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Introduction

Regression is one of the most popular methods in statistics, and one that is still producing
new and exciting techniques. Genstat has a very powerful set of facilities for regression
and generalized linear models that are nevertheless very straightforward and easy to use.

This book shows how Genstat’s menus guide you from simple even to very
complicated analyses, and also introduces the regression commands that you can use to
program any non-standard analyses that you need. We start by explaining ordinary linear
regression (with one or several variables), and then extend the ideas to nonlinear models
and on to generalized linear models – so that you can analyse counts and proportions as
well as the more usual numeric variables. Finally we introduce some of the most recent
developments in generalized linear models, including Youngjo Lee and John Nelder’s
hierarchical generalized linear models, to bring you fully up-to-date with the range of
possibilities. The book was written to provide the notes for VSN’s 2-day course on
Regression, Nonlinear and Generalized Linear Models, but it can be used equally well
as a self-learning tool.

The chapters cover the following topics.
1 Linear regression: ranging from simple linear regression (with one variable) to multiple

linear regression (several variables) and the modelling of parallel-line relationships
(regression models with groups); plotting of residuals to assess the assumptions, and
of the fitted model and data to assess the fit; methods for finding the best models when
there are many explanatory variables. 

2 Nonlinear models: Genstat's range of standard curves, and the facilities for defining
your own nonlinear models. 

3 Generalized models: how to analyse non-Normal data such as counts and proportions;
recent advances ! how to use generalized linear mixed models and hierarchical
generalized linear models to handle additional sources of random variation. 

Acknowledgement: Peter Lane's collaboration on the original Genstat regression courses
! and on the regression source code itself !is gratefully acknowledged.



1 Linear regression

In this chapter you will learn
• how to fit a regression model with a single explanatory variable
• what the output means
• how to plot the fitted model
• what assumptions are made for the analysis, and how to check them
• what commands are used to fit, display and assess linear regressions Ú
• how to perform a permutation test to assess a regression Ú
• how to save results in Genstat data structures for future use Ú
• how to make predictions from a regression analysis
• how to fit a multiple linear regression (with several  explanatory variables)
• how to explore alternative models when there are several explanatory variables
• how to use all subsets regression to assess and summarize all available models Ú
• how to fit parallel and non-parallel regression lines when you have an explanatory

factor as well as an explanatory variate
Note: the topics marked Ú are optional.
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1.1 Simple linear regression

Linear regression is a method of describing a relationship between one variable and one
or more others:
• the response variable (also called the y-variable or dependent variable) is the variable

to be described;
• the explanatory variables (also called the x-variables or independent variables) are the

variables used to describe the response variable.
With a "simple linear regression" you have only one explanatory variable, say x. So you
want to describe the response variate y by the model

y  =  b ×  x  +  c
where the parameters of the model are

b the regression coefficient, and
c the constant.

In simple linear regression, the constant c is often called the intercept as it is the value
of y when x is zero. We will explain later how you can fit models without a constant.
Usually, however, the constant is included. The regression coefficient b is often called
the slope of the regression line.

The model above represents the theoretical value that we are assuming for y, but in
practical situations this is unlikely to be what we observe. There may be random
variation, or the model may even be just an approximation to the true situation. Suppose
we have made n observations of x and y, which we will label with the suffix i. We can
define a statistical model to describe our observations as

yi  =  b ×  xi  +  c  +  åi i  = 1 ... n
where now

åi is the residual for observation i, representing the difference between the value yi

actually observed for observation i, and the theoretical value predicted by the
model.

The theoretical value predicted by the model is known as the fitted value
fi  =  b × xi  +  c i  = 1 ... n

In ordinary linear regression, the residuals åi are assumed to come from independent
Normal distributions, all with the same variance. In Section 1.3 we show how you can
check this assumption, and in Chapter 3 we show how you can fit models to data from
other distributions.

We estimate the parameter values by least squares, that is by taking the values that
minimize the sum of the squared values of the residuals

3i  åi2    =    3i  ( yi  !  b ×  xi  !  c )2

If the residuals really do have Normal distributions, these estimates are the maximum
likelihood estimates (that is, the parameter values that would give the highest probability
for the data values that we have observed). The assumption of a Normal distribution is
also required for the statistical tests described later in this section. However, we will not
go into any more detail of the mathematics statistical theory here. More information can
be found in standard statistical text books, such as Applied Regression Analysis by Draper
& Smith (1981, Wiley, New York).
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Figure 1.1

Figure 1.2

Figure 1.3 Figure 1.4

The data sets that are used in the
examples and practicals in this Guide can
be all be accessed from within Genstat.
Click on File on the menu bar, and select the
Open Example Data Sets option, as shown in
Figure 1.1.

This opens the Example Data

Sets menu, shown in Figure 1.2.
It is easier to find the relevant
file if you set the Filter by topic

drop-down list to A Guide to

Regression, Nonlinear and

Generalized Linear Models. Here
we shall open the Spreadsheet
file Pressure.gsh (Figure
1.3) which contains recordings
of blood-pressure from a sample
of 38 women whose ages range
from 20 to 80. 

We can plot a graph of pressure against age (Figure 1.4) by using the Graphics menu and
selecting 2D Scatter Plot. This shows a fairly linear relationship between blood-pressure
and age, so it would seem sensible to fit a linear regression.
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Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.5 shows the regression line,
and the residuals as vertical lines
joining the fitted value on the regression
line to the data point.

To fit the regression in Genstat, you
select the Regression Analysis option of
the Stats menu on the menu bar, and
then clicking on the Linear sub-option as
shown in Figure 1.6.

This opens the Linear

Regression menu, shown in
Figure 1.7. If you select the 
Simple linear regression option in
the drop-down list at the top of
the menu, the menu customizes
itself so that you just need to fill
in boxes to specify the Response

variate and Explanatory variate.
Clicking on Run produces the
output below.
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Figure 1.8

Regression analysis
 

Response variate:  Pressure
Fitted terms:  Constant, Age

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  1  2647.7  2647.69  169.73 <.001
Residual  36  561.6  15.60   
Total  37  3209.3  86.74   
 
Percentage variance accounted for 82.0
Standard error of observations is estimated to be 3.95.
 
 

Estimates of parameters
 
Parameter estimate s.e. t(36) t pr.
Constant  63.04  2.02  31.27 <.001
Age  0.4983  0.0382  13.03 <.001

The output to display is controlled by the
Linear Regression Options menu (Figure 1.8),
which is opened by  clicking on the Options

button in the Linear Regression menu. The
default output begins with a description of
the model, listing the response variable and
the fitted terms: these are the constant and
the explanatory variable. The constant is
included by default; if you want to omit it,
you should uncheck the Estimate constant

term box. This would constrain the fitted
line to pass through the origin (that is, the
response must be zero when the explanatory
is zero), but remember that the analysis
would still be based on the assumptions that
the variability about the line is constant for
the whole range of the data, and that the relationship is linear right down to the origin.
So this may not be sensible, particularly if you have observations close to the origin.

The next section of output contains an analysis of variance to help you assess the
model. In the "s.s." column, the "Residual" line contains the sum of squares of the
residuals, and this is regarded as random variation. The "Total" line contains the
residual sum of squares for a model that contains just the constant. In this model, the
constant will be estimated as the mean of the values of the response variable (i.e. the
grand mean). So this line contains

3i ( y ! ì )2
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 where ì is the grand mean
ì  =  3i  y / n

and, more accurately, is the total sum of squares "corrected" for the grand mean.
In a linear regression, we are interested to see whether there really is evidence of a

linear relationship with the explanatory variable. So we want to compare the model
containing just the constant with the model containing the constant and (a regression
coefficient for) the explanatory variable. The difference between the residual sums of
squares of these two models is printed in the Regression line:

2647.7  =  3209.3 ! 561.6
This is known as the sum of squares "due to the regression", and represents the amount
of variation that can be "explained" (i.e. removed from the residual) by including a
regression coefficient for the explanatory variable in the model.

The "d.f." (degrees of freedom) column records the number of independent
parameters that are contributing to each sum of squares. In the "Total" line this is 37
(the number of observations minus one, as we have fitted a constant term. In the
"Residual" line this is 36 (the number of observations minus two, as we have fitted a
constant term and the regression coefficient for the explanatory variable). In the
Regression line this is one, as this line represents the effect of adding one more
parameter to the model.

The "m.s." (mean square) column contains the sums of squares divided by the degrees
of freedom, which converts them to variances. The  "v.r." (variance ratio) column
shows the regression mean square divided by the residual mean square. Under the null
hypothesis that there is no linear relationship between the response and the explanatory
variables, this will have an F distribution with the degrees of freedom in the
Regression and Residual lines i.e. the printed value 169.73 would be from an F
distribution on one and 36 degrees of freedom. The  "F pr." column prints the
corresponding probability. The value here is less than 0.001  (<.001), so the relationship
is significant at a 0.1% level of significance.

It is important to remember, however, that the use of the F distribution depends on the
assumption that the residuals have independent Normal distributions, all with the same
variance, and we will show how you can assess that in Section 1.3.

The percentage variance accounted for is a summary of how much of the variability
of this set of observations has been explained by the fitted model. It is the difference
between residual and total mean squares expressed as a percentage of the total mean
square. When expressed as a proportion rather than a percentage, this statistic is called
the adjusted R2; it is not quite the same as R2, the squared coefficient of correlation. The
adjustment takes account of the number of parameters in the model compared to the
number of observations.

The final section of the output shows the estimated values for the parameters in the
model. The regression coefficient for Age is 0.4983, with a standard error of 0.0382. So
the model predicts that blood pressure will rise by 0.4983 units with each additional year.
The corresponding t-statistic is large, 13.03 with 36 degrees of freedom, again indicating
that there is a significant linear relationship between pressure and age. In fact, when the
regression model has only one degree of freedom, the t-statistic in the table of estimates
is the square root of the F statistic in the analysis of variance. So this is actually making
the same test. Again, the use of the t distribution is based on the assumptions of the
regression.
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Figure 1.9

You can obtain further output by clicking on
Further Output in the Linear  Regression menu.
So, if you are trying several different
regression models, as we show in Section
1.11, you may want to omit some of the
default output by unchecking the relevant
boxes of the Linear Regression Options menu
(Figure 1.8) until you have decided which
model is best.

The resulting Linear Regression Further

Output menu is shown in Figure 1.9. For
example, if we check the Fitted values box and
click on Run, we obtain the output below.

Regression analysis
 

Fitted values and residuals
 

Standardized  
Unit Response Fitted value residual Leverage
1  82.17  77.00  1.36  0.072
2  88.19  85.97  0.57  0.028
3  89.66  94.44  -1.24  0.042
4  81.45  80.98  0.12  0.045
5  85.16  83.97  0.31  0.032
6  89.77  92.44  -0.69  0.034
7  89.11  89.95  -0.22  0.028
8  107.96  101.41  1.74  0.095
9  74.82  73.51  0.35  0.105
10  83.98  91.45  -1.92  0.031
11  92.95  86.46  1.67  0.027
12  79.51  79.99  -0.12  0.050
13  87.86  88.46  -0.15  0.026
14  76.85  76.50  0.09  0.076
15  76.93  75.00  0.51  0.090
16  87.09  83.47  0.93  0.034
17  97.55  95.93  0.42  0.050
18  92.04  97.43  -1.41  0.060
19  100.85  98.92  0.51  0.072
20  96.30  92.94  0.87  0.036
21  86.42  87.96  -0.39  0.026
22  94.16  91.45  0.70  0.031
23  78.12  78.99  -0.23  0.057
24  89.06  92.44  -0.87  0.034
25  94.58  99.92  -1.41  0.080
26  103.48  101.41  0.55  0.095
27  81.30  83.47  -0.56  0.034
28  83.71  80.98  0.71  0.045
29  68.38  73.01  -1.24  0.111
30  86.64  86.46  0.05  0.027
31  87.91  88.46  -0.14  0.026
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Figure 1.10

32  86.42  91.45  -1.29  0.031
33  103.87  97.43  1.68  0.060
34  83.76  80.98  0.72  0.045
35  84.35  89.95  -1.44  0.028
36  68.64  75.00  -1.69  0.090
37  100.50  93.44  1.82  0.038
38  100.42  102.91  -0.67  0.111
 
Mean  87.95  87.95  0.00  0.053

As explained earlier, the fitted values are those predicted by the model for each
observation: b × xi  +  c. The residuals åi are differences between the observed values of
the explanatory variable yi and the fitted values. However, in the table these simple
residuals, åi, have been divided by their standard errors. The resulting standardized
residuals should be like observations from a Normal distribution with unit variance
(again if the assumptions of the analysis are valid). The leverage values indicate how
influential each observation is: a large value indicates that the fit of the model depends
strongly on that observation; see the Guide to the Genstat Command Language, Part 2
Statistics, Section 3.1.1 for more details.

You can display the fit
graphically by clicking on the Fitted

model button in the Linear Regression

Further Output (Figure 1.9). This
displays the picture shown in Figure
1.10, which shows the observed
data with the fitted line and 95%
confidence limits for the line.



1100 1  Linear regression

Figure 1.11

1.2 Practical

Spreadsheet file Rubber.gsh, contains data from an
experiment to study  how the resistance of rubber to
abrasion is affected by its strength and hardness. The
data are from Davies & Goldsmith (1972, Statistical
Methods in Research & Production, Oliver & Boyd,
Edinburgh), and are also used by McConway, Jones &
Taylor (1999, Statistical Modelling using GENSTAT,
Arnold, London, Chapter 4).

Use linear regression to see how loss depends on
hardness.

1.3 Checking the assumptions

The efficiency of the estimates in ordinary linear regression and the validity of the
statistical tests depends on the assumption that the residuals åi come from independent
Normal distributions, all with the same variance.

Genstat gives a warning message about any large residuals, as part of the summary of
the analysis. The threshold is the value h that gives an upper-tail probability of 1/d in a
standard Normal distribution, where d is the number of residual degrees of freedom.
However, h is set to 2 (instead of any smaller value) when d is less than 20, and to 4
(instead of any larger value) when d is greater than 15773. So messages should appear
for extreme outliers, but they should not be set off too often by random variation.

A warning message is also given if there are any particularly large leverage values. The
threshold is h × k / N, where k and N are the number of parameters and number of units
used in the regression model, and h is as defined above. The sum of the leverages is
always k, so this should draw attention to any observations with more than about twice
the average influence. This does not mean that assumptions are broken, but rather that the
analysis may be unduly affected by some observations.

