 5.647

Total 71 1657.715

In Genstat the structure of the design is specified separately from the treatment terms to be estimated. Genstat
uses this to determine the strata in the design, and thus the error terms for the analysis. Here we have

BLOCKSTRUCTURB Blocks / Vfplots / Subplots

where the operator / indicates that a factor is nested within another factor. The model formula expands to give
the model terms for the (three) strata

Blocks -i- Blocks, nplots * Blocks, nplots. Subplots

The treatment formula here uses the factorial operator •

TREATHENTSTRirCTtJRE Variety * Nitrogen

This expands to define the main effects of variety and Nitrogen, and their interaction:

variety + Nitrogen + Variety. Nitrogen

Further details of this design can be found in the Genstat 5 Release 3 Reference Manual, pages 484-7.

The properties of a generally balanced design are that
(i) the block (or error) terms are mutually orthogonal,
(ii) the treatment terms are also mutually orthogonal, and
(iii) the contrasts of each treatment term all have equal efficiency factors in each of the strata where they are

estimated.

This is very closely related to the first-order balance required to avoid anova diagnostic an l, which requires
just (i) and (iii); see Payne and Tobias (1992).

Thus, general balance includes all orthogonal designs (completely randomized orthogonal designs, randomized
block designs, split plots, Latin squares, Graeco-Latin squares, and so on), and all designs in which there is
balanced confounding between treatment and block terms (for example balanced incomplete blocks, square
lattices, lattice squares etc).

The plan and analysis-of-variance table below illustrate a more complicated design, a 3^ factorial in 4 replicates
of 3 blocks of 9 plots. Suppose that the treatment factors are a, B and c: in replicate 1 ab'c^ is confounded with
blocks, in replicate 2 ab'c is confounded with blocks, in replicate 3 abc' is confounded with blocks, and in
replicate 4 abc is confounded with blocks. Every contrast of the interaction a.b.c is confounded in one out of
the four replicates, and so the design is balanced.
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Block 1 Block 2 Block 3

Replicate 1 A1 B1 C1 A2B1 C1 A3 B1 C1

A2 B1 C2 A3 B1 C2 A1 B1 C2

A3 B1 C3 A1 B1 C3 A2B1 C3

A2B2C1 A3 B2 C1 A1 B2 C1

A3 B2 C2 A1 B2 C2 A2B2C2

A1 B2 C3 A2 B2 C3 A3 B2 C3

A3 B3 C1 A1 B3 C1 A2B3 C1

A1 B3 C2 A2B3 C2 A3 B3 C2

A2B3 C3 A3 B3 C3 A1 B3 C3

Replicate 2 A1 B1 C1 A2B1 C1 A3 B1 C1

A3 B1 C2 A1 B1 C2 A2B1 C2

A2B1 C3 A3 B1 C3 A1 B1 C3

A2B2 C1 A3 B2 C1 A1 B2 C1

A1 B2 C2 A2B2 C2 A3 B2 C2

A3 B2 C3 A1 B2 C3 A2B2C3

A3 B3 C1 A1 B3 C1 A2B3 C1

A2B3 C2 A3 B3 C2 A1 B3 C2

A1 B3 C3 A2B3 C3 A3 B3 C3

Replicate 3 A1 B1 C1 A2B1 C1 A3 B1 C1

A2B1 C2 A3 B1 C2 A1 B1 C2

A3 B1 C3 A1 B1 C3 A2B1 C3

A3 B2 C1 A1 B2 C1 A2 B2 C1

A1 B2 C2 A2B2C2 A3 B2 C2

A2 B2 C3 A3 B2 C3 A1 B2 C3

A2B3 C1 A3 B3 C1 A1 B3 C1

A3 B3 C2 A1 B3 C2 A2B3 C2

A1 B3 C3 A2B3 C3 A3 B3 C3.

Replicate 4 A1 B1 C1 A2B1 C1 A3 B1 C1

A3 B1 C2 A1 B1 C2 A2B1 C2

A2B1 C3 A3 B1 C3 A1 B1 C3

A3 B2 C1 A1 B2 C1 A2B2C1

A2 B2 C2 A3 B2 C2 A1 B2 C2

A1 B2 C3 A2 B2 C3 A3 B2 C3

A2B3 C1 A3 B3 C1 A1 B3 C1

A1 B3 C2 A2B3 C2 A3 B3 C2

A3 B3 C3 A1 B3 C3 A2 B3 C3

Analysis of variance

Source of variation d.f.
rep stratTun 3

rep.block stratum
A.B.C 8

rep.block.plot stratum
A  2
B  2
C  2
A.B 4
A.C A
B.C 4
A.B.C 8
Residual 7 0

Total 107

efficiency factor

0.25

1.00

1.00

1.00

1.00

1.00

1.00

0.75
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Designs can also occur in which some treatment terms contain several sets of contrasts, each with their own
efficiency factor. These too cm be accommodated, by allowing such terms to be specified by several pseudo
terms, one for each set of contrasts (Payne and Wilkinson, 1977). The design is then balanced with respect to
the pseudo terms, and the sums of squares, effects and means for the original terms can be obtained by adding
together the information from the appropriate pseudo terms. This is particularly useful in partially confounded
designs, where different sets of treatment contrasts may be confounded with the blocks in each replicate. For
example, if we included only the first 2 replicates above, we would have

Analysis o£ variance

Source o£ variation d.£. e££iciency
£actor

rep stratum 1

rep.block stratum
A.B.C 4 0.50

rep.block.plot stratum
A 2 1.00

B 2 1.00

C 2 1.00

A.B 4 1.00

A.C 4 1.00

B.C 4 1.00

A.B.C 8 { 4 0.50

{ 4 1.00

Residual 22

Total 53

pseudo-terms

A b' cS a C

A B' C', a B' C
ABC', ABC

3.1 Definition of a Generally Balanced Design

Defining a generally balanced design requires
• the block structure formula,

• the block factors (and their values), and
• a means of constructing the values of the treatment factors from the block factors, in such a way as to ensure

that the design will exhibit all the required confounding and aliasing properties.

The block-factor values generally occur in an easily-constructed lexicographic order, and the block structure
formula is necessary to define the randomization of the design, once the treatment factors have been generated
(see Nelder, 1965).

The inter-relationship between the treatment and block factors can be represented very conveniently by a matrix
known as the design key (Patterson, 1976; Patterson and Bailey, 1978). The construction method requires the
factors to have prime numbers of levels, and so the definition may involve defining treatment pseudo factors in
terms of block pseudo factors (usually known as the plot factors), and then constructing the original factors from
the outer products of the pseudo factors. (So, our plot factor would be need to be represented by two 3-level
pseudo factors.). However, these design pseudo factors are not usually capable of defining the pseudo terms
required for the analysis. The design key indicates how the levels of each treatment factor are to be calculated
from the plot factors. In Genstat, the matrix has a row for each treatment factor and a column for each plot
factor. (This is the transpose of the form used by Patterson (1976), but in Genstat it seems more convenient to
specify the treatments by rows.) There can also be a base vector to allow levels of some treatment factors to be
permuted cyclically (this is sometimes useful with quantitative factors). We define

(Py)„ to be the value in unit u of plot factor j 7 = 1, ... , c
(this is assumed to be an integer in the range 0 upwards)

(a,)„ to be the value generated for unit u of treatment factor i / = 1, ... , m
(again as an integer in range 0, 1, ...)

r, to be the number of levels of treatment factor i
kjj to be the value at row i and column j of the design key, and
b: to be the value in unit / of the base vector (by default d=0)
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The value in unit u of treatment factor i is given by

(a,). = b, + k„ X (p.), + ka X (Pj). + ... + 4 X (pj, modulo i,

Essentially, the key identifies each treatment factor i with the set of plot-factor effects

P/" - P/'"

To start with a simple example, the treatments to be allocated (before randomization) to the plots of an « x «
Latin square may be calculated as

Latin-factor-value = Row-factor-value + Column-factor-value modulo n

and values of the extra factor in a Graeco-Latin square can be formed as

Graeco-factor-value = Row-factor-value + 2 x Column-factor-value modulo n

The key is thus 1  1 and it can be used as follows to form a 5 x 5 Graeco-Latin square as follows:
1 2

FACTOR [NVALIIES=25; LEVELS®! (0.. .4) ] Row,Column,A,B; DECIMaLS=0
" spodfy koy matxix (now and column laballln^ is unnacossary

other to indicate how the matrix is stored) "
MATRIX [ROWS® It (A,B) ; COLtJMNS® !t (Row,Column) ; VALIJES®1,1, 1,2] GLkey
AKEY [PRlNT=design; BLOCKFACTORS=Row, Column; KEY®6Lkey] A,B

*•* Treatment combinations on each unit of the design ***

Column 0 1 2 3 4
Row

0  00 12 24 31 43
1  11 23 30 42 04
2  22 34 41 03 10
3  33 40 02 14 21
4  44 01 13 20 32

Treatment factors are listed in the order: A B

Designs containing sets of factors with several different (prime) numbers of levels can be generated as direct
products of designs for each particular prime (procedure aproduct) or, more conveniently, by forming a design
key combining the rows and columns from the keys of all the individual designs.

