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Introduction

The REML algorithm provides several important types of analysis, that are useful in a wide
range of application areas including biology, medicine, industry and finance. In biology
they are usually known as linear mixed models, but in some application areas (e.g.
education) they may be called multi-level models.

Genstat's REMIL facilities are powerful and comprehensive, but nevertheless very
straightforward and easy to use. This book is designed to introduce you to these
techniques, and give you the knowledge and confidence to use them correctly and
effectively. It has been written to provide the notes for VSN’s course on the use of REML
in Genstat, but it can be used equally well as a self-learning tool.

One of the key features of REML is that it can analyse data that involve more than one
source of error variation. In this respect it is similar to the Genstat ANOVA algorithm, and
the similarities and differences between the two methods are explored in detail in Chapter
1. An important advantage of REML over ANOVA is that it can analyse unbalanced designs.
It also has a powerful prediction algorithm that extends the ideas in Genstat’s regression
prediction algorithm to cover random as well as fixed effects.

Chapter 2 covers the use of REML for meta analysis, showing how you can do a
simultaneous analysis of several disparate data sets to obtain combined estimates for the
treatments of interest.

A further advantage of REML is explored in Chapter 3, where we show how it can
model spatial correlations between observations in two-dimensions. These methods have
proved very successful, for example in the analysis of field experiments to assess new
plant varieties. The designs often contain too many varieties for the conventional
blocking techniques (e.g. the use of randomized-block designs) to be effective. So
instead, for example, auto-regressive models are fitted to the spatial correlations across
the field.

Chapter 4 examines the use of correlation modelling in the analysis of repeated
measurements. Here the correlation is in a single dimension, namely time, and REML
provides a powerful alternative to conventional methods such as repeated-measures
ANOVA or the analysis of contrasts over time.

The book works through a series of straightforward examples, with frequent practicals
to allow you to try the methods for yourself. The examples work mainly through the
menus of Genstat for Windows, so there is no need for prior knowledge of the Genstat
command language. However, we do assume that you will be familiar with ordinary
analysis of variance. (If not, we recommend that you work through Chapters 1-5 of the
Guide to ANOVA and Design in Genstat.)



1 Linear mixed models

The REML algorithm is designed to analyse /inear mixed models (also known as multi-
level models). The word mixed here indicates that the model contains fixed terms like
treatments, as well as random terms, like rows and columns of a field experiment or
aspects such as litters in animal experiments. The important feature of REML is that it can
handle several random terms (in addition to the usual residual term). The Genstat ANOVA
algorithm can also handle several random terms, and we start by comparing the analyses
from ANOVA with those from REML.

In this chapter you will learn

* how to use the Linear Mixed Models (and Analysis of Variance %) menus

* what output is given by a Genstat REML analysis, and how it compares to Genstat
ANOVA

* how to assess treatment terms by Wald and F statistics

* how to plot means

* how to form predictions

* how to plot (and assess) residuals

* the commands VCOMPONENTS, REML, VDISPLAY, VGRAPH, VPREDICT and VPLOT

*
Note: the topics marked % are optional.
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The design used most often to illustrate the need for several random (or error) terms in

ANOVA is the split-plot design.

V3 N3 V3 N2 V3 N2 V3 N3
V3 NI V3 NO V3 NO V3 NI
V1 NO V1 NI V2 NO V2 N2
V1 N3 V1 N2 V2 N3 V2 NI
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V2 N2 V2 N3 V1 N3 V1 NO
V3 N2 V3 NO V2 N3 V2 NO
V3 NI V3 N3 V2 N2 V2 NI
V1 N3 V1 NO V1 N2 V1 N3
V1 NI V1 N2 V1 NO V1 NI
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V2 N2 V2 N3 V3 NI V3 NO
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V1 NI V1 N2 V3 N2 V3 N3

In the split-plot design shown here,
the treatments are three varieties of
oats (Victory, Golden rain and
Marvellous) and four levels of
nitrogen (0, 0.2, 0.4 and 0.6 cwt).
As it is feasible to work with
smaller plots for fertiliser than for
varieties, the six blocks were
initially split into three whole-plots
and then each whole-plot was split
into four subplots. The varieties
were allocated (at random) to the
whole-plots within each block, and
the nitrogen levels (at random) to
the subplots within each whole-plot.
In a randomized-block design, we
have a hierarchical structure with
blocks and then plots within blocks.
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| . Genstat /. Example Data Sets x
File Edit View Run Data Spread Graphics Stats
Look for file:
Mew... Ctrl+MN | Oats.gsh
Open... Ctrl+0
- Filter by topic:
Open Example Data Sets... Ctrl+Shift+ 0
l:} A Guide to REML ~
Open from URL... Alt+0
Elee Ctrl+F4 File Description
. Atp.gsh Effect of preserving liquid on enzyme content of dogs hearts
Flgure 1 . 1 Boxrat.gsh Experiment to study the effect of drugs on the growth rates of rats
Meat.gsh Experiment studying the effect of two meat-tenderizing chemicals
MetaFungicide.gsh Three fungicide trials performed in different years at the same site
g ield of oats with different fertilizer in a split-plot design
The data ﬁleS for the examples PigGrowth.gsh Study of the effects of sex and diet on the growth of pigs over time
: : . . Ratmeasures.gsh  Effect of a dietary additive on weight gain in rats
and CXCrecises used n thlS Gulde Recovery.gsh Trials of two anaesthetic agents at nine different centres
can be accessed using the Slatehall.gsh Study of 25 varieties of wheat at Slate Hall farm
. Vartriall.gsh Data from a trial of 35 varieties of wheat
EXam ple Data Sets menu (Flgure Wheat72.gsh Trial of 35 varieties of wheat
. . WheatTrials.xlsx ~ Four New Zealand winter wheat trials
1.2). Click on File on the menu
bar, and select the Open Exampl : :
ar, and selecC € en eExample
’ S ¢ crenct
Data Sets option, as shown in y

Figure 1.1. In the menu, it is
convenient to "filter" by the
topic A Guide to REML using the drop-down list box in the upper part of the menu. The
menu will then list only the files used in this Guide. The data for the split-plot experiment
are in the file 0ats.gsh.
The model describes the yield y;, from block i, whole-plot j, subplot & by the equation
Vg =t v, ta tva, + b+ ow, + gy
where the fixed part of the model consists of
1 the overall constant (grand mean),
v, the main effect of variety » (where r is the variety assigned to unit ijk),
a, the main effect of nitrogen application at level s (where s is the nitrogen level
assigned to subplot ijk), and
va,, their interaction.
The random model terms are
b, the effect of block i,
w, the effect of whole-plot j within block 7, and
&, the random error (i.e. residual) for unit ;jk (which here is the same as the subplot
effect, since the subplots are the smallest units of the experiment).
The model can be written in matrix notation as
y=EYXB T YLy e
where
y is the vector of data values,
p, 1s the vector of fixed effects for treatment term i with design matrix X,
u; 1s the vector of random effects for random term i with design matrix Z,
¢ 1s the vector of residuals.

Figure 1.2
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To analyse the split-plot by |4 aebssofieronce f=] =

Available data

Design: Split-plot design i

ANOVA, you select the General
sub-option of the Analysis of
Variance option of the Stats

Contrasts

=<
&
o

I
a
a

Treatment structure [variety *ritrogen |

menu on the menu bar. You can e

customize the menu for the split |- ST — .
plot by selecting Split-plot design | Clcowtes |

in the Design drop-down list box Optons

in the menu (see Figure 1.3). v [l [x Concel | | Defeits

For this data set, the treatment
structure is a factorial with the
two factors, nitrogen and variety. The block structure is set up automatically by
Genstat from the factors specified in the Blocks, Whole plots and Sub-plots fields.

The analysis-of-variance table shows that we have three strata in the hierarchy,
corresponding to the three random terms: blocks, whole-plots within blocks, and subplots
within whole plots (within blocks). The analysis automatically works out where each
fixed (or treatment) term is estimated, and compares it with the correct residual. So the
sum of squares for variety (which was applied to complete whole-plots) is compared
with a residual which represents the random variability of the whole-plots. Conversely,
nitrogen (whichwasapplied to subplots) and the variety.nitrogen interactionare
compared with the residual for subplots within whole-plots.

Figure 1.3

Analysis of variance

Variate: yield

Source of variation d.f. S.S. m.s. V.I. F pr.
blocks stratum 5 15875.3 3175.1 5.28
blocks.wplots stratum

variety 2 1786.4 893.2 149 0.272
Residual 10 6013.3 601.3 3.40
blocks.wplots.subplots stratum

nitrogen 3 20020.5 6673.5 37.69 <.001
variety.nitrogen 6 321.8 53.6 0.30 0.932
Residual 45 7968.8 1771

Total 71 51985.9

Message: the following units have large residuals.

blocks 1 314 s.e. 14.8
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Tables of means
Variate: yield

Grand mean 104.0

variety Victory Golden rain Marvellous
97.6 104.5 109.8
nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
79.4 98.9 114.2 123.4
variety  nitrogen 0 cwt 0.2 cwt 0.4 cwt 0.6 cwt
Victory 71.5 89.7 110.8 118.5
Golden rain 80.0 98.5 114.7 124.8
Marvellous 86.7 108.5 117.2 126.8

Standard errors of differences of means

Table variety nitrogen variety
nitrogen
rep. 24 18 6
s.e.d. 7.08 4.44 9.72
d.f. 10 45 30.23
Except when comparing means with the same level(s) of
variety 7.68
d.f. 45

The standard errors accompanying the tables of means also take account of the stratum
where each treatment term was estimated. The variety s.e.d. of
7.08 =V(2 x 601.3/24)
is based on the residual mean square for blocks.wplots, while that for nitrogen
4.44=V(2x177.1/18)
is based on that for blocks.wplots.subplots. The variety X nitrogen table is
more interesting. There are two s.e.d.'s according to whether the two means to be
compared are for the same variety. If they are, then the subplots from which the means
are calculated will all involve the same set of whole-plots, so any whole-plot variability
will cancel out, giving a smaller s.e.d. than for a pair of means involving different
varieties.

Split-plot designs do not occur only in field experiments, but they can occur in animal
trials (where, for example, the same diet may need to be fed to all the animals in a pen
but other treatments may be applied to individual animals), or in industrial experiments
(where different processes may require different sized batches of material), or even in
cookery experiments (see, for example, Cochran & Cox 1957, page 299). There can also
be more than one treatment factor applied to the units of any stratum. To analyse the
results in Genstat, you simply need to specify the blocking factors, as above, and then
whatever treatment structure is appropriate.
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Genstat specifies the structure of the design, and thus the different sources of
variability (or strata) in the model, using the BLOCKSTRUCTURE directive. For Figure 1.3,
this was defined automatically as

BLOCKSTRUCTURE blocks / wplots / subplots

here the operator / indicates that a factor is nested within another factor. So we have
subplots nested within wp1lots (whole-plots) nested within b1 ocks, as required. The
model formula expands to the list of model terms

blocks + Dblocks.wplots + Dblocks.wplots.subplots

which defines the strata to represent the variation between the blocks, between whole-
plots within blocks, and between subplots within whole plots (within blocks) shown in
the analysis-of-variance table.

The treatment (or fixed) terms to be fitted in the analysis are specified by the
TREATMENTSTRUCTURE directive. The menu in Figure 1.3 uses the setting of the
Treatment structure box to define these as

TREATMENTSTRUCTURE variety * nitrogen

which expands to give the model terms

variety + nitrogen + variety.nitrogen
The analysis of variance is done by the ANOVA directive:

ANOVA yield

for Figure 1.3. Full details of BLOCKSTRUCTURE, TREATMENTSTRUCTURE and ANOVA
are given in the Guide to the Genstat Command Language, Part 2 Statistics, Chapter 4,
and further information about the Analysis of Variance menus is in the Guide to Anova
and Design in Genstat.

The Analysis of Variance menus deal mainly with balanced designs. This ideal
situation, however, is not always achievable. The split-plot design here is balanced
because every block contains one of each treatment combination, and every whole-plot
contains one of each nitrogen treatment. However, there may sometimes be so many
treatments that the blocks would become unrealistically large. Designs where each block
contains less than the full set of treatments include cyclic designs and Alpha designs
(both of which can be generated within Genstat by clicking Stats on the menu bar,
selecting Design and then Select Design), neither of which tend to be balanced. In
experiments on animals, some subjects may fail to complete the experiment for reasons
unconnected with the treatments. So even an initially balanced experiment may not yield
a balanced set of data for analysis. The Mixed Models (REML) menus, which use the
Genstat REML directive, are designed to handle these situations.



To analyse the design using
REML, select the Linear Mixed
Models sub-option of the Mixed
Models (REML) option of the
Stats menu on the menu bar.

The Fixed model box in the
menu (Figure 1.4) corresponds
to the Treatment structure box in
the split-plot menu, and
specifies the terms defining the
fixed effects in the model to be
fitted. The Linear Mixed Models
menu provides general facilities

1 Linear mixed models

4. Linear Mixed Models
Available data:

[ [ [x

=S R =
Y-variate |)'1'eld |
Fixed model: |\fariet)' * nitrogen |
Random model: |b|acks / wplats / subplots |
Inttial values.. Comelated emor terms...
Spline model: | |
Interactions: Al interactions. M
(Fixed mode! only)
Fun Options...

Cancel

Defaults Fredict Expilo

Figure 1.4

covering any type of design, and so the random effects are defined explicitly by the
contents of the Random model box, instead of being defined automatically as in the split-
plot menu. The model is the same though.

The Options button produces p—= :
. A Linear Mixed Model Options *
the menu in Figure 1.5. The =
Standard model OptiOl’lS (aS Model Stratum variances Wald tests
. Variance components []Covariance model [] Missing value estimates
Shown m the ﬁgure) arc ﬁne for [ Estimated effects [] Variance-covariance matrix [_] Monitoring
thlS design’ SO we need Only [ Predicted means [] Deviance [ Akaike information coefficient (AIC)
. [] Residual checks [[] Schwarz information coefficient (SIC)
select the output to display (and Use full ikeinood for AIC/SIC
then click OK). o
phics
Returning to the main menu | HResduslpiots  [Meanpiots
(Flgure 14)' lnltlal Values are Standard emors Methed for calculating F-statistics:
ld . d f . 1 Differences Estimates Automatic “
seldom reql'ure or Slmp € Al differences Al estimates VWeidht
. . eights: ~
REML analyses like this, and the LsDs 5
Spline model box is not relevant
(thls ls malnly useful Wlth Model options Optimization method
[] Estimate missing data values @Al
repeated measurements), SO we [ include units with missing factor values O Fisher scoring
can click on Run and generate E*“ma*e B
| Covariates centred to zero mean
the output shown below. Maimum teratons: EX
X Cancel Defaults

Figure 1.5

REML variance components analysis

Response variate:
Fixed model:
Random model:
Number of units:

yield

Constant + variety + nitrogen + variety.nitrogen
blocks + blocks.wplots + blocks.wplots.subplots
72

blocks.wplots.subplots used as residual term

Sparse algorithm with Al optimisation
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Estimated variance components

Random term component s.e.
blocks 214.5 168.8
blocks.wplots 106.1 67.9

Residual variance model

Term Model(order) Parameter Estimate s.e.
blocks.wplots.subplots Identity Sigma2 1771 37.3

Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 2.97 2 1.49 10.0 0.272
nitrogen 113.06 3 37.69 45.0 <0.001
variety.nitrogen 1.82 6 0.30 45.0 0.932

Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety.nitrogen 1.82 6 0.30 45.0 0.932

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The output first lists the terms in the fixed and random model, and indicates the residual
term. The residual term is a random term with a parameter for every unit in the design.
Here we have specified a suitable term, blocks.wplots.subplots, explicitly.
However, if we had specified only blocks + blocks.wplots asthe Random Model
(for example by putting blocks/wplots), Genstat would have added an extra term
*units* to act as residual. (*units* would be a private factor with a level for every
unit in the design.)

Genstat estimates a variance component for every term in the random model, apart
from the residual. The variance component measures the inherent variability of the term,
over and above the variability of the sub-units of which it is composed. Generally, this
is positive, indicating that the units become more variable the larger they become. So here
the whole-plots are more variable than the subplots, and the blocks are more variable than
the whole-plots within the blocks. (This is the same conclusion that you would draw from
the analysis-of-variance table earlier in this section and, in fact, you can also produce the
variance components as part of the stratum variances output from the Analysis of Variance
menu.) However, the variance component can sometimes be negative, indicating that the
larger units are /ess variable than you would expect from the contributions of the sub-
units of which they are composed. This could happen if the sub-units were negatively
correlated.
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The section of output summarizing the residual variance model indicates that we have
not fitted any specialized correlation model on this term (see the column headed Mode 1),
and gives an estimate of the residual variance; this is the same figure as is given by the
mean square in the residual lineinthe blocks.wplots. subplots stratum in the split-
plot analysis-of-variance table.

The next section, however, illustrates a major difference between the two analyses.
When the design is balanced, the Analysis of Variance menu is able to produce an analysis-
of-variance table that partitions the variation into strata with an appropriate random error
term (or residual) for each treatment term. No such partitioning is feasible for the
unbalanced situations that REML is designed to handle. Instead Genstat produces a Wald
statistic to assess each fixed term.

If the design is orthogonal, the Wald statistic is equal to the treatment sum of squares
divided by the stratum residual mean square. So under the usual assumption that the
residuals come from Normal distributions, the Wald statistic divided by its degrees of
freedom will have an F distribution, F,, ,, where m is the number of degrees of freedom
of the fixed term, and # is the number of residual degrees of freedom for the fixed term.
By default, unless the design is large or complicated, Genstat estimates 7, and prints it
in the column headed “d.d. £.” (i.e. denominator degrees of freedom); m is shown in
the column headed “n.d.f.” (i.e. numerator degrees of freedom). For orthogonal
designs, the F statistics and probabilities are identical to those produced by the Analysis
of Variance menus, and can be used in exactly the same way. In other situations, the
printed F statistics have approximate F distributions. So you need to be careful if the
value is close to a critical value.

The Linear Mixed Model Options menu (Figure 1.5) has a list box Method for calculating F
statistics to control how and whether to calculate the F statistics. With the default setting,
automatic, Genstat itself decides whether the statistics can be calculated quickly enough
to be useful, and the best method to use. The other settings allow you to select to use
either algebraic or numerical derivatives, or to print just Wald statistics (none).

The Wald statistics themselves would have exact y* distributions if the variance
parameters were known but, as they must be estimated, they are only asymptotically
distributed as *. In practical terms, the %> values will be reliable if the residual degrees
of freedom for a fixed term is large compared to its own degrees of freedom. Otherwise
they tend to give significant results rather too frequently. The F statistics, if available, are
more reliable than the Wald statistics. If they are not calculated, Genstat produces
probabilities for the Wald statistics instead, which should again be used with care
especially when the value is close to a critical value.

In the example, the treatment terms are orthogonal so it makes no difference whether
nitrogen or variety is fitted first. In a non-orthogonal design, however, the ordering
of fitting is important, and you should be aware that each test in the "Sequentially
adding terms to fixed model" section represents the effect of adding the term
concerned to a model containing all the terms in the preceding lines. The next section,
headed "Dropping individual terms from full fixed model" looks at the
effect of removing terms from the complete fixed model: so the lines here allow you to
assess the effects of a term after eliminating all the other fixed terms. This is particularly
useful for seeing how the model might be simplified. Notice that the only relevant term
here is the variety by nitrogen interaction. We cannot remove a main effect (such as
nitrogen or variety) from a model that contains an interaction involving that factor.



The Further output button
generates the menu shown in
Figure 1.6, in which we have
checked the boxes to produce
tables of predicted means with
standard errors of differences
between means and least

significant differences. The
Model terms for effects and means

box enables you to specify the
terms for which you want tables
of means (and, if you had
checked the Estimated effects
box, tables of effects). The
default, which is fine here, is to
produce a table for each term in
the fixed model. Clicking Run
then generates the tables shown
below. Because the fixed terms
are orthogonal, the means are
identical to those produced by
the Analysis of Variance menu.
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Linear Mixed Model Further Output X
Display
[] Model [[] Variance-covarance matrix
[]Variance components [] Deviance
[] Estimated effects []wald tests
[]Predicted means [] Migsing value estimates
[ Stratum variances ] Menitoring

[] Akaike information coefficient (AIC)
[] Schwarz information coefficient (SIC)

[] Covariance model
[]Residual checks

LUze full likelihood for AIC/SIC
Standard emors
Differences Estimates Al differences Al estimates
LSDs S0 Egrifican el | 5
Automatic
e
Graphics
Residual plots... Means plot...
Detect outliers... Power calculations... Pemutation test ...
Screening tests... All subsets. .. Multiple comparisons. .
] X Run Cancel Defaults

Figure 1.6

Table of predicted means for Constant

104.0 Standard error: 6.64

Table of predicted means for variety

variety Victory

97.6

Golden rain
104.5

Marvellous
109.8

Standard error of differences: 7.079

Table of predicted means for nitrogen

0.2 cwt
98.9

0.4 cwt
114.2

0.6 cwt
123.4

0 cwt
79.4

nitrogen

Standard error of differences: 4.436
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Table of predicted means for variety.nitrogen

nitrogen Ocwt 0.2cwt 0.4cwt 0.6cwt
variety
Victory 71.5 89.7 110.8 118.5
Golden rain 80.0 98.5 114.7 124.8
Marvellous 86.7 108.5 117.2 126.8

Standard errors of differences

Average: 9.161
Maximum: 9.715
Minimum: 7.683

Average variance of differences: 84.74

Standard error of differences for same level of factor:

variety nitrogen
Average: 7.683 9.715
Maximum: 7.683 9.715
Minimum: 7.683 9.715

Approximate least significant differences (5% level) of
REML means

variety
variety Victory 1 *
variety Golden rain 2 15.77 *
variety Marvellous 3 15.77 15.77
1 2 3
nitrogen
nitrogen 0 cwt 1 *
nitrogen 0.2 cwt 2 8.934 *
nitrogen 0.4 cwt 3 8.934 8.934 *
nitrogen 0.6 cwt 4 8.934 8.934 8.934
1 2 3

variety.nitrogen

Message: caution - t-values using d.d.f. from contributing terms differ by
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9.61%; LSD's will be calculated using the maximum value.

variety Victory.nitrogen 0 cwt 1 *

variety Victory.nitrogen 0.2 cwt 2 17.12 *
variety Victory.nitrogen 0.4 cwt 3 17.12 17.12 *
variety Victory.nitrogen 0.6 cwt 4 17.12 17.12 17.12
variety Golden rain.nitrogen 0 cwt 5 21.65 21.65 21.65
variety Golden rain.nitrogen 0.2 cwt 6 21.65 21.65 21.65
variety Golden rain.nitrogen 0.4 cwt 7 21.65 21.65 21.65
variety Golden rain.nitrogen 0.6 cwt 8 21.65 21.65 21.65
variety Marvellous.nitrogen 0 cwt 9 21.65 21.65 21.65
variety Marvellous.nitrogen 0.2 cwt 10 21.65 21.65 21.65
variety Marvellous.nitrogen 0.4 cwt 11 21.65 21.65 21.65
variety Marvellous.nitrogen 0.6 cwt 12 21.65 21.65 21.65

variety Victory.nitrogen 0.6 cwt 4
variety Golden rain.nitrogen 0 cwt 5 21.65 *
variety Golden rain.nitrogen 0.2 cwt 6 21.65 17.12 *
variety Golden rain.nitrogen 0.4 cwt 7 21.65 17.12 17.12
8

variety Golden rain.nitrogen 0.6 cwt 21.65 17.12 17.12
variety Marvellous.nitrogen 0 cwt 9 21.65 21.65 21.65
variety Marvellous.nitrogen 0.2 cwt 10 21.65 21.65 21.65
variety Marvellous.nitrogen 0.4 cwt 11 21.65 21.65 21.65
variety Marvellous.nitrogen 0.6 cwt 12 21.65 21.65 21.65
4 5 6
variety Golden rain.nitrogen 0.4 cwt 7 *
variety Golden rain.nitrogen 0.6 cwt 8 17.12 *
variety Marvellous.nitrogen 0 cwt 9 21.65 21.65 *
variety Marvellous.nitrogen 0.2 cwt 10 21.65 21.65 17.12
variety Marvellous.nitrogen 0.4 cwt 11 21.65 21.65 17.12
variety Marvellous.nitrogen 0.6 cwt 12 21.65 21.65 17.12
7 8 9
variety Marvellous.nitrogen 0.2 cwt 10 *
variety Marvellous.nitrogen 0.4 cwt 11 1712 *
variety Marvellous.nitrogen 0.6 cwt 12 17.12 17.12 *
10 11 12

The least significant differences are calculated using the denominator degrees of freedom
(d.d.f.) from the tests for fixed effects. The degrees of freedom are relevant for assessing
the fixed term as a whole, and may vary over the contrasts amongst the means of the
term. So the LSDs may be only approximate, and should be used with caution. The
variety X nitrogen table of means is calculated from the variety and nitrogen
main effects and the variety.nitrogen interaction. So, we know that contrasts in the
table may have either 10 or 45 d.d.f. Genstat takes the smallest of the available d.d.f. and
prints a warning if the resulting LSDs would differ by more than 1%. As a result the
LSDs do not match those from the Analysis of Variance menu, whereas they do for
variety and nitrogen (which have the same d.d.f. for all their contrasts).
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The REML menus thus produce the same information as that given by the Analysis of
Variance menu where this is possible in their more general context, but they are not able
to match its more specialized output. The advantage of REML, however, lies in the much
wider range of situations that it covers, as we will show later in this Guide.