If there are at least 20 observations, Genstat makes two checks to see if the variance
is constant. The fitted values are ordered into three roughly equal-sized groups. Levene
tests are then carried out to compare the variance of the standardized residuals in the
bottom group with those in the top group, and to compare the variance of the middle
group with the variance of the bottom and top groups combined. Each test will generate
a message if the test statistic is significant at the 2.5% level, which would indicate that
the assumption of constant variance may not be valid.

Finally, Genstat sorts the standardized residuals according to the fitted values, and does
"runs" test. A message is given if the sign of successive residuals does not change
sufficiently often (again using a 2.5% significance level). This would indicate that there
is still some systematic pattern in the residuals.

See the Guide to the Genstat Command Language, Part 2 Statistics, Section 3.1.2 for
more details.
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Figure 1.12

Figure 1.13

You can also check the
assumptions of the analysis visually,
using the Model Checking menu
(Figure 1.12) You open the menu by
clicking on the Model checking

button in the Regression Further

Output menu (Figure 1.9). The menu
allows you to choose between five
types of graph for either the
residuals, the leverage values or the
Cook's statistics (a combination of
the residual and leverage
information).

Figure 1.12 shows the default,
which is a composite of four of
these graphs: a histogram of the residuals, so that you can check that the distribution is
symmetrical and reasonably Normal; a plot of residuals against fitted values, so that you
can check whether the residuals are roughly symmetrically distributed with constant
variance; a Normal plot which plots the ordered residuals against Normal distribution
statistics – if they lie roughly on a straight line, the residuals are roughly Normally
distributed; and a half-Normal plot which does the same for the absolute values of the
residuals, and can be more useful for small sets of data.

The plots in Figure
1.13 indicate that the
variance seems unrelated
to the size of the
observation, but that the
distribution seems to be
more constrained than the
Normal: the largest
residuals are a little
smaller than would be
expected from a Normal
distribution. Experience
shows the analysis is
robust to small departures
f r o m  N o r m a l i t y .
However, we should be
cautious in interpreting
the F-statistics and t-
statistics (which rely on
the assumption of
Normality),  if the
histogram looks very
non-Normal.
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Figure 1.14 Figure 1.15

With the leverage and Cook statistics, there is no assumption of Normality. So the
interest is in how these vary with the fitted values.

Figure 1.14 plots the leverages against the fitted values, showing (as you might expect)
that the observations at the lowest and highest ages have most influence in determining
the parameter estimates.

Cook's statistics (Figure 1.15) combine residual and leverage information. So they
assess whether an observation is both influential and an outlier i.e. whether it is having
an unduly large and perhaps detrimental effect on the parameter estimates. You might
then need to investigate, for example, to see if some sort of mistake has been made.

1.4 Practical

How well are the assumptions satisfied for the analysis in Practical 1.2?

1.5 Commands for linear regression analysis

The regression menus cover most situations, but it may still be worth learning the
commands for their extra control and flexibility. For example Chapter 10 of the
Introduction to Genstat for Windows explains how you can can write "loops" of
commands to perform the same analysis on several data sets.

The menus communicate with the Genstat analysis engine by writing scripts of
commands,  and these are recorded in the Input Log. You can save these commands and
run them later to recreate the analysis. You can also cut and paste the commands into a
text window, so that you can edit and rerun them to modify the analysis. Or you can
simply examine the commands to see how they work.

The analyses that we have done so far have generated the following set of commands.

"Simple Linear Regression"
MODEL Pressure
TERMS Age
FIT [PRINT=model,summary,estimates; CONSTANT=estimate;\
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    FPROB=yes; TPROB=yes] Age
RDISPLAY [PRINT=fittedvalues; TPROB=yes]
RGRAPH [GRAPHICS=high; CIPLOT=yes] 
RCHECK [RMETHOD=deviance; GRAPHICS=high] residual; composite
RCHECK [RMETHOD=deviance; GRAPHICS=high] leverage; fitted
RCHECK [RMETHOD=deviance; GRAPHICS=high] cook; fitted

The MODEL directive must be used before any regression analysis, to specify the

response variate, as in the first line of the program above.

MODEL Pressure

MODEL can also define the distribution and link function of a generalized linear model
(Chapter 3) using its DISTRIBUTION and LINK options, but those are not needed here.

The TERMS command is unnecessary in this example. However, it is useful when you
have several explanatory variates or factors and want to examine a sequence of models,
adding or dropping terms. It defines the most complicated model that you may want to
fit, so that Genstat can construct the overall set of usable units (omitting those that have
missing values for any of the variates or factors).

The FIT directive fits the regression.

FIT [PRINT=model,summary,estimates; CONSTANT=estimate;\
    FPROB=yes; TPROB=yes] Age

The PRINT option controls the output that is produced, so you could ask for all sections
of output by setting:

PRINT=model,summary,estimates,correlations,fitted,\
      accumulated,confidence

Alternatively, after fitting a model you can use the RDISPLAY directive to display further
sections of output without refitting the model; it has a PRINT option just like FIT.

The RGRAPH procedure allows you to draw a picture of the fitted model. For example,

RGRAPH

draws a graph of a simple linear regression. After multiple regression, you can specify
the explanatory variate or a grouping factor or both, as in

RGRAPH Logsulphur; GROUPS=Rain

(see Section 1.15). 
The RCHECK procedure provides model checking. It has two parameters: the first

specifies what to display in the graph (residuals, Cook or leverages) and the second
specifies the type of graph (composite, histogram, fittedvalues, index, normal
or halfnormal). For example,

RCHECK residual; composite

draws the composite picture (Figure 1.13), while the plot of leverages against fitted-
values graph (Figure 1.14) can be drawn by

RCHECK leverage; fitted

The RMETHOD option of RCHECK controls how the residuals are calculated. In an ordinary
linear regression, deviance residuals are the ordinary (simple) residuals, divided by their
standard errors i.e. they are standardized residuals. The GRAPHICS option controls
whether the graph is displayed as a high-resolution plot in the graphics viewer
(GRAPHICS=high, the default), or whether it is displayed as character plot in the Output

window (GRAPHICS=lineprinter).
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Figure 1.16

Full details of the regression commands are in Chapter 3 of the Guide to the Genstat
Command Language, Part 2 Statistics or in the Genstat Reference Manual. The
information in the Reference Manual is also in the on-line help, and can be accessed
easily by putting the cursor within the name of the command (e.g. in the Input Log), and
pressing the F1 key.

1.6 Permutation tests

If the assumptions do not seem to be satisfied, an
alternative way to assess the significance of the
regression might be to  to use a permutation test.
Clicking on the Permutation test button in the Linear

Regression Further Output menu (Figure 1.9)
produces the menu in Figure 1.16. This asks
Genstat to make 4999 random permutations of the
values of the response variate (see the Number of

permutations box), and refit the regression. The Seed

box specifies the seed to use for the
random-number generator that is used to construct
the permutations. The  value 0 initializes the seed automatically (and prints the value in
the output) if this is the first use of the generator in this run of Genstat; otherwise the seed
is chosen to continue the existing sequence.

The probability for the regression is now determined from its distribution over the
randomly permuted data sets. The output below shows a probability <.001, which means
that the observed data set is one of the 5 with the largest variance ratios out of the 5000
sets that have been examined (1 observed data set + 4999 randomly permuted data sets).

Message: Default seed for random number generator used with value 909577

Probability for model <.001 (determined from 4999 random permutations)

If you ask for more permutations than the number that are possible for your data, Genstat
will instead do an exact test, which uses each permutation once. There are n! (n factorial)
permutations for a data set with n observations. So, we would obtain an exact test with
5 observations by setting the number of permutations to 120 or more.

The test is performed using the RPERMTEST procedure.

1.7 Practical

Do a permutation test for the simple linear regression analysis in Practical 1.2.
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Figure 1.17

Figure 1.18

Figure 1.19

1.8 Saving information from the analysis

As well as displaying the results of
an analysis, the regression menus
allow you to save the results in
standard data structures. This is a
common feature of most of the
analysis menus in Genstat. After a
regression analysis you can click on
the Save button of the Linear

Regression menu (Figure 1.7), which
generates the Linear Regression Save

Options menu. The residuals, fitted
values, parameter estimates and
standard errors can all be saved in
variates: if you check one of these
boxes, you will be prompted for the
name of the variate to store the results, as  shown in Figure 1.17. The variance-covariance
matrix of the parameter estimates can also be saved in a symmetric matrix, another of
Genstat's standard data structures. The information is saved using the RKEEP directive.

If you check the Display in

Spreadsheet box, the results are put
into a Genstat spreadsheet, which
can then be saved in a file on your
computer for use in a later run of
Genstat, or in another program such
as Excel. Alternatively you can save
results automatically to a
spreadsheet file by clicking on the
Export to file button. This opens the
Save Regression Results in

Spreadsheet File menu. Figure 1.18,
shows the menu with the default output components selected in the check boxes, and the
Save in file box filled in to save them in the Excel file PressureResults.xlsx.

E a c h  o u t p u t
component is saved on a
separate page in the
spreadsheet file. Figure
1.19 shows the page
containing the summary
of the analysis. Other
pages save the estimates
(with their standard
errors etc.), and the
fitted values (with
residuals etc.).

The file is saved using the RSPREADSHEET procedure.
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Figure 1.20

1.9 Predictions from linear regression

The fitted values provide predictions of the
response variable at the values of the
explanatory variable that actually occurred
in the data. If you want predictions at other
values, you can use the prediction menu,
obtained by clicking on the Predict button in
the Linear Regression menu. This generates
the Predictions - Simple Linear Regression

menu shown in Figure 1.20. Initially the
Predict values at box has mean filled in, so
that a prediction would be formed for
pressure at the mean value of the ages.
However, we have changed this to ask for
predictions at ages 25, 50, 75 and 100. The
Display box has boxes that can be checked to
provide predictions, standard errors,
standard errors of differences between
predictions, least significant differences of
predictions, confidence limits and a
description of how the predictions are
formed. Here we print predictions, standard
errors and the description.

Predictions from regression model
 
These predictions are estimated mean values.
 
The standard errors are appropriate for interpretation of the predictions as summaries of the
data rather than as forecasts of new observations.
 
Response variate: Pressure
 

Prediction s.e.
Age  

25 75.50 1.150
50 87.96 0.641
75 100.42 1.152

100 112.87 2.018

The output explains that the standard errors are appropriate as predictions for fitted
values for these ages in this data set, not as predictions for new observations. We can
augment the standard errors by the additional variability arising from a new set of
observations at ages 25 - 100 by checking the box Include variance of future observation.
(For further details see Section 3.3.4 of Part 2 of the Guide to the Genstat Command
Language.)

The predictions are made using the PREDICT directive.
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Figure 1.21

Figure 1.22

1.10 Practical

Form predictions from the simple linear regression analysis in Practical 1.2 for hardness
values 50, 60, 70, 80 and 90.

1.11 Multiple linear regression

In multiple linear regression you have several explanatory variables. This creates the
extra problem, that you need to decide which ones are needed in the model. So you need
to be able to explore models, comparing alternative variables or sets of variables, as well
as to display and check the model that you finally select.

We illustrate this approach with a short set of data from a production plant, on page
352 of Applied Regression Analysis by Draper & Smith (1981, Wiley, New York).
Information was collected over 17 months on variables possibly associated with water
usage: the average temperature, the amount of production, the number of operating days
and the number of employees. The data are loaded from the spreadsheet file
Water.gsh.

Linear models with more
than one explanatory
variable are called multiple
linear regression models. If
you choose this title from
the drop-down list in the
Linear Regression menu, you
can then specify several
explanatory variables as
well as the single response
variable, as shown in Figure
1.21.

However, rather than just
fitting the full model in one step, we shall illustrate how you can fit a sequence of
regression models. This is best done using the General linear regression option from the
drop-down list (Figure 1.22). This allows you to modify the model as many times as you
like, using the Change model button in the Linear Regression menu.

It is useful in a sequential
study to start by specifying a
maximal model, which
includes all the explanatory
terms that may be used in
the sequence of models to
be fitted. Genstat is then
able to customize the
Change Model menu so that
the Available data box is
replaced by a Terms box
containing all the terms that
may be fitted. Also, if any
explanatory variables have missing values, a common set of units (for which all variables
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have values) is identified at the start, so that all models can be properly compared. To
start with, we leave the Model to be fitted box blank and fit only the constant, as shown in
Figure 1.22.

It is important to note a small difference between the model boxes in General linear

regression compared to the other types. Here, you can construct model formulae using the
operators given in the Operators box: therefore, if you want just a list of explanatory
variates, as here, you must type in commas to separate the identifiers. With Multiple linear

regression these are added automatically.
Here is the output from this first analysis.

Regression analysis
 

Response variate:  Water
Fitted terms:  Constant

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  0  0.000  *   
Residual  16  3.193  0.1995   
Total  16  3.193  0.1995   
 
Percentage variance accounted for 0.0
Standard error of observations is estimated to be 0.447.
 

Message: the following units have large standardized residuals.
Unit Response Residual

16  4.488  2.73
 
 

Estimates of parameters
 
Parameter estimate s.e. t(16) t pr.
Constant  3.304  0.108  30.49 <.001

We can build the model using the Change Model menu (Figure 1.21), obtained by
returning to the Linear Regression menu and clicking on Change model. This has a Terms

window, in which you select the explanatory variables that you want to change. As you
click on each one it is highlighted to show that it has been selected. As usual, you can
hold down the Ctrl key when you click a line, so that this will not affect the highlighting
of the other lines. Or you can click on Select all if you want all of them.

Once you have selected the variables of interest, you can click the Add button to add
them to the model. Alternatively, you can click the Drop button to remove them from the
model, or click the Switch button to remove those that are in the model and add those that
are not. The Try button allows you to assess the effect of switching each of the selected
variables, before making any change. There is also a section of the menu for stepwise
regression which is discussed in Section 1.13.
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Figure 1.23

In Figure 1.21, we have
selected all the variables, and
checked just the Display changes

box in the Explore section of the
menu. Clicking Try now
generates a succinct summary of
the effect of each potential
change. The first column
d e s c r i b e s  t h e  c h a nge .
Subsequent columns give the
degrees of freedom, sum of
squares and mean square of the
change. Here we are simply
adding single potential x-
variates, so the degrees of
freedom are all one. Also, the
residual of the initial model is
printed to indicate the general level of variation. You might want to add terms with large
mean squares (or remove terms with small mean squares, if there were any in the model
already).