The design key allows treatment factors to be generated that are completely confounded with block factors.
Often, as in the 3^ example above, there are several ways in which sets of contrasts can be selected to be
confounded and, by using different keys for different parts of a design, partially confounded designs can be
formed. Partially confounded designs, however, require treatment terms to be partitioned into pseudo terms for
successful analysis. The factors to generate these terms can be formed by inverting the key matrix (using the
field of arithmetic modulo p) to obtain a key for defining the block factors in each version in terms of the
treatment factors. The block factors identify the treatment contrasts that are confounded in each such version.
Thus these keys allow the necessary (analysis) pseudo factors to be generated from the values of the treatment
factors.

For the 3' example above, the keys and inverse keys are as follows:

replicate 1 1 1 1 1 22
(A b' c' confounded with blocks) 0 10 0 1 0

0 0 1 0 0 1

replicate 2 1 1 2 1 2 1
( A b' c confounded with blocks ) 0 10 0 10

0 0 1 0 0 1
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replicate 3 1 2 1 1 1 2

(ABC' confounded with blocks ) 0 1 0 0 1 0

0 0 1 0 0 1

replicate 4 1 2 2 1 1 1

(ABC confounded with blocks ) 0 1 0 0 1 0

0 0 1 0 0 1

The necessary information to define the construction and analysis of a generally balanced design can now be
illustrated using the 3' example as follows.

1) '3x3x3 factorial in blocks of size 9' (description of the design)
2) 2 (number of block factors)
3) 1 2 (number of pseudo factors for each block factor)
4) 3 3 3 (number of levels for each block pseudo factor)
5) B| / (block-structure formula for the design)
6) 3 (number of treatment factors)
7) 1 1 1 (number of pseudo factors for each treatment factor)
g) 3 3 3 (number of levels for each treatment pseudo factor)
9) 4 (number of different "versions" of the design)
10) 'T1+2T2+2T3 confounded with B,' • (description of version 1)

1  1 1 (design key for version 1)

0 1 0

0 0 1

'T1+2T2+T3 confounded with B,' (description of version 2)
1 1 2 (design key for version 2)
0 1 0

0 0 1

'T,+T2+2T3 confounded with B,' (description of version 3)
1 2 1 (design key for version 3)

. 0 1 0
0 0 1

'T,+T2+T3 confounded with B,' (description of version 4)
1 2 2 (design key for version 4)
0 1 0

0 0 1
11) 1 (number of analysis pseudo factors per version in treatment formula)
12) 3 (number of levels of each analysis pseudo factor, if any)
13) 12 2 (pseudo factor for version 1)

1 2 1 (pseudo factor for version 2)
1 1 2 (pseudo factor for version 3)
1  1 1 (pseudo factor for version 4)

14) (T, * T2 * T3) // P, (one version only)
(T, * T2 ♦ T3) // (Pj + P2) (two different versions)
(T, ♦ T2 * T3) // (P, + P2 + P3) (t^ee different versions)
(T, * T2 * T3) (all four versions: design balanced)

This specification is used to define the data base for procedure agdesigk which allows the user to work through
a sequence of pop-up menus to select a design, name the various factors, randomize the design, print the design
in a tabular representation, and produce a skeleton analysis of variance showing where each treatment term is
estimated and the corresponding efficiency factors. Release 3[2] of the Procedure Library includes the following
designs via agdeszgn.
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Factorial designs (with interactions confounded with blocks)

1  Single replicab of a 2^ factorial in blocks of size 4
2  . Single replicate of a 2* factorial in blocks of size 8
3  Single replicate of a 2^ factorial in blocks of size 16
4  Single replicate of a 2^ factorial in blocks of size 4
5  Single replicate of a 2^ factorial in blocks of size 8
6  Single replicate of a 2® factorial in blocks of size 8
7  Single replicate of a 3^ factorial in blocks of size 9
8  Single replicate of a 3"* factorial in blocks of size 9
9  Three replicates of a 2^ x 3 factorial in blocks of size 6
10 Three replicates of a 2^ x 3 factorial in blocks of size 6
11 Single replicate of a 2 x 3^ factorial in blocks of size 6
12 Single replicate of a 4^ factorial in blocks of size 4
13 Single replicate of a 4 x 2^ factorial in blocks of size 8
14 Three replicates of a 4 x 2 x 3 factorial in blocks of size 12
15 Single replicate of a 4 x 2^ factorial in blocks of size 8
16 Half replicate of a 4 x 2"* factorial in blocks of size 8

Lattice designs: 3 x 3, 4 x 4, 5 x 5, 6 x 6, 7 x 7, 8 x 8, 9 x 9, 10 x 10, 11 x 11, 12 x 12.

Lattice squares: 3x3, 4x4, 5x5, 7x7, 8x8, 9x9, 11x11, 13 x 13.

Latin squares: 3 x 3, 4 x 4, 5 x 5, 6 x 6, 7 x 7, 8 x 8, 9 x 9, 10 x 10, 11 x 11, 12 x 12.

The information is contained in standard Genstat data structures and stored in a backing-store file, agdesign
forms the menus to list the choices by collating the contents of the file, and a procedure pdesignpile is
provided to construct new files or to modify the existing file. The system thus allows users to add new designs
as required by their own working environments.

4. Alpha Designs

Alpha designs are a very flexible class of resolvable incomplete block designs. (A resolvable design is one in
which each block contains only a selection of the treatments, but the blocks can be grouped together into subsets
in which each treatment is replicated once.) The groupings of blocks thus form replicates, and the block structure
of the design is

Replicates / Blocks / XJ&its

Such designs are particularly useful when there are many treatments to examine and the variability of the units
is such that the block size needs to be kept small. Alpha designs were thus devised originally for the analysis
of plant breeding trials (Patterson and Williams, 1976), where many varieties may need to be evaluated in a
single trial, and have the advantage that they can provide effective designs for any number of treatments.

The construction of an alpha design requires a kx r generating array a of integers between 0 and 5-1, where
r is the number of replicates, and s is the number of blocks per replicate. If the number of treatments, v, is a
multiple of the number of blocks per replicate, k will be the number of units in each block, and v will be given
by 5 X Jk. Otherwise, the design will have some blocks of size k and some of size k-\, and v will lie between
s X (/:-l) and s x k.

Given the array a, procedure afalpha can be used to generate the design. The treatment values for replicate
q of the design are obtained from column c, of the array a by the following operations.

1) form 5-1 further colunms: column j is given by c, + 7 - 1 modulo 5
2) add (/-I) X 5 to each row i
3) if n < 5 X ik delete units that have been allocated treatments n+1 ... s x k.

For example

MATRIX [ROWSsS; COLUHNSs3; \
VALTTESo0,0,0, 0,1,2, 0,2,3, 0,3,1, 0,3,2] Array
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AFALPHA [PRINTsdeslgxi] Array; TREATMENTSsTreat; REPLICATESsRep; \
BLOCKS°Block; UNlTSsPlot

AFALPHA [PRI^sdesign]'Array; ZiEVELS=! (0.. .18) SEED=274903

would generate the treatments as follows

Array coliunn (k°5 rs3 8-4)

row 1 0 0 0

2 0 1 2

3 0 2 3

4 0 3 1

5 0 3 2

-> add 0 1 2 3 0 1 2 3 0 1 2 3 mod(4)

Rep 1 2 3

Block 1 2 3 4 1 2 3 4 1 2 3 4

Plot add

1 0 1 2 3 0 1 2 3 0 1 2 3 0

2 4 5 6 7 5 6 7 4 6 7 4 5 1x4

3 8 9 10 11 10 11 8 9 11 8 9 10 2x4

4 12 13 14 15 15 12 13 14 13 14 15 12 3x4

5 16 17 18 19 19 16 17 18 18 19 16 17 4x4

Clearly, the properties of the design that is formed will be very dependent on the choice of array. Procedure
A6DESI6H allows alpha designs to be formed using standard generators taken (via dszgnx) from Patterson,
Williams and Hunter (1978) and Williams (1975) which provide 2, 3 or 4 replicates for A: £ j, and 2 replicates
for A: >

5. Cyclic Designs

The cyclic method is a very powerful way of constructing incomplete block designs. In its simplest form, it starts
with an initial block, containing some subset of the treatments. This subset is then represented by the ordinal
number in the range 0,..., m-1 where m is the number of treatment levels. The second and subsequent blocks
are then generated by successively addition modulo m of one to the numbers in the subset.

