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Introduction

The REML algorithm provides several important types of analysis, that are useful in a wide
range of application areas including biology, medicine, industry and finance. In biology
they are usually known as linear mixed models, but in some application areas (e.g.
education) they may be called multi-level models.

Genstat's REML facilities are powerful and comprehensive, but nevertheless very
straightforward and easy to use. This book is designed to introduce you to these
techniques, and give you the knowledge and confidence to use them correctly and
effectively. It has been written to provide the notes for VSN’s course on the use of REML
in Genstat, but it can be used equally well as a self-learning tool.

One of the key features of REML is that it can analyse data that involve more than one
source of error variation. In this respect it is similar to the Genstat ANOVA algorithm, and
the similarities and differences between the two methods are explored in detail in Chapter
1. An important advantage of REML over ANOVA is that it can analyse unbalanced designs.
It also has a powerful prediction algorithm that extends the ideas in Genstat’s regression
prediction algorithm to cover random as well as fixed effects.

Chapter 2 covers the use of REML for meta analysis, showing how you can do a
simultaneous analysis of several disparate data sets to obtain combined estimates for the
treatments of interest.

A further advantage of REML is explored in Chapter 3, where we show how it can
model spatial correlations between observations in two-dimensions. These methods have
proved very successful, for example in the analysis of field experiments to assess new
plant varieties. The designs often contain too many varieties for the conventional
blocking techniques (e.g. the use of randomized-block designs) to be effective. So
instead, for example, auto-regressive models are fitted to the spatial correlations across
the field.

Chapter 4 examines the use of correlation modelling in the analysis of repeated
measurements. Here the correlation is in a single dimension, namely time, and REML
provides a powerful alternative to conventional methods such as repeated-measures
ANOVA or the analysis of contrasts over time.

The book works through a series of straightforward examples, with frequent practicals
to allow you to try the methods for yourself. The examples work mainly through the
menus of Genstat for Windows, so there is no need for prior knowledge of the Genstat
command language. However, we do assume that you will be familiar with ordinary
analysis of variance. (If not, we recommend that you work through Chapters 1-5 of the
Guide to ANOVA and Design in Genstat.)



1 Linear mixed models

The REML algorithm is designed to analyse linear mixed models (also known as multi-
level models). The word mixed here indicates that the model contains fixed terms like
treatments, as well as random terms, like rows and columns of a field experiment or
aspects such as litters in animal experiments. The important feature of REML is that it can
handle several random terms (in addition to the usual residual term). The Genstat ANOVA
algorithm can also handle several random terms, and we start by comparing the analyses
from ANOVA with those from REML.

In this chapter you will learn
• how to use the Linear Mixed Models (and Analysis of Variance Ú) menus
• what output is given by a Genstat REML analysis, and how it compares to Genstat

ANOVA

• how to assess treatment terms by Wald and F statistics
• how to plot means
• how to form predictions
• how to plot (and assess) residuals
• the commands VCOMPONENTS, REML, VDISPLAY, VGRAPH, VPREDICT and VPLOT

Ú
Note: the topics marked Ú are optional.
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V3  N3 V3  N2 V3  N2 V3  N3

V3  N1 V3  N0 V3  N0 V3  N1

V1  N0 V1  N1 V2  N0 V2  N2

V1  N3 V1  N2 V2  N3 V2  N1

V2  N0 V2  N1 V1  N1 V1  N2

V2  N2 V2  N3 V1  N3 V1  N0

V3  N2 V3  N0 V2  N3 V2  N0

V3  N1 V3  N3 V2  N2 V2  N1

V1  N3 V1  N0 V1  N2 V1  N3

V1  N1 V1  N2 V1  N0 V1  N1

V2  N1 V2  N0 V3  N2 V3  N3

V2  N2 V2  N3 V3  N1 V3  N0

V2  N1 V2  N2 V1  N2 V1  N0

V2  N3 V2  N0 V1  N3 V1  N1

V3  N3 V3  N1 V2  N3 V2  N2

V3  N2 V3  N0 V2  N0 V2  N1

V1  N0 V1  N3 V3  N0 V3  N1

V1  N1 V1  N2 V3  N2 V3  N3

1.1 Split-plot design

The design used most often to illustrate the need for several random (or error) terms in
ANOVA is the split-plot design. 

In the split-plot design shown here,
the treatments are three varieties of
oats (Victory, Golden rain and
Marvellous) and four levels of
nitrogen (0, 0.2, 0.4 and 0.6 cwt).
As it is feasible to work with
smaller plots for fertiliser than for
varieties, the six blocks were
initially split into three whole-plots
and then each whole-plot was split
into four subplots. The varieties
were allocated (at random) to the
whole-plots within each block, and
the nitrogen levels (at random) to
the subplots within each whole-plot.
In a randomized-block design, we
have a hierarchical structure with
blocks and then plots within blocks.
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Figure 1.1

Figure 1.2

The data files for the examples
and exercises used in this Guide
can be accessed using the
Example Data Sets menu (Figure
1.2). Click on File on the menu
bar, and select the Open Example

Data Sets option, as shown in
Figure 1.1. In the menu, it is
convenient to "filter" by the
topic A Guide to REML using the drop-down list box in the upper part of the menu. The
menu will then list only the files used in this Guide. The data for the split-plot experiment
are in the file Oats.gsh.

The model describes the yield yijk from block i, whole-plot j, subplot k by the equation
yijk  =  ì  +  vr  +  as  +  vars  +  bi  +  wij  +  åijk

where the fixed part of the model consists of
ì the overall constant (grand mean),
vr the main effect of variety r (where r is the variety assigned to unit ijk),
as the main effect of nitrogen application at level s (where s is the nitrogen level

assigned to subplot ijk), and
vars their interaction.

The random model terms are
bi the effect of block i,
wij the effect of whole-plot j within block i, and
åijk the random error (i.e. residual) for unit ijk (which here is the same as the subplot

effect, since the subplots are the smallest units of the experiment).
The model can be written in matrix notation as

y  =  3i Xi âi  +  3i Zi ui  +  å
where

y is the vector of data values,
 âi is the vector of fixed effects for treatment term i with design matrix Xi,

ui is the vector of random effects for random term i with design matrix Zi,
å is the vector of residuals.
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Figure 1.3

To analyse the split-plot by
ANOVA, you select the General

sub-option of the Analysis of

Variance option of the Stats

menu on the menu bar. You can
customize the menu for the split
plot by selecting Split-plot design

in the Design drop-down list box
in the menu (see Figure 1.3).
For this data set, the treatment
structure is a factorial with the
two factors, nitrogen and variety. The block structure is set up automatically by
Genstat from the factors specified in the Blocks, Whole plots and Sub-plots fields.

The analysis-of-variance table shows that we have three strata in the hierarchy,
corresponding to the three random terms: blocks, whole-plots within blocks, and subplots
within whole plots (within blocks). The analysis automatically works out where each
fixed (or treatment) term is estimated, and compares it with the correct residual. So the
sum of squares for variety (which was applied to complete whole-plots) is compared
with a residual which represents the random variability of the whole-plots. Conversely,
nitrogen (which was applied to subplots) and the variety.nitrogen interaction are
compared with the residual for subplots within whole-plots.

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
blocks stratum 5  15875.3  3175.1  5.28  
 
blocks.wplots stratum
variety 2  1786.4  893.2  1.49  0.272
Residual 10  6013.3  601.3  3.40  
 
blocks.wplots.subplots stratum
nitrogen 3  20020.5  6673.5  37.69 <.001
variety.nitrogen 6  321.8  53.6  0.30  0.932
Residual 45  7968.8  177.1   
 
Total 71  51985.9    
 
 

Message: the following units have large residuals.
 
blocks 1    31.4  s.e.   14.8
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Tables of means
 
Variate: yield
 
Grand mean  104.0 
 

variety  Victory  Golden rain  Marvellous
 97.6  104.5  109.8

 
nitrogen  0 cwt  0.2 cwt  0.4 cwt  0.6 cwt

 79.4  98.9  114.2  123.4
 

variety nitrogen  0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
Victory  71.5  89.7  110.8  118.5

Golden rain  80.0  98.5  114.7  124.8
Marvellous  86.7  108.5  117.2  126.8

 
 

Standard errors of differences of means
 
Table variety nitrogen variety  

nitrogen  
rep.  24  18  6  
s.e.d.  7.08  4.44  9.72  
d.f.  10  45  30.23  
Except when comparing means with the same level(s) of
variety  7.68  
d.f.  45  

The standard errors accompanying the tables of means also take account of the stratum
where each treatment term was estimated. The variety s.e.d. of

7.08 = %(2 × 601.3 / 24)
is based on the residual mean square for blocks.wplots, while that for nitrogen

4.44 = %(2 × 177.1 / 18) 
is based on that for blocks.wplots.subplots. The variety × nitrogen table is
more interesting. There are two s.e.d.'s according to whether the two means to be
compared are for the same variety. If they are, then the subplots from which the means
are calculated will all involve the same set of whole-plots, so any whole-plot variability
will cancel out, giving a smaller s.e.d. than for a pair of means involving different
varieties.

Split-plot designs do not occur only in field experiments, but they can occur in animal
trials (where, for example, the same diet may need to be fed to all the animals in a pen
but other treatments may be applied to individual animals), or in industrial experiments
(where different processes may require different sized batches of material), or even in
cookery experiments (see, for example, Cochran & Cox 1957, page 299). There can also
be more than one treatment factor applied to the units of any stratum. To analyse the
results in Genstat, you simply need to specify the blocking factors, as above, and then
whatever treatment structure is appropriate.
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Genstat specifies the structure of the design, and thus the different sources of
variability (or strata) in the model, using the BLOCKSTRUCTURE directive. For Figure 1.3,
this was defined automatically as

BLOCKSTRUCTURE  blocks / wplots / subplots

here the operator / indicates that a factor is nested within another factor. So we have
subplots nested within wplots (whole-plots) nested within blocks, as required. The
model formula expands to the list of model terms

blocks  +  blocks.wplots  +  blocks.wplots.subplots

which defines the strata to represent the variation between the blocks, between whole-
plots within blocks, and between subplots within whole plots (within blocks) shown in
the analysis-of-variance table.

The treatment (or fixed) terms to be fitted in the analysis are specified by the
TREATMENTSTRUCTURE directive. The menu in Figure 1.3 uses the setting of the
Treatment structure box to define these as

TREATMENTSTRUCTURE variety * nitrogen

which expands to give the model terms

variety + nitrogen + variety.nitrogen

The analysis of variance is done by the ANOVA directive:

ANOVA yield

for Figure 1.3. Full details of BLOCKSTRUCTURE, TREATMENTSTRUCTURE and  ANOVA
are given in the Guide to the Genstat Command Language, Part 2 Statistics, Chapter 4,
and further information about the Analysis of Variance menus is in the Guide to Anova
and Design in Genstat.

The Analysis of Variance menus deal mainly with balanced designs. This ideal
situation, however, is not always achievable. The split-plot design here is balanced
because every block contains one of each treatment combination, and every whole-plot
contains one of each nitrogen treatment. However, there may sometimes be so many
treatments that the blocks would become unrealistically large. Designs where each block
contains less than the full set of treatments include cyclic designs and Alpha designs
(both of which can be generated within Genstat by clicking Stats on the menu bar,
selecting Design and then Select Design), neither of which tend to be balanced. In
experiments on animals, some subjects may fail to complete the experiment for reasons
unconnected with the treatments. So even an initially balanced experiment may not yield
a balanced set of data for analysis. The Mixed Models (REML) menus, which use the
Genstat REML directive, are designed to handle these situations.
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Figure 1.4

Figure 1.5

To analyse the design using
REML, select the  Linear Mixed

Models sub-option of the Mixed

Models (REML) option of the
Stats menu on the menu bar. 

The Fixed model box in the
menu (Figure 1.4) corresponds
to the Treatment structure box in
the split-plot menu, and
specifies the terms defining the
fixed effects in the model to be
fitted. The Linear Mixed Models

menu provides general facilities
covering any type of design, and so the random effects are defined explicitly by the
contents of the Random model box, instead of being defined automatically as in the split-
plot menu. The model is the same though.

The Options button produces
the menu in Figure 1.5. The
standard model options (as
shown in the figure) are fine for
this design, so we need only
select the output to display (and
then click OK).

Returning to the main menu
(Figure 1.4): initial values are
seldom required for simple
REML analyses like this, and the
Spline model box is not relevant
(this is mainly useful with
repeated measurements), so we
can click on Run and generate
the output shown below.

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + variety + nitrogen + variety.nitrogen
Random model: blocks + blocks.wplots + blocks.wplots.subplots
Number of units: 72
 
blocks.wplots.subplots used as residual term
 
Sparse algorithm with AI optimisation
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Estimated variance components
 
Random term component s.e.
blocks  214.5  168.8
blocks.wplots  106.1  67.9
 
 

Residual variance model
 
Term Model(order) Parameter Estimate s.e.
blocks.wplots.subplots Identity Sigma2 177.1  37.3
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 2.97 2 1.49 10.0  0.272
nitrogen 113.06 3 37.69 45.0  <0.001
variety.nitrogen 1.82 6 0.30 45.0  0.932
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety.nitrogen 1.82 6 0.30 45.0  0.932
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The output first lists the terms in the fixed and random model, and indicates the residual
term. The residual term is a random term with a parameter for every unit in the design.
Here we have specified a suitable term, blocks.wplots.subplots, explicitly.
However, if we had specified only blocks + blocks.wplots as the Random Model
(for example by putting blocks/wplots), Genstat would have added an extra term
*units* to act as residual. (*units* would be a private factor with a level for every
unit in the design.)

Genstat estimates a variance component for every term in the random model, apart
from the residual. The variance component measures the inherent variability of the term,
over and above the variability of the sub-units of which it is composed. Generally, this
is positive, indicating that the units become more variable the larger they become. So here
the whole-plots are more variable than the subplots, and the blocks are more variable than
the whole-plots within the blocks. (This is the same conclusion that you would draw from
the analysis-of-variance table earlier in this section and, in fact, you can also produce the
variance components as part of the stratum variances output from the Analysis of Variance

menu.) However, the variance component can sometimes be negative, indicating that the
larger units are less variable than you would expect from the contributions of the sub-
units of which they are composed. This could happen if the sub-units were negatively
correlated.
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The section of output summarizing the residual variance model indicates that we have
not fitted any specialized correlation model on this term (see the column headed Model),
and gives an estimate of the residual variance; this is the same figure as is given by the
mean square in the residual line in the blocks.wplots.subplots stratum in the split-
plot analysis-of-variance table.

The next section, however, illustrates a major difference between the two analyses.
When the design is balanced, the Analysis of Variance menu is able to produce an analysis-
of-variance table that partitions the variation into strata with an appropriate random error
term (or residual) for each treatment term. No such partitioning is feasible for the
unbalanced situations that REML is designed to handle. Instead Genstat produces a Wald
statistic to assess each fixed term.

If the design is orthogonal, the Wald statistic is equal to the treatment sum of squares
divided by the stratum residual mean square. So under the usual assumption that the
residuals come from Normal distributions, the Wald statistic divided by its degrees of
freedom will have an F distribution, Fm,n, where m is the number of degrees of freedom
of the fixed term, and n is the number of residual degrees of freedom for the fixed term.
By default, unless the design is large or complicated, Genstat estimates n, and prints it
in the column headed “d.d.f.” (i.e. denominator degrees of freedom); m is shown in
the column headed “n.d.f.” (i.e. numerator degrees of freedom). For orthogonal
designs, the F statistics and probabilities are identical to those produced by the Analysis

of Variance menus, and can be used in exactly the same way. In other situations, the
printed F statistics have approximate F distributions. So you need to be careful if the
value is close to a critical value.

The Linear Mixed Model Options menu (Figure 1.5) has a list box Method for calculating F

statistics to control how and whether to calculate the F statistics. With the default setting,
automatic, Genstat itself decides whether the statistics can be calculated quickly enough
to be useful, and the best method to use. The other settings allow you to select to use
either algebraic or numerical derivatives, or to print just Wald statistics (none).

The Wald statistics themselves would have exact ÷2 distributions if the variance
parameters were known but, as they must be estimated, they are only asymptotically
distributed as ÷2. In practical terms, the ÷2 values will be reliable if the residual degrees
of freedom for a fixed term is large compared to its own degrees of freedom. Otherwise
they tend to give significant results rather too frequently. The F statistics, if available, are
more reliable than the Wald statistics. If they are not calculated, Genstat produces
probabilities for the Wald statistics instead, which should again be used with care
especially when the value is close to a critical value.

In the example, the treatment terms are orthogonal so it makes no difference whether
nitrogen or variety is fitted first. In a non-orthogonal design, however, the ordering
of fitting is important, and you should be aware that each test in the "Sequentially
adding terms to fixed model" section represents the effect of adding the term
concerned to a model containing all the terms in the preceding lines. The next section,
headed "Dropping individual terms from full fixed model" looks at the
effect of removing terms from the complete fixed model: so the lines here allow you to
assess the effects of a term after eliminating all the other fixed terms. This is particularly
useful for seeing how the model might be simplified. Notice that the only relevant term
here is the variety by nitrogen interaction. We cannot remove a main effect (such as
nitrogen or variety) from a model that contains an interaction involving that factor.
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Figure 1.6

The Further output button
generates the menu shown in
Figure 1.6, in which we have
checked the boxes to produce
tables of predicted means with
standard errors of differences
between means and least
significant differences. The
Model terms for effects and means

box enables you to specify the
terms for which you want tables
of means (and, if you had
checked the Estimated effects

box, tables of effects). The
default, which is fine here, is to
produce a table for each term in
the fixed model. Clicking Run

then generates the tables shown
below. Because the fixed terms
are orthogonal, the means are
identical to those produced by
the Analysis of Variance menu.

Table of predicted means for Constant
 
  104.0    Standard error:  6.64
 
 

Table of predicted means for variety
 
 

variety Victory Golden rain Marvellous
97.6 104.5 109.8

 
 
Standard error of differences: 7.079 
 
 

Table of predicted means for nitrogen
 
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
79.4 98.9 114.2 123.4

 
 
Standard error of differences: 4.436 
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Table of predicted means for variety.nitrogen
 
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
variety  
Victory 71.5 89.7 110.8 118.5

Golden rain 80.0 98.5 114.7 124.8
Marvellous 86.7 108.5 117.2 126.8

 
 
Standard errors of differences
 
Average:  9.161
Maximum:  9.715
Minimum:  7.683
 
Average variance of differences: 84.74 
 
Standard error of differences for same level of factor:
 

variety nitrogen
 

Average:  7.683  9.715
Maximum:  7.683  9.715
Minimum:  7.683  9.715

 
 

Approximate least significant differences (5% level) of
REML means
 
 

variety
 
 

    
variety Victory 1  *

variety Golden rain 2  15.77  *
variety Marvellous 3  15.77  15.77  *

 1 2 3
 
 

nitrogen
 
 

     
nitrogen 0 cwt 1  *

nitrogen 0.2 cwt 2  8.934  *
nitrogen 0.4 cwt 3  8.934  8.934  *
nitrogen 0.6 cwt 4  8.934  8.934  8.934  *

 1 2 3 4
 
 

variety.nitrogen
 

Message: caution - t-values using d.d.f. from contributing terms differ by
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9.61%; LSD's will be calculated using the maximum value.
 

    
variety Victory.nitrogen 0 cwt 1  *

variety Victory.nitrogen 0.2 cwt 2  17.12  *
variety Victory.nitrogen 0.4 cwt 3  17.12  17.12  *
variety Victory.nitrogen 0.6 cwt 4  17.12  17.12  17.12

variety Golden rain.nitrogen 0 cwt 5  21.65  21.65  21.65
variety Golden rain.nitrogen 0.2 cwt 6  21.65  21.65  21.65
variety Golden rain.nitrogen 0.4 cwt 7  21.65  21.65  21.65
variety Golden rain.nitrogen 0.6 cwt 8  21.65  21.65  21.65

variety Marvellous.nitrogen 0 cwt 9  21.65  21.65  21.65
variety Marvellous.nitrogen 0.2 cwt 10  21.65  21.65  21.65
variety Marvellous.nitrogen 0.4 cwt 11  21.65  21.65  21.65
variety Marvellous.nitrogen 0.6 cwt 12  21.65  21.65  21.65

 1 2 3
 

    
variety Victory.nitrogen 0.6 cwt 4  *

variety Golden rain.nitrogen 0 cwt 5  21.65  *
variety Golden rain.nitrogen 0.2 cwt 6  21.65  17.12  *
variety Golden rain.nitrogen 0.4 cwt 7  21.65  17.12  17.12
variety Golden rain.nitrogen 0.6 cwt 8  21.65  17.12  17.12

variety Marvellous.nitrogen 0 cwt 9  21.65  21.65  21.65
variety Marvellous.nitrogen 0.2 cwt 10  21.65  21.65  21.65
variety Marvellous.nitrogen 0.4 cwt 11  21.65  21.65  21.65
variety Marvellous.nitrogen 0.6 cwt 12  21.65  21.65  21.65

 4 5 6
 

    
variety Golden rain.nitrogen 0.4 cwt 7  *
variety Golden rain.nitrogen 0.6 cwt 8  17.12  *

variety Marvellous.nitrogen 0 cwt 9  21.65  21.65  *
variety Marvellous.nitrogen 0.2 cwt 10  21.65  21.65  17.12
variety Marvellous.nitrogen 0.4 cwt 11  21.65  21.65  17.12
variety Marvellous.nitrogen 0.6 cwt 12  21.65  21.65  17.12

 7 8 9
 

    
variety Marvellous.nitrogen 0.2 cwt 10  *
variety Marvellous.nitrogen 0.4 cwt 11  17.12  *
variety Marvellous.nitrogen 0.6 cwt 12  17.12  17.12  *

 10 11 12

The least significant differences are calculated using the denominator degrees of freedom
(d.d.f.) from the tests for fixed effects. The degrees of freedom are relevant for assessing
the fixed term as a whole, and may vary over the contrasts amongst the means of the
term. So the LSDs may be only approximate, and should be used with caution. The
variety × nitrogen table of means is calculated from the variety and nitrogen
main effects and the variety.nitrogen interaction. So, we know that contrasts in the
table may have either 10 or 45 d.d.f. Genstat takes the smallest of the available d.d.f. and
prints a warning if the resulting LSDs would differ by more than 1%. As a result the
LSDs do not match those from the Analysis of Variance menu, whereas they do for
variety and nitrogen (which have the same d.d.f. for all their contrasts).
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Figure 1.7

The REML menus thus produce the same information as that given by the Analysis of

Variance menu where this is possible in their more general context, but they are not able
to match its more specialized output. The advantage of REML, however, lies in the much
wider range of situations that it covers, as we will show later in this Guide.

