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1 Introduction

This book, Part 2 of the Guide to the Genstat Command Language, describes the statistical
facilities in Genstat, reviewing the underlying methodology, explaining the output, and
describing the relevant Genstat commands. Most of the analyses supported by Genstat can be
run using the menus in Genstat for Windows. However, the menus themselves operate by
generating Genstat commands ! and you can see these recorded in the Input log. So even if you
are using Genstat in a Windows environment, you may still want to examine the commands, or
to save them as an audit trail of the analyses that have been done. You may also want to issue
your own commands, in order to gain additional flexibility, to use more specialized methods, or
simply to access the desired analysis more directly. Alternatively, you may want to develop your
own methods of analysis, using the Genstat command language as a high-level programming
language. Programs can be formed into procedures for convenient future use ! in fact, many of
the advanced analyses in Genstat are implemented in this way, and distributed as part of the
refereed and officially supported Genstat Procedure Library (see Part 3 of the Genstat Reference
Manual).

Unlike the Genstat Reference Manual, which describes the commands one at a time, here the
information is categorized by type of analysis. The facilities are introduced by means of
examples, which illustrate the commonest analyses and explain the output that can be obtained.
First, though, this chapter gives a brief description of the syntax of the Genstat language, and
summarizes the facilities for data manipulation, which were described in Part 1 of this Guide.
References below to Part 1 are prefixed by "1:". So, for example, 1:1.2 refers to Part 1 Section
1.2, while 1.2 refers to Section 1.2 in this book.

1.1 Syntax

Input to Genstat is known as a Genstat program. This is made up of statements each of which
may use one of the standard Genstat commands (known as directives); alternatively, it may use
a Genstat procedure, that is, a subprogram of statements. You can write your own procedures,
or use those in the Library distributed with Genstat, or in the library provided at your site.

Whether the statement uses a directive or a procedure, the syntax is identical. First you give
the name of the directive (or procedure), then options, and then parameters. Finally, you indicate
the end of the statement, either by typing a colon or by ending the line (by typing <RETURN>).
Long statements can be continued onto succeeding lines by typing the continuation character (\)
before <RETURN>.

Some statements will have neither options nor parameters: for example

PAGE

to start a new page in output. Others may have no options: for example

PRINT STRUCTURE=X,Y; DECIMALS=0,2

prints the contents of data structures X and Y with zero and two decimal places respectively. In
this statement, there are two parameter settings defining two lists running in parallel. Parameter
settings are always in parallel like this, and are separated from one another by semicolons.
Options are enclosed in square brackets, and set aspects that apply to all the (parallel) parameter
values. They are also separated from one another by semicolons. For example

PRINT [CHANNEL=2; INDENTATION=5] STRUCTURE=X,Y;\
  DECIMALS=0,2

prints X and Y to output channel 2 with a five-character indentation at the start of each line.
Nearly all options, and some parameters, have default values chosen to be those required most
often, and so will usually not need to be set.

Settings of options and parameters can be lists (as above), expressions or formulae. Lists may
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be of numbers (as with DECIMALS above), or identifiers (as with STRUCTURE) or strings. An
identifier is the name that you give to a Genstat data structure (for example X or Y), and which
you then use to refer to it in the program. They must start with a letter (for Genstat this means
the alphabetic characters A to Z, in capitals or lower case, as well as the percent and underline
characters) and then contain either letters or digits (the numerical characters 0 to 9); Genstat
takes notice of only the first 32 characters. (This is the default in Releases 4.2 onwards, but you
can use the SET directive to request that Genstat take notice of only the first eight characters as
in earlier releases.) Where a list of identifiers provides input to a directive or procedure, you can
put an expression instead; this will then be evaluated (to give a list of identifiers containing the
results) before the directive or procedure is used. A string is a list of characters. Usually the start
and end of the string must be marked by a single quote ('). Strings occur within the text data
structure. Also, the settings of some options and parameters are lists of string tokens that can be
chosen from a defined list; these do not need to start and end with single quotes. The separator
between items in lists is comma; spaces can be included anywhere between items but do not act
as separators. Formal definitions of expressions, formulae, and all the other concepts of the
Genstat language are in 1:1.2.

Names of directives, procedures, options and parameters are examples of Genstat system
words. They can be given in capital or small letters (or in mixtures of both) and, provided you
are only using directives and official Genstat Library procedures, they can always be abbreviated
to four characters. But of course, if you or your site have defined your own procedures, you may
have chosen names that differ only in the fifth or subsequent characters. If you supply more
characters, Genstat will check the name up to the 32nd character, and ignore any characters after
that. (You can, however, use the SET directive to request that Genstat also ignores the ninth and
subsequent characters, as in releases before 4.2.)

Names of options and parameters can often be abbreviated to fewer than four characters. Each
option name can be abbreviated to the minimum number of letters needed to distinguish it from
the options that precede it in the prescribed order for the directive or procedure concerned.
Characters up to the 32nd (or the eighth if short wordlengths have been requested) must match
the appropriate part of the full form; subsequent characters are ignored. For example, here are
the options of the FIT directive (3.1.2), with the minimum form of each name printed in bold:

PRINT, CALCULATION, OWN, CONSTANT, FACTORIAL, POOL,
DENOMINATOR, NOMESSAGE, FPROBABILITY, TPROBABILITY,
SELECTION, NGRIDLINES, SELINEAR, INOWN, OUTOWN

Notice for example that the minimum for FPROBABILITY is FP, since F on its own would not
distinguish it from FACTORIAL which precedes it in this prescribed order. Likewise, each option
name can be abbreviated to the minimum number of letters needed to distinguish it from the
options that precede it in the prescribed order for the directive or procedure concerned.

There are also rules by which the option or parameter name, with its accompanying equals
character, can be omitted altogether. The most useful of these is that, if the first parameter of the
directive is the one that comes first in the statement, then the name of the parameter can be
omitted: for example

PRINT [CHANNEL=2; INDENTATION=5] X,Y; DECIMALS=0,2

as STRUCTURE is the first parameter of PRINT. The same rule holds for options:

PRINT [2; INDENTATION=5] X,Y; DECIMALS=0,2

as CHANNEL is the first option of PRINT. Full details of the rules are in 1:1.2.
A final point about the first parameter is that its setting determines the length of the parallel

lists. The lists for other parameters will be repeated (or recycled) if they are shorter. (If they are
longer, Genstat gives an error diagnostic.) For example

PRINT A,B,C,D; DECIMALS=0,2

prints A with zero decimal places, B with two, and then (recycling the DECIMALS list), C with
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zero and D with two.
To make the language easier to learn and remember, the "vocabulary" of the directives and

Library procedures has been standardized, for example, to avoid using the same option or
parameter name for different purposes in different commands, or the same name for different
purposes. In particular, commands that produce output should have a PRINT option with a list
of available string tokens that correspond to the various output components (and, where it
occurs, PRINT will always be the first option). For example, the PRINT option of the FIT
directive (3.1.2) is defined as follows:
PRINT = string tokens What to print (model, deviance, summary, estimates,

correlations, fittedvalues, accumulated,
monitoring, grid); default mode, summ, esti or
grid if NGRIDLINES is set

So, to print the model, parameter estimates and a table of fitted values, residuals etc you would
need to specify

PRINT=model,estimates,fittedvalues

The same rules apply for the string-token settings of options and parameters as for the option and
parameter names. They may be typed in capital or small letters (or mixtures), and each one can
be abbreviated to the minimum number of characters necessary to distinguish it from earlier
tokens in the list given in the definition of the option or parameter. If more than that number are
given, the extra characters must match the full form up to the 32nd character (or the eighth if
short wordlengths have been requested). So the model token above can be abbreviated to just
m, as this is listed first in the definition of the syntax; whereas monitoring can be abbreviated
only to mon. To suppress printed output from FIT, or from any other command with a PRINT
option, you should specify

PRINT=*

The setting * denotes an empty (or missing) string token, implying no output.
There are also various standard prefixes: for example, A for analysis of variance and design

of experiments, R for regression and generalized linear models, V for variance components and
REML, and so on. So, there are directives ADISPLAY, RDISPLAY and VDISPLAY which allow
you to display further output from an analysis of variance, regression or REML analysis,
respectively, and directives AKEEP, RKEEP and VKEEP that allow you to copy results from these
analyses into Genstat data structures. The full currently used prefixes are listed in the
Instructions for Authors of Library Procedures, obtainable from the NOTICE procedure

NOTICE [PRINT=instructions]

Genstat programs can thus be presented in a wide range of styles and formats. For clarity,

however, we have imposed some conventions on the examples in this book. The use of spaces
is standardized. System words are given in full and in capitals; the only exception is that the
name, and corresponding equals character, of the main parameter of a directive will usually be
omitted. String tokens are given in full and in small letters. Identifiers will begin with a capital;
any other letters are in lower case. There is usually only one statement per line, unless this is
very wasteful of space; continuation lines are indented. We hope these conventions will help you
to recognize the items, both in the descriptions of syntax and in the examples. However, in your
own programs, you can use whatever style you find most convenient.

1.2 Data structures

Data structures store the information on which a Genstat program operates. Examples include
data for statistical analyses, coordinates for graphs, text for annotation, and so on. You can also
store almost anything that can be printed in an analysis. This enables you to extend the range of
facilities that Genstat offers, by taking information from one directive and using it as input for
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another. To allow you to do this, Genstat has a comprehensive set of different structures. You
can define the identifier of a structure, together with its type, using a directive known as a
declaration. The directive for declaring each type of structure has the same name as given to that
type of structure, for example SCALAR to declare a scalar (or single-valued numerical structure),
and so on. These are the directives, with details of their corresponding data structures and
references to the sections where they are described.

SCALAR single number (1:2.2.1)

VARIATE series of numbers (1:2.3.1)
TEXT series of character strings i.e. lines of text (1:2.3.2)
FACTOR series of group allocations, using a pre-defined set of

numbers or strings to indicate the groups (1:2.3.3)
MATRIX rectangular matrix (1:2.4.1)
DIAGONALMATRIX diagonal matrix (1:2.4.2)
SYMMETRICMATRIX symmetric matrix (1:2.4.3)
TABLE table ! to store tabular summaries like means, totals etc

(1:2.5)
DUMMY single identifier (1:2.2.2)
POINTER series of identifiers e.g. to represent a set of structures

(1:2.6)
EXPRESSION arithmetic expression (1:2.2.3)
FORMULA model formula ! to be fitted in a statistical analysis

(1:2.2.4)
LRV latent roots and vectors (1:2.7.1)
SSPM sums of squares and products with associated information

such as means (1:2.7.2)
TSM model for Box-Jenkins modelling of time series (1:2.7.3)
TREE tree, as used to represent classification trees, identification

keys and regression trees (1:2.8, 3.9, 6.20, 6,21)

You can also define data structures whose contents are customized for particular tasks (1:2.7.4).
STRUCTURE defines a customized data structure

DECLARE declares one or more customized data structures

In the standard version of Genstat, your program can contain as many data structures of each
type as you like, limited only by the total amount of workspace that they occupy. Student
Versions may have additional constraints, explained in the accompanying on-line help or
documentation.

Chapter 2 of Part 1 also describes several additional commands that are useful for managing
your data structures.

DELETE allows values of data structures to be deleted to save space

within Genstat; attributes can also be deleted so that the
structure can be redefined, for example as another type
(1:2.10.1)

RENAME renames a data structure, to give it a new identifier
(1:2.10.2)

DUPLICATE forms new data structures with attributes taken from an
existing structure (1:2.10.3)

PDUPLICATE duplicates a pointer, with all its components (1:2.10.4)
LIST lists details of the data structures currently in store

(1:2.11.1)
DUMP prints attributes and values of data structures (1:2.11.2)
GETATTRIBUTE accesses attributes of data structures such as their types,
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sizes and so on (1:2.11.3)

1.3 Input and output

Genstat supports a wide variety of styles and formats for data entry. The simplest method is
provided by the FILEREAD procedure, which provides the basis of the Read Data from ASCII

file in Genstat for Windows. The Windows implementation also allows a wide range of
spreadsheet files to be imported, as well as save-files from many other statistical systems and
data bases. The most general facilities are provided by the READ directive, which caters for a
wide variety of styles and formats, and can also rescale and sort the data values as they are read:

READ provides general facilities for reading data from the

keyboard, an input file  or a Genstat text structure (see
Sections 1:3.1.2 to 1:3.1.12, and 1:3.7)

FILEREAD provides a convenient way of reading values into a set of
variates, factors and or texts which all have equal lengths;
the data values are provided in a rectangular layout, in a
separate file (1:3.1.1)

TX2VARIATE reads values into a variate from a text structure (1:4.5.3)
Genstat can produce output in either plain-text or a "formatted" style written in either RTF,

HTML or LaTeX. The style of an output channel is set when the channel is opened, either by the
OPEN directive (1:3.3.1) or by the command used to run Genstat (1:1.1.2). You can also switch
a formatted output channel temporarily into the plain-text style (and back into its formatted style)
using the OUTPUT directive (1:3.4.4). Alternatively, in Genstat for Windows, this is done using
the View menu.

The plain-text style assumes that every character occupies an identical width on the page. This
was the situation with the line printers that were originally used for computer output. In more
modern environments, such as Microsoft® WindowsTM, this can be achieved by using a "non-
proportional" font such as Courier. In plain text, columns of output are lined up by inserting
space characters. The formatted styles insert tab characters or use tabular modes of output, which
are likely to be more convenient if you want to import the output into a wordprocessor, web page
or scientific publication. In the formatted styles, you can also include "typesetting commands"
inside a textual string to generate italic or bold fonts, subscripts or superscripts, and Greek or
mathematical symbols (1:1.4.2).

Genstat's analysis commands produce output in formats appropriate to the current style. You
can generate your own output by "printing" the contents of data structures into output files (or
into text structures) using the PRINT directive. Titles in Genstat's standard formats can be printed
using the CAPTION directive. The PAGE directive starts future output at the top of the next page,
the SKIP directive allows blank lines to be inserted in output files (or lines to be skipped in input
files), and the PLINK procedure allows you to include graphics in an HTML file. The DECIMALS
and MINFIELDWIDTH procedures help you to define appropriate output formats.

PRINT prints data in tabular form to an output file or a text

(1:3.2.1, 1:3.2.2 and 1:3.7)
CAPTION prints various types of caption and title (1:3.2.3)
PAGE moves to the top of the next page of an output file (1:3.2.4)
SKIP skips lines of input or output files (1:3.3.3)
PLINK prints a link to a graphics file into an HTML file
DECIMALS sets the number of decimals for a structure, using its

round-off (1:3.2.5)
MINFIELDWIDTH calculates minimum field widths for printing data

structures (1:3.2.6)
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You can open and close external files from within your Genstat program. Each file is

connected to a channel (input, output, backing-store, and so on) through which it is accessed by
the Genstat commands that read input or generate output. Files can also be copied, deleted and
renamed.

OPEN opens files, connects them to Genstat input or output

channels and specifies aspects such as the line width and
output style (1:3.3.1)

CLOSE closes files, freeing the channels to which they were
attached (1:3.3.2)

ENQUIRE provides details about external files attached to Genstat
(1:3.3.4)

FCOPY makes copies of files
FDELETE deletes files
FRENAME renames files

The channel from which input statements are taken can be changed, as can the channel to

which output is sent. It is also possible to send a transcript (or copy) of input and/or output to
output files.

INPUT specifies the channel from which subsequent statements

should be read (1:3.4.1)
RETURN returns to the previous input channel (1:3.4.2)
OUTPUT specifies the channel to which future output should be

sent, and allows you to switch between plain-text and
formatted styles for channels opened as RTF, HTML or
LaTeX (1:3.4.4)

COPY requests a transcript of subsequent input and/or output
(1:3.4.4)

The values of a data structure, with all its defining information, can be stored in a sub-file of

a "backing-store" file (1:3.5). It can then be retrieved in a later job, without the need to repeat
the definitions.

STORE stores data structures in a backing-store file (1:3.5.3)

RETRIEVE retrieves data structures from a backing-store file (1:3.5.4)
CATALOGUE displays the contents of a backing-store file (1:3.5.5)
MERGE copies sub-files of backing-store files into a single file

(1:3.5.6)
The current state of the whole job can also be stored, so that it can be picked up and continued

on a later occasion.
RECORD saves the complete details of a job (1:3.6.1)

RESUME reads and restarts a recorded job (1:3.6.2)
Genstat for Windows, has several additional commands for accessing data from spreadsheets,

databases and other systems. However, these may be unavailable in other implementations.

EXPORT Outputs data structures in foreign file formats, or as plain
or comma-delimited text

IMPORT Reads data in a foreign file format, and loads it into
Genstat or into a Genstat spreadsheet file

SPLOAD loads a Genstat spreadsheet file
SPCOMBINE combines spreadsheet and data files, without reading them

into Genstat
CSPRO reads a data set from a CSPro survey data file and
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dictionary, loads it into Genstat or puts it into a
spreadsheet file

DBCOMMAND runs an SQL command on an ODBC database
DBEXPORT Update an ODBC database table using data from Genstat
DBIMPORT Loads data into Genstat from an ODBC database
DBINFORMATION loads information on the tables and columns in an ODBC

database
DDEEXPORT Sends data or commands to a Dynamic Data Exchange

server
DDEIMPORT Gets data from a Dynamic Data Exchange (DDE) server
GRIBIMPORT reads data from a GRIB2 meteorological data file, and

loads it or converts it to a spreadsheet file
%CD Changes the current directory

Details are in the on-line help.

1.4 Calculations and manipulation

Genstat has many directives for doing calculations or for manipulating data, and a full range of
mathematical and statistical functions (1:4.2). There is also a directive to link to algorithms in
the Numerical Algorithms Group (NAG) Library (1:4.13). Other facilities are provided by
procedures, mainly in the Manipulation module of the procedure library.

The CALCULATE directive (1:4.1) can perform straightforward arithmetic operations on any
numerical data structure. It also enables you to make logical tests on data: for example, you may
want to check whether two variates contain the same values; similar checks can be done with
factors, texts and pointers. You can use CALCULATE for matrix operations: for example, matrix
multiplication, inversion and Choleski decompositions (1:4.1.3 and 1:4.2.4). CALCULATE can do
calculations with tables, and these need not have identical sets of classifying factors (1:4.1.4).
When you use CALCULATE, the results are stored in appropriate data structures (which may be
defined for you automatically: 1:4.1.5). However, if you want to use the results only once, do
not forget that you can use an expression anywhere that Genstat expects a list of identifiers
(1:1.5.3).

CALCULATE performs arithmetic and logical calculations (1:4.1)

In Genstat for Windows, the Calculate menu provides a convenient interfact to CALCULATE. The
menu allows you to assemble the calculation by selecting data structures from an Available Data

window, and clicking appropriate buttons to select the various operators (addition, multiplication
and so on).

Other general directives include:
EQUATE copies values between sets of data structures; they need

not have same type, but their values must have the same
mode, for example, numbers or text (1:4.3.1)

SETRELATE compares the sets of values in two data structures; again
they need not have same type, but their values must have
the same mode (1:4.3.2)

SETCALCULATE performs Boolean set calculations on the contents of
vectors and pointers (1:4.3.3)

SETALLOCATIONS runs through all ways of allocating a set of objects to
subsets with specified sizes (1:4.3.4)

GETLOCATIONS finds locations of an identifier within a pointer, or a string
within a factor or text, or a number within any numerical
data structure (1:4.3.5)
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There are several commands for manipulating vectors (variates, factors or texts). A

"restriction" can be associated with a vector, so that subsequent statements operate on only a
subset of its units. Alternatively, you may wish to store the subset, in a data structure on its own.
Units of vectors can be sorted into systematic order or into random order, and you can select
random samples of a set of units. You can form a vector containing the values of a set of vectors
of the same type, appended together, along with a factor which indicates the vector from which
each unit came. Similarly, data matrices can be combined by "stacking" (or appending) their
corresponding vectors. Another type of combination is to "join" (or merge) new vectors into a
data matrix according to the values of one or more "key" vectors. You can also form a set of
variates, each of which contains the values from one of the units of every member of a set of
structures.

RESTRICT defines a "restriction" on the units of a vector (1:4.4.1)

SUBSET forms vectors containing subsets of the values in other
vectors (1:4.4.2)

FREGULAR expands vectors onto a regular two-dimensional grid
(procedure)

FRESTRICTEDSET forms vectors with the restricted subset of a list of vectors
(procedure)

SORT sorts units of vectors into alphabetic or numerical order of
an index vector, or forms a factor from a variate or text
(1:4.4.3)

RANDOMIZE puts the units of a set of vectors into random order, or
randomizes the units of an experimental design (4.10.1)

SAMPLE samples from a set of units, possibly stratified by factors
(procedure)

SVSAMPLE constructs stratified random samples (procedure)
APPEND appends values of a list of vectors of the same type

(1:4.4.4)
STACK combines several data sets by "stacking" the corresponding

vectors (1:4.4.5)
UNSTACK splits vectors into individual vectors according to levels of

a factor (1:4.4.6)
JOIN joins or merges two sets of vectors together, based on

classifying keys (1:4.4.7)
FUNIQUEVALUES redefines a variate or text so that its values are unique

(procedure)
VEQUATE equates values across a set of data structures (procedure)
MVFILL replaces missing values in a vector with the previous non-

missing value (procedure)

The spreadsheet facilities of Genstat for Windows also provide several convenient menus for data
manipulation, accessed by clicking Spread on the menu bar and then selecting Manipulate. For
example, you can stack and unstack columns, transpose the sheet, append new data onto the ends
of the columns, and so on. These facilities will generally be easier to use than the corresponding
Genstat commands. Details can be found in the Spreadsheet Help file (click Help on the menu
bar, and then select Spreadsheet).

There are several commands for calculations and manipulation that form variates.
INTERPOLATE calculates variates of interpolated values (1:4.5.1)

MONOTONIC fits an increasing monotonic regression (1:4.5.2)
TX2VARIATE converts a text structure into a variate (1:4.5.3)
ORTHPOLYNOMIAL calculates orthogonal polynomials (procedure)
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QUANTILE calculates quantiles of the values in a variate (procedure)
RANK produces ranks, from the values in a variate, allowing for

ties (procedure)
VINTERPOLATE performs linear and inverse linear interpolation between

variates (procedure)
Other commands are designed specifically for factors.

GROUPS forms a factor (or grouping variable) from a variate or text,

together with the set of distinct values that occur (1:4.6.1)
FACAMEND permutes the levels and labels of a factor (procedure)
FACDIVIDE represents a factor by factorial combinations of a set of

factors (procedure)
FACEXCLUDEUNUSED redefines the levels and labels of a factor to exclude those

that are unused
FACGETLABELS obtains the labels for a factor if it has been defined with

labels, or constructs labels from its levels otherwise
(procedure)

FACLEVSTANDARDIZE redefines a list of factors so that they have the same levels
or labels (procedure)

FACMERGE merges levels of factors (procedure)
FACPRODUCT forms a factor with a level for every combination of other

factors (procedure)
FACSORT sorts the levels of a factor according to an index vector

(procedure)
FACUNIQUE redefines a factor so that its levels and labels are unique

(procedure)
FDISTINCTFACTORS checks sets of factors to remove any that define duplicate

classifications (procedure)
FREPLICATEFACTOR forms a factor to indicate observations with identical

values of a set of variates, texts or factors (procedure)

Text handling facilities include the ability to omit complete lines, or to append one text onto
the end of another, using the non-specialist commands EQUATE and APPEND already
mentioned. You can also form a text each of whose lines is made up from sections of lines
from several texts concatenated together, form progressions of strings, and perform more general
operations using Genstat's text editor.

CONCATENATE concatenates together lines of text vectors (1:4.7.1)

TXBREAK breaks a text structure into individual words (1:4.7.6)
TXCONSTRUCT forms a text structure by appending or concatenating

values of from scalars, variates, texts, factors or pointers;
allows the case of letters to be changed or values to
truncated and reversed (1:4.7.2)

TXFIND finds a subtext within a text structure (1:4.7.4)
TXPAD pads strings of a text structure with extra characters so that

their lengths are equal
TXPOSITION locates strings within the lines of a text structure (1:4.7.3)
TXREPLACE replaces strings within a text structure (1:4.7.5)
TXSPLIT splits a text into individual texts, at positions on each line

marked by separator characters (1:4.7.7)
TXINTEGERCODES converts textual characters to and from their corresponding

integer codes (1:4.7.8)
TXPROGRESSION forms a text containing a progression of strings (1:4.7.9)
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EDIT line editor for units of text vectors (1:4.7.10)
FVSTRING forms a string listing the identifiers of a set of data

structures
Formulae can be interpreted, modified to operate on different data structures, or constructed

automatically from pointers.
FCLASSIFICATION forms classification sets for the terms in a formula, or

breaks a formula up into separate formulae one for each
term (1:4.8.1)

REFORMULATE modifies a formula or an expression to operate on a
different set of data structures (1:4.8.4)

SET2FORMULA forms a model formula with the structures contained in a
pointer (1:4.8.3)

You can find out which data structures are used in an expression.

FARGUMENTS forms lists of data structures used as arguments in an

expression (1:4.8.2)
Values can be assigned to dummies and pointers by the ASSIGN directive.

ASSIGN sets values of dummies and pointers (1:4.9.1)

There are several procedures for calculating or fitting splines, and for manipulating series of

observations of a theoretical curve.
SPLINE calculates a set of basis functions for M-, B- or I-splines

LSPLINE calculates design matrices to fit a natural polynomial or
trignometric L-spline as a linear mixed model

NCSPLINE calculates natural cubic spline basis functions (for use e.g.
in REML)

PENSPLINE calculates design matrices to fit a penalized spline as a
linear mixed model

PSPLINE calculates design matrices to fit a P-spline as a linear
mixed model

RADIALSPLINE calculates design matrices to fit a radial-spline surface as
a linear mixed model

TENSORSPLINE calculates design matrices to fit a tensor-spline surface as
a linear mixed model

ALIGNCURVE forms an optimal warping to align an observed series of
observations with a standard series

BASELINE estimates a baseline for a series of numbers whose
minimum value is drifting

PEAKFINDER finds the locations of peaks in an observed series
There are several commands for calculations on matrices (either as individual structures, or

as elements of a compound structure such as an LRV or an SSPM).
SVD calculates the singular-value decomposition of a matrix

(1:4.10.1)
FLRV calculates latent roots and vectors ! that is, eigenvalues

and eigenvectors (1:4.10.2)
FSSPM calculates values for SSPM structures i.e. sums of squares

and products, means, etc. (1:4.10.3)
QRD calculates the QR decomposition of a matrix (1:4.10.4)
FCORRELATION forms and tests the correlation matrix for a list of variates

(procedure)
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FROWCANONICALMATRIX puts a matrix into row canonical, or reduced row echelon,
form (procedure)

FVCOVARIANCE forms the variance-covariance matrix for a list of variates
(procedure)

LINDEPENDENCE finds the linear relations associated with matrix
singularities (procedure)

MPOWER forms integer powers of a square matrix (procedure)
PARTIALCORRELATIONS calculates a matrix of partial correlations between a set of

variates (procedure)
POSSEMIDEFINITE calculates a positive semi-definite approximation of a non-

positive semi-definite symmetric matrix (procedure)
STANDARDIZE standardizes columns of a matrix, or a set of variates, to

have mean 0 and variance 1 (procedure)
VMATRIX copies values and row/column labels from a matrix to

variates or texts
Tables can be formed containing summaries of values in variates: totals, minimum and

maximum values, quantiles, numbers of missing and non-missing values, means and variances.
The table manipulation facilities include the ability to add various types of marginal summaries
to tables, and to combine "slices" of tables (and also of matrices or variates), calculation of tables
of percentages, identification of outliers, and formation of a data matrix (variate and factors)
from a table. You can also tabulate results from stratified surveys and surveys involving
multiple-response factors.

TABULATE forms tables of summaries of the values of a variate

(1:4.11.1)
MARGIN calculates or deletes margins of tables (1:4.11.2)
COMBINE combines or omits "slices" of tables, matrices or variates

(1:4.11.4)
MEDIANTETRAD gives robust identification of multiple outliers in 2-way

tables (procedure)
PERCENT expresses the body of a table as percentages of one of its

margins (1:4.11.3)
T%CONTROL expresses tables as percentages of control cells (1:4.11.3)
TABINSERT inserts the contents of a sub-table into a table (1:4.11.5)
TABMODE forms summary tables of modes (procedure)
TABSORT sorts tables so their margins are in ascending or

descending order, as in a Pareto chart (1:4.11.5)
TCOMBINE combines several tables into a single table (procedure)
DTABLE plots tables (1:4.11.7)
VTABLE forms a variate and a set of classifying factors from a table

(procedure)
FMFACTORS forms a pointer of factors representing a multiple-response

(1:4.11.8)
FFREERESPONSEFACTOR forms multiple-response factors from free-response data

(1:4.11.9)
MTABULATE forms tables classified by multiple-response factors

(1:4.11.10)
SVBOOT bootstraps data from random surveys (procedure)
SVCALIBRATE performs generalized calibration of survey data

(procedure)
SVGLM fits generalized linear models to survey data (procedure)
SVHOTDECK performs hot-deck and model-based imputation for survey
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data (procedure)
SVMERGE merges strata prior to survey analysis (procedure)
SVREWEIGHT modifies survey weights adjusting to ensure that their

overall sum weights remains unchanged (procedure)
SVSAMPLE constructs stratified random samples (procedure)
SVSTRATIFIED analyses stratified random surveys by expansion or ratio

raising (procedure)
SVTABULATE tabulates data from random surveys, including multistage

surveys and surveys with unequal probabilities of selection
(procedure)

SVWEIGHT forms survey weights (procedure)
Directives are available for adding and removing branches of trees. There are also procedures

for displaying and pruning trees, which provide basic utilities for Genstat's tree-based analysis
including classification trees, identification keys and regression trees (6.20, 6.21, 3.9).

BCUT cuts a tree at a defined node, discarding nodes and

information below it (1:4.12.4)
BJOIN extends a tree by joining another tree to a terminal node

(1:4.12.5)
BGROW adds new branches to a node of a tree (1:4.12.3)
BCONSTRUCT constructs a tree (1:4.12.6)
BASSESS assesses potential splits for regression and classification

trees (1:4.12.7)
BGRAPH plots a tree (1:4.12.2)
BPRINT displays a tree (1:4.12.1)
BPRUNE prunes a tree using minimal cost complexity (1:4.12.8)
BIDENTIFY identifies specimens using a tree (1:4.12.9)

There are also various specialist mathematical facilities

NAG calls an algorithm from the NAG Library (1:4.13)

FHADAMARDMATRIX forms Hadamard matrices (procedure)
FPARETOSET forms the Pareto optimal set of non-dominated groups
FPROJECTIONMATRIX forms a projection matrix for a set of model terms

(procedure)
FRTPRODUCTDESIGNMATRIX forms summation, or relationship, matrices for model

terms (procedure)
GALOIS forms addition and multiplication tables for a Galois finite

field (procedure)
NCONVERT converts integers between base 10 and other bases

(procedure)
PERMUTE forms all possible permutations of the integers 1...n

(procedure)
PRIMEPOWER decomposes a positive integer into its constituent prime

powers (procedure)

1.5 Programming in Genstat

A Genstat program consists of a sequence of one or more jobs. The first job starts automatically
at the start of the program. Later, if you want, you can begin a subsequent job using the JOB and
ENDJOB directives. The effect is equivalent to restarting Genstat (data structures are deleted, the
graphics environment is reset, and so on) except that any files that have been attached to Genstat
retain their current status. So, for example, Genstat will continue to add output to the end of an
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output file, and will continue reading from the current point of an input file.
JOB starts a Genstat job, ending the previous one if necessary

(1:5.1.1)
ENDJOB ends a job (1:5.1.2)

The whole program is terminated by a STOP directive:
STOP ends a Genstat program (1:5.1.3)

Statements within a program can be repeated using a FOR loop. The loop is introduced by a

FOR statement. This is followed by the series of statements that is to repeated (that is, the
contents of the loop), and the end of the loop is marked by an ENDFOR statement. Parameters of
the FOR directive allow lists of data structures to be specified so that the statements in the loop
operate on different structures each time that it is executed.

FOR indicates the start of a loop (1:5.2.1)

ENDFOR marks the end of a loop (1:5.2.1)
Genstat has two ways of choosing between sets of statements. The block-if structure consists

of one or more alternative sets of statements. The first set is introduced by an IF statement.
There may then be further sets introduced by ELSIF statements. Then there may be a final set
introduced by an ELSE statement, and the whole structure is terminated by an ENDIF structure.
The IF statement, and each ELSIF statement, contains a single-valued logical expression.
Genstat evaluates each one in turn and executes the statements following the first TRUE logical
found; if none of them is true, Genstat executes the statements following the ELSE statement (if
any).

IF introduces a block-if structure (1:5.2.2)

ELSIF introduces an alternative set of statements in a block-if
structure (1:5.2.2)

ELSE introduces a default set of statements for a block-if
structure (1:5.2.2)

ENDIF marks the end of a block-if structure (1:5.2.2)

The multiple-selection structure consists of several sets of statements. The first is introduced by
a CASE statement. Subsequent sets are introduced by OR statements. There can then be a final,
default, set introduced by an ELSE statement, and the end of the structure is indicated by an
ENDCASE statement. The parameter of the CASE statement is an expression which must produce
a single number. Genstat rounds this to the nearest integer, n say, and then executes the nth set
of statements. If there is no nth set, the statements following the ELSE statement are executed
(if any).

CASE introduces a multiple-selection structure (1:5.2.3)
OR introduces an alternative set of statements for a multiple-

selection structure (1:5.2.3)
ELSE introduces a default set of statements for a multiple-

selection structure (1:5.2.3)
ENDCASE marks the end of a multiple-selection structure (1:5.2.3)

Any control structure (job, block-if structure, loop, multiple-selection structure or procedure !
see below) can be abandoned using an EXIT statement.

EXIT exits from a control structure (1:5.2.4)

Sequences of statements can be formed into Genstat procedures. This not only makes them

simpler for you to use; it also means that you can make them easily available to other users. The
use of a procedure looks just like one of the Genstat directives, with its own options and
parameters, which transfer information to and from the procedure. Otherwise the procedure is
completely self-contained. There is a standard, officially-supported procedure library, which is
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automatically available whenever you run Genstat. Details are available on-line from the
procedures in the help module of the library. You can also write your own procedures (1:5.3.2),
and form your own libraries with their own on-line help (1:5.3.4).

LIBHELP provides help information for Library procedures (1:5.3.1)

LIBEXAMPLE accesses examples and source code of Library procedures
(1:5.3.1)

LIBVERSION provides the name of the current Genstat Procedure
Library (1:5.3.1)

The start of a procedure is indicated by a PROCEDURE statement. Then OPTION and PARAMETER
statements can be given to define the arguments of the procedure. These are followed by the
statements to be executed when the procedure is called, terminated by an ENDPROCEDURE
statement.

PROCEDURE introduces a procedure, and defines its name (1:5.3.2)

OPTION defines the options of a procedure (1:5.3.2)
PARAMETER defines the parameters of a procedure (1:5.3.2)
CALLS lists the procedures called by a procedure (1:5.3.2)
ENDPROCEDURE indicates the end of a procedure (1:5.3.2)

Commands are available to enable procedure writers to provide their own error handing, to
define and access private data structures,  to execute macros, and to increment counters. You can
also discover whether and how a particular command has been implemented.

FAULT checks whether to issue a diagnostic, i.e. a fault, warning

or message (1:5.4.1)
DISPLAY repeats the last Genstat diagnostic (1:5.4.1)
WORKSPACE accesses "private" data structures for use in procedures

(1:5.4.2)
EXECUTE executes the statements contained within a text (1:5.4.3)
COUNTER increments a multi-digit counter using non base-10

arithmetic (1:5.4.4)
COMMANDINFORMATION provides information about whether (and how) a command

has been implemented (1:5.4.5)
SPSYNTAX puts details about the syntax of  commands into a

spreadsheet
SYNTAX obtains details about the syntax of a command (1:5.4.6)

Genstat has commands to help you debug your programs. The execution of any control

structure (job, block-if structure, loop, multiple-selection structure or procedure) can be
interrupted explicitly (so that you can enter other commands such as PRINT) using a BREAK
statement, or implicitly by using DEBUG. Once DEBUG has been entered, Genstat will produce
breaks automatically at regular intervals, until it meets an ENDDEBUG statement.

BREAK suspends execution of a control structure (1:5.5.1)

ENDBREAK continues execution of a control structure, following a
break (1:5.5.1)

DEBUG can cause a break to take place after the current statement
(and at specified intervals thereafter), or immediately after
the next fault (1:5.5.2)

ENDDEBUG cancels DEBUG (1:5.5.2)
You can modify aspects of the "environment" of the current Genstat job, such as whether or

not Genstat starts output from a statistical analysis at the top of a new page, or whether it should
pause during interactive output. You can also copy details of these environmental settings into
Genstat data structures so that, for example, you can react appropriately within a procedure.
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User-defined defaults can be specified for the options and parameters of any directive or
procedure.

SET sets details of the "environment" of a Genstat job (1:5.6.1)

GET accesses information about the Genstat environment
(1:5.6.2)

SETOPTION sets or modifies defaults of options of Genstat directives
or procedures (1:5.6.3)

SETPARAMETER sets or modifies defaults of parameters of Genstat
directives or procedures (1:5.6.3)

In many implementations of Genstat, you can suspend the execution of Genstat and return to

the operating system of the computer to execute commands, for example to list or edit files on
the computer. Likewise, it may be possible to halt the execution of Genstat to execute some other
computer program. Some implementations also allow you to incorporate your own programs into
Genstat. The OWN directive calls a subroutine called OWN, within the Fortran code of Genstat,
which may be modified to call the program. The new code must then be recompiled and linked
into a new version of Genstat.

SUSPEND suspends the execution of Genstat to carry out operating-

system commands (1:5.7.1)
PASS runs another computer program, taking data from Genstat

and transferring results back (1:5.7.2)
OWN executes the user's own code linked into Genstat

1.6 Graphics

Genstat can produce graphical output in two distinctively different styles. These are line-printer
graphics and high-resolution graphics. The line-printer style uses the ordinary characters of
textual output, and is available in every Genstat implementation. Most implementations also
support high-resolution graphics as a more attractive alternative. Lines and points are plotted
with far greater precision, and a wider range of plotting symbols can be used to enhance the
output. Also most devices allow the use of colour. Plots can be saved in files using standard
formats that are suitable for plotters or laser printers or for importing into word-processed
documents. Genstat for Windows has a Graphics Wizard that allows you to select a high-
resolution graph and customize its appearance. You can also modify many aspects of the graph,
such as colours, line styles, plotting symbols, fonts and axes, interactively after it has been
plotted.

For high-resolution graphics, the directives have two main purposes. There are those that

define the "graphics environment" for subsequent plots, and those that do the plotting. Often the
default environment, set up at the start of a program, will be satisfactory. However, to change
the graphics environment, the following commands can be used:

DEVICE switches between graphics devices (1:6.9.1)

FRAME defines the positions of the windows within the frame
(1:6.9.3)

FFRAME forms multiple windows in a plot-matrix for high-
resolution graphics

XAXIS defines the x-axis in a graphical window (1:6.9.4)
YAXIS defines the y-axis in a graphical window (1:6.9.5)
ZAXIS defines the z-axis in a graphical window (1:6.9.6)
AXIS defines an oblique axis for high-resolution graphics

(1:6.9.7)
PEN defines properties of graphics "pens" (1:6.9.8)
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GETRGB provides a standard sequence of colours, defined by the
initial defaults of the Genstat pens (1:6.9.9)

DCOLOURS forms a band of contiguous colours for graphics (1:6.9.9)
DFONT defines the default graphics font (1:6.9.12)
DHELP provides information about the graphics environment

(1:6.9)
DKEEP copies details of the graphics environment into Genstat

data structures (1:6.9.10)
DLOAD loads the graphics environment settings from an external

file (1:6.9.11)
DSAVE saves the current graphics environment settings to an

external file (1:6.9.11)

The directives for plotting high-resolution graphs are:
DGRAPH produces scatter plots and line graphs (1:6.2.1)

D3GRAPH plots a 3-dimensional graph (1:6.2.2)
DHISTOGRAM plots histograms (1:6.3.1)
BARCHART plots bar charts (1:6.3.2)
DCONTOUR plots contour maps (1:6.4.1)
DSHADE plots a shade diagram of three-dimensional data (1:6.4.2)
DSURFACE draws a perspective plot of a two-way array of numbers

(1:6.4.3)
D3HISTOGRAM plots three-dimensional histograms (1:6.4.4)
DBITMAP plots a bit map of RGB colours (1:6.5)
DPIE plots pie charts (1:6.6.1)
DCLEAR clears a graphics screen (1:6.8.1)
DSTART starts a sequence of related plots (1:6.8.2)
DFINISH ends a sequence of related plots (1:6.8.2)
DDISPLAY redraws the current graphical display (1:6.9.2)

You can add arrows, annotation, error bars, reference lines and customized keys to graphs:

DARROW adds arrows to an existing plot (1:6.7.3)

DERRORBAR adds error bars to a graph (1:6.7.4)
DKEY adds a key to a graph (1:6.7.5)
DTEXT adds text to a graph (1:6.7.1)
DFRTEXT adds text to the graphics frame
DREFERENCELINE adds reference lines to a graph (1:6.7.2)

Some implementations support interactive graphics devices that allow information to be read

from the screen:
DREAD reads locations of points from an interactive graphics

device
Other facilities, provided by procedures in the graphics module of the Library include:

BANK calculates the optimum aspect ratio for a graph

BOXPLOT draws box-and-whisker diagrams (2.2.2)
DCOMPOSITIONAL plots 3-part compositional data within a barycentric

triangle
DMASS plots discrete data like mass spectra, discrete probability

functions
DMSCATTER produces a scatter-plot matrix for one or two sets of

variables (1:6.8.4)
DPROBABILITY plots probability distributions, and estimates their
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parameters (2.2.7)
DOTPLOT displays a dot-plot (2.2.6)
DPARALLEL displays multivariate data using parallel coordinates

(2.7.2)
DSPIDERWEB displays spider-web and star plots
DTIMEPLOT produces horizontal bars displaying a continuous time

record
DXDENSITY produces one-dimensional density (or violin) plots
DXYDENSITY produces density plots for large data sets (1:6.4.5)
DXYGRAPH draws two-dimensional graphs with marginal distribution

plots alongside the y- and x-axes
DYPOLAR produces polar plots
RUGPLOT draws "rugplots" to display the distribution of one or more

samples (2.2.3)
STEM plots a stem-and-leaf chart (2.2.4)
TRELLIS produces trellis plots for each level of one or more factors

(1:6.8.3)

The relevant directives for line-printer graphics are:
LPCONTOUR produces contour maps of two-way arrays of numbers

(1:6.10.1)
LPGRAPH produces scatter plots and line graphs (1:6.10.2)
LPHISTOGRAM plots histograms (1:6.10.3)



2 Basic statistics and exploratory analysis

Before embarking on a full statistical analysis, it can be useful to investigate your data, for
example by calculating some summary statistics or studying exploratory plots. Genstat provides
a wide range of possibilities. Some are available through specially-designed commands (usually
procedures in the Genstat Procedure Library). Others simply use basic options of more powerful
commands (usually directives). Many of the relevant commands are described in this chapter,
and cross references are given to others.

DESCRIBE forms summary statistics for variates (2.1.1)

CDESCRIBE calculates summary statistics and tests of circular data
(2.1.2)

FCORRELATION forms correlations between variates, and calculates their
probabilities (2.8.1)

TABULATE forms tables of summaries of the values in a variate
(1:4.11.1)

PERCENT expresses the body of a table as percentages of one of its
margins (1:4.11.3)

MTABULATE forms tables classified by multiple-response factors
(1:4.11.10)

SVSTRATIFIED analyses stratified random surveys by expansion or ratio
raising

SVTABULATE tabulates data from random surveys, including multistage
surveys and surveys with unequal probabilities of selection

TALLY forms a simple tally table of the distinct values in a vector
(2.2.5)

DGRAPH produces (high-resolution) scatter plots and line graphs
(2.7.1)

LPGRAPH produces (character-based) scatter plots and line graphs
(1:6.10.2)

DCIRCULAR plots circular data (2.2.9)
DHISTOGRAM plots (high-resolution) histograms (2.2.1)
LPHISTOGRAM plots (character-based) histograms (1:6.10.2)
BARCHART plots a bar chart (1:6.3.2)
DPIE produces pie charts (1:6.6.1)
BOXPLOT draws box-and-whisker diagrams or schematic plots

(2.2.2)
DCOMPOSITIONAL plots 3-part compositional data within a barycentric

triangle
DMASS plots discrete data like mass spectra, discrete probability

functions
DPROBABILITY plots probability distributions, and estimates their

parameters (2.2.7)
DOTPLOT produces a dot-plot (2.2.6)
DPARALLEL displays multivariate data using parallel coordinates

(2.7.2)
DMSCATTER produces a scatter-plot matrix (1:6.8.4)
DSHADE produces a pictorial representation of a data matrix

(1:6.4.2)
DTIMEPLOT produces horizontal bars displaying a continuous time

record
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KERNELDENSITY uses kernel density estimation to estimate a sample density
(2.2.8)

RUGPLOT draws "rugplots" to display the distribution of one or more
samples (2.2.3)

STEM produces a simple stem-and-leaf chart (2.2.4)
TRELLIS produces trellis plots for each level of one or more factors

(1:6.8.3)
WINDROSE plots rose diagrams of circular data like wind speeds

This chapter also covers some of the more straightforward statistical analyses, in particular

the t-test and a range of nonparametric tests, as well as describing how you can fit probability
distributions to random samples of data, and test whether data come from a Normal distribution.
(Commands to determine sample sizes for many of these tests are described later, in Section
4.12.)

TTEST performs a one- or two-sample t-test (2.3.1)

AONEWAY provides one-way analysis of variance (2.3.2)
A2WAY performs analysis of variance of a balanced or unbalanced

design with up to two treatment factors (2.3.3)
A2DISPLAY provides further output from an A2WAY analysis (2.3.3)
A2KEEP saves information from an A2WAY analysis (2.3.3)
CHIPERMTEST does a random permutation test for a two-dimensional

contingency table (2.9.2)
CHISQUARE calculates chi-square statistics for one- and two-way tables

(2.9.1)
CMHTEST performs the Cochran-Mantel-Haenszel test (2.9.5)
FEXACT2X2 does Fisher's exact test for 2×2 tables (2.9.2)
FRIEDMAN performs Friedman's nonparametric analysis of variance

(2.6.2)
BNTEST calculates one- and two-sample binomial tests (2.3.4)
PNTEST calculates one- and two-sample Poisson tests (2.3.5)
GSTATISTIC calculates the gamma statistic of agreement for ordinal

data (2.8.6)
KAPPA calculates a kappa coefficient of agreement for nominally

scaled data (2.8.5)
KCONCORDANCE calculates Kendall's Coefficient of Concordance, synonym

CONCORD (2.8.4)
KOLMOG2 performs a Kolmogorov-Smirnoff two-sample test (2.5.2)
KRUSKAL carries out a Kruskal-Wallis one-way analysis of variance

(2.6.1)
KTAU calculates Kendall's rank correlation coefficient ô (2.8.3)
LCONCORDANCE calculates Lin's concordance correlation coefficient (2.8.7)
MANNWHITNEY performs a Mann-Whitney U test (2.5.1)
MCNEMAR performs McNemar's test for the significance of changes

(2.9.3)
QCOCHRAN performs Cochran's Q test for differences between related

samples (2.9.4)
RUNTEST performs a test of randomness of a sequence of

observations (2.4.3)
SIGNTEST performs a one or two sample sign test (2.4.2)
SPEARMAN calculates Spearman's rank correlation coefficient (2.8.2)
STEEL performs Steel's many-one rank test
WILCOXON performs a Wilcoxon Matched-Pairs (Signed-Rank) test
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(2.4.1)
DISTRIBUTION estimates the parameters of continuous and discrete

distributions (2.2.10)
NORMTEST performs tests of univariate and/or multivariate Normality

(2.2.11)
WSTATISTIC calculates the Shapiro-Wilk test for Normality (2.2.11)

Section 2.10 describes some of the Genstat facitities for supporting the six-sigma approach
to quality improvement. These include a wide range of control charts and the calculation of
capability statistics.

SPCAPABILITY calculates capability statistics (2.10.6)
SPCCHART plots c or u charts representing numbers of defective items

(2.10.5)
SPCUSUM prints CUSUM tables for controlling a process mean

(2.10.2)
SPEWMA plots exponentially weighted moving-average control

charts (2.10.3)
SPPCHART plots p or np charts for binomial testing for defective items

(2.10.4)
SPSHEWHART plots control charts for mean and standard deviation or

range (2.10.1)

Finally, Section 2.11 describes some procedures that can be used to study species diversity and
abundance.

ECDIVERSITY calculates measures of diversity with jackknife or
bootstrap estimates (2.11.1)

ECABUNDANCEPLOT produces rank/abundance, ABC and k-dominance plots
(2.11.2)

ECFIT fits models to species abundance data (2.11.3)
ECNICHE generates relative abundance of species for niche-based

models (2.11.4)
ECRAREFACTION calculates individual or sample-based rarefaction (2.11.5)
ECACCUMULATION plots species accumulation curves for samples or

individuals (2.11.6)
ECNPESTIMATE calculates nonparametric estimates of species richness

(2.11.7)
ECANOSIM compares communities between sites by a nonparametric

analysis of similarities known as ANOSIM (6.1.6)
LORENZ plots the Lorenz curve and calculates the Gini and

asymmetry coefficients (2.11.8)

The analyses in this chapter can all be obtained through menus in Genstat for Windows, mainly
in the Summary Statistics, Statistical Tests, Six sigma and Distributions categories.

2.1 Summary statistics

2.1.1 The DESCRIBE procedure

DESCRIBE procedure
Saves and/or prints summary statistics for variates (R.C. Butler & D.A. Murray).

Options
PRINT = string token Controls whether or not the summaries are printed
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(summaries); default summ
SELECTION = string tokens Selects the statistics to be produced (nval, nobs, nmv,

mean, median, min, max, range, q1, q3, sd, sem, var,
sevar, %cv, sum, ss, uss, skew, seskew, kurtosis,
sekurtosis, all); default mean, min, max, nobs,
nmv, medi, q1, q3

GROUPS = factor Allows groups to be defined, so that summaries are
produced for each group in turn

Parameters
DATA = variates Data to summarize
SUMMARIES = variates or pointers To save summaries for each DATA variate, in a variate if

GROUPS is unset, or in a pointer to a set of variates (one
for each group) if groups have been specified; will be
redefined if necessary

The DESCRIBE procedure (used by the Summary of Variates menu of Genstat for Windows)
provides a wide range of summary statistics for grouped or ungrouped data.

Example 2.1.1a produces summary statistics from a set of data specifying the heights of active
volcanos around the world. As well as the heights and names of the volcanos, the data set also
contains their latest eruption dates and geographical regions. The DATA parameter of DESCRIBE
specifies the data variate for which the statistics are to be calculated. The PRINT option controls
whether or not they are printed. By default they will be printed (so PRINT is not set in the
example); to suppress printing you need to put PRINT=*. The statistics to be calculated are
indicated by the SELECTION option. Here we keep the default selection.

Example 2.1.1a

   2  " Heights of active volcanoes. Data from The World Almanac (1992);
  -3    previous version of data also displayed in Tukey (1977) p.40."
   4  OPEN '%GENDIR%/Examples/GuidePart2/Volcano.dat'; CHANNEL=2
   5  TEXT Volcano
   6  TEXT [VALUES=America,'Asia/Oceania',Elsewhere] Regname
   7  FACTOR [LABELS=Regname] Region
   8  READ [CHANNEL=2] Volcano,Year,Height,Region

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Volcano                                     126         0
          Year      1960      1983      1991       126         0
        Height     10.00     77.19     199.0       126         0

    Identifier    Values   Missing    Levels
        Region       126         0         3

   9  CLOSE 2
  10  DESCRIBE Height

Summary statistics for Height
=============================

      Number of observations = 126
    Number of missing values = 0
                        Mean = 77.19
                      Median = 67
                     Minimum = 10
                     Maximum = 199
              Lower quartile = 49
              Upper quartile = 100
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The available settings of SELECTION are:
nval number of values sem standard error of mean
nobs number of non-missing values var variance
nmv number of missing values sevar standard error of variance
mean arithmetice mean %cv coefficient of variation
median median sum total of values
min minimum ss corrected sum of squares
max maximum uss uncorrected sum of squares
range range (max-min) skew skewness (see Method)
q1 lower quartile seskew standard error of skewness
q3 upper quartile kurtosis kurtosis (see Method)
sd standard deviation sekurtosis s.e. of kurtosis
all all 22 summaries

by default the mean, min, max, nobs, nmv, median and both quartiles are calculated.
The GROUPS option allows groups of observations to be defined, so that the summaries are

calculated separately for each group. This is illustrated in Example 2.1.1b, which continues
Example 2.1.1a: in the DESCRIBE statement in line 10, GROUPS is set to Region to produce
summaries for each geographical region.

Example 2.1.1b

  11  DESCRIBE [GROUPS=Region] Height

Summary statistics for Height: Region America
=============================================

      Number of observations = 50
    Number of missing values = 0
                        Mean = 91.92
                      Median = 82.5
                     Minimum = 34
                     Maximum = 199
              Lower quartile = 53
              Upper quartile = 124

Summary statistics for Height: Region Asia/Oceania
==================================================

      Number of observations = 61
    Number of missing values = 0
                        Mean = 66.95
                      Median = 60
                     Minimum = 10
                     Maximum = 156
              Lower quartile = 49
              Upper quartile = 81.5

Summary statistics for Height: Region Elsewhere
===============================================

      Number of observations = 15
    Number of missing values = 0
                        Mean = 69.73
                      Median = 75
                     Minimum = 17
                     Maximum = 134
              Lower quartile = 23.25
              Upper quartile = 108.2
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DESCRIBE allows for only one grouping classification (i.e. a single factor). If you have several
factors, you could use the FACPRODUCT procedure to generate a new factor with a level for every
combination of the original factors, and specify that as the GROUPS factor. Alternatively, the
TABULATE directive (1:4.11.1) allows you to produce multi-way tables of summary statistics
such as means, medians, totals, minima, maxima, replications, variances, standard deviations,
skewness and kurtosis.

The SUMMARIES parameter of DESCRIBE allows the statistics to be saved in a variate, or in
a pointer to a set of variates if there are groups. These need not be declared in advance. The units
of the variate(s) are labelled by the corresponding strings from the settings (in capital letters) of
the SELECTION option, to simplify the subsequent access of any individual statistic. For
example, the minimum value can be copied from a SUMMARIES variate v into a scalar m by

CALCULATE m = v$['MIN']

2.1.2 Circular data: the CDESCRIBE procedure

CDESCRIBE procedure
Calculates summary statistics and tests of circular data (P.W. Goedhart & R.W. Payne).

Options
PRINT = string tokens What to print (summary, fittedvalues); default

summ

SEGMENT = scalar Width of sectors (in degrees) into which to group an
ANGLES variate for calculation of the test of randomness
and the chi-square goodness of fit statistic for the von
Mises distribution; default 20

MSEGMENT = scalar Defines the centre (in degrees) of the sectors; default 0
DIRECTION = scalar Direction (in degrees) of the unimodal alternative

distribution for the Rayleigh test; default * i.e. not
known

Parameters
ANGLES = factors or variates Directional observations (in degrees)
RESULTS = variates Saves the summary statistics
VONMISESCOUNTS = pointers Saves structures relevant for calculation of the chi-

square goodness of fit statistic for the von Mises
distribution

CDESCRIBE summarizes data values that consist of directional observations recorded as angles
between 0 and 360 degrees. These are supplied using the ANGLES parameter, in either a variate
or a factor. If ANGLES is restricted, only the unrestricted units are analysed. The procedure
mainly uses the methods presented in the book by Fisher (1993). The various statistics are cross-
referenced below with the relevant page numbers.
CDESCRIBE prints the following summary statistics: number of observations, mean direction

(page 31), circular standard deviation (page 32), mean resultant length (page 32), skewness (page
34) and estimate of the parameter Kappa (which provides the concentration parameter of the von
Mises distribution for circular data; pages 39 and 88). If the angles are supplied in a factor, a
grouping correction is applied to the mean resultant length and to the skewness (page 35).

Two tests of uniformity are presented. The null hypothesis for both of these is that the
observations come from a uniform distribution around the circle. The first is a test of randomness
against any alternative model. The test is based on counts of the number of observations in a set
of angular sectors of equal size (page 67). If ANGLES is set to a variate, the width of the sectors



24 2  Basic statistics and exploratory analysis

is defined by the SEGMENT option (in degrees), with centres defined by the MSEGMENT option.
The sectors are centred at MSEGMENT, MSEGMENT+SEGMENT, MSEGMENT+2*SEGMENT, and so
on. The default values for SEGMENT and MSEGMENT are 20 and 0 respectively. If ANGLES is set
to a factor with equidistant levels, it is assumed that the levels define the centres of the segments
and that the limits of the sectors are at the midpoints between each pair of factor levels. If
ANGLES is set to factor with non-equidistant levels, the SEGMENT and MSEGMENT options are
used to define the angular sectors.

The second is Rayleigh's test of uniformity against a unimodel alternative. The test is based
on the mean resultant length and has two forms which differ according to whether or not the
mean direction of the alternative distribution is known (pages 69 and 70). The direction, if
known, is specified using the DIRECTION option.

Finally a goodness of fit test is calculated to assess whether the observations follow a von
Mises distribution. This is a chi-square test, which compares the observed distribution with the
expected distribution from a von Mises distribution with mean direction and concentration
parameter (kappa) taking the values estimated from the observations. The observed and expected
values are calculated for grouped directional data defined by the (M)SEGMENT options for a
variate or by the factor levels if ANGLES is set to a factor.

The PRINT options controls whether the summary statistics are printed and whether a table
of observed and expected counts for the fit of the von Mises distribution is printed. The summary
statistics can be saved by means of the RESULTS parameter. The VONMISESCOUNTS parameter
saves the grouped directional data used for calculation of the chi-square goodness of fit test and
tables of observed and expected counts. Note that when ANGLES is set to factor, the saved
grouped directional data set is identical to ANGLES.

Example 2.1.2 calculates summary statistics for data concerning the directions chosen by 100
ants in response to an evenly illuminated black target placed at 180 degrees (see Fisher 1993,
pages 60, 61, 83, 85 and 243). The results show that the data are not uniform, nor can they be
modelled by a von Mises distribution. In Section 2.2.9, procedure DCIRCULAR is used to plot the
data (Figure 2.2.9).

Example 2.1.2

   2  VARIATE [NVALUES=100] Direction
   3  READ    Direction

    Identifier   Minimum      Mean   Maximum    Values   Missing
     Direction     10.00     181.1     360.0       100         0

  14  CDESCRIBE Direction

Summary statistics and tests for circular data
==============================================

Variate: Direction
Number of equidistant sectors: 18
Number of observations: 100
Mean direction: 183.14
Circular standard deviation: 56.96
Mean resultant length: 0.6101
Skewness: 0.2304
Kappa estimate: 1.5576
Prob. test of randomness: 0.000
Prob. Rayleigh test of uniformity: 0.000
Chi-square von Mises: 31.20 with 15 df
Prob. Chi-square von Mises: 0.008
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Goodness of fit for von Mises distribution
------------------------------------------

                Observed   Expected  ChiSquare
     Midpoint
            0          2       0.69       2.46
           20          1       0.74       0.09
           40          3       0.95       4.45
           60          3       1.41       1.80
           80          2       2.32       0.04
          100          1       3.97       2.22
          120          4       6.63       1.04
          140          4      10.15       3.73
          160         12      13.57       0.18
          180         23      15.31       3.86
          200         21      14.37       3.05
          220         13      11.31       0.25
          240          2       7.67       4.19
          260          2       4.69       1.54
          280          3       2.74       0.02
          300          3       1.63       1.14
          320          0       1.06       1.06
          340          1       0.79       0.06

Part 3 of the Genstat Reference Manual describes three other procedures for circular data.
Measures of association for circular data can be calculated by the CASSOCIATION procedure,
and you can test whether samples from circular distributions have a common mean direction or
have identical distributions using the CCOMPARE procedure. Circular regressions can be fitted
using the RCIRCULAR procedure. 

2.2 Exploring the distribution of the data

Many plots are concerned with studying the empirical distribution, that is the observed
distribution, of the data values. You might want to do this in order to decide on a suitable
analysis, or as an initial check of the assumptions prior to an analysis (although, you will find
later that most Genstat analyses also have their own diagnostic plots). The values for plotting
may be either continuous measurements (specified as variates) or categorical observations
(specified as factors). If you have a single random sample of data, you might want to see whether
it could have been generated by a specific probability distribution. Probability plots for a wide
range of distributions can be plotted by the DPROBABILITY procedure (2.2.7). Kernel density
plots can also be useful (procedure KERNELDENSITY 2.2.8). Once you have identified a plausible
distribution, you can estimate its parameters using the DISTRIBUTION directive (2.2.10).

Most of these plots can be constructed using the Graphics Wizard of Genstat for Windows
(click Graphics on the menu bar, and then select Create Graph), but the probability plots are
accessed from the summary statistics section (click Stats on the menu bar, then Summary

Statistics and then Probability Plots).

2.2.1 Histograms

A histogram provides a simple and effective way of studying the distribution of a set of data. It
is formed by splitting the range of the data into contiguous categories. It displays the number of
observations falling into successive categories, thus showing whether they are tightly-packed or
spread-out, symmetrically distributed or skew, and whether there are observations separated, or
outlying, from the mass of the data.

High-resolution plots are produced by the DHISTOGRAM directive.
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DHISTOGRAM directive
Draws histograms or bar charts on a plotter or graphics monitor.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the histograms; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
LIMITS = variate Variate of group limits for classifying DATA variates into

groups; default *
LOWER = scalar For a DATA variate, this specifies the lower limit of the

first bar; default * takes the minimum value of the
variate

UPPER = scalar For a DATA variate, this specifies the upper limit of the
last bar; default * takes the maximum value of the
variate

NGROUPS = scalar When LIMITS and BINWIDTH are not specified, this
defines the number of groups into which a DATA variate
is to be classified; default is then 10, or the integer value
nearest to the square root of the number of values in the
variate if that is smaller

BINWIDTH = scalar When LIMITS is unset the range of a DATA variate is
split into equal intervals known as "bins" to form the
groups, this option can set the bin widths (alternative is
to set the number of groups using NGROUPS)

FIXEDBARWIDTH = string token Whether to plot the histogram with bars of equal width
(yes, no); default no

BARCOVERING = scalar What proportion of the space allocated along the x-axis
each bar should occupy; default * gives proportion 1 for
a DATA variate, and 0.8 for a factor or table (thus giving
a gap between each bar)

BARSCALE = scalar Width of bar for which one unit of bar length represents
one unit of data; default * uses the width of the
narrowest bar

LABELS = text Group labels; default *
APPEND = string token Whether or not the bars of the histograms are appended

together (yes, no); default no
ORIENTATION = string token Direction of the plot (horizontal, vertical); default

vert

OUTLINE = string token Where to draw outlines (bars, perimeter); default
bars

PENOUTLINE = scalar Pen to use for the outlines; default !8
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);
default clea

KEYDESCRIPTION = text Overall description for the key; default *
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement
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Parameters
DATA = identifiers Data for the histograms; these can be either a factor

indicating the group to which each unit belongs, a
variate whose values are to be grouped, or a one-way
table giving the height of each bar

NOBSERVATIONS = tables One-way table to save numbers in the groups
GROUPS = factors Factor to save groups defined from a variate
PEN = scalars or variates Pen number(s) for each histogram; default * uses pens 2,

3, and so on for the successive structures specified by
DATA

DESCRIPTION = texts Annotation for key

Here we illustrate only the simple use of DHISTOGRAM (a full description is given in 1:6.3.1).
Example 2.2.1 plots a histogram of the heights of the volcanoes, discussed earlier in Example
2.1.1.

Example 2.2.1

  12  TEXT [VALUES='Height distribution of active volcanoes'] Head
  13  & [VALUES='Height in 100s of feet'] Scale
  14  DHISTOGRAM [TITLE=Head] Height; DESCRIPTION=Scale

The DHISTOGRAM statement in this example draws the picture in Figure 2.2.1a, showing that the
distribution of heights is positively skewed. The statement automatically chooses the number of
classes into which to divide the observations, and uses the default colours, brush-types, and so
on. These details can be changed by setting options in the DHISTOGRAM statement, or by
explicitly setting the graphical environment. For example, to specify a more spread-out picture,
the NGROUPS option of DHISTOGRAM could have been set to get 20 groups instead of the 10
produced by default:

DHISTOGRAM [NGROUPS=20] Height

DHISTOGRAM can also be used to plot a bar chart showing the distribution of categorical data

supplied in factors. The histogram then has a bar for each level of the factor, with height equal
to the number of observations with that level. For example, the following statement draws such
a histogram displaying the number of active volcanos in each region; see Figure 2.2.1b.

DHISTOGRAM [TITLE=\
  'Active volcanoes in three regions of the world'] Region
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Figure 2.2.1a Figure 2.2.1b

Character-based (line-printer style) histograms can be drawn using the LPHISTOGRAM directive
(see 1:6.10.2).

2.2.2 Boxplots

An alternative diagram for studying the distribution of observations is the boxplot, or box-and-
whisker plot, which can be drawn using the BOXPLOT procedure.

BOXPLOT procedure
Draws box-and-whisker diagrams or schematic plots (P.W. Lane & S.D. Langton).

Options
GRAPHICS = string token What type of graphics to use (highresolution,

lineprinter); default high
TITLE = text Title for diagram; default *
AXISTITLE = text Title for axis representing data values; default *
WINDOW = scalar Window in which to draw a high-resolution plot; default

4
ORIENTATION = string token Orientation of plots (horizontal, vertical, across,

down); default vert
YORIENTATION = string token Direction of the y-axis for horizontal plots (reverse,

normal); default reve
METHOD = string token Type of representation of data in a high-resolution plot

(boxandwhisker, schematic); default boxa
SCREEN = string token Whether to clear screen before a high-resolution plot

(clear, keep); default clea
BOXTITLE = text Title for axis representing different variates or groups;

default *
BOXWIDTH = string token Whether to relate box width to size of sample in high-

resolution plot (fixed, variable); default fixe



2.2  Exploring the distribution of the data 29

WHISKER = number Linestyle for whiskers (0...10); default 1
BAR% = scalar Size of bar at the end of the whiskers, as a percentage of

the box-width; default 0 (i.e. no bar)
WIDTH% = scalar Width of the boxes, expressed as a percentage of the

default width; default 100

Parameters
DATA = variates Data to be summarized; no default
GROUPS = factor Factor to divide values of a single variate into groups;

default *
BOXLABELS = texts Labels for individual boxes; default *, i.e. identifiers of

variates or labels or levels of factor
UNITLABELS = texts Labels for extreme points in schematic plot; default is to

use unit labels
BOXPOSITIONS = variates Positions of the boxes on the appropriate axis; default

defines positions in an equal spacing

BOXPLOT draws pictures to display the distribution of one or more sets of data. In the simplest
case, with the DATA parameter set to a single variate, BOXPLOT will draw a box-and-whisker
diagram, as defined by Tukey (1977). The box spans the inter-quartile range of the values in the
variate, so that the middle 50% of the data lie within the box, with a line indicating the median.
Whiskers extend beyond the ends of the box as far as the minimum and maximum values. If
several variates are supplied, a box is drawn for each of them using the same scale. Alternatively,
if a single variate is supplied by the DATA parameter, a factor with the same number of values
as the variate may be provided by the GROUPS parameter, and a box will be drawn for each level
of the factor.

The GRAPHICS option allows you to request a line-printer style plot, instead of a
high-resolution plot. The TITLE, AXISTITLE and BOXTITLE options can be set to specify the
titles displayed at the top of the plot, along the axis representing the data values, and along the
axis representing separate boxes when there are several variates or groups, for either graphics
mode. For high-resolution plots, the WINDOW and SCREEN options control the placement of the
picture in the graphical frame.

It is not possible to produce line-printer plots with more than 14 boxes. If the page size is
small, as in interactive mode, vertical line-printer plots may be very cramped: the PAGE option
of the OUTPUT directive can be used to increase the depth of the graphs.

The ORIENTATION option controls the orientation of the boxes, with the following settings:
vertical plots the boxes vertically i.e. down the screen (default),
horizontal plots the boxes horizontally i.e. across the screen,
down synonym of vertical, and
across synonym of horizontal.

When ORIENTATION=horizontal, the horizontal axis is taken to be the y-axis, so the same
XAXIS and YAXIS settings can be used however the boxes are oriented.

The YORIENTATION option controls the orientation of the y-axis when the boxes are plotted
horizontally. By default this is reversed, so that the first box is at the top of the screen.

For example, the following statement draws a boxplot of the volcano heights:

BOXPLOT [TITLE=Head; AXISTITLE=Scale] Height
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Figure 2.2.2a

Figure 2.2.2b

The resulting plot is shown in Figure
2.2.2a.

Schematic plots can be drawn
(high-resolution only) by setting option
METHOD=schematic. These diagrams
(also defined by Tukey 1977) are
modifications of box-and-whisker diagrams
which display individual outlying points as
well as the box. The whiskers extend only
to the most extreme data values within the
inner "fences", which are at a distance of
1.5 times the interquartile range beyond the
quartiles, or the maximum value if that is
smaller. Individual outliers are plotted with
a cross by default, and labelled under
control of the UNITLABELS parameter.
"Far" outliers, beyond the outer "fences"
which are at a distance of three times the
interquartile range beyond the quartiles, are plotted with a different pen. By default, all boxes
have equal width. High-resolution diagrams can be modified to indicate the number of values
being represented by each box. The option BOXWIDTH=variable will scale the box widths by
the square root of the number of values represented.

Figure 2.2.2b shows an example of a schematic boxplot of the volcano heights within each
region. This was generated by the statement

BOXPLOT [TITLE=Head; AXISTITLE=Scale; METHOD=schematic;\
  BOXWIDTH=variable] Height; GROUPS=Region;\
  UNITLABELS=Volcano

The style of the whiskers can be

controlled by setting the WHISKER option to
a graphical linestyle in the range 0 to 10.
These styles are device dependent, but 0
and 1 always give a solid line (the default)
and 2 usually gives a dashed line. The
BAR% option allows you to add bars at the
end of the whiskers. For example, the
setting 100 gives a bar as wide as the box,
and 25 would give one a quarter the width.
The default is 0, giving no bars. The
WIDTH% option specifies the width of the
boxes, as a percentage of the default width
(default 100).

Four pens are used to draw the
high-resolution displays, apart from the
axes: Pen 1 for the boxes and median line
(default colour black), Pen 2 for far outliers
(red crosses), Pen 3 for outliers (green crosses) and Pen 4 for the whiskers (set to match the
colour of Pen 1). You can customize the pictures by setting some aspects of these pens with the
PEN directive before calling the procedure: in particular, the colours, symbols and
line-thicknesses.

The BOXLABELS parameter allows you to specify labels that will identify each box.
The UNITLABELS parameter allows you to specify labels that will be used to identify outlying
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observations in schematic plots (but this is not available if you gave a list of variates in the DATA
parameter).

The BOXPOSITIONS parameter defines the positions of the boxes on the appropriate axis. If
this is unset, the positions are defined with an equal spacing.

2.2.3 Rugplots

Procedure RUGPLOT can display the distribution of a set of data, either on the axis of an existing
graph (looking like a "rug" of vertical lines on the x-axis), or as a picture by itself.

RUGPLOT procedure
Draws "rugplots" to display the distribution of one or more samples (P.W. Lane).

Options
GRAPHICS = string token What type of graphics to use (highresolution,

lineprinter); default high
TITLE = text Title for diagram; default *
AXISTITLE = text Title for axis; default *
WINDOW = scalar Window in which to draw high-resolution plot; default

*, taken as 11 if SCREEN=clear, or 1 if SCREEN=keep
SCREEN = string token Whether to clear screen before high-resolution plot

(clear, keep); default clea
ORIENTATION = string token Orientation of plots (down, across); default down
JITTER = number Ratio of jitter width to range of data in high-resolution

plot; default 0.01
SEED = number Seed for generating random numbers used in jittering;

default 0, i.e. continue from last generation, or initialize
from system clock

Parameters
DATA = variates Data to be summarized; no default
GROUPS = factor Factor to divide values of a single variate into groups;

default *
RUGLABELS = texts Labels for individual rugs; default *, i.e. identifiers of

variates or labels or levels of factor
POSITION = scalar or variate Position on x-axis (or on y-axis if

ORIENTATION=across) at which to plot each rug; if
GROUPS is set, positions for each level of the factor are
taken from a variate; default is to draw a single rug on
the axis, and to spread multiple rugs across the window

In the simplest case, with the DATA parameter set to a single variate, RUGPLOT draws a single
vertical "rug": that is, a series of short horizontal lines on the vertical axis, positioned at each
value of the variate. Setting option ORIENTATION=across produces a horizontal rug. A rug can
be added to an existing plot by specifying SCREEN=keep, and setting the WINDOW option to
specify the window where the rug is to be drawn. With SCREEN=keep, the default window is
1; with SCREEN=clear, window 11 is used after defining it to fill the whole graphical frame.

If several variates are supplied, a rug is drawn for each of them using the same scale.
Alternatively, if a single variate is specified by the DATA parameter, a factor with the same
number of values as the variate may be defined by the GROUPS parameter, and a box will be
drawn for each level of the factor. The rug plots are spread out across the window by default.
The POSITION parameter can be set to specify where each rug is to be positioned on the x-axis
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Figure 2.2.3a

(or y-axis if ORIENTATION=across). The setting should be in the range (0, n) for a plot with
SCREEN=clear, where n is the number of rugs to be drawn; with SCREEN=keep, the position
should be specified in the units of the axis last drawn in the window.

Line-printer rugplots can be drawn by setting option GRAPHICS=lineprinter. The plot is
drawn with asterisks, or digits to represent points that are effectively coincident. If the page size
is small, as in interactive mode, line-printer plots with ORIENTATION=down are very cramped:
the PAGE option of the OUTPUT directive (1:3.4.3) can be used to increase the depth of the
graphs. The option ORIENTATION=down cannot be selected for line-printer plots with more than
14 rugs. The TITLE and AXISTITLE options can be set to specify the titles displayed at the top
of the plot and along the axis, for either graphics mode. The RUGLABELS parameter allows you
to specify labels that will identify each rug, in place of the default labels taken from the variate
identifiers, or factor labels or levels if the GROUPS parameter is set. Long identifiers or labels
may overlap each other if ORIENTATION=down, or they may overlap the rug-plots if
ORIENTATION=across; a maximum of eight characters is recommended.

In high-resolution plots, all data values are "jittered" to try to remove ties. This involves
adding a small random value: by default the ratio of the maximum adjustment to the range of all
the data is 1:100. This can be modified by setting the JITTER option to 0 to suppress jittering,
or to some other ratio than the default of 0.01. The SEED option can be set to specify the seed
of the random-number generation, if a reproducible plot is required.

For example, this statement draws a boxplot of the volcano heights from Example 2.1.1:

RUGPLOT  [TITLE='Volcano heights'] Height; GROUPS=Region

The plot is shown in Figure 2.2.3a.
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Figure 2.2.3b

Example 2.2.3 and Figure 2.2.3b show
how you can plot rugplots alongside the
axes to illustrate the distributions of the x-
and y-variates.

Example 2.2.3

" A scatter plot is drawn of blood-pressure against age for 38 women.
  Then two rugplots are added to show the distribution of ages and
  pressures along the axes."
VARIATE  [VALUES=82.17,88.19,89.66,81.45,85.16,89.77,89.11,107.96,\
  74.82,83.98,92.95,79.51,87.86,76.85,76.93,87.09,97.55,92.04,100.85,\
  96.30,86.42,94.16,78.12,89.06,94.58,103.48,81.30,83.71,68.38,86.64,\
  87.91,86.42,103.87,83.76,84.35,68.64,100.50,100.42] Pressure
VARIATE  [VALUES=28,46,63,36,42,59,54,77,21,57,47,34,51,27,24,41,66,\
  69,72,60,50,57,32,59,74,77,41,36,20,47,51,57,69,36,54,24,61,80] Age
DGRAPH  Pressure; Age
RUGPLOT [SCREEN=keep] Pressure
RUGPLOT [SCREEN=keep; ORIENTATION=across] Age

2.2.4 Stem-and-leaf plots

STEM procedure
Produces a simple stem-and-leaf chart (J. Ollerton & S.A. Harding).

No options

Parameters
DATA = variates Data values for each plot
NDIGITS = scalars Number of digits in the leaves of each plot
STEMUNITS = scalars Scale units for the stem values in each plot

The STEM procedure also displays the distribution of a variate of data, but in the form of a simple
stem-and-leaf diagram. The stems indicate leading digits and the leaves indicate subsequent
digits. By default, the leaves are formed from single digits; the parameter NDIGITS can be used
to specify the number of digits in each leaf if more than one is required. The STEMUNITS
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parameter can be used to specify the units represented by the stem values. By default, this is
determined from the data so that the display will fit within a single screen or page of output.
Small values of STEMUNITS (in comparison to the range of the data) should be avoided as they
may generate far too many lines of output. The display produced by STEM is restricted to the
current output width; any lines that have to be truncated at the right-hand margin are terminated
by >, indicating their continuation.

Example 2.2.4

   2  VARIATE [NVALUES=18] Prices
   3  READ [PRINT=data] Prices

   4   250  150  795  895  696 1699 1499 1099 1693
   5  1166  688 1333  895 1775  895 1895  795  806 :
   6  STEM Prices; NDIGIT=1

Stem-and-leaf display for Prices
Number of observations: 18. Minimum: 150.0. Maximum: 1895.0.
Stem units: 100, leaf digits: 1 (the value 150.0 is represented by  1|5)

1     1|5
1     2|5
0     3|
0     4|
0     5|
2     6|89
2     7|99
4     8|0999
0     9|
1    10|9
1    11|6
0    12|
1    13|3
1    14|9
0    15|
2    16|99
1    17|7
1    18|9

   7  STEM Prices; NDIGIT=2

Stem-and-leaf display for Prices
Number of observations: 18. Minimum: 150.0. Maximum: 1895.0.
Stem units: 100, leaf digits: 2 (the value 150.0 is represented by  1|50)

1     1|50
1     2|50
0     3|
0     4|
0     5|
2     6|88,96
2     7|95,95
4     8|06,95,95,95
0     9|
1    10|99
1    11|66
0    12|
1    13|33
1    14|99
0    15|
2    16|93,99
1    17|75
1    18|95
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2.2.5 Tally tables and plots

TALLY procedure
Forms a simple tally table of the distinct values in a vector (D.B. Baird & R.D. Stern).

Options
PRINT = string tokens What to print out for each vector (frequencies,

percentages, cumfrequencies, cumpercentages,
cumgraph, all); default freq, perc

GRAPH = string tokens What to display as graphs (cumulative,
%cumulative); default * i.e. no graphs

NGROUPS = scalar Number of groups to form from a DATA variate or factor
(ignored for texts); default * forms a group for each
distinct value allowing for rounding (see DECIMALS)

DECIMALS = scalar Number of decimal places to which to round the DATA
before forming the groups; default * i.e. no rounding

BOUNDARIES = string token Whether to interpret the LIMITS as upper or lower
boundaries (upper, lower); default lowe

DIRECTION = string token Order in which to sort (ascending, descending);
default asce

OMITEMPTY = string token Whether empty groups are omitted (yes, no); default no
WEIGHTS = variate Weights to be used in the tabulations; default * indicates

that all units have weight 1
PQUANTILES = string token Whether to include quantiles on the plot (yes, no);

default no
WINDOW = scalar Window in which to plot the graphs; default 1 if

GROUPS is set, or 3 otherwise
KEYWINDOW = scalar Window in which to display the key when GROUPS is

set; default 2
SCREEN = string token Whether to clear screen before the plot (clear, keep);

default clea

Parameters
DATA = variates, factors or texts Data to be tallied
GROUPS = factors Defines groupings of the data, to be tallied into separate

tables; default * i.e. none
LIMITS = variates or texts Limits to define the groups within the tally tables
FREPRESENTATION = string tokens Specifies the representation used to define the sort order

of a DATA factor (ordinals, levels, labels); default
leve

VALUES = variates, texts or pointers
Saves the distinct groups formed for the tally tables

FREQUENCIES = variates or pointers
Saves the frequencies of the groups  in the tally tables

PERCENTAGES = variates or pointers
Saves the percentage occurrences of the groups

CUMFREQUENCIES = variates or pointers
Saves the cumulative frequencies of the groups

CUMPERCENTAGES = variates or pointers
Saves the cumulative percentages of the groups

TITLE = texts Title for plot; default automatically forms a title
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Figure 2.2.5

containing the identifiers of the DATA vector and any
GROUPS factor

XTITLE = texts Title for the axis representing data values; default uses
the identifier of the DATA vector

The TALLY procedure provides another way of displaying the distribution of a set of data. This
is in the form of a tally table, giving the counts, percentages, and cumulative counts and
percentages of each distinct value. The data can be supplied, using the DATA parameter in a
variate, factor or text. So the values can be either numerical or textual. You can also define
groups, by specifying a factor using the GROUPS parameter. Separate tables are then formed for
each group.

By default, the factor classifying the groups within the tally tables contains a level for each
distinct data value. You can decrease the number of groups formed from a DATA variate or text
by specifying the NGROUPS and DECIMALS options, or the LIMITS parameter. These work
exactly as in the GROUPS directive (1:4.6.1). If limits are specified the BOUNDARIES option
controls whether these are interpreted as upper or lower boundaries of the groups; by default they
are lower limits. The value to represent each group is the median of the units in the group. The
WEIGHTS option can supply a variate of weights for the units of the vector, to be used when
calculating the table. If this is not set, the units are all assumed to have weights equal to one.

The PRINT option controls which summaries
are printed. The DIRECTION option controls the
order of the tally table (ascending or
d e s c e n d i n g ) .  F o r  a  f a c t o r ,  t h e
FREPRESENTATION parameter controls which
attribute is used to sort the groups (ordinals,
levels or labels); by default the levels are
used. the OMITEMPTY option can be set to omit
empty groups.

The GRAPH option may be set to
cumulative to produce a cumulative
frequency graph, or %cumulative to produce
a percentage graph. The PQUANTILES option
controls whether or not the graphs include
quantiles. The WINDOW and KEYWINDOW options
specify the numbers of the windows to use for
the plot and key respectively, and the SCREEN
option controls whether the screen is cleared
first. The TITLE parameter allows you to define an overall title for the graphs, and the XTITLE
parameter allows you to define a title for their x-axes. If these are not set, suitable titles are
defined automatically.

The VALUES, FREQUENCIES, PERCENTAGES, CUMFREQUENCIES, CUMPERCENTAGES
parameters can be used to save the information. This is in variates or texts, if there are no
GROUPS; otherwise it is in pointers, containing a variate or text for each group.

Example 2.2.5 prints a tally table for the heights of the volcanos from Example 2.1.1. The
CALCULATE statement in line 21 rounds the heights down to multiples of ten. The TALLY
statement (line 22) prints the tally table and plots a graph of the cumulative percentages (Figure
2.2.5).

Example 2.2.5

  21  CALCULATE Height10 = INTEGER(Height / 10) * 10
  22  TALLY     [GRAPH=%cumulative] Height10
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Tally of Height10
=================

        Value    Frequency   Percentage   Cumulative Cumulative %
           10            5          4.0            5          4.0
           20            5          4.0           10          7.9
           30            8          6.3           18         14.3
           40           14         11.1           32         25.4
           50           19         15.1           51         40.5
           60           14         11.1           65         51.6
           70           10          7.9           75         59.5
           80           11          8.7           86         68.3
           90            7          5.6           93         73.8
          100            8          6.3          101         80.2
          110            4          3.2          105         83.3
          120            7          5.6          112         88.9
          130            3          2.4          115         91.3
          140            2          1.6          117         92.9
          150            3          2.4          120         95.2
          170            2          1.6          122         96.8
          180            1          0.8          123         97.6
          190            3          2.4          126        100.0

2.2.6 Dotplots

DOTPLOT procedure
Produces a dot-plot using line-printer or high-resolution graphics (J. Ollerton & S.A. Harding).

Options
GRAPHICS = string token Whether to use high-resolution graphics or line-printer

graphics (lineprinter, highresolution); default
high

TITLE = text Title for the Dot Plot; default *
WINDOW = scalar Window number for the graph; default 1
SCREEN = string token Whether to clear the screen before plotting or to or

continue plotting on the old screen (clear, keep);
default clea

ENDACTION = string token Action to be taken after completing the plot (continue,
pause); default * uses the current setting

DIRECTION = string token Order in which to sort the data before plotting,
DIRECTION=* implies plot unsorted data (ascending,
descending); default asce

LINES = string token How to draw guide lines on the plot, LINES=* omits the
guide lines (todot, full); default todot draws lines
from the x-origin to the dots

Parameters
YLABELS = texts Text specifying Y labels for each dotplot
X = variates Data to be plotted
PENDOTS = scalars Pen to draw the dots; default 1
PENLINES = scalars Pen to draw the lines; default 2

Procedure DOTPLOT produces a "dot-plot". Two parameters need to be set: YLABELS supplies
a text containing y-labels, and X supplies a variate of x-data. The display takes the form of a
vertical histogram, with a single row for each value of YLABELS. The length of line for each row
is specified by the corresponding value of x. It is customary to sort the data according to the x-
values, into either ascending or descending order. This is controlled by the DIRECTION option,
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which by default is ascending; setting DIRECTION=* will plot the data unsorted.
By default a high-resolution graph is given, but you can set option GRAPHICS=high to obtain

a line-printer plot instead. The guide lines can then also be drawn across the full width of the plot
(option LINES=full) or can be omitted (LINES=*). By default, pens are set up to draw the dots
and lines in a form appropriate for the output device. For an interactive display, solid guide lines
in pale grey are used; for other devices dashed or dotted lines are used. The plotting symbol is
symbol 2 (circle), except for PostScript output which uses a solid dot (SYMBOL=-9). The
parameters PENDOTS and PENLINES can be used to specify pens which have been set up with
different attributes. The dot-plot is usually produced in window 1, but this can be changed using
the WINDOW option. A FRAME statement can be used before using DOTPLOT to change the size
and position of the display (for example to widen the x lower margin to allow more space for the
y-labels). The SCREEN option controls whether or not the screen is cleared before plotting and
the ENDACTION option determines what action to take after completing the plot. An XAXIS or
YAXIS statement can be used to set axis titles, and modify the upper and lower bounds of the x-
axis. If TITLE is unset and axis titles are not set explicitly, they will be generated from the
identifier names of the YLABEL and X parameters.For high-resolution plots, the default window
size specifies a lower x-margin of size 0.12. This allows room for a title and labels of up to about
10 characters. To produce a dot-plot with longer labels, a FRAME statement should be used to
specify new dimensions for the window that include a larger value for XMLOWER. A full-size
window, with standard margins, has room for about 48 rows before the labels start to overlap.
To produce a dot-plot with more rows the margins should be reduced or the axis pen size
reduced.

Example 2.2.6

  2  " Dotplot: data from Cleveland, William S. (1985). The Elements
 -3    of Graphing Data, Wadsworth Advanced Books and Software. P.115."
  4  TEXT [NVALUES=22] Cities
  5  VARIATE [NVALUES=22] Population
  6  READ Cities,Population

    Identifier   Minimum      Mean   Maximum    Values   Missing
        Cities                                      22         0
    Population     60.00     259.5      1100        22         0    Skew

 11  DOTPLOT [TITLE=\
 12    'Populations (in thousands) of cities at end of the 1700s';\
 13    GRAPHICS=lineprinter] Cities; Population

 Populations (in thousands) of cities at end of the 1700s

Edinburgh     ...60
Stockholm     ....65
Florence      ....75
Turin         ....80
Genoa         ....80
Warsaw        ....80
Lisbon        .......120
Palermo       .......130
Madrid        ........140
Berlin        ........145
Rome          .........160
Petersburgh   ..........180
Copenhagen    ..........190
Venice        ...........200
Dublin        ...........210
Amsterdam     ............220
Moscow        ..............250
Vienna        ..............255
Naples        .....................380
Paris         ......................................690
Constantinople.................................................900
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London        ............................................................1100

2.2.7 Probability plots

DPROBABILITY procedure
Creates a probability distribution plot of the values in a variate (D.B. Baird).

Options
PRINT = string tokens Controls whether to print estimated parameters of the

distribution or test statistics (parameters, tests);
default para

DISTRIBUTION = string token Distribution for expected values against which to plot
values (normal, stdnormal, lognormal,
exponential, gamma, weibull, beta, b2, pareto,
chisquare, cauchy, logistic, ev1, ev2, ev3, gev,
invnormal, t, f, uniform, stduniform, laplace,
gpareto, ubetamix, ugammamix, loggamma,
loglogistic, paralogistic, igamma, iweibull,
burr, iburr); default norm

METHOD = string token Method used for the plot axes (quantile,
probability, stabilizedprobability); default
quan

GRAPHICS = string token Type of graphics (highresolution, lineprinter);
default high

PLOT = string tokens Whether to plot differences from expectations or the 1-1
reference line (differences, reference); default
refe

CONSTANT = string token Whether to estimate the constant for the distribution
(estimate, omit) default omit

BANDS = string token What type of confidence bands to plot, if any
(simultaneous, pointwise); default simu

NSIMULATIONS = scalar Number of simulations for pointwise bands; default 100
ALPHA = scalar Acceptance limits for confidence bands; default 0.95
DF = scalar Number of degrees of freedom of chi-square or t

distribution; default 1
DFNUMERATOR = scalar Numerator degrees of freedom of F distribution; default

1
DFDENOMINATOR = scalar Denominator degrees of freedom of F distribution;

default 1
WINDOW = scalar Window to use for the plot; default 3
XMETHOD = string token Scaling of X / Expected Plot axes (quantile,

probability, stabilizedprobability); if unset,
takes the same setting as METHOD

QMETHOD = string token Whether to standardize plotted score in expected
quantiles (standardized, unstandardized); default
stan

TMETHOD = string tokens Specifies the method used to perform the goodness-of-fit
tests (likelihoodratio, traditional); default
like

NTIMES = scalar Number of Monte-Carlo simulations to perform for
likelihood-ratio tests; default 999
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SEED = scalar Seed for random number generation for the likelihood-
ratio tests; default 0 continues an existing sequence or, if
none, selects a seed automatically

Parameters
DATA = variates Values to plot
TITLE = text Title for the graph; default * generates an appropriate

title automatically
ESTIMATES = variates Saves the estimated parameters for the distribution
SE = variates Saves standard errors for the estimated parameters
LOWERTRUNCATION = scalars Lower truncation points for Loss distributions
UPPERTRUNCATION = scalars Upper truncation points for Loss distributions
DEVIANCE = scalars Saves the deviance for the fitted distribution
PROBABILITIES = variates Saves the probabilities from the goodness-of-fit tests

DPROBABILITY produces plots to help you assess whether the distribution of an observed set
of data might be modelled by a particular theoretical distribution. The idea is to plot the sorted
values (the order statistics, Xi) against the expected values of the order statistics Ei from the given
distribution. However, usually the particular parameters of the distribution are not known, and
these have to be estimated within DPROBABILITY using the directives DISTRIBUTION (2.2.10)
or FITNONLINEAR (3.8.2) to obtain the expected values.

If the distribution has a cumulative density function of F(x), and the inverse of this function
is G(x) (i.e. G(F(x)) = x), then the expected values of the order statistics, are approximately
G((i!0.5)/n), where i = 1...n, and n is the number of values in the sample. A plot of Xi versus Ei

is known as a Quantile-Quantile (or Q-Q) plot. The data can also be plotted on the probability
scale by plotting the cumulative probabilities of the data under the assumed distribution against
their expected probabilities, i.e. F(X(i)) versus (i!0.5)/n. This is known as a Probability-
Probability (or P-P) plot.

A third plot called the stabilized probability (SP) plot (Michael 1983), was introduced, which
rescales the probabilities using the transformation

sp = (2/ð) × ARCSIN(SQRT(p))
so that the variance of the plotted points is approximately equal over the range of probability
values. In the SP plot the scaled values sp are plotted rather than the unscaled p values. The
METHOD option allows the choice of which scale is used in the graph (quantile, probability
or stabilizedprobability for the Q-Q, P-P or SP plots respectively).

By default the x-value used in plotting Q, P or SP is the corresponding expected value of these
statistics. Alternative x-values can be used by setting the XMETHOD option to quantile,
probability, or stabilizedprobability. So for example a Q-P plot can be obtained with
the option settings METHOD=quantile and XMETHOD=probability or a P-Q plot with the
settings METHOD=probability and XMETHOD=quantile.

The QMETHOD option allows the scaling of the expected quantiles plotted on the x-axis to be
set. By default quantiles are standardized to have a mean of zero and variance of one (as in a
normal score plot) but, if QMETHOD=unstandardized, the quantiles are scaled to the same
mean and variance as the data.   

The DATA parameter specifies the data values, in a variate. The TITLE parameter can specify
a title for the graph. The ESTIMATES parameter can be used to save the values estimated for the
parameters for the distribution, and the SE parameter can save their standard errors.

The distribution for the expected values against which to plot the data is specified by the
DISTRIBUTION option. Some distributions (Log-Normal, Gamma, Weibull and Pareto) can have
an extra parameter (a) estimated, so that X!a follows the specified distribution. Setting option
CONSTANT=estimate estimates a value for a. Some of the distributions (Chi Square, T and F)
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cannot have the parameters estimated by the usual DISTRIBUTION directive, so the procedure
provides 3 options (DF, DFNUMERATOR, DFDENOMINATOR) for specifying the parameters of these
distributions. However, if for example you set DF=*, the degrees of freedom are estimated along
with the other parameters of the distribution.

Some distributions (normal, loggamma, loglogistic, paralogistic, igamma,
iweibull, burr, iburr) can be estimated and plotted in a truncated form. The values in the
distribution less than LOWERTRUNCATION and greater than UPPERTRUNCATION are removed (if
either of these are set), and the distribution between these limits is rescaled to have an area of
one. If only LOWERTRUNCATION is set, the distribution is left-truncated, and it is right-truncated
if only UPPERTRUNCATION is set.  

The BANDS option allows two forms of confidence intervals to be displayed in the graph.
BANDS=pointwise simulates NSIMULATIONS distributions of the same size as the data, from
the theoretical distribution, and plots the range of values at each value of the order statistics that
contain the proportion specified by the option ALPHA of simulated values. Thus a sample drawn
from the assumed distribution has approximately a probability ALPHA of lying within the limits
at each point. However, overall there will be a probability of less than ALPHA that a sample will
completely lie within the confidence bands. The BANDS=simultaneous uses a statistic given
by Michael (1983) for which the overall probability of plotted data lying completely within the
confidence bands is approximately the specified value of ALPHA, under the null hypothesis that
the data is a random iid sample from the specified distribution. This form of confidence limits
has the advantage that it is much faster to calculate and that probability of the data points falling
outside the limits is approximately constant over the range of the data.

When plotting the data against the expected values, setting option PLOT=reference allows
the 1-1 line to be added to the graph, so that departures from this can be more easily observed.
The other PLOT setting, difference, plots the difference between the data and the expected
values, so that departures can be observed more easily in a horizontal direction rather than on
a 45 degree slant. Setting option GRAPHICS=lineprinter produces a character based graph
in the output window rather than in the high-resolution graphics window as usual. The WINDOW
option can be used to specify which graphics window to use for a high-resolution graph.

The PRINT option control of the output that is printed. The parameters setting prints the
fitted parameters of the specified distribution, and some sample statistics of the observed data.
The test setting provides output from three empirical distribution tests, namely the Anderson-
Darling, Cramer-von Mises and Watson statistics. The method used to perform these tests is
specified by the TMETHOD option, with settings likelihoodratio for the Zhang (2002)
likelihood-ratio based method, and traditional for the traditional approach. The default is
to use the likelihood-ratio based tests, which are generally more powerful. Monte-Carlo
simulations are used to calculate the empirical probability values of the test statistics under the
likelihood-ratio based method. The NTIMES option defines how many Monte-Carlo simulations
are used; default 999. The SEED option specifies the seed for the random-number generator used
during the Monte-Carlo simulations. The default of zero continues the sequence of random
numbers from a previous generation or, if this is the first use of the generator in this run of
Genstat, the seed is initialized automatically. The test probabilities can be saved, in a variate, by
the PROBABILITIES parameter.
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Figure 2.2.7

Further information about the distributions
fitted in this procedure can be found in the
books by Hogg & Klugman (1984) and
Johnson, Kotz & Balakrishnan (1994, 1995).

Figure 2.2.7 shows a Q-Q plot with the
gamma distribution for the volcano data
introduced in Section 2.1.1. This was produced
by the statement

DPROBABILITY [PRINT=*;\
DISTRIBUTION=gamma]\
  Height

(The PRINT option is set to suppress output as
the distribution will be fitted explicitly by the
DISTRIBUTION directive, in Section 2.2.10).

2.2.8 Kernel density estimation

KERNELDENSITY procedure
Uses kernel density estimation to estimate the underlying density of a sample (P.W.
Goedhart).

Options
PRINT = string token What to print (integral, summary, monitoring,

graph); default inte
METHOD = string token Which automatic bandwidth selection method should be

used when the BANDWIDTH option is not set (s1, s2, s3,
sj); default sj

BANDWIDTH = scalar or variate Which bandwidth value or values are to be used; default
*

NGRIDEXPONENT2 = scalar Defines the number of grid points as
2**NGRIDEXPONENT2; default 11

SAVEGRIDEXTENT = scalar Defines the lower and upper limit of the interval on
which the kernel density is saved; the default value of 4
uses the full interval on which the kernel density is
calculated

NFOURIER = scalar Defines the upper limit of the sample size for which the
kernel density is calculated directly (when the sample
size exceeds the setting of this option, the fast Fourier
transform is used to calculate the kernel density); default
100

PROPORTION = variate Proportions at which to calculate quantiles of the kernel
density estimate; default !(0.025, 0.25, 0.5, 0.75, 0.975)

PLOT = string tokens Specifies the graphs to be plotted (kerneldensity,
histogram, sample); default kern, hist, samp

TITLE = text General title(s) for the graph(s); default *
WINDOW = scalar or variate Window number(s) for the graph(s); default 1
SCREEN = string token Whether to clear the screen before plotting into the first

window, or whether to or continue plotting on the old
screen (clear, keep); default clea
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Parameters
SAMPLE = variates The sample for which to calculate the kernel density

estimate
GRID = variates Saves the grid of equidistant points at which the kernel

density is calculated
DENSITY = variates or pointers Saves the kernel density estimate
CUMULATIVE = variates or pointers Saves the estimated cumulative distribution
QUANTILE = variates or pointers Saves the quantiles calculated from the estimated

cumulative distribution
SAVEBANDWIDTH = scalars Saves the automatically selected bandwidths as specified

by the METHOD option

Kernel density estimation is a way of estimating the probability density curve for a sample,
without assuming that they come from any specific probability distribution.
See for example Silverman (1986) for a general introduction in density estimation. The kernel
method constructs an estimate fh(t) of the true density function by placing a kernel function
K(t; xi, h) over each observation xi in the sample. The kernel function K(t; x, h) is itself a density
function with location parameter x and scale parameter h, also called bandwidth in this context.
The density estimate is then given by

(1)
where n denotes the sample size. It turns out that the choice of kernel function K is not very
critical for the resulting estimate fh(t), see Section 3.3 of Silverman (1986). The Gaussian kernel
is commonly used and is therefore adopted here as kernel function, i.e.

(2)
For this choice of kernel function K, there is an efficient algorithm available for the calculation
of fh(t). This algorithm employs the fast Fourier transform of the data.

The choice of bandwidth h is of crucial importance in kernel density estimation. A large value
of h will give rise to an oversmoothed density estimate, while a small value of h will produce a
very ragged density with many spikes at the observations. Silverman (1986) recommends
examining kernel density estimates for several values of h, since this will highlight different
features of the data. For automatic use of kernel density estimation, estimation of the bandwidth
h from the data is very helpful. Silverman (1986) suggests the following normal-based estimates:

S1 = 1.06 × (standard deviation) × n!1/5

S2 = 0.79 × (interquartile range) × n!1/5

S3 = 0.90 × minimum(standard deviation, interquartile range/1.34) × n!1/5

These estimates are popular due to their simplicity. Jones, Marron & Sheather (1996), who
provide an extensive review of the many automatic methods for choosing the bandwidth, advise
against these estimates. They recommend the method of Sheather & Jones (1991) for general
purposes. This method, denoted below by SJ, is therefore the default method used in the
KERNELDENSITY procedure.

The sample, for which to estimate the underlying density, must be specified by means of the
SAMPLE parameter. The METHOD and BANDWIDTH options determine which bandwidths h are
used. When the BANDWIDTH option is set to a scalar or variate, then these values are used for the
bandwidth h. When the BANDWIDTH option is unset, the METHOD option determines which
automatic bandwidth selection method is used. The default setting of the METHOD option is sj,
which indicates that the method of Sheather & Jones (1991) is to be used. The automatically
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Figure 2.2.8

selected bandwidth can be saved by means of the SAVEBANDWIDTH parameter.
The kernel density estimate is calculated on an interval at a grid of equidistant points. The grid

is returned using the GRID parameter, and the density estimate and corresponding cumulative
density can be saved with the DENSITY and CUMULATIVE parameters. When the BANDWIDTH
option is set to a variate, the DENSITY and CUMULATIVE parameters are pointers to variates: one
variate for each bandwidth value. The number of grid points can be set using the
NGRIDEXPONENT2 option as 2**NGRIDEXPONENT2. The lower and upper limit of the interval
on which the kernel density is calculated are given by:

CALCULATE lower = MINIMUM(SAMPLE) - 4*MAXIMUM(BANDWIDTH)
CALCULATE upper = MAXIMUM(SAMPLE) + 4*MAXIMUM(BANDWIDTH)

This ensures that the integral of the kernel density will be very close to one. The
SAVEGRIDEXTENT option can be used to save the grid and the (cumulative) density at a more
limited interval defined by

CALCULATE lowsave = MINIMUM(SAMPLE) \
                    - SAVEGRIDEXTENT*MAXIMUM(BANDWIDTH)
CALCULATE uppsave = MAXIMUM(SAMPLE) \
                    + SAVEGRIDEXTENT*MAXIMUM(BANDWIDTH)

The setting of the NFOURIER option determines whether the kernel density is calculated

directly by means of equation (1) or by employing the fast Fourier transform of the data. When
the sample size n exceeds the setting of the NFOURIER option, the fast Fourier transform is used.

The parameter QUANTILES can be used to save quantiles of the kernel density estimate, for
proportions specified by means of the PROPORTION option. When the BANDWIDTH option is set
to a variate, the QUANTILES are saved in a pointer containing a set of variates.

The PRINT option controls the output
displayed by KERNELDENSITY. The
integral setting prints the integral of the
kernel density, which should be close to one,
while the summary setting print summary
statistics of the sample and of the kernel
density estimate. The monitoring setting
can be used to monitor the iterative
bandwidth estimation method SJ. Finally, the
setting graph produces a high-resolution
plots of the kernel densities, superimposed
over a rough estimate of the density
calculated as the proportion of the sample
falling into CEILING(SQRT(number of
samples))+1 equal intervals across the range
of sample values. (There will be as many
plots as there were bandwidths.) The sample
values are also plotted, using the symbol +,
along the bottom of the plots. The PLOT option controls which elements
(kerneldensity, histogram, sample) are plotted. The TITLE option can provide
a title for each graph. The WINDOW option specifies the windows to be used for the plots (default
1), and the SCREEN option controls whether or not the screen is cleared before plotting into the
first window (default clear).

Example 2.2.8 produces a kernel density estimate, plotted in Figure 2.2.8, of the distribution
of the eruption lengths (in minutes) of the Old Faithful geyser (from Table 2.2 of Silverman
1986).
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Example 2.2.8

   2  VARIATE [NVALUES=107] Eruption
   3  READ    Eruption

    Identifier   Minimum      Mean   Maximum    Values   Missing
      Eruption     1.670     3.460     4.930       107         0

  12  KERNELDENSITY [PRINT=summary,graph] Eruption

Summary statistics for Eruption with bandwidth 2.0371E-01

                             Sample   Kernel density
                   Mean       3.460            3.460
     Standard deviation       1.040            1.055
                 Median       3.800            3.810
         Lower quartile       2.285            2.340
         Upper quartile       4.250            4.279
               Integral          -           1.00000

2.2.9 Plots of circular data

DCIRCULAR procedure
Plots circular data (P.W. Goedhart & R.W. Payne).

Options
PLOT = string tokens Information to be plotted (counts, kerneldensity,

lines, mean, rose); default coun, mean, rose
TITLE = text Title for the graph; default * i.e. none
SEGMENT = scalar Width of sectors (in degrees) into which to group an

ANGLES variates before plotting; default 20
MSEGMENT = scalar Defines the centre (in degrees) of the sectors; default 0
BANDWIDTH = scalar Bandwidth to use for the kernel density estimate; if this

is unset, the value h0 suggested by Fisher (1993, page
26) is used

NGRID = scalar Defines the number of grid points for the kernel density
estimate; default 180

WINDOW = scalar Window for the graph; default 3
SCREEN = string token Whether to clear screen before displaying the graph

(keep, clear); default clea

Parameters
ANGLES = factors or variates Directional observations to be plotted
GRID = variates Saves the grid (in degrees) on which the kernel density

is estimated
DENSITY = variates Saves the kernel density estimate
SAVEBANDWIDTH = scalar Saves the calculated bandwidth h0 when BANDWIDTH is

unset

DCIRCULAR plots data values that consist of directional observations recorded as angles between
0 and 360 degrees. The data values are supplied by the ANGLES parameter, in either a variate or
a factor. With a variate, the observations are grouped for plotting into sectors of width specified
(in degrees) by the SEGMENT option, with centres defined by the MSEGMENT option. The sectors
are centred at MSEGMENT, MSEGMENT+SEGMENT, MSEGMENT+2*SEGMENT, and so on. The default
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Figure 2.2.9

value for SEGMENT and MSEGMENT is 20 and 0 respectively. If ANGLES is set to a factor, its levels
define the midpoints of the sectors and these must be in clockwise order.

The graph contains a circle with marks at every 10 degrees, and labels at 0, 90, 180 and 270
degrees. The representations of the observations are determined by the settings supplied for the
PLOT option as follows

counts plots counts of the number of observations in each sector.
kerneldensity plots estimates of the probability distribution of the data,

using a quartic kernel function with bandwidth specified
by the BANDWIDTH option. If BANDWIDTH is unset, a
default is calculated based on the estimated concentration
of the data (this is the value h0 suggested by Fisher, 1993,
page 26). The kernel is calculated on a grid of values with
number of values defined by the NGRID option.

lines plots lines in each direction with lengths proportional to
the number of observations in that direction.

mean plots the mean vector (see Fisher 1993, page 31).
rose plots a "rose" diagram in which the observations in each

sector are represented as a triangle with apex at the centre
of the circle and area proportional to the number of
observations there.

By default PLOT=counts,mean,rose.
The options TITLE, WINDOW and

SCREEN allow you to define a title for the
plot, specify which window to use, and
indicate whether or not to clear the screen
beforehand. Parameters GRID, DENSITY
and SAVEBANDWIDTH can be used to save
the grid (in degrees), kernel estimate and
bandwidth h0. The latter is saved only when
BANDWIDTH is unset.

Figure 2.2.9 shows a plot containing the
counts, the mean direction and a rose
diagram for the data concerning directions
taken by ants, discussed in Section 2.1.2.
This confirms the impression, given by the
summary statistics calculated in Example
2.1.2, that the ants are attracted by the
target at 180 degrees. The plots were
generated by the statement

DCIRCULAR [TITLE='Directions chosen by 100 ants.'] Direction

Other plots of circular data can be obtained using the WINDROSE procedure, which provides
the wind-rose diagrams that are often used to represent climatic data.



2.2  Exploring the distribution of the data 47

2.2.10 Estimating the parameters of a distribution

DISTRIBUTION directive
Estimates the parameters of continuous and discrete distributions.

Options
PRINT = string tokens Printed output required from each individual fit

(parameters, samplestatistics, fittedvalues,
proportions, monitoring); default para, samp,
fitt

CBPRINT = string tokens Printed output required from a fit combining all the
input data (parameters, samplestatistics,
fittedvalues, proportions, monitoring); default
*

DISTRIBUTION = string token Distribution to be fitted (Poisson, geometric,
logseries, negativebinomial, NeymanA,
PolyaAeppli, PlogNormal, PPascal, Normal,
dNvequal, dNvunequal, logNormal, exponential,
gamma, Weibull, b1, b2, Pareto); default * i.e. fit
nothing

CONSTANT = string token Whether to estimate a location parameter for the gamma,
logNormal, Pareto, or Weibull distributions (estimate,
omit); default omit

LIMITS = variate Variate to specify or save upper limits for classifying the
data into groups; default *

NGROUPS = scalar When LIMITS is not specified, this defines the number
of groups (of approximately equal size) into which the
data are to be classified; default is the integer value
nearest to the square root of the number of data values

XDEVIATES = variate Variate to specify points up to which the
CUMPROPORTIONS are to be estimated

JOINT = string token Requests joint estimates from the combined fit to be
used for a re-fit to the separate data sets (dispersion,
variancemeanratio, Poissonindex); default *

PARAMETERS  = variate Estimated parameters from the combined fit
SE = variate Standard errors for the estimated parameters of the

combined fit
VCOVARIANCE = symmetric matrix Variance-covariance matrix for the estimated parameters

of the combined fit
CUMPROPORTIONS = variate Estimated cumulative proportions of the combined

distribution up to the values specified by the
XDEVIATES option

MAXCYCLE = scalar Maximum number of iterations; default 30
TOLERANCE = scalar Convergence criterion; default 0.0001

Parameters
DATA = variates or tables Data values either classified (table) or unclassified

(variate)
NOBSERVATIONS = tables One-way table to save the data classified into groups
RESIDUALS = tables Residuals from each (individual) fit
FITTEDVALUES = tables Fitted values from each fit
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PARAMETERS = variates Estimated parameters from each fit
SE = variates Standard errors of the estimates
VCOVARIANCE = symmetric matrices

Variance-covariance matrix for each set of estimated
parameters

CUMPROPORTIONS = variates Estimated cumulative proportions of each distribution
up to the values specified by the XDEVIATES option

CBRESIDUALS = tables Residuals from the combined fit
CBFITTEDVALUES = tables Fitted values from the combined fit
STEPLENGTH = variates Initial step lengths for each fit
INITIAL = variates Initial values for each set fit

The DISTRIBUTION directive (which corresponds to the Fit Distribution menu of Genstat for
Windows) is used to fit an observed sample of data to a theoretical distribution function, in order
to estimate the parameters of the distribution and test the goodness of fit. The data consists of
observations xi of a random variable X, which has a distribution function F(x) defined by
F(x)=Pr(X#x). A selection of both discrete and continuous distributions are available, and full
details are given later in this section.

For discrete distributions X may take non-negative integer values only, except for the log-
series distribution where only positive integer values are allowed. For continuous distributions
the random variable X may take any values, subject to constraints for certain distributions, for
example, data values must be strictly positive in order to fit a log-Normal distribution.
Constraints are detailed with the individual distributions described below.

The data can be supplied to DISTRIBUTION as a variate or as a one-way table of counts. The
raw data should be supplied (as a variate) if they are available, since these provide more
information than grouped data.

If raw data are not available, a one-way table of counts (or frequencies) should be given. The
factor classifying the table must have its levels vector declared explicitly, since the levels are
used to indicate the boundary values of the raw data used to create the grouping. For example,
if the discrete variable X takes the values 0...8, with numbers of observations 2,6,7,4,2,1,0,1,0
respectively, a table of counts can be declared by

FACTOR [LEVELS=!(0...8)] F
TABLE [CLASSIFICATION=F; VALUES=2,6,7,4,2,1,0,1,0] T

The factor levels do not have to specify single data values: often it will be desirable to group
certain values together, and indeed for continuous data this is the only sensible way to proceed.
In general, for a classifying factor with levels l1, l2, ... , lf, the count nk for the kth cell of the table
will be the number of observations xi such that

xi # l1, k=1
lk!1 < xi # lk, 2#k#f!1
lf!1 < xi, k=f

This means that, for all except the last cell of the table, the factor level represents the upper limit
on values in that cell. The final class of the table is termed the tail; it is formed by combining
the frequencies for all values of X greater than lf!1, and the upper limit on values in the tail is
infinity. For continuous distributions with no lower bound, the first class will be the lower tail.
You will often want to form the tail(s) by amalgamating groups with low numbers of counts. In
the example above, you might amalgamate the groups for values 6-8:

FACTOR [LEVELS=!(0...5,99)] F2
TABLE [CLASSIFICATION=F2; VALUES=2,6,7,4,2,1,1] T2

Note that the final factor level, for the tail, can be given a dummy value of 99 to indicate that it
has no upper limit, since this value is never used in calculations.
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When the data are supplied as a table instead of as a variate, the computed log-likelihood is
only an approximation to the full log-likelihood and the solution obtained will depend to some
extent on the choice of class limits. More reliable results will be achieved with a larger number
of classes, since this gives more information on the data distribution, so only classes with very
few observations should be amalgamated. In general, care should be taken to choose class limits
that give a reasonable number of counts in each class, but with none of the individual classes
holding a disproportionately large number of observations.