There are three menus that you can use to examine the fixed model in more detail, once
you have run the initial analysis. They do this by a generalized regression analysis, with
a weight matrix based on variances estimated from the original REML analysis (with the
full fixed model). The models are thus assessed against identical estimates of the random
variation (as in an analysis of variance), allowing statistics such as the Akaike
information criterion to be used to assess which model may be best. Conversely, if you
try to assess the fixed model by changing the fixed model in the original menus, the fixed
terms that are not fitted will be included in the random variation. This will then vary from
fit to fit, and it may be difficult to reach a clear and consistent conclusion.

The menu for REML Screening of Fixed
Terms, opened by clicking on the Screening e
tests button in the Linear Mixed Models |
Further Output menu (Figure 1.6), is useful to
overcome the problems of ordering that

REML Screening of Fixed Terms x

Wald tests

[JExdude higher order interactions in conditional model

occur when there are non-orthogonal terms. | Forced terms: |
In Figure 1.7, we have chosen to print both i
Wald tests (which come first in the output, LiFes
below), as well as F tests. [ wald tests

Display in spreadsheet

A Cancel Defaults
Figure 1.7

Screening tests for fixed effects

Fixed term d.f.  Marginal pr. Conditional pr.
Wald test Wald test
variety 2 297 0.226 297 0.226
nitrogen 3 113.06 <0.001 113.06 <0.001
variety.nitrogen 6 1.82 0.936 1.82 0.936
Fixed term n.d.f. d.d.f.  Marginal pr. Conditional pr.
F test F test
variety 2 10 1.49 0.272 1.49 0.272
nitrogen 3 45 37.69 <0.001 37.69 <0.001
variety.nitrogen 6 45 0.30 0.932 0.30 0.932

In the marginal tests, each term is added to the simplest possible model. So in a model
with
A+B+C+A.B+A.C+ B.C+ A.B.C
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2. B would be added to a model containing only the main effects A and B. This assesses
the effect of the term ignoring as many other terms as possible. It is therefore checking
to see if there is any evidence that the term has an effect.

In the conditional tests, each term is added to the most complex possible model. So,
2 would be added to a model containing B, C and B. C. This checks to see if the term has
any effect that cannot be explained by any other terms. You can check the box to Exclude
higher order interactions in conditional model if you would prefer terms containing more
factors than the original term not to be included in the model to which the term is added.
The Forced terms box allows you to specify terms that must always be included in the
models.

In this example the terms are orthogonal, and so the marginal and conditional tests are
identical. In non-orthogonal analyses they will differ, but the hope is that they lead to the
same conclusion. If not, the conclusion is that there is more than one plausible model for
the data, but the design is too unbalanced to allow you to choose between them!

Secondly, there is a menu to assess all  [Taysupset for REVIL Ficed Temne <
subsets of the fixed terms, opened by ot | |
clicking on the All subsets button in the 9 |
Linear Mixed Models Further Output menu [Results i e
(Figure 1.6), which may be helpful for Nmberofmodesi |* | Oroced  @Free
larger fixed models. The menu has a Selection aiteria (pick Lor 2:

bOX at the tOp Where you can SpeCify [IR-squared akaike information criterion

? . [ adjusted R-squared Schwarz/Bayesian information criterion
a‘ny forced terms that muSt be lnCIuded [Imallows cp []residual mean square/deviance
m GVCI'y Subset. The I‘adIO buttons m the [IMean squared prediction error [ Residual sum of squares fdeviance
Marginal terms box control whether Store
terms marginal to any other fixed term [ Iseate i i
must be treated as forced and always iAol
included. (A term is marginalto another | [x oK Cancel

term if all its factors or variates also
occur in that other term. For example
the terms variety and nitrogen are
both marginal to the interaction variety.nitrogen.) If you specify that they are to be
forced, then all the models will be obtainable by dropping terms that appear in the lower
part of the table of tests for fixed effects (i.e. the table obtained by checking the Wald tests
box in the Linear Mixed Models Options or Linear Mixed Models Further Output menus). In
Figure 1.8 we have specified no forced terms, and selected the Akaike and Schwarz
Bayesian information criteria for the output. The results confirm that there is evidence
that only nitrogen has an effect on the yields.

Figure 1.8

All subsets of REML fixed model

Free terms:

(1) variety

(2) nitrogen

(3) variety.nitrogen

Aic Sic d.f. (1) (2) (3)
Set
1 179.8 182.1 1 - - -
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2 72.8 81.9
3 180.9 187.7
4 73.8 87.5
5 84.0 111.3

1 Linear mixed models

4 - <.001 -
3 0.272 - -
6 0.272 <.001 -
12 marg marg 0.932

Set 2 is best according to Aic: nitrogen.
Set 2 is best according to Sic: nitrogen.

Finally, there is a menu where
you can explore the fixed
model, by trying, adding and
dropping terms in a similar way
to the general linear regression
menu. (See Section 1.11 of the
Guide to Regression, Nonlinear
and Generalized Linear
Models.) You can open this by
clicking on the Explore fixed
model button in the Linear Mixed
Models menu. This is greyed out,
as Figure 1.6, until you have run
the initial analysis.

The menu has buttons to fit

Linear Mixed Models - Explore Fixed Model

Avallable terms:

—_—
| varie:

nitrogen
variety.nitrogen

Display
Model
Summary

<8

[[Joeviance
[l estimates

[ correlations
[CIFitted values

Terms in current model:

Add ->

Try ->

Full model
Null mode!

Display current
Scroll output:
Up Down

PageUp  PageDn

Accumulated analysis of variance

Export current model to menu and dose

Cancel

Figure 1.9

the full model, or to return to the null model. You can also investigate terms individually
by clicking on the Add, Drop or Try buttons, with the relevant term highlighted in the
appropriate window (Available terms for Add, or Terms in the current model for Drop, or
either window for Try). The output below shows the effect of clicking on the Full model

button in Figure 1.9.

Regression analysis of REML fixed model

Response variate: vyield

Weight matrix: REML weights

Fitted terms:

Summary of analysis

Source d.f. S.S. m.s.
Regression 11 117.84 10.713
Residual 60 60.00 1.000
Total 71 177.84 2.505
Change -6 -1.82 0.303

Percentage variance accounted for 60.1
Akaike information criterion is estimated to be 318.79.
Schwarz Bayes information criterion is estimated to be 346.11.

Constant + variety + nitrogen + variety.nitrogen

V.I.
10.71

0.30
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Accumulated analysis of variance
Change S.S. n.d.f. m.s. F d.d.f. pr.
+ variety 297 2 1.485 1.49 10.00 0.272
+ nitrogen 113.06 3 37.686 37.69 45.00 <.001
+ variety.nitrogen 1.82 6 0.303 0.30 45.00 0.932
Residual 60.00 60 1.000
Total 177.84 71 2.505
We can hi g hli g ht Linear Mixed Madels - Explare Fixed Model X
var j_ et y.n j_ tro gen in the Avallable terms: Terms in current model:
Terms in the current model ;
window, and click on Drop as in
Figure 1.10 to remove it from —
the model. Full model
Null mode!
Display current
Scroll output:

e PageUp PageDn

Model [ oeviance [ correlations Accumulated analysis of variance

Summary [CEestimates [CIFitted values

X | Export current model to menu and dose Cancel

Figure 1.10

Regression analysis of REML fixed model

Response variate: vyield
Weight matrix: REML
Fitted terms:

Summary of analysis

weights

Source d.f. S.S.
Regression 5 116.03
Residual 66 61.82
Total 71 177.84
Change 6 1.82

Percentage variance accounted for 62.6
Akaike information criterion is estimated to be 308.94.
Schwarz Bayes information criterion is estimated to be 322.60.

Constant + variety + nitrogen

m.s. V.I.

23.2055 2478
0.9366
2.5049

0.3028 0.30
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Accumulated analysis of variance

Change S.S. n.d.f. m.s. F d.d.f. pr.
+ variety 2.97 2 1.485 1.49 10.00 0.272
+ nitrogen 113.06 3 37.686 37.69 45.00 <.001
+ variety.nitrogen 1.82 6 0.303 0.30 45.00 0.932
Residual 60.00 60 1.000

- variety.nitrogen -1.82 -6 0.303 0.30 45.00 0.932
Total 177.84 71 2.505

We can then repeat this for variety to obtain a model containing only nitrogen (and
no non-significant terms).

Regression analysis of REML fixed model

Response variate: vyield
Weight matrix: REML weights
Fitted terms: Constant + nitrogen

Summary of analysis

Source d.f. S.S. m.s. v.r.
Regression 3 113.06 37.6856 39.55
Residual 68 64.79 0.9528
Total 71 177.84 2.5049
Change 2 297 1.4853 1.59

Percentage variance accounted for 62.0
Akaike information criterion is estimated to be 308.32.
Schwarz Bayes information criterion is estimated to be 317.43.

Accumulated analysis of variance

Change S.S. n.d.f. m.s. F d.d.f. pr.
+ variety 297 2 1.485 1.49 10.00 0.272
+ nitrogen 113.06 3 37.686 37.69 45.00 <.001
+ variety.nitrogen 1.82 6 0.303 0.30 45.00 0.932
Residual 60.00 60 1.000

- variety.nitrogen -1.82 -6 0.303 0.30 45.00 0.932
- variety -2.97 -2 1.485 1.49 10.00 0.272
Total 177.84 71 2.505

You can refit the REML analysis with the fixed model redefined to contain only the terms
in the current model in this menu, by clicking on the button to Export current model to
menu and close. An alternative strategy would be to keep the original fixed model, and
form predictions using only the terms in this current model (with the REML Predictions
menu described in Section 1.6).
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1.2 Commands for REML analysis

REML analysis in Genstat is performed by the REML directive. Before using REML we
first need to define the model that is to be fitted in the analysis. For straightforward linear
mixed models, the only directive that needs to be specified is VCOMPONENTS. We give
the full syntax below, and then highlight the main options and parameters. The full details
are in the Guide to the Genstat Command Language, Part 2 Statistics, Section 5.2.1.

VCOMPONENTS directive

Defines the variance-components model for REML.

Options

FIXED = formula
ABSORB = factor
CONSTANT = string token
FACTORIAL = scalar
CADJUST = string token

RELATIONSHIP = matrix

SPLINE = formula

EXPERIMENTS = factor

Parameters
RANDOM = formula
INITIAL = scalars

CONSTRAINTS = string tokens

Fixed model terms; default *

Defines the absorbing factor (appropriate only
when REML option METHOD=Fisher); default *
i.e. none

How to treat the constant term (estimate,
omit); default esti

Limit on the number of factors or covariates in
each fixed term; default 3

What adjustment to make to covariates before
analysis (mean, none); default mean

Defines relationships constraining the values of
the components; default *

Defines random cubic spline terms to be
generated: each term must contain only one
variate, if there is more than one factor in a term,
separate splines are calculated for each
combination of levels of the factors

Factor defining the different experiments in a
multi-experiment (meta-) analysis

Random model terms

Initial values for each component and the
residual variance

How to constrain each variance component and
the residual variance (none, positive,
fixrelative, fixabsolute); default none

The FIXED option specifies a model formula defining the fixed model terms to be fitted,
and the RANDOM parameter specifies another model formula defining the random terms.

There are two other parameters. INITIAL provides initial values for the estimation of
each variance component. These are supplied as the ratio of the component to the residual
variance, but the default value of one is usually satisfactory. The CONSTRATINT parameter
can be used to indicate whether each variance component is to be constrained in any way.
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The default setting, none, leaves them unconstrained. The positive setting forces a
variance component to be kept positive, the f i xrelative fixes the relative value of the
component to be equal to that specified by the INITIAL parameter, and the
fixabsolute setting fixes it to the absolute value specified by INITIAL. The
FACTORIAL option sets a limit on the number of factors and variates allowed in each
fixed term (default 3); any term containing more than that number is deleted from the
model.

Usually, only F1xXED and RANDOM need to be set. For example, the statement below
defines the models for the split-plot example in Section 1.2.

VCOMPONENTS [FIXED=variety*nitrogen] \
RANDOM=blocks/wplots/subplots

Once the models have been defined, the REML directive can be used to perform the
analysis.

REML directive
Fits a variance-components model by residual (or restricted) maximum likelihood.

Options

PRINT = string tokens What output to present (model, components,
effects, means, stratumvariances,
monitoring, vcovariance, deviance,
Waldtests, missingvalues,
covariancemodels); default mode, comp,
Wald, cova

PTERMS = formula Terms (fixed or random) for which effects or
means are to be printed; default * implies all the
fixed terms

PSE = string token Standard errors to be printed with tables of
effects and means (differences, estimates,
alldifferences, allestimates, none);,
default diff

WETIGHTS = variate Weights for the analysis; default * implies all
weights 1

MVINCLUDE = string tokens Whether to include units with missing values in
the explanatory factors and variates and/or the y-
variates (explanatory, yvariate); default *
i.e. omit units with missing values in either
explanatory factors or variates or y-variates

SUBMODEL = formula Defines a submodel of the fixed model to be
assessed against the full model (for
METHOD=F1isher only)

RECYCLE = string token Whether to reuse the results from the estimation
when printing or assessing a submodel (ves,
no); default no

RMETHOD = string token Which random terms to use when calculating
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METHOD = string token

MAXCYCLE = scalar

TOLERANCES = variate
PARAMETERIZATION = string token

CFORMAT = string token

FMETHOD = string token

WORKSPACE = scalar

Parameters

Y = variates

RESIDUALS = variates
FITTEDVALUES = variates
SAVE = pointers

RESTIDUALS (final, all, notspline); default
fina

Indicates whether to use the standard Fisher-
scoring algorithm or the new Al algorithm with
sparse matrix methods (Fisher, AT); default AT
Limit on the number of iterations; default 30
Tolerances for matrix inversion; default * i.e.
appropriate default values

Parameterization to use for the variance
component estimation (gammas, sigmas)
Whether printed output for covariance models
gives the variance matrices or the parameters

(variancematrices, parameters); default
vari

Controls whether and how to calculate F-
statistics for fixed terms (automatic, none,
algebraic, numerical); default auto
Number of blocks of internal memory to be
allocated for use by the estimation algorithm
when METHOD=AT

Variates to be analysed

Residuals from each analysis

Fitted values from each analysis

Saves the details of each analysis for use in
subsequent VDISPLAY and VKEEP directives

The first parameter of REML specifies the y-variate to be analysed. The PRINT option is
set to a list of strings to select the output to be printed. These are similar to the check
boxes of the Linear Mixed Models Further Output menu. The most commonly used settings

arc:
model
components

effects

means

vcovariance

deviance
waldtests
missingvalue
covariancemodels

The default setting of PRINT=mode1,

description of model fitted,

estimates of variance components and estimated
parameters of covariance models,

estimates of parameters in the fixed and random
models,

predicted means for factor combinations,
variance-covariance matrix of the estimated
components,

deviance of the fitted model,

Wald tests for all fixed terms in model,

estimates of missing values,

estimated covariance models.
components,Wald, cova gives adescription of

the model and covariance models that have been fitted, together with estimates of the
variance components and the Wald (or F) tests. By default if tables of means and effects
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are requested, tables for all terms in the fixed model are given together with a summary
of the standard error of differences between effects/means.

The FMETHOD option controls whether and how the F statistics are calculated, with
settings automatic, none, algebraic and numerical.

The PTERMS and PSE options can be used to change the terms or obtain different types
of standard error. For example,

REML [PRINT=means; PTERMS=nitrogen.variety; \
PSE=allestimates]

will produce a nitrogen by variety table of predicted means with a standard error for each
cell.

Further output is produced by the vDISPLAY directive, which has options PRINT,
PTERMS and PSE like those of REML.

VDISPLAY directive
Displays further output from a REML analysis.

Options
PRINT = string tokens What output to present (model,

components, effects, means,
stratumvariances, monitoring,

vcovariance, deviance, Waldtests,
missingvalues, covariancemodels);
default mode, comp, Wald, cova

CHANNEL = identifier Channel number of file, or identifier of a text to
store output; default current output file

PTERMS = formula Terms (fixed or random) for which effects or
means are to be printed; default * implies all the
fixed terms

PSE = string token Standard errors to be printed with tables of
effects and means (differences, estimates,
alldifferences, allestimates, none);,
default diff

CFORMAT = string token Whether printed output for covariance models
gives the variance matrices or the parameters

(variancematrices, parameters); default
vari

FMETHOD = string token Controls whether and how to calculate F-
statistics for fixed terms (automatic, none,
algebraic, numerical); default auto

Parameter
pointers Save structure containing the details of each
analysis; default is to take the save structure
from the latest REML analysis

The approximate least significant differences are calculated by the VLSD procedure.
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VLSD procedure

Prints approximate least significant differences for REML means (R.W. Payne).

Options
PRINT = string tokens

FACTORIAL = scalar
LSDLEVEL = scalar

DEMETHOD = string token

DFGIVEN = scalar

FMETHOD = string token

SAVE = REML save Structure

Parameters
TERMS = formula

MEANS = pointer or table
SED = pointer or symmetric matrix

LSD = pointer or symmetric matrix
DFE' = pointer or scalar
DDF = pointer or scalar

DFRANGE = pointer or scalar

Controls printed output (means, sed, 1sd, df);
default Isd

Limit on the number of factors in each term;
default 3

Significance level (%) to use in the calculation
of least significant differences; default 5
Specifies which degrees of freedom to use for

the t-statistics (fddf, given, tryfddf); default
fddf

Specifies the number of degrees of freedom to
use for the t-statistics when DFMETHOD=given,

or if d.d.f. are unavailable when
DFMETHOD=tryfddf

Controls how to calculate denominator degrees
of freedom for the F-statistics, if these are not
already available in the REML save structure
(automatic, algebraic, numerical);
default auto

Save structure to provide the table of means;
default uses the save structure from the most
recent REML

Treatment terms whose means are to be
compared; default * takes the REML fixed model
Saves the means for each term

Saves standard errors of differences between
means

Saves approximate least significant differences
matrix for the means

Saves the degrees of freedom used to calculate
the t critical values for the LSDs

Saves the denominator degrees of freedom in the
F test for the term

Saves the range of denominator degrees of
freedom in the F tests for the term and any terms
that are marginal to the term (available only
when denominator degrees of freedom of F-
statistics are being used)

VLSD calculates least significant differences (LSDs) for predicted means of fixed terms
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in a REML analysis. These are calculated by multiplying standard errors for differences
by the t-statistic that would be used to assess whether those differences are non-zero.

The TERMS parameter specifies a model formula to define the fixed terms whose
predicted means are to be compared. The means are usually taken from the most recent
analysis performed by REML, but you can set the SAVE option to a save structure from
another REML if you want to examine means from an earlier analysis. As in
VCOMPONENTS, the FACTORIAL option sets a limit on the number of factors in each term
(default 3).

The DFMETHOD option specifies how to obtain the degrees of freedom for the t-
statistics. The default is to use the numbers of denominator degrees of freedom printed
by REML in the d.d. £ . column in the table of tests for fixed tests (produced by setting
option PRINT=wald). The degrees of freedom are relevant for assessing the fixed term
as a whole, and may vary over the contrasts amongst the means of the term. So the LSDs
should be used with caution. (If you are interested in a specific comparison, you should
setup a 2-level factor to fit this explicitly in the analysis.) The FMETHOD option controls
how the denominator degrees of freedom should be calculated, if they are not already
available in the REML save structure (e.g. because they were printed in the original
analysis). The settings are the same as in the REML and VKEEP directives, except that
there is no none setting. (You would set this option only if you really do want to
calculate them.)

In some of the more complicated analyses, REML. may be unable to calculate the
denominator degrees of freedom. You might then want to supply the number of degrees
of freedom yourself, using the DFGIVEN option, rather than having no least significant
differences at all. For example, you could use the number of denominator degrees of
freedom from the analysis of an earlier similar design. However, the results will only be
as good as the degrees of freedom that you have supplied, and thus should be used with
caution! You can set option DFMETHOD=tryfddf to use the denominator degrees of
freedom, if these can be calculated, or those specified by DFGTVEN otherwise. The setting
DFMETHOD=given always uses the degrees of freedom specified by DFGIVEN.

Printed output is controlled by the PRINT option, with settings:

means prints the means;

sed prints standard errors for differences between the
means;

1sd prints least significant differences for the means;

df prints the degrees of freedom used to calculate the

t critical value required for the LSD, together with
the denominator degrees of freedom in the F test
for the term if these are not the same.
The significance level to use in the calculation of the least significant differences can be
changed from the default of 5% using the LSDLEVEL option.

The MEANS parameter can save the means. If the TERMS parameter specifies a single
term, MEANS must be undeclared or set to a table. If TERMS specifies several terms, you
must supply a pointer which will then be set up to contain as many tables as there are
terms. Similarly the SED parameter can save the standard errors of differences, the 1.SD
parameter can save the approximate least significant differences, the DF parameter can
save the degrees of freedom used to calculate the t-statistics, and the DDF parameter can
save the denominator degrees of freedom in the F tests.
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When a term involves several factors, its means may be formed from the effects of
several terms. For example, the means for the term A . B will involve the effects for the
terms A and B (if these are in the model), as well as those for the term 2 . B. Different
contrasts between the means will then have different denominator degrees of freedom.
For caution, if VLSD is using the number of denominator degrees of freedom, it uses the
smallest number over the terms that are involved in calculating each table of the means.
(This corresponds to the largest t-statistic.) If the difference in the t-statistics calculated
from smallest and largest numbers of degrees of freedom differ by more than 1%, vLsSD
prints a warning message. If the denominator degrees of freedom are being used, their
range for each term can be saved by the DFRANGE parameter.

The screening tests are produced by the VSCREEN procedure. Details are in the Genstat
Reference Manual, Part 3 Procedures.

1.3 Practical

In an experiment to study the effect of two meat-tenderizing chemicals, the two (back)
legs were taken from four carcasses of beef and one leg was treated with chemical 1 and
the other with chemical 2. Three sections were then cut from each leg and allocated (at
random) to three cooking temperatures, all 24 sections (4 carcasses X 2 legs x 3 sections)
being cooked in separate ovens. The table below shows the force required to break a strip
of meat taken from each of the cooked sections (the data are also in the file Meat . gsh).
Analyse the experiment using both ANOVA and REML, and compare the results.

Leg 1 2
Carcass Section Chemical Temp Force Chemical Temp Force
1 1 1 2 5.5 2 3 6.3
2 1 3 6.5 2 1 3.5
3 1 1 4.3 2 2 4.8
2 1 2 1 3.2 1 3 6.2
2 2 3 6.0 1 2 5.0
3 2 2 4.7 1 1 4.0
3 1 2 1 2.6 1 2 4.6
2 2 2 4.3 1 1 3.8
3 2 3 5.6 1 3 5.8
4 1 1 3 5.7 2 2 4.1
2 1 1 3.7 2 3 5.9
3 1 2 4.9 2 1 2.9

Run screening tests of the fixed terms. Notice that the marginal and conditional tests
give the same values. (This is because the design is orthogonal.)
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1.4 Means plots

It is often interesting to plot the means from
a mixed-model analysis. You can open the
Means Plots menu, by clicking on the Means
plot button in the Linear Mixed Model Further

Output menu (Figure 1.6).

The menu (Figure 1.8) allows you to
choose a factor to plot along the x-axis. The
Groups box specifies factors whose levels
are to be included in a single window of the

Means Plot
Treatment terms: Factor for x-axis:
[varie
Groups:
Treliis groups:
Page groups:
Method
(O Means
(®)Lines
(Data
()Bar chart
LIPS

ritrogen

Standard error bar
() Differences
(® Means

[IPiot around every mean

()LsDs

3

Cancel

graph; Genstat then plots a set of points or
a line (depending on your choice in the Me thod box) for each level of the groups factor.
The Trellis groups box can specify factors to define a trellis plot, and the Page groups box
can specify factors whose combinations of levels are to be plotted on different pages.

In Figure 1.9, we have plotted
the nitrogen-by-variety means,
with nitrogen along the x-axis.

The plotting is done using the
VGRAPH procedure.

Figure 1.11

i@ Genstat Graphics Viewer - Means for nitrogen at different levels of variety — = EaM |
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Double-click on plot to edit it
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Figure 1.12
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VGRAPH procedure

Plots tables of means from REML (R.W. Payne).