Changes investigated by TRY
 
Change d.f. s.s. m.s.
+ Employ  1  0.545  0.545
+ Opdays  1  0.025  0.025
+ Product  1  1.270  1.270
+ Temp  1  0.261  0.261
Residual of initial model  16  3.193  0.200

Try is useful particularly if you have many explanatory variables and do not wish to fit
them all. Here we shall be adding them all to the model, and so we will not use Try again.
However, we will take its advice as to which variable to add to the model first. The
output shows that Product has the largest mean square, so we use the Change model

menu to add this (by selecting the Product line, and then clicking Add). The output is
given below.

Regression analysis
 

Response variate:  Water
Fitted terms:  Constant, Product
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Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  1  1.270  1.2702  9.91  0.007
Residual  15  1.922  0.1282   
Total  16  3.193  0.1995

  
Change  -1  -1.270  1.2702  9.91  0.007
 
Percentage variance accounted for 35.8
Standard error of observations is estimated to be 0.358.
 

Message: the following units have large standardized residuals.
Unit Response Residual

16  4.488  2.31
 

Message: the following units have high leverage.
Unit Response Leverage

2  2.828  0.27
3  2.891  0.25

 
 

Estimates of parameters
 
Parameter estimate s.e. t(15) t pr.
Constant  2.273  0.339  6.71 <.001
Product  0.0799  0.0254  3.15  0.007

The messages in the summary warn about one large residual, and two months with high
leverage. So we would have to be careful in interpreting the results if we suspected that
these two months were special in some way. Otherwise, the output from this analysis is
similar to that in Section 1.1, and it shows that the model here accounts for only 35.8%
of the variance in water use.

We can attempt to account for more of the variance by including the effect of another
explanatory variable. We shall try the effect of temperature, so the model will become:

water = a + b × production + c × temperature

This can be fitted easily by returning to the Linear Regression menu and clicking on
Change model again (Figure 1.21). You can then select Temp from the Terms box and
click on Add as before to fit the modified model. The output is shown below.

Regression analysis
 

Response variate:  Water
Fitted terms:  Constant, Product, Temp
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Figure 1.24

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  1.560  0.7798  6.68  0.009
Residual  14  1.633  0.1167   
Total  16  3.193  0.1995

  
Change  -1  -0.289  0.2894  2.48  0.138
 
Percentage variance accounted for 41.5
Standard error of observations is estimated to be 0.342.
 

Message: the following units have large standardized residuals.
Unit Response Residual

16  4.488  2.04
 
 

Estimates of parameters
 
Parameter estimate s.e. t(14) t pr.
Constant  1.615  0.528  3.06  0.008
Product  0.0808  0.0242  3.34  0.005
Temp  0.00996  0.00632  1.57  0.138

The Change line and the t-statistic for Temp tell the same story here: the extra
explanatory variable accounts for a further 5.7% of the variance, but does not seem to
have a significant effect in conjunction with the amount of production.

We now include the effect of the
number of operating days in each
month, by adding it via the Change

Model menu. To decrease the amount of
output, we have clicked on Options first,
and cancelled the display of the
parameter estimates in the resulting
General Linear Regression Options menu,
so that we just get the model summary,
as shown in Figure 1.24. (Notice that
this menu would also allow you to
specify a variate of weights if you
wanted to do a weighted linear
regression.) In the output, shown below,
the  percentage variance accounted for
has increased to 50%. So this variable
has a marked effect on water usage.

Regression analysis
 

Response variate:  Water
Fitted terms:  Constant, Product, Temp, Opdays
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Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  3  1.893  0.63093  6.31  0.007
Residual  13  1.300  0.09999   
Total  16  3.193  0.19954

  
Change  -1  -0.333  0.33328  3.33  0.091
 
Percentage variance accounted for 49.9
Standard error of observations is estimated to be 0.316.

Finally, we add the fourth explanatory variable, the number of employees, returning to
the default output.

Regression analysis
 

Response variate:  Water
Fitted terms:  Constant, Product, Temp, Opdays, Employ

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  4  2.4488  0.61221  9.88 <.001
Residual  12  0.7438  0.06198   
Total  16  3.1926  0.19954   

Change  -1  -0.5560  0.55603  8.97  0.011
 
Percentage variance accounted for 68.9
Standard error of observations is estimated to be 0.249.
 

Message: the following units have high leverage.
Unit Response Leverage

1  3.067  0.59
 
 

Estimates of parameters
 
Parameter estimate s.e. t(12) t pr.
Constant  6.36  1.31  4.84 <.001
Product  0.2117  0.0455  4.65 <.001
Temp  0.01387  0.00516  2.69  0.020
Opdays  -0.1267  0.0480  -2.64  0.022
Employ  -0.02182  0.00728  -3.00  0.011

This variable, too, has a large effect, raising the percentage variance accounted for to
69%.

Notice that the t-statistics now provide evidence of a significant effect of each variable
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Figure 1.25

when all the others are taken account for. The estimate for the Temp parameter is larger
than in the model with just production and temperature, 0.01387 compared to 0.00996,
and its standard error is smaller, 0.00516 compared to 0.00632. The first effect is caused
by the fact that there is correlation, or confounding, between the effects of the explanatory
variables: so any effect is estimated differently in the presence of a different set of other
explanatory variables. The difference in standard errors is caused both by this and by the
fact that more variance has been accounted for in the last model.

The effect of this confounding can also be
highlighted by looking at an accumulated
analysis of variance. This shows the
sequential effects of including the variables,
in the order in which they were listed, rather
than their effects in the presence of all the
other variables. This summary is available
from the Linear Regression Further Output

menu, shown in Figure 1.25, and is
displayed below.

Regression analysis
 

Accumulated analysis of variance
 
Change d.f. s.s. m.s. v.r. F pr.
+ Product  1  1.27017  1.27017  20.49 <.001
+ Temp  1  0.28935  0.28935  4.67  0.052
+ Opdays  1  0.33328  0.33328  5.38  0.039
+ Employ  1  0.55603  0.55603  8.97  0.011
Residual  12  0.74380  0.06198   

Total  16  3.19263  0.19954   

The F-probability for Temp here could be used to test the effect of temperature
eliminating the effect of Product but ignoring Opdays and Employ; the t-probability
with the estimate of Temp above, tests the effect eliminating the effects of all the other
explanatory variables.

In this section, we have fitted the model sequentially, starting with just the constant,
and then using the Change Model menu to decide which terms to add into the model. (In
this example, the terms are x-variates, but you will see later, in Section 1.15, that
regression models can also include factors and interactions with factors.) Provided you
do not have too many terms, an alternative strategy would be to include them all, and then
see sequentially whether any one can be left out.

If you do have only variates in the model, you can use the t-statistics of their regression
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coefficients to assess whether they are needed. However, if you have factors, these may
contribute several parameters to the model, making the assessment more difficult. Wald
statistics (available from either the Options or Further Output menus) can then be used
instead, to assess whether any term can be dropped from the model. The output below
shows Wald statistics for the final model fitted to the water data. In an ordinary linear
regression, Genstat also prints an F statistic (calculated as the Wald statistic divided by
its degrees of freedom), and uses this to obtain the probability for each term. Provided
there is no aliasing between the parameters of the terms, these F statistics and
probabilities will be identical to those that would be printed in the Change lines of the
Summary of Analysis if the terms were dropped from the model explicitly by using the
Change Model menu. The advantage of the Wald statistics is that the model does not have
to be refitted (excluding each term) to calculate the information. They thus provide a
more efficient method of assessing whether all the terms are needed in the model.

Wald tests for dropping terms
 

Term Wald statistic d.f. F statistic F pr.
Product  21.61  1  21.61  <0.001

Temp  7.22  1  7.22  0.020
Opdays  6.96  1  6.96  0.022
Employ  8.97  1  8.97  0.011

Residual d.f. 12

To perform a stepwise regression using commands, you first define the response
variate, using the MODEL directive, in the usual way. You should also use the TERMS
command to define the most complicated model that you may want to fit, so that Genstat
can initialize the analysis e.g. by constructing the overall set of usable units (omitting
those that have missing values for any of the variates or factors). If you do not do this and
the explanatory variables do not all have the same units, the accumulated summary of the
analysis may need to reinitialize itself part-way through the sequence of models. The first
model is fitted using the FIT directive as usual. This can then be modified using the
directives ADD, DROP, STEP, SWITCH and TRY. See the Guide to the Genstat Command
Language, Part 2 Statistics, Section 3.2. Wald statistics are calculated by the RWALD
procedure.
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Figure 1.26

Figure 1.27

1.12 Practical

Spreadsheet file Peru.gsh,
contains a data set recording
blood pressure and physical
characteristics of some Peruvian
indians (see McConway, Jones
& Taylor 1999, Statistical
Modelling using GENSTAT,
Arnold, London, Section 6.2).
The aim is to see whether blood
pressure, sbp, can be explained
effectively by regression models
involving the physical variables.
Use the Change Model menu to
build a model containing up to
two variables.

Can that model be improved
by adding further variables?

1.13 Stepwise and all subsets regression

The sequential fitting methods
described in Section 1.11 can be
very labour intensive if there are
many variables. The Change

Model menu (Figure 1.27) also
provides stepwise facilities that
allow you to build up the model
automatically.
 To illustrate these with the
water usage data, we first fit a
model with just the constant
(using the menu in Figure 1.22
in Section 1.11), and then click
the Change button to produce
the Change Model menu as
before.

The process takes the form of
a number of steps (specified in the Maximum number of steps box) in which variables are
added or dropped from the model. The possible changes to consider are selected in the
Terms box; in Figure 1.27 we have decided to consider all the variables. Each possible
change is assessed using a variance ratio calculated as the mean square of the change line
divided by the residual mean square of the original model.

If you click the Forward selection button, at each step Genstat adds the variable with the
largest variance ratio, provided that variance ratio exceeds the value specified in the Test

criterion box. The default value for the criterion is one, but many users prefer the value
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Figure 1.28

four; see for example page 153 of McConway, Jones & Taylor (1999, Statistical
Modelling using GENSTAT, Arnold, London).

If we click on Forward selection in Figure 1.27, two steps are taken, adding first
Product and then Employ, as shown below.

Step 1: Residual mean squares
 

0.1282    Adding    Product
0.1765    Adding    Employ
0.1955    Adding    Temp
0.1995    No change 
0.2112    Adding    Opdays

 
Chosen action: adding Product.
 
 

Step 2: Residual mean squares
 

0.09710    Adding    Employ
0.11665    Adding    Temp
0.12816    No change 
0.13174    Adding    Opdays
0.19954    Dropping  Product

 
Chosen action: adding Employ.

As only the Display changes box is checked in the menu, Genstat simply produces a brief
summary of the changes. The residual mean square of the original model at each step is
given in the “No change” line. Notice that, for information, Genstat also shows the effect
of dropping terms.

Thus, if you set the maximum number of steps equal to the number of variables,
Genstat will perform a complete forward stepwise fit automatically, stopping only when
no further variable seems to be useful.

The Backward elimination

button examines the effect of
dropping variables from the
model. Suppose we now select
Employ and Product in the
Change Model menu (Figure
1.28), and click on Backward

elimination. At each step, Genstat
now drops the term with the
smallest variance ratio, provided
that variance ratio is less than
the test criterion. As the output
below shows, both variance
ratios are greater than the
criterion, so the process stops
after a single step.
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Figure 1.29

Step 1: Residual mean squares
 

0.09710    No change 
0.12816    Dropping  Employ
0.17649    Dropping  Product

 
Chosen action: no change.

The menu can thus be used for full automatic backwards stepwise regression by first
fitting the full model with the General Linear Regression menu (Figure 1.22). Then select
all the variables in the Change Model menu, set a maximum number of steps equal to the
number of variables and click on  Backward Elimination.

Finally, if you click the Stepwise Regression button, Genstat will first look to see if any
variable can be dropped. Then, if that is not possible, it looks to see if any can be added.

Automatic stepwise procedures result in only one model, and alternative models with
an equivalent or even better fit can easily be overlooked. In observational studies with
many correlated variables, there can be many alternative models, and selection of just one
well-fitting model may be unsatisfactory and perhaps misleading. Another method is to
fit all possible regression models, and to evaluate these according to some criterion. In
this way several best regression models can be selected. However the fitting of all
possible regression models can be very time-consuming. It should also be used with
caution, because models can be selected that appear to have a lot of explanatory power,
but contain only noise variables (those representing random variation). This can occur
particularly when the number of parameters is large in comparison to the number of units.
The models should therefore not be selected on the basis of a statistical analysis alone,
but by considering the physical plausibility of models and by taking account of any
previous modelling experience.

All subsets regression
can be performed using
t h e  A l l  S u b s e t s

Regression menu. This is
obtained by selecting
Regression Analysis from
the Stats menu, clicking
on All Subsets Regression

and then Linear Models

(as  we shal l  be
investigating a linear
regression model again), as shown in Figure 1.29.
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Figure 1.30

Figure 1.30 shows the
menu set up to examine all
possible regression models
for the water usage data.
Water is entered as the
response variate, the
explanatory variates are
l is ted (separated by
commas) in the Model
formula or list of explanatory

data box, and the All possible

box is checked.
The output provides a

brief summary of all the
regressions. By default, the models with each number of explanatory variables are
ordered according to their  percentage variances accounted for (the column header
“Adjusted”), and a statistic known as Mallows Cp is provided for further information. Cp

is rather more conservative than the percentage variance accounted for (see Section 3.2.6
of the Guide to the Genstat Command Language, Part 2 Statistics) but here they lead to
the same conclusions. Other statistics can be selected using the All Subsets Regression

Options menu (obtained by clicking the Options button as usual). This also allows you to
set a limit on the total number of terms in the subsets. (It may be impracticable to fit them
all if there are many variables.)

Model selection
 

   
Response variate:  Water

Number of units:  17
Forced terms:  Constant

Forced df:  1
Free terms:  Employ + Opdays + Product + Temp

 
 

All possible subset selection
 

Message: probabilities are based on F-statistics, i.e. on variance ratios.
 
 Best subsets with 1 term
 

Adjusted Cp Df   Employ  Opdays  Product  Temp
 35.77  18.02 2   -  -  .007  -
 11.55  29.71 2   .099  -  -  -
 2.04  34.30 2   -  -  -  .266

 <0.00  38.10 2   -  .735  -  -
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 Best subsets with 2 terms
 

Adjusted Cp Df   Employ  Opdays  Product  Temp
 51.34  10.93 3   .030  -  .003  -
 41.54  15.35 3   -  -  .005  .138
 33.98  18.76 3   -  .454  .007  -
 16.99  26.41 3   .075  -  -  .181
 6.42  31.18 3   .107  .679  -  -
 1.51  33.39 3   -  .354  -  .168

 
 Best subsets with 3 terms
 

Adjusted Cp Df   Employ  Opdays  Product  Temp
 54.70  9.96 4   .042  -  .004  .177
 54.06  10.22 4   .019  .199  .002  -
 49.89  11.97 4   -  .091  .002  .036
 19.70  24.61 4   .062  .247  -  .092

 
 Best subsets with 4 terms
 

Adjusted Cp Df   Employ  Opdays  Product  Temp
 68.94  5.00 5   .011  .022  .001  .020

The output shows that the best model with a single explanatory variable is the one with
production (confirming the conclusion from our use of Try in Section 1.11), the best with
two variables has production and number of employees, and so on.