The DISTRIBUTION option should be set to indicate which distribution is to be fitted to the
data. The following distributions are available:

Discrete Continuous

Binomial (as a special case Normal
of the negative binomial) Double Normal (equal variances)

Poisson Double Normal (unequal variances)
Geometric Log-Normal
Log-series Exponential
Negative binomial Gamma
Neyman type A Weibull
Pólya-Aeppli Beta type I and type II
Poisson-log-Normal Pareto
Poisson-Pascal

The first step of the fitting process is to compute and print various sample statistics.
Examining these may help in the selection of appropriate distributions for fitting ! properties
of the various distributions are listed at the end of this section. The setting DISTRIBUTION=*
can be used to produce this output without any model fitting. The following sample statistics are
calculated:

Sample size n
Sample mean m = Ó xi/n
Sample variance s2 = Ó xi

2/n ! m2 discrete distributions
s2 = Ó (xi!m)2 / (n!1) continuous distributions

Sample skewness g1 = Ó (xi!m)3 / (n!1)s3

    = m3/s
3

Sample kurtosis g2 = Ó{(xi!m)4/(n!1)s4} !3 continuous distributions
only

Sample quartiles xp: F(xp)=p
Poisson index (s2!m)/m2 discrete distributions only
Negative binomial index m(m3!3s2+2m)/(s2!m)2 discrete distributions only

If the original data are not available, the sample statistics are calculated by substituting class
mid-points in place of the data. For the lower tail, the class "mid-point" is taken to be l1!½(l2!l1)
and for the upper tail, lf!1+½(lf!1!lf!2). No corrections are made for groupings. When a
distribution has been fitted to data, the relevant theoretical statistics of that distribution are
printed for comparison with the sample statistics, as a check on the appropriateness of the model
for the data.

If a distribution has been specified, it is then fitted to the data to obtain maximum-likelihood
estimates of the parameters, as in Example 2.2.10a below, which fits a gamma distribution to the
volcano data introduced in Section 2.1.1.

Example 2.2.10a

  24  VARIATE [VALUES=20,40...180] Limits
  25  DISTRIBUTION [DISTRIBUTION=gamma; LIMITS=Limits] Height
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Fit continuous distribution
===========================

Sample statistics
-----------------

Sample Size          126
Mean               77.19
Variance         1702.91
Skewness            0.96
Kurtosis            0.62

Quartiles:
         25%         50%         75%
        49.0        67.0       100.0

Summary of analysis
-------------------

Observations: Height
              Parameter estimates from individual data values
Distribution: Gamma
              f(x) = (b**k).(x**(k-1)).exp(-bx)/Gamma(k), x>0
Deviance:     8.83 on 7 d.f.

Estimates of parameters
-----------------------

          estimate      s.e.     correlations
k           3.5014    0.4221     1.0000
b           0.0454    0.0059     0.9301  1.0000

Fitted quartiles
----------------

              25%         50%         75%
           46.925      69.979      99.651

Fitted values (expected frequencies) and residuals
--------------------------------------------------

             x      Number      Number    Weighted
                  observed    expected    residual
        < 20.0           5        3.85        0.56
        < 40.0          15       18.63       -0.87
        < 60.0          36       27.12        1.62
        < 80.0          20       25.64       -1.16
       < 100.0          21       19.54        0.33
       < 120.0           9       13.10       -1.20
       < 140.0          11        8.06        0.98
       < 160.0           3        4.67       -0.83
       < 180.0           2        2.58       -0.38
       > 180.0           4        2.81        0.67

A summary is given of the fit: the parameter estimates are printed with their standard errors and
correlations, including the working parameters, which are stable functions of the parameters
defining the distribution and are used in the internal algorithm (Ross 1990). The goodness of fit
for the chosen distribution is indicated by the residual deviance which has an asymptotic chi-
square distribution with the specified degrees of freedom. The deviance is also the preferred
statistic for comparison of nested models, for example the double Normal distribution with equal
and unequal variances. This is followed by a table of observed and fitted values (expected
frequencies), together with weighted residuals. If raw data are supplied, by default this table is
formed by dividing the data into %n groups of approximately equal observed frequency, which
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are therefore likely to be of unequal widths. The NGROUPS option may be used to set the number
of groups for this table. If data are supplied as a table, as in Example 2.2.10b, the fitted values
use the classification from that table. In either case the LIMITS option may be used to supply a
different set of limits, with the constraint that if tabulated data are analysed these limits should
be a subset of the original limits so that the new groups are formed by aggregation. In Example
2.2.10a, evenly spaced limits were specified.

Example 2.2.10b shows the analysis of some tabulated data: this is disease data, indicating the
number of leaves on which zero, one, up to seven red mites were found. A further cell,
containing 0, for eight mites is included in the table as the tail. A negative binomial distribution
is fitted to investigate the distribution of mites on leaves.

Example 2.2.10b

   2  " Negative binomial fit to counts of European red mites on apple
  -3    leaves, Bliss (1953). The data are recorded as the number of leaves
  -4    having no mites, number with one mite, and so on."
   5  FACTOR [LEVELS=!(0...8)] Mites; DECIMALS=0
   6  TABLE [CLASSIFICATION=Mites] Leaves; DECIMALS=0
   7  READ [PRINT=*] Leaves
   9  PRINT [ACROSS=Mites] Leaves; FIELDWIDTH=6

      Leaves
Mites     0     1     2     3     4     5     6     7     8
         70    38    17    10     9     3     2     1     0

  10  DISTRIBUTION [DISTRIBUTION=negativebinomial] Leaves

Fit discrete distribution
=========================

Sample Statistics
-----------------

Sample size                      150
Mean                            1.15
Variance                        2.26
Skewness                        1.53
Poisson index                   0.85
Negative binomial index         0.66

Summary of analysis
-------------------

Observations: Leaves
              Parameter estimates from tabulated data values
Distribution: Negative Binomial
              Pr(X=r) = (r+k-1)C(k-1).(m/(m+k))**r.(1+m/k)**(-k)
    Deviance: 4.22 on 6 d.f.

Estimates of working parameters
-------------------------------

         estimate       s.e.     Correlations
mean       1.1467     0.1273     1.0000
variance   2.4301     0.5379     0.7663  1.0000

Estimates of defining parameters
--------------------------------

         estimate       s.e.     Correlations
m          1.1467     0.1273     1.0000
k          1.0246     0.2758     0.0001  1.0000
1/k        0.9760     0.2628     Poisson Index
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Fitted values (expected frequencies) and residuals
--------------------------------------------------

   r            Number     Number   Weighted
              Observed   Expected   Residual
   0                70      69.49       0.06
   1                38      37.60       0.07
   2                17      20.10      -0.71
   3                10      10.70      -0.22
   4                 9       5.69       1.28
   5                 3       3.02      -0.01
   6                 2       1.60       0.30
   7                 1       0.85       0.16
   8+                0       0.95      -1.38

The NOBSERVATIONS, RESIDUALS and FITTEDVALUES parameters can be used to save the
number of observations in each cell, the fitted number and the residual respectively (all in
tables). The parameter estimates and their standard errors can be saved in variates specified by
PARAMETERS and SE. The variance-covariance matrix for the estimated parameters can be saved
as a symmetric matrix using the VCOVARIANCE parameter.

Having fitted the required distribution, the estimated cumulative distribution function (CDF)
can be evaluated at specified values of X. These are defined using the XDEVIATES option. The
values of the CDF can be printed (by selecting PRINT=proportions) or saved in a variate by
setting the CUMPROPORTION parameter.

If you have several sets of data you may be interested in fitting the distribution individually
to each set; this can be done by setting the DATA parameter to a list of identifiers. A separate
analysis is then performed for each set of data, but of course any option settings are common to
all the data sets. The data sets should all be specified in the same way, either as raw data or as
tabulated counts. For tabulated counts, the same categories must be used for defining every table.
You can also carry out one final fit to the combined data set, in order to investigate whether the
data can be adequately modelled as coming from a single population. This combined fit is
produced if any of the options relating to the combined fit have been set (that is, options
CBPRINT, PARAMETERS, SE, VCOVARIANCE, or CUMPROPORTION which print or save
information from the combined analysis). For each individual data set you can also save fitted
values and residuals based on the parameters estimated from the combined data set, using the
CBRESIDUALS and CBFITTEDVALUES parameters. The JOINT option can be used to specify that
certain parameters should be held constant at their estimated values from the combined analysis
during refits to the individual data sets. For continuous distributions only, a common dispersion
parameter can be requested; for discrete distributions a common value can be requested for either
the Poisson index or the ratio of variance to mean. An analysis of deviance is printed to compare
the nested models.

If the original data are available, the full log-likelihood is used in the optimization algorithm.
Otherwise, an approximate log-likelihood is optimized, using representative values for each
class. For some distributions, it is necessary to use stable working parameters in the optimization
algorithm (Ross 1990), and the defining parameters for the distribution are then evaluated by a
simple transformation.

The deviance and corresponding degrees of freedom that are printed as part of the model
summary are based on the table of fitted values, and thus may be affected by the choice of limits.
The residuals computed are deviance residuals (McCullagh & Nelder 1989), and the deviance
is therefore the sum of squared residuals. The degrees of freedom are n!p!1, where n is the
number of cells in the table of fitted values and p is the number of parameters estimated in the
model. The default limits for grouping the raw data are designed to avoid small expected
frequencies (for example in the tail cells) which can have an inflationary affect on the deviance;
however, if the tails are important, because of the origin of the data, it may be important to
specify the limits explicitly.
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An iterative Gauss-Newton optimization method is used to estimate the parameters of the
distribution. The parameterization is chosen for each model so that the optimization is stable, but
if there are any problems with particular data sets it may be necessary to control this process.
The MAXCYCLE and TOLERANCE options allow you to increase the number of iterations and alter
the convergence criterion for data sets that fail to converge. You can also specify initial values
and step lengths for the parameters for each set of data using the STEPLENGTH and INITIAL
parameters. These parameters should be set to variates of length appropriate for the distribution
being fitted; for example, if DISTRIBUTION=Poisson they should have just one value. Another
use of INITIAL and STEPLENGTH is to constrain a parameter to a particular value; for example
when fitting a double Normal the proportion parameter p could be fixed at 0.5 by setting the
initial value to 0.5 and the step length to 0, thus fitting a double Normal in equal proportions.
Note that the degrees of freedom are not adjusted to take account of this. Optimization problems
are discussed further in 3.7 and 3.8.

We now discuss the distributions that can be fitted, looking first at the discrete and then the
continuous distributions. A summary of the theoretical properties of the discrete distributions
is given in Table 2.2.10.

Table 2.2.10: Theoretical properties of discrete distributions

Mean
(ì)

Variance
(V)

Parameters
estimated

Poisson
index

Neg.bin.
index

Poisson ì V=ì ì 0 !
Geometric ì=(1!p)/p V=(1!p)/p2 ì 1 2
Log-series ì=è/z(1!è) V=ì[(1!è)!1!ì] z=!log(1!è) z!1 !
Negative
binomial

ì V=ì+ì2/k ì,V 1/k 2

Neyman
type A

ì=ì1ì2 V=ì1ì2(1+ì2) ì,V 1/ì1 1

Pólya-
Aeppli

ì=ì1/p V=ì1(2!p)/p2 ì,V 2(1!p)/ì1 1.5

Poisson-
log-
Normal

ì=exp(ì1+½ó2) V=ì+ì2(eó2!1) ì,V exp(ó2)!1 2

Poisson-
Pascal

ì=ëpk ! ì
(k+1)/ëk

(k+2)/(k+1)

.. (k+1)/ëk (k+2)/(k+1)

The negative binomial distribution is applicable in many different situations, and can be
derived in several ways. For example: waiting times for the rth success in a sequence of
Bernoulli trials have a negative binomial distribution; random sampling from a heterogeneous
population described by a mixture of Poisson distributions with means varying according to a
gamma distribution will produce negative binomial data; and the distribution can also describe
the number of events per unit interval given underlying Poisson and log-series distributions.
Further explanation can be found in Ross (1987 and 1990) and Johnson & Kotz (1969). The
negative binomial distribution can be defined in terms of the expansion of (q!p)!n with q!p=1.
In Genstat, it is specified in the form obtained by setting ì=np and k=n, so that the probability
of observing the value X=r is given by:

The parameters estimated are the mean (ì) and the variance (V=ì+ì2/k) from which the defining
parameters ì and k are derived.
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When the sample variance is less than the mean (indicated by a negative value of the Poisson
index), the usual (positive) binomial distribution will be fitted where

In this case, a negative value of k will be estimated, and the index of the binomial distribution,
N, will be estimated to be !k, where !k exceeds the largest value present in the sample. The
probability of a success, p, is derived from ì=Np.

The negative binomial distribution also generates the Poisson distribution (as k64), the
geometric distribution (with k=1) and log-series distribution (as k60) as special cases. Although
the estimated parameters ì and k are independent, estimated standard errors for k are not reliable
since the confidence interval for k is skew: the deviance should therefore be used to compare the
fit of the negative binomial distribution with nested models for particular values of k.

The Poisson distribution with mean ì arises as the number of events per unit time, assuming
that events are distributed randomly and independently in time (or space), with mean number of
events per unit interval equal to ì. The probability of observing r independent events in a unit
interval is then:

The distribution is described by the single parameter ì, equal to the mean and variance. The
skewness is g1=1/%ì. For a sample from a Poisson distribution with mean ì, the expected value
of the Poisson index is 0, with variance 2/nì2.

The geometric distribution is a discrete analogue of the continuous exponential distribution
described later in this section, and can be interpreted as the waiting time in a series of Bernoulli
trials before an event occurs. The probability that r trials occur before an event is given by:

where p is the probability that the event occurs in a single trial. The parameter estimated is the
mean (ì=(1!p)/p), from which the defining parameter p is derived.

The logarithmic series (or log-series) distribution is applicable when there is no zero cell, for
example when events are not reported unless they occur at least once. This might occur when
a crop survey records numbers of parasites per host for infected plants only. The series is also
important in the study of species diversity. The distribution is given by

The parameter estimated is z, from which è is derived.
The Neyman type A distribution is a contagious distribution; that is, one allowing for

heterogeneity, in which events are aggregated into groups. The number of groups per unit
interval has a Poisson distribution (with mean ì1), and the number of events per group has an
independent Poisson distribution with mean ì2. The Neyman type A distribution is generated by
compounding the two Poisson distributions. The probabilities, pr, can be described by the
recurrence relation:

This distribution is less skew than the negative binomial, and cannot be fitted if the variance is
less than the mean. When ì2 tends to zero the distribution becomes a simple Poisson; if ì2 tends
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to infinity whilst the mean ì=ì1ì2 remains constant the distribution tends to a Poisson with
added zeroes. The distribution is fitted by estimating the mean and the variance from which the
defining parameters ì1 and ì2 are obtained. These parameters may be highly negatively
correlated, since the mean ì=ì1ì2 is usually well-defined.

The Pólya-Aeppli distribution is a contagious distribution where the number of groups per unit
interval has a Poisson distribution with mean ì1 and the number of events per group has a
geometric distribution with parameter p. The probabilities are generated by the recurrence
relation:

As p tends to 1 the distribution becomes Poisson. As ì1 tends to 0 the distribution becomes
geometric with added zeroes. The distribution is fitted by estimating the mean (ì1/p) and
variance (ì1(2!p)/p2), from which estimates of the defining parameters ì1 and p are obtained.

The Poisson-Pascal distribution is a more general three-parameter contagious distribution in
which the number of groups per unit interval has a Poisson distribution (with mean ë) and the
number of events per group has a negative binomial (or Pascal) distribution. The distribution is
defined by the parameters k, p (with q=1+p), and ë in the following recurrence relations:

The distribution is fitted by estimating the mean, the Poisson index and the negative binomial
index: the defining parameters can then be derived. This distribution contains several others as
special cases:

k Negative binomial index
Neyman type A
Pólya-Aeppli
Negative binomial

4
1
0

1
1.5
2

The Poisson-log-Normal distribution is an aggregated distribution which is more skew than
the negative binomial. It is generated as a mixture of Poisson distributions whose means are log-
Normally distributed with mean ì1 and variance ó2. Then the probabilities are obtained as
follows:

The mean and variance of the distribution are fitted, from which the defining parameters ì and
ó2 are obtained. The probabilities are computed by numerical integration when r is small and by
an approximation formula when r is large.

Other discrete distributions could be fitted to data using the facilities for fitting nonlinear
models: see 3.8 for more details. We now go on to look at the continuous distributions in more
detail. For these the density function f(x)=FN(x) is used instead of point probabilities.

Several of the continuous distribution functions available are based around the Normal
distribution, which has density function:
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The parameters to be estimated are ì and ó. The sample skewness is 0 with variance 6/n and the
sample kurtosis is 0 with sampling variance 24/n.

The double Normal distribution can be used when an observation may come from either of
two Normal populations with different means. If a proportion p of the population is Normally
distributed with mean ì1 and variance ó1

2 and a proportion (1!p) is Normally distributed with
mean ì2 and variance ó2

2 the density function is:

with mean pì1+(1!p)ì2 and variance pó1
2+(1!p)ó2

2+p(1!p)(ì1!ì2)
2. There may be one mode or

two, depending on the separation of ì1 and ì2. There are two cases of the Double Normal that
can be fitted. The variances can be constrained to be equal, by setting
DISTRIBUTION=dNvequal, so that four parameters (p, ì1, ì2 and ó) are fitted. As p tends to 0
or 1 the limiting case of a single Normal is reached, and as ì1 tends to ì2, p becomes
indeterminate. The more general five-parameter model (p, ì1, ì2, ó1 and ó2) can be fitted by
setting DISTRIBUTION=dNvunequal. Unless there is good separation between the two
underlying distributions, local maxima may cause problems during the fitting process.

The log-Normal distribution assumes that log(X) (the natural logarithm) is Normally
distributed with mean ì and variance ó2. An additional location parameter a can be included in
the model so that the Normal distribution is fitted to log(X!a), by setting CONSTANT=estimate.
By default, the constant is omitted and the two-parameter model is fitted (that is, with a=0). The
density function is

with mean a+exp(ì+ó2/2) and variance exp(2ì+ó2)(exp(ó2)!1). The distribution must have
positive skewness; if the sample skewness is negative an automatic switch is made to the Normal
distribution, which is the limit as a tends to minus infinity.

The exponential (or negative exponential) distribution can be used to model lifetime
distributions, for example the time to failure of a process or death of an organism, where the
failure rate can be assumed constant. The density function is

where b is the failure rate per unit time. The mean is 1/b, the variance is 1/b2, and the median is
log(2)/b.

The Weibull distribution is a generalization of the exponential distribution in which the failure
rate can vary monotonically with time. It can be derived using a power transformation, so that
Xc is assumed to have an exponential distribution. The density function is given by

which has mean (1/b)Ã( (c+1)/c ) and median (1/b)(log2)1/c. For 0<c<1 the failure rate decreases
with time and has a single mode at 0. If c>1 the failure rate increases with time and the mode is
at (1/b)(1!c!1)c. The skewness decreases as c increases, until c=3.6 when the skewness is 0, then
becomes negative. The Weibull distribution is fitted by holding the median fixed to the sample
estimate, whilst obtaining an initial estimate of c; the full model is then fitted. If the option
CONSTANT=estimate is set, an additional location parameter is estimated, so that the Weibull
is fitted to (X!a). By default, CONSTANT=omit.

The gamma distribution is useful as a general empirical distribution. It is similar in form to
the Weibull, and is closely related to other standard distributions. By default, it is fitted with two
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parameters. An additional location parameter can be fitted by setting CONSTANT to estimate,
and you must do this if X can take negative values. The density function for the two-parameter
model is

The parameter k is known as the shape parameter, and is sometimes represented by the Greek
letter kappa (ê). The parameter b is known as the rate parameter, and is sometimes represented
by the Greek letter beta (â). The mean of the distribution ì is k/b and the variance V is kb!2.
Note: the parameterization here differs from that used in the gamma probability functions
(1:4.2.9). Instead of the rate, these use the scale parameter t (or theta), which is the reciprocal
of the rate (t=1/b). If the shape parameter k=1, the gamma distribution becomes an exponential
distribution. If the rate parameter b=½, it is a ÷2 distribution with 2k degrees of freedom. If b=1,
the gamma distribution tends to a standard Normal distribution as k tends to infinity. The
distribution is fitted using the sample median, approximately (k+1)/b, to provide initial estimates
for the parameters before the full model is fitted.

The beta distribution is suitable for fitting proportions and ratios. Two forms are available in
Genstat, denoted type I and type II. The type I distribution is a two-parameter model restricted
to values in the range 0<x<1 and is thus used to fit proportions. The density function is

This distribution has mean ì=p/(p+q) and variance pq/{(p+q)2(p+q+1)}. If p>1 and q>1 then
there is a single mode at x=(p!1)/(p+q!2); whilst if p<1 and q<1 there is a minimum at this
point. For large values of p and q the distribution is approximately Normal. The parameters p and
q are often represented in the literature as á and â. In the probability functions, PRBETA etc, they
are represented as a and b (see 1:4.2.9). Parameters of the beta-binomial distribution can be
estimated by the BBINOMIAL procedure.

The type II beta distribution is suitable for any positive continuous data, and has density

now with three parameters b, p and q. The distribution has mean ì=p/{b(q!1)} and variance
V=p(p+q!1)/{b2(q!1)2(q!2)}. The mode is at 0 for p<1 and at (p!1)/(q+1) otherwise. For large
values of q the distribution tends to a gamma distribution with index p. For p=m/2, q=n/2 and
b=m/n we have the F distribution with m and n degrees of freedom.

For either form of the beta distribution it is possible to include an additional location
parameter, so that the distribution is fitted to (X!a). This is specified by setting the CONSTANT
option to estimate. By default, CONSTANT=omit, so no location parameter is fitted.

The Pareto distribution originates in economics where it is used for modelling the distribution
of incomes in a population. Like the log-Normal it is suitable for data with very long upper tails;
it provides a better fit to the tail but performs less well over the whole range. The "Pareto
distribution of the first kind" is defined by its distribution function, only for positive data greater
than a minimum value c:
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An additional location parameter can be requested, by setting CONSTANT=estimate. This fits
a Pareto distribution "of the second kind", which has the distribution function

The mean is ì = a + (c!a)b/(b!1) if b>1, and the variance is b(c!a)2(b!1)!2(b!2)!1 if b>2.

2.2.11 Tests for Normality

Genstat provides several tests for assessing whether a sample of data comes from a Normal
distribution. The Shapiro-Wilk test can be obtained using the WSTATISTIC procedure.
Alternatively the NORMTEST procedure uses the Anderson-Darling statistic, the Cramer-von
Mises statistic and the Watson statistic to assess either the Normality of a single measurement,
or the multivariate Normality of several measurements.

WSTATISTIC procedure
Calculates the Shapiro-Wilk test for Normality (R.W. Payne).

Option
PRINT = string tokens What to print (test); default test

Parameters
DATA = variates Samples of data to be tested for Normality
W = scalars Saves the Shapiro-Wilk W statistic for each sample
PROBABILITY = scalars Saves the probability for W under the assumption that

the data are Normal

The data values for WSTATISTIC must be supplied, in a variate, using the DATA parameter. By
default WSTATISTIC prints the statistic, W, with its probability value under the assumption that
the data are Normal. (So a low probability indicates that the data are unlikely to be from a
Normal distribution.) The printed output can be supressed by setting option PRINT=*. The test
statistic can be saved, in a scalar, using the W parameter, and its probability can similarly be
saved using the PROBABILITY parameter.

Example 2.2.11 uses WSTATISTIC to assess the Normality of the variate Glucose.

Example 2.2.11

   2  " Data from Royston (1995), A remark on Algorithm AS 181:
  -3    the W-test for Normality. Applied Statistics, 44, 547-551. "
   4  VARIATE    [VALUES=4.2,4.9,5.2,5.3,6.7,6.7,7.2,7.5,8.1,8.6,\
   5             8.8,9.3,9.5,10.3,10.8,11.1,12.2,12.5,13.3,15.1,\
   6             15.3,16.1,19.0,19.5] Glucose
   7  WSTATISTIC Glucose

Shapiro-Wilk test for Normality
-------------------------------

Test statistic W: 0.9453
Probability:      0.213
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NORMTEST procedure
Performs tests of univariate and/or multivariate Normality (M.S. Ridout).

Option
PRINT = string tokens Allows the required printed output to be selected: test

statistics, tables of critical values and the flagging of
significant values with stars (marginal,
bivariateangle, radius, critical, stars);
default marg, biva, radi

Parameter
DATA = variates or pointers Variates whose univariate Normality is to be tested or

pointers, each to a set of variates whose Normality
and/or multivariate Normality are to be tested

NORMTEST provides three types of test of Normality:
1 Marginal (univariate) tests ! assess the Normality of each variate in turn. The variates are

standardized to have mean=0, variance=1 and then transformed with the NORMAL function.
The test is based on the idea that, assuming Normality, these transformed values should look
like a sample from a uniform distribution on (0,1).

2 Bivariate angle tests ! assess the bivariate Normality of each pair of variates in turn. The
variates are standardized so that they are uncorrelated and have mean=0 and variance=1. The
test is based on the following idea: if x and y are the standardized values, then the angle
between the x-axis and the line joining (0,0) to (x,y) should, assuming Normality, be uniformly
distributed on (0,2ð).

3 Radius test ! provides a single overall test of multivariate Normality. The variates are again
standardized to have mean=0 and so that their covariance matrix is the identity matrix. The
test uses the fact that if z1, z2,..., zn are the standardized values then z1

2 + z2
2 + ... + zn

2 should,
under multivariate Normality, be approximately distributed as chi-square on n degrees of
freedom.

The calculations are as described in Aitchison (1986; Section 7.3). Bivariate angle and radius
tests are described by Andrews, Gnanadesikan & Warner (1973). Stephens (1974) describes the
EDF statistics used and gives tables of critical values and information on their comparative
power.

For each type of test, the test statistics are empirical distribution function (EDF) statistics !
i.e. they compare the empirical distribution function of the sample with the theoretical
distribution expected under the null hypothesis. Three EDF statistics are provided for each type
of test ! the Anderson-Darling statistic, the Cramer-von Mises statistic and the Watson statistic.
The idea is to provide good power against a wide range of alternatives. The test statistics are
adjusted so that their null distribution is independent of the sample size; critical values can be
printed by the procedure (option PRINT=critical).

The DATA parameter is used to indicate the variate(s) whose Normality is to be assessed. If a
single variate is supplied, its Normality is tested using the marginal test. Alternatively, DATA can
supply a pointer to a set of variates to be tested for multivariate Normality.

The PRINT option can be used to select the type of test using the settings marginal,
bivariateangle and radius. The setting critical allows tables of critical values to be
printed, and stars requests that significant values of the test statistics be flagged with stars.
Settings bivariateangle and radius are relevant only when testing for multivariate
Normality. The default settings are marginal, bivariateangle and radius.
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2.2.12 Goodness of fit tests for other continuous distributions

EDFTEST procedure
Performs empirical-distribution-function goodness-of-fit tests (V.M. Cave).

Options
PRINT = string tokens Controls printed output (summary, tests); default

summ, test
PLOT = string tokens What graphs to plot (kerneldensity, histogram);

default *
TEST = string tokens Specifies the type of goodness-of-fit test to perform

(andersondarling, cramervonmises,
kolmogorovsmirnov); default ande, cram, kolm

DISTRIBUTION = string tokens Continuous distribution that is hypothesized to have
generated the DATA; (beta, b2, burr, cauchy,
chisquare, ev1 (or gumbel), ev2 (or frechet), ev3,
exponential, fdistribution, gamma, gev,
gpareto, iburr, igamma, invnormal, iweibull,
laplace, loggamma, logistic, loglogistic,
lognormal, normal, paralogistic, pareto,
stdnormal, stduniform, tdistribution,
ubetamix, ugammamix, uniform, weibull,
calculated); default norm

CONSTANT = string tokens Whether to estimate a constant for the distribution, when
the parameter values are estimated from the DATA
(estimate, omit); default omit

TMETHOD = string tokens Specifies the method used to perform the goodness-of-fit
tests (likelihoodratio, traditional); default
like

PARAMETERS = scalar or variate Parameter values for the hypothesized distribution; if
this is not set, parameter values are estimated from the
DATA

NAMES = text Names to identify the parameters in PARAMETERS; if
this is not set, the default parameter ordering is assumed

CDFCALCULATION = expression Expression, formed using argument X, that defines the
cumulative distribution function of the hypothesized
distribution; must be specified when DISTRIBUTION =
calculated

MCPARAMETERS = string tokens Whether the parameters are re-estimated or fixed during
the Monte-Carlo simulations, when the parameter values
are estimated from the DATA (fix, estimate); default
esti

NTIMES = scalar Number of Monte-Carlo simulations to perform; default
999

SEED = scalar Seed for random number generation; default 0 continues
an existing sequence or, if none, selects a seed
automatically

TITLE = text Title for the graphs; default generates the title
automatically

YTITLE = text Y-axis title for the graphs; default generates the title
automatically
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XTITLE = text X-axis title for the graphs; default generates the title
automatically

WINDOW = scalar Window to use for the graphs; default 3
SCREEN = string tokens Whether to clear the screen before plotting the graph or

to continue plotting on the old screen, when a single
graph is requested (clear, keep); default clear

Parameters
DATA = variate Identifier of the variate holding the data
STATISTIC = pointer Pointer to scalar(s) to save the test statistic(s)
MCSTATISTICS = pointer Pointer to variates(s) to save the Monte-Carlo simulated

test statistic(s)
PROBABILITY = pointer Pointer to scalar(s) to save the probability value(s) of the

test statistic(s)

EDFTEST performs one-sample two-sided empirical-distribution-function goodness-of-fit tests
to assess whether a sample of data comes from a specified continuous distribution. The data
values must be supplied, in a variate, using the DATA parameter. This can be restricted to assess
only a subset of the data.

The distribution from which the data are assumed to arise is specified using the
DISTRIBUTION option; default normal. Values for the parameters can be supplied, in either a
scalar or a variate, by the PARAMETERS option. If parameter values are not supplied, they are
estimated from the DATA, using the methods in the DPROBABILITY procedure (2.2.7), except
when DISTRIBUTION is set to stdnormal, stduniform or calculated.

The NAMES option specifies a text to identify the individual parameter values within a variate
of PARAMETERS. The parameter names associated with each distribution are given below. When
the names are not supplied, the default ordering of the parameters is assumed. (This matches the
ordering in which parameter estimates are saved using the ESTIMATES parameter of the
DPROBABILITY procedure,) The parameter names are listed below, in the default parameter
ordering for each distribution:

Beta Type I (beta) ashape, bshape;
Beta Type II (b2) ashape, bshape, rate;
Burr (burr) ashape, scale, bshape;
Cauchy (cauchy) location, scale;
Chi-square (chisquare) df;
Extreme Value Type I (ev1 or gumbel)

location, scale;
Extreme Value Type II (ev2 or frechet)

location, scale, shape;
Extreme Value Type III (ev3)

location, scale, shape;
Exponential (exponential) rate;
F (fdistribution) ndf, ddf;
Gamma (gamma) shape, rate, constant (optional);
Generalized Extreme Value (gev)

shape, location, scale;
Generalized Pareto (gpareto)

shape, scale;
Inverse Burr (iburr) ashape, scale, bshape;
Inverse Gamma (igamma) shape, scale;
Inverse Normal (invnormal)
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mean, shape;
Inverse Weibull (iweibull) scale, shape;
Laplace (laplace) location, scale;
Log-Gamma (loggamma) shape, rate;
Logistic (logistic) location, scale;
Log-Logistic (loglogistic)

shape, scale;
Log-Normal (lognormal) mean, sd, constant (optional);
Normal (normal) mean, sd;
Paralogistic (paralogistic)

shape, scale;
Pareto (pareto) shape, scale, constant (optional);
t (tdistribution) df;
Uniform-Beta mixture (ubetamix)

weight, ashape, bshape;
Uniform-Gamma mixture (ugammamix)

weight, shape, scale;
Uniform (uniform) min, max;
Weibull (weibull) shape, rate, constant (optional);

The Gamma, Log-Normal, Pareto and Weibull distributions can have an extra constant
parameter, so that the data values minus the constant then follow the specified distribution.
When PARAMETERS are not supplied, you can set option CONSTANT = estimate to estimate a
constant from the DATA. The default is not to estimate a constant.

The types of test to perform are specified by the TEST option, with settings
andersondarling (Anderson-Darling), cramervonmises (Cramér-von Mises) and
kolmogorovsmirnov (Kolmogorov-Smirnov). The method used to perform these tests is
specified by the TMETHOD option, with settings likelihoodratio for the Zhang (2002)
likelihood-ratio based method, and traditional for the traditional approach. The default is
to use the likelihood-ratio based tests, which are generally more powerful.

If TMETHOD=traditional, EDFTEST calculates the traditional Anderson-Darling,
Cramér-von Mises and Kolmogorov-Smirnov goodness-of-fit tests. When PARAMETERS are
supplied (or if MCPARAMETERS = fix), the probability of the Anderson-Darling test statistic is
calculated using the fast algorithm (adinf) of Marsaglia & Marsaglia (2004), the probability of
the Cramér-von Mises test statistic is calculated using the one-term linking approximation
(equation 1.8) of Csörgõ & Faraway (1996), and the probability of the Kolmogorov-Smirnov test
statistic is calculated using the method of Carvalho (2015) for data sets with fewer than 171
values or using the Wang et al. (2003) approximation for larger data sets. When PARAMETERS
are not supplied, Monte-Carlo simulation is used by default to obtain empirical probability
values of the test statistics. However, empirical probability values are not available for
DISTRIBUTION = ubetamix or ugammamix. 

If TMETHOD = likelihoodratio, EDFTEST calculates likelihood-ratio based goodness-of-fit
test statistics using the method of Zhang (2002). (Note, however, that the likelihood-ratio based
method is not available for DISTRIBUTION = ubetamix, ugammamix, or calculated.) The
resulting tests are generally more powerful than their traditional analogues. Monte-Carlo
simulation is used to obtain empirical probability values of the test statistics.

The DISTRIBUTION option provides the common distributions. Alternatively, for traditional
tests (i.e. TMETHOD = traditional) you can set DISTRIBUTION=calculated to define your
own distribution. You must then use the CDFCALCULATION option to provide an expression,
formed using argument X, to calculate the cumulative distribution function. For example, the
exponential distribution with rate parameter of 2 could be specified by setting options

DISTRIBUTION=calculated
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and

CDF=!E(X=1-EXP(-2*X))].

Monte-Carlo simulations are used to calculate the empirical probability values of the test

statistics under the likelihood-ratio based method (i.e. TMETHOD = likelihoodratio), or, by
default, under the traditional method when the parameters are estimated from the DATA. The
NTIMES option defines how many Monte-Carlo simulations are used; default 999. The SEED
option can be set to initialize the random-number generator used during the Monte-Carlo
simulations; if the procedure is called again with the same settings, you will get identical results.
The default of zero continues the sequence of random numbers from a previous generation or,
if this is the first use of the generator in this run of Genstat, the seed is initialized automatically. 

By default, when parameters are estimated from the DATA during the Monte-Carlo simulations,
the parameters are re-estimated to ensure that the correct probability values are obtained.
However, this can be overridden by setting the MCPARAMETERS option to fix.

Printed output is controlled by the PRINT option, with settings: 
summary to print summary information; and
tests to print the test statistic(s), with its probability value(s)

under the assumption that the data are from the
hypothesized distribution (so a low probability indicates
that the data are unlikely to be from the hypothesized
distribution).

The default is to print the summary and the tests.
The PLOT option controls graphical output, with settings:

histogram to plot a histogram of the Monte-Carlo simulated test
statistics; and

kerneldensity to produce a kernel density plot of the Monte-Carlo
simulated test statistics.

By default, nothing is plotted.
The TITLE, YTITLE and XTITLE options can supply an overall title, a y-axis title and a x-axis

title for the graphs, respectively. If these are not supplied, suitable titles are generated
automatically. When a single plot is requested, you can set option SCREEN = keep to plot the
graph on an existing screen; by default the screen is cleared first. The WINDOW option defines the
window to use for the plots; default 3.

The STATISTIC, PROBABILITY and MCSTATISTICS parameters allow the test statistics, their
probabilities and the Monte-Carlo simulated test statistics, respectively, to be saved in pointers.

Example 2.2.12 confirms that it is reasonable to assume that distribution of the volcano
heights, introduced in Section 2.1.1, can be represented by a gamma distribution. The test
statistics are non-significant, and this is confirmed by the fact that the test statistics lie well
within the histograms of the simulated values. 

Example 2.2.12

 26  EDFTEST [PLOT=histogram; DISTRIBUTION=gamma; SEED=73197; NTIMES=999] Height

Likelihood-ratio based empirical-distribution-function goodness-of-fit tests
============================================================================

Distribution: Gamma
f(x) = b^k.x^(k-1).exp(-b.x)/Gamma(k)
shape (k) = 3.501
rate (b) = 0.04536
Parameters estimated from the observations

Variate: Height
Observations: 126
Monte-Carlo simulations: 999
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Figure 2.2.12a Figure 2.2.12b

Figure 2.2.12c

Seed: 73197
Parameters re-estimated during simulations

                                Statistic  Probability
     LR-based Anderson-Darling      3.304        0.646
     LR-based Cramer-von Mises      6.453        0.617
   LR-based Kolmogorov-Smirnov      0.706        0.843
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2.3 Comparison of groups of data

The aim of many statistical studies is to compare different groups of observations. These groups
may differ because they have been selected from separate populations, or perhaps because they
have received different experimental treatments. It is often possible to fit statistical models
containing different parameters for each group, which enable you to answer questions like "How
much better is treatment A than treatment B?". These methods of estimation generally also
provide extra information such as standard errors, sums of squares, or perhaps deviances to allow
you to check statistically whether the treatments genuinely differ in their effects. Many of the
estimation procedures in Genstat provide formal probability levels associated with these
hypothesis tests.

In this section we start with the simplest statistical test, the t-test (2.3.1). This allows you to
compare the means of two samples or, if you have only one sample, to assess whether its mean
differs from some specified value (usually zero). The test assumes that the samples have Normal
distributions; sometimes you may need to transform the data for this assumption to be reasonable
(see 1:4.2). The simplest generalization of the t-test is one-way analysis of variance, which is
described in Section 2.3.2. More sophisticated types of analysis of variance, for example
factorial treatment structures and multiple sources of error, are covered in Chapters 4 and 5.
Methods for determining sample sizes for analysis of variance are described in Section 4.12.2.

It is not always possible to make sensible assumptions about the models or the probability
distributions from which the observations have been generated. So as an alternative TTEST can
use a permutation test, or an exact test if there are few data values. Genstat also contains a range
of procedures for performing nonparametric or distribution-free tests that require only relatively
simple assumptions. These are described in Sections 2.4, 2.5 and 2.6.

2.3.1 The t-test

TTEST procedure
Performs a one- or two-sample t-test (S.J. Welham).

Options
PRINT = string tokens Controls printed output (confidence, summary, test,

variance, permutationtest); default conf, summ,
test, vari

METHOD = string token Type of test required (twosided, greaterthan,
lessthan); default twos

GROUPS = factor Defines the groups for a two-sample test if only the Y1
parameter is specified

CIPROBABILITY = scalar The probability level for the confidence interval; for a
one-sided test this will be for the mean and for a two-
sided test for the difference in means; default *, i.e. no
confidence interval is produced

NULL = scalar The value of the mean under the null hypothesis; default
0

VMETHOD = string token Selects between the standard two-sample t-test, with a
pooled estimate of the variances of the samples, and the
use of separate estimates for the sample variances
(automatic, pooled, separate); default auto uses a
pooled estimate unless there is evidence of unequal
variances

PLOT = string token How to plot the statistics from a permutation test
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(histogram); default * i.e. no plots
NTIMES = scalar Number of random allocations to make when

PRINT=perm; default 999
PERMMETHOD = string token Which statistic to use in a permutation test

(difference, t); default t
SEED = scalar Seed for the random number generator used to make the

allocations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

NTIMES = scalar Number of random allocations to make when
PRINT=perm; default 999

SEED = scalar Seed for the random number generator used to make the
allocations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

Parameters
Y1 = variates Identifier of the variate holding the first sample
Y2 = variates Identifier of the variate holding the second sample
TESTRESULTS = variates Identifier of variate (length 3) to save test statistic, d.f.

and probability value
LOWER = scalars Identifier of scalar to save the lower limit of each

confidence interval
UPPER = scalars Identifier of scalar to save the upper limit of each

confidence interval
W1 = variates Weights (replications) of the values in Y1; default * i.e.

all 1
W2 = variates Weights (replications) of the values in Y2; default * i.e.

all 1
SAVEPERMUTATIONS = variates Saves the permutation statistics

The data for TTEST are specified by the parameters Y1 and Y2 and the option GROUPS. For a one-
sample test, the Y1 parameter should be set to a variate containing the data. TTEST then performs
a one-sample t-test for the mean of a Normal distribution. The value of the mean under the null
hypothesis can be specified by the option NULL; by default NULL=0. Example 2.3.1a tests
whether the mean of a set of diffusion data differs from 20.

Example 2.3.1a

   2  " Rates of diffusion of carbon dioxide through two soils.
  -3    Data from Smith & Brown (1933); also analysed by Snedecor &
  -4    Cochran (1989) p.94. (who give wrong reference for the data."
   5  VARIATE [VALUES=20,31,18,23,23,28,23,26,27,26,12,17,25] Fine
   6  TTEST [NULL=20] Fine

One-sample t-test
=================

Variate: Fine.

Summary
-------

                                                 Standard   Standard error
Sample           Size        Mean    Variance   deviation          of mean
Fine               13       23.00       26.50       5.148            1.428

95% confidence interval for mean: (19.89, 26.11)
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Test of null hypothesis that mean of Fine is equal to 20.00
-----------------------------------------------------------

Test statistic t = 2.10 on 12 d.f.

Probability = 0.057

For Normally distributed observations, the statistic t is distributed as Student's t distribution on
n!1 degrees of freedom. (It is possible to use the DPROBABILITY procedure or DISTRIBUTION
directive, described in 2.2.7 and 2.2.10, to assess the distribution of a sample; however, with
small samples like this one, there is rarely enough evidence to determine the distribution clearly.)
The probability level quoted is the theoretical probability of getting a result as extreme as the
value calculated, given that the null hypothesis is true (that is, that the sample mean equals the
target value). For this example, the probability of getting a value as large as 2.10 is 0.057 under
the null hypothesis. Since this probability is small, there is evidence that the sample mean is
different from 20, but (since the probability is greater than 0.05) there is not enough evidence
to reject the null hypothesis at the 5% level. Further details on hypothesis testing can be found
in any book covering basic statistical methods, such as Snedecor & Cochran (1989).

The data for a two-sample test can be specified in two separate variates using the parameters
Y1 and Y2. Alternatively, they can be given in a single variate, with the GROUPS option set to a
factor to identify the two samples; the GROUPS option is ignored when the Y2 parameter is set.
The assumption here is that the individual measurements have been made independently. The
test is not appropriate for measurements taken in a series where it is likely that neighbouring
measurements are more correlated than measurements further apart in the series; in this situation
you could use the procedures in the repeatedmeasures module of the procedure library (8.1),
or the facilities for modelling correlations by REML in Section 5.4, or the time-series methods
in Chapter 7. Likewise, if the two samples have been taken in a paired way, so that each
measurement in one sample is matched with a measurement in the other, the test procedure must
reflect this structure, for example by treating the pairs of observations as blocks in an analysis
of variance or by subtracting one set of values from the other and then doing a one-sample test.
This structure often arises when several samples are taken from a single set of individuals.

Printed output is controlled by the PRINT option with settings:
summary number of observations, mean, variance, standard

deviation and standard error of mean;
test t-statistic and probability level;
confidence confidence interval for the difference between mean and

NULL for a one-sample test, or the two means for a
two-sample test;

variance F test for equality of the sample variances in a two-sample
test; and

permutationtest probabilities calculated by a random permutation test
(relevant only for two-sample tests).

The default is PRINT=summary,test,confidence,variance. By default a 95% confidence
interval is calculated, but this can be changed by setting the CIPROBABILITY option to the
required value (between 0 and 1) or leaving it unset to suppress the interval.

By default, for the permutation test, TTEST makes 999 random allocations of the data to the
two samples (using a default seed), and determines the probability from the distribution of the
t-statistic over these randomly generated data sets. Alternatively, you can set option
PERMMETHOD=difference to use the difference between the means instead of the t-statistic.
The NTIMES option allows you to request another number of allocations, and the SEED option
allows you to specify another seed. TTEST checks whether NTIMES is greater than the number
of possible ways in which the data values can be allocated. If so, it does an exact test instead,
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which takes each possible allocation once. For a visual indication, you can set option
PLOT=histogram to display a histogram of the statistics from the permuted data sets, with a
vertical line to show the position of the statistic from the original data set.

Example 2.3.1b compares measurements of diffusion of carbon dioxide through two soils of
different porosity (the first set was used in Example 2.3.1a, the second is defined in line 7).
There is no pairing of the measurements ! indeed, there are different numbers of measurements
in each sample ! and we assume that the measurements are independent. The test shows that
there is a probability of 10.9% of obtaining a result this extreme under the null hypothesis of no
difference between sample means. So there is some, but not strong, evidence that the mean of
the second sample is higher; it is conventional, however, to reject the hypothesis of no difference
only at the 5% level. Equivalently, the 95% confidence interval for the difference between the
two means includes zero ! showing that a zero difference is not inconsistent with the data at this
significance level.

Example 2.3.1b

   7  VARIATE [VALUES=19,30,32,28,15,26,35,18,25,27,35,34] Coarse
   8  TTEST [PRINT=confidence,summary,test,variance,permutation] Fine; Coarse

Two-sample t-test
=================

Variates: Fine, Coarse.

Test for equality of sample variances
-------------------------------------

Test statistic F = 1.74 on 11 and 12 d.f.

Probability (under null hypothesis of equal variances) = 0.36

Summary
-------

                                                 Standard   Standard error
Sample           Size        Mean    Variance   deviation          of mean
Fine               13       23.00       26.50       5.148            1.428
Coarse             12       27.00       46.00       6.782            1.958

Difference of means:           -4.000
Standard error of difference:  2.396

95% confidence interval for difference in means: (-8.957, 0.9567)

Test of null hypothesis that mean of Fine is equal to mean of Coarse
--------------------------------------------------------------------

Test statistic t = -1.67 on 23 d.f.

Probability = 0.109

* MESSAGE: Default seed for random number generator used with value 247685

Probability determined from 999 random permutations = 0.114

The standard two-sample t-test assumes that the two samples arise from Normal distributions
with equal variances and forms a pooled estimate for the variance of both samples. If, however,
the variances are unequal, a separate estimate can be used for the variance of each sample. This
is known as Welch's t-test or Welch's analysis of variance (Welch 1947). The degrees of freedom
of the test are then only approximate (see, for example, Snedecor & Cochran 1989, page 97) but
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these seem to work well in practice. The VMETHOD option specifies how to estimate the variances
for the test. The default setting, automatic, uses a pooled estimate unless there is evidence of
unequal variances, pooled always uses a pooled estimate and separate always uses separate
estimates. If either pooled or automatic are selected, TTEST will print a warning if there is
evidence of inequality of variances. Alternatively, if you do not want to assume that the data
come from Normal distributions, you can use the permutation test (obtained from the
permutationtest setting of the PRINT option). In Example 2.3.1b, this confirms that there
is no evidence that the means of the samples differ.

The W1 and W2 parameters can supply variates of weights to accompany Y1 or Y2,
respectively. You can use these to specify replicate observations. For example, instead of
specifying variate for Y1 with values (11, 12, 12, 13, 14, 14, 14, 15) you could give Y1 the
values (11, 12, 13, 14, 15) together with weight variate W1 containing values (1, 2, 1, 3, 1)
indicating the number of replications of each of the values in Y1. The calculation of the t-test
assumes that the weights are positive integers defining the
replications of the values inside Y1 or Y2 (or zero or missing values to exclude the corresponding
values in Y1 or Y2). A warning is given if any positive weight is given that is not an integer.

For both one- and two-sample cases, the test is assumed to be two-sided unless otherwise
requested by the METHOD option. Setting METHOD=greaterthan will give a one-sided test of
the null hypothesis that mean(Y1) > mean(Y2) or NULL (for a two sample or one sample test,
respectively). Similarly, METHOD=lessthan will produce a test of the null hypothesis mean(Y1)
< mean(Y2) or NULL.

If any sample has fewer than 6 values, a warning is given that the sample size is too small and
so the test may not be valid.

Results can be saved using the TESTRESULTS, LOWER and UPPER parameters. TESTRESULTS
saves the t-statistic, its degrees of freedom and probability level in a variate of length 3. LOWER
and UPPER save the lower and upper limits of the confidence interval. The SAVEPERMUTATIONS
parameter can save the values of the statistics from the permutation tests in a variate; the final
value in the variate is the statistic from the original data set.

Nonparametric alternatives to the t-test are described in Sections 2.4.1, 2.4.2 and 2.5.1.
Methods for determining sample sizes for t-tests are described in Section 4.12.1.

2.3.2 One-way analysis of variance

One-way analysis of variance can be regarded as a simple extension of the two-sample t-test in
which several samples of data are compared. Section 4.1 explains how to use Genstat's general
analysis-of-variance commands to do a one-way analysis. It is well worth learning these so that
you can exploit the wider facilities that they offer. However, if you need no more than a one-way
analysis, there is also a special-purpose procedure AONEWAY which is specially customized for
this particular type of analysis. (Note: in Genstat for Windows one-way analysis of variance can
be obtained with the One- and two-way Analysis of Variance menu, or with the general
Analysis of Variance menu by selecting One-way ANOVA (no Blocking) in the Design list
box.)

AONEWAY procedure
Performs one-way analysis of variance (R.W. Payne).

Options
PRINT = string tokens Controls printed output from the analysis of variance

(aovtable, information, covariates, effects,
residuals, contrasts, means, cbeffects,
cbmeans, stratumvariances, %cv,
missingvalues, homogeneity, permutationtest);



70 2  Basic statistics and exploratory analysis

default aovt, mean, miss
GROUPS = factor Defines the treatments for the analysis
COVARIATES = variates Covariates (if any) for analysis of covariance
PLOT = string tokens Which residual plots to provide (fittedvalues,

normal, halfnormal, histogram, absresidual);
default fitt, norm, half, hist

GRAPHICS = string token Type of graphs (lineprinter, highresolution);
default high

FPROBABILITY = string token Probabilities for variance ratio (yes, no); default no
PSE = string tokens Types of standard errors to be printed with the means

(differences, lsd, means); default diff
LSDLEVEL = scalar Significance level (%) for least significant differences;

default 5
NTIMES = scalar Number of random allocations to make when

PRINT=perm; default 999
SEED = scalar Seed for the random number generator used to make the

allocations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

Parameters
Y = variates Each of these contains the data values for an analysis
RESIDUALS = variates Saves the residuals from each analysis
FITTEDVALUES = variates Saves the fitted values from each analysis

The Y parameter supplies a variate containing the data values to be analysed. The factor defining
the groups to be compared is supplied by the GROUPS option. You can either specify just the
factor to produce a simple one-way anova, or you can put it within a POL, REG or COMPARISON
function to fit some contrasts at the same time (see 4.5). There is also a COVARIATES option
which can supply one or more variates to be used as covariates in an analysis of covariance (4.3).

Printed output is requested by listing the required components with the PRINT option. The
most relevant settings are:

aovtable to print the analysis-of-variance table;
means to print the table of means;
effects to print the effects (means minus grand mean);
%cv to print the coefficient of variation;
missingvalues to print estimates for missing values (if any);
homogeneity to print tests for the homogeneity of the variances within

the groups;
permutationtest analysis-of-variance table with the probabilities calculated

by a random permutation test.
For compatibility all the settings of the PRINT option of ANOVA are included, but the others are
not particularly useful with one-way analysis of variance. Note, though, that ANOVA does not
have a setting of homogeneity.

By default, when PRINT=perm, AONEWAY makes 999 random allocations of the data to the two
samples (using a default seed), and determines the probabilities of the variance ratios from their
distribution over these randomly generated datasets. (It therefore makes no assumptions about
the distribution of the data values.) The NTIMES option allows you to request another number
of allocations, and the SEED option allows you to specify another seed. AONEWAY checks whether
NTIMES is greater than the number of possible ways in which the data values can be allocated.
If so, it does an exact test instead, which takes each possible allocation once.

The FPROBABILITY option can be set to yes to print of probabilities for variance ratios in
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the analysis-of-variance table. The PSE option controls the standard errors printed with the tables
of means. The default setting is differences, which gives standard errors of differences of
means. The setting means produces standard errors of means, LSD produces least significant
differences, and by setting PSE=* the standard errors can be suppressed altogether. The
significance level to use in the calculation of the least significant differences can be changed
from the default of 5% using the LSDLEVEL option.

The PLOT option allows up to four of the following residual plots to be requested:
fittedvalues for a plot of residuals against fitted values;
normal for a Normal plot;
halfnormal for a half-Normal plot;
histogram for a histogram of residuals; and
absresidual for a plot of the absolute values of the residuals against the

fitted values.
By default the first four are produced. The GRAPHICS option determines the type of graphics that
is used, with settings highresolution (the default) and lineprinter.

Variates of residuals and fitted values can be saved using the RESIDUALS and FITTEDVALUES
parameters, respectively. Directive AKEEP (4.6.1) can be used to save other information from the
analysis of the last data variate to be analysed by AONEWAY.

The use of AONEWAY is illustrated by Example 2.3.2, which analyses some measurements on
fat absorbance of doughnuts during cooking (from Snedecor & Cochran 1989). As we have set
option FPROBABILITY=yes, the F pr. column is included, with the results of an F test of the
null hypothesis that there are no differences between the groups (here the different types of fat).
In this example, the probability of the statistic under the null hypothesis is 0.007, indicating
differences between the fat types which can be seen in the table of means: fat type 2 tends to
have a higher absorbance and fat type 4 has a lower absorbance. Chapter 4 gives further details
about the output (and explains how to analyse more complex designs). We have included
homogeneity in the settings of the PRINT option to request Bartlett's test for homogeneity of
the variances in the four groups. This statistic is small compared to a chi-square distribution on
three degrees of freedom, and so there is no evidence against the assumption of equal variation
across the groups.

Example 2.3.2

   2  "  Absorbance of four types of fat while cooking doughnuts.
  -3     Data from Lowe (1935) analysed by Snedecor & Cochran (1989) p.217."
   4  VARIATE [VALUES=64,72,68,77,56,95,  78,91,97,82,85,77, \
   5                  75,93,78,71,63,76,  55,66,49,64,70,68] Absorb
   6  FACTOR  [LEVELS=4; VALUES=6(1...4)] Fat
   7  AONEWAY [PRINT=aov,means,homogeneity,permutationtest; GROUPS=Fat;\
   8          PLOT=*; FPROBABILITY=yes; SEED=325691] Absorb

Analysis of variance
====================

Variate: Absorb

Source of variation     d.f.       s.s.       m.s.    v.r.  F pr.
Fat                        3     1636.5      545.5    5.41  0.007
Residual                  20     2018.0      100.9
Total                     23     3654.5

Analysis of variance
====================

Variate: Absorb
Probabilities determined from 999 random permutations
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Source of variation  d.f.       s.s.       m.s.    v.r.   prob.
Fat                  3.00     1636.5      545.5   5.406   0.008
Residual            20.00     2018.0      100.9
Total               23.00     3654.5

Table of means
==============

 Grand mean       73.75

Fat           1           2           3           4
          72.00       85.00       76.00       62.00

Replication  6

Standard error of differences of means 5.799

Bartlett's Test for homogeneity of variances
--------------------------------------------

Chi-square 1.75 on 3 degrees of freedom: probability 0.626

Note that the output may differ slightly from that given by ANOVA to take advantage of the
special features of the situation. If the treatments have unequal replication, a standard error is
printed for each mean, rather than the summary for comparisons of means with minimum and
maximum replication as given by ANOVA (4.1.3, 4.3). 
Similarly, any missing values are excluded from the analysis by AONEWAY. In ANOVA they need
to be included, to ensure balance in the more general situations that it covers, and are estimated
as part of the analysis (4.4).

2.3.3 Two-way analysis of variance

Often you may wish to study more than one type of treatment at a time. For example, in a
medical trial you might want to consider the type of drug as well as the size of dose, or in a field
trial you might want to look at the variety of a crop as well as the amount of fertiliser. Procedures
A2WAY, A2DISPLAY, A2KEEP and A2RESULTSUMMARY provide customized facilities for
analysing designs with two treatment factors, like these. They automatically determine the type
of design and use the appropriate method: the ANOVA directive (Chapter 4) if the design is
balanced, or the regression directives (Chapter 3) if it is unbalanced. So you need very little
technical knowledge to use them.

The A2WAY procedure does the analysis.

A2WAY procedure
Performs analysis of variance of a balanced or unbalanced design with up to two treatment
factors (R.W. Payne).

Options
PRINT = string tokens Controls printed output from the analysis (aovtable,

information, covariates, effects, residuals,
means, %cv, missingvalues); default aovt, mean

TREATMENTS = factors Defines either one or two treatment factors
BLOCKS = factor Can specify a blocking factor e.g. for a randomized

block design
COVARIATES = variates Specifies any covariates
FACTORIAL = scalar Can be set to 1 to fit only the main effects of the

treatments factors; default 2 also fits their interaction
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FPROBABILITY = string token Probabilities for variance ratio (yes, no); default no
PLOT = string tokens Which residual plots to provide (fittedvalues,

normal, halfnormal, histogram, absresidual);
default fitt, norm, half, hist

GRAPHICS = string token Type of graphs (lineprinter, highresolution);
default high

COMBINATIONS = string token Factor combinations for which to form predicted means
(present, estimable); default esti

ADJUSTMENT = string token Type of adjustment to be made when predicting means
(marginal, equal, observed); default marg

PSE = string tokens Types of standard errors to be printed with the means
(differences, lsd, means); default diff

LSDLEVEL = scalar Significance level (%) for least significant differences;
default 5

RMETHOD = string token Type of residuals to save or display (simple,
standardized); default simp

MVINCLUDE = string token Whether to include units with missing y-values when
using ANOVA (yvariate); default * i.e. not included

EXIT = scalar Saves an exit code indicating the properties of the
design

Parameters
Y = variates Each of these contains the data values for an analysis
RESIDUALS = variates Saves the residuals from each analysis
FITTEDVALUES = variates Saves the fitted values from each analysis
SAVE = pointers Save structure for each analysis (to use in A2DISPLAY

or A2KEEP)

The Y parameter supplies a variate containing the data values to be analysed. The treatment
factor or factors are specified by the TREATMENTS option. The FACTORIAL option sets a limit
in the number of factors in each treatment term. So you can set FACTORIAL=1 to fit only the
main effects when there are two treatment factors; the default FACTORIAL=2 also fits their
interaction. The BLOCKS option can supply a blocking factor, for example to define a
randomized-block design (see 4.2.1). There is also a COVARIATES option which can supply one
or more variates to be used as covariates in an analysis of covariance (4.3).

Printed output is controlled by the PRINT option, with settings:
aovtable analysis-of-variance table (probabilities are given for the

variance ratios if option FPROBABILITY=yes);
information information about the design (non-orthogonality &c);
covariates covariate regression coefficients);
effects treatment parameters in the linear model;
means table of means;
%cv to print the coefficient of variation;
missingvalues to print estimates for any missing values.

The PSE option controls the standard errors printed with the tables of means. The default
setting is differences, which gives standard errors of differences of means. The setting means
produces standard errors of means, lsd produces least significant differences, and by setting
PSE=* the standard errors can be suppressed altogether. The significance level to use in the
calculation of least significant differences can be changed from the default of 5% using the
LSDLEVEL option.

For unbalanced designs (analysed using Genstat regression), the means are produced using the
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PREDICT directive (3.3.4). The first step (A) of the calculation forms the full table of
predictions, classified by all the treatment and blocking factors. The second step (B) averages
the full table over the factors that do not occur in the table of means. The COMBINATIONS option
specifies which cells of the full table are to be formed in Step A. The default setting,
estimable, fills in all the cells other than those that involve parameters that cannot be
estimated. Alternatively, setting COMBINATIONS=present excludes the cells for factor
combinations that do not occur in the data. The ADJUSTMENT option then defines how the
averaging is done in Step B. The default setting, marginal, forms a table of marginal weights
for each factor, containing the proportion of observations with each of its levels; the full table
of weights is then formed from the product of the marginal tables. The setting equal weights
all the combinations equally. Finally, the setting observed uses the WEIGHTS option of
PREDICT to weight each factor combination according to its own individual replication in the
data.

The PLOT option allows up to four of the following residual plots to be requested:
fittedvalues for a plot of residuals against fitted values;
normal for a Normal plot;
halfnormal for a half-Normal plot;
histogram for a histogram of residuals; and
absresidual for a plot of the absolute values of the residuals against the

fitted values.
By default the first four are produced. The GRAPHICS option determines the type of graphics that
is used, with settings highresolution (the default) and lineprinter.

The EXIT option can save an exit code indicating how the analysis was done. For the exact
meanings of the values see the ANOVA directive. Essentially, it has the values 0 or 1 if the
analysis has been done using ANOVA (0 if design orthogonal and 1 if it is balanced). Other values
indicate that it has been done using the regression directives.

In A2WAY, any units with missing values in the y-variate are excluded from the analysis. This
differs from the situation in ANOVA, where they need to be included to ensure balance in the more
general situations that it covers. So ANOVA estimates them as part of the analysis (see 4.4). You
can reproduce the analysis that you would get by using ANOVA directly, by setting option
MVINCLUDE=yvariate.

The RESIDUALS parameter can save the residuals from the analysis, and the FITTEDVALUES
parameter can save the fitted values. The RMETHOD option controls whether simple or
standardized residuals are saved or displayed; by default RMETHOD=simple. The SAVE
parameter can save a "save" structure that can be used as input to procedure A2DISPLAY to
produce further output, or to procedure A2KEEP to copy output into Genstat data structures.

A2DISPLAY procedure
Provides further output following an analysis of variance by A2WAY (R.W. Payne).

Options
PRINT = string tokens Controls printed output from the analysis (aovtable,

information, covariates, effects, residuals,
means, %cv, missingvalues); default *

FPROBABILITY = string token Probabilities for variance ratio (yes, no); default no
PLOT = string tokens Which residual plots to provide (fittedvalues,

normal, halfnormal, histogram, absresidual);
default *

GRAPHICS = string token Type of graphs (lineprinter, highresolution);
default high

COMBINATIONS = string token Factor combinations for which to form predicted means
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(present, estimable); default esti
ADJUSTMENT = string token Type of adjustment to be made when predicting means

(marginal, equal, observed); default marg
PSE = string tokens Types of standard errors to be printed with the means

(differences, lsd, means); default diff
LSDLEVEL = scalar Significance level (%) for least significant differences;

default 5
RMETHOD = string token Type of residuals to display (simple, standardized);

default simp

Parameter
SAVE = pointers Save structure (from A2WAY) for the analysis; if omitted,

output is from the most recent A2WAY analysis

Procedure A2DISPLAY allows you to display further output from the analysis. By default the
output is from the most recent analysis performed by A2WAY. Alternatively, you can set the SAVE
parameter to a save structure (saved using the SAVE parameter of A2WAY) to obtain output from
an earlier analysis. The options of A2DISPLAY control what is printed, in the same way as those
of A2WAY.
A2KEEP allows you to save information from the analysis.

A2KEEP procedure
Copies information from an A2WAY analysis into Genstat data structures (R.W. Payne).

Options
FACTORIAL = scalar Sets a limit on the number of factors in the terms formed

from the TERMS formula; default 2
RESIDUALS = variate Saves the residuals
FITTEDVALUES = variate Saves the fitted values
COMBINATIONS = string token Factor combinations for which to form predicted means

(present, estimable); default esti
ADJUSTMENT = string token Type of adjustment to be made when predicting means

(marginal, equal, observed); default marg
LSDLEVEL = scalar Significance level (%) for least significant differences;

default 5
AOVTABLE = pointer To save the analysis-of-variance table as a pointer with a

variate or text for each column (source, d.f., s.s., m.s.
etc)

RMETHOD = string token Type of residuals to display (simple, standardized);
default simp

EXIT = scalar Saves an exit code indicating the properties of the
design

SAVE = pointer Save structure (from A2WAY) for the analysis; if omitted,
output is from the most recent A2WAY analysis

Parameters
TERMS = formula Specifies the treatment terms whose means &c are to be

saved
MEANS = table or pointer to tables Saves tables of means for the terms or pointer to tables
SEMEANS = table or pointer to tables

Saves approximate effective standard errors of means
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SEDMEANS = table or pointer to tables
Saves standard errors of differences between means

LSD = table or pointer to tables Saves least significant differences

By default A2KEEP saves information from the most recent analysis performed by A2WAY.
Alternatively, you can set the SAVE option to a save structure (saved using the SAVE parameter
of A2WAY) to save information from an earlier analysis.

You can use the parameters of A2KEEP to save means, standard errors and least significant
differences for the treatment main effects and interactions. The TERMS parameter should be set
to a model formula to define the main effects and interactions whose means &c you want to save.
The MEANS parameter saves tables of means. The SEMEANS parameter saves their standard errors
(also in a table). The SEDMEANS parameter saves standard errors for differences between the
means (in a symmetric matrix), and the LSD parameter saves least significant differences (also
in a symmetric matrix). The significance level for the least significant differences can be change
from the default of 5% using the LSDLEVEL option. If you have a single term, you can supply
a table or symmetric matrix for each of these parameters, as appropriate. However, if you have
several terms, you must supply a pointer which will then be set up to contain as many tables or
symmetric matrices as there are terms. The LSDLEVEL option sets the significance level (as a
percentage) for the least significant differences.

The FACTORIAL option sets a limit in the number of factors in the terms generated from the
TERMS model formula. So

A2KEEP [FACTORIAL=1] A*B; MEANS=!p(MA,MB)

would save only the main effects of A and B. The option is provided for compatibility with the
AKEEP directive. However, an alternative (and simpler) way of saving means only for the main
effects would be to put

A2KEEP [FACTORIAL=1] A+B; MEANS=!p(MA,MB)

The default for FACTORIAL is 2.
As in A2WAY and A2DISPLAY, the COMBINATIONS and ADJUSTMENT option control how the

means are formed from an unbalanced design. The RESIDUALS option can save the residuals
from the analysis, and the FITTEDVALUES option can save the fitted values. The RMETHOD
option controls whether simple or standardized residuals are saved; by default
RMETHOD=simple. The AOVTABLE option saves the analysis-of-variance table, as a pointer with
a variate or a text for each column of the table. The pointer elements are labelled with the
column labels of the table, and the variates contain missing values where the table has blanks.
These can be printed as blanks by setting option MISSING=' ' in the PRINT directive. The
EXIT option saves the exit code, as defined by A2WAY.

A2RESULTSUMMARY procedure
Provides a summary of results from an analysis by A2WAY (R.W. Payne).

Options
PRINT = string tokens What to print (description, means, significant);

default desc, mean, sign
PSE = string tokens Standard errors to be printed with the means (sed,

sedsummary, lsd, lsdsummary, dfmeans); default
sed, dfme 

LSDLEVEL = scalar Significance level (%) for least significant differences;
default 5

SAVE = pointer Save structure from A2WAY; default uses the save
structure from the most recent A2WAY analysis
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No parameters

A2RESULTSUMMARY can provide a summary of the results. The output is controlled by the PRINT
option, with settings:

description prints the name of the y-variate, any covariates and the
block and treatment models,

means prints relevant tables of means, and
significant lists the significant treatment terms.

By default, it is all printed.
The relevant tables of means are those that contain significant treatment effects. If the

interaction is significant in an analysis with two treatment factors, the relevant table is just the
two-way table of means. Otherwise the relevant tables consist of the one-way tables of means
for any significant main effect.

The PSE option controls the information provided with the tables of means:
sed standard errors for differences between means,
sedsummary summary of the standard errors for differences,
dfmeans degrees of freedom for the standard errors of differences,
lsd least significant differences between the means, and
lsdsummary summary of the least significant differences.

The default is to print the standard errors of differences and their degrees of freedom.
The LSDLEVEL option specifies the significance level (%) to use in the calculation of least

significant differences (default 5%).
The use of the very similar ARESULTSUMMARY procedure is shown in Example 4.1.3g. (This

procedure provides a summary of the output from the ANOVA directive.)
Example 2.3.3 illustrates the use of A2WAY with an unbalanced design set up to study the

effects of genetics versus environment in the development of rats. The Mother factor indicates
the natural mother (i.e. the genetic background) of each rat, while the Litter factor indicates
the litter in which it was brought up. It was not possible to balance these two treatment factors
(e.g. by ensuring that every combination of Mother and Litter was equally
replicated), so the order in which they are fitted may be important. The analysis of variance table
presents both orders: the line Litter ignoring Mother presents the effect of fitting Litter first,
whereas the line Litter eliminating Mother is the effect of fitting Litter after Mother (so it
represents all the effects of Litter than cannot be explained by Mother effects). Ideally, as
here, the lines will be either both significant or non-significant. If they are contradictory, the
conclusion would be that there are effects in the data that could be explained by either Litter
or Mother effects (or by both). However, the non-orthogonality between these factors makes it
impossible to determine which one is responsible. The conclusion would then be to design a
more balanced experiment! The line Litter.Mother represents the interaction between Litter
and Mother. In the example, approximate effective standard errors are presented using the
option setting PSE=means. These ese's are calculated to allow good approximations to the
standard errors of differences (sed's) between means i and j to be obtained by the usual formula:

sed = %(esei
2 + esej

2)
The output below shows that here there is virtually no discrepancy between the true sed's and
the values calculated from the ese's. If the approximation is poor, you should set
PSE=differences to print the (rather larger) triangular array of sed's instead.

Example 2.3.3

  2  " Experiment on foster feeding of rats from Scheffe (1959),
  3    The Analysis of Variance; also see McConway, Jones & Taylor
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  4    (1999), Statistical Modelling using GENSTAT, Example 7.6. "
  5  FACTOR  [NVALUES=61; LABELS=!t(A,B,I,J)] Litter,Mother
  6  VARIATE [NVALUES=61] Littwt
  7  READ    Litter,Mother,Littwt; FREPRESENTATION=labels

    Identifier   Minimum      Mean   Maximum    Values   Missing
        Littwt     36.30     53.97     69.80        61         0

    Identifier    Values   Missing    Levels
        Litter        61         0         4
        Mother        61         0         4

  8  A2WAY [PRINT=aovtable,means; PSE=means; PLOT=*;\
  9        TREATMENTS=Litter,Mother] Littwt

Analysis of variance
====================

Source                       d.f.        s.s.        m.s.    v.r.   F pr.
Litter ignoring Mother          3       60.16       20.05    0.37   0.775
Litter eliminating Mother       3       63.63       21.21    0.39   0.760
Mother ignoring Litter          3      771.61      257.20    4.74   0.006
Mother eliminating Litter       3      775.08      258.36    4.76   0.006
Litter.Mother                   9      824.07       91.56    1.69   0.120
Residual                       45     2440.82       54.24
Total                          60     4100.13       68.34

Predictions from regression model
---------------------------------

Response variate: Littwt

               Prediction
       Litter
            A       54.97
            B       53.07
            I       52.82
            J       53.50

Approximate effective standard errors
-------------------------------------

Litter
     A       1.813
     B       2.019
     I       2.009
     J       1.946

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy              0
Maximum % discrepancy         0.00

Predictions from regression model
---------------------------------

Response variate: Littwt

               Prediction
       Mother
            A       54.79
            B       58.08
            I       53.60
            J       48.34
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Approximate effective standard errors
-------------------------------------

Mother
     A       1.853
     B       2.026
     I       1.881
     J       2.023

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy              0
Maximum % discrepancy         0.00

Predictions from regression model
---------------------------------

Response variate: Littwt

               Prediction
       Mother           A           B           I           J
       Litter
            A       63.68       52.40       54.13       48.96
            B       52.33       60.64       53.93       45.90
            I       47.10       64.37       51.60       49.43
            J       54.35       56.10       54.53       49.06

Approximate effective standard errors
-------------------------------------

Mother           A           B           I           J
Litter
     A       3.294       4.252       3.682       3.294
     B       3.682       3.294       3.682       5.208
     I       4.252       4.252       3.294       4.252
     J       3.682       4.252       4.252       3.294

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy              0
Maximum % discrepancy         0.00

2.3.4 Binomial data

BNTEST procedure
Calculates one- and two-sample binomial tests (D.A. Murray).

Options
PRINT = string tokens Controls printed output (test, summary,

confidence); default test, summ, conf
METHOD = string token Type of test required (twosided, greaterthan,

lessthan); default twos
TEST = string token Form of the test for one-sample test (exact,

normalapproximation) or for two-sample
(normalapproximation, oddsratio); default norm

CIPROBABILITY = scalar The probability level for the confidence interval; default
0.95

NULL = scalar The value of the probability of success under the null
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hypothesis for the one-sample test; default 0.5

Parameters
R1 = scalars or variates Number of successes (scalar) or results (variate) for the

first sample
N1 = scalars Sample size of the first sample
R2 = scalars or variates Number of successes (scalar) or results (variate) for the

second sample
N2 = scalars Sample size of the second sample
STATISTIC = scalars Saves the Normal approximation from the one-sample or

two-sample tests, or the odds ratio
PROBABILITY = scalars Saves the probability value from the one-sample or two-

sample tests
LOWER = scalars Saves the lower limit of the confidence interval
UPPER = scalars Saves the upper limit of the confidence interval

BNTEST calculates one- and two-sample binomial tests, and odds ratios. For a one-sample test,
the number of successes r1 can be specified using the R1 parameter, and the sample size n1 using
the N1 parameter (both as scalars). Alternatively you can supply the raw data, by setting R1 to
a variate containing one in the units corresponding to successful trials and zero in those for
unsuccessful trials. The test is for the probability of success under a binomial distribution. The
value for the probability under the null hypothesis is 0.5 by default, but you can specify other
probabilities using the NULL option. With a two-sample test, R1 and N1 similarly provide the
number of successes and sample size for the first sample (r1 and n1), and R2 and N2 those for the
second sample (r2 and n2).

For both one- and two-sample cases, the test is assumed to be two-sided unless otherwise
requested by the METHOD option. Setting METHOD=greaterthan gives a one-sided test of the
null hypothesis that r1/n1 > r2/n2 or NULL (for a two-sample or one-sample test, respectively).
Similarly, METHOD=lessthan produces a test of the null hypothesis r1/n1 < r2/n2 or NULL. A
small "p-value" indicates that the data are inconsistent with the null hypothesis.

The TEST option specifies the form of test to be used. The default is to use a standard Normal
approximation. Alternatively, for a one-sample test you can set TEST=exact to obtain an exact
test (Arimitage, Berry & Matthews 1994, page 121). For a two-sample test you can set
TEST=oddsratio to obtain an odds ratio. This is estimated by

p1 (1 ! p1) / p2 (1 ! p2)
where p1 and p2 are the success probabilities in the two sets of data. The calculation of the
approximate standard error of the estimated log-odds ratio and the confidence interval is
described on page 36 of Collett (1991). By default a 95% confidence interval is calculated, but
this can be changed by setting the CIPROBABILITY option to the required value (between 0 and
1).

Printed output is controlled by the PRINT option with settings:
summary number of successes, sample size, proportion, standard

error (for Normal approximation and odds ratio) and odds
ratio (when TEST=ODDSRATIO is selected);

test Normal approximation and probability level;
confidence confidence interval for the difference between the

probability of success and NULL for one-sample test, or the
two proportions for a two-sample test; for the odds ratio
the confidence interval is displayed for the true log-odds
ratio and odds ratio.

The default is to print everything.
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Example 2.3.4 first tests whether a sample with 65 successes out of 100 trials can reasonably
be generated by a success probability of 0.5. It then tests for the equality of probabilities of
success of two samples, one with 41 successes out of 257 and the other with 64 out of 244.

Example 2.3.4

   2  BNTEST 65; N1=100

One-sample binomial test
========================

Summary
-------

 Sample Size   Successes    Proportion
         100          65          0.65

Approx s.e. of proportion:   0.04770

Test of null hypothesis that proportion  is equal to 0.5000
-----------------------------------------------------------

Normal Approximation =    2.900
Probability          =    0.004

95% confidence interval for proportion: (0.5565, 0.7435)

   3  BNTEST [TEST=exact] R1=65; N1=100

One-sample binomial test
========================

Summary
-------

 Sample Size   Successes    Proportion
         100          65          0.65

Test of null hypothesis that proportion  is equal to 0.5000
-----------------------------------------------------------

Exact probability    =    0.004

95% confidence interval for proportion: (0.5482, 0.7427)

   4  BNTEST R1=41; N1=257; R2=64; N2=244

Two-sample binomial test
========================

Summary
-------

  Sample     Size   Successes    Proportion
       1      257          41        0.1595
       2      244          64        0.2623

Approx s.e. of difference between proportions:  0.03626

Test of null hypothesis that proportion 1 is equal to proportion 2
------------------------------------------------------------------

Normal Approximation =   -2.825
Probability          =    0.005

95% confidence interval for difference between proportions: (-0.1738, -0.03170)

   5  BNTEST [TEST=oddsratio] R1=41; N1=257; R2=64; N2=244
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Odds Ratio
==========

Summary
-------

  Sample     Size   Successes    Proportion
       1      257          41          0.16
       2      244          64          0.26

Odds ratio                     =  0.534
Log of Odds ratio              = -0.628
Standard error of log(ratio)   =  0.224

95% confidence interval for odds ratio: (0.3441, 0.8282)
95% confidence interval for log odds ratio: (-1.067, -0.1885)

Results can be saved using the STATISTIC, PROBABILITY, LOWER and UPPER parameters.
STATISTIC saves the Normal approximation for the one- and two-sample tests or the odds ratio,
PROBABILITY saves the probability level. LOWER and UPPER save the lower and upper limits,
respectively, of the confidence interval; for the odds ratio the confidence interval is saved for the
true odds ratio.

Binomial data can also be analysed by Genstat's facilities for generalized linear models, which
cover much more than the one- and two-sample situations considered here. Full details are in
Section 3.5. Methods for determining sample sizes for binomial tests are described in Section
4.12.5.

2.3.5 Poisson data

PNTEST procedure
Calculates one- and two-sample Poisson tests (D.A. Murray).

Options
PRINT = string tokens Controls printed output (test, summary,

confidence); default test, summ, conf
METHOD = string token Type of test required (twosided, greaterthan,

lessthan); default twos
TEST = string token Form of the test for one-sample test (exact,

normalapproximation); default norm
S1 = scalar Sample size for sample 1; default 1
S2 = scalar Sample size for sample 2; default 1
CIPROBABILITY = scalar The probability level for the confidence interval; default

0.95
NULL = scalar The value of the probability of success under the null

hypothesis for the one-sample test

Parameters
MU1 = scalars or variates Numbers recorded in the first sample
MU2 = scalars or variates Numbers recorded in the second sample
NORMAL = scalars Saves the Normal approximation
PROBABILITY = scalars Saves the probability value from the one-sample or two-

sample tests
LOWER = scalars Saves the lower limit of the confidence interval
UPPER = scalars Saves the upper limit of the confidence interval
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PNTEST calculates one- and two-sample Poisson tests. The value for the mean under the null
hypothesis for a one-sample test is specified by the option NULL. You can supply the sample
mean m1 as a scalar using the MU1 parameter. The sample size is then specified by the S1 option
(with default 1). Alternatively, you can set MU1 to a variate containing the counts in the
individual samples (and the sample size is then the number of non-missing values that it
contains). With a two-sample test, parameters MU1 and MU2 similarly provide the means (m1 and
m2) for samples 1 and 2 respectively, and the sample sizes can be specified using the S1 and S2
options.

For both one- and two-sample cases, the test is assumed to be two-sided unless otherwise
requested by the METHOD option. Setting METHOD=greaterthan will give a one-sided test of
the null hypothesis that m1 > m2 or NULL (for a two-sample or one-sample test, respectively).
Similarly, METHOD=lessthan will produce a test of the null hypothesis m1 < m2 or NULL. A
small "p-value" indicates that the data are inconsistent with the null hypothesis. The TEST option
specifies the form of test used for the one-sample test; either an exact test or a Normal
approximation can be selected.

The TEST option specifies the form of test used for the one-sample test. The default is to use
a Normal approximation can be selected, but you can set TEST=exact to obtain an exact test.
The exact test and confidence intervals are based on the methodology described in Chapter 4
(page 141) of Arimitage, Berry & Matthews (1994). By default a 95% confidence interval is
calculated, but this can be changed by setting the CIPROBABILITY option to the required value
(between 0 and 1).

Printed output is controlled by the PRINT option with settings:
summary mean, sample size, standard error (for Normal

approximation);
test Normal approximation and probability level, or just

probability level for the exact test;
confidence confidence interval for the difference between the mean

and NULL for a one-sample test, or the two means for a
two-sample test.

The default is to print everything.
Example 2.3.5 illustrates the various tests.

Example 2.3.5

   2  PNTEST [NULL=20] MU1=33

One-sample Poisson test
=======================

Summary
-------

  Sample Size        Mean
            1       33.00

Approx s.e. of mean:  5.745

Test of null hypothesis that mean is equal to 20.00
---------------------------------------------------

Normal Approximation =    2.907
Probability          =    0.004

95% confidence interval for mean: (23.50, 46.34)

   3  PNTEST [NULL=20; TEST=exact] MU1=33
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One-sample Poisson test
=======================

Summary
-------

  Sample Size        Mean
            1       33.00

Test of null hypothesis that mean is equal to 20.00
---------------------------------------------------

Exact probability    =    0.009

95% confidence interval for mean: (22.72, 46.34)

   4  PNTEST [TEST=exact] MU1=13; MU2=31

Two-sample Poisson test
=======================

Summary
-------

  Sample     Size        Mean
       1        1       13.00
       2        1       31.00

 Difference between means:      -18
Approx s.e. of difference:    6.633

Test of null hypothesis that mean 1 is equal to mean 2
------------------------------------------------------

Simple Normal Approximation    =   -2.714
Exact probability              =    0.007

95% confidence interval for difference: (-31.00, -4.999)

Results can be saved using the NORMAL, PROBABILITY, LOWER and UPPER parameters. NORMAL
saves the Normal approximation for the one- and two-sample tests, PROBABILITY saves the
probability level. LOWER and UPPER save the lower and upper limits, respectively, of the
confidence interval.

Poisson data can also be analysed by Genstat's facilities for generalized linear models, which
cover much more than the one- and two-sample situations considered here. Full details are in
Section 3.5. Methods for determining sample sizes for Poisson tests are described in Section
4.12.6.

2.4 One-sample nonparametric tests

Genstat provides several one-sample nonparametric tests. The Wilcoxon test (procedure
WILCOXON, Section 2.4.1) provides a nonparametric alternative to the one sample t-test. The test
is based upon the ranked data values, and so depends only on their order, rather than on the
actual distribution of the data. Another possibility is the sign test (procedure SIGNTEST, Section
2.4.2) which tests the location of the sample against a specified value using the signs (positive
or negative) of the differences between the members of the sample and the specified value; there
is also a two-sample version which tests for any difference in location between two matched
samples. Finally, the runs test (procedure RUNTEST, Section 2.4.3) assesses the randomness of
a sequence of observations. These tests are all accessible through the One-sample

Nonparametric Tests menu of Genstat for Windows.
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2.4.1 The Wilcoxon test

The Wilcoxon test is a nonparametric equivalent to the one sample t-test, and can be performed
using the WILCOXON procedure.

WILCOXON procedure
Performs a Wilcoxon Matched-Pairs (Signed-Rank) test (S.J. Welham, N.M. Maclaren & H.R.
Simpson).

Option
PRINT = string tokens Output required (test, ranks): test gives the relevant

test statistics, ranks prints out the signed ranks for the
vector of differences; default test

Parameters
DATA = variates Variates holding the differences between each pair of

samples
RANKS = variates Variate to save the signed ranks
STATISTIC = scalars Scalar to save the value of the test statistic
PROBABILITY = scalars Saves the probability for each test statistic
SIGN = scalars Scalar to indicate the sign of the total sum of the signed

ranks: 1 if the sum is positive, 0 otherwise

WILCOXON performs a Wilcoxon Matched-Pairs test on a variate holding differences between
two paired samples. It does not have a NULL option like TTEST, so you need to use the
CALCULATE directive first to form the differences with the target value: see line 9 of Example
2.4.1, which continues Example 2.3.1b.

Example 2.4.1

   9  CALCULATE Fine20 = Fine - 20
  10  WILCOXON Fine20

Wilcoxon Matched-Pairs Test
===========================

Variate: Fine20

Test Statistic:    15.00  (sum of signed ranks is positive)
Sample size:          12  (zero values have been excluded)
Probability:       0.062  (two-sided test)

The variate to be analysed is specified using the (first) parameter, DATA. Output is controlled by
the PRINT option: test produces the relevant test statistics, and ranks prints the vector of
signed ranks for the data. By default, WILCOXON prints the test statistic and sample size,
excluding zero values. Here, the sample size is 12 since one of the original data values was 20
which then gave a zero value in Fine20. It also prints the probability of the statistic under the
null hypothesis. This is calculated using the PRWILCOXON procedure, and is for a two-sided test:
i.e. no assumption is made about whether the differences should be positive or negative. In
Example 2.4.1 the conclusions are the same as from the t-test.
 The value of the test statistic can be saved in the parameter STATISTIC, and the probability can
be saved using the PROBABILITY parameter. The SIGN parameter saves an indicator of whether
the total sum of signed ranks is positive (SIGN=1) or negative (SIGN=0), and the RANKS
parameter can save a variate of the signed ranks of the differences (i.e. of DATA).
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2.4.2 The sign test

The sign test is a nonparametric test for a difference in location between two related samples,
or for testing the location of a single sample. The test is based on the signs (positive or negative)
of the differences between corresponding members of the two samples, or on the sign of the
differences between the sample members and the proposed location.

SIGNTEST procedure
Performs a one or two sample sign test (E. Stephens & P.W. Goedhart).

Options
PRINT = string token Whether to print the test statistic with the associated

probability and sample size (test); default test
METHOD = string token Type of test (twosided, greaterthan, lessthan);

default twos
GROUPS = factor Defines the groups for a two-sample test if only the Y1

parameter is specified
NULL = scalar Median value or difference in medians under the null

hypothesis; default 0

Parameters
Y1 = variates Data values for a one-sample sign test (neither Y2 nor

GROUPS specified), or for the first sample of a two-
sample test (Y2 also specified) or the values in both
samples of a two-sample test (GROUPS specified but not
Y2)

Y2 = variates Data values for the second sample of a two-sample test
STATISTIC = scalars To save the sign test statistic
NBINOMIAL = scalars To save the effective sample size
PROBABILITY = scalars To save the probability level of the test

The data values are specified by the parameters Y1 and Y2 and the option GROUPS. For a one-
sample test, the Y1 parameter should be set to a variates containing the data. The data for a two-
sample test can either be specified in two separate variates using the parameters Y1 and Y2.
Alternatively, they can be given in a single variate, with the GROUPS option set to a factor to
identify the two samples; the units are then assumed to be specified in the same order within
each group. The GROUPS option is ignored when the Y2 parameter is set. The NULL option
defines the size of the median under the null hypothesis for a one-sample test, or the difference
between the two medians in a two-sample test. By default NULL=0.

The test is assumed to be two-sided unless otherwise requested by the METHOD option. Settings
greaterthan or lessthan will give one-sided tests for the median or the difference between
medians greater than, or less than, the null hypothesis value respectively.

In a one-sample test, units that are equal to the null hypothesis median are excluded and the
effective sample-size is reduced. Similarly, in a two-sample test, units are excluded where the
differences between the pairs of values are equal to that required by the null hypothesis. Units
with missing values are also excluded.

By default, SIGNTEST prints the test statistic, the effective sample size and the (exact)
probability level. This information can also be saved in named scalars using the STATISTIC,
NBINOMIAL and PROBABILITY parameters repectively, and printing can be suppressed by
setting option PRINT=*.

Example 2.4.2 continues Example 2.4.1, using a sign test to assess whether the median of the
Fine soil values differ from 20.
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Example 2.4.2

  11  SIGNTEST [NULL=20] Fine

One-sample sign test
====================

         Variate        Size      Median
            Fine          12       23.00

Test if median equals 20.00

Test statistic: 9
Effective sample size: 12
Two-sided probability level: 0.146

Methods for determining sample sizes for sign tests are described in Section 4.12.7.

2.4.3 The runs test

The runs test checks the randomness of a sequence of observations. The sample is assumed to
be an ordered sequence of observations of two types, n1 of the first type and n2 of the second
type. A run is defined to be a succession of observations of the same type. A clue to lack of
randomness is provided by the total number of runs in the sequence. If the data are in random
order, the expected number of runs is 1 + 2n1n2/(n1+n2). A low number of runs might indicate
positive serial correlation while a high number might arise from negative serial correlation.

RUNTEST procedure
Performs a test of randomness of a sequence of observations (P.W. Goedhart).

Options
PRINT = string token Controls printed output (results); default resu
NULL = scalar Defines the boundary between the two types; default 0

Parameters
DATA = variates Sequences of observations
SAVE = pointers To save the number of runs, the number of positive and

negative observations and the lower and upper tail
probabilities of the test

The DATA parameter is used to specify the sequence of observations. Observations larger than
option NULL are considered to be of the first type (positive) while observation smaller than NULL
are of the second type (negative). Missing values and observations that equal NULL are not taken
into account. The PRINT option controls printed output, while the SAVE parameter can be used
to specify a pointer containing five scalars to save the number of runs, the number of positive
observations (that is, those larger than NULL), the number of negative observations and the lower
and upper tail probabilities of the number of runs.

Example 2.4.3 performs a runs test on a set of random numbers generated by the function
URANDOM.

Example 2.4.3

   2  CALCULATE uniform = URAND(43671; 5000)
   3  RUNTEST   [NULL=0.5] uniform
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Runs test
=========

Number of runs in uniform: 2523
  expected number of runs: 2500.45
      right sided P-value: 0.266
       left sided P-value: 0.743

2.5 Two-sample nonparametric tests

This section describes some of the two-sample nonparametric tests in Genstat. The Mann-
Whitney U test (procedure MANNWHITNEY, Section 2.5.1) provides a nonparametric alternative
to the two-sample t-test, based on the ranks of the data values. An alternative for two matched
samples (i.e. the situation where the data consist of pairs of observations, one from each sample)
is the sign test, already described in Section 2.4.2. These procedures test for differences between
the locations of the sample distributions. There are of course other aspects that can be compared.
The Kolmogorov-Smirnoff test (procedure KOLMOG2, Section 2.5.2) assesses the overall
similarity between the distributions of two samples. These tests are accessible through the Two-

sample Nonparametric Tests menu of Genstat for Windows.

2.5.1 The Mann-Whitney test

MANNWHITNEY procedure
Performs a Mann-Whitney U test (S.J. Welham, N.M. Maclaren & H.R. Simpson).

Options
PRINT = string tokens Output required (test, ranks): test produces the

relevant test statistics, ranks produces the ranks (with
respect to the whole data set) for each variate; default
test

METHOD = string token Type of test required (twosided, greaterthan,
lessthan); default twos

GROUPS = factor Defines the samples for a two-sample test if only the Y1
parameter is specified

CIPROBABILITY = scalar Probability for the confidence interval for the median
difference between the samples; default 0.95

CONTROL = scalar or text Identifies the control group against which to make
comparisons if GROUPS is set; default uses the reference
level of GROUPS

Parameters
Y1 = variates Identifier of the variate holding the first sample if Y2 is

set, or both samples if Y2 is unset (the GROUPS option
must then also be set)

Y2 = variates Identifier of the variate holding the second sample
R1 = variates Saves the ranks of the first sample if Y2 is set, or both

samples if Y2 is unset
R2 = variates Saves the ranks of the second sample if Y2 is set
STATISTIC = scalars or tables Saves the test statistics U
PROBABILITY = scalars or tables Probability values for the test statistics
SIGN = scalars or tables Saves indicators: 1 if the first sample scores the highest

ranks on average, 0 otherwise
LOWER = scalars or tables Saves lower confidence values for median differences
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between the samples
UPPER = scalars or tables Saves upper confidence values for median differences

between the samples

The Mann-Whitney U test is a nonparametric test for differences in location between two
samples. The data samples can be stored in two separate variates, and supplied by the parameters
Y1 and Y2. Alternatively, they can be stored in a single variate, supplied by Y1, with the GROUPS
option set to a factor to identify which unit belongs to each sample. The GROUPS option is
ignored when the Y2 parameter is set. If GROUPS has more than 2 levels, each group is compared
against a control group. You can define which level (or label) of GROUPS represents the control
by setting the CONTROL option to a scalar or text. If CONTROL is not set, the reference level of
GROUPS is used.
MANNWHITNEY calculates the test statistic U, along with its its associated probability value.

An exact probability is calculated (using procedure PRMANNWHITNEYU) if the size of either
sample is less than 51 and the statistic U is less than 10000; otherwise a Normal approximation
is used. The statistic and the probability can be saved using the STATISTIC and PROBABILITY
parameters respectively. Parameter SIGN holds an indicator which takes the value 1 if the ranks
in the first sample are higher on average than those in the second sample, and takes the value 0
otherwise. Usually STATISTIC, PROBABILITY and SIGN will save scalars, but they will save
tables classified by the GROUPS factor when GROUPS is set to a factor with more than two levels.
The ranks (with respect to the combined data set) for each sample can be saved using the R1 and
R2 parameters.

Printed output is controlled by the PRINT option, with settings
test test statistic and probability,
ranks ranks (with respect to the whole data set) for each sample,

and
confidence median difference between the samples, with confidence

limits.
The probability for the confidence limits is specified by the CIPROBABILITY option; the

default, of 0.95, gives a 95% interval. The lower and upper confidence values can be saved by
the LOWER and UPPER parameters, respectively. The calculation of the interval may be slow
when there are ties amongst the values, as essentially MANNWHITNEY then has to invert the
probability function. 

By default a two-sided test is done (to assess that samples are unequal) but the METHOD option
can be set to greaterthan to test that the first sample is greater than the than the second, or
lessthan to test that it is smaller.

Example 2.5.1 illustrates the use of MANNWHITNEY to analyse the soil diffusion data previously
assessed using a t-test, in Example 2.3.1b. For this data set, the results of the t-test and the Mann-
Whitney test are similar with probabilities of 0.109 and 0.098, respectively, of obtaining a result
this extreme under the null hypothesis of no difference between sample means.

Example 2.5.1

  12  MANNWHITNEY Fine; Coarse

Mann-Whitney U (Wilcoxon rank-sum) test
=======================================

Variates: Fine, Coarse.

Value of U: 47.0 (second sample has higher rank score).

Exact probability (adjusted for ties): 0.094
(under null hypothesis that Fine is equal to Coarse).



90 2  Basic statistics and exploratory analysis

Sample sizes: 13, 12.

2.5.2 The Kolmogorov-Smirnoff test

The KOLMOG2 procedure performs a Kolmogorov-Smirnoff test of the overall similarity between
the distributions of two samples, without assuming that these distributions follow any particular
shape.

KOLMOG2 procedure
Performs a Kolmogorov-Smirnoff two-sample test (S.J. Welham, N.M. Maclaren & H.R.
Simpson).

Options
PRINT = string tokens Output required (test, differences, ranks): test

gives the test statistic, differences gives signed
differences, and ranks produces the ranks for each
sample; default test

GROUPS = factor Defines the groups for a two-sample test if only the Y1
parameter is specified

Parameters
Y1 = variates Identifier of the variate holding the first sample
Y2 = variates Identifier of the variate holding the second sample
R1 = variates Saves the ranks of the first sample
R2 = variates Saves the ranks of the second sample
STATISTIC = scalars Scalar to save the test statistic (the maximum absolute

difference between the cumulative distribution
functions)

CHISQUARE = scalars Scalar to save the chi-square approximation to the test
statistic

DIFFERENCES = variates Variate to save the signed differences between 
the cumulative distribution functions

The Kolmogorov-Smirnoff test assesses the similarity between the underlying distributions of
the two samples, by comparing their cumulative distribution functions; the test statistic is the
maximum absolute difference between the cumulative distribution functions. The samples can
either be specified in two separate variates using the parameters Y1 and Y2. Alternatively, they
can be given in a single variate, with the GROUPS option set to a factor to identify the samples.
The GROUPS option is ignored when the Y2 parameter is set.

Output from the procedure is controlled by the PRINT option: test prints the relevant test
statistic, differences prints the signed differences, and ranks prints a vector of ranks for each
of the samples.

The test statistic and its chi-square approximation can be saved using the parameters
STATISTIC and CHISQUARE respectively. The parameter DIFFERENCES can be used to save the
differences between the cumulative distributions. The R1 and R2 parameters allow the ranks of
the samples to be saved.

Example 2.5.2 continues Example 2.5.1, and applies the test to the soil diffusion data, finding
no significant difference between the cumulative distribution functions of the two samples.

Example 2.5.2

  13  KOLMOG2 Fine; Coarse
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Kolmogorov-Smirnov two-sample test
==================================

Variates: Fine, Coarse.

Maximum difference: 0.3526
Chi-square: 3.10 on 2 d.f. (p=0.212)
Sample Sizes: 13, 12.

2.6 Nonparametric analysis of variance

This section presents two procedures for nonparametric analysis of variance. The KRUSKAL
procedure (2.6.1) performs the Kruskal-Wallis one-way analysis of variance, a nonparametric
method based on the ranks of the data. Friedman's test (procedure FRIEDMAN, Section 2.6.2) is
also based on ranks, but here the data are from a randomized complete block design: that is, the
data set consists of observations on k treatments assessed under n different conditions (blocks).
Section 2.6.3 then describes another test for several treatments based on ranks: Steel's many-one
rank test (procedure STEEL), which compares several treatments with a control.

Custom menus are available for both these analyses in Genstat for Windows: click Stats on
the menu bar, select Statistical Tests, and then the analysis required.

2.6.1 The Kruskal-Wallis one-way analysis of variance

KRUSKAL procedure
Carries out a Kruskal-Wallis one-way analysis of variance (S.J. Welham, N.M. Maclaren &
H.R. Simpson).

Options
PRINT = string tokens Output required (test, ranks): test produces the

relevant test statistics, ranks produces a vector of ranks
for each sample relative to the whole data set; default
test

GROUPS = factor Defines the sample membership if only one variate is
specified by DATA

STATISTIC = scalar Scalar to save the Kruskal-Wallis test statistic
MEANRANKS = variate Variate to save the mean ranks of the samples
DF = scalar Scalar to save the degrees of freedom for the statistic

Parameters
DATA = variates List of variates containing the data for each sample, or a

single variate containing the data from all the samples
(the GROUPS option must then be set to indicate the
sample to which each unit belongs)

RANKS = variates Allow the ranks to be saved (relative to the combined
data)

KRUSKAL carries out a Kruskal-Wallis one-way analysis of variance based on the ranks (relative
to the whole data set) of a set of k samples. The analysis assesses the hypothesis that the samples
come from distributions with the same mean (but without making any assumptions about the
distributions themselves). The samples can be stored in different variates and supplied as a list
in the DATA pointer. Alternatively, they can all be placed in a single variate, and the GROUPS
option set to a factor to indicate the sample to which each unit belongs.

Output from the procedure is controlled by the PRINT option: test (the default setting) prints
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the relevant test statistics, and ranks prints the vector of ranks for each sample. When there are
at least five observations in each of the samples, the test statistic approximately follows a Chi-
square distribution on k!1 degrees of freedom. When this condition is not satisfied, and there
are three samples, KRUSKAL uses a table of calculated values of the distribution of the statistic.

The test statistic, vector of mean ranks and degrees of freedom can be saved using the
STATISTIC, MEANRANKS and DF options, respectively. Parameter RANKS can be set to a variate,
or variates, to store the ranks of the data relative to the whole data set.

Example 2.6.1 shows the use of the procedure KRUSKAL to analyse the doughnut data from
Example 2.3.2. The chi-square test indicates that differences do exist between groups, and the
mean ranks show which samples tend to have higher or lower scores: in this case sample 2 tends
to have higher and group 4 lower scores, as in the analysis of variance in Example 2.3.2.

Example 2.6.1

   8  KRUSKAL [GROUPS=Fat] Absorb

Kruskal-Wallis One-Way Analysis of Variance
===========================================

Variate: Absorb
Group factor: Fat
Value of H = 11.81
Adjusted for ties = 11.83

 Sample        Size   Mean rank
Group 1           6       11.25
Group 2           6       19.50
Group 3           6       13.58
Group 4           6        5.67

Degrees of freedom = 3
Chi-square p-value = 0.008

2.6.2 Friedman's nonparametric analysis of variance

FRIEDMAN procedure
Performs Friedman's nonparametric analysis of variance (S. Langton).

Options
PRINT = string tokens Output required (test, ranks); default test
TREATMENTS = factor Treatment factor
BLOCKS = factor Block factor

Parameters
DATA = variates Identifier of the variate holding the data values
RANKS = variates Saves the ranks
STATISTIC = scalars Saves the test statistic
DF = scalars Saves the degrees of freedom for the chi-square

approximation
PROBABILITY = scalars Saves the probability value for the chi-square statistic

Friedman's test is a nonparametric test for analysing a randomized complete block design. That
is, the data set contains observations on k treatments assessed under n different conditions (or
blocks). The test assesses the hypothesis that, under each condition, the samples arise from
distributions with the same mean versus the alternative that the distribution means differ
according to the treatment.
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The variate of observations is specified using the DATA parameter, whilst options
TREATMENTS and BLOCKS supply the treatment and blocking factors. Each block is checked in
turn to ensure that it consists of exactly one replicate of each treatment, after excluding any units
which are restricted out or which have missing values for DATA, TREATMENTS or BLOCKS. Any
block not meeting this condition is excluded from analysis and a warning is printed.
FRIEDMAN calculates the test statistic together with a probability value based on a chi-square

approximation. If sample sizes are small, stored tabulated values are printed as well. The PRINT
option controls printed output, with settings test to print the various test statistics, and ranks
to print the ranks (together with the BLOCKS, TREATMENTS and DATA). Parameters RANKS,
STATISTIC, DF and PROBABILITY can be used to save the ranks, the test statistic (adjusted for
ties), the degrees of freedom for the chi-square approximation, and the probability value for the
chi-square approximation.

Example 2.6.2

   2  " Example from Siegel & Castellan (1988), p.179."
   3  VARIATE Rank
   4  READ [PRINT=data,errors] Rank

   5  1 3 2   2 3 1     1 3 2     1 2 3   3 1 2   2 3 1
   6  3 2 1   1 3 2     3 1 2     3 1 2   2 3 1   2 3 1
   7  3 2 1   2 3 1   2.5 2.5 1   3 2 1   3 2 1   2 3 1 :
   8  FACTOR [LEVELS=18; VALUES=3(1...18)] Group
   9  & [LEVELS=3; LABELS=!t(RR,RU,UR); VALUES=(1...3)18] Type
  10  FRIEDMAN [TREATMENTS=Type; BLOCKS=Group] Rank

Friedman's test
===============

Data variate: Rank
Blocks:       Group
Treatments:   Type

Based on 18 blocks of 3 treatments
Friedman's statistic = 8.58
Adjusted for ties = 8.70
P-value using chi-square approximation (2 d.f.) = 0.013
Based on 2 degrees of freedom

2.6.3 Steel's many-one rank test

STEEL procedure
Performs Steel's many-one rank test (R.W. Payne).

Options
PRINT = string token Controls printed output (description, sumranks,

critical, permutationtest); default desc, sumr,
crit

METHOD = string token Form of the alternative hypothesis (twosided,
greaterthan, lessthan); default twos

TREATMENTS = factor Defines the treatments
CONTROL = scalar or text Treatment level corresponding to the control; default

takes the reference level of TREATMENTS
NTIMES = scalar Number of permutations for the permutation test; default

999
SEED = scalar Seed to use to generate the random numbers for the

permutation test; default 0
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DATA = variates Data values for the tests
SUMRANKS = tables Saves the sum of the ranks within the treatments from each

test
RANKS = variates Saves the ranks of the data values for each test

Steel's test (Steel 1959) is a multiple-comparison test for comparing several treatments with a
control treatment. The data are assumed to come from a one-way classification where all the
treatments (and the control) have equal replication. The data values are specified, in a variate,
using the DATA parameter. The TREATMENTS option species a factor to indicate the allocation
of data values to treatments. The CONTROL option indicates which level of the TREATMENTS
factor is the control; if this is not set, the reference level of TREATMENTS is used.

The METHOD option defines the type of test that is done. By default STEEL does a two-sided
test, so the test is against the alternative hypothesis that the treatments may be either less than
or greater than the control. If you set METHOD=lowerthan, STEEL does a one-sided test of the
null hypothesis that the treatment values are not lower than the control. Alternatively, you can
set METHOD=greaterthan, to do a one-sided test of the null hypothesis that the treatment
values are not greater than the control.

The test operates by comparing the data values from each treatment in turn with the control.
The comparison is made by pooling the data values from the treatment and control, forming their
ranks, and calculating the sum of the ranks for the treatment data values. For
METHOD=greaterthan, the test statistic for each treatment is simply the sum of the ranks for
each treatment. For METHOD=lessthan, each rank sum must be subtracted from the total sum
of ranks (2n + 1) × n, where n is the replication of the treatments. For METHOD=twosided, the
statistic is the minimum of the greaterthan and the lessthan statistics.

The PRINT option controls printed output, with settings:
description description of the data and test;
sumranks the test statistics (sums of ranks for each treatment);
critical critical value as provided by Steel (1959);
permutationtest uses a random permutation test to forms critical values and

the probability that any treatment differs from control
(according to the test specified by METHOD).

By default these are all produced.
By default, when PRINT=perm, STEEL makes 999 random allocations of the data to the

treatment and control groups (using a default seed), and determines critical values for the test
from the distribution of the minimum rank sum over these randomly generated datasets. The
NTIMES option allows you to request another number of allocations, and the SEED option allows
you to specify another seed. STEEL checks whether NTIMES is greater than the number of
possible ways in which the data values can be allocated. If so, it does an exact test instead, which
takes each possible allocation once. The results should be more reliable than Steel's critical
values, which are based on a multivariate Normal approximation.

The rank sums can be saved using the SUMRANKS parameter, and the ranks of the individual
treatment data values can be saved using the RANKS parameter.

Example 2.6.3 analyses data from Steel (1959). These are Binnet IQ scores of 3-year old
female, white, private patients. classified as Normal. The aim is to test the suggestion that the
IQ's of the Anoxic, Rh negative or Premature patients are less than those in the "Normal" control
group. The permutation test concludes that no groups have IQ's significantly less than control:
the 5% critical value is 27, but the minimum rank sum (for Anoxic) is 28.

Example 2.6.3

   2  FACTOR  [NVALUES=24; LABELS=!t(Normal,Anoxic,'Rh negative',Premature);\
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   3          VALUES=(1...4)6] Treatment
   4  VARIATE [NVALUES=24] IQ
   5  READ    IQ

    Identifier   Minimum      Mean   Maximum    Values   Missing
            IQ     86.00     108.0     136.0        24         0

  12  STEEL   [METHOD=less; TREATMENTS=Treatment; CONTROL='Normal'] IQ

Steel's many-one rank test
==========================

Data variate: IQ
Treatments:   Treatment

Test against alternative hypothesis that treatments are less than control
(Normal).

               Sum of ranks
    Treatment
       Normal             -
       Anoxic          28.0
  Rh negative          38.0
    Premature          33.5

Minimum sum of ranks 28

* MESSAGE: Default seed for random number generator used with value 574750

Probability determined from 999 random permutations = 0.085

Critical values formed by a permutation test
--------------------------------------------

   5% 27.00
   1% 22.25
 0.1% 21.00

Critical values from Steel (1959)
---------------------------------

   5%    26
   1%    22

2.7 Plotting relationships between variables

Many investigations are concerned with understanding, and perhaps then modelling,
relationships between variables. In this section we show a few of the techniques provided by
Genstat for displaying relationships graphically (all accessible using the Graphics Wizard of
Genstat for Windows). You can also use Genstat's very flexible graphics facilities to generate
your own types of display.

2.7.1 Scatter plots

The scatterplot is a very effective method for displaying the relationship between pairs of
variables (see Tufte 1983, page 47). To study a single pair of variables, you can use the DGRAPH
directive (1:6.2.1) for a high-resolution plot, or the LPGRAPH directive (1:6.10.1) for the line-
printer equivalent. Example 2.7.1 draws a scatterplot showing cancer death rates and cigarette
consumption, as discussed by Tufte (1983, page 47). The resulting picture is shown in Figure
2.7.1.
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Figure 2.7.1

Example 2.7.1

   2  " Display the relationship between death rates from lung cancer and
  -3    per capita cigarette consumption. Data from Doll (1955); also
  -4    displayed by Tufte (1983)."
   5  TEXT   Country
   6  READ   [PRINT=data] Country,Deaths,Cigarettes

   7  Australia       172  452
   8  Canada          151  508
   9  Denmark         168  379
  10  Finland         353 1113
  11  'Great Britain' 468 1145
  12  Holland         244  468
  13  Iceland          60  226
  14  Norway           95  258
  15  Sweden          116  315
  16  Switzerland     252  540
  17  U.S.A.          194 1290 :
  18  PEN    1; SYMBOLS=9; LABELS=Country
  19  XAXIS  3; TITLE='Cigarette consumption';\
  20         LOWER=0; UPPER=1500; MARKS=!(0,250...1500)
  21  YAXIS  3; TITLE='Deaths per million';\
  22         LOWER=0; UPPER=500; MARKS=!(0,50...500)
  23  DGRAPH [TITLE=\
  24         'Lung cancer deaths 1950 vs cigarette consumption 1930';\
  25         WINDOW=3; KEY=0] Deaths; Cigarettes; PEN=1

A single DGRAPH statement is all that
would have been necessary to produce
a simple unlabelled scatterplot (see
1:6.2.1). The PEN, XAXIS and YAXIS
statements here provide labelling for
the axes and the points (see 1:6.9). We
could have reproduced Tufte's picture
exactly, but this would have required a
slightly more complicated program, to
fit and display a regression line, and
further refine the graphical
environment).

The scatter-plot matrix provides a
generalization of the simple scatter plot
for the situation of more than two
variables. A symmetric scatter-plot
matrix is a triangular array of scatter
plots showing every variable plotted
against every other variable.
Alternatively, a rectangular scatter-plot
matrix plots one ser of variables against another set. Scatter-plot matrices are often studied prior
to a multivariate analysis (see Chapter 6), and can be produced (in high-resolution graphics) by
the DMSCATTER procedure. Details and an example are given in 1:6.8.4.



2.7  Plotting relationships between variables 97

2.7.2 Parallel coordinates

DPARALLEL procedure
Displays multivariate data using parallel coordinates (Z. Karaman).

Options
TITLE = text Title for the plot
GROUPS = factor Defines grouping of the units (if any); by default,

different pens are used for the observations in different
groups

PERMUTATIONSALL = string token Whether to display all necessary permutations so that
any two variates will be adjacent in at least one plot, or
just display once in the order given by the DATA pointer
(yes, no); default no

SCALING = string token Whether to do scaling overall (scale all variates on the
same scale), or to scale each variate separately
(overall, separate); default sepa

PEN = variate Pens to be used for different groups (if any); default *
uses pens from 1 up to the number of groups (number of
levels of the GROUPS factor)

Parameter
DATA = variates Data variables to be plotted

The DPARALLEL procedure displays the relationship between a set of variates using parallel
coordinates. The dimensions are not represented by orthogonal lines as is customary when
plotting scatter diagrams, but are represented by a series of parallel lines (either horizontal or
vertical), with each point in multidimensional space represented by a broken line connecting its
coordinates in each dimension. The only limit on the number of dimensions that can be displayed
simultaneously by such plot is its readability, which is a function of the underlying graphics
display (hardware).

The relationship between two variables can be visually assessed by inspecting the plot. When
the correlation between two variables is close to !1, the lines will cross over so, in the limit, we
would have a pencil of lines. (A pencil of lines is a set of lines that are coincident at a single
point.) On the other hand, when the correlation approaches +1, we will have fewer and fewer
crossovers, so that in the limit we will have a set of parallel lines.
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Figure 2.7.2

The pairwise comparisons
are easy for variables
represented by adjacent axes;
however, they are much more
difficult for the axes far away
on the graph. If the
PERMUTATIONSALL option is
set to yes, several plots will
be produced so that every pair
of variables is adjacent in at
least one plot.