Options
GRAPHICS = string token

METHOD = string token

XFREPRESENTATION = string token

PSE = string token

LSDLEVEL = scalar

DFSPLINE = scalar

YTRANSFORM = string tokens

PENYTRANSFORM = scalar

SAVE = REML save structure

Parameters
XFACTOR = factors or variates

GROUPS = factors or pointers

Type of graph (highresolution,
lineprinter); default high

What to plot (points, means,
linesandpoints, onlylines, data,
barchart, splines); default poin when
XFACTOR is a factor, and only when itis a
variate

How to label the x-axis (1evels, labels);
default 1abe uses the XFACTOR labels, if
available

What to plot to represent variation when points
are plotted at the means (differences, 1sd,
means, allmeans); default di £ £
Significance level (%) to use for approximate
least significant differences; default 5

Number of degrees of freedom to use when
METHOD=splines

Transformed scale for additional axis marks and
labels to be plotted on the right-hand side of the
y-axis (identity, log, 1ogl0, logit,
probit, cloglog, square, exp, explO0,
ilogit, iprobit, icloglog, root); default
iden i.e. none

Pen to use to plot the transformed axis marks
and labels; default * selects a pen, and defines
its properties, automatically

Save structure to provide the table of means;
default uses the save structure from the most
recent REML

Provides the x-values for each plot; by default
this is chosen automatically

Factor or factors identifying groups in each plot;
by default chosen automatically

TRELLISGROUPS = factors or pointers

PAGEGROUPS = factors or pointers

NEWXLEVELS = variates

Factor or factors specifying the different plots of
a trellis plot of a multi-way table

Factor or factors specifying plots to be displayed
on different pages

Values to be used for XFACTOR; default uses the
existing levels if XFACTOR is a factor, and the



28 1 Linear mixed models

minimum and maximum values if it is a variate

TITLE = texts Title for the graph; default is to define a title
automatically if GROUPS is set, or to have none
if it 1s unset

YTITLE = texts Title for the y-axis; default '’

XTITLE = texts Title for the x-axis; default is to use the
identifier of the XFACTOR

PENS = variates Defines the pen to use to plot the points and/or
line for each group defined by the GROUPS
factors

In its simplest form, the behaviour of VGRAPH depends on the model. If the fixed model
contains only main effects, it plots the means for the first factor in the fixed model.
Otherwise, it looks for the first fixed term involving two factors; it then plots the means
with one of these factors as the x-axis, and the second as a grouping factor with levels
identified by different plotting colours and symbols. The GRAPHICS option controls
whether a high-resolution or a line-printer graph is plotted; by default GRAPHICS=high.

By default, the means are from the most recent REML. However, you can plot means
from an earlier analysis, by using the SAVE option of VGRAPH to specify its save structure
(saved using the SAVE parameter of the REML command that performed the analysis).
VGRAPH uses the VPREDICT directive with default option settings to obtain the means
(see Section 1.6). This should give the same means as those printed by REML or
VDISPLAY. If you want to use VPREDICT with other option settings, you can plot these
by saving the predictions, and then using the DTABLE procedure.

The METHOD option controls how the predicted means are plotted in high-resolution
graphics, with settings:

points to plot a point at each mean;

means synonym of points;

linesandpoints to plot points and join them by lines;

onlylines to draw lines between the means;

data to draw lines between the means, and then also
plot the original data values;

barchart to plot the means as a barchart;

splines to plot points at the means together with a smooth

spline to show the trend over each group of means;
the DFSPLINE specifies the degrees of freedom
for the splines; if this is not set, 2 d.f. are used
when there are up to 10 points, 3 if there are 11 to
20, and 4 for 21 or more.
The default is to plot points when XFACTOR is a factor, and onlylines whenitisa
variate. Only points are available in line-printer graphics.
The PsE option specifies the type of error bar to be plotted, when points are plotted for
the means, with settings:
differences average standard error of difference;
1sd average approximate least significant difference
(calculated using the VL.SD procedure);
means average effective standard error for the means;
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allmeans plots plus and minus the effective standard error
around every mean.
The LSDLEVEL option sets the significance level (%) to use for the approximate least
significant differences (default 5). The allmeans setting is often unsuitable for plots
other than barcharts when there are GROUPS, as the plus/minus e.s.e. bars may overlap
each other.

You can define the table of means to plot explicitly, by specifying its classifying factors
using the XFACTOR, GROUPS, TRELLISGROUPS and PAGEGROUPS parameters. The
XFACTOR parameter can define a factor against whose levels the means are plotted. It can
also specify a variate, and VPREDICT then sets up a factor automatically, to classify the
table, with levels at the values specified by the NEWXLEVELS parameter. With a multi-
way table, there will be a plot of means against the XFACTOR levels for every
combination of levels of the factors specified by the GROUPS, TRELLISGROUPS and
PAGEGROUPS parameters. The GROUPS parameter specifies factors whose levels are to
be included in a single window of the graph.

For example, Figure 1.9 was plotted by the statement

VGRAPH [METHOD=means; PSE=differences] \
nitrogen; GROUPS=variety
The means are plotted in a single window with factor nitrogen on the x-axis, and
different symbols used for the means with each level of the factor variety. You can set
GROUPS to a pointer to specify several factors to define groups. For example

POINTER [VALUES=variety,blocks] Groupfactors
VGRAPH [METHOD=line] nitrogen; GROUPS=Groupfactors
Here we have also set option METHOD=11ne. So this plots a line for every combination
of the levels of factors variety and blocks.
Similarly, the TRELLISGROUPS option can specify one or more factors to define a
trellis plot. For example,

VGRAPH [METHOD=line] nitrogen; GROUPS=variety;
TRELLISGROUPS=blocks
will produce a plot for each block, in a trellis arrangement; each plot will again have
factor nitrogen on the x-axis, and a line for every variety. Likewise, the PAGEGROUPS
parameter can specify factors whose combinations of levels are to be plotted on different
pages. So

VGRAPH [METHOD=line] nitrogen; GROUPS=variety; PAGEGROUPS=blocks

will again produce a plot for block, but now on separate pages. Multi-way tables can
plotted even if the corresponding model term was not in the REML analysis. For example
you can plot a two-way table even if the analysis contained only the main effects of the
two factors; however, the lines will then all be parallel and no LSDs can be included.

The NEWXLEVELS parameter enables different levels to be supplied for an XFACTOR
factor, if its existing levels are unsuitable. If the factor has labels, these are used to label
the x-axis unless you set option XFREPRESENTATION=1evels. When XFACTOR is a
variate, NEWXLEVELS can specify the values where the predictions are to be made. By
default, they are made at its minimum and maximum values.

Note that the values predicted by VPREDICT, for an XFACTOR variate, will not include
any spline effects, nor can it take account of any relationships between different variates
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in the model. (For example, the model may include a variate and its square.) To take
account of relationships like these, you should use VPREDICT directly, specifying the
linked variables with the PARALLEL parameter. Save the table of predictions, and then
plot it using DTABLE.

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis
and the x-axis, respectively. The symbols, colours and line styles that are used in a high-
resolution plot are usually set up by VGRAPH automatically. If you want to control these
yourself, you should use the PEN directive to define a pen with your preferred symbol,
colour and line style, for each of the groups defined by combinations of the GROUPS
factors. The pen numbers should then be supplied to VGRAPH, in a variate with a value
for each group, using the PENS parameter.

The YTRANSFORM option allows you to include additional axis markings, transformed
onto another scale, on the right-hand side of the y-axis. This is useful if your y-variate has
been transformed. Suppose, for example, suppose you have analysed a variate of
percentages that have been transformed to logits. You might then set
YTRANSFORM=ilogit (the inverse-logit transformation) to include markings in
percentages alongside the logits. You can control the colours of the transformed marks
and labels, by defining a pen with the required properties, and specifying it with the
PENYTRANSFORM option. Otherwise, the default is to plot them in blue.

1.5 Practical

Plot the means from the meat-tenderizing example in Practical 1.3.

1.6 Predictions

The predicted means that are plotted by the Means Plots menu, or printed by the Options
or Further Output menus, are formed by inserting the estimated effects of the relevant
terms into the linear model. Terms that do not contribute to the table of means are
ignored.

Remember that the model for the split-plot design was

Y =p TV, tatva, b +w,te

where

Vi 1s the yield from block i, whole-plot j, subplot ;
the fixed terms in the model are

1 the overall constant (grand mean),
v. the main effect of variety » (where r is the variety assigned to unit ijk),
a, the main effect of nitrogen application at level s (where s is the nitrogen level

applied on unit ijk), and

va,, their interaction.
and the random model terms are

b, the effect of block i,

w, the effect of whole-plot j within block 7, and

&, the random error for unit ijk (which here is the same as the subplot effect, since the

subplots are the smallest units of the experiment).

So, to form the nitrogen table of means we would need the grand mean x and the nitrogen
effects a,. The other effects are omitted. So, equivalently, we can say that we have taken
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the random effects at their population means of zero.

Unlike ANOVA, REML allows you to produce predicted values that include estimated
values of effects in random terms. (So you are including the estimated effects for the
specific sample, in this experiment, from the underlying random population represented
by the random term.) These random estimates are known as best linear unbiased
predictors (or BLUPs). An interesting feature is that the BLUP estimates for a random
term are usually smaller than the estimates that would have been obtained if the term had
been estimated as a fixed term. For this reason, the BLUP estimates are often called
“shrunken” parameter estimates. Further details, and the underlying mathematics, are
given in the Guide to the Genstat Command Language Part 2 Statistics, Section 5.3.3.

The REML Predictions menu
(Figure 1.10) provides more
flexibility. To open the menu,
you click on the Predict button
on the Linear Mixed Models menu
(Figure 1.4). This uses the
VPREDICT directive, which
offers similar facilities to the

REML Predictions
Available data

Explanatory variables

Predict at:

X

In parallel with

nitrogen

All levels

None

Model terms to form predictions
(®) Use default model terms
(") Specify model terms

Display

Save

Averaging options..

PREDICT directive inregression | ©besspien  Hsens O Predictons ]
. . . Predictions [l Average SEDs [ Standard emors l:l
aIlaIYSlS. SO the predICtlonS arc [ Standard emore  [] Variance and covaniances []sED
! [ 1
formed by two steps. [Pt tae o prcictons CVarmcecovmatne 10 ]
1 a table Of ﬁtted Values ls Diisplay in spreadsheet in Page format o
calculated. By default |[x Cancel | | Defauts

these are formed using all
the fixed terms in the
model, and any random terms that are involved in the prediction table. However,
you can specify the terms explicitly by checking the Specify model terms box, and
clicking on the Model terms button.

2 the fitted values are averaged over the factors that are not in the prediction table.
You can control how the averaging is done by clicking on the Averaging options
button.

In Figure 1.10 we are constructing predictions for nitrogen with the default settings,
except that we are asking to display (all) SEDs instead of the default of Average SEDs.
VPREDICT thus forms a nitrogen-by-variety table of fitted values using only the fixed
effects u, a, and v,. It then averages over variety (using equal weighting) to get the
predictions. As the varieties had equal replication in the design, this gives the same
results as the ordinary predicted means, shown in Section 1.2.

Figure 1.10

Predictions from REML analysis

Model terms included for prediction: Constant + variety + nitrogen + variety.nitrogen
Model terms excluded for prediction: blocks + blocks.wplots

Status of model variables in prediction:
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Variable Type Status
nitrogen factor Classifies predictions
variety factor Averaged over - equal weights
Constant factor Included in prediction
blocks factor Ignored
wplots factor Ignored
Response variate: yield
Predictions
nitrogen Ocwt 02cwt 04cwt 0.6cwt
79.4 98.9 114.2 123.4
Standard errors
nitrogen Ocwt 02cwt 04cwt 0.6cwt
7175 7175 7175 7.175
Standard error of differences
nitrogen 0 cwt 1 *
nitrogen 0.2 cwt 2 4.436 *
nitrogen 0.4 cwt 3 4.436 4.436 *
nitrogen 0.6 cwt 4 4.436 4.436 4.436 *
1 2 3 4

These predictions are called marginal predictions), as the random effects have been set

at their population means of zero.

Another possibility would be to
make predictions conditional on
the block and whole-plot random
terms. We would then average
over the block and whole-plot
(BLUP) effects actually estimated
in the analysis. Essentially this
predicts the average yields that
would be obtained for each level
of nitrogen if we ran the
experiment again with the same
treatment combinations on the

1 Model terms *
Fixed model terms: Random model terms:
.-I- +
varety blocks
blocks. wplots

nitrogen

blocks wplots subplots ‘

Model:

|varie:t5I + nitragen + variety nitrogen + blocks + blocks wplots |

X
Figure 1.11

Cancel

plots, and the same block and whole-plot samples from their respective populations. We
now need to define the model terms used to make the prediction explicitly, and include
blocks andblocks.wplots as well as the fixed terms. So, we check the Specify model
terms box and click on the Model terms button in the REML Predictions menu (Figure 1.10).
In the Model terms menu (Figure 1.11), we then define the model to be

variety +nitrogen +variety.nitrogen +blocks +blocks.wplots

The output is shown below.
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Predictions from REML analysis

Model terms included for prediction: Constant + variety + nitrogen + variety.nitrogen + blocks +
blocks.wplots

Status of model variables in prediction:

Variable Type Status

nitrogen factor Classifies predictions

variety factor Averaged over - equal weights
Constant factor Included in prediction

blocks factor Averaged over - equal weights
wplots factor Averaged over - equal weights

Response variate: yield
Predictions
nitrogen Ocwt 02cwt 04cwt 0.6cwt
79.4 98.9 114.2 123.4
Standard errors
nitrogen Ocwt 02cwt 04cwt 0.6cwt
3.137 3.137 3.137 3.137

Standard error of differences

nitrogen 0 cwt 1 *
nitrogen 0.2 cwt 2 4.436 *
nitrogen 0.4 cwt 3 4.436 4.436 *
nitrogen 0.6 cwt 4 4.436 4.436 4.436 *
1 2 3 4

In this case, because all the design is orthogonal with factor levels equally replicated, the
actual predictions remain the same. However, the standard errors have decreased, as
adding information about random effects decreases uncertainty (you would use these to
compare a mean with zero). The standard errors of differences are unchanged as we have
simply added a constant to every prediction, and this cancels when you take differences.
(The constant is the average of the block and whole-plot effects, b, and w,,, which is zero
here -but it could be non-zero in a more complicated design.)

ij2
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Next we show how to use
unequal weights in step 2. We
click on the Averaging options
button in the REML Predictions
menu (Figure 1.10) to open the
Averaging Terms menu. You
might want to check the Take
averages of combinations present
box (as in Figure 1.12) if you
have any factors that have some

1 Linear mixed models

Averaging Terms >
Available data: Take averages of combinations present
| mitrogen |
[[] Specify marginal weights
x —

Figure 1.12

levels with zero replication in the experiment. You can list these in the box below the
check box to tell VPREDICT to omit these levels during the averaging.

Alternatively, if you check the
Specify marginal weights box, you
can specify a one-way table,
classified by any of the averaged
factors, to define the weights
explicitly. As an example, we
will form predictions for varieties
assuming that there will always
be some nitrogen fertilizer.

We first create the table using
the spreadsheet menus. We select
the Create sub-option of the New

Spread  Graphics  Stats  Tools
New

Column
Factor
Calculate
Delete

Insert

Select
Restrict/Filter
Sort...
Manipulate
Sheet

Book

Figure 1.13

Cerl+F9

Window Help
> Create... Ctrl+F10
Shift-F10
Alt+F2
Alt+Ctrl+F10
Ctrl+Shift+L

Ctrl+Alt+E

af

Data in Genstat...
From Clipboard
ODBC Data Query...
DDE Link...

Excel Import Wizard...
From URL...

Book from Selected Sheets...

Tabbed-table from Genstat...

Append Multiple Files...
Append Multiple Excel Worksheets...
Merge Multiple Files...

option of the Spread menu on the menu bar, as shown in Figure 1.13.

/. Create new spreadsheet

@ Spreadshest

HH
H

T N i

Table

Scalar

E =

Diagonal
Matrix

Vector

Symmetric
Matrix

From Clipboard ~ From Ex;:el

-
QDEC Query

£

From Server bt

Stored ODBC  DDE Server

Figure 1.14

This opens the Size of New Spreadsheet menu, where we select
Table as the type of spreadsheet, and check the Create from
existing factors box (Figure 1.14). We then get the Create Table
from Factors menu, where we select nitrogen as the factor

(Figure 1.15).

X

Rows: 100
Columns: |10

[ Create row factor

Create from existing factors

[] Set as active sheet
Create in book

New book ~

Cancel Help

Create Table from Factors

Available data: Selected factors:

nitrogen

oK Help

Figure 1.15

Cancel Clear

t

~

i sprea.. [ = [ -B- w5l

Row ! nitrogen c1
1|0 cwt
2(8.2 cwt 8.25
3|(8.4 cwt 8.25
4|8.6 cwt a.5

i o | < >

Figure 1.16
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The resulting spreadsheet is Averaging Terms X
shown in Figure 1.16. We have | Avaiable data: [[] Take averages of combinations present
left its name as the default, C1,
chosen by the Spread menus, and I ot et o
filled in weights to exclude the | [o |
zero level of nitrogen, to use 0.25
for 0.2 cwt and 0.4 cwt, and 0.5 |« Cancel

for 0.6 cwt. Notice that we have
arranged for the weights to sum
to one. VPREDICT will not do
this automatically, but will use the actual weights that you supply.

We can now select variety as the explanatory variable in the REML Predictions menu,
and enter C1 into the Averaging Terms menu; see Figure 1.17. The resulting predictions
are shown below.

Figure 1.17

Predictions from REML analysis

Model terms included for prediction: Constant + variety + nitrogen + variety.nitrogen
Model terms excluded for prediction: blocks + blocks.wplots

Status of model variables in prediction:

Variable Type Status

nitrogen factor Averaged over - specified weights C1
variety factor Classifies predictions

Constant factor Included in prediction

blocks factor Ignored

wplots factor Ignored

Response variate: yield

Predictions
variety Victory Golden rain Marvellous
109.4 115.7 119.8
Standard errors
variety Victory Golden rain Marvellous
8.031 8.031 8.031

Standard error of differences

*

variety Victory 1

variety Golden rain 2 7.582 *
variety Marvellous 3 7.582 7.582 *
1 2 3
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The menus allow you to do virtually everything but, if you prefer commands, the syntax

of VPREDICT is given below.

VPREDICT directive

Forms predictions from a REML model.

Options
PRINT = string token

CHANNEL = scalar

MODEL = formula

OMITTERMS = formula

FACTORIAL = scalar

What to print (description, predictions,
se, sed, avesed, vcovariance); default
desc, pred, se, aves

Channel number for output; default * i.e. current
output channel

Indicates which model terms (fixed and/or
random) are to be used in forming the
predictions; default * includes all the fixed
terms and relevant random terms

Specifies random terms to be excluded from the
MODEL; default * i.e. none

Limit on the number of factors or variates in
each term in the models specified by MODEL or
OMITTERMS; default 3

PRESENTCOMBINATIONS = identifiers

WEIGHTS = tables
PREDICTIONS = table or scalar
SE = table or scalar

SED = symmetric matrix

VCOVARIANCE = symmetric matrix

SAVE = identifier

Parameters
CLASSIFY = vectors

LEVELS = variates or scalars

PARALLEL = identifiers

Lists factors for which averages should be taken
across combinations that are present

One-way tables of weights classified by factors
in the model; default *

To save the predictions; default *

To save standard errors of predictions; default *
To save standard errors of differences between
predictions; default *

To save variances and covariances of
predictions; default *

Specifies the save structure from which to

predict; default * i.e. that from most recent
REML

Variates and/or factors to classify table of
predictions

To specify values of variates and/or levels of
factors for which predictions are calculated
Specifies variables in the classifying set whose
values change in parallel (rather than in all
combinations)
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The cLASSIFY parameter specifies those variates or factors to be included in the table
of predictions, and the LEVELS parameter supplies the values at which the predictions are
to be made. For a factor, you can select some or all of the levels, while for a variate you
can specify any set of values. A single level or value is represented by a scalar; several
levels or values must be combined into a variate (which may of course be unnamed). A
missing value in the LEVELS parameter is taken to stand for all the levels of a factor, or
the mean value of a variate. The PARALLEL parameter allows you to indicate that a factor
or variate should change in parallel to another factor or variate. Both of these should have
the same number of values specified for it by the LEVELS parameter of VPREDICT. The
predictions are then formed for each corresponding set of values rather than for every
combination of these values.

The MODEL, OMITTERMS and FACTORIAL options specify the model to use in step 1.
The formula specified by MODEL is expanded into a list of model terms, deleting any that
contain more variates or factors than the limit specified by the FACTORIAL option. Then,
any random terms in the formula specified by OMITTERMS are removed.

The WEIGHTS option can supply the one-way tables to be used in step 2. These are used
to calculate the weight to be used for each fitted value when calculating the averages.
Equal weights are assumed for any factor for which no table of weights has been
supplied. In the averaging all the fitted values are generally used. However, if you define
a list of factors using the PRESENT option, any combination of levels of these factors that
does not occur in the data will be omitted from the averaging. Where a prediction is
found to be inestimable, i.e. not invariant to the model parameterization, a missing value
is given.

Printed output is controlled by settings of the PRINT option with settings:

description describes the terms and standardization policies
used when forming the predictions,

predictions prints the predictions,

se produces predictions and standard errors,

sed prints standard errors for differences between the
predictions,

avesed prints the average standard error of difference of
the predictions, and

vcovariance prints the variance and covariances of the
predictions.

By default descriptions, predictions, standard errors and an average standard error of
differences are printed. You can also save the results, using the PREDICTIONS, SE, SED
and VCOVARIANCE options. You can send the output to another channel, or to a text
structure, by setting the CHANNEL option.
The following statements could be used to reproduce the predictions above.
VPREDICT [PRINT=description,prediction,se,sed] nitrogen
VPREDICT [PRINT=description,prediction, se,sed;\
MODEL=nitrogen+variety+nitrogen.variety\
+blocks+ blocks.wplots] nitrogen

VPREDICT [PRINT=description,prediction, se,sed; WEIGHTS=C1]\
variety
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1.7 Practical

Form predictions for the chemicals Practical 1.3. First of all use the default settings, and
compare these with the predicted means that you obtained earlier. Then form predictions
assuming that the meat will be cooked equally often at temperatures 1 and 2, but not at
temperature 3.

1.8 A non-orthogonal design

We now consider the analysis of a rather more complicated field experiment (at Slate
Hall Farm in 1976), previously analysed by Gilmour ef al. (1995). The design was set up
to study 25 varieties of wheat, and contained six replicates (each with one plot for every
variety) laid out in a two by three array. The variety grown on each plot is shown in the
plan below.

Each replicate has a block structure of rows crossed with columns, so the random
model is

replicates / (rows * columns)

(rows crossed with columns, nested within replicates), which expands to give
replicates + replicates.rows + replicates.columns +
replicates.rows.columns

So we have random terms for replicates, rows within replicates, columns within replicates

and, finally, replicates.rows.columns represents the residual variation. The fixed
model contains just the main effect of the factor variety.

112 (41351972326 [I15]18[25]9 |11 |2
6 | 79[ 8|10 8121625 4 || S| 7 [16]23 |14
21122 (24 123 1251112024 3 | 7 || 6 [13]22]| 4 [20
1111214 [ 1315122 1 |10 |14 [ 18 24| 1 [15] 17| 8
16117 [ 19 [ 18120 5| 9 |13 |17 [21 |12 19| 3 |10 [2]

3118 8 [ 1312316241013 [ 2 ||10| 4 |17 ] 11 [23
1116 6 [ 11|21 (1220 1 [ 9 [23 12| 6 [24 |18 | 5
20110 [ 15 (25 4 | 7 [ 1821 [ 151913 | 1 [25] 7
1717 |12 (2225 3 [14]17] 6 (21120 8 [ 2 |14
1919 |14 (24| 8 |11 [22] 5 |19 3 |22 |15[ 9 |16

E N I\ V)
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The data are in spreadsheet file | B Spreadsheet [Slatehall.gsh] o

. Row ! Lotnumber lr‘e Licates !Pows !cotunms !var"i.et ield !f'ie{a‘r‘ow !_fieldcolumﬂ t

Slgtehall.gsh (Flgurc? 1.18), | =~ = : < : -
which can be opened using the || - 2 AE! 2 2| 3.5 1 >
Example Data Sets menu as shown || > - S : B 2 =
. . .. 4 4 i E i 4 3| 12.39 1 4
in Figure 1.2. In addition to the | - 5 1 1 5 5| 15.08 1 5
factors already mentioned, the | ° : = 1 z ;
. 7 7 2 1 2 23| 15.72 1 7
sheet also contains factors | 5 T - 2| 19.69 1 s
fieldrow and fieldcolumn || °? . 2 A | F17sa . .

. 18 18 2 1 5 15| 15.98 i 18
(defining the row and column ||, i = & 3 G 9 3 5
positions within the whole field, || 12 3 1 2| 25|16.33 ? 12

. . . 13 13 3 1 3 9] 12.55 1 13
rather than within each replicate) |, = T T n =
which we shall use to define || 15 3 1 5 2] 15.72 1 i)
spatial correlation structures in 2 -
Chapter 2. Figure 1.18

Figure 1.19 shows the. Linear oo T
Mixed Models menu with the | asise dea Yovarte: hied |
necessary boxes filled in. If we Fied mode': ety |
use the Linear Mixed Model Options Random model:  freplicates / ( rows * columns ) |
menu (Flgul‘e 1.5) tO requeSt Initial values... Comelated emortemms...
predicted means and standard Spinemodel: | |
errors of differences of means (in s e Alinteractions. =
addition to the existing Display || (Fixed model only)
options), and then click on Run in |
the L|near M|Xed MOde|S menu = 2 Run Options.. Save.. Further output...
itself, the following output is X oo | [ el | AR
produced. Figure 1.19
REML variance components analysis
Response variate: yield
Fixed model: Constant + variety
Random model: replicates + replicates.rows + replicates.columns +
replicates.rows.columns
Number of units: 150
replicates.rows.columns used as residual term
Sparse algorithm with Al optimisation
Estimated variance components
Random term component s.e.
replicates 0.4262 0.6890
replicates.rows 1.5595 0.5091

replicates.columns 1.4812 0.4865
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Residual variance model

Term Model(order) Parameter Estimate s.e.
replicates.rows.columns Identity Sigma2 0.806 0.1340
Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 212.26 24 8.84 79.3 <0.001

Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 212.26 24 8.84 79.3 <0.001

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

Table of predicted means for Constant

14.70 Standard error: 0.422

Table of predicted means for variety

variety 1 2 3 4 5 6 7 8
12.84 15.49 14.21 14.52 15.33 15.27 14.01 1457

variety 9 10 11 12 13 14 15 16
12.99 11.93 13.27 14.84 16.19 13.27 1498 13.46

variety 17 18 19 20 21 22 23 24
14.98 15.92 16.70 16.40 14.93 16.44 13.29 1546

variety 25
16.31

Standard error of differences: 0.6202
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Unusually for a variety trial, this | #rbesefionce fo] =
fieldcolumn

. . . . Avaiable data Design: ST e v
particular design is balanced (in o

. . o =t Contrasts
fact it is a lattice square), and we | e

replicates Treatment structure [variety |
rOWs

can gain additional insights into | 2
the REML analysis by looking at

Block structure |rephcates #(rows * columns ) ‘

the output that we could have | g e e .
obtained from the Analysis of |_____* me

Variance menu. The menu is not |/ Opins.
customized for the design, but we |~ *| ] [ [= &=

can use the General analysis of
variance setting in the Design box,
and specify the Treatment structure and Block structure as shown in Figure 1.20. The
standard analysis of variance output (analysis-of-variance table, information summary,
means and standard errors of differences) is shown below.