The menu also provides some rather more flexible and powerful stepwise regression
facilities which we will not demonstrate. For details see the on-line help or Section 3.2.6
of the Guide to the Genstat Command Language, Part 2, Statistics, which describes the
RSEARCH procedure that the menu uses.

1.14 Practical

Use all subsets regression to see whether you can find alternative or improved models to
the model that you fitted to the data on blood pressure of Peruvian indians in Practical
1.12.

1.15 Regression with grouped data

This section looks at the types of model that you can fit when you have factors as well
as variates in the set of explanatory variables. Suppose you have one explanatory factor
and one explanatory variate. You may then want to see how the regression line for the
explanatory variate is the same within all the groups defined by the factor. Or perhaps the
slope is the same for all the groups but the intercepts differ. Or perhaps the lines have
different slopes and different intercepts.
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Figure 1.31

Figure 1.32

We illustrate these ideas using some data
collected in 1990 to investigate changing levels
of air pollution. The response variable that we
want to model is the logarithm of amount of
sulphur in the air each day. We choose the
logarithm because it seems natural to expect
effects on sulphur to be proportionate to the
amount of sulphur present. Also, previous
experience of the data set (see the Introduction
to Genstat for Windows, Chapter 2) shows that
the measurements are skewed to the right. Our
explanatory variables are a variate Windsp
recording the strength of the wind, and a factor
Rain indicating whether or not it rained. The
data are available in the spreadsheet file
Sulphur.gsh (Figure 1.31) and can be read using
the Example Data Sets menu as shown in Section
1.1.

To transform the sulphur
values, we select the Calculations

option of the Data menu on the
menu bar to open the Calculate

menu. Figure 1.32 shows the
menu with the necessary fields
filled in to do the calculation
and save the results in a new
variate, LogSulphur. You will
see that we get a missing value
(and warning) for unit 1, which 
contains zero. (For further
details about the Calculate menu
see Chapter 2 of the
Introduction to Genstat for Windows.) 

First we fit a simple linear regression on the wind speed using the Linear Regression

menu, as shown in Figure 1.7.

Regression analysis
 

Response variate:  LogSulphur
Fitted terms:  Constant, Windsp

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  1  1.50  1.4952  10.35  0.002
Residual  110  15.89  0.1445   
Total  111  17.39  0.1567   
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Figure 1.33

 
Percentage variance accounted for 7.8
Standard error of observations is estimated to be 0.380.
 

Message: the following units have large standardized residuals.
Unit Response Residual

98  1.633  2.68
 

Message: the following units have high leverage.
Unit Response Leverage

30  0.477  0.076
72  0.699  0.052
95  1.146  0.055

100  1.398  0.051
 
 

Estimates of parameters
 
Parameter estimate s.e. t(110) t pr.
Constant  1.1066  0.0892  12.41 <.001
Windsp  -0.02557  0.00795  -3.22  0.002

The decrease in sulphur measurements with wind speed is estimated to be about 5.7% per
km/h (the antilog of !0.02557 is 94.3%), and is statistically significant.

We would also like to
estimate the difference between
wet and dry days, and see if the
relationship between sulphur
and wind speed is different in
the two categories. We can
investigate this by selecting
Simple linear regression with

groups from the drop-down list
in the Linear Regression menu.
This customizes the menu to
include an extra box where you
can specify a factor to define the groups; the filled-in box is shown in Figure 1.31, with
the factor Rain entered as the grouping factor.

The menu performs three successive analyses. The first is exactly the same as that
produced already  with the Simple linear regression option, so we did not need to do that
analysis separately. The second analysis fits a model with a separate intercept for wet and
dry days, as shown below.

Regression analysis
 

Response variate:  LogSulphur
Fitted terms:  Constant + Windsp + Rain
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Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  1.89  0.9442  6.64  0.002
Residual  109  15.50  0.1422   
Total  111  17.39  0.1567

  
Change  -1  -0.39  0.3933  2.77  0.099
 
Percentage variance accounted for 9.2
Standard error of observations is estimated to be 0.377.
 

Message: the following units have high leverage.
Unit Response Leverage

30  0.477  0.102
72  0.699  0.073

 
 

Estimates of parameters
 
Parameter estimate s.e. t(109) t pr.
Constant  1.1235  0.0891  12.62 <.001
Windsp  -0.02193  0.00818  -2.68  0.008
Rain yes  -0.1240  0.0745  -1.66  0.099
 
Parameters for factors are differences compared with the reference level:

Factor   Reference level
Rain   no

The effect of rainfall is quantified here in terms of the difference between dry and wet
days: that is, by comparing level yes of the factor Rain to its reference level no. By
default the reference level is the first level of the factor, but you can change that by
selecting the Attributes/Format sub-option of the Column option of the Spread menu on the
menu bar. This opens the Column Attributes/Format menu, which has a section where you
can choose the reference level for a factor column. Alternatively, you can use the
REFERENCELEVEL option of the FACTOR directive.

So the model is
Logsulphur  =  a  +  b × Windsp

for dry days, and
Logsulphur  =  a  +  d  +  b × Windsp

for wet days. The model thus consists of two parallel regression lines. The estimates
show that rainfall decreases the sulphur on average by 25% (antilog(–0.1240) = 75%),
but this effect is not statistically significant because of the large unexplained variation in
the sulphur measurements. This version of the model is very convenient if you want to
make comparisons with the reference level (which may, for example, represent a standard
set of conditions or treatment). However, we show later in this section how you can
obtain the alternative version with a parameter in the model for each intercept.

We can investigate whether the linear effect of wind speed is different in the two
categories of rainfall by looking at the third and final analysis.
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Regression analysis
 

Response variate:  LogSulphur
Fitted terms:  Constant + Windsp + Rain + Windsp.Rain

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  3  1.92  0.6402  4.47  0.005
Residual  108  15.47  0.1432   
Total  111  17.39  0.1567   

Change  -1  -0.03  0.0323  0.23  0.636
 
Percentage variance accounted for 8.6
Standard error of observations is estimated to be 0.378.
 

Message: the following units have large standardized residuals.
Unit Response Residual

98  1.633  2.61
 

Message: the following units have high leverage.
Unit Response Leverage

30  0.477  0.160
72  0.699  0.112
95  1.146  0.111

104  1.580  0.093
 
 

Estimates of parameters
 
Parameter estimate s.e. t(108) t pr.
Constant  1.153  0.109  10.57 <.001
Windsp  -0.0252  0.0107  -2.36  0.020
Rain yes  -0.208  0.193  -1.08  0.283
Windsp.Rain yes  0.0079  0.0167  0.47  0.636

Parameters for factors are differences compared with the reference level:
Factor   Reference level

Rain   no
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Figure 1.34

This model includes the
interaction  between the
explanatory factor and variate.
In Genstat, interactions are
represented using the dot
operator, so that Windsp.Rain
represents the interaction
between wind speed and rain
(i.e. a model term to fit a
different regression coefficient
from wind speed for each level
of rain). The output now shows
the slope of the regression for
dry days, titled Windsp, and the
difference in slopes between wet
and dry, titled Windsp.Rain
yes. So again we can see
immediately that the difference
between the slopes is small and
not significant. The graph of the
fitted model is shown in Figure 1.34.

An analysis of parallelism can be carried out using the Accumulated option of the Linear

Regression Further Output menu, as shown in Figure 1.9. This allows you to make a formal
assessment of how complicated a model you need. You can then select the appropriate
model from the Final model box (see Figure 1.33) and click on Run to fit it.

Regression analysis
 

Accumulated analysis of variance
 
Change d.f. s.s. m.s. v.r. F pr.
+ Windsp  1  1.4952  1.4952  10.44  0.002
+ Rain  1  0.3933  0.3933  2.75  0.100
+ Windsp.Rain  1  0.0323  0.0323  0.23  0.636
Residual  108  15.4677  0.1432   

Total  111  17.3884  0.1567   
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Figure 1.35

Here a Common line (in fact, a
simple linear regression) would
be enough, but to illustrate the
fitted parallel lines we have
selected Parallel lines, estimate

lines and clicked on Run. This
fits parallel lines but now with a
parameter for each intercept,
rather than parameters for
differences from the reference
level (which would be given by
the alternative setting Parallel

lines, estimate differences from ref.

level). The other settings are:
Common line; Parallel lines, 

estimate lines; and Parallel lines,

estimate differences from ref. level.
The fitted parallel lines are
shown in Figure 1.35.

Regression analysis
 

Response variate:  LogSulphur
Fitted terms:  Windsp + Rain

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  1.89  0.9442  6.64  0.002
Residual  109  15.50  0.1422   
Total  111  17.39  0.1567   

Change  -1  -0.39  0.3933  2.77  0.099
 
Percentage variance accounted for 9.2
Standard error of observations is estimated to be 0.377.
 

Message: the following units have high leverage.
Unit Response Leverage

30  0.477  0.102
72  0.699  0.073
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Figure 1.36

Estimates of parameters
 
Parameter estimate s.e. t(109) t pr.
Windsp  -0.02193  0.00818  -2.68  0.008
Rain no  1.1235  0.0891  12.62 <.001
Rain yes  1.000  0.109  9.14 <.001

1.16 Predictions from regression with groups

If we now click on the Predict button in the Linear Regression menu (Figure 1.33), we can
obtain predictions from this parallel-line model. The predictions menu (Figure 1.36) is
now customized to include the grouping factor (Rain).

In Figure 1.36, the drop-
down list box Predict at

levels is set to all, to indicate
that we want to form
predictions for all the levels
of Rain. The alternative
setting, standardize, forms
averages over the levels of
R a i n ,  a n d  t h e
Standardization method box
then allows you to indicate
whether you want ordinary
averages (Equal), or whether
you want the levels
weighted according to their replication in the data set (Marginal), or whether you want to
specify your own weights (Specify) which might correspond to the numbers of wet and
dry days that you would anticipate in some future period.

The other box specifies the values of the explanatory variate (Windsp) for which we
want predictions, here 0, 5, 10, 15 and 20. We have also checked the box to include
variance of future observation (unlike Figure 1.20 in Section 1.9), so the standard errors
in the output below are relevant for the values as predictions of the amounts of sulphur
on future occasions.

Predictions from regression model
 
These predictions are estimated mean values.
 
The predictions have been formed only for those combinations of factor levels for which
means can be estimated without involving aliased parameters.
 
The standard errors are appropriate for interpretation of the predictions as forecasts of new
observations rather than as summaries of the data.
 
Response variate: LogSulphur
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Figure 1.37

Rain no yes
Prediction s.e. Prediction s.e.

Windsp  
0 1.1235 0.3875 0.9996 0.3926
5 1.0138 0.3816 0.8899 0.3848

10 0.9042 0.3801 0.7802 0.3812
15 0.7945 0.3830 0.6705 0.3819
20 0.6848 0.3902 0.5609 0.3870

1.17 Practical

Spreadsheet file Calcium.gsh,
contains data from an investigation to
study associations between the
environment and mortality. It records
the annual mortality rate per 100000 for
males, averaged over the years 1958-
1964, and the calcium concentration
(parts per million) in the drinking water
supply in 61 large towns in England and
Wales (see McConway, Jones & Taylor
(1999, Statistical Modelling using
GENSTAT, Arnold, London, Chapter 4).

Use linear regression with groups to
investigate whether the relationship
between mortality and calcium differs
between regions.



2 Nonlinear regression

In this chapter you will learn
• how to fit polynomials Ú
• how to fit smoothing splines Ú
• how to fit a standard curve, using a negative exponential curve as an example
• what other standard curves are available
• how to fit parallel and non-parallel standard curves Ú
• how to define and fit your own nonlinear models Ú

Note: the topics marked Ú are optional.



2.1  Polynomials 3399

Figure 2.1

Figure 2.2

2.1 Polynomials

In this section we show how to fit polynomial
models in Genstat, using data from an experiment
to study the relationship between yields of sugar
cane and amounts of a nitrogen fertilizer. The data,
in spreadsheet file Cane.gsh (Figure 2.1), consist
of yields of sugar from four replicates of each of
five amounts of the fertilizer.

To illustrate polynomial regression we shall fit
the quadratic polynomial

y  =  a  +  b × x  +  c × x2

In this equation, y is the yield of sugar cane, and x
is the corresponding amount of fertilizer. Notice
that the model is still linear in the parameters a, b
and c, even though there is no longer a linear
relationship between y and x. So we can use the
Linear Regression menu, as in Chapter 1.

In the Linear Regression

menu (Figure 2.2), we select
Polynomial regression in the
drop-down list at the top of
the menu, and choose
quadratic as  the model. We
can then  specify Yield as
the Response var iate,
N i t r o g e n  a s  t h e
Explanatory variate, and click
on Run to fit the model.

Regression analysis
 

Response variate:  Yield
Fitted terms:  Constant + Nitrogen
Submodels:  POL(Nitrogen; 2)

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  34798.  17398.9  156.90 <.001
Residual  17  1885.  110.9   
Total  19  36683.  1930.7   
 
Percentage variance accounted for 94.3
Standard error of observations is estimated to be 10.5.
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Figure 2.3

Message: the following units have large standardized residuals.
Unit Response Residual

6  144.0  2.10
7  145.0  2.20

 
 

Estimates of parameters
 
Parameter estimate s.e. t(17) t pr.
Constant  74.19  4.96  14.97 <.001
Nitrogen Lin  1.112  0.117  9.47 <.001
Nitrogen Quad  -0.002721  0.000563  -4.83 <.001

There is a message in the output about two large residuals: Genstat automatically checks
to see if any residuals are large compared to a standard Normal distribution (see Section
3.1.2 of Part 2 of the Guide to the Genstat Command Language for the exact criterion).
However, these two are only just outside the range (–1.96, 1.96) which contains 95% of
observations from a Normally distributed variable.