Thus, for seven treatments (0,... , 6) and an initial block (0,1,4), the design would be

0 1 2 3 4 5 6

1 2 3 4 5 6 0

4 5 6 0 1 2 3

As can be seen, if m is a prime number, m blocks are generated with each initial block. However, if m can be
expressed as the product of other integers, shorter cycles can occur. For example, for m=8 and initial block
(0,1,4,5), 4 blocks are generated altogether:

2  3

3  4

6  7

7  0

It is also possible to have more than one initial block, and the increment need not be one.

Procedure afcyclic allows cyclic designs to be generated given the necessary generators (that is, the initial
blocks), while procedure agcyclic provides a range of standard generators for cyclic designs, cyclic change
over designs and cyclic superimposed designs. Cyclic change-over designs (Davis and Hall, 1969) are used for
trials in which subjects are given different treatments in different time periods; these thus have a crossed block
structure Bubdects*perlods. Cyclic superimposed designs (Hall and Williams, 1973) have two treatment
factors (each with the same number of levels); the design is intended to estimate their main effects but not their
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interaction, agcyclzc again uses standard generators taken from dsignx, but this time the information is
obtained from a backing-store file, instead of being programmed into the procedure. The backing-store file is
formed using an as-yet-unreleased procedure fcyclicfile, details of which can be obtained from the author.

6. Fractional factorials

Fractional factorial designs can be generated using procedure agpraction. This again uses standard design keys
from DSZGNX, and the information is stored a backing-store file, formed using another as-yet-unreleased
procedure ffractionfile. For factors with 2 levels, the fractions currently available are 1/2 (with 3-12
treatment factors), 1/4 (4-12 treatment factors), 1/8 (5-14 treatment factors), 1/16 (6-15 treatment factors), 1/32
(6-16 treatment factors), 1/64 (7-16 treatment factors). For factors with 3 levels the available fractions are 1/3
(2-7 treatment factors), 1/9 (3-8 treatment factors), 1/27 (4-9 treatment factors), 1/81 (5-10 treatment factors),
1/243 (6-11 treatment factors).

7. Orthogonal Hierarchical Designs

Procedure aghierarchical generates orthogonal hierarchical designs. The details of the required strata and
the treatments in each one are supplied by the parameters of the procedure, and there is no limitation on the size
or the complexity of the design.

8. Conclusion

The Genstat design system provides an open and very flexible set of facilities for the selection and generation
of experimental designs. There is also a wide range of facilities for the display and manipulation of designs, with
procedures to allow designs to be formed as the outer product of other designs or by "adding" designs together,
as well as procedures for plotting an experimental plan and generating data forms for the experimenter.
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Summary

The application of general estimating equation methodology to the analysis of repeated measurement data is
reviewed. The implementation of this methodology into Genstat is described. Estimation of the correlation matrix
for various models is reviewed. Examples involving a variety of types of data and models are given.

1. Introduction

Much experimental and observational research involves the collection of sequences of observations from each
unit, for example, person, animal or system. Such repeated measurements experiments are conunon in agriculture,
medicine and psychology and the resulting data present special problems for statistical analysis. Typically the
sequence of observations from a unit will be statistically dependent with a potentially awkward and possibly
non-stationary covariance structure. The modelling of non'Oaussian repeated measurements data presents an
added difficulty in that there is no natural generalization of the multivariate Gaussian distribution for such data.
The main implication of this is that, in general, it is not possible to separate the modelling of the first and second
moments. An important first step in the modelling of such data is therefore to decide how the model will be
constructed in terms of the moments of the joint distribution of the data. For a discussion of the alternatives see
Diggle et al (1994, chapter 7). Here we consider the so-called marginal model (Liang and Zeger, 1986). A model
is constructed for the marginal expectation of the observations at each time point and the parameters of this
model are assumed to represent quantities, such as treatment effects or regression relationships, that are of
sustantive interest. The model in this form says nothing directly about the dependence among the repeated
measurements but, because of the relationships among first- and higher-order moments in non-Gaussian
distributions, it will typically have implications for these higher-order moments. These relationships also mean
that it is only in special cases that a comparatively simple joint distribution of the observations can be
constructed and so full likelihood analyses for marginal models are typically awkward.

A practically valuable method for fitting such marginal models to data that avoids the construction of a full
likelihood is based on the use of so-called generalized estimating equations (GEE), see for example Liang and
Zeger (1986), Zeger and Liang, (1986) and Liang et al (1992). This approach can be used with only a
comparatively simple modification of the methodology of generalized linear models although, since its
introduction to a biometric audience, the basic technique has undergone considerable refinement. In particular,
in its original form, estimating equations were used only for the marginal model and simple empirical methods
were used to obtain measures of precision. We employ this so-called GEEl method here, with some modification
to allow structure to be imposed on the correlation matrix of the data. The modification is essentially an
extension of the 'Gaussian estimation' procedure of Crowder (1985), recalled in the present context by Crowder
(1992). It has the additional advantage that when applied to the Gaussian setting it leads to full maximum
likelihood. Further refinements that lead to the so-called GEE2 method are discussed briefly at the end of this
paper.

The GEE methodology is ideally suited to implementing in statistical packages such as Genstat in which the
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necessary basic routines already exist but which also have the facilties to manipulate data and so permit the
modifications required for repeated measurements. This article describes a procedure that has been written to
implement the GEEf methodology with quadratic estimation for the correlation matrix.

While GEE methodology for marginal generalized linear models is now well established the same is not as true
for categorical, and in particular ordinal, repeated measurements. The GEE methodology can be extended for
such settings and we describe in a Genstat Newsletter article (Kenward and Smith, 1995) how the current
procedure can be used for this through the representation of a categorical observation as a set of correlated binary
observations, a suggestion originally of Clayton (1992) and developed in Kenward et at (1994).

2. Computing the GEE

Suppose that we have n independent experimental units all potentially observed at the same set of q times. In
practice we may well have unbalanced sets of data, whether by design or chance, due to units being observed
only at a subset of these times. The observation from time j from unit /, T^, say, is assumed to have a marginal
representation in terms of the mean and variance associated with a generalized linear model;

= XjP = «(M«)
where is the (p x 1) vector of explanatory variables, jJ the corresponding (p x 1) vector of unknown
parameters and g(*) is the link function, and

.

where is a function of the mean, and hence of the parameters P, sometimes called the variance function, and
(j)^ is the scale factor/or time point j. The scale factor may be allowed to vary across time, but is assumed to be
constant across units.

If it is assumed that the observations from each unit are independent we can express the conventional estimating
equations for P as

where K;, X, and p, are assembled in an obvious way from T,, X,. and V, = diag{v^.}, O = diag{<|),j}, and

D. = diag

The index i on O,- is present to account for possible lack of balance among the repeated measurements not to
indicate differences in the (t>,y among units.

The equation (1) can be solved for P (to produce |^, say) in a straightforward way, assuming that the scale
factor(s) are known, using iterative weighted least squares (see for example McCullagh and Nelder, 1989, section
2.5) and the solution is a consistent one even when the observations from a unit are not in fact dependent, as
will typically be the case with repeated measurements. In an attempt to improve the efficiency of the method
of estimation a working correlation matrix R can be introduced to account for the within-unit dependence. The
resulting equations,

^ xlDfbl^'^vr^'^R -'v.""^o:"^(y, - p.) = o (2)
•-1

can be solved in much the same way. The working correlation matrix R can be chosen in a variety of ways. It
can be a simple fixed matrix, possibly based on previous analyses. Alternatively it may be calculated from the
data and updated at each cycle. In this latter case the consistency of the resulting estimating method is not as
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clear-cut as in the Gaussian setting.

Although, in most settings, the equations can be assumed to produce consistent estimates of p, the usual
generalized linear model estimates of error will not be appropriate. If the matrix R is either fixed at the true
value, or estimated in a consistent way as part of the algorithm then a simple modification of the "independence"
based estimates of error can be used, the so-called naive estimate of the variance-covariance matrix of ̂ ;

i-1

in which quantities are replaced by their estimated values where appropriate.