Figure 1.20

Analysis of variance

Variate: yield

Source of variation d.f. S.S. m.s. V.I. F pr.
replicates stratum 5 133.3273 26.6655

replicates.rows stratum

variety 24 215.9053 8.9961

replicates.columns stratum

variety 24 229.8094 9.5754
replicates.rows.columns stratum

variety 24 166.7675 6.9486 8.58 <.001
Residual 72 58.3011 0.8097

Total 149 804.1105

Information summary

Model term e.f. non-orthogonal terms
replicates.rows stratum

variety 0.167

replicates.columns stratum

variety 0.167 replicates.rows
replicates.rows.columns stratum

variety 0.667 replicates.rows

replicates.columns

Message: the following units have large residuals.

replicates 6 -1.895 approx. s.e. 0.943

replicates 1 rows 4 columns 3 -1.665 approx. s.e. 0.623
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replicates 1 rows 5 columns 2 1.710 approx. s.e. 0.623

Tables of means
Variate: yield
Grand mean 14.704

variety 1 2 3 4 5 6 7
12.962 15.561 14.152 14.560 15.481 15.358 14.008

variety 8 9 10 11 12 13 14
14.428 12.968 11.928 13.222 14.835 16.176  13.187

variety 15 16 17 18 19 20 21
15.067 13.287 14.968 15.881 16.742 16.277 15.048

variety 22 23 24 25
16.430 13.283 15.464 16.344

Standard errors of differences of means

Table variety
rep. 6
d.f. 72
s.e.d. 0.6363

Notice that the analysis-of-variance table has three lines for variety. As each row

contains a different set of varieties, the differences between the rows in each replicate

enable us to obtain estimates of the variety effects (which appear in the

replicates.rows stratum). The same is true of the columns. The design is balanced

because the various comparisons between varieties are all estimated with the same

efficiency in the replicates. rows stratum; the Information Summary indicates the

efficiency is in fact 0.167. Similarly, they all have efficiency 0.167 in the

replicates.columns stratum, and efficiency 0.667 in the
replicates.rows.columns stratum. So, the possible information on variety is split

(1/6 : 1/6 : 2/3 ) between the three strata.
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We can see the estimates obtained  'ANGUA Further Output X
in each stratum by checking the = |
Effects box in the ANOVA Further [Jaov table [JResiduals []stratum variances
Output menu (Figure 1.21) and = Jinformation [ %ev [ contrasts
clicking on Run. You can then verify Effects [IMissing values [ ]Combined means
that the standard table of means [Means Covariates [ combined effects
produced by aANOvVA, above, is D;LL;;:?H . tsIZl Assumption tests  [] Summary of resuits
calculated using the estimated it
Standard errors
effects from the lowest stratum e . A
(replicates.rows.columns): LSDs hio 5... _
the mean 12.962 for variety 1 is the _
grand mean 14.704 plus the effect of Graph'csl
variety 1 in the replicates. i i Hemnspio/s:
rows.columns table’ namely Power calculations... Permutation test... Multiple comparisons...
-1.742. W X Run Cancel
Figure 1.21
Tables of effects
Variate: yield
replicates.rows stratum
variety effects, e.s.e.*, rep. 6
variety 1 2 3 4 5 6 7
-5.614 1.296 0.604 -1.468 -3.522 2790 -3.458
variety 8 9 10 11 12 13 14
1.718 0.520 -3.814 -2.718 -2.544 1.020 1.236
variety 15 16 17 18 19 20 21
0.582 5.598 3.786 3.480 3.902 3.530 -1.294
variety 22 23 24 25
-0.028 1.360 -3.058 -3.894
replicates.columns stratum
variety effects, e.s.e.*, rep. 6
variety 1 2 3 4 5 6 7
-3.432 -2.588 0.812 -0.650 -1.450 -4.948 1.930
variety 8 9 10 11 12 13 14
4.064 -3.010 -1.584 1.852 2.828 2540 -0.752
variety 15 16 17 18 19 20 21
-3.536 -0.642 -2.494 0.740 -1.706 4934 -2.924
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variety 22
3.990

1 Linear mixed models

23
-3.730

24
4.434

replicates.rows.columns stratum

variety effects, e.s.e. 0.4499, rep. 6

variety 1
-1.742

variety 8
-0.277

variety 15
0.362

variety 22
1.726

2
0.857

9
-1.736

16
-1.418

23
-1.421

-0.553

10
-2.777

17
0.263

24
0.760

25
5.332

-0.144

11
-1.482

18
1.176

25
1.639

0.777

12
0.130

19
2.037

0.653

13
1.471

20
1.573

-0.697

14
-1.517

21
0.343

In contrast, the REML analysis has produced a single set of estimates, and these
automatically combine (with an appropriate weighting) all the separate estimates. In fact
the REML estimates correspond to the combined effects and means in the ANOVA Further
Output menu. Below, we show these tables, together with the output generated by
checking the Stratum variances box which contains the variance components. The
combined means have a smaller standard error of difference than the standard means, but
the complicated structure of their estimation means that we can no longer assume that
differences between them follow t-distributions with a known number of degrees of
freedom. (However, the effective numbers of degrees of freedom printed by ANOVA are
generally reasonably reliable.)

Tables of combined effects

Variate: yield

variety effects, e.s.e. 0.4385, rep. 6, effective d.f. 79.99

variety 1
-1.869

variety 8
-0.131

variety 15
0.276

variety 22
1.739

2
0.786

9
-1.716

16
-1.243

23
-1.413

3
-0.495

10
-2.772

17
0.277

24
0.760

4
-0.186

11
-1.432

18
1.217

25
1.602

0.628

12
0.133

19
1.991

0.570

13
1.486

20
1.695

-0.697

14
-1.438

21
0.230
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Tables of combined means

Variate: yield

variety 1 2 3 4 5 6 7
12.836 15.490 14.209 14.519 15.333 15.274  14.007

variety 8 9 10 11 12 13 14
14.574 12.989 11.932 13.272 14.838 16.190 13.266

variety 15 16 17 18 19 20 21
14.980 13.461 14.982 15.922 16.696 16.399 14.934

variety 22 23 24 25

16.444 13.291 15.465 16.306

Standard errors of differences of combined means

Table variety
rep. 6
s.e.d. 0.6202
effective d.f. 79.99

Estimated stratum variances

Variate: yield

Stratum variance effective d.f. variance component
replicates 26.6655 5.000 0.4262
replicates.rows 8.6037 23.464 1.5595
replicates.columns 8.2120 23.438 1.4812
replicates.rows.columns 0.8062 73.099 0.8062

The example reinforces the point that the REML output is the same as that given by ANOVA
when both are feasible, but that the generality of the REMT, method leaves aspects that it
cannot duplicate. More importantly, though, it shows that the REML method makes use
of all the available information about each fixed effect. These aspects indicate the
efficiency and appropriateness of the methodology, and the next practical illustrates its
ability to handle designs that cannot be analysed by ANOVA.

1.9 Practical

Genstat spreadsheet file vartriall.gsh contains data from a trial of 35 varieties of
wheat. The design has two replicates each laid out in a five by seven plot array. Assuming
that the same block structure is appropriate as in Section 1.8 (rows crossed with columns
within replicates), analyse the data as a linear mixed model with block structure
Replicate/ (Row*Column) and fixed model variety. Check whether the data can
be analysed by ANOVA.
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1.10 Residual checks and plots

You can ask Genstat to report any [[inear Mixed Model Further Output w
large residuals, by checking the = Display
Residual Checks box on either the (] Model [[] Variance-covariance matrix
Linear Mixed Model Options menu =~ L] Vanance components [ Deviance
or the Linear Mixed Model Further =~ Eximated sfects L e
R . [ ] Predicted means [] Missing value estimates

Output menu, as in Figure 1.22. [ Pt weseaunts e

The criterion for deCiding [ Covarance model [ Akaike information coefficient (AIC)
whether a standardized residual is Residual checks [ Schwarz information coefficient (SIC)
large depends on the number of Use full likelihood for AIC/SIC
degrees of freedom d of the Standard ermors
random terms in the analysis. Differences Estimates All differences All estimates

LSDs ) sigrificaty [ 5

Genstat reports any residual with
absolute value greater than 2 if d = terodion Automatic

is less than 20, or greater than 4.0 | s o effiects ¢ Tenris..
if d is greater than 15773. For gopnes

other values of d, the default is Residual plots... Means plot...
the critical value of the Normal
distribution for a two-sided test Detect outliers... Power calculations... Permutation test...
with significance probability 1/d. Mgl i
These criteria are the same as
[ [ Cancel Defaults

those used in regression and
analysis of variance, and are Figure 1.22
intended to ensure that a report
should appear for any extreme outlier, but that reports should not appear too often just
as a result of random variation.

For the Slate Hall data, two large residuals are reported, in units 48 and 62. It would
be worthwhile checking the original records to see if there was anything unusual about
those plots, perhaps to justify their exclusion from the analysis.

Large residuals

Unit Residual
48 -2.747
62 3.227
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You can use the REML Residual REML Residual Plot Options X
Plot Options menu (Figure 1.23) to = Tvpeof plt

produce diagnostic plots of the =~ fitedvales  [nomal MHaiftormal [ ristogram
residuals, so that you can check = avaiable data: Method for residuals

the assumptions of the analysis. I‘Eﬁﬂ(ﬂfj—mﬂ_—— Combine all random terms v
Alternatively, if you are analysing |2E‘§:3:§ber Residuals in field layout |

a field experiment, you can repicates Ocontour plot ~ [shadeplot  [Display table
display the residuals in field =;;r|i§tv [Point piot(s) against: | columns

layout to check for systematic X-coordinates: | |

trends up and down or across the ~— v<coordinates: | |

field. The Method list box controls
whether the display shows just the
residuals from the final random Figure 1.23
term (to check the assumptions),
or the sum of all the random effects (to assess fertility trends).
To open the menu you click on g e —— _oEN

the Further output button in the | fie & ves Toos windou et :

. . . & WG S FBY saw(WE - : 100%
Linear Mixed Models menu (Figure " »
1.22), and then clicking on the ve

Residual plots button in the Linear

W | K Run Cancel

Histogram of residuals Fitted-value plot

Mixed Model Further Output menu o] I [ e
(Figure 1.6). - RN O RTINS |

The menu has check boxes to g g o o g
provide four types of diagnostic N L E i

plot. In Figure 1.23 they are all ERER
checked, so Figure 1.24 shows
them all. There is a histogram of
the residuals, so that you can
check that the distribution is
symmetrical and reasonably
Normal; a plot of residuals ————r ——
against fitted values, so that you Exp:me;Nofmaquu;nmes (]Eipz‘:te:Nc::naZI:uz:tiI:
can check whether the residuals |- .
are roughly symmetrically Essssssenss
distributed with constant Figure 1.24
variance; a Normal plot which
plots the ordered residuals against Normal distribution statistics — if they lie roughly on
a straight line, the residuals are roughly Normally distributed; and a half-Normal plot
which does the same for the absolute values of the residuals, and can be more useful for
small sets of data. The same plots are available from the analysis of variance menus; see
Chapter 4 of the Guide to Anova and Design in Genstat for more details.

The diagnostic plots are produced by the VPLOT procedure. If you prefer commands
to menus, the syntax is described below.

Fitted values

Normal plot Half-Normal plot

#

e

Residuals
A L] o ~ S

1 =

Absolute values of residuals
o e s e R T




48 1 Linear mixed models

VPLOT procedure
Plots residuals from a REML analysis (S.J. Welham).

Options

RMETHOD = string token Which random terms to use when calculating the
residuals (final, all, notspline, stfinal,
stall); default uses the setting from the REML
statement

INDEX = variate or factor X-variable for an index plot; default
'(1,2...)

GRAPHICS = string token What type of graphics to use (1ineprinter,
highresolution); default high

TITLE = text Overall title for the plots; if unset, the identifier
of the y-variate is used

SAVE = REML save structure Specifies the (REML) save structure from which
the residuals and fitted values are to be taken;
default * uses the SAVE structure from the most
recent REML analysis

Parameters

METHOD = string tokens Type of residual plot (fittedvalues, normal,

halfnormal, histogram, absresidual,
index); default fitt, norm, half, hist
PEN = scalars, variates or factors ~ Pen(s) to use for each plot

Procedure vPLOT provides up to four types of residual plots from a REML analysis. These
are selected using the METHOD parameter, with settings: f£itted for residuals versus
fitted values, normal for a Normal plot, halfnormal for a half-Normal plot,
histogram forahistogram of residuals, absresidual for aplot of the absolute values
of the residuals versus the fitted values, and i ndex for a plot against an "index" variable
(specified by the INDEX option). The PEN parameter can specify the graphics pen or pens
to use for each plot. The TITLE option can supply an overall title. If this is not set, the
identifier of the y-variate is used.

The residuals and fitted values are accessed automatically from the analysis specified
by the SAVE option. If the SAVE option has not been set, they are taken from the SAVE
structure from the most recent REMI, analysis.

The RMETHOD option controls which random terms are used to calculate the residuals:

all all the random effects,

final only the final random term,

notspline all except any random spline terms,

stall standardized residuals using all the random
effects, and

stfinal standardized residuals using only the final random
term.

The default takes the setting from the REML directive that produced the analysis. Note that
residuals based on the final random term will not be calculated when any of the variance
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components are negative, as the associated negative correlations can generate very
misleading patterns. VPLOT will then generate a warning that all the residuals are
missing, and you should use RMETHOD=a11 instead.

By default, high-resolution graphics are used. Line-printer graphics can be used by
setting option GRAPHICS=1lineprinter.

The plots of the residuals in field layout are produced by the VDFIELDRESIDUALS
procedure.

1.11 Practical

Try to plot the residuals from the REML analysis of the data in spreadsheet file
Vartriall.gsh. Youwill find that you are unsuccessful, as Genstat does not allow you
to save residuals for the final error term when there are negative variance components.
(This is because these random terms can generate strange correlation patterns between
the residuals that can be confusing and hard to interpret.) Remove the random terms with
the negative variance components, by redefining the random model as
Replicate.Column,and tryagain. (Theterm Replicate.Column now fits arandom
effect for every combination of the Replicate and Column factors i.e. for every
physical column in the design.)

1.12 Saving information from the analysis

As well as displaying the results Linear Mixed Model - Save Options g

of an analysis, the REML menus =

allow you to save the results in =~ DY

standard data structures. After a DResfd”‘a's |

REML analysis you can click on DResTduaI deviance

the Save button of the Linear Mixed | -2 & ffeedom ]
[] Predicted means i

Models menu (Figure 1.4), to open
the Linear Mixed Models Save
Options menu. The residuals,
fitted values, predicted means and
many other results can be saved.
In Figure 125 wvariety is
selected as the model term for
which means and effects are to be
saved, the Predicted Means box is

[ Variance of means matrix

[] Standard emor of difference between means
[] Estimated effects

[[] Variance of effects matrix

[] Standard emor of difference between effects
[] Akaike information coefficient {AIC)

[] Schwarz information coefficient {SIC)

|:| Unit variance-covarance matrix

K [] Display in spreadsheet in: Fage format Export to file ...
checked, and varmeans is
entered into the adjacent box as = Modeltem for effects and means: || Tems..
the name Of the table to store Method for residuals and fitted values
them. The information is saved @ Combine all random tems -
using the VKEEP directive. = i

Figure 1.25
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If you check the Display in
spreadsheet box, the results are
put into a Genstat spreadsheet,
which can then be saved in a file
on your computer for use in a
later run of Genstat, or in another
program such as Excel.
Alternatively you can save results
automatically to a spreadsheet file
by clicking on the Export to file
button. This opens the Save REML
Results in Spreadsheet File menu.
Figure 1.26, shows the menu with
the default output components
selected in the check boxes, and
the Save in file box filled in to save

them in the Excel file
SlateHallResults.xIsx.
Each section of

Insert

1 Linear mixed models

Save REML Results in a Spreadsheet File
Save
Variance components
Wald table for tests of fixed effects
Means
Standard emors of differences between means
[] Variance-covarance matrix of the means
[ ] Effects
[] Standard emors of differences between effects
[] Variance-covariance matrix of the effects

Tables of replications

Save in file: |SIateHa|IHesuItsxls: Browse. .
b8 - Cancel Defaults

Figure 1.26

2~ = SlateHallResults.xisx - Excel

Draw  Pagelayout  Formulas  Data  Review  View

output is saved in a =~ ™ T . ,
-~ Calibri . ~ =B =5 o

separate page of the = . 8 s u.x & - - e
spreadsheet file. =~ ~ 2 A : <
Flgure 1.27 ShOWS the 82 fr | 0.426238622467225
page Contalnlng the 1 7unilLabe!siA mmpu:ems ¢ ? : ' :
variance components. :'Z0z., SRR

4 | replicates.columns 1.48115487

The menu uses the v » Variance components | Tests for fixed terms variety means ... (3)

VSPREADSHEET | =

Add-ins

Roger Payne =

Team

24 Cell Styles -

Q Tell me

{5} Conditional Formatting -

{59 Format as Table -

Cells

Editing

procedure.

Figure 1.27



2  Meta analysis with REML

In this chapter we describe how you can use REML to do a combined analysis of several
related experiments. The aim here is to produce estimates of treatment effects that make
use of all the available information. This form of meta analysis gives the most efficient
estimates, provided all the original data sets are still available. If the original data sets are
no longer available, and you have only the results from the analysis of each one, you can
use the META procedure (or its associated menu Meta Analysis of Trial Results) for a single
treatment contrast, or the VMETA procedure (or its associated menu Multi-treatment Meta
Analysis of Summaries) for several treatment effects.

However, in order for the combined analysis to be sensible, the experiments should
have similar treatment structures, and should have some treatments in common across the
experiments. Otherwise, there is no information on comparisons between pairs of
treatments that are not in the same experiment.

So, in this chapter you will learn

* how to use the Multiple Experiments / Meta Analysis (REML) menu

« the VRESIDUAL command
Note: the topics marked ¥ are optional.
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2.1

As an example we shall consider
the analysis of three fungicide
trials that took place in different
years at the same site. The data
are 1in spreadsheet file
MetaFungicide.gsh (Figure
2.1). There were two cultivars,
one susceptible and one resistant,
and ten different fungicide
treatments. A split-plot design
was used in each year, but the
cultivars were applied to the
whole-plots in 1997, and the
fungicides were applied to the
whole-plots in 1998 and 1999.
So, we have the same treatments,
but different designs in the
different years, even though the

Example: a series of fungicide trials

2 Meta analysis with REML

blocking structures were identical.

We can analyse the individual
trials by using the spreadsheet
menus to restrict the data set to
experiments 1, 2 and 3 in turn.
We first open the Restrict Units
on Factor menu, by selecting the
To Groups (Factor levels) sub-
option of the Restrict/Filter option
of the Spread menu on the menu
bar (see Figure 2.2).

i Spreadsheet [MetaFungicide.gsh] EI
Row | plot 'Exper"iment !yeur‘ !btock 'whDLEpLat !subp(ot 'cm‘.ti\mr !fuﬂg'i.:ide yield ¥
il X 1997 a § x 1 1 18 5.53 ||
2 12 1| 1997 1 1 2 1 9| 4.64
3 13 L) IEET 1 1 3 - 1| 4.23
4 14 A A 1 uE 4 1 7| 4.88
5 15 1 1997 1 1 5 1 5 4.84
6 16 I| A58 1 1 6 i, 6| 4.36
7 b7 I AEgT 1 i 7 ik 2| 4.67
8 18 L b2 2 F 1 i 8 ol 3| 4.77
9 19 I 1997 a § x 9 1 8| 4.54
18| 116 1| 1997 1 1 18 1 4| 4.31
11 21 £ e 1 2 1 2 6| 5.33
a2 22 | B 1 2 Z. A X 5.3
13 23 1| 1997 1 2 3 2 9] 5.1
14 24 I| A58 1 2 4 2 16| 5.38
15 25 L ST 1 2 5 2 8| 5.61
16 26 e b2 2 1 2 6 2 3| 5.85
17 27 1| 1997 1 2 7 2 4| 5.67
18 28 1| 1997 1 2 -3 2 F| 5.7
19 29 £| R 1 2 g 2 5| 5.81
28| 218 1 1997 2 § 2 18 2 1 5.88
I | > v
Figure 2.1
Spread Graphics Stats Tools Window Help

New

Colurmn
Factor
Calculate
Drelete

Insert

Select
Restrict/Filter
Sort... Ctrl+F9
Manipulate

Sheet

Book

Add

Export

Update

Set as Active Sheet

»

Bl v v v v v

wow W v v

o KA(dhdy $s « & 0@EB

I N I EIREEEAR IS
Display Excluded Rows
Subset on Update Ctrl+Shift+U
By Logical Expression... Ctrl+0
To Groups (factor levels)... % Ctrl+Shift+F9
By Value... Alt+F9
Selected Rows
Unselected Rows >
Save/Apply... Ctrl+Alt+0
Bookmarked Rows
Duplicate Rows...
Random Rows...
Rows selected from Graph
Values Equal to the current Cell Ctrl+1
Values Mot equal te the current Cell Ctrl+Shift+1
Exclude rows with Missing values Ctrl+2
Exclude rows with all Missing values
Include only rows with Missing values Ctrl+3
Reverse Exclusion/Inclusion Ctrl+4
Remove All Alt+Shift+Fg

Figure 2.2




Then, in that menu, we select the experiment (1,
2 or 3 in turn) and click on OK. The same menu
should be used to remove the restriction after the
analyses.

The analysis is specified in the

Linear Mixed Models menu,

2.1 Example: a series of fungicide trials 53
Restrict Units on Factor experiment *
bactts: Restriction type
experiment 2 ®) Include
Selected levels: () Exclude
the selected levels
% inthe data for

display or analysis
Existing restrictions
Combine with new
Replace with new
Show level in list
Look for: [] Match case
in: ® Labels
Levels () Ordinals
HApply Cancel Remove al Help
Figure 2.3
4. Linear Mixed Models =] 2 |[wEse]
Available data: Y-variate: |y1'eld |
block
* | Fixed model: |curtivar * fungicide |

similarly to the split-plot analysis | ea
block2
e -
fungicide
ot

in Section 1.2. The settings are
shown in Figure 2.4, and the
output from analysing each
experiment, in turn, is given
below.

& =[x @

Random model:

|h|nck / wholeplot / subplot |

Initial values...

Comelated emorterms....

Spline model: |
Interactions: Allinteractions.
{Fixed model only)

Run Options.. Save..
Cancel Defaults Predict...

Further output ..

Figure 2.4

REML variance components analysis

Response variate:
Fixed model:
Random model:
Number of units:

yield

Constant + cultivar + fungicide + cultivar.fungicide
block + block.wholeplot + block.wholeplot.subplot
60

block.wholeplot.subplot used as residual term

Sparse algorithm with Al optimisation
Analysis is subject to the restriction on yield

Estimated variance components

Random term
block
block.wholeplot

component s.e.
0.01354 0.01503
-0.00165 0.00303
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2 Meta analysis with REML

Residual variance model

Term

block.wholeplot.subplot

Model(order) Parameter Estimate
Identity Sigma2 0.0449

Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term
cultivar
fungicide
cultivar.fungicide

Wald statistic n.d.f. F statistic d.d.f.
311.24 1 311.24 2.0
60.02 9 6.67 36.0

37.98 9 4.22 36.0

Dropping individual terms from full fixed model

Fixed term
cultivar.fungicide

Wald statistic n.d.f. F statistic d.d.f.
37.98 9 4.22 36.0

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular

variance parameters.

REML variance components analysis

Response variate:
Fixed model:
Random model:
Number of units:

yield

Constant + cultivar + fungicide + cultivar.fungicide
block + block.wholeplot + block.wholeplot.subplot
60

block.wholeplot.subplot used as residual term

Sparse algorithm with Al optimisation
Analysis is subject to the restriction on yield

Estimated variance components

Random term
block
block.wholeplot

Residual variance model

Term
block.wholeplot.subplot

component s.e.

0.01512 0.01657

-0.02177 0.01241

Model(order) Parameter Estimate
Identity Sigma2 0.0724

S.e.
0.01059

F pr
0.003
<0.001
<0.001

F pr
<0.001

S.e.
0.02289
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Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f.
cultivar 45.26 1 45.26 20.0
fungicide 378.50 9 42.06 18.0
cultivar.fungicide 12.12 9 1.35 20.0
Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f.
cultivar.fungicide 12.12 9 1.35 20.0

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular

variance parameters.