The parameter estimates indicate that the fitted curve has the equation:
Yield = 74.19 + 1.112 × Nitrogen ! 0.002721 × Nitrogen 2

The Polynomial regression option uses the Genstat POL function. (This is shown in the
model description at the start of the output above, which indicates that a submodel
POL(Nitrogen;2) has been fitted.) The POL function is also available in the Operators

box if you select General linear regression as the regression type. So you can include
polynomials in more complicated regressions like those in Section 1.11. The POL
function (and this menu) will allow models with up to the fourth power. If you want to
use higher powers, you would need to fit orthogonal polynomials using the REG function
(see Section 3.4.2 of Part 2 of the Guide to the Genstat Command Language).

You can display the fitted model
by clicking on the Fitted model

button of the Regression Further

Output menu as before. The resulting
picture, in Figure 2.3, shows the
segment of the quadratic curve that
has been fitted.

The polynomial model that we
have fitted above provides a good
way of checking for curvature in the
relationship between yield and
nitrogen. However, it may be
unrealistic from a scientific point of
view. The shape of the curve is
constrained in two important ways:
it is a quadratic that must be
symmetrical about the maximum,
and the curvature changes in a fixed
way. As there is no scientific reason



2.2  Practical 4411

Figure 2.4

Figure 2.5

why this shape should fit well, we should be cautious in using it to summarize the results.
We should certainly beware of trying to extrapolate outside the range of the data: for
larger amounts of fertilizer nitrogen, the model will predict falling yields, and there is no
evidence of any fall in yields here. In fact, the model predicts negative yields for nitrogen
values greater than 467.1!

2.2 Practical

Spreadsheet file Wtloss.gsh, contains data giving
the loss in weight of a product following
manufacturing (data from Draper & Smith 1981,
Applied Regression Analysis, Wiley, New York).

Fit a quadratic polynomial of weight on time,
examine the residuals, and form predictions for
times 0, 5, 10 and 15.

Remove the quadratic term, and plot the residuals
against fitted values to see the effect of omitting
this term.

2.3 Smoothing splines

A smoothing spline is useful for
indicating the shape of a
relationship without imposing
too much pre-defined structure.
You can fit these using Linear

Regression menu (Figure 2.5),
by selecting Smoothing spline in
the drop-down list at the top of
the menu.
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Figure 2.6

We have entered Yield as the
Response variate, and Nitrogen as
the Explanatory variate, as before. We
have also specified 2 as the number
of degrees of freedom for the spline.
Essentially this defines how much
the original data are to be smoothed.
As we have only 5 different nitrogen
values in the data, we can chose
from 1 to 4 degrees of freedom: 1
corresponds to perfect smoothing
(i.e. a straight line), while here 4
correspond to no smoothing (i.e. a
curve passing through the mean
yield at each of the five distinct
values of Nitrogen). The fitted
model is plotted in Figure 2.6 and
the output is shown below.

Regression analysis
 

Response variate:  Yield
Fitted terms:  Constant + Nitrogen
Submodels:  SSPLINE(Nitrogen; 2)

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  34649.  17324.6  144.82 <.001
Residual  17  2034.  119.6   
Total  19  36683.  1930.7   
 
Percentage variance accounted for 93.8
Standard error of observations is estimated to be 10.9.
 

Message: the following units have large standardized residuals.
Unit Response Residual

6  144.0  2.14
7  145.0  2.23

 
 

Estimates of parameters
 
Parameter estimate s.e. t(17) t pr.
Constant  87.80  4.24  20.73 <.001
Nitrogen Lin  0.5675  0.0346  16.41 <.001

The output does not show the equation of the fitted curve: it is rather complicated,
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Figure 2.7

involving cubic polynomials fitted between each distinct pair of values of Nitrogen.
The linear component is, however, estimated and displayed as before. The point of this
analysis is to draw the picture, shown in Figure 2.6. This shows a smooth curve quite
similar to the previous polynomial curve, but still rising at the largest value of Nitrogen
rather than reaching a maximum there.

The SSPLINE function used for the smoothing spline option, and the LOESS function
used for locally weighted regression (another option in the drop-down list), are also
available in the Operators box if you select General Linear Regression option. A model that
contains a smoothing spline or a locally weighted regression is called an additive model;
for further details, see Section 3.4.3 of Part 2 of the Guide to the Genstat Command
Language.

2.4 Practical

Fit a smoothing spline to explain the loss in weight data in Practical 2.2. Try different
numbers of degrees of freedom to find an appropriately smooth model.

2.5 Standard curves

Genstat provides a range of standard nonlinear curves, chosen to represent many standard
situations. These are fitted for you automatically, by the Standard Curves menu. So behind
the scenes, Genstat fits the curves by finding the parameter values that maximize the
likelihood of the data. Genstat takes care of all the complications that arise in nonlinear
model fitting, such as the choice of initial values for the search. It also uses stable forms
of parameterization to make the search more reliable (see Ross, G.J.S. 1990, Nonlinear
Estimation, Springer-Verlag, New York). So you can fit these curves as easily as an
ordinary regression.

You open the menu by
clicking on the Standard Curve

sub-option of the Regression

option of the Stats menu. The
type of curve is chosen using the
drop-down list box at the top.
The menu then customizes itself
for the selected curve, and
displays a small example plot in
the box in the left-hand bottom
corner. In Figure 2.7 we have
chosen an exponential curve. This has the equation

yield = á + â × ñ nitrogen

which represents a curve rising or falling to a plateau or asymptote at the value defined
by the parameter á. In addition to standard boxes where you to enter the response and
explanatory variates, and a group factor (if required), the menu also has a box where you
select the Direction of response. If you select left, curve rises or falls from an asymptote on
the left of the graph (this corresponds to a value of ñ greater than 1), whereas right gives
a curve that rises or falls to an asymptote on the left of the graph (this corresponds to a
value of ñ greater 0 but less than 1).
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Figure 2.8

With the sugar-cane data it is clear that we need an asymptote to the right. The results
of fitting the curve are shown below (where A represents á,  B represents â, and R
represents ñ).

Nonlinear regression analysis
 

Response variate:  Yield
Explanatory:  Nitrogen
Fitted Curve:  A + B*(R**X)
Constraints:  R < 1

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  35046.  17523.18  182.02 <.001
Residual  17  1637.  96.27   
Total  19  36683.  1930.68   
 
Percentage variance accounted for 95.0
Standard error of observations is estimated to be 9.81.
 
 

Estimates of parameters
 
Parameter estimate s.e.
R  0.98920  0.00213
B  -131.1  10.6
A  203.0  10.8

Note that no t-probabilities are shown in
this nonlinear analysis, because both the
standard errors and the t-statistics are
approximations, which depend on the
amount of curvature of the model and
on how well it fits the data.

The fitted model is plotted in Figure
2.8. It seems to fit the data well, and has
reasonable behaviour at both extremes
of the nitrogen fertilizer treatments.
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Figure 2.9

The help system has a page with the shapes of all the standard curves (Figure 2.9). 

Their equations are as follows:

Exponential

    exponential

    dexponential

    cexponential

    lexponential
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Logistic

    logistic

    glogistic

    gompertz

    emax

    gemax

Rational functions

    ldl

    qdl

    qdq

Fourier

    fourier

    dfourier

Gaussian

    gaussian

    dgaussian

The standard curves are fitted using the FITCURVE directive. This has a parameter to
specify the model, and a PRINT option just like FIT. There is also a CURVE option to
choose the type of curve; for example:

FITCURVE [PRINT=summary; CURVE=exponential] Nitrogen
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Figure 2.10

Figure 2.11

For more information, see the Guide to the Genstat Command Language, Part 2
Statistics, Section 3.7.1.

2.6 Practical

Fit an exponential curve to the weight-loss data from Practical 2.2.

2.7 Standard curves with groups

If you have a groups factor, you can investigate
the consistency of a nonlinear relationship
across the groups. The ideas are very similar to
those used to define parallel and non-parallel
regression lines in Section 1.15.

We shall illustrate them using the data in
spreadsheet file Seeds.gsh (Figure 2.10). This
records the number of canola seeds recovered in
soil cores 0-3 years after growing 4 different
varieties.  The assumption is that the numbers
of seeds will decline exponentially with time,
but we would like to know if the rates and
curvature of the curves differ according to the
variety.

We again use the Standard

Curves menu (Figure 2.11), but
now specify a group factor
(Variety) as well as the
response variate (Seeds) and
the explanatory variate (Years).

The output is shown below.

Nonlinear regression analysis
 

Response variate:  Seeds
Explanatory:  Years
Fitted Curve:  A + B*(R**X)
Constraints:  R < 1
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Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  86899878.  43449939.  34.31 <.001
Residual  29  36724908.  1266376.   
Total  31  123624785.  3987896.   
 
Percentage variance accounted for 68.2
Standard error of observations is estimated to be 1125.
 

Message: the following units have large standardized residuals.
Unit Response Residual

3  1765.  -2.72
10  4742.  2.67

 

Message: the error variance does not appear to be constant; large responses
are more variable than small responses.
 
 

Estimates of parameters
 
Parameter estimate s.e.
R  0.393  0.155
B  11450.  3595.
A  120.  655.

 

Nonlinear regression analysis
 

Response variate:  Seeds
Explanatory:  Years

Grouping factor:  Variety, constant parameters separate
Fitted Curve:  A + B*(R**X)
Constraints:  R < 1

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  5  94267932.  18853586.  16.70 <.001
Residual  26  29356854.  1129110.   
Total  31  123624785.  3987896.   

Change  -3  -7368054.  2456018.  2.18  0.115
 
Percentage variance accounted for 71.7
Standard error of observations is estimated to be 1063.
 

Message: the following units have large standardized residuals.
Unit Response Residual

10  4742.  2.53
 

Message: the error variance does not appear to be constant; large responses
are more variable than small responses.
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Estimates of parameters
 
Parameter estimate s.e.
R  0.393  0.103
B  11451.  
A Variety 1  260.1  
A Variety 2  284.7  
A Variety 3  -674.7  
A Variety 4  612.7  

 

Nonlinear regression analysis
 

Response variate:  Seeds
Explanatory:  Years

Grouping factor:  Variety, all linear parameters separate
Fitted Curve:  A + B*(R**X)
Constraints:  R < 1

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  8  102231932.  12778991.  13.74 <.001
Residual  23  21392854.  930124.   
Total  31  123624785.  3987896.   

Change  -3  -7964000.  2654667.  2.85  0.059
 
Percentage variance accounted for 76.7
Standard error of observations is estimated to be 964.
 

Message: the following units have large standardized residuals.
Unit Response Residual

10  4742.  2.85
 

Message: the error variance does not appear to be constant; large responses
are more variable than small responses.
 
 

Estimates of parameters
 
Parameter estimate s.e.
R  0.3601  0.0881
B Variety 1  16969.  
A Variety 1  -275.3  
B Variety 2  11765.  
A Variety 2  469.2  
B Variety 3  6668.  
A Variety 3  214.8  
B Variety 4  13568.  
A Variety 4  547.8  
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Nonlinear regression analysis
 

Response variate:  Seeds
Explanatory:  Years

Grouping factor:  Variety, all parameters separate
Fitted Curve:  A + B*(R**X)
Constraints:  R < 1

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  11  105574914.  9597719.  10.63 <.001
Residual  20  18049871.  902494.   
Total  31  123624785.  3987896.   

Change  -3  -3342983.  1114328.  1.23  0.323
 
Percentage variance accounted for 77.4
Standard error of observations is estimated to be 950.
 

Message: the following units have large standardized residuals.
Unit Response Residual

10  4742.  2.91
14  593.  -2.46

 

Message: the error variance does not appear to be constant; large responses
are more variable than small responses.
 
 

Estimates of parameters
 
Parameter estimate s.e.
R Variety 1  0.141  0.161
B Variety 1  40105.  44011.
A Variety 1  432.  573.
R Variety 2  0.665  0.333
B Variety 2  9191.  2353.
A Variety 2  -1577.  4341.
R Variety 3  0.367  0.473
B Variety 3  6570.  6989.
A Variety 3  202.  1009.
R Variety 4  0.556  0.266
B Variety 4  10537.  2487.
A Variety 4  -562.  2260.

The analysis first fits a common line to all the years. Then it fits a different asymptote (A)
for each variety. Then it generalizes the model further to have different rate parameters
(B) for each variety. Then the final model includes different shape parameters (R), so that
all the parameters differ between varieties. (The parameters A and B are the linear
parameters in the model, and it seems more natural that they might vary between groups
than the  nonlinear parameter R. So the sequence varies those first.)
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Figure 2.12

We can produce an analysis of parallelism
using the Accumulated option of the Standard

Curve Further Output menu, as shown in
Figure2.12.  So we can assess how complicated
a model we need, and then perhaps set the Final
Model box (alongside the Group box in Figure
2.11) and refit the model as in the ordinary
linear regression with groups discussed in
Section 1.15.

Nonlinear regression analysis
 

Accumulated analysis of variance
 
Change d.f. s.s. m.s. v.r. F pr.
+ Years  2  86899878.  43449939.  48.14 <.001
+ Variety  3  7368054.  2456018.  2.72  0.072
+ Years.Variety  3  7964000.  2654667.  2.94  0.058
+ Separate nonlinear  3  3342983.  1114328.  1.23  0.323
Residual  20  18049871.  902494.   

Total  31  123624785.  3987896.   

The output suggests that we need different asymptote and parameters (A), and possibly
different rate parameters (B), but that there is no evidence that we need different
nonlinear shape parameters (R).
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Figure 2.13

Figure 2.14

2.8 Practical

Spreadsheet file Optical.gsh, contains
optical densities of three solutions measured at
various dilutions (transformed to log10).

Fit a logistic curve to the relationship
between density and logdilution. 

Include solution as the group factor to
assess the consistency of the model over the
different solutions.

2.9 Nonlinear models

If you want to fit a curve that the Standard Curves menu does not cover, Genstat has an
alternative menu, shown in Figure 2.14, that allows you to define and fit your own
nonlinear curves. This is obtained by clicking on the Nonlinear Models sub-option of the
Regression option of the Stats menu. We illustrate it by refitting the exponential model
to the sugar-cane data in Section 2.1.

First we enter Yield into the
Response variate field in the usual
way. Then we must define the
model to be fitted. This can
contain a mixture of linear and
nonlinear terms. The nonlinear
terms are defined by clicking on
the New button in the Model

expressions section. This opens
the Generate Expression menu
(Figure 2.15) which you use to
specify expressions to define the
nonlinear parts of the model. Here
we have defined the expression
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Figure 2.15

Figure 2.16

R_N = R ** Nitrogen

The expression has been given
the reference identifier Exp and,
when we click on OK, this
i d e n t i f i e r  i s  e n t e r e d
(automatically) by Genstat into
the Model expressions list box in
the Nonlinear Models menu
(Figure 2.14).