There are three menus that you can use to examine the fixed model in more detail, once
you have run the initial analysis. They do this by a generalized regression analysis, with
a weight matrix based on variances estimated from the original REML analysis (with the
full fixed model). The models are thus assessed against identical estimates of the random
variation (as in an analysis of variance), allowing statistics such as the Akaike
information criterion to be used to assess which model may be best. Conversely, if you
try to assess the fixed model by changing the fixed model in the original menus, the fixed
terms that are not fitted will be included in the random variation. This will then vary from
fit to fit, and it may be difficult to reach a clear and consistent conclusion. 

The menu for REML Screening of Fixed

Terms, opened by clicking on the Screening

tests button in the Linear Mixed Models

Further Output menu (Figure 1.6), is useful to
overcome the problems of ordering that
occur when there are  non-orthogonal terms.
In Figure 1.7, we have chosen to print both
Wald tests (which come first in the output,
below), as well as F tests.

Screening tests for fixed effects
 
 

Fixed term d.f. Marginal pr. Conditional pr.
Wald test Wald test

variety  2  2.97  0.226  2.97  0.226
nitrogen  3  113.06  <0.001  113.06  <0.001

variety.nitrogen  6  1.82  0.936  1.82  0.936
 
 

Fixed term n.d.f. d.d.f. Marginal pr. Conditional pr.
F test F test

variety  2  10  1.49  0.272  1.49  0.272
nitrogen  3  45  37.69  <0.001  37.69  <0.001

variety.nitrogen  6  45  0.30  0.932  0.30  0.932

In the marginal tests, each term is added to the simplest possible model. So in a model
with 

A + B + C + A.B + A.C + B.C + A.B.C
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Figure 1.8

A.B would be added to a model containing only the main effects A and B. This assesses
the effect of the term ignoring as many other terms as possible. It is therefore checking
to see if there is any evidence that the term has an effect.

In the conditional tests, each term is added to the most complex possible model. So,
A would be added to a model containing B, C and B.C. This checks to see if the term has
any effect that cannot be explained by any other terms. You can check the box to  Exclude

higher order interactions in conditional model if you would prefer terms containing more
factors than the original term not to be included in the model to which the term is added.
The Forced terms box allows you to specify terms that must always be included in the
models. 

In this example  the terms are orthogonal, and so the marginal and conditional tests are
identical. In non-orthogonal analyses they will differ, but the hope is that they lead to the
same conclusion. If not, the conclusion is that there is more than one plausible model for
the data, but the design is too unbalanced to allow you to choose between them!

Secondly, there is a menu to assess all
subsets of the fixed terms, opened by
clicking on the All subsets button in the
Linear Mixed Models Further Output menu
(Figure 1.6), which may be helpful for
larger fixed models. The menu has a
box at the top, where you can specify
any forced terms that must be included
in every subset. The radio buttons in the
Marginal terms box control whether
terms marginal to any other fixed term
must be treated as forced and always
included. (A term is marginal to another
term if all its factors or variates also
occur in that other term. For example
the terms variety and nitrogen are
both marginal to the interaction variety.nitrogen.) If you specify that they are to be
forced, then all the models will be obtainable by dropping terms that appear in the lower
part of the table of tests for fixed effects (i.e. the table obtained by checking the Wald tests

box in the Linear Mixed Models Options or Linear Mixed Models Further Output menus). In
Figure 1.8 we have specified no forced terms, and selected the Akaike and Schwarz
Bayesian information criteria for the output. The results confirm that there is evidence
that only nitrogen has an effect on the yields.

All subsets of REML fixed model
 
Free terms:
(1)  variety
(2)  nitrogen
(3)  variety.nitrogen

 
   Aic    Sic    d.f.    (1)    (2)    (3)

Set  
1    179.8    182.1    1    -    -    - 
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Figure 1.9

2    72.8    81.9    4    -    <.001    - 
3    180.9    187.7    3    0.272    -    - 
4    73.8    87.5    6    0.272    <.001    - 
5    84.0    111.3    12    marg    marg    0.932

 
Set 2 is best according to Aic: nitrogen.
Set 2 is best according to Sic: nitrogen.

Finally, there is a menu where
you can explore the fixed
model, by trying, adding and
dropping terms in a similar way
to the general linear regression
menu. (See Section 1.11 of the
Guide to Regression, Nonlinear
and Generalized Linear
Models.) You can open this by
clicking on the Explore fixed

model button in the Linear Mixed

Models menu. This is greyed out,
as Figure 1.6, until you have run
the initial analysis.

The menu has buttons to fit
the full model, or to return to the null model. You can also investigate terms individually
by clicking on the Add, Drop or Try buttons, with the relevant term highlighted in the
appropriate window (Available terms for Add, or Terms in the current model for Drop, or
either window for Try). The output below shows the effect of clicking on the Full model

button in Figure 1.9.

Regression analysis of REML fixed model
 

Response variate:  yield
Weight matrix:  REML weights

Fitted terms:  Constant + variety + nitrogen + variety.nitrogen
 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r.
Regression  11  117.84  10.713  10.71
Residual  60  60.00  1.000  
Total  71  177.84  2.505  
 
Change  -6  -1.82  0.303  0.30
 
Percentage variance accounted for 60.1
Akaike information criterion is estimated to be 318.79.
Schwarz Bayes information criterion is estimated to be 346.11.
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Figure 1.10

Accumulated analysis of variance
 
Change s.s. n.d.f. m.s. F d.d.f. pr.
+ variety  2.97  2  1.485  1.49  10.00   0.272 
+ nitrogen  113.06  3  37.686  37.69  45.00   <.001 
+ variety.nitrogen  1.82  6  0.303  0.30  45.00   0.932 
Residual  60.00  60  1.000       
Total  177.84  71  2.505

W e  c a n  h i g h l i g h t
variety.nitrogen in the
Terms in the current model
window, and click on Drop as in
Figure 1.10 to remove it from
the model.

Regression analysis of REML fixed model
 

Response variate:  yield
Weight matrix:  REML weights

Fitted terms:  Constant + variety + nitrogen
 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r.
Regression  5  116.03  23.2055  24.78
Residual  66  61.82  0.9366  
Total  71  177.84  2.5049  
 
Change  6  1.82  0.3028  0.30
 
Percentage variance accounted for 62.6
Akaike information criterion is estimated to be 308.94.
Schwarz Bayes information criterion is estimated to be 322.60.
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Accumulated analysis of variance
 
Change s.s. n.d.f. m.s. F d.d.f. pr.
+ variety  2.97  2  1.485  1.49  10.00   0.272 
+ nitrogen  113.06  3  37.686  37.69  45.00   <.001 
+ variety.nitrogen  1.82  6  0.303  0.30  45.00   0.932 
Residual  60.00  60  1.000       
- variety.nitrogen  -1.82  -6  0.303  0.30  45.00   0.932 
Total  177.84  71  2.505

We can then repeat this for variety to obtain a model containing only nitrogen (and
no non-significant terms).

Regression analysis of REML fixed model
 

Response variate:  yield
Weight matrix:  REML weights

Fitted terms:  Constant + nitrogen
 
 

Summary of analysis
 
Source d.f. s.s. m.s. v.r.
Regression  3  113.06  37.6856  39.55
Residual  68  64.79  0.9528  
Total  71  177.84  2.5049  
 
Change  2  2.97  1.4853  1.59
 
Percentage variance accounted for 62.0
Akaike information criterion is estimated to be 308.32.
Schwarz Bayes information criterion is estimated to be 317.43.
 
 

Accumulated analysis of variance
 
Change s.s. n.d.f. m.s. F d.d.f. pr.
+ variety  2.97  2  1.485  1.49  10.00   0.272 
+ nitrogen  113.06  3  37.686  37.69  45.00   <.001 
+ variety.nitrogen  1.82  6  0.303  0.30  45.00   0.932 
Residual  60.00  60  1.000       
- variety.nitrogen  -1.82  -6  0.303  0.30  45.00   0.932 
- variety  -2.97  -2  1.485  1.49  10.00   0.272 
Total  177.84  71  2.505     

You can refit the REML analysis with the fixed model redefined to contain only the terms
in the current model in this menu, by clicking on the button to Export current model to

menu and close. An alternative strategy would be to keep the original fixed model, and
form predictions using only the terms in this current model (with the REML Predictions

menu described in Section 1.6).
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1.2 Commands for REML analysis

REML analysis in Genstat is performed by the REML directive.  Before using REML we
first need to define the model that is to be fitted in the analysis. For straightforward linear
mixed models, the only directive that needs to be specified is VCOMPONENTS. We give
the full syntax below, and then highlight the main options and parameters. The full details
are in the Guide to the Genstat Command Language, Part 2 Statistics, Section 5.2.1.

VCOMPONENTS directive
Defines the variance-components model for REML.

Options
FIXED = formula Fixed model terms; default *
ABSORB = factor Defines the absorbing factor (appropriate only

when REML option METHOD=Fisher); default *
i.e. none

CONSTANT = string token How to treat the constant term (estimate,
omit); default esti

FACTORIAL = scalar Limit on the number of factors or covariates in
each fixed term; default 3

CADJUST = string token What adjustment to make to covariates before
analysis (mean, none); default mean

RELATIONSHIP = matrix Defines relationships constraining the values of
the components; default *

SPLINE = formula Defines random cubic spline terms to be
generated: each term must contain only one
variate, if there is more than one factor in a term,
separate splines are calculated for each
combination of levels of the factors

EXPERIMENTS = factor Factor defining the different experiments in a
multi-experiment (meta-) analysis

Parameters
RANDOM = formula Random model terms
INITIAL = scalars Initial values for each component and the

residual variance
CONSTRAINTS = string tokens How to constrain each variance component and

the residual variance (none, positive,
fixrelative, fixabsolute); default none

The FIXED option specifies a model formula defining the fixed model terms to be fitted,
and the RANDOM parameter specifies another model formula defining the random terms.
There are two other parameters. INITIAL provides initial values for the estimation of
each variance component. These are supplied as the ratio of the component to the residual
variance, but the default value of one is usually satisfactory. The CONSTRAINT parameter
can be used to indicate whether each variance component is to be constrained in any way.
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The default setting, none, leaves them unconstrained. The positive setting forces a
variance component to be kept positive, the fixrelative fixes the relative value of the
component to be equal to that specified by the INITIAL parameter, and the
fixabsolute setting fixes it to the absolute value specified by INITIAL. The
FACTORIAL option sets a limit on the number of factors and variates allowed in each
fixed term (default 3); any term containing more than that number is deleted from the
model.

Usually, only FIXED and RANDOM need to be set. For example, the statement below
defines the models for the split-plot example in Section 1.2.

VCOMPONENTS [FIXED=variety*nitrogen] \
  RANDOM=blocks/wplots/subplots

Once the models have been defined, the REML directive can be used to perform the
analysis.

REML directive
Fits a variance-components model by residual (or restricted) maximum likelihood.

Options
PRINT = string tokens What output to present (model, components,

effects, means, stratumvariances,
monitoring, vcovariance, deviance,
Waldtests, missingvalues,
covariancemodels); default mode, comp,
Wald, cova

PTERMS = formula Terms (fixed or random) for which effects or
means are to be printed; default * implies all the
fixed terms

PSE = string token Standard errors to be printed with tables of
effects and means (differences, estimates,
alldifferences, allestimates, none);
default diff

WEIGHTS = variate Weights for the analysis; default * implies all
weights 1

MVINCLUDE = string tokens Whether to include units with missing values in
the explanatory factors and variates and/or the y-
variates (explanatory, yvariate); default *
i.e. omit units with missing values in either
explanatory factors or variates or y-variates

SUBMODEL = formula Defines a submodel of the fixed model to be
assessed against the full model (for
METHOD=Fisher only)

RECYCLE = string token Whether to reuse the results from the estimation
when printing or assessing a submodel (yes,
no); default no

RMETHOD = string token Which random terms to use when calculating
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RESIDUALS (final, all, notspline); default
fina

METHOD = string token Indicates whether to use the standard Fisher-
scoring algorithm or the new AI algorithm with
sparse matrix methods (Fisher, AI); default AI

MAXCYCLE = scalar Limit on the number of iterations; default 30
TOLERANCES = variate Tolerances for matrix inversion; default * i.e.

appropriate default values
PARAMETERIZATION = string token Parameterization to use for the variance

component estimation (gammas, sigmas)
CFORMAT = string token Whether printed output for covariance models

gives the variance matrices or the parameters
(variancematrices, parameters); default
vari

FMETHOD = string token Controls whether and how to calculate F-
statistics for fixed terms (automatic, none,
algebraic, numerical); default auto

WORKSPACE = scalar Number of blocks of internal memory to be
allocated for use by the estimation algorithm
when METHOD=AI

Parameters
Y = variates Variates to be analysed
RESIDUALS = variates Residuals from each analysis
FITTEDVALUES = variates Fitted values from each analysis
SAVE = pointers Saves the details of each analysis for use in

subsequent VDISPLAY and VKEEP directives

The first parameter of REML specifies the y-variate to be analysed. The PRINT option is
set to a list of strings to select the output to be printed. These are similar to the check
boxes of the Linear Mixed Models Further Output menu. The most commonly used settings
are:

model description of model fitted,
components estimates of variance components and estimated

parameters of covariance models,
effects estimates of parameters in the fixed and random

models,
means predicted means for factor combinations,
vcovariance variance-covariance matrix of the estimated

components,
deviance deviance of the fitted model,
waldtests Wald tests for all fixed terms in model,
missingvalue estimates of missing values,
covariancemodels estimated covariance models.

The default setting of PRINT=model,components,Wald,cova gives a description of
the model and covariance models that have been fitted, together with estimates of the
variance components and the Wald (or F) tests. By default if tables of means and effects
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are requested, tables for all terms in the fixed model are given together with a summary
of the standard error of differences between effects/means.

The FMETHOD option controls whether and how the F statistics are calculated, with
settings automatic, none, algebraic and numerical.

The PTERMS and PSE options can be used to change the terms or obtain different types
of standard error. For example,

REML [PRINT=means; PTERMS=nitrogen.variety; \
     PSE=allestimates] 

will produce a nitrogen by variety table of predicted means with a standard error for each
cell.

Further output is produced by the VDISPLAY directive, which has options PRINT,
PTERMS and PSE like those of REML.

VDISPLAY directive
Displays further output from a REML analysis.

Options
PRINT = string tokens What output to present (model,

components, effects, means,
stratumvariances, monitoring,

vcovariance, deviance, Waldtests,
missingvalues, covariancemodels);
default mode, comp, Wald, cova

CHANNEL = identifier Channel number of file, or identifier of a text to
store output; default current output file

PTERMS = formula Terms (fixed or random) for which effects or
means are to be printed; default * implies all the
fixed terms

PSE = string token Standard errors to be printed with tables of
effects and means (differences, estimates,
alldifferences, allestimates, none);
default diff

CFORMAT = string token Whether printed output for covariance models
gives the variance matrices or the parameters
(variancematrices, parameters); default
vari

FMETHOD = string token Controls whether and how to calculate F-
statistics for fixed terms (automatic, none,
algebraic, numerical); default auto

Parameter
pointers Save structure containing the details of each

analysis; default is to take the save structure
from the latest REML analysis

The approximate least significant differences are calculated by the VLSD procedure.
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VLSD procedure
Prints approximate least significant differences for REML means (R.W. Payne).

Options
PRINT = string tokens Controls printed output (means, sed, lsd, df);

default lsd
FACTORIAL = scalar Limit on the number of factors in each term;

default 3
LSDLEVEL = scalar Significance level (%) to use in the calculation

of least significant differences; default 5
DFMETHOD = string token Specifies which degrees of freedom to use for

the t-statistics (fddf, given, tryfddf); default
fddf

DFGIVEN = scalar Specifies the number of degrees of freedom to
use for the t-statistics when DFMETHOD=given,
or if d.d.f. are unavailable when
DFMETHOD=tryfddf

FMETHOD = string token Controls how to calculate denominator degrees
of freedom for the F-statistics, if these are not
already available in the REML save structure 
(automatic, algebraic, numerical);
default auto

SAVE = REML save structure Save structure to provide the table of means;
default uses the save structure from the most
recent REML

Parameters
TERMS = formula Treatment terms whose means are to be

compared; default * takes the REML fixed model
MEANS = pointer or table Saves the means for each term
SED = pointer or symmetric matrix Saves standard errors of differences between

means
LSD = pointer or symmetric matrix Saves approximate least significant differences

matrix for the means
DF = pointer or scalar Saves the degrees of freedom used to calculate

the t critical values for the LSDs
DDF = pointer or scalar Saves the denominator degrees of freedom in the

F test for the term
DFRANGE = pointer or scalar Saves the range of denominator degrees of

freedom in the F tests for the term and any terms
that are marginal to the term (available only
when denominator degrees of freedom of F-
statistics are being used)

VLSD calculates least significant differences (LSDs) for predicted means of fixed terms
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in a REML analysis. These are calculated by multiplying standard errors for differences
by the t-statistic that would be used to assess whether those differences are non-zero.

The TERMS parameter specifies a model formula to define the fixed terms whose
predicted means are to be compared. The means are usually taken from the most recent
analysis performed by REML, but you can set the SAVE option to a save structure from
another REML if you want to examine means from an earlier analysis. As in
VCOMPONENTS, the FACTORIAL option sets a limit on the number of factors in each term
(default 3).

The DFMETHOD option specifies how to obtain the degrees of freedom for the t-
statistics. The default is to use the numbers of denominator degrees of freedom printed
by REML in the d.d.f. column in the table of tests for fixed tests (produced by setting
option PRINT=wald). The degrees of freedom are relevant for assessing the fixed term
as a whole, and may vary over the contrasts amongst the means of the term. So the LSDs
should be used with caution. (If you are interested in a specific comparison, you should
set up a 2-level factor to fit this explicitly in the analysis.) The FMETHOD option controls
how the denominator degrees of freedom should be calculated, if they are not already
available in the REML save structure (e.g. because they were printed in the original
analysis). The settings are the same as in the REML and VKEEP directives, except that
there is no none setting. (You would set this option only if you really do want to
calculate them.)

In some of the more complicated analyses, REML may be unable to calculate the
denominator degrees of freedom. You might then want to supply the number of degrees
of freedom yourself, using the DFGIVEN option, rather than having no least significant
differences at all. For example, you could use the number of denominator degrees of
freedom from the analysis of an earlier similar design. However, the results will only be
as good as the degrees of freedom that you have supplied, and thus should be used with
caution! You can set option DFMETHOD=tryfddf to use the denominator degrees of
freedom, if these can be calculated, or those specified by DFGIVEN otherwise. The setting
DFMETHOD=given always uses the degrees of freedom specified by DFGIVEN.

Printed output is controlled by the PRINT option, with settings:
means prints the means;
sed prints standard errors for differences between the

means;
lsd prints least significant differences for the means;
df prints the degrees of freedom used to calculate the

t critical value required for the LSD, together with
the denominator degrees of freedom in the F test
for the term if these are not the same.

The significance level to use in the calculation of the least significant differences can be
changed from the default of 5% using the LSDLEVEL option.