The data are specified, in a
list of variates, using the DATA
parameter. The GROUPS option
can be used to specify a
grouping factor. The lines for
observations in each group are
then plotted using different
pens, thus giving an immediate
insight to any patterns in data.
By default, pens 1 upwards are
used for the different groups,
but the PEN option can be used
to specify other pens, in a
variate with as many values as groups. If the GROUPS option is not set, the PEN option can be set
to a scalar, to select the pen to be used for all the points. The TITLE option can be used to supply
a title for the plots.

Example 2.7.2 produces a parallel coordinates plot of Fisher's Iris Data; see Figure 2.7.2.

Example 2.7.2

   1  SET [WORKINGDIRECTORY='D:/G5/Proclib/PL23']
   2  SPLOAD    [PRINT=*] '%GENDIR%/Data/Iris.gsh'
   3  PEN       1...3; LINESTYLE=1...3
   4  DPARALLEL [TITLE=!t('Fisher''s Iris Data'); GROUPS=Species] \
   5            Petal_Length,Petal_Width,Sepal_Length,Sepal_Width

Genstat also provides several graphical displays specifically for examining the way in which one
variable changes with two other variables, namely contour plots (DCONTOUR or CONTOUR),
perspective views of surfaces (DSURFACE), three-dimensional graphs (D3GRAPH) and three-
dimensional histograms (D3HISTOGRAM).

2.8 Correlation

Correlation is a measure of the association between two variables. The most commonly used
correlation coefficient is the product-moment correlation coefficient which measures linear
association (2.8.1), but Genstat also has some nonparametric alternatives: Spearman's rank
correlation coefficient (2.8.2), Kendall's rank correlation coefficient ô (2.8.3), Kendall's
coefficient of concordance (2.8.4), the kappa coefficient of agreement for nominally scaled data
(2.8.5), the gamma statistic of agreement for ordinal data (2.8.6) and Lin's concordance
correlation coefficient (2.8.7). Finally, if your aim is to assess the agreement between two sets
of measurements, an alternative to correlation is to plot the differences between the
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measurements against their mean, in a Bland-Altman plot; see 2.8.8.

2.8.1 Product-moment correlation coefficient

Product-moment correlation coefficients between variates can be calculated by the
FCORRELATION procedure.

FCORRELATION procedure
Forms the correlation matrix for a list of variates (R.W. Payne).

Options
PRINT = string tokens Printed output (correlations, test); default corr
METHOD = string token Type of test to make (against zero) for the correlations

(twosided, greater, lessthan); default twos
WEIGHTS = variate Provides weights for the units of the variates; default *

assumes that they all have weight one
CORRELATIONS = symmetric matrix

Saves the correlations
PROBABILITIES = symmetric matrix

Saves the test probabilities
NOBSERVATIONS = scalars Saves the number of observations from which the

correlations have been calculated

Parameter
DATA = variates Variates for which the matrix is to be calculated

The variates are listed by the DATA parameter. The WEIGHTS option can provide a variate of
weights for the units of the variates; by default these are all assumed to have weight one.

Printed output is controlled by the PRINT option with settings:
correlations prints the correlation matrix;
tests prints tests for the correlations.

By default PRINT=correlation.
The METHOD option indicates the type of test to be done, with settings:

twosided for a two-sided test of the null hupothesis that that the
correlation is zero;

greaterthan for a one-sided test of the null hypothesis that the
correlation is not greater than zero;

lessthan for a one-sided test of the null hypothesis that the
correlation is not less than zero.

Tests cannot be produced if there are fewer than two observations.
The correlation matrix can be saved using the CORRELATIONS option, the (symmetric) matrix

of test probabilities can be saved using the PROBABILITIES option, and the number of
observations upon which it is based can be saved using NOBSERVATIONS option.

Example 2.8.1 shows how to use FCORRELATION to display a matrix of correlation
coefficients between three measures of phosphorus in soil, and test the null hypothesis that they
are not greater than zero.

Example 2.8.1

   2  " Correlations between inorganic phosphorus, organic phosphorus,
  -3    and estimated plant-available phosphorus. Data from Eid et al.
  -4    (1954); also analysed by Snedecor & Cochran (1989) p.335."
   5  READ [PRINT=data] InorganicP,OrganicP,PlantavailableP
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   6   0.4 53 64   0.4 23 60   3.1 19 71   0.6 34 61   4.7 24 54
   7   1.7 65 77   9.4 44 81  10.1 31 93  11.6 29 93  12.6 58 51
   8  10.9 37 76  23.1 46 96  23.1 50 77  21.6 44 93  23.1 56 95
   9   1.9 36 54  29.9 51 99 :
  10  FCORRELATION [PRINT=correlations,test; METHOD=greaterthan]\
  11               InorganicP,OrganicP,PlantavailableP

Correlations
============

     InorganicP   1        -
       OrganicP   2   0.3989        -
PlantavailableP   3   0.7201   0.2118        -
                           1        2        3

Number of observations: 17

One-sided test of correlations greater than zero

     InorganicP   1           -
       OrganicP   2      0.0563           -
PlantavailableP   3      <0.001      0.2072           -
                              1           2           3

Note, however, that the product-moment correlation coefficient is assessing the linear
relationship between the variables. It may not be effective with non-linear relationships. So, it
is sensible also the plot the variables (see Section 2.7.1). If the relationship is causal (i.e. one
variable represents a response and the other a "treatment") it is usually more informative to fit
a model, using the methods for linear, generalized linear or non-linear regression described in
Chapter 3. Methods for determining sample sizes for correlations are described in Section
4.12.10.

2.8.2 Spearman's rank correlation coefficient

This is the nonparametric equivalent of the product-moment correlation coefficient, based on the
ranks of the data values rather than on the values themselves.

SPEARMAN procedure
Calculates Spearman's rank correlation coefficient (S.J. Welham, N.M. Maclaren & H.R.
Simpson).

Options
PRINT = string tokens Output required (test, correlations, ranks): test

produces the correlation coefficient/matrix and relevant
test statistics, correlations prints out just the
correlation coefficients for each pair of variates; ranks
produces the vectors of ranks for each sample; default
test

GROUPS = factor Defines the sample membership if only one variate is
specified by DATA

CORRELATION = scalar or symmetric matrix
Scalar to save the rank correlation coefficient if there
are two samples, or symmetric matrix to save the
coefficients between all pairs of samples if there are
several

T = scalar or symmetric matrix Scalar to save the Student's t approximation to the
correlation coefficient if there are two samples, or
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symmetric matrix to save the t approximations for all
pairs of samples if there are several (calculated only if
the sample size is 8 or more)

DF = scalars Save the degrees of freedom for each t statistic

Parameters
DATA = variates List of variates containing the data for each sample, or a

single variate containing the data from all the samples
(the GROUPS option must then be set to indicate the
sample to which each unit belongs)

RANKS = variates Saves the ranks

SPEARMAN calculates Spearman's rank correlation coefficient between pairs of samples. The
samples can be stored in different variates and supplied as a list with the DATA parameter.
Alternatively, they can all be placed in a single variate, and the GROUPS option set to a factor to
indicate the sample to which each unit belongs.

If the sample size is less than 50, an exact two-sided probability is calculated using the
PRSPEARMAN procedure. Note, though, that the probability will be approximate if the variates
contain ties; the probability is calculated for the adjusted correlation, but the calculation itself
takes no account of the ties. SPEARMAN also calculates a Student's t approximation if the sample
size is 8 or more (i.e. large enough for the approximation to be valid).

Printed output is controlled by the PRINT option, with settings:
correlation to display correlations;
test to display tests and correlations; and
ranks to display the ranks for each sample.

The results can also be saved using the CORRELATION, T and DF options and the RANKS
parameter.

Example 2.8.2 illustrates SPEARMAN, using the same data as in Example 2.8.1.

Example 2.8.2

  12  SPEARMAN InorganicP,OrganicP,PlantavailableP

Spearman's rank correlation coefficient
=======================================

Sample size = 17
Degrees of freedom = 15

Correlation matrix (adjusted for ties)
--------------------------------------

      InorganicP   1   1.000
        OrganicP   2   0.360   1.000
 PlantavailableP   3   0.663   0.245   1.000
                           1       2       3

Exact probabilities
-------------------

      InorganicP   1       *
        OrganicP   2   0.038       *
 PlantavailableP   3   0.001   0.084       *
                           1       2       3

(calculate for adjusted correlations, but ignoring ties)
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t Approximation
---------------

      InorganicP   1       *
        OrganicP   2   1.496       *
 PlantavailableP   3   3.426   0.978       *
                           1       2       3

P-values
--------

      InorganicP   1       *
        OrganicP   2   0.155       *
 PlantavailableP   3   0.004   0.343       *
                           1       2       3

2.8.3 Kendall's rank correlation coefficient ô

Kendall's rank correlation coefficient (known as ô i.e. tau) provides an alternative to the
Spearman correlation coefficient (2.8.2).

KTAU procedure
Calculates Kendall's rank correlation coefficient ô (R.W. Payne & D.B. Baird).

Options
PRINT = string tokens Output required (correlations, probabilities);

default corr, prob
GROUPS = factor Defines the sample membership if only one variate is

specified by DATA
CORRELATIONS = scalar or symmetric matrix

Scalar to save the rank correlation coefficient if there
are two samples, or symmetric matrix to save the
coefficients between all pairs of samples if there are
several

PROBABILITIES = scalar or symmetric matrix
Scalar to save the probability for the correlation
coefficient if there are two samples, or symmetric matrix
to save the probabilities for all pairs of samples if there
are several

NORMAL = scalar or symmetric matrix
Scalar to save a transformation of tau that approximately
follows a Normal distribution with mean zero and
variance if there are two samples, or symmetric matrix
to save the transformation for all pairs of samples if
there are several

Parameter
DATA = variates List of variates containing the data for each sample, or a

single variate containing the data from all the samples
(the GROUPS option must then be set to indicate the
sample to which each unit belongs)

The samples are specified as with SPEARMEN: as a list of DATA variates (one for each sample),
or as a single DATA variate with the GROUPS option set to a factor to indicate the sample to which
each unit belongs.
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The PRINT option controls the printed output, with settings:
correlations to print the correlations between the samples; and
probabilities to print the corresponding probabilities (calculated under

the assumption, or null hypothesis, that there is no
association between the samples).

By default these are both printed.
The CORRELATIONS option allows the correlations to be saved, in a scalar if there are only

two samples or in a symmetric matrix if there are three or more. Similarly, the probabilities can
be saved using the PROBABILITIES option. These are calculated by procedure PRKTAU, which
uses an exact formula for samples of size less than 35. For larger samples a Normal
approximation can be used, which gives results practically identical to the exact values.

A drawback of the exact method is that is does not take account of ties. As an alternative, you
can use the NORMAL option to save a transformation of ô that approximately follows a Normal
distribution with mean zero and variance; this provides reasonably accurate probabilities when
the number of units N is no smaller than 8 (see Kendall 1948). Example 2.8.3 shows how you
can use the CUNORMAL function (1:4.2.9) to obtain probabilities from the Normal transformation
of ô.

Example 2.8.3

  13  KTAU [NORMAL=Knorm] InorganicP,OrganicP,PlantavailableP

Kendall's rank correlation coefficient tau
==========================================

     InorganicP           1.0000
       OrganicP           0.3071           1.0000
PlantavailableP           0.5247           0.1805           1.0000
                      InorganicP         OrganicP  PlantavailableP

Probabilities
-------------

     InorganicP                *
       OrganicP           0.0381                *
PlantavailableP           0.0009           0.1541                *
                      InorganicP         OrganicP  PlantavailableP

* MESSAGE: probabilities of tau not adjusted for ties.

  14  PRINT CUNORMAL(Knorm)

             CUNORMAL(Knorm)

            1           *
            2     0.04266           *
            3     0.00164     0.15600           *
                        1           2           3

2.8.4 Kendall's coefficient of concordance

This coefficient, which can be calculated by procedure KCONCORDANCE and the Kendall's

Coefficient of Concordance menu of Genstat for Windows, measures the overall level of
association between several different sets of measurements taken on a single set of subjects.
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KCONCORDANCE procedure
Calculates Kendall's Coefficient of Concordance, synonym CONCORD (S.J. Welham, N.M.
Maclaren & H.R. Simpson).

Options
PRINT = string tokens Output required (test, ranks): test produces the

relevant test statistics, ranks produces the vector of
mean ranks and the ranks for each sample; default test

GROUPS = factor Defines the variable stored in each unit if only one
variate is specified by DATA

STATISTIC = scalar Scalar to save the coefficient of concordance
CHISQUARE = scalar Scalar to save the chi-square approximation to the

coefficient (calculated only if the sample size is at least
8)

MEANRANKS = variate Variate to save the mean ranks for individuals over
variables

DF = scalar Scalar to save the degrees of freedom for CHISQUARE

Parameters
DATA = variates List of variables to be compared, or a single variate

containing the data for all the variables (the GROUPS
option must then be set to indicate the variable recorded
in each unit belongs)

RANKS = variates Save the ranks of the variables

Kendall's Coefficient of Concordance is a measure of association between k rankings on n
individuals. So, we have a set of N individuals that have been ranked on each of k variables in
turn, and wish to compare the rankings. The variables can be stored in separate variates, with the
DATA parameter set to list them all. Alternatively, all the data can be provided in a single variate,
with the GROUPS option set to a factor to indicate which variable is recorded in each unit of the
variate. (KCONCORDANCE then assumes that the individuals are recorded in the same order for
each variable.)
KCONCORDANCE calculates the chi-square approximation to the statistic if the sample sizes are

large enough (i.e. 8 or more). Otherwise, for 2<k<21 and 2<n<8, KCONCORDANCE looks up the
probability from a stored table. The results of these calculations can be printed using the test
setting of PRINT, or saved using the options STATISTIC (for the coefficient), CHISQUARE (for
the chi-square statistic) and DF (degrees of freedom). The ranks setting of PRINT causes the
vector of mean ranks (over all variates) and the ranks for each variate individually to be
displayed, and these can be saved using the MEANRANKS option and the RANKS parameter.
 Example 2.8.4 calculates the overall concordance between the three different measures of
phosphorus in soil, indicating evidence of association between the orderings of the three
variables.

Example 2.8.4

  15  KCONCORDANCE InorganicP,OrganicP,PlantavailableP

Kendall's coefficient of concordance
====================================

Variates: InorganicP, OrganicP, PlantavailableP.
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Coefficient: 0.612
Adjusted for ties: 0.615
Sample size: 17
Number of samples: 3
Sum of squares: 2247.00
Chi-Square: 29.5
Degrees of freedom: 16.0
Probability: 0.021

2.8.5 The kappa coefficient

KAPPA procedure
Calculates a kappa coefficient of agreement for nominally scaled data (A.J. Rook).

Option
PRINT = string token Whether to print kappa and its associated information

(test); default test

Parameters
DATA = tables Data sets, each consisting of an object × category table

whose entries are the number of judges assigning the ith
object to the jth category

STATISTIC = scalars Save the value of kappa for each data table
VARIANCE = scalars Save the corresponding variances

The kappa coefficient (which can be calculated by the Kappa Statistic menu of Genstat for
Windows) provides a way of assessing the agreement between judges who have rated a set of n
objects or subjects using a nominal scale: that is, each judge has allocated each object to one of
m different categories.

The data for KAPPA, specified by the DATA parameter, consist of an n × m table whose entries
indicate the number of judges that have assigned the ith object to the jth category. This must not
contain any missing values and all the row totals must be equal.

Kappa takes the value one when there is complete agreement and zero when there is none
(except that expected by chance). The printing of the test statistic and its associated information
is controlled by the PRINT option. With the default, test, the procedure prints the actual and
expected proportion of times that the judges agree, the resulting value of kappa and its variance.
When N is large, the sampling distribution of kappa is approximately Normal. The procedure
thus also prints the value of kappa divided by the variance, and its probability assuming a
Normal distribution. A warning is printed if N is less than 20. The STATISTIC and VARIANCE
parameters allow kappa and its variance to be saved, in scalars.

Example 2.8.5

   2  " Data from Siegel and Castellan (1988) p.287."
   3  FACTOR [LEVELS=29] Object
   4  FACTOR [LEVELS=5] Category
   5  TABLE  [CLASSIFICATION=Object,Category; \
   6    VALUES=(4(0),4, 2,0,2,2(0))2, 3(0),1,3, 2(1),2,2(0), (3,0,1,2(0))2,\
   7    2(0),2(2),0, 3,0,1,2(0), 4(0),4, (4,4(0))3, 2(0),3,1,0, 1,0,2,1,0, \
   8    3(0),2(2), 4(0),4, 2(0),3,0,1, 0,1,3,2(0), 2(0),1,0,3, 2(0),3,1,0, \
   9    (4,4(0))2, 2,0,2,2(0), 1,0,3,2(0), (2,0,2,2(0))2, 0,1,2,0,1] Fish
  10  PRINT  Fish; FIELD=4; DECIMALS=0
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              Fish
     Category   1   2   3   4   5
       Object
            1   0   0   0   0   4
            2   2   0   2   0   0
            3   0   0   0   0   4
            4   2   0   2   0   0
            5   0   0   0   1   3
            6   1   1   2   0   0
            7   3   0   1   0   0
            8   3   0   1   0   0
            9   0   0   2   2   0
           10   3   0   1   0   0
           11   0   0   0   0   4
           12   4   0   0   0   0
           13   4   0   0   0   0
           14   4   0   0   0   0
           15   0   0   3   1   0
           16   1   0   2   1   0
           17   0   0   0   2   2
           18   0   0   0   0   4
           19   0   0   3   0   1
           20   0   1   3   0   0
           21   0   0   1   0   3
           22   0   0   3   1   0
           23   4   0   0   0   0
           24   4   0   0   0   0
           25   2   0   2   0   0
           26   1   0   3   0   0
           27   2   0   2   0   0
           28   2   0   2   0   0
           29   0   1   2   0   1

  11  KAPPA  Fish

Measures of agreement for nominally scaled data
===============================================

Proportion of times judges agree
       Actual           Expected    Kappa coefficient    Variance
        0.580              0.288                0.410     0.00271

Test of significance of Kappa
-----------------------------

Kappa / s.e.(Kappa)  Normal probability
              7.887              <0.001

2.8.6 The gamma statistic

GSTATISTIC procedure
Calculates the gamma statistic of agreement for ordinal data (A.W. Gordon).

Options
PRINT = string token Whether to print the statistic with its associated

information and the resulting test (test); default test
METHOD = string token Type of test required (twosided, positive,

negative); default twos

Parameters
DATA = tables Tables of data each classified by the two variables

(factors) of interest
STATISTIC = scalars Save the value of gamma for each data table
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VARIANCE = scalars Save the corresponding variances

The gamma statistic (Siegel & Castellan 1988, pages 291-298) provides a way of assessing the
agreement between two variables measured using ordinal scales. In Genstat these would each
be represented as factors whose levels represent a ranking of the individuals according to some
measurement.

For example, suppose we have a factor A with r levels and a factor B with k levels. The data
for GSTATISTIC, specified by the DATA parameter, consists of an r by k table classified by A and
B, whose entries indicate the number of times that the ith level of variable A occurs with the jth
level of variable B. The table must not contain any missing values. The statistic has the value 1
when there is no disagreement in the ordering of the variables, !1 if the ordering defined by A
has no disagreement with the reverse of the ordering defined by B, and zero if the variables are
independent.

The printing of the test statistic and its associated information is controlled by the PRINT
option. With the default, test, the procedure prints the number of times that the variables agree
and disagree, the resulting value of gamma and its variance. When the number of observations
N is large, the sampling distribution of gamma is approximately Normal. The procedure thus also
prints the value of gamma divided by the variance, and its probability assuming a Normal
distribution. A warning is printed if N is less than 20.

The test is assumed to be two-sided (i.e. no prior knowledge is assumed about the type of
association) unless otherwise requested by the METHOD option. Setting METHOD=positive will
give a one-sided test of the null hypothesis that there is a positive association. Similarly,
METHOD=negative will produce a one-sided test that there is a negative association.

The STATISTIC and VARIANCE parameters allow gamma and its variance to be saved, in
scalars.

Example 2.8.6

   2  " Example from Siegel and Castellan (1988) p.296."
   3  FACTOR [LABELS=!t('Successful quitter','In-process quitter',\
   4         'Unsuccessful quitter')] Ability
   5  &      [LABELS=!t('1','2-4','5-9','10-14','15-19','20-25','>25')] Time
   6  TABLE  [CLASSIFICATION=Ability,Time; VALUES=13,29,26, 22,9,8,\
   7         8,5,2, 6,2,1, 3,0,1, 9,16,14, 21,16,29] Nurses
   8  PRINT  Nurses; FIELD=6; DECIMALS=0

                     Nurses
                Time     1   2-4   5-9 10-14 15-19 20-25   >25
             Ability
  Successful quitter    13    29    26    22     9     8     8
  In-process quitter     5     2     6     2     1     3     0
Unsuccessful quitter     1     9    16    14    21    16    29

   9  GSTATISTIC Nurses

Measures of association for ordered variables
=============================================

      No agreements   No disagreements   Gamma statistic    Variance
              10580               3690            0.4828     0.01290

Two-tailed test of significance for Gamma non-zero
--------------------------------------------------

   Gamma/s.e.(Gamma)  Normal probability
               4.251              <0.001
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2.8.7 Lin's concordance correlation coefficient

LCONCORDANCE procedure
Calculates Lin's concordance correlation coefficient (R.W. Payne & M.S. Dhanoa).

Options
PRINT = string token Controls printed output (concordance); default conc
GROUPS = factor Defines the sets of measurements when they are all

supplied in a single DATA variate
CONCORDANCE = scalar or variate Saves Lin's the concordance coefficient
LOWER = scalar or variate Saves the lower confidence limit for the coefficient
UPPER = scalar or variate Saves the upper confidence limit for the coefficient
CORRELATION = scalar or variate Saves the correlation coefficient
CB = scalar or variate Saves the bias correction factor
ZTRANSFORMATION = scalar or variate

Saves the Z transformation of the coefficient
ZSD = scalar or variate Saves the standard deviation of the Z transformation
CIPROBABILITY = scalar Defines the size of the confidence interval; default 0.95

i.e. 95%
REFERENCELEVEL = scalar or text Defines the set of measurements to be used as the

control if there are more than two variates or groups;
default 1

Parameter
DATA = variates List of variates specifying the sets of measurements to

be compared, or a single variate containing all the
measurements (the GROUPS option must then be set to
indicate the set to which each unit belongs)

Lin's concordance correlation coefficient measures how well a new set of observations reproduce
an original set. So, for example, it can be used to assess the effectiveness of a new instrument
or a new measurement method. The coefficient is formed by multiplying two components. The
first is the ordinary Pearson correlation coefficient (2.8.1), which assesses the linearity of the
relationship between the two sets of measurements. However, for the second set to reproduce
the first, additional requirements are that the slope of the line relating the two sets should be one
and that the line should go through the origin. These other aspects are assessed by the second
component, which is known as Cb.

The measurements are supplied using the DATA parameter. You can set this to a list of variates,
one for each measurement. Alternatively, you can put them all into a single variate, and set the
GROUPS option to a factor to identify which measurement is stored in each unit of the variate.
(LCONCORDANCE then assumes that the individuals that were measured are recorded in the same
order within each set of measurements.) If there are more than two sets of measurements,
LCONCORDANCE takes one of these as the control (i.e. the standard) set, and compares the others
with this. By default the control is first variate if DATA has been set to a list of variates, or the
set corresponding to the reference level of the GROUPS factor (see the FACTOR directive, 1:2.3.3)
if there was a single variate. However, you can define a different control by setting the
REFERENCELEVEL option, to a scalar to indicate the number of the variate within the list of DATA
variates of the level of the GROUPS factor. Alternatively, if the GROUPS factor has labels, you
can set REFERENCELEVEL to a text.

Lin (1989, 2000) has shown that, if the coefficient is given an inverse hyperbolic tangent
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transformation (i.e. a Z-transformation), the result has an approximate Normal distribution.
LCONCORDANCE uses this to produce a confidence interval for the coefficient. The size of the
interval is specified by the CIPROBABILITY option; the default is 0.95 (i.e. 95%).

By default, the concordance coefficient, the lower and upper confidence limits, the correlation
coefficient and Cb are printed. However, you can set option PRINT=* to suppress this. The
CONCORDANCE, LOWER, UPPER, CORRELATION, CB, ZTRANSFORMATION and ZSD parameters
allow the coefficient and all the associated information to be saved.

The coefficient is illustrated in Example 2.8.7.

Example 2.8.7

  2  " Data from Muller & Buttner (1994), Statistics in Medicine, 13, 2465-76;
 -3    also see Nickerson (1997), Biometrics, 53, 1503-1507."
  4  VARIATE [VALUES=4.8,5.6,6.0,6.4,6.5,6.6,6.8,7.0,7.0,7.2,7.4,7.6,\
  5          7.7,7.7,8.2,8.2,8.3,8.5,9.3,10.2,10.4,10.6,11.4] Trial1
  6  &       [VALUES=5.8,5.1,7.7,7.8,7.6,8.1,8.0,8.1,6.6,8.1,9.5,9.6,\
  7          8.5,9.5,9.1,10.,9.1,10.8,11.5,11.5,11.2,11.5,12.0] Trial2
  8  LCONCORDANCE Trial1,Trial2

Lin's concordance correlation coefficient
=========================================

   Concordance       Lower       Upper    Correlation        Cb
        0.7512      0.5751      0.8608         0.9244    0.8126

Lin (1989) derives the coefficient (ñc) by considering how well the relationship between the
measurements is represented by a line through the origin at an angle of 45 degrees (as would be
generated if the two measurements generated identical results):

ñc  =  1 ! dc
2 / du

2

where dc
2 is the expected squared perpendicular deviation from the line, and du

2 is the expected
squared perpendicular deviation from the line when the measurements are uncorrelated.

This can be written as
ñc  =  ñ  ×  Cb

The term ñ is the Pearson product-moment correlation coefficient, while Cb is a bias correction
factor which is calculated by

Cb  =  2 / (v + 1/v + u2

v  =  s1 / s2

u  = (m1 ! m2) / %(s1 × s2)
where mi and si (i = 1,2) are the mean and standard deviation of the ith set of measurements.

Methods for determining sample sizes for Lin's coefficient are described in 4.12.11.

2.8.8 Bland-Altman plots

BLANDALTMAN procedure
Produces Bland-Altman plots to assess the agreement between two variates (A.R.G.
McLachlan).

Options
PRINT = string tokens Controls printed output (summary, estimates); default

* i.e. none
PLOT = string tokens What to plot (blandaltman, normal); default blan
DMETHOD = string token Method for calculating differences (differences,

ratios, %differences, percentages); default
diff
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LMETHOD = string token Method for calculating limits of agreement when
regression is not used (normaldistribution,
percentile); default norm

REGMETHOD = string tokens Whether to use regression to calculate bias (i.e. mean) or
limits (bias, mean, limits, auto); default * i.e. none

CIPROBABILITY = scalar Probability level for limits of agreement, confidence
intervals and percentiles; default 0.95

LOWERLIMIT = scalar Lower limit of agreement to use instead of a calculated
limit

UPPERLIMIT = scalar Upper limit of agreement to use instead of a calculated
limit

ALPHALEVEL = scalar Critical probability level used for regression when
REGMETHOD=auto; default 0.05

XBLANDALTMAN = string token X-values to use for the Bland-Altman plot (mean, Y1,
Y2); default mean

REFERENCELINECHOICE = string tokens
Reference lines to plot on a Bland-Altman plot (bias,
mean, limits, zero); default bias

GRAPHICS = string token Type of graph (highresolution, lineprinter);
default high

WINDOW = scalar Window for the plot; default 3
SCREEN = string token Whether to clear or keep the screen before displaying

the plot (keep, clear); default clea
PENZEROLINE = scalar Pen to use for the zero reference line
PENMEANLINE = scalar Pen to use for the mean reference line
PENLIMITLINES = scalar Pen to use for the reference lines showing limits of

agreement

Parameters
Y1 = variates First variate
Y2 = variates Second variate
LABELS = texts Labels for individual points on the Bland-Altman plot
MEANS = variates Saves the means
DIFFERENCES = variates Saves the differences, ratios or % differences (according

to the DMETHOD option)
TITLE = texts Title for the Bland-Altman plot
YTITLE = texts Title for y-axis of the Bland-Altman plot
XTITLE = texts Title for x-axis of the Bland-Altman plot
PEN = scalars, variates or factors Pen for plotting points on the Bland-Altman plot; default

1

Bland-Altman plots provide an effective way of assessing two different methods for measuring
some quantity (Bland & Altman 1999; see also Altman & Bland 1983 and Bland & Altman
1986). The data are supplied by the Y1 and Y2 parameters, in two variates containing
measurements on the same set of samples. The default display plots the differences between the
measurements against their mean, so that the sizes of the discrepancies can be assessed while
also seeing whether there is any bias or nonlinearity between the methods. Ideally, the points
should lie within a rectangle arranged symmetrically around the x-axis i.e. similar amounts of
scatter above and below the line of zero difference. The means and differences can be saved, in
variates, using the MEANS and DIFFERENCES parameters, respectively.

The DMETHOD option controls the type of difference that is displayed, with settings:
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differences differences Y1 - Y2 (default),
ratios Y1 / Y2,
%differences (Y1 - Y2) / ((Y1 + Y2)/2) * 100, and
percentages synonym of %differences.

The plot can also show "limits of agreement" which are intended to represent boundaries on
the acceptable difference between the methods. These can be supplied by the LOWERLIMIT and
UPPERLIMIT options, Alternatively, if  LOWERLIMIT and UPPERLIMIT are not set, the limits
are calculated by the procedure according to the setting of the LMETHOD option:

normaldistribution uses confidence limits calculated assuming that the
differences have a Normal distribution (default), and

percentile takes percentiles of the differences.
The CIPROBABILITY option specifies the probability for calculating the limits of agreement
when LMETHOD=norm, or the percentiles used for the limits when LMETHOD=perc. The default
of 0.95 gives 95% limits of agreement, and percentiles of 2.5 and 97.5%.

The REFERENCELINECHOICE option allows reference lines can be included on the
Bland-Altman plot:

mean or bias plots a line at the overall mean of the differences (default),
limits plots upper and lower limits of agreement, and
zero plot horizontal line at zero, or one when DMETHOD=ratio.

If there seems to be a trend in the plot (differences becoming larger or smaller as the means
increase), it can be useful to fit a linear regression (on the mean) to the bias, or to the variation
in the bias, or both. This is controlled by the REGMETHOD option. Setting REGMETHOD to mean
or bias fits a line through the Bland-Altman plot to estimate the mean or bias. Limits of
agreement are then calculated assuming a constant variance and a Normal distribution so that,
if references lines are plotted for the limits are plotted, they will be parallel to the reference line
for the mean. Alternatively, if REGMETHOD=limits, linear regression is used to estimate the
variation in the differences. The limits then form a 'fan-shape' pattern about the horizontal bias
line. These two settings can be combined (REGMETHOD=bias,limits) so that linear regression
is used to estimate both the bias and the variation in the differences. Finally, if you set
REGMETHOD=auto, the procedure automatically determines whether or not linear regression
should be used to estimate either the bias or the variation or both. The ALPHALEVEL option then
specifies the critical value for testing the significance of the regressions (default 0.05 i.e. 5%),
to decide whether they should be used.

The PLOT option controls the plots that are produced:
blandaltman produces the Bland-Altman plot (default), and
normal produces a Normal (q-q) plot of the differences.

The x-values to be used in the Bland-Altman plot are controlled by the  XBLANDALTMAN option.
The default is to use the averages of the Y1 and Y2 variates (as recommended by Bland &
Altman 1995). Alternatively, the settings Y1 and Y2 allow one of the two variates to be used
instead; Krouwer (2008) recommended plotting against measurements from a reference method,
if this has provided much better precision.

By default high-precision graphics is used, but you can set option GRAPHICS=lineprinter
to produce character-based graphs in the output window instead. The WINDOW option can be used
to specify which graphics window to use for a high-resolution graph, and the SCREEN option
allows you to stop the screen being cleared before plotting the Bland-Altman graph. Note that
this does not to apply to the Normal probability plots, as the DPROBABILITY procedure (that is
used to produce the plot) does not support the SCREEN option.

There are several options and parameters that can be used to modify the appearance of the
Bland-Altman plot. The TITLE parameter can supply an overall title, and the YTITLE and
XTITLE parameters can supply titles for the y- and x-axis. You can specify a text containing
labels for the points in the Bland-Altman plot using the LABELS parameter. The PEN parameter
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allows you to specify a pen or pens for the points (default 1). The PENZEROLINE, PENMEANLINE
and PENLIMITSLINES options specify pens for the reference lines at zero, mean difference and
limits of agreement, respectively. If these options are not set, BLANDALTMAN uses the line
colours, thicknesses and styles (if set) from pens 1, 2 and 3, respectively.

The PRINT option controls the printing of the results, with settings:
estimates to print the estimates, and
summary to print a summary showing the number and percentage of

values above and below zero, and outside the limits of
agreement.

When regression is being used, the estimates consist of the slope of the line, with its standard
error and confidence interval , together with the sample size. Otherwise, they consist of the mean
difference, limits of agreement, standard error of the differences and the sample size. By default,
nothing is printed.

Example 2.8.8 assesses two sets of measurements of peak expiratory flow rate, one made with
a Wright peak flow meter, and the other with a mini Wright meter; see Bland & Altman (1986).

Example 2.8.8

   2  VARIATE [NVALUES=17] Wright,Mini; VALUES=\
   3          !(494,395,516,434,476,557,413,442,650,433,\
   4            417,656,267,478,178,423,427),\
   5          !(512,430,520,428,500,600,364,380,658,445,\
   6            432,626,260,477,259,350,451)
   7  BLANDALTMAN [PRINT=estimates,summary; REFERENCE=mean,limit]\
   8              Y1=Wright; Y2=Mini

Bland-Altman results for differences between Wright and Mini
============================================================

Difference = Wright - Mini
n = 17 paired values

Numbers
-------

                           Above bias  Below bias       Total
                   Result
 Values above upper limit           0           0           0
    Values between limits           7           9          16
 Values below lower limit           0           1           1
                    Total           7          10          17

Percentages
-----------

                           Above bias  Below bias       Total
                   Result
 Values above upper limit           0           0           0
    Values between limits       41.18       52.94       94.12
 Values below lower limit           0        5.88        5.88
                    Total       41.18       58.82         100

Estimates
---------

Mean bias assumed constant, with assumed constant variance, and parallel limits
of agreement

                   Estimate     95% C.I.
     Difference       -2.12 (-22.05, 17.81)
Lower 95% limit      -78.10 (-112.7, -43.53)
Upper 95% limit       73.86  (39.29, 108.4)
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Figure 2.8.8

The plot, in Figure 2.8.8,
shows no obvious relation
between the difference and
the mean. The confidence
limits for the bias include
zero, and there is only one
point outside the 95%
limits of agreement.
However, the limits are
rather wide, reflecting the
small sample size. In
practical terms these may
not be acceptable.

Note that the procedure
does not cater for repeated
measures of subjects. See
Bland & Altman (1999,
2007) for information on
how different types of
repeated measures can be
handled.

2.9 Tests for independence and changes in two-way tables

When measurements are qualitative or categorical, a different approach is needed to establish
relationships than when they are quantitative. One way is to analyse the counts of individuals
with each combination of levels of the categorical variables: a set of counts like this is often
presented in a table known as a contingency table. In a two-way table you may want to assess
whether the factors in the rows and columns are independent, or whether they are associated. In
this section we show two ways of doing this: the standard chi-square test (2.9.1) and Fisher's
exact test (2.9.2). Both of these are available through the Contingency Tables menu of Genstat
for Windows.

Another situation involving two-way tables is covered by McNemar's test (2.9.3). This is
relevant to "before and after" designs, where subjects are assessed on two occasions (e.g. before
and after a treatment) and the aim is to see whether their responses (selected from one of two
possibilities) have changed. Cochran's Q test (2.9.4) extends McNemar's test to three or more
occasions. These are also available through menus in Genstat for Windows.

You can form the table of counts from the raw data using the TABULATE directive (1:4.11.1).
Alternatively you can provide the tabulated data directly, while declaring the table using the
TABLE directive (1:2.5), or by declaring the table and then reading in its contents using the READ
directive (1:3.1.1).

2.9.1 The chi-square test

CHISQUARE procedure
Calculates chi-square statistics for one- and two-way tables (A.D. Todd & P.K. Leech).

Options
PRINT = string tokens Output required (test, probability,
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fittedvalues, tchisquare); default test, prob
METHOD = string token Method for calculating chi-square (pearson,

maximumlikelihood); default pear
GOODNESSOFFIT = string token Whether to carry out a goodness-of-fit test for the DATA

values against a supplied set of FITTEDVALUES (yes,
no); default no

Parameters
DATA = tables Table containing observed data
CHISQUARE = scalars Scalar to save the chi-square value
DF = scalars Scalar to supply or save the degrees of freedom
PROBABILITY = scalars Scalar to save the probability value
FITTEDVALUES = tables Table of expected values
RESIDUALS = tables Table of standardized residuals
TCHISQUARE = tables Table whose cells show the individual contributions to

the chi-square value

The CHISQUARE procedure calculates chi-square statistics. The DATA parameter supplies the data
values. If these are in a two-way table, CHISQUARE produces the usual test of association
between the row and column factor of the table; if a one-way table is supplied, the statistic
assesses whether the different cells of the table contain different proportions of the data.
Alternatively, you can set option GOODNESSOFFIT=yes to request a goodness-of-fit test between
the data values and a set of expected values supplied by the FITTEDVALUES parameter; if you
provide the degrees of freedom, using the DF parameter, the procedure can also calculate the
probability value.

The PRINT option controls the printed output, with the settings: test to print the chi-square
value and degrees of freedom; probability for the probability value; fittedvalues data,
fitted (expected) values and standardized residuals; and tchisquare to show the contribution
of each cell of the table to the chi-square value. By default, the statistic is calculated by the
usual Pearson approximation

 chi-square = sum( (o!e) × (o!e) / e ),
where o = observed, and e = expected. Alternatively, you can set option METHOD=likelihood
to calculate the chi-square by maximum likelihood (using the Genstat facilities for generalized
linear models). Parameters CHISQUARE, DF, PROBABILITY, FITTEDVALUES, RESIDUALS and
TCHISQUARE allow the results to be saved in appropriate Genstat data structures.

Example 2.9.1, analyses a two-way table containing the results from a survey of smoking
habits. The classifying factors both have two levels, so the table has four cells. The chi-square
test assesses the independence of the two classifications, Mortality and Smoking. Essentially
it is testing whether the distribution of subjects between the two categories of one factor appears
to change according to the categories of the other factor.

Example 2.9.1

   2  " Relationship between smoking habits and mortality in Canada.
  -3    Data from Best et al. (1966); also analysed by Snedecor &
  -4    Cochran (1989) p.124."
   5  FACTOR [LABELS=!t(Dead,Alive)] Mortality
   6  & [LABELS=!t(Nonsmoker,'Pipe smoker')] Smoking
   7  TABLE [CLASS=Mortality,Smoking; VALUES=117,54,950,348] Counts
   8  PRINT Counts; DECIMALS=0
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                   Counts
      Smoking   Nonsmoker Pipe smoker
    Mortality
         Dead         117          54
        Alive         950         348

   9  " Perform Pearson chi-square test of independence of classifications."
  10  CHISQUARE Counts

Chi-square test for association between Mortality and Smoking
=============================================================

Pearson chi-square value is 1.73 with 1 df.
Probability level (under null hypothesis) p = 0.189

The test statistic here indicates that the two classifying factors, Smoking and Mortality, are
independent; that is, that there is no evidence that they are associated.

If you set the METHOD option of CHISQUARE to maximumlikelihood, the procedure uses the
Genstat facilities for generalized linear models (GLMs). This produces a statistic known as the
deviance, which is equivalent (although calculated differently) to the Pearson chi-square statistic.
The GLM facilities can actually handle much more complicated situations that this (for example
three or more classifications), and fit much more sophisticated models (for example involving
variates as well as factors). Full details are given in Chapter 4.

2.9.2 Fisher's exact test and permutation tests

The chi-square test is approximate: the test statistics are only approximately distributed as chi-
square statistics with one degree of freedom. The approximation improves as the number of
observations increases, and in Example 2.9.2 the numbers are large enough for the
approximation to be good. However, Genstat also provides an exact method to test for
independence in this simple case of a two-by-two table. This method, known as Fisher's exact
test, involves evaluating all 2×2 tables with the same margins as the observed table and can be
carried out by the FEXACT2X2 procedure. For larger tables, too many tables are generally
possible for it to be feasible to evaluate them all, and so Genstat provides a random permutation
test instead. The procedure CHIPERMTEST is described at the end of this section.

FEXACT2X2 procedure
Does Fisher's exact test for 2×2 tables (M.S. Ridout & M.W. Patefield).

Option
PRINT = string tokens Controls printed output (probabilities, tables);

default prob

Parameters
TABLE = tables or variates The numbers in each 2×2 table, ordered row by row or

column by column
PROBABILITIES = variates Saves the probabilities for each table in a variate of

length 6 (to store in positions 1, 3 and 5 one-tailed, two-
tailed calculated as twice the one-tailed probability, and
as the sum of the probabilities of all tables with
probability less than that of the observed table with the
corresponding mid-p values stored in positions 2, 4 and
6)
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The TABLE parameter of the PROCEDURE supplies the four numbers that comprise the 2×2 table,
either as a 2×2 Genstat table, with no margins, or as a variate consisting of the four numbers
ordered either row by row or column by column. The procedure calculates the one-tailed
significance level that is produced by the exact test. The mid-p value, which includes only half
the probability of the observed table, is also calculated. See Hirji, Tan & Elashoff (1991) for a
discussion of mid-p values. Several methods have been proposed for calculating a two-tailed
significance level, two of which are implemented in the procedure. The first method simply
doubles the one-tailed significance level whereas the second method calculates the cumulative
probability of all outcomes that are no more probable than the observed table. See Yates (1984)
for discussion of these and other methods. The procedure also calculates mid-p values
corresponding to each of the two-tailed significance levels. The various probabilities can be
saved, in a variate of length six, using the PROBABILITIES parameter.

The procedure has a single option PRINT to control printed output. By default
PRINT=probabilities. There is also another setting tables which causes the procedure to
display all 2×2 tables with margins that are the same as the observed table together with their
probabilities of occurrence under the null hypothesis of no association and the cumulative
probabilities calculated from both tails. This display was proposed by Hill (1984).

Fisher's exact test for the smoking data is shown in Example 2.9.2a. The two-tailed
significance values are equivalent to the probability given by the chi-square test, and generate
the same conclusions.

Example 2.9.2a

  11  "Use Fisher's exact test."
  12  FEXACT2X2 Counts

Fisher's exact test
===================

 One-tailed significance level   0.111
                   Mid-P value   0.096

 Two-tailed significance level
     Two times one-tailed significance level   0.223
                                 Mid-P value   0.193
     Sum of all outcomes with Prob<=Observed   0.202
                                 Mid-P value   0.186

CHIPERMTEST procedure
Performs a random permutation test for a two-dimensional contingency table (L.H. Schmitt,
M.C. Hannah & S.J. Welham).

Options
PRINT = string tokens Output required (summary, observed, expected);

default summ
PLOT = string token What to plot (histogram); default hist
METHOD = string token Method for calculating chi-square (pearson,

maximumlikelihood); default pear
NTIMES = scalar Number of permutations to make; default 999
SEED = scalar Seed for the random number generator used to make the

permutations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

Parameters
DATA = tables Table containing observed data
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CHISQUARE = scalars Saves the observed chi-square value
CHIPERMUTED = variates Saves the chi-square values from the permuted data sets
PROBABILITY = scalars Saves the probability value from the test

CHIPERMTEST uses a random permutation test to calculate the significance probability of the
chi-square test. The permutations simulate the random distribution of table values that may occur
in tables that have the same overall distribution of numbers over the columns, and over the rows,
as in the original table. We can assess the significance of the chi-square statistic given by the
observed table, by seeing where it lies in the distribution of statistics that we obtain from the
permuted data.

The NTIMES option specifies how many permutations are done (default 999). The SEED option
supplies the seed that is used in the RANDOMIZE directive to generate the permutations. The
default of zero continues the existing sequence of random numbers if RANDOMIZE has already
been used in the current Genstat job. If RANDOMIZE has not yet been used, Genstat picks a seed
at random. 

The DATA parameter supplies the observed data values, in a table with two classifying factors.
The CHISQUARE can save the chi-square statistic calculated from the DATA table (in a scalar).
The CHIPERMUTED can save the chi-square statistics calculated from the permuted data sets (in
a variate), and the PROBABILITY parameter can save the significance probability from the
permutation test (in a scalar).

The PRINT option controls the output, with the following settings:
summary prints a summary, containing the chi-square statistic, the

minimum and maximum statistics calculated from the
permuted data sets, and the probability (default);

observed prints the DATA table; and
expected prints the expected values for tables with the same overall

distribution of numbers over rows and over columns, but
no interaction between the row and column factors (i.e. in
a table where the rows and columns are independent).

By default, CHIPERMTEST plots a histogram showing the distribution of statistics obtained
from the permuted data sets, with the chi-square statistic from the observed data superimposed
as a vertical line. You can suppress this by setting option PLOT=*.

As in the CHISQUARE procedure (2.9.1), the METHOD option controls whether the chi-square
statistic is calculated by the usual Pearson approximation or by maximum likelihood.

Example 2.9.2b shows a permutation test for the smoking data. The probability is similar to
that given by the chi-square test in Example 2.9.1, and again leads to the same conclusion.

Example 2.9.2b

  13  " Do a permutation test."
  14  CHIPERMTEST [PLOT=*] Counts

Contingency table permutation test
==================================

* MESSAGE: Default seed for random number generator used with value 510012

2 * 2 contingency table Counts
Pearson chi-square 1.73
Range of values from 999 permutations (0.00, 14.97)
Probability 0.196
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2.9.3 McNemar's test

MCNEMAR procedure
Performs McNemar's test for the significance of changes (R.W. Payne & D.A. Murray).

Options
PRINT = string tokens Controls printed output (test, table); default test
METHOD = string token Type of test required (twosided, greaterthan,

lessthan); default twos

Parameters
Y1 = factors or tables Factor containing the responses obtained before the

treatment (with 1 indicating a positive response) or two-
by-two table (classified by factors representing the two
occasions of testing) summarizing the responses before
and after treatment

Y2 = factors Factor containing the responses obtained after the
treatment (need not be specified if Y1 is a table)

STATISTIC = scalars Saves the test statistic
PROBABILITY = scalars Saves the probability value

McNemar's test is useful for analysing studies where subjects are assessed before and after a
treatment. The response on each occasion is assumed to be categorized by a factor with two
levels. Usually level 1 represents a negative response, and level 2 a positive response. The test
assesses the consistency of the responses on the two occasions. By default the test is assumed
to be two-sided (that is, changes in the overall response from level 1 to level 2 or from level 2
to level 1 are equally of interest). However, you can set the METHOD option to greaterthan for
a one-sided test of the null hypothesis that the number of level 2 responses is not increasing (i.e.
that the overall response is not becoming more positive), or to lessthan for a test of the null
hypothesis that the number of level 2 responses is not decreasing.

The data for the test can be supplied as two variates (one for each occasion) using the Y1 and
Y2 parameters. Positive responses are represented by the value one, and other values are taken
to indicate negative responses. (So the variates might be formed from logical tests, for example
using the .EQ. or .EQS. operators.) If Y1 or Y2 are restricted the test is made on only the units
not excluded by the restriction. Alternatively, you can set Y1 to a two-by-two table classified by
a factor representing the assessments before the treatment and another representing the
assessments after the treatment.

In its original form, the test leads to a chi-square test (see the Method Section in the
description of MCNEMAR in Part 3 of the Reference Manual for details). However, this may be
inaccurate when there are small numbers of subjects. Consequently Genstat also provides an
exact probability (based on the binomial distribution). The value of the statistic can be saved
using the STATISTIC parameter, and the exact probability can be saved using the PROBABILITY
parameter.

Printed output is controlled by the PRINT option, with settings:
test to print the test statistic and probabilities, and
table to print the table of responses.

The default is PRINT=test.
Example 2.9.3 analyses an example from Siegel (1956) page 65. This assesses whether the

type of person (adult or child) with whom children first initiate contact each day at a nursery
school changes between their first and thirteenth day. The table shows that 14 children have
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changed their "object of initiation" from child to adult, while for 4 children it has changed from
adult to child. McNemar's test shows that this represents a significant change.

Example 2.9.3

   2  FACTOR  [LABELS=!t('adult','child')] First,Thirtieth
   3  TABLE   [CLASSIFICATION=First,Thirtieth; VALUES=4,14,4,3] Object
   4  PRINT   Object; DECIMALS=0

                   Object
    Thirtieth       adult       child
        First
        adult           4          14
        child           4           3

   5  MCNEMAR [METHOD=greaterthan] Object

McNemar's test
==============

Statistic:               4.500
Chi-square probability:  0.017
Exact probability:       0.015

Methods for determining sample sizes for McNemar's test are described in 4.12.8.

2.9.4 Cochran's Q test

QCOCHRAN procedure
Performs Cochran's Q test for differences between related samples (D.A. Murray).

Options
PRINT = string token Controls printed output (test); default test
METHOD = string token Form of the test (exact, chisquare); default exac for

small samples, otherwise chis
GROUPS = factor Defines the groups if there only one variable supplied

for the DATA
STATISTIC = scalar Scalar to save the Q value
PROBABILITY = scalar Scalar to save the probability for the Q Test
MAXTIME = scalar Defines a limit for the maximum time for calculating the

exact test; default * i.e. no limit.

Parameter
DATA = variates List of related samples, or variate containing all the

samples (the GROUPS option must then be set to indicate
the variable recorded in each unit belongs)

Cochran's Q test is an extension to the McNemar test for related samples that provides a method
for testing for differences between three or more matched sets of frequencies or proportions. The
matching samples can be based on k characteristics of N individuals that are associated with the
response. Alternatively N individuals may be observed under k different treatments or conditions
(e.g. different questions or one question at different times).

The data must be supplied as dichotomous variables containing 0 to represent failure (or
absence), and 1 to represent success (or presence). The variables can be stored in separate
variates and the DATA parameter set to list them all. Alternatively, all the data can be stored in
a single variate, and the GROUPS option set to a factor to indicate which variable is recorded in
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each unit of the variate. (QCOCHRAN then assumes that the individuals are recorded in the same
order for each variable.)

In its original form, the test leads to a chi-square test (see the Method Section in the
description of QCOCHRAN in Part 3 of the Reference Manual for details). However, this may be
inaccurate when there are small numbers of subjects or samples. Consequently QCOCHRAN also
provides an exact probability (based on the exact distribution of Q under a permutation model).
The form of the test can be set to either chi-square or exact by using the METHOD option. The
default is to use the exact test if the number of values in the samples is less than 4 and the
product of this value with the number of samples is less than 24, otherwise the chi-square method
is used. The time and memory required for the exact calculation can become impractible as the
number of samples and values increases. So the chi-square approximation should be used for
large problems. The MAXTIME option can be used to set a limit on the time (in seconds) to be
used to calculate the exact probabilty; if this is time exceeded, the computation is terminated.

The Q statistic can be saved using the STATISTIC parameter, and the probability can be saved
using the PROBABILITY parameter. By default QCOCHRAN prints the Q value and its probability,
but you can set option PRINT=* to suppress these.

Example 2.9.4

   2  " Responses by housewives under 3 types of interview. Data from Siegel
  -3    (1956), Nonparametric Statistics for the Behavioural Sciences, p.164."
   4  VARIATE  [VALUES=0,1,0,0,1,1,1,0,1,0,1,1,1,1,1,1,1,1] Response1
   5  &        [VALUES=0,1,1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,1] Response2
   6  &        [VALUES=0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0] Response3
   7  QCOCHRAN Response1,Response2,Response3

Cochran's Q test
================

Q statistic 16.667, probability < 0.001

2.9.5 The Cochran-Mantel-Haenszel test

CMHTEST procedure
Performs the Cochran-Mantel-Haenszel test (D.A. Murray).

Options
PRINT = string token Controls printed output (test); default test
CLASSIFICATION = factors Classifying factors for a DATA variate or classifying

factors for the R×C tables in a DATA table
CONTINUITY = string token Continuity correction for 2×2×K Mantel-Haenszel test

(correct, none); default corr
CIPROBABILITY = scalar Size of confidence interval for common odds ratio in

2×2×K tables; default 0.95

Parameters
DATA = tables or variates Data values
STATISTIC = scalars Save the test statistic
PROBABILITY = scalars Save the probability for the test
ODDSRATIO = scalars Save the common odds ratio for the 2×2×K table case
LOWER = scalars Save lower limit of the confidence interval of odds ratio
UPPER = scalars Save upper limit of the confidence interval of odds ratio
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Procedure CMHTEST performs the Cochran-Mantel-Haenszel test for average partial association
between two nominal variables adjusting for control variables. The data are represented by a
series of K (R×C) contingency tables, where K represents the strata for the control variables. If
there are two or more control variables then these are combined to form a single factor (K) with
a level for every combination of the control factors. For the case where there are two
dichotomous variables of interest, i.e. a series of K (2×2) tables, CMHTEST calculates the Mantel-
Haenszel chi-square statistic, and an overall estimate of relative risk as described in Mantel &
Haenszel (1959). Otherwise the Generalized Cochran-Mantel-Haenszel test is used, as in Landis
et al. (1978).

The data can be supplied as a table using the DATA parameter where the first two classifying
factors of the table indicate the variables of interest, and the remaining factors are combined to
form a factor with a level for every combination of the remaining factors. If the first two
classifying factors are not the ones of interest, then the CLASSIFICATION option can be used
to supply the names of the classifying factors to use. The data can also be supplied in variates,
with the CLASSIFICATION option set to the classifying factors and the first two factors in the
list indicating the variables of interest. For a series of K (2×2) tables the CONTINUITY option can
be used to control whether to apply a continuity correction to the Mantel-Haenszel chi-square
test.

The PRINT option controls printed output, with settings:
test the test statistic and probability, also the common odds

ratio and confidence interval when there are K (2×2) tables
A 95% confidence interval is calculated for the common odds ratio, but this can be changed

by setting the CIPROBABILITY option to the required value (between 0 and 1).
The test statistic can be saved using the STATISTIC parameter, and the probability can be

saved using the PROBABILITY parameter. For a series of K (2×2) tables the odds ratio, lower and
upper odds-ratio confidence interval can be saved with the ODDSRATIO, LOWER and UPPER
parameters respectively.

Example 2.9.5

   2  " Women with epidermoid and undifferentiated pulmonary carcinoma:
  -3    assess association between carcinoma and smoking, adjusted for
  -4    age and occupation (data from Mantel & Haenszel 1959). "
   5  FACTOR  [LEVELS=2; LABELS=!t('Pulmonary carinoma','Controls')] Cases
   6  FACTOR  [LEVELS=2; LABELS=!t('Smoker','Nonsmoker')] Smoke
   7  FACTOR  [LEVELS=4; LABELS=!t('under 45','45-54','55-64','over 65')] Age
   8  FACTOR  [LEVELS=3; LABELS=!t('Housewives','White-collar','Other')]\
   9          Occupation
  10  TABLE   [CLASS=Cases,Smoke,Age,Occupation] Pulmonary
  11  READ    Pulmonary

    Identifier   Minimum      Mean   Maximum    Values   Missing
     Pulmonary    0.0000     6.521     49.00        48         0    Skew

  14  CMHTEST Pulmonary

Mantel-Haenszel test
--------------------

Test statistic:    30.66 on 1 d.f. (with continuity)
Probability:       < 0.001
Common odds ratio: 10.68
95% confidence interval for common odds ratio (4.162, 27.42)
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2.9.6 Cochran-Armitage chi-square test for trend

CATRENDTEST procedure
Calculates the Cochran-Armitage chi-square test for trend (A.I. Glaser).

Option
PRINT = string token Output required (test); default test

Parameters
DATA = tables Table containing observed data
TREND = factors Dimension of the table representing the trend; can

default if only one dimension of size greater than 2
CHISQUARE = scalars Saves the chi-square for trend
PROBABILITY = scalars Saves the probability value for trend
DEVCHISQUARE = scalars Saves the chi-square for deviations from a linear trend
DEVDF = scalars Saves the degrees of freedom for the chi-square for

deviations
DEVPROBABILITY = scalars Saves the probability value for the chi-square for

deviations

The CATRENDTEST procedure calculates the Cochran-Armitage chi-square test for trend.
Categorical data can be collected and categorized by explanatory factors (such as dosage or
treatment level), and any analysis will try to indicate relationships between the response (binary)
factor and explanatory factors. The Cochran-Armitage chi-square test calculates a chi-square
statistic on 1 degree of freedom for a linear trend in the responses. The data are represented by
a (2×K or K×2) contingency table, where K represents the explanatory factor (known as the
trend).

The DATA parameter supplies the data values in a two-way table. The TREND parameter can
be set to a factor to indicate which dimension of the table represents the trend; if this is omitted
CATRENDTEST assumes that the trend is in the dimension with more than 2 rows or columns (the
other dimension must have exactly 2 rows or columns).

By default CATRENDTEST prints the results of tests for trend and for deviation from a trend
(chi-square values, degrees of freedom and probabilities), but you can suppress these by setting
option PRINT=*.

Parameters CHISQUARE, PROBABILITY, DEVCHISQUARE, DEVDF and DEVPROBABILITY
allow the results to be saved (in scalars).

Example 2.9.6 analyses data from Table 15.1 of Armitage, Berry & Matthews (1994). This
records the numbers of patients accepting or declining invitations to attend screening
mammography, according to the length of time since their doctor's appointment. The test shows
that there genuinely does seem to be a linear trend of acceptance with time, and no significant
deviations from a linear relationship.

Example 2.9.6

 2  FACTOR [LEVELS=2; LABELS=!T('Yes','No')] Attendence
 3  FACTOR [LABELS=!t('<6 months','6-12 months','1-2 years','>2 years')] Time
 4  TABLE  [CLASS=Time,Attendence; VALUES=59,97,10,31,12,36,5,28] Patient
 5  CATRENDTEST Patient; TREND=Time
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Cochran-Armitage test for trend
===============================

Trend: chi-square 8.18 on 1 d.f., probability 0.004
Deviation from trend: chi-square 0.74 on 2 d.f., probability 0.691

2.10 Six sigma

Genstat has wide range of facilities to support the six-sigma approach to quality improvement.
This section describes procedures for assessing the output of a process, to see if it is operating
within its limits of expected variation. These include control charts for means, standard
deviations or ranges of a continuous measurement (2.10.1), c or u charts for numbers (2.10.5)
of defective items in a sample, p or np charts for proportions of defective items (2.10.4),
exponentially weighted moving-average charts (2.10.3) and CUSUM (i.e. cumulative sum) tables
(2.10.2). It also describes the calculation of capability statistics to assess how well the
distribution of the output from a process lies within its specification limits (2.10.6).

There is also full statistical backup for wider-ranging investigations. Useful commands (with
section numbers in brackets for those described in the Guide) include the following:

NORMTEST performs tests of univariate and/or multivariate Normality
(2.2.11)

WSTATISTIC calculates the Shapiro-Wilk test for Normality (2.2.11)
TABSORT sorts tables to put margins are in ascending or descending

order for display as a Pareto chart (1:4.11.5)
AFRESPONSESURFACE uses the BLKL algorithm to construct response-surface

designs (4.9.14)
AGBOXBEHNKEN generates Box-Behnken designs (4.9.12)
AGCENTRALCOMPOSITE generates central composite designs (4.9.11)
AGFACTORIAL generates minimum aberration complete and fractional

factorial designs (4.9.2) 
AGDESIGN selects from a set of standard designs including factorials

with interactions confounded with blocks (4.9.3)
AGFRACTION generates fractional factorial designs
AGMAINEFFECT generates designs to estimate main effects of two-level

factors i.e. Plackett-Burman designs (4.9.13)
FKEY forms design keys for balanced designs with several error

terms, allowing for confounded and aliased treatments
(4.13.6)

ANOVA analysis of variance for balanced designs (4.1.2)
AUNBALANCED analysis of variance for unbalanced designs (4.8.1)
FIT fits a linear, generalized linear, generalized additive, or

generalized nonlinear model (3.1.2)
FITCURVE fits a standard nonlinear regression model (3.7.1)
FITNONLINEAR fits a nonlinear regression model or optimizes a function

(3.8.2)
RQUADRATIC fits a quadratic surface and estimates its stationary point
REML fits an unbalanced linear mixed model and estimates

variance components (5.3.1)
YTRANSFORM estimates the parameter lambda from various single-

parameter transformations, includling power (Box-Cox),
modulus, folded power, Guerrero-Johnson, Aranda-Ordaz
and power logit
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2.10.1 Control charts for mean, standard deviation or range

SPSHEWHART procedure
Plots control charts for mean and standard deviation or range (A.F. Kane & R.W. Payne).

Options
PRINT = string token What to print (warnings); default * i.e. nothing
PLOT = string token Type of chart to plot to accompany the chart of sample

means (range, standarddeviation); default stan
METHOD = string token Type of control limits (probability, sigma); default

sigm

TOLERANCEMULTIPLIER = scalar Multiplier to use to test whether to use mean sample size
for control limits; default 1

PROBABILITY = scalars Probability value(s) to use to calculate control limits
when METHOD=probability; default 0.01, 0.025

WINDOWS = scalar Which high-resolution graphics windows to use; if unset
SPSHEWHART automatically sets up two windows
containing the upper and lower halves of the screen

SCREEN = string token Whether or not to clear the graphics screen before
plotting (clear, keep); default clea

Parameters
DATA = variates or pointers Data measurements
SAMPLES = factors or scalars Factor identifying samples or scalar indicating the size

of each sample
MEAN = scalars Sets or saves the sample mean value
SIGMA = scalars Sets or saves the sample standard deviation

SPSHEWHART plots the standard charts devised by Shewhart (1931) for the control of
manufacturing processes. The data values consist of samples of measurements made on
successive occasions, which are specified by the DATA and SAMPLES parameters. DATA can be
set to a variate containing the measurement and SAMPLES to a factor identifying the samples.
Alternatively, if the samples are all of the same size and occur in the DATA variate one sample
at a time, you can set SAMPLES to a scalar indicating the size of each sample. Finally, if the
samples are in separate variates, you can set DATA to a pointer containing the variates (SAMPLES
is then unset).

Two charts are produced. The first chart plots the mean of each sample. It also contains a
centre line (indicating a target value) and lines representing upper and lower control limits
(bounding the zone outside which the process is said to be out of control). The MEAN and SIGMA
parameters allow you to supply values for the process mean and standard deviation if these are
available either as targets or from previous observations. If they are unset, or if they are set to
scalars containing missing values, the values are calculated from the data values, as described
at the end of this Subsection. The traditional chart (and the one that is most popular in the USA)
sets the centre line at the mean, and the control limits at 3 × SIGMA and !3 × SIGMA from the
mean. The alternative (often used in the UK and requested by setting option METHOD to
probability) sets control limits according to probability values. Usually the lower control
limit is at the equivalent deviate value for a probability of 0.01, and the upper limit is at the value
for 0.99 (see the Methods Section). There may also be intermediate warning limits, usually at
0.025 and 0.975. These are the default probabilities used by SPSHEWHART, but you can set the
PROBABILITY option to a variate containing one or two values to define other limits. (If the
values are p1 and p2, the limits are then for probabilities p1, p2, 100!p2, 100!p1.)
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Figure 2.10.1a

The control limits relevant to each batch will depend on the sample sizes. The TOLERANCE
option determines whether an average sample size is used if the individual sizes are not exactly
equal: this will happen unless either

MIN(sample_size) * TOLERANCE < MEAN(sample_size)

or

MEAN(sample_size) * TOLERANCE < MAX(sample_size)

The second chart is either for the standard deviation of values in each sample or for their

range, according to the setting of the PLOT option (by default PLOT=standarddeviation).
Traditionally, before computers were available, the range chart was more popular. However, it
is less sensitive than the standard deviation, particularly for larger samples, and SPSHEWHART
does not permit range charts if any sample size is greater than 25.

You can set PRINT=warnings to list any batches that are outside the control limits; by
default these are suppressed. As usual, the WINDOWS option specifies which high-resolution
graphics windows to use for the plots. If this is unset, SPSHEWHART automatically sets up and
uses two windows containing the upper and lower halves of the screen. The SCREEN option
controls whether or not to clear the graphics screen before plotting the charts.

Example 2.10.1a plots
traditional control charts
(Figure 2.10.1a) for the
mean and s tandard
deviat ion for some
measurements of the
diameter of the insides of
samples of piston rings
(Montgomery 1985, page
207).
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Figure 2.10.1b

Example 2.10.1a

   2  VARIATE    Diameter
   3  READ       Diameter

    Identifier   Minimum      Mean   Maximum    Values   Missing
      Diameter     73.97     74.00     74.03       125         0

  29  SPSHEWHART [PRINT=warnings] Diameter; SAMPLES=5

If the number in each
sample is one, the chart of
the means is known as an
individuals chart. There is
now no within-sample
replication, so the range
chart instead presents a
moving range displaying
the range between each
sample and the previous
sample. Similarly, the
standard deviations are
calculated between each
sample and its previous
sample.

Example 2.10.1b shows
an individuals chart and
moving range chart
(Figure 2.10.1b) for some
measurements of the
viscosity of aircraft primer
paint (Montgomery 1985,
page 242).

Example 2.10.1b

  30  VARIATE    [VALUES=33.75,33.05,34.00,33.81,33.46,\
  31                     34.02,33.68,33.27,33.49,33.20,\
  32                     33.62,33.00,33.54,33.12,33.84] Viscosity
  33  SPSHEWHART [PRINT=warnings; PLOT=range] Viscosity; SAMPLES=1

SPSHEWHART follows the standard methods as described for example by Nelson (1982),
Montgomery (1985) or Ryan (1989). If required, the mean is estimated in the usual way by the
average of the sample values. Likewise, the standard deviation is estimated by the average of the
standard deviations of the samples, divided by a bias correction constant c4:

c4 = %(2/n) × GAMMA(n/2) / GAMMA((n!1)/2)
where n is the sample size.

First of all we describe the calculations with METHOD=sigma. In the mean chart, the centre
line is at the mean (i.e. MEAN), and the control limits at MEAN + 3 × SIGMA and MEAN ! 3 ×
SIGMA. In the range chart, if the standard deviation has been supplied, the centre line is at d2 ×
SIGMA and the control limits at D1 × SIGMA and D2 × SIGMA; if the standard deviation has not
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been supplied, the centre line is at the mean of the ranges observed in the samples, and the
control limits are at D3 × SIGMA and D4 × SIGMA. (See Appendix VI of Montgomery, or Nelson
1982 Table 1 for values of the constants d2, and D1!D4.) In the standard-deviation chart, the
centre line is at SIGMA × c4 (so that it exhibits the same bias as the sample standard deviations)
and the control limits are at 3 × SIGMA × %(1 ! c4 

2) above and below the centre line.
For METHOD=probability, the centre lines are unaffected. However, the control limits for

the means chart are now at

EDNORMAL(PROBABILITY) * SIGMA / SQRT(N)

above and below the centre line. For the range chart, the control limits are at

SIGMA * EDSRANGE(PROBABILITY; 1000; N)

and

SIGMA * EDSRANGE(1!PROBABILITY; 1000; N)

(where the high value 1000 used for the degrees of freedom of the Studentized range is to obtain
the value for the Normal range). For the standard-deviation chart, the control limits are at

SQRT(EDCHI(PROBABILITY; N!1) / (N!1))

and

SQRT(EDCHI(1!PROBABILITY; N!1) / (N!1))

2.10.2 CUSUM tables

SPCUSUM procedure
Prints CUSUM tables for controlling a process mean (A.F. Kane & R.W. Payne).

Options
REFERENCEVALUE = scalars Specifies the upper and then the lower reference values,

or just one of these if they are both the same; default 0.5
THRESHOLD = scalars Detection thresholds, upper and then the lower, or just

one of these if they are both the same; default 5
HEADSTART = scalars Headstart values, upper and then the lower, or just one

of these if they are both the same; default 0

Parameters
DATA = variates or pointers Data measurements
SAMPLES = factors or scalars Factor identifying samples or scalar indicating the size

of each sample
MEANTARGET = scalars Specifies the target value for the sample means
SIGMA = scalars Specifies or saves the standard deviation of the

observations

SPCUSUM prints cumulative sum (or CUSUM) charts (see for example Section 5.3 of Ryan 1989).
These are more sensitive than Shewhart charts (2.10.1) for detecting small shifts in the process.
The data values consist of samples of measurements made on successive occasions, which are
specified by the DATA and SAMPLES parameters. DATA can be set to a variate containing the
measurement and SAMPLES to a factor identifying the samples. Alternatively, if the samples are
all of the same size and occur in the DATA variate one sample at a time, you can set SAMPLES to
a scalar indicating the size of each sample. Finally, if the samples are in separate variates, you
can set DATA to a pointer containing the variates (SAMPLES is then unset).

The chart displays columns containing:
1) the sample number;
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2) the sample mean;
3) z, the devation of the mean from a target value, divided by its standard deviation;
4) SH, the upper CUSUM;
5) SL, the lower CUSUM.

An asterisk is printed alongside any values SH and SL that exceed a threshold value, indicating
that the process is out of control.

The CUSUM values SHi and SLi for each sample i are calculated as
SHi = zi ! ku + SHi!1

or = 0 if  zi ! ku + SHi!1 < 0
SLi = ! zi ! kl + SLi!1

or = 0 if  ! zi ! kl + SLi!1 < 0
The target value is specified by the MEANTARGET parameter. The SIGMA parameter can be

used to specify the standard deviation of the individual observations (which is required to
calculate the standard deviation of the deviations of the sample means from the target value). It
this is not set or if it is set to a missing value, the standard deviation is calculated using the
within-sample replication, as the average of the standard deviations of the samples, divided by
a bias correction constant c4:

c4 = %(2/n) × GAMMA(n/2) / GAMMA((n!1)/2)
where n is the sample size. You can thus save the calculated standard deviation by setting SIGMA
to a scalar containing a missing value.

The reference values ku and kl are specified by the REFERENCEVALUE option. If they are both
the same, you need specify this only once. Their default is 0.5. Similarly the threshold value, or
values, are specified by the THRESHOLD option; by default these take the value 5. The CUSUMs
usually start at 0, but you can specify another value or values using the HEADSTART option.

Example 2.10.2 shows a CUSUM table based on data in Table 5.4 of Ryan (1989). However,
as the values in the table are given to only 2 decimal places the sample means differ slightly from
those in the book.

Example 2.10.2

   2  VARIATE x
   3  READ x

    Identifier   Minimum      Mean   Maximum    Values   Missing
             x    -2.530    0.2523     2.300        80         0

  24  SPCUSUM [THRESHOLD=4] x; SAMPLES=4; MEANTARGET=0; SIGMA=1

CUSUM table
===========

Sample   Average         z        SH         SL
     1    0.4050     0.810     0.310     0.0000
     2    1.1050     2.210     2.020     0.0000
     3   -0.0350    -0.070     1.450     0.0000
     4   -1.0450    -2.090     0.000     1.5900
     5   -0.0375    -0.075     0.000     1.1650
     6   -0.6850    -1.370     0.000     2.0350
     7   -0.8500    -1.700     0.000     3.2350
     8    0.8125     1.625     1.125     1.1100
     9    0.6250     1.250     1.875     0.0000
    10   -0.3775    -0.755     0.620     0.2550
    11    0.5375     1.075     1.195     0.0000
    12    0.1850     0.370     1.065     0.0000
    13    0.3325     0.665     1.230     0.0000
    14    0.3250     0.650     1.380     0.0000
    15    0.4450     0.890     1.770     0.0000
    16    0.2150     0.430     1.700     0.0000
    17    0.8825     1.765     2.965     0.0000
    18    0.1650     0.330     2.795     0.0000
    19    0.9500     1.900     4.195*    0.0000
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    20    1.0900     2.180     5.875*    0.0000

Values of SH and SL over the threshold are marked by asterisks.

2.10.3 Moving-average control charts

SPEWMA procedure
Plots exponentially weighted moving average control charts (A.F. Kane & R.W. Payne).

Options
PRINT = string token What to print (warnings); default * i.e. nothing
TOLERANCEMULTIPLIER = scalar Multiplier to use to test whether to use mean sample size

for control limits; default 1
WEIGHT = scalar Weight parameter used in the calculation of the

exponentially weighted moving-average statistic; default
0.25

NSIGMA = scalar Number of multiples of sigma to use for control limits;
default 3

WINDOW = scalar Which high-resolution graphics window to use; default
3

SCREEN = string token Whether or not to clear the graphics screen before
plotting (clear, keep); default clea

Parameters
DATA = variates or pointers Data measurements
SAMPLES = factors or scalars Factor identifying samples or scalar indicating the size

of each sample
MEAN = scalars Sets or saves the sample mean value
SIGMA = scalars Sets or saves the sample standard deviation

Exponentially weighted moving-average control charts provide another effective means of
detecting small shifts in a process (see Ryan 1989, Section 5.5). The data values consist of
samples of measurements made on successive occasions, which are specified by the DATA and
SAMPLES parameters. DATA can be set to a variate containing the measurement and SAMPLES to
a factor identifying the samples. Alternatively, if the samples are all of the same size and occur
in the DATA variate one sample at a time, you can set SAMPLES to a scalar indicating the size of
each sample. Finally, if the samples are in separate variates, you can set DATA to a pointer
containing the variates (SAMPLES is then unset).

The chart plots a statistic w whose value for sample t is a weighted average of the mean of
sample t, and the value of the statistic for sample t!1:

wt  =  rt × xbart + (1 ! r) × wt!1

where xbar is the variate of sample means, and r is the weighting parameter specified by the
WEIGHT option of the procedure with default 0.25. (Notice that the statistic involves all the
previous means, but with exponentially decreasing weights.)

The position of the central line for the chart is specified, in a scalar, by the MEAN parameter.
If this is not set, or if it is set to a scalar containing a missing value, the overall mean of the
samples is used. (So you can save the calculated mean by setting MEAN to a scalar containing a
missing value.) There are also control lines !nsigma × var(w) and +nsigma × var(w), where
nsigma is specified by the NSIGMA option (default 3) and var(w) is the variance of the statistic
w. For sample t, this is

(3 × sigma / %(REPt)) × %( (r/(2 ! r)) × (1 ! (1 ! r)2t) )



130 2  Basic statistics and exploratory analysis

Figure 2.10.3

where REP is a variate containing the number of observations in each sample, and sigma is the
standard deviation of a single observation. The SIGMA parameter can be used to supply a value
for sigma. It this is not set or if it is set to a missing value, sigma is calculated using the within-
sample replication as the average of the standard deviations of the samples, divided by a bias
correction constant c4:

c4 = %(2/n) × GAMMA(n/2) / GAMMA((n!1)/2)
The TOLERANCE option determines whether an average replication is used if the replication

of the individual samples is no exactly equal: this will happen unless either

MIN(REP) * TOLERANCE < MEAN(rep)

or

MEAN(rep) * TOLERANCE < MAX(rep)

You can set PRINT=warnings to list

any batches that are outside the control
limits; by default these are suppressed. As
usual, the WINDOWS option specifies which
high-resolution graphics window to use for
the plot (default 3), and the SCREEN option
controls whether or not to clear the
graphics screen before plotting the charts.

Example 2.10.3 illustrates the use of the
procedure using data in Table 7.6 and
Figure 7-8b of Montgomery (1985). The
resulting chart is in Figure 2.10.3.

Example 2.10.3

   2  VARIATE [VALUES=10.5,6.0,10.0,11.0,12.5,9.5,6.0,10.0,10.5,14.5,\
   3          9.5,12.0,12.5,10.5,8.0,9.5,7.0,10.0,13.0,9.0,\
   4          12.0,6.0,12.0,15.0,11.0,7.0,9.5,10.0,12.0,8.0,\
   5          9.0,13.0,11.0,9.0,10.0,15.0,12.0,8.0] xbar_t
   6  SPEWMA  [WEIGHT=0.2] xbar_t; SAMPLES=1; MEAN=10; SIGMA=2

2.10.4 Control charts for proportions of defective items

SPPCHART procedure
Plots p or np charts for binomial testing for defective items (A.F. Kane & R.W. Payne).

Options
PRINT = string token What to print (warnings); default * i.e. nothing
PLOT = string token Type of chart to plot (p, np); default p
METHOD = string token Method to use to obtain the control limits

(complementaryloglog, given, logit, probit,
untransformed); default untr

TOLERANCEMULTIPLIER = scalar Multiplier to use to test whether to use mean sample size
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for control limits; default 1
WINDOW = scalar Which high-resolution graphics window to use; default

3
SCREEN = string token Whether or not to clear the graphics screen before

plotting (clear, keep); default clea

Parameters
NDEFECTIVE = variates Number of defective items
NTESTED = scalars or variates Number of items tested
CENTRELINE = scalars Sets or saves centre line
LOWERCONTROLLIMIT = scalars or variates

Sets or saves lower control limit
UPPERCONTROLLIMIT = scalars or variates

Sets or saves upper control limit

The p and np charts evaluate testing schemes in which items in successive batches are classified
as either good or defective. The number of defective items in each batch is specified, in a variate,
by the NDEFECTIVE parameter. The NTESTED parameter supplies the number of items in each
batch ! this can be a scalar if the batches are all of the same size, otherwise it is a variate.

The PLOT option controls the type of chart: the p chart plots the proportion of defective items
while the np chart (which is most useful each batch of items has the same total size) plots the
number of defective items.

The charts contain not only the observed numbers or proportions but also a centre line
(indicating a target value) and lines showing upper and lower control limits (bounding the zone
outside which the process is said to be out of control). The control limits relevant to each batch
will depend on the batch sizes. The TOLERANCE option determines whether an average total size
is used if the individual totals are not exactly equal: this will happen unless either

MIN(NTESTED) * TOLERANCE < MEAN(TESTED)

or

MEAN(TESTED) * TOLERANCE < MAX(NTESTED)

The METHOD option specifies how the various lines are to be defined, with the following settings.
They are defined below for a p chart. For an np chart, the values are simple multiplied by the
batch size(s).

untransformed this is the default setting, and requests the method
conventionally used in SPC. The centre line is at
p = (total number defective) / (total number tested)
and the limits are at p ± 3 × %(p / (1!p))

given specifies that the values are supplied by the CENTRELINE,
LOWERCONTROLLIMIT and UPPERCONTROLLIMIT

parameters.
logit obtains the values as the batch mean +/! three times its

standard error as estimated on the logit scale of a
generalized linear model (with binomial distribution).

probit obtains the values as the batch mean +/! three times its
standard error as estimated on the probit scale of a
generalized linear model

complementaryloglog obtains the values as the batch mean +/! three times its
standard error as estimated on the complementary-log-log
scale of a generalized linear model.
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Figure 2.10.4

For settings of METHOD other than
g i v en ,  t h e  C E NT R E L I NE ,
L O W E R C O N T R O L L I M I T  a n d
UPPERCONTROLLIMIT parameters can
be used to save the centre line and
limits.

You can set PRINT=warnings to
list any batches that are outside the
control limits; by default these are
suppressed. As usual, the WINDOW
option specifies which high-resolution
graphics window to use for the plot,
and the SCREEN option controls
whether or not to clear the graphics
screen before plotting.

Example 2.10.4 produces a p chart
(Figure 2.10.4) for the proportions of
defective cans in successive samples of
size 50 (see Montgomery 1985, page
152). Notice that two of the samples
contain unacceptably high proportions of defects.

Example 2.10.4

   2  VARIATE  [VALUES=12,15,8,10,4,7,16,9,14,10,5,6,17,12,22,\
   3           8,10,5,13,11,20,18,24,15,9,12,7,13,9,6] Cans
   4  SPPCHART [PRINT=warnings] Cans; NTESTED=50

***** Warning: the process is out of control.

Samples 15 and 23 are outside the control limits.

2.10.5 Control charts for numbers of defects

SPCCHART procedure
Plots c or u charts representing numbers of defective items (A.F. Kane & R.W. Payne).

Options
PRINT = string token What to print (warnings); default * i.e. nothing
PLOT = string token Type of chart to plot (c, u); default c
METHOD = string token Method to use to obtain the control limits (given,

loglinear, untransformed); default untr
TOLERANCEMULTIPLIER = scalar Multiplier to use to test whether to use mean sample size

for control limits; default 1
WINDOW = scalar Which high-resolution graphics window to use; default

3
SCREEN = string token Whether or not to clear the graphics screen before

plotting (clear, keep); default clea

Parameters
NDEFECTIVE = variates Number of defective items
NTESTED = scalars or variates Number of items tested
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CENTRELINE = scalars Sets or saves centre line
LOWERCONTROLLIMIT = scalars or variates

Sets or saves lower control limit
UPPERCONTROLLIMIT = scalars or variates

Sets or saves upper control limit

The c and u charts evaluate testing schemes in which numbers of defects are measured in
successive batches of items. The number of defects per batch is specified, in a variate, by the
NDEFECTIVE parameter. The NTESTED parameter supplies the number of items in each batch
! this can be a scalar if the batches are all of the same size, otherwise it is a variate.

The PLOT option controls the type of chart: the c chart plots number of defects per batch,
while the u chart plots the number of defects per item.

The charts contain not only the observed numbers of defects but also a centre line (indicating
a target value) and lines showing upper and lower control limits (bounding the zone outside
which the process is said to be out of control). The control limits relevant to each batch in a u
chart will depend on the batch sizes. The TOLERANCE option determines whether an average
sample size is used if the individual sizes are not exactly equal: this will happen unless either

MIN(NTESTED) * TOLERANCE < MEAN(TESTED)

or

MEAN(TESTED) * TOLERANCE < MAX(NTESTED)

The METHOD option specifies how the various lines are to be defined, with the following settings.
untransformed this is the default setting, and requests the method

conventionally used in SPC. For a c chart, the centre line
is at
c = (total number defects) / (number of batches)
and the limits are at c ± 3 × %(c). For a u chart, the centre
line is at
u = (total number defects) / (total number of items)
and the limits are at u ± 3 × %(u/n).

given specifies that the values are supplied by the CENTRELINE,
LOWERCONTROLLIMIT and UPPERCONTROLLIMIT

parameters.
loglinear obtains the values by fitting a generalized linear model

with Poisson distribution and log link.
For settings of METHOD other than given, the CENTRELINE, LOWERCONTROLLIMIT and
UPPERCONTROLLIMIT parameters can be used to save the centre line and limits.

You can set PRINT=warnings to list any batches that are outside the control limits; by
default these are suppressed. As usual, the WINDOW option specifies which high-resolution
graphics window to use for the plot, and the SCREEN option controls whether or not to clear the
graphics screen before plotting.

The two types of chart are illustrated in Example 2.10.5 and Figures 2.10.5a and 2.10.5b.

Example 2.10.5

   2  " c chart: data from Montgomery (1985) page 174."
   3  VARIATE  [VALUES=21,24,16,12,15,5,28,20,31,25,20,24,16,\
   4           19,10,17,13,22,18,39,30,24,16,19,17,15] Nonconformities
   5  SPCCHART [PRINT=warnings] Nonconformities; NTESTED=100

Warnings
========

Sample 6 is below the lower control limit.
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Figure 2.10.5a Figure 2.10.5b

Sample 20 is above the upper control limit.

   6  " u chart: data from  Montgomery (1985) page 181."
   7  VARIATE  [VALUES=10,12,8,14,10,16,11,7,10,15,9,5,7,11,12,6,8,10,7,5]\
   8           Nonconformities
   9  SPCCHART [PRINT=warnings; PLOT=u] Nonconformities; NTESTED=5

2.10.6 Capability statistics

SPCAPABILITY procedure
Calculates capability statistics (R.W. Payne).

Option
PRINT = string tokens Controls output (cpk, ppk, histogram); default cpk,

ppk

Parameters
DATA = variates or pointers Data measurements
SAMPLES = factors or scalars Factor identifying samples or scalar indicating the size

of each sample
LOWERLIMIT = scalars Specifies the lower specification limit for each set of

data
UPPERLIMIT = scalars Specifies the upper specification limit for each set of

data
CPK = scalars Saves the index Cpk

PPK = scalars Saves the index Ppk

Capability statistics assess the extent to which the output of a process lies within its specification
limits. The data values consist of samples of measurements made on successive occasions, which
are specified by the DATA and SAMPLES parameters. DATA can be set to a variate containing the
measurement and SAMPLES to a factor identifying the samples. Alternatively, if the samples are
all of the same size and occur in the DATA variate one sample at a time, you can set SAMPLES to
a scalar indicating the size of each sample. Finally, if the samples are in separate variates, you
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can set DATA to a pointer containing the variates (SAMPLES is then unset). The LOWERLIMIT
parameter supplies the lower specification limit of the process, and the UPPERLIMIT parameter
supplies the upper limit.

There are two indexes that can be calculated. The index Cpk is the minimum of the two
quantities Cpl and Cpu. These are defined as

Cpl = (LOWERLIMIT - mean) / (3 × sigma)
Cpu = (UPPERLIMIT - mean) / (3 × sigma)

where sigma is the within-sample standard deviation (see for example Ryan 1989, Chapter 7).
The alternative index, Ppk, is the minimum of the two quantities Ppl and Ppu. These have similar
definitions to Cpl and Cpu, except that sigma now also includes the between-sample variation.

The PRINT option controls which of these are printed, with settings cpk and ppk. There is
also a setting histogram, which plots a histogram of the data together with vertical lines
indicating the lower and upper limits. By default PRINT=cpk,ppk. The indexes can also be
saved, in scalars, using the parameters CPK and PPK.

Example 2.10.6 produces capability statistics for the samples of piston rings examined in
Example 2.10.1a

Example 2.10.6

  34  SPCAPABILITY Diameter; SAMPLES=5; LOWERLIMIT=73.95; UPPERLIMIT=74.05

Process capability
==================

Data variate: Diameter

Index Cpk        1.656
Lower index Cpl  1.735
Upper index Cpu  1.656

Index Ppk        1.613
Lower index Ppl  1.691
Upper index Ppu  1.613

2.11 Ecological data

This section describes the facilities in Genstat for displaying, summarizing and modelling
ecological data. ECDIVERSITY calculates diversity indices, which provide a summary statistic
for the diversity in a community (2.11.1). ECABUNDANCE allows the distribution of species
abundance data to be visualized using rank-abundance or k-dominance plots (2.11.2). A range
of distributions and models to describe species abundance data can be fitted using ECFIT
(2.11.3). An alternative approach to describing species abundance data is to try to predict how
available niche space might be divided amongst species and then evaluate whether the observed
species abundances match these expected abundances. ECNICHE can be used to generate relative
abundances for different niche-based models (2.11.4). ECRAREFACTION compares the species
richness of communities can be compared by rarefaction (2.11.5). This method estimates the
number of species that would be found if sampling effort was reduced, i.e. to "rarefy" sample
data to the same number of individuals as in another sample to provide a direct comparison.
ECACCUMULATION plots species accumulation curves. These show the rate at which new species
are found within a community, and can be extrapolated to provide an estimate of species richness
(2.11.6). This does a permutation test based on the ranks of similarities between sampling units.
LORENZ plots the Lorenz curve, which provides a graphical representation of the inequality of
a sample of numbers, and calculates the Gini and asymmetry coefficients (2.11.8). Also,
described elsewhere, ECANOSIM compares communities between sites by a nonparametric
analysis of similarities known as ANOSIM (6.1.6). 
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2.11.1 Diversity measures

A diversity index is a measure of the diversity of a population of individuals within a community
or area that is used in the analysis of data such as multi-species ecological data. There are two
components to diversity: richness and evenness. Richness is the measure of the number of
species or items within a sample where the more species or items in a community or area the
higher the diversity (or greater richness). Evenness is a measure of the relative abundance of the
different species or items within a community or area. The more nearly equal the species relative
abundances the higher the diversity. Many indices have been proposed as measures of diversity.
The ECDIVERSITY procedure can calculate some of the best known indices.

ECDIVERSITY procedure
Calculates measures of diversity with jackknife or bootstrap estimates (D.A. Murray).

Options
PRINT = string tokens Controls printed output (index, estimate); default

inde

INDEX = string token Controls the type of measurement to be calculated
(hshannon, qstatistic, simpsonyule,
bergerparker, ibrillouin, ebrillouin,
dmcintosh, emcintosh, evar, logseriesalpha,
lognormallambda, jshannon, margalef,
isimpson, richness); default hsha

GROUPS = factor Defines the groups if there is more than one sample
BMETHOD = string token Controls whether to use the bootstrap or jackknife

method (jackknife, bootstrap); default jack for
multiple samples and boot for individual samples

NBOOT = scalar Number of times to resample in bootstrap; default 100
SEED = scalar Seed for random number generator for bootstrap; default

0
CIPROBABILITY = scalar Probability for the confidence interval produced by

either jackknife or bootstrap method; default 0.95

Parameters
INDIVIDUALS = variates Number of individuals per species
SPECIES = variates Number of species
SAVE = variate or pointer Saves the diversity indices

The numbers of individuals per species are specified using the INDIVIDUALS parameter. The
SPECIES parameter specifies a variate containing the number of species for the associated
number of individuals denoted in the corresponding element of INIDIVIDUALS. SPECIES can
be omitted if each of the values in INDIVIDUALS corresponds to one species. The GROUPS
option can be used to calculate measures of diversity for different samples. The SAVE parameter
allows the diversity indices to be saved in a variate or in a pointer to a set of variates for each
group.

The INDEX option can be used to calculate one or more of the diversity measures, as follows.
The log series á index is estimated by fitting a log series model using the ECFIT procedure. The
log-Normal ë is the ratio of the S* and ó parameters estimated by fitting a Poisson-log-Normal
distribution using the ECFIT procedure.

The Q statistic is calculated by:
Q = ( 0.5 × nR1  +  3r = R1+1 ... R2!1 { nr }  +  0.5 × nR2 ) / log( R2 / R1),

where nr is the total number of species with abundance r, R1 and R2 are the 25% and 75%
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quartiles, nR1 is the number of species where R1 lies, and nR2 is the number of species where R2
lies.

The Shannon-Weiner index is evaluated by:
HN = ! 3i (ni / N) × log(ni / N)

where ni are the individuals, N is total number of individuals.
The Shannon-Weiner evenness (Pielou J) is given by

JN = HN / log(S)
where HN is the Shannon index and S is the total number of species.

The Brillouin index is given by
HB = ( log(N!) ! 3i {log(ni!)} ) / N

where ni is the individual in species i and N is total number of individuals.
The Brillouin evenness index is then calculated by

E = HB / HBmax
and

HBmax = 1 / N × log( N! / ( (N/S)!S!r × ((N/S)+1)!r )
where N/S is the integer of N/S and r = N!S(N/S)

Simpsons index D is calculated by
D = 3i {ni × (ni ! 1)} / (N × (N ! 1))

and is expressed in the output as both 1!D and 1/D
The Margalef index is:

Dmn = (S ! 1) / log(N)
where S is total number of species and N is total number of individuals.

McIntosh's measure of diversity is expressed as
D = (N ! %( 3i {ni

2} / (N ! %(N))
and the evenness measure is given by

E = (N ! %( 3i {ni
2} ) / (N ! N / %(S))

where ni is the individual in species i and N is total number of individuals.
The Berger-Parker index is

d = Nmax / N
where Nmax is the number of individuals in the most abundant species.

The Evar (Smith and Wilson's evenness) index is evaluated by
Evar = 1 ! 2 / (ð × arctan( 3i { log(ni) ! 3j { log(nj) } }2 / S ))

where ni and nj are the number of individuals in species i and j respectively, and S is the total
number of species

The PRINT option controls printed output, with settings:
index the index of diversity or evenness,
estimate bootstrap or jackknife estimate with confidence limits for

the statistic.
The BMETHOD option can be used to select either the bootstrap or jackknife (for multiple

samples) method to produce an estimate of the diversity measure with an associated confidence
interval. To produce a bootstrap or jackknife estimate for multiple samples, each sample must
contain the same number of values where each element corresponds to the same species within
each sample. For the calculation of the bootstrap confidence intervals of the diversity measures,
the NBOOT option specifies how many bootstrap samples to take (default 100). The probability
level for the confidence interval can be set by the CIPROBABILITY option; by default 0.95. The
SEED option specifies the seed to use in the random number generator used to construct the
bootstrap samples. The default value of zero continues an existing sequence of random numbers
or, if the generator has not yet been used in this run of Genstat, it initializes the generator
automatically.

Example 2.11.1 uses ECDIVERSITY to calculate the Shannon and Simpson indices.
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Example 2.11.1

   2  " Data from censuses of bird territories in woodlands in Killarney,
  -3    Ireland. (see Maguarran, A.E., 2004, Measuring Biological Diversity,
  -4    Blackwell, pages 237-240)"
   5  FACTOR  [NVALUES=69; LEVELS=3; VALUES=23(1...3);\
   6          LABELS=!t('Derrycunnihy oakwood','Muckross yew wood',\
   7                    'Sitka spruce plot')] Location
   8  VARIATE [VALUES=35,26,25,21,16,11,6,5,3,3,3,3,3,2,2,2,1,1,1,1,0,0,0,\
   9                   9,20,10,21, 5,14,0,3,2,6,9,2,0,0,0,6,0,0,0,1,1,1,0,\
  10                  14,10, 0,30, 4, 6,0,0,7,3,0,0,0,0,0,0,0,0,0,0,0,0,1]\
  11          Territories
  12  ECDIVERSITY [INDEX=hshannon,isimpson; GROUPS=Location] Territories

Diversity indices for Group Derrycunnihy oakwood
------------------------------------------------

                  Diversity Index
Shannon-Weiner H            2.408
Simpson 1/D                 8.717

Diversity indices for Group Muckross yew wood
---------------------------------------------

                  Diversity Index
Shannon-Weiner H            2.346
Simpson 1/D                 9.181

Diversity indices for Group Sitka spruce plot
---------------------------------------------

                  Diversity Index
Shannon-Weiner H            1.715
Simpson 1/D                 4.505

Diversity indices for Total
---------------------------

                  Diversity Index
Shannon-Weiner H            2.410
Simpson 1/D                 8.498

2.11.2 Plotting species abundance data

ECABUNDANCEPLOT procedure
Produces rank/abundance, ABC and k-dominance plots (D.A. Murray).

Options
PRINT = string token Controls printed output (summary); default summ
PLOT = string token Controls the type of plot (rankabundance,

kdominance, abc); default rank, kdom
GROUPS = factor Defines the groups if there is more than one sample

Parameters
INDIVIDUALS = variates Number of individuals per species
SPECIES = variates Number of species
BIOMASS = variates Biomass data for each species for an ABC plot

A rank/abundance plot (or Whittaker plot) can be used to visualize species abundance
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Figure 2.11.2a Figure 2.11.2b

distributions. In this plot, the number of individuals of each species are sorted in descending
order, and the proportion of the total number of individuals for each species is then plotted on
the log scale against the species rank. The shape of the rank/abundance plot can provide an
indication of dominance or evenness, for example, steep plots signify assemblages with high
dominance and shallower slopes indicate higher evenness.

A k-dominance plot displays the cumulative proportion abundance against the log species
rank. For this type of plot, more elevated curves represent less diverse assemblages.

An abundance/biomass comparison (or ABC curve) is an adaption of the k-dominance curve
where two measures of abundance are plotted: the number of individuals and biomass data. This
plot is useful to explore the level of disturbance affecting assemblage.

The numbers of individuals per species are specified using the INDIVIDUALS parameter. The
SPECIES parameter specifies a variate containing the number of species for the associated
number of individuals specified in the corresponding element of INDIVIDUALS. SPECIES can
be omitted if each of the values in INDIVIDUALS corresponds to one species. The GROUPS
option can be used to plot the relative abundance for different samples.

The PLOT option can be used to produce a rank/abundance plot, k-dominance curve and an
ABC curve. You can display a summary of the number of individuals and species by setting the
option PRINT=summary. Selecting this option will also display the W statistic for an ABC curve.
The W statistic for an ABC curve is defined by

W  =  3i (Bi ! Ai) / (50 × (S ! 1))
where S is the total number of Species, Bi is the biomass value of each species rank i, and Ai is
the abundance value of each species rank i.

Example 2.11.2 uses ECABUNDANCE to produce the rank abundance and k-dominance plots
shown in Figures 2.11.2a and 2.11.2b respectively for the data in Example 2.11.1.

Example 2.11.2

  13  ECABUNDANCEPLOT [GROUPS=Location] Territories

Summary of the number of individuals and species
------------------------------------------------

                            Number of individuals  Number of species
 Group Derrycunnihy oakwood                   170                 20
    Group Muckross yew wood                   110                 15
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2.11.3 Species abundance models

ECFIT procedure
Fits models to species abundance data (D.A. Murray).

Options
PRINT = string tokens Controls printed output (summary, estimates,

fittedvalues); default summ, esti
MODELTYPE = string token The model or distribution fitted to the data (logseries,

plognormal, negativebinomial, geometric,
zipf, mandelbrotzipf); default logs

GROUPS = factor Defines the groups if there is more than one sample
LOGBASE = string token Log base to use to form the octaves for the logseries,

Poisson log-Normal and negative binomial distributions
(two, ten); default two

PLOT = string token Plots the fitted values (fittedabundance,
rankabundance); default fitt

Parameters
INDIVIDUALS = variates Number of individuals per species
SPECIES = variates Number of species
ESTIMATES = variates Saves the model estimates
EGROUPS = factors Saves the grouping of the estimates

ECFIT provides a range of distributions and models that can be used to describe species
abundance data. The numbers of individuals per species are specified using the INDIVIDUALS
parameter. The SPECIES parameter specifies a variate containing the number of species for the
associated number of individuals specified in the corresponding element of INDIVIDUALS.
SPECIES can be omitted if each of the values in INDIVIDUALS corresponds to one species. The
GROUPS option can be used to fit models for different samples.

The distribution or model to be fitted to the data is specified by the MODELTYPE option. For
the log series, Poisson log-Normal and negative binomial distributions the species abundance
data are grouped into "octaves" using a logarithmic scale. These distributions are then fitted
using the DISTRIBUTION directive using the octave classes. The log base for forming the
octaves for the log series, Poisson log-normal and negative binomial distributions can be
supplied using the LOGBASE option. The default is to use log base 2, i.e. representing doubling
in species abundance.

For the geometric series the abundances are ranked from the most to least abundant, and fitted
using FITNONLINEAR where the series is given by

ai = N / (1 ! (1 ! k)S) × k × (1 ! k)i!1

where ai is the total number of individuals in the ith species, N is the total number of individuals,
k is the proportion of remaining niche space, and 1 / (1 ! (1 ! k)S) is a constant that ensures 3i

ai = N.
The Zipf and Zipf-Mandelbrot models are also fitted using FITNONLINEAR. The Zipf model

is given by
Ai = A1  × i!ã

where A1 is the fitted abundance of the most abundant species, and ã is a constant representing
the average probability of the appearance of a species.

The Zipf-Mandelbrot is an extension of the Zipf model and is expressed as
Ai = A1  × (i + â)!ã

where A1 and gamma are as before, and beta is a constant.
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The parameter estimates from the fitted model can be saved using the ESTIMATES parameter.
The EGROUPS factor saves a factor indicating the group strucure of the estimates.

The PRINT option controls printed output, with settings:
summary summary of the analysis,
estimates the parameter estimates,
fittedvalues the fitted values.

The PLOT option can be used to produce a plot of the fitted model or distribution. For the
geometric series, Zipf and Zipf-Mandelbrot models, the fitted model can also be displayed on
a rank/abundance plot on the log-scale.

Example 2.11.3 uses ECFIT to fit the log series model.

Example 2.11.3

   2  " Frequency distribution of individuals per species in a light trap
  -3    sample of Macrolepidoptera collected at Rothamsted Research.
  -4    (see Lewis & Taylor 1967, Introduction to Experimental Ecology,
  -5    Academic Press, page 244) "
   6  VARIATE [VALUES=1...18,20...23,25,28,29,33,34,38,39,40,42,48,\
   7          51,52,53,58,61,64,69,73,75,83,87,88,105,115,131,139,\
   8          173,200,223,232,294,323,603,1799] Individuals
   9  VARIATE [VALUES=37,22,12,12,11,11,6,4,3,5,2,4,2,3,2,2,4,2,4,4,\
  10          1,1,1,2,2,2,2,1,1,3,2,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,\
  11          1,1,1,1,1,1,1,1,1] NumSpecies
  12  ECFIT  [PRINT=summary,estimates,fitted; PLOT=*; MODELTYPE=logseries]\
  13          Individuals; SPECIES=NumSpecies

Summary of analysis
-------------------

Model: Logseries
Pr(X=r) = alpha*(x**r)/r, r>0, 0<x<1
Deviance: 14.15 on 10 d.f.
Number of individuals:         6815
Number of species:              197

Estimates of parameters
-----------------------

Parameter    Estimate        s.e.
alpha          34.741       0.867
x               0.997

Fitted values
-------------

Octave    Observed      Fitted
    1        37.00       34.62
    2+       22.00       28.71
    4+       24.00       25.91
    8+       32.00       24.26
   16+       23.00       22.79
   32+       21.00       20.81
   64+       20.00       17.67
  128+        8.00       12.89
  256+        6.00        6.96
  512+        2.00        2.13
 1024+        1.00        0.23
 2048+        1.00        0.02
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2.11.4 Niche-based models

ECNICHE procedure
Generates relative abundance of species for niche-based models (D.A. Murray).

Options
PRINT = string token Controls printed output (model, expected,

replications); default mode, expe
MODELTYPE = string token The niche model (powerfraction, fixedratio,

preemption, randomfraction,
macarthurfraction); default powe

METHOD = string token Whether to use the Fortran DLL to calculate the relative
abundance (dll, commands); default * uses the DLL in
Windows implementations, and commands for other
platforms

POWER = scalar Power for the Power fraction model, must be in the
range 0 to 1

URATIO = scalar Ratio for the fixed ratio model
SEED = scalar Seed for random number generator for the random

division of the niche space; default 0
PLOT = string token Plots the average relative abundance

(relativeabundance); default rela

Parameters
NREPLICATES = scalars Number of replications
NSPECIES = scalars Number of species
EXPECTED = variates Saves the expected average relative abundance
SDEXPECTED = variates Saves the standard deviation for the expected mean

relative abundance

The relative abundance of species can be modelled using deterministic models, such as the log
series, or by stochastic models based on assumed patterns of resource use, such as niche-based
models. ECNICHE can be used to simulate relative abundances (proportional abundance of
species) for niche-apportionment, where species are considered to be associated with different
processes of niche division, and sequential breakage models. Niche apportionment and
sequential breakage models generate relative abundances using a two step process. In the first
step the target niche (the total niche space in the very first step) is divided using a given
probability distribution, for example, a random selection using the uniform distribution. In the
second step a new target niche space is selected using a probabilistic weighting. The process is
then repeated by dividing a selected target niche and selecting a new niche for division.
ECNICHE includes Tokeshi's (1993, 1996) niche apportionment models for the dominance
preemption, random fraction, power fraction and MacArthur fraction. The dominance
preemption model assumes that each species in turn preempts over half the remaining niche
space and is dominant over all remaining species combined. The random faction model
represents the situation where new species compete for the niche space of existing species, and
takes a random proportion of the previously existing niche. Therefore, species with different
niche sizes or abundances have the same chance of being selected for a subsequent niche
division. In the power fraction model, the probability of selection is proportional to niche size
(or abundance) raised to a power exponent k (0 # k # 1). In the MacArthur fraction model
(broken-stick model) the probability of a niche being selected for division is related to its size.
So, larger niches are more likely to be invaded by species. ECNICHE also provides the sequential
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Figure 2.11.4

breakage model where the target niche is selected at random and then divided to produce two
segments relative to a ratio such as 0.75:0.25.

The number of replications for the model are specified using the NREPLICATES parameter.
The NSPECIES parameter specifies the number of species within the assemblage. The mean
relative abundance of species and associated standard deviations can be saved using the
EXPECTED and SDEXPECTED parameters respectively.

The model to use to generate the relative abundances for the species is specified by the
MODELTYPE option. The power for the Power fraction model is specified using the POWER option,
and must range between 0 and 1. For the sequential breakage model, the largest value of the ratio
of division is specified using the URATIO option, and must range between 0.5 and 1. The SEED
option specifies the seed to use in the random division of the niche space. The default value of
zero continues an existing sequence of random numbers or, if the generator has not yet been used
in this run of Genstat, initializes the generator automatically.

For a large number of replications the calculation of the relative abundance of species can be
slow. For the PC Windows implementation, a Fortran DLL is available that uses the OWN
calculate function. By default the procedures uses the DLL, however, you can choose to use the
Genstat commands by setting option METHOD=commands.

The PRINT option controls printed output, with settings:
model the niche model,
expected the expected mean relative abundance,
replications the relative abundances for each replication; this can

produce a lot of output, so it is recommended that this be
used only for monitoring.

By default PRINT=model,expected.
The PLOT option controls whether

ECNICHE produces a plot of the average
relative abundance on the log scale, as
shown in Figure 2.11.4; the default
PLOT=relativeabundance gives the
plot.

Example 2.11.4 shows how to generate
relative abundances for the data in Example
2.11.3 using Tokehi’s power fraction
model.
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Example 2.11.4

  14  ECNICHE [MODELTYPE=power; POWER=0.2; SEED=2635] 250;25

Niche apportionment model
-------------------------

Model:  Power Fraction
Power:  0.2

Expected mean relative abundance
--------------------------------

Species rank Mean relative abundance Standard deviation
           1                 0.47096            0.20305
           2                 0.18762            0.08069
           3                 0.10393            0.05366
           4                 0.06503            0.03780
           5                 0.04456            0.03050
           6                 0.03130            0.02320
           7                 0.02413            0.01955
           8                 0.01750            0.01612
           9                 0.01331            0.01330
          10                 0.00971            0.01002
          11                 0.00731            0.00786
          12                 0.00579            0.00652
          13                 0.00443            0.00524
          14                 0.00348            0.00423
          15                 0.00273            0.00357
          16                 0.00210            0.00290
          17                 0.00166            0.00232
          18                 0.00133            0.00198
          19                 0.00096            0.00144
          20                 0.00073            0.00117
          21                 0.00056            0.00093
          22                 0.00038            0.00067
          23                 0.00026            0.00051
          24                 0.00015            0.00031
          25                 0.00007            0.00019

2.11.5 Rarefaction

ECRAREFACTION procedure
Calculates individual or sample-based rarefaction (D.A. Murray).

Options
PRINT = string token Controls printed output (summary); default summ
METHOD = string token Controls the type of rarefaction (individual,

sample); default indi
PLOT = string token Controls plot type (expected); default expe
SAMPLESIZES = scalar or variate A scalar defining a step between sample sizes or number

of samples to estimate the number of species;
alternatively, a variate specifing the actual sample size
values or number of samples

CIPROBABILITY = scalar Probability for the confidence interval; default 0.95

Parameters
DATA = variates, matrices or pointers

For individual-based rarefaction, a variate containing the
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number of individuals for each species; for sample-
based rarefaction, a pointer or matrix specifying the
number of individuals for each species for different
sites/samples

EXPECTED = variates Saves the expected number of species at each sample
size

VARIANCE = variates Saves the variance for the expected number of species
LOWER = variates Saves the lower confidence limit at each sample size
UPPER = variates Saves the upper confidence limit at each sample size

Rarefaction is a method that can be used to estimate the number of species that would be found
if sampling effort was reduced to a specified level. This then allows comparisons amongst
communities where sampling effort is unequal. For individuals in a sample, individual-based
rarefaction can be used to estimate the number of species that would be observed given a smaller
number of individuals (Heck et al. 1975). Sample-based rarefaction can be used to estimate the
expected number of species that would be observed given a smaller number of samples (Colwell
et al. 2004). Rarefaction assumes that individuals have been sampled randomly and sample-
based rarefaction assumes a random sample ordering. The method also assumes that the samples
that are to be compared are not obtained by different collecting techniques or from communities
that are intrinsically different.

For individual-based rarefaction, the number of individuals for each species are specified in
a variate using the DATA parameter. For sample-based rarefaction, the data can be supplied using
the DATA parameter either as a matrix where the rows contain the number of individuals for each
species and the columns specify the different samples, or as a pointer to variates containing
samples for the individuals for each species. The expected number of species and associated
variance can be saved using the EXPECTED and VARIANCE parameters respectively. The LOWER
and UPPER parameters can be used to save the lower and upper bounds for the confidence
interval. The type of rarefaction (individual or sample-based) is specified using the METHOD
option. For individual-based rarefaction the expected number of species in a sample of size n is
calculated by:

E(Sn) = S ! ( 1 / C(n, N) ) × 3i { C(n, N!Ni) }
where Ni is the number of individuals in species i of the unrarefied sample, C(n, N) is the number
of combinations of n from N and C(n, N!Ni) is the number of combinations of n from N!Ni. The
variance, var(Sn), is outlined in Heck et al. (1975).

Sample-based rarefaction is calculated by
t(h) = Sobs ! 3j=1...H { ajh × sj }   for h = 1 ... H

where sj is the number of species found in exactly j samples of a total of H samples, Sobs is
defined by

Sobs = 3j=1...H { sj }
and the combinational coefficients ajh are estimated by

ajh = ((H ! h)! × (H ! j)!) / ((H ! h ! j)! × H!)  for j + h # H
ajh = 0  otherwise

The variance is estimated by
var(h) = 3 { (1 ! ajh)

2 × sj ! t(h)2 / S~

where
S~ = Sobs + (H ! 1) × s1

2 / (2 × H × s2)
The SAMPLESIZES option specifies the sample sizes or number of samples for which the

expected number of species is calculated. A scalar can be supplied to specify a step between each
sample size, or a variate can be provided containing the actual sample sizes. By default the
expected values are calculated for all possible sample sizes.

By default a summary is printed, giving the expected species richness, variance and
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Figure 2.11.5

confidence limits, but you can set option PRINT=* to suppress this.
A plot of the expected number of species

and confidence limits can be specified
using the expected setting of the PLOT
option. The probability level for the 
confidence intervals can be set by the
CIPROBABILITY option; by default 0.95.

Example 2.11.5 shows an example of
individual-based rarefaction. The results
are saved, to produce the plot in Figure
2.11.5.

Example 2.11.5

   2  " Data from Siegel & German (1982). Biometrics, 38, 235-242.
  -3    Distribution of species within families of echinoids and bivalves."
   4  VARIATE       [VALUES=24(1),16(2),9(3),9(4),6(5),6(6),6(7),5(8),2(9),\
   5                12,4(13),2(14),15,16,3(17),20,22,2(29),35,55,99] Bivalves
   6  VARIATE       [VALUES=6(1),2,2,3,3,5,5,6,6,7,9,10,11,11,13,13,14,15,\
   7                23,24,25,25,26,29,32,33,33,36,36,42,49,58,61,86,134]\
   8                Echinoids
   9  ECRAREFACTION [PLOT=*; SAMPLESIZE=50] Bivalves; EXP=bexp; \
  10                LOWER=blow; UPPER=bupp

Individual-based rarefaction
----------------------------

 Sample size Expected Species    Variance    Lower CI    Upper CI
          50            30.51       7.570       26.98       34.03
         100            46.89      11.371       42.57       51.21
         150            57.97      12.620       53.42       62.53
         200            66.18      12.675       61.62       70.75
         250            72.60      12.151       68.14       77.07
         300            77.81      11.331       73.49       82.12
         350            82.14      10.347       78.02       86.26
         400            85.83       9.261       81.93       89.73
         450            89.02       8.102       85.37       92.67
         500            91.82       6.883       88.46       95.18
         550            94.31       5.610       91.28       97.35
         600            96.54       4.284       93.89       99.20
         650            98.56       2.901       96.38      100.74
         700           100.39       1.455       98.85      101.94

  11  ECRAREFACTION [PLOT=*; SAMPLESIZE=50] Echinoids; EXP=eexp; \
  12                LOWER=elow; UPPER=eupp

Individual-based rarefaction
----------------------------
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 Sample size Expected Species    Variance    Lower CI    Upper CI
          50            21.02       4.107       18.42       23.62
         100            26.84       3.909       24.30       29.37
         150            29.75       3.502       27.35       32.15
         200            31.61       3.166       29.33       33.89
         250            32.95       2.903       30.77       35.13
         300            33.99       2.689       31.89       36.09
         350            34.84       2.502       32.81       36.87
         400            35.56       2.327       33.60       37.51
         450            36.19       2.153       34.31       38.07
         500            36.75       1.973       34.95       38.55
         550            37.26       1.783       35.55       38.98
         600            37.74       1.578       36.13       39.35
         650            38.18       1.357       36.68       39.67
         700            38.59       1.118       37.23       39.94
         750            38.98       0.859       37.79       40.17
         800            39.35       0.580       38.38       40.33
         850            39.71       0.278       39.03       40.38

  13  PEN    2,4; SYMBOL=0; METHOD=mono; LINE=1
  14  XAXIS  [RESET=yes] 1; TITLE='Species'
  15  YAXIS  [RESET=yes] 1; TITLE='Families'
  16  DGRAPH [WINDOW=1] bexp,blow,bupp,eexp,elow,eupp; \
  17         3(!(50,100...700)),3(!(50,100...850)); PEN=1,2,2,3,4,4;\
  18         DESCRIPTION='Expected bivalves','lower 95% confidence bound',\ 
  19         'upper 95% confidence bound','Expected echinoids',\
  20         'lower 95% confidence bound','upper 95% confidence bound'

2.11.6 Species accumulation curves

ECACCUMULATION procedure
Plots species accumulation curves for samples or individuals (D.A. Murray).