However it is often the case that R is known to be incorrect, for example when the common choice of 7? = / is
used. In this situation the estimate of error must be adjusted to take account of the actual dependence among the
repeated measurements. This can be done through the so-called sandwich estimator of the variance-covariance
matrix of p, sometimes called a robust estimator, in the limited sense that it is robust to departures from the
assumed correlation structure. This takes the form

i-1

W.

3. Quadratic estimation of the correlation structure and scale factor

We define the scaled residuals for the ith unit as

r, = - A,).

If we assume that these are approximated by a N(0,1.,) distribution, where S,- = then the appropriate
estimating equations for L, a function of parameters a = (a, , . .. say, can be expressed as

t -^(2:,-rr/), j = l...r.
1-1 OOj

These equations can solved using a simple iterative scheme. Define D, to be the ̂  x matrix obtained by
deleting fi-om the identity matrix the columns corresponding to times for which subject i is not observed. Suppose
that we have an existing estimate 1^) = 2(a(,)). Updated estimates, Oy+D are obtained by solving the equations

where

for

E ̂(Z-S,), j'l.
i-1 OGf

5, = -F/(D/S^,D, -r,r,')F,

(3)

(4)

F, = .

If the r, are exactly normally distributed, or if they arise from the estimating equations for normally distributed
data, then this iterative procedure corresponds to the EM algorithm (Dempster et aly 1977) for the full likelihood
solution. In the normal case we might also consider using the REML estimates instead (Patterson and Thompson,
1971) and the equations for this are obtained by substituting

r/i ^

VI

Y X/D/(D/E^,D,)-'D,X,
1-1

X/

for r,r/ in (4). For balanced data, that is, when measurements exist for all units on all occasions, (4) reduces to
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1  "

V  ̂(1 u ~

as should be expected and no iteration is required. Denote the solution by t..

Up to this point we have ignored the structure in Z. We need to be able to separate out the estimation of R from
that of O, at least in the non-normal case, because one or other of the two quantities may be fixed. This amounts
to the problems of estimating a set of variances with known correlation structure; and estimating a correlation
structure with known variances. These problems do not seem to have been widely explored, although Styan
(1968) provides a detailed investigation of the former.

3.1 Estimating the scale factors with fixed correlation matrix

With some manipulation in can be shown that the solution of the equations (3) reduces in the case of time
constant scale factor ((j) say) to

$=lrr(/?-'t)
q

and for time varying scale factors to the solution of the matrix equation

diag ( R ■'

for a X 1) vector of Is. Setting z = diag(a> '") this can be expressed as

where H = * 1) , 0 is a x 1) vector of zeros and * denotes the Hadamard product. This matrix equation
can be solved iteratively for z using Newton's method for a system of equations (Henrici, 1964).

3.2 Estimating the correlation matrix with fixed scale

It can be shown through straightforward manipulation of (3) that we can obtain the appropriate estimate of a,
the parameters of /?, by fitting the correlation structure to the matrix R that is the solution of the matrix equation

lower triangle of "') = lower triangle(O)

subject to the constraint diag( R )-l.

This can be solved for R using an iterative procedure with starting value

R^ =
standardised as a correlation matrix.

A. = diag

and + WJ

where {^k)ij -

There follows the various coitelation structures included in the Genstat procedure together with the corresponding
method for estimating a from R. Except for a matrix involved with the ante-dependence correlation structure
all the correlation (covaiiance) matrices are symmetric, therefore only the lower triangle is displayed.
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1. Independence structure

2. Unconstrained structure

3. Uniform (exchangeable) structure

For the uniform structure

^ind " ̂ind ~

R  = R
uns

1

a  1

a a 1

a  1

the parameter a is estimated as the average of the off diagonal elements of R

4. Autoregressive structure.

The autoregressive structure is

1

R.. =

a  1

a  1

otT' a  1

i.e. the correlation between the responses at times tj and t^ is To accommodate unequally spaced repeated
measurements the ad hoc method of estimation for a as described in Liang and Zeger (1986) is used. It is
estimated from the regression of the logarithm of the off-diagonal elements of R on \tj- t,,\. The relationship
between these two items can be expressed

= lO - •

This is the correlation structure of a first-order autoregressive process. Correlation structures of higher-order
processes have not been incorporated into the procedure because it is not clear how the correlations should be
defined when the time points are unequally spaced. When the time points are equally spaced however estimation
of the autoregressive parameters is straightforward and these cases may be added at a later date.

5. Ante-dependence structure

The analysis of repeated measurements under an ante-dependence covariance structure is described in Kenward
(1987).

The structure can be derived in several ways, for example by generalizing the stationary autoregressive structure.
An intuitively appealing derivation is in terms of conditonal independence. An ante-dependence covariance
structure of order r, an AD(r) structure say, implies that two repeated measurements at least r + 1 steps apart
in time are conditionally independent given the intervening measurements. The structure does not imply
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stationarity and can be shown to provide a good fit to a wide range of repeated measurements covariance
structures, at the expense of depending on 0(q) parameters. It has been implemented only for normal data and
this means that it has not been necessary to separate the estimation of the scale factors and R, that is, the entire
covariance matrix S is estimated directly.

The estimate of the ante-dependence covariance structure can be shown to be

t, = hah'
ad

where A is a x diagonal matrix and (for example for an AD(3) structure)

h' =

1

-TI21 A

""Hsi "^32

-^41 -'n42

0

"^43

■*152 ""^53

0

-11S4

~^»,f-3 "^m-2 ^

Let cl represent the (/-I) elements to the left of the diagonal (/, 0th element of Z, and C; represent the (i-l) x
(/-I) matrix of the elements of t immediately above c,. So C2 = » Q — (1)'» ^3 - ("{^}3.i > ■i^}3.2)»

1

{t}2.. 1
=  (- {t}4.i . - {t}4.2 . - {il4.3).

1

{t}2., . 1
{t}3.2 1

and

C4

It can be shown that for i > 1
tl,-

and that %.

c^C:'

where f|,. = , ... , and A = (X,,... X,)- The parameter X, is set equal to {i},., (the variance at the
first time point).

6. Dependence structure

For the dependence structure of order 2

^dep

The parameters a,, (Xj , ... , are estimated as in an obvious way as the averages of the appropriate diagonal
elements of

For this correlation structure there is an option in the procedure (timedependent) that allows a„ otj etc. to take
different values at the different time points. These time-varying ots are estimated by the appropriate elements

1

1

«2

0 "2

0
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of R. This structure is defined simply by setting the appropriate comer elements of R to zero. The matrix with
time-varying dependent structure of order r is precisely the inverse of the AD(r) matrix and it can be seen from
this, and from experience, that the dependence structure has much less appeal in practice than the AD structure.

4. Implementation in Genstat

The procedure as implemented has thirteen options and eleven parameters. Most of these have obvious uses. Two
that may not are the outcome option and the weight parameter. The outcome option was set up to enable data
to be input and analysed by outcome rather than subject, there being a variate count (i.e. the number of
subjects) associated with outcome. It is primarily for use with binary and count (Poisson) data. Where the data
comprise multiple subjects with the same outcome its use considerably reduces the time the procedure takes to
run. Its use is illustrated in Example 2. The weight parameter allows a weight to be associated with each
observation. This enables heterogeneity of variances across the data to be handled.

Not every possible combination of type of scalefactor (fixed, constant, time-varying) and correlation/covariance
model is sensible. Details of permitted combinations and other constraints are presented in Table 1.

Correlation/covariance

model

Type of scale factor Model

allowed

Notes

User defined Fixed

Constant

Varying over time

Yes

Yes

Yes

Care is needed in using
this model

Independence Fixed

Constant

Varying over time

Yes

Yes

Yes

Unstructured Fixed

Constant

V^ing over time

No

No

Yes

Exchangeable Fixed

Constant

Varying over time

Yes

Yes

Yes

Autoregressive Fixed

Constant

Varying over time

Yes

Yes

No

Only AR(1) has been
implemented.

Dependence Fixed

Constant

Varying over time

Yes

Yes

No

Order of dependence
can be specified. Also
time varying
dependence is allowed.

Ante-dependence Fixed

Constant

Varying over time

No

No

Yes

Order of dependence
can be specified.