The MEANS parameter can save the means. If the TERMS parameter specifies a single
term, MEANS must be undeclared or set to a table. If TERMS specifies several terms, you
must supply a pointer which will then be set up to contain as many tables as there are
terms. Similarly the SED parameter can save the standard errors of differences, the LSD
parameter can save the approximate least significant differences, the DF parameter can
save the degrees of freedom used to calculate the t-statistics, and the DDF parameter can
save the denominator degrees of freedom in the F tests.
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When a term involves several factors, its means may be formed from the effects of
several terms. For example, the means for the term A.B will involve the effects for the
terms A and B (if these are in the model), as well as those for the term A.B. Different
contrasts between the means will then have different denominator degrees of freedom.
For caution, if VLSD is using the number of denominator degrees of freedom, it uses the
smallest number over the terms that are involved in calculating each table of the means.
(This corresponds to the largest t-statistic.) If the difference in the t-statistics calculated
from smallest and largest numbers of degrees of freedom differ by more than 1%, VLSD
prints a warning message. If the denominator degrees of freedom are being used, their
range for each term can be saved by the DFRANGE parameter.

The screening tests are produced by the VSCREEN procedure. Details are in the Genstat
Reference Manual, Part 3 Procedures.

1.3 Practical

In an experiment to study the effect of two meat-tenderizing chemicals, the two (back)
legs were taken from four carcasses of beef and one leg was treated with chemical 1 and
the other with chemical 2. Three sections were then cut from each leg and allocated (at
random) to three cooking temperatures, all 24 sections (4 carcasses × 2 legs × 3 sections)
being cooked in separate ovens. The table below shows the force required to break a strip
of meat taken from each of the cooked sections (the data are also in the file Meat.gsh).
Analyse the experiment using both ANOVA and REML, and compare the results.

Leg                        1                     2
                  -------------------   -------------------
Carcass Section   Chemical Temp Force   Chemical Temp Force
      1       1          1    2   5.5          2    3   6.3
              2          1    3   6.5          2    1   3.5
              3          1    1   4.3          2    2   4.8

      2       1          2    1   3.2          1    3   6.2
              2          2    3   6.0          1    2   5.0
              3          2    2   4.7          1    1   4.0

      3       1          2    1   2.6          1    2   4.6
              2          2    2   4.3          1    1   3.8
              3          2    3   5.6          1    3   5.8

      4       1          1    3   5.7          2    2   4.1
              2          1    1   3.7          2    3   5.9
              3          1    2   4.9          2    1   2.9

Run screening tests of the fixed terms. Notice that the marginal and conditional tests
give the same values. (This is because the design is orthogonal.)
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Figure 1.11

Figure 1.12

1.4 Means plots

It is often interesting to plot the means from
a mixed-model analysis. You can open the
Means Plots menu, by clicking on the Means

plot button in the Linear Mixed Model Further

Output menu (Figure 1.6).
The menu (Figure 1.8) allows you to

choose a factor to plot along the x-axis. The
Groups box specifies factors whose levels
are to be included in a single window of the
graph; Genstat then plots a set of points or
a line (depending on your choice in the Method box) for each level of the groups factor.
The Trellis groups box can specify factors to define a trellis plot, and the Page groups box
can specify factors whose combinations of levels are to be plotted on different pages.

In Figure 1.9, we have plotted
the nitrogen-by-variety means,
with nitrogen along the x-axis.

The plotting is done using the
VGRAPH procedure.



1.4  Means plots 27

VGRAPH procedure
Plots tables of means from REML (R.W. Payne).

Options
GRAPHICS = string token Type of graph (highresolution,

lineprinter); default high
METHOD = string token What to plot (points, means,

linesandpoints, onlylines, data,
barchart, splines); default poin when
XFACTOR is a factor, and only when it is a
variate

XFREPRESENTATION = string token How to label the x-axis (levels, labels);
default labe uses the XFACTOR labels, if
available

PSE = string token What to plot to represent variation when points
are plotted at the means (differences, lsd,
means, allmeans); default diff

LSDLEVEL = scalar Significance level (%) to use for approximate
least significant differences; default 5

DFSPLINE = scalar Number of degrees of freedom to use when
METHOD=splines

YTRANSFORM = string tokens Transformed scale for additional axis marks and
labels to be plotted on the right-hand side of the
y-axis (identity, log, log10, logit,
probit, cloglog, square, exp, exp10,
ilogit, iprobit, icloglog, root); default
iden i.e. none

PENYTRANSFORM = scalar Pen to use to plot the transformed axis marks
and labels; default * selects a pen, and defines
its properties, automatically

SAVE = REML save structure Save structure to provide the table of means;
default uses the save structure from the most
recent REML

Parameters
XFACTOR = factors or variates Provides the x-values for each plot; by default

this is chosen automatically
GROUPS = factors or pointers Factor or factors identifying groups in each plot;

by default chosen automatically
TRELLISGROUPS = factors or pointers

Factor or factors specifying the different plots of
a trellis plot of a multi-way table

PAGEGROUPS = factors or pointers Factor or factors specifying plots to be displayed
on different pages

NEWXLEVELS = variates Values to be used for XFACTOR; default uses the
existing levels if XFACTOR is a factor, and the
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minimum and maximum values if it is a variate
TITLE = texts Title for the graph; default is to define a title

automatically if GROUPS is set, or to have none
if it is unset

YTITLE = texts Title for the y-axis; default ''
XTITLE = texts Title for the x-axis; default is to use the

identifier of the XFACTOR
PENS = variates Defines the pen to use to plot the points and/or

line for each group defined by the GROUPS
factors

In its simplest form, the behaviour of VGRAPH depends on the model. If the fixed model
contains only main effects, it plots the means for the first factor in the fixed model.
Otherwise, it looks for the first fixed term involving two factors; it then plots the means
with one of these factors as the x-axis, and the second as a grouping factor with levels
identified by different plotting colours and symbols. The GRAPHICS option controls
whether a high-resolution or a line-printer graph is plotted; by default GRAPHICS=high.

By default, the means are from the most recent REML. However, you can plot means
from an earlier analysis, by using the SAVE option of VGRAPH to specify its save structure
(saved using the SAVE parameter of the REML command that performed the analysis).
VGRAPH uses the VPREDICT directive with default option settings to obtain the means
(see Section 1.6). This should give the same means as those printed by REML or
VDISPLAY. If you want to use VPREDICT with other option settings, you can plot these
by saving the predictions, and then using the DTABLE procedure.

The METHOD option controls how the predicted means are plotted in high-resolution
graphics, with settings:

points to plot a point at each mean;
means synonym of points;
linesandpoints to plot points and join them by lines;
onlylines to draw lines between the means;
data to draw lines between the means, and then also

plot the original data values;
barchart to plot the means as a barchart;
splines to plot points at the means together with a smooth

spline to show the trend over each group of means;
the DFSPLINE specifies the degrees of freedom
for the splines; if this is not set, 2 d.f. are used
when there are up to 10 points, 3 if there are 11 to
20, and 4 for 21 or more.

The default is to plot points when XFACTOR is a factor, and onlylines when it is a
variate. Only points are available in line-printer graphics.

The PSE option specifies the type of error bar to be plotted, when points are plotted for
the means, with settings:

differences average standard error of difference;
lsd average approximate least significant difference

(calculated using the VLSD procedure);
means average effective standard error for the means;
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allmeans plots plus and minus the effective standard error
around every mean.

The LSDLEVEL option sets the significance level (%) to use for the approximate least
significant differences (default 5). The allmeans setting is often unsuitable for plots
other than barcharts when there are GROUPS, as the plus/minus e.s.e. bars may overlap
each other.

You can define the table of means to plot explicitly, by specifying its classifying factors
using the XFACTOR, GROUPS, TRELLISGROUPS and PAGEGROUPS parameters. The
XFACTOR parameter can define a factor against whose levels the means are plotted. It can
also specify a variate, and VPREDICT then sets up a factor automatically, to classify the
table, with levels at the values specified by the NEWXLEVELS parameter. With a multi-
way table, there will be a plot of means against the XFACTOR levels for every
combination of levels of the factors specified by the GROUPS, TRELLISGROUPS and
PAGEGROUPS parameters. The GROUPS parameter specifies factors whose levels are to
be included in a single window of the graph.

For example, Figure 1.9 was plotted by the statement

VGRAPH [METHOD=means; PSE=differences] \
  nitrogen; GROUPS=variety

The means are plotted in a single window with factor nitrogen on the x-axis, and
different symbols used for the means with each level of the factor variety. You can set
GROUPS to a pointer to specify several factors to define groups. For example

POINTER [VALUES=variety,blocks] Groupfactors
VGRAPH [METHOD=line] nitrogen; GROUPS=Groupfactors

Here we have also set option METHOD=line. So this plots a line for every combination
of the levels of factors variety and blocks.

Similarly, the TRELLISGROUPS option can specify one or more factors to define a
trellis plot. For example,

VGRAPH [METHOD=line] nitrogen; GROUPS=variety; 
       TRELLISGROUPS=blocks

will produce a plot for each block, in a trellis arrangement; each plot will again have
factor nitrogen on the x-axis, and a line for every variety. Likewise, the PAGEGROUPS
parameter can specify factors whose combinations of levels are to be plotted on different
pages. So

VGRAPH [METHOD=line] nitrogen; GROUPS=variety; PAGEGROUPS=blocks

will again produce a plot for block, but now on separate pages. Multi-way tables can
plotted even if the corresponding model term was not in the REML analysis. For example
you can plot a two-way table even if the analysis contained only the main effects of the
two factors; however, the lines will then all be parallel and no LSDs can be included.

The NEWXLEVELS parameter enables different levels to be supplied for an XFACTOR
factor, if its existing levels are unsuitable. If the factor has labels, these are used to label
the x-axis unless you set option XFREPRESENTATION=levels. When XFACTOR is a
variate, NEWXLEVELS can specify the values where the predictions are to be made. By
default, they are made at its minimum and maximum values.

Note that the values predicted by VPREDICT, for an XFACTOR variate, will not include
any spline effects, nor can it take account of any relationships between different variates
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in the model. (For example, the model may include a variate and its square.) To take
account of relationships like these, you should use VPREDICT directly, specifying the
linked variables with the PARALLEL parameter. Save the table of predictions, and then
plot it using DTABLE.

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis
and the x-axis, respectively. The symbols, colours and line styles that are used in a high-
resolution plot are usually set up by VGRAPH automatically. If you want to control these
yourself, you should use the PEN directive to define a pen with your preferred symbol,
colour and line style, for each of the groups defined by combinations of the GROUPS
factors. The pen numbers should then be supplied to VGRAPH, in a variate with a value
for each group, using the PENS parameter.

The YTRANSFORM option allows you to include additional axis markings, transformed
onto another scale, on the right-hand side of the y-axis. This is useful if your y-variate has
been transformed. Suppose, for example, suppose you have analysed a variate of
percentages that have been transformed to logits. You might then set
YTRANSFORM=ilogit (the inverse-logit transformation) to include markings in
percentages alongside the logits. You can control the colours of the transformed marks
and labels, by defining a pen with the required properties, and specifying it with the
PENYTRANSFORM option. Otherwise, the default is to plot them in blue.

1.5 Practical

Plot the means from the meat-tenderizing example in Practical 1.3.

1.6 Predictions

The predicted means that are plotted by the Means Plots menu, or printed by the Options

or Further Output menus, are formed by inserting the estimated effects of the relevant
terms into the linear model. Terms that do not contribute to the table of means are
ignored.

Remember that the model for the split-plot design was
yijk = ì + vr + as + vars + bi + wij + åijk

where 
yijk is the yield from block i, whole-plot j, subplot k;

the fixed terms in the model are
ì the overall constant (grand mean),
vr the main effect of variety r (where r is the variety assigned to unit ijk),
as the main effect of nitrogen application at level s (where s is the nitrogen level

applied on unit ijk), and
vars their interaction.

and the random model terms are
bi the effect of block i,
wij the effect of whole-plot j within block i, and
åijk the random error for unit ijk (which here is the same as the subplot effect, since the

subplots are the smallest units of the experiment).
So, to form the nitrogen table of means we would need the grand mean ì and the nitrogen
effects as. The other effects are omitted. So, equivalently, we can say that we have taken
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Figure 1.10

the random effects at their population means of zero.
Unlike ANOVA, REML allows you to produce predicted values that include estimated

values of effects in random terms. (So you are including the estimated effects for the
specific sample, in this experiment, from the underlying random population represented
by the random term.) These random estimates are known as best linear unbiased
predictors (or BLUPs). An interesting feature is that the BLUP estimates for a random
term are usually smaller than the estimates that would have been obtained if the term had
been estimated as a fixed term. For this reason, the BLUP estimates are often called
“shrunken” parameter estimates. Further details, and the underlying mathematics, are
given in the Guide to the Genstat Command Language Part 2 Statistics, Section 5.3.3.

The REML Predictions menu
(Figure 1.10) provides more
flexibility. To open the menu,
you click on the Predict button
on the Linear Mixed Models menu
(Figure 1.4). This uses the
VPREDICT directive, which
offers similar facilities to the
PREDICT directive in regression
analysis. So the predictions are
formed by two steps.

1 a table of fitted values is
calculated. By default
these are formed using all
the fixed terms in the
model, and any random terms that are involved in the prediction table. However,
you can specify the terms explicitly by checking the Specify model terms box, and
clicking on the Model terms button.

2 the fitted values are averaged over the factors that are not in the prediction table.
You can control how the averaging is done by clicking on the Averaging options

button.
In Figure 1.10 we are constructing predictions for nitrogen with the default settings,
except that we are asking to display (all) SEDs instead of the default of Average SEDs.
VPREDICT thus forms a nitrogen-by-variety table of fitted values using only the fixed
effects ì, as and vr. It then averages over variety (using equal weighting) to get the
predictions. As the varieties had equal replication in the design, this gives the same
results as the ordinary predicted means, shown in Section 1.2.

Predictions from REML analysis
 
Model terms included for prediction: Constant + variety + nitrogen + variety.nitrogen
Model terms excluded for prediction: blocks + blocks.wplots
 
Status of model variables in prediction:
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Figure 1.11

Variable Type Status
nitrogen factor Classifies predictions
variety factor Averaged over - equal weights
Constant factor Included in prediction
blocks factor Ignored
wplots factor Ignored
 
Response variate: yield
 
Predictions
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
79.4 98.9 114.2 123.4

 
 
Standard errors
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
7.175 7.175 7.175 7.175

 
 
Standard error of differences
 

     
nitrogen 0 cwt 1   *    

nitrogen 0.2 cwt 2  4.436   *   
nitrogen 0.4 cwt 3  4.436  4.436   *  
nitrogen 0.6 cwt 4  4.436  4.436  4.436   *

  1  2  3  4

These predictions are called marginal predictions), as the random effects have been set
at their population means of zero.

Another possibility would be to
make predictions conditional on
the block and whole-plot random
terms. We would then average
over the block and whole-plot
(BLUP) effects actually estimated
in the analysis. Essentially this
predicts the average yields that
would be obtained for each level
of nitrogen if we ran the
experiment again with the same
treatment combinations on the
plots, and the same block and whole-plot samples from their respective populations. We
now need to define the model terms used to make the prediction explicitly, and include
blocks and blocks.wplots as well as the fixed terms. So, we check the Specify model

terms box and click on the Model terms button in the REML Predictions menu (Figure 1.10).
In the Model terms menu (Figure 1.11), we then define the model to be

variety +nitrogen +variety.nitrogen +blocks +blocks.wplots

The output is shown below.
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Predictions from REML analysis
 
Model terms included for prediction: Constant + variety + nitrogen + variety.nitrogen + blocks +
blocks.wplots
 
Status of model variables in prediction:
 
Variable Type Status
nitrogen factor Classifies predictions
variety factor Averaged over - equal weights
Constant factor Included in prediction
blocks factor Averaged over - equal weights
wplots factor Averaged over - equal weights
 
Response variate: yield
 
Predictions
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
79.4 98.9 114.2 123.4

 
 
Standard errors
 

nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
3.137 3.137 3.137 3.137

 
 
Standard error of differences
 

     
nitrogen 0 cwt 1   *    

nitrogen 0.2 cwt 2  4.436   *   
nitrogen 0.4 cwt 3  4.436  4.436   *  
nitrogen 0.6 cwt 4  4.436  4.436  4.436   *

  1  2  3  4

In this case, because all the design is orthogonal with factor levels equally replicated, the
actual predictions remain the same. However, the standard errors have decreased, as
adding information about random effects decreases uncertainty (you would use these to
compare a mean with zero). The standard errors of differences are unchanged as we have
simply added a constant to every prediction, and this cancels when you take differences.
(The constant is the average of the block and whole-plot effects, bi and wij, which is zero
here !but it could be non-zero in a more complicated design.)
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Figure 1.12

Figure 1.13

Figure 1.14

Figure 1.15

Figure 1.16

Next we show how to use
unequal weights in step 2. We
click on the Averaging options

button in the REML Predictions

menu (Figure 1.10) to open the
Averaging Terms menu. You
might want to check the Take

averages of combinations present

box (as in Figure 1.12) if you
have any factors that have some
levels with zero replication in the experiment. You can list these in the box below the
check box to tell VPREDICT to omit these levels during the averaging.

Alternatively, if you check the
Specify marginal weights box, you
can specify a one-way table,
classified by any of the averaged
factors, to define the weights
explicitly. As an example, we
will form predictions for varieties
assuming that there will always
be some nitrogen fertilizer. 

We first create the table using
the spreadsheet menus. We select
the Create sub-option of the New

option of the Spread menu on the menu bar, as shown in Figure 1.13.

This opens the Size of New Spreadsheet menu, where we select
Table as the type of spreadsheet, and check the Create from

existing factors box (Figure 1.14). We then get the Create Table
from Factors menu, where we select nitrogen as the factor
(Figure 1.15).
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Figure 1.17

The resulting spreadsheet is
shown in Figure 1.16. We have
left its name as the default, C1,
chosen by the Spread menus, and
filled in weights to exclude the
zero level of nitrogen, to use 0.25
for 0.2 cwt and 0.4 cwt, and 0.5
for 0.6 cwt. Notice that we have
arranged for the weights to sum
to one. VPREDICT will not do
this automatically, but will use the actual weights that you supply.

We can now select variety as the explanatory variable in the REML Predictions menu,
and enter C1 into the Averaging Terms menu; see Figure 1.17. The resulting predictions
are shown below.

Predictions from REML analysis
 
Model terms included for prediction: Constant + variety + nitrogen + variety.nitrogen
Model terms excluded for prediction: blocks + blocks.wplots
 
Status of model variables in prediction:
 
Variable Type Status
nitrogen factor Averaged over - specified weights C1
variety factor Classifies predictions
Constant factor Included in prediction
blocks factor Ignored
wplots factor Ignored
 
Response variate: yield
 
Predictions
 

variety Victory Golden rain Marvellous
109.4 115.7 119.8

 
 
Standard errors
 

variety Victory Golden rain Marvellous
8.031 8.031 8.031

 
 
Standard error of differences
 

    
variety Victory 1   *   

variety Golden rain 2  7.582   *  
variety Marvellous 3  7.582  7.582   *

  1  2  3
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The menus allow you to do virtually everything but, if you prefer commands, the syntax
of VPREDICT is given below. 

VPREDICT directive
Forms predictions from a REML model.

Options
PRINT = string token What to print (description, predictions,

se, sed, avesed, vcovariance); default
desc, pred, se, aves

CHANNEL = scalar Channel number for output; default * i.e. current
output channel

MODEL = formula Indicates which model terms (fixed and/or
random) are to be used in forming the
predictions; default * includes all the fixed
terms and relevant random terms

OMITTERMS = formula Specifies random terms to be excluded from the
MODEL; default * i.e. none

FACTORIAL = scalar Limit on the number of factors or variates in
each term in the models specified by MODEL or
OMITTERMS; default 3

PRESENTCOMBINATIONS = identifiers
Lists factors for which averages should be taken
across combinations that are present

WEIGHTS = tables One-way tables of weights classified by factors
in the model; default *

PREDICTIONS = table or scalar To save the predictions; default *
SE = table or scalar To save standard errors of predictions; default *
SED = symmetric matrix To save standard errors of differences between

predictions; default *
VCOVARIANCE = symmetric matrix To save variances and covariances of

predictions; default *
SAVE = identifier Specifies the save structure from which to

predict; default * i.e. that from most recent
REML

Parameters
CLASSIFY = vectors Variates and/or factors to classify table of

predictions
LEVELS = variates or scalars To specify values of variates and/or levels of

factors for which predictions are calculated
PARALLEL = identifiers Specifies variables in the classifying set whose

values change in parallel (rather than in all
combinations)
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The CLASSIFY parameter specifies those variates or factors to be included in the table
of predictions, and the LEVELS parameter supplies the values at which the predictions are
to be made. For a factor, you can select some or all of the levels, while for a variate you
can specify any set of values. A single level or value is represented by a scalar; several
levels or values must be combined into a variate (which may of course be unnamed). A
missing value in the LEVELS parameter is taken to stand for all the levels of a factor, or
the mean value of a variate. The PARALLEL parameter allows you to indicate that a factor
or variate should change in parallel to another factor or variate. Both of these should have
the same number of values specified for it by the LEVELS parameter of VPREDICT. The
predictions are then formed for each corresponding set of values rather than for every
combination of these values.