The variate R_N is a linear
term, as the model can be
written as 

A + B * R_N

So we check the Estimation includes linear parameters box, and enter R_N into the Linear

terms fitted in model box.
It is much more efficient to estimate the parameters A and B in this way. The alternative

would be to define the whole model in the expression, for example by

FitYield = A + B * R**Nitrogen

The expression sets variate FitYield to the fitted values given by the model. If the
Estimation includes linear parameters box is not checked, the MaximalmModel box is replaced
by a box called Fitted values into which you should enter the name of the fitted values
variate FitYield.

Notice that you can have more than one linear term. In fact you can define a maximal
model and use the Change Model menu as in Section 1.11 to decide which ones are
needed. The Distribution and LinkfFunction boxes allow you to define and fit generalized
nonlinear models (see Section 3.5.8 of Part 2 of the Guide to the Genstat Command
Language). The default settings of Normal and Identity, as in Figure 2.14 fit the usual
type of nonlinear model in which the residuals are assumed to be Normally distributed.

The next step is to list the nonlinear
parameters (in this case just R) in the
Nonlinear parameters box of the Nonlinear

Models menu (Figure 2.14). You will
need to set initial values for these, and
possibly also bounds and steplengths, by
using the Nonlinear Parameter Settings

menu (Figure 2.16), opened by clicking
on the Settings button in the Nonlinear

Models menu. Here we have set an
initial value of 0.9, and defined an
upper bound of 1.0, but have not defined any lower bound and have left Genstat to decide
on the step length to be used.

Finally, clicking on Run in Figure 2.14 produces the output below.
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Figure 2.17

Nonlinear regression analysis
 

Response variate:  Yield
Nonlinear parameters:  R

Model calculations:  Exp
Fitted terms:  Constant, R_N

 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r. F pr.
Regression  2  35046.  17523.13  182.01 <.001
Residual  17  1637.  96.28   
Total  19  36683.  1930.68   
 
Percentage variance accounted for 95.0
Standard error of observations is estimated to be 9.81.
 
 

Estimates of parameters
 
Parameter estimate s.e.
R  0.98926  0.00212
* Linear
Constant  203.3  10.9
R_N  -131.4  10.7

The parameter B is now the regression coefficient of R_N and A is now the Constant,
but otherwise the results are virtually identical to those given (rather more easily) by the
Standard Curves menu. Further information about nonlinear curve fitting, and the
directives RCYCLE and FITNONLINEAR that are used, is in Section 3.8 of Part 2 of the
Guide to the Genstat Command Language.

2.10 Practical

Spreadsheet file MMdata.gsh, contains
measurements of two chemical variables F and S.

Fit the Michaelis-Menten equation to the
relationship between F and S. This is a hyperbola
through the origin, usually parameterized as

S = p2 × F / ( p1 + F ).
Hint 1: use starting values of p1 = 1 and p2 = 15.
Hint2 : you can fit p2 as a linear parameter.
Compare your model with the standard linear-by-

linear curve.



3 Generalized linear models

The regression menus that we have seen so far are intended for continuous data that can
be assumed to follow a Normal distribution.

Generalized linear models extend the usual regression framework to cater for
non-Normal distributions. For example:

• Poisson distributions ! for counts, such as number of items sold in a shop, or
numbers of accidents on a road, number of fungal spores on plants etc;

• binomial data recording r "successes" out of n trials, for example numbers of
surviving patients out of those treated, or weeds killed out of those sprayed, or flies
killed by an insecticide etc;

• gamma distributions for positively-skewed data.
They also incorporate a link function that defines the transformation required to make the
model linear. For example:

• logarithm base e for Poisson data (counts);
• logit, probit or complementary log-log for binomial data;
• logarithm or reciprocal for the gamma distribution.

The most important point is that, once you have defined the distribution and link
function, fitting a generalized linear model in Genstat is very similar to the way in which
we fitted the ordinary regression models in Chapter 1. So you just need to know how your
data are distributed, and the appropriate scale for the model.

So, in this chapter you will learn
• the terminology and equations that underlie generalized linear models (Ú)
• how to fit log-linear models to count data
• how to fit logistic regression models to binomial data
• how to fit probit models to binomial data
• how to use generalized linear mixed models to model non-Normal data when there

are several sources of error variation Ú
• how to use hierarchical generalized linear mixed models to model non-Normal data

when there are several sources of error variation Ú
Note: the topics marked Ú are optional.
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3.1 Equations and terminology

In an ordinary regression the underlying model is
y  =  ì  +  å

where
ì is the mean to be predicted by the linear regression model, and
å is the residual, assumed to come from a  Normal distribution with mean zero and

variance ó2.
The mean is known as the expected value of y, and is estimated by the fitted value from
the regression. For example, in the simple linear regression in Section 1.1, the fitted value
was

f  =  b × x  +  c
where b was the regression coefficient and c was the constant term (or intercept).
Equivalently, we can say that y has Normal distribution with mean ì and variance ó2.

In a generalized linear model the expected value of y is still ì, but the linear model now
defines the linear predictor, usually represented by ç, which is related to ì by the link
function g():

ç  =  g( ì ).
For example, in the log-linear model in the next section, we have a single variate
temperature and a logarithmic link function . So we have

log( ì )  =  ç  =  b × temperature  +  c
The other extension is that y has a distribution with mean ì from a wider class of

distributions known as the exponential family. This includes the binomial, Poisson,
gamma, inverse-normal, multinomial, negative-binomial, geometric, exponential and
Bernoulli distributions, as well as the usual Normal distribution. 

The fitting of data from all of the distributions, apart from the Normal, is complicated
by the fact that their variances change according to their means. For example the variance
of a Poisson distribution is equal to its mean. The algorithm that is used to fit a
generalized linear model allows for this by doing a weighted linear regression. The
weights depend on the means, but the means are estimated by a regression that uses the
weights. So an iterative process is used where the means and weights are recalculated
alternately until the estimation converges. If you are interested, you can find full details
in McCullagh & Nelder (1989, Generalized Linear Models, second edition). However,
another important point is that you do not need to know how the algorithm works in order
to use a generalized linear model ! this is reliably programmed and safely concealed
inside Genstat. It is worth remembering, though, that the fit is essentially achieved by a
weighted linear regression. So we can still use the standard model checking plots
described in Section 1.3.

3.2 Log-linear models

Often the data may consist of counts. For example, you may have recorded the number
of various types of items that have been sold in a shop, or numbers of accidents occurring
on different types of road, or the number of fungal spores on plants with different spray
treatments. Such data are generally assumed to follow a Poisson distribution. At the same
time, it is usually assumed also that treatment effects will be proportionate (that is, the
effect of a treatment will be to multiply the expected count by some number, rather than
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Figure 3.1

Figure 3.2

to increase it by some fixed amount). So, the model will be linear on a logarithmic scale
rather than on the natural scale as used in ordinary linear regression. Models like this are
known as log-linear models and form just one of the types of model covered by Genstat’s
facilities for generalized linear models.

The Generalized Linear Models

menu is obtained by clicking on the
Generalized Linear line in the
Regression section of the Stats

menu. For a log-linear model, you
should then select Log-linear

modelling in the Analysis drop-down
list box, as shown in Figure 3.1. The
menu now looks very similar to the
General Linear Regression menu
(Figure 1.22), and operates in a very
similar way. So you can define a
maximal model and then investigate which of its terms are required, as we did in Section
1.11.

We shall use the menu to analyse a data set in
Genstat spreadsheet file Cans.gsh (Figure 3.2). The
response variate is the number of cans of drink (sales)
sold by a vending machine during 30 weeks. The model
to be fitted has just a single explanatory variate,
temperature, which is the average temperature
during the corresponding week. As we have a single
explanatory variate, there is no need to specify the
Maximal model. Clicking on Run produces the output
below.

Regression analysis
 

Response variate:  sales
Distribution:  Poisson

Link function:  Log
Fitted terms:  Constant, temperature

 
 

Summary of analysis
 

mean deviance  approx
Source d.f. deviance deviance ratio chi pr
Regression  1  52.61  52.614  52.61 <.001
Residual  28  32.05  1.145   
Total  29  84.66  2.919   
 
Dispersion parameter is fixed at 1.00.
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Figure 3.3

Message: deviance ratios are based on dispersion parameter with value 1.
 

Message: the following units have large standardized residuals.
Unit Response Residual

30  137.00  2.87
 
 

Estimates of parameters
 

     antilog of
Parameter estimate s.e. t(*) t pr. estimate
Constant  4.3410  0.0303  143.49 <.001  76.78
temperature  0.01602  0.00222  7.22 <.001  1.016
 

Message: s.e.s are based on dispersion parameter with value 1.

The initial description contains the extra information that the data have a Poisson
distribution, and that the link function (the transformation required to give a scale on
which the model is linear) is the logarithm to base e. These are the two aspects required
to characterize a generalized linear model. In the Log-linear modelling menu they are set
automatically, but you can also select General Model in the Analysis field to obtain a menu
where you can set these explicitly, and thus fit any of Genstat’s generalized linear
models.

With generalized linear models, the summary of analysis contains deviances instead
of sums of squares. Under the null hypothesis they have ÷2 distributions, and a quick rule-
of-thumb is that their expected values are equal to their degrees of freedom.

However, some sets of data
show over-dispersion. The
residual deviance is then
noticeably greater than its
expectation and, instead of
assessing the regression line by
comparing its deviance with ÷2,
you should use the deviance
ratio (and assess this using an F
distribution).
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Figure 3.4

Genstat will do this for you if you ask
it to estimate the dispersion parameter,
by checking Estimate in the Dispersion

parameter section of either the
Generalized Linear Model Options menu
(Figure 3.3) or the Generalized Linear

Models Further Output menu (Figure 3.4).
Genstat then also adjusts the standard
errors of the parameter estimates to take
account of the over dispersion.

Note, however, that the residual
deviance may be large not because of
over dispersion, but simply because
some important terms have been
omitted from the model (and these may
not even be available in the data set).
You should then keep the dispersion
parameter at the default value of 1, and
continue to assess the deviances using ÷2

distributions.  Further details are given in Section 3.5.1 of Part 2 of the Guide to the
Genstat Command Language.

Here, though, the residual deviance is not substantially more than its expectation (as
illustrated by the fact that its mean deviance is 1.145). So we can treat the regression
deviance as ÷2 on one degree of freedom ! and note that there seems to be a very strong
effect of temperature on sales.

The Generalized Linear Model Options menu (Figure 3.3) contains several controls that
do not occur in the Linear Regression Options menu (Figure 1.8). An offset variate is a
variate that is included in the linear predictor with a constant regression parameter of 1.
In log-linear models it can be used to adjust the model when the counts have been made
over periods with different lengths. For example, suppose the can data had been collected
over months instead of years. We would then need to take account of the fact that the
months may contain between 28 and 31 days. If we include the logarithm of the number
of days in the relevant month as an offset, the model becomes

log(sales)  =  log(days)  +  b × temperature  +  c
This means that we have

log(sales/days)  =  b × temperature  +  c
So we have corrected for the unequal lengths of the months, and are using the linear
model to describe the rates at which the sales are made. Notice that this is more valid than
the alternative of adjusting the response variate itself; a response variate of sales/days
would no longer follow a Poisson distribution.

The other important control is the check box where you can ask to fit the model terms
individually. By default, all the terms are fitted in a single step. So the accumulated
analysis of deviance will not allow you to assess their individual effects, as it would in
an ordinary regression analysis. Here we have only one model term (temperature), so
we can leave the box unchecked.
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Figure 3.5

Figure 3.6

The fitted model can be displayed by
clicking on the Fitted model button in the
Generalized Linear Models Further Output

menu (Figure 3.4) to obtain the Graph of

Fitted Model menu (Figure 3.5).
This menu appears whenever you ask

to plot the fitted model from one of the
regression menus where you yourself
specify which model to fit. (So, for
example, it would also have been used if we had chosen to plot the water data in Section
1.11). There may then be several variates or factors to use for the x-axis or to define
groups. Here there is only the variate temperature, so we enter that as the explanatory
variable, and click on Run to plot the graph.

When used with a generalized linear model, the menu has an extra box to allow you
to plot the y-axis on the linear predictor (i.e. here the logarithmic) scale instead of the
natural scale (here counts). In Figure 3.5 we have chosen to do that, and we can then
include 95% confidence limits for the response; see Figure 3.6. The line should be
straight, so this also allows us to assess any nonlinearity in the response. The alternative
is to plot with the y-axis on the natural scale.

The scale of the y-axis in the
graph (Figure 3.6) illustrates the
logarithmic link transformation, and
you can see the point with the large
residual (on the top right of the
plot).
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Figure 3.7

Figure 3.8

If we plot instead on the natural
scale (Figure 3.7), you can see how
the fitted values increase
exponential ly (the inverse
transformation of the logarithm)
with temperature.

You can also produce the model-
checking plots (Figure 3.8) in the
same way as in earlier sections.
Remember that the model is
essentially fitted by a weighted
regression (Section 3.1), and notice
that the residuals are standardized
by dividing each one by its variance.
You would therefore expect that the
residuals should look asymptotically
like residuals from a Normal
distribution. So, provided, we have
a reasonably large data set, we
should be able to assess the fit and
model assumptions in the same way
as in an ordinary linear regression.

You will see, later in this chapter,
that the Generalized Linear Models

menu also has customized menus
for binomial data, where each data value records a number of subjects responding out of
a total number observed. Furthermore, as you will see in the next practical, the models
can involve factors as well as variates.

The similarity of the menus for generalized linear models to those for ordinary linear
regression is matched by the similarity of the commands that are used. The main point
is that you must use the MODEL directive not only to define the response variate, but also
to define the distribution and link function using its DISTRIBUTION and LINK options.
For binomial data (Section 3.4), the response variate contains the number of "successes"
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Figure 3.9

Figure 3.10

r, and you set the NBINOMIAL parameter to a variate containing the corresponding
numbers observed n.

3.3 Practical

Spreadsheet file NematodeSoil.gsh, contains
the results of an experiment to compare three
ways of controlling nematodes in soil. There
were six blocks, each containing a plot for each
of the three methods of control (i.e. a
randomized block design).

Analyse the counts, assuming they have
Poisson distributions and that blocks and
treatments have multiplicative effects

Hint 1: the model should be
block + treatment

Hint 2: remember to check the Fit model terms

individually box in the Generalized Linear Model

Options menu.