Table 1: Implementation of the covariance structures

The procedure also allows for different link functions (including user defined) and different error distributions
(including user defined). Use of the TiMEDEPBNDENT=yes option with oraER=ntimo8-l and
SCALEFACTORovarytime for a dependence structure is equivalent to unstructured. This provides a means of
obtaining 'unstructured' correlation matrices with a fixed or constant scale factor.
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5. Examples

5.1 Example 1

The hip replacement data of page 79 of Crowder and Hand (1990).

Input program:

PRINT [IPRINTa*; SERIAL=Y; SQUASH=Y] \
'Data from Crowder and Hand/ 1990, p79.'

UNITS [NVALnES°120]
RE2U> Hema

47.10 31.05 * 32.80

44.10 31.50 * 37.00

39.70 33.70 * 24.50
43.30 18.35 * 36.60

37.40 32.25 * 29.05

45.70 35.50 * 39.80

44.90 34.10 * 32.05
42.90 32.05 * *

46.05 28.80 * 37.80
42.10 34.40 34.00 36.05

38.25 29.40 32.85 30.50
43.00 33.70 34.10 36.65
37.80 26.60 26.70 30.60

37.25 26.50 * 38.45
*  27.95 * 33.95

27.00 32.50 * 31.95

38.35 32.30 * 37.90

38.80 32.55 * 26.85
44.65 32.25 * 34.20
38.00 27.10 * 37.85

34.00 23.20 * 25.95

44.80 37.20 * 29.70

45.95 29.10 * 26.70

41.85 31.95 37.15 37.60

38.00 31.65 38.40 35.70
42.20 34.00 32.90 33.25

39.70 33.45 26.60 32.65
37.50 28.20 28.80 30.30
34.55 30.95 30.60 28.75
35.50 24.70 28.10 29.75

VARIATE [NVALUES=4] Time; VALUESal(1,2,3,4)
&  [NVALUESsl20] Age; VALUES=I(4(66,70,44,70,74,65, 54, 63,71, 68, \

69,64,70,60,52,52,75,72,54,71,58,77,66,53,74,78,74,79,71,68))
FACTOR [LEVELSa30] Patient; VAliUESs! (4(1.. .30) )
&  [LEVELSsTime] Occasion; VALUES^!((#Time)30)
&  [LEVBLS82] Sex; VAI.UES°1 (52(1) ,68(2) )
PRINT [IPRINTo*; SERIALLY; SQUASHsY] \

'Identity link : normal error'
GEE [LINKsIDENTITY; DISTRIBUTIONsNORH&L; CRTYPEsUNSTRUCTURED; \

TERNSoOccasion + Sex + Age] SUBJECTsPatient; TIHE=Time; YsHema

Output:

Data from Crowder and Hand, 1990, p79.

Identity link : normal error

***** Regression Analysis *****

Response variate: workvar
Weight variate: weight
Fitted terms: Constant Occasion + Sex + Age

*** Summary of analysis ***

d.f. s.s. m.s. v.r.

Regression 5 1674. 334.77 19.10
Residual 93 1630. 17.53
Total 98 3304. 33.71
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Percentage variance accounted for 48.0

*** Estimates of. regression coefficients ***

Constant

Occasion 2

Occasion 3

Occasion 4

Sex 2

Age

*** Correlations ***

estimate

Constant

Occasion 2

Occasion 3

Occasion 4

Sex 2

Age

estimate

40.10

-9.76

-8.44

-7.37

-1.703

0.0179

ref

1

2

3

4

5

6

s.e.

3.36

1.09

1.49

1.10

0.857

0.0493

correlations

1.000

-0.186

-0.015

-0.179

1.000

0.370

0.505

t

11.95

-8.95

-5.65

-6.70

-1.99

0.36

1.000

0.367 1.000

-0.035 -0.014 -0.037 -0.029 1.000
-0.963 0.023 -0.103 0.020 -0.108 1.000

1  2 3 4 5 6

unstructured covariance structure.

Matrix of covariances

18.11

3.83

-2.76

4.58

1

16.76

1.61

0.94

2

35.44

20.79

3

18.18

4

*** Model estimates of s.e.***

Estimate s.e.

39.67 3.907
-9.75 0.952
-8.45 1.403
-7.36 0.951
-1.82 1.032

0.03 0.058

*** Correlations ***
1.0000

-0.1279

-0.1269

-0.1214

-0.0683

-0.9686

1

1.0000

0.4654

0.3917

0.0000

0.0000

2

1.0000

0.9265

0.0000

0.0000

3

1.0000

0.0000

0.0000

4

1.0000

-0.0829

5

1.0000

6

*** Sandwicli estimates of s.e.***
Estimate s.e.

39.67 3.441
-9.75 0.926
-8.45 0.785
-7.36 0.915
-1.82 0.951

0.03 0.051

*** Correlations ***
1.0000

-0.4374

-0.3888

-0.1559

0.2312

-0.9691

1

1.0000

0.6364

0.3833

-0.1751

0.3353

2

1.0000

0.6557

-0.1111

0.2330

3

1.0000

-0.1398 1.0000

0.0462 -0.3660
4  5

1.0000

6

5.2 Example 2

Data of Example 2 of Jones and Kenward (1987), also discussed on pages 154-158 of Diggle et at (1994). These
data are binary and this example illustrates use of the parameters outcome and count.
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Input program:

PRINT [IPRINT=*; SERIAL=Y; SQUASHbY] \
'Jones and Kenward (1987) and Diggle et al (pages 155 to 158, 1994).'

FACTOR [NVAIi17ESb90;LEVELSs30] Outcome; VAItUESsl (3 (1. . .30) )
&  [NVALUESo90;LEVELS36] Seq; VALUESsl(15(1),12(2),18(3),15(4),15(5),15(6))
&  [NVALTJESo90;LEVELS°3] Period; VALUES^! ((1. . .3)30)
&  [NVALUES890;LABBLSs!T(A,B,C)] Trt; VALUESbIT((A,B,C)5, \

(A,C,B)4, (B,A,C)6, (B,C,A)5, (C,A,B)5, (C,B,A)5)
VARIATE [NVAIiUES°90] r,n,Count; VALDES= \

I ( 0,1, 3 (0), 3 (1), 2 (0), 5 (1), 3(0), 1,3(0), 6(1), 3(0), 1,3(0), 2(1), 0,1,0, 6 (1),\
3(0),1,3(0),3(1),0,3(1),3(0),2(1),(0,1)3,4(1),3(0),1,2(0),2(1),(0,1)3,1 ), \
!( 90(1) ), \
1( 3(2,2,1,9,1,2,1,9,4,3(1),8,3,4(1),8,1,3,1,7,2,2(1),5,4,3,1) )

&  [NVALUESa3] Atime; VALXJESal (1. . .3)
FACTOR [NVALUES=90;LEVELS=!(0,1)] xl,x2,x3,x4,x5,x6; VALUES°4(*), \
!( (0,0,1)5,(0,0,0)4,(0,1,0)6,(0,1,0)5,(0,0,0)5,(0,0,1)5 ), \
1( (0,0,0)5,(0,0,1)4,(0,0,0)6,(0,0,1)5,(0,1,0)5,(0,1,0)5 )

CAliCULATB xl = (Period.EQ.2) & x2 = (Period.EQ.3)
&  x3 = (Trt.EQ.2) & x4 = (Trt.EQ.3)

PRINT [IPRINTo*; SERIALLY; SQUASH°Y] \
'Logit link : binomal error'

GEE [LINKsLOGIT; DISTRIBBTIONbBINOHIAL; CRTYPEbEXCHANGEABLE; \
TERHSsxl-i-x2-t-x3+x4-i-x5-i-x6] OUTCOHEsOutcome; COUNTsCount; Y^r; \
TIHE=Atime; NBINOMIALsn

Output:

Jones and Kenward (1987) and Diggle et al (pages 155 to 158, 1994).

Logit link : binomal error

Tbe OUTCOME option has really been set up for use with count (Poisson) and binooiial
data where rather «•><»«« inputting individual subject data, outcomes are input with the
number of subjects with each outcome ixq;>ut as a count variate.
Use of OUTCOME and COUNT is much faster.
WHETHER THE DISTRIBUTION IS POISSON OR BINOMIAL IS NOT CHECKED.
This enables, for example, overdispersion to be handled by use of the own
DISTRIBUTION option and/or weights.

***** Regression Analysis *****

Response variate: workvar
Weight variate: weight
Fitted terms: Constant * xl x2 + x3 + x4 * x5 * x6

*** Summary of analysis ***
Dispersion parameter is 1

d.f. s.s. m.s. v.r.