The MODEL, OMITTERMS and FACTORIAL options specify the model to use in step 1.
The formula specified by MODEL is expanded into a list of model terms, deleting any that
contain more variates or factors than the limit specified by the FACTORIAL option. Then,
any random terms in the formula specified by OMITTERMS are removed.

The WEIGHTS option can supply the one-way tables to be used in step 2. These are used
to calculate the weight to be used for each fitted value when calculating the averages.
Equal weights are assumed for any factor for which no table of weights has been
supplied. In the averaging all the fitted values are generally used. However, if you define
a list of factors using the PRESENT option, any combination of levels of these factors that
does not occur in the data will be omitted from the averaging. Where a prediction is
found to be inestimable, i.e. not invariant to the model parameterization, a missing value
is given.

Printed output is controlled by settings of the PRINT option with settings:
description describes the terms and standardization policies

used when forming the predictions,
predictions prints the predictions,
se produces predictions and standard errors,
sed prints standard errors for differences between the

predictions,
avesed prints the average standard error of difference of

the predictions, and
vcovariance prints the variance and covariances of the

predictions.
By default descriptions, predictions, standard errors and an average standard error of
differences are printed. You can also save the results, using the PREDICTIONS, SE, SED
and VCOVARIANCE options. You can send the output to another channel, or to a text
structure, by setting the CHANNEL option.

The following statements could be used to reproduce the predictions above.

VPREDICT [PRINT=description,prediction,se,sed] nitrogen
VPREDICT [PRINT=description,prediction,se,sed;\
         MODEL=nitrogen+variety+nitrogen.variety\
              +blocks+ blocks.wplots] nitrogen
VPREDICT [PRINT=description,prediction,se,sed; WEIGHTS=C1]\
         variety
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1.7 Practical

Form predictions for the chemicals Practical 1.3. First of all use the default settings, and
compare these with the predicted means that you obtained earlier. Then form predictions
assuming that the meat will be cooked equally often at temperatures 1 and 2, but not at
temperature 3.

1.8 A non-orthogonal design

We now consider the analysis of a rather more complicated field experiment (at Slate
Hall Farm in 1976), previously analysed by Gilmour et al. (1995). The design was set up
to study 25 varieties of wheat, and contained six replicates (each with one plot for every
variety) laid out in a two by three array. The variety grown on each plot is shown in the
plan below.

Each replicate has a block structure of rows crossed with columns, so the random
model is

replicates / (rows * columns)

(rows crossed with columns, nested within replicates), which expands to give

replicates + replicates.rows + replicates.columns + 
replicates.rows.columns

So we have random terms for replicates, rows within replicates, columns within replicates
and, finally, replicates.rows.columns represents the residual variation. The fixed
model contains just the main effect of the factor variety.

1 2 4 3 5 19 23 2 6 15 18 25 9 11 2

6 7 9 8 10 8 12 16 25 4 5 7 16 23 14

21 22 24 23 25 11 20 24 3 7 6 13 22 4 20

11 12 14 13 15 22 1 10 14 18 24 1 15 17 8

16 17 19 18 20 5 9 13 17 21 12 19 3 10 21

3 18 8 13 23 16 24 10 13 2 10 4 17 11 23

1 16 6 11 21 12 20 1 9 23 12 6 24 18 5

5 20 10 15 25 4 7 18 21 15 19 13 1 25 7

2 17 7 12 22 25 3 14 17 6 21 20 8 2 14

4 19 9 14 24 8 11 22 5 19 3 22 15 9 16
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Figure 1.18

Figure 1.19

The data are in spreadsheet file
Slatehall.gsh  (Figure 1.18),
which can be opened using the
Example Data Sets menu as shown
in Figure 1.2. In addition to the
factors already mentioned, the
sheet also contains factors
fieldrow and fieldcolumn
(defining the row and column
positions within the whole field,
rather than within each replicate)
which we shall use to define
spatial correlation structures in
Chapter 2.

Figure 1.19 shows the Linear

Mixed Models menu with the
necessary boxes filled in. If we
use the Linear Mixed Model Options

menu (Figure 1.5) to request
predicted means and standard
errors of differences of means (in
addition to the existing Display

options), and then click on Run in
the Linear Mixed Models menu
itself, the following output is
produced.

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + variety
Random model: replicates + replicates.rows + replicates.columns +
replicates.rows.columns
Number of units: 150
 
replicates.rows.columns used as residual term
 
Sparse algorithm with AI optimisation
 
 

Estimated variance components
 
Random term component s.e.
replicates  0.4262  0.6890
replicates.rows  1.5595  0.5091
replicates.columns  1.4812  0.4865
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Residual variance model
 
Term Model(order) Parameter Estimate s.e.
replicates.rows.columns Identity Sigma2 0.806  0.1340
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 212.26 24 8.84 79.3  <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 212.26 24 8.84 79.3  <0.001
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.
 
 

Table of predicted means for Constant
 
  14.70    Standard error:  0.422
 
 

Table of predicted means for variety
 
 

variety 1 2 3 4 5 6 7 8
12.84 15.49 14.21 14.52 15.33 15.27 14.01 14.57

 
 

variety 9 10 11 12 13 14 15 16
12.99 11.93 13.27 14.84 16.19 13.27 14.98 13.46

 
 

variety 17 18 19 20 21 22 23 24
14.98 15.92 16.70 16.40 14.93 16.44 13.29 15.46

 
 

variety 25
16.31

 
 
Standard error of differences: 0.6202 
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Figure 1.20

Unusually for a variety trial, this
particular design is balanced (in
fact it is a lattice square), and we
can gain additional insights into
the REML analysis by looking at
the output that we could have
obtained from the Analysis of

Variance menu. The menu is not
customized for the design, but we
can use the General analysis of

variance setting in the Design box,
and specify the Treatment structure and Block structure as shown in Figure 1.20. The
standard analysis of variance output (analysis-of-variance table, information summary,
means and standard errors of differences) is shown below.

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
replicates stratum 5  133.3273  26.6655   
 
replicates.rows stratum
variety 24  215.9053  8.9961   
 
replicates.columns stratum
variety 24  229.8094  9.5754   
 
replicates.rows.columns stratum
variety 24  166.7675  6.9486  8.58 <.001
Residual 72  58.3011  0.8097   
 
Total 149  804.1105    
 
 

Information summary
 
Model term e.f.   non-orthogonal terms
replicates.rows stratum
  variety  0.167  
replicates.columns stratum
  variety  0.167   replicates.rows
replicates.rows.columns stratum
  variety  0.667   replicates.rows

  replicates.columns
 
 

Message: the following units have large residuals.
 
replicates 6    -1.895  approx. s.e.   0.943
 
replicates 1 rows 4 columns 3    -1.665  approx. s.e.   0.623
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replicates 1 rows 5 columns 2    1.710  approx. s.e.   0.623
 
 

Tables of means
 
Variate: yield
 
Grand mean  14.704 
 

variety  1  2  3  4  5  6  7
 12.962  15.561  14.152  14.560  15.481  15.358  14.008

 
variety  8  9  10  11  12  13  14

 14.428  12.968  11.928  13.222  14.835  16.176  13.187
 

variety  15  16  17  18  19  20  21
 15.067  13.287  14.968  15.881  16.742  16.277  15.048

 
variety  22  23  24  25    

 16.430  13.283  15.464  16.344    
 
 

Standard errors of differences of means
 
Table variety  
rep.  6  
d.f.  72  
s.e.d.  0.6363  

Notice that the analysis-of-variance table has three lines for variety. As each row
contains a different set of varieties, the differences between the rows in each replicate
enable us to obtain estimates of the variety effects (which appear in the
replicates.rows stratum). The same is true of the columns. The design is balanced
because the various comparisons between varieties are all estimated with the same
efficiency in the replicates.rows stratum; the Information Summary indicates the
efficiency is in fact 0.167. Similarly, they all have efficiency 0.167 in the
replicates.columns  s t ra tum,  and eff ic iency 0.667 in  the
replicates.rows.columns stratum. So, the possible information on variety is split
(1/6 : 1/6 : 2/3 ) between the three strata.



1.8  A non-orthogonal design 43

Figure 1.21

We can see the estimates obtained
in each stratum by checking the
Effects box in the ANOVA Further

Output menu (Figure 1.21) and
clicking on Run. You can then verify
that the standard table of means
produced by ANOVA, above, is
calculated using the estimated
effects from the lowest stratum
(replicates.rows.columns):
the mean 12.962 for variety 1 is the 
grand mean 14.704 plus the effect of
variety 1 in the replicates.
rows.columns table, namely
!1.742.

Tables of effects
 
Variate: yield
 

replicates.rows stratum
 
variety effects,  e.s.e. *,  rep. 6
 

variety  1  2  3  4  5  6  7
 -5.614  1.296  0.604  -1.468  -3.522  2.790  -3.458

 
variety  8  9  10  11  12  13  14

 1.718  0.520  -3.814  -2.718  -2.544  1.020  1.236
 

variety  15  16  17  18  19  20  21
 0.582  5.598  3.786  3.480  3.902  3.530  -1.294

 
variety  22  23  24  25    

 -0.028  1.360  -3.058  -3.894    
 

replicates.columns stratum
 
variety effects,  e.s.e. *,  rep. 6
 

variety  1  2  3  4  5  6  7
 -3.432  -2.588  0.812  -0.650  -1.450  -4.948  1.930

 
variety  8  9  10  11  12  13  14

 4.064  -3.010  -1.584  1.852  2.828  2.540  -0.752
 

variety  15  16  17  18  19  20  21
 -3.536  -0.642  -2.494  0.740  -1.706  4.934  -2.924
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variety  22  23  24  25    
 3.990  -3.730  4.434  5.332    

 

replicates.rows.columns stratum
 
variety effects,  e.s.e. 0.4499,  rep. 6
 

variety  1  2  3  4  5  6  7
 -1.742  0.857  -0.553  -0.144  0.777  0.653  -0.697

 
variety  8  9  10  11  12  13  14

 -0.277  -1.736  -2.777  -1.482  0.130  1.471  -1.517
 

variety  15  16  17  18  19  20  21
 0.362  -1.418  0.263  1.176  2.037  1.573  0.343

 
variety  22  23  24  25    

 1.726  -1.421  0.760  1.639    

In contrast, the REML analysis has produced a single set of estimates, and these
automatically combine (with an appropriate weighting) all the separate estimates. In fact
the REML estimates correspond to the combined effects and means in the ANOVA Further

Output menu. Below, we show these tables, together with the output generated by
checking the Stratum variances box which contains the variance components. The
combined means have a smaller standard error of difference than the standard means, but
the complicated structure of their estimation means that we can no longer assume that
differences between them follow t-distributions with a known number of degrees of
freedom. (However, the effective numbers of degrees of freedom printed by ANOVA are
generally reasonably reliable.)

Tables of combined effects
 
Variate: yield
 
variety effects,  e.s.e. 0.4385,  rep. 6,  effective d.f. 79.99
 

variety  1  2  3  4  5  6  7
 -1.869  0.786  -0.495  -0.186  0.628  0.570  -0.697

 
variety  8  9  10  11  12  13  14

 -0.131  -1.716  -2.772  -1.432  0.133  1.486  -1.438
 

variety  15  16  17  18  19  20  21
 0.276  -1.243  0.277  1.217  1.991  1.695  0.230

 
variety  22  23  24  25    

 1.739  -1.413  0.760  1.602    
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Tables of combined means
 
Variate: yield
 

variety  1  2  3  4  5  6  7
 12.836  15.490  14.209  14.519  15.333  15.274  14.007

 
variety  8  9  10  11  12  13  14

 14.574  12.989  11.932  13.272  14.838  16.190  13.266
 

variety  15  16  17  18  19  20  21
 14.980  13.461  14.982  15.922  16.696  16.399  14.934

 
variety  22  23  24  25    

 16.444  13.291  15.465  16.306    
 
 

Standard errors of differences of combined means
 
Table variety  
rep.  6  
s.e.d.  0.6202  
effective d.f.  79.99  
 
 
 

Estimated stratum variances
 
Variate: yield
 
Stratum variance  effective d.f.  variance component 
replicates  26.6655  5.000  0.4262
replicates.rows  8.6037  23.464  1.5595
replicates.columns  8.2120  23.438  1.4812
replicates.rows.columns  0.8062  73.099  0.8062

The example reinforces the point that the REML output is the same as that given by ANOVA
when both are feasible, but that the generality of the REML method leaves aspects that it
cannot duplicate. More importantly, though, it shows that the REML method makes use
of all the available information about each fixed effect. These aspects indicate the
efficiency and appropriateness of the methodology, and the next practical illustrates its
ability to handle designs that cannot be analysed by ANOVA.

1.9 Practical

Genstat spreadsheet file Vartrial1.gsh contains data from a trial of 35 varieties of
wheat. The design has two replicates each laid out in a five by seven plot array. Assuming
that the same block structure is appropriate as in Section 1.8 (rows crossed with columns
within replicates), analyse the data as a linear mixed model with block structure
Replicate/(Row*Column) and fixed model Variety. Check whether the data can
be analysed by ANOVA.
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Figure 1.22

1.10 Residual checks and plots

You can ask Genstat to report any
large residuals, by checking the
Residual Checks box on either the
Linear Mixed Model Options menu
or the Linear Mixed Model Further

Output menu, as in Figure 1.22.
The criterion for deciding

whether a standardized residual is
large depends on the number of
degrees of freedom d of the
random terms in the analysis.
Genstat reports any residual with
absolute value greater than 2 if d
is less than 20, or greater than 4.0
if d is greater than 15773. For
other values of d, the default is
the critical value of the Normal
distribution for a two-sided test
with significance probability 1/d.
These criteria are the same as
those used in regression and
analysis of variance, and are
intended to ensure that a report
should appear for any extreme outlier, but that reports should not appear too often just
as a result of random variation.

For the Slate Hall data, two large residuals are reported, in units 48 and 62. It would
be worthwhile checking the original records to see if there was anything unusual about
those plots, perhaps to justify their exclusion from the analysis.

Large residuals
 
 

Unit  Residual
48  -2.747
62  3.227
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Figure 1.23

Figure 1.24

You can use the REML Residual

Plot Options menu (Figure 1.23) to
produce diagnostic plots of the
residuals, so that you can check
the assumptions of the analysis.
Alternatively, if you are analysing
a field experiment, you can
display the residuals in field
layout to check for systematic
trends up and down or across the
field. The Method list box controls
whether the display shows just the
residuals from the final random
term (to check the assumptions),
or the sum of all the random effects (to assess fertility trends).

To open the menu you click on
the Further output button in the
Linear Mixed Models menu (Figure
1.22), and then clicking on the
Residual plots button in the Linear

Mixed Model Further Output menu
(Figure 1.6).

The menu has check boxes to
provide four types of diagnostic
plot. In Figure 1.23 they are all
checked, so Figure 1.24 shows
them all. There is a histogram of
the residuals, so that you can
check that the distribution is
symmetrical and reasonably
Normal; a plot of residuals
against fitted values, so that you
can check whether the residuals
are roughly symmetrically
distributed with constant
variance; a Normal plot which
plots the ordered residuals against Normal distribution statistics – if they lie roughly on
a straight line, the residuals are roughly Normally distributed; and a half-Normal plot
which does the same for the absolute values of the residuals, and can be more useful for
small sets of data. The same plots are available from the analysis of variance menus; see
Chapter 4 of the Guide to Anova and Design in Genstat for more details.

The diagnostic plots are produced by the VPLOT procedure. If you prefer commands
to menus, the syntax is described below.
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VPLOT procedure
Plots residuals from a REML analysis (S.J. Welham).

Options
RMETHOD = string token Which random terms to use when calculating the

residuals (final, all, notspline, stfinal,
stall); default uses the setting from the REML
statement

INDEX = variate or factor X-variable for an index plot; default
!(1,2...)

GRAPHICS = string token What type of graphics to use (lineprinter,
highresolution); default high

TITLE = text Overall title for the plots; if unset, the identifier
of the y-variate is used

SAVE = REML save structure Specifies the (REML) save structure from which
the residuals and fitted values are to be taken;
default * uses the SAVE structure from the most
recent REML analysis

Parameters
METHOD = string tokens Type of residual plot (fittedvalues, normal,

halfnormal, histogram, absresidual,
index); default fitt, norm, half, hist

PEN = scalars, variates or factors Pen(s) to use for each plot

Procedure VPLOT provides up to four types of residual plots from a REML analysis. These
are selected using the METHOD parameter, with settings: fitted for residuals versus
fitted values, normal for a Normal plot, halfnormal for a half-Normal plot,
histogram for a histogram of residuals, absresidual for a plot of the absolute values
of the residuals versus the fitted values, and index for a plot against an "index" variable
(specified by the INDEX option). The PEN parameter can specify the graphics pen or pens
to use for each plot. The TITLE option can supply an overall title. If this is not set, the
identifier of the y-variate is used.

The residuals and fitted values are accessed automatically from the analysis specified
by the SAVE option. If the SAVE option has not been set, they are taken from the SAVE
structure from the most recent REML analysis.

The RMETHOD option controls which random terms are used to calculate the residuals:
all all the random effects,
final only the final random term,
notspline all except any random spline terms,
stall standardized residuals using all the random

effects, and
stfinal standardized residuals using only the final random

term.
The default takes the setting from the REML directive that produced the analysis. Note that
residuals based on the final random term will not be calculated when any of the variance
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Figure 1.25

components are negative, as the associated negative correlations can generate very
misleading patterns. VPLOT will then generate a warning that all the residuals are
missing, and you should use RMETHOD=all instead.

By default, high-resolution graphics are used. Line-printer graphics can be used by
setting option GRAPHICS=lineprinter.

The plots of the residuals in field layout are produced by the VDFIELDRESIDUALS
procedure.

1.11 Practical

Try to plot the residuals from the REML analysis of the data in spreadsheet file
Vartrial1.gsh. You will find that you are unsuccessful, as Genstat does not allow you
to save residuals for the final error term when there are negative variance components.
(This is because these random terms can generate strange correlation patterns between
the residuals that can be confusing and hard to interpret.) Remove the random terms with
the negative variance components, by redefining the random model as
Replicate.Column, and try again. (The term Replicate.Column now fits a random
effect for every combination of the Replicate and Column factors i.e. for every
physical column in the design.)

1.12 Saving information from the analysis

As well as displaying the results
of an analysis, the REML menus
allow you to save the results in
standard data structures. After a
REML analysis you can click on
the Save button of the Linear Mixed

Models menu (Figure 1.4), to open
the Linear Mixed Models Save

Options menu. The residuals,
fitted values, predicted means and
many other results can be saved.
In Figure 1.25 variety is
selected as the model term for
which means and effects are to be
saved, the Predicted Means box is
checked, and varmeans is
entered into the adjacent box as
the name of the table to store
them. The information is saved
using the VKEEP directive.
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Figure 1.26

Figure 1.27

If you check the Display in

spreadsheet box, the results are
put into a Genstat spreadsheet,
which can then be saved in a file
on your computer for use in a
later run of Genstat, or in another
program such as Excel.
Alternatively you can save results
automatically to a spreadsheet file
by clicking on the Export to file

button. This opens the Save REML

Results in Spreadsheet File menu.
Figure 1.26, shows the menu with
the default output components
selected in the check boxes, and
the Save in file box filled in to save
them in the Excel file
SlateHallResults.xlsx.

Each section of
output is saved in a
separate page of the
spreadsheet  f i le.
Figure 1.27 shows the
page containing the
variance components.

The menu uses the
V S P R E A D S H E E T

procedure.



2 Meta analysis with REML

In this chapter we describe how you can use REML to do a combined analysis of several
related experiments. The aim here is to produce estimates of treatment effects that make
use of all the available information. This form of meta analysis gives the most efficient
estimates, provided all the original data sets are still available. If the original data sets are
no longer available, and you have only the results from the analysis of each one, you can
use the META procedure (or its associated menu Meta Analysis of Trial Results) for a single
treatment contrast, or the VMETA procedure (or its associated menu Multi-treatment Meta

Analysis of Summaries) for several treatment effects.
However, in order for the combined analysis to be sensible, the experiments should

have similar treatment structures, and should have some treatments in common across the
experiments. Otherwise, there is no information on comparisons between pairs of
treatments that are not in the same experiment.

So, in this chapter you will learn
• how to use the Multiple Experiments / Meta Analysis (REML) menu
• the VRESIDUAL commandÚ

Note: the topics marked Ú are optional.
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Figure 2.1

Figure 2.2

2.1 Example: a series of fungicide trials

As an example we shall consider
the analysis of three fungicide
trials that took place in different
years at the same site. The data
are in spreadsheet fi le
MetaFungicide.gsh (Figure
2.1). There were two cultivars,
one susceptible and one resistant,
and ten different fungicide
treatments. A split-plot design
was used in each year, but the
cultivars were applied to the
whole-plots in 1997, and the
fungicides were applied to the
whole-plots in 1998 and 1999.
So, we have the same treatments,
but different designs in the
different years, even though the
blocking structures were identical.