Options
PRINT = string token Controls printed output (summary); default summ
CURVE = string token Controls the type of species accumulation curve

(collector, random, coleman); default coll
PLOT = string token Controls plot type (sac); default sac
METHOD = string token Controls collector curve when data supplied in variate or

factor with groups (individual, sample); default
samp

GROUPS = factor Grouping factor for samples when data are supplied in
variate of factor of individuals

NPERMUTATIONS = scalar A scalar defining the number of permutations to be
performed for the random method; default 100

SEED = scalar Seed for random number generator; default 0
SCREEN = string token Whether to clear screen before displaying the graph

(keep, clear); defaul clea
WINDOW = scalar Window for the graph; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
PEN = scalar Pen number to draw the curve; default 1

Parameters
DATA = variates, factors, matrices or pointers

For individual-based collector curves, a variate or factor
containing the individuals in the order they were
collected; for sample-based species accumulation
curves, a pointer or matrix specifying the number of
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individuals for each species for different sites/samples
RICHNESS = variates Saves the observed number of species for the collector

method and the average or expected number of species
at each sample size for the Coleman and random
methods

VARIANCE = variates Saves the variance for the richness (Coleman and
random methods only)

Species accumulation curves show the rate at which new species are found within a community,
and can be extrapolated to provide an estimate of species richness. The simplest curve is the
collectors curve. This plots the cumulative number of species recorded as a function of sampling
effort (i.e. number of individuals collected or cumulative number of samples). The order in
which samples are included in a species accumulation curve will influence the overall shape. A
smooth accumulation curve can be produced by repeating a process of randomly adding the
samples to the accumulation curve and then plotting the mean of these permutations.
ECACCUMULATION can also plot a Coleman curve (see Coleman et al. 1982). Here the expected
number of species is calculated by

sá = S ! 3i=1...S (1 ! á)ni

where S is the number of species, ni is the number of individuals belonging to ith species and á
is the relative area

á = a / 3ak

The variance for the Coleman curve is estimated by
vá = 3i=1...S (1 ! á)ni ! 3i=1...S (1 ! á)2 × ni

For sample-based species accumulation curves, the data can be supplied using the DATA
parameter, either as a matrix where the rows contain the number of individuals for each species
and the columns specify the different samples or sites, or as a pointer to variates containing
samples for the individuals for each species. Alternatively, the individual species numbers or
labels can be supplied in either a variate or factor using the DATA parameter while the samples
are identified by supplying a grouping factor using the GROUPS option. Individual-based species
accumulation curves can be formed using the collector method, where the individual species
numbers or labels are specified in either a variate or factor using the DATA parameter. The
species numbers or labels must be specified in the order in which they were collected within the
variate or factor. Different samples of individuals can be plotted on the same graph by supplying
a grouping factor using the GROUPS option and specifying the individual setting of the METHOD
option. For the collector curve the observed number of species can be saved using the RICHNESS
parameter. For the random and Coleman curves the average and expected number of species and
associated variance can be saved using the RICHNESS and VARIANCE parameters respectively.
The type of species accumulation curve (collector, random or Coleman) is specified using the
CURVE option. If the collector curve is chosen and the data have been supplied using the
individual values with a grouping factor, the METHOD option can be used to choose whether to
produce a sample-based plot or a plot of the individual-based curves. The number of
permutations used for the random method can be supplied using the NPERMUTATIONS option,
by default 100 permutations are used. The SEED option specifies the seed to use for the sub-
sampling without replacements. The default value of zero continues an existing sequence of
random numbers or, if the generator has not yet been used in this run of Genstat, initializes the
generator automatically.

The PRINT option controls printed output, with settings:
summary the species richness and variance (for Coleman and

random methods); this is the default.
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Figure 2.11.6

A plot of the species accumulation curve
can be specified using the sac setting of
the PLOT option. The graphical display can
be controlled using the SCREEN, WINDOW,
KEYWINDOW and PEN options. By default
the curves are produced in window 1 using
pen 1 and drawn on a new screen.

Example 2.11.6 plots species
accumulation curve for some data on
beetles from Magurran (2003); see Figure
2.11.6.

Example 2.11.6

   2  " Abundance of carabid beetles sampled in hedgerows (Magurran 2003)."
   3  VARIATE        [VALUES=0,0,1,0,2,0,6,1,0,0,0,1,1,0,0,1,0,0,0,0] S1
   4  &              [VALUES=0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0] S2
   5  &              [VALUES=6(0),4,13(0)] S3
   6  &              [VALUES=5(0),2,3,3,6(0),2,5(0)] S4
   7  &              [VALUES=6(0),4,4(0),4,0,0,1,5(0)] S5
   8  &              [VALUES=0,0,2,0,1,0,3,2,1,1,4,0,0,1,1,0,1,0,0,0] S6
   9  &              [VALUES=6(0),2,0,0,0,1,9(0)] S7
  10  &              [VALUES=6(0),1,0,1,11(0)] S8
  11  &              [VALUES=16(0),1,0,0,0] S9
  12  &              [VALUES=0,0,2,0,2,0,1,1,0,0,0,1,0,0,0,1,0,0,2,0] S10
  13  &              [VALUES=12,5(0),5,13(0)] S11
  14  &              [VALUES=0,1,1,1,0,0,11,5,0,1,2,9,6(0),1,0] S12
  15  &              [VALUES=32,0,0,1,9(0),1,0,0,0,0,1,0] S13
  16  &              [VALUES=2,0,2,0,0,1,3,0,0,0,1,9(0)] S14
  17  &              [VALUES=4(0),1,0,9,3,0,0,0,1,0,0,0,0,0,1,1,0] S15
  18  &              [VALUES=0,0,0,0,2,1,2,5(0),1,5(0),1,1] S16
  19  POINTER        [VALUES=S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,\
  20                 S11,S12,S13,S14,S15,S16] Beetle
  21  ECACCUMULATION [PRINT=*; CURVE=coleman] Beetle
  22  ECACCUMULATION [PRINT=*; CURVE=random; SCREEN=keep; PEN=2] Beetle
  23  ECACCUMULATION [PRINT=*; CURVE=collector; SCREEN=keep; PEN=3] Beetle

2.11.7 Nonparametric estimation of species richness

ECNPESTIMATE procedure
Calculates nonparametric estimates of species richness (D.A. Murray).

Options
PRINT = string token Controls printed output (summary, estimates); default

summ, esti
GROUPS = factor Grouping factor for different samples
NBOOT = scalar A scalar defining the number of bootstrap samples to be
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performed; default 100
SEED = scalar Seed for random number generator; default 0

Parameters
DATA = variates, matrices or pointers

A variate containing abundances of species or a pointer
or matrix specifying the individuals for each species for
different sites/samples

ESTIMATES = variates or pointer Saves the estimated species richness in a variate, or in a
pointer if GROUPS are specified

SE = variates or pointers Saves the analytic standard errors in a variate, or in a
pointer if groups are specified

BSE = variates or pointers Saves the bootstrap standard errors in a variate, or in a
pointer if groups are specified

Richness is the measure of the number of species within a sample. ECNPESTIMATE provides a
number of nonparametric estimators for measuring true species richness. These estimators
include the Chao 1, Chao 2, ACE, ICE, first-order jackknife, second-order jackknife and
bootstrap. The Chao 1 and ACE are based on the abundances within the samples, whereas the
other estimators are incidence-based using frequencies of species in a set of samples. Standard
errors are calculated using analytical results where possible. In addition, for multiple samples,
standard errors are calculated by resampling with replacement.

The data can be supplied using the DATA parameter either as a matrix where the rows contain
the number of individuals for each species and the columns specify the different samples or sites,
or as a pointer to variates containing samples for the individuals for each species. Alternatively,
the individual species numbers can be supplied in a variate for a single sample/site. The GROUPS
option can supply a grouping factor to produce estimates for different groups. The estimates and
standard errors can be saved using the ESTIMATES, SE (analytic standard errors) and BSE
(bootstrap standard errors) parameters. If a grouping factor is supplied then they will be saved
in a pointer to variates, otherwise they are saved in a variate.

The PRINT option controls printed output, with settings:
summary a summary of the data,
estimates the species richness estimates and standard errors.

The NBOOT option specifies how many bootstrap samples to take to calculate the bootstrap
standard errors and confidence intervals (default 100). The probability level for the confidence
interval can be set by the CIPROBABILITY option; by default 0.95. The SEED option specifies
the seed to use in the random number generator used to construct the bootstrap samples. The
default value of zero continues an existing sequence of random numbers or, if the generator has
not yet been used in this run of Genstat, it initializes the generator automatically.

Example 2.11.7 illustrates the use of ECNPESTIMATE using data from Table 5 of Helshe &
Forrester (1983), which contains a benthic infaunal sample of a subtidal marsh creek in the
Pettquamscutt River in Southern Rhode Island collected in April 1978 by Jeffrey Hyland of the
Graduate School of Oceanography of the University of Rhode Island.

Example 2.11.7

   2  POINTER      [NVALUES=10] quad
   3  VARIATE      [VALUES=0,2,0,1,0,1,1,2,0,0,0,0,0,8] quad[1]
   4  VARIATE      [VALUES=13,2,1,0,0,1,0,0,1,0,0,0,0,36] quad[2]
   5  VARIATE      [VALUES=21,4,0,1,1,2,0,0,0,1,3,5,0,14] quad[3]
   6  VARIATE      [VALUES=14,4,0,2,2,1,0,0,0,0,0,1,0,19] quad[4]
   7  VARIATE      [VALUES=5,1,0,0,0,0,0,0,0,0,0,0,0,3] quad[5]
   8  VARIATE      [VALUES=22,1,0,6,0,1,0,0,0,0,0,2,0,22] quad[6]
   9  VARIATE      [VALUES=13,1,0,0,1,0,0,0,0,0,0,0,0,6] quad[7]
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  10  VARIATE      [VALUES=4,0,1,0,0,0,0,0,0,0,0,0,1,8] quad[8]
  11  VARIATE      [VALUES=4,1,0,1,0,1,0,0,0,0,0,0,0,5] quad[9]
  12  VARIATE      [VALUES=27,6,0,2,1,5,0,0,0,0,2,3,0,41] quad[10]
  13  ECNPESTIMATE [SEED=204029] quad

Nonparametric estimation of species richness
============================================

Total number of species observed in all samples pooled 14
Number of rare species (<= 10 indivduals)              8
Number of abundant species (> 10 individuals)          6
Number of infrequent species (in <= 10 samples)        14
Number of frequent species (in > 10 samples)           0
Total number of species                                10
Singletons                                             4
Doubletons                                             2
Uniques                                                5
Duplicates                                             2
Number of individuals in rare species                  18
Number of occurences of infrequent species             58

Estimates for species richness
==============================

Abundance-based estimators
--------------------------

Estimator    Estimate        s.e.
   Chao 1       18.00       5.292
      ACE       18.75

Presence/Absence-based estimators
---------------------------------

               Estimate        s.e.
     Chao 2       20.25       7.552
Jackknife 1       18.50       2.012
Jackknife 2       21.08
  Bootstrap       15.97       1.356
        ICE       18.81

Resampling with replacement estimate for species richness
---------------------------------------------------------

               Estimate        s.e.
     Chao 1       16.99       3.055
     Chao 2       18.71       5.148
Jackknife 1       18.48       1.687
Jackknife 2       21.06       3.481
  Bootstrap       15.96       0.637
        ICE       20.06       5.680
        ACE       20.10       6.091

Warning: bootstrap of ACE estimate includes samples where all rare species are equal
to singletons; these samples have been excluded and the bootstrap estimate is based
on 99 samples.

The Chao 1 estimator of the absolute number of species in an assemblage is calculated by:
s(Chao 1) = Sobs + F1

2 / (2 × F2)
where Sobs is the number of species in the sample, F1 is the number of observed species
represented by a single individual (frequency of singletons), and F2 is the number of species that
have exactly two individuals (frequency of doubletons). The variance for the estimate is given
by:

var(Chao 1) = F2 × { 0.5 × (F1 / F2)
2 + (F1 / F2)

3 + 0.25 × (F1 / F2)
4 }

When F2 equals 0 the modified bias-corrected estimate is used:
s(Chao 1) = Sobs + F1 × (F1 ! 1) / 2

and
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var(Chao 1) = {F1 × (F1!1) / 2} + {F1 × (2×F1!1)2 / 4} ! F1
4 / (4 × s(Chao 1))

The Chao 2 estimator is calculated by:
s(Chao 2) = Sobs + Q1

2 / (2 × Q2)
where Sobs is the number of species in sample, Q1 is the number of species that occur in exactly
one sample (uniques), and Q2 is the number of species that occur in exactly two samples
(duplicates). The variance for the estimate is given by:

var(Chao 2) = Q2 × { 0.5 × (Q1 / Q2)
2 + (Q1 / Q2)

3 + 0.25 × (Q1 / Q2)
4 }

When Q2 equals 0 the modified bias-corrected estimate is used:
s(Chao 2) = Sobs + Q1 × (Q1 ! 1) / 2

and
var(Chao 2) = {(H ! 1) / H} × Q1 × (Q1 ! 1) / 2
  + {(H ! 1) / H}2 × Q1 × {2 × Q1 ! 1)2} / 4
  + {(H ! 1) / H}2 × Q1

4 / (4 × Chao2)
where H is the total number of samples.

The first-order jackknife estimate is evaluated by:
s(jack1) = Sobs + Q1 × (H ! 1) / H

with variance
var(jack1) = {(H ! 1) / H} × { 3j=1...S (j

2 × fj) ! (Q1
2 / H) }

where S is the number of species, Q1 is the number of species that occur in exactly one sample
and fj is the number of samples with j unique species.

The second-order jackknife estimate is given by:
s(jack2) = Sobs + Q1 × (2 × H ! 3) / H ! Q2 × (H ! 2)2 / {H × (H ! 1)}

where Q1 is the number of species that occur in exactly one sample, and Q2 is the number of
species that occur in exactly two samples.

The bootstrap estimate is calculated by:
s(boot) = Sobs + 3j=1...S (1 ! pj)

H

where pj is the proportion of species j. The variance is calculated using the method given in
Smith & van Belle (1984).

The abundance-based coverage estimator (ACE) is given by:
s(ACE) = Sabund + Srare / CACE + (F1 / CACE) × ã2

where Sabund is the number of abundant species (>10), Srare is the number of rare species (#10),
F1 is the number of singletons,

CACE = 1 ! F1 / Nrare

where Nrare is the total number of individuals in rare species, and
ã = max {(Srare/CACE) × 3i=1...10 {i × (i!1) × Fi} / (Nrare × (Nrare ! 1)) ! 1, 0}

The incidence-based coverage estimator (ICE) is given by:
s(ICE) = Sfreq + Sinfr / CICE + (Q1 / CICE) × ã2

where Sfreq is the number of frequent species (>10), Sinfr is the number of infrequent species
(<=10), Q1 is the number of uniques, CICE = 1 ! Q1 / Ninfr where Ninfr is the total number of
occurrences of infrequent species, and

ã = max{(Sinfr/CICE) × (Minfr/(Minfr!1)) × (3i=1...10 {i × (i!1) × Qi} / Ninfr
2) ! 1, 0}

where Minfr is the number of samples with at least one infrequent species.
The bootstrap standard errors are generated using the BOOTSTRAP procedure sampling with

replacement, and the species richness estimates are calculated from these samples.
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2.11.8 Lorenz curve and Gini coefficient

LORENZ procedure
Plots the Lorenz curve and calculates the Gini and asymmetry coefficients (R.W. Payne).

Options
PRINT = string tokens Controls printed output (gini, lorenz, asymmetry);

default gini, lore, asym
PLOT = string token Controls graphical output (curve); default curv
TITLE = string Title for the graph; default uses the identifier of the

DATA variate
NBOOT = scalar Number of samples to make to construct the bootstrap

confidence intervals; default 100
SEED = scalar Seed for the random number generator used to construct

the bootstrap samples; default 0 i.e. continue an existing
sequence of random numbers or, if none, initialize the
generator automatically

CIPROBABILITY = scalar Probability for the bootstrap confidence interval; default
0.95

Parameters
DATA = variates Specifies sets of data values
GINI = scalars Saves the Gini coefficient for each DATA variate
ASYMMETRY = scalars Saves the asymmetry coefficient for each DATA variate

The Lorenz curve provides a graphical representation of the inequality of a sample of numbers.
In economics the numbers could be the annual incomes of a group of people, or in ecology they
could be population sizes of a set of species of animal or plant. The y-coefficients for the curve
are formed by sorting the numbers, calculating their cumulative totals, and then dividing these
by the grand total. The x-coefficients are simply the numbers 0, 1, ... n, where n is the size of the
sample. If the numbers are all equal, the curve will form a straight line, known as the line of
equality, running from the origin to the point (1, 1). Inequalities amongst the numbers cause the
curve to lie below the line of equality.

The Gini coefficient is the area between the line of equality and the Lorenz curve area, divided
by area under the line of equality. So, a value close to zero indicates near equality, while a value
near to one shows a high amount of inequality. The asymmetry coefficient assesses the amount
of asymmetry of the Lorenz curve. The axis of symmetry for the curve is the line from (1, 0) to
(0, 1). The coefficient is less than one if the point where the Lorenz curve is parallel to the line
of equality lies below the axis of symmetry, and greater than one if it lies above the axis.

The numbers whose equality is to be studied are specified, in a variate, by the DATA parameter.
Their Gini and asymmetry coefficients can be saved, in scalars, using the GINI and ASYMMETRY
parameters respectively.

Printed output is controlled by the PRINT option, with settings:
asymmetry prints the coefficient of asymmetry,
gini prints the Gini,
lorenz prints the coordinates of the Lorenz curve.

By default, these are all printed.
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Figure 2.11.8

The procedure can also print bootstrap
confidence intervals for the Gini and
asymmetry coefficients. The probability
level for the interval is specified by the
CIPROBABILITY option; the default of
0.95 gives 95% intervals. The NBOOT
option specifies how many bootstrap
samples to take (default 100). If you do not
want the confidence intervals, you should
set NBOOT=0. The SEED option specifies
the seed to use in the random number
generator used to construct the bootstrap
samples. The default value of zero
continues an existing sequence of random
numbers or, if the generator has not yet
been used in this run of Genstat, it
initializes the generator automatically.

By default curve is plotted, but you can
set PLOT=* to suppress the plot. The
TITLE option can supply a title for the graph.

Example 2.11.8 and Figure 2.11.8 illustrates LORENZ using some (rather non-uniform) random
numbers from a log-Normal distribution.

Example 2.11.8

   2  CALCULATE [SEED=490317] Sample = GRLOGNORMAL(100; 10; 2)
   3  LORENZ    [SEED=846064] Sample

Lorenz curve for Sample
=======================

Gini coefficient 0.7562
95% Bootstrap confidence interval (0.609, 0.814)

Coefficient of asymmetry 1.057
95% Bootstrap confidence interval (0.934, 1.137)



3 Regression analysis

This chapter describes the Genstat commands for regression, generalized linear models,
generalized additive models and nonlinear curve fitting. The contents thus correspond to the
Regression Analysis menus in Genstat for Windows.

The simplest meaning of the word regression is the technique for fitting a straight line that
relates one quantitative variable to another. The response variable is supposed to be dependent
on the explanatory variable. We describe how to do this simple linear regression with Genstat
in Section 3.1.

In later sections we use the word regression to cover a much wider class of relationships. We
look at more than two variables, at qualitative variables, and at nonparametric and nonlinear
relationships, including regression trees. But the common feature is that we shall always be
modelling the dependence of one variable on others.

The word linear here does not mean linear in terms of the explanatory variables, but rather
linear in terms of the parameters or coefficients that have to be estimated. Thus the regression

yi  =  á  +  â xi  +  ã xi
2  +  åi

is in fact linear: it is linear in terms of the parameters á, â and ã, even though it is not linear in
terms of the explanatory variable X.

In the model for simple linear regression, it is usually assumed that the response variable has
a Normal distribution with constant variance. But other distributions can be used, and the
variance need not be constant. For example, the distribution could be Poisson in which the
variance is equal to the mean. These extensions are provided by generalized linear models, as
described in Section 3.5.

In most of the models in this chapter, we assume that there is only one component of variation:
that is, they contain only one error term like å in the equation above. When there are more
components with Normally distributed data, some results can be obtained by the methods
described here: for example, you could analyse the effects of treatment factors after eliminating
some grouping of the units into blocks, by treating the blocking factor as if it were another
treatment factor. But it is usually more convenient, and more efficient, to use the methods of
Chapter 4 if the design is balanced, or those of Chapter 5 otherwise. However, Section 3.5 does
cover generalized linear mixed models and hierarchical generalized linear models, which extend
the generalized linear models theory to handle more than one error term.

We assume in this chapter that you know which is the response variable and which are
explanatory variables. There are more general methods of investigating relationships between
variables, in which no single variable is treated as a response; see Chapter 6. We also assume
that the relationship between the response variable and explanatory variables relates the mean
of the response to given explanatory values. The methods of regression analysis are not
applicable to law-like relationships, with values of both the response and the explanatory
variables subject to error; for more details, see Sprent (1969). Finally, we assume that the errors
in the regression models are uncorrelated. For example, the quantities åi in the equation above
are assumed to be independently distributed. When there is some correlation between the errors,
the methods of Chapter 4 may be suitable, particularly if the correlation is constant within some
groups of the data and zero between the groups. Alternatively, if there is a serial pattern of
correlation, where the order of the observations is important, the methods of Chapters 5 or 7 may
be used.

The information in this chapter is grouped mainly by type of analysis, rather than by
command. So first we summarize the commands, giving references to the sections below where
they are described. Details of those not covered here can be found in the Genstat Reference
Manual. There are three preliminary directives for defining the form of model to be fitted, of
which the MODEL directive must always be given first:
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MODEL defines the response variate(s) and the type of model to be

fitted (3.1.1)
TERMS specifies a maximal model, containing all terms to be used

in subsequent regression models (3.2.3)
RCYCLE controls iterative fitting of generalized linear models,

generalized additive models and nonlinear models, and
specifies parameters and bounds for nonlinear models
(3.5.4)

Separate directives carry out the fitting of the various types of model:
FIT fits a linear model, a generalized linear model, a

generalized additive model, or a generalized nonlinear
model (3.1.2)

FITCURVE fits a standard nonlinear regression model (3.7.1)
FITNONLINEAR fits a user-defined nonlinear regression model or optimizes

a scalar function (3.8.2)

Further directives are provided to allow sequential modification of the set of explanatory
variables:

ADD adds extra terms to any type of regression model (3.2.4)

DROP drops terms from any type of regression model (3.2.4)
SWITCH adds terms to, or drops them from, any type of regression

model (3.2.4)
TRY displays results of single-term changes to a linear or

generalized linear model (3.2.5)
STEP selects terms to include in or exclude from a linear or

generalized linear model (3.2.7)

Once you have fitted the model, you can display further results, form and compare predictions,
plot the fitted model, produce diagnostic plots, store the results in data structures for use
elsewhere in Genstat, do permutation (or exact) texts, or calculate power information about the
model:

RDISPLAY displays the fit of any type of regression model (3.1.3,

3.5.3, 3.7.4)
PREDICT forms predictions from a linear or generalized linear model

(3.3.4, 3.5.3)
RCOMPARISONS calculates comparison contrasts amongst the levels of one

of the classifying factors of a table of predicted means
(3.3.5)

RTCOMPARISONS calculates comparison contrasts amongst a multi-way table
of predicted means (3.3.5)

RFUNCTION estimates functions of parameters of any type of regression
model (3.7.5)

RGRAPH draws a graph to display the fit of any type of regression
model (3.1.6)

RCHECK provides diagnostic plots and other information for
checking the fit of any type of regression model (3.1.7

RDESTIMATES plots one- or two-way tables of regression estimates
(3.3.6)

RKEEP stores the results from any type of regression model (3.1.4,
3.5.3, 3.7.4)

RSPREADSHEET puts results from a regression, generalized linear or
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nonlinear model into spreadsheets (3.1.5)
RKESTIMATES saves estimates and other information about individual

terms in a regression analysis (3.2.2)
RWALD calculates Wald and F tests for dropping terms from a

regression (3.2.6)
RPERMTEST does random permutation tests for regression models

(3.1.9)
RPOWER calculates the power (probability of detection) for

regression models (3.1.8)

There are also many specialized procedures in the Procedure Library; see Part 3 of the Genstat
Reference Manual.

BREGRESSION constructs a regression tree (3.9.1)

BRDISPLAY displays a regression key (3.9.2)
BRVALUES forms values for nodes of a regression tree (3.9.3)
BPRUNE prunes a tree using minimal cost complexity (3.9.3)
BRPREDICT makes predictions using a regression tree (3.9.4)
BRKEEP saves information from a regression tree (3.9.5)
BRFOREST constructs a random regression forest
BRFDISPLAY displays information about a random regression forest
BRFPREDICT makes predictions using a random regression forest
FITINDIVIDUALLY fits regression and generalized linear models one term at

a time (3.5.3)
GEE fits models to longitudinal data by generalized estimating

equations (3.5.12)
GLM analyses non-standard generalized linear models
GLMM fits a generalized linear mixed model (3.5.10)
HGANALYSE analyses data using hierarchical generalized linear models

(3.5.11)
HGDISPLAY displays a hierarchical generalized linear model analysis

(3.5.11)
HGFIXEDMODEL defines the fixed model for a hierarchical generalized

linear model (3.5.11)
HGFTEST calculates likelihood tests for fixed terms in a hierarchical

generalized linear model (3.5.11)
HGKEEP saves information from a hierarchical generalized linear

model analysis (3.5.11)
HGNONLINEAR defines nonlinear parameters for the fixed model of a

hierarchical generalized linear model (3.5.11)
HGPLOT produces model-checking plots for a hierarchical

generalized linear model analysis (3.5.11)
HGGRAPH draws a graph to display the fit of hierarchical generalized

linear model analysis (3.5.11)
HGPREDICT forms predictions from hierarchical hierarchical

generalized linear model analysis (3.5.11)
HGRANDOMMODEL defines the random model for a hierarchical generalized

linear model (3.5.11)
HGDRANDOMMODEL extends a hierarchical generalized linear model to become

a double hierarchical generalized linear model (3.5.11)
HGRTEST calculates likelihood tests for random terms in a

hierarchical generalized linear model (3.5.11)
HGSTATUS displays the current HGLM model definitions (3.5.11)
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HGWALD Prints or saves Wald tests for fixed terms in an HGLM
(3.5.11)

PROBITANALYSIS fits probit models allowing for natural mortality and
immunity (3.5.9)

FIELLER calculates effective doses and relative potencies (3.5)
MICHAELISMENTEN fits the Michaelis-Menten equation for substrate

concentration versus time data
MMPREDICT predicts the Michaelis-Menten curve for a particular set of

parameter values
NLAR1 fits curves with an AR1 or a power-distance correlation

model (8.1.6)
RAR1 fits regressions with an AR1 or a power-distance

correlation model (8.1.6)
RQLINEAR fits and plots quantile regressions for linear models

(3.10.1)
RQNONLINEAR fits and plots quantile regressions for nonlinear models
RQSMOOTH fits and plots quantile regressions for loess or spline

models
RSCREEN performs screening tests for generalized or multivariate

linear models (3.2.9)
RSEARCH helps search through models for a regression or

generalized linear model (3.2.8)
R0INFLATED fits zero-inflated regression models to count data with

excess zeros (3.5.13)
R0KEEP saves information from models fitted by R0INFLATED

(3.5.13)
RBRADLEYTERRY fits the Bradley-Terry model for paired-comparison

preference tests
RCATENELSON performs a Cate-Nelson graphical analysis of bivariate

data
RCIRCULAR does circular regression of mean direction for an angular

response
RFINLAYWILKINSON performs Finlay and Wilkinson's joint regression analysis

of genotype-by-environment data
RIDGE does ridge regression and principal component regression

analyses
LRIDGE does logistic ridge regression
RLASSO performs lasso using iteratively reweighted least-squares
RLFUNCTIONAL fits a linear functional relationship model
RMGLM fits a model where different units follow different

generalized linear models
RNEGBINOMIAL fits a negative binomial generalized linear model,

estimating the aggregation parameter
RNONNEGATIVE fits a generalized linear model with nonnegativity

constraints
RPAIR gives t-tests for all pairwise differences of means from

linear or generalized linear models
RPARALLEL carries out analysis of parallelism for nonlinear functions
RQUADRATIC fits a quadratic surface and estimates its stationary point
RRETRIEVE retrieves a regression save structure from an external file
RSTORE stores a regression save structure in an external file
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RSCHNUTE fits a general four-parameter growth model to a non-
decreasing response variate

RYPARALLEL fits the same regression model to several response variates,
and collates the output

R2LINES fits two-straight-line (broken-stick) models
IFUNCTION estimates implicit and/or explicit functions of parameters
MINIMIZE finds the minimum of a function calculated by a procedure
MIN1DIMENSION finds the minimum of a function in one dimension
SIMPLEX searches for the minimum of a function using the Nelder-

Mead simplex algorithm
SVGLM fits generalized linear models to survey data
YTRANSFORM estimates the parameter lambda of a single parameter

transformation
XOCATEGORIES performs analyses of categorical data from cross-over

trials
EXTRABINOMIAL fits models to overdispersed proportions
DILUTION calculates most probable numbers from dilution series data
DSEPARATIONPLOT creates a separation plot for visualising the fit of a model

with a dichotomous (i.e. binary) or polytomous (i.e. multi-
categorical) outcome

WADLEY fits models for Wadley's problem, allowing alternative
links and errors

3.1 Simple linear regression

The word simple here refers to the fact that there is only one explanatory variable. Suppose you
have observations {yi: i = 1...N} of a response variable Y, and {xi: i = 1...N} of an explanatory
variable X. Then the model for simple linear regression is:

yi  =  á +  â xi  +  åi

where á and â are unknown parameters: that is, they are numerical characteristics of the model
that determine the precise nature of the relationship. The values {åi: i = 1...N} are errors which
are random variables, assumed to be identically and independently distributed with a Normal
distribution. The model can also be written as

yi  =  fi  +  åi

where the values {fi: i = 1...N} are the fitted values generated by the model. So
fi  =  á +  â xi

For further details, see the books by Seber (1977), Draper & Smith (1981) or Weisberg (1985),
or indeed any other standard statistical text.

The model can alternatively be written in matrix form:
y  =  X â  +  å

where the vector â = (á,â)N, and X is an N×2 matrix whose first column consists just of 1's, called
the design matrix. (This is standard terminology although, of course, regression is often used
when it has not been possible to use any special design.)

Example 3.1 shows the commands to fit a simple linear regression. (In Genstat for Windows
this type of regression analysis can be obtained by selecting Simple Linear Regression in the
Regression list box of the Linear Regression menu.) The model here is a linear relationship
between the logarithm of barometric pressure and the boiling point of water. Forbes (1857)
collected these measurements at the tops of mountains with the intention that, on any other
mountain, he would be able to predict barometric pressure (and hence the height of the
mountain) by boiling water at the summit.
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Figure 3.1

Example 3.1

   2  " Simple linear relationship between boiling point and barometric
  -3    pressure. Data from Forbes (1857); analysed by Weisberg (1985) p.3."
   4  READ [PRINT=data] Boiltemp,Pressure

   5  194.50 20.79  194.25 20.79  197.90 22.40  198.43 22.67  199.45 23.15
   6  199.95 23.35  200.93 23.89  201.15 23.99  201.35 24.02  201.30 24.105
   7  203.55 25.14  204.60 26.57  209.47 28.49  208.57 27.760 210.72 29.040
   8  211.95 29.879 212.18 30.064 :
   9  CALCULATE Logpress = 100*LOG10(Pressure)
  10  "DGRAPH [TITLE='Forbes data'] Logpress; Boiltemp"
  11  MODEL Logpress
  12  FIT Boiltemp

Regression analysis
===================

 Response variate: Logpress
     Fitted terms: Constant, Boiltemp

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       1      425.349     425.3493   3000.08
Residual        15        2.127       0.1418
Total           16      427.476      26.7173

Percentage variance accounted for 99.5
Standard error of observations is estimated to be 0.377.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           12      142.439        3.71

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(15)
Constant         -42.10         3.32    -12.68
Boiltemp         0.8953       0.0163     54.77

The first two statements set up variates
storing the values of the two variables to be
analysed and the DGRAPH statement
displays the scatterplot in Figure 3.1; the
next two statements fit the regression.

It is often necessary to give CALCULATE
statements before the regression statements.
Though the model is linear, it can be fitted
to a transformation of the response variable
(as here), or of the explanatory variable, or
both. This can be done to get variables that
are expected to be linearly related, or to get
a response variable with an approximately
Normal distribution with constant variance.
Unfortunately, both of these conditions are
needed for the regression analysis to be
valid; when one set of transformations does
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not achieve both ! as is usually the case with a response variable of counts or proportions, for
example ! then it is best to fit a generalized linear model (3.5) or a nonlinear model (3.7 and
3.8). Additive models (3.4) can be used when there is no predetermined form of a relationship.

You can fit models to subsets of the data by using the RESTRICT directive (1:4.4.1). The
regression directives also automatically exclude any unit that contains a missing value for either
variate. However, if only the response is missing, Genstat does give you some information about
the unit (3.1.2).

Most of the directives in this section are relevant also to multiple regression and to nonlinear
regression. But you can understand their main features most readily by seeing them in the
simplest case.

3.1.1 The MODEL directive

MODEL directive
Defines the response variate(s) and the type of model to be fitted for linear, generalized linear,
generalized additive and nonlinear models.

Options
DISTRIBUTION = string token Distribution of the response variable (normal,

poisson, binomial, gamma, inversenormal,
multinomial, calculated, negativebinomial,
geometric, exponential, bernoulli); default
norm

LINK = string token Link function (canonical, identity, logarithm,
logit, reciprocal, power, squareroot, probit,
complementaryloglog, calculated, logratio);
default cano (i.e. iden for DIST=norm or calc; loga
for DIST=pois; logi for DIST=bino, bern, or mult;
reci for DIST=gamm or expo; powe for DIST=inve;
logr for DIST=nega or geom)

EXPONENT = scalar Exponent for power link; default -2
AGGREGATION = scalar Fixed parameter for negative binomial distribution

(parameter k as in variance function Var = mean +
mean2/k); default 1

KLOGRATIO = scalar Parameter for logratio link, in form
log(mean/(mean+k)); default as set in AGGREGATION
option

DISPERSION = scalar Value of dispersion parameter in calculation of s.e.s etc;
default * for DIST=norm, gamm, inve, or calc, and 1
for DIST=pois, bino, mult, nega, geom, expo or
bern

WEIGHTS = variate or symmetric matrix
Variate of weights for weighted regression, or
symmetric matrix of weights (one row and column for
each unit of data) for generalized least squares; default *

OFFSET = variate Offset variate to be included in model; default *
GROUPS = factor Absorbing factor defining the groups for within-groups

linear or generalized linear regression; default *
RMETHOD = string token Type of residuals to form, if any, after each model is

fitted (deviance, Pearson, simple); default devi
DMETHOD = string token Basis of estimate of dispersion, if not fixed by
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DISPERSION option (deviance, Pearson); default
devi

FUNCTIONVALUE = scalar Scalar whose value is to be minimized by calculation;
default *

YRELATION = string token Whether to analyse the y-variates separately, as in
ordinary regression, or to analyse them cumulatively as
counts in successive categories of a multinomial
distribution (separate, cumulative); default sepa

DCALCULATION = expression structures
Calculations to define the deviance contributions and
variance function for a non-standard distribution; must
be specified when DIST=calc

LCALCULATION = expression structures
Calculations to define the fitted values and link
derivative for a non-standard link; must be specified
when LINK=calc

DFDISPERSION = scalar Allows you to specify the number of degrees of freedom
for a dispersion parameter specified by the DISPERSION
option; if this is not set, the supplied dispersion is
assumed to be known exactly

SAVE = identifier To name regression save structure; default *

Parameters
Y = variates Response variates; only the first is used in nonlinear

models and in generalized linear models except when
DIST=mult, when they specify the numbers in each
category of an ordinal response model

NBINOMIAL = variate or scalar Total numbers for DIST=bino
RESIDUALS = variates To save residuals for each y variate after fitting a model
FITTEDVALUES = variates To save fitted values, and provide fitted values if no

terms are given in FITNONLINEAR
LINEARPREDICTOR = variate Specifies the identifier of the variate to hold the linear

predictor
DERIVATIVE = variate Specifies the identifier of the variate to hold the

derivative of the link function at each unit
DEVIANCE = variate Specifies the identifier of the variate to hold the

contribution to the deviance from each unit
VFUNCTION = variate Specifies the identifier of the variate to hold the value of

the variance function at each unit

In most applications, you will need only a simple form of the directive:

MODEL identifier of response variate

Notice that MODEL does not actually fit anything: it simply sets up some structures inside Genstat
that are used when you give a FIT statement later on (3.1.2). So when you are doing regression,
MODEL will always be accompanied by at least one other regression statement to fit a model, like
FIT.

The Y parameter allows a list of variates; if you put more than one for linear regression, then
you will get an analysis for each. This is a more efficient way of doing many linear regressions
with the same explanatory variables, than separate pairs of MODEL and FIT statements. However,
with additive models, generalized linear models and nonlinear models (3.4, 3.5, 3.7 and 3.8),
only the first variate will be analysed (with the exception of multinomial response models,
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3.5.5); the others will be ignored.
The NBINOMIAL parameter is relevant only for the binomial setting of the DISTRIBUTION

option (3.5.1).
The RESIDUALS and FITTEDVALUES parameters allow you to specify variates to contain the

residuals and fitted values for each response variable. For example, you could change the MODEL
statement above to ensure that each subsequent FIT statement will put the residuals into a variate
R and fitted values into a variate F:

MODEL Logpress; RESIDUALS=R; FITTEDVALUES=F

The residuals are the "unexplained" component of the response variable, standardized as
requested by the RMETHOD option (see below). The fitted values are the "explained" component:
that is, the combination of parameters and explanatory variables fitted in the model. You can
access these sets of values in a different way using the RKEEP directive (3.1.4).

The remaining parameters and the DISTRIBUTION, LINK, EXPONENT, AGGREGATION and
KLOGRATIO options are used for generalized linear models, which are described in Section 3.5.1.

The DISPERSION option controls how the variance of the distribution of the response values
is calculated. By default, for the Normal distribution, the variance is estimated from the residual
mean square (3.1.2), and standard errors and standardized residuals are calculated from the
estimate. If you use DISPERSION to supply a value for the variance of the Normal distribution,
the standard errors and residuals will be based on this given value instead. The DFDISPERSION
option allows you to specify the number of degrees of freedom for a variance specified by the
DISPERSION option. You might want to use this, for example, if you had estimated the variance
from some other data set. If DFDISPERSION is not set, the supplied variance is assumed to be
known exactly. The use of DISPERSION and the associated DMETHOD option with other
distributions is described in 3.5.1.

The WEIGHTS option allows you to specify a variate holding weights for each unit, so that you
can perform a weighted linear regression. Suppose, for example, you have assigned values to
a weights variate W earlier in the program; then the option takes the form: WEIGHTS=W. If the
weight for unit i is wi, the regression directives will weight by wi the contribution to the estimate
of dispersion from the ith unit. In simple linear regression, the estimate of dispersion is then the
weighted residual mean square:

Ó{wi åi
2}/(N!2)

Thus, if the variance of the response variable is not constant, and you know the relative size of
the variance for each observation, you can set the weight to be proportional to the inverse of the
variance of an observation. Alternatively, if the variance is related in a simple way to the mean,
you may just need to specify a different distribution for the response (3.5). You can also supply
a symmetric matrix of weights for generalized least squares (see 3.6).

The OFFSET option allows you to include in the regression a variable with no corresponding
parameter:

yi  =  á  +  oi  +  â xi  +  åi

where oi is the ith value of the offset variable, O say. Linear regression analysis of Y with offset
O is just the same as analysis of Y!O, but the offset has non-trivial applications in generalized
linear models (3.5.1).

The GROUPS option specifies a factor whose effects you want to eliminate before any
regression is fitted. The factor must already have been defined. (The effects of factors on
regression are discussed in 3.3.) This method of elimination is sometimes called absorption; you
might want to use it when data from many different groups are to be modelled. Use of GROUPS
gives less information than you would get if you included the factor explicitly in the model
(leverages, predictions and some parameter correlations cannot be formed), but it saves space
and time in fitting the model. You can use GROUPS only with linear and generalized linear
models.

The RMETHOD option controls how residuals are formed. By default, residuals are deviance
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residuals standardized by their estimated variance: i.e. the residuals are scaled so that they have
equal variances, making it easier for you to assess whether any are especially large. For linear
regression, the standardized residuals are:

ri = (yi ! fi) %(wi / vi)
In this equation, fi is the ith fitted value, and vi is the variance of an unstandardized residual:

vi = (1 ! li) s
2

Here, s2 is the estimate of dispersion and li is the leverage (diagonal of the projection matrix),
defined in terms of the design matrix X and the diagonal matrix of weights W by

li = wi {X(XNW X)!1XN}ii

Pearson residuals (RMETHOD=Pearson) are relevant to regression models with distributions
other than Normal (see 3.5.1); they are identical to the ordinary standardized deviance residuals
when the distribution is Normal. If you do not want the residuals to be standardized, you can set
RMETHOD=simple. The residual is then simply the difference between the response and the
fitted value:

ri = (yi ! fi)
Finally, if you do not want any residuals, you can set the option to a missing value (*) to save
space within Genstat. However, you will not then be able to get residuals, fitted values or
leverages, and the automatic checks on the fit of a model will not be done (3.1.2).

The FUNCTIONVALUE option is relevant only when you want to optimize a general function
(3.8.4). It is ignored unless no response variates are specified by the Y parameter.

The YRELATION option is relevant only for ordinal response models (3.5.5), and the
DCALCULATION and LCALCULATION options only for generalized linear models that you define
yourself (3.5.6).

The SAVE option allows you to specify an identifier for the regression save structure. This
structure stores the current state of the regression model, and can be used explicitly in the
directives RDISPLAY (3.1.3), RKEEP (3.1.4), PREDICT (3.3.4) and RFUNCTION (3.7.5). If the
identifier in SAVE is of a regression save structure that already has values, those values are
deleted. You can reset the current regression save structure at any point in a program by using
the SET directive (1:5.6.1). Then, later regression statements would use the model stored in this
save structure.

3.1.2 The FIT directive

FIT directive
Fits a linear, generalized linear, generalized additive or generalized nonlinear model.

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, grid, confidence);
default mode, summ, esti or grid if NGRIDLINES is
set

CALCULATION = expression structures
Calculation of explanatory variates involving nonlinear
parameters

OWN = scalar Option setting for OWN directive if this is to be used
rather than CALCULATE to calculate explanatory variates

CONSTANT = string token How to treat the constant (estimate, omit, ignore);
default esti

FACTORIAL = scalar Limit for expansion of model terms; default as in
previous TERMS statement, or 3 if no TERMS given
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POOL = string token Whether to pool ss in accumulated summary between all
terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms
from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality ,
vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary, seobservations is
relevant only for a Normally distributed response, and
%cv only for a gamma-distributed response
(%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv,
%meandeviance, %deviance, aic, bic, sic); default
%var, seob if DIST=normal, %cv if DIST=gamma, and
disp for other distributions

PROBABILITY = scalar Probability level for confidence intervals for parameter
estimates; default 0.95

NGRIDLINES = scalar Number of values of each nonlinear parameter for a grid
of function evaluations

SELINEAR = string token Whether to calculate s.e.s for linear parameters when
nonlinear parameters are also estimated (yes, no);
default no

INOWN = identifiers Setting to be used for the IN parameter of OWN if used to
calculate explanatory variates

OUTOWN = identifiers Setting to be used for the OUT parameter of OWN if used
to calculate explanatory variates

AOVDESCRIPTION = text Description for line in accumulated analysis of variance
(or deviance) table when POOL=yes

Parameter
formula List of explanatory variates and factors, or model

formula

A FIT statement must always be preceded by a MODEL statement, though not necessarily
immediately. You can give several FIT statements after a single MODEL statement: for example,
you might want to try out different explanatory variables.

The parameter of the FIT directive specifies the explanatory variables in the model. In the
simple linear regression above, it consists of the identifier of the explanatory variate alone:

FIT Boiltemp

If you omit the parameter, Genstat fits a null model; that is, a model consisting of just one
parameter, the overall mean:

yi = á + åi

The PRINT option controls output. You can give several settings at the same time, to provide
reports on several aspects of the analysis.

The model setting gives a description of the model, including response and explanatory
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variates. Here is a repeat of this aspect of the analysis in Example 3.1; model gives the first lines
in this output.

Example 3.1.2a

  13  FIT [PRINT=model,summary; FPROBABILITY=yes] Boiltemp

Regression analysis
===================

 Response variate: Logpress
     Fitted terms: Constant, Boiltemp

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       1      425.349     425.3493   3000.08  <.001
Residual        15        2.127       0.1418
Total           16      427.476      26.7173

Percentage variance accounted for 99.5
Standard error of observations is estimated to be 0.377.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           12      142.439        3.71

The output from the summary setting is also reproduced here: this starts by giving a summary
analysis of variance, which subdivides the total sum of squares, corrected for the mean, between
that explained by the regression (Regression), and that which is not explained (Residual). The
table has the standard form with columns for the degrees of freedom (d.f.), the sums of squares
(s.s.), the mean squares (m.s.), and for the variance ratio (v.r.). In addition, because we have set
the FPROBABILITY option, there is a column giving the probability that the variance ratio would
be as large as this under the null hypothesis of no relationship; this probability is based on the
F-distribution, which is valid only if the distribution of the response is indeed Normal. By
default, as seen in Example 3.1.2a, this probability does not appear.

The summary analysis of variance is accompanied by various statistics, determined by the
settings of the SELECTION option. Example 3.1.2a shows the default settings for a linear
regression model %variance (percentage variance accounted for) and seobservations
(standard error of the observations ! estimated by the square root of the residual mean square).
The percentage variance accounted for is the adjusted R2 statistic, expressed as a percentage:

Percentage variance accounted for = 100 × (1 ! (Residual m.s.)/(Total m.s.))
Alternatively, the adjustedr2 setting gives the adjusted R2 statistic expressed as a proportion
rather than as a percentage. The r2 setting gives the unadjusted R2 statistic, which is the square
of the linear correlation between the response variate and the explanatory variate, and %ss gives
this value as a percentage which can be interpreted as percentage sum of squares accounted for.
The percentage variance accounted for is usually a better guide to the fit of a model than the
unadjusted version, but you should remember that neither version is an absolute measure of fit,
and both depend on the range of response and explanatory values as well as on the goodness of
fit (Seber 1977). If percentage variance accounted for has a negative value, indicating a very
poorly fitting model, the message Residual variance exceeds variance of Y

variate is printed instead. The use of SELECTION with generalized linear models is described
in Section 3.5.3.

The message below the standard error of observations is produced as a result of several checks
made by Genstat on the adequacy of the model. Here, the only report concerns an apparently
extreme observation in the data. This report appears for any standardized residuals whose values
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are particularly large: the criterion is to list residuals greater than that value c corresponding to
probability 1/d of being exceeded in magnitude by a standard Normal deviate, where d is the
number of residual degrees of freedom. However, the value c=2.0 is used instead of any smaller
value when there are less than 20 residual degrees of freedom, and the value 4.0 is used instead
of any larger value when there are more than 15,773 degrees of freedom. Thus, a message should
appear for any extreme outlier, but messages should not appear too often just as a result of
random variation.

Genstat makes five other checks on the model that can generate messages in the summary of
the analysis. Examples of these can be seen in the other examples of this chapter. One check is
for particularly large values of the leverage, using the criterion ck/N, where k and N are the
number of parameters and number of units used in the regression model, and c is as used in the
check on residuals. The sum of the leverages is always k, so this criterion brings to your attention
those observations with more than about twice the average influence. Unlike the other checks,
this one does not indicate a potential violation of assumptions, but rather that the analysis may
be greatly affected by some observations.

If there are at least 20 observations, two checks are made on the constancy of the variance of
the response variable. The fitted values are ordered into three roughly equal-sized groups;
Levene tests (Snedecor & Cochran 1989) are carried out to compare the variance of the
standardized residuals in the bottom group with those in the top group, and then the middle group
is compared with the other two groups combined. Each test will generate a message if the test
statistic is significant at the 2.5% level, indicating that the assumption of constant variance may
not be tenable. Finally, a "runs" test is carried out on the standardized residuals, ordered
according to the fitted values. A message is generated if the sign of successive residuals does not
change often enough (again using a 2.5% significance level), indicating that there is still some
systematic pattern in the residuals.

Also, with linear and generalized linear models, whenever parameter estimates are printed the
variance inflation factor is calculated for each parameter and a message is generated if this is
greater than 100 (see Example 3.2). This is to warn that some explanatory terms are nearly
aliased and that the standard errors of their parameters are consequently inflated. The parameters
involved in the relationship are listed with the inflation factors. The variance inflation factor is
defined to be the current diagonal value of the inverse matrix (XNX)-1 corresponding to the
parameter, multiplied by the corrected sum of squares of the variate or dummy variate
corresponding to the parameter. (X is the design matrix.) This can be interpreted as the ratio of
the variance of the parameter estimate in the current model compared with that of the estimate
in a model containing just that parameter and the constant. However, the check is not made if
the current model contains any POL submodel (3.4.1), or any term involving interaction between
a variate and a factor (3.3), because the dummy variates generated to represent these effects are
very likely to be nearly aliased with each other. The check is also omitted if the constant term
is excluded from the model.

These messages are intended to warn you about potential problems in interpreting the analysis,
but cannot be relied on to detect all problems. See Cook & Weisberg (1982) for more
information about these and other model-checking techniques; the RCHECK procedure (3.1.7
provides some further techniques.

You can prevent these messages appearing by using the NOMESSAGE option. They will not
appear in any case if you have set option RMETHOD=* in the MODEL statement.

The estimates setting produced the last section of output in Example 3.1:

Example 3.1.2b

  14  FIT [PRINT=estimates; TPROBABILITY=yes] Boiltemp
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Regression analysis
===================

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(15)  t pr.
Constant         -42.10         3.32    -12.68  <.001
Boiltemp         0.8953       0.0163     54.77  <.001

The standard errors of the estimates are based here on the residual mean square. Alternatively,
you can supply an estimate of variance by using the DISPERSION option of MODEL; if you do
this, Genstat will print a reminder about the basis of the standard errors. You can prevent this
reminder appearing by setting the NOMESSAGE option. The t-statistics allow you to test whether
each parameter differs significantly from zero, keeping the other parameters fixed. The number
of degrees of freedom for such a test is the number of residual degrees of freedom reported in
the summary analysis of variance, and this number appears in the column heading. If the estimate
of variance is supplied (and taken as known exactly), the "t-statistics" actually have a standard
Normal distribution, indicated by the column heading "t(*)". By default, as in Example 3.1,
probabilities are not printed because the distributional results depend on the assumptions
underlying regression, which you need to check and confirm; but if the TPROBABILITY option
is set (as in Example 3.1.2b), the corresponding probabilities are displayed. You can also display
confidence intervals for the parameters by including the confidence setting. The probability
value for the intervals is set by the PROBABILITY option; default 0.95.

You can use the deviance setting if you want only an abbreviated output.

Example 3.1.2c

  15  FIT [PRINT=deviance] Boiltemp

Residual d.f. 15, s.s. 2.127

The other available settings for the PRINT option are correlations, fitted, accumulated,
monitoring and grid. The first two of these are illustrated in Example 3.1.2d. There is a
correlation matrix of the parameter estimates, followed by a table of unit labels, values of
response variate, fitted values, standardized residuals and leverages. For the unit labels, Genstat
will take those associated with the response variate using the NVALUES option of the VARIATE
directive (1:2.3.1), if available, or the values of the units structure (1:2.3.4). If neither is
available, the integers 1...N are printed. If you have weighted the regression by setting the
WEIGHTS option of the MODEL directive, the weights are also listed.

Example 3.1.2d

  16  FIT [PRINT=correlations,fitted] Boiltemp

Regression analysis
===================

Correlations between parameter estimates
----------------------------------------

Parameter     ref    correlations

Constant        1    1.000
Boiltemp        2   -1.000  1.000
                         1      2
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Fitted values and residuals
---------------------------

                                    Standardized
         Unit     Response Fitted value residual Leverage
            1      131.785      132.044    -0.76     0.19
            2      131.785      131.820    -0.10     0.20
            3      135.025      135.088    -0.18     0.11
            4      135.545      135.562    -0.05     0.10
            5      136.455      136.476    -0.06     0.08
            6      136.829      136.923    -0.26     0.08
            7      137.822      137.801     0.06     0.07
            8      138.003      137.998     0.01     0.06
            9      138.057      138.177    -0.33     0.06
           10      138.211      138.132     0.22     0.06
           11      140.037      140.146    -0.30     0.06
           12      142.439      141.086     3.71     0.06
           13      145.469      145.447     0.06     0.14
           14      144.342      144.641    -0.85     0.12
           15      146.300      146.566    -0.78     0.17
           16      147.537      147.667    -0.39     0.21
           17      147.805      147.873    -0.21     0.22

Mean               139.614      139.614    -0.01     0.12

In the table, units are omitted according to any restriction in force or to any missing values of
explanatory variates (3.1). Fitted values are shown, however, for units with zero weight or in
which only the response variate is missing. Residuals are standardized as described in 3.1.1. The
accumulated, monitoring and grid settings are discussed later, in 3.2.1, 3.5.3 and 3.8.2
respectively.

The CONSTANT option controls whether the constant parameter is included in the model. In
simple linear regression, this parameter is the intercept, in other words the estimate of the
response variable when the explanatory variable is zero. By setting CONSTANT=omit, you can
prevent the constant parameter being estimated, so that the simple linear regression becomes

yi  =  â xi  +  åi

This model is particularly useful when yi and xi are measurements of the same attribute of a unit,
as in calibration, and when you know that they are zero together. However, you need to be
careful here: you must be sure that the relationship remains linear right down to zero.

When you omit the constant, the analysis of variance produced by PRINT=summary will not
be corrected for the mean, so that the model will be compared with the null model yi=0.
(However, if the effects of factors are present in the model (3.3), setting CONSTANT=omit
merely affects how the model is parameterized, and so the analysis will still be corrected for the
mean.) The percentage variance accounted for will still be expressed as a percentage of the
variance of the response variable about the mean. If you set CONSTANT=omit for a model
containing factors without setting FULL=yes in TERMS (see 3.2.3 and 3.3.2), Genstat gives a
failure diagnostic. The diagnostic can be suppressed by setting CONSTANT=ignore instead, but
this should be done only in special circumstances.

The FACTORIAL option is described in 3.3.1, and the POOL, DENOMINATOR and
AOVDESCRIPTION options in 3.2.1.

The NOMESSAGE option controls printing of messages. The aliasing setting is discussed in
3.2.1 and 3.2.3, and the marginality setting in 3.3.3. The leverage setting prevents messages
about large leverages, and residual prevents messages about large residuals or non-constant
variance or systematic pattern in the residuals. (These messages are those that are associated with
the summary setting of the PRINT option.) You use the dispersion setting to prevent
reminders appearing about the basis of the standard errors (as would be produced by the
estimates setting of the PRINT option).

The FPROBABILITY, SELECTION and TPROBABILITY options are described above with
PRINT=summary and PRINT=estimates. The NGRIDLINES, SELINEAR, INOWN and OUTOWN
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options are for use in the fitting of generalized non-linear models, described in Section 3.5.8.

3.1.3 Further output: the RDISPLAY directive

RDISPLAY directive
Displays the fit of a linear, generalized linear, generalized additive or nonlinear model.

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, confidence); default
mode,summ,esti

CHANNEL = identifier Channel number of file, or identifier of a text to store
output; default current output file

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms
from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, vertical, df, inflation);
default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary, seobservations is
relevant only for a Normally distributed response, and
%cv only for a gamma-distributed response
(%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv,
%meandeviance, %deviance, aic, bic, sic); default
%var, seob if DIST=normal, %cv if DIST=gamma, and
disp for other distributions

DISPERSION = scalar Dispersion parameter to be used as estimate for
variability in s.e.s; default is as set in the MODEL
statement

RMETHOD = string token Type of residuals to display (deviance, Pearson,
simple); default is as set in the MODEL statement

DMETHOD = string token Basis of estimate of dispersion, if not fixed by
DISPERSION option (deviance, Pearson); default is
as set in the MODEL statement

PROBABILITY = scalar Probability level for confidence intervals for parameter
estimates; default 0.95

DFDISPERSION = scalar Allows you to specify the number of degrees of freedom
for a dispersion parameter specified by the DISPERSION
option; default is as set in the MODEL statement

SAVE = identifier Specifies save structure of model to display; default *
i.e. that from latest model fitted

No parameters
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The PRINT option has the same settings as in the FIT directive, except that no monitoring is
available. The CHANNEL option selects the output channel to which the results are output, as in
the PRINT directive (1:3.2); this may be a text structure, allowing output to be stored prior to
display. The DENOMINATOR (3.2.1) and NOMESSAGE, FPROBABILITY, TPROBABILITY,
SELECTION and PROBABILITY options are also as in the FIT directive. The DISPERSION
DFDISPERSION, RMETHOD and DMETHOD options operate similarly to the options with these
names in the MODEL directive, allowing you to change (temporarily ! for the output produced
by RDISPLAY) the way in which the dispersion parameter and residuals are calculated.

The SAVE option lets you specify the identifier of a regression save structure; the output will
then relate to the most recent regression model fitted with that structure.

3.1.4 Storing the results: the RKEEP directive

RKEEP directive
Stores results from a linear, generalized linear, generalized additive or nonlinear model.

Options
EXPAND = string token Whether to put estimates in the order defined by the

maximal model for linear or generalized linear models
(yes, no); default no

DISPERSION = scalar Dispersion parameter to be used as estimate for
variability in s.e.s; default as set in the MODEL directive

RMETHOD = string token Type of residuals to form if parameter RESIDUALS is set
(deviance, Pearson, simple); default as set in
MODEL

DMETHOD = string token Basis of estimate of dispersion, if not fixed by
DISPERSION option (deviance, Pearson); default as
set in MODEL

PROBABILITY = scalar Probability level for confidence limits; default 0.95
OMODEL = pointer Pointer to settings of options of the current MODEL

statement, given unit labels corresponding to the option
names of MODEL (starting with 'distribution')

PMODEL = pointer Pointer to settings of parameters of the current MODEL
statement, given unit labels corresponding to the
parameter names of MODEL (starting with 'y'), only
refers to the first setting of Y, FITTEDVALUES and
RESIDUAL

STATISTICS = variates Saves all the statistics that could be displayed for the
first Y variate by the 'summary' setting of the PRINT
option of the fitting directives FIT, ADD etc

CIMETHOD = string token Method to use to calculate confidence intervals for
nonlinear models (exact, quadratic); default quad

IGNOREFAILURE = string token Whether to ignore failure to fit a generalized linear
model (yes, no); default no

MAXIMALMODEL = formula structure
Saves the maximal model (as defined by TERMS)

FITMODEL = formula structure Saves the currently-fitted model (including any contrast
functions)

FITCONSTANT = scalar Saves a scalar containing the value one if the constant is
included in the fitted model, or zero otherwise

FITTYPE = scalar Saves a scalar to indicate the type of model that has
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been fitted: 1 for an ordinary regression or generalized
linear model (Sections 3.1 - 3.5), 2 for a generalized
nonlinear model (Section 3.5.8), 3 for a standard curve
(Section 3.7) and 4 for a nonlinear model (Section 3.8)

SAVE = identifier Specifies save structure of model; default * i.e. that
from latest model fitted

Parameters
Y = variates Response variates for which results are to be saved;

default is the list of response variates in the most recent
MODEL statement

RESIDUALS = variates Residuals for each Y variate, as specified by the
RMETHOD option

FITTEDVALUES = variates Fitted values for each Y variate
LEVERAGES = variate Leverages of the units for each Y variate
ESTIMATES = variates Estimates of parameters for each Y variate
SE = variates Standard errors of the estimates
INVERSE = symmetric matrix Inverse matrix from a linear or generalized linear model,

inverse of second derivative matrix from a nonlinear
model

VCOVARIANCE = symmetric matrix Variance-covariance matrix of the estimates
DEVIANCE = scalars Residual ss or deviance
DF = scalar Residual degrees of freedom
TERMS = pointer or formula structure

Fitted terms (excluding constant)
ITERATIVEWEIGHTS = variate Iterative weights from a generalized linear model
LINEARPREDICTOR = variate Linear predictor from a generalized linear model
YADJUSTED = variate Adjusted response of a generalized linear model
EXIT = scalar Exit status from a generalized linear or nonlinear model
GRADIENTS = pointer Derivatives of fitted values with respect to parameters in

a nonlinear model
GRID = variate Grid of function or deviance values from a nonlinear

model
DESIGNMATRIX = matrix Design matrix whose columns are explanatory variates

and dummy variates
PEARSONCHISQUARE = scalar Pearson chi-square statistic from a generalized linear

model
STERMS = pointer Saves the identifiers of the variates that have been

smoothed in the current model
SCOMPONENTS = pointer Saves a pointer to variates holding the nonlinear

components of the variates that have been smoothed
NOBSERVATIONS = scalar Number of units used in regression, excluding missing

data and zero weights and taking account of restrictions
SEFITTEDVALUES = variate Saves standard errors of the fitted values
SELINEARPREDICTOR = variate Saves standard errors of the linear predictor
INFLATION = variate Saves the variance inflation factors of the parameter

estimates
UPPER = variates Saves upper confidence limits for the parameter

estimates
LOWER = variates Saves lower confidence limits for the parameter

estimates
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MEANDEVIANCE = scalars Saves the residual mean deviance (or mean square)
TDEVIANCE = scalars Saves the total deviance (or sum of squares)
TDF = scalars Saves the total degrees of freedom (corrected for the

mean or uncorrected as displayed by the fitting
directives)

TMEANDEVIANCE = scalars Saves the total mean deviance (or mean square)
SUMMARY = pointer Saves the summary analysis-of-variance (or deviance)

table as a pointer with a variate or text for each column
(source, d.f. etc)

ACCUMULATED = pointer Saves the accumulated analysis-of-variance (or
deviance) table as a pointer with a variate or text for
each column (source, d.f. etc)

STATISTICS = variates Saves all the statistics that could be displayed for the Y
variate by the 'summary' setting of the PRINT option
of the fitting directives FIT, ADD etc

RKEEP allows you to copy information from a regression analysis into Genstat data structures.
You do not need to declare the structures in advance; Genstat will declare them automatically
to be of the correct type and length. By default the information is saved from the most recently
fitted model, but you can set the SAVE option to a regression save structure from another fit
(saved using the SAVE option of MODEL).

The Y parameter specifies the response variates for which the results are to be saved.
Unusually for the first parameter of a directive, this has a default: if you leave it out, Genstat
assumes that results are to be saved for all the response variates, as given in the previous MODEL
statement.

The RESIDUALS, FITTEDVALUES, LEVERAGES and SEFITTEDVALUES parameters allow you
to save the standardized residuals, the fitted values and the standard errors of the fitted values.
For example, RESIDUALS=R puts the residuals in a variate R. The RMETHOD option controls the
type of residuals that are formed. You cannot save these values if you had set RMETHOD=* in the
MODEL statement. The standard errors of fitted values are defined by:

s.e. = %(leverage × variance function × dispersion / weight)
where the variance function is calculated from the fitted value according to the setting of the
DISTRIBUTION option of the current MODEL statement, and the dispersion is the fixed or
estimated value of dispersion, as controlled by the DISPERSION and DMETHOD options of the
MODEL and RKEEP directives.

The ESTIMATES and SE parameters save the parameter estimates and their standard errors;
RKEEP puts them in variates, using the same order as in the display produced by the PRINT
option of the directive used to fit the model. Alternatively, if you have used TERMS to define a
maximal model, you can set option EXPAND=yes to reorder the estimates to their order in the
maximal model (missing values are inserted for the parameters not currently in the model). The
variates saving these values are set up with labels (1:2.3); thus, you can refer to individual values
in expressions using the labels as displayed when the estimates are fitted. For example, to get
the estimate of the constant into a scalar, you could use:

RKEEP ESTIMATES=Esti
SCALAR Const
CALCULATE Const = Esti$['Constant']

The UPPER and LOWER parameters allow you to save upper and lower confidence limits for

the parameter estimates. The probability for the confidence interval is specifed by the
PROBABILITY option, with default 0.95. The CIMETHOD option controls the method used with
nonlinear models. The default setting, quadratic, uses the same method as for other types of
regression, basing the limits on a quadratic surface fitted to the likelihood surface around the
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optimum. These may be poor approximations if the surface is very non symmetric. The
alternative setting, exact, caqlculates the limits directly from the likelihood surface.

The INFLATION parameter allows the variance inflation factors of the parameters to be saved.
The INVERSE parameter allows you to save the inverse matrix as a symmetric matrix: that is,

(XNX)!1 where X is the design matrix. This matrix is the same for all response variates.
The VCOVARIANCE parameter saves the variance-covariance matrix of the estimates for each

response variate: these are formed by multiplying the inverse matrix by the relevant variance
estimate based on the estimated dispersion, or on the dispersion that you have supplied.

The DEVIANCE parameter lets you save the residual sum of squares, or the deviance for
distributions other than Normal (3.5). The DF parameter saves the residual degrees of freedom,
and the MEANDEVIANCE parameter saves the residual mean deviance. The TDEVIANCE parameter
saves the total deviance, the TDF parameter saves the total degrees of freedom (corrected for the
mean or uncorrected as displayed by the fitting directives), and the TMEANDEVIANCE parameter
saves the total mean deviance.

The ITERATIVEWEIGHTS, LINEARPREDICTOR and YADJUSTED parameters are discussed in
3.5.6, the EXIT and GRADIENTS parameters in 3.7.4, and the GRID parameter in 3.8.1.

The DESIGNMATRIX parameter allows you to save the matrix X. The columns correspond to
the parameters of the model, ordered as for the ESTIMATES parameter. For simple linear
regression with a constant this has only two columns, the first containing ones and the second
containing the values of the explanatory variate.

The PEARSONCHI parameter provides the Pearson chi-square statistic for dispersion, which
is the same as the residual sum of squares for the Normal distribution, but is different to the
deviance for other distributions (3.5.1). The STERMS and SCOMPONENTS parameters are
discussed in 3.4.3.

The NOBSERVATIONS parameter allows you to save the number of units used in the analysis,
omitting units with missing values or excluded by restrictions. This will be the same as the total
number of degrees of freedom plus one, except in a regression with no constant term and no
explanatory factors when it will equal the total number of degrees of freedom.

The DISPERSION option allows you to define the value to be used for the dispersion
parameter when calculating the standard errors. The DMETHOD option indicates how this should
be calculated if DISPERSION is not set. By default the deviance is used but you can set
DMETHOD=Pearson to request the Pearson chi-square statistic to be used instead.

The SUMMARY parameter can be used to save the summary analysis-of-variance (or deviance)
table for each response variate. The summary table is saved as a pointer with a variate or text for
each of its columns (source, d.f. etc). Similarly, the ACCUMULATED parameter can save the
accumulated analysis-of-variance (or deviance) tables.

The STATISTICS parameter saves all the statistics that could be displayed for each response
variate by the 'summary' setting of the PRINT option of the fitting directives FIT, ADD etc.
Alternatively, the STATISTICS option can be used to save the statistics for the first response
variate specified by the MODEL statement.

Options OMODEL and PMODEL allow you to save pointers containing information about the
current model. The labels of the pointers can be specified in either lower or upper case, or any
mixture. OMODEL can be set to a pointer to store information about each of the options set in the
previous MODEL statement. For example, the statement

RKEEP [OMODEL=Om]

will allow you to refer to the current variate of weights (if one was set in the WEIGHTS option
of MODEL) as Om['weights']. Whether or not a variate was set, the statement

MODEL [WEIGHTS=Om['weights']] Newobs

will allow a new analysis with the same weighting as the old.
The pointer Om has 16 values, with suffixes (in lower case) corresponding to the options of
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MODEL in the defined order. Similarly, the statement

RKEEP [PMODEL=Pm]

will set up a pointer storing the (eight) current parameter settings of the previous MODEL
statement. However, if there was more than one response variate, the first value of the pointer
will be the identifier of the first response variate only: the others are not stored. Similarly, only
the fitted-values and residuals variates for the first response will be pointed at. For example, the
identifier Pm[1] or Pm['y'] can be used to refer to the current response variate after the RKEEP
statement above.

3.1.5 Saving the results to a spreadsheet the RSPREADSHEET procedure

RSPREADSHEET procedure
Puts results from a regression, generalized linear or nonlinear model into a spreadsheet (R.W.
Payne).

Options
DISPERSION = scalar Dispersion parameter to be used as estimate for

variability in s.e.s; default as set in MODEL
RMETHOD = string token Type of residual to use (deviance, Pearson, simple,

deletion); default * i.e. as set in MODEL
DMETHOD = string token basis of estimate of dispersion, if not fixed by

DISPERSION option (deviance, Pearson); default *
i.e. as set in MODEL

SPREADSHEET = string tokens Which spreadsheets to form (summary, estimates,
fittedvalues, accumulated); default summary,
estimates, fittedvalues

SPESTIMATES = string tokens What to include in the estimates spreadsheet
(estimates, se, testimates, prestimates);
default esti, se, test, pres

SPFITTEDVALUES = string tokens What to include in the fitted-values spreadsheet (y,
fittedvalues, residuals, leverages,
sefittedvalues); default y, fitt, resi, leve

SAVE = regression save structure Specifies which analysis to save; default * i.e. most
recent regression

Parameters
Y = variates Y-variate of the analysis to be saved
RESIDUALS = variates Identifier of variate to save the residuals from each

analysis; default residuals
FITTEDVALUES = variates Identifier of variate to save the fitted values from each

analysis; default fittedvalues
LEVERAGES = variates Identifier of variate to save the leverages from each

analysis; default leverages
ESTIMATES = variates Identifier of variate to save the estimates from each

analysis; default estimates
SE = variates Identifier of variate to save s.e.'s of the estimates from

each analysis; default se
TESTIMATES = variates Identifier of variate to save the t-statistics of the

estimates from each analysis; default t_statistics
PRESTIMATES = variates Identifier of variate to save the t-probabilities of the
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estimates from each analysis; default
t_probabilities

SEFITTEDVALUES = variates Identifier of variate to save s.e.'s of the fitted values
from each analysis; default sefittedvalues

SUMMARY = pointers Identifier of pointer to save the summary analysis-of-
variance (or deviance) from each analysis; default
summary

ACCUMULATED = pointers Identifier of pointer to save the accumulated analysis-of-
variance (or deviance) from each analysis; default
accumulated

OUTFILENAME = texts Name of Genstat workbook file (.gwb) or Excel (.xls or
.xlsx) file to create

RSPREADSHEET puts results from a regression, generalized linear or nonlinear model into a
spreadsheet. By default the results are from the most recent regression, but you use the SAVE
option to specify the save structure (from a MODEL statement) from some other analysis. You can
use the Y parameter to indicate the y-variate, if the SAVE structure contains results from more
than one.

The SPREADSHEET option specifies which pages of the spreadsheet to form, with settings:
summary summary analysis of variance (or deviance for a

generalized linear model),
estimates estimates with the standard errors etc.,
fittedvalues fitted values, y-variate, residuals etc., and
accumulated summary analysis of variance (or deviance for a

generalized linear model).
By default, SPREADSHEET=summ,esti,fitt.

The SPESTIMATES option specifies which columns to include in the estimates spreadsheet,
with settings:

estimates estimates,
se standard errors of estimates,
testimates t-statistics of of estimates, and
prestimates t-probabilities of estimates.

By default they are all included.
The SPFITTEDVALUES option specifies which columns to include in the estimates

spreadsheet, with settings:
y y-variate,
fittedvalues fitted values,
residuals residuals,
leverages leverages, and
sefittedvalues standard errors of fitted values.

By default SPFITTEDVALUES=y,fitt,resi,leve.
To help avoid clashes between the columns of the spreadsheets if you want to save results

from more than one analysis, the parameters RESIDUALS, FITTEDVALUES, LEVERAGES,
ESTIMATES, SE, TESTIMATES, PRESTIMATES, SEFITTEDVALUES, SUMMARY, ACCUMULATED
allow you to specify identifiers for the columns (or sets of columns) that will store the
corresponding results in the current spreadsheets. Their defaults are mainly the same as the
parameter names, but in lower case letters. The exceptions are that TESTIMATES and
PRESTIMATES have defaults t_statistics and t_probabilities, respectively.

You can save the data in either a Genstat workbook (.gwb) or an Excel spreadsheet (.xls or
.xlsx), by setting the OUTFILENAME option to the name of the file to create. If the name is
specified without a suffix, '.gwb' is added (so that a Genstat workbook is saved). If
OUTFILENAME is not specified, the data are put into a spreadsheet opened inside Genstat.
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So, you could save the summary table, estimates and fitted values etc. in an Excel spreadsheet
called Boilresults.xlsx by giving the command

RSPREADSHEET [SPREADSHEET=summary,estimates,fittedvalues;\
              OUTFILE='Boilresults.xlsx]

3.1.6 Displaying the model: the RGRAPH procedure

RGRAPH procedure
Draws a graph to display the fit of a regression model (P.W. Lane).

Options
GRAPHICS = string token Type of graphics to produce (lineprinter,

highresolution); default high
TITLE = text Title for the graph; default 'Fitted and observed

relationship'

WINDOW = number Which high-resolution graphics window to use; default
4 (redefined if necessary to fill the frame)

SCREEN = string token Whether to clear the graphics screen before plotting
(clear, keep); default clea

CIPLOT = string token Whether to plot confidence intervals (no, yes); default
no

CIPROBABILITY = scalar Probability for confidence interval; default 0.95
BACKTRANSFORM = string token What back-transformation to make (link, none, axis);

default link
SAVE = regression save structure Save structure of the model to display; default * uses the

most recently fitted regression model

Parameters
INDEX = variate Which explanatory variate to display; default * if

GROUPS is set, otherwise INDEX is set to the first variate
in the fitted model (must be set for nonlinear models
other than standard curves)

GROUPS = factor Which explanatory factor to display; default * if INDEX
is set, otherwise GROUPS is set to the first factor in the
fitted model (ignored for nonlinear models)

Procedure RGRAPH displays the fit of either a linear regression, a generalized linear model, a
generalized additive model, a standard curve or a nonlinear model. If you have fitted several
explanatory variates (as, for example in multiple linear regression, Section 3.2), you can use the
INDEX parameter to specify which one is to form the x-axis. Likewise, the GROUPS parameter
is relevant if you are also fitting explanatory factors, as for example in parallel regression models
(3.3). With simple linear regression, there is only one explanatory variate, and so you simply
need to type

RGRAPH
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Figure 3.1.5

If you are plotting a single regression line,
you can set option CIPLOT=yes to include
confidence intervals for the fitted
relationship. The CIPROBABILITY option
sets the size of the interval; the default is
0.95 (i.e. 95%). Figure 3.1.5 shows the
resulting plot (with confidence interval) for
Example 3.1.

By default the graph is plotted on the
current high-resolution device, but the
GRAPHICS option can be set to line for a
line-printer plot. The TITLE option allows
you to supply a title for the graph. The
WINDOW option can be used to select a
pre-defined window for high-resolution
plots; otherwise window 4 is used, and is
redefined if necessary to fill the frame. The
SCREEN option allows the graph to be
added to an existing high-resolution plot.
The colours and symbols used in the displays can be controlled by setting the attributes of the
following pens with the PEN directive before calling the procedure:

pen 1 labels for lines when drawn for each level of a factor,
pen 2 fitted lines and means,
pen 3 points, and
pen 4 back-transformed axis marks and labels (see 3.5).

By default the current regression model is displayed, but option SAVE can be set to specify the
save structure (from a MODEL statement) of some other model.

For models other than the nonlinear models fitted by FITNONLINEAR or FIT with the
CALCULATION option set, RGRAPH plots the relationship between the response variate and either
one explanatory variate or one explanatory factor or one of each. If no parameters are set,
RGRAPH takes the first explanatory variate and the first factor in the model, and the predicted
relationship is represented by a line for each level of the factor. The display represents the
observed relationship as points, plotting the response (adjusted for further explanatory terms in
the model, if any) against the chosen explanatory variate, with each point labelled according to
the corresponding factor level. If no factor has been fitted a single line is drawn, while if no
variate has been fitted the graph simply shows the predicted mean for each level of the factor.

If a linear, generalized linear or generalized additive model has been fitted, the INDEX and
GROUPS parameters can be used to specify which explanatory variate and factor, respectively,
should be used. If INDEX is set and GROUPS is not, a single line is drawn even if there are factors
in the model; similarly if GROUPS is set and INDEX is not, the effect of the factor alone is shown.

For nonlinear models fitted by the FITNONLINEAR directive, a single line is drawn by joining
the fitted values, and the response values are shown as points. Any setting of the GROUPS
parameter is ignored. For curves fitted by the FITCURVE directive, settings of the INDEX and
GROUPS parameters are ignored and the explanatory variate and factor, if any, are determined
automatically.

No graph can be drawn if the REG or COMPARISON function have been used in the model. If
the SSPLINE function has been used for any variate whose relationship with the response is not
actually displayed, then the only adjustment for its effect will be the linear component of the
fitted smooth curve. If the displayed variate itself is smoothed, then the curve is formed by
interpolation between adjusted fitted values. The POL function is dealt with correctly.
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3.1.7 Diagnostics: the RCHECK procedure

RCHECK procedure
Checks the fit of a linear, generalized linear or nonlinear regression (P.W. Lane, R.
Cunningham & C. Donnelly).

Options
PRINT = string tokens What to print (index, y, residuals, leverages,

Cook); default *
RMETHOD = string token Type of residual to use (deviance, Pearson, simple,

deletion); default * i.e. as set in MODEL
INDEX = variate Which variate to use as index; default !(1...n)
ENVELOPE = string token Type of envelope with Normal and half-Normal plots

(none, rough, smooth, asymptotic); default none
PROBABILITY = scalar Approximate probability level for envelope; default 0.95
NSIMULATIONS = scalar How many simulations to generate for rough or smooth

envelopes; default (1+PROB)/(1!PROB)
SHADE = string token Whether to show shaded envelope rather than

boundaries (no, yes); default no
RESIDUALS = variate To store chosen type of residuals; default *
LEVERAGES = variate To store leverages; default *
COOK = variate To store modified Cook's statistics; default *
GRAPHICS = string token Type of graphics to use (lineprinter,

highresolution); default high
TITLE = text Title for graph; default identifier of response
WINDOW = numbers Window or series of windows in which to display

graphs; default 4, or 5...8 for composite
SCREEN = string token Treatment of previous graphics screen (clear, keep);

default clea
SAVE = regression save structure Specifies which model to check; default *

Parameters
YSTATISTIC = string tokens What to display in the graph (residuals, Cook,

leverages, absresiduals); default resi
XMETHOD = string tokens What type of graph (fittedvalues, index, normal,

halfnormal, histogram, composite); default comp

Diagnostic plots provide powerful ways of checking the assumptions underlying a regression
model. If the assumptions are not satisfied, you might need to transform the y-variate or use a
generalized linear model (3.5), or you could assess the model by using a permutation test (3.1.9).
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Figure 3.1.7

The types of graph provided by
RCHECK are controlled by the
YSTATISTIC and XMETHOD

parameters. These can be set to
display various types of residuals,
the leverages or the modified
Cook's statistics as simple plots
against fitted values or against an
index variate, or as Normal or
half-Normal plots, or as a
histogram. The most convenient
(and  defau l t )  se t t ing is
composite, which displays four
plots as a composite picture:
histogram, plot against fitted
values,  Normal plot and
h a l f - N o r m a l  p l o t .  T h e
YSTATISTIC parameter defaults to
residual, so we can obtain the
standard set of diagnostic plots
simply by typing

RCHECK

Figure 3.1.7 hows the resulting
plot for Example 3.1.

By default the plots are for the current regression model, but option SAVE can be set to specify
the save structure (from a MODEL statement) of some other model.

The graphical displays can be controlled as usual using the GRAPHICS, TITLE, WINDOWS and
SCREEN options. The colours and symbols used in the displays can be controlled by setting the
attributes of the following pens with the PEN directive before calling the procedure:

pen 2 zero lines in fitted-value, Normal and index plots,
pen 3 points and histogram bars,
pen 4 smooth line in fitted-value and index plots of residuals.

The type of residual that is formed is controlled by the RMETHOD option. Most of the settings
are as in MODEL (3.1.1) and RKEEP (3.1.4). Deletion residuals di are calculated as follows:

di = ri /%((n!p!ri
2)/(n!p!1))

where ri are the standardized residuals, n is the number of observations, and p is the number of
parameters in the model. For generalized linear models other than linear regression,

di = SIGN(rdi) × %((1!li) × rdi
2 + li) × rpi

2)
where rdi and rpi are the standardized deviance and Pearson residuals respectively.

The equation for the modified Cook's statistics ci is
ci = ABS(di) × %{ (n!p) × li / (p × (1!li)) }

where li are the leverages.
In Normal plots, the Normal quantiles are calculated using the equation

qi = NED( (i!0.375) / (n+0.25) )
while for a half-Normal plot they are given by

qi = NED( 0.5 + 0.5 × (i!0.375) / (n+0.25) )
For generalized linear models, fitted values are transformed by an approximate variance-
stabilizing transformation before use in graphs:

Poisson, multinomial, negative binomial and geometric    2 × SQRT(fitted)
binomial, Bernoulli 2 × ANG(100 × fitted / nbinomial)
gamma, exponential LOG(fitted)



3.1  Simple linear regression 181

inverse Normal 1 / fitted
The plots of the residuals against fitted values or an index variate are displayed with a smoothed
line fitted through the points, to indicate any potential trend.

Normal and half-Normal plots can be enhanced with an "envelope" by setting the ENVELOPE
option. The rough setting produces an upper and lower bound for the values, and a median line,
produced by simulation. The bounds correspond approximately to individual confidence
intervals for each value, with probability as set by the PROBABILITY option (default 95%). The
number of simulations by default is the minimum to allow estimation of the required limits: this
is (1+PROBABILITY) / (1!PROBABILITY). A larger number of simulations can be requested
with the NSIMULATIONS option, to give better estimates at the expense of more computing time.
The smooth setting requests that the bounds are smoothed, using a cubic smooting spline with
4 d.f. The asymptotic setting produces bounds calculated from the asymptotic distribution of
Normal order statistics. The envelope for all these settings can be displayed as a shaded region
rather than as a set of three lines by setting the SHADE option to yes. Envelopes cannot be
calculated for nonlinear models or curves, nor for generalized linear models with inverse
Normal, negative binomial, geometric, multinomial or calculated distributions. Nor can they be
produced for deletion residuals or Cook's statistics; they are not appropriate for leverages, which
have no associated distributional assumption.

In addition to the plots, the chosen type of residuals, the leverages and Cook's statistics can
be stored in variates (using options RESIDUALS, LEVERAGES and COOK), and any calculated
quantities can be printed (using the PRINT option). If you do not want any plots, you can set
option GRAPHICS=*.

The procedure exits if there are fewer than four observations, or fewer than two non-missing
standardized residuals.

3.1.8 Power calculations: the RPOWER procedure

RPOWER procedure
Calculates the power (probability of detection) for regression models (R.W. Payne).

Options
PRINT = string token Prints the power (power); default powe
TERMS = formula Specifies the terms (x-variates, factors or model terms)

to be fitted in the analysis when the responses to be
detected are specified by the RESPONSE parameter

FACTORIAL = scalar Limit on the number of factors or variates in a model
term generated from TERMS; default 3

PROBABILITY = scalar Significance level at which the response is required to
be detected (assuming a one-sided test); default 0.05

TMETHOD = string token Type of test to be made (onesided, twosided,
equivalence, noninferiority, fratio,
chisquare); default ones

SAVE = rsave Regression save structure to provide the information
about the regression model

Parameters
RESPONSE = variates Variate of fitted values calculated using regression

parameters of the size to be detected; default * implies
that the information is to be taken from a regression save
structure

RDF = scalars Number of residual degrees of freedom; if unset, this is
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obtained from the analysis of RESPONSE or from the
regression save structure

RSS = scalars Anticipated residual sum of squares; if unset, this is
obtained from the analysis of RESPONSE or from the
regression save structure

POWER = scalars or variates Saves the power

When planning a regression study, it can be useful to know how likely a response is to be
detected. This probability of detection, known as the power of the study with respect to the
response of interest, helps to determine whether the study is sufficiently large or accurate to
achieve its purpose. RPOWER can consider any of the regression models that Genstat can analyse,
and can calculate the power either for the assessment of the whole model (as represented by the
regression sum of squares), or the assessment of individual parameters in the regression model.

To determine the power, you need to define the terms (x-variates, factors or model terms) to
be fitted in the regression, and specify the anticipated amount of residual variability. This is most
easily done by taking the analysis of a data set similar to the one to be used in the new study. To
do this, you should analyse the earlier set of data with the regression directives in the usual way.
Provided you do not fit any other regressions in the interim, RPOWER will pick up the information
automatically from the save information held within Genstat about the most recent regression
analysis. Alternatively, you can save the information explicitly in a regression save structure, by
setting the SAVE option of MODEL, and then use this same save structure as the setting of the
SAVE option of RPOWER.

Using a save structure allows you to specify any regression model, including any nonlinear
or generalized linear model. If you merely have an ordinary linear regression model, you can set
up the whole process within RPOWER if you prefer. The terms to be fitted in the model can be
specified using the TERMS option of RPOWER. The setting can be a list of x-variates or a model
formula, as in the setting of the parameter of the FIT directive. The FACTORIAL option, as in
FIT, sets a limit on the number of factors or variates in each of the terms generated from a model
formula. The constant is included automatically. (So, if you want to omit the constant and fit a
regression through the origin, you should specify a save structure instead.) The RESPONSE
parameter then supplies a y-variate calculated with regression parameters set to the sizes of
responses to be detected.

In Example 3.1.8 we wish to check the effectiveness of an x-variate containing the values 1,
2, 5, 8 and 9. If we want to detect a regression coefficient of size at least 2.5, we would calculate
the response as 

response = 2.5 * X

If we also wanted to check that we can detect a constant (or intercept) of size at least 3, the
calculation should become

response = 2.5 * X + 3

RPOWER analyses the RESPONSE variate using the model specified by TERMS in order to obtain
the values required to be detected for the various regression parameters.

The anticipated residual sum of squares can be specified by the RSS parameter, and the
residual degrees of freedom by the RDF parameter. In Example 3.1.8 this is set to 25. The power
for detecting the constant is only 0.252, but the power for detecting the regression coefficient
is 0.997.

Example 3.1.8

   2  " define the suggested x-values "
   3  VARIATE  [VALUES=1,2,5,8,9] X
   4  " calculate the response from the fitted values
  -5    for the parameter values to be detected "
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   6  CALCULATE response = 2.5 * X + 3
   7  " calculate the power, assuming a residual sum of squares of 25 "
   8  RPOWER   [TERM=X] response; RSS=25

Probability for a regression analysis
=====================================

For testing with a significance level of 0.050 using a one-sided test.

                Estimates          se       power

     Constant       3.000       2.415       0.252
            X       2.500       0.408       0.997

If TERMS and RSS are not set, RPOWER takes the values from the regression save structure (if this
is how the model has been specified) or from the analysis of the RESPONSE variate.

The PROBABILITY option specifies the significance level that you intent to use in the analysis
to detect a response; the default is 0.05 (i.e. 5%). By default, RPOWER assumes that individual
regression parameters are to be assessed by a one-sided t-test, but you can set option
TMETHOD=twosided to assess them by a two-sided t-test instead.

Other settings of TMETHOD enable you to test individual parameters for equivalence or for non-
inferiority. With equivalence (TMETHOD=equivalence), RESPONSE defines a threshold below
which the parameter can be assumed to be equivalent to no response. If the future estimate of the
parameter is b and the threshold is blim, the null hypothesis for equivalence is that either

b # !blim

or
b $ blim

with the alternative hypothesis that they are equivalent, i.e.
    !blim < b < blim

With non-inferiority (TMETHOD=noninferiority), the null hypothesis becomes
b $ !blim

(which represents a simple one-sided t-test).
You can also set TMETHOD=fratio, to assess the power of the F test for the regression in the

summary analysis of variance (or deviance); this is an overall test for the whole regression
model. Alternatively, if RPOWER is using a save structure from the analysis of a generalized linear
model with a non-Normal distribution, you can set TMETHOD=chisquare to assess the power
of a chi-square test on the deviance due to the regression model (see 3.5).

The POWER parameter can save the power(s), in a scalar if TMETHOD is set to fratio or
chisquare; otherwise in a variate. They are printed by default, but you can set option PRINT=*
to stop this.

3.1.9 Permutation and exact tests: the RPERMTEST procedure

RPERMTEST procedure
Does random permutation tests for regression or generalized linear model analyses (R.W.
Payne).

Options
PRINT = string tokens Controls printed output (probability, accumulated,

summary, critical); default prob
CONSTANT = string token How to treat the constant (estimate, omit); default

esti

FACTORIAL = scalar Limit on the number of variates and/or factors in the
terms to be fitted; default 3
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NTIMES = scalar Number of permutations to make; default 999
BLOCKSTRUCTURE = formula Model formula defining any blocking to consider during

the randomization; default none
EXCLUDE = factors Factors in the block formula whose levels are not to be

randomized
SEED = scalar Seed for the random number generator used to make the

permutations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

Parameter
TERMS = formula List of explanatory variates and factors, or model

formula, defining the model to fit

In regression analyses, random permutation tests provide an alternative to using the F
probabilities, printed for variance ratios in summary or accumulated analysis of variance tables,
when the assumptions of the analysis are not satisfied. These assumptions can be assessed by
studying the residual plots produced by RCHECK (3.1.7. In particular, the use of the F distribution
to calculate the probabilities is based on the assumption that the residuals from each stratum have
Normal distributions with equal variances, and so the histogram of residuals produced by
RCHECK should look reasonably close to the Normal, bell-shaped curve. Experience shows the
analysis is robust to small departures from Normality. RPERMTEST can be useful if the histogram
looks very non-Normal. You can also use RPERMTEST to generate probabilities for deviances or
deviance ratios in generalized linear models, instead of using the customary chi-square or F
distributions (which are justified by asymptotic theory).

Before using RPERMTEST, you need to give a MODEL statement to define the y-variate and so
on, as usual for a regression or generalized model. The terms to fit in the regression model are
specified by the TERMS parameter of RPERMTEST. As in the FIT directive, this can supply a list
of variates for a simple or multiple linear regression, or a model formula with variates and/or
factors for more complicated models. As usual, the CONSTANT option indicates whether or not
to fit the constant, and the FACTORIAL option sets a limit as usual on the number of variates
and/or factors in each of the terms generated from a TERMS formula.

The NTIMES option defines how many random permutations to perform; by default there are
999 (as well as the "null" permutation where the data keep their original order). The SEED option
allows you to specify the seed to use for the random-number generator that is used to construct
them. The default, SEED=0, continues the sequence of random numbers from a previous
generation or, if this is the first use of the generator in this run of Genstat, it initializes the seed
automatically (see Example 3.1.9. If NTIMES exceed the maximum possible number of
permutations for the data, an"exact" test is performed in which the SETALLOCATIONS directive
(1:4.3.4) is used to make every permutation once. This is feasible only for small datasets. There
are n! (n factorial) permutations of n units: 3!=6, 4!=24, 5!=120, 6!=720, 7!=5040, 8!=40320,
and so on.

If the regression is being used to analyse a designed experiment, you may need to use the
BLOCKSTRUCTURE option to specify a block model (see 4.2) to define how to do the
randomization. The EXCLUDE option can then restrict the randomization so that one or more of
the factors in the block model is not randomized (see 4.11.1).

The probabilities are determined from the distribution of the statistics of interest, over the
permuted datasets. In an ordinary regression, the statistics are the variance ratios from the
summary-of-analysis or accumulated-analysis-of-variance tables. In generalized linear models
they will be deviances when the dispersion is fixed, or deviance ratios when it is estimated (as
defined by the DISPERSION option of the MODEL directive; see 3.1.1 and 3.5.1).

Output is controlled by the PRINT option, with settings:
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probability to print the probability for the whole regression model;
summary to print the summary-of-analysis table with the usual

probability for the regression model replaced by the
probability from the permutation test;

accumulated to print the accumulated analysis of variance or deviance
table with the usual probabilities replaced by those from
the permutation test;

critical to accompany the summary or accumulated tables by a
table giving estimated critical values for each of the
statistics.

Example 3.1.9 shows a random permutation test for relationship between the logarithm of
barometric pressure and the boiling point of water, which confirms the findings in Example 3.1.

Example 3.1.9

  19  RPERMTEST Boiltemp
* MESSAGE: Default seed for random number generator used with value 984953

Probability for model 0.001 (determined from 999 random permutations)

3.2 Multiple linear regression

The model for simple linear regression can be extended by adding the effects of further
explanatory variables. It is then called multiple linear regression and can be written:

yi  =  á  +  â1 x1i  +  â2 x2i  + ... +  âk xki  +  åi

or in matrix form:
y  =  X â  +  å

where the design matrix X has k+1 columns. The errors åi will be assumed in this section to be
Normally distributed, as in Section 3.1. You can fit a multiple linear regression with the MODEL
and FIT directives as before; the only change is that you now give a list of explanatory variates
in FIT.

Likewise, in Genstat for Windows, multiple linear regression is straightforwardly obtained by
selecting Multiple Linear Regression in the Regression list box of the Linear Regression

menu. There is then an Explanatory Variates box into which you enter the required variates,
instead of the (single-variate) Explanatory Variate box given when you select Simple Linear

Regression. Alternatively, you can select General Linear Regression to explore different
subsets of the explanatory variates. The Maximal Model field in this menu corresponds to the
TERMS directive (3.2.3) and the subsidiary Change Model menu corresponds to the directives
ADD, DROP, SWITCH, TRY and STEP (3.2.4, 3.2.5 and 3.2.7).

In Example 3.2, data are read from a file attached to the second input channel and a multiple
linear regression is fitted for the response variable Heat on the four explanatory variables
X[1...4]; the RESTRICT directive is used to confine the analysis to those samples that have
3.2% gypsum. Notice that a message is printed to warn that X[2] and X[4] are nearly aliased
(see 3.1.2 for more details).

Example 3.2

   2  "  Multiple linear regression of the heat given out by setting cement
  -3     on four chemical constituents. Data from Woods, Steinour & Starke
  -4     (1932); analysed by Draper & Smith (1981) p.629."
   5  OPEN 'Cement.Dat'; CHANNEL=2
   6  READ [PRINT=data; CHANNEL=2] X[3,1,4,2],%gypsum,Heat

    1   6  7 60 26 3.2  78.5   15  1 52 29 3.2  74.3
    2   8 11 20 56 3.2 104.3    8 11 47 31 3.2  87.6
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    3   6  7 33 52 3.2  95.9    9 11 22 55 3.2 109.2
    4   9 11 22 55 4.3 108.0    9 11 22 55 *   110.2
    5  17  3  6 71 3.2 102.7   22  1 44 31 3.2  72.5
    6  18  2 22 54 3.2  93.1    4 21 26 47 3.2 115.9
    7   4 21 26 47 6.5 114.0   23  1 34 40 3.2  83.8
    8   9 11 12 66 3.2 113.3    8 10 12 68 3.2 109.4
    9  18  1 61 17 3.2   *
   7  " Analyse only those samples with 3.2% gypsum."
   8  RESTRICT Heat; %gypsum==3.2
   9  MODEL Heat
  10  " Constituents are: X[1]  tricalcium aluminate
 -11                      X[2]  tricalcium silicate
 -12                      X[3]  tetracalcium aluminoferrite
 -13                      X[4]  beta-dicalcium silicate"
  14  FIT [FPROBABILITY=yes; TPROBABILITY=yes] X[]

Regression analysis
===================

 Response variate: Heat
     Fitted terms: Constant, X[1], X[2], X[3], X[4]

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       4      2667.90      666.975    111.48  <.001
Residual         8        47.86        5.983
Total           12      2715.76      226.314

Percentage variance accounted for 97.4
Standard error of observations is estimated to be 2.45.

Estimates of parameters
-----------------------

Parameter      estimate         s.e.      t(8)  t pr.
Constant           62.4         70.1      0.89  0.399
X[1]              1.551        0.745      2.08  0.071
X[2]              0.510        0.724      0.70  0.501
X[3]              0.102        0.755      0.14  0.896
X[4]             -0.144        0.709     -0.20  0.844

* MESSAGE: the variance of some parameter estimates is seriously inflated,
           due to near collinearity or aliasing between the following
           parameters, listed with their variance inflation factors.
X[2]              254.42
X[4]              282.51

One common task in multiple regression is find the subset of explanatory variables that gives the
most satisfactory fit. You can search for this subset by a process of sequential modelling using
the ADD, DROP, SWITCH, TRY and STEP directives. Each of these directives makes and reports
changes to the current regression model, and STEP can be used to perform stepwise regression
(3.2.7). It is advisable to use the TERMS directive before you start the process of sequential
modelling, to define a common set of units for the regression.

An alternative is to use the RSEARCH procedure (3.2.8), which automates the various stepwise
procedures, and can also evaluate all subsets of the available explanatory terms. Another way
of deciding which model to fit is to perform screening tests on the available model terms. This
can be done using procedure RSCREEN (3.2.9).

3.2.1 Extensions to the FIT and RDISPLAY directives in multiple linear regression

You would usually want to divide the explained variation between explanatory variables. The
summary analysis of variance from the PRINT options of FIT and RDISPLAY does not do this,
but there is a further setting accumulated. This divides the variation according to the order in
which you listed the variables in the parameter of the FIT directive: therefore, the sum of squares
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for each variable ignores the effects of variables fitted later and eliminates the effect for
variables already fitted. This contrasts with the t-statistics from PRINT=estimates which can
be used to test the effect of each variable after eliminating the effects of all the other variables.
You will find the accumulated setting useful also for summarizing changes in the regression
model that you might make by the directives described later in this section. Here is the
accumulated summary produced after Example 3.2.

Example 3.2.1

  15  RDISPLAY [PRINT=accumulated; FPROBABILITY=yes]

Regression analysis
===================

Accumulated analysis of variance
--------------------------------

Change             d.f.         s.s.         m.s.      v.r.  F pr.
+ X[1]                1     1450.076     1450.076    242.37  <.001
+ X[2]                1     1207.782     1207.782    201.87  <.001
+ X[3]                1        9.794        9.794      1.64  0.237
+ X[4]                1        0.247        0.247      0.04  0.844
Residual              8       47.864        5.983

Total                12     2715.763      226.314

The table shows the sum of squares and degrees of freedom attributable to each individual
change in the model. As for the summary analysis of variance, if you set the FPROBABILITY
option at the same time as PRINT=accumulated you get an extra column in the table with F-
probabilities. By default the variance ratios are obtained by dividing the mean squares by the
mean square corresponding to the smallest residual sum of squares in the table; that is from the
model with fewest residual degrees of freedom.

If you do not want the sum of squares and the degrees of freedom to be subdivided between
changes to the explanatory variables that you make within a statement, you should set option
POOL=yes. There would then be just one entry in the table for each statement. The main use of
POOL is with the ADD, DROP and SWITCH directives (3.2.4). With FIT, the POOL option merely
gives the same table as you would get using the summary setting of the PRINT option.

The lines of the accumulated table are usually labelled by the names of the model terms that
have been added or dropped, as shown in Example 3.2.1. When POOL=yes, however, this may
become rather too long or complicated, so you can then use the AOVDESCRIPTION option (in
FIT, ADD, DROP and SWITCH) to supply your own description. If you supply a missing text, the
line is omitted from the table.

The DENOMINATOR option of the FIT and RDISPLAY directives can be set to produce variance
ratios in the summary based on the smallest residual mean square, rather than on the mean square
corresponding to the smallest residual sum of squares. You might, for example, know in advance
of doing the regression that certain variables are unlikely to have a relationship with the response
variable. So you would want to be able to include the sum of squares for these variables in the
residual sum of squares for the other explanatory variables. You can do that by listing the
interesting variables first, and these potentially uninteresting variables last, and setting
DENOMINATOR=ms.

Sometimes you will find that the effect of an explanatory variable turns out to be exactly zero.
This is no problem if it happens because the correlation of the explanatory variable with the
response variable is itself zero. But it is a problem if it happens because the explanatory variable
is a linear combination of other explanatory variables. We call this collinearity or aliasing of the
explanatory variables. There is then no unique set of parameter estimates, and the method of
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computing information about the regression would break down, since it involves inverting a
singular matrix XNX. The method also becomes unstable if the explanatory variables are nearly
linearly related. Therefore Genstat tests for such a linear relationship, and will not include an
explanatory variable that fails the test (3.2.3). A warning message is displayed, telling you which
variable is not being included and the form of the linear relationship that has been found (see
Examples 3.3.4f and 3.5.1). You can prevent the message appearing by using the aliasing
setting of the NOMESSAGE option of the FIT directive.

If you then change the model, Genstat will continue to try to include this problem variable
unless it is explicitly dropped. This is because the changes in the model may cause the original
collinearity to disappear. If the variable is successfully included, a message is printed; again you
can prevent the message appearing by the aliasing setting of the NOMESSAGE option.

3.2.2 Saving information about individual regression terms: the RKESTIMATES directive

RKESTIMATES directive
Saves estimates and other information about individual terms in a regression analysis.

Options
FACTORIAL = scalar Limit on number of factors and variates in a model term;

default 3
Y = variate Response variate for which results are to be saved;

default is the last response variate in the save structure
SAVE = identifier Provides the regression save structure for the analysis

from which the estimates are to be saved; default * takes
the save structure from the most recent regression

Parameters
TERMS = formula Model terms for which information is required
ESTIMATES = tables or scalars Table or scalar to store the estimated regression

coefficients for each term
SE = tables or scalars Table or scalar to store the standard errors of the

estimated regression coefficients
VCOVARIANCE = symmetric matrices

Symmetric matrix or scalar to store the variances and
covariances between the estimates of each term

DF = scalars Number of degrees of freedom for each term
POSITIONS = tables or scalars Positions of the estimates in the variate of estimates as

saved from RKEEP when option EXPAND=yes

RKESTIMATES allows you to save estimates and other information about the individual terms in
a regression analysis. Example 3.2.2 shows how you can use RKESTIMATES to save the estimates
and standard errors from the regression in Example 3.2.

Example 3.2.2

  16  RKESTIMATES X[]; ESTIMATES=Est[1...4]; SE=se[1...4]
  17  PRINT Est[1],se[1],Est[2],se[2],Est[3],se[3],Est[4],se[4]; FIELD=10,8

    Est[1]   se[1]    Est[2]   se[2]    Est[3]   se[3]    Est[4]   se[4]
     1.551  0.7448    0.5102  0.7238    0.1019  0.7547   -0.1441  0.7091
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The first parameter, TERMS, of RKESTIMATES specifies the terms in the regression model about
which you wish to save information. Here we have a list of x-variates, X[], meaning X[1], X[2],
X[3] and X[4]. In more complicated situations, like those described in Section 3.3, it can be a
model formula (1:1.6.3). The FACTORIAL option then sets a limit on the number of factors and
variates in each term. Any term containing more than that limit is deleted. You can include the
single-line text 'constant' (in any case) to refer to the constant term.

The subsequent parameters allow you to specify identifiers of data structures to store the
various types of information for each of the terms that you have specified. The ESTIMATES
parameter saves estimates for each term. These are stored in a scalar if the term involves only
variates (as here), or in a table if the term involves factors (see 3.3). Similarly the SE parameter
saves standard errors for the estimates. The VCOVARIANCE parameter saves the variance (in a
scalar) of a term that involves only variates, or the variances and covariances between the
estimates (in a symmetric matrix) of a term that involves factors. The DF parameter saves the
number of degrees of freedom for the terms, in scalars. Finally, the POSITIONS parameter saves
the positions where the estimates can be found in the variate of estimates that would be saved
by the ESTIMATES parameter of RKEEP when its option EXPAND=yes. (This allows you, for
example, to obtain correlations between the estimates of different terms out of the variance-
covariance matrix that can be saved by the VCOVARIANCE parameter of RKEEP.) 

By default the results are saved from the most recent regression analysis, that is for the last
y-variate in the most recent MODEL statement. Alternatively, you can use the SAVE option to
specify the save structure from another analysis (see the SAVE option of MODEL: 3.1.1). Again,
the default is to save the information for the last y-variate, but you can use the Y option to specify
another one.

3.2.3 Defining the maximal model: the TERMS directive

TERMS directive
Specifies a maximal model, containing all terms to be used in subsequent linear, generalized
linear, generalized additive and nonlinear models.

Options
PRINT = string tokens What to print (correlations, wmeans, SSPM,

monitoring); default *
FACTORIAL = scalar Limit for expansion of model terms; default 3
FULL = string token Whether to assign all possible parameters to factors and

interactions (yes, no); default no
SSPM = SSPM Gives sums of squares and products on which to base

calculations; default *
TOLERANCE = scalar Criterion for testing for linear dependence; default is

107å, where å is the smallest real value such that 1+å is
greater than 1 on the computer

DESIGNMATRIX = matrix Saves the design matrix for the maximal model
MVINCLUDE = string token Whether to include units with missing values in the

explanatory factors and variates (explanatory);
default * i.e. omit these

RIDGE = scalar or variate Supplies values to add to the diagonal of the sums-of-
squares-and-products matrix, to enable ridge methods to
be used; default 0

CLDESIGNMATRIX = text Saves the column labels of the design matrix for the
maximal model i.e. the names of the parameters
estimated in the maximal model
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CLSSP = text Saves the labels of the sum-of-squares-and-products
matrix

Parameter
formula List of explanatory variates and factors, or model

formula

It is sensible to use the TERMS directive before starting to explore different subsets of
explanatory variables, so that Genstat can define a common set of units for the regression. The
directives that allow you to search through the different subsets, ADD, DROP, SWITCH, TRY and
STEP, are described later in this section. TERMS initializes Genstat ready for the exploration. It
overrules any model that has already been fitted with FIT, and resets the current model to be the
null model.
TERMS is not essential, but problems can arise if you omit TERMS when the explanatory

variates have missing values or restrictions. All the regression commands exclude any unit from
the analysis if any of the response or explanatory variates has a missing value. So the set of
available units will change if you include a new explanatory variate that has a missing value in
a unit that was not missing for the response variate or for any of the explanatory variates already
in the model. The new model will use fewer units, and so have a smaller total number of degrees
of freedom. This can also happen if the new explanatory variate is restricted but the response
variate and the existing explanatory variates are not. If there is a change in the set of units like
this, then the directive that makes the change to the model will display a message to draw
attention to the fact. The previous model is automatically refitted with the new set of units before
the new model is fitted, and the accumulated summary will show only these two fits. The
message about the change in units can be suppressed by using the option setting NOMESSAGE=df
in any of the fitting directives. So, although it may be convenient to omit TERMS, you should
check first that there are no uneven patterns of missing values amongst the explanatory variates.

The formula specified by the parameter of TERMS should contain all the explanatory variables
that you may wish to use in the subsets; if you later need to include others, you should give
another TERMS statement. For multiple regression, the formula is a simple list of variates; it may
include the response variates, but this is not necessary. Here is an example.

Example 3.2.3

  18  TERMS [PRINT=correlation] X[]

Degrees of freedom
------------------

Correlations:     11

Correlation matrix
------------------

         Heat   1  1.000
         X[1]   2  0.731  1.000
         X[2]   3  0.816  0.229  1.000
         X[3]   4 -0.535 -0.824 -0.139  1.000
         X[4]   5 -0.821 -0.245 -0.973  0.030  1.000
                       1      2      3      4      5

The TERMS directive actually fits a model: the null model containing only the constant term (in
this case a mean). It also calculates the sums of squares and products and the means (SSPM) of
the variates, including any response variates: the matrix of SSPMs is XNX, augmented by rows
and columns for response variables, and is the basis of the regression calculations. The matrix
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is weighted if you have specified 
weights in the MODEL statement, and the calculations are made within groups if you have
specified a grouping factor. All units of the variates are used unless there are restrictions or
missing values. You are not allowed to have different restrictions on the different vectors. Thus
you can define the set of units that Genstat uses in the calculations by putting a restriction on any
one of: a response variate, an explanatory variate, the weight variate, the offset variate or the
groups factor. A missing value in any of these structures except a response variate will also
exclude the corresponding unit. You should not alter the restriction applied to the vectors
between the TERMS statement and subsequent fitting statements.

The model containing all the terms specified by the parameter of TERMS, excluding the
response variates, is called the maximal model.

The PRINT option controls printed output, with settings:
SSPM sums of squares and products between the variates in the

model (including the response variates and dummy
variates set up to represent any factors and their
interactions), the means of the variates and the degrees of
freedom;

correlation the matrix of correlations between variables;
wmeans group means for a within-group regression;
monitoring monitoring information from the fit of the null model.

The FACTORIAL and FULL options are relevant only if there are factors in the model (3.3.1
and 3.3.2).

The SSPM option lets you use values that you have already calculated for an SSPM structure
(1:2.7.2). You might find this especially useful when you are analysing very large sets of data:
you can accumulate the SSPM sequentially to avoid storing all the data at once (1:4.10.3). Later
regression calculations will be based on the supplied values of the SSPM, though no fitted
values, residuals or leverages will be available. The values of a supplied SSPM are accepted
without checking by the TERMS directive: Genstat simply assumes you are giving it something
sensible.

The TOLERANCE option controls the detection of aliasing in subsequent model fitting. By
default, a parameter in a linear or generalized linear model will be deemed to be aliased if the
ratio between the original diagonal value of the SSPM corresponding to this parameter and the
current diagonal value of the partially inverted SSPM is less than 10å. The quantity å depends
on the computer and is defined to be the smallest real number such that the computer recognizes
1.0 + å as greater than 1.0. Any positive value can be supplied by the TOLERANCE option to
replace this default criterion in subsequent linear regression and generalized linear regression.

The DESIGNMATRIX option allows you to save the design matrix corresponding to the
maximal model. With the RKEEP directive, you can only extract a design matrix corresponding
to the currently fitted model (excluding columns corresponding to intrinsically or extrinsically
aliased parameters). The CLDESIGNMATRIX option can save the column labels of the design
matrix without saving the design matrix itself. (These are the names of the parameters estimated
in the maximal model.)

The MVINCLUDE option allows units with missing values with missing values in factors or
variates in the model to be included (by default these are excluded). Where this occurs, the factor
or variate is taken to make no contribution to the fitted value for the unit concerned. This is an
option that should be set only under very special circumstances. For example it is required
internally by some of the procedures that fit hierarchical generalized linear models (see
HGANALYSE; 3.5.11), and it may be relevant in some specialized meta analyses. It should not be
used during ordinary analysis.

The RIDGE option enables ridge methods to be implemented. It can be set to a scalar, to define
a constant to add to all the diagonal elements of the sums-of-squares-and-products matrix that
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correspond to the parameters in the model. Alternatively you can set RIDGE to a variate, to add
a different value to each diagonal element. You may then want to use the CLSSP option to save
the row labels of the sum-of-squares-and-products matrix, so that you see which rows correspond
to model parameters, and which ones correspond to the y-variates. By default nothing is added
(i.e. RIDGE = 0).

3.2.4 Modifying the model: the ADD, DROP and SWITCH directives

The directives ADD, DROP and SWITCH all have identical options and parameters.

ADD directive
Adds extra terms to a linear, generalized linear, generalized additive or nonlinear model.

DROP directive
Drops terms from a linear, generalized linear, generalized additive or nonlinear model.

SWITCH directive
Adds terms to, or drops them from a linear, generalized linear, generalized additive or
nonlinear model.

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, confidence); default
mode,summ,esti

NONLINEAR = string token How to treat nonlinear parameters between groups
(common, separate, unchanged); default unch

CONSTANT = string token How to treat the constant (estimate, omit,
unchanged, ignore); default unch

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in
previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all
terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms
from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary, seobservations is
relevant only for a Normally distributed response, and
%cv only for a gamma-distributed response
(%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv,
%meandeviance, %deviance, aic, bic, sic); default
%var, seob if DIST=normal, %cv if DIST=gamma, and
disp for other distributions
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PROBABILITY = scalar Probability level for confidence intervals for parameter
estimates; default 0.95

AOVDESCRIPTION = text Description for line in accumulated analysis of variance
(or deviance) table when POOL=yes

Parameter
formula List of explanatory variates and factors, or model

formula

You use the directives ADD, DROP and SWITCH to change the current model. Broadly, ADD lets
you add extra explanatory variables, DROP lets you remove variables, and SWITCH lets you
simultaneously add and remove variables.