REML variance components analysis

Response variate:
Fixed model:
Random model:
Number of units:

yield

Constant + cultivar + fungicide + cultivar.fungicide
block + block.wholeplot + block.wholeplot.subplot
60

block.wholeplot.subplot used as residual term

Sparse algorithm with Al optimisation
Analysis is subject to the restriction on yield

Estimated variance components

Random term component s.e.
block -0.0043 0.0038
block.wholeplot 0.0084 0.0317
Residual variance model

Term Model(order) Parameter Estimate
block.wholeplot.subplot Identity Sigma2 0.129
Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f.
cultivar 37.41 1 37.41 20.0
fungicide 102.08 9 11.34 18.0
cultivar.fungicide 11.53 9 1.28 20.0

55

F pr
<0.001
<0.001

0.275

F pr
0.275

s.e.
0.0407

F pr
<0.001
<0.001

0.306
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Dropping individual terms from full fixed model

Fixed term
cultivar.fungicide

2 Meta analysis with REML

Wald statistic
11.53

n.d.f. F statistic
9 1.28

d.d.f.
20.0

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular

variance parameters.

F pr
0.306

The variance components can be tabulated as follows:

Year Blocks Whole-plots Residual
1997 0.01354 -0.00165 0.0449
1998 0.01512 -0.02177 0.0724
1999 -0.0043 0.0084 0.129

The F-probabilities for treatment terms show an interaction only in 1997.

Year Cultivar Fungicide Interaction
1997 0.003 <.001 <.001
1998 <.001 <.001 0.275
1999 <.001 <.001 0.306

To illustrate how you specify different error models for each experiment, we will omit
the negative variance components, i.e. treat them as zero. (In practice we could study this
further during the meta analysis.) So for each of experiments 1 and 2 (1997 and 1998) we
need a random term for blocks, while for experiment 3 (1999) we need a random term
for the combinations of whole-plots and blocks. These require extra factors which can be
set up by the commands

CALCULATE blockl = MVINSERT (block; experiment.NE.1)

& block2 = MVINSERT (block; experiment.NE.2)

& wplot3 = MVINSERT (wholeplot; experiment.NE.3)
GROUP [REDEFINE=yes] blockl,block2,wplot3

or by using the Calculate and Form Groups menus (accessed by selecting the Calculations
and Form Groups (Factors) options of the Data menu on the menu bar). The results can be
found in the right-hand columns of the spreadsheet file MetaFungicide.gsh. Notice
that each of these factors has missing values except in the units belonging to its own
experiment. Another possibility is to use the VRMETAMODEL procedure. Details can be
found in Section 5.8.1 of the Guide to the Genstat Command Language, Part 2 Statistics.

We can now represent the random terms arising from the blocking structures by the
model formula

blockl + block2 + block.wplot3
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In addition, the meta analysis menu will automatically estimate the residual variance
separately within each experiment.

We also need to consider how to handle experiment effects and interactions between
experiments and the treatment terms. If we include these as in the fixed model, the
treatment terms will be tested using the within-experiment error, weighted according to
precision within each experiment. Alternatively, if we include them in the random model,
each treatment term will in effect be compared with its interaction with experiment
(unless this is zero). In that case, a significant treatment effect would imply that the effect
is consistent and large compared to its variation across experiments - thus giving a more
stringent test.

We now open the Multiple 4. Multiple Experiments/Meta Analysis (REML) o] & ]
Experiments/Meta Analysis ;"a:'(ab'edﬂ*ai Yavariate: field |
. [s]& ~
(REML) menu, by selecting the | pleck! i ki i |
M u I t | p | e E X p e I‘i men t S/ M e t a cultivar Random model: ‘experiment‘cultivar"fungicide +block 1 + block2 +b|c|
. . fungicid Experiments: imert
Analysis sub-option of the REML [ S poses
. bt i idual m
option of the Stats menu on the ~|lshdeskt al Epen e e
Interactions Tl s “
menu bar. Operators: (Fixed model arly)
The fixed model is
cultivar*fungicide, as in
. . . Options... Save Further output
the individual analyses, and the - [EreT [
. Ui Cancel Default Predict
random model is = —

Figure 2.5

experiment*cultivar*fungicide + blockl + block2 + block.wplot3

as explained above. (Note that we can wuse the simple form
experiment*cultivar*fungicide to specify the experiment-by-treatment
interactions as any terms that occur in both the fixed and the random models for REML
are dropped from the random model.) The y-variate is again yield, and the factor
identifying the experiments is experiment. The output is shown below.

REML variance components analysis

Response variate: yield

Fixed model: Constant + cultivar + fungicide + cultivar.fungicide
Random model: experiment + experiment.cultivar + experiment.fungicide +
experiment.cultivar.fungicide + block1 + block2 + block.wplot3

Number of units: 180

Separate residual terms for each level of experiment factor: experiment

Sparse algorithm with Al optimisation
Units with missing factor/covariate values included
- specific effect for term(s) omitted for units with missing values in block1, block2, wplot3
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Estimated variance components

Random term component
experiment 0.5984
experiment.cultivar 0.0094
experiment.fungicide 0.0223
experiment.cultivar.fungicide

0.0127
block1 0.0126
block2 0.0141
block.wplot3 0.0087
Residual model for each experiment
Experiment factor: experiment
Experiment Term Model(order) Parameter
1 Residual Identity Variance
2 Residual Identity Variance
3 Residual Identity Variance
Tests for fixed effects
Sequentially adding terms to fixed model
Fixed term Wald statistic n.d.f. F statistic
cultivar 41.92 1 41.92
fungicide 92.10 9 10.23
cultivar.fungicide 22.61 9 2.51
Dropping individual terms from full fixed model
Fixed term Wald statistic n.d.f. F statistic
cultivar.fungicide 22.61 9 2.51

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular

variance parameters.

S.e.
0.6107
0.0127
0.0147

0.0114
0.0150
0.0166
0.0271

Estimate
0.0472
0.0494

0.118

d.df.
2.1
17.2
16.5

d.d.f.
16.5

s.e.
0.0112
0.0110

0.034

F pr
0.021
<0.001
0.050

F pr
0.050

The estimated variance components for the blocking terms and residuals are similar to
those from individual experiments (as you might expect). The variance components for
the random terms involving experiment are small except for the experiment main effects.
The main effects of cultivar and fungicide are still significant across the three

experiments, and there is some evidence of an interaction.
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2.2 Commands for meta analysis

The commands that are defined to produce the meta analysis in Section 2.1 are a
straightforward extension of those in Chapter 1.

VCOMPONENTS [FIXED=cultivar*fungicide; FACTORIAL=9; \
EXPERIMENTS=experiment]\
RANDOM=experiment*fungicide*cultivar\

+ blockl + block2 + block.wplot3

REML [PRINT=model, components,waldTests;\

MVINCLUDE=explanatory] yield

Notice that the EXPERIMENTS option is used to define the experiment factor (a different
residual variance is then estimated within each of its levels). Then option
MVINCLUDE=explanatory is set to ensure that units with missing values in any of the
explanatory variables are still included in the analysis. In the analysis above, this involves
the factors blockl,block?2 and wplot3. These then make no contribution to the units
where they are missing. So different random terms are then fitted with each of the
experiments.

The Experiment Residual Terms button of the Multiple Experiments/Meta Analysis (REML)
menu allows you to specify a different residual term for an experiment, or you can define
a correlation model for the residual term. This is done using the VRESTDUATL directive.
We will not illustrate this in the course, but the details are given below for future
reference. Correlation models are described in Chapter 3.

VRESIDUAL directive
Defines the residual term for a REMIL analysis, or the residual term for an experiment
within a meta-analysis (combined analysis of several experiments).

Options

EXPERIMENT = scalar Level of the EXPERIMENTS factor for which the
residual is being defined

TERM = formula Model term to be used as the residual

FORMATION = string token Whether the structure is formed by direct
product construction or by definition of the
whole matrix (direct, whole); default dire

VARIANCE = scalar Allows an initial estimate to be provided for the
residual variance of the experiment

CONSTRAINT = string token Allows the residual variance to be fixed at its

initial value (fix, positive) default posi
COORDINATES = matrix or variates Coordinates of the data points to be used in
calculating distance-based models

Parameters

MODELTYPE = string tokens Type of covariance model associated with the
term(s), or with individual factors in the term(s)
if FORMATION=direct (identity, fixed,
AR, MA, ARMA, power, boundedlinear,
circular, spherical, linearvariance,
banded, correlation, antedependence,
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unstructured, diagonal, uniform, FA,
FAequal) default iden

ORDER = scalar Order of model

HETEROGENEITY = string token Heterogeneity for correlation matrices (none,
outside); default none

METRIC = string token How to calculate distances when

MODELTYPE=power (cityblock, squared,
euclidean); default city

FACTOR = factors Factors over which to form direct products

MATRIX = identifiers To define matrix values for the term or the
factors when MODELTYPE=f1ixed

INVERSE = identifiers To define values for matrix inverses (instead of

the fixed matrices themselves) when
MODELTYPE=fixed

INITIAL = identifiers Initial parameter values for each correlation
matrix
CONSTRAINTS = fexts Texts containing strings none, £ix or

positive to define constraints for the
parameters in each model

EQUALITYCONSTRAINTS = variates Non-zero values in the variate indicate groups of
parameters whose values are to be constrained to
be equal

VRESIDUAL is used to define the residual term for a REML analysis or to define separate
residual terms for different experiments within a meta-analysis. (For a single experiment,
VRESIDUAL can be used to impose a covariance structure on the residual term. This
could also be done by specifying the covariance structure using VSTRUCTURE, as
explained in Chapter 3, but VRESTDUAL has the advantage that the algorithm then checks
that the term is consistent with the structure of the data.)

The TERM option is used to specify the formula for the residual term. This term need
not have been specified previously by the VCOMPONENTS statement.

The EXPERIMENT option is used to specify the experiment(s) for which the model is
to be used. The settings identify levels of a factor, defining the experiments, which is
specified by the EXPERIMENTS option of VCOMPONENTS.

The VARIANCE option is used to give an initial value for the residual variance in the
current experiment(s). You can set option CONSTRATINT=f i x to fix the residual variance
at the initial value rather than estimating it (as a positive value).

The definition of the residual terms then follows mainly as for the definition of
correlated error terms through VSTRUCTURE. The exception is that power models can be
defined only in terms of the coordinates of the data points, not by specifying coordinates
for the factor levels. (See Section 3.3.)

The factors and variates for the separate experiments should be concatenated into
structures which run over all the experiments. When some factors differ between
experiments, these should be defined on the units relevant to the appropriate
experiment(s) and missing elsewhere. When an EXPERIMENTS factor has been defined,
the default action of the MVINCLUDE option of REML is changed to include units with
missing y-values and missing factor levels.
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2.3 Practical

Genstat spreadsheet file Recovery.gsh contains data from trials of two anaesthetic
agents (A and B) at nine different centres (see Whitehead 2002, Meta-Analysis of
Controlled Clinical Trials, Section 3.6.1). The patients had undergone short surgical
procedures, where a rapid recovery was regarded as important. The analysis variable is
thus the log of the recovery time of each patient.

Perform a meta analysis using all the data, and including centre and the centre-by-
anaesthetic interaction as random terms.



3 Spatial analysis

In this chapter we show how REML can model spatial correlations between observations
in two-dimensions. These methods have proved very successful, for example, in the
analysis of field experiments to assess new plant varieties, where the designs usually
contain too many varieties for the conventional blocking techniques to be effective.

So you will learn

* how to model covariances between effects of a random term

* how to assess different covariance models

» the advantages of representing the variation of a 2-dimensional experiment by

modelling its spatial covariances, as compared to using conventional blocking

« the VSTRUCTURE command %

Note: the topics marked ¥ are optional.
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3.1 Traditional blocking

Traditional field experiments use blocking to improve the precision with which the
treatment effects are estimated. For example, in a complete-randomized-block design,
units are grouped into blocks, so that
* units in the same block are more similar than units in different blocks,
» cach block contains the same number of reps (usually 1) of each treatment
combination,
* allocation of the treatments is randomized independently within each block
The analysis estimates & removes between-block differences into the block stratum so
that treatment effects can be estimated more precisely.
The output below shows the analysis that would be obtained if the field experiment at
Slate Hall Farm (Section 1.8) was analysed as a randomized block design with
replicates as the block factor.

Analysis of variance

Variate: yield

Source of variation d.f. S.S. m.s. V.I. F pr.
replicates stratum 5 133.327 26.665 7.69
replicates.*Units* stratum

variety 24 254.808 10.617 3.06 <.001
Residual 120 415.976 3.466

Total 149 804.110

Message: the following units have large residuals.

replicates 6 -1.90 s.e. 0.94
replicates 1 *units* 22 5.19 s.e. 1.67
replicates 1 *units* 23 4.69 s.e. 1.67
replicates 5 *units* 15 -4.46 s.e. 1.67
replicates 5 *units* 25 -4.45 s.e. 1.67

Tables of means
Variate: yield
Grand mean 14.70

variety 1 2 3 4 5 6 7
12.04 15.06 14.57 14.26 14.39 14.78 13.99

variety 8 9 10 11 12 13 14
15.48 13.13 11.95 13.57 14.84 16.28 13.77
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variety 15 16 17 18 19 20 21
14.45 14.59 15.10 16.19 16.43 17.16 14.23

variety 22 23 24 25
16.52 13.36 15.44 16.04

Standard errors of differences of means

Table variety
rep. 6
d.f. 120
s.e.d. 1.075

The variety sum of squares is still significant, but the standard error of difference for the
means (1.075) is larger than that from the analysis of variance of the design as a lattice
square (0.6363) in Section 1.4 -showing that the randomized-block analysis has not
modelled the patterns of fertility in the field particularly well.

In fact, the fertility is modelled here by a single block effect, which generates a uniform
correlation between the plots within each block. To look at how this represents the
fertility in the field, we need to examine the combined residuals from the analysis of
variance (that is, the usual residuals from the replicates.*Units* stratum, plus the
replicate effects). The analysis of variance save menus will only save the usual residuals,
but we can use the CBRESIDUALS option of the AKEEP directive. The program below
does the analysis of variance, saves the combined residuals and the replicate effects, and
plots them against columns for the upper replicates (1-3) and then for the lower replicates
(4-6).

BLOCKS replicates

TREATMENTS variety

ANOVA [PRINT=aovtable,information,means; FPROB=yes] yield
"plot the replicate effects and the combined residuals"
AKEEP [CBRESIDUALS=cbresiduals] replicates; RESIDUALS=reptab
VARIATE repvar; VALUES=reptab

CALCULATE reptrend = NEWLEVELS (replicates; repvar)

PEN 1...6; COLOUR='black',6 'red', 'green'; SYMBOL=1,2,3
PEN 11; COLOUR='black'; METHOD=line; SYMBOL=0

RESTRICT cbresiduals, reptrend; replicates .IN. ! (1,2,3)
DGRAPH cbresiduals, reptrend; fieldcolumn; PEN=replicates,1ll
RESTRICT cbresiduals, reptrend; replicates .IN. ! (4,5,0)

DGRAPH cbresiduals, reptrend; fieldcolumn; PEN=replicates, 1l
RESTRICT cbresiduals, reptrend

The plots, in Figures 3.1 and 3.2, reinforce the point that the fertility is not being
modelled well. It looks more like a smooth trend across field than a step function.
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The conclusion is that randomized-block designs with large blocks may be insufficiently
flexible to model fertility trends well. One solution is to use a more sophisticated design,
like the lattice square actually used here. However, such designs are only available for
specific numbers of treatments (in this case squares of integer i.e. 9, 16, 25, 36 and so
on). The alternative, discussed in this chapter, is to use a more sophisticated analysis.

3.2 Correlation modelling

Traditional analysis of variance is based on “Fisher's 3 R's”, namely

+ replication — it is usually recommended to replicate all treatments,

» randomization — on any pair of plots there should be an equal chance of getting any
pair of treatments (this guarantees the validity of analysis, lack of bias etc.),

* blocking — group similar plots together, and fit a random term to model the differences
between the groups (inducing a uniform correlation on the members of each group).

In contrast, in spatial analysis

+ often only check (or control) treatments are replicated,

+ you randomize where possible (but design may constrain which treatments appear on
some of the plots), and

* youtake account of variation by fitting models to describe how the correlation between
each plot and its neighbours changes as the neighbours get further away.

As explained in Section 1.1, the traditional mixed model is

y=0XBt Nl + e

where
vy 1is the vector of data values,
B is the vector of fixed effects for treatment term i with design matrix X,

u, is the vector of random effects for random term 7 with design matrix Z,

¢ 1s the vector of residuals.

Each element of the residual vector ¢ follows a Normal distribution with mean zero and
variance . Equivalently, we can say that the vector ¢ follows a multivariate Normal
distribution with a mean vector of zeros, and variance-covariance matrix ¢° I, where I is
the identity matrix.
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Likewise, each element of the vector of random effects #, follows a Normal distribution
with mean zero and variance y, 6>. Again, equivalently, we can say that the vector ,
follows a multivariate Normal distribution with mean vector of zeros, and
variance-covariance matrix y, 6> L.

In correlation modelling, the equation of the mixed model remains the same, but the
vectors of random effects u, now follow multivariate Normal distributions with a
variance-covariance matrix y, 6> G, where the matrix G is defined using a correlation
model (or it may remain the identity matrix I if the effects are independent, i.e.
uncorrelated, as in traditional model). Likewise, the residual vector &€ now follows a
multivariate Normal distribution with variance 6* R, where the matrix R may be defined
using a correlation model. (Again R remains the identity matrix I if the effects are
independent.)

The full range of correlation models is defined in Section 3.3. If we write the value in
the correlation matrix C (either G or R) ¢; in row 7 and column j as c;, the most useful
models for spatial modelling can be defined as follows:

7k

identity ¢, =1
¢, =0, fori#
auto-regressive order 1 (AR1) ¢ ;=1
k
Cirk,i — @
auto-regressive order 2 (AR2) ¢, =1

ci+1,i:(P1/(1_(Pz)

Ci=0 ¢y, TP C,;
i>j+l -1<o, ¢, <1,
[+, [<1, 0,-¢,<1, 0,>- 1

power-distance ¢, =1
— nd
Ci’j _.(P.
d=i-Jl

Notice that the AR1 and power-distance models are identical if the plots are equally
spaced.

In a 2-dimensional spatial model, a correlation model is fitted to a random term
fieldrow.fieldcolumn, where fieldrow and fieldcolumn are factors
representing row and column positions up-and-down or from side-to-side of the whole
field (rather than within replicates). Usually a separable correlation model is fitted, in
which the correlation between the plots at coordinates (i,/) and (k,/) is the product of a
correlation from a model defined on the rows of the experiment, and a correlation from
a model defined on the columns of the experiment: i.e.

correlation cr,, between rows (i-k) apart

x  correlation cc;, between columns (j-/) apart
with the correlations cr, and cc;, being defined by one of the models above. Separable
correlation models are often represented using the direct product symbol ®: so a model
constructed from two AR1 models is written as AR1®ARI.
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The models can all be defined
using the VSTRUCTURE directive,
as explained in Section 3.3, but
this is easier using the REML
menus. To open the menu to use
when the plots are on a regular
grid, you click Stats on the menu
bar, select Mixed Models (REML),
select Spatial Models and then
click on Regular Grid (see Figure
3.3), to produce the menu in
Figure 3.4.

We set the Data variate to
yield and the Fixed terms to
variety, and then consider the
error model. We now need to
specify the row and column
factors (in the Row factor and
Column factor boxes), and select
the required correlation model
from those available in the Row-
model and Column-model boxes.
Here we set the Row-model and
Column-model list boxes to AR
order 1. Other boxes allow you to

67

Stats Tools Window Help

Summary Statistics
Statistical Tests
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Distributions

Regression Analysis

Design

Analysis of Variance
Mixed Models (REML}
Multivariate Analysis

Six Sigma

Survey Analysis

Time Series

Spatial Analysis

Survival Analysis
Repeated Measurements

Meta Analysis

Linear Mixed Models...
Repeated Measurements >
Multivariate Linear Mixed Models...
Random Coefficient Regression...
Spatial Models

Multiple Experiments/Meta Analysis...

Automatic Analyses

> Regular Grid... N

Iiregular Grid...
> |

Generalized Linear Mixed Models...
Hierarchical Generalized Linear Models...

Figure 3.3

/. Spatial Model - Regular Grid

Available data: Data:

columns
fieldcolumn
fieldrow
plotnumber
replicates
rows

Row factor:

Row-model:

[] Random row tem

]

yield

AR order 1 ~

[[] Linear trend across rows

Column factor:
Column-model: AR order 1 e
Operators: [] Random column tem [ Linear trend across columns
ik L Fixed terms: ‘variety |
- Random terms ‘ |
- 52 Options. . e
) (X Cancel Defaults
Figure 3.4

fit a random row effect in addition to the row model, or to fit a linear trend across rows,
and there are similar boxes for the columns. You can also specify additional random
terms, in the Random terms box. These might include other types of blocking, as for
example if the plots had been sown or harvested on different days or by different

operators.

Clicking on Run produces the output below. The default output contains sections to
describe the covariance structures (i.e. models) that are being fitted, and give their
parameter estimates. The fact that rather different estimates are produced for the auto-
regressive parameter in the two directions arises from the fact that the plots of the design

were not square.

REML variance components analysis

Response variate:
Fixed model:
Random model:
Number of units:

yield

150

Constant + variety
fieldrow.fieldcolumn

fieldrow.fieldcolumn used as residual term with covariance structure as below

Sparse algorithm with Al optimisation
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Covariance structures defined for random model

Covariance structures defined within terms:

Term Factor Model Order No. rows
fieldrow.fieldcolumn fieldrow Auto-regressive (+ scalar) 1 10
fieldcolumn Auto-regressive 1 15

Residual variance model

Term Factor Model(order)  Parameter Estimate s.e.
fieldrow.fieldcolumn
Sigma2 3.876 0.775
fieldrow AR(1) phi_1 0.4586 0.0826
fieldcolumn AR(1) phi_1 0.6838 0.0633
Tests for fixed effects
Sequentially adding terms to fixed model
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 313.04 24 13.04 80.0 <0.001
Dropping individual terms from full fixed model
Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr
variety 313.04 24 13.04 80.0 <0.001

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

The fact that the F statistic in the spatial analysis is larger that the F statistic from the
analysis of variance of the lattice square design suggests that the spatial analysis is
modelling the fertility of the field more effectively. However, as we shall see later in this
section, it is wrong to select the random model by seeing how significant we can make
the treatments! In fact you should establish the appropriate random model before you start
to consider the fixed model.



3.2 Correlation modelling 69

You can assess the effect of spatial Model Further Output %
extending or simplifying the = Display
random model by seeing how this [ Model [[] Variance-covariance matrix
changes the deviance. Criteria []Variance components [ Deviance
like the Akaike and Schwarz o =imetedsffects L TWek it

. . . [] Predicted means [] Missing value estimates

Bayes information coefficients [ i vereints e
can be also used, and this can be []Covariance model [#] Akaike information coefficient (AIC)
done even for models where one [ Residual checks [7] Schwarz informition coefficient (SIC)
is not an extension of the other [ Use full likelihood for AIC/SIC
one. These coefficients each Standard emors
involve the deviance plus a term Differences Estimates '-'.'I:i'f':'er-:-r-:ea- Al estimates

L5Ds

that takes account of the numbers
of parameters in each of the thod for « Automatic

models (in ways that differ | terms for effects - o
between the two coefficients).  guphis

For the random model, lt iS best Residual plots... Means plot... Display variogram...
to leave the box Use full likelihood

for AIC/SIC unchecked, and use the it | W st

REML deviance. You should use & x Cancel Defauits

the full likelihood if you want to
assess changes in the fixed model
(while keeping the random model
unchanged). Details are given in the on-line help for the VAIC procedure, or its
description in Part 3 of the Genstat Reference Manual.

In Figure 3.5 we use the Spatial Model Further Output menu to display the deviance and
the two coefficients. The notes printed in the output emphasize that you can compare the
random models only if the fixed model is unchanged.

Figure 3.5

Deviance: -2*Log-Likelihood

Deviance d.f.
249.35 122

Note: deviance omits constants which depend on fixed model fitted.

Akaike information coefficient 255.35
Schwarz Bayes information coefficient 263.84

Note: omits constants, (n-p)log(2r) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)
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We now assess whether we need  Seatial Model - Regular Grid Options X
. . Displ

a more complicated correlation | i Cldatian
Structure’ Wlth AR Order 2 [[] Variance components [ Covarance model [] Missing value estimates

d 1 h d 1 [] Estimated effects [[] Variance-covarance matrix [_] Monitoring
modceis on t € rows and columns. [ Predicted means Deviance [ Akaike information coefficient (AIC)
TO Slmpllfy the Output’ we ﬁrst [] Residual checks [] Schwarz information coefficient (SIC)

. . . Use full likelihood for AIC/SIC
click on Options to bring up the e llkctpond for AC/
. . Graphics

S patl al M Od el Opt|0ns menu [] Residual plots [ Mean plots [] Display variogram
(Figure 3.6), modify the Display
settings so that only the Deviance, Automatic
Akaike information coefficient (AIC) .
and Schwarz information coefficient '
(SIC)’ bOXGS arc CheCked’ and Model options Optimization method
Cth on OK. In the main menu [] Estimate: constant term Maxdimum iterations: 30

(Figure 3.4), we then change the = MCovarstes centredto zero mean
. Constrain variance components to be positive
Row-model and Column-model list
boxes to AR order 2, and click on [ i

Run. .
Figure 3.6

Defaults

Deviance: -2*Log-Likelihood

Deviance d.f.
246.35 120

Note: deviance omits constants which depend on fixed model fitted.