We can analyse the individual
trials by using the spreadsheet
menus to restrict the data set to
experiments 1, 2 and 3 in turn.
We first open the Restrict Units

on Factor menu, by selecting the
To Groups (Factor levels) sub-
option of the Restrict/Filter option
of the Spread menu on the menu
bar (see Figure 2.2). 
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Figure 2.3

Figure 2.4

Then, in that menu, we select the experiment (1,
2 or 3 in turn) and click on OK. The same menu
should be used to remove the restriction after the
analyses.

The analysis is specified in the
Linear Mixed Models menu,
similarly to the split-plot analysis
in Section 1.2. The settings are
shown in Figure 2.4, and the
output from analysing each
experiment, in turn, is given
below.

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + cultivar + fungicide + cultivar.fungicide
Random model: block + block.wholeplot + block.wholeplot.subplot
Number of units: 60
 
block.wholeplot.subplot used as residual term
 
Sparse algorithm with AI optimisation
Analysis is subject to the restriction on yield
 
 

Estimated variance components
 
Random term component s.e.
block  0.01354  0.01503
block.wholeplot  -0.00165  0.00303
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Residual variance model
 
Term Model(order) Parameter Estimate s.e.
block.wholeplot.subplot Identity Sigma2 0.0449  0.01059
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar 311.24 1 311.24 2.0  0.003
fungicide 60.02 9 6.67 36.0  <0.001
cultivar.fungicide 37.98 9 4.22 36.0  <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar.fungicide 37.98 9 4.22 36.0  <0.001
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.
 
 

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + cultivar + fungicide + cultivar.fungicide
Random model: block + block.wholeplot + block.wholeplot.subplot
Number of units: 60
 
block.wholeplot.subplot used as residual term
 
Sparse algorithm with AI optimisation
Analysis is subject to the restriction on yield
 
 

Estimated variance components
 
Random term component s.e.
block  0.01512  0.01657
block.wholeplot  -0.02177  0.01241
 
 

Residual variance model
 
Term Model(order) Parameter Estimate s.e.
block.wholeplot.subplot Identity Sigma2 0.0724  0.02289
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Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar 45.26 1 45.26 20.0  <0.001
fungicide 378.50 9 42.06 18.0  <0.001
cultivar.fungicide 12.12 9 1.35 20.0  0.275
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar.fungicide 12.12 9 1.35 20.0  0.275
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

 

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + cultivar + fungicide + cultivar.fungicide
Random model: block + block.wholeplot + block.wholeplot.subplot
Number of units: 60
 
block.wholeplot.subplot used as residual term
 
Sparse algorithm with AI optimisation
Analysis is subject to the restriction on yield
 
 

Estimated variance components
 
Random term component s.e.
block  -0.0043  0.0038
block.wholeplot  0.0084  0.0317
 
 

Residual variance model
 
Term Model(order) Parameter Estimate s.e.
block.wholeplot.subplot Identity Sigma2 0.129  0.0407
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar 37.41 1 37.41 20.0  <0.001
fungicide 102.08 9 11.34 18.0  <0.001
cultivar.fungicide 11.53 9 1.28 20.0  0.306
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Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar.fungicide 11.53 9 1.28 20.0  0.306
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The variance components can be tabulated as follows:

Year  Blocks  Whole-plots Residual

1997  0.01354 !0.00165 0.0449

1998  0.01512 !0.02177 0.0724

1999 !0.0043  0.0084 0.129

The F-probabilities for treatment terms show an interaction only in 1997.

Year Cultivar Fungicide Interaction

1997   0.003 <.001 <.001

1998 <.001 <.001  0.275

1999 <.001 <.001  0.306

To illustrate how you specify different error models for each experiment, we will omit
the negative variance components, i.e. treat them as zero. (In practice we could study this
further during the meta analysis.) So for each of experiments 1 and 2 (1997 and 1998) we
need a random term for blocks, while for experiment 3 (1999) we need a random term
for the combinations of whole-plots and blocks. These require extra factors which can be
set up by the commands

CALCULATE  block1 = MVINSERT(block; experiment.NE.1)
&          block2 = MVINSERT(block; experiment.NE.2)
&          wplot3 = MVINSERT(wholeplot; experiment.NE.3)
GROUP      [REDEFINE=yes] block1,block2,wplot3

or by using the Calculate and Form Groups menus (accessed by selecting the Calculations

and Form Groups (Factors) options of the Data menu on the menu bar). The results can be
found in the right-hand columns of the spreadsheet file MetaFungicide.gsh. Notice
that each of these factors has missing values except in the units belonging to its own
experiment. Another possibility is to use the VRMETAMODEL procedure. Details can be
found in Section 5.8.1 of the Guide to the Genstat Command Language, Part 2 Statistics.

We can now represent the random terms arising from the blocking structures by the
model formula

block1 + block2 + block.wplot3
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Figure 2.5

In addition, the meta analysis menu will automatically estimate the residual variance
separately within each experiment.

We also need to consider how to handle experiment effects and interactions between
experiments and the treatment terms. If we include these as in the fixed model, the
treatment terms will be tested using the within-experiment error, weighted according to
precision within each experiment. Alternatively, if we include them in the random model,
each treatment term will in effect be compared with its interaction with experiment
(unless this is zero). In that case, a significant treatment effect would imply that the effect
is consistent and large compared to its variation across experiments ! thus giving a more
stringent test.

We now open the Multiple

Experiments/Meta  Analysis

(REML) menu, by selecting the
Mult ip le  Exper iments /Meta

Analysis sub-option of the REML

option of the Stats menu on the
menu bar.

The fixed model is
cultivar*fungicide, as in
the individual analyses, and the
random model is

experiment*cultivar*fungicide + block1 + block2 + block.wplot3

as explained above. (Note that we can use the simple form
experiment*cultivar*fungicide to specify the experiment-by-treatment
interactions as any terms that occur in both the fixed and the random models for REML
are dropped from the random model.) The y-variate is again yield, and the factor
identifying the experiments is experiment. The output is shown below.

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + cultivar + fungicide + cultivar.fungicide
Random model: experiment + experiment.cultivar + experiment.fungicide +
experiment.cultivar.fungicide + block1 + block2 + block.wplot3
Number of units: 180
 
Separate residual terms for each level of experiment factor: experiment
 
Sparse algorithm with AI optimisation
Units with missing factor/covariate values included
 - specific effect for term(s) omitted for units with missing values in block1, block2, wplot3
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Estimated variance components
 
Random term component s.e.
experiment  0.5984  0.6107
experiment.cultivar  0.0094  0.0127
experiment.fungicide  0.0223  0.0147
experiment.cultivar.fungicide

 0.0127  0.0114
block1  0.0126  0.0150
block2  0.0141  0.0166
block.wplot3  0.0087  0.0271
 
 

Residual model for each experiment
 
Experiment factor: experiment 
 
Experiment Term Model(order) Parameter Estimate s.e.
1 Residual Identity Variance 0.0472 0.0112
2 Residual Identity Variance 0.0494 0.0110
3 Residual Identity Variance 0.118 0.034
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar 41.92 1 41.92 2.1  0.021
fungicide 92.10 9 10.23 17.2  <0.001
cultivar.fungicide 22.61 9 2.51 16.5  0.050
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
cultivar.fungicide 22.61 9 2.51 16.5  0.050
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The estimated variance components for the blocking terms and residuals are similar to
those from individual experiments (as you might expect). The variance components for
the random terms involving experiment are small except for the experiment main effects.
The main effects of cultivar and fungicide are still significant across the three
experiments, and there is some evidence of an interaction.
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2.2 Commands for meta analysis

The commands that are defined to produce the meta analysis in Section 2.1 are a
straightforward extension of those in Chapter 1.

VCOMPONENTS [FIXED=cultivar*fungicide; FACTORIAL=9; \
  EXPERIMENTS=experiment]\
  RANDOM=experiment*fungicide*cultivar\
  + block1 + block2 + block.wplot3
REML [PRINT=model,components,waldTests;\
  MVINCLUDE=explanatory] yield

Notice that the EXPERIMENTS option is used to define the experiment factor (a different
residual variance is then estimated within each of its levels). Then option
MVINCLUDE=explanatory is set to ensure that units with missing values in any of the
explanatory variables are still included in the analysis. In the analysis above, this involves
the factors block1, block2 and wplot3. These then make no contribution to the units
where they are missing. So different random terms are then fitted with each of the
experiments.

The Experiment Residual Terms button of the Multiple Experiments/Meta Analysis (REML)

menu allows you to specify a different residual term for an experiment, or you can define
a correlation model for the residual term. This is done using the VRESIDUAL directive.
We will not illustrate this in the course, but the details are given below for future
reference. Correlation models are described in Chapter 3.

VRESIDUAL directive
Defines the residual term for a REML analysis, or the residual term for an experiment
within a meta-analysis (combined analysis of several experiments).

Options
EXPERIMENT = scalar Level of the EXPERIMENTS factor for which the

residual is being defined
TERM = formula Model term to be used as the residual
FORMATION = string token Whether the structure is formed by direct

product construction or by definition of the
whole matrix (direct, whole); default dire

VARIANCE = scalar Allows an initial estimate to be provided for the
residual variance of the experiment

CONSTRAINT = string token Allows the residual variance to be fixed at its
initial value (fix, positive) default posi

COORDINATES = matrix or variates Coordinates of the data points to be used in
calculating distance-based models

Parameters
MODELTYPE = string tokens Type of covariance model associated with the

term(s), or with individual factors in the term(s)
if FORMATION=direct (identity, fixed,
AR, MA, ARMA, power, boundedlinear,
circular, spherical, linearvariance,
banded, correlation, antedependence,
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unstructured, diagonal, uniform, FA,
FAequal) default iden

ORDER = scalar Order of model
HETEROGENEITY = string token Heterogeneity for correlation matrices (none,

outside); default none
METRIC = string token How to calculate distances when

MODELTYPE=power (cityblock, squared,
euclidean); default city

FACTOR = factors Factors over which to form direct products
MATRIX = identifiers To define matrix values for the term or the

factors when MODELTYPE=fixed
INVERSE = identifiers To define values for matrix inverses (instead of

the fixed matrices themselves) when
MODELTYPE=fixed

INITIAL = identifiers Initial parameter values for each correlation
matrix

CONSTRAINTS = texts Texts containing strings none, fix or
positive to define constraints for the
parameters in each model

EQUALITYCONSTRAINTS = variates Non-zero values in the variate indicate groups of
parameters whose values are to be constrained to
be equal

VRESIDUAL is used to define the residual term for a REML analysis or to define separate
residual terms for different experiments within a meta-analysis. (For a single experiment,
VRESIDUAL can be used to impose a covariance structure on the residual term. This
could also be done by specifying the covariance structure using VSTRUCTURE, as
explained in Chapter 3, but VRESIDUAL has the advantage that the algorithm then checks
that the term is consistent with the structure of the data.)

The TERM option is used to specify the formula for the residual term. This term need
not have been specified previously by the VCOMPONENTS statement.

The EXPERIMENT option is used to specify the experiment(s) for which the model is
to be used. The settings identify levels of a factor, defining the experiments, which is
specified by the EXPERIMENTS option of VCOMPONENTS.

The VARIANCE option is used to give an initial value for the residual variance in the
current experiment(s). You can set option CONSTRAINT=fix to fix the residual variance
at the initial value rather than estimating it (as a positive value).

The definition of the residual terms then follows mainly as for the definition of
correlated error terms through VSTRUCTURE. The exception is that power models can be
defined only in terms of the coordinates of the data points, not by specifying coordinates
for the factor levels. (See Section 3.3.)

The factors and variates for the separate experiments should be concatenated into
structures which run over all the experiments. When some factors differ between
experiments, these should be defined on the units relevant to the appropriate
experiment(s) and missing elsewhere. When an EXPERIMENTS factor has been defined,
the default action of the MVINCLUDE option of REML is changed to include units with
missing y-values and missing factor levels.
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2.3 Practical

Genstat spreadsheet file Recovery.gsh contains data from trials of two anaesthetic
agents (A and B) at nine different centres (see Whitehead 2002, Meta-Analysis of
Controlled Clinical Trials, Section 3.6.1). The patients had undergone short surgical
procedures, where a rapid recovery was regarded as important. The analysis variable is
thus the log of the recovery time of each patient.

Perform a meta analysis using all the data, and including centre and the centre-by-
anaesthetic interaction as random terms.



3 Spatial analysis

In this chapter we show how REML can model spatial correlations between observations
in two-dimensions. These methods have proved very successful, for example, in the
analysis of field experiments to assess new plant varieties, where the designs usually
contain too many varieties for the conventional blocking techniques to be effective.

So you will learn
• how to model covariances between effects of a random term 
• how to assess different covariance models
• the advantages of representing the variation of a 2-dimensional experiment by

modelling its spatial covariances, as compared to using conventional blocking
• the VSTRUCTURE command Ú

Note: the topics marked Ú are optional.
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3.1 Traditional blocking

Traditional field experiments use blocking to improve the precision with which the
treatment effects are estimated. For example, in a complete-randomized-block design,
units are grouped into blocks, so that
• units in the same block are more similar than units in different blocks,
• each block contains the same number of reps (usually 1) of each treatment

combination,
• allocation of the treatments is randomized independently within each block
The analysis estimates & removes between-block differences into the block stratum so
that treatment effects can be estimated more precisely.

The output below shows the analysis that would be obtained if the field experiment at
Slate Hall Farm (Section 1.8) was analysed as a randomized block design with
replicates as the block factor.

Analysis of variance
 
Variate: yield
 
Source of variation d.f. s.s. m.s. v.r. F pr.
 
replicates stratum 5  133.327  26.665  7.69  
 
replicates.*Units* stratum
variety 24  254.808  10.617  3.06 <.001
Residual 120  415.976  3.466   
 
Total 149  804.110    
 
 

Message: the following units have large residuals.
 
replicates 6    -1.90  s.e.   0.94
 
replicates 1 *units* 22    5.19  s.e.   1.67
replicates 1 *units* 23    4.69  s.e.   1.67
replicates 5 *units* 15    -4.46  s.e.   1.67
replicates 5 *units* 25    -4.45  s.e.   1.67
 
 

Tables of means
 
Variate: yield
 
Grand mean  14.70 
 

variety  1  2  3  4  5  6  7
 12.04  15.06  14.57  14.26  14.39  14.78  13.99

 
variety  8  9  10  11  12  13  14

 15.48  13.13  11.95  13.57  14.84  16.28  13.77
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variety  15  16  17  18  19  20  21
 14.45  14.59  15.10  16.19  16.43  17.16  14.23

 
variety  22  23  24  25    

 16.52  13.36  15.44  16.04    
 
 

Standard errors of differences of means
 
Table variety  
rep.  6  
d.f.  120  
s.e.d.  1.075  

The variety sum of squares is still significant, but the standard error of difference for the
means (1.075) is larger than that from the analysis of variance of the design as a lattice
square (0.6363) in Section 1.4 !showing that the randomized-block analysis has not
modelled the patterns of fertility in the field particularly well.

In fact, the fertility is modelled here by a single block effect, which generates a uniform
correlation between the plots within each block. To look at how this represents the
fertility in the field, we need to examine the combined residuals from the analysis of
variance (that is, the usual residuals from the replicates.*Units* stratum, plus the
replicate effects). The analysis of variance save menus will only save the usual residuals,
but we can use the CBRESIDUALS option of the AKEEP directive. The program below
does the analysis of variance, saves the combined residuals and the replicate effects, and
plots them against columns for the upper replicates (1-3) and then for the lower replicates
(4-6).

BLOCKS replicates
TREATMENTS variety
ANOVA [PRINT=aovtable,information,means; FPROB=yes] yield
"plot the replicate effects and the combined residuals"
AKEEP [CBRESIDUALS=cbresiduals] replicates; RESIDUALS=reptab
VARIATE repvar; VALUES=reptab
CALCULATE reptrend = NEWLEVELS(replicates; repvar)
PEN 1...6; COLOUR='black','red','green'; SYMBOL=1,2,3
PEN 11; COLOUR='black'; METHOD=line; SYMBOL=0
RESTRICT cbresiduals,reptrend; replicates .IN. !(1,2,3)
DGRAPH cbresiduals,reptrend; fieldcolumn; PEN=replicates,11
RESTRICT cbresiduals,reptrend; replicates .IN. !(4,5,6)
DGRAPH cbresiduals,reptrend; fieldcolumn; PEN=replicates,11
RESTRICT cbresiduals,reptrend

The plots, in Figures 3.1 and 3.2, reinforce the point that the fertility is not being
modelled well. It looks more like a smooth trend across field than a step function.
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Figure 3.1 Figure 3.2

The conclusion is that randomized-block designs with large blocks may be insufficiently
flexible to model fertility trends well. One solution is to use a more sophisticated design,
like the lattice square actually used here. However, such designs are only available for
specific numbers of treatments (in this case squares of integer i.e. 9, 16, 25, 36 and so
on). The alternative, discussed in this chapter, is to use a more sophisticated analysis.

3.2 Correlation modelling

Traditional analysis of variance is based on “Fisher's 3 R's”, namely
• replication – it is usually recommended to replicate all treatments,
• randomization – on any pair of plots there should be an equal chance of getting any

pair of treatments (this guarantees the validity of analysis, lack of bias etc.),
• blocking – group similar plots together, and fit a random term to model the differences

between the groups (inducing a uniform correlation on the members of each group).
In contrast, in spatial analysis
• often only check (or control) treatments are replicated,
• you randomize where possible (but design may constrain which treatments appear on

some of the plots), and
• you take account of variation by fitting models to describe how the correlation between

each plot and its neighbours changes as the neighbours get further away.
As explained in Section 1.1, the traditional mixed model is

y  =  3i Xi âi  +  3i Zi ui  +  å
where

y is the vector of data values,
 âi is the vector of fixed effects for treatment term i with design matrix Xi,

ui is the vector of random effects for random term i with design matrix Zi,
å is the vector of residuals.
Each element of the residual vector å follows a Normal distribution with mean zero and

variance ó2. Equivalently, we can say that the vector å follows a multivariate Normal
distribution with a mean vector of zeros, and variance-covariance matrix ó2 I, where I is
the identity matrix.



66 3  Spatial analysis

Likewise, each element of the vector of random effects ui follows a Normal distribution
with mean zero and variance ãi ó

2. Again, equivalently, we can say that the vector ui

follows a multivariate Normal distribution with mean vector of zeros, and
variance-covariance matrix ãi ó

2 I.
In correlation modelling, the equation of the mixed model remains the same, but the

vectors of random effects ui now follow multivariate Normal distributions with a
variance-covariance matrix ãi ó

2 G, where the matrix G is defined using a correlation
model (or it may remain the identity matrix I if the effects are independent, i.e.
uncorrelated, as in traditional model). Likewise, the residual vector å now follows a
multivariate Normal distribution with variance ó2 R, where the matrix R may be defined
using a correlation model. (Again R remains the identity matrix I if the effects are
independent.)

The full range of correlation models is defined in Section 3.3. If we write the value in
the correlation matrix C (either G or R) cij in row i and column j as cij, the most useful
models for spatial modelling can be defined as follows:

identity ci, i = 1
ci,j = 0,  for i=/ j

auto-regressive order 1 (AR1) ci, i = 1
ci+k, i = ök

auto-regressive order 2 (AR2) ci, i = 1
ci+1, i = ö1 / (1!ö2)
ci, j = ö1 ci!1, j + ö2 ci!2, j

i > j+1, !1 < ö1, ö2 < 1,
*ö1+ö2*<1, ö2!ö1<1, ö2>!1

power-distance ci, i = 1
ci, j = öd

d = |i!j|

Notice that the AR1 and power-distance models are identical if the plots are equally
spaced.

In a 2-dimensional spatial model, a correlation model is fitted to a random term
fieldrow.fieldcolumn, where fieldrow and fieldcolumn are factors
representing row and column positions up-and-down or from side-to-side of the whole
field (rather than within replicates). Usually a separable correlation model is fitted, in
which the correlation between the plots at coordinates (i,j) and (k,l) is the product of a
correlation from a model defined on the rows of the experiment, and a correlation from
a model defined on the columns of the experiment: i.e.

correlation crik between rows (i-k) apart
× correlation ccjl between columns (j-l) apart

with the correlations crik and ccjl being defined by one of the models above. Separable
correlation models are often represented using the direct product symbol q: so a model
constructed from two AR1 models is written as AR1qAR1. 
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Figure 3.4

Figure 3.3

The models can all be defined
using the VSTRUCTURE directive,
as explained in Section 3.3, but
this is easier using the REML
menus. To open the menu to use
when the plots are on a regular
grid, you click Stats on the menu
bar, select Mixed Models (REML),
select Spatial Models and then
click on Regular Grid (see Figure
3.3), to produce the menu in
Figure 3.4.