3.4 Logistic regression and probit analysis

Probit analysis and logistic regression model the relationship between a stimulus, like a
drug, and a quantal response i.e. a response that may be either success or failure.

The probit model was originally
derived by assuming there is a
certain level of dose of the stimulus
for each subject below which it will
be unaffected, but above which it
will respond. This level of dose,
known as its tolerance, will vary
from subject to subject within the
population. In probit analysis, it is
assumed that the tolerance to the
dose (or often the logarithm of the
dose) has a Normal distribution. So,
if we plot the proportion of the
population with each tolerance
against log dose, we will obtain the
familiar bell-shaped curve shown in
Figure 3.10.
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Figure 3.11

Figure 3.12

The probability of response to a
dose x is the proportion of the
population with a tolerance of less
than x. We can read this off the
cumulative Normal curve (Figure
3.11).

We can make the relationship
linear by transforming the y-axis to
Normal equivalent deviates or
probits as shown in Figure 3.12.
This “stretches” the axis at the top
and bottom to make the response
into a straight line.

The probit transformation is
frequently used in biology, for
example to model the effects of
insecticides and other situations
where the underlying assumption of
a tolerance distribution seems
natural. The logit transformation is
also very popular:

Logit( p )  = log( p / q )
where p is the probability expressed
as a percentage, and

q  =  100 ! p
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Figure 3.13

Figure 3.14

This looks similar to the probit,
but its tolerance distribution has
slightly fatter tails (see Figure 3.13)
. It is the logarithm of the odds ratio,
and involves proportionate changes
in p when p is small, and
proportionate changes in 100–p
when p is near 100.

The third available transformation
is the complementary log-log
transformation. This can be derived
from the "one-hit" model where
"success" arises from infection by
one or more particles that come
from a Poisson distribution. It is
defined as 

complementary log-log(p)  =  log( !log( q ) )

It is similar to the logit for small values of p, but then rises more steeply i.e. the tolerance
distribution has a smaller upper tail (see Figure 3.13).

To investigate a logistic regression or probit relationship, you would do an experiment
where subjects are given treatments of the drug (or other stimulus) and then observed to
see if they give the desired reaction. Usually several subjects receive each treatment. So
we have binomial data, with n subjects receiving a dose, and r responding. Usually n is
greater than one; binary experiments with n=1 are sometimes used, but the model
parameters tend to be less well estimated.

So we have a generalized linear model
with a binomial distribution, and the choice
of either a probit, a logit or a
complementary-log-log link function.

Figure 3.14 shows spreadsheet file
Drug.gsh, which contains an example
from Finney (1971, Probit Analysis, 3rd
Edition, page 103). This compares the
effectiveness of three analgesic drugs to a
standard drug, morphine. Fourteen groups
of mice were tested for response to the
drugs at a range of doses. The variate N
records  total number of mice in each group,
and R records the number that responded.
Instead of Dose we will fit LogDose, the
logarithm (base 10) of the dose, which we
can calculate  in the usual way (see Figure
1.32). 
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Figure 3.15

Figure 3.16

Genstat has a custom setting
of the Generalized Linear Models

menu (Figure 3.15) for logistic
regression which automatically
sets the distribution to binomial.
It has boxes where you enter the
variates containing the total
numbers of subjects, and the
numbers of successes (i.e. the
numbers responding). There is
also a drop-down list box where
yo u  c h o o s e  t h e  l i n k
transformation.

Otherwise, the menu has
boxes for the maximal model
and the model to be fitted, just
like the General linear regression

setting of the Linear Regression

menu. So you can explore the
available models, using the
Change Model menu as we
showed for an ordinary linear
regression in Section 1.11.

If we set the options menu
(Figure 3.16) to fit terms
individually and print the
accumulated summary (and then
click on Run in the Generalized Linear Models menu), we obtain the output below.

Regression analysis
 

Response variate:  R
Binomial totals:  N

Distribution:  Binomial
Link function:  Probit
Fitted terms:  Constant + LogDose + Drug + LogDose.Drug

 
 

Summary of analysis
 

mean deviance  approx
Source d.f. deviance deviance ratio chi pr
Regression  7  247.624  35.3748  35.37 <.001
Residual  6  2.334  0.3891   
Total  13  249.958  19.2275   

Change  -3  -1.534  0.5112  0.51  0.675
 
Dispersion parameter is fixed at 1.00.
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Figure 3.17

Message: deviance ratios are based on dispersion parameter with value 1.
 
 

Estimates of parameters
 
Parameter estimate s.e. t(*) t pr.
Constant  -1.255  0.171  -7.34 <.001
LogDose  2.226  0.304  7.32 <.001
Drug Amidone  -0.006  0.272  -0.02  0.983
Drug Phenadoxone  1.205  0.197  6.11 <.001
Drug Pethidine  -1.194  0.402  -2.97  0.003
LogDose.Drug Amidone  0.475  0.485  0.98  0.328
LogDose.Drug Phenadoxone  0.480  0.475  1.01  0.313
LogDose.Drug Pethidine  0.134  0.464  0.29  0.772
 

Message: s.e.s are based on dispersion parameter with value 1.
 
Parameters for factors are differences compared with the reference level:

Factor   Reference level
Drug   Morphine

 
 

Accumulated analysis of deviance
 

mean deviance  approx
Change d.f. deviance deviance ratio chi pr
+ LogDose  1  39.4079  39.4079  39.41 <.001
+ Drug  3  206.6821  68.8940  68.89 <.001
+ LogDose.Drug  3  1.5336  0.5112  0.51  0.675
Residual  6  2.3344  0.3891   
Total  13  249.9579  19.2275   
 

Message: ratios are based on dispersion parameter with value 1.

The conclusion from the
accumulated summary, is that
there are (log)dose and drug
effects, but no interaction. So
the data can be described by
parallel (log)dose lines with a
different intercept for each drug.
We can drop the interaction
using the Change Model menu, as
shown in Figure 3.17, to obtain
parameter estimates for the
parallel-line model.
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Regression analysis
 

Response variate:  R
Binomial totals:  N

Distribution:  Binomial
Link function:  Probit
Fitted terms:  Constant + LogDose + Drug

 
 

Summary of analysis
 

mean deviance  approx
Source d.f. deviance deviance ratio chi pr
Regression  4  246.090  61.5225  61.52 <.001
Residual  9  3.868  0.4298   
Total  13  249.958  19.2275   

Change  3  1.534  0.5112  0.51  0.675
 
Dispersion parameter is fixed at 1.00.
 

Message: deviance ratios are based on dispersion parameter with value 1.
 
 

Estimates of parameters
 
Parameter estimate s.e. t(*) t pr.
Constant  -1.379  0.114  -12.08 <.001
LogDose  2.468  0.173  14.30 <.001
Drug Amidone  0.238  0.108  2.20  0.028
Drug Phenadoxone  1.360  0.130  10.49 <.001
Drug Pethidine  -1.180  0.133  -8.87 <.001
 

Message: s.e.s are based on dispersion parameter with value 1.
 
Parameters for factors are differences compared with the reference level:

Factor   Reference level
Drug   Morphine
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Figure 3.18

Figure 3.19

Figure 3.20

The Probit analysis setting of the
Generalized Linear Models menu
(Figure 3.18) provides further
customization, but only for
models with up to one variate
and one factor. So it covers
parallel and non-parallel lines
like those described in Section
1.15. One of the extra controls
allows you to make the log
transformation automatically.
Here we take logarithms base 10
and again store the results in LogDose.

You can also estimate natural
mortality and immunity. Natural
mortality occurs when there are
some subjects that will always
respond even if there is no
treatment. Conversely, natural
immunity occurs when there are
some subjects that will never
respond however large the dose.
These are illustrated in Figure
3.19.

The Probit Analysis Options

menu (Figure 3.20) also has
some extensions. You can
decide whether to estimate
separate slopes, mortality or
immunity parameters in the
different groups. Here we have
left the slope box unchecked, as
we have already discovered that
we do not need different slopes.
The mortality and immunity
boxes are irrelevant as we not
estimating either of these in the
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main menu.
The other addition is that we can print estimated lethal doses. Here we have asked

Genstat to estimate LD50, that is the dose at which 50% of the population would respond.
We have also asked to print the back transformed LD50s, by setting the drop-down list
box to log 10 to indicate the base of the original transformation of the doses. (The
alternative settings are None and log e.)

As the menu is customized for regression with groups, notice that the analysis
estimates a separate intercept for each group (i.e. drug). The more general logistic
regression menu estimated an intercept for the reference group Morphine and, for the
other groups, differences between their intercepts and the Morphine intercept.

Regression analysis
 

Response variate:  R
Binomial totals:  N

Distribution:  Binomial
Link function:  Probit
Fitted terms:  Drug + LogDose

 
 

Summary of analysis
 

mean deviance
Source d.f. deviance deviance ratio
Regression  4  246.090  61.5225  61.52
Residual  9  3.868  0.4298  
Total  13  249.958  19.2275  
 
Dispersion parameter is fixed at 1.00.
 

Message: deviance ratios are based on dispersion parameter with value 1.
 
 

Estimates of parameters
 
Parameter estimate s.e. t(*)
Drug Morphine  -1.379  0.114  -12.08
Drug Amidone  -1.141  0.120  -9.50
Drug Phenadoxone  -0.0197  0.0882  -0.22
Drug Pethidine  -2.559  0.189  -13.51
LogDose  2.468  0.173  14.30
 

Message: s.e.s are based on dispersion parameter with value 1.
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Figure 3.21

Figure 3.22

Effective doses
 
Log10 scale
 

Group LD estimate s.e. lower 95% upper 95%
Morphine  50.00  0.5587  0.02992  0.5015  0.6177
Amidone  50.00  0.4624  0.03362  0.3961  0.5267

Phenadoxone  50.00  0.0080  0.03628  -0.0649  0.0761
Pethidine  50.00  1.0367  0.02877  0.9812  1.0929

Natural scale
 

Group LD estimate lower 95% upper 95%
Morphine  50.00  3.620  3.173  4.147
Amidone  50.00  2.900  2.489  3.363

Phenadoxone  50.00  1.019  0.861  1.192
Pethidine  50.00  10.883  9.576  12.385

The Probit analysis setting of the Generalized Linear Models menu uses the
PROBITANALYSIS procedure.

The final setting of the
Generalized Linear Models menu
(Figure 3.21) has boxes for you
to specify the distribution and
link function explicitly, so that
you can fit any of the available
generalized linear models.

3.5 Practical

To assess the tolerance of students to statistics
lectures, groups of students were subjected to
talks of differing duration and were assessed
just before the end to see whether they were
awake or asleep.

The data are in spreadsheet file
Students.gsh. 

Fit a probit model to the data (taking
logarithm of Duration)

Is there any evidence to suggest that some
students will never fall asleep? (Hint: include
natural immunity in the model.)
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Figure 3.23

3.6 Generalized linear mixed models

A major limitation of regression models and generalized linear models is that they cater
for only one source of random, or error, variation. There are many situations, however,
where there are several sources of error. For example, a medical trial might involve
making observations on several subjects on a range of occasions. You would then need
to allow for the random variation of the subjects, and perhaps also of the occasions, as
well as the usual residual variation of each individual observation. Similarly, in
agricultural experiments like the split-plot, where the units (plots of land) are divided into
sub-units (sub-plots), the different subdivisions may all contribute to the error variation;
see Section 5.1 of the Guide to ANOVA and Design in Genstat.

In an ordinary linear regression situation, you can handle several sources of variation
by using either the analysis of variance or the REML mixed models menus or commands
(see the Guide to the Genstat Command Language, Part 2 Statistics, Chapters 4 and 5,
or the Guide to ANOVA and Design in Genstat and the Guide to REML in Genstat). 

Methods for including additional sources of error variation in generalized linear models
are more recent, and are still an active area of research. Genstat provides the reasonably
well-established generalized linear mixed models method, described in this section, and
also the more recent ! and more flexible ! hierarchical generalized linear models
described at the end of this chapter.

Generalized linear mixed models extend the standard generalized linear models
framework by allowing you to include additional random effects in the linear predictor.
So the linear predictor vector becomes

ç  = X ß  +  Ój Zj íj

The matrix X is the design matrix for the ordinary explanatory variables (known as the
fixed effects), and ß is their vector of regression coefficients. If the explanatory variables
are variates, then X is a matrix whose first column contains the value one if the constant
is being fitted, and whose later columns each contain the values from one of the
explanatory variates. An explanatory factor would have an "indicator" column in X for
each of its levels, with one in the units that took the level concerned, and zero elsewhere.

Similarly Zj is the design matrix for the jth
random term, and íj is the corresponding vector
of random effects. The random effects íj are
assumed to come from a Normal distribution
with mean zero and variance ój

2.
As an example we consider some data from

an experiment on rats (Weil 1970, Food and
Cosmetics Toxicology). Pregnant rats were fed
with either a control diet or one with an added
chemical, and the numbers of live pups in the
resulting litters were counted after four days and
at the end of the 21-day lactation period. The
data are available in the spreadsheet file
Pups.gsh (Figure 3.23).
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Figure 3.24

Figure 3.25

y The Generalized Linear Mixed

Models menu (Figure 3.24) is
opened by selecting the
Generalized Linear Mixed Models

sub-sub-option of the Mixed

Models sub-option of the
Regression Analysis option of the
Stats menu on the menu bar.

We need to fit a log-linear
model (i.e. a generalized linear
model  with a Poisson
distribution and a logarithmic
link) but with an additional random effect to take account of the random variation of the
litters. In the fixed model we want to look at the main effects of diet and time, and their
interaction.

The options menu (Figure
3.25) selects the output, and
controls the dispersion
parameter, offset and so on, in a
similar way to an ordinary
generalized linear model.

The output is shown below.