Akaike information coefficient 256.35
Schwarz Bayes information coefficient 270.49

Note: omits constants, (n-p)log(2r) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)

Changes in the deviance are approximately distributed as %, so here the extra variance
parameters for the order 2 models have a ¥* value of 249.35-246.35=3.00 on 122-120
=2 degrees of freedom. There is thus no evidence that we need auto-regressive structures
of order 2 rather than 1. Note, however, that the absolute value of the deviance value is
not useable. To simplify the calculations some constant terms (which depend only on the
fixed model) are omitted, so the value printed by Genstat may even be negative.

The Akaike and Schwarz Bayes information coefficients lead to the same conclusion:
the best model is the one with the smaller coefficient and, for both of these, that is model
with AR order 1 structures. In most situations, the conclusions from the two coefficients
will agree. The difference is that the Schwarz Bayes information coefficient tends to

weight more heavily against the inclusion of extra parameters in the model.
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Next we look to see if there is | Spatial Model - Regular Grid E=R =R

K Available data: o
any need to include a term for S e
measurement error. We can do this Rowmodel: T =
by Spe(:lfylng a I‘andom terIn that ;‘;‘::w []Random row tem [ Linear trend across rows
indexes the individual units of the | Colum factor
design. In Slatehall.gsh we Colummocel i -

. oo [[] Random calumn tem [] Lineartrend across columns

have a factor plotnumber which |- A = e |
haS Values 1 - 150 I'llnnlng over the / Random tems: |p\o1number |
150 plOtS in the experiment. Note 2 ki Run Options... Save Further oltput.
that we cannot use the term o] [x][@ Carcel | | Defauts | it

fieldrow.fieldcolumn,asthis
is already being as the spatial
covariance term. If you do not
have a factor like plotnumber, the REML directive allows you to use the string
"*units*' to denote an internal factor with a level for every units of the design. We
enter plotnumber into the Random terms box (see Figure 3.7), and again click on Run.

Figure 3.7

Warning 1, code VC 53, statement 1 on line 191
Command: REML [PRINT=deviance; MAXCYCLE=20; MVINCLUDE=explanatory,yvariate;

METH
More than one residual term specified - first term found will be used as R.

Deviance: -2*Log-Likelihood

Deviance d.f.
242 .35 121

Note: deviance omits constants which depend on fixed model fitted.

Akaike information coefficient 250.35
Schwarz Bayes information coefficient 261.67

Note: omits constants, (n-p)log(2r) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)

Genstat prints a warning to say that there are two potential-residual terms (i.e. terms
corresponding to the matrix R defined earlier in this section). This can be ignored as here
they are being used for different purposes: plotnumber represents the residual (plot)
variation, and fieldrow. fieldcolumn, is a spatial co term.

The difference in deviances is 249.35 - 242.35 = 7 on 1 degree of freedom. So it
appears that we do need to include measurement error in the analysis.
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The Random terms box also
allows you to include other types
of blocking. For example, the
replicates term might be
needed if it represented
differences in fertility beyond
those described by the spatial
model or if represented
differences in the husbandry of
the plots, as e.g. if different

3 Spatial analysis

/. Spatial Model - Regular Grid
Available data:

columns

fieldcolumn

fieldrow

lotnumber
D

Operatars:

~
!
; v

]

Data: yield

Row factor:

Row-model: AR order 1

“

[[] Linear trend across rows

figldcolumn

AR order 1

[] Random row tem
Column factor:
Column-model:

“

[[] Linear trend across columns
‘variety |

[[] Random column term

Fixed tems:

Random terms ‘replicates + plotnumber |

Options...

® = [x|@

Cancel Defaults

replicates had been sown or
harvested on different days or by
different operators.

You should also include random terms if they were involved in the allocation and
randomization of a fixed term. For example, in the split-plot analysis in Section 1.1, the
blocks.wplots termshould be included, as the varieties were applied and randomized
on the whole-plots within each block, rather than to the individual sub-plots of the
design. Ifblocks.wplots isnotincluded in the random model, the wrong denominator
degrees of freedom will be used in the tests for fixed effects. (A case could be made for
including all the conventional random terms here too, as the allocation of the varieties did
depend on blocking structure of the balanced-lattice design. However, comparing the
analyses here with the one in Section 1.8 shows that this would not make any substantial
difference to the denominator degrees of freedom. A clue as to why this is true is given
by the fact that most of the information on the varieties is in the bottom stratum of the
analysis of variance.)

The replicates term is added to the random terms in Figure 3.8, and the output
below shows that the deviance is unchanged.

Figure 3.8

Warning 2, code VC 53, statement 1 on line 207
Command: REML [PRINT=deviance; MAXCYCLE=20; MVINCLUDE=explanatory,yvariate;

METH
More than one residual term specified - first term found will be used as R.

Deviance: -2*Log-Likelihood

d.f.
120

Deviance
242.35

Note: deviance omits constants which depend on fixed model fitted.

252.35
266.49

Akaike information coefficient
Schwarz Bayes information coefficient

Note: omits constants, (n-p)log(2r) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)
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This might seem a little Spatial Model Further Output
surprising, but the reason = Dielay

becomes clear if we use the L"::;wm .
Spatial Model Further Output menu |:|Estimatedeﬁe|j;-ts
(Figure 3.9) to display the  [pcdictedmeans
variance components. By default, [ Stratum variances

the REML menus constrain the [ Covariance model
variance components to be | [JResdu checks
positive, and here the component

for replicates is stuck on the

Standard emors

73

|:| Variance-covariance matrix

[] Deviance

[Iwald tests

[] Missing value estimates

[] Monitaring

[] Akaike information coefficient (AIC)
[[] Schwarz information coefficient (SIC)

Use full fikelihood for AIC/SIC

Differences Estimates All differences All estimates
boundary. ) .
LSDs 5
Automatic
Ten
Graphics
Residual plots... Means plot... Display variogram...
Power calculations. .. Pemmutation test ..
WK Cancel Defaults
Figure 3.9
Estimated variance components
Random term component s.e.
replicates 0.000 bound
plotnumber 0.486 0.179
Residual variance model
Term Factor Model(order)  Parameter Estimate s.e.
fieldrow.fieldcolumn
Sigma2 4.580 1.670
fieldrow AR(1) phi_1 0.6827 0.1023
fieldcolumn AR(1) phi_1 0.8438 0.0684
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We can remove the constraint by
unchecking the relevant box in
the Spatial Model Options menu
(Figure 3.10) and rerun the
analysis printing the deviance,
the coefficients and the variance
components.

3 Spatial analysis

Spatial Model - Regular Grid Options

Display
[ Madel []'Wald tests
Variance components [ Covarance model [] Missing value estimates
[] Estimated effects [[] Variance-covarance matrix [_] Monitoring
[ Predicted means Deviance Alaike information coefficient (AIC)
[ Residual checks Schwarz information coefficient (SIC)
[ Use full likelihood for AIC/SIC
Graphics
[] Residual plots [ Mean plots [] Display variogram

Automatic

Model options

Optimization method
Estimate constant term Maximurm iterations: B ]
Covariates centred to zero mean
| C[:gstrain variance components to be positive
X Cancel Defaults
Figure 3.10
Warning 3, code VC 53, statement 1 on line 224
Command: REML [PRINT=components,deviance; MAXCYCLE=20;
MVINCLUDE=explanatory,yva
More than one residual term specified - first term found will be used as R.
Estimated variance components
Random term component s.e.
replicates -0.078 0.162
plotnumber 0.500 0.181
Residual variance model
Term Factor Model(order)  Parameter Estimate s.e.
fieldrow.fieldcolumn
Sigma2 4.662 1.707
fieldrow AR(1) phi_1 0.6922 0.1022
fieldcolumn AR(1) phi_1 0.8442 0.0685

Deviance: -2*Log-Likelihood

Deviance d.f.
242 .20 120

Note: deviance omits constants which depend on fixed model fitted.

Akaike information coefficient
Schwarz Bayes information coefficient

252.20
266.34
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Note: omits constants, (n-p)log(2r) - log(det(X'X)), that depend only on the fixed model.

(based on the residual log-likelihood)

The variance component for replicates is negligible. So the replicate differences in
this experiment arise only from fertility trends, and these have been described by spatial
correlation structure. (Again the Akaike and Schwarz Bayes information coefficients lead
to the same conclusion.) However, we should still include replicates as this was a
factor involved in the design of the experiment.

We can now move on to assess  Spatial Model-Regular Grid Options "
. Displ
the terms in the fixed model. So S T
we set the Spat|a| Model Options Variance components [ Covarance model [] Missing value estimates
. h d 1 . [] Estimated effects [] Variance-covariance matrix [_] Monitoring
menu to prlnt t €modc > variance Predicted means Deviance [ Akaike information coefficient (AIC)
components, predicted means | [JResidual checks [] Schwarz information coefficient (SIC)
. Use full likelihood for AIC/SIC
and Wald tests (Figure 3.11), - :
. Graphics
generatlng the Output Shown [] Residual plots [ Mean plots [] Display variogram
belOW- Standard emors Method for calculating F-statistics:
(®) Differences () Estimates Automatic w
() Al differences () All estimates
D L5Ds " il s 5
Model terms for effects and means: | | Temms...
Model options Optimization method
Estimate constant term Maximum iterations: l—aﬂ:l

Covariates centred to zero mean
Constrain variance components to be positive

X Cancel Defaults
Figure 3.11

Warning 4, code VC 53, statement 1 on line 240
Command: REML [PRINT=model,components,means,waldTests; MAXCYCLE=20;

FMETHOD=auto
More than one residual term specified - first term found will be used as R.

REML variance components analysis

Response variate: yield

Fixed model: Constant + variety

Random model: replicates + fieldrow.fieldcolumn + units
Number of units: 150

fieldrow.fieldcolumn used as residual term with covariance structure as below

Sparse algorithm with Al optimisation
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3 Spatial analysis

Covariance structures defined for random model

Covariance structures defined within terms:

Term
fieldrow.fieldcolumn

Estimated variance components

Random term
replicates
units

Residual variance model

Term
fieldrow.fieldcolumn

Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term
variety

Dropping individual terms from full fixed model

Fixed term
variety

Table of predicted means for Constant

14.47 Standard error: 0.894

Table of predicted means for variety

variety 1
12.45
variety 9
12.63
variety 17

14.94

Factor Model Order No. rows
fieldrow Auto-regressive (+ scalar) 1 10
fieldcolumn Auto-regressive 1 15
component s.e.
-0.078 0.162
0.500 0.181
Factor Model(order)  Parameter Estimate s.e.
Sigma2 4.622 1.707
fieldrow AR(1) phi_1 0.6922 0.1022
fieldcolumn AR(1) phi_1 0.8442 0.0685
Wald statistic n.d.f. F statistic d.d.f. F pr
241.61 24 10.05 74.7 <0.001
Wald statistic n.d.f. F statistic d.d.f. F pr
241.61 24 10.05 74.7 <0.001
2 3 4 5 6 7 8
15.14 14.05 14.06 14.71 15.21 13.74 14.53
10 11 12 13 14 15 16
11.95 13.29 14.40 16.24 13.00 14.69 12.86
18 19 20 21 22 23 24
15.28 16.50 16.44 15.18 16.10 13.18 15.55
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variety 25
15.73

Standard errors of differences

Average: 0.6072
Maximum: 0.6401
Minimum: 0.5719

Average variance of differences: 0.3689

The output describes the models, and prints their parameters. Notice that the Wald and
F statistics (now 241.61 and 10.05) are smaller than those (313.04 and 13.04) from the
original analysis in this section that fitted just the AR order 1 X AR order 1 spatial model.
The inclusion of measurement error is needed to represent the fertility patterns in the field
correctly, but this acknowledges that the data are more variable than can be modelled just
by the spatial model. This emphasizes the point that you should not select your random
model by seeing which one gives the most significant results for the fixed terms!

So, although it is interesting to notice the increase in the F statistic (from 8.84 to 10.21)
compared to the previous, conventional analysis of the data as a lattice square design
(Section 1.8). The correct reason for using the spatial analysis is that, if we had used the
similar Linear Mixed Models Further Output menu at in Section 1.8 to display the Akaike and
Schwartz Bayes coefficients we would have obtained the values

Akaike information coefficient 272.28
Schwarz Bayes information coefficient 283.59

and these are much larger than the values 252.20 and 266.34 above. (Remember that we
cannot use the deviance here, as one model is not an extension of the other one.)

The menu for an irregular grid (2 spatisi Model - ireguiar Grid =l
(Figure 3.12) is similar to the |ektec= L
menu for a regular grid (Figure -~ —
3.4), but with irrelevant boxes e
removed and the boxes for row Xpostors: [ |
and column factors replaced by Model ety v
boxes for x and y positions (or | = i
coordinates). The model choices | . = e Oisiopi
are restricted to identity or |’ Fuedmodel: | |
power. The power can be of "city | - Randommodel: | |
block" distance (row distance |- : Otons.. | | Saie
plus column distance), or squared =X ==

distances (row distance squared
plus column distance squared) or
Euclidean distance (square root of row distance squared plus column distance squared).

Figure 3.12
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3.3 The VSTRUCTURE directive

Correlation models are defined by the VSTRUCTURE directive. The spatial analysis menus
use only a limited selection of its facilities, so we present the full syntax below. However,
for a full description you should read the Guide to the Genstat Command Language, Part
2 Statistics, Section 5.4.

VSTRUCTURE directive
Defines a variance structure for random effects in a REML model.

Options

TERMS = formula Model terms for which the covariance structure
is to be defined

FORMATION = string token Whether the structure is formed by direct

product construction or by definition of the
whole matrix (direct, whole); default dire

CORRELATE = string token Whether to impose correlation across the model
terms if several are specified (none,

positivedefinite, unrestricted); default
none

CINITIAL = scalars Initial values for covariance matrix across terms
COORDINATES = matrix or variates Coordinates of the data points to be used in
calculating distance-based models

Parameters

MODELTY PE = string tokens Type of covariance model associated with the
term(s), or with individual factors in the term(s)
if FORMATION=direct (identity, fixed,
AR, MA, ARMA, power, boundedlinear,
circular, spherical, linearvariance,
banded, correlation, antedependence,
unstructured, diagonal, uniform, FA,
FAequal) default iden

ORDER = scalar Order of model

HETEROGENEITY = string token Heterogeneity for correlation matrices (none,
outside); default none

METRIC = string token How to calculate distances when
MODELTYPE=power (cityblock, squared,
euclidean); default city

FACTOR = factors Factors over which to form direct products

MATRIX = identifiers To define matrix values for a term or the factors
when MODELTYPE=fixed

INVERSE = identifiers To define values for matrix inverses (instead of

the fixed matrices themselves) when
MODELTYPE=fixed

DISTANCES = symmetric matrices ~Symmetric matrix of pre-formed distances to be
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used in distance-based models of order one

COORDINATES = matrices, variates Or pointers
Specifies coordinates of each factor level to be
used in calculating distance-based models

INITIAL = scalars, variates, matrices, symmetric matrices or pointers
Initial parameter values for each correlation
matrix (supplied in the structures appropriate for
the model concerned)

CONSTRAINTS = fexts Texts containing strings none, £ix or
positive to define constraints for the
parameters in each model

EQUALITYCONSTRAINTS = variates Non-zero values in the variate indicate groups of
parameters whose values are to be constrained to
be equal

VSTRUCTURE can be used only after vCOMPONENTS has defined the fixed and random
models. It can be used more than once to define different structures for different random
terms. The information is accumulated within Genstat, and it will all be used by
subsequent REML, commands. You can check on the model and covariance structures
defined at any time by using the VSTATUS directive. To cancel a covariance structure for
a term you simply need to use VSTRUCTURE to change the model back to the default
identity matrix. To cancel all covariance structures you can give a new VCOMPONENTS
command and redefine the fixed and random models.

By default the covariance model is formed as the direct product of several matrices,
one for each factor in the term. The models used to define the matrices are specified by
the first parameter of VSTRUCTURE, called MODELTYPE, and the FACTOR parameter
specifies the corresponding factor. Setting option FORMATION=whole allows you to
define a single covariance matrix for the whole term. (You would then omit the FACTOR
parameter.)

Other parameters specify information for the model, for example ORDER specifies its
order. The TERM option specifies the model term. So, in particular, the ARI®AR1
structure, used for fieldrow. fieldcolumn in Section 1.2 , would be defined by

VSTRUCTURE [fieldrow.fieldcolumn] AR,AR;\
FACTOR=fieldrow, fieldcolumn; ORDER=1,1

and the AR2®AR?2 structure would be defined by

VSTRUCTURE [fieldrow.fieldcolumn] AR,AR;\
FACTOR=fieldrow, fieldcolumn; ORDER=2,2

Any factors in the term for which no model is defined are assumed to have an identity
matrix as their correlation matrix (i.e. their effects are uncorrelated). This actually means
that you can specify models for several terms at once, but it is more usual to specify only
one.

If we write the value in the correlation matrix C in row i and column j as ¢, the
matrices corresponding to the full range of settings of MODELTYPE can be defined as
follows.
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identity identity matrix =1, ¢;=0, for i#j
fixed fixed matrix c; speciﬁed
AR auto-regressive =1
order 1 or 2 Cii =0/ (1-¢,)
(9,=0 for order 1) =0 ¢y ;T PGy,
i > j+1
-1 <o,
¢, <l
@1+, [<1
0,-¢,<1
¢>-1
MA moving average ¢, =1
order 1 or 2 Cir1, l= -0,(1-0,)/(1+07+67)
(6,=0 for order 1) Ciry; = 0,/ (1407163)
=0, >j+2
—1 <9,
0,<1
0,£0, <1
ARMA auto-regressive ¢ =1
moving-average Ciy; = (0-0)(1-90)/
order 1 (1+0°-2¢0)
C i =0C s >j+1
-I<o,
B<1
power based on distance ¢, =1
order 1 or 2 =0, 1¢,"
(p, = ¢, fororder 1) | d,, d, = distance in 1st and
2nd dimensions
0<o,
¢, <1
boundedlinear | based on distance c,;,=1-dlo ford< g,
order 1 c,;=0 ford>¢
0<o
circular based on distance =1-

order 1

(2/n){(d/(p)¢(1 (d/o)’) +
sin”'(d/@)} ford < ¢,
c,;=0 ford>¢

0<o
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spherical based on distance c¢;; =1~ 1.5(d/o) + 0.5(d/p)’
order 1 ford < o,
¢,;=0 ford>¢
0<o
linearvariance | based on distance ¢,;=1-2¢d/max(d)
order 1 0<ep<l1
banded equal bands ¢ ;=1

1 <order <nrows-1 | ¢, ,=0,,1<k<order
it = 0, otherwise

“1<0,<1
correlation general correlation ¢, =1
matrix c,;=6;,1<]i-j| < order
1 <order <mrows-1 | ¢, ;=0, [i-j|> order
-1<9,<1
uniform uniform matrix c,; =0 foralliy
diagonal diagonal matrix ¢ =9,
¢, ; =0, i#]
antedependence | ante-dependence c'=UD"'U
model (D}, '=d,
1 <order <nrows-1 | {D}; ;=0 fori#j
{U}i,i = 17
{U}i,j = u[j ’

1 <j-i < order
{U}; ;= 0, for i>j

unstructured general covariance c,;=0;,0<]i-j| < order
matrix c,;=0, |i-j| > order
1 <order <nrows-1

FA factor analytic C=AA"+Y
order =1 or 2 A 1s an nrows X g matrix
order=¢q

{¥}, =y, for i=1...ntows

FAequal factor analytic with C=AA"+Y
common variance A 1s an nrows X g matrix
order =1 or 2 order=¢q

{¥}, =y for i=1...nrows

Initial parameter values can be specified using the TNTITIAL parameter. For most
models, the number of initial values required is the number of parameters, and default
values will be generated. However, for unstructured models, a full covariance matrix
ofinitial values must be given, and for the correlation model a full correlation matrix
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must be provided. For the ante-dependence model, either a full covariance matrix can
be provided, or a pointer to a U and a D™' matrix of the correct forms. For the F2 and
FAequal models, a pointer must be used to give the initial A and ¥ matrices, otherwise
default initial values are generated. The FAequal model can be used to get initial values
for the 2 model. Initial values are required for these models because the algorithm may
not converge when many parameters are fitted if the starting values are not realistic.
Initial values might be generated from covariance matrices estimated by fitting simpler
models, or from residuals from a null variance model. A missing value in the initial
values is taken to mean that the value is inestimable and it will be fixed at a small value
for the analysis. Alternatively, a parameter can be fixed at its initial value using the
CONSTRAINTS parameter. The codes (not case sensitive and able to be abbreviated) may
take value fix to indicate the parameter is to be fixed at its initial value, positive to
indicate it is to remain positive or none to indicate no constraints. The default is
positive/no constraint depending on context, for example scaling parameters are always
constrained to remain positive. The default is positive/no constraint depending on
context, for example scaling parameters are always constrained to remain positive. The
EQUALITYCONSTRAINTS parameter allows you to constrain some of the parameters to
have the same value. The variate that it specifies contains a zero value if there is no
constraint, and an identical integer value for any set of parameters whose values are to
be equal. So, a variate containing the values (0,1,2,1,2) would constrain the second
parameter to be equal to the fourth parameter, and the third parameter to be equal to the
fifth parameter.

It may sometimes be desirable to allow for unequal variances for the models defined
in terms of correlation matrices: that is, for the AR, MA, ARMA, uniform, power,
boundedlinear, circular, spherical, linearvariance, banded and
correlationmodels. This can be done by setting option HETEROGENEITY=outside.
This means a diagonal matrix D of standard errors will be applied to the correlation
matrix C to generate a matrix D*CD”. In this case, a number of extra parameters (equal
to the number of effects in the factor or term) should be added to the vector of initial
values. These models allow investigation of a structured correlation pattern for changing
variances and are particularly useful in the analysis of repeated measurements data when
variance increases over time. For example, to allow for changing variance over time in
our example above, we can specify

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week

VSTRUCTURE [TERM=Subject.Week] MODELTYPE=AR; ORDER=1;\
FACTOR=Week; HETEROGENEITY=outside

REML Y

In some circumstances, you may wish to define a single model to apply to the whole
term, instead of using the direct product form illustrated above. In this case, you should
set option FORM=whole. Note that, when a term consists of a single factor, it is not
necessary to set the FACTOR option.

With MODELTYPE=f i xed, youmust either use the MATR T X option to specify the values
of the covariance matrix C, or the INVERSE option to specify the inverse matrix. Values
for the matrix or its inverse can be supplied as diagonal matrices or symmetric matrices.
In addition, values for the inverse matrix can be supplied in sparse form as a pointer. The
output from VPEDIGREE is designed for input here, but you can also define the inverse
matrix explicitly. The second element of the pointer should then be a variate containing
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the non-zero values of the inverse in lower triangular order. The first element should be
a factor, with number of levels equal to the number of rows n(n+1)/2 of the matrix. This
has firstly a block of n values giving the position in the variate of the first value stored
for each row. There is then a block of values for each row in turn, giving the columns in
which each non-zero value appears.

When MODELTYPE=power is used to define a distance-based model, the model can be
of order 1 (isotropic) or 2 (anisotropic). For models with ORDER=1, a single set of
distances must be formed. The necessary information can be supplied using either the
COORDINATES option, or the COORDINATES parameter, or the DISTANCES parameter.
With the COORDINATES option you can specify either a matrix, or a list of variates, to
define multi-dimensional coordinates for each unit of the data. The length of the variates,
or the number of rows of the matrix, must be equal to the number of data values. The
number of variates, or the number of columns of the matrix, is equal to the number of
dimensions. The coordinates for the levels of each FACTOR are then calculated as the
mean values of the coordinates of the units included in the analysis with those levels.
Alternatively, you can use the COORDINATES parameter to specify a single variate, a
pointer to several variates or a matrix to define multi-dimensional coordinates for each
level of the FACTOR. This parameter takes precedence over the COORDINATES option.
The length of the variates, or the number of rows of the matrix, must be equal to the
number of levels of the FACTOR. The number of variates, or the number of columns of
the matrix, is again equal to the number of dimensions.

The distance calculation is defined by the METRIC option. For levels i and j with
n-dimensional coordinates {c,: k&=1...n} and {c;: k=1...n} the distance d;; is defined as

d; = Z,lcy — ¢y for METRIC=cityblock (the default);
d; = X, (cy - cjk)2 for METRIC=squared; and
d; =% (cy - jk)z}”2 for METRIC=euclidean.

Finally, you can supply a symmetric matrix of pre-calculated distances, using the
DISTANCES parameter, and this takes precedence over the COORDINATES parameter and
option. The number of rows of the DISTANCES matrix must be equal to the number of
levels of the FACTOR.

When MODELTYPE=power and ORDER=2, the DISTANCES parameter cannot be used,
and only two-dimensional coordinates are allowed. The coordinates must be specified
using either the COORDINATES option or parameter, as described above. The distances
are calculated within each dimension separately, according to the setting of the METRIC
option. In this case the Euclidean and city-block distances are equivalent.