We set the Data variate to
yield and the Fixed terms to
variety, and then consider the
error model. We now need to
specify the row and column
factors (in the Row factor and
Column factor boxes), and select
the required correlation model
from those available in the Row-

model and Column-model boxes.
Here we set the Row-model and
Column-model list boxes to AR

order 1. Other boxes allow you to
fit a random row effect in addition to the row model, or to fit a linear trend across rows,
and there are similar boxes for the columns. You can also specify additional random
terms, in the Random terms box. These might include other types of blocking, as for
example if the plots had been sown or harvested on different days or by different
operators.

Clicking on Run produces the output below. The default output contains sections to
describe the covariance structures (i.e. models) that are being fitted, and give their
parameter estimates. The fact that rather different estimates are produced for the auto-
regressive parameter in the two directions arises from the fact that the plots of the design
were not square.

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + variety
Random model: fieldrow.fieldcolumn
Number of units: 150
 
fieldrow.fieldcolumn used as residual term with covariance structure as below
 
Sparse algorithm with AI optimisation
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Covariance structures defined for random model
 
Covariance structures defined within terms:
 
Term Factor Model Order No. rows
fieldrow.fieldcolumn fieldrow Auto-regressive (+ scalar) 1 10

fieldcolumn Auto-regressive 1 15
 
 

Residual variance model
 
Term Factor Model(order) Parameter Estimate s.e.
fieldrow.fieldcolumn

 Sigma2 3.876  0.775
fieldrow AR(1) phi_1  0.4586  0.0826
fieldcolumn AR(1) phi_1  0.6838  0.0633

 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 313.04 24 13.04 80.0  <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 313.04 24 13.04 80.0  <0.001
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The fact that the F statistic in the spatial analysis is larger that the F statistic from the
analysis of variance of the lattice square design suggests that the spatial analysis is
modelling the fertility of the field more effectively. However, as we shall see later in this
section, it is wrong to select the random model by seeing how significant we can make
the treatments! In fact you should establish the appropriate random model before you start
to consider the fixed model. 
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Figure 3.5

You can assess the effect of
extending or simplifying the
random model by seeing how this
changes the deviance. Criteria
like the Akaike and Schwarz
Bayes information coefficients
can be also used, and this can be
done even for models where one
is not an extension of the other
one. These coefficients each
involve the deviance plus a term
that takes account of the numbers
of parameters in each of the
models (in ways that differ
between the two coefficients).
For the random model, it is best
to leave the box Use full likelihood

for AIC/SIC unchecked, and use the
REML deviance. You should use
the full likelihood if you want to
assess changes in the fixed model
(while keeping the random model
unchanged). Details are given in the on-line help for the VAIC procedure, or its
description in Part 3 of the Genstat Reference Manual.

In Figure 3.5 we use the Spatial Model Further Output menu to display the deviance and
the two coefficients. The notes printed in the output emphasize that you can compare the
random models only if the fixed model is unchanged.

Deviance: -2*Log-Likelihood
 

Deviance d.f.
 249.35  122

 
Note: deviance omits constants which depend on fixed model fitted.
 

Akaike information coefficient  255.35
Schwarz Bayes information coefficient  263.84

 
Note: omits constants, (n-p)log(2p) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)
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Figure 3.6

We now assess whether we need
a more complicated correlation
structure, with AR order 2
models on the rows and columns.
To simplify the output, we first
click on Options to bring up the
Spatial Model Options menu
(Figure 3.6), modify the Display

settings so that only the Deviance,
Akaike information coefficient (AIC)

and Schwarz information coefficient

(SIC), boxes are checked, and
click on OK. In the main menu
(Figure 3.4), we then change the
Row-model and Column-model list
boxes to AR order 2, and click on
Run.

Deviance: -2*Log-Likelihood
 

Deviance d.f.
 246.35  120

 
Note: deviance omits constants which depend on fixed model fitted.
 

Akaike information coefficient  256.35
Schwarz Bayes information coefficient  270.49

 
Note: omits constants, (n-p)log(2p) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)

Changes in the deviance are approximately distributed as ÷2, so here the extra variance
parameters for the order 2 models have a ÷2 value of 249.35!246.35 = 3.00 on 122!120
= 2 degrees of freedom. There is thus no evidence that we need auto-regressive structures
of order 2 rather than 1. Note, however, that the absolute value of the deviance value is
not useable. To simplify the calculations some constant terms (which depend only on the
fixed model) are omitted, so the value printed by Genstat may even be negative.

The Akaike and Schwarz Bayes information coefficients lead to the same conclusion:
the best model is the one with the smaller coefficient and, for both of these, that is model
with AR order 1 structures. In most situations, the conclusions from the two coefficients
will agree. The difference is that the Schwarz Bayes information coefficient tends to
weight more heavily against the inclusion of extra parameters in the model.
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Figure 3.7

Next we look to see if there is
any need to include a term for
measurement error. We can do this
by specifying a random term that
indexes the individual units of the
design. In Slatehall.gsh we
have a factor plotnumber which
has values 1 - 150 running over the
150 plots in the experiment. Note
that we cannot use the term
fieldrow.fieldcolumn, as this
is already being as the spatial
covariance term. If you do not
have a factor like plotnumber, the REML directive allows you to use the string
'*units*' to denote an internal factor with a level for every units of the design. We
enter plotnumber into the Random terms box (see Figure 3.7), and again click on Run.

Warning 1, code VC 53, statement 1 on line 191
 
Command: REML [PRINT=deviance; MAXCYCLE=20; MVINCLUDE=explanatory,yvariate;
METH
More than one residual term specified - first term found will be used as R.
  
 

Deviance: -2*Log-Likelihood
 

Deviance d.f.
 242.35  121

 
Note: deviance omits constants which depend on fixed model fitted.
 

Akaike information coefficient  250.35
Schwarz Bayes information coefficient  261.67

 
Note: omits constants, (n-p)log(2p) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)

Genstat prints a warning to say that there are two potential-residual terms (i.e. terms
corresponding to the matrix R defined earlier in this section). This can be ignored as here
they are being used for different purposes: plotnumber represents the residual (plot)
variation, and fieldrow.fieldcolumn, is a spatial co term.

The difference in deviances is 249.35 ! 242.35 = 7 on 1 degree of freedom. So it
appears that we do need to include measurement error in the analysis.
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Figure 3.8

The Random terms box also
allows you to include other types
of blocking. For example, the
replicates term might be
needed if it represented
differences in fertility beyond
those described by the spatial
model or if represented
differences in the husbandry of
the plots, as e.g. if different
replicates had been sown or
harvested on different days or by
different operators.

You should also include random terms if they were involved in the allocation and
randomization of a fixed term. For example, in the split-plot analysis in Section 1.1, the
blocks.wplots term should be included, as the varieties were applied and randomized
on the whole-plots within each block, rather than to the individual sub-plots of the
design. If blocks.wplots is not included in the random model, the wrong denominator
degrees of freedom will be used in the tests for fixed effects. (A case could be made for
including all the conventional random terms here too, as the allocation of the varieties did
depend on blocking structure of the balanced-lattice design. However, comparing the
analyses here with the one in Section 1.8 shows that this would not make any substantial
difference to the denominator degrees of freedom. A clue as to why this is true is given
by the fact that most of the information on the varieties is in the bottom stratum of the
analysis of variance.)

The replicates term is added to the random terms in Figure 3.8, and the output
below shows that the deviance is unchanged.

Warning 2, code VC 53, statement 1 on line 207
 
Command: REML [PRINT=deviance; MAXCYCLE=20; MVINCLUDE=explanatory,yvariate;
METH
More than one residual term specified - first term found will be used as R.

Deviance: -2*Log-Likelihood
 

Deviance d.f.
 242.35  120

 
Note: deviance omits constants which depend on fixed model fitted.
 

Akaike information coefficient  252.35
Schwarz Bayes information coefficient  266.49

 
Note: omits constants, (n-p)log(2p) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)
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Figure 3.9

This might seem a little
surprising, but the reason
becomes clear if we use the
Spatial Model Further Output menu
(Figure 3.9) to display the
variance components. By default,
the REML menus constrain the
variance components to be
positive, and here the component
for replicates is stuck on the
boundary.

Estimated variance components
 
Random term component s.e.
replicates  0.000 bound
plotnumber  0.486  0.179
 
 

Residual variance model
 
Term Factor Model(order) Parameter Estimate s.e.
fieldrow.fieldcolumn

 Sigma2 4.580  1.670
fieldrow AR(1) phi_1  0.6827  0.1023
fieldcolumn AR(1) phi_1  0.8438  0.0684
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Figure 3.10

We can remove the constraint by
unchecking the relevant box in
the Spatial Model Options menu
(Figure 3.10) and rerun the
analysis printing the deviance,
the coefficients and the variance
components.

Warning 3, code VC 53, statement 1 on line 224
 
Command: REML [PRINT=components,deviance; MAXCYCLE=20;
MVINCLUDE=explanatory,yva
More than one residual term specified - first term found will be used as R.
 
 

Estimated variance components
 
Random term component s.e.
replicates  -0.078  0.162
plotnumber  0.500  0.181
 
 

Residual variance model
 
Term Factor Model(order) Parameter Estimate s.e.
fieldrow.fieldcolumn

 Sigma2 4.662  1.707
fieldrow AR(1) phi_1  0.6922  0.1022
fieldcolumn AR(1) phi_1  0.8442  0.0685

 

Deviance: -2*Log-Likelihood
 

Deviance d.f.
 242.20  120

 
Note: deviance omits constants which depend on fixed model fitted.
 

Akaike information coefficient  252.20
Schwarz Bayes information coefficient  266.34
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Figure 3.11

 
Note: omits constants, (n-p)log(2p) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)

The variance component for replicates is negligible. So the replicate differences in
this experiment arise only from fertility trends, and these have been described by spatial
correlation structure. (Again the Akaike and Schwarz Bayes information coefficients lead
to the same conclusion.) However, we should still include replicates as this was a
factor involved in the design of the experiment.

We can now move on to assess
the terms in the fixed model. So
we set the Spatial Model Options

menu to print the model, variance
components, predicted means
and Wald tests (Figure 3.11),
generating the output shown
below.

Warning 4, code VC 53, statement 1 on line 240
 
Command: REML [PRINT=model,components,means,waldTests; MAXCYCLE=20;
FMETHOD=auto
More than one residual term specified - first term found will be used as R.
 
 

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + variety
Random model: replicates + fieldrow.fieldcolumn + units
Number of units: 150
 
fieldrow.fieldcolumn used as residual term with covariance structure as below
 
Sparse algorithm with AI optimisation
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Covariance structures defined for random model
 
Covariance structures defined within terms:

Term Factor Model Order No. rows
fieldrow.fieldcolumn fieldrow Auto-regressive (+ scalar) 1 10

fieldcolumn Auto-regressive 1 15
  
 

Estimated variance components
 
Random term component s.e.
replicates  -0.078  0.162
units  0.500  0.181
 
 

Residual variance model
 
Term Factor Model(order) Parameter Estimate s.e.
fieldrow.fieldcolumn

 Sigma2 4.622  1.707
fieldrow AR(1) phi_1  0.6922  0.1022
fieldcolumn AR(1) phi_1  0.8442  0.0685

 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 241.61 24 10.05 74.7  <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 241.61 24 10.05 74.7  <0.001
 
 

Table of predicted means for Constant
 
  14.47    Standard error:  0.894
 
 

Table of predicted means for variety
 

variety 1 2 3 4 5 6 7 8
12.45 15.14 14.05 14.06 14.71 15.21 13.74 14.53

 
 

variety 9 10 11 12 13 14 15 16
12.63 11.95 13.29 14.40 16.24 13.00 14.69 12.86

 
 

variety 17 18 19 20 21 22 23 24
14.94 15.28 16.50 16.44 15.18 16.10 13.18 15.55
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Figure 3.12

 
 

variety 25
15.73

 
 
Standard errors of differences
 
Average:  0.6072
Maximum:  0.6401
Minimum:  0.5719
 
Average variance of differences: 0.3689 
 

The output describes the models, and prints their parameters. Notice that the Wald and
F statistics (now 241.61 and 10.05) are smaller than those (313.04 and 13.04) from the
original analysis in this section that fitted just the AR order 1 × AR order 1 spatial model.
The inclusion of measurement error is needed to represent the fertility patterns in the field
correctly, but this acknowledges that the data are more variable than can be modelled just
by the spatial model. This emphasizes the point that you should not select your random
model by seeing which one gives the most significant results for the fixed terms!

So, although it is interesting to notice the increase in the F statistic (from 8.84 to 10.21)
compared to the previous, conventional analysis of the data as a lattice square design
(Section 1.8). The correct reason for using the spatial analysis is that, if we had used the
similar Linear Mixed Models Further Output menu at in Section 1.8 to display the Akaike and
Schwartz Bayes coefficients we would have obtained the values

 Akaike information coefficient  272.28
Schwarz Bayes information coefficient  283.59

and these are much larger than the values 252.20 and 266.34 above. (Remember that we
cannot use the deviance here, as one model is not an extension of the other one.)

The menu for an irregular grid
(Figure 3.12) is similar to the
menu for a regular grid (Figure
3.4), but with irrelevant boxes
removed and the boxes for row
and column factors replaced by
boxes for x and y positions (or
coordinates). The model choices
are restricted to identity or
power. The power can be of "city
block" distance (row distance
plus column distance), or squared
distances (row distance squared
plus column distance squared) or
Euclidean distance (square root of row distance squared plus column distance squared).
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3.3 The VSTRUCTURE directive

Correlation models are defined by the VSTRUCTURE directive. The spatial analysis menus
use only a limited selection of its facilities, so we present the full syntax below. However,
for a full description you should read the Guide to the Genstat Command Language, Part
2 Statistics, Section 5.4.

VSTRUCTURE directive
Defines a variance structure for random effects in a REML model.

Options
TERMS = formula Model terms for which the covariance structure

is to be defined
FORMATION = string token Whether the structure is formed by direct

product construction or by definition of the
whole matrix (direct, whole); default dire

CORRELATE = string token Whether to impose correlation across the model
terms if several are specified (none,
positivedefinite, unrestricted); default
none

CINITIAL = scalars Initial values for covariance matrix across terms
COORDINATES = matrix or variates Coordinates of the data points to be used in

calculating distance-based models

Parameters
MODELTYPE = string tokens Type of covariance model associated with the

term(s), or with individual factors in the term(s)
if FORMATION=direct (identity, fixed,
AR, MA, ARMA, power, boundedlinear,
circular, spherical, linearvariance,
banded, correlation, antedependence,
unstructured, diagonal, uniform, FA,
FAequal) default iden

ORDER = scalar Order of model
HETEROGENEITY = string token Heterogeneity for correlation matrices (none,

outside); default none
METRIC = string token How to calculate distances when

MODELTYPE=power (cityblock, squared,
euclidean); default city

FACTOR = factors Factors over which to form direct products
MATRIX = identifiers To define matrix values for a term or the factors

when MODELTYPE=fixed
INVERSE = identifiers To define values for matrix inverses (instead of

the fixed matrices themselves) when
MODELTYPE=fixed

DISTANCES = symmetric matrices Symmetric matrix of pre-formed distances to be
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used in distance-based models of order one
COORDINATES = matrices, variates or pointers

Specifies coordinates of each factor level to be
used in calculating distance-based models

INITIAL = scalars, variates, matrices, symmetric matrices or pointers
Initial parameter values for each correlation
matrix (supplied in the structures appropriate for
the model concerned)

CONSTRAINTS = texts Texts containing strings none, fix or
positive to define constraints for the
parameters in each model

EQUALITYCONSTRAINTS = variates Non-zero values in the variate indicate groups of
parameters whose values are to be constrained to
be equal

VSTRUCTURE can be used only after VCOMPONENTS has defined the fixed and random
models. It can be used more than once to define different structures for different random
terms. The information is accumulated within Genstat, and it will all be used by
subsequent REML commands. You can check on the model and covariance structures
defined at any time by using the VSTATUS directive. To cancel a covariance structure for
a term you simply need to use VSTRUCTURE to change the model back to the default
identity matrix. To cancel all covariance structures you can give a new VCOMPONENTS
command and redefine the fixed and random models.

By default the covariance model is formed as the direct product of several matrices,
one for each factor in the term. The models used to define the matrices are specified by
the first parameter of VSTRUCTURE, called MODELTYPE, and the FACTOR parameter
specifies the corresponding factor. Setting option FORMATION=whole allows you to
define a single covariance matrix for the whole term. (You would then omit the FACTOR
parameter.) 

Other parameters specify information for the model, for example ORDER specifies its
order. The TERM option specifies the model term. So, in particular, the AR1qAR1
structure, used for fieldrow.fieldcolumn in Section 1.2 , would be defined by

VSTRUCTURE [fieldrow.fieldcolumn] AR,AR;\
  FACTOR=fieldrow,fieldcolumn; ORDER=1,1

and the AR2qAR2 structure would be defined by

VSTRUCTURE [fieldrow.fieldcolumn] AR,AR;\
  FACTOR=fieldrow,fieldcolumn; ORDER=2,2

Any factors in the term for which no model is defined are assumed to have an identity
matrix as their correlation matrix (i.e. their effects are uncorrelated). This actually means
that you can specify models for several terms at once, but it is more usual to specify only
one.

If we write the value in the correlation matrix C in row i and column j as cij, the
matrices corresponding to the full range of settings of MODELTYPE can be defined as
follows.
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identity identity matrix ci, i = 1, ci,j = 0, for i=/ j

fixed fixed matrix ci, j  specified

AR auto-regressive
order 1 or 2
(ö2=0 for order 1)

ci, i = 1
ci+1, i = ö1 / (1!ö2)
ci, j = ö1 ci!1, j + ö2 ci!2, j,
i > j+1
 !1 < ö1

 ö2 < 1
*ö1+ö2*<1
ö2!ö1<1
 ö2>!1

MA moving average
order 1 or 2
(è2=0 for order 1)

ci, i = 1
ci+1, i = !è1(1!è2)/(1+è2

1+è2
2)

ci+2, i = !è2 / (1+è2
1+è2

2)
ci, j = 0,  i>j+2
!1 < è1

è2 < 1
è2 ± è1 < 1

ARMA auto-regressive
moving-average
order 1

ci, i = 1
ci+1, i  = (è!ö)(1!öè) /
            (1+è2-2öè)
ci, j = öci!1, j ,  i>j+1
!1 < ö,
è < 1

power based on distance
order 1 or 2 
(ö1 = ö2 for order 1)

ci, i = 1
ci, j = ö1

d1ö2
d2

d1, d2 = distance in 1st and
2nd dimensions
0 < ö1

ö2 < 1

boundedlinear based on distance
order 1

ci, j = 1 ! d/ö  for d # ö,
ci, j = 0  for d > ö
0 < ö

circular based on distance
order 1

ci, j = 1 !
(2/ð){(d/ö)%(1!(d/ö)2) +
sin!1(d/ö)}  for d # ö,
ci, j = 0  for d > ö
0 < ö
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spherical based on distance
order 1

ci, j = 1 ! 1.5(d/ö) + 0.5(d/ö)3 
for d # ö,
ci, j = 0  for d > ö
0 < ö

linearvariance based on distance
order 1

ci, i = 1 ! 2ö d / max(d)
0 < ö < 1

banded equal bands
1 < order < nrows!1

ci, i = 1
ci+k, i = èk , 1 < k < order
ci+k, i = 0, otherwise
!1 < èk < 1

correlation general correlation
matrix
1 < order < nrows!1

ci, i = 1
ci, j = èij , 1 < *i!j* # order
ci, j = 0,   *i!j* > order
!1 < èij < 1

uniform uniform matrix ci, j = è   for all i,j

diagonal diagonal matrix ci, i = èi

ci, j = 0,  i�j

antedependence ante-dependence
model
1 < order < nrows!1

c!1 = UD!1UN
{D}i, i

!1 = di
!1,

{D}i, j = 0   for i�j
{U}i, i = 1,
{U}i, j = uij ,
1 # j!i # order
{U}i, j = 0, for i>j

unstructured general covariance
matrix
1 < order < nrows!1

ci, j = èij , 0 < *i!j* # order
ci, j = 0,   *i!j* > order

FA factor analytic
order = 1 or 2

C = ËËN + Ø
Ë is an nrows × q matrix
order=q
{Ø}i = øi for i=1...nrows

FAequal factor analytic with
common variance
order = 1 or 2

C = ËËN + Ø
Ë is an nrows × q matrix
order=q
{Ø}i = ø for i=1...nrows

Initial parameter values can be specified using the INITIAL parameter. For most
models, the number of initial values required is the number of parameters, and default
values will be generated. However, for unstructured models, a full covariance matrix
of initial values must be given, and for the correlation model a full correlation matrix
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must be provided. For the ante-dependence model, either a full covariance matrix can
be provided, or a pointer to a U and a D!1 matrix of the correct forms. For the FA and
FAequal models, a pointer must be used to give the initial Ë and Ø matrices, otherwise
default initial values are generated. The FAequal model can be used to get initial values
for the FA model. Initial values are required for these models because the algorithm may
not converge when many parameters are fitted if the starting values are not realistic.
Initial values might be generated from covariance matrices estimated by fitting simpler
models, or from residuals from a null variance model. A missing value in the initial
values is taken to mean that the value is inestimable and it will be fixed at a small value
for the analysis. Alternatively, a parameter can be fixed at its initial value using the
CONSTRAINTS parameter. The codes (not case sensitive and able to be abbreviated) may
take value fix to indicate the parameter is to be fixed at its initial value, positive to
indicate it is to remain positive or none to indicate no constraints. The default is
positive/no constraint depending on context, for example scaling parameters are always
constrained to remain positive. The default is positive/no constraint depending on
context, for example scaling parameters are always constrained to remain positive. The
EQUALITYCONSTRAINTS parameter allows you to constrain some of the parameters to
have the same value. The variate that it specifies contains a zero value if there is no
constraint, and an identical integer value for any set of parameters whose values are to
be equal. So, a variate containing the values (0,1,2,1,2) would constrain the second
parameter to be equal to the fourth parameter, and the third parameter to be equal to the
fifth parameter.