Regression 6 54.6 9.097 2.91
Residual 83 259.2 3.123
Total 89 313.8 . 3.526

Percentage variance accounted for 11.4

*** Estimates of regression coefficients ***

estimate s.e. t

Constant -1.087 0.328 -3.31
xl 1 0.414 0.461 0.90
x2 1 0.589 0.475 1.24
x3 1 1.949 0.389 5.01
x4 1 2.222 0.395 5.63
x5 1 -0.192 0.507 -0.38
x6 1 -0.831 0.482 -1.72
* MESSAGE: s.e.s are based on dispersion parameter with value 1

*** Correlations ***

estimate ref correlations
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Constant

xl 1

x2 1

ac3 1

x4 1

x5 1

x6 1

1  1.000

2  -0.232 1.000

3  -0.215 0.699 1.000

4  -0.578 -0.218 -0.225

5  -0.563 -0.209 -0.215
6  -0.266 -0.564 -0.584
7  -0.170 -0.552 -0.569

1 2 3

1.000

0.473

0.432

0.100

4

1.000

0.250

0.348

5

1.000

0.520

6

1.000

7

Exchangeable correlation structure.

Scale £actor fixed to 1.000

Scale factor 1.000

Matrix of correlations

1.0000

•0.0315

-0.0315

1.0000

-0.0315 1.0000

3

*** Model estimates of s.e.***
Estimate s.e.

-1.084 0.3299

0.417 0.4667

0.593 0.4810

1.946 0.3939

2.220 0.4000

-0.202 0.5096

-0.832 0.4848

* Correlations ***

1.0000

-0.2397

-0.2230

-0.5810

-0.5675

-0.2639

-0.1679

1

1.0000

0.6971

-0.2156

-0.2063

-0.5623

-0.5492

2

1.0000

-0.2219

-0.2123

-0.5808

-0.5681

3

*** Sandwich estimates of s.e.***
Estimate s.e.

-1.084 0.3169

0.417 0.4203

0.593 0.4582

1.946 0.4138

2.220 0.4196

-0.202 0.5152

-0.832 0.4194

*** Correlations ***

1.0000

-0.1696

-0.0754

-0.6075

-0.6099

-0.4075

-0.2589

1

1.0000

0.6610

-0.2721

-0.2952

-0.4601

-0.2603

2

1.0000

-0.2917

-0.1850

-0.5855

-0.5051

3

1.0000

0.4734

0.4274

0.0988

4

1.0000

0.2469

0.3448

5

1.0000

0.5210

6

.0000

7

1.0000

0.6783

0.3746

0.0096

4

1.0000

0.2592

0.2414

5

1.0000

0.4252

6

1.0000

7

6. Discussion

For normally distributed data the naive estimates of V[|i] obtained under the different covariance models are all
that are required. The statistics involved have known distributional properties and comparisions between different
covariance models can be made using likelihood ratio tests, provided likelihood methods have been used to
estimate the covariance structure. Otherwise, conventional Wald type procedures can be used.

For non-normal data both naive and sandwich estimates of Vbh are needed. Assumption of a correlation model
is required to estimate p and this estimate is robust against incorrect specification of that model. However, VNbh
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is sensitive to incorrect specification of the correlation model. The naive estimate of Var^p) assumes the
correlation model holds. The sandwich estimate is a data based estimate robust against incorrect specification
of the correlation mo'del. As several authors (e.g. Paik, 1992; Verbyla, 1993) comment, R is not required to be
the true correlation structure for the sandwich estimate to be a reasonable estimate of V[0]. The only condition
is that the estimate of correlation used must be consistent.

The methodology implemented is based on that described in Liang and Zeger (1986). In the terminology of
Liang, Zeger and Qaqish (1992) it is GEEl. GEEl assumes that P is independent of a and that they can be
estimated separately. As implemented, only the parameters p and their variances V[0] are estimated using GEE
methodology. Quadratic extimation (Crowder, 1985; Crowder, 1992) is used for the parameters a and (|). As
described in Liang and Zeger (1986) and implemented in the procedure, this is appropriate in situations where
the emphasis is on making inferences about p with a being considered a nuisance parameter. Liang et at (1992)
show that the estimates of a obtained by GEEl can be seriously inefficient, and this is most likely to be a
problem in small data sets. GEE2 (in the terminology of Liang et at (1992) recognises that the independence
assumption of GEEl is not correct and jointly estimates p and a by GEE methods. If a is of primary interest
the GEE2 methods (proposed by Prentice, 1988 and Zhao and Prentice, 1990) should be used. Liang et at
(1992) showed these GEE2 estimates to be reasonably efficient for a in the cases studied, but there was little
increase in the efficiency of p. As commented e.g. in Carey et al (1993) the computational load of GEE2 can
be heavy and is a major reason against its implementation, particularly when primary interest is in p. Some
authors (e.g. Paik, 1992; Verbyla, 1993) have considered the situation where (j) is a vector of standard length
(number of observations) whose values vary according to a linear model based on a set of explanatory variables.
Estimation of the parameters of this model again being by use of GEE. Such modelling of the scale factors
requires third and fourth distributional moments. These are available for the standard distributions implemented
as options in the procedures but may be difficult to obtain for user defined distributions. Modelling of the scale
factors is difficult to implement, and with regard to modelling the fitted values p allowing for heterogeneity of
variance, other approaches i.e. weighting and use of another distribution (e.g. negative binomial for overdispersed
binomial data) exist and can be used with the procedure. As shown by several authors (e.g. Paik, 1992), it is
possible to use GEE methodology to estimate p, a, (j) and their associated variances for particular types of data.
Diggle et al (1994) contains fiirther discussion of these points. Development of the procedure to provide GEE
estimation of all these parameters for the range of distributions, etc., implemented in the current procedure is
a possibility for the future.
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Summary

The application of general estimating equation methodology to the analysis of repeated ordinal data is reviewed.
The use of an available Genstat procedure for generalized estimating equations to analyse this type of data is
described. Estimation of the correlation matrix for various models is reviewed. An example involving two
equivalent analyses of a set of data is given.

1. Introduction

While analyses for continuous repeated measurements data are well established the same is not so true for
categorical, and in particular ordinal, repeated measurements. The GEE (generalized estimating equations)
methodology described in Kenward and Smith (1995) and implemented as a Genstat procedure can however be
extended into the analysis of repeated ordinal measurements. Modifications of GEE methodology using binary
representations (i.e. generalized linear models) for fitting proportional odds models have only recently appeared
(Clayton, 1992; Kenward et al 1994) and a further Genstat procedure has been written that allows the user to
fit such models, with an appropriate data transformation, using the procedure of Kenward and Smith (1995)
which should be read in conjunction with this paper.

2. Methodology

The method used is the development of Clayton (1992) as described in Kenward et al (1994). A K category
ordinal response Yf, subject i, times point t) can be expressed as K -I binary responses where

0 Y< k

I Y,> k

A proportional odds model for

logit{P(yi, > A:)} = a* + k=\ K-\

implies a logistic regression model for each binary response

logit{P(Z,rt = 1)} = A: = 1 ,... , K - 1. (1)

The GEE method can be applied to these derived binary responses, taking account of their dependence through
a suitable choice of correlation matrix for the the binary variables (/?, say for the ith subject). Clayton (1992)
obtains an empirical estimate of this matrix for each group of subjects with common covariates based on the
observed proportions of observations in different categories at different times and substitutes these into the
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estimating equations. However, by exploiting the relationship between the outpoint parameters (a^) and the
correlations between the binary responses, the correlations in the estimating equations can be expressed in terms
of the model paramkers and reliance upon the empirical estimate of /?, avoided. Define

P( Y,> k) = P(Z,„ = !) = <!>„, k'l K- 1.

then, for = coiTelation( Z,,, ), j < k,

Pi ' »)
( 1

Note that a single set of correlations applies to all subjects at all time points. This is a consequence of the
proportionality in the original model.

In the correlation matrix /?, used by the fitted model and used to produce the naive estimate of V[^], the
correlations between observations from different time points are set to zero (the independence assumption for
the repeated measurements) and the correlations between the binary responses from a particular time are
calculated from equation (2) using the current estimates of the outpoint parameters. That is, for a complete
sequence Z; = (Zj,| , Z,-,2 , ... , ,

/?, =

R  0 0

0 R 0

0  0 R

for rjt = = p;*. The elements of are updated each GEE iteration using the current estimates of the
outpoints (Xj, (Xjy. To produce the sandwich estimate of V[^], the zero off-diagonal elements of /?,• are replaced
by the appropriate residual cross-products, modified where necessary if the data are unbalanced. For details see
Kenward and Smith (1995).