The spherical family of geostatistical models correspond to the MODELTYPE settings
boundedlinear (for one-dimensional distances), circular (for one or two
dimensions) and spherical (for one or two dimensions). These models are based on
distances, and require coordinates to be supplied using either the COORDINATES option
(to give coordinates for each data value), or the COORDINATES parameter (to give
coordinates for each factor level), as described for MODELTYPE=power above. The
parameter ¢ is interpreted as the range at which the correlation is considered to have
decayed to zero. A small value therefore indicates weak correlation, and a large value
indicates stronger correlation. These models do not have continuous second derivatives,
and their log-likelihood may be multi-modal. To detect this potential problem, it is
therefore important to start their estimation from several different initial values; this can
be done using the TNTTTATL parameter as described above. To ensure that the estimated
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correlation matrix differs from the identity matrix, it is necessary for the range parameter
to be larger than the minimum distance specified by the coordinates; any initial value
smaller than this will be adjusted.

The setting MODELTYPE=11inearvariance specifies the linear variance model. This
is parameterized so that the parameter o lies in the range [0,1], which allows correlations
in the range [-1,1]. Values of ¢ close to one indicate weak correlation and values close
to zero indicate strong correlation between neighbouring observations.

The CORRELATE option allows you to specify correlations between model terms which
have equal numbers of effects. A common correlation will then be fitted between parallel
effects. For example, consider a random coefficient regression model where the fixed
model contains common response to covariate X and the random model allows for
deviations in the intercept and slope about this line for each subject. The random
intercept and slope for each subject may be correlated, but subjects are independent. This
correlation across terms is defined using the CORRELATE option as follows:

VCOMPONENTS [FIXED=X] RANDOM=SUBJECT+SUBJECT.X
VSTRUCTURE [SUBJECT+SUBJECT.X; CORRELATE=positivedefinite;\
CINITIAL=!(1,0.1,0.3); FORM=whole]

The CORRELATE option setting positivedefinite is used to ensure that the
correlation matrix between the terms remains positive definite. This constraint can be
relaxed using the setting unrestricted (anunstructured covariance matrix is then used
to describe covariance across the terms). The model fitting is done here in terms of a
covariance matrix, where the diagonal elements are the gammas for the correlated terms.
The CINITIAL option is used to give initial values for this matrix. If no initial values are
given, the initial values are taken from initial gamma values given in VCOMPONENTS
when the model is declared. When correlations are declared between terms, you must set
FORMATION=whole. In the random coefficient regression model above, no correlation
structure is declared within terms since the subjects are independent. However, it is
possible to declare correlation/covariance models within terms as usual.

3.4 Practical

Spreadsheet file Wheat 72 . gsh contains data from a trial of 35 varieties of wheat. The
design has two replicates each laid out in a 5 by 7 plot array. Fit an AR1®ARI spatial
model, and see whether there is there any evidence of an additional replicate effect or of
measurement error. Is there any advantage in increasing the order of either
auto-regressive structure to AR2?

3.5 The variogram

The variogram is a tool from Geostatistics, that can also be useful in spatial modelling
(see the Guide to the Genstat Command Language Part 2 Statistics, Section 8.3). It
assesses how the variance of the difference between observations at two points differs
according to their spatial relationship. Mathematically
variance(x - y) = variance(x) + variance(y) - 2 X covariance(x,))
If we assume a stationary spatial process, the variances and covariances will depend only
on the relative positions of the points, and not on their exact locations. Then
variance(x - y) =2 x o* (1 - p)
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where
o” is the variance at point x and at point y, and
p 1is the correlation between 2 points relatively spaced like x and y.
The variogram is the semi-variance, i.e. 2 X variance(x - y) expressed as a function of
their relative positions, and the empirical or sample variogram is an estimate of
variogram made from the data. For example, we can estimate the semi-variance for points
in adjacent rows by taking the /2 x mean of the squared differences between the residuals
at the pairs of data points that occur in adjacent rows.
Some typical variogram patterns are as follows:
* independent noise - sharp increase away from zero, otherwise flat;
* auto-regressive errors of order 1 with a high positive correlation - slow increase as lag
increases, tailing off to constant;
* auto-regressive errors of order 1 with a low positive correlation - fast increase as lag
increases, tailing off to constant;
« alternating pattern - usually reflects systematic row/column effects or may suggest
negative correlation.
You may often see a mixture of patterns, for example AR1 +independent (measurement)
error would generate a step change at zero followed by a smooth increase. However,
interpretation can be rather subjective!
The two-dimensional
variogram from a spatial model

can be plotted automatically = Maximumlagin row direction: |:|

Variogram Options -

whenever you run a spatial Maximum lag in column direction:
analysis by checking the relevant
box in the Spatial Model Options
menu (Figure 3.5). Alternatively,
you can click on the Display | Minimum replication required for indusion in variogram:
variogram button in the Spatial = []Plot variogram using 0-1 scale

Model Further Output menu x Caricd Debait
(Figure 3.9) to obtain the

Variogram Options menu, which Figure 3.11

gives more control over the plot.

Or you can simply click on OK to use the default options.

Actual distance represented by 1 unit in row direction:

Actual distance represented by 1 unit in column direction: | 1

1
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The variogram from the final
model in Section 3.2 is shown in
Figure 3.12, and seems to be
reasonably compatible with the
anticipated pattern.

3.6 Practical

3 Spatial analysis

(il Genstat Graphics Viewer - Sample variogram

File Edit View Tools Window Help

g = S H ¢

y B @ @ @7 R % )

v 110%

Sample variogram

<

Ready

Figure 3.12

Plot and interpret the variograms for the model(s) fitted to the data in spreadsheet file
Wheat72.gsh analysed in Practical 3.2.

3.7 Determining the random and correlation models automatically

The earlier sections of this
chapter have explained how to
use the spatial analysis menus to
explore random models and
correlation structures, and find
the one that best explains the
random variability. Strategies for
doing this with incomplete-block
and row-column designs have
been programmed in Genstat
procedures, and these are used by

Stats | Tools Window Help
Summary Statistics
Statistical Tests
Distributions
Regression Analysis
Design
Analysis of Variance
Mixed Models (REML)
Multivariate Analysis
Six Sigma
Survey Analysis
Time Series
Spatial Analysis
Survival Analysis
Repeated Measurements

Meta Analysis

Bie e |TRAEBRBE

BELAE MK O

Linear Mixed Models..
Repeated Measurements 5
Multivariate Linear Mixed Models...

Random Coefficient Regression...

Spatial Models >
Multiple Experiments/Meta Analysis.
Automatic Analyses >

Generalized Linear Mixed Models...

Hierarchical Generalized Linear Models...

Incomplete-Block Design...
Row-Column Design...
Series of Trials..

&

Figure 3.13

the automatic REML analysis menus, to enable you to determine appropriate random or

correlation models automatically.

The ideas can be illustrated by the menu for Automatic Spatial Analysis of Row-Column
Designs (Figure 3.14), which uses the procedure VAROWCOLUMNDESIGN. To open the
menu, you click Stats on the menu bar, select Mixed Models (REML), select Automatic
Analyses and then click on Row-Column Design (see Figure 3.13).
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To analyse the Slate-Hall farm (A Auomstic spatal inelysis of Row: Colomn besign =l
data, we set the Y-variate to |ewe -
yield, the Replicate factor to T i ‘
replicates, the Row factor to Coumn factor = ] Conaes: | \
fieldrow. the Column factor to P cds
Operators: Fixed model: |var|ety |

fieldcolumn, the Plot factor to |-
plotnumber, and the Fixed |
model to variety. We also |- o| e e
include replicates, in the (% e | [Tats | [
Additional random terms, to ensure Figure 3.14

that this is included in the
random when (below) we search for the "best model".

The Y-variate, Row factor and Column factor must be specified, but you do not need to
supply a Fixed model or a Replicate factor.

The Options menu (Figure
3.15) controls the output, the
models that are tried, and the
strategy to use.

~ Aditonalrandomtems: feplcates |

Automatic Spatial Analysis of Row-Column Design Options b
Display from selection of random model

[ ] Description Best model Candidate models

Display output from best model

The Display bOX, at the tOp, [#IModel [~]Variance components [ Wald tests  []Means [ |Effects
controls the output that is [ standard errors [] Residual checks

produced about the models that @pifferences  (OEstmates O Alldifferences () All estimates
have been tried. Graphics

The Display output from best = [JResidualpiots  []Mean plots
model box allows you to display = Modelselection

the most popular types Of Output Criterion to assess models: Bayesian/Schwarz information coeffident
from the best model. Others are = Strategy for selecting model: | Al feasible random terms v
available from the Further Output = Model options

menu (Figure 3.1 6) Try spatial model for rows and columns

The Model options box controls | [Ty inear trend across rows and columns

several ofthe usual properties Of [] Constrain variance components to be positive
the mOdel,& for ,example’ whether [[]Indude units with missing factor values
to constrain variance components S
to be pOSitiVe, or whether to Manximum number of iterations: 100
include units with missing
values. It also allows you to see % o i
whether linear trends are needed Figure 3.15
across the rows and the columns.
To do this, VAROWCOLUMNDES IGN investigates whether two covariates are needed in the
fixed model. These contain row and column coordinates respectively. The coordinates
can be specified by entering variates into the Coordinates fields in the main menu. If these
fields are left blank, the levels of the row or column factors are used instead. Finally, the
Model options box allows you to choose whether or not to try to fit spatial models.

The strategy for selecting the random model is controlled by the Model strategy box. The
Criterion to assess models list box indicates whether the models are to be assessed by their
Akaike or Schwarz (Bayesian) information coefficients. The Strategy for selecting model
list box specifies which random models are tried. The possibilities are as follows.

All random terms fits the full random model, i.e. replicates, rows

[1Estimate missing data values
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All feasible random terms

Only additional random terms

3 Spatial analysis

within replicates and columns within replicates if
a replicate factor has been supplied, or rows and
columns otherwise. This is appropriate if the row
and column factors played a key role in the design
and its randomization. For example, some factors
may have been applied to complete rows or
complete columns, as in a strip-block design.
tries to fit the full random model. If this is not
possible, it tries models removing first one random
term, then two and so on, until successful.
simply fits the additional random terms (if any).
This is useful when you know the random model
and want to investigate the effect of adding spatial
covariance models.

Only feasible additional random terms tries to fit the additional random terms. If this is

Best possible random model

Fast strategy to find best model

not possible, it tries removing first one random
term, then two and so on, until successful.

tries all feasible random models. This may take a
while, and so may be best left for the occasions
when you are unsure what to do, or want to check
the results from the fast strategy.

follows an automatic strategy that aims to find the
best random model without having to fit all of
them. So, for example, it does not try models that
include a column main effect as well as a spatial
covariance model along rows.

The output below shows the results given by the menu settings in Figure 3.15. The first
section of the output summarizes the models that have been tried by the fast strategy.
There are several that we did not try earlier in this chapter, but the conclusion is the same.
The best model (chosen as the one with smallest Schwarz Bayesian information
coefficient) fits auto-regressive structures on the rows and columns, together with
measurement error (with replicates as an additional random term). The analysis then
reproduces the output shown in Section 3.2.

Automatic REML analysis of row-by-column design

Accumulated summary of REML random models

No random terms 565.12 569.12 574.78

Columns 547.83 553.83 562.32

Rows & Columns 534.73 542.73 554.05

AR1(x)I 540.12 546.12 554.60

Rows & AR1(x)I 521.20 529.20 540.51

AR1(x)l & measurement_error 540.10 548.10 559.41

Deviance AlC SIC Random
d.f.

Rows 558.21 564.21 572.69

ADhOPLrOWOWLN
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Rows & AR1(x)l & measurement_error 521.12
I(X)AR1 498.60

Columns & I(x)AR1 492.35

I(x)AR1 & measurement_error 498.59

Columns & I(x)AR1 & measurement_error 490.98
AR1(x)AR1 479.07

AR1(x)AR1 & measurement_error 471.93

531.12
504.60
500.35
506.59
500.98
487.07
481.93

545.26
513.08
511.66
517.90
515.12
498.39
496.08

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

Best model (by Schwarz Bayesian information coefficient):

AR1(x)AR1 & measurement_error

REML variance components analysis

Response variate: yield

Fixed model: Constant + variety

Random model: replicates + fieldrow.fieldcolumn + units
Number of units: 150

fieldrow.fieldcolumn used as residual term with covariance structure as below

Sparse algorithm with Al optimisation

Covariance structures defined for random model

Covariance structures defined within terms:

Term Factor Model
fieldrow.fieldcolumn fieldrow Auto-regressive (+ scalar)
fieldcolumn Auto-regressive
Estimated variance components
Random term component
replicates -0.078
units 0.500
Residual variance model
Term Factor Model(order)  Parameter
fieldrow.fieldcolumn
Sigma2
fieldrow AR(1) phi_1
fieldcolumn AR(1) phi_1

Order
1
1

S.e.
0.162
0.181

Estimate

4.622
0.6922
0.8442

&9

abboabrhbhowo

No. rows

10
15

S.e.

1.707
0.1022
0.0685
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Tests for fixed effects
Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f.
variety 241.61 24

Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f.
variety 241.61 24

Table of predicted means for Constant

14.47 Standard error: 0.894

Table of predicted means for variety

variety 1 2 3 4

F statistic
10.05

F statistic
10.05

12.45 15.14 14.05 14.06 14.71 15.21

variety 9 10 11 12

13 14

12.63 11.95 13.29 14.40 16.24 13.00

variety 17 18 19 20

21 22

14.94 15.28 16.50 16.44 15.18 16.10

variety 25
15.73

Standard errors of differences

Average: 0.6072
Maximum: 0.6401
Minimum: 0.5719

Average variance of differences: 0.3689

d.d.f.
74.7

d.d.f.
74.7

13.74

15
14.69

23
13.18

F pr
<0.001

F pr
<0.001

14.53

16
12.86

24
15.55
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The Further Output menu
similar to those earlier in this
chapter. So you can print or plot
additional information from the
analysis of the best model, in the
usual way.

Of course, no automatic
method can guarantee to work as
well as a detailed investigation
by an expert. For example, to
avoid the process becoming
unmanageable, only first-order
auto-regressive models are tried,
and the trends that can be fitted
are linear across the whole field.

So it may also be sensible to
plot a variogram, to check how
well the model has succeeded in
representing the random variation
(see Section 3.5). If you are
unhappy with the results, the best

1S Automatic Spatial Analysis of Row-Column Design Further Output

Display
[IModel
[] Variance compenents
[] Estimated effects
[] Predicted means
[] Stratum vanances
[]Covariance model
[ Residual checks

Standard emors

91

X

|:| Variance-covariance matrix

[] Deviance

[Iwald tests

[] Missing value estimates

[] Akaike information coefficient (AIC)
[] Schwarz information coefficient {(SIC)

Use full likelihood for AIC/SIC

Differences Estimates All differences All estimates
LSDs B
Automatic
Tems...
Graphics
Residual plots... Means plot... Display variogram...
Power calculations... Multiple comparisons...
W] | K Cancel Defallts
Figure 3.16

model from the automatic menu should provide a good starting point for further

investigation.
The menu for automatic
analysis of incomplete-block

designs (Figure 3.17) is very
similar to the menu for row-
column designs except that you
specify a factor for blocks on the
main menu, instead of factors for
rows and columns.

Available data: Y-variate

Replicate factor:
Block factor:

Plot factor:

Fixed model:

b

& = [xI[@]

Run

Cancel Defauits

4. Automatic Analysis of Incomplete-Block Design

Additional random terms:

Options...

lo] ® s

Figure 3.17
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The factors for rows and Automatic Analysis of Incomplete-Block Design Options *
columns are Sp€CiﬁCd on the Display from selection of random model
OptiOnS menu (Figure 3 1 8) ifyou [+] Description [~] Best model [+] candidate models
want to fit correlation models. e i B

Model Variance components Wald tests Means [ |Effects
standard errors || Residual chedks

(® Differences  (_)Estimates () Al differences (C) All estimates
Graphics
[JResidual plots [IMean plots
Model selection

Criterion to assess models: Bayesian/Schwarz information coeffident

Strategy for selecting model: | All feasible random terms w

Model options
Constrain variance components to be positive
[] Estimate missing data values
[ indlude units with missing factor values
Estimate constant term
Maximum number of iterations: 100
Spatial models
Try spatial model for rows and columns:
(® Mo () only if plots in a regular grid () Always

[I7ry linear trend across rows and columns

Available data:
X Cancel Defauilts
Figure 3.18

3.8 Practical

Spreadsheet file Gentrial2.gsh contains data from a trial with 24 genotypes in a non-
resolvable row-column design. Factors Row and Column specify the row and column
coordinates of the plots. There is no replicate factor. (Therefore leave that box of the
menu empty.) Some plots have missing values, and these must be estimated in order to
retain the regular grid of plots. Analyse the trial using the best random model.

Why are no correlation models fitted across the columns? (Hint: how many columns
are there.)
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3.9 Automatic analysis of series of trials

The menu for Automatic Analysis [ Areneichubss o ~ =SSR
of Series of Trials uses the | I
VASERIES and VAMETA :‘::‘ Rlesofocor [ ]
procedures to do a meta analysis N | e ‘
of a series of trials with either LR ‘

row-column designs or Patfatr: 1

Operators:

incomplete-block designs (i.e. |’ y T }““’ }
Additional random tems:
those that can be analyses by the |’
other two automatic menus). You |~ : e (el [Teesee
| [x Cancel Defauls Predict.. Explore fixed model...

enter the block factor into the
Block factor box, and the row and Figure 3.19

column factors are entered into

the Row factor and Column factor boxes. If all the trials have incomplete-block designs, the
row and column factors need not be specified, and blocks need not be entered if they are
all row-column designs. If there is a mixture, the row and column factors should either
have only one level or missing values in each of the block designs, and the block factor
should have only one level or missing values in each row-column design.

The spreadsheet file
_ p o (Fi 320 [T Spreadsheet [SitesAtoD.gsh] o] 3] 5]
Slte.SAtOD'gS ( l.gure : ) Row ! Lecation ! column ! row ! block ! entry | yield t
contains data from trials at four i[g i 5 ila% e [
locations. There are 1310 new 2| 2 2 1lc1 2.462
entries and two control 3|a 24 2 & 2.843
genotypes. The controls are ala 25 2 e 2.787
replicated in every trial. The new 5|A 26 2 1jc1 1.824
entries are unreplicated within 2 B = : | =
the trials and do not occur in i s S s
. . 8| A 38 2 2 i | e 2.484
every trial. The entries must thus
. 9lA 31 2 L& 2.560@
be assessed by the combined
. 1a | A 32 2 Lc:2 2.660
ar}aly51s Qf the results from all the P i 5 PleinEe | G
trials. Missing values are again = a3 3 P T
included to provide a regular 13| A 24 3 1|6 1058 | 2.377
grld 14 | A 25 3 1|6 751 3.897
The trials at locations A, B and 15| A 26 3 1|G 767 | 2.674
D have row-column designs, a6 A 27 3 2 ia el e
while the trial at location C has - = S EiE B | Tl
an incomplete-block design. The || *** EL Ligeah ek
. 19| A 3 B £ 1({G 897 2.263
block factor for trials A, Band D
. 28 | A 32 3 1 G 882 2.135
therefore only contain level one. v
e | > 4

Similarly the row and column =
factors at location C only contain Figure 3.20
level one.




94

In the options menu we have
selected Fast strategy to find best
model to reduce the amount of
computation. We have checked
Summary to print a summary of
the models selected for the trials,
Candidate models to see the
models tried for each trial, and
Best model to show the best one
(chosen wusing the Schwarz
Bayesian information criterion.)
We have chosen not to display
any other output. (We shall do
this later using the further output
menu.) We shall try spatial
models only if the plots are in a
regular grid (and estimate
missing data values in order to
achieve that). Finally, we have
checked the box to run a meta
analysis following the analyses of
the individual trials.

The output is shown below.

3 Spatial analysis

Automatic Analysis of Series of Trials Options

Display from selection of random model

Best model Candidate models

SUmmary

Display output
(®) Meta analysis

[Imodel [ |variance components [ wald tests [ Means

only (") Meta analysis and each individual trial

Standard errors || Residual chedks

Difference

Graphics
[residual plots

Model selection

Criterion to assess models:

Strategy for selecting model:

Model options

5 Estimates All differences

[IMean plots

Fast strategy to find best model

Run a meta analysis to combine information across all trials

Try spatial model

ON::

for rows and columns:
(®) Only if plots in a regular grid

[I1ry linear trend across rows and columns

|:| Constrain variance components to be positive

Estimate missing data values
Estimate constant term
Maximum number of iterations: 100
X
Figure 3.21

() Always

Cancel

[ Effects

All estimates

Bayesian/Schwarz information coeffident -

ks

Defaults

location A

Automatic REML analysis of row-by-column design

Accumulated summary of REML random models

Deviance

No random terms 43.16
Rows 43.12

Columns 37.12

Rows & Columns 37.12

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

AIC

45.16
47.12
41.12
43.12

SIC Random
d.f.

47.33 1
51.46 2
4547 2
49.64 3

Best model (by Schwarz Bayesian information coefficient): Columns
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location B

Automatic REML analysis of row-by-column design

Accumulated summary of REML random models

Deviance AlC SIC Random
d.f.

No random terms 161.18 163.18 165.81 1

Rows 161.00 165.00 170.25 2

Columns 152.81 156.81 162.06 2

Rows & Columns 139.98 145.98 153.85 3

AR1(x)l 104.38 108.38 113.63 2

Rows & AR1(x)I 103.52 109.52 117.39 3

AR1(x)l & measurement_error 103.98 109.98 117.85 3
I(x)AR1 106.70 110.70 115.95 2

Columns & I(x)AR1 104.23 110.23 118.10 3

I(x)AR1 & measurement_error 106.37 112.37 120.25 3
Columns & I(x)AR1 & measurement_error 103.98 111.98 122.48 4
AR1(x)AR1 75.32 81.32 89.19 3

AR1(x)AR1 & measurement_error 66.86 74.86 85.36 4

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

Note: table excludes models that could not be fitted successfully.

Best model (by Schwarz Bayesian information coefficient):

AR1(x)AR1 & measurement_error

location C

Automatic REML analysis of incomplete-block
design

Accumulated summary of REML random models

Deviance AIC SIC Random

d.f.

No random terms 166.42 168.42 171.16 1
Blocks 158.08 162.08 167.57 2

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.
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Best model (by Schwarz Bayesian information coefficient): Blocks

location D

Automatic REML analysis of row-by-column design

Accumulated summary of REML random models

No random terms

Rows

Columns

Rows & Columns

AR1(x)I

Rows & AR1(x)I

AR1(x)l & measurement_error

Rows & AR1(x)l & measurement_error
[(X)AR1

Columns & I(x)AR1

I(xX)AR1 & measurement_error
Columns & I(x)AR1 & measurement_error
AR1(x)AR1

AR1(x)AR1 & measurement_error

Note: omits constant, -log(det(X"X)), that depends only on the fixed model.

Deviance

234.02
231.11
212.92
206.58
167.19
167.14
166.03
166.00
188.75
180.33
188.59
180.30
141.59
138.92

AIC

236.02
235.11
216.92
212.58
171.19
173.14
172.03
174.00
192.75
186.33
194.59
188.30
147.59
146.92

Best model (by Schwarz Bayesian information coefficient): AR1(x)AR1

SIC Random

238.86
240.80
222.61
221.1
176.88
181.67
180.56
185.38
198.44
194.87
203.12
199.68
156.13
158.29

Summary: best model for each experiment

location Best model
A Columns
B AR1(x)AR1 & measurement_error
C Blocks
D AR1(x)AR1

d.f.

P WPRWWONPWWNWNN-=-

A different random model has been selected for every trial. The VAMETA procedure sets
up the additional factors required to fit these in the meta analysis, in a similar way to the
meta analysis in Chapter 2. These are labelled in the output by the name of the original
factor, followed by @ and then the level or label of the trial: for example blockec for

block effects in trial C.
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3.9 Automatic analysis of series of trials

You can use the Automatic Autematic Analysis of Series of Trials Further Output
AnalySiS of Series of Trials Further Model for further output: | Meta analysis of all trials
Output menu to ‘ dls‘p¥ay output Display
from any of the individual trials Model []Variarice-covariarice matrix
or from the meta analysis, using ] Variance components [ Deviance
the drop-down list at the top of =~ [JEstmated effects A Wald tests
th Predicted means [] Missing value estimates

¢ menu. [] Stratum variances [ Akaike information coefficient (AIC)

The OutPUt below shows the [] Covariance model [] schwarz information coefficient {SIC)
variance components, Wald tests [ Residual checks Use full likelihood for AIC/SIC
and predicted means. Notice that, Standard emors
as a result of the CompleXity of (®) Differences () Estimates () Al differences () All estimates
the analysis, Genstat has been = [Jisos D sigrifisance level (7 |5
unable to estimate the Model terms for effects and means: | | Tems...
denominator degrees of freedom = gappics
to provide F tests for the fixed Readud piots.. W
effect. The chi-square statistic is
sufficiently large here for this not Mukiple comparisans. .