It may sometimes be desirable to allow for unequal variances for the models defined
in terms of correlation matrices: that is, for the AR, MA, ARMA, uniform, power,
boundedlinear, circular, spherical, linearvariance, banded and
correlation models. This can be done by setting option HETEROGENEITY=outside.
This means a diagonal matrix D of standard errors will be applied to the correlation
matrix C to generate a matrix D½CD½. In this case, a number of extra parameters (equal
to the number of effects in the factor or term) should be added to the vector of initial
values. These models allow investigation of a structured correlation pattern for changing
variances and are particularly useful in the analysis of repeated measurements data when
variance increases over time. For example, to allow for changing variance over time in
our example above, we can specify

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] MODELTYPE=AR; ORDER=1;\
  FACTOR=Week; HETEROGENEITY=outside
REML Y

In some circumstances, you may wish to define a single model to apply to the whole
term, instead of using the direct product form illustrated above. In this case, you should
set option FORM=whole. Note that, when a term consists of a single factor, it is not
necessary to set the FACTOR option.

With MODELTYPE=fixed, you must either use the MATRIX option to specify the values
of the covariance matrix C, or the INVERSE option to specify the inverse matrix. Values
for the matrix or its inverse can be supplied as diagonal matrices or symmetric matrices.
In addition, values for the inverse matrix can be supplied in sparse form as a pointer. The
output from VPEDIGREE is designed for input here, but you can also define the inverse
matrix explicitly. The second element of the pointer should then be a variate containing
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the non-zero values of the inverse in lower triangular order. The first element should be
a factor, with number of levels equal to the number of rows n(n+1)/2 of the matrix. This
has firstly a block of n values giving the position in the variate of the first value stored
for each row. There is then a block of values for each row in turn, giving the columns in
which each non-zero value appears.

When MODELTYPE=power is used to define a distance-based model, the model can be
of order 1 (isotropic) or 2 (anisotropic). For models with ORDER=1, a single set of
distances must be formed. The necessary information can be supplied using either the
COORDINATES option, or the COORDINATES parameter, or the  DISTANCES parameter.
With the COORDINATES option you can specify either a matrix, or a list of variates, to
define multi-dimensional coordinates for each unit of the data. The length of the variates,
or the number of rows of the matrix, must be equal to the number of data values. The
number of variates, or the number of columns of the matrix, is equal to the number of
dimensions. The coordinates for the levels of each FACTOR are then calculated as the
mean values of the coordinates of the units included in the analysis with those levels.
Alternatively, you can use the COORDINATES parameter to specify a single variate, a
pointer to several variates or a matrix to define multi-dimensional coordinates for each
level of the FACTOR. This parameter takes precedence over the COORDINATES option.
The length of the variates, or the number of rows of the matrix, must be equal to the
number of levels of the FACTOR. The number of variates, or the number of columns of
the matrix, is again equal to the number of dimensions.

The distance calculation is defined by the METRIC option. For levels i and j with
n-dimensional coordinates {cik: k=1...n} and {cjk: k=1...n} the distance dij is defined as

dij  =  Ók |cik ! cjk| for METRIC=cityblock (the default); 
dij  =  Ók (cik ! cjk)

2 for METRIC=squared; and 
dij  = {Ók (cik ! cjk)

2}1/2 for METRIC=euclidean.
Finally, you can supply a symmetric matrix of pre-calculated distances, using the

DISTANCES parameter, and this takes precedence over the COORDINATES parameter and
option. The number of rows of the DISTANCES matrix must be equal to the number of
levels of the FACTOR.

When MODELTYPE=power and  ORDER=2, the DISTANCES parameter cannot be used,
and only two-dimensional coordinates are allowed. The coordinates must be specified
using either the COORDINATES option or parameter, as described above. The distances
are calculated within each dimension separately, according to the setting of the METRIC
option. In this case the Euclidean and city-block distances are equivalent.

The spherical family of geostatistical models correspond to the MODELTYPE settings
boundedlinear (for one-dimensional distances), circular (for one or two
dimensions) and spherical (for one or two dimensions). These models are based on
distances, and require coordinates to be supplied using either the COORDINATES option
(to give coordinates for each data value), or the COORDINATES parameter (to give
coordinates for each factor level), as described for MODELTYPE=power above. The
parameter ö is interpreted as the range at which the correlation is considered to have
decayed to zero. A small value therefore indicates weak correlation, and a large value
indicates stronger correlation. These models do not have continuous second derivatives,
and their log-likelihood may be multi-modal. To detect this potential problem, it is
therefore important to start their estimation from several different initial values; this can
be done using the INITIAL parameter as described above. To ensure that the estimated
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correlation matrix differs from the identity matrix, it is necessary for the range parameter
to be larger than the minimum distance specified by the coordinates; any initial value
smaller than this will be adjusted.

The setting MODELTYPE=linearvariance specifies the linear variance model. This
is parameterized so that the parameter ö lies in the range [0,1], which allows correlations
in the range [-1,1]. Values of ö close to one indicate weak correlation and values close
to zero indicate strong correlation between neighbouring observations.

The CORRELATE option allows you to specify correlations between model terms which
have equal numbers of effects. A common correlation will then be fitted between parallel
effects. For example, consider a random coefficient regression model where the fixed
model contains common response to covariate X and the random model allows for
deviations in the intercept and slope about this line for each subject. The random
intercept and slope for each subject may be correlated, but subjects are independent. This
correlation across terms is defined using the CORRELATE option as follows:

VCOMPONENTS [FIXED=X] RANDOM=SUBJECT+SUBJECT.X
VSTRUCTURE [SUBJECT+SUBJECT.X; CORRELATE=positivedefinite;\
  CINITIAL=!(1,0.1,0.3); FORM=whole]

The CORRELATE option setting positivedefinite is used to ensure that the
correlation matrix between the terms remains positive definite. This constraint can be
relaxed using the setting unrestricted (an unstructured covariance matrix is then used
to describe covariance across the terms). The model fitting is done here in terms of a
covariance matrix, where the diagonal elements are the gammas for the correlated terms.
The CINITIAL option is used to give initial values for this matrix. If no initial values are
given, the initial values are taken from initial gamma values given in VCOMPONENTS
when the model is declared. When correlations are declared between terms, you must set
FORMATION=whole. In the random coefficient regression model above, no correlation
structure is declared within terms since the subjects are independent. However, it is
possible to declare correlation/covariance models within terms as usual.

3.4 Practical

Spreadsheet file Wheat72.gsh contains data from a trial of 35 varieties of wheat. The
design has two replicates each laid out in a 5 by 7 plot array. Fit an AR1qAR1 spatial
model, and see whether there is there any evidence of an additional replicate effect or of
measurement error. Is there any advantage in increasing the order of either
auto-regressive structure to AR2?

3.5 The variogram

The variogram is a tool from Geostatistics, that can also be useful in spatial modelling
(see the Guide to the Genstat Command Language Part 2 Statistics, Section 8.3). It
assesses how the variance of the difference between observations at two points differs
according to their spatial relationship. Mathematically

variance(x ! y) = variance(x) + variance(y) ! 2 × covariance(x,y)
If we assume a stationary spatial process, the variances and covariances will depend only
on the relative positions of the points, and not on their exact locations. Then

variance(x ! y) = 2 × ó2 (1 ! ñ)
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Figure 3.11

where
ó2 is the variance at point x and at point y, and
ñ is the correlation between 2 points relatively spaced like x and y.

The variogram is the semi-variance, i.e. ½ × variance(x ! y) expressed as a function of
their relative positions, and the empirical or sample variogram is an estimate of
variogram made from the data. For example, we can estimate the semi-variance for points
in adjacent rows by taking the ½ × mean of the squared differences between the residuals
at the pairs of data points that occur in adjacent rows.

Some typical variogram patterns are as follows:
• independent noise ! sharp increase away from zero, otherwise flat;
• auto-regressive errors of order 1 with a high positive correlation ! slow increase as lag

increases, tailing off to constant;
• auto-regressive errors of order 1 with a low positive correlation ! fast increase as lag

increases, tailing off to constant;
• alternating pattern ! usually reflects systematic row/column effects or may suggest

negative correlation.
You may often see a mixture of patterns, for example AR1 + independent (measurement)
error would generate a step change at zero followed by a smooth increase. However,
interpretation can be rather subjective!

T h e  t w o - d i m e n s i o n a l
variogram from a spatial model
can be plotted automatically
whenever you run a spatial
analysis by checking the relevant
box in the Spatial Model Options

menu (Figure 3.5). Alternatively,
you can click on the Display

variogram button in the Spatial

Model Further Output menu
(Figure 3.9) to obtain the
Variogram Options menu, which
gives more control over the plot.
Or you can simply click on OK to use the default options.
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Figure 3.12

Figure 3.13

The variogram from the final
model in Section 3.2 is shown in
Figure 3.12, and seems to be
reasonably compatible with the
anticipated pattern.

3.6 Practical

Plot and interpret the variograms for the model(s) fitted to the data in spreadsheet file
Wheat72.gsh analysed in Practical 3.2.

3.7 Determining the random and correlation models automatically

The earlier sections of this
chapter have explained how to
use the spatial analysis menus to
explore random models and
correlation structures, and find
the one that best explains the
random variability. Strategies for
doing this with incomplete-block
and row-column designs  have
been programmed in Genstat
procedures, and these are used by
the automatic REML analysis menus, to enable you to determine appropriate random or
correlation models automatically.

The ideas can be illustrated by the menu for Automatic Spatial Analysis of Row-Column

Designs (Figure 3.14), which uses the procedure VAROWCOLUMNDESIGN. To open the
menu, you click Stats on the menu bar, select Mixed Models (REML), select Automatic

Analyses and then click on Row-Column Design (see Figure 3.13).
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Figure 3.14

Figure 3.15

To analyse the Slate-Hall farm
data, we set the Y-variate to
yield, the Replicate factor to
replicates, the Row factor to
fieldrow. the Column factor to
fieldcolumn, the Plot factor to
plotnumber, and the Fixed

model to variety. We also
include replicates, in the
Additional random terms, to ensure
that this is included in the
random when (below) we search for the "best model".

The Y-variate, Row factor and Column factor must be specified, but you do not need to
supply a Fixed model or a Replicate factor.

The Options menu (Figure
3.15) controls the output, the
models that are tried, and the
strategy to use.

The Display box, at the top,
controls the output that is
produced about the models that
have been tried. 

The Display output from best

model box allows you to display
the most popular types of output
from the best model. Others are
available from the Further Output

menu (Figure 3.16).
The Model options box controls

several of the usual properties of
the models, for example, whether
to constrain variance components
to be positive, or whether to
include units with missing
values. It also allows you to see
whether linear trends are needed
across the rows and the columns.
To do this, VAROWCOLUMNDESIGN investigates whether two covariates are needed in the
fixed model. These contain row and column coordinates respectively. The coordinates
can be specified by entering variates into the Coordinates fields in the main menu. If these
fields are left blank, the levels of the row or column factors are used instead. Finally, the
Model options box  allows you to choose whether or not to try to fit spatial models.

The strategy for selecting the random model is controlled by the Model strategy box. The
Criterion to assess models list box indicates whether the models are to be assessed by their
Akaike or Schwarz (Bayesian) information coefficients. The Strategy for selecting model

list box specifies which random models are tried. The possibilities are as follows.
All random terms fits the full random model, i.e. replicates, rows
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within replicates and columns within replicates if
a replicate factor has been supplied, or rows and
columns otherwise. This is appropriate if the row
and column factors played a key role in the design
and its randomization. For example, some factors
may have been applied to complete rows or
complete columns, as in a strip-block design.

All feasible random terms tries to fit the full random model. If this is not
possible, it tries models removing first one random
term, then two and so on, until successful.

Only additional random terms simply fits the additional random terms (if any).
This is useful when you know the random model
and want to investigate the effect of adding spatial
covariance models.

Only feasible additional random terms tries to fit the additional random terms.  If this is
not possible, it tries removing first one random
term, then two and so on, until successful.

Best possible random model tries all feasible random models. This may take a
while, and so may be best left for the occasions
when you are unsure what to do, or want to check
the results from the fast strategy.

Fast strategy to find best model follows an automatic strategy that aims to find the
best random model without having to fit all of
them. So, for example, it does not try models that
include a column main effect as well as a spatial
covariance model along rows.

The output below shows the results given by the menu settings in Figure 3.15. The first
section of the output summarizes the models that have been tried by the fast strategy.
There are several that we did not try earlier in this chapter, but the conclusion is the same.
The best model (chosen as the one with smallest Schwarz Bayesian information
coefficient) fits auto-regressive structures on the rows and columns, together with
measurement error (with replicates as an additional random term). The analysis then
reproduces the output shown in Section 3.2.

Automatic REML analysis of row-by-column design
 
 

Accumulated summary of REML random models
 

Deviance AIC SIC Random
d.f.

No random terms  565.12  569.12  574.78  2
Rows  558.21  564.21  572.69  3

Columns  547.83  553.83  562.32  3
Rows & Columns  534.73  542.73  554.05  4

AR1(x)I  540.12  546.12  554.60  3
Rows & AR1(x)I  521.20  529.20  540.51  4

AR1(x)I & measurement_error  540.10  548.10  559.41  4
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Rows & AR1(x)I & measurement_error  521.12  531.12  545.26  5
I(x)AR1  498.60  504.60  513.08  3

Columns & I(x)AR1  492.35  500.35  511.66  4
I(x)AR1 & measurement_error  498.59  506.59  517.90  4

Columns & I(x)AR1 & measurement_error  490.98  500.98  515.12  5
AR1(x)AR1  479.07  487.07  498.39  4

AR1(x)AR1 & measurement_error  471.93  481.93  496.08  5
 
 
Note: omits constant, -log(det(X'X)), that depends only on the fixed model.
 

Best model (by Schwarz Bayesian information coefficient):

 AR1(x)AR1 & measurement_error

 

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + variety
Random model: replicates + fieldrow.fieldcolumn + units
Number of units: 150
 
fieldrow.fieldcolumn used as residual term with covariance structure as below
 
Sparse algorithm with AI optimisation
 
 

Covariance structures defined for random model
 
Covariance structures defined within terms:

Term Factor Model Order No. rows
fieldrow.fieldcolumn fieldrow Auto-regressive (+ scalar) 1 10

fieldcolumn Auto-regressive 1 15
  
 

Estimated variance components
 
Random term component s.e.
replicates  -0.078  0.162
units  0.500  0.181
 
 

Residual variance model
 
Term Factor Model(order) Parameter Estimate s.e.
fieldrow.fieldcolumn

 Sigma2 4.622  1.707
fieldrow AR(1) phi_1  0.6922  0.1022
fieldcolumn AR(1) phi_1  0.8442  0.0685
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Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 241.61 24 10.05 74.7  <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 241.61 24 10.05 74.7  <0.001
 
 

Table of predicted means for Constant
 
  14.47    Standard error:  0.894
 
 

Table of predicted means for variety
 

variety 1 2 3 4 5 6 7 8
12.45 15.14 14.05 14.06 14.71 15.21 13.74 14.53

 
 

variety 9 10 11 12 13 14 15 16
12.63 11.95 13.29 14.40 16.24 13.00 14.69 12.86

 
 

variety 17 18 19 20 21 22 23 24
14.94 15.28 16.50 16.44 15.18 16.10 13.18 15.55

 
 

variety 25
15.73

 
 
Standard errors of differences
 
Average:  0.6072
Maximum:  0.6401
Minimum:  0.5719
 
Average variance of differences: 0.3689 
 



3.7  Determining the random and correlation models automatically 91

Figure 3.16

Figure 3.17

The Further Output menu is
similar to those earlier in this
chapter. So you can print or plot
additional information from the
analysis of the best model, in the
usual way.

Of course, no automatic
method can guarantee to work as
well as a detailed investigation
by an expert. For example, to
avoid the process becoming
unmanageable, only first-order
auto-regressive models are tried,
and the trends that can be fitted
are linear across the whole field.

So it may also be sensible to
plot a variogram, to check how
well the model has succeeded in
representing the random variation
(see Section 3.5). If you are
unhappy with the results, the best
model from the automatic menu should provide a good starting point for further
investigation.

The menu for automatic
analysis of incomplete-block
designs (Figure 3.17) is very
similar to the menu for row-
column designs except that you
specify a factor for blocks on the
main menu, instead of factors for
rows and columns.
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Figure 3.18

The factors for rows and
columns are specified on the
Options menu (Figure 3.18) if you
want to fit correlation models.

3.8 Practical

Spreadsheet file Gentrial2.gsh contains data from a trial with 24 genotypes in a non-
resolvable row-column design. Factors Row and Column specify the row and column
coordinates of the plots. There is no replicate factor. (Therefore leave that box of the
menu empty.) Some plots have missing values, and these must be estimated in order to
retain the regular grid of plots. Analyse the trial using the best random model.

Why are no correlation models fitted across the columns? (Hint: how many columns
are there.)
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Figure 3.19

Figure 3.20

3.9 Automatic analysis of series of trials

The menu for Automatic Analysis

of Series of Trials uses the
VASERIES  and VAMETA

procedures to do a meta analysis
of a series of trials with either
row-column des igns  or
incomplete-block designs (i.e.
those that can be analyses by the
other two automatic menus). You
enter the block factor into the
Block factor box, and the row and
column factors are entered into
the Row factor and Column factor boxes. If all the trials have incomplete-block designs, the
row and column factors need not be specified, and blocks need not be entered if they are
all row-column designs. If there is a mixture, the row and column factors should either
have only one level or missing values in each of the block designs, and the block factor
should have only one level or missing values in each row-column design.

The spreadsheet  f i le
SitesAtoD.gsh (Figure 3.20)
contains data from trials at four
locations. There are 1310 new
entries and two control
genotypes. The controls are
replicated in every trial. The new
entries are unreplicated within
the trials and do not occur in
every trial. The entries must thus
be assessed by the combined
analysis of the results from all the
trials. Missing values are again
included to provide a regular
grid.

The trials at locations A, B and
D have row-column designs,
while the trial at location C has
an incomplete-block design. The
block factor for trials A, B and D
therefore only contain level one.
Similarly the row and column
factors at location C only contain
level one.
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Figure 3.21

In the options menu we have
selected Fast strategy to find best

model to reduce the amount of
computation. We have checked
Summary to print a summary of
the models selected for the trials,
Candidate models to see the
models tried for each trial, and
Best model to show the best one
(chosen using the Schwarz
Bayesian information criterion.)
We have chosen not to display
any other output. (We shall do
this later using the further output
menu.) We shall try spatial
models only if the plots are in a
regular grid (and estimate
missing data values in order to
achieve that). Finally, we have
checked the box to run a meta
analysis following the analyses of
the individual trials.

The output is shown below.

location A
 
 

Automatic REML analysis of row-by-column design
 
 

Accumulated summary of REML random models
 
 

Deviance AIC SIC Random
d.f.

No random terms  43.16  45.16  47.33  1
Rows  43.12  47.12  51.46  2

Columns  37.12  41.12  45.47  2
Rows & Columns  37.12  43.12  49.64  3

 
 
Note: omits constant, -log(det(X'X)), that depends only on the fixed model.
 

Best model (by Schwarz Bayesian information coefficient): Columns
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location B
 
 

Automatic REML analysis of row-by-column design
 
 

Accumulated summary of REML random models
 
 

Deviance AIC SIC Random
d.f.

No random terms  161.18  163.18  165.81  1
Rows  161.00  165.00  170.25  2

Columns  152.81  156.81  162.06  2
Rows & Columns  139.98  145.98  153.85  3

AR1(x)I  104.38  108.38  113.63  2
Rows & AR1(x)I  103.52  109.52  117.39  3

AR1(x)I & measurement_error  103.98  109.98  117.85  3
I(x)AR1  106.70  110.70  115.95  2

Columns & I(x)AR1  104.23  110.23  118.10  3
I(x)AR1 & measurement_error  106.37  112.37  120.25  3

Columns & I(x)AR1 & measurement_error  103.98  111.98  122.48  4
AR1(x)AR1  75.32  81.32  89.19  3

AR1(x)AR1 & measurement_error  66.86  74.86  85.36  4
 
 
Note: omits constant, -log(det(X'X)), that depends only on the fixed model.
 
Note: table excludes models that could not be fitted successfully.
 