The directives have a common syntax, which is also much the same as the syntax of the FIT
directive. They modify the current regression model, which may be linear, generalized linear,
generalized additive, standard curve or nonlinear. It is best to give a TERMS statement before
using any of the three directives, in order to define a common set of units for the regression. If
no model is fitted after the TERMS statement before an ADD, DROP or SWITCH statement (or after
a MODEL statement if you decide to omit TERMS), the current model is taken to be the null model.

Here is some output that continues the example from the beginning of this section:

Example 3.2.4

  19  ADD [PRINT=deviance,estimates; TPROBABILITY=yes] X[1,2,4]

Regression analysis
===================

Residual d.f. 9, s.s. 47.97; Change d.f. -3, s.s. -2667.79

Estimates of parameters
-----------------------

Parameter      estimate         s.e.      t(9)  t pr.
Constant           71.6         14.1      5.07  <.001
X[1]              1.452        0.117     12.41  <.001
X[2]              0.416        0.186      2.24  0.052
X[4]             -0.237        0.173     -1.37  0.205

  20  DROP [PRINT=deviance,estimates; TPROBABILITY=yes] X[4]

Regression analysis
===================

Residual d.f. 10, s.s. 57.90; Change d.f. 1, s.s. 9.93

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(10)  t pr.
Constant          52.58         2.29     23.00  <.001
X[1]              1.468        0.121     12.10  <.001
X[2]             0.6623       0.0459     14.44  <.001

  21  SWITCH [PRINT=estimates,accumulated; FPROBABILITY=yes;\
  22         TPROBABILITY=yes] X[2,4]

Regression analysis
===================

Estimates of parameters
-----------------------
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Parameter      estimate         s.e.     t(10)  t pr.
Constant         103.10         2.12     48.54  <.001
X[1]              1.440        0.138     10.40  <.001
X[4]            -0.6140       0.0486    -12.62  <.001

Accumulated analysis of variance
--------------------------------

Change             d.f.         s.s.         m.s.      v.r.  F pr.
+ X[1]                1     1450.076     1450.076    272.04  <.001
+ X[2]                1     1207.782     1207.782    226.59  <.001
+ X[4]                1        9.932        9.932      1.86  0.205
Residual              9       47.973        5.330
- X[4]               -1       -9.932        9.932      1.86  0.205
- X[2]               -1    -1207.782     1207.782    226.59  <.001
+ X[4]                1     1190.925     1190.925    223.43  <.001

Total                12     2715.763      226.314

The formula specified by the parameter of each of these directives indicates the terms that are
to be added or dropped, as appropriate, from the model. You must have included all of these in
the formula of the previous TERMS statement (if you have chosen to specify TERMS). The terms
in the formula (a list of variates in the case of multiple linear regression) are compared with
those in the current regression model to form the new model.

For the ADD directive, the new model consists of all terms in the current model together with
any terms in the formula; terms may appear in both the current model and the formula, in which
case they will remain in the new model.

In Example 3.2.4, remember that the TERMS statement has reset the current model to be the
null model. The ADD statement in line 19 thus has the same effect as the statement

FIT [PRINT=deviance,estimates] X[1,2,4]

If the ADD statement were followed by another, for example

ADD X[3,4]

then the variate X[3] would be added to the model, which would then be the same as in Example
3.2. (X[4] is already in the model.)

For the DROP directive, the new model consists of all terms in the current model excluding any
that are in the formula: terms in the formula that are not in the current model are ignored. You
can see this at line 20 of Example 3.2.4. If the DROP statement had instead been

DROP [PRINT=deviance,estimates] X[3,4]

it would still have had the same effect, since X[3] does not appear in the current model as
defined by the previous statements.

Terms in the formula for the SWITCH directive are dropped from the current model if they are
already there, and added to it if they are not. For example, if the current model consists of R and
S, the effect of

SWITCH S,T

is to make a new model consisting of R and T (assuming that T was included in the previous
TERMS statement).

The options of the ADD, DROP and SWITCH directives are the same as those of the FIT
directive, but with the extra NONLINEAR option (see 3.7.3).

The summary analysis of variance produced by the summary setting of PRINT differs slightly
from that produced by FIT in that there is an extra line called "Change". This shows the change
in the Residual line since the last model. If no previous model has been fitted, the change refers
to the null model.

The accumulated summary produced by the accumulated setting of the PRINT option shows
all changes made to the model since the last TERMS or FIT statement, including those made by
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the FIT statement. You can see this after the SWITCH statement in Example 3.2.4: three terms
are added, then X[4] is removed, and then X[2] is removed and X[4] reinstated. Notice the two
very different sums of squares for X[4]: the smaller is the sum of squares after eliminating X[1]
and X[2] while the larger is the sum of squares after eliminating X[1] but ignoring X[2]. The
large difference implies that X[2] and X[4] are highly correlated after elimination of X[1]; in
fact, the correlation matrix from the TERMS statement shows that they are also highly correlated
ignoring X[1].

The variance ratios in the accumulated summary are calculated either from the smallest
residual mean square, or from the residual mean square corresponding to the smallest residual
sum of squares, depending on how the DENOMINATOR option has been set in the statement that
prints the summary. In Example 3.2.4, DENOMINATOR has its default value and so the variance
ratios are calculated from the residual mean square corresponding to the smallest residual sum
of squares.

The model fitted by ADD, DROP or SWITCH will include a constant term if the previous model
included one, and will not include one if the previous model did not. You can, however, change
this using the CONSTANT option.

3.2.5 Evaluating changes to the model: the TRY directive

TRY directive
Displays results of single-term changes to a linear, generalized linear or generalized additive
model.

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, changes, confidence);
default chan

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in
previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all
terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms
from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary, seobservations is
relevant only for a Normally distributed response, and
%cv only for a gamma-distributed response
(%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv,
%meandeviance, %deviance, aic, bic, sic); default
%var, seob if DIST=normal, %cv if DIST=gamma, and
disp for other distributions
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PROBABILITY = scalar Probability level for confidence intervals for parameter
estimates; default 0.95

Parameter
formula List of explanatory variates and factors, or model

formula

TRY can be used to evaluate potential changes to the model. The essential difference between
TRY and SWITCH is that TRY makes no permanent change to the current model. Explanatory
variables are added or removed only temporarily.

The current regression model is modified by each term in the formula specified by the
parameter of TRY, one term at a time, dropping terms that are in the current model and adding
terms that are not. The default setting, changes, of the PRINT option summarises the effects of
the changes after they have all been tried. Other settings request further details of the changed
models. These are printed after each change. Genstat then restores the original model before
trying the next change.

In Example 3.2.5, TRY is used to study the effect of adding either X[2] or X[3].

Example 3.2.5

  22  TRY X[2,3]

Changes investigated by TRY
===========================

Change                            d.f.         s.s.         m.s.

+ X[2]                               1        26.79        26.79
+ X[3]                               1        23.93        23.93

Residual of initial model           10        74.76         7.48

The only circumstances in which TRY does make a permanent change is when the current model
includes a term that had been found to be aliased before this TRY statement was reached. If the
aliased term can be fitted after dropping one of the terms in the TRY formula, then that is indeed
done. The term that was dropped will be aliased thereafter.

The options are as in the FIT directive, except that there is no CONSTANT option. The
accumulated setting of the PRINT option will show only one change at a time (see Example
3.5.1). Accumulated summaries produced by later statements will not have any entries for a TRY
statement.

3.2.6 Wald tests to assess whether terms can be dropped: the RWALD procedure

RWALD procedure
Calculates Wald and F tests for dropping terms from a regression (R.W. Payne).

Options
PRINT = string token Controls printed output (waldtests); default wald
FACTORIAL = scalar Limit on number of factors in the model terms generated

from the TERMS parameter; default 3
Y = variate Y-variate from whose analysis to calculate the statistics;

default is the last y-variate in SAVE
RDF = scalar Saves the residual d.f. used to calculate F probabilities
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when the dispersion is not fixed
SAVE = regression save structure Specifies the save structure (from MODEL) containing the

analysis for which to calculate the tests; default is the
save structure from the most recent regression

Parameters
TERMS = formula Model terms for which tests are required
WALDSTATISTIC = scalar or pointer to scalars

Saves Wald statistics
DF = scalar or pointer to scalars Saves d.f. of Wald statistics
PROBABILITY = scalar or pointer to scalars

Saves the probabilities for the Wald statistics if the
dispersion is fixed, or the corresponding F statistics if it
is estimated

RWALD provides Wald tests to help you decide whether any terms can be dropped from a
regression model. It calculates the tests from the output of the existing model, so it is quicker
than TRY (3.2.5) as that assesses the terms by changing and refitting the model. RWALD can thus
be used to make a final check before you stop refining a model, or it can be used as part of a
backwards stepwise process in which you fit the full model and then drop terms until all the
remaining terms are essential.

By default, RWALD produces tests for all the terms that can be dropped from the most recent
regression analysis, but you can set the SAVE and Y options to request tests from an earlier
analysis. You can use the TERMS parameter to request Wald tests for a specific set of terms. A
missing value is then given for any term that cannot be dropped.

If option PRINT=waldtests (the default), RWALD prints a table with columns containing the
Wald statistic, its number of degrees of freedom and a probability value. With an ordinary linear
regression, RWALD will also print an F statistic, and use this to obtain the probability. Provided
there is no aliasing between the parameters of the terms, these F statistics and probabilities will
be identical to those that would be printed in the Change lines of the Summary of Analysis if the
terms were dropped from the model explicitly by using the DROP or TRY directives. However,
as already mentioned, the advantage of RWALD is that the model does not have to be refitted
(excluding each term) to calculate the information.

The use of RWALD is illustrated in Example 3.2.6, which uses the data from Example 3.2. All
the available x-variates are fitted in line 24, and then RWALD is used to see which ones can be
dropped from the model.

Example 3.2.6

  24  FIT [FPROBABILITY=yes; TPROBABILITY=yes] X[]

Regression analysis
===================

 Response variate: Heat
     Fitted terms: Constant, X[1], X[2], X[3], X[4]

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       4      2667.90      666.975    111.48  <.001
Residual         8        47.86        5.983
Total           12      2715.76      226.314

Percentage variance accounted for 97.4
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Standard error of observations is estimated to be 2.45.

Estimates of parameters
-----------------------

Parameter      estimate         s.e.      t(8)  t pr.
Constant           62.4         70.1      0.89  0.399
X[1]              1.551        0.745      2.08  0.071
X[2]              0.510        0.724      0.70  0.501
X[3]              0.102        0.755      0.14  0.896
X[4]             -0.144        0.709     -0.20  0.844

* MESSAGE: the variance of some parameter estimates is seriously inflated,
           due to near collinearity or aliasing between the following
           parameters, listed with their variance inflation factors.
X[2]           254.42
X[4]           282.51

  25  RWALD

Wald tests for dropping terms
-----------------------------

Term  Wald statistic  d.f.  F statistic   F pr.
X[1]           4.337     1         4.34   0.071
X[2]           0.497     1         0.50   0.501
X[3]           0.018     1         0.02   0.896
X[4]           0.041     1         0.04   0.844

Residual d.f. 8

RWALD can also be used with generalized linear models; see 3.5. When the dispersion is not fixed
(as for example with Normal or gamma distributions), it again gives F probabilities. However,
when the dispersion is fixed (as with binomial or Poisson distributions), the probabilities are
obtained by treating the Wald statistics as chi-square statistics. The deviances and deviance
ratios used by TRY and DROP are calculated from the likelihoods of the generalized linear
models, whereas the Wald and F statistics are essentially based on weighted sums of squares. So
probabilities calculated by RWALD will no longer be identical to those given by TRY and DROP.
However, both sets of probabilities are based on the asymptotic properties of their statistics, and
so they should give similar conclusions.

The WALDSTATISTIC parameter can save the statistics, and the DF parameter can save their
numbers of degrees of freedom. If you are making a Wald test for a single term, you can supply
a scalar for each of these parameters. However, if you have several terms, you must supply a
pointer which will then be set up to contain as many scalars as there are terms. Similarly the
PROBABILITY parameter saves the probabilities for the Wald statistics if the dispersion is fixed,
or the corresponding F statistics if it is estimated. The number residual degrees of freedom for
the F statistics can be saved, in a scalar, by the RDF option. This contains a missing value if the
dispersion is fixed.

3.2.7 Stepwise regression: the STEP directive

STEP directive
Selects terms to include in or exclude from a linear, generalized linear or generalized additive
model according to the ratio of residual mean squares.

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
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accumulated, monitoring, changes, confidence);
default mode,summ,esti,chan

FACTORIAL = scalar Limit for expansion of model terms; default * i.e. that in
previous TERMS statement

POOL = string token Whether to pool ss in accumulated summary between all
terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms
from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary, seobservations is
relevant only for a Normally distributed response, and
%cv only for a gamma-distributed response
(%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv,
%meandeviance, %deviance, aic, bic, sic); default
%var, seob if DIST=normal, %cv if DIST=gamma, and
disp for other distributions

INRATIO = scalar Criterion for inclusion of terms; default 1.0
OUTRATIO = scalar Criterion for exclusion of terms; default 1.0
MAXCYCLE = scalar Limit on number of times to repeat stepwise selection,

unless no change is made; default 1
PROBABILITY = scalar Probability level for confidence intervals for parameter

estimates; default 0.95

Parameter
formula List of explanatory variates and factors, or model

formula

Example 3.2.7a shows how you can use STEP to pick the "best" change to make to the set of
explanatory variables at any stage.

Example 3.2.7a

  26  FIT [PRINT=*] X[1]
  27  STEP [INRATIO=4; OUTRATIO=4] X[1...4]

Step 1: Residual mean squares
-----------------------------

       5.790    Adding   X[2]
       7.476    Adding   X[4]
     115.062    No change
     122.707    Adding   X[3]
     226.314    Dropping X[1]

Chosen action: adding X[2].
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Regression analysis
===================

 Response variate: Heat
     Fitted terms: Constant, X[1], X[2]

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       2      2657.86     1328.929    229.50  <.001
Residual        10        57.90        5.790
Total           12      2715.76      226.314

Change          -1     -1207.78     1207.782    208.58  <.001

Percentage variance accounted for 97.4
Standard error of observations is estimated to be 2.41.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           12       115.90        0.55

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(10)  t pr.
Constant          52.58         2.29     23.00  <.001
X[1]              1.468        0.121     12.10  <.001
X[2]             0.6623       0.0459     14.44  <.001

Example 3.2.7a starts by fitting a model containing just the term X[1]. Then the STEP statement
tries, one at a time, to drop X[1] and to add X[2], X[3] and X[4]. After each of these it reverts
to the original model. Thus far, therefore, it is like a TRY statement. But then STEP, unlike TRY,
permanently modifies the current model according to the change that was most successful. This
means (putting it loosely at the moment) that if, for example, dropping X[1] "improves" the
model, then X[1] is permanently removed; or, when no removals are worthwhile, if adding X[2]
gives the biggest "improvement", then X[2] is permanently included. We see in fact that the
latter happened, and so the current model is now as displayed at the end of Example 3.2.7a.

We now define what constitutes an "improvement" in the model. The current model is
modified by each term in the formula specified by the parameter of STEP, one term at a time, as
with TRY (3.2.5). For each term, the residual sum of squares and the residual degrees of freedom
are recorded; then Genstat reverts to the original model before trying the next term.

The current model is finally modified by the best term, according to a criterion based on the
variance ratios. Suppose that the residual sum of squares and residual degrees of freedom of the
current model are s0 and d0, and of the model after making a one-term change are s1 and d1. If the
variance ratio for any term that is dropped is less than the value of the setting of the OUTRATIO
option, then the term that most reduces or least increases the residual mean square is dropped.
That is, when the dispersion is being estimated, a term will be dropped only if at least one term
has

{(s1!s0) / (d1!d0)} / {s0/d0}  <  OUTRATIO
When the dispersion is fixed, the equation becomes

{(s1!s0) / (d1!d0)}  <  OUTRATIO
If you have set OUTRATIO=*, then no term is dropped. Note that, though the criteria are ratios
of variances, you should not interpret them as F-statistics with the usual interpretation of
significance. The probability levels would need be adjusted to take account of correlations
between the explanatory variables concerned, and the number of changes being considered.

If no term satisfies the criterion for dropping, then the term that most reduces the residual
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mean square will be added to the model if its variance ratio is greater than the setting of the
INRATIO option. That is, when the dispersion is being estimated, if

{(s0!s1) / (d0!d1)} / {s1/d1}  >  INRATIO
When the dispersion is fixed, the equation becomes

{(s0!s1) / (d0!d1)}  >  INRATIO
Likewise, if you have set INRATIO=*, no term will be added.

If neither criterion is met, the current model is left unchanged.
The changes setting of the PRINT option produces a list of terms with the corresponding

residual mean squares and residual degrees of freedom, ordered according to the sizes of the
residual mean squares; you can see this in Example 3.2.7a. Note that this list is not available for
display later by the RDISPLAY directive. The INRATIO and OUTRATIO options are explained
above. The rest of the options are as in the FIT directive, except that there is no CONSTANT
option.

In Example 3.2.7a, STEP is making a single step of a stepwise regression. The MAXCYCLE
option allows you to request stepping to continue for a given number of cycles, or until the set
of explanatory variables stops changing. So, you can make STEP do forward selection by setting
MAXCYCLE to a sufficient number of steps and setting option OUTRATIO=*: for example,

TERMS X[]
STEP [OUTRATIO=*; MAXCYCLE=4] X[]

(Four steps in enough here as we have only four potential explanatory variates.)
Similarly, you can make STEP do backward elimination, by setting MAXCYCLE with option

INRATIO=*. For example:

TERMS X[]
FIT X[]
STEP [INRATIO=*; OUTRATIO=4; MAXCYCLE=4] X[]

Alternatively, you can use MAXCYCLE while supplying values for both INRATIO and

OUTRATIO to do full automatic stepwise regression, as shown in Example 3.2.7b.

Example 3.2.7b

  27  TERMS X[]
  28  STEP [PRINT=changes; INRATIO=4; OUTRATIO=4; MAXCYCLE=10] X[]

Step 1: Residual mean squares
-----------------------------

       80.35    Adding   X[4]
       82.39    Adding   X[2]
      115.06    Adding   X[1]
      176.31    Adding   X[3]
      226.31    No change

Chosen action: adding X[4].

Step 2: Residual mean squares
-----------------------------

       7.476    Adding   X[1]
      17.574    Adding   X[3]
      80.352    No change
      86.888    Adding   X[2]
     226.314    Dropping X[4]

Chosen action: adding X[1].

Step 3: Residual mean squares
-----------------------------
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       5.330    Adding   X[2]
       5.648    Adding   X[3]
       7.476    No change
      80.352    Dropping X[1]
     115.062    Dropping X[4]

Chosen action: adding X[2].

Step 4: Residual mean squares
-----------------------------

       5.330    No change
       5.790    Dropping X[4]
       5.983    Adding   X[3]
       7.476    Dropping X[2]
      86.888    Dropping X[1]

Chosen action: dropping X[4].

Step 5: Residual mean squares
-----------------------------

       5.330    Adding   X[4]
       5.346    Adding   X[3]
       5.790    No change
      82.394    Dropping X[1]
     115.062    Dropping X[2]

Chosen action: no change.

  29  RDISPLAY [FPROBABILITY=yes; TPROBABILITY=yes]

Regression analysis
===================

 Response variate: Heat
     Fitted terms: Constant, X[1], X[2]

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       2      2657.86     1328.929    229.50  <.001
Residual        10        57.90        5.790
Total           12      2715.76      226.314

Change           0     -2657.86            *

Percentage variance accounted for 97.4
Standard error of observations is estimated to be 2.41.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           12       115.90        0.55

Estimates of parameters
-----------------------
Parameter      estimate         s.e.     t(10)  t pr.
Constant          52.58         2.29     23.00  <.001
X[1]              1.468        0.121     12.10  <.001
X[2]             0.6623       0.0459     14.44  <.001

The STEP statement produces output for each step, so it is advisable to set the PRINT option, for
example to changes, if you do not need the full details of each model in the search path. The
example takes five steps to converge. First it adds X[4] because this term by itself gives the
greatest reduction in the residual mean square. Then it adds X[1] similarly, followed by X[2],
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because these terms too give greater reductions in the residual mean square than the supplied
ratio of 4 (from the INRATIO option). But the next step is to drop X[4] back out of the model.
This occurs because of the correlations between the explanatory variables: much of the effect
of X[4] ignoring the other variables can be ascribed alternatively to the pair of explanatory
variables X[1] and X[2]. The effect of dropping X[4] actually increases the residual mean
square, but by less than the supplied ratio of 4 (from the OUTRATIO option). Finally, the last step
establishes that no further single-term change can be made with the supplied criteria.

Usually, the INRATIO and OUTRATIO options will either be set to the same value or, as
already explained, one will be set to * to enforce the method of backward elimination or of
forward selection respectively. However, if the options are set to different non-missing values,
it is possible for the search to alternate between two models, or get into a more complicated loop.
Genstat will detect alternation, and stop; but it is not able to detect a more complicated loop and
will continue cycling until the limit on the number of cycles is reached.

The STEP directive can be used with of difference for predictions generalized linear models
as well as with linear models, but it cannot be used with nonlinear models of any kind.

3.2.8 Searching for the best regression model: the RSEARCH procedure

RSEARCH procedure
Helps search through models for a regression or generalized linear model (P.W. Goedhart).

Options
PRINT = string token Printed output required (model, results); default

mode, resu
METHOD = string tokens Model selection method to employ (allpossible,

forward, backward, fstepwise, bstepwise,
accumulated, pooled); default allp

FORCED = formula Model formula to include in every model; default *
CONSTANT = string token How to treat the constant (estimate, omit); default

esti

FACTORIAL = scalar Limit for expansion of all model terms; default 3
DENOMINATOR = string token Whether to base ratios in accumulated summaries on

rms from model with smallest residual ss or smallest
residual ms (ss, ms); default ss

INRATIO = scalar Criterion for inclusion of terms for forward selection,
backward elimination and stepwise regression; default
1.0

OUTRATIO = scalar Criterion for exclusion of terms for forward selection,
backward elimination and stepwise regression; default
1.0

MAXCYCLE = scalar Limit on number of times to repeat stepwise selection
methods, unless no change is made; default 50

CRITERION = string token Criterion for selecting best models among all possible
models (r2, adjusted, cp, ep, aic, bic, sic,
meandeviance, deviance); default adju

EXTRA = string token Criterion which is also printed for the selected best
models (r2, adjusted, cp, ep, aic, bic, sic,
meandeviance, deviance); default cp when
DISPERSION=*, and mean otherwise

AFACTORIAL = scalar Limit for expansion of FREE model terms for the fitting
of all possible models; default 3
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PENALTY = scalar Penalty for Mallows Cp and Akaike's information
criterion AIC; default 2

NTERMS = scalar Limit on the number of terms to be fitted when fitting all
possible models; default 16

NBESTMODELS = scalar Number of best models printed for each subset size;
default 8

PPROBABILITY = scalar When METHOD=allpossible, only models with all
probabilities less than PPROBABILITY are printed;
default 1 i.e. all models are printed

FINALMODELS = pointer Pointer to save the final models for forward, backward,
fstepwise and bstepwise regression methods

ALLMODELS = pointer Pointer to save formulae for all possible regression
models containing the fitted terms of all the models;
every formula includes the FORCED formula if set

ESTIMATES = pointer Pointer to save variates for all possible regression
models containing the parameter estimates

SE = pointer Pointer to save variates for all possible regression
models containing standard errors of the parameter
estimates

RESULTS = pointer Pointer to save variates for all possible regression
models containing the criteria (r2, adjusted, cp, ep, aic,
sic, deviance, meandeviance), degrees of freedom for
residual and the total number of fitted parameters p

STATISTICS = pointer Pointer to save variates for all possible regression
models containing the test statistics. These are F-to-
delete statistics (i.e. deviance ratios) when the
DISPERSION option of the MODEL directive is set to *,
and Chi-square-to-delete statistics (i.e. deviance
differences scaled by the dispersion parameter) for a
fixed dispersion parameter

DF = pointer Pointer to save variates for all possible regression
models containing the degrees of freedom for the
numerator of the test statistics

PROBABILITIES = pointer Pointer to save variates for all possible regression
models containing the probabilities of the test statistics

MARGINALTERMS = string token How to treat terms that are marginal to other terms in
the FREE formula (forced, free); default forc

Parameter
FREE = formula Model formula specifying the candidate model terms

The forward selection, backward elimination and stepwise regression methods provided by the
STEP directive (3.3.5) result in only one model, and alternative models with an equivalent or
even better fit are easily overlooked. In observational studies with many correlated (or non-
orthogonal) variables, there can be many alternative models, and selection of just one well-fitting
model may be unsatisfactory and perhaps misleading. A preferable method may be to fit all
possible regression models, and to evaluate these according to some criterion. In this way several
best regression models can be selected. However the fitting of all possible regression models is
very computer-intensive. It should also be used with caution, because models can be selected that
appear to have a lot of explanatory power, but contain only noise variables (see for example
Flack & Chang 1987). This may occur particularly when the number of parameters is large in
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comparison to the number of units. Terms should therefore not be selected on the basis of a
statistical analysis alone.
RSEARCH can be used to perform these model selection methods. It must be preceded by a

MODEL statement (3.1.1) to define the response variate and, if required, any other aspects of the
model (e.g. link and distribution of a generalized linear model; see 3.5.1). Only one response
variate is allowed unless the DISTRIBUTION option of MODEL is set to multinomial (3.5.5).
The FREE parameter specifies the candidate model terms. These may include variates, factors
and interactions (see 3.3), and regression functions like POL and SSPLINE (3.4). The METHOD
option controls which model selection methods are employed:

accumulated prints an accumulated analysis of deviance in which all
model terms are added one by one to the model in the
given order;

pooled prints an accumulated analysis of deviance in which terms
with the same number of identifiers, e.g. main effects or
two-factor interactions, are pooled;

forward prints an accumulated analysis of deviance resulting from
forward selection;

backward prints an accumulated analysis of deviance resulting from
backward elimination;

fstepwise prints an accumulated analysis of deviance resulting from
stepwise regression starting with no candidate terms in the
model;

bstepwise prints an accumulated analysis of deviance resulting from
stepwise regression starting with all candidate terms in the
model;

allpossible prints summary statistics for a number of best models
among all possible models.

For each model with METHOD=allpossible, the selection criterion and the degrees of freedom
of the included terms are printed. The probability for the hypothesis that an included term can
be deleted as the last term is also printed. These probabilities are based on F-to-delete statistics
(or deviance ratios for generalized linear models) when the DISPERSION option of the MODEL
directive is set to *, and Chi-square-to-delete statistics (i.e. deviance differences scaled by the
dispersion parameter) for a fixed dispersion parameter.

The PPROBABILITY option allows you to reduce the amount of output when
METHOD=allpossible. If this is set, only models where all the probabilities are less than
PPROBABILITY are printed. (By default PPROBABILITY=1, and so they are all printed.)

It is sometimes desirable to include specific terms in every model. Such terms may be
specified by means of the FORCED option. The FORCED model terms are always fitted first. The
CONSTANT option controls whether the constant parameter is included in the model. The limit
for expanding the FREE and FORCED model formulae can be set with the FACTORIAL option,
which has default value 3. The PRINT option controls the output from RSEARCH.

The criteria for inclusion and exclusion of terms for forward selection, backward elimination
and stepwise regression can be specified by the INRATIO and OUTRATIO options respectively.
The MAXCYCLE option specifies the number of steps. These operate exactly as in the STEP
directive (3.2.7). The DENOMINATOR option controls the way in which variance ratios are
calculated in accumulated analysis of deviance summaries.

All possible regression models are fitted only when the number of candidate FREE model
terms does not exceed 16. If the FREE formula specifies a main effects model, i.e. a model
without interactions, the main effects are the candidate terms. When the FREE formula contains
interactions, the default is to remove any terms marginal to an interaction from the FREE
formula, and include them instead in the FORCED formula. However, you can set option
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MARGINALTERMS to free to retain them in the FREE formula. Note that RSEARCH considers only
models that obey the principle of marginality. This states that a model that includes an
interaction term must also include all its marginal terms. For example, a model that includes the
interaction A.B must also include the main effects A and B. See 3.3.1.

The AFACTORIAL option can be used to limit the expansion of the FREE model terms for the
fitting of all possible regression models. The expansion is limited in addition to the limitation
imposed by the FACTORIAL option. As an example, the following calls to RSEARCH result in
identical candidate model terms, namely a.b, a.c, b.c and d, for all possible regression
models:

RSEARCH [METHOD=forward,backward,allpossible;\
        FACTORIAL=3; AFACTORIAL=2] a*b*c + d
RSEARCH [METHOD=forward,backward,allpossible;\
        FACTORIAL=2; AFACTORIAL=2; FORCED=a+b+c] a*b*c + d

However, forward selection starts with no terms in the first call and with the model a+b+c in the
second call. Backward elimination starts with the full model including the three factor interaction
a.b.c in the first call, while this term is not fitted in the second call.

The CRITERION option controls the selection of the best models among all possible regression
models. The criteria employed in RSEARCH are defined as follows:

r2 100 × [1 ! Dev / Dev0]
adjusted 100 × [1 ! (Dev / (n!p)) / (Dev0 / (n!p0))]
cp Dev / f + 2 × p – n
ep Dev × (n+1) × (n!2) / [n × (n!p) × (n!p!1)]
aic Dev / f + 2 × p
sic or bic (synonyms) Dev / f + Ln(n) × p
deviance Dev
meandeviance Dev / (n!p)

where
Dev is the deviance of the current model;
Dev0 is the deviance of the null model;
p is the number of fitted parameters of the current model;
p0 is the number of fitted parameters of the null model;
n is the number of units;
f is the dispersion parameter.

The null model is the model with only a constant term, which may include the fitting of a
grouping factor for a within groups regression and/or the fitting of cut-points for an ordinal
response model.

The dispersion parameter f is specified by the DISPERSION option of the MODEL directive or,
when DISPERSION is set to *, is estimated by the mean deviance of the model with all the
candidate terms. In ordinary linear regression R², adjusted R² and Mallows Cp are widely used.
When R² is used, there is no penalty for adding a term, i.e. R² always improves with the addition
of a term. When adjusted R² or Cp is employed, there is a penalty for adding a term. Adjusted R²
improves when the F-ratio due to the addition of the term is larger than 1, while Cp improves
when the F-ratio is larger than 2. Clearly, Cp is the more conservative criterion and will tend to
select models with fewer terms as compared to R² and adjusted R². Minimizing Cp minimizes
the mean squared error of prediction in ordinary linear regression in the case where predictions
will be made at the same values as are present in the current data set. Models with negligible bias
have Cp » p. For predictions at new random values, as is common in observational studies, Ep
estimates the mean squared error of prediction; then Ep should be minimized. Thompson (1978)
and Miller (1990) discuss Cp and Ep in detail.

Criteria suggested for generalized linear models are the Akaike information criterion (AIC)
and the Schwarz (Bayesian) information criterion (SIC, or its synonym BIC). The definition of
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both criteria used here is different from that in the literature. The deviance is used instead of the
maximum value of the log-likelihood, which implies a constant shift for distributions without
dispersion parameter. Moreover, in the spirit of generalized linear models, the deviance is scaled
by the dispersion parameter. This makes AIC equivalent to Cp. Clearly, SIC is the more
conservative criterion, especially when the number of units is large.

Note that the best models have a small Cp, Ep, AIC, SIC, deviance and mean deviance, but
a large R² and adjusted R². The default penalty of 2 in the definition of Cp and AIC can be
altered by setting the PENALTY option, in which case Cp and AIC improves when the F-ratio is
larger than PENALTY. The EXTRA option specifies an extra criterion which is printed alongside
the selection criterion. The default for CRITERION is adjusted. The default for EXTRA is cp
when DISPERSION is set to *, and meandeviance otherwise.

The NTERMS option specifies the maximum number of candidate terms in a model. This can
be used when only models with few candidate terms are relevant or to reduce the computational
burden. For example with 12 candidate terms there are 4096 different models, while there are
only 299 models with maximally three terms. Specifying NTERMS=3 then saves a considerable
amount of computing time. The NBESTMODELS option specifies the number of best models
within each subset size for which summary statistics are printed.

The FINALMODEL option can be used to save the last models for forward selection, backward
elimination and fstepwise and bstepwise regression. Results of the fitting of all possible
regression models can be saved by means of the parameters ALLMODELS, ESTIMATES, SE,
RESULTS, STATISTICS, DF and PROBABILITIES. This saves results from all the fitted models
not only from those that are printed. This includes the constant model.

All regression warnings are suppressed. This is to prevent the printing of long lists of similar
warnings like "Iterative weights have become 0, or have been held at a limit". Note that the
printed output of all possible regression models is adjusted to the width of the output file.

Example 3.2.8 examines all possible subsets of the explanatory variates in Example 3.2. The
results confirm that there are several candidate models amongst those with two explanatory
variables.

Example 3.2.8

  30  RSEARCH [METHOD=allpossible] X[1...4]

Model selection
===============

 Response variate: Heat
  Number of units: 13
     Forced terms: Constant
        Forced df: 1
       Free terms: X[1] + X[2] + X[3] + X[4]

All possible subset selection
=============================

* MESSAGE: probabilities are based on F-statistics, i.e. on variance ratios.

 Best subsets with 1 term

  Adjusted        Cp  Df       X[1]      X[2]      X[3]      X[4]
     64.50    138.73   2         -         -         -       .001
     63.59    142.49   2         -       .001        -         -
     49.16    202.55   2       .005        -         -         -
     22.10    315.15   2         -         -       .060        -

 Best subsets with 2 terms

  Adjusted        Cp  Df       X[1]      X[2]      X[3]      X[4]
     97.44      2.68   3       .000      .000        -         -
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     96.70      5.50   3       .000        -         -       .000
     92.23     22.37   3         -         -       .000      .000
     81.64     62.44   3         -       .000      .006        -
     61.61    138.23   3         -       .687        -       .526
     45.78    198.09   3       .037        -       .587        -

 Best subsets with 3 terms

  Adjusted        Cp  Df       X[1]      X[2]      X[3]      X[4]
     97.64      3.02   4       .000      .052        -       .205
     97.64      3.04   4       .000      .000      .209        -
     97.50      3.50   4       .001        -       .070      .000
     96.38      7.34   4         -       .006      .000      .000

 Best subsets with 4 terms

  Adjusted        Cp  Df       X[1]      X[2]      X[3]      X[4]
     97.36      5.00   5       .071      .501      .896      .844

3.2.9 Screening tests for terms in a regression model: the RSCREEN procedure

RSCREEN procedure
Performs screening tests for generalized or multivariate linear models (H. van der Voet).

Options
PRINT = string tokens Printed output required (model, pool, starscheme,

tests, pvalues); default mode, pool, star
CONSTANT = string token How to treat the constant (estimate, omit); default

esti

FACTORIAL = scalar Limit for expansion of model terms; default 3
NOMESSAGE = string tokens Which warning messages to suppress when fitting the

complete model (aliasing, marginality): warning
messages are always suppressed when fitting models for
individual tests; default *

EXCLUDEHIGHER = string token Whether to exclude higher-order interactions in the
conditional regression model for each tested term (yes,
no); default no

FORCED = formula Terms always included in the model (no tests on these
terms); default *

TESTED = text To save the names of individual terms which are tested
NELEMENTS = variate To save the number of identifiers composing each

individual term
MARGINAL = pointer To save results from marginal tests for each tested term

in a pointer containing the test statistic, corresponding
degrees of freedom and the calculated probability

CONDITIONAL = pointer To save results from conditional tests for each tested
term in a pointer containing the test statistic,
corresponding degrees of freedom and the calculated
probability

MVINCLUDE = string token Whether to include units with missing values in non-
relevant explanatory variates or factors when calculating
conditional and marginal tests (yes, no); default no

Parameter
FREE = formula List of explanatory variates and factors, or model
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formula; each term from the expanded FREE formula is
tested in a marginal and in a conditional test, unless the
term is also part of the FORCED formula

RSCREEN provides sets of marginal and conditional tests for assessing individual terms of a
linear regression model, a generalized linear model (3.5.1) or a multivariate linear model (6.6.2).
RSCREEN also performs pooled testing of all main effects, of all 2-factor interactions, etc. These
tests are particularly useful if you are using the regression facilities to fit a factorial model to
unbalanced data, when the ordinary sequential analysis-of-variance (see Sections 4.8.1 and 4.7.4)
may not give sufficient information.

A call to RSCREEN must be preceded by a MODEL statement (3.1.1) which defines the response
variate(s) and, if required, a vector of weights, an offset and other aspects of a generalized linear
model (3.5.1). If you define more than one response variable multivariate linear regression
models are fitted (see procedure RMULTIVARIATE, Section 6.6.2), and tests are based on Rao's
F approximation of Wilks' Lambda; this is possible only for ordinary linear models. If you supply
a single response variable, the tests are based on (scaled) deviances or deviance ratios, according
to the setting of the DISPERSION option in the MODEL directive. Deviance ratios are always
based on the mean deviance of the full model.

The FREE parameter specifies the model terms to be tested. The limit for expanding the FREE
model formula can be set using the FACTORIAL option with default value 3. Two tests are
performed for each term in the expanded model formula:

1. a marginal test: the term is added to the simplest possible model. For example, the main
effect of A is added to the null model and the interaction term A.B is added to a model
containing only main effects A and B.

2. a conditional test: the term is added to the most complex possible model containing no
terms involving the term which is tested. For example, interaction A.B is added to the
model with all terms except those involving A.B, like for example the interaction A.B.C.
Note that e.g. the interaction C.D.E will be included in the model when testing A.B. The
inclusion of any higher-order term can be prevented by setting option
EXCLUDEHIGHER=yes.

It is sometimes desirable to include specific terms in every model. Such terms may be
specified by means of the FORCED option. The FORCED model formula is fitted first and no test
results are given for the FORCED terms. The CONSTANT option controls whether the constant
parameter is included in the model.

By default any units with missing values in any of the explanatory variates or factors will be
excluded from all of the tests. However, if you have many missing values that spread unevenly
over the explanatory variables, there may be few units with non-missing values for every
variable. If you have only a single y-variate, you may then want to set option
MVINCLUDE=explanatory. RSCREEN will then use all the available units when constructing
each marginal or conditional test. So it ignores missing values in any explanatory variable that
is not involved in the test. This provides more information for each test, but the tables of tests
should be interpreted with care as different tests may be based on different sets of units.

The PRINT option controls output. The model setting gives a description of the model. The
pool setting prints an accumulated analysis of variance or deviance in which terms with the
same number of identifiers, e.g. main effects or two-factor interactions, are pooled.
PRINT=tests prints both marginal and conditional test statistics, while setting pvalues prints
(approximate) probability values from chi-square or F-tests. Finally, PRINT=starscheme prints
significance levels by a conventional star notation. The default setting of PRINT is model, pool,
starscheme.

Output can be saved by means of options TESTED, NELEMENTS, MARGINAL and
CONDITIONAL. TESTED saves the individual model terms in a text structure, while NELEMENTS
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saves the number of identifiers composing each individual term. MARGINAL and CONDITIONAL
save test results in a pointer which contains four variates. These variates save the test statistic,
the corresponding degrees of freedom for numerator and denominator, and the calculated
(approximate) probability. For chi-square tests the degrees of freedom for the denominator are
set to missing. For multivariate linear regression models, Rao's F-statistic and the corresponding
degrees of freedom are saved. Note that, when MVINCLUDE=no, units with one or more missing
values in any term are excluded from the analysis. This implies that FIT used for a subset of the
terms may give different results than RSCREEN.

All regression warnings are suppressed, except when fitting the full model. This is to prevent
the printing of long lists of similar warnings like "Iterative weights have become 0, or have been
held at a limit".

If RSCREEN is used for log-linear models, with the option EXCLUDEHIGHER set to yes, the
marginal and conditional tests are equal to the marginal and partial tests of Brown (1976).
RSCREEN can also be used to implement the model selection strategy used in GLIMPSE, as
described in McCullagh & Nelder (1989), pages 91-93. However, RSCREEN does not use
approximations for models that require an iterative fitting process.
Rscreen is most relevant when the regression model has terms involving factors, and

especially when the terms are non-orthogonal. This is particularly likely in generalized linear
models, and so an example of RSCREEN is given in Section 3.5.1 (Example 3.5.1).

3.3 Linear regression with grouped or qualitative data

You can incorporate the effects of grouped variables (i.e. factors) into a regression model. These
are sometimes called qualitative variables to distinguish them from the quantitative ones that we
have discussed so far in this chapter. For example, you could fit a separate constant term for each
level of some classification: you would then get a series of parallel regression lines of the
response variable on the quantitative variable. You might also want to fit separate slopes for the
quantitative variable at each level of the classification.

In Example 3.3, the data from a cloud-seeding experiment include two qualitative variables,
referred to as A and E; their effects are included in a linear model along with the effects of four
quantitative variables referred to as D, S, C and Lp.

Example 3.3

   2  "  Comparison of multiple linear regressions of rainfall on associated
  -3     variables in the presence and absence of cloud seeding.
  -4     Data from Woodley et al. (1975); analysed by Weisberg (1985) p169."
   5  OPEN 'CLOUD.DAT'; CHANNEL=2
   6  FACTOR A,E
   7  READ [PRINT=data; CHANNEL=2] A,D,S,C,P,E,Y; \
   8    FREPRESENTATION=labels,4(*),levels,*

    1  NS  0 1.75 13.4 0.274 2 12.85     S  1 2.70 37.9 1.267 1  5.52
    2   S  3 4.10  3.9 0.198 2  6.29    NS  4 2.35  5.3 0.526 1  6.11
    3   S  6 4.25  7.1 0.250 1  2.45    NS  9 1.60  6.9 0.018 2  3.61
    4  NS 18 1.30  4.6 0.307 1  0.47    NS 25 3.35  4.9 0.194 1  4.56
    5  NS 27 2.85 12.1 0.751 1  6.35     S 28 2.20  5.2 0.084 1  5.06
    6   S 29 4.40  4.1 0.236 1  2.76     S 32 3.10  2.8 0.214 1  4.05
    7  NS 33 3.95  6.8 0.796 1  5.74     S 35 2.90  3.0 0.124 1  4.84
    8   S 38 2.05  7.0 0.144 1 11.86    NS 39 4.00 11.3 0.398 1  4.45
    9  NS 53 3.35  4.2 0.237 2  3.66     S 55 3.70  3.3 0.960 1  4.22
   10  NS 56 3.80  2.2 0.230 1  1.16     S 59 3.40  6.5 0.142 2  5.45
   11   S 65 3.15  3.1 0.073 1  2.02    NS 68 3.15  2.6 0.136 1  0.82
   12   S 82 4.01  8.3 0.123 1  1.09    NS 83 4.65  7.4 0.168 1  0.28
   9  " Variables are: A  Action (NS not seeded, S seeded)
 -10                   D  Days after first day of experiment
 -11                   S  Suitability for seeding (from model)
 -12                   C  Percent cloud cover
 -13                   P  Previous rainfall (in 10**7 cubic m)
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 -14                   E  Type of cloud (1 or 2)
 -15                   Y  Subsequent rainfall (in 10**7 cubic m)"
  16  CALCULATE Lp,Ly = LOG10(P,Y)
  17  MODEL Ly
  18  TERMS A*(D+S+C+Lp+E)
  19  FIT [PRINT=model,estimates; FPROBABILITY=yes; TPROBABILITY=yes]\
  20      A+S+D+C+Lp+E

Regression analysis
===================

 Response variate: Ly
     Fitted terms: Constant + A + S + D + C + Lp + E

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(17)  t pr.
Constant          1.030        0.381      2.70  0.015
A S               0.274        0.149      1.84  0.083
S               -0.0817       0.0966     -0.85  0.410
D              -0.00604      0.00359     -1.68  0.111
C               -0.0049       0.0119     -0.41  0.689
Lp                0.348        0.240      1.45  0.165
E 2               0.340        0.195      1.74  0.099

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                   A  NS
                   E  1

  21  ADD [PRINT=model,estimates,accumulated; FPROBABILITY=yes;\
  22      TPROBABILITY=yes] S.A

Regression analysis
===================

 Response variate: Ly
     Fitted terms: Constant + A + S + D + C + Lp + E + S.A

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(16)  t pr.
Constant          0.614        0.368      1.67  0.115
A S               1.670        0.559      2.99  0.009
S                 0.107        0.111      0.96  0.350
D              -0.00925      0.00336     -2.76  0.014
C               -0.0128       0.0108     -1.18  0.253
Lp                0.379        0.208      1.82  0.087
E 2               0.470        0.177      2.66  0.017
S.A S            -0.430        0.167     -2.57  0.021

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                   A  NS
                   E  1

Accumulated analysis of variance
--------------------------------

Change                         d.f.         s.s.         m.s.      v.r.  F pr.
+ A                               1      0.19498      0.19498      2.20  0.158
+ S                               1      0.38967      0.38967      4.39  0.052
+ D                               1      0.86460      0.86460      9.75  0.007
+ C                               1      0.00214      0.00214      0.02  0.878
+ Lp                              1      0.08127      0.08127      0.92  0.353
+ E                               1      0.35882      0.35882      4.05  0.061
+ S.A                             1      0.58560      0.58560      6.60  0.021
Residual                         16      1.41926      0.08870
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Total                            23      3.89635      0.16941

Before we go into details, look at the FIT statement in lines 19 and 20. A is a factor with two
levels labelled NS and S, and E also has two levels, 1 and 2. This statement fits a multiple linear
regression of the variate Ly on the variates S, D, C and Lp; the model also includes the main
effects of the factors A and E. This means that for each factor an additive constant is estimated,
representing the mean difference between the responses at the two levels of the factor. In other
words, a set of parallel linear regressions is fitted, one for each combination of levels of the two
factors.

Now look at the ADD statement. Here the interaction between the factor A and the variate S is
included too. This means that different effects of the variate S are estimated for each level of A.
In other words, separate linear regressions are fitted as before, except that the fitted relationships
between Ly and S for each level of A are not constrained to be parallel.

We now make some more formal definitions, after which we shall return to this example.
You store data from qualitative variables in factors (1:2.3.3). After factors have been declared

and assigned values, their effects can be included in regression models. You do this by putting
their identifiers in directives such as FIT and TERMS, along with the identifiers of variates
storing the values of quantitative explanatory variables.

You represent the main effect of a factor by its identifier as a single term: a model including
such a main effect has a separate constant or intercept for each level of the factor.

Interactions between factors allow more detailed modelling of the constant term for
combinations of levels of more than one factor. They are represented by terms consisting of the
dot operator between factor identifiers in formulae.

Interactions between factors and variates allow modelling of the changes in the regression
coefficient of the variate between combinations of levels of factors. They too are represented by
terms including dot operators.

"Interactions" between quantitative variables can also be expressed in this way. They simply
represent the product of two or more variates.

3.3.1 Formulae in parameters of regression directives

Formulae are described in 1:1.6.3, and further details are given in 4.1.1. In regression directives
you cannot use the // operator, nor the functions POLND and REGND. The functions POL,
COMPARISON, REG, SSPLINE and LOESS can be used to represent polynomial effects, general
sets of contrasts and nonparametric smoothed effects; these are described in 3.4. The basic
operators are those of summation (+) and dot product (.), and if you want you can write all
formulae using just these two. The other operators provide a shorthand for representing
complicated formulae. Of particular use in regression are the cross-product operator (*)

A*B = A + B + A.B

and the nesting operator (/)

A/B = A + A.B

For more complicated formulae, remember that the nesting operator is not distributive (see

1:1.6.3 and 4.1.1): for example,

(A + B)/C = A + B + A.B.C

Terms are ignored if they are put in an invalid order. For example the formula A.B + A
becomes just A.B, since A is marginal to A.B. Genstat takes care to avoid fitting
uninterpretable models that violate the principles of marginality, and will not accept any model
where a term is specified before any of its margins (3.3.3).

If a formula contains commas, they are treated in the same way as + operators together with
pairs of brackets. For example, X,Y*A is the same as (X+Y)*A, which is X+Y+A+X.A+Y.A.
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The expansion of formulae into constituent terms is controlled in all regression directives by
the FACTORIAL option. The default setting is 3, which excludes all interactions involving more
than three identifiers. For example,

FIT [FACTORIAL=2] A*B*C

will fit a model that includes the terms A, B, C, A.B, A.C and B.C, but excludes A.B.C.
However, following a TERMS statement, the default of FACTORIAL in other regression statements
is whatever was set or implied by default in TERMS.

3.3.2 Parameterization of factors

A regression model that includes the main effect of a single factor and omits the constant (3.1.2),
contains one parameter for each level of the factor: this parameter represents the constant term
for that level. If an explicit constant term is also included in the model, then some constraint
must be applied to the parameters for the factors. In Genstat, the parameter corresponding to the
reference level of the factor is set to zero. The reference level is specified using the
REFERENCELEVEL option of the FACTOR directive (1:2.3.3). If it is not set, as in line 6 of
Example 3.3, Genstat takes the first level of the factor as the reference level. For example, in the
first model fitted by lines 19 and 20 of Example 3.3, the parameter estimates are:

Example 3.3.2a

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(17)  t pr.
Constant          1.030        0.381      2.70  0.015
A S               0.274        0.149      1.84  0.083
S               -0.0817       0.0966     -0.85  0.410
D              -0.00604      0.00359     -1.68  0.111
C               -0.0049       0.0119     -0.41  0.689
Lp                0.348        0.240      1.45  0.165
E 2               0.340        0.195      1.74  0.099

No parameter estimate is shown for "A NS" or for "E 1". You can interpret the constant term
here as the constant when both these factors are at their reference levels, level 1: that is, on days
when there was no seeding and the cloud was of Type 1. Thus the parameter labelled "A S" is
the difference between the constant for days with and without seeding. The same is true for
factors with more than two levels: the parameters all represent differences from the first level.
So it makes sense to use the level representing the standard conditions (for example the placebo
in a drug trial, or the control variety in a variety trial) as the reference level. If, however, there
are no observations at the reference level of a factor, any fitting statement will display a warning,
and will change the reference level to the first level of that factor for which there are
observations.

This form of parameterization makes it easy to compare each level of a factor with the
reference level. In the example, the t-statistic of the estimate for "A S" shows that the difference
between the constants for the levels of A is not quite significant at the 5% level.

You may not necessarily find these parameters very convenient for summarizing the effect of
a factor, especially when there are several levels, or several factors in a model. Instead you may
wish to use the PREDICT directive to produce summaries (3.3.4), unless the methods of Chapter
4 or 5 are relevant.

You can obtain other parameterizations by modifying the definition of the model. For
example, you can fit a constant for each level of factor A by setting option CONSTANT=omit in
FIT:
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Example 3.3.2b

  23  MODEL Ly
  24  FIT [PRINT=estimates; CONSTANT=omit; TPROBABILITY=yes] A+S+D+C+Lp+E

Regression analysis
===================

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(17)  t pr.
A NS              1.371        0.432      3.17  0.006
A S               1.645        0.480      3.43  0.003
S               -0.0817       0.0966     -0.85  0.410
D              -0.00604      0.00359     -1.68  0.111
C               -0.0049       0.0119     -0.41  0.689
Lp                0.348        0.240      1.45  0.165
E 1              -0.340        0.195     -1.74  0.099
E 2                   0            *         *      *

Since there is no constant term in this model, no constraint needs to be imposed on the
parameters representing factor A. However, the parameterization of factor E must still be
constrained as before. Genstat always chooses to parameterize the first factor in the model fully
when the constant is omitted; so to get E fully parameterized you should put E before A in the
FIT statement.

If you want to fit a sequence of models and use any form of parameterization other than the
standard one (including the constant), you must set option FULL=yes in the TERMS statement.
This is because TERMS allocates the number of parameters for each term in the model, and
automatically imposes constraints when there is over-parameterization. The setting FULL=yes
specifies that a parameter is to be associated with every level of each factor, regardless of the
presence of a constant term. If you include a constant term in a model as well as some factors,
you will again find that one of the parameters of each factor will be aliased. Similarly, if you
omit the constant and fit more than one factor, each factor other than the first will also have an
aliased parameter. If you set CONSTANT=omit and try to fit a model containing factors without
setting FULL=yes, Genstat gives a failure diagnostic. The diagnostic can be suppressed by
setting CONSTANT=ignore in FIT, ADD, DROP or SWITCH, but this should be done only in
special circumstances (for example this setting is used inside the procedure HGANALYSE which
fits hierarchical generalized linear models; 3.5.11).

Example 3.3.2c

  25  TERMS [FULL=yes] A*(D+S+C+Lp+E)
  26  FIT [PRINT=estimates; CONSTANT=omit; TPROBABILITY=yes] A+S+D+C+Lp+E

Regression analysis
===================

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(17)  t pr.
A NS              1.371        0.432      3.17  0.006
A S               1.645        0.480      3.43  0.003
S               -0.0817       0.0966     -0.85  0.410
D              -0.00604      0.00359     -1.68  0.111
C               -0.0049       0.0119     -0.41  0.689
Lp                0.348        0.240      1.45  0.165
E 1              -0.340        0.195     -1.74  0.099



3.3  Linear regression with grouped or qualitative data 215

E 2                   0            *         *      *

The last level of the factor E is aliased in both Example 3.3.2b and Example 3.3.2c since this is
the last parameter to be fitted, and its estimate is left as 0. Notice that no reports are given on
partial aliasing of terms involving factors when the constant is omitted or when FULL=yes,
regardless of the setting of the NOMESSAGE option of the FIT directive.

Factor effects are also fully parameterized if an SSPM structure, supplied through the SSP
option of the TERMS directive, was declared by an SSPM statement (1:2.7.2) with option FULL
set to yes.

3.3.3 Parameterization of interactions, and marginality

The parameters representing interactions in a model are also constrained to remove over-
parameterization.

For example, suppose A and B are factors with two and three levels respectively with their first
levels as reference level. If the model A*B is fitted (including a constant), the parameters will be:
Constant, A2, B2, B3, A2.B2 and A2.B3. No parameter is assigned to A1 because there is a
constant, and none to B1 or A1.B1. Similarly, no parameter is assigned to A2.B1 because the
main effect of A is included, and none to A1.B2 nor A1.B3 because the main effect of B is
included. The terms A and B are described as being marginal to the term A.B. The constant term
is also marginal to A and B, and to the term A.B.

In general, one term is marginal to a second if the second can be written as an interaction
between the first term and a third term involving factors only; for example, A is marginal to A.B
and to A.B.C.D. Whenever one term is marginal to a second, some parameters of the full set of
the second term are aliased with the first term. Genstat will automatically constrain selected
parameters to be zero to avoid aliasing. The automatic constraint can be removed by setting the
FULL option of the TERMS directive.

In the analysis fitted in lines 21 and 22 of Example 3.3, the fitted model is

A + S + D + C + Lp + E + S.A

The term S.A is an interaction between a factor and a variate, and so represents variations in the
effect of the variate between levels of the factor: that is, the regression lines of Ly on S are
allowed to have separate slopes for the days with and without seeding, as well as separate
intercepts. The linear model is

yijk  =  á  + ã1i  + â1 x1ijk  + â2 x2ijk  + â3 x3ijk  + â4 x4ijk  + ã2j  + äi x1ijk  + åijk

for i = 1, 2; j = 1, 2; k = 1 ... Nij

where á represents the constant term, and is the intercept for "A NS" and "E 1". The parameters
ã1i and ã2j represent the main effects of A and E: ã1i is the difference between the intercept for
the ith level of A and that for the first level (labelled "A NS"), so that ã11 is zero. The parameter
â1 represents the variate S, and is the slope for "A NS" and "E 1". Lastly, the parameters äi

represent the interaction term S.A; äi is the difference between the slope for the ith level of A and
that for the first level, so that ä1 is zero. In this model, the constant is marginal to the terms A and
E, and S is marginal to S.A.

Again, you can present the results differently, either using the PREDICT directive (3.3.4) or
by modifying the model. The parameters can be made to be the actual slopes by omitting S from
the model, as long as you have set option FULL=yes in TERMS:

Example 3.3.3a

  27  FIT [PRINT=estimates; CONSTANT=omit; TPROBABILITY=yes] A+D+C+Lp+E+S.A

Regression analysis
===================
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Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(16)  t pr.
A NS              1.084        0.391      2.77  0.014
A S               2.754        0.600      4.59  <.001
D              -0.00925      0.00336     -2.76  0.014
C               -0.0128       0.0108     -1.18  0.253
Lp                0.379        0.208      1.82  0.087
E 1              -0.470        0.177     -2.66  0.017
E 2                   0            *         *      *
S.A NS            0.107        0.111      0.96  0.350
S.A S            -0.323        0.126     -2.57  0.021

If option FULL had been left at its default setting no, the FIT statement would fail:

Example 3.3.3b

  28  TERMS A*(D+S+C+Lp+E)
  29  FIT [PRINT=*; CONSTANT=omit] A+D+C+Lp+E+S.A

* MESSAGE: term A cannot be added because term Constant is marginal to it
and is not in the model.

* MESSAGE: term E cannot be added because term Constant is marginal to it
and is not in the model.

* MESSAGE: term S.A cannot be added because term S is marginal to it
and is not in the model.

The messages about marginality can be suppressed by using the marginality setting of the
NOMESSAGE option of the FIT directive.

As an alternative to setting FULL=yes, you could omit the marginal terms from the TERMS
statement as well; above you would need to omit the effect of S. However, the constant cannot
be omitted in TERMS.

3.3.4 Forming predictions: the PREDICT directive

PREDICT directive
Forms predictions from a linear or generalized linear model.

Options
PRINT = string token What to print (description, lsd, predictions, se,

sed, vcovariance); default desc, pred, se
CHANNEL = scalar Channel number for output; default * i.e. current output

channel
COMBINATIONS = string token Which combinations of factors in the current model to

include (full, present, estimable); default esti
ADJUSTMENT = string token Type of adjustment (marginal, equal); default marg
WEIGHTS = table Weights classified by some or all of the factors in the

model; default *
OFFSET = scalar Value of offset on which to base predictions; default

mean of offset variate
METHOD = string token Method of forming margin (mean, total); default mean
ALIASING = string token How to deal with aliased parameters (fault,

ignore); default faul
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BACKTRANSFORM = string token What back-transformation to apply to the values on the
linear scale, before calculating the predicted means
(link, none); default link

SCOPE = string token Controls whether the variance of predictions is
calculated on the basis of forecasting new observations
rather than summarizing the data to which the model has
been fitted (data, new); default data

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
nonlinear); default *

DISPERSION = scalar Value of dispersion parameter in calculation of s.e.s;
default is as set in the MODEL statement

DMETHOD = string token Basis of estimate of dispersion, if not fixed by
DISPERSION option (deviance, Pearson); default is
as set in the MODEL statement

NBINOMIAL = scalar Supplies the total number of trials to be used for
prediction with a binomial distribution (providing a
value n greater than one allows predictions to be made
of the number of "successes" out of n, whereas the value
one predicts the proportion of successes); default 1

PREDICTIONS = tables or scalars Saves predictions for each y variate; default *
SE = tables or scalars Saves standard errors of predictions for each y variate;

default *
SED = symmetric matrices Saves standard errors of differences between predictions

for each y variate; default *
LSD = symmetric matrices Saves least significant differences between predictions

for each y variate (models with Normal errors only);
default *

LSDLEVEL = scalar Significance level (%) to use in the calculation of least
significant differences; default 5

VCOVARIANCE = symmetric matrices
Saves variance-covariance matrices of predictions for
each y variate; default *

SAVE = identifier Specifies save structure of model from which to predict;
default * i.e. that from latest model fitted

Parameters
CLASSIFY = vectors Variates and/or factors to classify table of predictions
LEVELS = variates, scalars or texts To specify values of variates, levels of factors
PARALLEL = identifiers For each vector in the CLASSIFY list, allows you to

specify another vector in the CLASSIFY list with which
the values of this vector should change in parallel (you
then obtain just one dimension in the table of
predictions for these vectors)

NEWFACTOR = identifiers Identifiers for new factors that are defined when
LEVELS are specified

The PREDICT directive provides a convenient way of summarizing the results of a regression,
by using the fitted relationship to predict the values of the response variate at particular values
of the explanatory variables. In simple or multiple linear regression, the parameters of the model
may be sufficient summaries in themselves, but these may not provide a very clear description
when the model contains factors and their interactions. PREDICT can also be used to answer
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"what-if" questions, effectively predicting what fitted values would have been obtained if the
data had been balanced in some way.

The simplest use of PREDICT is to make estimates from a simple linear regression for specific
values of the explanatory variable. For example, if we had regressed Ly on just S in the example
above, we could get the predicted value of Ly at S = 3.5 (say) by putting

PREDICT S; LEVELS=3.5

If we wanted the predicted values at 3.5 and 4, we would have to put these into a variate. The
easiest way to do that is to use an unnamed variate (1:1.4.3):

PREDICT S; LEVELS=!(3.5,4)

Suppose now that we had regressed Ly on both S and C, and wanted to predict the value of Ly

at S = 3.5 and 4 and C = 4, 8 and 12. We would then put 3.5 and 4 into one variate, and 4, 8 and
12 into another:

PREDICT S,C; LEVELS=!(3.5,4),!(4,8,12)

This would give six predicted values, one for each combination of 3.5 and 4 with 4, 8 and 12.
If we had also included the factor E in the regression, we might want to predict Ly for S equal

to 3.5 at both levels 1 and 2 of E:

PREDICT E,S; LEVELS=!(1,2),3.5

This would produce two predicted values, classified by the levels of E. Since C is not mentioned
in the PREDICT statement, the predictions will be based on the mean value of C by default. It is
not actually necessary to list the levels of E if predictions are wanted for all of them; we could
thus have put:

PREDICT E,S; LEVELS=*,3.5

If the factor A was also in the model, we could still use either of the previous two statements

to get a summary of the effects of E. Since there is no mention of A, the predictions would
automatically be averaged over the levels of A, as described later in this section.

For more complicated structures the rules are more intricate, as we shall see. But the basic
ideas remain the same as in the simpler cases. In Example 3.3.4a, we summarize the model fitted
at line 21 and 22 of Example 3.3, for every combination of levels of the two factors.

Example 3.3.4a

  20  FIT [PRINT=*] A+S+D+C+Lp+E+S.A
  31  PREDICT A,E

Predictions from regression model
---------------------------------

These predictions are estimated mean values.

The predictions have been formed only for those combinations of factor levels
for which means can be estimated without involving aliased parameters.

The predictions are based on fixed values of some variates:
        Variate   Fixed value   Source of value
              D         35.33   Mean of variate
              S         3.169   Mean of variate
              C         7.246   Mean of variate
             Lp       -0.6489   Mean of variate

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

Response variate: Ly

            E           1                       2
               Prediction        s.e.  Prediction        s.e.
            A
           NS      0.2883      0.0995      0.7582      0.1583
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            S      0.5958      0.0918      1.0656      0.1799

The four values are estimates, based on the fitted model, of the mean logged rainfall at the mean
values of the four explanatory variates.

By using the LEVELS parameter, we can ask for the summary to be calculated for cloud-type
2 only, for a range of suitability values (variate S), and as if all observations were made on the
first day of the experiment (D=0).

Example 3.3.4b

  32  PREDICT S,A,E,D; LEVELS=!(1...4),*,2,0

Predictions from regression model
---------------------------------

These predictions are estimated mean values.

The predictions have been formed only for those combinations of factor levels
for which means can be estimated without involving aliased parameters.

The predictions are based on fixed values of some variates:
        Variate   Fixed value   Source of value
              D            0.   Supplied
              C         7.246   Mean of variate
             Lp       -0.6489   Mean of variate

The predictions are calculated at fixed levels of some factors:
         Factor   Fixed level
              E  2

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

Response variate: Ly

            A          NS                       S
               Prediction        s.e.  Prediction        s.e.
            S
            1       0.852      0.2123       2.093      0.3871
            2       0.960      0.1633       1.770      0.2854
            3       1.067      0.1820       1.447      0.2115
            4       1.174      0.2538       1.124      0.1991

The first parameter, CLASSIFY, specifies those variates or factors in the current regression
model whose effects you want to summarize. Any variate or factor in the current model that you
do not include will be standardized in some way, as described below.

The LEVELS parameter specifies values at which the summaries are to be calculated, for each
of the structures in the CLASSIFY list. For factors, you can select some or all of the levels, while
for variates you can specify any set of values. A single level or value is represented by a scalar;
several levels or values must be combined into a variate (which may of course be unnamed).
Alternatively, if the factor has labels, you can use these to select the levels for the summaries by
setting LEVELS to a text. A missing value in the LEVELS parameter is taken by Genstat to stand
for all the levels of a factor, or for the mean value of a variate.

The PARALLEL parameter allows you to indicate that a factor or variate should change in
parallel to another factor or variate. Both of these should have same number of values specified
for it by the LEVELS parameter of PREDICT. The predictions are then formed for each
corresponding set of values rather than for every combination of these values. For example,
suppose we had fitted a quadratic model with explanatory variates X and Xsquared. We could
then put

PREDICT Xsquared,X; PARALLEL=X,*;\
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        LEVELS=!(0,4,16,36,64,100),!(0,2,4,6,8,10)

The PARALLEL parameter specifies that Xsquared should change in parallel to X, so that we
obtain predictions only for matching values.

When you specify LEVELS, PREDICT needs to define a new factor to classify that dimension
of the table. By default this will be an unnamed factor, but you can use the NEWFACTOR
parameter to give it an identifier. The EXTRA attribute of the factor is set to the name of the
corresponding factor or variate in the CLASSIFY list; this will then be used to label that
dimension of the table of predictions.

You can best understand how Genstat forms predictions by regarding its calculations as
consisting of two steps. The first step, referred to below as Step A, is to calculate the full table
of predictions, classified by every factor in the current model. For any variate in the model, the
predictions are formed at its mean, unless you have specified some other values using the
LEVELS parameter; if so, these are then taken as a further classification of the table of
predictions. The second step, referred to as Step B, is to average the full table of predictions over
the classifications that do not appear in the CLASSIFY parameter: you can control the type of
averaging using the COMBINATIONS, ADJUSTMENT and WEIGHTS options. By default, the
predictions are made at the mean of any offset variate (see 3.5.1), but option OFFSET can be used
to specify another value at which the predictions should be made instead.

Printed output is controlled by settings of the PRINT option:
description describes the standardization policies used when forming

the predictions,
predictions prints the predictions
se produces predictions and standard errors,
sed prints standard errors for differences between the

predictions,
lsd prints least significant differences between the predictions

(ordinary linear regression models or generalized linear
models with the Normal distibution only), and

vcovariance prints the variance and covariances of the predictions.
By default descriptions, predictions and standard errors are printed. The standard errors (and
sed's) are relevant for the predictions when considered as means of those data that have been
analysed (with the means formed according to the averaging policy defined by the options of
PREDICT). The word prediction is used because these are predictions of what the means would
have been if the factor levels been replicated differently in the data; see Lane & Nelder (1982)
for more details. The LSDLEVEL option specifies the significance level (%) to use in the
calculation of least significant differences (default 5%).

Example 3.3.4c prints standard errors of differences and least significant differences for the
predictions formed in Example 3.3.4b.

Example 3.3.4c

  33  PREDICT [PRINT=sed,lsd] S,A,E,D; LEVELS=!(1...4),*,2,0

Predictions from regression model
---------------------------------

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

Response variate: Ly

Standard errors of differences of predictions
---------------------------------------------
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 S 1  A NS   1          *
  S 1  A S   2     0.3976          *
 S 2  A NS   3     0.1115     0.3477          *
  S 2  A S   4     0.3124     0.1258     0.2454          *
 S 3  A NS   5     0.2229     0.3295     0.1115     0.2183          *
  S 3  A S   6     0.2624     0.2516     0.1766     0.1258     0.1356
 S 4  A NS   7     0.3344     0.3480     0.2229     0.2448     0.1115
  S 4  A S   8     0.2678     0.3774     0.1839     0.2516     0.1441
                        1          2          3          4          5

  S 3  A S   6          *
 S 4  A NS   7     0.1744          *
  S 4  A S   8     0.1258     0.1805          *
                        6          7          8

Least significant differences of predictions (5% level)
-------------------------------------------------------

 S 1  A NS   1          *
  S 1  A S   2     0.8428          *
 S 2  A NS   3     0.2363     0.7371          *
  S 2  A S   4     0.6624     0.2667     0.5202          *
 S 3  A NS   5     0.4725     0.6985     0.2363     0.4627          *
  S 3  A S   6     0.5562     0.5334     0.3744     0.2667     0.2874
 S 4  A NS   7     0.7088     0.7376     0.4725     0.5189     0.2363
  S 4  A S   8     0.5676     0.8000     0.3898     0.5334     0.3055
                        1          2          3          4          5

  S 3  A S   6          *
 S 4  A NS   7     0.3698          *
  S 4  A S   8     0.2667     0.3826          *
                        6          7          8

By default, the standard errors (and sed's) are not augmented by any component corresponding
to the estimated variability of a new observation. (Hence the comment in the output of Examples
3.3.4a and 3.3.4b: "The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.") However, you can set
option SCOPE=new to request that the variance of predictions should be calculated on the basis
of forecasting new observations rather than of summarizing the data to which the model has been
fitted. This setting cannot be used if the predictions are to be standardized for the effects of any
factors in the model; in other words, all factors in the current model must be listed in the
CLASSIFY parameter of the PREDICT statement. In addition, it cannot be used when making
predictions from generalized linear models with option BACKTRANSFORMATION=none (3.5.3),
nor with weighted regression (see 3.1.1). The effect of SCOPE=new is to form variances for each
predicted value by combining the variance of the estimated mean value of the prediction (as
produced for SCOPE=data) together with the estimated variance of a new observation with the
same values of explanatory variates and factors:

"new" variance = "data" variance + (dispersion × variance function)
The DISPERSION and DMETHOD options allow you to change the method by which the

variance of the distribution of the response values is obtained for calculating the standard errors.
These options operate like the corresponding options of MODEL (except that they apply only to
the current statement). The default is to use the method as originally defined by the MODEL
statement.

You can send the output to another channel, or to a text structure, by setting the CHANNEL
option.

The COMBINATIONS option specifies which cells of the full table in Step A are to be filled for
averaging in Step B. The default, COMBINATIONS=estimable, uses all the cells other than
those that involve parameters that cannot be estimated, for example because of aliasing. 
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Alternatively, you can set COMBINATIONS=present to exclude cells for factor combinations
that do not occur in the data, as shown in Example 3.3.4i below, or COMBINATIONS=full to use
all the cells. In the examples above, however, this would make no difference because all four
cells in the A by E table contain some values.

When COMBINATIONS is set to estimable or present the LEVELS parameter is overruled.
Any subsets of factor levels in the LEVELS parameter are ignored, and predictions are formed
for all the factor levels that occur in the data or are estimable. Likewise, the full table cannot then
be classified by any sets of values of variates; the LEVELS parameter must then supply only
single values for variates.

The ADJUSTMENT and WEIGHTS options define how the averaging is done in Step B. Values
in the full table produced in Step A are averaged with respect to all those factors that you have
not included in the settings of the CLASSIFY parameter. By default, the levels of any such factor
are combined with what we call marginal weights: that is, by the number of occurrences of each
of its levels in the whole dataset. Line 34 of Example 3.3.4d uses the TABULATE directive
(1:4.11.1) to display the occurrences of combinations of levels of the factors A and E, and then
line 35 produces a summary of the effects of A alone, averaging over E.

Example 3.3.4d

  34  TABULATE [PRINT=counts; CLASSIFICATION=A,E; MARGINS=yes]

                    Count
            E           1           2       Count
            A
           NS           9           3          12
            S          10           2          12
        Count          19           5          24

  35  PREDICT A

Predictions from regression model
---------------------------------

These predictions are estimated mean values, adjusted with respect to some
factors as specified below.

The predictions have been formed only for those combinations of factor levels
for which means can be estimated without involving aliased parameters.

The predictions are based on fixed values of some variates:
        Variate   Fixed value   Source of value
              D         35.33   Mean of variate
              S         3.169   Mean of variate
              C         7.246   Mean of variate
             Lp       -0.6489   Mean of variate

The predictions have been standardized by averaging over the levels of some
factors:
         Factor  Weighting policy  Status of weights
              E  Marginal weights  Constant over levels of other factors

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

Response variate: Ly

               Prediction        s.e.
            A
           NS      0.3862     0.08897
            S      0.6937     0.09091

In forming the averages for A, the data from the two levels of E have been combined with
weights 19 and 5, since these are the frequencies with which they occur in all the data. Because



3.3  Linear regression with grouped or qualitative data 223

we are using the default settings of ADJUSTMENT and WEIGHTS, these weights are constant over
the levels of the other factors: that is, the same weights are used when forming the prediction for
each level of A, even though the levels of E occurred with different frequencies at the different
levels of A. The effect, therefore, is to standardize the prediction for the estimated effects of E.

The ADJUSTMENT and WEIGHTS options allow you to change the weights. The setting
ADJUSTMENT=equal specifies that the levels are to be weighted equally, when the predictions
are averaged over the standardizing factors. (This corresponds to the default weighting used by
VPREDICT; see 5.5.1.) The weights would then be 1 and 1 instead of 19 and 5, as shown in
Example 3.3.4e.

Example 3.3.4e

  36  PREDICT [ADJUSTMENT=equal] A

Predictions from regression model
---------------------------------

These predictions are estimated mean values, adjusted with respect to some
factors as specified below.

The predictions have been formed only for those combinations of factor levels
for which means can be estimated without involving aliased parameters.

The predictions are based on fixed values of some variates:
        Variate   Fixed value   Source of value
              D         35.33   Mean of variate
              S         3.169   Mean of variate
              C         7.246   Mean of variate
             Lp       -0.6489   Mean of variate

The predictions have been standardized by averaging over the levels of some
factors:
         Factor  Weighting policy  Status of weights
              E     Equal weights  Constant over levels of other factors

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

Response variate: Ly

               Prediction        s.e.
            A
           NS      0.5232      0.0984
            S      0.8307      0.1122

The WEIGHTS option is more powerful than the ADJUSTMENT option, allowing you to specify
an explicit table of weights. This table can be classified by any, or all, of the factors over whose
levels the predictions are to be averaged; the levels of remaining factors will be weighted
according to the ADJUSTMENT option. Moreover, you can classify the weights by the factors in
the CLASSIFY parameter as well, to provide different weightings for different combinations of
levels of these factors. If you supply explicit weights in the WEIGHTS option, any setting of the
COMBINATIONS option is ignored.

You will find explicit weights useful in particular when you have population estimates of the
proportions of each level of a factor ! proportions which may not be matched well in the
available data. For example, you might know that these proportions for Type of cloud are in the
ratio 2:1 rather than the 19:5 observed in the data. You might then specify these weights with
the WEIGHTS option, as shown in Example 3.3.4f.
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Example 3.3.4f

  37  TABLE [CLASSIFICATION=E; VALUES=2,1] Wte
  38  PREDICT [WEIGHTS=Wte] A

Predictions from regression model
---------------------------------

These predictions are estimated mean values, adjusted with respect to some
factors as specified below.

The predictions have been formed only for those combinations of factor levels
for which means can be estimated without involving aliased parameters.

The predictions are based on fixed values of some variates:
        Variate   Fixed value   Source of value
              D         35.33   Mean of variate
              S         3.169   Mean of variate
              C         7.246   Mean of variate
             Lp       -0.6489   Mean of variate

The predictions have been standardized by averaging over the levels of some
factors:
         Factor  Weighting policy  Status of weights
              E  Supplied weights  Constant over levels of other factors

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

Response variate: Ly

               Prediction        s.e.
            A
           NS      0.4449     0.08957
            S      0.7524     0.09731

If a model contains any aliased parameters, predicted values cannot be formed for some cells of
the full table without assuming a value for the aliased parameters. With the default setting,
COMBINATIONS=estimable, no predictions are formed for these cells. When
COMBINATIONS=full, if the aliased parameters simply represent effects of variates that are
correlated with other explanatory variables in the model, it may be sufficient just to ignore them.
This can be done by setting the ALIASING option to ignore. The aliased parameters are then
taken to be zero, and fitted values are calculated for all cells of the table from the remaining
parameters in the model.

Aliasing can also occur if there are some combinations of factors that do not occur in the data,
and here it may be more sensible to set option COMBINATIONS=present so that these cells are
all excluded from the calculation of predictions.

To illustrate the action of the ALIASING and COMBINATIONS options, in Example 3.3.4g we
fit a new model to the cloud-seeding data. The factor Sf is formed by grouping the values of the
variate S; it happens that there were no days in the experiment when the suitability S was 2 or
less and seeding was done, so one parameter of the interaction between A and Sf cannot be
fitted.

Example 3.3.4g

  39  GROUPS S; FACTOR=Sf; LIMITS=!(2,3,4)
  40  TERMS A*Sf
  41  FIT [PRINT=estimates] A*Sf
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* MESSAGE: term A.Sf cannot be fully included in the model because 1 parameter
is aliased with terms already in the model.

(A S .Sf 4.175) = (A S) - (A S .Sf 2.525) - (A S .Sf 3.350)

Regression analysis
===================

Estimates of parameters
-----------------------

Parameter           estimate         s.e.     t(17)  t pr.
Constant               0.446        0.236      1.89  0.076
A S                    0.369        0.354      1.04  0.312
Sf 2.525               0.348        0.373      0.93  0.364
Sf 3.350              -0.054        0.298     -0.18  0.858
Sf 4.175              -0.398        0.373     -1.07  0.300
A S .Sf 2.525         -0.362        0.500     -0.72  0.479
A S .Sf 3.350         -0.192        0.448     -0.43  0.673
A S .Sf 4.175              0            *         *      *

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                   A  NS
                  Sf  1.600

When the model is fitted, the last parameter of the interaction term A.Sf is aliased, and the form
of the aliasing relationship is shown in the message. This relationship appears complicated
because it is the first level of Sf that has no observations when A takes level 'S', and parameters
are usually differences from the first level. When this happens, the parameters become
differences with the last level instead, and the parameter for the last level becomes aliased.

The default setting, estimable, of COMBINATIONS suppresses any prediction which includes
a contribution from a factor combination that is not represented in the data. This makes it clear
that there is not enough information to form the value in question without making further
assumptions. So when we form predictions for A in Example 3.3.4h, none is formed for level S.

Example 3.3.4h

  42  PREDICT [PRINT=prediction; ADJUST=equal; COMBINATIONS=estimable] A

Predictions from regression model
---------------------------------

Response variate: Ly

               Prediction
            A
           NS      0.4201
            S           *

Alternatively, we could set COMBINATIONS=present, to specify that predictions are to be
formed only for the cells of the full table in Step A that have observations. So, in the A by Sf
table, in Example 3.3.4i, no prediction is formed for A level S and Sf 1.60.

Example 3.3.4i

  43  PREDICT [PRINT=prediction; COMBINATIONS=present] A,Sf

Predictions from regression model
---------------------------------

Response variate: Ly
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               Prediction
           Sf       1.600       2.525       3.350       4.175
            A
           NS      0.4462      0.7944      0.3919      0.0478
            S           *      0.8013      0.5686      0.4165

The use of COMBINATIONS=present has consequences on any averaging that is done. Here
there is none, but if we were to give the statement

PREDICT [COMBINATIONS=present] A

the averages for the two levels of A would not be formed with the same weights for Sf: that for
level NS would include a contribution from level 1 of Sf, whereas that for level S would not; see
Example 3.3.4j, This must be borne in mind when interpreting the results.

Example 3.3.4j

  44  PREDICT [PRINT=prediction; ADJUST=equal; COMBINATIONS=present] A

Predictions from regression model
---------------------------------

Response variate: Ly

               Prediction
            A
           NS      0.4201
            S      0.5955

If you do want to form predictions for all the combinations, you need to make some assumptions
about the aliasing. If we simply set COMBINATIONS=full, a warning message appears.

Example 3.3.4k

  45  PREDICT [PRINT=prediction; COMBINATIONS=full] A,Sf

******** Warning, code RE 36, statement 1 on line 45

Command: PREDICT [PRINT=prediction; COMBINATIONS=full] A,Sf
Predictions cannot be formed.
Option ALIAS is set to 'fault' and 1 parameter is aliased.

If you want to assume that the missing parameter (the difference between the first and last levels
of Sf when A is 'S') is actually zero, then you can just set option ALIASING=ignore.

Example 3.3.4l

  46  PREDICT [PRINT=prediction; COMBINATIONS=full; ALIASING=ignore] A,Sf

Predictions from regression model
---------------------------------

Response variate: Ly

               Prediction
           Sf       1.600       2.525       3.350       4.175
            A
           NS      0.4462      0.7944      0.3919      0.0478
            S      0.8149      0.8013      0.5686      0.4165
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An alternative way to overcome aliasing is to supply explicit weights using the WEIGHTS option.
We have assumed in this section that averaging is the appropriate way of combining predicted

values over levels of a factor. But sometimes summation is needed, for example in the analysis
of counts by log-linear models (3.5.1). You can achieve this by setting the METHOD option to
total. The rules about weights and so on still apply. The BACKTRANSFORM and NBINOMIAL
options are also relevant only to generalized linear models (3.5.3).

The PREDICTIONS, SE, SED, LSD and VCOVARIANCE options let you save the results of
PREDICT as well as, or instead of, printing them. We use this in Example 3.3.4m to produce 95%
confidence limits for predictions of the amount of rainfall at each level of A, transformed back
to the natural scale of the original data. (The EDT function is described in 1:4.2.9.)

Example 3.3.4m

  47  TERMS A*(D+S+C+Lp+E)
  48  FIT [PRINT=*] A+S+D+C+Lp+E+S.A
  49  PREDICT [PRINT=*; PREDICTION=Pa; SE=Sa] A
  50  RKEEP DF=df
  51  CALCULATE High,Low = Pa + 1,-1*Sa*EDT(0.95; df)
  52  & Low,Pa,High = 10**Low,Pa,High
  53  PRINT Low,Pa,High

                      Low          Pa        High
            A
           NS       1.702       2.433       3.479
            S       3.427       4.939       7.118

The SAVE option allows you to specify the regression save structure of the analysis on which the
predictions are based. If SAVE is not set, the most recent regression model is used.

3.3.5 Comparisons between predictions: the RCOMPARISONS and RTCOMPARISONS

procedures

Two procedures are available to calculate comparisons within a table of predicted means.
RCOMPARISONS calculates comparisons amongst the levels of one of the factors in the table, and
can assess how they vary over the other factors in the table. Alternatively, RTCOMPARISONS can
calculate comparisons between any cells of a multi-way table. So it differs from RCOMPARISONS
in that the comparison can be across the levels of more than one of the factors of the table. It can
also take tables of means from an analysis of variance (see Chapter 4) as well as those from
regression.

RCOMPARISONS procedure
Calculates comparison contrasts amongst regression means (R.W. Payne).

Options
PRINT = string token Controls printed output (aov, contrasts); default aov,

cont

COMBINATIONS = string token Factor combinations for which to form the predicted
means (full, present, estimable); default esti

ADJUSTMENT = string token Type of adjustment to be made when forming the
predicted means (marginal, equal, observed);
default marg

PSE = string tokens Types of standard errors to be printed with the contrasts
(contrasts, differences, lsd); default cont

WEIGHTS = table Weights classified by some or all of the factors in the
model; default *
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OFFSET = scalar Value of offset on which to base predictions; default
mean of offset variate

METHOD = string token Method of forming margin (mean, total); default
mean

ALIASING = string token How to deal with aliased parameters (fault, ignore);
default faul

BACKTRANSFORM = string token What back-transformation to apply to the values on the
linear scale, before calculating the predicted means
(link, none); default link

SCOPE = string token Controls whether the variance of predictions is
calculated on the basis of forecasting new observations
rather than summarizing the data to which the model has
been fitted (data, new); default data

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
nonlinear); default *

DISPERSION = scalar Value of dispersion parameter in calculation of s.e.s;
default is as set in the MODEL statement

DMETHOD = string token Basis of estimate of dispersion, if not fixed by
DISPERSION option (deviance, Pearson); default is
as set in the MODEL statement

NBINOMIAL = scalar Supplies the total number of trials to be used for
prediction with a binomial distribution (providing a
value n greater than one allows predictions to be made
of the number of "successes" out of n, whereas the value
one predicts the proportion of successes); default 1

LSDLEVEL = scalar Significance level (%) for least significant differences;
default 5

SAVE = identifier Regression save structure for the analysis from which
the comparison contrasts are to be calculated

Parameters
FACTOR = factors Factor whose levels are compared
CONTRASTS = matrices Defines the comparisons to be estimated
ORDER = scalars Number of comparisons to estimate; default is the

number of rows of the CONTRASTS matrix
GROUPS = factors or pointers Set if comparisons are to be made at different

combinations of another factor or factors
ESTIMATES = variates or pointers Saves the estimated contrasts in a variate if GROUPS is

unset, or in a pointer to a set of tables
SE = variates or pointers Saves standard errors of the contrasts in a variate if

GROUPS is unset, or in a pointer to a set of tables
SED = pointers Pointer to a set of symmetric matrices to save standard

errors for differences between the contrasts estimated
for different levels of the GROUPS factor(s)

LSD = pointers Pointer to a set of symmetric matrices to save least
significant differences for the contrasts estimated for
different levels of the GROUPS factor(s)

DEVIANCES = variates Saves sums of squares or deviances of the contrasts
DF = variates Saves degrees of freedom for the contrasts
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RCOMPARISONS makes comparisons amongst the levels of a factor classifying a table of
predicted means from a linear or generalized linear regression. The SAVE option can be used
to specify the regression save structure from the analysis for which the comparisons are to be
calculated (see the SAVE option of the MODEL directive). If SAVE is not specified, the
comparisons are calculated from the most recent regression analysis.

The factor amongst whose levels the comparisons are to be calculated is specified by the
FACTOR parameter. The CONTRASTS parameter supplies a matrix to specify the comparisons
to be calculated. This has a column for each level of the FACTOR, and a row for each
comparison. You can set the ORDER parameter to a scalar, n say, to indicate that only the
comparisons in the first n rows of the CONTRASTS matrix are to be calculated (otherwise they
are all calculated).

By default the comparisons are calculated between the means in the one-way table
classified by FACTOR. However, you can set the GROUPS parameter to some other factor to
indicate that the comparisons are to be made for each level of that factor, or you can set it to
a pointer of factors to make the comparisons for every combination of the levels of those
factors.
RCOMPARISONS calculates the means using the PREDICT directive. As explained in

Section 3.3.4, the first step (A) of the calculation forms the full table of predictions,
classified by every factor in the model. Then the second step (B) averages the full table over
the factors that do not occur in the table of means. The COMBINATIONS option specifies
which cells of the full table are to be formed in Step A. The default setting, estimable, fills
in all the cells other than those that involve parameters that cannot be estimated, for example
because of aliasing. Alternatively, setting COMBINATIONS=present excludes the cells for
factor combinations that do not occur in the data, or COMBINATIONS=full uses all the cells.
The ADJUSTMENT option then defines how the averaging is done in Step B. The default
setting, marginal, forms a table of marginal weights for each factor, containing the
proportion of observations with each of its levels; the full table of weights is then formed
from the product of the marginal tables. The equal setting weights all the combinations
equally. Finally, the observed setting uses the WEIGHTS option of PREDICT to weight each
factor combination according to its own individual replication in the data (calculated using
the TABULATE directive; see 1:4.11.1). Alternatively, you can supply your own table of
weights, using the WEIGHTS option. There are also options OFFSET, METHOD, ALIASING,
BACKTRANSFORM, SCOPE, NOMESSAGE, DISPERSION, DMETHOD and NBINOMIAL to control
further aspects of the calculations; these operate exactly as in the PREDICT directive.

The PRINT option controls printed output, with settings:
aov to print an analysis of variance (for an ordinary linear

regression) or an analysis of deviance (for a generalized
linear model), giving the sums of squares (or deviances)
and so on for the comparisons;

contrasts to print the contrasts.
By default these are both printed. The PSE option controls the types of standard errors that
are produced to accompany the contrasts, with settings:

contrasts for standard errors of the contrasts;
differences for standard errors for differences between pairs of

contrasts calculated for the different GROUPS;
lsd for least significant differences for contrasts calculated

for the GROUPS.
The default is contrasts. The LSDLEVEL option sets the significance level (as a
percentage) for the least significant differences.

The ESTIMATES parameter of RCOMPARISONS allows you to save the estimated contrasts.
These are in a variate if GROUPS is unset, or in a pointer containing a table classified by
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GROUPS for each comparison otherwise. The SE parameter saves the standard errors of the
contrasts, in a variate or pointer similarly to ESTIMATES. If GROUPS is set, you can also save
standard errors for differences between the contrasts estimated for different levels of the
GROUPS factor(s). This is again a pointer, with a symmetric matrix for each comparison.
Finally, the DF parameter can save a variate containing the degrees of freedom of the
contrasts, and the DEVIANCES parameter can save a variate with their deviances (for a
generalized linear model) or sums of squares (for an ordinary linear regression).

Example 3.3.5a studies the effect of diet on the weight gains of rats. There were six
treatments arising from two treatment factors: the source of protein (beef, pork or cereal), and
its amount (high or low). The 60 rats that provided the experimental units were allocated at
random into six groups of ten rats, one group for each treatment combination. The model
Source*Amount in the FIT statement in line 18 of the analysis fits three terms in addition to
the constant: Source (main effect of source of protein), Amount (main effect of the amount
of protein) and Source.Amount (the interaction between source and amount of protein). In
line 21, the RCOMPARISONS statement in line 21 makes comparisons between animal and
cereal sources of protein, and between beef and pork. Then, in line 22, it sees how the
contrasts differ according to the amount of protein. This data set is also analysed by the
ANOVA directive in Sections 4.1 and 4.5.

Example 3.3.5a

   2  " 3x2 factorial experiment (Snedecor & Cochran 1980, p.305)."
   3  UNITS [NVALUES=60]
   4  FACTOR [LABELS=!T(beef,cereal,pork); VALUES=(1...3)20] Source
   5  & [LABELS=!T(high,low); VALUES=3(1,2)10] Amount
   6  READ Gain

    Identifier   Minimum      Mean   Maximum    Values   Missing
          Gain     49.00     87.87     120.0        60         0

  17  MODEL        Gain
  18  FIT          [FPROBABILITY=yes; TPROBABILITY=yes] Source*Amount

Regression analysis
===================

 Response variate: Gain
     Fitted terms: Constant + Source + Amount + Source.Amount

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       5        4613.        922.6      4.30  0.002
Residual        54       11586.        214.6
Total           59       16199.        274.6

Percentage variance accounted for 21.9
Standard error of observations is estimated to be 14.6.

Estimates of parameters
-----------------------

Parameter                     estimate         s.e.     t(54)  t pr.
Constant                        100.00         4.63     21.59  <.001
Source cereal                   -14.10         6.55     -2.15  0.036
Source pork                      -0.50         6.55     -0.08  0.939
Amount low                      -20.80         6.55     -3.18  0.002
Source cereal .Amount low        18.80         9.26      2.03  0.047
Source pork .Amount low           0.00         9.26      0.00  1.000
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Parameters for factors are differences compared with the reference level:
              Factor  Reference level
              Source  beef
              Amount  high

  19  MATRIX       [ROWS=!T('animal vs cereal','beef vs pork'); COLUMNS=3; \
  20               VALUES=0.5,-1,0.5,1,0,-1] Compare
  21  RCOMPARISONS Source; CONTRASTS=Compare

Comparisons between means
-------------------------

Variate: Gain

Contrasts
---------

                     Estimate        s.e.       t(54)       t pr.
 animal vs cereal       4.450       4.011        1.11       0.272
     beef vs pork       0.500       4.632        0.11       0.914

Analysis of variance
--------------------

Source                  s.s.        d.f.        m.s.        v.r.       F pr.
animal vs cereal         264           1       264.0        1.23       0.272
beef vs pork               3           1         2.5        0.01       0.914
residual               11586          54       214.6

  22  RCOMPARISONS [PSE=contrasts,differences,lsd]\
  23               Source; CONTRASTS=Compare; GROUPS=Amount

Comparisons between means
-------------------------

Variate: Gain

Contrasts: animal vs cereal
---------------------------

                 Estimate        s.e.       t(54)       t pr.
       Amount
         high      13.850       5.673        2.44       0.018
          low      -4.950       5.673       -0.87       0.387

Standard errors of differences between estimated contrasts
----------------------------------------------------------

         high           *
          low       8.023           *
                     high         low

Least significant differences (at 5.0%) for estimated contrasts
---------------------------------------------------------------

            1           *
            2       16.08           *
                        1           2

Contrasts: beef vs pork
-----------------------

                 Estimate        s.e.       t(54)       t pr.
       Amount
         high      0.5000       6.551        0.08       0.939
          low      0.5000       6.551        0.08       0.939

Standard errors of differences between estimated contrasts
----------------------------------------------------------

         high           *
          low       9.264           *
                     high         low
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Least significant differences (at 5.0%) for estimated contrasts
---------------------------------------------------------------

            1           *
            2       18.57           *
                        1           2

Analysis of variance
--------------------

Source                  s.s.        d.f.        m.s.        v.r.       F pr.
animal vs cereal        1442           2       721.1        3.36       0.042
beef vs pork               3           2         1.3        0.01       0.994
residual               11586          54       214.6

RTCOMPARISONS procedure
Calculates comparison contrasts within a multi-way table of means (R.W. Payne).

Options
PRINT = string token Controls printed output (contrasts); default cont
COMBINATIONS = string token Factor combinations for which to form the predicted

means (full, present, estimable); default esti
ADJUSTMENT = string token Type of adjustment to be made when forming the

predicted means (marginal, equal, observed);
default marg

WEIGHTS = table Weights classified by some or all of the factors in the
model; default *

OFFSET = scalar Value of offset on which to base predictions; default
mean of offset variate

METHOD = string token Method of forming margin (mean, total); default
mean

ALIASING = string token How to deal with aliased parameters (fault, ignore);
default faul

BACKTRANSFORM = string token What back-transformation to apply to the values on the
linear scale, before calculating the predicted means
(link, none); default link

SCOPE = string token Controls whether the variance of predictions is
calculated on the basis of forecasting new observations
rather than summarizing the data to which the model has
been fitted (data, new); default data

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
nonlinear); default *

DISPERSION = scalar Value of dispersion parameter in calculation of s.e.s;
default is as set in the MODEL statement

DMETHOD = string token Basis of estimate of dispersion, if not fixed by
DISPERSION option (deviance, Pearson); default is
as set in the MODEL statement

NBINOMIAL = scalar Supplies the total number of trials to be used for
prediction with a binomial distribution (providing a
value n greater than one allows predictions to be made
of the number of "successes" out of n, whereas the value
one predicts the proportion of successes); default 1

SAVE = identifier Regression or ANOVA save structure for the analysis
from which the comparisons are to be calculated



3.3  Linear regression with grouped or qualitative data 233

Parameters
CONTRAST = tables Defines the comparisons to be estimated
ESTIMATES = scalars Saves the estimated contrasts
SE = scalars Saves standard errors of the contrasts

RTCOMPARISONS makes comparisons within a multi-way tables of predicted means from a linear
or generalized linear regression or an analysis of variance (Chapter 4). The model should
previously have been fitted by the directives FIT (3.1.2) or ANOVA (4.1.2) in the usual way. The
SAVE option can be used to specify the save structure from the analysis for which the
comparisons are to be calculated; see the SAVE option of the MODEL directive (3.1.1) or ANOVA
directive (4.1.2). If SAVE is not specified, the comparisons are calculated from the most recent
regression analysis.

Each comparison is specified in a table supplied by the CONTRAST parameter. For a regression
or generalized linear models analysis, RTCOMPARISONS calculates the means using the PREDICT
directive (3.3.4), and has COMBINATIONS, ADJUSTMENT and WEIGHTS options to control the
process, just like those of RCOMPARISONS. However, these options are irrelevant if the SAVE
structure is from an ANOVA analysis (4.1.2); the means are then obtained using AKEEP (4.6.1),
and are the same as those that would be printed by ANOVA. The options OFFSET, METHOD,
ALIASING, BACKTRANSFORM, SCOPE, NOMESSAGE, DISPERSION, DMETHOD and NBINOMIAL
are also relevant only to regression, and operate exactly as in the PREDICT directive.

The PRINT option controls printed output, with setting:
contrasts to print the contrasts (default).

The ESTIMATE parameter allows you to save the estimated contrast, and the SE parameter can
save its standard errors.

Example 3.3.5b makes some comparisons with the Amount-by-Source means from Example
3.3.5a: Comp1 compares high protein from beef with low protein from cereal, while Comp2
compares the average of high protein from beef and high protein from pork with low protein
from cereal.

Example 3.3.5b

  24  TABLE [CLASSIFICATION=Amount,Source] Comp1,Comp2;\
  25        VALUES=!(1,0,0,0,-1,0),!(0.5,0,0.5,0,-1,0)
  26  PRINT Comp1

                    Comp1
       Source        beef      cereal        pork
       Amount
         high      1.0000      0.0000      0.0000
          low      0.0000     -1.0000      0.0000

  27  &            Comp2

                    Comp2
       Source        beef      cereal        pork
       Amount
         high      0.5000      0.0000      0.5000
          low      0.0000     -1.0000      0.0000

  28  RTCOMPARISONS Comp1,Comp2

Comparisons between means
-------------------------

Variate: Gain

Contrast    estimate        s.e.       t(54)         pr.
   Comp1      16.100       6.551        2.46       0.017
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   Comp2      15.850       5.673        2.79       0.007

3.3.6 Plots of estimates: the RDESTIMATES procedure

RDESTIMATES procedure
Plots one- or two-way tables of regression estimates (R.W. Payne).

Options
GRAPHICS = string token Type of graph (highresolution, lineprinter);

default high
METHOD = string token What to plot (estimates, lines); default esti
XFREPRESENTATION = string token

How to label the x-axis (levels, labels); default
labels uses the XFACTOR labels, if available

PSE = string token What s.e. to plot to represent variation (average,
individual); default aver

SAVE = regression save structure Save structure of the analysis to display; default * shows
the most recently fitted regression

Parameters
XFACTOR = factors Factor providing the x-values for each plot
GROUPS = factors Factor identifying the different sets of points from a

two-way table of estimates
XVARIATES = variates X-variates for regression coefficients or pointer
NEWXLEVELS = variates Values to be used for XFACTOR instead of its existing

levels
TITLE = texts Title for the graph; default defines a title automatically
YTITLE = texts Title for the y-axis; default ' '
XTITLE = texts Title for the x-axis; default is to use the identifier of the

XFACTOR

RDESTIMATES helps you study factors in a regression model by plotting their estimates. By
default these are taken from the most recent regression, but you use the SAVE option to specify
the save structure from the MODEL statement (3.1.1) of some other analysis.

The XFACTOR parameter indicates the factor against whose levels the estimates are plotted.
You can also specify a second factor, using the GROUPS parameter, to plot a two-way table of
estimates. A separate set of points is then plotted for every level of GROUPS.

By default, the estimates will be for the model term XFACTOR (if GROUPS is not set) or
XFACTOR.GROUPS (if GROUPS is set). You can also specify one, or more, variates for the term,
using the XVARIATES parameter. If XVARIATES is set to a single variate, xvar say, the term will
be XFACTOR.xvar or XFACTOR.GROUPS.xvar (representing regression coefficients for xvar).
Alternatively, it can be set to a pointer containing several variates, for example x1var and
x2var .  T h e  t e r m wi l l  b e  t h e n  b e  XFACTOR.x1var.x2var  o r
XFACTOR.GROUPS.x1var.x2var (representing regression coefficients for the product of the
variates x1var and x2var).

The NEWXLEVELS parameter enables different levels to be supplied for XFACTOR if the
existing levels are unsuitable. If XFACTOR has labels, these are used to label the x-axis unless you
set option XFREPRESENTATION=levels.

Usually, each estimate is represented by a point (using pens 1, 2, and so on for each level in
turn of the GROUPS factor). However, with high-resolution plots, the METHOD option can be set
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Figure 3.3.6

to lines to draw lines between the points. The GRAPHICS option controls whether a high-
resolution or a line-printer graph is plotted; by default GRAPHICS=high.

The PSE option specifies how to represent the variability of the estimates, as follows:
average plots an error bar showing the average standard error of

the estimates;
individual plots a bar around each estimate showing plus and minus

its standard error.
The TITLE, YTITLE and XTITLE parameters allow you to supply titles for the graph, the y-

axis and the x-axis respectively.
Figure 3.3.6 shows a plot of the Source

estimates from Example 3.3.5, obtained by
the statement

RDESTIMATES Source

3.4 Polynomials and additive models

This section describes how to fit regression models containing functions of explanatory
variables. The POL function allows you to specify polynomial contrasts representing quadratic,
cubic or quartic curves. The COMPARISON and REG functions allow you to specify your own
contrasts, provided they are linear in the parameters (nonlinear models are described in later
sections of this chapter). With REG the contrasts are orthogonalized (and this also allows you fit
orthogonal polynomials), but with COMPARISON they are not. The SSPLINE function, or S for
short, provides general smoothing splines. These are actually cubic splines with constraints to
ensure smoothness, but they are usually regarded as nonparametric effects of variables. The
LOESS function provides an alternative smoothing method, by locally weighted regression.
Models containing SSPLINE or LOESS are referred to as additive models.
SSPLINE and LOESS be used only with explanatory variates. However, it is easy to use

CALCULATE to form a variate from a factor, as in

CALCULATE V = F

or

CALCULATE V = NEWLEVELS(F; W)

and then use a function of the variate in the regression model.
You can fit interactions involving the functions POL, REG and COMPARISON. However,

interactions involving SSPLINE or LOESS fit different linear trends over the variates in the
functions, but have common nonlinear components.
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Figure 3.4.1

3.4.1 Polynomial regression

You can fit a polynomial model simply by using the CALCULATE statement before FIT. For
example, the following statements fit the quadratic regression of Y on X:

CALCULATE X2 = X**2
MODEL Y
FIT X,X2

However, you can do this more quickly, and using less storage space, with the POL function:

MODEL Y
FIT POL(X; 2)

The latter method also has the advantage
that the PREDICT directive can produce
predictions for specific values for X: with
the former method, PREDICT treats X and
X2 as if they varied separately rather than
having a fixed relationship.

Example 3.4.1a shows the fitting of a
cubic relationship between two variables
measured on children with diabetes. The
fitted polynomial curve is plotted by
RGRAPH in Figure 3.4.1.

Example 3.4.1a

   2  "  Relationship between serum C-peptide and measured variables
  -3     in children with diabetes. Data from Sochett et al. (1987);
  -4     analysed by Hastie & Tibshirani (1990) p304."
   5  OPEN     '%GENDIR%/Examples/GuidePart2/Diabetes.dat'; CHANNEL=2
   6  READ     [CHANNEL=2; PRINT=data] Age,Base,Cpep

     1   5.2  -8.1 4.8    8.8 -16.1 4.1   10.5  -0.9 5.2   10.6  -7.8 5.5
     2  10.4 -29.0 5.0    1.8 -19.2 3.4   12.7 -18.9 3.4   15.6 -10.6 4.9
     3   5.8  -2.8 5.6    1.9 -25.0 3.7    2.2  -3.1 3.9    4.8  -7.8 4.5
     4   7.9 -13.9 4.8    5.2  -4.5 4.9    0.9 -11.6 3.0   11.8  -2.1 4.6
     5   7.9  -2.0 4.8   11.5  -9.0 5.5   10.6 -11.2 4.5    8.5  -0.2 5.3
     6  11.1  -6.1 4.7   12.8  -1.0 6.6   11.3  -3.6 5.1    1.0  -8.2 3.9
     7  14.5  -0.5 5.7   11.9  -2.0 5.1    8.1  -1.6 5.2   13.8 -11.9 3.7
     8  15.5  -0.7 4.9    9.8  -1.2 4.8   11.0 -14.3 4.4   12.4  -0.8 5.2
     9  11.1 -16.8 5.1    5.1  -5.1 4.6    4.8  -9.5 3.9    4.2 -17.0 5.1
    10   6.9  -3.3 5.1   13.2  -0.7 6.0    9.9  -3.3 4.9   12.5 -13.6 4.1
    11  13.2  -1.9 4.6    8.9 -10.0 4.9   10.8 -13.5 5.1
   7  CLOSE    2
   8  MODEL    Cpep
   9  FIT      [FPROBABILITY=yes; TPROBABILITY=yes] POL(Age; 3)

Regression analysis
===================

 Response variate: Cpep
     Fitted terms: Constant + Age
        Submodels: POL(Age; 3)
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Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       3         7.95       2.6515      7.46  <.001
Residual        39        13.85       0.3552
Total           42        21.81       0.5192

Percentage variance accounted for 31.6
Standard error of observations is estimated to be 0.596.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
            7        3.400       -2.58
           22        6.600        2.94

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
            8        4.900        0.37
           15        3.000        0.32
           24        3.900        0.29
           29        4.900        0.34

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(39)  t pr.
Constant          2.740        0.508      5.39  <.001
Age Lin           0.665        0.250      2.66  0.011
Age Quad        -0.0641       0.0339     -1.89  0.066
Age Cub         0.00198      0.00134      1.47  0.149

The FIT statement in Example 3.4.1a fits a cubic curve relating the response to a single
explanatory variate. You can also use POL functions in multiple regression models with some
or all the explanatory variates, and with different orders (quadratic, cubic, and so on). The
maximum order for POL is 4. This limit is used because polynomial models with high orders can
be very unstable; higher orders are allowed for orthogonal polynomials with the REG function.

When using POL, or the other functions, you must follow the syntax of model formulae
(1:1.6.3). This means that you cannot use commas between functions: for example,

FIT POL(X; 3), POL(Z; 3), F

would be faulted. Instead, you should use the plus operator, as in

FIT POL(X; 3) + POL(Z; 3) + F

However, you can use commas inside the function, so this model is the same as the previous one:

FIT POL(X,Z; 3) + F

The models specified by POL are simple polynomials: they are not orthogonalized. Thus, the

parameter estimates are simply the linear coefficients of powers of an explanatory variate. This
can result in computational problems with some data, when successive polynomial effects can
be highly correlated; this would be evidenced in Genstat by a report of linear dependence and
the omission of some of the effects. For this reason, it can be better to use the REG function to
fit orthogonal polynomials, though the estimated parameters are then not so easy to interpret.
Example 3.4.1b shows the correlations between the estimated parameters.
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Example 3.4.1b

  10  RGRAPH   Age
  11  RDISPLAY [PRINT=correlations]

Regression analysis
===================

Correlations between parameter estimates
----------------------------------------

Parameter                 ref    correlations

Constant                    1    1.000
Age Lin                     2   -0.899  1.000
Age Quad                    3    0.799 -0.975  1.000
Age Cub                     4   -0.721  0.928 -0.986  1.000
                                     1      2      3      4

Functions can also be used in the TERMS directive. If a variate appears in a POL, REG or
COMPARISON function in the model formula of TERMS, then the fitting statements that follow
will fit the function of the variate rather than just its ordinary (linear) effect, whether or not the
function name and parentheses are given. If a particular variate has already been fitted in the
model, the default order for the POL, REG or COMPARISON function is the order already fitted;
otherwise it is the order used in the TERMS directive. The order specified by TERMS cannot be
exceeded (unless a new TERMS statement is given). It may be changed to a lower value whenever
the variate is added to the model, or in a FIT statement. Attempts to change the order of a
function already in the model by any other directive apart from FIT and SWITCH are ignored.
For example, you can give the following statements to compare a quadratic with a cubic model:

TERMS POL(X; 3)
FIT POL(X; 2)
SWITCH POL(X; 3)

If you use POL with a factor, the default is to use the factor levels as the x-values for the

polynomials. However, as in ANOVA (4.5), you can use the third argument of POL to specify
alternative values for the factor levels if those declared for the factor are unsuitable. The use of
factors differs from that of variates in that, if you specify a factor without its POL, REG or
COMPARISON function while fitting a sequence of regressions, Genstat interprets this as the
factor itself (not any function of the factor). So it is easy to switch between fitting contrasts for
a factor and fitting the factor itself This enables you to assess how well the polynomials fit the
effects of the factor (similarly to the use of the deviations line produced by ANOVA; see Example
4.5b). In Example 3.4.1c, we form an eight-level factor Agegroup from the variate Age. We fit
a cubic polynomial, and then switch this with Agegroup itself. The POOL option of SWITCH is
set so that the results of the switch are presented all together in a single line, providing the
"deviations" that we need. The results differ slightly from those with the variate, Age, as the x
values are now the medians of the eight groups (calculated as the levels of Agegroup by
GROUPS; see 1:4.6.1). However it seems clear from the value, 0.22, of the variance ratio for
deviations that there is no need for any higher order of polynomial.

Example 3.4.1c

  12  GROUPS   [NGROUPS=8] Age; FACTOR=Agegroups
  13  FIT      [FPROBABILITY=yes; TPROBABILITY=yes] POL(Agegroups;3)

Regression analysis
===================

 Response variate: Cpep
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     Fitted terms: Constant + Agegroups
        Submodels: POL(Agegroups; 3)

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       3         8.21       2.7350      7.84  <.001
Residual        39        13.60       0.3488
Total           42        21.81       0.5192

Percentage variance accounted for 32.8
Standard error of observations is estimated to be 0.591.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
            7        3.400       -2.63
           22        6.600        2.94
           28        3.700       -2.31

Estimates of parameters
-----------------------

Parameter            estimate         s.e.     t(39)  t pr.
Constant                2.441        0.658      3.71  <.001
Agegroups Lin           0.754        0.337      2.24  0.031
Agegroups Quad        -0.0731       0.0468     -1.56  0.126
Agegroups Cub         0.00229      0.00190      1.21  0.235

  14  SWITCH   [PRINT=model,estimates,accumulated; POOL=yes;\
  15           FPROBABILITY=yes; TPROBABILITY=yes] Agegroups

Regression analysis
===================

 Response variate: Cpep
     Fitted terms: Constant + Agegroups

Estimates of parameters
-----------------------

Parameter             estimate         s.e.     t(35)  t pr.
Constant                 3.580        0.275     13.00  <.001
Agegroups 4.950          1.053        0.373      2.82  0.008
Agegroups 7.900          1.520        0.390      3.90  <.001
Agegroups 8.900          1.220        0.390      3.13  0.003
Agegroups 10.60          1.480        0.390      3.80  <.001
Agegroups 11.20          1.320        0.373      3.54  0.001
Agegroups 12.50          1.300        0.390      3.34  0.002
Agegroups 14.15          1.387        0.373      3.72  <.001

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
           Agegroups  1.800

Accumulated analysis of variance
--------------------------------

Change                         d.f.         s.s.         m.s.      v.r.  F pr.
+ POL(Agegroups; 3)               3       8.2051       2.7350      7.21  <.001
- POL(Agegroups; 3)
+ Agegroups                       4       0.3273       0.0818      0.22  0.928
Residual                         35      13.2747       0.3793

Total                            42      21.8070       0.5192

3.4.2 Orthogonal polynomials and general functions
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The REG function can be used in exactly the same way as the POL function to fit polynomial
effects. The difference is that REG will fit orthogonalized effects. It is also possible to fit
orthogonalized effects by calculating them in advance with the ORTHPOLYNOMIAL procedure,
as in the following statements:

ORTHPOLYNOMIAL [ORDER=4] X; POLYNOMIAL=P
FIT P[1...4]

The same model can be fitted more easily using REG as follows:

FIT REG(X; 4)

Using the REG function in this way results in the automatic calculation of orthogonal
polynomials internally, by the same method as used in procedure ORTHPOLYNOMIAL.
Consequently REG uses more storage space than POL. The use of orthogonal polynomials is not
as straightforward in regression as in ANOVA (see Chapter 4), as there the designs must be
balanced. So if the polynomials are orthogonal overall in an analysis of variance, they will also
be orthogonal within each level of a factor involved in an interaction with the polynomial. This
need not be so in regression, and interactions involving the REG function will then be less easy
to interpret.

In Example 3.4.2, we fit the same model as in Example 3.4.1a but using orthogonalized
polynomials for comparison; note that there is now no  correlation between the parameter
estimates.