Generalized linear mixed model analysis
 
Method:  c.f. Schall (1991) Biometrika
Response variate:  pups
Distribution:  poisson
Link function:  logarithm
Random model:  litter
Fixed model:  Constant + diet + time + diet.time

Dispersion parameter fixed at value 1.000
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Monitoring information
 

Iteration  Gammas  Dispersion  Max change
1  0.02107  1.000  7.2031E-01
2  0.02155  1.000  4.8069E-04
3  0.02171  1.000  1.6645E-04
4  0.02171  1.000  5.7704E-07

 
 

Estimated variance components
 
Random term component s.e.
litter  0.022  0.021
 
 

Residual variance model
 
Term Model(order) Parameter Estimate s.e.
Dispersn Identity Sigma2 1.000 fixed
 
 

 Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
diet 2.22 1 2.22 29.3  0.147
time 4.28 1 4.28 58.0  0.043
diet.time 0.79 1 0.79 58.0  0.379
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
diet.time 0.79 1 0.79 58.0  0.379
 
 

 Table of effects for Constant
 
  2.288    Standard error: 0.0877 
 
 

Table of effects for diet
 
 diet control treated

0.00000 -0.08646
 
 Standard error of differences: 0.1263 
 
 

Table of effects for time
 
 time 4 21

0.00000 -0.10677
 
 Standard error of differences: 0.1156 
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Table of effects for diet.time
 

time 4 21
diet  

control 0.00000 0.00000
treated 0.00000 -0.15147

 
Standard error of differences: 0.1709 
 
 

Tables of means with standard errors
 
 

Table of predicted means for diet
 

diet control treated
2.234 2.072

 
Standard error of differences: 0.1001 
 
 

Table of predicted means for time
 
time 4 21

2.244 2.062
 
Standard error of differences: 0.08543 
 
 

Table of predicted means for diet.time
 

time 4 21
diet  

control 2.288 2.181
treated 2.201 1.943

 
Standard errors of differences
 
Average:  0.1279
Maximum:  0.1367
Minimum:  0.1156
 
Average variance of differences: 0.01641 
 
Standard error of differences for same level of factor:
 

diet time
Average:  0.1207  0.1315
Maximum:  0.1258  0.1367
Minimum:  0.1156  0.1263

 
Average variance of differences:

 0.01460  0.01732  
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 Table of predicted means for diet
 

diet control treated
2.234 2.072

 
Standard errors
 
Average:  0.07076
Maximum:  0.07294
Minimum:  0.06859
 
 

Table of predicted means for time
 
time 4 21

2.244 2.062
 
Standard errors
 
Average:  0.06576
Maximum:  0.06837
Minimum:  0.06315
 
 

Table of predicted means for diet.time
 

time 4 21
diet  

control 2.288 2.181
treated 2.201 1.943

 
Standard errors
 
Average:  0.09293
Maximum:  0.1014
Minimum:  0.08770
 
 

Back-transformed Means (on the original scale)
 

diet  
control 9.339
treated 7.940

 
time  

4 9.434
21 7.860

 
time 4 21
diet  

control 9.851 8.853
treated 9.035 6.979
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Figure 3.26

Notice that the output components are more like those of a REML analysis (see Chapter
5 of the Guide to the Genstat Command Language, Part 2 Statistics or the Guide to
REML in Genstat) than those of a regression analysis. This reflects the fact that the GLMM
procedure, which does the analysis, uses the REML directive to fit the fixed model.

The tests for the fixed effects are thus based on Wald statistics rather than deviances,
and depend on the asymptotic properties of the model. So, as in an ordinary REML
analysis, they must be used with care as they may tend to be optimistic; see Sub-section
5.3.6 of the Guide to the Genstat Command Language, Part 2 Statistics or Section 1.1
of the Guide to REML in Genstat. In an ordinary orthogonal analysis of variance, the
Wald statistic divided by its degrees of freedom will have an F distribution, Fm,n, where
m is the number of degrees of freedom of the fixed term, and n is the number of residual
degrees of freedom for the fixed term. By default, unless the design is large or
complicated, REML estimates n, and prints it in the column headed “d.d.f.” (i.e.
denominator degrees of freedom); m is shown the column headed “n.d.f.” (i.e.
numerator degrees of freedom). In other situations, the printed F statistics have
approximate F distributions. So again they must be used with caution.

A further cause for caution is that the algorithms for fitting generalized linear mixed
models involve several approximations, which mean that the results can be unreliable
with binary data (i.e. binomial data where there is only a single subject in each group) or
with very small data sets. The variance components of the random terms then tend to be
underestimated, and so the standard errors for the fixed effects may be too small.

So here we can conclude that there is little evidence of an interaction between diet and
time i.e. that most of the diet effects have taken place by the fourth day.

3.7 Practical

Spreadsheet file Clinical.gsh contains
data from a multicentre randomized clinical
trial (Beitler & Landis 1985, Biometrics). In
each of eight centres, a group of patients
was given a cream containing a control
treatment and another group was given
another cream containing an active drug to
control an infection. The variate Total
records the number of patients in each
group, and the variate Favorable records
the number that produced a favourable
response.

Analyse the data as a generalized linear
mixed model, treating the effects of the
different clinics as a random effect.
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3.8 Hierarchical generalized linear models

Hierarchical generalized linear models (HGLMs) provide another way of modelling non-
Normal data when there are several sources of error variation. Like generalized linear
mixed models, they extend the familiar generalized linear models to include additional
random terms in the linear predictor. However, they do not constrain these additional
terms to follow a Normal distribution nor to have an identity link, as is the case in a
generalized linear mixed model. They thus provide a much richer set of models, that may
seem more intuitively appealing.  The methodology provides improved estimation
methods that reduce bias, by the use of the exact likelihood or extended Laplace
approximations. In particular, the Laplace approximations seem to avoid the biases that
are often found when binary data are analysed by generalized linear mixed models.

So the linear predictor vector again becomes
ç  = X ß  +  Ój Zj íj

and the response vector y still has a distribution from the exponential family. However,
this is limited to binomial, gamma, Normal or Poisson. (These do cover all the most
common generalized linear models though.) The additional random terms now have their
own link functions

íi  =  v( ui )
where the vectors of random effects ui have beta, Normal, gamma or inverse gamma
distributions. (These are distributions that are conjugate to the distributions available for
y; for details see Lee, Nelder & Pawitan 2006, Generalized Linear Models with Random
Effects: Unified Analysis via H-likelihood, CRC Press.)

The analysis involves fitting an extended generalized linear model, known as the
augmented mean model, to describe the mean vector ì. This has units corresponding to
the original data units, together with additional units for the effects of the random terms.
The augmented mean model is fitted as a generalized linear model, but there may be
different link functions and distributions operating on the additional units from those on
the original units. The link function is the function v(), while the distribution is the one
to which the distribution of ui is conjugate; see Lee, Nelder & Pawitan (2006) Chapter
6 for details. The data values for the extra units contain the inverse-link transformations
of the expected values of the random distributions. Further generalized linear models,
with gamma distributions and usually with logarithmic links, model the dispersion for
each random term (including the residual dispersion parameter). The models are
connected, in that the y-variates for the dispersion models are deviance contributions
from the augmented mean model divided by one minus their leverages, while the
reciprocals of the fitted values from the dispersion models act as weights for the
augmented mean model. So the models are fitted alternately until convergence, as shown
in Table 7.3 of Lee, Nelder & Pawitan (2006).
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Figure 3.27

Figure 3.28

Figure 3.29

The methodology has been
implemented in Genstat, as a suite of
procedures, and there are data files and
programs to run many of the worked
examples from Lee, Nelder & Pawitan
(2006).

The example programs are accessed
by selecting the Analysis Programs sub-
option of the Examples option of the
Help menu on the menu bar. The Filter by

topic drop-down list box allows you to
display only the Lee, Nelder & Pawitan
examples, as shown in Figure 3.27.

The use of the procedures is
explained in Section 3.5.11 of the Guide
to the Genstat Command Language,
Part 2 Statistics.

However, you do not need to
know the details of the
methodology to fit HGLMs, and
the commands are needed only
for the more advanced features.

Instead you can open the
Hierarchical Generalized Linear

Models menu (Figure 3.28) by
selecting the Hierarchical

Generalized Linear Models sub-
sub-option of the Mixed Models

sub-option of the Regression

Analysis option of the Stats menu
on the menu bar. Here we
reanalyse the data on rat litters from Section 3.6.

The output is controlled by
the Hierarchical Generalized Linear

Models Options menu (Figure
3.29). Here we have changed the
default settings to print Wald
tests, and to fix the dispersion
parameter at 1 as the data have a
Poisson distribution.
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Monitoring
 

cycle no., disp. components & max. absolute change
2  -2.933  0.6133
3  -3.240  0.3073
4  -3.425  0.1847
5  -3.544  0.1190
6  -3.625  0.08096

Aitken extrapolation OK
7  -3.806  0.1809
8  -3.812  0.006254
9  -3.816  0.004628

10  -3.820  0.003430
Aitken extrapolation OK

11  -3.830  0.009839
12  -3.830  0.00001578

 

Hierarchical generalized linear model
 
Response variate: pups
 

Mean model
 
Fixed terms: diet*time
Distribution: poisson
Link: logarithm
Random terms: litter
Distribution: normal
Link: identity
Dispersion: fixed
 
 

Dispersion model
 
Distribution: gamma
Link: logarithm
 
 

Estimates from the mean model
 

Estimates of parameters
 
Parameter estimate s.e. t(*)
constant  2.2875  0.0877  26.08
diet treated  -0.086  0.126  -0.68
time 21  -0.107  0.116  -0.92
diet treated .time 21  -0.151  0.171  -0.89
litter 1  0.111  0.124  0.89
litter 2  0.081  0.125  0.65
litter 3  -0.011  0.126  -0.09
litter 4  -0.011  0.126  -0.09
litter 5  -0.042  0.126  -0.33
litter 6  -0.042  0.126  -0.33
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litter 7  0.096  0.124  0.77
litter 8  0.066  0.125  0.53
litter 9  0.005  0.126  0.04
litter 10  0.005  0.126  0.04
litter 11  -0.026  0.126  -0.21
litter 12  0.081  0.125  0.65
litter 13  -0.153  0.128  -1.19
litter 14  -0.105  0.127  -0.82
litter 15  -0.026  0.126  -0.21
litter 16  -0.026  0.126  -0.21
litter 17  0.127  0.126  1.00
litter 18  0.095  0.127  0.75
litter 19  0.064  0.127  0.50
litter 20  0.032  0.128  0.25
litter 21  0.080  0.127  0.63
litter 22  0.048  0.128  0.37
litter 23  0.048  0.128  0.37
litter 24  0.016  0.128  0.12
litter 25  0.016  0.128  0.12
litter 26  -0.115  0.130  -0.88
litter 27  0.000  0.128  0.00
litter 28  -0.082  0.129  -0.63
litter 29  -0.016  0.129  -0.13
litter 30  -0.115  0.130  -0.88
litter 31  -0.049  0.129  -0.38
litter 32  -0.148  0.130  -1.13
 
Parameters for factors are differences compared with the reference level:

Factor   Reference level
diet   control

time   4
litter   1

 
 

Estimates from the dispersion model
 

Estimates of parameters
 

    antilog of
Parameter estimate s.e. t(*) estimate
lambda litter  -3.830  0.494  -7.76  0.02172
 
 

Likelihood statistics
 
-2 ´ h(y|v)  290.286
-2 ´ h  234.755
-2 ´ Pv(h)  308.741
-2 ´ Pb,v(h)  320.460
-2 ´ EQD(y|v)  290.317
-2 ´ EQD  234.786
-2 ´ Pv(EQD)  308.772
-2 ´ Pb,v(EQD)  320.491
 
Fixed parameters in mean model  4
Random parameters in mean model  32
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Figure 3.30

Fixed dispersion parameters  1
Random dispersion parameters  0
 
 

Wald tests for dropping HGLM fixed terms
 

Term Wald statistic d.f. approx. pr.
diet.time  0.7858  1  0.375

 

The output is more like the output from a regression, as you would expect as the
algorithm involves fitting a generalized linear model to describe the mean ì and another
to estimate the dispersion parameters. The dispersion estimates are of the logarithms
(base e) of the variance components. So the exponentials of the HGLM estimates should
correspond to those in the generalized linear mixed models analysis. Here we have an
estimate of !3.830 for litters. Its exponential is 0.022, which is the same as the GLMM
estimate.

The likelihood statistics allow you to assess the various components of the model.
Changes in the fixed model can be assessed using changes in -2*P_v(h); changes in the
dispersion models are assessed using -2*P_beta,v(h); and -2*h(y|v) could be used
if you wanted to form the deviance information coefficient (DIC). The EQD statistics are
approximations to the first four, (h-likelihood) statistics, calculated using quasi-likelihood
instead of exact likelihood. There are two procedures HGFTEST and HGRTEST that can
use these statistics to perform tests to see if terms can be dropped from the fixed and
random models. More information, and an example, is given in Section 3.5.11 of the
Guide to the Genstat Command Language, Part 2 Statistics.

The Wald tests provide
another, quicker way of seeing
whether terms can be dropped
from fixed model. They are less
accurate than the likelihood tests
performed by HGFTEST. Here,
though, the conclusion is clear
!that we do not need the diet-
by-time interaction. So we redo
the analysis, with a fixed model
containing just the main effects
(see Figure 3.30). To save space
we also modify the options
menu to omit the monitoring
information and the estimates from the random model (i.e. the litter effects).
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Hierarchical generalized linear model
 
Response variate: pups
 

Mean model
 
Fixed terms: diet + time
Distribution: poisson
Link: logarithm
Random terms: litter
Distribution: normal
Link: identity
Dispersion: fixed
 
 

Dispersion model
 
Distribution: gamma
Link: logarithm
 
 

Estimates from the mean model
 

estimate s.e. t(*)
constant  2.31990  0.07874  29.46
diet treated  -0.15531  0.09975  -1.56
time 21  -0.17640  0.08507  -2.07
 
 

Estimates from the dispersion model
 

Estimates of parameters
 

    antilog of
Parameter estimate s.e. t(*) estimate
lambda litter  -3.830  0.494  -7.76  0.02171
 
 

Likelihood statistics
 
-2 ´ h(y|v)  291.073
-2 ´ h  235.541
-2 ´ Pv(h)  309.528
-2 ´ Pb,v(h)  319.552
-2 ´ EQD(y|v)  291.104
-2 ´ EQD  235.572
-2 ´ Pv(EQD)  309.558
-2 ´ Pb,v(EQD)  319.583
 
Fixed parameters in mean model  3
Random parameters in mean model  32
Fixed dispersion parameters  1
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Random dispersion parameters  0
 
 

Wald tests for dropping HGLM fixed terms
 
Term Wald statistic d.f. approx. pr.

diet  2.424  1  0.119

time  4.300  1  0.038

3.9 Practical

Reanalyse the data in the spreadsheet file Clinical.gsh using the hierarchical
generalized linear models menus.
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fitted regression model 9, 13
model checking 11, 13
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menu 78
Ignoring effect 23
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Leverage 9, 13, 20
warning message 10
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Linear Regression Further Output menu 8, 9, 14,
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Runs test 10
Saving
regression results 15
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Simple linear regression 3
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of analysis 6, 20, 40

Symmetric matrix 15
T-statistic 7
Tolerance 62
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