!
to be a problem! o | X Cancel Defauts
Figure 3.21

Meta Analysis

REML variance components analysis

yield

Constant + entry

location + column@A + plots@B + block@C
2232

Response variate:
Fixed model:
Random model:
Number of units:

Separate residual terms for each level of experiment factor: location

Sparse algorithm with Al optimisation

Units with missing factor/covariate values included

- specific effect for term(s) omitted for units with missing values in column@A, plots@B,

block@C
Units with missing data values included

Residual models for multi-experiment analysis

Experiment factor: location

Experiment Term Factor Model Order Nrows
A Residual Whole term Identity 0 360
B row.column row Auto-regressive 1 36

column Auto-regressive 1 18
C Residual Whole term Identity 0 576
D row.column row Auto-regressive 1 36

column Auto-regressive 1 18
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Estimated variance components

Random term component s.e.
location 1.8302 1.5112
column@A -0.0009 0.0044
plots@B 0.0422 0.0118
block@C 0.0215 0.0105

Residual model for each experiment

Experiment factor: location

Experiment Term Factor Model(order) Parameter Estimate s.e.
A Residual Identity  Variance 0.149 0.019
B row.column Variance 0.287 0.086
row AR(1) phi_1 0.8990 0.0348
column AR(1) phi_1 0.8308 0.0586
C Residual Identity  Variance 0.186 0.018
D row.column Variance 0.310 0.047
row AR(1) phi_1 0.8332 0.0303
column AR(1) phi_1 0.5013 0.0751

Warning 122, code VD 39, statement 1 on line 807

Command: VDISPLAY [PRINT=model,components,means,waldtests; PSE=Differences;
FMET
Error in Al algorithm when forming denominator DF for approximate F-tests.

Wald tests for fixed effects
Sequentially adding terms to fixed model

Fixed term Wald statistic d.f. Wald/d.f. chi pr
entry 2553.59 1032 2.47 <0.001

Dropping individual terms from full fixed model

Fixed term Wald statistic d.f. Wald/d.f. chi pr
entry 2553.59 1032 2.47 <0.001

Message: chi-square distribution for Wald tests is an asymptotic
approximation (i.e. for large samples) and underestimates the probabilities in
other cases.

Message: negative variance components present. Fitting of fixed model terms
is not sequential. Effects and means for any aliased fixed model terms may
therefore be misleading. Wald tests, likelihood tests and fitted values are
unaffected.
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Table of predicted means for Constant

3.002

Standard errors of means are not available. Standard errors of differences can be obtained

using PSE=diff or PSE=alldiff.

Table of predicted means for entry

entry

entry

entry

entry

Standard errors of differences

Average:

G1
2.252

G9
2.966

G17
3.049

G 25
3.487

G 1300
2.975

G 1308
2.650

Maximum:

Minimum:

G2
3.606

G 10
3.448

G 18
3.447

G 26

2.982

G 1301

2.866

G 1309
3.138

G3 G4
3.630 3.898
G 11 G12
3.115 2.847
G19 G20
3.571 3.632
G227 G 28
3.319 3.927
G 1302 G 1303
3.231 2.528
G 1310 C1
2.925 3.059
0.4412
0.6769
0.02945

Average variance of differences: 0.2014

G5
3.145

G 13
2.767

G 21
3.305

G 29

3.506

G 1304

2.402

C2
3.174

G6
3.333

G14
3.646

G 22
2.793

G 30

3.672

G 1305
2.873

G7
3.692

G 15
3.176

G23
3.908

G 31

3.135

G 1306
2.367

G8
2.866

G 16
3.138

G24
3.400

G 32

3.449

G 1307
2.688
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3.10 Practical

Spreadsheet file Gentrials.gsh contains data from a two trials with 24 genotypes in
non-resolvable row-column designs. The trial at location 2 is the one analysed in
Practical 3.8, and the trial at location 1 has a similar design. As before, factors Row and
Column specify the row and column coordinates of the plots, and there is no replicate
factor. Analyse the trials using the menu for Automatic Analysis of Series of Trials.



4 Repeated measurements

The REML menus provide some very effective alternatives to the more traditional methods
for the analysis of repeated measurements (see the Guide to the Genstat Command
Language Part 2 Statistics, Section 8.1). There are parallels with some of the earlier
methods. For example, Kenward (Applied Statistics, 1987) used ante-dependence
structure to construct tests for changes in treatment effects between particular times and
tests of treatment effects combined over all the times (Guide Part 2, Section 8.1.5), and
this is one of the correlation models examined in Section 4.1. Likewise, random
coefficient regression (Section 4.2) has similarities to the analysis of orthogonal
polynomial coefficients calculated over time (Guide Part 2, Section 8.1.2). However, the
REML framework provides a more flexible framework, in which you can compare one
correlation model with another, or check the assumptions of the whole model.

In this chapter you will learn

* how to model covariances between time effects

* how to fit randon-coefficient regression models Y
Note: the topics marked ¥ are optional.
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4.1 Correlation models over time

Figure 4.1 shows a Genstat spreadsheet, ATP. gsh, | = S DIentsheet (A
containing data f‘rom‘an‘ experiment to study the | "2 T o[ e I8
effects of preserving liquids on the enzyme content 3 N
of dog hearts. There were 23 hearts and two :
2 1 1{ 1| 1| 74.56
treatment factors, A and B, each at two levels.
3 1 2 1 1| 84.25
Measurements were made of ATP as a percentage of
: 4 1| 3| 1| 1|ss.e5
total enzyme in the heart, at one and two hourly
. . . . 5 i & B e
intervals during a twelve-hour period following
o ey . . . 6 1 5 1( 1| 79.93
initial preservation. There is the choice of two menus
for repeated measurements depending on whether ! A
the measurements are presented in separate variates : oo | |
(one for each time), or all in a single variate. The ? e i e i
available analyses are identical, the menus merely i el IR e
provide different ways of specifying the data for the - : W s
analysis. 12 2 1 1| 17277
2l « >
Figure 4.1
Here the measurements are all [ Repested Messurements = e ==
in a single variate, ATP, and there | At d=: Data:
are factors heart and time to s
indi ; ; ime poiis:
indicate which heart provided the fineport | |
. . Fixed model: time * A" B
measurement in each unit of ATP, s | |
. itional random tems:
an d th € tlm c W h cn th € Same time-points for all subjects
measurement took place. Figure 2 Equally spaced time paints
42 ShOWS the appI'OpI'late menu’ _ — M:j:;;crco:elaﬁon:ﬂhi:subjadacrcsstime:
. . . . . lependence order ~
which is obtained by clicking on | m— P T
Stats on the menu bar, Selectlng [] Addtional uniform comelation within subject
Mixed Models (REML) followed by | - ] (o | EEE
Repeated Measurements, and then | & = X o | [Deats |

clicking on Data in One Variate
(the alternative being Data in
Multiple Variates). In the figure we have filled in all the necessary boxes. Notice that we
need to tell Genstat that the time points were the same for every subject (or heart). This
would not be necessary if the measurements were in individual variates, one for each
time.

The types of model that can be fitted differ according to whether the times of
measurement were equally spaced or irregular. Auto-regressive and uniform correlation
models can be fitted only to equally spaced measurements, whereas unstructured, ante-
dependence or power models can be fitted in either situation.

Figure 4.2
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In thlS example we Shall ﬁt Repeated Measurements Options *

ante-dependence models: a set of | Dseay
. . [ Madel Stratum vanances []'Wald tests
Varlates Observed at SUCCESS1ve [[] Variance components [ Covarance model [] Missing value estimates
tlmeS IS Sald to haVe an ante- [] Estimated effects [[] Variance-covarance matrix [_] Monitoring
. [ Predicted means Deviance [ Akaike information coefficient (AIC)

dependence Strucmre Of Order r lf [ Residual checks [[] Schwarz information coefficient (SIC)
each ith variate (i>r), given the Ues full Bkelood for AC/SIC

preceding 7, is.indepe_ndent of all Gﬁn;;c;dual o Lo
further preceding variates. In the

analysis we start with order 1, and
use the Repeated Measurements
Options menu (Figure 4.3) to ask =~ =™
for only the deviance to be ‘Mo ieisn s
printed. The menu also sets the = "™ -
maximum number of iterations; in EZ‘LZ:‘;;"::;QJTM o O Fisher scoring

Figure 4.3 this is set to 30. 2

Automatic

Maximum iterations: IEI
x Cancel Defaults
Figure 4.3

Deviance: -2*Log-Likelihood

Deviance d.f.
1021.84 171

Note: deviance omits constants which depend on fixed model fitted.

We can generalize the model by including additional uniform correlation within subjects
(this is equivalent to including a random term for subjects, here the different hearts) or
by increasing the order of ante-dependence to two. To investigate the first alternative we
need to check the Additional uniform correlation within subjects box in Figure 4.2.

Deviance: -2*Log-Likelihood

Deviance d.f.
1011.50 170

Note: deviance omits constants which depend on fixed model fitted.

The change in deviance is 10.34. This is distributed as %> on one degree of freedom. So
there is definite evidence to support including uniform correlation within hearts. Now
changing the ante-dependence structure to order two produces the deviance below.
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Deviance: -2*Log-Likelihood

Deviance d.f.
1005.49 162

Note: deviance omits constants which depend on fixed model fitted.

The * value, 6.00 on 8 degrees of freedom, is not significant. So we set the Repeated
Measurements Options menu to print the model, variance components and Wald tests, and
then refit with an ante-dependence of order one (retaining the additional uniform
correlation within subjects).

REML variance components analysis

Response variate: ATP

Fixed model: Constant + time + A + B + time.A + time.B + A.B + time.A.B
Random model: heart + heart.time

Number of units: 230

heart.time used as residual term with covariance structure as below

Sparse algorithm with Al optimisation

Covariance structures defined for random model

Covariance structures defined within terms:

Term Factor Model Order No. rows
heart.time heart Identity 0 23
time Antedependence 1 10

Estimated variance components

Random term component s.e.
heart 10.521 4.512

Residual variance model

Term Factor Model(order)  Parameter Estimate s.e.
heart.time Sigma2 1.000 fixed
heart Identity - - -
time Antedependence(1)
dinv_1 0.09156  0.04175
dinv_2 0.06305  0.03047
dinv_3 0.03440 0.01241
dinv_4 0.03129  0.01108
dinv_5 0.01486  0.00543

dinv_6 0.02841 0.01039
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Tests for fixed effects

4 Repeated measurements

Sequentially adding terms to fixed model

Fixed term
time

A

B

time.A
time.B

AB
time.A.B

Dropping individual terms from full fixed model

Fixed term
time.A.B

dinv_7
dinv_8
dinv_9
dinv_10
u_ 12
u_23
u_34
u_45
u_56
u_67
u_78
u_89
u_910
Wald statistic n.d.f. F statistic
274.00 9 25.52
0.42 1 0.42
0.29 1 0.29
38.60 9 3.60
23.01 9 2.14
5.76 1 5.76
3.04 9 0.28
Wald statistic n.d.f. F statistic
3.04 9 0.28

0.009922
0.01197
0.01024

0.009345

0.2208
-0.03478
-0.05258

0.5696

0.2383

-0.5744
-0.5977
-0.4168
-0.6001

d.d.f.
34.2
18.6
18.6
34.2
34.2
18.6
34.2

d.df.
34.2

0.003256
0.00394
0.00335

0.003043

0.4184
0.37496
0.26517

0.3692

0.1711

0.3831

0.2004

0.2088

0.2217

F pr
<0.001
0.525
0.598
0.003
0.052
0.027
0.975

F pr
0.975

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular

variance parameters.
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The output shows evidence of Repeated Measurements Further Output

time effects and of interactions
involving time, A and B. So we
finish by using the Repeated
Measurements Further Output
menu (Figure 4.4) to print 2 by B
by time tables of predicted
means.

Display
[ Model

|:| Variance components

[] Estimated effects
Predicted means

[] Stratum varances

[ Covarance model
[] Residual checks

Standard emors

(®) Differences
[]LsDs

() Estimates

105

|:| Variance-covariance matrix

[] Deviance
[[]Wald tests

[] Missing value estimates

[] Monitaring

[] Mkaike information coefficient (AIC)
[[] Schwarz information coefficient (SIC)

Uze full likelihood for AIC/SIC

£

Automatic

() Al differences () All estimates

Mode! terms for effects and means:  [time.AB

Graphics

Residual plots...

Power calculations...

All subsets...

W X 2

Figure 4.4

|| Tems... |

Means plot ..

Permutation test...
Muttiple comparisons...

Run

Screening tests...

Cancel

Defaults

Table of predicted means for time.A.B

B

time A
0 1
2

1 1
2

2 1
2

3 1
2

4 1
2

5 1
2

6 1
2

8 1
2

10 1
2

12 1
2

77.47
82.22
72.95
84.38
79.31
78.36
74.98
75.16
76.10
75.23
72.37
73.46
64.38
67.63
57.87
68.92
48.40
61.16
43.43
56.83

84.14
82.35
81.26
81.94
82.74
75.70
79.98
75.48
7517
69.41
71.86
61.59
61.33
58.93
47.62
56.73
43.68
54.50
39.31
51.52
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Standard errors of differences

Average: 5.088
Maximum: 7.670
Minimum: 2.314

Average variance of differences: 27.32

Standard error of differences for same level of factor:

time A B
Average: 5.082 4.953 4.953
Maximum: 7.670 7.670 7.670
Minimum: 2.673 2.314 2.314
Average variance of differences:
28.64 25.92 25.92
To plot the means we click on the  MesnsPlet X
Means Plot button in the Repeated ﬁ:’“e“ goe: Factor for x-axis:
Measurements  Further OulpUt | A E |
menu, to open the Means Plot frells aroues: IB I

. . Page groups:
menu shown in Figure 4.5. We i e
specify t ime as the factor for the OMeans @ Differences
x-axis, and generate a trellis plot 8;:3 S
with B as the trellis factor, and 2 OBarchart  Olsds
as the groups factor. o
| K Run Cancel
Figure 4.5
. i Genstat Graphics Viewer - Means for time at different levels of & — 01 el |
The plot (Figure 4.6) shows | fie & vien Tods window e I
FHIB S R Sa®(W L | A 100%

that the most interesting points
on the ATP declines are just when
the recording interval changed
from hourly to every two hours!

Means for time at different levels of A

B1

B2

a0

ATP

60 -

504

40

7l

Double-click on plot to edi

it it

Figure 4.6
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4.2 Practical

In a trial to study the effect of a dietary additive, seven rats were allocated at random to
receive the standard diet, and seven to receive the enhanced diet. Their weight gains were
measured after 1, 3, 5, 7 and 10 weeks. The data contained in Genstat spreadsheet
Ratmeasures.gsh. Analyse the data using the Repeated Measurements menu. Hint: try
an ante-dependence structure of order one with no random subject effects, or a power
model, and remember that the data are in one variate.

4.3 Random coefficient regression

Random coefficient regression models the way in which the responses of the individual
subjects change over time by fitting linear models with time as the x-variate. Often the
model will be just a simple linear regression over time but in more complicated
situations, polynomials may be used.

The analysis models all the coefficients of the polynomials for each subject
simultaneously, assuming that each one comes from a random population whose means
may depend on the treatments received by the subject. (The analysis is thus similar to the
traditional analysis of polynomial contrasts over time, described in the Guide to the
Genstat Command Language Part 2 Statistics, Section 8.1.2, but there only one
polynomial coefficient is analysed at a time.)

Spreadsheet file Boxrat.gsh (Figure 4.7) [  Spreadsheet Boxratgshl | = | =
contains the results of an experiment to study the || rou ! weer ! rat ' drug | weient |time |[¥
effect of drugs on the growth rates of rats; see 1 B| 1|control 57| e~
Box (1950, Biometrics, 6, 362-389). There were z - s sl o2

1
three treatment groups: the first was a control, 3 9|  3|contro e
. . 4 ] 4| control 49 a
the second had thyroxin and the third had - ™) e o
thiouracil added to their drinking water. The first = = = e e
column, week, is a factor recording the week 7 ) 7| contro1 s1 e
when each weight was measured. The final 3 8|  8|control 6| o
column, time, contains the same information, . | e |
. . . 18 e 1@ | control 57 ]
but in a variate. The factor rat gives the number :
. . 11 ] 11 | thyroxin 59 2
of the rat that was weighed in each measurement, |, s 4| o
and the factor drug indicates which treatment it | =7 < 5:

received. The variate weight contains the Figure 4.7
weights.
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We can plot the measurements
using the Repeated Measures
Profile Plot - Data menu (opened
by selecting the Profile Plot sub-
option of the Repeated
Measurements option of the Stats
menu on the menu bar). We click
on the Variate with time factor
button to indicate that the
measurements are in a single
variate with a factor to indicate
the time at which each one was
made. (The alternative is to have
the data in separate variates, one
for each time.) We then specify
the data variate, and the time
factor, and indicate that we
would like separate lines to be

plotted for each drug. See Figure 4.8.

The resulting plot, in Figure
4.9, shows that the profiles are
mainly linear, with perhaps a hint
of curvature. So we shall model
them by quadratics.

Repeated Measures Profile Plot >
Data  Options
Data amangement
() List of variates (®) Variate with time factor
Available data: Dk it
e |
J |weight
week
5
Time factor:
|time |
(Groups on same screen:
|drug |
Callh o Run Cancel Defaults
Figure 4.8
I Genstat Graphics Viewer - Unnamed 1 - OEN
File Edit View Tools Window Help
=T BT & m|\? B X O F (R ‘ 100%

<

Double-click on plot to edit it

weight profiles for drug

140 4

120 o

100

thyroxin

Figure 4.9



4.3 Random coefficient regression

The Random Coefficient
Regression menu (Figure 4.10) is
opened by selecting the Random
Coefficient Regression sub-option
of the Mixed Models (REML)
option of the Stats menu on the
menu bar.

In the menu, we have defined
weight as the data variate, rat
as the subject factor, t ime as the
variate of time points, and
timesq as the identifier for the
variate of squared time values
(which will be calculated by the
menu). The treatment structure is
defined to be

drug * (time + timesq)

/.. Random Coefficient Regression EI =}
Available data: Data: |weight |
weight Subjects: |rat |
Time points: |lime |

Treatment structure:

|drug * (time +timesg )

Random coefficient terms
() Lingar (®) Quadratic

Save time squared: |lirnesq

>

Initial values...

[ Constrain unstructured covarance matrix

: & Options... Save Further output.
| K Cancel Defaults Predict .

Figure 4.10

In the output, below, notice that REMI, has fitted covariances between the random

intercepts and linear and quadratic regression coefficients from the random population
of rats. This reflects the view that these are unlikely to vary independently from rat to rat
-and this is confirmed by the estimated covariances that are obtained (see the parameters
v_21,v 31 andv_ 32). The tests for fixed effects show no evidence of any differences
overall between the drugs, but there may be differences in the linear and quadratic

coefficients between the drugs.

REML variance components analysis

Response variate: weight

Fixed model: Constant + time + timesq + drug + time.drug + timesq.drug
Random model: rat + rat.time + rat.timesq

Number of units: 135

Residual term has been added to model

Sparse algorithm with Al optimisation

All covariates centred

Covariance structures defined for random model

Correlated terms:

Set Correlation across terms
1 Unstructured

Set Terms

1 rat
1 rat.time
1 rat.timesq

Covariance model within term
Identity
Identity
Identity
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Estimated parameters for covariance models

Random term(s)  Factor Model(order)  Parameter Estimate
rat + rat.time + rat.timesq

Across terms Unstructured v_11 8.653

v_21 3.599

v_22 1.504

v_31 -0.2088

v_32 -0.2053

v_33 0.1113

Within terms Identity - -

Note: the covariance matrix for each term is calculated as G or R where
var(y) = Sigma2( ZGZ'+R ), i.e. relative to the residual variance, Sigma2.

Residual variance model

Term Model(order) Parameter Estimate
Residual Identity Sigma2 9.200

Tests for fixed effects

Sequentially adding terms to fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f.
time 1094.47 1 1094.47 24.0
timesq 0.1 1 0.11 24.0
drug 2.65 2 1.33 24.0
time.drug 21.66 2 10.83 24.0
timesq.drug 19.85 2 9.93 24.0

Dropping individual terms from full fixed model

Fixed term Wald statistic n.d.f. F statistic d.d.f.
time.drug 0.91 2 0.46 24.0
timesq.drug 19.85 2 9.93 24.0

Message: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular

variance parameters.

S.e.

3.072
1.426
0.953
0.2661
0.1997
0.0634

S.e.
1.771

F pr
<0.001
0.745
0.284
<0.001
<0.001

F pr
0.640
<0.001

The menu conceals some fairly complicated programming, for example to obtain initial
values for the covariance model. If you like more details about the process, you should
read the Guide to the Genstat Command Language, Part 2 Statistics, Section 5.4.5.



We can form predictions by
clicking on the Predict button in
the Random Coefficient Regression
menu. We need to predict for
both time and timesq, but
notice that we can predict for
timesq in “parallel” with time
so that the resulting table has a
single dimension for both of
them; see Figure 4.11.

This parallelism can be set up
when you use the Change
Prediction Values menu to define
the times at which you want to
predict; see Figure 4.12. (The
menu is opened by highlighting
time in the Explanatory variables
box, and clicking on the Change

4.3 Random coefficient regression 111
REML Predictions X
Availzble data: Explanatory vanables Predict at: In parallel with
rat drug Alllevels MNone
time time: mean Mone

timesq mean Mone
dug
Model terms to form predictions
(®) Use default model terms Averaging options...
() Specfy model tems Model terms
Display Save
Description [1SEDs [] Predictions l:l
Predictions Average SEDs [ Siceided v ; I:l
Standard emors [ Variance and covariances [15EDs |:|
[[] Plot table of predictions Options. [ Variancecov matrix |+ l:l
Display in spreadsheetin: [ pagaforat -
b4 Run Cancel Defaults
.
Figure 4.11
Change Prediction Values i
ils Explanatory variable: | time w
| Predict values at: 135 ~
Values in parallel with: | timesq -
> Cance
Figure 4.12

button.)

Predictions from REML analysis

Model terms included for prediction: Constant + time + timesq + drug + time.drug +

timesq.drug + rat.time + rat.timesq

Model terms excluded for prediction:

rat

Status of model variables in prediction:

Variable Type
drug factor
timesq variate
time variate
Constant factor
rat factor

Response variate: weight

Predictions
time_timesq 1.000, 1.000
drug
control 78.7
thiouracil 76.1

thyroxin 77.9

Status

Classifies predictions
Classifies predictions
Classifies predictions
Included in prediction
Averaged over - equal weights

3.000, 9.000

131.7
110.3
132.2

5.000, 25.00

189.6
134.0
1971
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Standard errors

time_timesq 1.000, 1.000 3.000, 9.000 5.000, 25.00
drug

control 2.576 3.533 6.137

thiouracil 2.576 3.533 6.137

thyroxin 3.010 4.346 7.760

Approximate average standard error of difference: 6.561 (calculated on variance scale)

4.4 Practical

Spreadsheet file PigGrowth.gsh contains measurements made at weekly intervals in
an experiment to study the effects of sex and diet on the growth of pigs. The experiment
was in randomized blocks but, in your analysis you can treat this as a fixed term. Fit a
random coefficient regression (with linear time only) to investigate the effects of sex and
diet. Simplify the model to remove unnecessary terms. Investigate whether there are any
quadratic time effects.



Index

*units* 71
Advantages of REML 1
Alpha design 7
Analysis of Variance menu 5, 10
Analysis-of-variance table 5, 42
ANOVA directive 7
Ante dependence model in REML 81
Ante-dependence 101, 102
AR1 model 66, 85
AR2 model 66
Auto-regressive 101
Auto-regressive model 66, 80
Auto-regressive moving-average model 80
Automatic analysis of incomplete-block design
91
Automatic analysis of row-column design 86
Automatic analysis of series of trials 93
Automatic search for the best random and
correlation model 86
Banded covariance model for REML 81
BLUPs 31
Bounded linear covariance model
in REML 80
Circular covariance model
in REML 80
City block 77
Combined effects 44
Combined means 44
Conditional predictions 32
Conditional test 15
Correlation model 10, 66, 79
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Means
predicted 30
Means plot 26
Measurement error 71, 85
Meta analysis 51
commands 59
Mixed Model 7
Moving average model for REML 80
Multi-level model 1, 2
Normal plot 47
Pedigree 82
Power distance covariance model for REML 80
Power model 101
Power-distance model 66
Prediction
from REML 36
Predictions 31, 111
marginal 32
Profile plot 108
R matrix 66
Random coefficient regression 107
Random Coefficient Regression menu 109
Random effect 8
Random model 8
comparing 69-72
Random term 67
Randomized-block design 3, 63
Regression
random coefficient 107
REML 2
compared to ANOVA 45
plotting means 27
prediction from 36
predictions 36
REML directive 20
REML Predictions menu 31, 111
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Repeated measurements 100, 101
Residual plots - from REML 48
Saving

regression results 49

results to an external file 50
Screening tests 14, 15
Spherical covariance model

in REML 81
Spline 8
Split-plot design 3
Standard error

of difference of means 6

of regression parameter 49
Standard errors

of differences of means 6
Storage

of results from regression 49
Stratum 5, 42
Stratum variance 44
Table of means 11
Traditional blocking 63
TREATMENTSTRUCTURE directive 7
Unequal variances in REML 82
Uniform correlation model 101
Unstructured model

in REML 101
Variance component 9, 19, 44

constrain to be positive 73

negative 73-75
Variogram 84-86
VCOMPONENTS directive 19
VDISPLAY directive 22
VGRAPH procedure 26, 27
VKEEP directive 49
VPLOT procedure 47, 48
VPREDICT directive 36
VRESIDUAL directive 59
VSPREADSHEET procedure 50
VSTRUCTURE directive 78
Wald statistic 10, 77, 103
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