Example 3.4.2

  16  FIT      [PRINT=estimates,correlations; TPROBABILITY=yes] REG(Age; 3)

Regression analysis
===================

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(39)  t pr.
Constant         4.7465       0.0909     52.22  <.001
Age Reg1         0.0831       0.0229      3.63  <.001
Age Reg2       -0.01490      0.00562     -2.65  0.012
Age Reg3        0.00198      0.00134      1.47  0.149

Correlations between parameter estimates
----------------------------------------

Parameter                 ref    correlations

Constant                    1    1.000
Age Reg1                    2    0.000  1.000
Age Reg2                    3    0.000  0.000  1.000
Age Reg3                    4    0.000  0.000  0.000  1.000
                                     1      2      3      4

The REG and COMPARISON functions can be used to specify general functions of a variate or
factor. For a variate, you must form these functions yourself, for example by using the
CALCULATE directive, and put the results into a matrix for use in the third argument of REG. This
matrix must have as many columns as there are values of the variate. The number of rows is the
maximum order of the function and it must be greater than or equal to the setting of the second
parameter the function. For a factor, the matrix has as many columns as the number of levels of
the factor, and the rows specify the coefficients to use for the levels of the factor for each
contrast. No examples are given of the use of REG and COMPARISON with factors in regression,
but the same conventions are used in ANOVA and are illustrated in Examples 4.5a and 4.5c.

With REG the columns are orthogonalized, by adjusting the second column to be orthogonal



3.4  Polynomials and additive models 241

to the first, and then the third to be orthogonal to the first and second, and so on. For example,
the following statements form a matrix Xpol3 containing X, X**2 and X**3 and use it as the
third argument REG. This would give the same result as using REG with no third argument.

CALCULATE X2 = X**2
& X3 = X**3
MATRIX [ROWS=3; COLUMNS=X; VALUES=#X,#X2,#X3] Xpol3
FIT REG(X; 3; Xpol3)

The values of the variate X are not actually used in the analysis, but must nevertheless be present.
With COMPARISON, the columns are fitted exactly as they are specified. So, the regression

parameter for each comparison will be adjusted for every other one. The results of the
COMPARISON function in regression thus differ from those in ANOVA, where each comparison if
fitted ignoring the other comparisons (see 4.5). Likewise, the RCOMPARISONS procedure (3.3.5)
makes comparisons between regression means where each comparison is fitted ignoring the other
comparisons. The COMPARISON function can thus be used to specify and fit the whole design
matrix of a model. Suppose that the matrix M contains the design matrix, as would be the case
if it were formed by RKEEP after an analysis:

RKEEP DESIGNMATRIX=M

Then the model corresponding to this design matrix can be fitted by the statements

CALCULATE Mt = TRANSPOSE(M)
& N = NCOLUMNS(M)
FIT [CONSTANT=omit] COMPARISON(X; N; Mt)

where X is any of the explanatory variates fitted in the model.
The use of the REG and COMPARISON functions in regression directives other than FIT is the

same as described for POL in 3.4.1, apart from the PREDICT directive: after fitting a model that
includes a REG or a COMPARISON function, it is not possible to form predictions.

Note: in releases before Release 6.1, contrasts specified using the third argument of the REG
function were not orthogonalized. Now, however, all REG contrasts are orthogonalized, and the
COMPARISON is provided to fit unorthogonalized contrasts.

3.4.3 Cubic smoothing splines

The SSPLINE function, or S for short, specifies a cubic smoothing spline for the effect of a
variate. Smoothing splines are complicated functions, constructed from segments of cubic
polynomials between the distinct values of the variate, and constrained to be "smooth" at the
junctions. Models that contain such a function are no longer linear, but are described as additive
models because the effects of separate explanatory variates are still combined additively.
Another way of describing the effects of a variate that has been smoothed in this way is
nonparametric: in fact, there is a complicated parameterization of the fitted smooth curve, but
it is unlikely to be of use for interpretation. See Hastie & Tibshirani (1990) for further details
of these models. The main uses of smoothed terms in regression are to investigate the shape of
a relationship with a view to later parametric fitting, and to remove the effect of nuisance
variables so as to concentrate on the variables of interest.

The degree of smoothness can be controlled, effectively increasing or relaxing the constraints.
For example,

FIT SSPLINE(X; 4)

would fit a spline for X that has four effective degrees of freedom. This curve will be similar to
the curve fitted by

FIT REG(X; 4)

However, the smoothing spline does not exhibit the awkward end-effects of the polynomial,
where the curve by its parametric nature tends to bend much more sharply than the observed data
would suggest. The smoothing spline with one degree of freedom has the same effect as a linear
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Figure 3.4.3a

fit, although the iterative fitting process may not give exactly the same results. At the other
extreme, if the variate X has precisely N values, all distinct, then the statement

FIT SSPLINE(X; N)

would fit a curve that actually passes through each data point (and so would be of little practical
use). By default, if the second parameter of SSPLINE is omitted, four effective degrees of
freedom are assigned. For an explanation of effective degrees of freedom, see Hastie &
Tibshirani (1990).

Example 3.4.3a shows a smoothing spline fitted to the relationship in the previous examples.
The resulting fit is displayed in Figure 3.4.3a using the procedure RGRAPH.

Example 3.4.3a

  17  FIT      [FPROBABILITY=yes; TPROBABILITY=yes] SSPLINE(Age; 3)

Regression analysis
===================

 Response variate: Cpep
     Fitted terms: Constant + Age
        Submodels: SSPLINE(Age; 3)

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       3         7.88       2.6269      7.36  <.001
Residual        39        13.93       0.3571
Total           42        21.81       0.5192

Percentage variance accounted for 31.2
Standard error of observations is estimated to be 0.598.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
            7        3.400       -2.66
           22        6.600        2.87

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
            8        4.900        0.29
           15        3.000        0.26
           24        3.900        0.24
           29        4.900        0.27

Estimates of parameters
-----------------------

Parameter      estimate         s.e.  
  t(39)  t pr.
Constant          3.996        0.226  
  17.66  <.001
Age Lin          0.0831       0.0229  
   3.62  <.001

  18  RGRAPH   Age

Note that the linear component of the
smoothing spline is reported in the same
way as when just the linear effect of a
variate is fitted and, in fact, has the same
value. No other parameters of the smoothed
effect are available from Genstat.
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If a TERMS statement is given before fitting a smoothed variate, the same function must be
defined for the variate in TERMS. Again the default number of degrees of freedom is four, but if
a number is given in the second argument of the SSPLINE function in TERMS it becomes the
default for subsequent fitting statements, until another number is specified in a fitting statement,
as with variates in POL (3.4.1). The order of SSPLINE can be either increased or decreased in
subsequent SWITCH statements, and whenever the variate is re-introduced into the model after
being dropped. Unlike POL, REG and COMPARISON, there is no theoretical maximum number of
degrees of freedom; the number available, however, is one less than the number of distinct values
in the variate. After you have used the SSPLINE function to fit a smooth function of a variate,
you can revert to fitting just the linear effect by specifying the variate, without the function, in
either SWITCH or FIT. However, attempts to change the order of an SSPLINE function already
in the model, by any directive other than SWITCH or FIT, will be ignored.

Example 3.4.3b shows the effect of a second smoothed variable Base being added to Age,
after first giving a TERMS statement.

Example 3.4.3b

  19  TERMS    SSPLINE(Age,Base)
  20  FIT      [PRINT=model,deviance] SSPLINE(Age)

Regression analysis
===================

 Response variate: Cpep
     Fitted terms: Constant + Age
        Submodels: SSPLINE(Age; 4)

Residual d.f. 38, s.s. 13.72; Change d.f. -4, s.s. -8.08
  20  ADD      [FPROBABILITY=yes; TPROBABILITY=yes] S(Base)

Regression analysis
===================

 Response variate: Cpep
     Fitted terms: Constant + Age + Base
        Submodels: SSPLINE(Age; 4)
                   SSPLINE(Base; 4)

Summary of analysis
-------------------



244 3  Regression analysis

Figure 3.4.3b

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       8       12.356       1.5446      5.56  <.001
Residual        34        9.451       0.2780
Total           42       21.807       0.5192

Change          -4       -4.273       1.0683      3.84

Percentage variance accounted for 46.5
Standard error of observations is estimated to be 0.527.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           22        6.600        2.70

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
            5        5.000        0.85
           10        3.700        0.52

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(34)  t pr.
Constant          4.494        0.243     18.46  <.001
Age Lin          0.0617       0.0208      2.97  0.005
Base Lin         0.0374       0.0117      3.19  0.003

Finally, Figure 3.4.3b is produced by the
statements

SWITCH SSPLINE(Age; 20)
RGRAPH Age

This shows how SWITCH can be used to
change the order of the smoothing function,
in this case increasing it to a point where
the curve follows individual fluctuations
too closely to be of much practical use.

After fitting spline functions or loess
functions (3.4.4), you can access the fitted
effects with the RKEEP directive (3.1.4).
The STERMS parameter can be used to store
a pointer to those variates whose effects in
the  model are smoothed. The
SCOMPONENTS parameter stores a pointer
to variates, one for each smoothed variate
in the same order as in STERMS, containing
the fitted nonlinear component of each
smoothed variate ! this does not include the linear component or the constant term.

The PREDICT directive cannot be used to form predictions at specific values of a variate that
has been smoothed. If predictions are formed for other explanatory variates or factors in the
model, only the linear effect of the smoothed variate will be incorporated in the predictions.

When a spline or loess function is included in the model, it has to be fitted iteratively using
a technique known as back-fitting. This iterative process can be monitored if required in the
same way as the iterative process for generalized linear models (3.5.8). Because an iterative
method is needed, Genstat will analyse only the first response variate, even if several have been
listed in the MODEL statement. Similarly, it is not possible to fit additive models based on
sequentially accumulated SSPM structures (3.2.3), nor can individual changes to the model be
summarized separately in an accumulated analysis of variance (3.2.1).
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3.4.4 Locally weighted regression

The LOESS function performs locally weighted regression. The algorithm is based on the public-
domain software created and kindly made available by Cleveland, Grosse & Shyu of AT&T.
(See Cleveland 1979, Cleveland & Grosse 1991, Cleveland & Devlin 1988 and Cleveland,
Devlin & Grosse 1988 for details.) The Genstat implementation is the responsibility of the
Genstat developers, however, and neither the original authors nor AT&T make any
representation or warranty of any kind concerning the merchantability of this software or its
fitness for any particular purpose.

Local regression methods fit regression models based on one or more x-variates. The
assumption in the modelling is that locally, around any point, the regression surface can be
approximated by a function from a particular class: for loess, the class consists of polynomials
of order 1 (linear) or 2 (quadratic). In Genstat, local regression is specified by the use of the
function LOESS within a regression model:

LOESS(x;d;s;o) fits a locally weighted regression of order o with

approximately d degrees of freedom or using smoothing
parameter s: x is a variate for univariate smoothing, or a
pointer to up to four variates for multivariate smoothing;
when x is a variate o is a scalar, when x is a pointer it is
either a scalar or a variate with an element for each variate
in the pointer.

The first and last arguments of the function specify the polynomial model. For example, suppose
we have two x-variates u and v, and specify order 1 by
LOESS(!p(u,v); d; s; 1)

The local regression will then fit a polynomial consisting of the terms (or monomials): constant,
u and v. Alternatively, if we specify order 2 by
LOESS(!p(u,v); d; s; 2)

the polynomial will consist of the monomials: constant, u, v, uv, u2 and v2. Finally, we can put
in a variate for the order, to include a quadratic for one of the variates but not the other. For
example:
LOESS(!p(u,v); d; s; !(2,1))

defines a polynomial consisting of the monomials: constant, u, v, uv and u2.
The loess method fits the polynomials in local zones within the space of the x-values, thus

fitting a smoothed surface to represent the response to the x-variates. The regression is weighted
so that data make less of a contribution as you move away from the point of interest. The span,
or smoothing parameter, s indicates what proportion of the points are used to fit the regression
model at x. Let t be the distance of mth closest data point from position x, where m is s
multiplied by the number of observed points. The weight used for another point at distance d is

( 1 ! (d / t)3 )3

if d < t,
or 0

if d $ t.
When there are several x-variates, it may be sensible to normalize them unless they are on the
same natural scale (e.g. geographical distances). This can be done straightforwardly beforehand
by using CALCULATE.
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Figure 3.4.4

Example 3.4.4 shows the use of loess to
study how the amount of nitric oxide and
nitrogen dioxide exhaust produced by an
engine is affected by the equivalence ratio
(a measure of the richness of the fuel and
air mixture). The function
LOESS(e; !(*); span; 2)

fits a locally quadratic regression with a
span of 2/3 (calculated in line 15). The
fitted relationship is plotted in Figure 3.4.4.

Notice that the degrees of freedom (the
second argument of the function) takes
precedence over the span (the third
argument), so you need to supply a missing
value for the degrees of freedom if you
want to set the span. If you set the degrees
of freedom, Genstat searches for the
appropriate span to generate a smoothing
model with the required degrees of
freedom. Note, however, that there is not a smooth relationship between span and degrees of
freedom, so it may not always be possible to deliver exactly the number of degrees of freedom
requested.

Example 3.4.4

  2  " LOESS modelling: see Cleveland, Grosse and Shyu (1992, A Package
 -3    of C and Fortran Routines for Fitting Local Regression Models).
 -4    Gas data: 22 observations from an industrial experiment studying
 -5    nitric oxide and nitrogen dioxide exhaust from a one-cylinder
 -6    engine versus the equivalence ratio at which the engine was run
 -7    (Brinkman, N.D., 1981, SAE Transactions, 90, No. 810345, 1410-1424)."
  8  VARIATE [VALUES= 4.818, 2.849, 3.275, 4.691, 4.255, 5.064, \
  9            2.118, 4.602, 2.286, 0.97,  3.965, 5.344, 3.834, 1.99, \
 10            5.199, 5.283, 3.752, 0.537, 1.64,  5.055, 4.937, 1.561] nox
 11  &       [VALUES= 0.831, 1.045, 1.021, 0.97,  0.825, 0.891, \
 12             0.71, 0.801, 1.074, 1.148, 1,     0.928, 0.767, 0.701, \
 13            0.807, 0.902, 0.997, 1.224, 1.089, 0.973, 0.98,  0.665] e
 14  " Locally quadratic loess model, span set to 2/3."
 15  CALCULATE span = 2/3 : open '3-4-4.001';4;graph : devi 4
 16  MODEL     nox
 17  TERMS     LOESS(e; !(*); span; 2)
 18  FIT       [PRINT=model,summary,estimates,fitted; FPROBABILITY=yes;\
 19            TPROBABILITY=yes] LOESS(e; !(*); span; 2)

Regression analysis
===================

 Response variate: nox
     Fitted terms: Constant + e
        Submodels: LOESS(e; *; 0.67; *; 2)

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       5       48.450       9.6899     87.75  <.001
Residual        16        1.767       0.1104
Total           21       50.217       2.3913

Percentage variance accounted for 95.4
Standard error of observations is estimated to be 0.332.
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* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           15        5.199        2.17

* MESSAGE: the residuals do not appear to be random;
           for example, fitted values in the range 2.255 to 4.131
           are consistently larger than observed values
           and fitted values in the range 4.459 to 4.688
           are consistently smaller than observed values.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           18        0.537        0.92
           22        1.561        0.66

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(16)  t pr.
Constant          6.139        0.454     13.51  <.001
e Lin            -2.803        0.485     -5.77  <.001

Fitted values and residuals
---------------------------

                                    Standardized
         Unit     Response Fitted value residual Leverage
            1        4.818        4.866    -0.16     0.21
            2        2.849        2.903    -0.18     0.19
            3        3.275        3.549    -0.90     0.15
            4        4.691        4.688     0.01     0.18
            5        4.255        4.798    -1.84     0.21
            6        5.064        5.177    -0.42     0.35
            7        2.118        2.500    -1.30     0.22
            8        4.602        4.459     0.49     0.21
            9        2.286        2.124     0.57     0.25
           10        0.970        0.961     0.03     0.31
           11        3.965        4.066    -0.33     0.16
           12        5.344        5.283     0.22     0.29
           13        3.834        3.849    -0.05     0.21
           14        1.990        2.255    -0.92     0.25
           15        5.199        4.559     2.17     0.21
           16        5.283        5.220     0.23     0.33
           17        3.752        4.131    -1.24     0.16
           18        0.537        0.492     0.48     0.92
           19        1.640        1.826    -0.66     0.27
           20        5.055        4.637     1.39     0.18
           21        4.937        4.498     1.45     0.17
           22        1.561        1.185     1.94     0.66

Mean                 3.547        3.547     0.04     0.28

 19  RKEEP     nox; FITTED=f
 20  PEN       2; METHOD=line; SYMBOL=0
 21  DGRAPH    nox,f; e; PEN=1,2

3.4.5 Interactions with SSPLINE or LOESS functions

A term of the form factor.SSPLINE(variate) or factor.LOESS(variate) represents separate linear
effects of the variate for each level of the factor together with a common smoothed effect for
each level. A model containing such a term can therefore be represented as a set of parallel
smooth curves with additional linear trends for each level of the factor.

The examples in this section illustrate the different types of models that can be fitted with
smoothed effects. The data come from a rotational experiment on sugar beet with plots having
a range of soil phosphate levels, and include measurements of weight of harvested beet,
percentage sugar in the beet and soil phosphate level in each of four successive years. First, a
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smooth curve is fitted with the SSPLINE function, choosing three degrees of freedom for the
smoother, and ignoring the difference in years. A TERMS statement is given with some extra
terms to allow comparisons with the later, more complicated models.

Example 3.4.5a

   2  " A rotational experiment with plots having a range of soil phosphate
  -3    levels provides measurements of weight of beet, %sugar in the beet
  -4    and soil phosphate level in each of four successive years. "
   5  FACTOR [LEVELS=4; VALUES=16(1...4)] Year
   6  OPEN   '%GENDIR%/Examples/GuidePart2/Beet.dat'; CHANNEL=2
   7  READ   [PRINT=data; CHANNEL=2] Beetwt,%sugar,SoilP

     1   7.23 18.5  5.4   7.69 18.0  5.4  24.64 20.1  7.8  26.67 19.8  8.0
     2  39.78 19.5 18.0  44.98 19.3 15.6  41.59 19.7 30.4  44.08 19.8 33.8
     3  48.37 19.4 50.4  44.76 19.0 51.0  49.73 18.6 44.0  51.54 18.5 40.2
     4  47.69 19.0 57.2  45.66 19.4 65.0  50.18 18.6 27.0  47.69 18.7 30.0
     5
     6   8.82 13.8  5.6   1.81 13.9  4.8  15.82 14.5 10.2   9.04 14.0  8.6
     7  24.41 15.0 21.6  22.60 14.1 17.2  26.45 15.2 36.4  20.80 15.3 37.2
     8  28.30 14.2 44.4  22.60 14.7 44.4  14.24 13.5 41.0  35.94 15.6 30.2
     9  25.54 15.8 60.8  27.13 15.6 47.0  31.42 15.6 27.0  34.13 15.4 29.0
    10
    11  19.90 16.1  3.0  20.60 16.0  2.0  34.70 16.7  6.2  35.40 16.4  6.2
    12  46.80 17.1 19.8  40.50 16.9 17.2  43.00 16.9 29.6  48.60 17.1 28.0
    13  47.30 17.0 42.8  41.30 17.1 46.2  44.30 17.0 36.6  47.60 16.6 40.0
    14  45.60 17.0 42.2  44.60 17.0 52.0  44.00 17.2 23.4  40.10 16.6 28.0
    15
    16  14.35 16.1  4.0  14.35 15.5  3.8  26.71 16.6  8.0  25.12 16.4  6.4
    17  33.39 17.2 18.2  33.79 16.2 14.8  36.68 17.0 35.0  33.69 16.8 29.6
    18  34.98 17.0 37.2  35.78 17.0 40.0  42.06 17.2 39.6  38.77 17.3 36.8
    19  40.66 17.3 52.4  37.28 17.2 45.6  34.68 17.3 22.0  32.59 17.2 26.0
    20  :
   8  CLOSE 2
   9  CALCULATE Sugar = Beetwt * %sugar / 100
  10  MODEL  Sugar
  11  CALCULATE P[1...4] = SoilP*(Year==1...4)
  12  TERMS  S(SoilP)*Year+S(P[])
  13  " 1) A common curve for all years."
  14  FIT    [PRINT=model,estimates; TPROBABILITY=yes] S(SoilP; 3)

Regression analysis
===================

 Response variate: Sugar
     Fitted terms: Constant + SoilP
        Submodels: SSPLINE(SoilP; 3)

Estimates of parameters
-----------------------

Parameter       estimate         s.e.     t(60)  t pr.
Constant           3.523        0.476      7.41  <.001
SoilP Lin         0.0790       0.0146      5.42  <.001

  15  RKEEP  FITTED=f
  16  CALCULATE Fit[1...4] = f
  17  RESTRICT Fit[]; Year==1...4
  18  PEN    1...4; SYMBOL=0; LABEL='1','2','3','4';\
  19         COLOUR='red','limegreen','blue','aqua'
  20  PEN    5...9; METHOD=mono; SYMBOL=0; LINESTYLE=1...5;\
  21         COLOUR='black','red','limegreen','blue','aqua'
  22  XAXIS  3; TITLE='Soil Phosphorus'
  23  YAXIS  3; TITLE='Sugar yield'
  24  DGRAPH [WINDOW=3; KEY=0; TITLE='Common smooth curve']\
  25         Sugar,Fit[]; SoilP; PEN=Year,4(5)
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Figure 3.4.5a Figure 3.4.5b

The fitted model is shown in Figure 3.4.5a, alongside Figure 3.4.5b which shows the model fitted
in Example 3.4.5b including a separate additive effect for each year. There is clearly a large
difference between the yields in each year, caused by climatic differences, and much of this
difference is accounted for by fitting parallel smoothed curves.

Example 3.4.5b

  26  " 2) Parallel curves for each year."
  27  ADD    [PRINT=model,estimates; TPROBABILITY=yes] Year

Regression analysis
===================

 Response variate: Sugar
     Fitted terms: Constant + SoilP + Year
        Submodels: SSPLINE(SoilP; 3)

Estimates of parameters
-----------------------

Parameter       estimate         s.e.     t(57)  t pr.
Constant           5.165        0.334     15.48  <.001
SoilP Lin        0.07897      0.00741     10.66  <.001
Year 2            -4.232        0.347    -12.20  <.001
Year 3            -0.485        0.348     -1.39  0.169
Year 4            -1.852        0.348     -5.32  <.001

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                Year  1

  28  RKEEP  FITTED=f
  29  CALC   Fit[1...4] = f
  30  DGRAPH [WINDOW=3; KEY=0; TITLE='Parallel smooth curves']\
  31         Sugar,Fit[]; SoilP; PEN=Year,6...9
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We now allow separate linear trends for each year, to see whether there is any evidence that the
effect of year differences increases or decreases across the range of phosphorus availability.

Example 3.4.5c

  32  " 3) Parallel curves with additional trends for each year."
  33  ADD    [PRINT=model,estimates; TPROBABILITY=yes] S(SoilP).Year

Regression analysis
===================

 Response variate: Sugar
     Fitted terms: Constant + SoilP + Year + SoilP.Year
        Submodels: SSPLINE(SoilP; 3)

Estimates of parameters
-----------------------

Parameter               estimate         s.e.     t(54)  t pr.
Constant                   3.981        0.419      9.51  <.001
SoilP Lin                 0.1192       0.0117     10.23  <.001
Year 2                    -2.448        0.616     -3.97  <.001
Year 3                     1.340        0.600      2.23  0.030
Year 4                    -0.369        0.606     -0.61  0.545
SoilP Lin .Year 2        -0.0612       0.0179     -3.42  0.001
SoilP Lin .Year 3        -0.0651       0.0182     -3.58  <.001
SoilP Lin .Year 4        -0.0525       0.0186     -2.83  0.007

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                Year  1

  34  RKEEP  FITTED=f
  35  CALC   Fit[1...4] = f
  36  DGRAPH [TITLE='Parallel smooth curves with separate trends';\
  37         WINDOW=3; KEY=0] Sugar,Fit[]; SoilP; PEN=Year,6...9

There is certainly some evidence of such a difference, shown by the size of the t-statistics. The
model is shown in Figure 3.4.5c.

Finally, we fit separate smooth curves for each year. This can be done either by restricting the
response variate to each year in turn and fitting a curve, or by an approximate stratagem, using
copies of the explanatory variate with zeroes for all except the units in a particular year. These
were set up in Example 3.4.5a above by the statement:

CALC P[1...4] = SoilP*(Year==1...4)

By removing the previous smoothed effects, and replacing them with separate smooths on each
of these four dummy variates, we effectively fit separate smoothed effects for each year. It is not
quite the same as smoothing each year separately, using restrictions, because the degree of
smoothing is changed by the presence of the zeroes in the dummy variates. The fitted model is
shown in Figure 3.4.5d.
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Figure 3.4.5c Figure 3.4.5d

Example 3.4.5d

  38  " 4) Separate curves for each year."
  39  SWITCH [PRINT=model,estimates; TPROBABILITY=yes] S(SoilP)/Year+S(P[]; 3)

Regression analysis
===================

 Response variate: Sugar
     Fitted terms: Constant + Year + P[1] + P[2] + P[3] + P[4]
        Submodels: SSPLINE(P[1]; 3)
                   SSPLINE(P[2]; 3)
                   SSPLINE(P[3]; 3)
                   SSPLINE(P[4]; 3)

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(48)  t pr.
Constant          1.843        0.396      4.65  <.001
Year 2           -1.273        0.583     -2.18  0.034
Year 3            2.188        0.568      3.85  <.001
Year 4            0.902        0.574      1.57  0.122
P[1] Lin         0.1689       0.0110     15.31  <.001
P[2] Lin         0.0956       0.0129      7.43  <.001
P[3] Lin         0.1091       0.0132      8.26  <.001
P[4] Lin         0.1121       0.0137      8.19  <.001

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                Year  1

  40  RKEEP  FITTED=f
  41  CALC   Fit[1...4] = f
  42  DGRAPH [WINDOW=3; KEY=0; TITLE='Separate smooth curves']\
  43         Sugar,Fit[]; SoilP; PEN=Year,6...9
  44  " Show an analysis of parallelism. "
  45  RDISPLAY [PRINT=accumulated; FPROBABILITY=yes]
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Regression analysis
===================

Accumulated analysis of variance
--------------------------------

Change                         d.f.         s.s.         m.s.      v.r.  F pr.
+ SSPLINE(SoilP; 3)               3     153.4486      51.1495     74.00  <.001
+ Year                            3     170.9255      56.9752     82.43  <.001
+ SSPLINE(SoilP; 3).Year          3      13.1022       4.3674      6.32  0.001
- SSPLINE(SoilP; 3).Year
- SSPLINE(SoilP; 3)
+ SSPLINE(P[1]; 3)
+ SSPLINE(P[2]; 3)
+ SSPLINE(P[3]; 3)
+ SSPLINE(P[4]; 3)                6       8.4868       1.4145      2.05  0.077
Residual                         48      33.1771       0.6912

Total                            63     379.1402       6.0181

The analysis of parallelism shows that the final step is not statistically significant at the 5% level,
so we could conclude that the parallel curves with separate trends are the best representation of
the data with this type of model. However, from a biological point of view, it might be better to
use an exponential curve, as can be fitted with the FITCURVE directive, because it is expected
that yield does not increase without limit as soil phosphorus increases.

A limitation of models with smoothed terms and factors is that the RGRAPH procedure cannot
be used to display them. The figures here were drawn by saving the fitted values, taking separate
copies for each year, and using the DGRAPH directive to join the fitted points smoothly.

3.5 Generalized linear models

Generalized linear models extend the ordinary regression framework to situations where the data
do not follow a Normal distribution, or where a transformation (known as the link function)
needs to be applied before a linear model can be fitted. Section 3.5.1 contains a brief account of
the essential concepts, but for more information see Dobson (1990) or McCullagh and Nelder
(1989).

Example 3.5a shows a probit analysis (Finney 1971). This is a particular type of generalized
linear model which models the relationship between a stimulus, like a drug, and a quantal
response (recorded simply as success or failure). In probit analysis it is assumed that for each
subject there is a certain level of stimulus below which it will be unaffected, but above which
it will respond. This level of stimulus, known as the tolerance, will vary from subject to subject
within the population. The assumption in Example 3.5a is that the tolerance of the mice to the
logarithm of the dose will have a Normal distribution; so, if we were to plot the proportion of
the population with each tolerance against log dose, we would obtain the familiar bell-shaped
curve. Likewise, if we plotted the probability that a randomly-selected individual will respond,
against the logarithm of dose, we would obtain the sigmoid (S-shaped) cumulative-Normal curve
limited below by zero and above by one. To make the relationship linear, then, we could
transform the y-axis to Normal equivalent deviates or probits (see 3.5.1). Thus, in this example,
we need a probit link function in order to fit a linear model.

The data in Example 3.5a consist of observations, in each of which a particular dose of one
of the drugs was applied to a group of mice, and the number that responded was counted. The
data can thus be assumed to follow a binomial distribution, instead of the Normal distribution
assumed for the examples earlier in this chapter.

As Example 3.5a shows, you can fit generalized linear models using exactly the same
directives as for linear regression: the only difference is that you need to set extra options in the
MODEL directive to specify the distribution and the link function, and, for binomial data, an extra
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parameter to define the total number of subjects at each observation. Likewise the generalized
linear models menus in Genstat for Windows are very similar to the ordinary linear regression
menus. The most general menu (General Model) contains extra fields for you to specify these
settings, while the more specialized menus may set them automatically.

One important practical difference with generalized linear models is that the entire model is
fitted at once rather than one term at a time as in ordinary regression models. As a result the
terms are pooled into a single line in the analysis of deviance table. If you want to see the
contributions of the individual terms, you need to fit them one at a time, either explicitly by
using ADD as in Example 3.5a, or automatically by using the FITINDIVIDUALLY procedure
(3.5.3). Alternatively, you could use procedure RSCREEN (3.2.9) to produce screening tests, as
in Example 3.5.1.

Example 3.5a

   2  " Comparison of effectiveness of 3 analgesic drugs to a standard drug,
  -3    morphine. Data from Grewal (1952), analysed by Finney (1971) p.103.
  -4    Four drugs were compared at several doses for their effect on groups
  -5    of mice; the numbers of mice that responded were recorded."
   6  FACTOR [LABELS=!T(Morphine,Amidone,Phenadoxone,Pethidine)] Drug
   7  READ [PRINT=data] Drug,Dose,Ntest,Nrespond

   8  1 1.50 103 19   1 3.00 120 53   1 6.00 123 83
   9  2 1.50  60 14   2 3.00 110 54   2 6.00 100 81
  10  3 0.75  90 31   3 1.50  80 54   3 3.00  90 80
  11  4 5.00  60 13   4 7.50  85 27   4 10.00 60 32
  12                  4 15.00 90 55   4 20.00 60 44 :
  13  " Fit standard probit models, relating the number of responses to the
 -14    logarithm of the dose.  The probit model is a generalized linear
 -15    model, assuming a binomial distribution for the number of responses
 -16    and a probit link function (cumulative Normal distribution function)
 -17    between the number of responses and the logarithm of the dose."
  18  CALCULATE Logdose = LOG10(Dose)
  19  MODEL [DISTRIBUTION=binomial; LINK=probit] Nrespond; NBINOMIAL=Ntest
  20  TERMS Logdose*Drug
  21  " Fit a model ignoring the types of drug used."
  22  FIT [NOMESSAGE=leverage,residual; FPROB=yes; TPROB=yes] Logdose

Regression analysis
===================

 Response variate: Nrespond
  Binomial totals: Ntest
     Distribution: Binomial
    Link function: Probit
     Fitted terms: Constant + Logdose

Summary of analysis
-------------------

                                        mean  deviance approx
Source        d.f.     deviance     deviance     ratio chi pr
Regression       1         39.4        39.41     39.41  <.001
Residual        12        210.6        17.55
Total           13        250.0        19.23

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

Estimates of parameters
-----------------------
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Parameter      estimate         s.e.      t(*)  t pr.
Constant        -0.2976       0.0663     -4.49  <.001
Logdose          0.5972       0.0959      6.23  <.001

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

  23  " Fit parallel responses (on the probit scale) for the drugs; morphine
 -24    has been assigned as the first level of the factor so that Genstat
 -25    will automatically compare the other drugs to it."
  26  ADD [FPROB=yes; TPROB=yes] Drug

Regression analysis
===================

 Response variate: Nrespond
  Binomial totals: Ntest
     Distribution: Binomial
    Link function: Probit
     Fitted terms: Constant + Logdose + Drug

Summary of analysis
-------------------

                                        mean  deviance approx
Source        d.f.     deviance     deviance     ratio chi pr
Regression       4      246.090      61.5225     61.52  <.001
Residual         9        3.868       0.4298
Total           13      249.958      19.2275

Change          -3     -206.682      68.8940     68.89  <.001

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

Estimates of parameters
-----------------------

Parameter              estimate         s.e.      t(*)  t pr.
Constant                 -1.379        0.114    -12.08  <.001
Logdose                   2.468        0.173     14.30  <.001
Drug Amidone              0.238        0.108      2.20  0.028
Drug Phenadoxone          1.360        0.130     10.49  <.001
Drug Pethidine           -1.180        0.133     -8.87  <.001

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                Drug  Morphine

  27  " Fit separate models for the different drugs"
  28  ADD [PRINT=accumulated; FPROB=yes] Logdose.Drug

Regression analysis
===================

Accumulated analysis of deviance
--------------------------------

                                                         mean  deviance approx
Change                         d.f.     deviance     deviance     ratio chi pr
+ Logdose                         1      39.4079      39.4079     39.41  <.001
+ Drug                            3     206.6821      68.8940     68.89  <.001
+ Logdose.Drug                    3       1.5336       0.5112      0.51  0.675
Residual                          6       2.3344       0.3891

Total                            13     249.9579      19.2275

* MESSAGE: ratios are based on dispersion parameter with value 1.
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Figure 3.5

  29  " There is no evidence of non-parallelism, so return to the parallel
 -30    model and display it with procedure RGRAPH."
  31  DROP [PRINT=*] Logdose.Drug
  32  RGRAPH

The graph of the fitted model drawn by the
RGRAPH procedure is shown in Figure 3.5.
By default, the model is plotted on the
natural scale (here percentages). However,
if you want to check the linearity of the
response on the transformed scale (here
probi t s ) ,  you  can  se t  op t ion
BACKTRANSFORM to either none or axis in
the RGRAPH statement. These settings differ
in that axis includes axis markings, back-
transformed onto the natural scale, on the
right-hand side of the y-axis. However, this
is not available for log-ratio, power,
reciprocal or calculated links. The
transformed marks and labels are plotted
using pen 4.

This analysis does not include
information on LD50s or similar quantities
that are usually used to characterize the
effectiveness of drugs (see Finney 1971). Functions of the parameters like these can be
calculated, with standard errors, using the RFUNCTION directive (3.7.5). There is also a special
procedure PROBITANALYSIS, which produces these automatically, as well as being able to
estimate natural mortality and immunity; for details see 3.5.9. Alternatively, LD50s and relative
potencies (which compare one drug with another) can be calculated by procedure FIELLER.

When you have fitted parallel lines, you can use procedure FIELLER to calculate relative
potencies of the drugs compared to the standard one (here Morphine), as shown in Example 3.5b.
The SLOPE parameter defines the position of the slope in the in the list of parameters that are
estimated in the regression model (see Example 3.5a). The TREATMENT parameter defines the
positions of the intercepts for the treatments that are to be compared with the standard. The
VALUE parameter saves the relative potencies, and the LOWER and UPPER parameters save the
lower and upper fiducial limits. For more details about FIELLER see Part 3 of the Genstat
Reference Manual or the on-line help.

Example 3.5b

  33  FIELLER [RELATIVE=yes] SLOPE=2; TREATMENT=3,4,5; \
  34     VALUE=relp[2...4]; LOWER=low[2...4]; UPPER=up[2...4]

   Relative potency   Lower 95%   Upper 95%
            0.09636     0.01032      0.1861

   Relative potency   Lower 95%   Upper 95%
             0.5508      0.4615      0.6465

   Relative potency   Lower 95%   Upper 95%
            -0.4780     -0.5578     -0.3970

  35  " The results are the log-potency and 95% fiducial limits:
 -36    transform these to the natural scale."
  37  CALCULATE relp[],low[],up[] = 10**relp[],low[],up[]
  38  PRINT relp[2],low[2],up[2] & relp[3],low[3],up[3] & relp[4],low[4],up[4]
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     relp[2]      low[2]       up[2]
       1.248       1.024       1.535

     relp[3]      low[3]       up[3]
       3.554       2.894       4.431

     relp[4]      low[4]       up[4]
      0.3327      0.2768      0.4008

3.5.1 Introduction to generalized linear models

Generalized linear models are natural generalizations of ordinary linear regression models. The
ordinary regression model can be written as:

yi  =  ìi  +  åi , i=1...N
    =  á  +  Ó{âj xji}  +  åi

where xji is the ith observation of the jth explanatory variable and yi is the ith observation of the
response variable; and

Var(yi) = ó2

where ó2 is constant for all observations. The residuals åi are assumed to be uncorrelated, and
usually the model is specialized further by assuming the observations yi to be Normally
distributed. So yi follows a Normal distribution with expected value ìi and variance ó2.

In a generalized linear model the expected value is still
E(yi)  =  ìi , i=1...N

but now the linear model describes çi, the linear predictor,
çi  =  á  +  Ó{âj xji}

and çi is related to ìi by
çi  =  G(ìi)

where G() is a monotonic and differentiable function called the link function. Also,
Var(yi) = ö V(ìi) , i=1...N

where ö is a dispersion parameter, known or unknown. Again the model is usually specialized
further, now so that the observations yi have some distribution such as the Normal, Poisson,
binomial, negative binomial, exponential or gamma from the exponential family. V() is a
differentiable function, called the variance function.

The model could equally well be expressed using the inverse of the link function:
ìi  =  G!1(çi)

However, the convention is to use G rather than G!1 because the model is then similar to fitting
a linear model to the link transformation of the response. For example, if G is the log function,

log(E(yi))  =  á  +  Ó{âj xji}
is similar to

E(log(yi))  =  á  +  Ó{âj xji}
but they are not identical ! the logarithm of the expectation of a random variable is not the same
as the expectation of the logarithm.

Ordinary linear regression is in the class of generalized linear models, with G() being the
identity function, ö being ó2, and V() being constant. Many other familiar statistical models are
in this class too.

(a) The model used in the probit analysis of proportions is a generalized linear model with
G(ì)=Ö!1(ì/n), where Ö is the cumulative Normal distribution function, ö=1, and
V(y)=ì(1!ì/n), n being the number of trials of which y respond. The distribution is usually
assumed to be binomial. Example 3.5a shows such an analysis.

(b) The log-linear model for contingency tables is a generalized linear model with
G(ì)=log(ì), ö=1, and V(y)=ì. The distribution for the counts is usually stipulated to be Poisson
or multinomial. This is illustrated in Example 3.5.1.
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(c) Logistic regression models are very similar to models used in probit analysis, except that
they use the logit link function, G(ì)=log(ì/(n!ì)), rather than the probit. Data can often be
analysed in two equivalent forms: units may correspond to individuals that are tested, so that the
response is always 0 or 1; alternatively, groups of individuals with common values of
explanatory variables may be treated as units, so that each data value is the number responding
out of the number in the group. Example 3.5.2 shows an analysis using the latter form.

(d) Dilution assays are usually analysed by a model that has G(ì)=log(!log(1!ì/n)), ö=1, and
the binomial distribution. The logarithm of the dilution is included in the model as an offset
variable, similarly to the offset in Example 3.5.1, as described later in this subsection.

(e) The proportional-odds and proportional-hazards models for ordinal response variables can
be treated as generalized linear models with a multinomial distribution for the response. The link
functions for the two models are the logit as in (c) and the complementary-log-log as in (d); the
former is shown in Example 3.5.5.

(f) Inverse polynomial models are generalized linear models with G(ì)=1/ì. They are usually
used for response variables with constant coefficient of variation, V(y)=ì2, rather than constant
variance, so the distribution is taken to be gamma.

You can fit these and other models using the options of the MODEL directive. The
DISTRIBUTION option specifies the characteristic form of the variance function V(), according
to these rules:

Distribution Variance function, V

Normal 1
Poisson ì
Binomial ì (1!ì/n)
Bernoulli ì (1!ì)
Negative Binomial ì + ì2/k
Geometric ì + ì2

Multinomial ì (1!ì/n)
Exponential ì2

Gamma ì2

Inverse Normal ì3

If you use the binomial distribution, you must put the number of successes (or the number of
failures) into the response variate, and supply the total numbers (that is successes plus failures)
in another variate using the NBINOMIAL parameter of the MODEL directive. For example:

VARIATE [VALUES=3,5,6] Nsuccess
&       [VALUES=5,9,17] Ntrial
MODEL [DISTRIBUTION=binomial] Nsuccess; NBINOMIAL=Ntrial

Alternatively, if you have units for each individual, the total numbers will all be 1 and the above
statements would be replaced by:

VARIATE [VALUES=3(1),2(0), 5(1),4(0), 6(1),11(0)] Nsuccess
MODEL [DISTRIBUTION=binomial] Nsuccess; NBINOMIAL=1

This special case of the binomial is known as the Bernoulli distribution. So, instead you could
put

MODEL [DISTRIBUTION=bernoulli] Nsuccess

You must supply the parameter k for the negative binomial distribution using the

AGGREGATION option of the MODEL directive. The default value of k is set at 1, which
corresponds to the geometric distribution; k must be positive, and as it increases to infinity the
distribution approaches the Poisson distribution. To fit a negative binomial generalized linear
model, while estimating the aggregation parameter at the same time, you can use procedure
RNEGBINOMIAL (see Part 3 of the Genstat Reference Manual).

The multinomial distribution can be used only for ordinal response models (3.5.5). A list of
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response variates is required, one for each category of the response; the number of trials for each
unit is determined automatically by adding the values of each response.

When you use the Normal, gamma or inverse Normal distribution, the dispersion parameter
ö is usually unknown and is assumed to be constant over all observations. For the Normal
distribution this is the constant variance, usually written as ó2, and for the gamma distribution
it is the reciprocal of the index, written either as ó2 or as í!1. Sometimes, however, you may
know a value for the dispersion parameter. For example, you may know that the response
variable has a Normal distribution with a variance that you can estimate from previous
experiments or surveys. In this case, you can fix the value of the dispersion parameter using the
DISPERSION option of MODEL (3.1.1). The effect of this is that standard errors and other
measures of variability for the fit of the model will be based on the given fixed value rather than
on a value estimated from the data. The DFDISPERSION option allows you to specify the number
of degrees of freedom for a value specified by the DISPERSION option. If DFDISPERSION is not
set, the supplied dispersion is assumed to be known exactly.

The Poisson and binomial distributions do not have any dispersion parameter, so Genstat fixes
it at 1.0. This has the effect described above: the variance of an observation is a function only
of its mean, and so no estimator of variance is required from the observations as a whole. The
exponential distribution also has a dispersion parameter fixed at 1.0 (in fact it is a special case
of the gamma distribution with dispersion parameter set to 1.0).

You may sometimes want to include a dispersion parameter even though you are using the
binomial, multinomial or Poisson distributions. An example is the heterogeneity factor of probit
analysis: the distribution of the observations is taken to be "superbinomial", in the sense that the
variance is greater than what would be expected for a binomial distribution; specifically,
V(y)=èì(1!ì/n), where è is the heterogeneity factor (Finney 1971). This can be achieved by
setting the DISPERSION option to *:

MODEL [DISTRIBUTION=binomial; DISPERSION=*] Nsuccess;\
  NBINOMIAL=Ntrial

By default the dispersion parameter is estimated using the residual deviance but, if you have a
Poisson distribution, you can set option DMETHOD=Pearson to request the Pearson chi-square
statistic to be used instead.

Data for which a "superbinomial", "supermultinomial" or "superPoisson" distribution
incorporating such a heterogeneity factor are needed are called overdispersed, or underdispersed
if è is less than 1; see McCullagh & Nelder (1989) for more details.

Using a heterogeneity factor means formally that the method of analysis is no longer based
on maximum likelihood, because there is no probability distribution in the exponential family
to provide a likelihood to be maximized. Instead, the method requires a quasi-likelihood, which
relies solely on the description of the relationship between variance and mean. However, the
model can still be analysed and interpreted in the same way as with a given distribution; see
McCullagh & Nelder (1989).

The link function is specified by the LINK option of the MODEL directive. The link functions
available in Genstat are as follows:

Link function G(ì) G!1(ç)
identity ì ç
logarithm log(ì) exp(ç)
logit log(ì/(n!ì)) n exp(ç)/(1+exp(ç))
reciprocal 1/ì 1/ç
power ìpower ç(1/power)

square root ì1/2 ç2

probit Ö!1(ì/n) n×Ö(ç)
complementary log-log log(!log(1!ì/n)) n (1!exp(!exp(ç)))
log-ratio log(ì/(ì+k)) k×exp(ç)/(1!exp(ç))
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In the original definition the probit was equal to the Normal equivalent deviate Ö!1 plus five

but, for simplicity, in Genstat the five is omitted. Similarly, the logit transformation is sometimes
defined with a multiplier of ½, but this too is omitted in Genstat.
 By default, the power setting uses the exponent !2; you can specify other values using the
EXPONENT option, for example:

MODEL [DISTRIBUTION=gamma; LINK=power; EXPONENT=1.5] Y

The parameter k in the log-ratio link can be set using the KLOGRATIO option. The default value

is taken from the AGGREGATION option.
For each of the available distributions, one of the links is known as the canonical link. This

has special properties. In particular, a model with its canonical link always provides a unique set
of parameter estimates, whereas with other models this may not be so. There are often practical
scientific reasons for using the canonical link, but there may sometimes also be very good
reasons for using a non-canonical link. If you do not set the LINK option, the default is the
canonical link of the chosen distribution:

Normal Identity

Poisson Log
Binomial Logit
Bernoulli Logit
Negative Binomial Log-ratio
Geometric Log-ratio
Exponential Reciprocal
Gamma Reciprocal
Inverse Normal Power, with exponent !2
Multinomial Logit

The MODEL directive also allows you to specify your own distributions or link functions or
both. There is an example in 3.5.4.

When the binomial distribution is used, it is usually natural to choose the logit, probit or
complementary-log-log link function; and vice versa. If another link is chosen with the binomial
distribution, it is assumed to relate the expected proportion of responses (rather than the expected
number of responses) to the linear predictor. Similarly, if one of the above three links is chosen
with a distribution other than the binomial, the number of trials is assumed to be 1.

Only the logit or complementary-log-log links can be used with the multinomial distribution.
An offset variable is a variable that appears in the linear predictor without a parameter. It

provides for each observation a fixed offset, oi say, from the estimated constant:
G(ìi) = oi + á + Ó{âj xji}

You set an offset by the OFFSET option of the MODEL directive. Offsets arise naturally in the
standard analysis for dilution assay, involving a complementary-log-log link function. The model
then takes the form:

E(yi) = ni exp(!di exp(á)) = ni exp(!exp(log(di)+á))
where yi is the number of positives out of ni samples tested at dilution di, and á is the unknown
concentration. So the logarithm of the dilution is an offset. This model contains no explanatory
variables other than the dilution, but the concentration can sometimes be expressed as a linear
function of variables such as time. Dilution assays can conveniently be analysed in Genstat using
the DILUTION procedure.

Offset variables also occur naturally in log-linear models for rates where each cell has a
different exposure time. Example 3.5.1 shows an analysis of data of this kind where the offset
adjusts for the different lengths of service of some ships. Notice that the table of estimates has
an extra column, giving the antilogarithms of the estimates. These represent multiplicative
effects on the natural scale. The column of antilogarithms is produced for generalized linear
models with logit link as well as with the log link. With the logit, they represent multiplicative



260 3  Regression analysis

effects on the odds ratio.

Example 3.5.1

   2  " Analysis of the damage caused by waves to forward sections of
  -3    cargo-carrying ships. The data, from McCullagh & Nelder (1989) p.204,
  -4    are counts of damage incidents for each combination of three risk
  -5    factors: the type of ship, the year of construction, and the
  -6    period of operation."
   7  UNITS [NVALUES=40]
   8  FACTOR [LABELS=!T(A,B,C,D,E)] Type
   9  & [LABELS=!T('1960-64','1965-69','1970-74','1975-79')] Construction
  10  & [LABELS=!T('1960-74','1975-79')] Operation
  11  GENERATE Type,Construction,Operation
  12  " Read the number of months service and number of damage incidents."
  13  OPEN '%GENDIR%/Examples/GuidePart2/Ship.dat'; CHANNEL=2
  14  READ [CHANNEL=2] Service,Damage

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Service    0.0000      4674     44882        40         5    Skew
        Damage    0.0000     10.17     58.00        40         5    Skew

  15  CLOSE 2
  16  " Use the log of the number of months of service as an offset in the
 -17    model; CALCULATE turns zeroes into missing values, which will then
 -18    be excluded by TERMS as required for a correct analysis."
  19  CALCULATE Logservice = LOG(Service)

******** Warning 18, code CA 7, statement 1 on line 19

Command: CALCULATE Logservice = LOG(Service)
Invalid value for argument of function.
The first argument of the LOG function in unit  34 has the value 0.0000

  20  MODEL [DISTRIBUTION=poisson; LINK=log; OFFSET=Logservice] Damage
  21  TERMS [FACTORIAL=2] Type * Construction * Operation
  22  " Fit the main effects."
  23  FIT [FPROB=yes; TPROB=yes] Type + Construction + Operation

Regression analysis
===================

 Response variate: Damage
     Distribution: Poisson
    Link function: Log
   Offset variate: Logservice
     Fitted terms: Constant + Type + Construction + Operation

Summary of analysis
-------------------

                                        mean  deviance approx
Source        d.f.     deviance     deviance     ratio chi pr
Regression       8       107.63       13.454     13.45  <.001
Residual        25        38.70        1.548
Total           33       146.33        4.434

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.
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* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           21         6.00        3.01
           22         2.00       -2.29
           30        11.00        2.30
           36         7.00        2.15

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
            9        39.00        0.70
           11        58.00        0.64
           12        53.00        0.65
           14        44.00        0.59
           16        18.00        0.56
           38        12.00        0.56

Estimates of parameters
-----------------------

                                                                  antilog of
Parameter                  estimate         s.e.      t(*)  t pr.   estimate
Constant                     -6.406        0.217    -29.46  <.001   0.001652
Type B                       -0.543        0.178     -3.06  0.002     0.5808
Type C                       -0.687        0.329     -2.09  0.036     0.5029
Type D                       -0.076        0.291     -0.26  0.794     0.9269
Type E                        0.326        0.236      1.38  0.167      1.385
Construction 1965-69          0.697        0.150      4.66  <.001      2.008
Construction 1970-74          0.818        0.170      4.82  <.001      2.267
Construction 1975-79          0.453        0.233      1.94  0.052      1.574
Operation 1975-79             0.384        0.118      3.25  0.001      1.469

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                Type  A
        Construction  1960-64
           Operation  1960-74

  24  " Try adding the two-factor interactions."
  25  TRY [PRINT=accumulated; FPROB=yes]\
  26      Type.Construction + Type.Operation +  Construction.Operation

Regression analysis
===================

Accumulated analysis of deviance
--------------------------------

                                                         mean  deviance approx
Change                         d.f.     deviance     deviance     ratio chi pr
+ Type
+ Construction
+ Operation                       8      107.633       13.454     13.45  <.001
+ Type.Construction              12       24.108        2.009      2.01  0.020
Residual                         13       14.587        1.122

Total                            33      146.328        4.434

* MESSAGE: ratios are based on dispersion parameter with value 1.

Regression analysis
===================
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Accumulated analysis of deviance
--------------------------------

                                                         mean  deviance approx
Change                         d.f.     deviance     deviance     ratio chi pr
+ Type
+ Construction
+ Operation                       8      107.633       13.454     13.45  <.001
+ Type.Operation                  4        4.939        1.235      1.23  0.294
Residual                         21       33.756        1.607

Total                            33      146.328        4.434

* MESSAGE: ratios are based on dispersion parameter with value 1.

* MESSAGE: term Construction.Operation cannot be fully included in the model
because 1 parameter is aliased with terms already in the model.

(Construction 1975-79 .Operation 1975-79) = (Construction 1975-79)

Regression analysis
===================

Accumulated analysis of deviance
--------------------------------

                                                         mean  deviance approx
Change                         d.f.     deviance     deviance     ratio chi pr
+ Type
+ Construction
+ Operation                       8      107.633       13.454     13.45  <.001
+ Construction.Operation          2        1.787        0.894      0.89  0.409
Residual                         23       36.908        1.605

Total                            33      146.328        4.434

* MESSAGE: ratios are based on dispersion parameter with value 1.

  27  " Perform screening tests for the terms in the model."
  28  RSCREEN [FACTORIAL=2] Type * Construction * Operation

Screening of terms
==================

 Response variate: Damage
     Distribution: Poisson
    Link function: Log
 Free formula: Type*Construction*Operation

* MESSAGE: P-values are from likelihood ratio approximate chi-square tests
           scaled by the dispersion parameter with value 1

* MESSAGE: term Construction.Operation cannot be fully included in the model
because 1 parameter is aliased with terms already in the model.

(Construction 1975-79 .Operation 1975-79) = (Construction 1975-79)

Pooled accumulated analysis of variance or deviance
---------------------------------------------------

pooled terms                       df    deviance     P-value
Terms with 1 element                8      107.63      0.0000
Terms with 2 elements              18       31.84      0.0230
Residual                            7        6.86      0.4439
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Significance indications for marginal and conditional tests
-----------------------------------------------------------

Coding: ~ .05<p<=.10; * .01<p<=.05; ** .001<p<=.01; *** p<=.001
Chance frequencies of symbols in 12 tests are:

       ~       *      **     ***
     0.6    0.48   0.108   0.012

                  term     mstar     cstar
                  Type       ***       ***
          Construction       ***       ***
             Operation       ***        **

                  term     mstar     cstar
     Type.Construction         *         *
        Type.Operation
Construction.Operation

At the end of the example RSCREEN (3.2.9) is used to perform screening tests for the various
terms in the model. The marginal tests (the column headed mstar) show the effect of adding
each term to the simplest possible model: so Type is added to a model containing only the
constant, while Type.Construction is added to a model containing the constant, Type and
Construction. The conditional tests (the column headed cstar) show the effect of adding
each term to the most complex possible model: so Type is added to a model containing the
constant, Construction, Operation and Construction.Operation, while
Type.Construction is added to a model containing every other term. The degree of non-
orthogonality between the model terms is not too serious, so the results of the two tests are
similar to each other and to the results from the TRY directive.

3.5.2 The deviance

You can assess how well a linear regression fits by doing an analysis of variance. Based on the
assumption that the residuals have independent Normal distributions with equal variances, the
variance ratio (mean square due to the regression divided by the residual mean square) has an
F distribution.

With generalized linear models, there is no similarly simple exact distributional property.
However, you can get approximate assessments of the quality of the fit from a statistic called the
scaled deviance. This is defined as minus twice the log-likelihood ratio between the model you
have fitted and a full model that explains all the variation in the data. The scaled deviance has
approximately a ÷2

d distribution, d being the number of residual degrees of freedom. The
approximation is better for large numbers of observations than for small numbers, and is poor
when there are many extreme observations (such as zeroes for the Poisson distribution). In
particular, in the special case of a binary response variable (with values 1 and 0), the scaled
deviance is absolutely uninformative about the fit of the model.

The scaled deviance is a function of the dispersion parameter, and so its distribution depends
also on any estimate of that parameter. Usually you would obtain the estimate from a model that
you believe explains all systematic variation ! a maximal model, as in the analysis of variance
for linear regression. You can assess the importance of a term in any generalized linear model
by considering the difference between the scaled deviances of that model and the model
excluding the term. The difference in scaled deviances also has an approximate ÷2

t distribution,
where t is the number of degrees of freedom of the term; in fact this approximation is better than
that for the scaled deviance itself.

Alternatively, you can consider ratios of mean scaled deviances between competing models,
one of which is nested inside the other. (The mean scaled deviance is the scaled deviance divided
by the corresponding number of degrees of freedom.) The resulting ratios do not involve the
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dispersion parameter. Such a ratio has approximately an F distribution ! exact for linear
regression models with Normal errors.

Genstat reports the deviance of the data for each type of model, which is equivalent to the
scaled deviance multiplied by the dispersion parameter. The deviance is otherwise known as the
log-likelihood ratio statistic.

You can summarize the fit of a sequence of nested models by an analysis of deviance, which
you interpret in much the same way as an analysis of variance (but do not forget that the
distributions have only approximate ÷2 distributions).

Here are the formulae for the deviance for each distribution; the ith response is represented
by yi, and the corresponding fitted value by fi:

Normal Ó(yi!fi)
2

Poisson 2 Ó{yi log(yi/fi)!(yi!fi)}
Binomial 2 Ó{yi log(yi/fi)+(ni!yi) log((ni!yi)/(ni!fi))}
Bernoulli 2 Ó{yi log(yi/fi)+(1!yi) log((1!yi)/(1!fi))}
Negative Binomial 2 Ó{(yi+k) log((fi+k)/(yi+k)) + yi log(yi/fi)}
Geometric 2 Ó{(yi+1) log((fi+1)/(yi+1)) + yi log(yi/fi)}
Exponential 2 Ó{(yi!fi)/fi!log(yi/fi)}
Gamma 2 Ó{(yi!fi)/fi!log(yi/fi)}
Inverse Normal Ó{(yi!fi)

2/(yi fi
2)}

Multinomial 2 ÓÓ{yij log(yij/fij)}
Sometimes parameter estimates cannot be obtained. The commonest cause with models using

the binomial or Poisson distribution is the presence of observations at the extremes (0 for
Poisson, 0 or n for binomial). One or more of the parameters may then need to be infinite to
maximize the likelihood: in practice, approximate convergence will usually be achieved with the
parameters large but finite (the meaning of "large" being dependent on the link function).

This is illustrated in Example 3.5.2: all subjects at level 1 of the factor Li responded
positively (that is, they were disease-free for three years). Hence, on the logit scale which is the
default link function for the binomial distribution, the difference between the two levels is
infinite. Genstat achieves convergence here, so the only indications of the problem are the large
estimates and standard errors for the constant and "Li 2". The PREDICT statement shows what
is happening: all the predicted proportions at level 1 of Li are almost exactly 1.0.

Example 3.5.2

   2  " Logistic regression including a factor with a 100% response rate.
  -3    Data from Goorin et al. (1987).
  -4    46 patients were studied, to determine predictors of non-metastatic
  -5    sarcoma: this analysis uses Li (Lymphocytic infiltration), Sex,
  -6    and Aop (any osteoid pathology). The response variable is the number
  -7    disease free for three years."
   8  FACTOR [NVALUES=8; LEVELS=2] Li,Sex,Aop
   9  GENERATE Li,Sex,Aop
  10  VARIATE [VALUES=3,2,4,1,5,3,5,6] Nfree
  11  &       [VALUES=3,2,4,1,5,5,9,17] Nstudy
  12  MODEL [DISTRIBUTION=binomial] Nfree; NBINOMIAL=Nstudy
  13  TERMS Sex,Aop,Li
  14  ADD [PRINT=*] Sex
  15  & Aop
  16  & [PRINT=estimates,accumulated; FPROB=yes; TPROB=yes] Li

Regression analysis
===================
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Estimates of parameters
-----------------------

                                                      antilog of
Parameter      estimate         s.e.      t(*)  t pr.   estimate
Constant           13.9         90.4      0.15  0.878   1060002.
Sex 2            -1.636        0.912     -1.79  0.073     0.1947
Aop 2            -1.220        0.771     -1.58  0.114     0.2951
Li 2              -11.8         90.4     -0.13  0.896  7.764E-06

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                 Sex  1
                 Aop  1
                  Li  1

Accumulated analysis of deviance
--------------------------------

                                             mean  deviance approx
Change             d.f.     deviance     deviance     ratio chi pr
+ Sex                 1       5.8795       5.8795      5.88  0.015
+ Aop                 1       5.0105       5.0105      5.01  0.025
+ Li                  1       6.9148       6.9148      6.91  0.009
Residual              4       1.6279       0.4070

Total                 7      19.4327       2.7761

* MESSAGE: ratios are based on dispersion parameter with value 1.

  17  PREDICT Sex,Aop,Li

Predictions from regression model
---------------------------------

These predictions are estimated mean proportions, formed on the scale of the
response variable, corresponding to one binomial trial.

The predictions have been formed only for those combinations of factor levels
for which means can be estimated without involving aliased parameters.

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

Response variate: Nfree

                        Li           1                       2
                            Prediction        s.e.  Prediction        s.e.
          Sex          Aop
            1            1      1.0000     0.00009      0.8917     0.09345
                         2      1.0000     0.00029      0.7083     0.17530
            2            1      1.0000     0.00044      0.6157     0.15173
                         2      1.0000     0.00148      0.3211     0.10912

* MESSAGE: s.e's, variances and lsd's are approximate, since the model is
not linear.

* MESSAGE: s.e's are based on dispersion parameter with value 1

Occasionally, the iterative process may converge only very slowly when a parameter needs to
be infinite: you can increase the limit on the number of cycles with the RCYCLE directive (3.5.4),
though this may not always help. Most of the results of the analysis are usually reliable, with the
exception of the affected parameter estimates and standard errors, and also the leverages. If a
parameter representing the reference level of a factor needs to be infinite, the side-effects on
other parameters can be reduced to choosing another level to be the reference level (3.3.2). Very
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rarely you may even get divergence; this can also happen when the initial guesses for the fitted
values are very bad, and the deviance appears to increase after the first cycle. But usually in such
cases, the model would not fit the data satisfactorily anyway.

Failure to find a solution may occur when estimates from a fit take impossible values. For
example, the gamma distribution is defined in the range (0, 4), but some sets of data may
produce an estimated mean that is negative. In such cases, you should consider a different link,
or try a new fit omitting those explanatory variables whose parameters were estimated as
negative.

3.5.3 Modifications to output and the RKEEP and PREDICT directives

Some aspects of the results of fitting generalized linear models differ from those described for
linear regression, because of the iterative process that is involved. We call any generalized linear
model other than linear regression an iterative model.

Genstat will analyse only one response variate if the model is iterative, except for models for
ordinal response where several response variates are involved in each set of data (3.5.5). If the
Y parameter of the MODEL statement contains more than one variate, Genstat will analyse only
the first. This is because the fitting process involves weights that depend on the fitted values,
which would thus differ from response variate to response variate (see ITERATIVEWEIGHTS
below).

The SELECTION option of the fitting directives and of RDISPLAY controls which statistics
accompany the summary of analysis. The default for the Normal distribution provides the
percentage variance accounted for together with the standard error of the observations. With the
gamma distribution, the default setting is cv%, which displays the percentage coefficient of
variation of the observations (equal to the square root of the dispersion parameter). For other
distributions, the default setting is dispersion, which displays the estimate of the dispersion
parameter or the assumed value if the dispersion is fixed, as with the Poisson, binomial,
Bernoulli and exponential distributions. SELECTION also has two settings, %meandeviance and
%deviance, that are specifically for generalized linear models. These provide analogous
summaries, in terms of deviance, to the percentage variance and sum of squares accounted for
by linear models (and settings %variance and %ss are interpreted as requesting
%meandeviance and %deviance, respectively, if the distribution is not Normal).

In generalized linear models with the log or logit link function, an extra column is included
in the table of parameter estimates, produced by the estimates setting of the PRINT option.
This gives the antilogarithm of the estimates, which can be then interpreted as multiplicative
effects on the scale of the response or on the odds ratio scale respectively.

The standard errors of the parameter estimates are only approximate for iterative models; the
same applies to the t-statistics, and to the correlations produced by the correlations setting.
The TPROBABILITY option can still be used to request probabilities, but you should bear in mind
that the adequacy of the approximation depends on the model and the context, and should use
the values only as a guide. You can get a better test of the corresponding parameter by dropping
it from the model and then assessing the change in the deviance.

Genstat displays leverages with the fittedvalues setting of the PRINT option and allows
them to be stored by the LEVERAGE parameter of the RKEEP directive. With iterative models, the
formula for the ith leverage is:

li = ui wi {X(XNUWX)!1XN}ii , i = 1...N
where U is a diagonal matrix consisting of the iterative weights ui (defined below). These values
are also used in the standardization of residuals, according to the formula given in 3.1.1.
However, no leverages are formed for ordinal response models, because there is no analogous
quantity for assessing influence in these effectively multivariate generalized linear models; the
standardized residuals, therefore, contain no adjustment for relative influence.

By default, the residuals are deviance residuals, as described in 3.1.1: each residual is the
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signed square root of the contribution to the deviance. (See 3.5.2 for the definition of deviance
for each distribution.) The standardization of the residuals uses the leverages, li, described above,
and the weights, wi, if specified; by default, if the WEIGHTS option of MODEL is not set the
weights are 1.0. The ith residual is

ri = sign(yi!fi) %{wi di /(s
2(1!li))}

where di is the contribution to the deviance from unit i, and s2 is the estimated or fixed
dispersion. For example, the deviance residuals for a model with the Poisson distribution are
given by:

ri = sign(yi!fi) %{2 (yi log(yi/fi) ! (yi!fi)) / (1!li)}
If you set the RMETHOD option of the MODEL directive to Pearson, Genstat forms the residuals

by adjusting the ordinary residuals for their estimated variance:
ri = (yi!fi) %{wi/(V(fi)s

2(1!li))}
With the binomial distribution, the table produced by the fittedvalues setting includes a

column for the binomial totals specified by the NBINOMIAL parameter of the MODEL directive.
For the multinomial distribution, a separate table is printed for each category.

The accumulated setting of the PRINT option produces an accumulated analysis of deviance
for iterative models, just as for linear models except that all contributions from one statement
are pooled. The POOL option of directives like FIT, has no effect with iterative models. Thus you
cannot calculate the change in deviance attributable to each individual term unless you add the
terms into the model individually. For example, these statements would provide a full analysis
of deviance for two factors A and B and their interaction:

TERMS A*B
ADD [PRINT=*] A
& B
& [PRINT=accumulated] A.B

The alternative is to use procedure FITINDIVIDUALLY, which will automatically fit a regression
(or generalized linear) model one term at a time. It is used exactly like FIT. It must be preceded
by a MODEL statement, and can be followed by RCHECK, RDISPLAY, RGRAPH, RKEEP, ADD, DROP,
SWITCH and so on. It has a TERMS parameter to specify the terms to be fitted, like the parameter
of FIT. It also has options PRINT, CONSTANT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE,
FPROBABILITY, TPROBABILITY, SELECTION just like those of FIT. So we could equivalently
obtain a full analysis of deviance for factors A and B and their interaction by

FITINDIVIDUALLY [PRINT=accumulated] A.B

The monitoring setting of the PRINT option provides a report on the progress of the fit.

Example 3.5.3 shows how convergence was achieved in Example 3.5.2 above.

Example 3.5.3

  18  FIT [PRINT=monitoring] Sex,Aop,Li

Convergence monitoring
----------------------

Scoring cycle  Deviance    Current parameters
1             12.618057    -0.695419    -0.801977    -0.470358
2             4.2247979     -1.22439     -1.03232     -1.58180
3             2.4242137     -1.54368     -1.18072     -2.66966
4             1.9038448     -1.62716     -1.21515     -3.72636
5             1.7275255     -1.63560     -1.21979     -4.75119
6             1.6642328     -1.63614     -1.22030     -5.76057
7             1.6411534     -1.63620     -1.22037     -6.76404
8             1.6326904     -1.63620     -1.22038     -7.76531
9             1.6295808     -1.63620     -1.22038     -8.76578
10            1.6284373     -1.63620     -1.22038     -9.76595
11            1.6280167     -1.63620     -1.22038     -10.7660
12            1.6278620     -1.63620     -1.22038     -11.7660
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Convergence in scoring loop at cycle 12.

The criteria of the STEP directive (3.2.7) use the residual deviance from the model rather than
the residual sum of squares as used for a linear model.

Three of the parameters of the RKEEP directive are relevant only for saving results of iterative
models. The LINEARPREDICTOR parameter lets you save the linear predictor; that is

pi = a + oi + Ó{bj xij} , i = 1...N
where a and bj are estimates of á and âj. The values of the linear predictor are the same as the
fitted values if the link function is the identity function. You can save standard errors for the
linear predictor using the SELINEARPREDICTOR parameter.

The ITERATIVEWEIGHTS parameter saves a variate containing the iterative weights used in
the last cycle of the iteration. The weight for unit i is

{ V( fi ) }
!1 { piN }

!2

where V() is the variance function (3.5.1) and piN is the derivative of the linear predictor with
respect to the mean. The iterative weights do not contain any contribution from the weights that
can be specified whether or not the model is iterative by the WEIGHTS option of the MODEL
directive. The iterative weights are 1.0 for ordinary linear regression.

The YADJUSTED parameter saves the adjusted response variate Z that was used in the last
cycle of the iteration:

zi = pi + (yi!fi)piN
With the identity link function this is the same as the response variate.

The Pearson chi-square statistic can be saved using the PEARSONCHI parameter of RKEEP. It
is defined as

Ó{ (yj !fi)
2 / V( fi ) } 

and can be used as an alternative to the deviance for testing goodness of fit; see Nelder &
McCullagh (1989) page 37.

The EXIT parameter of RKEEP provides a code that indicates the success or type of failure
when fitting a generalized linear model (codes for nonlinear models are given in 3.7.4).

 0  Successful fitting

 8  Data incompatible with model
 9  Predicted mean or linear predictor out of range
10  Invalid calculation for calculated link or distribution
11  All units have been excluded from the analysis
12  Iterative process has diverged
13  Failure due to lack of space or data access

With a generalized linear model, the EXIT code is usually the only information that you can save
if the fit has been unsuccessful. Howevber, if you set option IGNOREFAILURE=yes, RKEEP will
save any information that may be available. (You may thus, for example, be able to discover
more about the cause of the failure.)

The DISPERSION and DMETHOD options of RKEEP are also relevant only for generalized linear
models. They operate in the same way as those options of MODEL (3.1.1), and allow you to
change the way in which the deviance is calculated for the quantities saved by RKEEP.

The PREDICT directive forms summaries of the fit of an iterative model as for a linear model.
However, note that averaging is done by default on the scale of the original response variable,
not on the scale transformed by the link function. In other words, linear predictors are formed
for all the combinations of factor levels and variate values specified by PREDICT, and then
transformed by the link function back to the natural scale. This back transformation may be
useful when you are reporting results, since the tables from PREDICT can then be interpreted as
natural averages of means predicted by the fitted model. You can set option
BACKTRANSFORM=none if you would prefer the averaging to be done on the scale of the linear
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predictor; PREDICT will then form averages and report predictions on the transformed scale. You
could then use the BACKTRANSFORM procedure to transform these back onto the natural scale.

The NBINOMIAL option of PREDICT is also relevant only to generalized linear models,
allowing you to specify a total number of trials to use when forming predictions from a binomial
distribution. Genstat then predicts the number of successful trials. The default for NBINOMIAL
is 1, which gives the predicted proportion of successful trials.

The OFFSET option of PREDICT directive is most likely to be used when forming predictions
from a generalized linear model. Bu default, predictions are made at the mean of the offset
variate, but you can set the OFFSET option to any value to produce predictions at that value.
Thus, for example, the contribution from the offset can be excluded altogether by setting
OFFSET=0.
PREDICT calculates the standard errors of predictions from iterative models by using first-

order approximations that allow for the effect of the link function. Thus you should interpret
them only as a rough guide to the variability of individual predictions.

3.5.4 The RCYCLE directive

RCYCLE directive
Controls iterative fitting of generalized linear, generalized additive and nonlinear models, and
specifies parameters, bounds etc for nonlinear models.

Options
MAXCYCLE = scalars Maximum number of iterations for Fisher-scoring

algorithm (used in generalized linear models), back-
fitting algorithm (used in additive models) and nonlinear
algorithms; single setting implies the same limit for all;
default 15, 15, 30

TOLERANCE = scalar or variate Scalar or first unit of a variate defines the convergence
criterion for the relative change in deviance and, if
required, the second element of a variate defines the
criterion for convergence to a zero deviance; default
!(0.0001,1.0E!11)

FITTEDVALUES = variate Initial fitted values for generalized linear model; default
*

METHOD = string token Algorithm for fitting nonlinear model (GaussNewton,
NewtonRaphson, FletcherPowell); default Gaus, but
Newt for scalar minimization

LINEARPARAMETERS = scalars Scalars to hold current values of linear parameters used
in nonlinear model, for reference within model
calculations

Parameters
PARAMETER = scalars Nonlinear parameters in the model
LOWER = scalars Lower bound for each parameter
UPPER = scalars Upper bound for each parameter
STEPLENGTH = scalars Initial step length for each parameter
INITIAL = scalars Initial value for each parameter

The parameters of the RCYCLE directive are ignored when generalized linear models are fitted;
see 3.7.6 and 3.8.1 for their use in nonlinear models.

The MAXCYCLE option allows you to change the limit on the number of cycles in the iterative
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estimation process. Usually, the algorithm converges in four or five cycles, but when there are
many extreme observations more cycles may be needed; however, the resulting fit is then often
uninformative.

The TOLERANCE option can be set to a scalar or a variate to control the criterion for
convergence in generalized linear and generalized additive models. A scalar or the first unit of
a variate defines the convergence criterion for the relative change in deviance (default 0.0001).
The iteration stops when the absolute change in deviance in successive cycles is less than the
tolerance multiplied by the current value of the deviance. The second element of a variate defines
the criterion for convergence to a zero deviance. If TOLERANCE is unset, or if it is set to a scalar,
the default criterion for zero deviance is 1.0E!11.

When additive terms are included in the model (3.4.3, 3.4.4), Genstat fits the resulting
generalized additive model by nested iteration (Lane & Hastie 1992). This means that at each
cycle of the iterative fit required by the presence of a non-identity link function or non-Normal
distribution or both, the iterative search described in 3.4.3 will take place. This can, of course,
be a time-consuming operation, particularly if the number of units is large. Nested iterations also
take place when you are fitting generalized nonlinear models (3.5.8); these extend the ordinary
generalized linear models by the inclusion of nonlinear parameters into model for the linear
predictor. These iterative processes are all controlled by the settings of MAXCYCLE and
TOLERANCE.

The algorithm has to start by estimating an initial set of fitted values. Genstat usually obtains
these by a simple transformation of the observed responses. It may be that better estimates are
available, for example from a previously fitted model; if so, you can supply these by the
FITTEDVALUES option.

The METHOD option is relevant only for nonlinear models, as described in 3.8.1.

3.5.5 Models for multinomial and ordinal responses

The models in this section may be relevant when a response variable can take one out of a fixed
set of possible values. A response variable of this kind is called
polytomous, and the possible values are called response categories.

When the categories are purely nominal ! that is, with no concept of an ordering ! it is natural
to assume that the data are allocated to the categories according to a multinomial distribution.
This can be fitted using the FITMULTINOMIAL procedure. The counts must all be put into a
single y-variate, and a "response" factor must be defined (with one level for each category) to
record the category shown by each observation. The procedure has a RESPONSEFACTOR option
to specify which is the response factor, and a CLASSIFICATION option that can be used to
specify the explanatory factors that classify the subjects. The model to be fitted is specified by
the TERMS parameter, and the factors in that model provide the default for CLASSIFICATION
if that is not set. The other options, PRINT, RESPONSEFACTOR, CLASSIFICATION, FACTORIAL,
POOL, DENOMINATOR, NOMESSAGE, FPROBABILITY, TPROBABILITY and SELECTION operate
in the same way as in FIT (3.1.2). The model is fitted with the ordinary generalized linear
models commands as it if were a log-linear model, by using the fact that a multinomial
distribution can be generated by taking the sum of several Poisson variables (one for each
outcome of the multinomial), and then constraining their sum to be equal to the multinomial total
(see McCullagh & Nelder 1989, or any book on probability distributions).

So FITMULTINOMIAL first fits a model defined as all factorial combinations of the
CLASSIFICATION factors. This imposes the constraint that the Poisson variables sum to the
totals of the multinomial distribution. The effects of these terms assess how the design has been
set up ! i.e. how the subjects have been allocated to the treatments ! but they have no
information on the effects of the treatments on the response.

It then fits RESPONSEFACTOR. This represents the overall distribution of the response
categories across the subjects, and is analogous to the grand mean in an ordinary analysis. (This
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must be fitted, and so FITMULTINOMIAL has no CONSTANT option.) Finally it fits the
interactions of the terms in TERMS with RESPONSEFACTOR. These show how the distribution of
subjects to response categories is affected by the treatment terms ! which is the main interest
of the analysis. 

Alternatively, if the categories are on an interval scale, so that differences between categories
can be compared quantitatively, the response variable can be analysed as for a continuous
variable, using linear regression or some generalized linear model with an appropriate
distribution.

The main topic of this section, however, is the analysis of ordinal data. With ordinal
categories, there is a known ordering of the categories but no concept of distance between them.
Genstat provides two possible models for the relationship between explanatory variables and the
division into categories. These are both cumulative models, describing the relationship between
numbers of observations up to a particular category and the explanatory values. They are
described in Chapter 5 of McCullagh & Nelder (1989), where they are called the proportional-
odds model and the proportional-hazards model. They have the following form:

G(ãij) = èj ! Ó{âi xij}
where G() is the logit or complementary-log-log link function, respectively, and ãij is the
probability that the response for unit i is in category j or lower. The quantities èj are referred to
as the cut-points, and provide a quantification of the difference between successive categories
on the scale of the chosen link function. It is conventional to have the minus sign in this model,
rather than the plus sign that would be expected in a multiple linear model: this convention
ensures that as the linear predictor increases, the probability of the response lying in the higher
categories also increases.

Example 3.5.5 uses the proportional odds model. Note that it is necessary to set the option
YRELATION=cumulative in the MODEL statement, as well as DISTRIBUTION=multinomial;
this is to allow for further models using the multinomial distribution in the future.

Example 3.5.5

   2  " Analysis of a tasting experiment with ordinal response categories.
  -3    Data from McCullagh & Nelder (1989) p.175.
  -4    Four types of cheese were rated by 52 panellists on a nine-point
  -5    'hedonic scale' for taste, ranging from 'strong dislike' (1) to
  -6    'excellent taste' (9)."
   7  READ [PRINT=data] Taste[1...9]

   8   0  0  1  7  8  8 19  8  1
   9   6  9 12 11  7  6  1  0  0
  10   1  1  6  8 23  7  5  1  0
  11   0  0  0  1  3  7 14 16 11 :
  12  FACTOR [LABELS=!t(A,B,C,D); VALUES=1...4] Cheese
  13  " Specify the proportional-odds model (LINK=logit is the default)
 -14    and ask for Pearson residuals rather than deviance residuals,
 -15    since these are reported by McCullagh and Nelder."
  16  MODEL [DISTRIBUTION=multinomial; YRELATION=cumulative; \
  17        RMETHOD=Pearson] Taste[]
  18  " Use full parameterization to get differences with Cheese D, as in
 -19    McCullagh & Nelder, rather than with Cheese A."
  20  TERMS [FULL=yes] Cheese
  21  FIT   [FPROB=yes; TPROB=yes] Cheese

Regression analysis
===================

Response variates: ordinal model for categories defined by
                   Taste[1], Taste[2], Taste[3], Taste[4], Taste[5],
                   Taste[6], Taste[7], Taste[8], Taste[9]
     Distribution: Multinomial
    Link function: Logit
     Fitted terms: Cheese
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Summary of analysis
-------------------

                                        mean  deviance approx
Source        d.f.     deviance     deviance     ratio chi pr
Regression       3       148.45      49.4846     49.48  <.001
Residual        21        20.31       0.9671
Total           24       168.76       7.0318

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

Response variate: Taste[4]

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
            1         7.00        2.23

Response variate: Taste[6]

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
            2         6.00        2.30

Estimates of parameters
-----------------------

                                                           antilog of
Parameter           estimate         s.e.      t(*)  t pr.   estimate
Cut-point 0/1         -7.080        0.562    -12.59  <.001  0.0008416
Cut-point 1/2         -6.025        0.475    -12.67  <.001   0.002418
Cut-point 2/3         -4.925        0.427    -11.53  <.001   0.007260
Cut-point 3/4         -3.857        0.390     -9.88  <.001    0.02114
Cut-point 4/5         -2.521        0.343     -7.35  <.001    0.08042
Cut-point 5/6         -1.569        0.309     -5.08  <.001     0.2083
Cut-point 6/7         -0.067        0.266     -0.25  0.801     0.9353
Cut-point 7/8          1.493        0.331      4.51  <.001      4.450
Cheese A              -1.613        0.378     -4.27  <.001     0.1993
Cheese B              -4.965        0.474    -10.47  <.001   0.006981
Cheese C              -3.323        0.425     -7.82  <.001    0.03606
Cheese D                   0            *         *      *      1.000

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

3.5.6 Non-standard distributions and link functions

If you want a non-standard distribution for the response variable or a non-standard link function,
you can specify your own. It will then be up to you to ensure that the iterative process is suitable
and to decide how to interpret the resulting fit (if convergence is achieved). Formally, the
methods for generalized linear models are suitable only for distributions in the exponential
family, and for a monotonic differentiable link function.

To specify your own distribution, you need to set DISTRIBUTION=calculated in the MODEL
statement. You must then supply expression structures with the DCALCULATION option to
calculate the deviance and the variance function for each unit of the response variate, using the
current values of the fitted-values variate. You must also set the FITTEDVALUES, DEVIANCE and
VFUNCTION parameters of the MODEL statement to indicate which identifiers are used to
represent these in the expressions.

For example, the following statements specify the calculations for the gamma distribution
(though it would be more efficient of course just to set DISTRIBUTION=gamma). The deviance
is calculated by expression Dc[1] and placed into the scalar D, and the variance function V is
defined by expression Dc[2].
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EXPRESSION Dc[1]; VALUE=!e(D=2*((Y-F)/F-log(Y/F)))
& Dc[2]; VALUE=!e(V=F*F)
MODEL [DISTRIBUTION=calculated; LINK=reciprocal; \
  DCALCULATION=Dc[]] Y; FITTED=F; VFUNCTION=V; DEVIANCE=D
FIT X

To specify your own link, you need to set LINK=calculated and provide expressions for

two other calculations to form the fitted values and the derivative of the link function for each
unit of the response variate, using the current values of the linear predictor. You must also set
the FITTEDVALUES, LINEARPREDICTOR and DERIVATIVE parameters to specify the identifiers
used to represent these in the calculations. In addition, you must provide initial values for the
linear predictor, so that the iterative process can get started: often this can be done just by
applying the link function to the response variate itself, but it may be necessary to modify
extreme values such as 0 that may be mapped to infinity by the link function.

Example 3.5.6 defines a link function for a probit model, incorporating a known control
mortality. (If the control mortality is not known, the model cannot be treated as a generalized
linear model, but the PROBITANALYSIS procedure, described in 3.5.9, can be used instead or
you could define a generalized nonlinear model ! see 3.5.8.) The inverse of the link function
here takes the form

ì=n(c+(1!c)Ö(ç))
where c is the control mortality, and the derivative of the link is

d=%(2ð)exp(ç2/2)/(n(1!c))

Example 3.5.6

   2  " Analysis of toxicity of derris roots to grain beetle, using
  -3    probit analysis with allowance for control mortality.
  -4    Data from Martin (1940), analysed by Finney (1971) p131."
   5  READ [PRINT=data] Conc,Nspray,Ndead

   6  1480 142 142  1000 127 126   480 128 115   120 126  58
   7   619 125 125   458 117 115   310 127 114   149  51  40
   8  37.1 132  37  :
   9  FACTOR [LABELS=!t(w213,w214); VALUES=4(1),5(2)] Root
  10  CALCULATE Logconc = LOG10(Conc)
  11  " Estimate of control mortality is 17% "
  12  SCALAR [VALUE=0.17] Cm
  13  " Give calculations for probit link with control mortality."
  14  EXPRESSION [VALUE=Fv1=Nspray*(Cm+(1-Cm)*NORMAL(Lp1))] E[1]
  15  & [VALUE=Ld1=SQRT(2*C('pi'))*EXP(Lp1**2/2)/Nspray/(1-Cm)] E[2]
  16  MODEL [DISTRIBUTION=binomial; LINK=calculated; LCALCULATION=E[1,2]] \
  17    Ndead; NBINOMIAL=Nspray; LINEARPRED=Lp1; FITTED=Fv1; DERIVATIVE=Ld1
  18  " Initialize the linear predictor."
  19  CALCULATE Lp1 = NED((Ndead+0.5)/(Nspray+1))
  20  FIT [FPROB=yes; TPROB=yes] Logconc,Root

Regression analysis
===================

 Response variate: Ndead
  Binomial totals: Nspray
     Distribution: Binomial
    Link function: Calculated from: E[1], E[2]
     Fitted terms: Constant, Logconc, Root

Summary of analysis
-------------------

                                        mean  deviance approx
Source        d.f.     deviance     deviance     ratio chi pr
Regression       2      450.778      225.389    225.39  <.001
Residual         6        7.391        1.232
Total            8      458.168       57.271
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Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
            4        58.00        0.70

Estimates of parameters
-----------------------

Parameter       estimate         s.e.      t(*)  t pr.
Constant          -6.222        0.462    -13.46  <.001
Logconc            2.795        0.184     15.16  <.001
Root w214          0.668        0.146      4.57  <.001

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
                Root  w213

The methods described above are suitable for all straightfoward user-specified generalized linear
models. The GLM procedure provides an alternative for situations where you cannot specify the
link or distribution by straightforward expressions. Here the information is supplied by user-
defined subsidiary procedures, called by GLM, so can use any Genstat command to carry out the
calculations. Full details are in Part 3 of the Genstat Reference Manual.

3.5.7 Generalized additive models

The use of the SSPLINE and LOESS functions to define additive models is described in Sections
3.4.3 and 3.4.4. When they are included within the context of a generalized linear model, the
models are called generalized additive models (Hastie & Tibshirani 1990). The Genstat
specification simply combines the constructs already described in Sections 3.4.3, 3.4.4 and 3.5.1.
Example 3.5.7 presents an example from Hastie & Tibshirani (1990). The data here have a
Bernoulli distribution (i.e. binomial with NBINOMIAL=1), and we use the default logit link.

Example 3.5.7

   2  " Generalized additive model:
  -3    Data on 83 patients undergoing corrective spinal surgery;
  -4    determine risk factors for kyphosis (forward flexion of the spine).
  -5    Data from Hastie & Tibshirani p.301."
   6  FILEREAD [PRINT=summary; NAME='Kyphosis.dat'] \
   7           Unit,Kyphosis,Age,Number,Start; FGROUPS=no

Summary
-------

The file Kyphosis.dat is assumed to contain 5 structure(s), with one value for
each structure on each record.

The file contains 83 values for each of the following structures:

  Identifier      Type   Missing
        Unit   variate         0
    Kyphosis   variate         0
         Age   variate         0
      Number   variate         0
       Start   variate         0

   8  " Fit smooth effects of Age, Number and Start. "
   9  MODEL [DISTRIBUTION=binomial] Kyphosis; NBINOMIAL=1
  10  TERMS SSPLINE(Age,Number,Start; 3)
  11  FIT   [FPROB=yes; TPROB=yes] SSPLINE(Age)+SSPLINE(Number)+SSPLINE(Start)
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Regression analysis
===================

 Response variate: Kyphosis
  Binomial totals: 1
     Distribution: Binomial
    Link function: Logit
     Fitted terms: Constant + Age + Number + Start
        Submodels: SSPLINE(Age; 3)
                   SSPLINE(Number; 3)
                   SSPLINE(Start; 3)

Summary of analysis
-------------------

                                        mean  deviance approx
Source        d.f.     deviance     deviance     ratio chi pr
Regression       9        39.76       4.4177      4.42  <.001
Residual        73        47.04       0.6444
Total           82        86.80       1.0586

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

* MESSAGE: the residuals do not appear to be random;
           for example, fitted values in the range 0.00 to 0.07
           are consistently larger than observed values
           and fitted values in the range 0.58 to 0.77
           are consistently smaller than observed values.

* MESSAGE: the error variance does not appear to be constant;
           large responses are more variable than small responses.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           15         0.00        0.53
           25         0.00        0.34
           28         1.00        0.87
           45         0.00        0.39
           55         1.00        0.35

Estimates of parameters
-----------------------

                                                        antilog of
Parameter        estimate         s.e.      t(*)  t pr.   estimate
Constant            -1.95         1.44     -1.35  0.176     0.1424
Age Lin           0.01156      0.00785      1.47  0.141      1.012
Number Lin          0.379        0.190      1.99  0.046      1.460
Start Lin         -0.1872       0.0760     -2.46  0.014     0.8292

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

3.5.8 Generalized nonlinear models

Generalized nonlinear models are models that include some nonlinear parameters, but are
otherwise in the form of generalized linear models. Such models are fitted relatively efficiently
by fitting a standard generalized linear model at each stage of an iterative search for optimum
values of the nonlinear parameters.

These models can be fitted with the FIT directive, and modified with directives like ADD just
as for generalized linear models. The nonlinear parts of the model are specified using the
CALCULATION option of FIT, which should be set to one or more expression structures storing
the nonlinear parts of the calculation of fitted values. An RCYCLE statement must be given before
FIT to list the nonlinear parameters, and perhaps to set initial values and bounds for them. To
avoid confusion with the use of RCYCLE in FITCURVE and FITNONLINEAR, it is the setting of
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Figure 3.5.8a

the CALCULATION option that signals the new type of model rather than the use of the RCYCLE
directive.

As in FITNONLINEAR (3.8) you can also carry out the calculations using Fortran rather than
Genstat expressions. FIT has options OWN, INOWN and OUTOWN for this purpose. The
NGRIDLINES option allows you to evaluate the deviance on a grid of parameter values, to study
the behaviour of awkward functions.

Example 3.5.8a shows a simple use of
the CALCULATION option in FIT to
estimate a transformation for an
explanatory variate. It could as easily be
carried out with the FITNONLINEAR

directive (3.8), but with FIT the same idea
can also be used in generalized linear
models, which FITNONLINEAR cannot
handle. The data are measurements of
length and age of dugongs. These data are
also analysed below, in Section 3.7. There,
an asymptotic regression curve is fitted; but
here, we attempt to fit a linear relationship
between Length and Age transformed with
the Box-Cox transformation. The
expression Boxcox transforms Age

according to the value of the scalar Bc, and
stores the result in variate Tage. The
expression is complicated by the definition
of the transformation as LOG(Age) if the parameter is zero, and to protect the calculation of
AgeBc-1/Bc by a logical expression to avoid division by zero. The fit of the model is shown in
Figure 3.5.8a as a solid line, with the exponential curve fitted in Section 3.7 shown as a dotted
line for comparison.

Example 3.5.8a

   2  " Example of estimating transformation of explanatory variable:
  -3    relationship between length and age of dugongs.
  -4    Data from Ratkowsky (1983) p.101."
   5  OPEN   '%GENDIR%/Examples/GuidePart2/Dugong.dat'; CHANNEL=2
   6  READ   [CHANNEL=2] Age,Length

    Identifier   Minimum      Mean   Maximum    Values   Missing
           Age     1.000     10.94     31.50        27         0
        Length     1.770     2.335     2.720        27         0

   7  CLOSE  2
   8  MODEL  Length
   9  RCYCLE Bc; INITIAL=1
  10  EXPRESSION Boxcox; VALUE=\
  11         !e( Tage = LOG(Age)*(Bc==0) + (Age**Bc-1)/(Bc+(Bc==0))*(Bc/=0) )
  12  FIT    [CALCULATION=Boxcox] Tage

Nonlinear regression analysis
=============================

 Response variate: Length
Nonlinear parameters: Bc
  Model calculations: Boxcox
     Fitted terms: Constant, Tage
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Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       2       1.7870     0.893491    123.03
Residual        24       0.1743     0.007262
Total           26       1.9613     0.075434

Percentage variance accounted for 90.4
Standard error of observations is estimated to be 0.0852.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           11       2.1900       -2.04

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
Bc                  -0.066        0.135
* Linear
Constant             1.740
Tage                0.3122

  13  FIT    [PRINT=estimates; CALCULATION=Boxcox; SELINEAR=yes] Tage

Nonlinear regression analysis
=============================

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
Bc                  -0.066        0.135
* Linear
Constant            1.7404       0.0552
Tage                0.3122       0.0724

The maximum-likelihood estimate of the Box-Cox transformation parameter Bc is very nearly
zero, so the relationship between Length and Age is approximately linear on a log-scale.

The output from FIT when the CALCULATION option is set is the same as would be expected
from the FITNONLINEAR directive. In particular, the residuals are no longer completely
standardized: they are scaled only by the residual mean square and not also by the leverage of
each point; the leverages are not available. Standard errors of parameters are produced only for
the nonlinear parameters by default. However, as in FITNONLINEAR you can set the option
SELINEAR=yes to produce all the standard errors, though this can involve a lot of computation
if there are many linear parameters.

Example 3.5.8b shows how to fit a probit model with estimation of control mortality. Parallel
and non-parallel probit lines with natural mortality and immunity can be fitted automatically by
the PROBITANALYSIS procedure, which uses either this method or FITNONLINEAR internally
(3.5.9.). The example is presented for illustrative purposes, and to assist those who may want to
fit more complicated models.

The data consist of counts at four concentrations of one derris root and five of another, plus
a control count when no root was present: we have arbitrarily decided to represent this as the
first root with log-concentration !100: clearly it is not possible to supply an exact value for zero
on the logarithmic scale.

The MODEL directive has options and parameters to let you define your own link function and
distribution (3.5.6). So we define an expression Lc[1], as in Section 3.5.6, to store the calculation
of the fitted values from the linear predictor (the inverse of the link function) in this model. For
the probit model with no control mortality, the inverse link is

fitted value  =  n × Ö( linear predictor )
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where n is the number of binomial trials and Ö() is the probit function (the cumulative Normal
distribution function). With control mortality, the inverse link is

fitted value  =  n × ( c + ( 1 ! c ) × Ö(linear predictor) )
where c is the control mortality expressed as a proportion. The expressions Lc[2] and Lc[3]
define the deviance from the linear predictor for this model, being careful to avoid taking the
exponent of too large a number during the search for the best value of c.

Example 3.5.8b

   2  READ [PRINT=data] Root,Logconc,Nspray,Ndead

   3     1     2.17     142    142
   4     1     2.00     127    126
   5     1     1.68     128    115
   6     1     1.08     126     58
   7     2     1.79     125    125
   8     2     1.66     117    115
   9     2     1.49     127    114
  10     2     1.17      51     40
  11     2     0.57     132     37
  12     1  -100.00     129     21 :
  13  " In the control, 129 insects were sprayed with the
 -14    medium used in the spray, but with no derris; 21 died
 -15    therefore have about 17% control mortality."
  16  SCALAR Cm; VALUE=0.17
  17  EXPRESSION Lc[1...3]; VALUE=\
  18    !e(Fv = Nspray*(Cm+(1-Cm)*NORMAL(Lp))),\
  19    !e(Lp = Lp+(6-Lp)*(Lp>6)-(6+Lp)*(Lp<-6)),\
  20    !e(Dv = SQRT(2*C('pi'))*EXP(Lp**2/2)/Nspray/(1-Cm))
  21  " Calculate initial linear predictor."
  22  CALCULATE Lp = NED((Ndead+0.5)/(Nspray+1))
  23  MODEL [DISTRIBUTION=binomial; LINK=calculated; LCALC=Lc[]] Ndead;\
  24    NBINOMIAL=Nspray; FITTED=Fv; LINEAR=Lp; DERIVATIVE=Dv
  25  RCYCLE Cm
  26  " Set up dummy expression: no work done, but need to set CALC in FIT."
  27  EXPRESSION Fc; VALUE=!e(Cm=Cm)
  28  TERMS Logconc,Root
  29  FIT [PRINT=#,monitoring; CALC=Fc; SELINEAR=yes] Logconc,Root

Convergence monitoring
----------------------

Cycle Eval Move    Function value    Current parameters
    0    1    0         7.4240110     0.170000
                            Steps   0.00850000
                            Steps   0.00212500
    1    3    1         7.4236352     0.169573

Scoring cycle  Deviance    Current parameters
1             7.4288405      2.80515     0.672494
2             7.4288376      2.80545     0.672484

Convergence in scoring loop at cycle 2.

Convergence in Gauss-Newton loop at cycle 1.
    2    8    6     7.4235721  0.169326
                        Steps  0.00212500  -0.0410132  0.0279739  0.00671897
    1   18    0     7.4235721  0.169326    -4.10132      2.79739  0.671897
                        Steps  0.00319181   0.0432144  0.0219911  0.0147921
    1   28    0     7.4235721  0.169326    -4.10132    2.79739    0.671897

Nonlinear regression analysis
=============================

 Response variate: Ndead
  Binomial totals: Nspray
     Distribution: Binomial
    Link function: Calculated from: Lc[1], Lc[2], Lc[3]
Nonlinear parameters: Cm
  Model calculations: Fc
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     Fitted terms: Constant, Logconc, Root

Summary of analysis
-------------------

                                        mean  deviance
Source        d.f.     deviance     deviance     ratio
Regression       3      670.014      223.338    223.34
Residual         6        7.424        1.237
Total            9      677.438       75.271

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
Cm                  0.1693       0.0319
* Linear
Constant            -4.101        0.432
Logconc              2.797        0.220
Root                 0.672        0.148

* MESSAGE: s.e.s are based on dispersion parameter with value 1

We can fit the model with fixed control mortality with a simple statement

FIT Logconc,Root

just as in Section 3.5.6. But we are now able to estimate the control mortality by supplying the
name of the control mortality parameter in an RCYCLE statement and setting the CALCULATION
option of FIT. As mentioned above, we must set this option to make FIT carry out a nonlinear
search, even though all the calculations required have already been specified in the MODEL
statement. We therefore supply a dummy calculation that has no effect.

The output includes the monitoring trace to show that a nested iteration is taking place. At
each step of the search for the nonlinear parameter Cm, FIT is fitting a generalized linear model
with the current value of that parameter, which itself requires an iterative search using the
scoring algorithm. The monitoring output shows the progress of the inner loop only once in each
iteration of the nonlinear (Gauss-Newton) algorithm rather than at each function evaluation.
Convergence is very fast here, because the initial value is very close to the solution.

The results show that the maximum-likelihood estimate of control mortality is very little
different from the estimate made from the single control observation.

Example 3.5.8c shows how smoothing can also now be incorporated in these models,
providing what could be described as generalized nonlinear additive models. The data come
from an experiment carried out over several years to determine the effect of growing wheat on
plots with different lengths of time previously under grass leys, and with different applications
of fertilizer nitrogen. There were four plots with each combination of six lengths of ley and six
levels of nitrogen. We fit a model estimating a smooth effect of nitrogen and additive effects of
the length of ley. But part of the effect of previous grass is to supply nitrogen to a subsequent
crop, so we allow for an additive effect of length of ley in addition to the supplied fertilizer. The
model can thus be represented as follows:

yieldij  =  base-yieldi + SSPLINE(applied-fertilizerj + ley-fertilizeri),
i = 1...6,  j = 1...6

The base-yields can be estimated as linear effects of the factor Ley, and the applied-fertilizer
effects are taken just as the quantitative amounts of fertilizer applied. But the effective amounts
of fertilizer supplied by the ley treatments must be estimated as nonlinear parameters.



280 3  Regression analysis

Example 3.5.8c

   2  "Effect of Ley-age and N on Yield of wheat."
   3  OPEN    '%GENDIR%/Examples/GuidePart2/Ley.dat'; CHANNEL=2
   4  FACTOR  Ley
   5  READ    [CHANNEL=2] N,Ley,Yield

    Identifier   Minimum      Mean   Maximum    Values   Missing
             N    0.0000     125.0     250.0       144         0
         Yield     3.878     8.482     9.977       144         0    Skew

    Identifier    Values   Missing    Levels
           Ley       144         0         6

   6  CLOSE   2
   7  MODEL   Yield
   8  RCYCLE  Leyfert[2...6]; INITIAL=0; STEP=1
   9  VARIATE [VALUES=6(0)] Vleyfert
  10  EXPRESSION shift[1,2]; VALUE=\
  11          !e(Vleyfert$[2...6] = Leyfert[2...6]),\
  12          !e(Shiftn = N + NEWLEVELS(Ley; Vleyfert))
  13  FIT     [PRINT=#,monitoring; CALC=shift[]] Ley+S(Shiftn; 4)

Convergence monitoring
----------------------

Cycle Eval Move    Function value    Current parameters
    0    1    0         71.939878           0.           0.           0.
           0.           0.
                            Steps      1.00000      1.00000      1.00000
      1.00000      1.00000
                            Steps      1.10068      1.07437     0.919776
     0.970563     0.947282
    1    7    0         54.317743      18.0864      29.4214      32.3202
      41.0462      58.0221

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1            0.0011480128      2.9982           3      2.9982      0.0093
  2          0.000011943149      2.9982           3      2.9982      0.0093

Convergence in back-fitting loop at cycle 2.

    2   13    0         46.065667      13.3389      54.5473      74.0608
      79.6635      101.480

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00088151628      3.0136           3      3.0136      0.0093
  2           7.6143800E-06      3.0136           3      3.0136      0.0093

Convergence in back-fitting loop at cycle 2.

    3   19    0         45.971642      15.2035      56.9218      84.1179
      89.4514      108.242

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00084229450      3.0124           3      3.0124      0.0093
  2          0.000011341945      3.0124           3      3.0124      0.0093

Convergence in back-fitting loop at cycle 2.

    4   25    0         45.966567      14.8062      55.7173      82.4222
      88.3168      108.323

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00084788696      3.0132           3      3.0132      0.0093
  2          0.000010045004      3.0132           3      3.0132      0.0093

Convergence in back-fitting loop at cycle 2.

                            Steps     0.657211     0.795189      1.06006
      1.14901      1.57098
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    5   34    0         45.966420      14.7557      55.6563      82.3446
      88.2230      108.180

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00050667002      3.0135           3      3.0135      0.0093
  2           5.6878502E-06      3.0135           3      3.0135      0.0093

Convergence in back-fitting loop at cycle 2.

    6   50    0         45.965910      14.4850      55.3805      82.0774
      87.9301      107.865

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00050348362      3.0138           3      3.0138      0.0093
  2           5.6479849E-06      3.0138           3      3.0138      0.0093

Convergence in back-fitting loop at cycle 2.

                            Steps     0.170258     0.200961     0.263173
     0.282592     0.383779
    7   66    1         45.965910      14.4850      55.3805      82.0774
      87.9301      107.865

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00018410798      3.0140           3      3.0140      0.0093

Convergence in back-fitting loop at cycle 1.

    8   87    0         45.965910      14.4850      55.3805      82.0774
      87.9301      107.865

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00030282531      3.0139           3      3.0139      0.0093

Convergence in back-fitting loop at cycle 1.

    9  108    0         45.965910      14.4850      55.3805      82.0774
      87.9301      107.865

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1           0.00045411336      3.0138           3      3.0138      0.0093

Convergence in back-fitting loop at cycle 1.

Convergence in Gauss-Newton loop at cycle 9.
   10  121    6         45.967266      14.6494      55.4477      82.0417
      87.8542      107.481

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1          0.000010396825      3.0142           3      3.0142      0.0093

Convergence in back-fitting loop at cycle 1.

                            Steps      1.32810      1.63895      2.18147
      2.36244      3.23981

  Back-fit cycle  Criterion Smooth d.f. Target d.f. Achv.d d.f.      Param.
  1            0.0010258291      3.0136           3      3.0136      0.0093
  2          0.000012284975      3.0136           3      3.0136      0.0093

Convergence in back-fitting loop at cycle 2.

    1  133    0         45.966217      14.6494      55.4477      82.0417
      87.8542      107.481

Nonlinear regression analysis
=============================

 Response variate: Yield
Nonlinear parameters: Leyfert[2], Leyfert[3], Leyfert[4], Leyfert[5],
                      Leyfert[6]
  Model calculations: shift[1], shift[2]
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Figure 3.5.8c

     Fitted terms: Constant + Ley + Shiftn
        Submodels: SSPLINE(Shiftn; 4)

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression      11       129.94      11.8126     33.92
Residual       132        45.97       0.3482
Total          143       175.91       1.2301

Percentage variance accounted for 71.7
Standard error of observations is estimated to be 0.590.

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
Leyfert[2]            14.6         13.8
Leyfert[3]            55.4         16.6
Leyfert[4]            82.0         22.0
Leyfert[5]            87.9         23.8
Leyfert[6]           107.5         32.5
* Linear
Constant             6.604
Ley 2               0.8328
Ley 3               0.9856
Ley 4               0.9417
Ley 5               0.8920
Ley 6               0.4301
Shiftn Lin        0.006547

Part of the monitoring output is included
here to show that the back-fitting algorithm
is operating at each step of the nonlinear
search, to fit the smoothing spline. The
results show that there are very different
fertilizer effects of the different ley
treatments, which could well be
represented as linear effects of the length of
time under grass. There is also a substantial
non-fertilizer difference between the first
treatment and the rest. The fit of this model
is shown in Figure 3.5.8c.

A restriction on this analysis is that it is
not possible to estimate standard errors of
linear parameters when a smoothing spline
is included in the model.

There are now three types of iterative
estimation in the regression directives: the
Fisher-scoring algorithm for fitting
generalized linear models, the back-fitting algorithm for additive models, and the alternative
algorithms for nonlinear optimization (Gauss-Newton, Newton-Raphson, and Fletcher-Powell).
These three types can all be in operation together in a generalized nonlinear additive model.
Therefore the MAXCYCLE option of the RCYCLE directive has been modified to allow a maximum
to be set for the number of iterations of each algorithm separately. The setting MAXCYCLE=50
would, as before, set a limit of 50 iterations for each algorithm. The setting
MAXCYCLE=10,10,50 would set 10 for Fisher-scoring and back-fitting, and 50 for the nonlinear
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algorithms.

3.5.9 Probit analysis

PROBITANALYSIS procedure
Fits probit models allowing for natural mortality and immunity (R.W. Payne).

Options
PRINT = string tokens Printed output required (model, summary, estimates,

correlations, fittedvalues, monitoring,
effectivedoses); default mode, summ, esti, fitt,
effe

TRANSFORMATION = string token Transformation to be used (probit, logit,
complementaryloglog); default prob

MORTALITY = string token Whether to estimate natural mortality (omit,
estimate); default omit

IMMUNITY = string token Whether to estimate natural immunity (omit,
estimate); default omit

GROUPS = factor Defines groups for an analysis of parallelism; default *
i.e. no groups

SEPARATE = string tokens Which parameters (apart from intercept) should be
estimated separately for different groups (slope,
mortality, immunity, notintercept); default * i.e.
none

LD = scalar or variate Effective, or lethal, doses to be estimated, other than 50
CIPROBABILITY = scalar Probability level for the confidence interval of effective

doses; default 0.95, i.e. a 95% confidence interval
LOGBASE = string token Base of antilog transformation to be applied to LD's

(ten, e); default * i.e. none
DISPERSION = scalar Controls the use of a heterogeneity factor in the

calculation of s.e.s etc; with the default of 1 no factor is
used, a missing value * estimates the heterogeneity from
the residual deviance

FITMETHOD = string token Method to use to fit the model
(generalizednonlinear, nonlinear) default nonl
for Wadley's problem, otherwise gene

MAXCYCLE = scalar Maximum number of iterations for fitting the model;
default 30

Parameters
Y = variates Number of subjects responding in each batch
DOSE = variates Dose received by each batch of subjects
NBINOMIAL = variates, scalars or factors

Variate specifying the number of subjects in each batch,
or factor specifying groupings of the observations
assumed to have equal expected total numbers of
subjects in Wadley's problem; if omitted, assumes
Wadleys's problem with all observations having the
same expected total number of subjects

INITIAL = variates Initial values for parameters
STEPLENGTHS = variates Step lengths for parameters
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LDESTIMATES = variates Saves estimates of the effective, or lethal, doses
LDLOWER = variates Saves lower values of the confidence intervals for the

estimates of the effective, or lethal, doses (for
FITMETHOD=gene only)

LDUPPER = variates Saves upper values of the confidence interval values for
the estimates of the effective, or lethal, doses (for
FITMETHOD=gene only)

The PROBITANALYSIS procedure provides customized facilities for probit analysis. The data
consist of observations, in each of which a particular dose of one a drug was applied to a group
of subjects, and the number that responded was counted. The Y parameter specifies a variate
indicating the number of subjects that responded in each batch, the DOSE parameter specifies a
variate to show the dose given to each batch, and the NBINOMIAL parameter defines the total
numbers of subjects in each batch.

The NBINOMIAL parameter can be omitted if the total numbers cannot be measured, as in some
fumigation experiments ("Wadley's problem"; see for example Finney 1971, pages 202-8). The
assumption is that the total numbers receiving the doses will come from the same Poisson
distribution, and the mean of this distribution is then estimated in the analysis. Alternatively,
NBINOMIAL can specify a factor to indicate groupings of the doses whose total numbers are
expected to come from the same distributions.

The PRINT option controls printed output with settings:
model details of the model that has been fitted;
summary summary analysis-of-variance table;
estimates parameter estimates and standard errors;
correlations correlations between parameter estimates;
fittedvalues fitted values and residuals;
monitoring information about the fitting process; and
effectivedoses effective, or lethal, doses (see parameter LD below).

By default, PRINT=mode,summ,esti,fitt,effe.
The TRANSFORMATION option allows other transformations other than the probit to be

selected. Putting TRANSFORMATION=logit requests a logit transformation:
logit(P%) = log( P% / (100 ! P%) )

This is very like the probit but approaches zero (to the left) and one (to the right) rather more
slowly. The other possibility is the complementary log-log ( =log( !log(100!P%) ), which is
relevant to the "one-hit" model (that is infection processes where just one infected particle is
sufficient to cause the response).

Sometimes, subjects may respond even in the absence of any dose. For example, with some
short-lived insects, some would have died simply from natural causes during the period of the
experiment. By setting option MORTALITY=estimate this natural mortality can be included in
the model and estimated. Similarly, there may be subjects that will not respond, no matter how
high the dose. Setting option IMMUNITY=estimate will include and estimate a parameter for
natural immunity.

It is also often of interest to fit study the way in which the model varies for different groups
of subjects. For example, there may be groups of batches of subjects, each of which is given a
different drug. The GROUPS option should then specify the group to which each batch of subjects
belongs, and option SEPARATE indicates which parameters of the model (slope, mortality, and/or
immunity) should have separate estimates. Separate parameters are always fitted for the intercept
unless you include the setting notintercept. So, if SEPARATE is left at its default value,
parallel lines will be fitted with identical values for any estimates of mortality and immunity.

The LD option can request the estimation of one or more effective (or lethal) doses, specifying
a scalar if there is just one, or a variate if there are several. The LOGBASE option is useful if the
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doses have been transformed to logarithms before calling PROBITANALYSIS. If you use
LOGBASE to specify the base of the logarithms (ten or e), the back-transformed lethal doses will
be printed as well.

The estimates of the effective (or lethal) doses can be saved, in a variate, by the
LDESTIMATES parameter. Also, when model is fitted as a generalized nonlinear model (see the
FITMETHOD option, below), the lower and upper values of the confidence intervals for the
estimates can be saved by the LDLOWER and LDUPPER parameters, respectively. If LOGBASE is
set,  these are all back-transformed. The CIPROBABILITY option specifies the probability level
for the confidence intervals; the default is 0.95, i.e. 95% confidence intervals.

The DISPERSION option can be used to request use of a heterogeneity factor in the calculation
of the standard errors of the slopes and lethal doses (see Finney 1971, pages 70-74). The
standard assumptions for probit analysis are that the observations have binomial distributions
in probit lines and planes, or Poisson distributions in Wadley's problem. Under these
circumstances, the residual deviance will follow a Chi-square distribution. The residual deviance
should on average be equal to its number of degrees of freedom. A significantly large value may
indicate that there are other (possibly unknown) factors affecting the subjects, for example that
the conditions were not uniform during the experiment. Alternatively it may occur because the
subjects did not react independently, for example because there were sub-populations of
genetically related individuals. If the large Chi-square seems to arise because the residuals are
larger in general than expected (overdispersion) and not because of systematic deviations from
the fitted relationship, it is sensible to increase the standard errors by a heterogeneity factor equal
to the residual mean deviance. This can be requested by setting option DISPERSION=*.
Alternatively DISPERSION can be set to a known value if one is available.

When the FITMETHOD option is set to generalizednonlinear, the model is fitted as a
generalized nonlinear model, using the FIT directive (3.5.8). The alternative setting,
nonlinear, fits it as a nonlinear model using FITNONLINEAR (3.8). Apart from minor
numerical differences, the two methods should generate the same results. Generalized nonlinear
models allow a confidence region to be generated for lethal doses, and these are used as default
for all situations except Wadley's problem. The nonlinear method is more accurate, and is thus
used as the default for the more difficult situation presented by Wadley's problem. However,
there is the limitation that you cannot use the notintercept setting of the SEPARATE option
with the nonlinear method.

The final two parameters, INITIAL and STEPLENGTHS, allow initial values and step lengths
to be specified for the optimization. For a generalized nonlinear model, the order of parameters
is: total(s) for Wadley's problem (if appropriate), mortality parameters (if any) and immunity
parameters (if any); the slopes and intercepts are fitted as regression parameters. For a nonlinear
model, the order of parameters is: LD50(s), slope(s), mortality parameters (if any) and immunity
parameters (if any); the totals for Wadley's problem, if required, as fitted as linear parameters.
The MAXCYCLE option sets a limit on the number of iteractions used during fitting (default 30).
Parameter estimates, fitted values, residuals, and so on, can be saved after running the procedure,
by using the RKEEP directive in the usual way.