After the GEE iterative procedure has converged a sandwich estimate of the parameter covariance matrix is
obtained. The correlations between the observations from the same time point are obtained as for the naive
estimate. The remaining across times correlations are obtained empirically from the residuals.

3. Construction of Ri

To exploit the procedure for binary data the ordinal measurements must first be expanded into the set of binary
responses as defined above, and a user-defined correlation procedure is then used (gebcorrel). The version of
GEECORKEL given in the Appendix (for the expanded data set) can be used for any set of ordinal categorical data
provided the scalar ncut is set to the appropriate value, which is the number of categories minus one. Also, the
variate time needs to be set to a dummy factor with (ncut-one) * (ntime) levels, where ntlme is the number
of time points. For the data of the example (Kenward and Jones, 1992) ncut is set to two as there are three
categories. In the procedure geecorrel the option [SANDWiCH=no,yesl refers to whether the 7?, matrix for
the naive estimate of V[3l is being constructed or the Ry matrix for the sandwich estimate.

4. Example

The data set of Example 1 of Kenward and Jones (1992) is used to examplify how to perform the an^ysis. Two
equivalent analyses will be given. In the first, data are input for each subject, with the subjects specified using
the SUBJECT parameter. In the second, the data are input as number per outcome group and the outcome and
COUNT parameters must be set. The second analysis is considerably faster than the first. Analysis of repeated
ordinal categorical data as number per outcome group is standard practise in analysing log linear models. For
both analyses the Genstat code prior to calling gee is for expanding the data into the cumulative logit form of
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equation (1).

4.1 First analysis ̂

Only the first and last six lines of data are given.

Input program;

PRINT [IPRINTa*; SERIAL=Y; SQUASRsY] \
'Data £roa Kenward and Jones, (1992), data o£ Exaiqple 1.'

FACTOR [LEVELS=2] Period
&  [LEVBLS°3] Trt
&  [LEVBLS°1(0,1)] Re8p[1...3]
READ [SETNVALIJESbYES] Trt, Period, Resp [1... 3 ]
1 1 1 0 0

1 2 1 0 0

1 1 1 0 0

1 2 1 0 0

1 1 1 0 0

1 2 1 0 0

3 1 0 0 1

3 2 0 0 1

3 1 0 0 1

3 2 0 0 1

3 1 0 0 1

3 2 0 0 1

FACTOR [I.EVELS°256] Sub; VALUES=1 (2 (1. . .256))

VARIATE Y[1...2]
CALCULATE Y[l] » Resp[2] + Resp[3]
&  Y[2] B Resp[3]
VARIATB [NVALUESb1024] Hresp
FACTOR (NVALUESb1024;LEVELSb256] Hsub
&  [LEVELSb3;NVALUESb1024] HTrt
&  [LEVELSb2;NVALUES°1024] HPeriod
&  [LEVELS°2;NVALUESb1024] HCUt; VALUESbI((1...2)512)
VARIATB [NVALUESb1024] Hn; VALUESbI(1024(1))
&  [NVALUBSb4] Time; VALUESbI(1...4)

m

Period is a dusmy time set as 1 to 4.
M

EQUATE [OLDFORMATbK (1,-511) 2,-1)] iP(Y[1...2] ) ; Hresp
&  [OLDFORHATbK (1,-511)2,-1)] IP (Sub, Sub); Msub
&  [OLDFORMAT=!((1,-511)2,-1)] IP(Trt,Trt); HTrt
&  [OLDFORHATbI((1,-511)2,-1)] IP(Period,Period); HPeriod

PRINT [IPRINTb*; SERIALbY; SQUASBbY] \
'Logit link : binomal error'

GEE [LINRbLOGIT; DISTRIBUTIONbBINOHIAL; TERHSBHcut+HTrt+HPeriod] \
SUBJECTBHsub; YsHresp; TIHBsTime; NBINOHIALsHn

Output:

Data from Kenward and Jones, (1992), data of Example 1.

Logit link : binomal error

***** Regression Analysis *****

Response variate: workvar
Weight variate: weight
Fitted terms: Constant Hcut + HTrt * HPeriod

*** Summary of analysis ***
Dispersion parameter is 1

d.f. s.s. m.s. v.r.

Regression 4 221. 55.300 54.27
Residual 1019 1038. 1.019
Total 1023 1260. 1.231
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Percentage variance accounted for 17.2

*** Estimates of. recession coefficients ***

Constant

Hcut 2

HTrt 2

MTrt 3

HPeriod 2

estimate
0.859

-2.754

-0.625

-0.222

-0.598

s.e.

0.174

0.188

0.202

0.191

0.160

t

4.94

-14.65

-3.09

-1.16

-3.75

* MESSAGE: s.e.s are based on dispersion parameter with value 1

*** Correlations ***

estimate

Constant

Hcut 2

HTrt 2

HTrt 3

HPeriod 2

ref

1

2

3

4

5

correlations

1.000

-0.367

-0.615

-0.620

-0.493

1

1.000

0.100

0.043

0.123

2

1.000

0.523

0.030

3

1.000

0.010

4

1.000

5

User supplied correlation structure.

Scale factor fixed to 1.000

Scale factor 1.000

Matrix of correlations

1.0000

0.2519

0.0000

0.0000

1.0000

0.0000

0.0000

1.0000

0.2519 1.0000

4

*** Model estimates of s.e.***
Estimate s.e.

0.864 0.1849
-2.757 0.1668
-0.622 0.2201
-0.204 0.2099
-0.628 0.1741

*** Correlations ***
1  1.0000

2  -0.2592 1.0000
3  -0.6293 0.0914
4  -0.6375 0.0381
5  -0.4996 0.1197

1  2

1.0000

0.5291

0.0299

3

1.0000

0.0090

4

1.0000

.5

*** Sandwich estimates of
Estimate s.e.

0.864 0.2015
-2.757 0.1866
-0.622 0.2584
-0.204 0.2496
-0.628 0.1341

s.e.

*** Correlations ***
1.0000

-0.2633

-0.6666

-0.6693

-0.3732
1

1.0000

0.0784

0.0239

0.1701

2

1.0000

0.5177

0.0336

3

1.0000

0.0087

4

1.0000

5

4.2 Second Analysis

Input program:

PRINT IIPRINT=*; SERIAL=Y; SQUASH=Y] \
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'Data from Kenward emd Jones, (1992), Eicanple 1.'

FACTOR [NVAIiDES=54;IiEVELS=27] Outcome; VALUES= 1(2(1...27))
&  [NVALUES°54;LEVELSs3] Trt; VALUES^!(18(1...3))
&  [NVALXIESs54;LEVELS82] Time; VALTTESol ( (1,2)27)
VARIATE [NVALUESb54 ] Resp [1... 3 ], Count

READ RespCl...3],Count
1 0 0 17

1 0 0 17

1 0 0 6

0 1 0 6

1 0 0 2

0 0 1 2

0 0 i 1

1 0 0 1

0 0 1 3

0 1 0 3

0 0 1 3

0 0 1 3

VARIATE YC1...2]
CALCULATE Y[l] » Resp[2] + Re8p[3]
&  Y[2] s Resp[3]
VARXATE [NVALUES°10B] Hresp
EQUATE [OLDFORMAT=I((1,-53)2,-1)] !P(Y[1...2]); Hresp
FACTOR [NVALUESbIO8;LEVELS=27] HOutcome
&  [LEVELS°3;NVALUESs108] KTrt •
&  [LEVELSb2;NVALUES=108] S^er; VALUESs)(2(1...2)27)
&  [LEVELSb2;NVALUES=108] Hcut; VALUES^!((1...2)54)
VARIATE [NVALUES°108] Hn; VALUES°1(108(1))
&  [NVALUESslOB] HCount
&  [NVALUESs4] Period; VALUES^l(1...4)

m

Period is a dummy time set as 1 to 4.
M

EQUATE [OLDFORMATsl((1,-53)2,-1)] !P(Outcome,Outcome); HOutcome
&  [OLDFORMAT=I((1,-53)2,-1)] !P(Trt,Trt); MTrt
&  [OLDFORMATsl((1,-53)2,-1)] IP(Count,Count); HCount

PRINT [IPRINTs*; SERIALsY; SQUASRsY] \
'Logit link : binomal error'

mgw [LINKsLOGIT; DISTRIBUTIONsRINOHIAL; TERMSsHcut-t-HTrt+t^er] \
OUTCOHEsHOutcome; COUNTsHCount; YsHresp; TIHEsPeriod; MBINOHUkLsHn

Output:

Data from Kenward and Jones, (1992), Example 1.