Best model (by Schwarz Bayesian information coefficient):

 AR1(x)AR1 & measurement_error

 

location C
 
 

Automatic REML analysis of incomplete-block
design
 
 

Accumulated summary of REML random models
 
 

Deviance AIC SIC Random
d.f.

No random terms  166.42  168.42  171.16  1
Blocks  158.08  162.08  167.57  2

 
 
Note: omits constant, -log(det(X'X)), that depends only on the fixed model.
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Best model (by Schwarz Bayesian information coefficient): Blocks

 

location D
 
 

Automatic REML analysis of row-by-column design
 
 

Accumulated summary of REML random models
 
 

Deviance AIC SIC Random
d.f.

No random terms  234.02  236.02  238.86  1
Rows  231.11  235.11  240.80  2

Columns  212.92  216.92  222.61  2
Rows & Columns  206.58  212.58  221.11  3

AR1(x)I  167.19  171.19  176.88  2
Rows & AR1(x)I  167.14  173.14  181.67  3

AR1(x)I & measurement_error  166.03  172.03  180.56  3
Rows & AR1(x)I & measurement_error  166.00  174.00  185.38  4

I(x)AR1  188.75  192.75  198.44  2
Columns & I(x)AR1  180.33  186.33  194.87  3

I(x)AR1 & measurement_error  188.59  194.59  203.12  3
Columns & I(x)AR1 & measurement_error  180.30  188.30  199.68  4

AR1(x)AR1  141.59  147.59  156.13  3
AR1(x)AR1 & measurement_error  138.92  146.92  158.29  4

 
 
Note: omits constant, -log(det(X'X)), that depends only on the fixed model.
 

Best model (by Schwarz Bayesian information coefficient): AR1(x)AR1

 

Summary: best model for each experiment
 
 

 location   Best model
A  Columns
B  AR1(x)AR1 & measurement_error
C  Blocks
D  AR1(x)AR1

A different random model has been selected for every trial. The VAMETA procedure sets
up the additional factors required to fit these in the meta analysis, in a similar way to the
meta analysis in Chapter 2. These are labelled in the output by the name of the original
factor, followed by @ and then the level or label of the trial: for example block@C for 
block effects in trial C.
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Figure 3.21

You can use the Automatic
Analysis of Series of Trials Further

Output menu to display output
from any of the individual trials
or from the meta analysis, using
the drop-down list at the top of
the menu.

The output below shows the
variance components, Wald tests
and predicted means. Notice that,
as a result of the complexity of
the analysis, Genstat has been
unable to  est imate the
denominator degrees of freedom
to provide F tests for the fixed
effect. The chi-square statistic is
sufficiently large here for this not
to be a problem!

Meta Analysis
 

REML variance components analysis
 
Response variate: yield
Fixed model: Constant + entry
Random model: location + column@A + plots@B + block@C
Number of units: 2232
 
Separate residual terms for each level of experiment factor: location
 
Sparse algorithm with AI optimisation
Units with missing factor/covariate values included
 - specific effect for term(s) omitted for units with missing values in column@A, plots@B,
block@C
Units with missing data values included
 
 

Residual models for multi-experiment analysis
 
Experiment factor: location 
 
Experiment Term Factor Model Order  Nrows
A Residual Whole term Identity 0 360
B row.column row Auto-regressive 1 36

 column Auto-regressive 1 18
C Residual Whole term Identity 0 576
D row.column row Auto-regressive 1 36

 column Auto-regressive 1 18
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Estimated variance components
 
Random term component s.e.
location  1.8302  1.5112
column@A  -0.0009  0.0044
plots@B  0.0422  0.0118
block@C  0.0215  0.0105
 
 

Residual model for each experiment
 
Experiment factor: location 
 
Experiment Term  Factor Model(order) Parameter Estimate s.e.
A Residual Identity Variance 0.149 0.019
B row.column  Variance 0.287 0.086
 row AR(1) phi_1  0.8990  0.0348

column AR(1) phi_1  0.8308  0.0586
C Residual Identity Variance 0.186 0.018
D row.column  Variance 0.310 0.047
 row AR(1) phi_1  0.8332  0.0303

column AR(1) phi_1  0.5013  0.0751
 
Warning 122, code VD 39, statement 1 on line 807
 
Command: VDISPLAY [PRINT=model,components,means,waldtests; PSE=Differences;
FMET
Error in AI algorithm when forming denominator DF for approximate F-tests.
 
 
 

Wald tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic d.f. Wald/d.f. chi pr
entry 2553.59 1032 2.47 <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic d.f. Wald/d.f. chi pr
entry 2553.59 1032 2.47 <0.001
 

Message: chi-square distribution for Wald tests is an asymptotic
approximation (i.e. for large samples) and underestimates the probabilities in
other cases.
 
 

Message: negative variance components present. Fitting of fixed model terms
is not sequential. Effects and means for any aliased fixed model terms may
therefore be misleading. Wald tests, likelihood tests and fitted values are
unaffected.
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Table of predicted means for Constant
 
 

3.002
 
 
Standard errors of means are not available. Standard errors of differences can be obtained
using PSE=diff or PSE=alldiff.
 
 

Table of predicted means for entry
 
 

entry G 1 G 2 G 3 G 4 G 5 G 6 G 7 G 8
2.252 3.606 3.630 3.898 3.145 3.333 3.692 2.866

 
 

entry G 9 G 10 G 11 G 12 G 13 G 14 G 15 G 16
2.966 3.448 3.115 2.847 2.767 3.646 3.176 3.138

 
 

entry G 17 G 18 G 19 G 20 G 21 G 22 G 23 G 24
3.049 3.447 3.571 3.632 3.305 2.793 3.908 3.400

 
 

entry G 25 G 26 G 27 G 28 G 29 G 30 G 31 G 32
3.487 2.982 3.319 3.927 3.506 3.672 3.135 3.449

....................
 
 

entry G 1300 G 1301 G 1302 G 1303 G 1304 G 1305 G 1306 G 1307
2.975 2.866 3.231 2.528 2.402 2.873 2.367 2.688

 
 

entry G 1308 G 1309 G 1310 C 1 C 2
2.650 3.138 2.925 3.059 3.174

 
 
Standard errors of differences
 
Average:  0.4412
Maximum:  0.6769
Minimum:  0.02945
 
Average variance of differences: 0.2014 
 

3.10 Practical

Spreadsheet file Gentrials.gsh contains data from a two trials with 24 genotypes in
non-resolvable row-column designs. The trial at location 2 is the one analysed in
Practical 3.8, and the trial at location 1 has a similar design. As before, factors Row and
Column specify the row and column coordinates of the plots, and there is no replicate
factor. Analyse the trials using the menu for Automatic Analysis of Series of Trials.



4 Repeated measurements

The REML menus provide some very effective alternatives to the more traditional methods
for the analysis of repeated measurements (see the Guide to the Genstat Command
Language Part 2 Statistics, Section 8.1). There are parallels with some of the earlier
methods. For example, Kenward (Applied Statistics, 1987) used ante-dependence
structure to construct tests for changes in treatment effects between particular times and
tests of treatment effects combined over all the times (Guide Part 2, Section 8.1.5), and
this is one of the correlation models examined in Section 4.1. Likewise, random
coefficient regression (Section 4.2) has similarities to the analysis of orthogonal
polynomial coefficients calculated over time (Guide Part 2, Section 8.1.2). However, the
REML framework provides a more flexible framework, in which you can compare one
correlation model with another, or check the assumptions of the whole model.

In this chapter you will learn
• how to model covariances between time effects
• how to fit randon-coefficient regression models Ú

Note: the topics marked Ú are optional.
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Figure 4.1

Figure 4.2

4.1 Correlation models over time

Figure 4.1 shows a Genstat spreadsheet, ATP.gsh,
containing data from an experiment to study the
effects of preserving liquids on the enzyme content
of dog hearts. There were 23 hearts and two
treatment factors, A and B, each at two levels.
Measurements were made of ATP as a percentage of
total enzyme in the heart, at one and two hourly
intervals during a twelve-hour period following
initial preservation. There is the choice of two menus
for repeated measurements depending on whether
the measurements are presented in separate variates
(one for each time), or all in a single variate. The
available analyses are identical, the menus merely
provide different ways of specifying the data for the
analysis.

Here the measurements are all
in a single variate, ATP, and there
are factors heart and time to
indicate which heart provided the
measurement in each unit of ATP,
and the time when the
measurement took place. Figure
4.2 shows the appropriate menu,
which is obtained by clicking on
Stats on the menu bar, selecting
Mixed Models (REML) followed by
Repeated Measurements, and then
clicking on Data in One Variate

(the alternative being Data in

Multiple Variates). In the figure we have filled in all the necessary boxes. Notice that we
need to tell Genstat that the time points were the same for every subject (or heart). This
would not be necessary if the measurements were in individual variates, one for each
time.

The types of model that can be fitted differ according to whether the times of
measurement were equally spaced or irregular. Auto-regressive and uniform correlation
models can be fitted only to equally spaced measurements, whereas unstructured, ante-
dependence or power models can be fitted in either situation.
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Figure 4.3

In this example we shall fit
ante-dependence models: a set of
variates observed at successive
times is said to have an ante-
dependence structure of order r if
each ith variate (i>r), given the
preceding r, is independent of all
further preceding variates. In the
analysis we start with order 1, and
use the Repeated Measurements

Options menu (Figure 4.3) to ask
for only the deviance to be
printed. The menu also sets the
maximum number of iterations; in
Figure 4.3 this is set to 30.

Deviance: -2*Log-Likelihood
 

Deviance d.f.
 1021.84  171

 
Note: deviance omits constants which depend on fixed model fitted.

We can generalize the model by including additional uniform correlation within subjects
(this is equivalent to including a random term for subjects, here the different hearts) or
by increasing the order of ante-dependence to two. To investigate the first alternative we
need to check the Additional uniform correlation within subjects box in Figure 4.2.

Deviance: -2*Log-Likelihood
 

Deviance d.f.
 1011.50  170

 
Note: deviance omits constants which depend on fixed model fitted.

The change in deviance is 10.34. This is distributed as ÷2 on one degree of freedom. So
there is definite evidence to support including uniform correlation within hearts. Now
changing the ante-dependence structure to order two produces the deviance below.
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Deviance: -2*Log-Likelihood
 

Deviance d.f.
 1005.49  162

 
Note: deviance omits constants which depend on fixed model fitted.

The ÷2 value, 6.00 on 8 degrees of freedom, is not significant. So we set the Repeated

Measurements Options menu to print the model, variance components and Wald tests, and
then refit with an ante-dependence of order one (retaining the additional uniform
correlation within subjects).

REML variance components analysis
 
Response variate: ATP
Fixed model: Constant + time + A + B + time.A + time.B + A.B + time.A.B
Random model: heart + heart.time
Number of units: 230
 
heart.time used as residual term with covariance structure as below
 
Sparse algorithm with AI optimisation
 
 

Covariance structures defined for random model
 
Covariance structures defined within terms:
 
Term Factor Model Order No. rows
heart.time heart Identity 0 23

time Antedependence 1 10
 
 

Estimated variance components
 
Random term component s.e.
heart  10.521  4.512
 
 

Residual variance model
 
Term Factor Model(order) Parameter Estimate s.e.
heart.time Sigma2 1.000 fixed

heart Identity -        - -
time Antedependence(1)

dinv_1  0.09156  0.04175
  dinv_2  0.06305  0.03047
  dinv_3  0.03440  0.01241
  dinv_4  0.03129  0.01108
  dinv_5  0.01486  0.00543
  dinv_6  0.02841  0.01039
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  dinv_7  0.009922  0.003256
  dinv_8  0.01197  0.00394
  dinv_9  0.01024  0.00335
  dinv_10  0.009345  0.003043
  u_12  0.2208  0.4184
  u_23  -0.03478  0.37496
  u_34  -0.05258  0.26517
  u_45  0.5696  0.3692
  u_56  0.2383  0.1711
  u_67  -0.5744  0.3831
  u_78  -0.5977  0.2004
  u_89  -0.4168  0.2088
  u_910  -0.6001  0.2217

 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
time 274.00 9 25.52 34.2  <0.001
A 0.42 1 0.42 18.6  0.525
B 0.29 1 0.29 18.6  0.598
time.A 38.60 9 3.60 34.2  0.003
time.B 23.01 9 2.14 34.2  0.052
A.B 5.76 1 5.76 18.6  0.027
time.A.B 3.04 9 0.28 34.2  0.975
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
time.A.B 3.04 9 0.28 34.2  0.975
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.
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Figure 4.4

The output shows evidence of
time effects and of interactions
involving time, A and B. So we
finish by using the Repeated

Measurements Further Output

menu (Figure 4.4) to print A by B
by time tables of predicted
means.

Table of predicted means for time.A.B
 
 

B 1 2
time A  

0 1 77.47 84.14
2 82.22 82.35

1 1 72.95 81.26
2 84.38 81.94

2 1 79.31 82.74
2 78.36 75.70

3 1 74.98 79.98
2 75.16 75.48

4 1 76.10 75.17
2 75.23 69.41

5 1 72.37 71.86
2 73.46 61.59

6 1 64.38 61.33
2 67.63 58.93

8 1 57.87 47.62
2 68.92 56.73

10 1 48.40 43.68
2 61.16 54.50

12 1 43.43 39.31
2 56.83 51.52
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Figure 4.5

Figure 4.6

Standard errors of differences
 
Average:  5.088
Maximum:  7.670
Minimum:  2.314
 
Average variance of differences: 27.32 
 
Standard error of differences for same level of factor:
 

time A B
Average:  5.082  4.953  4.953
Maximum:  7.670  7.670  7.670
Minimum:  2.673  2.314  2.314

 
Average variance of differences:
 28.64  25.92  25.92  

To plot the means we click on the
Means Plot button in the Repeated

Measurements Further Output

menu, to open the Means Plot

menu shown in Figure 4.5. We
specify time as the factor for the
x-axis, and generate a trellis plot 
with B as the trellis factor, and A
as the groups factor.

The plot (Figure 4.6) shows
that the most interesting points
on the ATP declines are just when
the recording interval changed
from hourly to every two hours!
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Figure 4.7

4.2 Practical

In a trial to study the effect of a dietary additive, seven rats were allocated at random to
receive the standard diet, and seven to receive the enhanced diet. Their weight gains were
measured after 1, 3, 5, 7 and 10 weeks. The data contained in Genstat spreadsheet
Ratmeasures.gsh. Analyse the data using the Repeated Measurements menu. Hint: try
an ante-dependence structure of order one with no random subject effects, or a power
model, and remember that the data are in one variate.

4.3 Random coefficient regression

Random coefficient regression models the way in which the responses of the individual
subjects change over time by fitting linear models with time as the x-variate. Often the
model will be just a simple linear regression over time but in more complicated
situations, polynomials may be used.

The analysis models all the coefficients of the polynomials for each subject
simultaneously, assuming that each one comes from a random population whose means
may depend on the treatments received by the subject. (The analysis is thus similar to the
traditional analysis of polynomial contrasts over time, described in the Guide to the
Genstat Command Language Part 2 Statistics, Section 8.1.2, but there only one
polynomial coefficient is analysed at a time.)

Spreadsheet file Boxrat.gsh (Figure 4.7)
contains the results of an experiment to study the
effect of drugs on the growth rates of rats; see
Box (1950, Biometrics, 6, 362-389). There were
three treatment groups: the first was a control,
the second had thyroxin and the third had
thiouracil added to their drinking water. The first
column, week, is a factor recording the week
when each weight was measured. The final
column, time, contains the same information,
but in a variate. The factor rat gives the number
of the rat that was weighed in each measurement,
and the factor drug indicates which treatment it
received. The variate weight contains the
weights.
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Figure 4.8

Figure 4.9

We can plot the measurements
using the Repeated Measures

Profile Plot ! Data menu (opened
by selecting the Profile Plot sub-
option of the Repeated

Measurements option of the Stats

menu on the menu bar). We click
on the Variate with time factor

button to indicate that the
measurements are in a single
variate with a factor to indicate
the time at which each one was
made. (The alternative is to have
the data in separate variates, one
for each time.) We then specify
the data variate, and the time
factor, and indicate that we
would like separate lines to be
plotted for each drug. See Figure 4.8.

The resulting plot, in Figure
4.9, shows that the profiles are
mainly linear, with perhaps a hint
of curvature. So we shall model
them by quadratics.
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Figure 4.10

The Random Coefficient

Regression menu (Figure 4.10) is
opened by selecting the Random

Coefficient Regression sub-option
of the Mixed Models (REML)

option of the Stats menu on the
menu bar. 

In the menu, we have defined
weight as the data variate, rat
as the subject factor, time as the
variate of time points, and
timesq as the identifier for the 
variate of squared time values
(which will be calculated by the
menu). The treatment structure is
defined to be

drug * (time + timesq)

In the output, below, notice that REML has fitted covariances between the random

intercepts and linear and quadratic regression coefficients from the random population
of rats. This reflects the view that these are unlikely to vary independently from rat to rat
!and this is confirmed by the estimated covariances that are obtained (see the parameters
v_21, v_31 and v_32). The tests for fixed effects show no evidence of any differences
overall between the drugs, but there may be differences in the linear and quadratic
coefficients between the drugs.

REML variance components analysis
 
Response variate: weight
Fixed model: Constant + time + timesq + drug + time.drug + timesq.drug
Random model: rat + rat.time + rat.timesq
Number of units: 135
 
Residual term has been added to model
 
Sparse algorithm with AI optimisation
All covariates centred
 
 

Covariance structures defined for random model
 
Correlated terms:
 

Set Correlation across terms
1 Unstructured

 
Set Terms Covariance model within term

1 rat Identity
1 rat.time Identity
1 rat.timesq Identity
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Estimated parameters for covariance models
 
Random term(s) Factor Model(order) Parameter  Estimate s.e.
rat + rat.time + rat.timesq

Across terms Unstructured v_11  8.653  3.072
  v_21  3.599  1.426
  v_22  1.504  0.953
  v_31  -0.2088  0.2661
  v_32  -0.2053  0.1997
  v_33  0.1113  0.0634
Within terms Identity -        - -

 
Note: the covariance matrix for each term is calculated as G or R where 
 var(y) = Sigma2( ZGZ'+R ), i.e. relative to the residual variance, Sigma2.
 
 

Residual variance model
 
Term Model(order) Parameter Estimate s.e.
Residual Identity Sigma2 9.200  1.771
 
 

Tests for fixed effects
 
Sequentially adding terms to fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
time 1094.47 1 1094.47 24.0  <0.001
timesq 0.11 1 0.11 24.0  0.745
drug 2.65 2 1.33 24.0  0.284
time.drug 21.66 2 10.83 24.0  <0.001
timesq.drug 19.85 2 9.93 24.0  <0.001
 
Dropping individual terms from full fixed model
 
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
time.drug 0.91 2 0.46 24.0  0.640
timesq.drug 19.85 2 9.93 24.0  <0.001
 

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The menu conceals some fairly complicated programming, for example to obtain initial
values for the covariance model. If you like more details about the process, you should
read the Guide to the Genstat Command Language, Part 2 Statistics, Section 5.4.5.



4.3  Random coefficient regression 111

Figure 4.11

Figure 4.12

We can form predictions by
clicking on the Predict button in
the Random Coefficient Regression

menu. We need to predict for
both time and timesq, but
notice that we can predict for
timesq in “parallel” with time
so that the resulting table has a
single dimension for both of
them; see Figure 4.11.

This parallelism can be set up
when you use the Change

Prediction Values menu to define
the times at which you want to
predict; see Figure 4.12. (The
menu is opened by highlighting
time in the Explanatory variables

box, and clicking on the Change

button.)

Predictions from REML analysis
 
Model terms included for prediction: Constant + time + timesq + drug + time.drug +
timesq.drug + rat.time + rat.timesq
Model terms excluded for prediction: rat
 
Status of model variables in prediction:
 
Variable Type Status
drug factor Classifies predictions
timesq variate Classifies predictions
time variate Classifies predictions
Constant factor Included in prediction
rat factor Averaged over - equal weights
 
Response variate: weight
 
Predictions
 

time_timesq 1.000 , 1.000 3.000 , 9.000 5.000 , 25.00
drug  

control 78.7 131.7 189.6
thiouracil 76.1 110.3 134.0
thyroxin 77.9 132.2 197.1
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Standard errors
 

time_timesq 1.000 , 1.000 3.000 , 9.000 5.000 , 25.00
drug  

control 2.576 3.533 6.137
thiouracil 2.576 3.533 6.137
thyroxin 3.010 4.346 7.760

 
 
Approximate average standard error of difference: 6.561 (calculated on variance scale)

 4.4 Practical

Spreadsheet file PigGrowth.gsh contains measurements made at weekly intervals in
an experiment to study the effects of sex and diet on the growth of pigs. The experiment
was in randomized blocks but, in your analysis you can treat this as a fixed term. Fit a
random coefficient regression (with linear time only) to investigate the effects of sex and
diet. Simplify the model to remove unnecessary terms. Investigate whether there are any
quadratic time effects.
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