Example 3.5.9 uses PROBITANALYSIS to analyse the data in Example 3.5.8b, this time though
fitting different slope and natural mortality parameters for each type of root. Notice that we need
to redefine Root as a factor, and set the control dose to missing instead of the value !100 in
Example 3.5.8b.

Example 3.5.9

  30  GROUPS         [REDEFINE=yes] Root
  31  CALCULATE      Logconc = MVINSERT(Logconc; Logconc==-100)
  32  PROBITANALYSIS [TRANSFORMATION=probit; MORTALITY=estimate; GROUPS=Root;\
  33                 SEPARATE=mortality,slope; LD=!(50,90)]\
  34                 Ndead; DOSE=Logconc; NBINOMIAL=Nspray
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Nonlinear regression analysis
=============================

 Response variate: Ndead
  Binomial totals: Nspray
     Distribution: Binomial
    Link function: Calculated from: Lc[1], Lc[2], CalcControlDoseLinpred,
                   CalcProbitFitted, CalcProbitDerivative
Nonlinear parameters: PrMortality['1'], PrMortality['2']
  Model calculations: !E(...)
     Fitted terms: Root + X['Logconc'].Root

Summary of analysis
-------------------

                                        mean  deviance
Source        d.f.     deviance     deviance     ratio
Regression       5      450.998       90.200     90.20
Residual         4        7.170        1.793
Total            9      458.168       50.908

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

Estimates of parameters
-----------------------

Parameter           estimate         s.e.
PrMortality['1']      0.1649       0.0327
PrMortality['2']       0.225        0.101
* Linear
Root 1                -3.467        0.444
Root 2                 -3.18         1.13
X['Logconc'].Root 1    2.827        0.295
X['Logconc'].Root 2    3.046        0.726

* MESSAGE: s.e.s are based on dispersion parameter with value 1

Fitted values and residuals
---------------------------

              Binomial                   Standardized
         Unit    total Response Fitted value residual
            1      142      142       141.55     0.95
            2      127      126       125.48     0.45
            3      128      115       117.35    -0.73
            4      126       58        56.53     0.26
            5      125      125       123.88     1.50
            6      117      115       114.26     0.48
            7      127      114       118.43    -1.46
            8       51       40        37.15     0.92
            9      132       37        37.30    -0.06
           10      129       21        21.28    -0.07

Mean                                             0.22

Effective doses
---------------

       Group          LD    estimate        s.e.   lower 95%   upper 95%
           1       50.00       1.226     0.04812       1.123       1.309
           1       90.00       1.679     0.04744       1.597       1.780
           2       50.00       1.044     0.16509       0.582       1.221
           2       90.00       1.464     0.06287       1.328       1.552
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3.5.10 Generalized linear mixed models

GLMM procedure
Fits a generalized linear mixed model (S.J. Welham).

Options
PRINT = string token What output to display (model, monitoring,

components, vcovariance, means, backmeans,
effects, waldtests); default mode, moni, comp,
vcov, mean, back, effe

DISTRIBUTION = string token Error distribution (binomial, poisson, normal,
gamma, negativebinomial); default bino

LINK = string token Link function (identity, logarithm, logit,
reciprocal, probit, complementaryloglog,
logratio); default * gives the canonical link

DISPERSION = scalar Value at which to fix the residual variance, if missing
the variance is estimated; default 1

RANDOM = formula Random model excluding bottom stratum; this must be
set

FIXED = formula Fixed model; default *
ABSORB = factor Absorbing factor to be used at the REML step of the

iterations
CONSTANT = string token Whether to estimate or omit constant term in fixed

model (omit, estimate); default esti
FACTORIAL = scalar Limit on number of factors/covariates in a model term;

default 3
PTERMS = formula Formula specifying fixed terms for which means or

back-transformed means are to be printed; default *
prints all the fixed model terms

PSE = string token Standard errors to print with tables of means
(differences, estimates, alldifferences,
allestimates, vcovariance); default diff, vcov

MVINCLUDE = string tokens Whether to include units with missing values in the
explanatory factors and variates and/or the y-variates
(explanatory, yvariate); default * i.e. omit units
with missing values in either explanatory factors or
variates or y-variates

MAXCYCLE = scalar Maximum number of iterations of the GLMM algorithm;
default 20

TOLERANCE = scalar Convergence criterion for iterative procedure; default
0.0001

FMETHOD = string token Specifies fitting method (all, fixed): all indicates
the method of Schall (1991); fixed indicates the
marginal method of Breslow & Clayton (1993) ; default
all

OFFSET = variate Variate holding values to be used as an offset on the
linear predictor scale; default *

CADJUST = string token What adjustment to make to covariates for the REML
analysis (mean, none); default mean

AGGREGATION = scalar Fixed parameter for negative binomial distribution
(parameter k as in variance function var = mean +
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mean2/k); default 1
KLOGRATIO = scalar Parameter k for logratio link, in form 

log(mean / (mean + k)); default as set in AGGREGATION
option

OWNDIST = text For non-standard distributions only: text specifying the
variance function to be used with dummy variable DUM,
e.g. OWNDIST='DUM'

OWNLINK = text For non-standard link functions only: text specifying 3
functions using dummy variable DUM ! the link function,
its inverse and its derivative, e.g. OWNLINK =
!T('log(DUM)','exp(DUM)','1/DUM')

CDEFINITIONS = text Statements to execute to define correlation models;
default * i.e. none

CVECTORS = pointer Data structures involved in the correlation models
WORKSPACE = scalar Number of blocks of internal memory to be set up for

use by the REML algorithm; default 1

Parameters
Y = variates Dependent variates
NBINOMIAL = scalars or variates Number of binomial trials for each unit (must be set if

DISTRIBUTION=binomial)
FITTEDVALUES = variates Variates to save fitted values
COMPONENTS = variates Variate to save estimated variance components
VCOVARIANCE = symmetric matrices

Variance-covariance matrix for the variance components
MEANS = pointers Pointer to save tables of means for each Y variate
VARMEANS = pointers Pointer to save covariance matrices of tables of means

for each Y variate
BACKMEANS = pointers Pointer to save tables of back-transformed means for

each Y variate
ITERATIVEWEIGHTS = variate Saves the iterative weights from the generalized linear

model fitting
INITIALFITTEDVALUES = variates

Defines initial values for the fitted values; if unset, these
are formed automatically

SAVE = REML save structures Saves details of the REML analysis used to fit the model

Procedure GLMM estimates the parameters of a generalized linear mixed model using either the
method of Schall (1991) or the marginal method of Breslow & Clayton (1993); see the
description of GLMM in Part 3 of the Genstat Reference Manual.

The procedure assumes a generalized linear mixed model, that is a generalized linear model
with both fixed and Normally-distributed random effects on the scale of the linear predictor. The
procedure estimates the fixed effects together with the variance components associated with the
random effects.

The DISTRIBUTION option sets the error distribution; the default is to assume a binomial
distribution but the poisson, gamma and negative-binomial distributions are also available. Other
distributions can be used via the OWNDIST option; this should be set to a text containing the
formula for calculating the variance function for the required distribution, in terms of dummy
variable DUM. The link can be set using the LINK option; the default takes the canonical link.
Identity, logarithm, logit, reciprocal, probit, complementaryloglog or logratio link functions are
also provided, and alternative link functions can be used via the OWNLINK option. In this case,



3.5  Generalized linear models 289

OWNLINK must be set to a text with three values containing formulae (in terms of dummy
variable DUM) for calculating the link function, its inverse and its first derivative. For example,
instead of specifying a Poisson distribution with log link, the OWNDIST and OWNLINK options
could be set as 

OWNDIST='DUM'; OWNLINK=!T(LOG(DUM),EXP(DUM),'1/DUM')

Where necessary, these expressions should be constructed so that invalid results (eg. divide by
zero or log(zero)) are avoided.

The AGGREGATION option supplies the aggregation parameter for the negative-binomial
distribution; default 1. The KLOGRATIO option supplies the parameter k to be used in the logratio
link, and takes its default from AGGREGATION.

The dispersion parameter is assumed to be 1 unless otherwise specified by the DISPERSION
option. Setting DISPERSION=* requests that the dispersion parameter be estimated.

The fixed and random models are specified by the FIXED and RANDOM options. The number
of factors in the terms of the fixed model can be limited using the FACTORIAL option. The
ABSORB option can specify an absorbing factor for use in the REML steps of the GLMM algorithm.
However, if the absorbing factor appears in any of the terms of the FIXED model, no estimates
of error will be available for these terms (see 5.3.3 and 5.3.9). By default, a constant term is
included in the model; this can be suppressed by setting option CONSTANT=omit. An offset can
be included in the linear predictor by setting option OFFSET. By default any covariates are
centred for the REML fitting by subtracting their means, weighted according to the iterative
weights of the generalized linear model. You can save the iterative weights using the
ITERATIVEWEIGHTS parameter, or you can set option CADJUST=none to request that the
uncentred covariates are used instead.

It is also possible to define correlation models on the random terms, although the results
should be used with caution as their properties are not yet well understood. To do this, you
should set the CDEFINITIONS option to a text containing the Genstat statements required to
define the models (e.g. using VSTRUCTURE). You also need to set the CVECTORS option to a
pointer containing the data structures involved in the statements. Then, in the statements
themselves, you should refer to each of these as CVECTORS[n], where n is the position of the
relevant data structure in the pointer. For example:

TEXT cdef; VALUE=\
'VSTRUCTURE [CVECTORS[1].CVECTORS[2]] ar,ar;
FACTOR=CVECTORS[1,2]; ORDER=1'
GLMM  [DISTRIBUTION=gamma; LINK=log; FIXED=variety;\
      RANDOM=fieldrow*fieldcolumn; CDEFINITION=cdef;\
      CVECTORS=!p(fieldrow,fieldcolumn)] yield

The MVINCLUDE option allows the inclusion of units with missing values, as in the REML

directive. By default, units where there is a missing value in the y-variate or in any of the factors
or variates in the model terms are excluded. The setting explanatory allows units with missing
values in factors or variates in the model to be included. For missing covariate values, this is
equivalent to substituting the mean value. The setting yvariate includes units with missing
values in the y-variate. This can be useful to retain the balanced structure of the data for use with
direct product covariance matrices (see VSTRUCTURE), or to produce predictions of data values
for given values of explanatory factors and/or variates.

The FMETHOD option specifies the method used to form the fitted values and therefore
determines the fitting method to be used. The default setting all specifies that both fixed and
random terms should be used to form fitted values which gives the method of Schall (1991);
setting fixed indicates that only fixed terms are used to form fitted values which gives the
marginal method of Breslow & Clayton (1993).

Output is controlled by options PRINT, PTERMS and PSE. PRINT allows printing of the current
model, monitoring information, estimates of the variance components, their variance-covariance
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matrix, Wald tests, tables of means on the scale of the linear predictor (with standard errors),
tables of back-transformed means (i.e. on the original scale) and tables of effects. If there is an
offset, the predicted means are for an offset value of zero. Option PTERMS can select which
tables of fixed effect means are to be printed; by default, tables of means are produced for all the
terms in the fixed model. Option PSE controls the standard errors that are printed with tables of
means: differences produces a summary of standard errors of differences between means;
estimates produces a summary of standard errors of the means; allestimates produces a
standard error for every mean; vcovariance produces the variance-covariance matrix for the
table; alldifferences produces the full matrix of standard errors of differences between
means. Setting PSE=* alone suppresses printing of error estimates. More than one setting can
be used and, by default, a summary of seds and the variance covariance matrix are printed for
each table.

Some control over the iterative GLMM algorithm is provided by option MAXCYCLE which sets
the maximum number of iterations (default 20), and by option TOLERANCE which specifies the
criterion for determining convergence of the algorithm (default 0.0001). Convergence is judged
to have been attained once the maximum change in the ratio (variance component)/(residual
variance) and the change in the residual variance are less than the specified TOLERANCE.

The dependent variate is specified using the Y parameter. The NBINOMIAL parameter must be
set when DISTRIBUTION=binomial to specify the total number of trials on each unit, as a
variate if the number varies from unit to unit or as a scalar if it is constant over all the units.

The other parameters are used to save results. The variance components and residual variance
can be saved in a variate using parameter VCOMPONENTS, with their variance-covariance matrix
stored in a symmetric matrix specified by parameter VCOVARIANCE. The tables of means to be
saved are determined by the setting of PTERMS. The tables are stored in a pointer specified by
parameter MEANS, in the order in which they appear in the FIXED model. Their variance matrices
and tables of back-transformed means are stored similarly in pointers specified by parameters
VARMEANS and BACKMEANS.
VDISPLAY and VKEEP can also be used after procedure GLMM to redisplay or store other results

from the internal REML estimation. You can use the SAVE parameter to save the associated REML
save structure, so that the information will still be available if REML is used for another analysis
in the interim.
GLMM is illustrated in Example 3.5.10.

Example 3.5.10

   2  " Example of how to use procedure GLMM:',\
  -3    data from McCullagh & Nelder (1989, Table 14.4);',\
  -4    also see Schall (1991)."
   5  FACTOR  [NVALUES=120; LEVELS=20] Female, Male
   6  &       [LEVELS=4; LABELS=!t(RR,RW,WR,WW)] Cross
   7  VARIATE [NVALUES=120] Mate1
   8  READ    Cross,Male,Female; FREPRESENTATION=labels,2(levels)

    Identifier    Values   Missing    Levels
         Cross       120         0         4
          Male       120         0        20
        Female       120         0        20

  24  READ    Mate1

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Mate1    0.0000    0.5833     1.000       120         0

  29  GLMM    [PRINT=model,components,vcovariance,means,backmeans;\
  30          DISTRIBUTION=binomial; LINK=logit; FIXED=Cross;\
  31          RANDOM=Female+Male] Mate1; NBINOMIAL=1
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Generalized linear mixed model analysis
=======================================

Method:            c.f. Schall (1991) Biometrika
Response variate:  Mate1
Binomial totals:   1
Distribution:      binomial
Link function:     logit
Random model:      Female + Male
Fixed model:       Constant + Cross

Dispersion parameter fixed at value 1.000

Estimated variance components
-----------------------------

Random term               component        s.e.
Female                        1.410       0.838
Male                          0.090       0.389

Residual variance model
-----------------------

Term                      Model(order)  Parameter      Estimate      s.e.
Dispersn                  Identity      Sigma2            1.000     fixed

Estimated variance matrix for variance components
-------------------------------------------------

    Female   1       0.7026
      Male   2      -0.0505       0.1515
  Dispersn   3       0.0000       0.0000       0.0000
                          1            2            3

Tables of means with standard errors
====================================

Table of predicted means for Cross
----------------------------------

Cross       RR       RW       WR       WW
         1.163    0.784   -1.412    1.015

Standard errors of differences

Average:          0.7729
Maximum:          0.8457
Minimum:          0.6268

Average variance of differences: 0.6050

Back-transformed Means (on the original scale)
----------------------------------------------

        Cross
           RR      0.7619
           RW      0.6865
           WR      0.1959
           WW      0.7340
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3.5.11 Hierarchical generalized linear models

This section describes 11 procedures with the prefix HG, which provide tools for fitting the
hierarchical and double hierarchical generalized linear models (HGLMs and DHGLMs) defined
by Lee & Nelder (1996, 2001a, 2006) and explained in the book by Lee, Nelder & Pawitan
(2006). Procedures HGFIXEDMODEL and HGRANDOMMODEL define the fixed and random models
for an HGLM, and HGDRANDOMMODEL can extend it to become a DHGLM. You can also include
nonlinear terms in the fixed model, using the HGNONLINEAR procedure. HGANALYSE does the
analysis, HGDISPLAY displays the results, HGWALD produces Wald tests for the fixed terms,
HGFTEST and HGRTEST calculate likelihood tests for fixed and random terms, HGPREDICT forms
tables of predictions, HGPLOT produces model-checking plots, HGGRAPH displays the fitted
model, and HGKEEP can save the results.

HGLMs extend the ordinary generalized linear models (GLMs) to include additional random
terms in the linear predictor. They contain generalized linear mixed models (GLMMs) as a
special case, but do not constrain the additional terms to follow a Normal distribution and to
have an identity link (as in the GLMM). For example, if the basic generalized linear model is a
log-linear model (Poisson distribution and log link), a more appropriate assumption for the
additional random terms might be a gamma distribution and a log link.

The analysis involves fitting an augmented generalized linear model, known as the augmented
mean model, to describe the mean of the distribution. This has units corresponding to the original
data units, together with additional units for the effects of the random terms; see Lee & Nelder
(1996). Then there are further GLMs, with gamma distributions and usually with logarithmic
links, to model the dispersion for each random term (including the residual dispersion parameter
ö); see Lee & Nelder (2001a). In a DHGLM, some of these dispersion GLMs are themselves
extended to become HGLMs by the inclusion of random terms; see Lee & Nelder (2006).

Procedure HGFIXEDMODEL specifies the fixed model terms in the HGLM, and defines the link
function and the distribution of the basic GLM.

HGFIXEDMODEL procedure
Defines the fixed model for a hierarchical or double hierarchical generalized linear model
(R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
DISTRIBUTION = string token Distribution of the data (binomial, poisson, normal,

gamma); default norm
LINK = string token Link for the fixed model (identity, logarithm,

logit, reciprocal, probit,
complementaryloglog); default iden

DISPERSION = scalar Value of dispersion parameter in calculation of s.e.s etc;
default * for DIST=norm or gamm, and 1 for
DIST=pois or bino

DLINK = string token Link for the dispersion model (logarithm,
reciprocal); default loga

DTERMS = formula Dispersion model; default * i.e. none
CONSTANT = string token How to treat the constant (estimate, omit) default

esti

FACTORIAL = scalar Limit on number of variates and/or factors in a fixed
model term; default 3

WEIGHTS = variate Prior weights; default * i.e. 1
OFFSET = variate Offset variate; default * i.e. none
DOFFSET = variate Offset variate for dispersion model; default * i.e. none
DDISPERSION = scalar Dispersion parameter to use in a dispersion model for
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the residual dispersion parameter phi; default 1
IDISPERSION = scalar Initial value for the residual dispersion parameter phi;

default * i.e. formed automatically

Parameter
TERMS = formula Fixed model

The LINK and DISTRIBUTION options of HGFIXEDMODEL define the link function and
distribution of the basic GLM. The TERMS parameter specifies the fixed model, and the
FACTORIAL option sets a limit on the number of variates and/or factors in a fixed term (default
3). The CONSTANT option indicates whether or not to include a constant term or intercept in the
fixed model (by default this is included), and the OFFSET option allows an offset variate to be
specified. The WEIGHTS option can supply a variate of prior weights, and the DISPERSION
option allows you to fix the dispersion parameter ö. The DTERMS option allows you to define a
structured dispersion model by specifying a fixed model to be fitted in the GLM that estimates
the residual dispersion parameter ö (the DISPERSION option is then ignored). The DLINK
parameter specifies the link to use with the dispersion model, the DOFFSET option allows you
to specify an offset variate, and the DDISPERSION option defines the dispersion parameter for
the dispersion GLM (default 1).

The random model is defined by HGRAMDOMMODEL.

HGRANDOMMODEL procedure
Defines the random model for a hierarchical or double hierarchical generalized linear model
(R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
DISTRIBUTION = string token Distribution for the random model (beta, normal,

gamma, inversegamma); default norm
LINK = string token Link for the random model (identity, logarithm,

logit, reciprocal); default iden

Parameters
TERMS = formula Random model
DLINK = string tokens Link for the dispersion model for each random term

(logarithm, reciprocal); default loga
DFORMULA = formula structures Dispersion model for each random term; default * i.e.

none
DOFFSET = variates Offset variate for dispersion model for each random

term; default * i.e. none
LMATRIX = matrices Linear transformation to apply to design matrix Z of

each random term, in order to define correlations
between its effects; default * i.e. none

DDISPERSION = scalar Dispersion parameter to use in the dispersion model for
each random term; default 1

FDISPERSION = scalar Fixed value for the dispersion parameter of each random
term; default !s(*) i.e. dispersion is estimated

IDISPERSION = scalar Initial value for the dispersion parameter for each
random term; default * i.e. formed automatically



294 3  Regression analysis

The TERMS parameter defines the additional random terms in the HGLM. These should not
include the final (residual) term, unless you want to define a saturated random model as, for
example, in the use of a negative binomial distribution in the Fabric example, discussed in Lee,
Nelder & Pawitan 2006, Section 6.6.3. The LINK and DISTRIBUTION options specify their
distribution and link function respectively.

The DFORMULA option allows you to define a structured dispersion model for any of the
random terms, by specifying a fixed model to be fitted in the GLM that estimates its dispersion
parameter. The DLINK parameter specifies the link to use with each dispersion model, the
DOFFSET parameter allows you to specify an offset variate, and the DDISPERSION parameter
defines the dispersion parameter for the dispersion GLM (default 1). Alternatively, if you do not
define a dispersion model for a random term, you can use the FDISPERSION parameter to fix
its dispersion at a specific value.

The LMATRIX parameter allows correlation structures to be defined for random terms, using
the method described by Lee & Nelder (2001b). This is done by setting LMATRIX to a matrix L
that is used as a premultiplier for the Z matrix of the random term concerned. Lee & Nelder
(2001b) give examples illustrating the types of model that can be defined.

The IDISPERSION parameter allows you to define initial values for the dispersion parameters
of the random terms. An initial value for the residual dispersion parameter phi can be defined
using the IDISPERSION option of the HGFIXEDMODEL procedure. If you set both of these, the
HGANALYSE procedure will then use them to initialize the weights that are involved in the fitting
of the augmented mean model; for details see Chapter 6 of Lee, Nelder & Pawitan (2006). The
default weights that are formed automatically if either of these is unset are satisfactory in most
circumstances, but you may want to try your own initial values if you encounter convergemce
problems.
HGDRANDOMMODEL allows you to extend a hierarchical generalized linear model (HGLM) to

become a double hierarchical generalized linear model.

HGDRANDOMMODEL procedure
Defines the random model in a hierarchical generalized linear model for the dispersion in a
double hierarchical generalized linear model (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
DISTRIBUTION = string token Distribution for the random model (beta, normal,

gamma, inversegamma); default norm
LINK = string token Link for the random model (identity, logarithm,

logit, reciprocal); default iden
RANDOMTERM = formula Random term whose dispersion is being modelled; if

unset, the model is assumed to be for the residual
dispersion parameter (phi)

PHIMETHOD = string token Whether to fix or estimate the residual dispersion
parameter in the dispersion HGLM (fix, estimate);
default fix

Parameters
TERMS = formula Random model
DLINK = string tokens Link for the dispersion model for each random term

(logarithm, reciprocal); default loga
DFORMULA = formula structures Dispersion model for each random term; default * i.e.

none
DOFFSET = variates Offset variate for dispersion model for each random

term; default * i.e. none
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LMATRIX = matrices Linear transformation to apply to design matrix Z of
each random term, in order to define correlations
between its effects; default * i.e. none

DDISPERSION = scalar Dispersion parameter to use in the dispersion model for
each random term; default 1

FDISPERSION = scalar Fixed value for the dispersion parameter of each random
term; default !s(*) i.e. dispersion is estimated

HGDRANDOMMODEL adds some random terms to one of the generalized linear models that is to
model one of the dispersion parameters, so that this becomes an HGLM. By default the residual
dispersion of this HGLM is fixed, but you can set option PHIMETHOD=estimate to estimate it.
The random term whose dispersion is to be modelled by the HGLM is indicated by the
RANDOMTERM option. If RANDOMTERM is omitted, the dispersion model is assumed to be for the
residual dispersion parameter (ö) of the original HGLM.

The TERMS parameter defines the additional random terms, and the LINK and DISTRIBUTION
options specify their distribution and link function respectively. You can specify a dispersion
model for any of these additional random terms using the DFORMULA, DLINK, DOFFSET and
DDISPERSION parameters, as in the HGRANDOMMODEL procedure. Also, as in the
HGRANDOMMODEL procedure, the LMATRIX parameter allows correlation structures to be defined
for the additional random terms, and the FDISPERSION parameter allows you to fix their
dispersion parameters.

You can include nonlinear terms in the fixed model with the HGNONLINEAR procedure.

HGNONLINEAR procedure
Defines nonlinear parameters for the fixed model of a hierarchical generalized linear model
(R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
CALCULATION = expression structures

Calculation of explanatory variates involving nonlinear
parameters

METHOD = string token Algorithm for fitting the nonlinear model
(GaussNewton, NewtonRaphson, FletcherPowell);
default Gaus

VECTORS = variates Vectors involved in the calculations (data vectors or
factors or derived vectors that appear in the fixed model)

Parameters
PARAMETER = scalars Nonlinear parameters in the model
LOWER = scalars Lower bound for each parameter
UPPER = scalars Upper bound for each parameter
STEPLENGTH = scalars Initial step length for each parameter
INITIAL = scalars Initial value for each parameter
DELTA = scalars Parameter increment to use when calculating numerical

derivatives

HGNONLINEAR allows you to extend a conjugate HGLM to become a hierarchical generalized
nonlinear model by including nonlinear parameters in the fixed model (Payne 2014). Conjugate
HGLMs have the following combinations of link and distribution for the mean model:
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Fixed terms Random terms

Distribution Link Distribution Link

Poisson logarithm gamma logarithm

binomial logit beta logit

gamma reciprocal inverse-gamma reciprocal

Normal identity Normal identity

The nonlinear terms are added exactly as in a generalized nonlinear model (see 3.5.8), by
defining some calculations to form variates to include as linear terms in the model. So the
nonlinear terms have the form

B × f(p)
where B is a (linear) regression coefficient and f() is a function of some nonlinear parameters e.g.

B × RX

defines an exponential term with nonlinear parameter R. (This can be written as exp(k × X)
where the parameter R = exp(k).)

The calculations are specified, as a list of Genstat expression structures, by the CALCULATION
option. (This corresponds to the CALCULATION option of the FIT directive.) You must also use
the VECTORS option to list the vectors that appear in the calculations (either as data vectors or
as derived vectors that then appear as linear terms in the fixed model). The METHOD option
indicates which algorithm to use to fit the nonlinear model. (This corresponds to the METHOD
option of the RCYCLE directive.)

The parameters of HGNONLINEAR supply information about the nonlinear parameters. Most
of these correspond to parameters in the RCYCLE directive. PARAMETER lists the identifiers of
the parameters as they appear in the calculations. LOWER and UPPER can define lower and upper
bounds. STEPLENGTH can define the step lengths to use for each parameter at the start of the
optimization, and INITIAL can define initial values. Genstat will take default initial values if
you do not specify these yourself. However, these may not lead to convergence, so you are
strongly advised to specify your own. It is often feasible to fit the models in an ordinary
generalized nonlinear model, with the random terms included as fixed terms, and then use those
estimates as the initial values for the hierarchical generalized nonlinear model.

The final parameter, DELTA, specifies a small increment to each parameter to be used inside
the algorithm when calculating derivatives of the fixed model with respect to each nonlinear
parameter (needed to calculate leverages).

You can print the model definitions using the HGSTATUS procedure.

HGSTATUS procedure
Displays the current HGLM model definitions (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Option
SAVE = pointer Save structure (from HGANALYSE) to provide details of

the HGLM; if omitted, information is printed for the
most recently defined or fitted HGLM

No parameters

By default the model definitions are from the most recently defined or fitted HGLM, but you can
use the SAVE option to supply the save structure for some other HGLM.

When you are ready, the model can be fitted by HGANALYSE.
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HGANALYSE procedure
Analyses data using a hierarchical or double hierarchical generalized linear model (R.W.
Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
PRINT = string tokens Controls printed output (model, fixedestimates,

randomestimates, dispersionestimates,
likelihoodstatistics, deviance, waldtests,
fittedvalues, monitoring, dhgmonitoring);
default mode, fixe, disp, devi, like, moni

LMETHOD = string token Whether to use exact likelihood or extended quasi
likelihood to obtain the y-variate and weights for the
dispersion model (exact, eql); default exac

SEMETHOD = string token Method to use to calculate the se's for the dispersion
estimates (approximate, profilelikelihood);
default appr

DMETHOD = string token Method to use for the adjusted profile likelihood when
calculating the likelihood statistics (automatic,
choleski, lrv); default auto

EMETHOD = string token Extrapolation method to use (aitken,
adjustedaitken); default aitk

MLAPLACEORDER = scalar Order of Laplace approximation to use in the estimation
of the mean model (0 or 1); default 0

DLAPLACEORDER = scalar Order of Laplace approximation to use in the estimation
of the dispersion components (0, 1 or 2); default 0

MAXCYCLE = scalars Maximum number of iterations of the hierarchical
generalized linear model fits, and maximum number of
iterations in the fitting of the mean and dispersion
models; default 99,50

EXIT = scalar Exit status (0 for success, 1 for failure to converge)
TOLERANCE = scalar Criterion for convergence; default 0.0005
ETOLERANCE = scalar Maximum size of ratio of the original to the new

estimates allowed in Aitken extrapolation; default 7.5
GROUPTERM = formula Random term to use as groups when fitting the

augmented mean model; default * i.e. none

Parameters
Y = variate Response variate (must be one only)
NBINOMIAL = variate Total numbers for binomial data
RESIDUALS = variate Saves the residuals
FITTEDVALUES = variate Saves the fitted values
SAVE = pointer Saves details of the analysis for use in subsequent

HGDISPLAY, HGKEEP, HGPLOT or HGPREDICT
statements

The variate to be analysed is supplied by the Y parameter and, if the y-values are binomial
responses, the NBINOMIAL parameter should specify the corresponding variate of totals.
Residuals and fitted values can be saved using the RESIDUALS and FITTEDVALUES parameters,
respectively. Note that only one y-variate can be analysed at once, so any additional variates are
ignored (as occurs with the MODEL directive when generalized linear models are defined).
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The SAVE parameter allows you to save a pointer containing full details of the analysis. This
can then be used to generate further output from HGDISPLAY, HGKEEP, HGPLOT or HGPREDICT.
The most recent save structure is kept automatically inside Genstat to use as a default for the
SAVE options of HGDISPLAY, HGKEEP, HGPLOT and HGPREDICT. So, you need save the pointer
explicitly only if you want to display output from more than one analysis at a time.

The PRINT option specifies what output is required, with settings:
model details of the model that has been fitted;
fixedestimates estimates of the fixed effects in the HGLM;
randomestimates estimates of the random effects in the HGLM;
dispersionestimates estimates of the parameters in the dispersion models;
likelihoodstatistics likelihood statistics for assessing the models;
deviance scaled deviances for assessing goodness of fit;
waldtests Wald tests of the terms that can be dropped from the fixed

model (obtained using the HGWALD procedure);
fittedvalues table with unit number, response variable, fitted values,

residuals and leverages;
monitoring monitoring of the fitting of the HGLM; and
dhgmonitoring monitoring of the fitting of the HGLM for the dispersion

model in a DHGLM.
The SEMETHOD option specifies which method to use to calculate standard errors for the
estimated parameters of the dispersion models. The default, approximate, method is efficient
to compute, but it may show downwards bias. However, the alternative profilelikelihood
method can be very time-consuming. 

The DMETHOD option controls the method used to calculate the adjusted profile likelihood
during the calculation of the likelihood statistics. The choleski method is fastest, while the
lrv method provides a more robust alternative to use if choleski fails. The default setting,
automatic, tries choleski first and then, if that fails, uses lrv instead.

The other options control various aspects of the fitting process. The fitting process involves
alternative fits of the augmented GLM for the mean given the current estimates of the dispersion
parameters, and of the GLMs that estimate the dispersion parameters. The convergence of the
process is assessed by comparing the dispersion estimates from successive fits. The MAXCYCLE
option can specify two scalars. The first sets a limit on the number of alternating fits (default 99),
and the second controls the number of iterations in the estimation of the mean model and of the
dispersion model (default 50). The TOLERANCE option defines the criterion for convergence in
the alternating fits (default 0.005). The EMETHOD option determines whether Aitken (default) or
adjusted Aitken extrapolation is used in the estimation of the dispersion estimates, or you can
set EMETHOD=* to use neither. The ETOLERANCE option sets an upper limit on the ratio of the
changed value to the original values in the extrapolations; the default value is 7.5. The
GROUPTERM option allows you to specify a random term whose factor combinations should be
used as a groups factor during the fitting of the augmented mean model (see the GROUPS option
of the MODEL directive). This allows models with large numbers of random effects to be fitted
much more efficiently. However, algorithmic complications mean that predictions can then be
made by HGPREDICT only using a BLUP for a specific random effect of that term ! you cannot
form predictions at the expected value of the term. The EXIT option can be set to a scalar which
will be set to zero or one according to whether or not the fitting has been successful.

By default HGANALYSE uses exact likelihood to obtain the y-variate and weights for the
dispersion model. This produces estimates with less bias than the earlier method, in Releases 6-8,
of extended quasi likelihood (EQL). However, option LMETHOD is provided to enable EQL
estimates to be obtained if required. For some of the models the DLAPLACEORDER option allows
the order of Laplace approximation involved in the estimation of the dispersion components to
be increased from the standard value (and default) of 0, to either 1 or 2. This is appropriate for



3.5  Generalized linear models 299

generalized linear mixed models with the binomial or Poisson distributions, where use of
Laplace order 0 can lead to serious downwards bias. The MLAPLACEORDER option similarly
allows you to set the order of Laplace approximation to use in the estimation of the mean model
to 1 instead of 0.

Example 3.5.11a illustrates the fitting of an HGLM by analysing data from Cochran & Cox
(1957, page 300) on the breaking angles of cake. Forty five batches of cake mixture were
prepared, as fifteen replicates each with a batch of mixture from three different recipes. Each
batch was subdivided into ten sub-batches, randomly allocated to be baked at ten different
temperatures. (The design is thus a split-plot, as described in 4.2.1, with random terms for the
replicates and batches of material, in addition to the usual residual term.) The data values are
assumed to follow a generalized linear model with a gamma distribution and reciprocal link. The
linear predictor contains additional random variables, with inverse gamma distributions and
reciprocal for replicates and batches of cake mixture.

Example 3.5.11a

   2  FACTOR   [NVALUES=270; LEVELS=3] Recipe
   3  &        [LEVELS=15] Replicate
   4  &        [LEVELS=!(175,185...225)] Temperature
   5  GENERATE Recipe,Replicate,Temperature
   6  VARIATE  [NVALUES=270] Angle
   7  READ     Angle

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Angle     18.00     32.12     63.00       270         0

  23  FACPRODUCT    !p(Replicate,Recipe); Batch
  24  HGFIXEDMODEL  [DISTRIBUTION=gamma; LINK=reciprocal] Recipe*Temperature
  25  HGRANDOMMODEL [DISTRIBUTION=inversegamma; LINK=reciprocal]\
  26                Replicate+Batch
  27  HGANALYSE     Angle

Monitoring
----------

cycle no., disp. components & max. absolute change
           2      -3.937      -10.72      -11.98      0.4187
           3      -3.933      -10.65      -12.14      0.1573
           4      -3.929      -10.64      -12.22     0.07506
           5      -3.927      -10.63      -12.25     0.03629
           6      -3.926      -10.63      -12.27     0.01796
Aitken extrapolation OK
           7      -3.925      -10.63      -12.29     0.01794
           8      -3.925      -10.63      -12.29   0.0001296

Hierarchical generalized linear model
=====================================

Response variate: Angle

Mean model
----------

Fixed terms: Recipe*Temperature
Distribution: gamma
Link: reciprocal
Random terms: Replicate + Batch
Distribution: inversegamma
Link: reciprocal
Dispersion: free

Dispersion model
----------------

Distribution: gamma
Link: logarithm
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Estimates from the mean model
=============================

                             estimate        s.e.        t(*)
constant                    -1.965122    0.001863    -1054.97
Recipe 2                     0.003148    0.001987        1.58
Recipe 3                     0.001846    0.001952        0.95
Temperature 185             -0.002559    0.001681       -1.52
Temperature 195             -0.001821    0.001700       -1.07
Temperature 205             -0.004406    0.001635       -2.69
Temperature 215             -0.008246    0.001543       -5.34
Temperature 225             -0.005675    0.001604       -3.54
Recipe 2 .Temperature 185   -0.000558    0.002468       -0.23
Recipe 2 .Temperature 195   -0.003713    0.002437       -1.52
Recipe 2 .Temperature 205   -0.001506    0.002385       -0.63
Recipe 2 .Temperature 215    0.000315    0.002287        0.14
Recipe 2 .Temperature 225   -0.002884    0.002317       -1.24
Recipe 3 .Temperature 185    0.001361    0.002448        0.56
Recipe 3 .Temperature 195   -0.002316    0.002406       -0.96
Recipe 3 .Temperature 205    0.001119    0.002377        0.47
Recipe 3 .Temperature 215    0.001775    0.002255        0.79
Recipe 3 .Temperature 225   -0.001825    0.002279       -0.80

Estimates from the dispersion model
===================================

Estimates of parameters
-----------------------

                                                       antilog of
Parameter              estimate         s.e.      t(*)   estimate
phi                     -3.9246       0.0947    -41.46    0.01975
lambda Replicate        -10.626        0.398    -26.68 0.00002428
lambda Batch            -12.287        0.342    -35.89 0.000004609

Likelihood statistics
=====================

-2 * h(y|v)           1517.907
-2 * h                 945.528
-2 * P_v(h)           1622.548
-2 * P_beta,v(h)      1829.042
-2 * EQD(y|v)         1517.019
-2 * EQD               944.639
-2 * P_v(EQD)         1621.659
-2 * P_beta,v(EQD)    1828.153

Fixed parameters in mean model    18
Random parameters in mean model   60
Fixed dispersion parameters        3
Random dispersion parameters       0

Scaled deviances
================

                 deviance          df
  Random term
      *units*       223.2       222.3
    Replicate        12.6        12.6
        Batch        17.1        17.1
        Total       252.9       252.0

Lee & Nelder (1996) suggest that changes in the fixed model are assessed using changes in the
deviance from the adjusted profile likelihood !2 × Pv(h), while changes in the dispersion models
are assessed using !2 × Pâ,v(h). The deviance of the conditional likelihood !2 × h(y|v) can be
used to calculate the deviance information coefficient (DIC), and !2 × h is the h-deviance of the
mean model. The EQD statistics are approximations to the h-likelihood statistics, calculated
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using quasi-likelihood instead of exact likelihood. The scaled deviances assess goodness of fit
over the variation represented by each random term, and are analogous to the deviance in an
ordinary generalized linear model.

Tests based on these likelihoods can be made automatically using HGRTEST and HGFTEST.

HGRTEST procedure
Calculates likelihood tests for random terms in a hierarchical generalized linear model (R.W.
Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
PRINT = string token Controls printed output (tests); default test
LMETHOD = string token Whether to use exact likelihood or extended quasi

likelihood to obtain the y-variate and weights for the
dispersion model (exact, eql); default exac

DMETHOD = string token Method to use for the adjusted profile likelihood when
calculating the likelihood statistics (automatic,
choleski, lrv); default auto

EMETHOD = string token Extrapolation method to use (aitken,
adjustedaitken); default aitk

MLAPLACEORDER = scalar Order of Laplace approximation to use in the estimation
of the mean model (0 or 1); default 0

DLAPLACEORDER = scalar Order of Laplace approximation to use in the estimation
of the dispersion components (0, 1 or 2); default 0

MAXCYCLE = scalars Maximum number of iterations of the hierarchical
generalized linear model fits, and maximum number of
iterations in the fitting of the mean and dispersion
models; default 99,50

EXIT = scalar Exit status (0 for success, 1 for failure to converge)
TOLERANCE = scalar Criterion for convergence; default 0.0005
ETOLERANCE = scalar Maximum size of ratio of the original to the new

estimates allowed in Aitken extrapolation; default 7.5
GROUPTERM = formula Random term to use as groups when fitting the

augmented mean model; default * i.e. none
SAVE = pointer Save structure from the original analysis

Parameters
TERMS = formula Terms to test
TESTSTATISTIC = pointer or scalar

Saves the test statistics
DF = pointer or scalar Saves the degrees of freedom

By default, HGRTEST produces tests for every random term. However, you can use the TERMS
parameter to request tests for a specific set of terms. The TESTSTATISTIC parameter can save
the statistics, and the DF parameter can save their numbers of degrees of freedom. If you are
making a test for a single term, you can supply a scalar for each of these parameters. However,
if you have several terms, you must supply a pointer which will then be set up to contain as many
scalars as there are terms.

The tests are made by calculating the change in the profile likelihood Pâ,v(h) as the term
concerned is dropped from the random model. So, HGRTEST needs to refit the model with the
revised random model. The LMETHOD, DMETHOD, EMETHOD, MLAPLACEORDER, DLAPLACEORDER,
MAXCYCLE, EXIT, TOLERANCE, ETOLERANCE and GROUPTERM options control how the fitting
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is done, and the likelihood is calculated. These all operate exactly as in the HGANALYSE
procedure, and should generally be set to the same values as in the original analysis (by
HGANALYSE). By default, the random terms are dropped from the most recent HGLM analysis,
but you can use the SAVE option to supply the save structure from some earlier analysis.

Example 3.5.11b prints likelihood tests for the random terms in Example 3.5.11a. One point
to note is that we are testing the random terms against a null hypothesis (that they have zero
variance components) which is on the boundary of the parameter space. To allow for this, Lee,
Nelder & Pawitan (2006, p. 219) suggest using the critical value for twice the required
significance probability or, equivalently, dividing the chi-square probabilities by two. This is not
done in the procedure, but is something to bear in mind when assessing the results. Here it is not
necessary as the probabilities are <0.001.

Example 3.5.11b

  28  HGRTEST

Likelihood tests for dropping HGLM random terms
===============================================

     Term  Test statistic  d.f.          pr.
Replicate           26.45     1       <0.001
    Batch           11.20     1       <0.001

HGFTEST procedure
Calculates likelihood tests for fixed terms in a hierarchical generalized linear model (R.W.
Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
PRINT = string token Controls printed output (tests); default test
FACTORIAL = scalar Limit on number of factors in the model terms generated

from the TERMS parameter
LMETHOD = string token Whether to use exact likelihood or extended quasi

likelihood to obtain the y-variate and weights for the
dispersion model (exact, eql); default is to use the
same setting as in the original analysis

DMETHOD = string token Method to use for the adjusted profile likelihood when
calculating the likelihood statistics (automatic,
choleski, lrv); default auto

EMETHOD = string token Extrapolation method to use (aitken,
adjustedaitken); default is to use the same setting as
in the original analysis

MLAPLACEORDER = scalar Order of Laplace approximation to use in the estimation
of the mean model (0 or 1); default is to use the same
setting as in the original analysis

DLAPLACEORDER = scalar Order of Laplace approximation to use in the estimation
of the dispersion components (0, 1 or 2); default is to
use the same setting as in the original analysis

MAXCYCLE = scalars Maximum number of iterations of the hierarchical
generalized linear model fits, and maximum number of
iterations in the fitting of the mean and dispersion
models; default 99,50

EXIT = scalar Exit status (0 for success, 1 for failure to converge with
any of the fixed terms)
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TOLERANCE = scalar Criterion for convergence; default is to use the same
setting as in the original analysis

ETOLERANCE = scalar Maximum size of ratio of the original to the new
estimates allowed in Aitken extrapolation; default is to
use the same setting as in the original analysis

SAVE = pointer Save structure from the original analysis

Parameters
TERMS = formula Terms to test
TESTSTATISTIC = pointer or scalar

Saves the test statistics
DF = pointer or scalar Saves the degrees of freedom

By default, HGFTEST produces tests for all the fixed terms that can be dropped: that is, for every
term that is not marginal to another term in the fixed model. For example, in the formula

A + B + C + D + A.B + A.D + B.D

the terms C, A.B, A.D and B.D can be dropped as there are no other terms in the model that
contain all their factors (i.e. none to which thay are marginal). However, A cannot be dropped
until A.B and A.D have been dropped. You can use the TERMS parameter to request tests for a
specific set of terms, but a missing value is given for any term that cannot be dropped. The
FACTORIAL option sets a limit on the number of factors in each term that is formed from the
TERMS formula (default 3).

The TESTSTATISTIC parameter can save the statistics, and the DF parameter can save their
numbers of degrees of freedom. If you are making a test for a single term, you can supply a
scalar for each of these parameters. However, if you have several terms, you must supply a
pointer which will then be set up to contain as many scalars as there are terms.

The tests are made by calculating the change in the profile likelihood Pv(h) as the term
concerned is dropped from the fixed model. The LMETHOD, DMETHOD, EMETHOD,
MLAPLACEORDER, DLAPLACEORDER, MAXCYCLE, TOLERANCE and ETOLERANCE, options control
how the fitting is done, and the likelihood is calculated. These all operate exactly as in the
HGANALYSE procedure. The default for DMETHOD is automatic, and the default for MAXCYCLE=
is 99,50. For the other options the defaults are to use the same settings as in the HGANALYSE
command that performed the original analysis.

By default, the terms are dropped from the most recent HGLM analysis, but you can use the
SAVE option to supply the save structure from some earlier analysis.

Example 3.5.11c shows the likelihood test for the interaction Recipe.Temperature, which
is the only fixed term that can dropped from the fixed model in Example 3.5.11a.

Example 3.5.11c

  29  HGFTEST

Likelihood tests for dropping HGLM fixed terms
==============================================

              Term  Test statistic  d.f.          pr.
Recipe.Temperature           8.918    10        0.540

A faster, but more approximate way of assessing the fixed terms, is to use Wald tests. These can
be calculated using HGWALD.
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HGWALD procedure
Prints or saves Wald tests for fixed terms in an HGLM (R.W. Payne, Y. Lee, J.A. Nelder &
M. Noh).

Options
PRINT = string token Controls printed output (waldtests); default wald
FACTORIAL = scalar Limit on number of factors in the model terms generated

from the TERMS parameter; default 3
SAVE = pointer Specifies the save structure (from HGANALYSE) of the

analysis from which to calculate the tests; default uses
the most recent analysis

Parameters
TERMS = formula Model terms for which tests are required
WALDSTATISTIC = scalar or pointer to scalars

Saves Wald statistics
DF = scalar or pointer to scalars Saves d.f. of Wald statistics

HGWALD has a similar syntax to HGFTEST. By default it produces tests for all the fixed terms that
can be dropped, but you can use the TERMS parameter and FACTORIAL option to request Wald
tests for a specific set of terms.

Example 3.5.11d shows the Wald test for the interaction Recipe.Temperature in Example
3.5.11a.

Example 3.5.11d

  30  HGWALD

Wald tests for dropping HGLM fixed terms
========================================

              Term  Wald statistic  d.f.  approx. pr.
Recipe.Temperature           8.877    10        0.544

HGDISPLAY procedure
Displays results from a hierarchical or displaying double hierarchical generalized linear model
analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
PRINT = string tokens Controls printed output (model, fixedestimates,

randomestimates, dispersionestimates,
likelihoodstatistics, deviance, waldtests,
fittedvalues); default *

SEMETHOD = string token Method to use to calculate the se's for the dispersion
estimates (approximate, profilelikelihood);
default appr

DMETHOD = string token Method to use for the adjusted profile likelihood when
calculating the likelihood statistics (automatic,
choleski, lrv); default auto

DISPERSIONTERM = formula Model term for output from a dispersion analysis
SAVE = pointer Save structure (from HGANALYSE) to provide details of
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the analysis; if omitted, output is from the most recent
analysis

No parameters

HGDISPLAY allows you to display further output from the analysis. Its options operate almost
exactly as in HGANALYSE. However, the PRINT does not provide the settings monitoring and
dghmonitoring, which print information during the fitting process. HGDISPLAY also has a
SAVE option, to specify the save structure (saved using the SAVE parameter of HGANALYSE)
containing details of the analysis. However, you do not need to save or specify this unless you
want to display output from more than one analysis at a time.

By default the output is from the analysis of the mean model, but you can set the
DISPERSIONTERM option to a formula defining one of the random terms to obtain information
from the analysis to model its dispersion parameter.

You can form tables of predictions using HGPREDICT.

HGPREDICT procedure
Forms predictions from a hierarchical or double hierarchical generalized linear model analysis
(R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
PRINT = string token What to print (description, predictions, se, sed,

vcovariance); default desc, pred, se
COMBINATIONS = string token Which combinations of factors in the current model to

include (full, present, estimable); default esti
ADJUSTMENT = string token Type of adjustment (marginal, equal); default marg
WEIGHTS = table Weights classified by some or all of the factors in the

model; default *
OFFSET = scalar Value of offset on which to base predictions; default

mean of offset variate
METHOD = string token Method of forming margin (mean, total); default mean
ALIASING = string token How to deal with aliased parameters (fault, ignore);

default faul
BACKTRANSFORM = string token What back-transformation to apply to the values on the

linear scale, before calculating the predicted means
(link, none); default none

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
nonlinear); default *

NBINOMIAL = scalar Supplies the total number of trials to be used for
prediction with a binomial distribution (providing a
value n greater than one allows predictions to be made
of the number of "successes" out of n, whereas the value
1 predicts the proportion of successes); default 1

PREDICTIONS = table or scalar To save the predictions; default *
SE = table or scalar To save standard errors of predictions; default *
SED = symmetric matrix To save matrices of standard errors of differences

between predictions; default *
VCOVARIANCE = symmetric matrix To save variance-covariance matrices of predictions;

default *
SAVE = pointer Specifies the save structure (from HGANALYSE) of the

analysis from which to predict; default uses the most
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recent analysis

Parameters
CLASSIFY = vectors Variates and/or factors to classify table of predictions
LEVELS = variates or scalars To specify values of variates, levels of factors
NEWFACTOR = identifiers Identifiers for new factors that are defined when

LEVELS are specified

HGPREDICT allows you to form predictions for various values of the parameters in the fixed
model. It uses the PREDICT directive internally, and its options and parameters are a subset of
those of PREDICT (3.3.4). They are used in the same way as in PREDICT, except that back-
transformations are possible only with conjugate models. Consequently, the default for option
BACKTRANSFORM is none.

The CLASSIFY list can contain factors from either the fixed or random models but you may
specify only one level for each random factor. If all the factors in a particular random term are
in the CLASSIFY list, the prediction will use the BLUP (best linear unbiased predictor) for the
random effect of the term corresponding to the levels that are specified for its factors. Otherwise,
provided that random term was not used as a group term in the analysis (see the GROUPTERM
option of HGANALYSE), the predictions will be at the mean value of the random distribution of
the term. Alternatively, if that random term was used as a group term, HGPREDICT will make the
predictions using the smallest BLUP of the term.

Example 3.5.11e forms predictions for the cake data in Example 3.5.11a.

Example 3.5.11e

  31  HGPREDICT     [PRINT=description,prediction,se] Recipe,Temperature

Predictions from regression model
---------------------------------

These predictions are estimated mean values, formed on the scale of the linear
predictor.

The predictions have been formed only for those combinations of factor levels
for which means can be estimated without involving aliased parameters.

The predictions are at the mean value of the distribution of any random term
whose factor levels have not all been fixed.

The standard errors are appropriate for interpretation of the predictions as
summaries of the data rather than as forecasts of new observations.

  Temperature         175                     185
              predictions          se predictions          se
       Recipe
            1    0.034878    0.001863    0.032319    0.001801
            2    0.038026    0.001931    0.034909    0.001852
            3    0.036724    0.001895    0.035526    0.001865

  Temperature         195                     205
              predictions          se predictions          se
       Recipe
            1    0.033058    0.001818    0.030473    0.001758
            2    0.032492    0.001794    0.032115    0.001785
            3    0.032588    0.001793    0.033438    0.001813

  Temperature         215                     225
              predictions          se predictions          se
       Recipe
            1    0.026632    0.001675    0.029204    0.001730
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            2    0.030095    0.001738    0.029467    0.001724
            3    0.030254    0.001738    0.029224    0.001715

* MESSAGE: s.e's, variances & lsd's are approximate, since the model is not
linear.

You can use HGPLOT to obtain model-checking plots.

HGPLOT procedure
Produces model-checking plots for a hierarchical or double hierarchical generalized linear
model analysis (R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
MODELTYPE = string token Type of model for which plots are required (mean,

dispersion); default mean
RANDOMTERM = formula Random term whose residuals are to be plotted; default

* i.e. the residuals from the full model
DHGRANDOMTERM = formula Random model term in a DHGLM whose residuals are

to be plotted; default *
RMETHOD = string token Type of residual to use (deviance, Pearson, simple);

default devi
INDEX = variate or factor X-values to use for an index plot; default !(1,2...)
GRAPHICS = string token What type of graphics to use (lineprinter,

highresolution); default high
TITLE = text Overall title for the plots; if unset, the identifier of the y-

variate is used
SAVE = pointer Specifies the analysis (by HGANALYSE) from which the

residuals and fitted values are to be taken; by default
they are taken from the most recent analysis

Parameters
METHOD = string tokens Types of graph (up to four out of the six possible) to be

plotted (histogram, fittedvalues, absresidual,
normal, halfnormal, index); default hist, fitt,
norm, absr

PEN = scalars, variates or factors Pen(s) to use for each plot

Six types of plot are available, which can be are selected using the METHOD parameter
with settings:

histogram histogram of residuals;
fittedvalues residuals versus fitted values;
absresidual absolute values of residuals versus fitted values;
normal Normal plot;
halfnormal half-Normal plot; and
index plot against an "index" variable (specified by the INDEX

option).
Up to four can be examined in any call of the procedure. The PEN parameter can be used to
specify the graphics pen or pens to use for each plot. The TITLE option can supply an overall
title; if this is not set, the identifier of the y-variate is used.

The MODELTYPE option indicates the type of model for which the plots are required. The
default setting mean requests plots from the mean GLM, while the alternative setting
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dispersion obtains plots from the dispersion GLM. The RANDOMTERM option specifies the
random term whose residuals (in a mean or dispersion model) are to be plotted; if this is omitted
the plot is for the residual term (i.e. for dispersion parameter ö). If a DHGLM has been fitted,
you can plot residuals from the HGLM that is being used as a dispersion model by setting the
DHGRANDOMTERM parameter to the random term concerned. The type of residual to plot is
specified by the RMETHOD option; by default these are deviance residuals.

The fitted model can be displayed using HGGRAPH.

HGGRAPH procedure
Draws a graph to display the fit of an HGLM or DHGLM analysis (R.W. Payne, Y. Lee, J.A.
Nelder & M. Noh).

Options
GRAPHICS = string token Type of graphics to use (lineprinter,

highresolution); default high
TITLE = text Title for the graph; default * sets an appropriate title

automatically
WINDOW = number Which high-resolution graphics window to use; default

4 (redefined if necessary to fill the frame)
SCREEN = string token Whether to clear the graphics screen before plotting

(clear, keep); default clea
BACKTRANSFORM = string token Whether to back-transformation the response scale

(link, none, axis); default none
OMITRESPONSE = string token Whether to omit the adjusted response values (no, yes);

default no
SAVE = pointer Specifies the save structure (from HGANALYSE) of the

analysis from which to predict; default uses the most
recent analysis

Parameters
INDEX = variates or factors Which variate or factor to display along the x-axis;

default * if GROUPS is set, otherwise INDEX is set to the
first variate in the fixed model

GROUPS = factors Factor to define groups of points to display; default * if
INDEX is set, otherwise GROUPS is set to the first factor
in the fixed model

HGGRAPH has a similar role to the RGRAPH procedure in ordinary regression and generalized
linear models (3.1.5). It displays the fitted model in one or two dimensions. It usually also
displays the observed response values, adjusted for any other explanatory terms in the model,
but these can be omitted by setting option OMITRESPONSE=yes.

The dimensions to display are specified by the INDEX and GROUPS parameters. The INDEX
vector, which can be either a variate or a factor from the fixed model of the HGLM, defines the
x-axis of the plot. (The y-axis corresponds to the response scale.) The GROUPS parameter can be
set to another factor from the fixed model. A set of points is then plotted for each level of
GROUPS, so that you can study the interaction between GROUPS and INDEX. If INDEX and
GROUPS are not set, HGGRAPH takes the first variate (if any) and the first factor in the fixed
model.

The TITLE option can be used to supply a title for the graph. By default the graph is plotted
on the current high-resolution device, but the GRAPHICS option can be set to line for a line
printer plot. The WINDOW option can be used to select a pre-defined window for high-resolution



3.5  Generalized linear models 309

plots; otherwise window 4 is used, and is redefined if necessary to fill the frame. The SCREEN
option allows the graph to be added to an existing high-resolution plot. The colours and symbols
used in the displays can be controlled by setting the attributes of the following pens with the PEN
directive before calling the procedure:

pen 1 labels for lines when drawn for each level of a factor,
pen 2 fitted lines and means,
pen 3 points, and
pen 4 back-transformed axis marks and labels.

The relationship is usually plotted on the scale of the linear predictor but, with a conjugate
HGLM, you can set option BACKTRANSFORM=link to use the original scale of the response.
Alternatively, you can set BACKTRANSFORM=axis to include axis markings, back-transformed
onto the natural scale, on the right-hand side of the y-axis. However, this is not available for the
reciprocal link.

Information from the analysis can be saved using HGKEEP.

HGKEEP procedure
Saves information from a hierarchical or double hierarchical generalized linear model analysis
(R.W. Payne, Y. Lee, J.A. Nelder & M. Noh).

Options
MODELTYPE = string token Type of model from which to save information (mean,

dispersion); default mean
RMETHOD = string token Type of residuals to save using the RESIDUALS

parameter (deviance, Pearson, simple); default
devi

DMETHOD = string token Method to use for the adjusted profile likelihood when
calculating the likelihood statistics (automatic,
choleski, lrv); default auto

IGNOREFAILURE = string token Whether to save information even if the fitting of the
HGLM failed to converge (yes, no); default no

SAVE = pointer Save structure (from HGANALYSE) to provide details of
the analysis; if omitted, information is saved from the
most recent analysis

Parameters
RANDOMTERM = formula Random model terms from whose analysis the

information is to be saved
DHGRANDOMTERM = formula Random model terms in a DHGLM from whose

(HGLM) analysis the information is to be saved
RESIDUALS = variates Residuals
FITTEDVALUES = variates Fitted values
LEVERAGES = variates Leverages
ESTIMATES = variates Estimates of parameters
SE = variates Standard errors of the estimates
VCOVARIANCE = symmetric matrices

Variance-covariance matrix of each set of estimates
DEVIANCE = scalars or tables Scaled deviances (in a table) for a mean model, or

residual deviance (in a scalar) for a dispersion model
DF = scalars or tables Residual degrees of freedom
ITERATIVEWEIGHTS = variates Iterative weights
LINEARPREDICTOR = variates Linear predictors
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YADJUSTED = variates Adjusted responses
LIKELIHOODSTATISTICS = variates

Likelihood statistics
LDF = variates Numbers of fixed and random parameters in the mean

and dispersion models

The MODELTYPE option indicates the model (mean or dispersion) from which the information
is to be saved; by default this is the model for the mean. The RANDOMTERM parameter specifies
the random term from whose analysis the information is to be saved; if this is omitted the
information is for the residual term (i.e. dispersion ö). If a DHGLM has been fitted, you can save
information from the HGLM that is being used as a dispersion model by setting the
DHGRANDOMTERM parameter to the random term concerned.

The LIKELIHOODSTATISTICS parameter saves the likelihood statistics (as given by the
likelihoodstatistics setting of the PRINT option of HGANALYSE and HGDISPLAY). The
DMETHOD option controls the method used to calculate the adjusted profile likelihood during the
calculation of the likelihood statistics. The choleski method is fastest, while the lrv method
provides a more robust alternative to use if choleski fails. The default setting, automatic,
tries choleski first and then, if that fails, uses lrv instead.

The LDF parameter saves the numbers of fixed and random parameters in the mean and
dispersion models. (These accompany the likelihood statistics in the output, and indicate the
numbers of parameters represented by the various statistics.)

The other parameters operate as in the RKEEP directive (3.1.4) except that, for a mean model,
DEVIANCE saves tables of scaled deviances and DF saves a table with the corresponding degrees
of freedom. Similarly, as in the RKEEP directive, the RMETHOD option indicates the type of
residual to form.

By default, HGKEEP will give a warning (and nothing will be saved) if the fitting of the HGLM
failed to converge. Alternatively, you can set option IGNOREFAILURE=yes to save information
from the final iteration.

3.5.12 Generalized estimating equations

GEE procedure
Fits models to longitudinal data by generalized estimating equations (D.M. Smith &
M.G.Kenward).

Options
PRINT = string token What to display (estimates, correlations,

scalefactor, wald, monitoring); default esti,
corr, scal

DISTRIBUTION = string token Distribution of response (normal, Poisson,
binomial, gamma, inversenormal,
negativebinomial); default *

LINK = string token Link function (identity, logarithm, logit,
reciprocal, power, squareroot, probit,
complementaryloglog, logratio); default *

EXPONENT = scalar Exponent for power link; default !2
TERMS = formula Explanatory variates, factors etc
CONSTANT = string token How to treat constant (estimate, omit); default esti
FACTORIAL = scalar Limit for expansion of model terms; default 3
AGGREGATION = scalar Fixed parameter for negative binomial distribution

(parameter k as in variance function var = mean +
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mean2/k); default 1
KLOGRATIO = scalar Parameter for logratio link, in form log(mean / (mean +

k)); default as set in AGGREGATION option
QUADESTIMATION = string token Whether to use quadratic estimation (used, notused);

default used
SCALEFACTOR = string token How to calculate the scale factor (fixed, constant,

varytime); default varies with distribution, fixed for
Poisson and binomial, constant for rest

SFVALUE = scalar Value for scale factor when SCALEFACTOR=fixed;
default 1.0 for Poisson and binomial, missing for rest

CRTYPE = string token Form of correlation matrix (independence,
unstructured, exchangeable, autoregressive,
dependence, antedependence); default *

ORDER = scalar Order in dependence and ante-dependence form of
correlation matrix; default 1

TIMEDEPENDENT = string token Whether correlation in dependence model changes with
time (no, yes); default no

Parameters
Y = variates Response variate for each analysis
NBINOMIAL = variates Denominator in binomial
FITTEDVALUES = variates To store fitted values
RESIDUALS = variates To store residuals
SUBJECT = factors Identifier of subjects
OUTCOME = factors Identifier of outcomes
COUNT = variates Variate of counts of no. outcomes
TIME = factors Times of repeated measures variate
WEIGHT = variates Weight variate
OFFSET = variates Offset variate
SAVE = pointers Structure to save output variables

GEE implements the General Estimating Equation (GEE) methodology of Liang & Zeger (1986)
with quadratic estimation for the covariance structure. In the terminology of Liang et al. (1992)
the methodology implemented is a form of GEE1. Full details of the implementation are given
in Kenward & Smith (1995a). GEE, as implemented here, is a comparatively simple non-
likelihood method for fitting marginal models to repeated measurements that can be used when
the response has a distribution in the exponential family. This includes the Gaussian distribution,
for which the procedure implemented here reduces to a form of the EM algorithm, and then
produces exact ML or REML estimates, or a close approximation to these depending on the
particular correlation structure chosen. For other distributions the resulting estimates are not
maximum likelihood but can be shown to have asymptotic properties familiar from quasi-
likelihood, such as consistency and asympototic normality.

The standard range of generalized linear models (as in procedure GLM) can be fitted involving
a variety of covariance/correlation structures over the times of the repeated measurements. The
standard links and distributions can be chosen by setting the options DISTRIBUTION, LINK,
EXPONENT, AGGREGATION and KLOGRATIO, as in the MODEL directive (3.1.1). Non-standard
ones require the definition of auxiliary procedures to carry out the necessary calculations (see
below). The terms in the fitted model are specified by the TERMS option, which may be set to a
formula or left unset to fit a null model. The FACTORIAL option (default 3) sets a limit on the
number of factors and variates in the terms that are fitted, as in the FIT directive (3.1.2). The
CONSTANT option can be used to omit a constant term. Setting the QUADESTIMATION option to
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used requests the use of quadratic estimation for the data-based covariance/correlation matrix
(see Kenward & Smith 1995a). The SCALEFACTOR option specifies the form of scalefactor to
be used (fixed to a value specified by the SFVALUE option, constant over times of repeated
measurements, or varying over times of repeated measurements). The CRTYPE option specifies
the structure of the covariance/correlation matrix over the times of the repeated measurements.
The ORDER option specifies the order of the covariance/correlation structures for the dependence
and ante-dependence cases, with option TIMEDEPENDENT specifying whether the correlation in
a dependence structure changes with the time of the repeated measurement.

The Y parameter must be set to specify the response variate. For a binomial distribution the
NBINOMIAL parameter must also be set. The SUBJECT parameter specifies a factor to identify
the subjects. Alternatively, where the data consist of outcomes and numbers with those
outcomes, the parameter OUTCOME must be set to the identifier of the outcome and the parameter
COUNT to the number with the outcome. The parameter TIME must be set to the times of the
repeated measurements. The parameters WEIGHT and OFFSET specify weight and offset variates
that may be involved. Neither Y nor any of the other input structures must be restricted, and any
existing restrictions will be cancelled.

The output from the procedure is controlled by the PRINT option; by default estimates, their
standard errors, covariances/correlations and scalefactors are given. Two sets of standard errors
are provided for the estimates. One is the naive estimate which assumes the specified
covariance/correlation structure holds. The other is the sandwich estimate which makes no such
assumption. When PRINT=wald, Wald tests are produced using both sets of standard errors and
correlations.

The fitted values and residuals can be obtained by setting the parameters FITTEDVALUES and
RESIDUALS. The residuals are the Pearson residuals as defined in the Genstat manual.

The SAVE parameter can save various details of the analysis, in a pointer with the following
suffixes and labels:
1 or 'scalefactors' scalefactor(s),
2 or 'correlation' or 'covariance'

correlations or covariances, according to the type of model
(and labelled appropriately),

3 or 'estimates' the estimates of the linear predictor parameters,
4 or 'naive covariances' naive variance-covariance matrix for the estimates,
5 or 'sandwich covariances' sandwich variance-covariance matrix for the estimates,
6 or 'naive Wald' Wald tests calculated using the naive variance-covariance

matrix, and
7 or 'sandwich Wald' Wald tests calculated using the sandwich variance-

covariance matrix.
The algorithms in the procedure have been set up assuming that the data contain a complete

set of observations for each subject. Where there are missing values these must be included
explicitly (using the missing value symbol *) to create a complete set of observations. Missing
values are allowed in both the Y variate and the explanatory variates in TERMS.

In the case of the Gaussian distribution, a working covariance matrix, rather than correlation
matrix, is used. This provides considerable simplification within the algorithm.

Example 3.5.12 uses GEE to fit a model with a log link and a gamma distribution with
autoregressive errors.

Example 3.5.12

   2  " Example of how to use GEE: data from Archer
  -3    (1987, Fertility & Sterility, 47, 559-564)
  -4    about prolactin response to thyroptrin releasing
  -5    hormone in women grouped according fertility status;
  -6    also see Paik (1992, Biometrics, 48, 19-30)."
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   7  VARIATE [VALUES=44,45,41,40,72,49,41,31,37,23,15,10,103,79,47,\
   8          39,51,40,32,15,97,98,76,51,59,55,49,36,97,75,\
   9          49,38,88,78,61,43,53,40,29,23,66,35,18,16,60,\
  10          48,32,29,53,47,29,38,111,77,59,58,27,22,18,12,\
  11          51,62,40,37,28,33,20,15,49,39,32,23,59,49,43,\
  12          38,155,126,72,48,82,67,54,44,127,99,58,53,75,59,\
  13          46,29,71,62,49,44,114,110,95,52,172,95,51,43,210,\
  14          156,117,91,100,90,60,50,86,65,57,42,101,93,68,47] Response
  15  &       [VALUES=16,16,16,16,10,10,10,10,7,7,7,7,8,8,8,8,5,5,5,5,\
  16          8,8,8,8,7,7,7,7,9,9,9,9,13,13,13,13,3,3,3,3,\
  17          7,7,7,7,8,8,8,8,17,17,17,17,38,38,38,38,11,11,11,11,\
  18          12,12,12,12,7,7,7,7,7,7,7,7,26,26,26,26,9,9,9,9,\
  19          19,19,19,19,12,12,12,12,20,20,20,20,41,41,41,41,4,4,4,4,\
  20          30,30,30,30,15,15,15,15,36,36,36,36,15,15,15,15,11,11,11,11]\
  21          Baseline
  22  &       [VALUES=(1...4)30] CTime
  23  FACTOR  [LEVELS=30; VALUES=4(1...30)] Woman
  24  &       [LEVELS=3; VALUES=24(1),48(2),48(3)] Group
  25  &       [LEVELS=4; VALUES=(1...4)30] Time
  26  GEE     [PRINT=estimates,correlations,scalefactor,wald; LINK=log;\
  27          DISTRIBUTION=gamma; TERMS=Group+CTime+Baseline; \
  28          CRTYPE=autoregressive] SUBJECT=Woman; TIME=Time; Y=Response

Generalized estimating equations
================================

Quadratic estimation operating.

Independence (GLM) case
=======================

 Response variate: workvar
   Weight variate: weight
     Fitted terms: Constant + Group + CTime + Baseline

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       4        18.78       4.6962     31.02
Residual       115        17.41       0.1514
Total          119        36.20       0.3042

Percentage variance accounted for 50.2
Standard error of observations is estimated to be 0.389.

Estimates of parameters
-----------------------

Parameter      estimate         s.e.    t(115)
Constant          4.483        0.118     38.02
Group 2         -0.0961       0.0978     -0.98
Group 3           0.434        0.106      4.08
CTime           -0.2649       0.0318     -8.34
Baseline        0.00331      0.00398      0.83

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
               Group  1

Correlations between parameter estimates
----------------------------------------

Parameter                 ref    correlations

Constant                    1    1.000
Group 2                     2   -0.515  1.000
Group 3                     3   -0.379  0.649  1.000
CTime                       4   -0.674  0.000  0.000  1.000
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Baseline                    5   -0.304 -0.105 -0.406  0.000  1.000
                                     1      2      3      4      5

Autoregressive correlation structure
====================================

Scale factor constant over time.

Scale factor      0.1708

Matrix of correlations

            1      1.0000
            2      0.9068      1.0000
            3      0.8223      0.9068      1.0000
            4      0.7457      0.8223      0.9068      1.0000
                        1           2           3           4

Model estimates of s.e.
-----------------------

                 Estimate        s.e.
     Constant       4.418      0.1786
      Group 2      -0.080      0.1940
      Group 3       0.421      0.2111
        CTime      -0.259      0.0179
     Baseline       0.006      0.0079

Correlations
------------

     Constant   1      1.0000
      Group 2   2     -0.6744      1.0000
      Group 3   3     -0.4969      0.6487      1.0000
        CTime   4     -0.2511      0.0000      0.0000      1.0000
     Baseline   5     -0.3983     -0.1052     -0.4056      0.0000      1.0000
                            1           2           3           4           5

Wald tests using model estimates of covariances
-----------------------------------------------

  Source  Wald statistic    d.f.  Chi pr.
   Group            9.00       2    0.011
   CTime          208.84       1   <0.001
Baseline            0.61       1    0.433

Sandwich estimates of s.e.
--------------------------

                 Estimate        s.e.
     Constant       4.418      0.1817
      Group 2      -0.080      0.1852
      Group 3       0.421      0.2044
        CTime      -0.259      0.0170
     Baseline       0.006      0.0077

Correlations
------------

     Constant   1      1.0000
      Group 2   2     -0.7951      1.0000
      Group 3   3     -0.4644      0.6309      1.0000
        CTime   4     -0.1349     -0.0607     -0.2471      1.0000
     Baseline   5     -0.4707      0.1237     -0.3772      0.0438      1.0000
                            1           2           3           4           5
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Wald tests using sandwich estimates of covariances
--------------------------------------------------

  Source  Wald statistic    d.f.  Chi pr.
   Group            9.22       2    0.010
   CTime          232.90       1   <0.001
Baseline            0.65       1    0.422

For full details of the method implemented in this procedure see Kenward & Smith (1995a). A
generalized linear model is formulated for the marginal distribution of the observations at each
time point using an appropriate link function and error distribution. If the repeated measurements
could be assumed to be independent, the well-known iterative weighted least squares fitting
procedure could be used to obtain ML estimates of the marginal model parameters. However this
ignores the dependence among the repeated measurements. Full likelihood is in general very
awkward in this setting so, to avoid a formal introduction of dependence into the model, a
working correlation matrix is introduced into the iterative procedure, changing the least squares
from a weighted to a generalized form. The correlation matrix can be introduced in various ways.
It can be held constant throughout the iterative procedure. An example of this is the use of the
identity matrix, leading to the so-called independence estimating equations for which the process
reduces back to that of fitting a univariate generalized linear model. Alternatively an estimated
correlation matrix can be introduced into the algorithm which is updated at each cycle using
quadratic estimation: essentially the correlation structure is estimated from the residuals using
the equations that would be appropriate were the residuals normally distributed. On convergence
consistent estimates of the marginal linear model parameters are obtained and, if the correlation
structure chosen is appropriate, then this will be consistently estimated as well. It is not
necessary for the correlation structure to be correct for the consistency of the marginal parameter
estimates, at least when the correlation structure is fixed; indeed the common choice of
independence is almost certain not to be appropriate. However the estimates of precision of the
marginal parameter estimates do need to be adjusted to allow for the true correlation structure.
This correction is done in the so-called "sandwich" estimator provided by the procedure.

The procedures have been written so that it is possible to fit models other than the standard
ones. An important example of such a model is the application of the GEE methodology to
ordinal categorical data. This application requires the data to be arranged in a particular form (as
cummulative logits) and a particular correlation matrix (specified in _GEECORRELATION). The
type of analyses are explained in Kenward et al. (1994) and the methodology described in that
paper has been duplicated. Further details are given in Kenward & Smith (1995b).

An option (SCALEFACTOR) has been included that allows the user to decide whether or not
the scale factor is fixed at its independence distributional default, or is estimated from the scaled
residuals as in Liang & Zeger (1986), or is treated as a vector varying over time.
GEE has four subsidiary procedures, which can be re-written or replaced, to cater for further

user-defined distributions, links and correlation structures:
_GEEINIT calculates initial estimates of the linear predictor in the

generalized linear model;
_GEELINK calculates fitted values and derivatives;
_GEEDISTRIBUTION calculates the variance function and deviance;
_GEECORRELATION calculates the correlation matrix and the sandwich matrix

involving the residuals. (For the normal distribution the
variance/covariance matrices are used not the correlation
matrices.)

If the LINK option is unset, the procedure will call _GEEINIT and _GEELINK instead of using
those for the various standard link functions. For a logit link function _GEEINIT and _GEELINK
should be defined as follows.
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PROCEDURE '_GEEINIT'
          "Calculation of initial estimate of linear predictor,
           link unset"
PARAMETER NAME = \
          'Y',              "I: variate; response variate"\
          'LINEARPREDICTOR',"O: variate; linear predictor"\
          'OFFSET',         "I: variate; offset"\
          'NBINOMIAL';      "I: variate; denominator of binomial"\
          SET=3(yes),no;TYPE=4('variate'); \
          COMPATIBLE=*,3(!T(type,nvalues,restriction));\
          PRESENT=yes,no,2(yes)

CALC LINEARPREDICTOR = LOG((Y+0.5)/(NBINOMIAL-Y+0.5)) - OFFSET
ENDPROCEDURE

PROCEDURE '_GEELINK'
          "Calculation of fitted values and derivatives"
PARAMETER NAME = \
          'LINEARPREDICTOR', "I: variate; linear predictor"\
          'FITTEDVALUES',    "O: variate; estimate of fitted values"\
          'DERIVATIVES',     "O: variate; estimate of derivatives"\
          'OFFSET',          "I: variate; offset"\
          'NBINOMIAL';       "I: variate; denominator of binomial"\
          SET=4(yes),no;TYPE=5('variate'); \
          COMPATIBLE=*,4(!T(type,nvalues,restriction));\
          PRESENT=yes,2(no),2(yes)

GETATTRIBUTE [ATTRIBUTE=NVALUES] LINEARPREDICTOR; SAVE=!P(nobs)

CALC  FITTEDVALUES = NBINOMIAL/(1+EXP(-LINEARPREDICTOR - OFFSET))
&     DERIVATIVES = 1/FITTEDVALUES+1/(NBINOMIAL-FITTEDVALUES)
ENDPROCEDURE

If the DISTRIBUTION option is unset, the procedure will call _GEEDISTRIBUTION instead of
using one of the various standard distributions. For a binomial error distribution
_GEEDISTRIBUTION should be defined as follows.

PROCEDURE '_GEEDISTRIBUTION'
          " Calculation of variance function and deviance"
PARAMETER NAME = \
          'Y',           "I: variate; response variate"\
          'FITTEDVALUES',"I: variate; fitted values"\
          'VARIANCE',    "O: variate; variance"\
          'DEVIANCE',    "O: scalar; total deviance"\
          'NBINOMIAL';   "I: variate; denominator of binomial"\
          SET=4(yes),no;TYPE=3('variate'),'scalar','variate'; \
          COMPATIBLE=*,2(!T(type,nvalues,restriction)),*,\
                     !T(type,nvalues,restriction); \
          PRESENT=2(yes),2(no),yes

CALC VARIANCE = FITTEDVALUES*(NBINOMIAL-FITTEDVALUES)/NBINOMIAL
&    DEVIANCE = -2*LLB(Y;NBINOMIAL;(FITTEDVALUES/NBINOMIAL))
ENDPROCEDURE

If the CRTYPE option is unset, the procedure will call _GEECORRELATION instead of using one
of the various standard correlation models. For the independence model _GEECORRELATION
should be defined as follows. Kenward & Smith (1995b) describe how _GEECORRELATION
should be set up for analysing repeated ordinal categorical data.

PROCEDURE   '_GEECORRELATION'
            " Calculation of correlation matrix

              For SANDWICH = NO
                  input is the R matrix as for UNSPECIFIED
                  output is the desired R matrix.
              For SANDWICH = YES
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                  input is the (Y-MU)*T(Y-MU) matrix
                  output is the desired modified (Y-MU)*T(Y-MU) matrix.
              N.B. For the normal distribution both the input and
                   output R's should be variance/covariance matrices
                   not correlation matrices."
OPTION      NAME = \
            'CONSTANT', "I: text; how to treat constant (estimate,
                        omit); default e"\
            'SANDWICH'; "I; text; whether the sandwich central matrix
                        product or not) (no,yes); default no"\
            MODE=2(T); NVALUES=2(1); SET=yes;\
            VALUES=!T(ESTIMATE,OMIT),!T(NO,YES); \
            DEFAULT=!T(ESTIMATE),!T(NO);
PARAMETER NAME = \
          'CORRELATIONS',"I/O: matrix; the correlation matrix"\
          'ESTIMATES',   "I: variate; estimates of parameters in
                         model"\
          'Y',           "I: variate; response variate"\
          'RESIDUALS',   "I: variate; residuals"\
          'FITTEDVALUES',"I: variate; fitted values"\
          'TIME',        "I: variate; times of repeated measures"\
          'MARKER',      "I: factor; identifier of subject or outcome"\
          'DISTRIBUTION',"I: text; identifier of distribution"\
          'SCALEFACTOR', "I: text; scalefactor option in use"\
          'SFVALUE';     "I: scalar; value of scalefactor if FIXED"\
          SET=10(yes);DECLARED=10(yes); \
          TYPE='symmetric',5('variate'),'factor',2('text'),'scalar'; \
          PRESENT=9(yes),no

GETATTRIBUTE [ATTRIBUTE=NVALUES] ESTIMATES; SAVE=!P(ncol)
 &           [ATTRIBUTE=NROWS] CORRELATIONS; SAVE=!P(ntime)

DIAGONALMATRIX [ROWS=ntime;MODIFY=yes] done,wkdm; \
               VALUES=!(#ntime(1)),*

CALC const = 'ESTIMATE' .IN. CONSTANT
 &   sandw = 'NO' .IN. SANDWICH

IF sandw
"
  SCALEFACTOR is as in GEE i.e. FIXED means fixed to SFVALUE
  CONSTANT means the scalefactor is estimated but constant
  across time, and VARYTIME means the scalefactor is estimated
  and varies across time.

  The variate TIME in this PROCEDURE represents the 1...ntime
  distinct times, it is not a FACTOR of length nobs as in GEE.
  It is the levels of the parameter TIME of GEE.
"
  IF DISTRIBUTION.EQS.'NORMAL'
    IF SCALEFACTOR.NES.'VARYTIME'
      IF SCALEFACTOR.EQS.'FIXED'
        CALC wkdm = SFVALUE
      ELSE
        CALC wkdm = TRACE(CORRELATIONS)/ntime
      ENDIF
    ELSE
      CALC wkdm = CORRELATIONS
    ENDIF
    CALC CORRELATIONS = 0 + wkdm
  ELSE
    CALC CORRELATIONS = done
  ENDIF
ENDIF
ENDPROCEDURE

If LINK, DISTRIBUTION or CRTYPE are unset, but no user routines are given for _GEEINIT,
_GEELINK, _GEEDISTRIBUTION and _GEECORRELATION, then those given here (for logit link,
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binomial error distribution and independence) will be used.
This is a complicated algorithm and some examples may take a while to run. If necessary,

however, you can set option PRINT=monitoring to see what is happening.

3.5.13 Zero-inflated regression models

R0INFLATED procedure
Fits zero-inflated regression models to count data with excess zeros (D.A. Murray).

Options
PRINT = string token Controls printed output (model, summary, estimates,

fittedvalues, monitoring); default mode, summ,
esti

DISTRIBUTION = string token Distribution of response variable (poisson, binomial,
negativebinomial); default pois

METHOD = string token Method used for model fitting (em, conditional);
default em

CONSTANT = string token How to treat constant for count state (estimate,
omit); default esti

ZCONSTANT = string token How to treat constant for zero-inflation state
(estimate, omit); default esti

XTERMS = formula List of explanatory variates and factors, or model
formula for count state of model

ZTERMS = formula List of explanatory variates and factors, or model
formula for zero-inflation state of model

WEIGHTS = variate Variate of weights for weighted zero-inflated regression
(EM model only)

OFFSET = variate Offset variate to be used in the model (EM model only)
XGROUPS = factor Absorbing factor defining the groups for within-groups

regression for the count state model (EM model only)
ZGROUPS = factor Absorbing factor defining the groups for within-groups

regression for the zero-inflation state model (EM model
only)

MAXCYCLE = scalar Maximum number of iterations for EM algorithm;
default 100

TOLERANCE = scalar or variate Convergence criteria for EM algorithm, k and in the
generalized linear models; default !(1.E!4, 1.E!4,
1.E!4)

ZPARAMETERIZATION = string token
Parameterization of the probability of the zero-inflation
model (zero, nonzero): if unset, zero is used for the
EM model and nonzero for the conditional model

Parameters
Y = variates Response variate
NBINOMIAL = scalars or variates Total numbers for DISTRIBUTION=binomial
RESIDUALS = variates Saves the simple residuals
FITTEDVALUES = variates Saves the fitted values
ESTIMATES = variates Saves the estimates of the parameters
SE = variates Saves the standard errors of the estimates
RSAVE = identifiers Saves the regression structure for the final generalized
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model fitted for the count model
ZSAVE = identifiers Saves the regression structure for the final binomial

regression fitted for the zero-inflation model

Zero-inflated regression models are useful when you have count data with too many zeros.
R0INFLATED allows the data to be modelled using two different approaches, according to the
setting of the METHOD option.

The first possibility (METHOD=em) is to fit a zero-inflated Poisson regression model (ZIP), a
zero-inflated binomial regression model (ZIB) or a zero-inflated negative binomial regression
model (ZINB) using an EM algorithm (Lambert 1992). In this analysis, the response variable of
counts is assumed to be distributed as a mixture of a distribution (such as Poisson) and a
degenerate distribution at zero. In these models, a generalized linear model with a Poisson or
negative binomial distribution and log link, or with a binomial distribution and logit link, is used
for the count model. A generalized linear model with a binomial distribution and logit link is
used for the zero-inflation model.

The zero-inflated Poisson (mixture) regression model has the distribution
Pr(Y=y) =  ù + (1 ! ù) × exp(!ë)   for y=0
 =  (1 ! ù) × exp(!ë) × ëy / y!   for y>0

where ë and ù are given by the following models
log(ë) = X â
log(ù/(1!ù)) = Z á

where X and Z are covariate matrices and â and á are vectors of unknown parameters. 
The zero-inflated binomial (mixture) regression model has the distribution

Pr(Y=y) =  ù + (1 ! ù) × (1-p)n  for y=0
 =  (1 ! ù) × py × (1 ! p)n!y × n! / (y! × (n!y!))  for y>0

where p and ù are given by the following models
log(p/(1!p)) = X â
log(ù/(1!ù)) = Z á

The zero-inflated negative binomial (mixture) regression model has the distribution
Pr(Y=y) =  ù + (1 ! ù) × (1 + ë × k)!(1/k)   for y=0
 =  (1 ! ù) × Ã(y + 1/k) / (y! × Ã(1/k))
    × (1 + ë × k)!(y + 1/k)   for y>0

where ë and ù are given by the same models as for the Poisson distribution, and k is the
extra-variation parameter in the negative binomial distribution.

The maximum likelihood estimates for â, á and k are obtained using an EM algorithm
(Lambert 1992). The standard errors for the parameter estimates are derived using the incomplete
data observed information matrix as proposed by Lambert (1992). The default parameterization
for the mixture models estimates ù, the probability of excess zeros. You can use the
ZPARAMETERIZATION option to change the parameterization to estimate ùN, the probability that
an observation is generated through the distribution instead (ùN = 1!ù).

The alternative (METHOD=conditional) is to fit the conditional model of Welsh et al.
(1996), which assumes that the data are in one of two states: a state where zeros are observed,
or a state where counts are recorded. A binomial model with a logit link is used for the zero state.
A truncated Poisson, truncated binomial or truncated negative binomial model is used for the
count state.

In the Poisson case of the conditional model, y has a truncated Poisson distribution (ë). So the
probability model is

Pr(Y=y) = ù  for y=0
 = (1 ! ù) × exp(!ë) × ëy) / { y! × (1 ! exp(!ë) }  for y>0

where ë and ù are given by the following models
log(ë) = X â
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log(ù/(1!ù)) = Z á
In the truncated binomial case, y has a truncated binomial distribution. So the probability

model is 
Pr(Y=y) = ù  for y=0
 = (1 ! ù) × py × (1 ! p)n!y / (1 - (1 ! p)n) 
    × n! / (y! × (n!y!))   for y>0

where p and ù are given by the following models
log(p/(1!p)) = X â
log(ù/(1!ù)) = Z á

In the negative binomial case, y has a truncated negative binomial (ë, k). So the probability
model is 

Pr(Y=y) = ù   for y=0
 = (1 ! ù) × Ã(y + 1/k) / (y! × Ã(1/k))
    × (1 + k × ë)!(y + 1/k)

    × (1 ! (1 + k × ë)!1/k)!1,   for y>0
where ë and ù are given by the same models as for the Poisson distribution, and k is the
extra-variation parameter in the negative binomial distribution.

The truncated Poisson model is fitted using an iteratively re-weighted least squares algorithm
(see Welsh et al. 1996). The truncated binomial and negative binomial models are fitted using
FITNONLINEAR.. The default parameterization for the mixture models estimates ùN (=1!ù), the
probability of detecting at least one observation given that there is at least one observation, as
in Welsh et al. (1996). You can use the ZPARAMETERIZATION option to change the
parameterization to estimate ù, the probability of detecting a zero observation, instead.

The response variable is supplied, in a variate, using the Y parameter. The NBINOMIAL
parameter must also be set when DISTRIBUTION=binomial, to give the number of binomial
trials for each unit. The XTERMS and ZTERMS options each specifies a formula, to describe the
count model and the zero-inflation model respectively. The CONSTANT and ZCONSTANT options
control whether a constant parameter is included in the count and zero-inflation models.

The DISTRIBUTION option specifies the distribution for the count model. Note that a log link
is always used for the count model with the Poisson and negative binomial distributions, and a
logit link is used with the binomial distribution.

The XGROUPS and ZGROUPS options can specify factors whose effects you want to eliminate
from the count or zero-inflation state respectively, before any regression is fitted. This method
of elimination is sometimes called absorption. (See the GROUPS option of the MODEL directive.)
It gives less information than you would get if you included the factor explicitly in the model.
For example, no standard errors are produced. However, it saves space and time when data from
many different groups are to be modelled. These options are only available for the EM model.

The ESTIMATES and SE parameters save the parameter estimates and their standard errors.
R0INFLATED puts them into variates, using the same order as in the display produced by the
PRINT option. The simple residuals and the fitted values can be saved using the RESIDUALS and
FITTEDVALUES parameters.

The RSAVE and ZSAVE parameters allow you to specify identifiers for the regression save
structures for the count and zero-inflation states of the model. These structures store the final
state of the regression models fitted. Note that the standard errors for the parameter estimates in
the regression save structures will not be correct and should instead be obtained using the SE
parameter or by the R0KEEP procedure.

For the mixture models, the WEIGHTS option can specify a variate holding weights for each
unit, and the OFFSET option allows you to include an offset (i.e. a variable in the regression
model with a regression coefficient fixed at one).

The PRINT option controls printed output, with settings:
model gives a description of the model, including response and
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explanatory variates for count and zero-inflation models;
summary displays minus twice log-likelihood, the Akaike

information coefficient (AIC) and the Schwarz (Bayesian)
information coefficient (BIC or SIC);

estimates gives the estimates of the parameters in the model with
standard errors based on the asymptotic variance-
covariance matrix derived from the inverse of the observed
Fisher information matrix;

fittedvalues displays a table of unit labels, values of response variate,
fitted values and residuals;

monitoring displays monitoring information of the iterative algorithm.
The iterative process for the EM algorithm is controlled by the MAXCYCLE option which

defines the maximum number of cycles, and the TOLERANCE option which sets convergence
criteria. The EM algorithm cycle stops when successive values of the log-likelihood are within
a tolerance set by the first element of the TOLERANCE option. The second and third elements of
TOLERANCE control the convergence criterion for the aggregation parameter (k) for the negative
binomial model and for the generalized linear model, respectively.

Example 3.5.13 fits a conditional model with a truncated negative binomial distribution for
the non-zero counts to the data on Leadbeater's possums in Welsh et al. (1996).

Example 3.5.13

   2  VARIATE    [NVALUES=151] no_lb,stags
   3  READ       no_lb

    Identifier   Minimum      Mean   Maximum    Values   Missing
         no_lb    0.0000     1.371     10.00       151         0    Skew

  10  READ       stags

    Identifier   Minimum      Mean   Maximum    Values   Missing
         stags    0.0000     7.238     31.00       151         0    Skew

  17  CALCULATE  lstags = log(stags+1)
  18  R0INFLATED [PRINT=mod,sum,est; METHOD=conditional; DIST=negative; \
  19             ZTERMS=lstags; XTERMS=lstags] no_lb

Conditional model
=================

    Response variate: no_lb
        Distribution: Truncated negative binomial
                Link: Log
        Fitted Terms: Constant + lstags
Zero-inflation terms: Constant + lstags

Summary of analysis
-------------------

-2 x log-likelihood: 413.1

Binary model residual deviance: 187.0 on 149 d.f.
Count model residual deviance:  64.03 on 53 d.f.

Estimates of count model parameters
-----------------------------------

Parameter    estimate        s.e.
k              0.1189      0.0935
Constant       0.4988      0.3042
lstags         0.3411      0.1270
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Estimates of binary model parameters
------------------------------------

Parameter    estimate        s.e.
Constant       -2.079      0.5115
lstags          0.822      0.2485

R0KEEP procedure
Saves information from a zero-inflated regression model for count data with excess zeros
fitted by R0INFLATED (D.A. Murray).

Options
RESIDUALS = variate Saves the simple residuals
FITTEDVALUES = variate Saves the fitted values
ESTIMATE = variate Saves the parameter estimates
SE = variate Saves the standard errors of the parameter estimates
VCOVARIANCE = symmetric matrix Saves the variance-covariance matrix of estimates for

the ZIP and ZINB models
XFITTEDVALUES = variate Saves the fitted values for the count model
XSEFITTEDVALUES = variate Saves the standard errors of the fitted values for the

fitted values of the count model
ZFITTEDVALUES = variate Saves the fitted values for the zero model
ZSEFITTEDVALUES = variate Saves the standard errors of the fitted values for the

fitted values of the zero model
_2LOGLIKELIHOOD = scalar Saves !2 times the log-likelihood
AIC = scalar Saves the Akaike information coefficient
SIC = scalar Saves the Schwarz (Bayesian) information coefficient

No parameters

R0KEEP allows you to copy information into Genstat data structures from a model that has
been fitted by R0INFLATED.

The RESIDUALS and FITTEDVALUES options save the simple residuals and the fitted
values. The ESTIMATES and SE options save the parameter estimates and their standard
errors. The VCOVARIANCE option saves the variance-covariance matrix of estimates from
either a ZIP or ZINB model. The ZFITTEDVALUES and ZSEFITTEDVALUES options save the
fitted values and standard errors of fitted values for the zero state. Similarly, the
XFITTEDVALUES and XSEFITTEDVALUES options save the fitted values and standard errors
of fitted values for the count state. The _2LOGLIKELIHOOD option saves !2 times the
log-likelihood, and the AIC and SIC options save the Akaike and Schwarz (Bayesian)
information coefficients respectively.

3.6 Generalized least-squares

You can specify a general weight matrix for use in linear regression, supplied as a symmetric
matrix using the WEIGHTS option of the MODEL directive. The regression problem is then
described as a generalized least-squares problem. Similarly, the WEIGHTS option of the
FSSPM directive can also be set to a symmetric matrix.

As an example, we fit a model to data measured on a transect, allowing for correlation
between the neighbouring, closely-spaced, observations. The measurements are of Zinc
content in a polluted soil, taken across the edge of the polluted region where soil cultivation
has spread the metal. First, here is the result of fitting a quartic polynomial to the change in
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Figure 3.6

Zinc level.

Example 3.6a

   2  FILEREAD [PRINT=summary; NAME='DIFFUSE.DAT'] X,Zinc

Summary
-------

The file DIFFUSE.DAT is assumed to contain 2 structure(s), with one value for
each structure on each record.

The file contains 65 values for each of the following structures:

  Identifier      Type   Missing
           X   variate         0
        Zinc   variate         0

   3  " Fit polynomial model without weighting."
   4  MODEL    [RMETHOD=simple] Zinc
   5  FIT      [PRINT=estimates] POL(X; 4)

Regression analysis
===================

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(60)
Constant         246.49         2.86     86.09
X Lin           -25.294        0.878    -28.82
X Quad           -2.003        0.205     -9.79
X Cub            0.4338       0.0407     10.66
X Quart        -0.01608      0.00196     -8.19

   6  RGRAPH

This fits and plots the model shown in Figure
3.6. As Figure 3.6 shows, it fits the data well
in the range sampled, but would not be a
sensible model for extrapolation outside the
measured region because of the nature of
polynomial models. It may be better to fit a
smoothing spline, or to use a Fourier curve
derived from the equations for diffusion.
However, it serves here to show the effect of
taking account of the evident correlation
between successive observations. This
correlation can be estimated from the simple
residuals using the CORRELATE directive, as
in the Example 3.6b.

Example 3.6b

   7  RKEEP     RESIDUALS=Residuals
   8  CORRELATE [PRINT=auto; MAXLAG=5] Residuals
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Correlations
------------

         Unit          ACF
            1        1.000
            2        0.286
            3       -0.065
            4       -0.068
            5       -0.175
            6        0.050

The estimate of correlation between neighbouring points in the transect is about 0.3, so we
use this information to re-fit the model, assuming a simple correlation structure, with all
neighbouring points equally correlated. The correlation matrix between all the units has 1.0
on the diagonal, 0.3 just below or above the diagonal, 0.09 (=0.32) below or above this, and
so on. The weight matrix is the inverse of this correlation matrix, so we could use the
INVERSE function to form it. However, the form of the inverse of a matrix with this pattern is
well known, and is much more efficiently calculated direct: for correlation r it has the value
1+r2 on the diagonal, except for the first and last rows which are 1; !r below and above the
diagonal; and 0 elsewhere. So we form the weight matrix directly. The correlation clearly
does not affect the parameter estimates much, but the standard errors are larger, by about
30%. This is a well known effect of serial correlation; see, for example, Watson & Hannan
(1956).

Example 3.6c

   9  " Define weights in terms of correlation R=0.3."
  10  SCALAR    R; VALUE=0.3
  11  CALCULATE N = NVALUES(X)
  12  &         N1 = N-1
  13  SYMMETRIC [ROWS=N] W
  14  CALCULATE W = 0
  15  &         W$[1,N; 1,N] = 1
  16  &         W$[2...N1; 2...N1] = 1 + R**2
  17  &         W$[2...N; 1...N1] = -R
  18  " Fit polynomial model with correlation fixed at R=0.3."
  19  MODEL [WEIGHTS=W] Zinc
  20  FIT   [PRINT=estimates] POL(X; 4)

Regression analysis
===================

Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(60)
Constant         246.43         3.86     63.84
X Lin            -25.24         1.18    -21.40
X Quad           -1.996        0.263     -7.58
X Cub            0.4307       0.0525      8.20
X Quart        -0.01590      0.00253     -6.28

A general symmetric weight matrix is also allowed with generalized linear models, and with
generalized nonlinear models (3.5). However, the interpretation to be put on the resulting
analysis is an open question, since the correlation is being applied on the scale of the linear
predictor rather than on the scale of the observations themselves. Matrices of weights cannot
be used with the FITCURVE or FITNONLINEAR directives.
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Figure 3.7

3.7 Standard nonlinear curves

This section describes various standard nonlinear curves that can be fitted using the
FITCURVE directive (or, in Genstat for Windows, using the Standard Curves menu). These
standard curves have been found useful in many applications of statistics. They are fitted by a
modified Newton method of maximizing the likelihood, using stable forms of
parameterization (Ross 1990). Facilities for fitting other user-defined curves are described in
3.8.

The method Genstat uses to fit curves is iterative, using a search procedure to find
parameter values that maximize the likelihood. The search is much quicker when Genstat
knows the shape of the curve; thus, fitting a curve by the methods in this section is more
efficient than using those in 3.8. With standard curves you will not usually need to supply
starting values for the search, nor to control the course of the search; in contrast, you will
nearly always have to do these things when you are fitting non-standard curves. For more
information about nonlinear curve fitting, see Ratkowsky (1983, 1990), Ross (1990), or Seber
& Wild (1989).

Example 3.7 fits the exponential curve

to the relationship between length and age
of dugongs. At line 8 the RGRAPH
procedure is used to produce the graph of
the fitted curve shown in Figure 3.7.

Example 3.7

   2  " Asymptotic regression (exponential curve) of length
  -3    on age of dugongs. Data from Ratkowsky (1983) p.101."
   4  OPEN     '%GENDIR%/Examples/GuidePart2/Dugong.dat'; CHANNEL=2
   5  READ     [PRINT=data; CHANNEL=2] Age,Length

     1   1.0 1.80   1.5 1.85   1.5 1.87   1.5 1.77   2.5 2.02
     2   4.0 2.27   5.0 2.15   5.0 2.26   7.0 2.35   8.0 2.47
     3   8.5 2.19   9.0 2.26   9.5 2.40   9.5 2.39  10.0 2.41
     4  12.0 2.50  12.0 2.32  13.0 2.43  13.0 2.47  14.5 2.56
     5  15.5 2.65  15.5 2.47  16.5 2.64  17.0 2.56  22.5 2.70
     6  29.0 2.72  31.5 2.57
   6  CLOSE    2
   7  MODEL    Length
   8  FITCURVE [CURVE=exponential; FPROBABILITY=yes] Age
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Nonlinear regression analysis
=============================

 Response variate: Length
      Explanatory: Age
     Fitted Curve: A + B*(R**X)
      Constraints: R < 1

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       2       1.7745     0.887257    114.02  <.001
Residual        24       0.1868     0.007782
Total           26       1.9613     0.075434

Percentage variance accounted for 89.7
Standard error of observations is estimated to be 0.0882.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
            1       1.8000        0.26
           26       2.7200        0.26
           27       2.5700        0.30

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
R                   0.8735       0.0223
B                  -0.9725       0.0647
A                   2.6666       0.0579

   9  RGRAPH

3.7.1 The FITCURVE directive

FITCURVE directive
Fits a standard nonlinear regression model.

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring); default mode, summ,
esti

CURVE = string token Type of curve (exponential, dexponential,
cexponential, lexponential, logistic,
glogistic, gompertz, ldl, qdl, qdq, fourier,
dfourier, gaussian, dgaussian, emax, gemax);
default expo

SENSE = string token Sense of curve (right, left); default righ
ORIGIN = scalar Constrained origin; default *
NONLINEAR = string token How to treat nonlinear parameters between groups

(common, separate); default comm
CONSTANT = string token How to treat the constant (estimate, omit); default

esti

FACTORIAL = scalar Limit for expansion of model terms; default as in
previous TERMS statement, or 3 if no TERMS given
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POOL = string token Whether to pool ss in accumulated summary between all
terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms
from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical); default *

FPROBABILITY = string token Printing of probabilities for variance ratios (yes, no);
default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary (%variance, %ss,
adjustedr2, r2, seobservations, dispersion,
%cv, %meandeviance, %deviance, aic, bic, sic);
default %var, seob

Parameter
formula Explanatory variate, list of variate and factor, or

variate*factor

The parameter of FITCURVE can be set just to the variate that supplies the x-values for the curve,
if you simply want to fit a single curve. You can also include a factor if you want to fit separate
curves for different groups of the observations: these facilities for parallel curve analysis are
described in 3.7.3.
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Figure 3.7.1

The CURVE option specifies which of the standard curves is to be fitted. For some of these, the
SENSE option lets you choose between alternative forms. Figure 3.7.1 shows the shapes of
representative curves of each type, although you should be aware that several of the curves,
particularly the rational functions, can exhibit a wide variety of shapes as their parameters vary.
Before describing the curves in detail, here is a list for convenient reference:

Exponential

exponential

dexponential

cexponential

lexponential
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Logistic

logistic

glogistic

gompertz

emax

gemax

Rational functions

ldl

qdl

qdq

Fourier

fourier

dfourier

Gaussian

gaussian

dgaussian

The four exponential curves each arise as solutions of linear ordinary differential equations.
These represent processes that increase exponentially with time, for example, or that increase
with a law of diminishing returns (that is, for which the rate of increase decreases with time).

The default setting of the CURVE option is exponential, corresponding to the "asymptotic
regression" or Mitscherlich curve. An equivalent form of the equation shown above for this
curve is

where ñ = exp(!ê). The form involving ñ is used in Genstat to avoid problems with large values
of ê. The model has only one nonlinear parameter, ñ, which defines the rate of exponential
increase or decrease. FITCURVE estimates the other parameters by linear regression at each stage
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of an iterative search for the best estimate of ñ. The values of the explanatory variate are
automatically scaled to avoid any computational problems near the boundary of the allowed
values of ñ. By default, ñ is restricted to the range 0<ñ<1, giving a curve corresponding to the
law of diminishing returns. The alternative is ñ>1, which can be requested by setting the SENSE
option to left: for all the exponential curves, SENSE=left corresponds to a curve whose
asymptote is to the left ! that is, as X decreases to !4. If Genstat finds that a better fit is obtained
by the opposite sense to the one specified, the sense is reversed and a warning is printed. The
parameter á is the asymptote ! to the right if ñ<1 and to the left if ñ>1; â is the range of the
curve between the value at X=0 and the asymptote.

The double exponential curve also has two forms: you can choose either 0<ñ<1 and 0<ó<1
or ñ>1 and ó>1, by using the SENSE option as for the exponential curve. The fitting process is
unlikely to find a satisfactory solution for this curve unless there are enough data to estimate
both components separately: there should be at least four points for which the fast component
is larger than the slow component; the fast component corresponds to the smaller of ñ and ó
when SENSE=right, or to the larger of ñ and ó when SENSE=left.

Two limiting cases of the double exponential are provided as special curves. The critical
exponential curve can take a variety of shapes like the double exponential, whereas the line-plus-
exponential curve is an exponential curve with a non-horizontal asymptote. Again here, the
constraint on the parameter ñ depends on the setting of the SENSE option as for the exponential
curve.

Another type of standard curve is sigmoid and monotonic, and is often used to model the
growth of biological subjects. There are five types of these growth curves in Genstat, each a
logistic of some sort. The first type is the generalized logistic without any constraints. In the
equation above, á is one asymptote, to the right or to the left according to whether â is positive
or negative; ì is the point of inflexion for the explanatory variable; â is a slope parameter; ô is
a power-law parameter; and á+ã is the other asymptote. To fit this curve you need data for the
steep central part and for both flat parts.

There are two special cases of the generalized logistic. The ordinary logistic curve is
sometimes known as the autocatalytic or inverse exponential curve. The same curve can be
rewritten in several different forms, so you should be alert for concealed equivalences of
apparently different curves: otherwise you might be tempted to use FITNONLINEAR, which
would be less efficient. The other special case is the Gompertz curve. It is non-symmetrical about
the inflexion, X=ì, and has asymptotes at Y=á and Y=á+ã.

You can also fit these three growth curves to data in which Y decreases as X increases. For the
logistic and generalized logistic curves, you are not allowed to constrain the sense of the curve
by the SENSE option. This is because the sense depends on both the parameters â and ã. In fact,
the logistic curve with parameters á, â, ã and ì is the same as the logistic curve with parameters
(á+ã), !â, !ã and ì; Genstat will report only one of the two possible versions. For the Gompertz
curve, you can set SENSE=left to specify the upside-down Gompertz curve corresponding to
ã<0; otherwise ã is constrained to be positive. When the sign of ã is changed for a response Y
that increases with X, the sign of â will also change so that the curve remains an ascending one,
and similarly for descending curves. All four possible shapes are shown in Figure 3.7.1. The
interpretation of SENSE=left thus depends on the shape of the data; for ascending curves it
means that the asymptote is reached more slowly to the left than to the right, but for descending
curves it means the opposite.

The final two sigmoid curves, Emax and generalized Emax, are similar to the logistic and
generalized logistic except that their equations involve log(x) instead of x. They are usually used
to model decreasing relationships with the parameter â in the equation negative, but Genstat will
allow increasing relationships with these curves too.

The three rational functions are ratios of polynomials. The linear-divided-by-linear curve is
a rectangular hyperbola, which occurs for example as the Michaelis-Menten law of chemical
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kinetics. The quadratic-divided-by-linear curve is a hyperbola with a non-horizontal asymptote.
The quadratic-divided-by-quadratic curve is a cubic curve having an asymmetric maximum
falling to an asymptote. The SENSE option is ignored for all three rational functions. These
curves can have vertical asymptotes at finite values of the explanatory variable. A message is
printed to inform you about the asymptotes; such messages can be switched off by setting
NOMESSAGE=vertical in the FITCURVE command.

Fourier curves are trigonometric functions, involving the sine function in Genstat's
implementation, used to model periodic behaviour. Sometimes the wavelength or period ù is a
known constant, such as 2ð radians (or 360 degrees), 24 hours, or 12 months; the models are then
linear and should be fitted by linear regression using the FIT directive, instead of by FITCURVE.
For example, the simple Fourier curve with fixed ù can be expressed in the form:

and so can be fitted by statements like the following.

CALCULATE X1 = SIN(2*C('pi')*X/W)
& X2 = COS(2*C('pi')*X/W)
FIT X1,X2

The parameters â and ã are the amplitudes of the components of the curve. The SENSE option
is ignored for Fourier curves.

The Gaussian curve is a bell-shaped curve like the Normal probability density. The double
Gaussian is a sum of two overlapping curves of this type, and arises for example in spectography.
The parameter á is usually called the background, and the parameters ì and í are the peaks. The
parameter ó is the standard deviation: for the double Gaussian, Genstat can deal only with the
case of equal standard deviation for the two components. The parameters â and ã represent the
strength of a spectrographic signal in each component, excluding the background. The SENSE
option is ignored for Gaussian curves.

The PRINT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE and FPROBABILITY options are
as for FIT. The ORIGIN and CONSTANT options are described in 3.7.2, and the NONLINEAR
option in 3.7.3.

3.7.2 Distributions and constraints in curve fitting

The curves available with FITCURVE can be fitted in Genstat only with the Normal likelihood.
If you set some other distribution in the MODEL statement, you will get a warning message and
the distribution will automatically be reset to Normal. However, you can specify a weighted
Normal likelihood by providing weights with the WEIGHTS option of the MODEL directive, as for
linear regression, and hence mimic other distributions. You can also supply a symmetric matrix
of weights, for example to allow for covariances between units. However, if the model contains
an explanatory factor, pairs of units with different factor levels must have zero covariances.

You can set the DISPERSION option if you want Genstat to use a known variance for the
distribution of the response variate (3.1.1).
FITCURVE ignores the LINK and EXPONENT options of the MODEL directive, and you are not

allowed to set the GROUPS option.
You can constrain the exponential and rational curves to pass through a given point. The

ORIGIN option of the FITCURVE directive specifies a value for the response variate
corresponding to a zero value of the explanatory variate; to specify the response for another
value of the explanatory variate you would need to modify the explanatory variate beforehand.
For all these standard curves except the double exponential, the supplied origin corresponds to
the expression (á+â); in the double exponential it is (á+â+ã). If you constrain the origin in this
way, you should probably use some form of weighting, because points near the constraint are
likely to vary less than points further away. You can get approximately log-Normal weighting
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by using a weight variate with values 1/(Y!origin)2. You are not allowed to set the ORIGIN
option at the same time as the CONSTANT option.

Another way of constraining the curves is by omitting the constant term ! the parameter á in
each case. This parameter represents the asymptote: for growth curves with parameter â>0 it
represents the asymptote as X 6 !4, and for those with â<0 it represents the asymptote as X 6
+4. To constrain the asymptote to be other than 0, you should put the value that you require into
every element of the variate in the OFFSET option of the MODEL directive. An example is the
exponential curve

where o is the constant value to be supplied by the offset variate. Note that the constant cannot
be omitted from the Gompertz fitted with SENSE=left.

3.7.3 Parallel curve analysis

When data are grouped, a common requirement in curve fitting is to compare curves fitted to
each group. The curves can be constrained to be similar to each other to some degree, governed
by restricting some of the parameters to be common to all groups. Genstat provides four levels
of similarity to be specified for a single grouping factor.

If you give just a variate in the parameter of the FITCURVE directive, a single curve is fitted
to all groups defined by the factor. Thus, for the data in Example 3.7.3 below, the statements

FACTOR [LEVELS=4; VALUES=16(1...4)] Solution
MODEL Density
FITCURVE [CURVE=logistic] Log

fit the model

in which xi stands for the explanatory variable (the logarithm of the dilution), yi stands for the
response variable (the optical density of the solution), and j stands for the solution number.

If you specify a variate and a factor, separate curves are fitted for each group, constrained to
be parallel: that is, they differ only by a constant (the analogy of what in linear regression would
be called the intercept). The statement

FITCURVE [CURVE=logistic] Log,Solution

fits

If you include the interaction between the variate and the factor, the curves are constrained
to have common nonlinear parameters, but all linear parameters are estimated separately for each
group. So the statement

FITCURVE [CURVE=logistic] Log*Solution

fits

You are not allowed to constrain the origin or omit the constant for curves that are constrained
in either of the two ways described above.

If you set the NONLINEAR option to separate when the model includes the variate, the factor,
and the interaction, Genstat estimates all the parameters independently; only the information
about variability is pooled:

FITCURVE [CURVE=logistic; NONLINEAR=separate] Log*Solution
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fits

You can modify a model fitted by FITCURVE by using the ADD, DROP or SWITCH directives
as for linear models, provided you have given an appropriate TERMS statement before the
FITCURVE statement. The alterations must, however, produce a model that would be allowed in
the FITCURVE directive: that is, it must contain one variate, or one variate and one factor, or one
variate and one factor and their interaction. The NONLINEAR options of the ADD, DROP and
SWITCH directives have the same effect as the NONLINEAR option of FITCURVE. Thus you can
compare curves between groups of a factor, assessing for example whether they are parallel. The
accumulated setting of the PRINT option of these directives allows you to summarize the
results. Example 3.7.3 shows such an analysis of parallelism.