Logit link : binomal error

The OUTCOME option has really been set up for use with count (Poisson) and
binomial data where rather than inputting individual subject data, outcomes are
input with the number of subjects with each outcome input as a count variate.
Use of OUTCOME emd COUNT is much faster.
WHETHER THE DISTRIBtTTION IS POISSON OR BINOMIAL IS NOT CHECKED.
This enables, for exaiiq;>le, overdispersion to be handled by use of the own
DISTRIBUTION option and/or weights.

***** Regression Analysis **•••

Response variate: workvar
Weight variate: weight
Fitted terms: Constant ••• Hcut MTrt Mper

*** Summary of analysis ***
Dispersion parameter is 1

d.f. s.s. m.s. v.r.

Regression 4 221. 55.30 5.49
Residual 103 1038. 10.08
Total 107 1260. 11.77
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Percentage variance accounted for 14.4

*** Estimatee of regression coefficients ***

Constant

Hcut 2

MTrt 2

HTrt 3

ISpex 2

estimate

0.859

-2.754

-0.625

-0.222

-0.598

s.e.

0.174

0.188

0.202

0.191

0.160

t

4.94

-14.65

-3.09

-1.16

-3.75

* MESSAGE: s.e.s are based on dispersion parameter with value 1

*** Correlations •**

estimate

Constant

Hcut 2

MTrt 2

MTrt 3

l^er 2

ref

1

2

3

4

5

correlations

1.000

-0.367

-0.615

-0.620

-0.493

1

1.000

0.100

0.043

0.123

2

1.000

0.523

0.030

3

1.000

0.010

4

1.000

5

User supplied correlation structure.

Scale factor fixed to 1.000

Scale factor 1.000

Matrix of correlations

1.0000

0.2519

0.0000

0.0000

1.0000

0.0000

0.0000

2

1.0000

0.2519 1.0000

4

*** Model estimates of s.e.***

Estimate

0.864

-2.757

-0.622

-0.204

-0.628

S.e.

0.1849

0.1668

0.2201

0.2099

0.1741

*** Correlations ***
1.0000

■0.2592
-0.6293
-0.6375
-0.4996

1

1.0000
0.0914
0.0381
0.1197

2

1.0000
0.5291
0.0299

3

1.0000
0.0090

4
1.0000

5

*** Sandwich estimates of s.e.***
Estimate s.e.

0.864 0.2015
-2.757 0.1866
-0.622 0.2584
-0.204 0.2496
-0.628 0.1341

*** Correlations ***
1.0000
-0.2633
-0.6666
-0.6694
-0.3733

1

1.0000
0.0784
0.0239
0.1701

2

1.0000
0.5177
0.0337

3

1.0000
0.0087

4
1.0000

5
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5. Discussion

For the analyses given the scale factor has been fixed at 1.0. For these data using scALEFACTORsconstcmt
gives a scale factor of 1.024 suggesting that fixing the scale factor to 1.0 is reasonable. If use of this option had
produced a scale factor very much greater than 1.0 (representing overdispersion) then having obtained an estimate
of the heterogeneity factor the parameter weight or the user defined setting of the dxstribittion option could
be used to handle the overdispersion. The heterogeneity factor can be estimated fi"om the residuals as in Williams
(1982), then either weights could be calculated following the quasi-likelihood approach of Williams (1982), or
a beta binomial distribution fitted by means of the user defined procedure geedistribution. For overdispersed
Poisson data, Breslow (1984) is the equivalent reference and the negative binomial is the equivalent distribution.

Availability of the own correlation procedure geecorrel enables many models for the correlation between time
points to be tried. In the context of repeated ordered categorical data, correlations between the time points can
be introduced as well as between the binary responses at the same time point.
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Appendix - Procedure geecorrel

PROCEDURE 'GEECORRELATION'
m

Calculation o£ correlation matrix

For SltNDWICH - NO

input is the R matrix as £or UNSPECIFIED
output is the desired R matrix.

For SANDWICH B YES

input is the (Y-MU)*T(y-MU) matrix
output is the desired modified (Y-HU) *T(Y-HU) matrix.

N.B. For the normal distribution both the ix^ut and output R's
should be variance/covariance matrices not correlation matrices.

m

OPTION NAME s 'CONSTANT', "I: text; how to treat constant (estimate,
omit); default e"\

'SANDWICH'; "I; text; whether the sandwich central matrix
product or not) (no,yes); default no"\

HODB=2(T);NVALUES°2(l); \
VALUES^ IT (ESTIMATE, OMIT), !T (NO, YES); \
DEFAULTSIT(ESTIMATE),IT(NO);

PARAMETER NAME = 'CORRELATIONS', "I/O: matrix; the correlation matrix"\
'ESTIMATES', "I: variate; estimates of parameters in model"\
'Y', "I: variate; response variate"\
'RESIDUALS', "I: variate; residuals"\
'FITTEDVALUES',"I: variate; fitted values"\
'TIME', "I: variate; times of repeated measures"\
'MARKER', "I: factor; identifier of subject or outcome"\
'DISTRIBUTION',"I: text; identifier of distribution"\
'SCALEFACTOR', "I: text; scalefactor option in use"\
'SFVALX7E'; "I: scalar; value of scalefactor if FIXED"\
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SETbIO (yes); DECZiAREDsio (yes); \
TYPEb'symmetric',5('variate'),'factor',2('text'),'scalar'; \
PRESEHTB9<yes) ,iiO

OETATTRIBUTE [ATTRIBUTEbNVALTJES] ESTIMATES; SAVEBlP(ncol)
&  [ATTRIBUTEaNROWS] CORRELATIONS; SAVE°lP(ntime)

DIAG0N2^IiMATRIX [ROWSBntime;HODIFYByes] done; VALUES=! (#ntime(l))

CALC const B 'ESTIMATE' .IN. CONSTANT

&  sandw b 'NO' .IN. SANDWICH

IF sandw

CALC CORRELATIONS = done

ELSE

CALC ntimel b ntime - 1
&  nltime b -ntimel
&  n2time b nltime -i- 1
&  ntimelt2 b 2*ntimel
VARIATE [NVALUESBntimelt2;M0DIFYBYES] cii
&  [NVALUESBntimel;MODIFYByBS] ci[1...2]; \

VALUESbI(#ntimel(l)),1(1...ntimel)
CALC ci[2] B -ci[2]
EQUATE [OLDFORMATbI (l,#n2tijne,l,#nltime)] ci; cii
&  [OLDFORMATbI (#ntime) ;NEWFORMATBcii] done; CORRELATIONS

ENDIF
n

Set ncut equal to the nuaiber of outpoints i.e. number of
categories minus one.

m

CALC ncut B 2

&  ncutl B ncut - 1

&  ncutl2 B ncut*ncutl/2
&  nciil B 2*ncutl

&  ncii B nciil 1
&  nlcut B -ncutl

&  n2cut B nlcut + 1
&  nr B ntime/ncut

VARIATE [NVALUESBncut] CUtpt
&  [NVALUESBncut 12] dr
6  [NVALUESBncii;MODIFyBYES) cii; VALUESbI (#ncii(*))
&  [NVALUES8ncutl;M0DIF7ByES] ci[1...2]; \

VALUESbI(#ncutl(-l)),!(!...ncutl)

EQUATE ESTIMATES; CUtpt

IF const

CALC CUtpt B CUtpt * ELEM(cutpt;l)
&  ELEM(cutpt;l) B ELEM(CUtpt;l)/2

ENDIF

CALC iml B 0

FOR lnd2 B 2...ncut
CALC im2 B ind2 - 1

FOR indl b 1...im2
CALC B ial + 1
&  ELEM(dr;iml) b SQRT(EXP(ELEM(cutpt;ind2)-ELEM(cutpt;indl)))

ENDFOR

ENDFOR

FOR indl B i.,.nr
EQUATE [OLDFORMATbI (1, #n2cut, 1,#nlcut) ;NBWFORMATbI (#nciil, *) 1 ci; cii
&  [OLDFORMATb !(#ncut 12 ) ;NEWFORMATBcii] dr; CORRELATIONS
CALC ci[l] B ci[l] - ncut
&  ELEM(ci[l];1) B -((ncut*indl)**2+5*ncut*indl+2)/2

ENDFOR

ENDPROCEDURE
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