Example 3.7.3

   2  " Model the relationship between dilution and optical density
  -3    for four solutions. Data from Bouvier et al. (1985) p.129."
   4  READ [PRINT=data] Density

   5  1.914 1.878 1.717 1.195 0.587 0.264 0.099 0.114
   6  1.891 1.887 1.703 1.158 0.599 0.277 0.106 0.069
   7  1.876 1.830 1.608 1.099 0.513 0.236 0.096 0.074
   8  1.913 1.847 1.622 1.109 0.536 0.227 0.100 0.086
   9  1.873 1.859 1.707 1.191 0.611 0.262 0.111 0.082
  10  1.877 1.873 1.696 1.185 0.617 0.259 0.122 0.041
  11  1.897 1.800 1.495 0.915 0.417 0.203 0.068 0.047
  12  1.869 1.780 1.500 0.922 0.396 0.165 0.096 0.035 :
  13  FACTOR    [LEVELS=4; VALUES=16(1...4)] Solution
  14  VARIATE   [VALUES=(30,90,270,810,2430,7290,21870,65610)8] Dilution
  15  VARIATE   Log; EXTRA=' dilution'
  16  CALCULATE Log = LOG10(Dilution)
  17  MODEL     Density
  18  TERMS     Log*Solution
  19  FITCURVE  [PRINT=model,estimates; CURVE=logistic] Log

Nonlinear regression analysis
=============================

 Response variate: Density
      Explanatory: Log dilution
     Fitted Curve: A + C/(1 + EXP(-B*(X - M)))

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
B                   -2.816        0.139
M                   2.9973       0.0184
C                   1.8633       0.0329
A                   0.0658       0.0184

  20  ADD [PRINT=model,estimates] Solution

Nonlinear regression analysis
=============================

 Response variate: Density
      Explanatory: Log dilution
  Grouping factor: Solution, constant parameters separate
     Fitted Curve: A + C/(1 + EXP(-B*(X - M)))

Estimates of parameters
-----------------------
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Parameter                     estimate         s.e.
B                              -2.8158       0.0673
M                              2.99728      0.00892
C                                1.863
A  Solution 1                   0.1043
A  Solution 2                  0.06145
A  Solution 3                  0.09858
A  Solution 4                 -0.01149

  21  ADD [PRINT=model,estimates] Log.Solution

Nonlinear regression analysis
=============================

 Response variate: Density
      Explanatory: Log dilution
  Grouping factor: Solution, all linear parameters separate
     Fitted Curve: A + C/(1 + EXP(-B*(X - M)))

Estimates of parameters
-----------------------

Parameter                     estimate         s.e.
B                              -2.7763       0.0683
M                              3.00329      0.00906
C  Solution 1                    1.891
A  Solution 1                  0.09103
C  Solution 2                    1.866
A  Solution 2                  0.06003
C  Solution 3                    1.877
A  Solution 3                  0.09174
C  Solution 4                    1.846
A  Solution 4                -0.003673

  22  ADD [PRINT=model,summary,estimates,accumulated; FPROBABILITY=yes;\
  23      NONLINEAR=separate]

Nonlinear regression analysis
=============================

 Response variate: Density
      Explanatory: Log dilution
  Grouping factor: Solution, all parameters separate
     Fitted Curve: A + C/(1 + EXP(-B*(X - M)))

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression      15     34.95313    2.3302090   4742.61  <.001
Residual        48      0.02358    0.0004913
Total           63     34.97672    0.5551860

Change          -6     -0.08419    0.0140311     28.56

Percentage variance accounted for 99.9
Standard error of observations is estimated to be 0.0222.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           12       1.1580       -2.39

* MESSAGE: the residuals do not appear to be random;
           for example, fitted values in the range 0.1620 to 0.4095
           are consistently smaller than observed values
           and fitted values in the range 0.0931 to 0.1140
           are consistently larger than observed values.

Estimates of parameters
-----------------------
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Parameter                     estimate         s.e.
B  Solution 1                  -2.9175       0.0979
M  Solution 1                   3.0491       0.0122
C  Solution 1                   1.8622       0.0217
A  Solution 1                   0.0825       0.0127
B  Solution 2                  -2.8285       0.0967
M  Solution 2                   2.9924       0.0127
C  Solution 2                   1.8572       0.0227
A  Solution 2                   0.0693       0.0126
B  Solution 3                  -2.8693       0.0968
M  Solution 3                   3.0783       0.0125
C  Solution 3                   1.8560       0.0220
A  Solution 3                   0.0655       0.0131
B  Solution 4                  -2.7433       0.0951
M  Solution 4                   2.8610       0.0134
C  Solution 4                   1.8822       0.0245
A  Solution 4                   0.0487       0.0121

Accumulated analysis of variance
--------------------------------

Change                         d.f.         s.s.         m.s.      v.r.  F pr.
+ Log                             3   34.7306063   11.5768688  23562.09  <.001
+ Solution                        3    0.1356465    0.0452155     92.03  <.001
+ Log.Solution                    3    0.0026953    0.0008984      1.83  0.155
+ Separate nonlinear              6    0.0841868    0.0140311     28.56  <.001
Residual                         48    0.0235841    0.0004913

Total                            63   34.9767190    0.5551860

3.7.4 Modifications to regression output and the RKEEP directive

The output produced by the PRINT options of the FITCURVE and RDISPLAY directives for fitted
curves is much like that for iterative generalized linear models with a Normal distribution
(3.5.3). In particular, only one response variable is analysed, standard errors are approximate,
and the accumulated summary contains pooled contributions for all the terms fitted in one
statement.

You cannot get standard errors and correlations for linear parameters in models where you
have constrained some parameters of the curve to be equal for all the groups defined by a fitted
factor. When you fit separate curves for the groups of a factor, correlations between parameters
in different groups are zero and are not shown.

Neither can you get leverages for models in which parameters are constrained to be equal
across groups. Genstat therefore does not standardize residuals with respect to the leverages in
these models. For other models, the leverages are defined as:

li = {DNCD}ii

where D is the matrix of derivatives of the fitted values with respect to the parameters, and C is
the variance-covariance matrix of the parameters divided by the estimate of the residual variance.

You can display intermediate results of the iteration by the monitoring setting of the PRINT
option of the FITCURVE directive. At each cycle, the current parameter values are displayed
together with the total number of times the likelihood function has been evaluated (Nfun) and
an indication of the state of the search (Move). The possible states are:

Move

0 The current step is acceptable
1 Preconvergence; small adjustments are being made
2 The function is concave in at least one direction
3 Convergence is being approached, but there is distinct curvature
4 A bound has been violated
5 The current step is too large relative to the step lengths
6 Convergence
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7 A step has been taken within a boundary plane

The step lengths used in the search are also reported whenever they are changed, and information
is given about any temporary scaling used to simplify the search. Example 3.7.4 shows the
progress of the search for the curve fitted in Example 3.7.

Example 3.7.4

  10  FITCURVE [PRINT=monitoring] Age

Temporary scaling of X by 0.1295

Convergence monitoring
----------------------

Cycle Eval Move    Function value    Current parameters
    0    6    0        0.19066757     0.300000
                            Steps    0.0100000
    1    9    0        0.18676336     0.350168
                            Steps   0.00250000
    2   12    1        0.18675920     0.351721

Convergence in Newton-Raphson  loop at cycle 2.
    3   16    6        0.18675916     0.351887

The search may not converge, particularly if the model to be fitted is unsuitable for the data.
Genstat will give a warning message to indicate why convergence has not been achieved; often
it will also suggest a limiting form of the curve that might be a more suitable description of the
data than the one you have specified. You can find out about the final status of the search by the
EXIT parameter of the RKEEP directive. It takes a value according to the following key:

Exit

0 Successful convergence
1 Limit on number of cycles has been reached without convergence
2 Parameter out of bounds
3 Likelihood appears constant
4 Failure to progress towards solution
5 Some standard errors are not available because the information matrix

is nearly singular
6 Calculated likelihood may be incorrect because of missing fitted values
7 Curve is close to a limiting form
14 Function returned a missing value

With code 7, the limiting form of the curve is described by the warning diagnostic.
Further messages warn you about vertical asymptotes of rational curves. You can use the

summary setting of the PRINT option to display the value or values of the explanatory variate
for which the fitted curve is infinite. A warning is also printed if an asymptote occurs within the
range of the data.

The derivatives of the fitted values with respect to each parameter can be stored in variates
using the GRADIENTS parameter of the RKEEP directive. You can use these quantities to assess
the relative influence of each observation on a parameter; you can also construct a measure of
leverage by summing the gradients for all the parameters.

The RGRAPH procedure can be used to display a fitted curve, as shown in Figure 3.7; it can
also display a set of curves fitted for each level of a factor (3.7.3). The RCHECK procedure
cannot be used to produce diagnostic information or pictures after curve fitting.

3.7.5 Functions of parameters: the RFUNCTION directive
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RFUNCTION directive
Estimates functions of parameters of a linear, generalized linear, generalized additive or
nonlinear model.

Options
PRINT = string tokens What to print (estimates, se, correlations);

default esti,se
CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file
CALCULATION = expression structures

Calculation of functions involving nonlinear and/or
linear parameters; no default

SE = variate To save approximate standard errors; default *
VCOVARIANCE = symmetric matrix To save approximate variance-covariance matrix;

default *
SAVE = identifier Specifies save structure of regression model; default *

i.e. that from last model fitted

Parameter
scalars Identifiers of scalars assigned values of the functions by

the calculations

The RFUNCTION directive provides estimates of functions of parameters in regression models,
together with approximate standard errors and correlations. It can be used after any linear,
generalized linear, generalized additive or nonlinear model, but it probably most useful following
the FITCURVE and FITNONLINEAR directives; information about the latter is in 3.8.2. However,
if there are any linear parameters in a general nonlinear model for which standard errors have
not been estimated, standard errors and correlations cannot be estimated for functions that
depend on those parameters (see 3.8.2). In addition, it is not possible to use the RFUNCTION
directive after fitting standard curves with separate nonlinear parameters for each level of a
factor (option NONLINEAR=separate in FITCURVE, ADD, DROP and SWITCH).

The functions are defined by the expressions supplied by the CALCULATION option of
RFUNCTION; these define how to calculate the function from the values of the parameters. Unless
initial values have been specified (3.7.6), the parameters in standard curves usually have no
identifiers associated with them. If this is the case, you should refer to each parameter by using
a text structure containing the name of the parameter as displayed, for example, by the option
PRINT=estimates of the FITCURVE directive. The text structure can, of course, just be a
string, for example 'R'.

In Example 3.7.5, we use RFUNCTION to provide us with an alternative parameterization of
the exponential model fitted in Example 3.7, using the parameter K (3.7.1) instead of R, and
reporting !B (i.e. Bneg) instead of B.

Example 3.7.5

  11  " Get estimates of parameters in the form
 -12    Y = A - Bneg*EXP(-K*X) "
  13  EXPRESSION E[1,2]; VALUE=!e(Bneg = -'B'),!e(K = -LOG('R'))
  14  RFUNCTION  [CALCULATION=E[]] Bneg,K

Estimates of functions of parameters
====================================

Estimates and standard errors
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-----------------------------

Parameter         estimate         s.e.
Bneg                0.9725       0.0647
K                   0.1352       0.0256

The parameter of RFUNCTION provides a list of scalars that are to hold the estimated values of
the functions. These need not be declared in advance, but will be defined automatically if
necessary. The CALCULATION option specifies a list of one or more expressions to define the
calculations necessary to evaluate the functions from the parameters of the nonlinear model, and
place the results into the scalars. Note that when parameters are referred to by their names, these
must match exactly, including case, the names as displayed by FITCURVE.

The PRINT option controls output as usual. By default, the estimates of the function values
are formed ! as could be done simply by a CALCULATE statement using the expressions if the
parameters were available in scalars. In addition, approximate standard errors are calculated,
using a first-order approximation based on difference estimates of the derivatives of each
function with respect to each parameter. Approximate correlations can also be requested.

The SE and VCOVARIANCE options allow standard errors and the approximate variance-
covariance matrix of the functions to be stored; the estimates of the functions themselves are
automatically available in the scalars listed by the parameter of RFUNCTION. The SAVE option
specifies which fitted model is to be used, as in the RDISPLAY and RKEEP directives.

3.7.6 Controlling the start of the search with the RCYCLE directive

You can use the RCYCLE directive to supply initial values and step lengths for the nonlinear
parameters: you might do this, for example, to improve efficiency if you are fitting a standard
curve and already have good prior knowledge of the likely values o the parameters. Usually,
FITCURVE determines a reasonable starting value for each parameter by a short grid search, or
by some manipulation of the data values: this will not be done if you supply initial values. For
example

RCYCLE PARAMETER=Rate; INITIAL=0.62
FITCURVE [CURVE=exponential] X

You must usually give an identifier (here Rate) and an initial value for each nonlinear parameter
in the model to be fitted. For logistic curves, however, you must include all the parameters !
both nonlinear and linear. The parameters must be listed in the same order as Genstat uses to
print them. The RCYCLE directive defines the identifiers as scalars holding the initial values that
you have supplied; after the model has been fitted they contain the estimated values of the
parameters.

The other parameters of RCYCLE are ignored by FITCURVE: bounds are set up automatically
according to the curve to be fitted and the way in which it is parameterized by Genstat (over
which you have no control).

You can use the MAXCYCLE option to reset the limit on the number of iterations, but Genstat
ignores the METHOD and TOLERANCE options. For all standard curve fitting Genstat uses a
modified Newton method (3.8.1).
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3.8 General nonlinear regression, and minimizing a function

You can use the methods described in this section (which correspond to the Nonlinear Models

menu of Genstat for Windows) to fit any kind of regression. However, you should check first that
the model does not belong to any of the categories described earlier in this chapter, for the
appropriate directives are then much more efficient. These categories are linear models,
generalized linear models and the standard curves provided by FITCURVE.

Because the methods described here are very general, they are neither as robust nor as
automatic as, for example, the method that is used for fitting linear models. Nonlinear methods
make use of iterative optimization algorithms, designed to search for the minimum value of a
function as the parameters vary; for nonlinear regression models, the function involved is the
deviance, or minus twice the log-likelihood ratio, so the algorithm searches for the maximum-
likelihood solution. It is often necessary to provide the algorithm with good starting values, to
set bounds on the parameter values, and sometimes even to define the initial direction of search.

Optimization is easiest with few parameters, approximately quadratic functions, small
correlations between parameters and good initial parameter estimates.

Where possible, you can effectively reduce the number of parameters to be optimized by
separating linear and nonlinear ones: that is, you can first fit the linear parameters, and treat the
resulting residual sums of squares as functions of the nonlinear parameters alone (3.8.2).

Problems with optimization methods are most likely to arise if you neglect the
parameterization of the function. You can often transform the parameters to make the function
nearly quadratic; after finding a solution, you can then use the RFUNCTION directive (3.7.5) to
estimate the original parameters. Another source of difficulty is if you try to fit inappropriately
many parameters.

You can usually find descriptive statistics based on the data that will provide initial estimates
reasonably close to the final parameter estimates. For example, suitably spaced ordinates provide
parameters for curve fitting that give much the same likelihood surface whatever curve is being
fitted.

For advice on reformulating functions to speed up optimization, see Ross (1990). The methods
used for optimization in Genstat are the same as those in MLP, the Maximum Likelihood
Program. The MLP Manual (Ross 1987) contains further useful advice on alternative ways of
specifying models.

Example 3.8 shows the fitting of a nonlinear model with four parameters. The model has the
form

which is linear in the parameter è1 but nonlinear in è2, è3 and è4. The parameterization of this
model is reasonable, and it fits the data well; the algorithm succeeds in finding the solution
without requiring the definition of initial values or bounds.

Example 3.8

   2  " Nonlinear model for a chemical process, involving four parameters.
  -3    Data from Carr (1960), analysed in Seber & Wild (1989) p.78.
  -4    The response R is the rate of disappearance of n-pentane by catalytic
  -5    isometrization to i-pentane, and the three associated variables
  -6    X1, X2 and X3 are the partial pressures of hydrogen, n-pentane and
  -7    i-pentane. Fit the unweighted model (Seber & Wild, p.83)."
   8  OPEN '%GENDIR%/Examples/GuidePart2/Reaction.dat'; CHANNEL=2
   9  READ [CHANNEL=2] X1,X2,X3,R

    Identifier   Minimum      Mean   Maximum    Values   Missing
            X1     106.6     290.5     470.9        24         0
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            X2     68.30     152.3     294.4        24         0
            X3     10.50     74.88     157.1        24         0
             R    0.2680     4.071     11.65        24         0

  10  CLOSE 2
  11  " Change units from psia to atmospheres."
  12  CALCULATE X1,X2,X3 = X1,X2,X3 / 14.7
  13  " Specify how to form the nonlinear component of the model from
 -14    the parameters and associated variables."
  15  EXPRESSION E1; VALUE=!e(Z = T3*(X2-X3/1.632)/(1+T2*X1+T3*X2+T4*X3))
  16  MODEL R
  17  " List the nonlinear parameters: attempt optimization from
 -18    default starting values of 1 with no bounds."
  19  RCYCLE T2,T3,T4
  20  " Fit the model, estimating the linear parameter (called theta1 by
 -21    Seber & Wild) by linear regression with no additional constant."
  22  FITNONLINEAR [CALCULATION=E1; CONSTANT=omit; SELINEAR=yes; FPROB=yes] Z

Nonlinear regression analysis
=============================

 Response variate: R
Nonlinear parameters: T2, T3, T4
  Model calculations: E1

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       4      637.254     159.3135    985.09  <.001
Residual        20        3.234       0.1617
Total           24      640.488      26.6870

Percentage variance accounted for 98.5
Standard error of observations is estimated to be 0.402.

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
T2                    1.05         2.68
T3                    0.56         1.60
T4                    2.47         6.46
* Linear
Z                     35.9         11.4

3.8.1 Fitting nonlinear models

This subsection describes the preliminary things that you must do before fitting a general
nonlinear model. It also gives information about the algorithms that Genstat uses.

Before using the FITNONLINEAR directive to fit a nonlinear model, you must use the MODEL
directive to specify either the response variate, or the scalar that is to store the value of a general
function (3.8.4). You must use the RCYCLE directive to specify the nonlinear parameters. You
can also use the LINEARPARAMETERS option of RCYCLE to specify identifiers for the linear
parameters (if any ! see Section 3.8.2), so that you can refer to them in the model calculations.
The TERMS directive can be used as in linear regression, to list the explanatory variables to be
used in modelling. The model calculations themselves are provided in expression structures
which are supplied by the CALCULATION option of FITNONLINEAR; in Example 3.8, a single
expression called E1 is used. If you have used TERMS you can modify the model using the ADD,
DROP and SWITCH directives, as in the previous sections. You can use the RDISPLAY and
RKEEP directives to display or save the results. The RCHECK procedure does not work with
nonlinear models, but RGRAPH can be used to display the fit of a nonlinear model with respect
to some specified variate.
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Genstat fits nonlinear regression models by maximum likelihood. The likelihood is usually
from a distribution in the exponential family; this is specified using the DISTRIBUTION option
of the MODEL directive. With the Normal and the Poisson distribution you can take advantage of
linear parameters that the model contains; see 3.8.2. The fitting of models with the other settings
of DISTRIBUTION, or with no linear parameters, is described in 3.8.3. To use other forms of
likelihood, you should specify how it is to be calculated and set the FUNCTION option of the
MODEL directive to a scalar whose value is assigned by the calculation (3.8.4). You can use this
same device to minimize a general function with respect to its parameters.

The settings of the LINK and EXPONENT options of the MODEL directive are ignored, and you
are not allowed to set the GROUPS option; other options and parameters are as in linear
regression.

Genstat provides three algorithms for fitting general nonlinear models; they work with
numerical differences and so do not require you to specify derivatives. The default algorithm is
a modified Gauss-Newton method. This takes advantage of the fact that the likelihood function
can be expressed as a sum of squares. However, you cannot use it for minimizing a general
function (3.8.4). The second algorithm, a modified Newton method, is requested by setting
option METHOD=Newton in the RCYCLE statement (3.5.4). This can be used for any nonlinear
model. The third algorithm is a modified Fletcher-Powell method, specified by setting
METHOD=Fletcher. In fact, this is similar to the Newton method, with an occasional step in the
search being determined by the Fletcher-Powell algorithm rather than by the Newton algorithm.

The modification in all these methods is to use estimated numerical differences instead of
evaluating derivatives. In nonlinear regression problems, particularly ones with separable linear
parameters, specification of the derivatives would be very complex, and so it is much more
convenient to estimate them numerically.

You can change the limit on the number of iterations by the MAXCYCLE option of the RCYCLE
directive, as for the FITCURVE directive.

You must set the PARAMETER parameter of the RCYCLE directive to the identifiers of scalars
that will be used to represent the nonlinear parameters in the model calculations (3.8.2). There
must be at least one nonlinear parameter. There is no formal upper limit on the number of
nonlinear parameters, but the greater the number of parameters the longer the time required for
the search and the smaller the chance of finding a satisfactory solution.

You can set the LOWER and UPPER parameters of RCYCLE to provide fixed bounds for each
parameter. By default, the values ±109 are used. Where possible you should always set bounds,
particularly to avoid such problems as attempting to take the log of a negative number. You can
incorporate more general constraints as logical functions within the calculations. For example
you could compute an extra term

(Constr > 0) * K * Constr

to impose a penalty on exceeding the constraint, controlled by setting different values of K.
Often, the best way to impose a constraint is to reparameterize. For example, if a parameter á
must be positive, you could replace á by exp(â), and allow â to take any value.

The STEPLENGTH parameter of RCYCLE can be used to provide initial step lengths for the
search. By default the step length is 0.05 times the initial value of the corresponding parameter,
or precisely 1.0 if the initial value is zero. If you set a step length to zero, Genstat treats the
corresponding parameter as being fixed at its initial value. This allows complex problems in
many dimensions to be tackled in stages, optimizing some parameters with others fixed, and then
optimizing the others in turn.

By default, the initial value of a parameter is taken to be the current value of the scalar that
represents it in the calculation, or 1.0 if the value is missing. Other values can be specified using
the INITIAL parameter of RCYCLE.

If you can calculate a range within which you expect a parameter to lie, you should choose a
step length of about 1% of the width of the range. If the steps are too small, numerical
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differencing may not work; if they are too large, gradients may be unreliable and you may get
premature convergence. Genstat tests convergence by the relationship of final adjustments to
step lengths.

The more parameters there are to estimate, and the more scattered are the data, the more
iterations are required to find the optimum. The maximum number of iterations is set to 30 by
default, but you can reset this with the MAXCYCLE option of RCYCLE (3.5.4). However, if
convergence fails with a given setting of MAXCYCLE, you should check the data and consider
reparameterizing the model before you indiscriminately increase the number of iterations.

Genstat prints a warning when convergence fails. The only sections of output that are then
available are the residual degrees of freedom, the residual deviance, the fitted values, and the
parameter estimates (without standard errors) for the current cycle. The EXIT parameter of the
RKEEP directive (3.7.4) allows you to obtain a numerical code indicating why convergence
failed.

For any nonlinear model, you can choose just to evaluate the likelihood for a range of
combinations of parameter values, rather than to maximize the likelihood with respect to the
parameters. You do this by setting the NGRIDLINES option of FITNONLINEAR (3.8.2). The
calculated values of the likelihood can be stored in a variate using the GRID parameter of the
RKEEP directive (3.1.4), and used to produce pictures of the surface for example with the
DCONTOUR or DSURFACE directives. This is illustrated in Example 3.8.4b.

3.8.2 Nonlinear regression for models with some linear parameters

FITNONLINEAR directive
Fits a nonlinear regression model or optimizes a scalar function.

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, grid); default mode,
summ, esti or grid if NGRIDLINES is set

CALCULATION = expression structures
Calculation of fitted values or of explanatory variates
involving nonlinear parameters; default * (valid only if
OWN set)

OWN = scalar Option setting for OWN directive if this is to be used
rather than CALCULATE; default * requests CALCULATE
to be used

CONSTANT = string token How to treat the constant (estimate, omit); default
esti

FACTORIAL = scalar Limit for expansion of model terms; default as in
previous TERMS statement, or 3 if no TERMS given

POOL = string token Whether to pool ss in accumulated summary between all
terms fitted in a linear model (yes, no); default no

DENOMINATOR = string token Whether to base ratios in accumulated summary on rms
from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no
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SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary, seobservations is
relevant only for a Normally distributed response, and
%cv only for a gamma-distributed response
(%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv,
%meandeviance, %deviance, aic, bic, sic); default
%var, seob if DIST=normal, %cv if DIST=gamma, and
disp for other distributions

NGRIDLINES = scalar Number of values of each parameter for a grid of
function evaluations; default *

SELINEAR = string token Whether to calculate s.e.s for linear parameters (yes,
no); default no

INOWN = identifiers Setting to be used for the IN parameter of OWN if used in
place of CALCULATE; default *

OUTOWN = identifiers Setting to be used for the OUT parameter of OWN if used
in place of CALCULATE; default *

Parameter
formula List of explanatory variates and/or one factor to be used

in linear regression, within nonlinear optimization

If the model is linear in some of the parameters, it may be fitted more efficiently using the
methods described in this subsection. To use these the data must either be Normally distributed,
or they must follow a Poisson distribution and the model must contain only one explanatory
variable and no constant term.

The linear parameters are fitted by a linear regression of the response variate (specified by the
parameter of the MODEL statement) on the variates listed by the parameter of FITNONLINEAR.
At least one of these variates must depend on the nonlinear parameters in the model but they
need not all do so. You can define how to calculate the variates from the nonlinear parameters
either by the CALCULATION option or by the OWN, INOWN and OUTOWN options of
FITNONLINEAR. If the parameter of FITNONLINEAR is not set, Genstat uses the methods
described in either 3.8.3 or 3.8.4.

In Example 3.8, the linear parameter (è1 in the equation) is estimated by a regression of the
response variate R on the variate Z; expression E1 defines how to form Z from the values of the
parameters T2, T3 and T4 (è2, è3 and è4 in the equation) and from the variates X1, X2 and X3. The
setting CONSTANT=omit in the FITNONLINEAR statement ensures that there is no constant term.

As already mentioned, the parameter of FITNONLINEAR may include variates that are not
changed by the calculations as well as those that are. One factor may also be included so that a
separate constant is fitted for each level. Thus

FACTOR [LEVELS=3; VALUES=8(1...3)] F
FITNONLINEAR Z,F,X2

would fit the model of Example 3.8 modified to include a constant for each of the three levels
of F and an additional linear effect of the variable X2. The effect of including the factor is to fit
a set of parallel nonlinear regressions. You cannot include interactions between a variate and a
factor, as is allowed with FITCURVE; nor can you include POL, REG, COMPARISON, SSPLINE
or LOESS functions, nor interactions between variates as allowed with FIT. However, procedure
FITPARALLEL allows you to assess the various ways in which nonlinear models can be non-
parallel (see 3.7.3 for an explanation of analysis of parallelism with FITCURVE).

If there is a constant in the linear regression, as specified by the CONSTANT option, the factor
will be parameterized in terms of differences from the first level ! as in linear regression. If you
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set CONSTANT=omit, the actual constants are fitted; there is no need to set option FULL of the
TERMS directive, which is ignored in nonlinear models.

If you specify an offset variate (3.1.1), its values can also be modified by the calculations, and
depend on the parameters.

The PRINT option is as for the FIT directive.
You must set one of the CALCULATION and OWN options to define how the nonlinear

parameters are included in the model. The CALCULATION option does this by a list of one or
more expressions. The expressions are evaluated in turn at every step of the estimation process,
just as if they had been given in a sequence of CALCULATE statements. For example:

EXPRESSION Diffuse[1]; \
  VALUE=!E(Xl,Xr=NORMAL((H+1,!1*X)/SQRT(2*D*T))
& Diffuse[2]; VALUE=!E(Z=Xl+Xr!1)
FITNONLINEAR [CALCULATION=Diffuse[1,2]] Z

Here, the CALCULATION option is set to the two expressions Diffuse[1] and Diffuse[2],
to define a model for one-dimensional diffusion.

Alternatively, you can set the OWN option to specify that the calculation is to be done by
executing your own source code, called by a version of the subroutine G5XZXO, as for the OWN
directive. Generally, using OWN is likely to be worthwhile only when calculations are very
extensive, or when a particular function is needed often. The setting of the OWN option will be
passed to G5XZXO in the same way as the setting of the SELECT option of the OWN directive is
passed to G5XZXO.

The CONSTANT, FACTORIAL, POOL, DENOMINATOR, NOMESSAGE and FPROBABILITY options
are as for the FIT directive, except that the NOMESSAGE option has an additional setting df
which controls messages about loss of degrees of freedom occurring during the iterative fitting
of the model, when observations may become excluded because of missing values introduced
by the calculations.

If you set the NGRIDLINES option to n, say (with n$2), the FITNONLINEAR directive
evaluates the likelihood at a grid of values of the nonlinear parameters, and does not search for
an optimum. For each parameter, the distance between the upper and lower bounds (set by the
RCYCLE directive) will be divided into (n!1) equal parts, defining a rectangular grid with n
gridlines in each dimension. By setting some upper and lower bounds equal, you can look at the
behaviour of the function with respect to a few parameters at a time. The default setting of the
PRINT option is grid in this case, and produces a display of the function values. Other settings
of the PRINT option are ignored. The calculated grid of values is available from the GRID
parameter of the RKEEP directive. This is illustrated in 3.8.4.

By default, standard errors are calculated only for nonlinear parameters. To obtain standard
errors for the linear parameters as well, you can set option SELINEAR=yes. Then, after the
optimum has been found, Genstat increases the number of dimensions to include the linear
parameters and estimates the rate of change of the likelihood in all the dimensions.

The INOWN and OUTOWN options are relevant only when the OWN option is set.

3.8.3 Nonlinear regression models with no linear parameters

If there are no linear parameters in the model, or if the distribution is not one of those that can
be handled by the method described in 3.8.2, you should no longer use the parameter of
FITNONLINEAR. Instead you should set the FITTEDVALUES parameter in the MODEL statement
to the identifier of a variate that is to contain the fitted values for any set of values of the
nonlinear parameters. Then define how to calculate the fitted values from the nonlinear
parameters and the explanatory variates, using either the CALCULATION or the OWN options of
FITNONLINEAR, as in 3.8.2.

Example 3.8.3a shows how to refit the model of Example 3.8 without taking advantage of the
linearity of parameter è1. Expression E2 in line 24 calculates the variate of fitted values F as T1
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(è1) multiplied by the variate Z (calculated by the expression E1 used in Example 3.8). F is
identified as the fitted-value variate in line 27, initial values are specified for the parameters in
line 31, and then the model can be fitted, to obtain the same answers as before.

Example 3.8.3a

  23  " Specify how to form the fitted values from Z and the linear
 -24    parameter theta 1."
  25  EXPRESSION E2; VALUE=!e(F=T1*Z)
  26  " Supply the name of the variate that will hold fitted values
 -27    calculated by the expressions."
  28  MODEL R; FITTED=F
  29  " Include theta1 with the list of nonlinear parameters;
 -30    use initial values of 1 as before, except for theta 1
 -31    (if this is not done, FITNONLINEAR will not converge)."
  32  RCYCLE T1,T2,T3,T4; INITIAL=36,1,1,1
  33  " Fit the model, with no linear regression involved."
  34  FITNONLINEAR [CALCULATION=E1,E2; FPROB=yes]

Nonlinear regression analysis
=============================

 Response variate: R
Nonlinear parameters: T1, T2, T3, T4
  Model calculations: E1, E2

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       4      637.254     159.3135    985.09  <.001
Residual        20        3.234       0.1617
Total           24      640.488      26.6870

Percentage variance accounted for 98.5
Standard error of observations is estimated to be 0.402.

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
T1                    35.9         11.4
T2                    1.05         2.69
T3                    0.56         1.61
T4                    2.47         6.50

The output from the monitoring setting of the PRINT option, not displayed here, shows that
solution takes 18 iterations involving 164 function evaluations compared to 13 and 123 when è1

is treated as linear. Moreover, convergence is not achieved here without supplying an initial
value for è1. So clearly you should exploit linearity where possible.

With the methods described in this section, the distribution can be any of those available from
the DISTRIBUTION option of the MODEL directive, with the exception of the inverse-Normal
distribution. Thus, the deviance will be based on the likelihood function of either the Normal,
Poisson, binomial, gamma or multinomial distributions, taking account of the settings of the
DISPERSION and WEIGHTS options of the MODEL directive. The first four of these distributions
were discussed in 3.5.1 and 3.5.2.

The multinomial distribution is used rather differently from the others: it is for fitting
distributions. The DISTRIBUTION directive (2.2.10) provides a wide range of standard
distributions, and is more convenient and efficient than FITNONLINEAR for these; but
FITNONLINEAR allows you to fit other distributions. (Despite the terminology "multinomial",
this setting is thus not for fitting models to response variables that take one of a finite set of
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values for each unit; these can be fitted using generalized linear models as described in 3.5.5.)
To specify and fit your own distribution, you should supply as response variate a set of counts

of observations falling into a series of groups; the fitted values should then be a set of expected
counts for the groups, calculated from the distribution being considered. The resulting
multinomial likelihood is the same as that of the Poisson distribution, but with the constraint
Ófi=M, where M is the sum of the counts.

Example 3.8.3b fits a Normal distribution to a set of observations produced by the Genstat
pseudo-random number generator. It would be much easier to use the DISTRIBUTION directive
(2.2.10) for this, but use of this familiar distribution here should make it clear how
FITNONLINEAR can be used in more complicated situations.

Example 3.8.3b

   2  " Fit a Normal distribution to pseudo-random numbers in the range (0,1)
  -3    generated by the functions URAND and EDNORMAL."
   4  CALCULATE Random = EDNORMAL(URAND(25384; 50))
   5  " Define bounds to subdivide the observations."
   6  SCALAR    Limit[1...8]; VALUE=-100,-1,-0.6,-0.2,0.2,0.6,1,100
   7  " Form response variate: counts of numbers within specified bounds."
   8  CALCULATE S[1...7] = SUM(Random<=Limit[2...8] .AND. Random>Limit[1...7])
   9  VARIATE   [VALUES=S[1...7]] Count
  10  " Set up expression to calculate expected counts for a Normal variable."
  11  &         [VALUES=Limit[2...8]] L1
  12  &         [VALUES=Limit[1...7]] L2
  13  EXPRESSION [VALUE=P=50*(NORMAL((L1-Mean)/SD)-NORMAL((L2-Mean)/SD))]\
  14             Normal
  15  MODEL      [DISTRIBUTION=multinomial] Count; FITTED=P
  16  RCYCLE     Mean,SD; STEPLENGTH=0.02,*; LOWER=*,0.5; INITIAL=0,1
  17  FITNONLINEAR [CALCULATION=Normal]

Nonlinear regression analysis
=============================

 Response variate: Count
     Distribution: Multinomial
Nonlinear parameters: Mean, SD
  Model calculations: Normal

Summary of analysis
-------------------

                                        mean  deviance
Source        d.f.     deviance     deviance     ratio
Regression       2            *            *
Residual         4        1.904       0.4760
Total            6            *            *

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
Mean                 0.068        0.151
SD                   1.024        0.137

* MESSAGE: s.e.s are based on dispersion parameter with value 1

3.8.4 General nonlinear models

The earlier parts of this section have dealt with two methods of calculating the likelihood at each
step of the iterative search: performing linear regression of the response variate on calculated
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explanatory variates, and directly comparing the response variate with a calculated variate of
fitted values. A third method is to calculate the likelihood explicitly. You can also use this to
minimize the value of a function that is not a likelihood at all. Remember, however, that the
methods described earlier in this chapter actually maximize the likelihood function by
minimizing the deviance, which is minus twice the log-likelihood ratio. (So, if you want to
estimate standard errors for the parameters, you should specify deviances rather than likelihoods
here too.)

To use the regression directives to minimize a function, you need to start with a MODEL
statement that has no response variate, but where the FUNCTION option is set to a scalar. You
then specify the parameters with the RCYCLE directive as before, and perform the minimization
with FITNONLINEAR, supplying an expression that calculates the function from the parameters
and places the result into the scalar. Example 3.8.4a shows the minimization of an awkward two-
dimensional test function.

Example 3.8.4a

   2  " Finding the minimum of a function of two parameters:
  -3    Rosenbrock's steep-sided valley. open '3-8-4.hpg';4;gr: device 4"
   4  EXPRESSION   Rbrock; VALUE=!e(F = 100*(P2-P1*P1)**2+(1-P1)**2)
   5  MODEL        [FUNCTION=F]
   6  RCYCLE       P1,P2; STEPLENGTH=0.01; INITIAL=-1.2,1
   7  FITNONLINEAR [PRINT=summary,estimates,correlation,monitoring; \
   8               CALCULATION=Rbrock]

Convergence monitoring
----------------------

Cycle Eval Move    Function value    Current parameters
    0    1    0         24.200000     -1.20000      1.00000
                            Steps    0.0100000    0.0100000
                            Steps   0.00622720    0.0160586
    1   10    0         4.7307251     -1.17501      1.38003
    2   23    5         4.1553333    -0.908300     0.753335
    3   32    0         3.2049376    -0.783431     0.598171
    4   45    5         2.7437562    -0.578825     0.284932
                            Steps   0.00911229    0.0109742
    5   54    0         2.1023790    -0.435217     0.168790
    6   63    0         1.9557949    -0.154202   -0.0551909
    7   72    0         1.1802438   -0.0853558   0.00254582
    8   85    5        0.94127635    0.0679015   -0.0223094
                            Steps    0.0186665   0.00535718
    9   94    0        0.66350789     0.213541    0.0243889
   10  103    0        0.45561812     0.359756     0.108045
   11  112    0        0.29300700     0.475594     0.212771
   12  121    0        0.18435710     0.607706     0.351853
                            Steps   0.00900248    0.0111081
   13  130    0        0.10277990     0.685032     0.463290
   14  139    0       0.067494726     0.822903     0.658161
   15  148    0       0.020597675     0.856950     0.733204
   16  157    0       0.013285223     0.961115     0.912893
                            Steps   0.00719726    0.0138942
   17  166    0     0.00099578333     0.968449     0.937839
   18  175    0     0.00012767864     0.989629     0.978917
                            Steps   0.00177577   0.00351961
   19  184    1     0.00010532730     0.989737     0.979579
   20  193    0     1.2554856E-06     0.999373     0.998653

Convergence in Newton-Raphson  loop at cycle 20.
   21  203    6     3.9717401E-07     0.999370     0.998740
                            Steps    0.0700523     0.140195
    1  213    0     3.9717401E-07     0.999370     0.998740

Results of optimization
=======================

Minimum function value
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Figure 3.8.4

----------------------

  3.97174E-07

Estimates of parameters
-----------------------

Parameter         estimate       "s.e."
P1                   0.999        0.819
P2                    1.00         1.64

Scaled inverse of second derivatives
------------------------------------

Parameter     ref    scaled inverse of 2nd derivatives

P1              1    1.000
P2              2    0.998  1.000
                         1      2

The FUNCTION option of the MODEL statement defines the scalar to be F, and the expression
Rbrock in the CALCULATION option of FITNONLINEAR sets F to the value of the function.

When you are minimizing a general function in this way, some of the output from
FITNONLINEAR is different. Genstat ignores the accumulated and fittedvalues settings,
and the deviance and summary settings display only the minimum function value. The
correlation setting displays the inverse of the estimated matrix of second derivatives of the
function with respect to the parameters, scaled by the diagonal values. Similarly, in place of the
standard errors usually displayed by the estimates setting, Genstat prints the square roots of
the diagonal values of twice the inverse of the second-derivative matrix. These can give a useful
indication of the form of the function near the minimum. As indicated by their title in the output,
if the function is a deviance you can interpret these as asymptotic standard errors and
correlations (not scaled by an estimate of dispersion). For a general function, the "s.e." can be
interpreted as the approximate change in a parameter required to increase the function by 1.0
starting from the minimum.

Genstat ignores the CONSTANT option of the
FITNONLINEAR directive for general functions,
and you must not set the parameter. Similarly,
the WEIGHTS and OFFSET options of the MODEL
directive are ignored, and the GROUPS option
must not be set. The only parameters of the
RKEEP directive that are available are
ESTIMATES, SE, INVERSE, EXIT, GRADIENTS
and GRID. The minimum value of the function
is of course available in the scalar specified by
the FUNCTION option of the MODEL directive.

You will usually want to inspect the shape of
the function near the minimum. So next we
form a grid of function values using the
NGRIDLINES option of FITNONLINEAR; to
save space in the output, we do not display the
values with the option setting PRINT=grid, but
just extract them with the GRID parameter of
RKEEP, and display them with the DSURFACE
directive (1:6.1). The picture is in Figure 3.8.4.
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Example 3.8.4b

   9  " Draw a contour map of the function
 -10    for P1 in (-1.2,1.2), P2 in (0,1.2)."
  11  RCYCLE       P1,P2; LOWER=-1.4,-1.4; UPPER=1.4,1.4
  12  FITNONLINEAR [PRINT=*; NGRIDLINES=21; CALCULATION=Rbrock]
  13  RKEEP    GRID=Vgrid
  14  MATRIX   [ROWS=21; COLUMNS=21] Mgrid; VALUES=Vgrid
  15  XAXIS    3; TITLE='P1'; LOWER=-1.4; UPPER=1.4
  16  YAXIS    3; TITLE='P2'; LOWER=-1.4; UPPER=1.4
  17  DSURFACE [TITLE='Rosenbrock''s Valley'; WINDOW=3; AZIMUTH=45]\
  18           Mgrid; PENFILL=0

If you have a function that is too complicated to be calculated by a list of Genstat expressions
(for example its definition may need you to use directives or procedures as well), you can use
the MINIMIZE, MIN1DIMENSION or SIMPLEX procedures. These are described in Part 3 of the
Genstat Reference Manual.

3.9 Regression trees

3.9.1 Constructing a regression tree

BREGRESSION procedure
Constructs a regression tree (R.W. Payne).

Options
PRINT = string tokens Controls printed output (summary, details,

indented, bracketed, labelleddiagram,
numbereddiagram, graph, monitoring); default *
i.e. none

Y = variate Response variate for the regression
TREE = tree Saves the tree that has been constructed
MSLIMIT = scalar Limit on the mean square of the observations at a node

at which to stop making splits; default 0
NSTOP = scalar Specifies the number of observations at a node at which

to stop making splits; default 1
OWNBSELECT = string token Indicates whether or not your own version of the

BSELECT procedure is to be used (yes, no); default no

Parameters
X = variates or factors Independent variables available for constructing the tree
ORDERED = string tokens Whether factor levels are ordered (yes, no); default no

A regression tree is a mechanism for predicting a response variable from a set of independent
variables (see Chapter 8 of Breiman et al.). The tree is constructed using data on a set of
observations. Their values for the response variable are specified (in a variate) using the Y
option, and their values for the independent variables are specified (in a list of variates) using
the X parameter. Factors may have either ordered or unordered levels, according to whether the
corresponding value ORDERED parameter is set to yes or no. For example, a factor called Dose
with levels 1, 1.5, 2 and 2.5 would usually be treated as having ordered levels, whereas levels
labelled 'Morphine', 'Amidone', 'Phenadoxone' and 'Pethidine' of a factor called
Drug would be regarded as unordered.

The construction process splits the observations into subsets, according to whether or not they
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are less than a particular value of one of the independent variates. The aim is to form subsets that
have similar values for the response variate. The predicted value of the response variable for
each node of the tree is the mean of its value for the subset of observations at that node. The
accuracy of the node is the squared distance of the values of the response variate from their
mean for the observations at the node, divided by the total number of observations. The potential
splits at the node are assessed by their effect on the accuracy, that is the difference between the
accuracy of the node and the sum of the accuracies of the two potential successor nodes. The
node will become a terminal node if none of the splits provides any improvement in accuracy,
or if the mean square of the observations at the node is less than or equal to a limit specified by
the MSLIMIT option (default 0), or if the number of observations at the node is less than or equal
to the number specified by the NSTOP option (default 1).

The resulting tree can be saved using the TREE option. Details of the tree can be printed as
selected by the PRINT option, with settings:

summary prints a summary of the properties of the tree;
details gives detailed information about the nodes of the tree;
bracketed display as used to represent an identification key in

"bracketed" form (printed node by node).
indented display as used to represent an identification key in

"indented" form (printed branch by branch);
labelleddiagram diagrammatic display including the node labels;
numbereddiagram diagrammatic display with the nodes labelled by their

numbers;
graph plots the tree using high-resolution graphics.
monitoring prints information monitoring the construction process.

BREGRESSION stores the information required for printing as part of the tree. For variates and
ordered factors, the labels are generally formed as "identifier<p" and "identifier>p", where p is
the value chosen to partition the data for the variate concerned. Alternatively, if you have defined
an "extra" text for the variate (using the EXTRA parameter of the VARIATE command), this will
be used instead. The labels are then "extra-text < p" and "extra-text > p". The style is similar for
unordered factors, but here the labels involve the operators .IN. and .NI. instead of < and >.

Example 3.9.1 uses BREGRESSION to construct a regression tree for some data relating water
usage at a production plant (Draper & Smith 1981, page 352) during 17 months to the average
temperature, the amount of production, the number of operating days and the number of
employees. Notice that, as the MSLIMIT is at its default value of zero, the tree continues until
there is a node for every distinct value of Wateruse (i.e. 17 nodes with residual degrees of
freedom and sum of squares zero).

Example 3.9.1

   2  " Water usage data (Draper & Smith 1981, page 352)."
   3  READ  Temperature,Production,Operatingdays,Employees,Wateruse
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    Identifier   Minimum      Mean   Maximum    Values   Missing
   Temperature     39.50     64.85     81.00        17         0
    Production     6.373     12.90     18.57        17         0
 Operatingdays     19.00     21.47     25.00        17         0
     Employees     129.0     181.8     206.0        17         0
      Wateruse     2.828     3.304     4.488        17         0

  21  " Form the regression tree."
  22  BREGRESSION [PRINT=summary; Y=Wateruse; TREE=Tree]\
  23              Employees,Operatingdays,Production,Temperature

Summary of regression tree: Tree
================================

Number of nodes: 33
Number of terminal nodes: 17
Residual sum of squares: 0
Residual degrees of freedom:  0
Residual mean square: *
Percentage variance accounted for: *
Variables in the tree: Production, Temperature, Employees, Operatingdays.

BREGRESSION calls procedure BCONSTRUCT (1:4.12.6) to form the tree. This uses a special-
purpose procedure BSELECT, which is customized specifically to select splits for use in
regression trees. You can use your own method of selection by providing your own BSELECT
and setting option OWNBSELECT=yes. In the standard version of BSELECT, the BASSESS
directive (1:4.12.8) is used to assess the potential splits.

3.9.2 Displaying a regression tree

BRDISPLAY procedure
Displays a regression tree (R.W. Payne).

Option
PRINT = string tokens Controls printed output (summary, details,

indented, bracketed, labelleddiagram,
numbereddiagram, graph); default * i.e. none

Parameter
TREE = tree Tree to be displayed

Further output for a regression tree can be obtained with the BRDISPLAY procedure. The tree is
specified by the TREE parameter, and the PRINT option selects the output (with settings that all
operate as in the PRINT option of BREGRESSION).

Example 3.9.2 uses BRDISPLAY to print the tree from Example 3.9.1 in indented form. The
first explanatory variable in the tree (at index 1) is Production. If the value is less than 17.63,
the next task (at index 2) is to see whether or not the Temperature if less than 71.4 (index 2);
if it is greater than 17.63, we reach a terminal node where water usage is predicted to be 4.488.
Some further examples are in Example 3.9.3.

Example 3.9.2

  24  BRDISPLAY [PRINT=indented] Tree

1 Production<17.63 2
 2 Temperature<71.40 3
  3 Temperature<55.25 4
   4 Operatingdays<21.00 5
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    5 Operatingdays<19.50 3.125
    5 Operatingdays>19.50 6
     6 Employees<188.5 3.286
     6 Employees>188.5 3.211
   4 Operatingdays>21.00 3.542
  3 Temperature>55.25 7
   7 Temperature<64.30 8
    8 Employees<192.0 9
     9 Employees<157.5 3.067
     9 Employees>157.5 3.060
    8 Employees>192.0 3.022
   7 Temperature>64.30 10
   10 Employees<147.0 2.828
   10 Employees>147.0 11
    11 Employees<172.5 2.891
    11 Employees>172.5 2.922
 2 Temperature>71.40 12
 12 Employees<170.5 2.994
 12 Employees>170.5 13
  13 Employees<192.0 14
   14 Employees<182.0 3.502
   14 Employees>182.0 15
    15 Employees<190.0 3.898
    15 Employees>190.0 3.950
  13 Employees>192.0 16
   16 Employees<196.5 3.082
   16 Employees>196.5 3.295
1 Production>17.63 4.488

3.9.3 Pruning a regression tree

Generally the construction of a regression tree will result in over-fitting, that is it will form a tree
that keeps making splits beyond the point that can be justified statistically. The solution is to
prune the tree to remove the uninformative sub-branches, and this can be performed using the
BPRUNE procedure. It is best, if possible, to base the pruning on an independent set of data. The
pruning uses the accuracy figures, which are stored with the tree. The prediction at each node
is the mean of the observations that occur at the node. The accuracy of the node is the squared
distance of the values of the response variate for the observations at the node from the prediction,
divided by the total number of observations. The BRVALUES procedure can be used to calculate
new accuracy and prediction values, from another data set.

BRVALUES procedure
Forms values for nodes of a regression tree (R.W. Payne).

Options
Y = variate Values of the response variate for the new data set
TREE = tree Tree for which predictions and accuracy values are to be

formed
REPLACE = string token Whether to replace the values stored in the tree (yes,

no); default no
PREDICTION = pointer New predictions for the nodes of the tree
ACCURACY = pointer New accuracy values for the nodes of the tree
NOBSERVATIONS = pointer New numbers of observarions for the nodes of the tree

Parameter
X = variates Values of the x-variates for the new data set

The TREE option specifies the tree for which the values are to be formed. The Y option specifies
the values of the response variate for the observations in the new data set, and the X parameter
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defines their values for the x-variates as used to construct the tree. You can set option
REPLACE=yes to use the new values to replace those already stored in the tree. Alternatively,
you can use the PREDICTION parameter to save the predictions, in a pointer. This has an element
for each node of the tree (and with the same suffix as that node) pointing to a scalar storing the
prediction for the node. Similarly, the ACCURACY parameter saves the accuracies, and the
NOBSERVATIONS parameter saves the numbers of observations at each node. You can use these
later to replace the prediction and accuracy values in the original tree by

CALCULATE Tree[]['accuracy'] = ACCURACY[]
&         Tree[]['prediction'] = PREDICTION[]
&         Tree[]['nobservations'] = NOBSERVATIONS[]

Alternatively, you may want to combine them first with other estimates, for example to form
bootstrapped estimates.

The pruning is performed by the BPRUNE procedure

BPRUNE procedure
Prunes a tree using minimal cost complexity (R.W. Payne).

Option
PRINT = string tokens Controls printed output (graph, table, monitoring);

default tabl

Parameters
TREE = trees Trees to be pruned
ACCURACY = pointers Accuracy values for the nodes of each tree; default is to

use those stored with the tree
NEWTREES = pointers Saves the trees generated during the pruning of each tree
RTPRUNED = variates Accuracy of the pruned trees of each tree
NTERMINAL = variates Number of terminal nodes in the pruned trees of each

tree

The tree to be pruned is specified by the TREE parameter. BPRUNE assumes that there is an
accuracy figure R(t) available for each node t of the tree. By default this is assumed to be stored
with the tree itself, but you can specify other values using the ACCURACY parameter. This should
be set to a pointer whose suffixes are the same as the numbers of the nodes in the tree, and whose
elements are scalars storing the relevant accuracy values. The accuracy R(T) of the whole tree
T is defined to be the sum of the accuracies of its terminal nodes.
BPRUNE uses the principle of minimal cost complexity (Breiman et al. 1984, Chapter 3) to

produce a sequence of pruned trees. At each stage it prunes at the node which is the weakest link.
Define R(Tt) to be the accuracy of the subtree with root at node t, and nterm(t) to be its number
of terminal nodes. The weakest link is then the node for which

(R(t) ! R(Tt)) / (nterm(t) ! 1)
is a minimum. The pruned trees can be saved, in a pointer, using the NEWTREES parameter. Their
accuracies can be saved (in a variate) using the RTPRUNED parameter, and their numbers of
terminal nodes can be saved (also in a variate) using the NTERMINAL parameter.

Printed output is controlled by the PRINT option, with settings:
graph plots RTPRUNED against NTERMINAL;
table prints a table with RTPRUNED and NTERMINAL;
monitoring provides monitoring information during the pruning.

The plot of RTPRUNED against NTERMINAL demonstates the trade-off between accuracy and
complexity (number of terminal nodes). It should show an initial rapid decrease, followed by a
long flat region, and then often a gradual increase. The aim is to select a tree that is accurate but
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Figure 3.9.3

not over-complex. One possibility is to take the tree at the point where the graph levels off.
However, RTPRUNED contains only an estimate of the accuracy of the trees. So Breiman et al.
(1984) recommend taking a tree a little above that (in fact at one standard error of RTPRUNED
above the minimium point in the graph: see Chapters 3 and 11). In practice though a small
amount of over-fitting should not be a problem, so the exact choice of pruned tree should not be
crucial.

Example 3.9.3 prunes the tree from
Example 3.9.1. There is no independent set
of data available here, so the pruning is
based on the accuracy values from the
original data used to construct the tree.
Examining the accuracies of the pruned
trees (printed in the column headed RT, and
plotted in Figure 3.9.3) suggests that tree 7
is the most appropriate choice. The BCUT
directive (1:4.12.4) in line 164 replaces
Tree with this tree, Pruned[7],
renumbering its nodes at the same time.
BRDISPLAY then displays the new tree.

Example 3.9.3

  25  " Prune the tree."
  26  BPRUNE [PRINT=table,graph] Tree; NEWTREES=Pruned

Characteristics of the pruned trees
===================================

  Tree          RT   Number of
   no.                terminal
                         nodes
     1     0.00000          17
     2     0.00000          16
     3     0.00003          15
     4     0.00010          14
     5     0.00018          13
     6     0.00034          12
     7     0.00058          11
     8     0.00118          10
     9     0.00252           9
    10     0.00505           8
    11     0.00999           7
    12     0.01697           6
    13     0.03198           5
    14     0.07186           3
    15     0.10014           2
    16     0.18780           1

  27  " Use tree 7 - renumber nodes."
  28  BCUT [RENUMBER=yes] Pruned[7]; NEWTREE=Tree
  29  " Display the tree."
  30  BRDISPLAY [PRINT=summary,indented] Tree

Summary of regression tree: Tree
================================
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Number of nodes: 21
Number of terminal nodes: 11
Residual sum of squares: 0.009926
Residual degrees of freedom:  6
Residual mean square: 0.001654
Percentage variance accounted for: 99.17
Variables in the tree: Production, Temperature, Employees, Operatingdays.

1 Production<17.63 2
 2 Temperature<71.40 3
  3 Temperature<55.25 4
   4 Operatingdays<21.00 5
    5 Operatingdays<19.50 3.125
    5 Operatingdays>19.50 3.248
   4 Operatingdays>21.00 3.542
  3 Temperature>55.25 6
   6 Temperature<64.30 3.050
   6 Temperature>64.30 2.880
 2 Temperature>71.40 7
  7 Employees<170.5 2.994
  7 Employees>170.5 8
   8 Employees<192.0 9
    9 Employees<182.0 3.502
    9 Employees>182.0 3.924
   8 Employees>192.0 10
   10 Employees<196.5 3.082
   10 Employees>196.5 3.295
1 Production>17.63 4.488

3.9.4 Predictions from a regression tree

BRPREDICT procedure
Makes predictions using a regression tree (R.W. Payne).

Options
PRINT = string tokens Controls printed output (prediction, transcript); if

PRINT is unset in an interactive run BRPREDICT will
ask what you want to print, in a batch run the default is
pred

TREE = tree Specifies the tree
PREDICTIONS = variate Saves the prediction for the observations
TERMINALNODES = pointer Saves the numbers of the terminal nodes from which

each prediction was obtained
MVINCLUDE = string token Whether to provide predictions for units with missing or

unavailable values of the x-variables (explanatory);
default expl

Parameters
X = variates or factors Explanatory variables
VALUES = scalars, variates or texts Values to use for the explanatory variables; if these are

unset for any variable, its existing values are used

BRPREDICT makes predictions using a regression tree. The tree is specified by the TREE option.
Alternatively, BRPREDICT will ask you for the identifier of the tree if you do not specify TREE
when running interactively.

The x-values for the predictions can be specified in the variates or factors listed by the X
parameter. These must have identical names (and levels) to those used originally to construct the
tree. You can use the VALUES parameter to supply new values, if those stored in any of the
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variates or factors are unsuitable.
If you do not set X when running interactively, BRPREDICT will ask you to supply the relevant

x-values in turn, as required by the tree. Otherwise, if an x-variable in the tree is not specified
in the X parameter list, its values are assumed to be unavailable (i.e. missing).

By default, when the x-variable required at a node in the tree is unavailable or contains a
missing value, BRPREDICT will follow all the branches from that node, and average the
predictions that they generate. You can set option MVINCLUDE=*, if you would prefer the
prediction to be missing.

The PRINT option controls printed output, with settings:
prediction prints the predictions obtained using the tree;
transcript prints the x-values supplied in response to questions in an

interactive run.
If you do not set PRINT in an interactive run, BRPREDICT will ask what you would like to print.
In batch, the default is to print the predictions.

You can save the predictions, in a variate, using the PREDICTIONS option. The
TERMINALNODES option allows you to save a pointer, with an element for each prediction,
containing the numbers of the terminal nodes reached in the tree to provide the predictions. This
will be a scalar if the prediction was derived from a single node, or a variate if it involved more
than one (because several branches have been taken, as the result of a missing x-value).

Example 3.9.4 makes a prediction of water usage using the tree from Example 3.9.3.

Example 3.9.4

  31  " Predict water usage for a day with 150 employees, 15 operating days,
 -32    production 12.5 and temperature 65."
  33  VARIATE     Employees,Operatingdays,Production,Temperature;\
  34              VALUES=150,21,12.5,65
  35  BRPREDICT   [PRINT=prediction; TREE=Tree; PREDICTION=Prediction]\
  36              Employees,Operatingdays

Prediction:
3.332

3.9.5 Predictions from a regression tree

BRKEEP procedure
Saves information from a regression tree (R.W. Payne).

No options

Parameters
TREE = trees Tree from which the information is to be saved
SUMMARY = variates Saves summary information about each tree
XVARIABLES = pointers Saves the identifiers of the x-variables in each tree

BRKEEP saves information about a regression tree, constructed by the BREGRESSION procedure.
The tree can be saved using the TREE option of BREGRESSION, and is specified for BRKEEP
using its TREE parameter.

The SUMMARY parameter saves a variate containing summary information: number of nodes,
number of terminal nodes, residual sum of squares, residual degrees of freedom, residual mean
square and percentage variance accounted for (in that order).

The XVARIABLES parameter saves a pointer containing the identifiers of the x-variables in the
tree.
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Example 3.9.5 saves and prints information about the tree from Example 3.9.3.

Example 3.9.5

  37  BRKEEP      Tree; SUMMARY=Summary; XVARIABLES=Xvariables
  38  PRINT       Summary & Xvariables

                                       Summary

                   Number of nodes       21.00
          Number of terminal nodes       11.00
           Residual sum of squares        0.01
       Residual degrees of freedom        6.00
              Residual mean square        0.00
 Percentage variance accounted for       99.17

   Xvariables
   Production
  Temperature
    Employees
Operatingdays

3.10 Quantile regression

Standard regression methods fit models to predict the mean of the probability distribution that
generates the observations at each set of values of the explanatory variables. As you will have
seen, earlier in this chapter, ordinary regression assumes a Normal distribution (see 3.1 - 3.4),
while generalized linear models (3.5) allow for a wider class of distributions, including binomial,
Poisson gamma etc. In quantile regression, no parametric probability distribution is assumed, but
instead models are fitted to show how the explanatory variables affect the quantiles of the
distribution. This allows the distribution to be studied in much more detail, and also provides
estimates that are robust against outliers. See Koenker (2005) for more information.

The basic utilities for quantile regression are provided in Genstat by the FRQUANTILES
directive and RQOBJECTIVE function, which are based on the algorithm of Koenker & D'Orey
(1987). Procedures have been written to use these utilities to fit various types of quantile
regression. Section 3.10.1 describes the RQLINEAR procedure, which fits quantile regressions
for linear models. Nonlinear models and loess or spline models can be fitted by the similar
procedures RQNONLINEAR and RQSMOOTH (see the Genstat Reference Manual, Part 3
Procedures for details).

3.10.1 The RQLINEAR procedure

RQLINEAR procedure
Fits and plots quantile regressions for linear models (D.B. Baird).

Options
PRINT = list What to print (model, estimates, summary,

fittedvalues, correlations, wald, jointqtest,
separateqtest); default mode, esti, summ, wald

PLOT = list What to plot (rhistogram, phistograms,
fittedvalues, estimates, bootestimates);
default rhis, phis, fitt

TERMS = formula Terms to be fitted
WEIGHTS = variate Weights for data values; default equally weighted
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CONSTANT = string token Whether to include a constant in the model (omit,
estimate); default esti

FACTORIAL = scalar Limit on number of factors or variates in a term; default
3.

FITINDIVIDUALLY = string token Whether to fit the regression model one term at a time
(yes, no); default no

FULL = string token Whether to assign all possible parameters to factors and
interactions (yes, no); default no

BMETHOD = string token Bootstrap method (xy, weightedxy); default xy
NBOOT = scalar Number of times to bootstrap data to estimate

confidence limits; default 200
SEED = scalar Seed for bootstrap randomization; default 0
CIPROBABILITY = scalar Probability level for confidence interval; default 0.95
XPLOT = variate Variate to plot fitted values against; default 1st variate

in model

Parameters
Y = variates Response variate
PRQUANTILES = scalars or variates Proportions at which to calculate quantiles; default 0.5
RESIDUALS = variates or pointers Residuals from regression for each quantile
FITTEDVALUES = variates or pointers

Fitted values from regression for each quantile
ESTIMATES = variates or pointers Estimated coefficients of model terms for each quantile
SE = variates or pointers Standard errors of the estimated coefficients for each

quantile
VCOVARIANCE = symmetric matrices or pointers

Variance-covariance matrix of estimates for each
quantile

DF = scalars or variates Numbers of degrees of freedom fitted by the model
LOWER = variates or pointers Lower confidence limit of coefficients for each quantile
UPPER = variates or pointers Upper confidence limit of coefficients for each quantile
LOWFITTEDVALUES = variates or pointers

Lower confidence limit of fitted values for each quantile
UPPFITTEDVALUES = variates or pointers

Upper confidence limit of fitted values for each quantile
OBJECTIVE = scalars or variates Optimal values of the objective function
EXIT = scalars or variates Exit codes indicating whether the estimation was

successful

RQLINEAR calculates and plots quantile regressions. The dependent variate is specified by the
Y parameter. The proportions (between 0 and 1) for which the model is to be fitted are specified
by the PRQUANTILES parameter, as a scalar is there is only one, or a variate if there are several.
The default value for PRQUANTILES is 0.5, i.e. the median.

The model defining the explanatory terms is specified by the TERMS option, and can include
variates, factors and polynomial terms, and interactions between them. RQLINEAR cannot fit
LOESS or SPLINE models. The FACTORIAL, CONSTANT and FULL options control how the
model is constructed, as in the ordinary regression commands (see e.g. FIT or TERMS).
FACTORIAL option sets a limit on the number of factors and/or variates in each terms, CONSTANT
option allows you to omit the constant term, and FULL controls how each term is parameterized.

Output is controlled by the PRINT option with settings:
model the details of model that is being fitted;



3.10  Quantile regression 359

summary a summary of the fit;
estimates the model estimates (and confidence limits, standard errors

and t-values if bootstrapping is used);
fittedvalues the residuals and fitted values from the model;
correlation correlations between the estimates;
wald Wald Statistic for each model term;
jointqtest the significance of the joint changes in the model

parameters (excepting the intercept) between the quantiles;
and

separateqtest the significance of the changes in the individual model
parameters between the quantiles.

Correlations and Wald statistics are available only if bootstrapping is done. If option
FITINDIVIDUALLY=yes, the model terms are added in one at a time, and the Wald statistics
are given for for each step. Otherwise only an overall test of the full model versus the null model
(i.e. just the constant) is provided. The settings jointqtest and separateqtest are relevant
only if several quantiles have been requested by PRQUANTILES. These compare the differences
between all the quantiles in a single test. So if you want to compare quantiles for two specific
proportions, you should set PRQUANTILES to just those two values.

The PLOT option controls what plots are displayed, with settings
rhistogram histograms of residuals;
phistograms histograms of the bootstrap estimates for each parameter;
fittedvalues observed and fitted values plotted against the explanatory

variate specified by the XPLOT option (if XPLOT is not set,
the first explanatory variate is used);

estimates parameter estimates plotted against the quantiles;
bootestimates parameter estimates and bootstrap confidence limits

plotted against quantiles (note this plot can be slow to
produce).

For the fitted plot, the observed and fitted values can be plotted against a specific variate given
by the option XPLOT, rather than just the default which is the first variate in the TERMS
statement.

The BMETHOD option controls the method that is used to obtain standard errors and confidence
limits by bootstrapping for the parameter estimates and fitted values. The xy setting re-samples
the units with replacement; this is the default. Alternatively, the weightedxy setting uses all
the units but with weights are generated from a exponential distribution with mean 1.
Bootstrapping can be slow, you can set BMETHOD=* to stop any being done. The NBOOT option
specifies the number of bootstrap samples that are taken, and the CIPROBABILITY option sets
the size of the confidence limits. The SEED option defines the seed for the random numbers that
are used to select the bootstrap samples. The default of zero continues the existing sequence of
random numbers if any have already been used in the current Genstat job. If none have been
used, Genstat picks a seed at random.

The results from the model fit can be saved in various parameters. The ESTIMATES,
FITTEDVALUES, RESIDUALS, LOWER, UPPER, SE, LOWFITTEDVALUES and UPPFITTEDVALUES
parameters save their results in variates if only one quantile has been defined, or in pointers to
a set of variates (one for each quantile) if there were several. Similarly VCOVARIANCE saves a
symmetric matrix, or a pointer to several symmetric matrices, while DF, OBJECTIVE and EXIT
save either a scalar or a variate (with a value for each quantile). EXIT saves the value of the exit
code from the estimation of each set of regression quantiles by the FRQUANTILES directive
(which is used inside RQLINEAR): a value of zero indicates that the estimation was successful,
a value of one means the solution is non-unique (this may not be a problem, as the returned
solution will still be optimal), and a value of two means the algorithm has failed.
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The example below fits quantile linear regresions to Engel's 1857 data of household food
expenditure and household income.

Example 3.10.1

   2  SPLOAD   '%GENDIR%/Examples/Engel.gsh'

Loading Spreadsheet File
------------------------

Catalogue of file D:\Gen15ed\Examples\Engel.gsh

Sheet Title:
Engel's 1857 data of household food expenditure and household income,
taken from 235 European working-class households.

Sheet Type: vector
  Index       Type    Nval   Name
      1    variate     235   Income
      2    variate     235   Food_Exp

   3  RQLINEAR [PRINT=#,separateqtest; PLOT=*; TERMS=Income;\
   4           BMETHOD=xy; NBOOT=200; SEED=412261] Food_Exp;\
   5           PRQUANTILES=!(0.1,0.25,0.5,0.75,0.9)

Quantile regression
===================

Response variate: Food_Exp
Fitted terms: Constant + Income

10% Quantile
============

Objective function = 3870
Model degrees of freedom = 1
Residual sum of squares = 6816507
Residual degrees of freedom = 233

Wald statistic
--------------

                Term    d.f.        v.r.     F prob.
           All Terms       1      82.893      <0.001

Parameter estimates
-------------------

             Estimate        s.e.    Lower CI    Upper CI   t-value    t-prob

 Constant      110.14       31.41       56.99      161.29     3.506    <0.001
   Income        0.40        0.04        0.34        0.48     9.105    <0.001

95% Bootstrap confidence intervals based on 200 resamplings.
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25% Quantile
============

Objective function = 7082
Model degrees of freedom = 1
Residual sum of squares = 3970500
Residual degrees of freedom = 233

Wald statistic
--------------

                Term    d.f.        v.r.     F prob.
           All Terms       1     206.021      <0.001

Parameter estimates
-------------------

             Estimate        s.e.    Lower CI    Upper CI   t-value    t-prob

 Constant       95.48       24.68       61.94      169.35     3.869    <0.001
   Income        0.47        0.03        0.37        0.51    14.353    <0.001

95% Bootstrap confidence intervals based on 200 resamplings.

50% Quantile
============

Objective function = 8780
Model degrees of freedom = 1
Residual sum of squares = 3402600
Residual degrees of freedom = 233

Wald statistic
--------------

                Term    d.f.        v.r.     F prob.
           All Terms       1     219.452      <0.001

Parameter estimates
-------------------

             Estimate        s.e.    Lower CI    Upper CI   t-value    t-prob

 Constant       81.48       29.25       33.55      159.08     2.785     0.006
   Income        0.56        0.04        0.46        0.62    14.814    <0.001

95% Bootstrap confidence intervals based on 200 resamplings.

75% Quantile
============

Objective function = 6529
Model degrees of freedom = 1
Residual sum of squares = 5809136
Residual degrees of freedom = 233

Wald statistic
--------------

                Term    d.f.        v.r.     F prob.
           All Terms       1     402.766      <0.001
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Parameter estimates
-------------------

             Estimate        s.e.    Lower CI    Upper CI   t-value    t-prob

 Constant       62.40       25.62      16.277      128.90     2.436     0.016
   Income        0.64        0.03       0.564        0.70    20.069    <0.001

95% Bootstrap confidence intervals based on 200 resamplings.

90% Quantile
============

Objective function = 3392
Model degrees of freedom = 1
Residual sum of squares = 8828531
Residual degrees of freedom = 233

Wald statistic
--------------

                Term    d.f.        v.r.     F prob.
           All Terms       1     683.152      <0.001

Parameter estimates
-------------------

             Estimate        s.e.    Lower CI    Upper CI   t-value    t-prob

 Constant       67.35       20.46       20.33      101.76     3.292     0.001
   Income        0.69        0.03        0.63        0.74    26.137    <0.001

95% Bootstrap confidence intervals based on 200 resamplings.

Test of equality of parameters across quantiles
-----------------------------------------------

Parameter  d.f.  Residual d.f.  F value  F prob.
 Constant     4           1171    0.756    0.554
   Income     4           1171   11.466   <0.001



4 Analysis of variance and design of experiments

This chapter first describes the Genstat commands for analysis of variance. In Genstat for
Windows, these analyses can all be specified through the Analysis of Variance menu. The
description below, however, provides further insights into the models that are fitted and the
output that is obtained. Then, in Sections 4.9 - 4.13, we describe the commands for designing
experiments (which are used by the design and sample size menus of Genstat for Windows).

Usually the data will be from a designed experiment in which each treatment is applied to
several units, such as plots of land, or animal or human subjects, or samples of material. Usually
the treatments are allocated randomly, since the units might not be absolutely identical. This
guards against any treatment systematically getting more than its fair share of the best units,
which might cause it to appear to be better than the treatments on the less favourable units. It is
also one form of justification for the statistical analysis. For a more detailed discussion of why
randomization is important, see for example Chapter 5 of Cox (1958).

In the simplest type of investigation, the treatments do not have any particular structure. In a
field experiment, for example, they may be several varieties of a crop; in an industrial
experiment they could be different types of catalyst. In Genstat you represent treatments like
these by a factor. The factor has a level for each treatment; the values of the factor indicate
which treatment was applied to each unit.

More complicated are factorial experiments. Here there are several different types of
treatment, each represented by a different factor. For example, in an investigation of animal
diets, you might wish to vary the amounts both of protein and of carbohydrates; in a fertilizer
trial, you might have different levels of both nitrogen and phosphorus. Then the set of treatments
is the set of all combinations of the levels of the different factors. Thus if there were a levels of
nitrogen and b of phosphorus, there would be a×b treatments altogether.

The advantage of factorial experiments is that you can look not only at the overall effects of
each factor, but also at interactions which show how the effects of one factor differ according
to other factors (4.1). The overall effects are often called main effects (though that does not mean
that they have to be the main thing that you are interested in). An interaction would be, for
example, nitrogen having a large effect in the absence of phosphorus, but only a small effect in
its presence.

You specify which main effects, interactions and other treatment terms are to be included in
the model using the TREATMENTSTRUCTURE directive (4.1.1). You can also do more
sophisticated modelling of the effects of factors, by partitioning them (and their interactions) into
polynomial or other contrasts (4.5): for example, the yield of a crop might increase linearly with
the amount of nitrogen.

There can also be structure in the units themselves. In a simple experiment, they are
unstructured: that is, they are assumed to come from a single homogeneous population. The
treatments can then be allocated to the units at random, without the need to consider any other
groupings of the units. This is called a completely randomized design (see 4.1). The analysis of
experiments where the units do have an underlying structure is described in 4.2. For example,
you might expect there to be less variation among animals from the same litter than among
different litters. You specify the structure of the units by the BLOCKSTRUCTURE directive; if you
omit to do this, Genstat assumes that the units are unstructured.

In an experiment, various measurements will be made to assess how the treatments affect the
units. These may be made at the end of the experiment, or while it is still in progress. For
example, in a field experiment on potatoes, you might be interested in the yield from each plot,
the number of potatoes from each plot, estimates of the percentage areas of potato skin affected
by particular diseases, and so on. Analysis of variance allows you to examine only one such
measurement at a time. The value measured on each unit (or plot) should be entered into a
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variate and analysed by the ANOVA directive (4.1.2).
Sometimes measurements are made before the experiment. For example, the initial blood

pressures and other attributes of human subjects might be recorded before the treatments are
given. You would want to allow for these baseline readings (or covariates) when analysing the
effects of the treatments. You specify the variates that are to act as covariates using the
COVARIATE directive (4.3.1). By default, the model is assumed to contain no covariates.

The analysis can cope with missing values, either in the variates to be analysed, or in the
covariates (4.4). But no factor values should be missing.

So, to summarise, to perform an analysis of variance, you should first define the model to be
fitted, using the directives:

BLOCKSTRUCTURE defines the blocking structure of the design, and hence the

strata and error terms (4.2.1)
COVARIATE specifies a list of covariates for analysis of covariance

(4.3.1)
TREATMENTSTRUCTURE defines the treatment (or systematic) terms (4.1.1)

For unstructured designs with a single error term, BLOCKSTRUCTURE need not be specified, and
COVARIATE is needed only for analysis of covariance. Section 4.3 gives a full description of
analysis of covariance, and also describes the AFCOVARIATES procedure which allows you to
define more complicated types of covariate models (4.3.2).

Once the model has been defined, the y-variates can be analysed using the ANOVA directive:
ANOVA performs analysis of variance (4.1.2)

Then, after you have fitted the model, you can display or calculate further results, check the
assumptions of the analysis, plot means and residuals, or store the results in data structures for
use elsewhere in Genstat:

ADISPLAY displays further output from analyses produced by ANOVA

(4.1.3)
AFMEANS forms tables of means classified by ANOVA treatment

factors (4.1.5)
AGRAPH plots tables of means from ANOVA (4.1.5)
APLOT plots residuals from an ANOVA analysis (4.1.4)
AFIELDRESIDUALS display residuals from a field experiment in field layout

(4.1.4)
ABLUPS calculates BLUPs for block terms in an ANOVA analysis

(4.2.2)
ACHECK checks the assumptions for an ANOVA analysis (4.1.6)
AKEEP copies information from an ANOVA analysis into Genstat

data structures (4.6.1)
APERMTEST performs random permutation and exact tests for analysis

of variance (4.1.7)
APOLYNOMIAL calculates the equation for a polynomial contrast fitted by

ANOVA (4.5.1)
ADPOLYNOMIAL plots single-factor polynomial contrasts fitted by ANOVA

(4.5.2)
ARESULTSUMMARY provides a summary of results from an ANOVA analysis

(4.1.3)
ASPREADSHEET saves analysis of variance results in a spreadsheet (4.6.3)
ASTATUS provides information about the settings of ANOVA models

and variates (4.6.2)
AMCOMPARISON performs pairwise multiple comparison tests for ANOVA

means (4.1.9)
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AMDUNNETT forms Dunnett's simultaneous confidence interval around
a control (4.1.10)

ACONFIDENCE calculates simultaneous confidence intervals (4.1.8)
FALIASTERMS forms information about aliased model terms in analysis of

variance
The designs that can be analysed by ANOVA are said to be balanced or, more accurately, to

have the property of first-order balance defined by Wilkinson (1970) and James & Wilkinson
(1971). A brief explanation of the property is given in 4.7, where the method of analysis is
explained, but you do not need to understand this in order to use Genstat. Virtually all the
standard designs can be analysed, including all the generally-balanced designs (Nelder 1965 a,b;
Payne & Tobias 1992). Here are some examples:

(a) all orthogonal designs, whether with a single error term or with several: for example,
completely randomized designs, randomized blocks, split plots, Latin and Graeco-Latin
squares, split-split plots and fractional replicates;

(b) all designs with balanced confounding: for example, balanced incomplete blocks,
balanced lattices and Youden squares;

(c) designs with partial balance, provided the pattern of balance can be specified by pseudo-
factors (4.7.3).

Amongst the worked examples available on your computer are data files showing how to analyse
all the worked examples in Cochran & Cox (1957); this should cover most of the designs that
you are likely to encounter. Genstat itself detects whether or not your design is balanced, by a
process known as the dummy analysis (4.7.5). So, if you are unsure about whether or not a
particular design can be analysed, try it and see what happens. Unbalanced designs with a single
error term can be analysed using procedures AUNBALANCED, AUDISPLAY and AUKEEP. The
model is specified just as for ANOVA but the analysis uses the Genstat regression facilities (see
Chapter 3). If you have only two treatment factors in an unbalanced design with a single error
term, it may be more convenient to use A2WAY. Unbalanced designs with several error terms can
be analysed by the REML directive (Chapter 5). However, if the additional random terms contain
very little information about the treatments, it may be more convenient (and equally effective)
to treat these as fixed nuisance terms, and use AUNBALANCED. Decisions like this can be made
using the  AOVANYHOW procedure. Also, procedures GLMM (3.5.10) and HGANALYSE (3.5.11)
provide methods for fitting generalized linear models with additional random terms to model
data from a stratified experiment.

AUNBALANCED performs analysis of variance for unbalanced designs

(4.8.1)
AUDISPLAY produces further output for an unbalanced design (4.8.2)
AUGRAPH plots tables of means from an unbalanced design (4.8.3)
AUKEEP saves output from analysis of an unbalanced design (4.8.4)
AUPREDICT forms predictions from an unbalanced design (4.8.5)
AUSPREADSHEET Saves results from an analysis of an unbalanced design in

a spreadsheet (4.8.6)
AUMCOMPARISON performs pairwise multiple comparison tests for means

from unbalanced designs
A2WAY performs analysis of variance of a balanced or unbalanced

design with up to two treatment factors (2.3.3)
A2DISPLAY provides further output following an analysis of variance

by A2WAY (2.3.3)
A2KEEP copies information from an A2WAY analysis into Genstat

data structures (2.3.3)
AOVANYHOW performs analysis of variance using ANOVA,

AUNBALANCED, A2WAY or REML as appropriate (4.8.7)
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AOVDISPLAY provides further output from an analysis by AOVANYHOW
AN1ADVICE aims to give useful advice if a design that is thought to be

balanced fails to be analysed by ANOVA (4.8.8)
There are several other directives and procedures that you may find useful during an analysis

of variance. You can use the RESTRICT directive (4.4.1) to restrict the analysis to only a subset
of the units. You can specify how many decimal places will be used in the output of tables of
means, effects, contrasts and residuals by setting the DECIMALS parameter in the declaration of
the variate to be analysed (2.1.2). Procedure VHOMOGENEITY can be used to check the
homogeneity of variances, and procedure AREPMEASURES (8.1.3) can check the validity of the
ordinary analysis of variance if you have repeated measurements. If ordinary anova cannot be
used, alternatives are provided by procedures MANOVA (multivariate analysis of variance; 6.6.1),
or by procedures ANTORDER and ANTTEST (antedependence structure; 8.1.5), or by modelling
the covariance structure over time by REML (Chapter 5).

Other procedures relevant to analysis of variance, in the Procedure Library, include:
AMTIER analyses a multitiered design specified by up to three

model formulae (4.2.3)
AMTDISPLAY displays further output for multitiered designs (4.2.3)
AMTKEEP saves information from the analysis of a multitiered design

(4.2.3)
VSPECTRALCHECK forms the spectral components from the canonical

components of a multitiered design, and constrains any
negative spectral components to zero

ASCREEN performs screening tests for designs with orthogonal block
structure (4.7.6)

AONEWAY provides one-way analysis of variance (2.3.2)
A2WAY performs analysis of variance of a balanced or unbalanced

design with up to two treatment factors (2.3.3)
A2DISPLAY provides further output from an A2WAY analysis (2.3.3)
A2KEEP saves information from an A2WAY analysis (2.3.3)
ABIVARIATE produces graphs and statistics for bivariate analysis of

variance
ABOXCOX estimates the power ë in a Box-Cox transformation, that

maximizes the partial log-likelihood in ANOVA
ACANONICAL determines the orthogonal decomposition of the sample

space for a design, using an analysis of the canonical
relationships between the projectors derived from two or
more model formulae.

ACDISPLAY provides further output from an analysis by ACANONICAL.
ACKEEP saves information from an analysis by ACANONICAL.
AMMI provides exploratory analysis of genotype × environment

interactions
FMEGAENVIRONMENTS forms mega-environments based on winning genotypes

from an AMMI-2 model
STEEL performs Steel's many-one rank test (2.6.3)
AREPMEASURES produces an analysis of variance for repeated

measurements (8.1.3)
ARETRIEVE retrieves an ANOVA save structure from an external file
ASTORE stores an ANOVA save structure in an external file
AYPARALLEL does the same analysis of variance for several y-variates,

and collates the output
A2PLOT plots effects from two-level designs with robust s.e.
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estimates
A2RDA saves results from an analysis of variance in R data frames
AU2RDA saves results from an unbalanced analysis of variance, by

AUNBALANCED, in R data frames
CENSOR pre-processes censored data before analysis by ANOVA
CINTERACTION clusters rows and columns of a two-way interaction table
DIALLEL analyses full and half diallel tables with parents
FRIEDMAN performs Friedman's nonparametric analysis of variance

(2.6.2)
LVARMODEL analyses a field trial using the Linear Variance Neighbour

model
MAANOVA does a parallel analysis of variance of data from a single-

channel microarray design
NLCONTRASTS fits non-linear contrasts to quantitative factors in ANOVA
SED2ESE calculates effective standard errors that give good

approximate standard errors of differences
SEDLSI calculates least significant intervals
LSIPLOT plots least significant intervals, saved from SEDLSI
VHOMOGENEITY tests homogeneity of variances
WSTATISTIC calculates the Shapiro-Wilk test for Normality

Full details can be found in Part 3 of the Genstat Reference Manual.
Genstat has a comprehensive set of facilities for design of experiments ranging from

procedures that allow you to select and generate a design from an extensive repertoire of
possibilities, to directives and procedures that enable you to develop new designs and assess their
properties. Collectively, these are known as the Genstat Design System. Many different design
types are covered, each with a procedure that allows you to view and choose from the available
possibilities. Other procedure allow designs and data forms to be displayed. There is also a
general procedure DESIGN that can be used interactively to provide a single point of access to
all the design types.

DESIGN provides a menu-driven interface for selecting and

generating experimental designs (4.9.1)
AGALPHA forms alpha designs for up to 100 treatments (4.9.7)
AGBIB generates balanced-incomplete-block designs (4.9.8)
AGBOXBEHNKEN generates Box-Behnken designs (4.9.12)
AGCENTRALCOMPOSITE generates central composite designs (4.9.11)
AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects

(4.9.4)
AGCYCLIC generates cyclic designs from standard generators (4.9.9)
AGDESIGN generates generally-balanced designs ! factorial designs

with blocking, fractional factorial designs, Lattice squares
etc. (4.9.3)

AGFACTORIAL generates minimum aberration complete and fractional
factorial designs (4.9.2) 

AGFRACTION generates fractional factorial designs
AGHIERARCHICAL generates orthogonal hierarchical designs (4.9.1)
AGLATIN generates mutually orthogonal Latin squares (4.9.4)
AGLOOP generates loop designs e.g. for time-course microarray

experiments (4.9.17)
AGMAINEFFECT generates designs to estimate main effects of two-level

factors (4.9.13)
AGNEIGHBOUR generates neighbour-balanced designs (4.9.10)
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AGNONORTHOGONALDESIGN generates non-orthogonal multi-stratum designs
AGSPACEFILLINGDESIGN generates space filling designs
AGQLATIN generates complete and quasi-complete Latin squares

(4.9.4)
AGREFERENCE generates reference-level designs e.g. for microarray

experiments (4.9.16)
AGSEMILATIN generates semi-Latin squares (4.9.5)
AGSQLATTICE generates square lattice and lattice square designs (4.9.6)
PDESIGN prints treatment combinations tabulated by the block

factors (4.10.1)
DDESIGN plots the plan of a design (4.10.2)
ADSPREADSHEET puts the data and plan of an experimental design into a

spreadsheet (4.10.3)

DESIGN and the AG... procedures (above) that it calls provide the Select Design facilities in
Genstat for Windows, while the alternative Standard Design menu uses AGHIERARCHICAL,
AGLATIN and AGSQLATTICE to generate completely randomized designs, randomized blocks,
Latin and Graeco-Latin squares, split-plots, strip-plots (or criss-cross designs) and lattices.

There are also procedures that you can use to determine the sample size (i.e. replication)
required for experiments that are to be analysed by analysis of variance, t-test or various non-
parametric tests. You can also calculate the power (or probability of detection) for terms in
analysis of variance or regression analyses.

APOWER calculates the power (probability of detection) for terms in

an analysis of variance (4.12.3)
ASAMPLESIZE finds the replication (sample size) to detect a treatment

effect or contrast (4.12.2)
RPOWER calculates the power (probability of detection) for

regression models (3.1.8)
ADETECTION calculates the minimum size of effect or contrast

detectable in an analysis of variance (4.12.4)
SBNTEST calculates the sample size for binomial tests (4.12.5)
SPNTEST calculates the sample size for Poisson tests (4.12.6)
SCORRELATION calculates the sample size to detect specified correlations

(4.12.10)
SLCONCORDANCE calculates the sample size for Lin's concordance

coefficient (4.12.11)
SMANNWHITNEY calculates the sample size for the Mann-Whitney test

(4.12.9)
SMCNEMAR calculates the sample size for McNemar's test (4.12.8)
SPRECISION calculates the sample size to obtain a specified precision
SSIGNTEST calculates the sample size for a sign test (4.12.7)
STTEST calculates the sample size for t-tests, including equivalence

tests and tests for non-inferiority (4.12.1)
The design-generation procedures form and randomize the designs automatically, calling other

directives and procedures to perform the necessary tasks, so there is no need for you to be aware
of any of the details. However, we give more information, below and in Sections 4.9 - 4.11 and
4.13, if you do want to study the process in more depth or to add new designs. Briefly, the
Design System is based on a range of standard generators. Some of these, such as the Galois
fields used to generate Latin squares or the Hadamard matrices needed for main-effect designs,
can be formed when required ! and so there is no limitation on the available designs. Repertoires
of others, such as design keys, are stored in backing-store files which are scanned by the design
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generation procedures to form menus listing the available possibilities. Algorithms are available
to form generators for new designs, and these can then be added to the design files to become
an integral part of the system. Other design utilities include procedures for combining simple
designs into more complicated arrangements, for constructing augmented designs, and for
determining how many replicates are needed. There are also directives for constructing response-
surface designs using the BLKL algorithm of Atkinson & Donev (1992) and for constructing
doubly resolvable row-column designs. The relevant commands include the directives

AFRESPONSESURFACE uses the BLKL algorithm to construct designs for

estimating response surfaces (4.9.14)
AGRCRESOLVABLE forms doubly resolvable row-column designs
GENERATE generates values of factors in systematic order or as

defined by a design key, or forms values of pseudo-factors
(4.13.1)

RANDOMIZE puts units of vectors into random order, or randomizes
units of an experimental design (4.11.1)

FKEY forms design keys for multi-stratum experimental designs,
allowing for confounding and aliasing of treatments
(4.13.6)

FPSEUDOFACTORS determines patterns of confounding and aliasing from
design keys, and extends the treatment formula to
incorporate the necessary pseudo-factors (4.13.7)

SET2FORMULA forms a model formula using structures supplied in a
pointer (1:4.8.3)

and the procedures
AEFFICIENCY calculates efficiency factors for experimental designs

AFALPHA generates alpha designs (4.9.7)
AFAUGMENTED forms an augmented design (4.13.5)
AFCARRYOVER forms factors to represent carry-over effects in cross-over

trials
AFCYCLIC generates block and treatment factors for cyclic designs

(4.9.9)
AFLABELS forms a variate of unit labels for a design
AFNONLINEAR forms D-optimal designs to estimate the parameters of a

nonlinear or generalized linear model (4.9.15)
AFPREP searches for an efficient partially-replicated design
AFUNITS forms a factor to index the units of the final stratum of a

design
AFRCRESOLVABLE forms doubly resolvable row-column designs, with output
AKEY generates values for treatment factors using the design key

method (4.13.2)
AMERGE merges extra units into an experimental design (4.13.3)
APRODUCT forms a new experimental design from the product of two

designs (4.13.4)
ARANDOMIZE randomizes and prints an experimental design (4.11.2)
COVDESIGN produces experimental designs efficient under analysis of

covariance
FACDIVIDE represents a factor by factorial combinations of a set of

factors
FACPRODUCT forms a factor with a level for every combination of other

factors
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FBASICCONTRASTS forms the basic contrasts of a model term (4.13.8)
FCOMPLEMENT forms the complement of an incomplete block design
FDESIGNFILE forms a backing-store file of information for AGDESIGN
FHADAMARDMATRIX forms Hadamard matrices
FOCCURRENCES forms a "concurrence" matrix recording how often each

pair of treatments occurs in the same block of a design
FPLOTNUMBER forms plot numbers for a row-by-column design
FPROJECTIONMATRIX forms a projection matrix for a set of model terms
XOEFFICIENCY calculates the efficiency for estimating of effects in cross-

over designs
XOPOWER estimates the power of contrasts in cross-over designs

4.1 Designs with a single error term

Suppose that you have done an experiment to examine v different treatments, and that the value
measured on the jth unit out of r receiving treatment i is yij. For each treatment i, we suppose that
there is an underlying mean value of y that we wish to estimate; we shall write this as mi. This
will not be the value observed because there will be measurement error, there may be
uncontrolled differences in the way the different units have been dealt with, and the units
themselves may not be uniform. So yij is assumed to follow the linear model

yij = mi + åij

where åij, termed the residual for the ijth unit, represents the difference between the true value
mi and the value actually observed. The residuals are assumed to be independently distributed:
that is, the size of the residual on one unit is assumed to be unaffected by the residuals on other
units. They are also assumed to have a zero mean and a constant variance (so the expected value
for the ijth unit is mi). For some of the properties of analysis of variance, it is necessary to
assume also that the residuals each have a Normal distribution.

The process by which values for the parameters mi are estimated from the observed
measurements yij is known as least squares. The estimators m̂i are chosen to minimize the sum
of squares of the estimated residuals:

You can find details of this process in any standard statistical textbook. For a simple design

like this one, the estimate of each mean, m̂i, is simply the average of the values observed on the
units with treatment i. However this may not be so in more complicated experiments, for
example where there is non-orthogonality (4.7) or where there are covariates (4.3). In such cases
Genstat uses the term mean to denote the prediction of the mean value for a treatment, rather
than its crude average, and we follow the same convention in this chapter.

Analysis of variance also estimates the uncertainty attached to the estimates of the parameters,
allowing you to assess whether the treatments genuinely differ in their effects. In simple cases,
this involves assessing whether the variation between the units with different treatments is
genuinely greater than that between units with the same treatment. To help investigate this, a
more common form of the linear model is

yij = ì + ei + åij

where ì is known as the grand mean, and ei as the effect of treatment i. So:
mi = ì + ei

If the treatments do not differ, the effects (ei, i = 1 ... v) will all be zero. To assess this we would
fit first a model containing just the grand mean (and residuals), and then a model with the effects
as well. The difference between the residual sums of squares of these two models measures
whether the treatments differ: this difference is called the sum of squares due to treatments.
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Conventionally the different sums of squares are presented in a table known as the analysis-of-
variance table.

The example below shows the analysis-of-variance table for a rather more complicated
experiment, details of which can be found in Snedecor & Cochran (1980, page 305); further
output is shown in 4.1.3 and 4.5. The experiment studies the effect of diet on the weight gains
of rats. There were six treatments arising from two treatment factors: the source of protein (beef,
pork or cereal), and its amount (high or low). The 60 rats that provided the experimental units
were allocated at random into six groups of ten rats, one group for each treatment combination.
The model to be fitted in the analysis contains three terms to explain the effects of the
treatments: si (i = 1,2,3) the main effects of the source of protein (beef, pork or cereal); aj (j =
1,2) the main effects of the amount of protein (high or low); and saij the interaction between
source and amount of protein.

yijk = ì + si + aj + saij + åijk

The parameters aj make the same contribution to the model irrespective of the source of the
protein received by the rat. So they represent the overall effects of the amount of protein.
Similarly, the parameters si represent the overall effects of the source of protein. If the interaction
effects were all zero, we would have a model in which the difference between high and low
amounts of protein was the same whatever the source of the protein. Also, the difference
between sources of protein would be identical whether at high or low amounts. So the parameters
saij indicate whether or not these two factors interact: whether we can determine the best source
of protein without regard to its amount; likewise whether we can decide the best amount without
considering the source. The estimates of the parameters are included in the output under the
heading "Tables of effects" (4.1.3).

Genstat prints the analysis-of-variance table in the conventional form, which you can find in
statistical textbooks: there is a line for each treatment term, a line for the residual, and a final
"Total" line recording the total sum of squares after fitting the grand mean. The first column,
"d.f." standing for degrees of freedom, records the number of extra independent parameters
included when each term is added into the model; thus with the source of protein, there are three
parameters (s1, s2, s3) but, since the grand mean ì has already been fitted, they sum to zero and
so the degrees of freedom are two. (A full explanation of this too can be found in statistical
textbooks.) The second column "s.s." contains the sums of squares. The column "m.s.", standing
for mean square, has sums of squares divided by numbers of degrees of freedom. You can assess
whether a particular treatment term has had an effect by comparing its mean square with the
residual mean square: if there has been an effect, then the mean square for the treatment term
will be large compared to the residual. The column denoted "v.r." (for variance ratio) helps you
make these comparisons: it contains the ratio of each treatment mean square to the residual mean
square. If the residuals do indeed have independent Normal distributions with zero mean and
equal variance, then each such ratio has an F distribution with t and r degrees of freedom, where
t is the number of degrees of freedom of the treatment term and r is the number of degrees of
freedom of the residual. The corresponding probabilities can be looked up in statistical tables,
or you can ask Genstat to calculate them for you (see the column headed "F pr."), by setting
option FPROBABILITY=yes in the ANOVA or ADISPLAY directives. However you should not
interpret these probabilities too rigidly, as the assumptions are rarely more than approximately
satisfied; for this reason, Genstat does not print probabilities less than 0.001, but will put "<.001"
instead. Also, you should not merely report that a term in an analysis is significant; you should
also study its means or its effects to see what their biological (or economic) importance may be,
whether their pattern can be explained scientifically, and so on.
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Example 4.1

   2  " 3x2 factorial experiment (Snedecor & Cochran 1980, p.305)."
   3  UNITS [NVALUES=60]
   4  FACTOR [LABELS=!T(beef,cereal,pork); VALUES=(1...3)20] Source
   5  & [LABELS=!T(high,low); VALUES=3(1,2)10] Amount
   6  READ Gain

    Identifier   Minimum      Mean   Maximum    Values   Missing
          Gain     49.00     87.87     120.0        60         0

  17  TREATMENTSTRUCTURE Source*Amount
  18  ANOVA [PRINT=aovtable; FPROBABILITY=yes] Gain

Analysis of variance
====================

Variate: Gain

Source of variation     d.f.       s.s.       m.s.    v.r.  F pr.
Source                     2      266.5      133.3    0.62  0.541
Amount                     1     3168.3     3168.3   14.77  <.001
Source.Amount              2     1178.1      589.1    2.75  0.073
Residual                  54    11586.0      214.6
Total                     59    16198.9

Before you can do the analysis you must set up factors to define the treatment that was applied
to each unit. Here there are two factors, for source and for amount of protein. Also you must
form a variate containing the data values yijk that are to be analysed.

For the analysis of variance, you must first define the model to be fitted. Here we have a single
error term åijk: the units have no structure. Consequently you need not give a BLOCKSTRUCTURE
statement (4.2.1) but can let it take its default value. If you have already defined some other
structure (perhaps for an earlier analysis), you should cancel it by giving either a
BLOCKSTRUCTURE statement with a null formula, or else one with a single factor indexing the
units (4.2.1). Provided you have no covariates (4.3), the only statement that you need give is
TREATMENTSTRUCTURE.

4.1.1 The TREATMENTSTRUCTURE directive

TREATMENTSTRUCTURE directive
Specifies the treatment terms to be fitted by subsequent ANOVA statements.

No options

Parameter
formula Treatment formula, specifies the treatment model terms

to be fitted by subsequent ANOVAs

The single unnamed parameter of the TREATMENTSTRUCTURE directive is a formula known as
the treatment formula. Formulae (1.5.3) are composed of identifier lists and functions, separated
by the operators:

.   +   *   /   //   !   !*   !/

In the formulae for analysis of variance, the identifier lists can only be of factors. Variates and
matrices can appear in the functions (to fit polynomials, for example); these are described in 4.5.
Here we describe the first four operators, which are those that are used most often. The pseudo-
factorial operator //, which occurs only in treatment formulae, is described in 4.7.3. The final
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three operators are for deletion. Full definitions of all the operators are in 1:1.6.3.
Genstat expands a formula into a series of model terms, linked by the operator plus (+). Each

model term consists of one or more elements, separated from one another by the operator dot (.);
in analysis of variance the elements are either factors or functions. You can always specify a
formula in this expanded form: the other operators simply provide a more succinct way of
writing long formulae. For the formulae defined by TREATMENTSTRUCTURE and by
BLOCKSTRUCTURE (4.2.1), this expansion does not take place until the analysis is being done (by
ANOVA). TREATMENTSTRUCTURE and BLOCKSTRUCTURE merely store the formulae in their
original form. Consequently there are some syntactic errors that will not be found until the
ANOVA statement. When Genstat does the expansion, the FACTORIAL option of ANOVA sets a
limit on the number of elements in a model term from the treatment formula: any terms with
more elements are deleted.

Each model term in the treatment formula corresponds to a treatment term in the linear model.
The expanded version of the formula in line 17 of the example is

Source + Amount + Source.Amount

(So you could have specified this instead of Source*Amount.) Terms with a single factor
represent main effects of the factor: for example Source corresponds to the main effects of the
source of protein, si. Terms with several factors define higher-order effects: for example
Source.Amount corresponds to the interaction effects between source and amount of protein,
saij. However the meaning of a higher-order term depends on the context: in general, it refers to
all those joint effects of the factors in the term that have not been accounted for by preceding
terms in the model. So Source.Amount, above, is an interaction because the main effects of
source and amount have both been fitted already. But, in the formula

A + A.B

there are no main effects of B, merely ai and abij, so A.B denotes the fitting of different B effects
for each level of A; these are usually called the B-within-A effects.

Any redundant terms in a formula are deleted. So, for example,

A + B + A

becomes

A + B

Also, as A.B is defined to include all the joint effects of A and B that are not yet accounted for,
the formula

A.B + B

becomes just A.B, which already includes the B main effects. Thus the order in which you
specify the terms is important.

The operators * and / are termed the crossing and nesting operators respectively. For example,

Source * Amount

defines the factors Source and Amount to have a crossed relationship: that is, we wish to
examine the effects of each factor individually, and then their interaction. Models containing
only crossing are often called factorial models. Another factorial model, but with three factors,
is in 4.7.1: the formula is

N * K * D

which expands to

N + K + D + N.K + N.D + K.D + N.K.D

including not only two-factor interactions, like N.K, but also the three-factor interaction N.K.D.
In general, if L and M are two formulae, the definition (1:1.6.3) is that

L*M = L + M + L.M

Nesting (/) occurs most often in block formulae, which are specified by the BLOCKSTRUCTURE
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directive (4.2). To take an illustration from later in this chapter, for the example analysed in 4.3
the formula is

Blocks / Plots

indicating that plots are nested within blocks; so the interest is in block effects and the effects
of plots within blocks (see 4.2.1). This is exactly what the operator / provides: the expanded
form of the formula is

Blocks + Blocks.Plots

The general definition of the slash operator (1:1.6.3) is that

L/M = L + L.M

where L is a model term containing all the factors that occur in L. (The rationale for this is that
if M is nested within all the terms in L, it must be nested within all the factors in L.) For example,
if you expand the first operator in the formula

Blocks/Wplots/Subplots

used to specify a split-plot design (4.2.1), you obtain

(Blocks + Blocks.Wplots)/Subplots

This then expands to

Blocks + Blocks.Wplots + Blocks.Wplots.Subplots

(which, reassuringly, gives an identical list of terms to those obtained by expanding the second
operator before the first operator).

An example of a treatment formula in which there is nesting is the factorial plus added control

Fumigant/(Dose*Type) = Fumigant + Fumigant.Dose
                      + Fumigant.Type + Fumigant.Dose.Type

in which the factorial combinations of dose and type occur within the 'fumigated' level of the
factor Fumigant, as explained in 4.3.

The definition of the operator dot (.) with model formulae L and M is that L.M is the sum of
all pairwise combinations of a term in L with a term in M. For example

(A + B.C).(D + E) = A.D + A.E + B.C.D + B.C.E

After expanding the operators dot (.), star (*) and slash (/), Genstat rearranges the list of
model terms so that the numbers of factors in the terms are in increasing order. Where several
terms contain the same numbers of factors, the terms are put into lexicographical order according
to the order in which the factors first appeared in the formula. For example

(A + C.D + B + A.B) * E

expands to

A + C.D + B + A.B + E + A.E + C.D.E + B.E + A.B.E

which is reordered to

A + B + E + A.B + A.E + C.D + B.E + A.B.E + C.D.E

4.1.2 The ANOVA directive

Once you have defined the model, you can analyse the variates containing the data (the y-
variates) using ANOVA. All the options and parameters are listed here, although some are relevant
only to the more complicated designs and analyses described later in this chapter.
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ANOVA directive
Analyses y-variates by analysis of variance according to the model defined by earlier
BLOCKSTRUCTURE, COVARIATE and TREATMENTSTRUCTURE statements.

PRINT = string tokens Output from the analyses of the y-variates, adjusted for
any covariates (aovtable, information, covariates,
effects, residuals, contrasts, means, cbeffects,
cbmeans, stratumvariances, %cv, missingvalues);
default aovt, info, cova, mean, miss

UPRINT = string tokens Output from the unadjusted analyses of the y-variates
(aovtable, information, effects, residuals,
contrasts ,  means ,  cbeffects, cbmeans,
stratumvariances, %cv, missingvalues); default *
i.e. no printing

CPRINT = string tokens Output from the analyses of the covariates, if any
(aovtable, information, effects, residuals,
contrasts, means, %cv, missingvalues); default *
i.e. no printing

FACTORIAL = scalar Limit on number of factors in a treatment term; default 3
CONTRASTS = scalar Limit on the order of a contrast of a treatment term;

default 4
DEVIATIONS = scalar Limit on the number of factors in a treatment term for the

deviations from its fitted contrasts to be retained in the
model; default 9

PFACTORIAL = scalar Limit on number of factors in printed tables of means or
effects; default 9

PCONTRASTS = scalar Limit on order of printed contrasts; default 9
PDEVIATIONS = scalar Limit on number of factors in a treatment term whose

deviations from the fitted contrasts are to be printed;
default 9

FPROBABILITY = string token Printing of probabilities for variance ratios (yes, no);
default no

PSE = string token Standard errors to be printed with tables of means, PSE=*
requests s.e.'s to be omitted (differences, lsd, means);
default diff

TWOLEVEL = string token Representation of effects in 2n experiments (responses,
Yates, effects); default resp

DESIGN = pointer Stores details of the design for use in subsequent analyses;
default *

WEIGHTS = variate Weights for each unit; default * i.e. all units with weight
one

ORTHOGONAL = string token Whether or not design to be assumed orthogonal
(notassumed, assumed, compulsory); default nota

SEED = scalar Seed for random numbers to generate dummy variate for
determining the design; default 12345

MAXCYCLE = scalar Maximum number of iterations for estimating missing
values; default 20

TOLERANCES = variate Allows you to redefine the tolerances for zero used by
various parts of the algorithm

NOMESSAGE = string tokens Which warning messages to suppress (nonorthogonal,
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residual); default *
LSDLEVEL = scalar Significance level (%) to use in the calculation of least

significant differences; default 5
EXIT = scalar Saves an exit code indicating the properties of the design

Parameters
Y = variates Variates to be analysed
RESIDUALS = variates Variate to save residuals for each y variate
FITTEDVALUES = variates Variate to save fitted values
SAVE = identifiers Save details of each analysis for use in subsequent

ADISPLAY or AKEEP statements

Before Genstat does any calculations with the y-variates, it does an initial investigation to
acquire all the information that it needs for the analysis. Alternatively, you can supply this from
an earlier analysis using the DESIGN option.

During this initial investigation Genstat first generates the model, excluding covariates (4.3),
by expanding the block and treatment formulae into a list of model terms (4.1.1). For a design
with a single error term, you do not have to define the block formula; its use in the definition of
more complicated designs is described in 4.2.1. Genstat also finds out whether the treatment
formula contains any functions and, if so, forms the contrasts that they define (4.5).

The treatment terms to be included in the model are controlled by the options FACTORIAL,
CONTRASTS and DEVIATIONS. FACTORIAL sets a limit on the number of factors in a treatment
term: terms containing more than that number are deleted. CONTRASTS and DEVIATIONS control
the inclusion of contrasts, and of deviations from fitted contrasts (4.5). The maximum number
of different factors that you can have in the block and treatment formulae is 1053, but special
versions of Genstat can be formed for anyone that needs more than this!

Genstat then checks whether any of the y-variates is restricted (1:4.4.1). If several variates are
restricted, they must all be restricted to the same set of units. Only these units are included in the
analysis of each y-variate.

Next Genstat investigates the design: for example, it checks whether each term can be
estimated, whether any are non-orthogonal (4.7), which error term is appropriate for each
estimated treatment term if the model contains several, and indeed whether the design has the
balance required for ANOVA to analyse it. This process, known as the dummy analysis, involves
the analysis of a specially generated variate which contains random numbers from a Cauchy
distribution. The starting value for their generation is set by the SEED option. The full details are
described in 4.7.5 (but you do not have to understand how this works in order to use ANOVA).

The WEIGHT option allows you to specify a weight for each unit, to define a weighted analysis
of variance. You might want to do this if, for example, different parts of the experiment have
different variability; each weight would then be proportional to the reciprocal of the expected
variance for the corresponding unit. However unless the weights are fairly systematic, for
example to give proportional weighted replication (4.5), the design is unlikely to be balanced.

Genstat has a simplified version of the dummy analysis which you can use to save computing
time if all the model terms are orthogonal and if, for every term, all the combinations of its
factors were applied to the same number of units (4.7.5). A check is incorporated which will
detect non-orthogonality except in particularly complicated designs where terms are aliased. If
you set option ORTHOGONAL=assumed, Genstat does the simple version unless non-
orthogonality is detected, whereupon it gives a warning message and then switches to the full
version. The simplified version is done also if ORTHOGONAL=compulsory, but non-
orthogonality now causes the analysis to stop altogether, with an error message; this is useful for
checking for typing errors in the factor values when you know that the design should otherwise
be orthogonal.
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The TOLERANCES option can supply a variate with up to four values to define tolerances for
zero in various parts of the analysis: the first is used to calculate the tolerance for the analysis
of the y-variates (default 10!7), the second is for the tolerance used in the dummy analysis
(default 10!9; see 4.7.5), the third is for the estimation of missing values (default 10!5; see 4.4)
and the fourth is for the estimation of stratum variances  (default 10!5; see 4.7.1).

You can use the DESIGN option to store the details of the model, the design and any
restrictions of the units, so that Genstat need not recalculate them for future ANOVA statements.
The setting of the option is automatically declared as a pointer if you have not declared it
already. It points to several other structures which store information about different aspects of
the analysis. The only other details that are required for future analyses are the values of the
factors in the block and treatment formulae.

If you have not previously declared the design structure, or if it has no values, then the current
statement derives and stores the necessary information. If the pointer does already have values,
then these are used to do the analysis. In that case, of course, values of the factors in the block
and treatment formulae must not have been changed since the design structure was formed. The
current settings of options FACTORIAL, CONTRASTS, DEVIATIONS and WEIGHT are then
ignored, as is any change in the restrictions on the y-variates. The DESIGN option is particularly
useful with designs where there are many model terms or where there is non-orthogonality, as
the dummy analysis may then be time-consuming.

The MAXCYCLE option, which sets a limit on the number of iterations for estimating missing
values, is described in 4.4. The EXIT option is described in 4.7.5. The other ANOVA options
control the printed output, and are described with the ADISPLAY directive (4.1.3).

The first parameter of ANOVA, Y, lists the variates whose values are to be analysed. Genstat
examines them all and forms a list of units for which any of the y-variates or any covariate (4.3)
has a missing value. These units are treated as missing in all the analyses. (This is necessary to
avoid having to re-analyse covariates for each y-variate; analysis of covariance is described in
4.3.) However, if your y-variates have different missing units, you may prefer to analyse them
with separate ANOVA statements, while saving details of the model and design with the DESIGN
option to improve efficiency (see 4.4).

The RESIDUALS parameter allows you to specify a variate to save the estimated residuals from
each analysis. Genstat will declare this variate for you if you have not done so already. In models
where there are several error terms, only the final one is included. Others can be obtained using
the AKEEP directive (4.6.1).

The fitted values from the analysis are defined to be the data values minus the estimated
residuals. These too can be saved, using the FITTEDVALUES parameter. In models where there
are several error terms, only the final error term is subtracted. If this is not what you want, you
can use AKEEP (4.6.1) to save the full residuals, containing residual effects from all the error
terms.

The last parameter, SAVE, allows you to save the complete details of the analysis in an ANOVA
save structure. The ADISPLAY directive lets you use a save structure to produce further output
(4.1.3). You can also use it in the AKEEP directive to put quantities calculated from the analysis
into data structures which you can then use elsewhere in Genstat (4.6.1). Save structures are
special compound structures (1:2.8), and Genstat declares them automatically. The save structure
for the last y-variate analysed is stored automatically, and forms the default for ADISPLAY and
AKEEP if you do not provide one explicitly.

Genstat still generates the model and does the dummy analysis even if a y-variate has no
values, or if you specify a null entry in the Y list. You then get a skeleton analysis-of-variance
table, which excludes sums of squares, mean squares and variance ratios; the only other output
available is the information summary (4.1.3). You can save a design structure, but no save
structure is formed. This is a good way of checking that a design can be analysed, before the
experiment is carried out.
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4.1.3 Output from ANOVA

This section describes the output from ANOVA, and the ADISPLAY directive that allows you to
display further output without repeating the analysis. It also describes the ARESULTSUMMARY
procedure that can be used to provide a summary of the results.

ADISPLAY directive
Displays further output from analyses produced by ANOVA.

Options
PRINT = string tokens Output from the analyses of the y-variates, adjusted for

any covariates (aovtable, information,
covariates, effects, residuals, contrasts,
means, cbeffects, cbmeans, stratumvariances,
%cv, missingvalues); default * i.e. no printing

UPRINT = string tokens Output from the unadjusted analyses of the y-variates
(aovtable, information, effects, residuals,
contrasts, means, cbeffects, cbmeans,
stratumvariances, %cv, missingvalues); default *
i.e. no printing

CPRINT = string tokens Output from the analyses of the covariates, if any
(aovtable, information, effects, residuals,
contrasts, means, %cv, missingvalues); default *
i.e. no printing

CHANNEL = identifier Channel number of file, or identifier of a text to store
output; default current output file

PFACTORIAL = scalar Limit on number of factors in printed tables of means or
effects; default 9

PCONTRASTS = scalar Limit on order of printed contrasts; default 9
PDEVIATIONS = scalar Limit on number of factors in a treatment term whose

deviations from the fitted contrasts are to be printed;
default 9

FPROBABILITY = string token Printing of probabilities for variance ratios in the aov
table (yes, no); default no

PSE = string tokens Standard errors to be printed with tables of means,
PSE=* requests s.e.'s to be omitted (differences,
lsd, means); default diff

TWOLEVEL = string token Representation of effects in 2n experiments
(responses, Yates, effects); default resp

NOMESSAGE = string tokens Which warning messages to suppress
(nonorthogonal, residual); default *

LSDLEVEL = scalar Significance level (%) to use in the calculation of least
significant differences; default 5

Parameter
identifiers Save structure (from ANOVA) to provide details of each

analysis from which information is to be displayed; if
omitted, output is from the most recent ANOVA

The ADISPLAY directive allows you to display further output from one or more analyses of
variance, without having to repeat all the calculations. You can store the information from each
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analysis in a save structure, using ANOVA, and then specify the same structure in the SAVE
parameter of ADISPLAY. Several save structures can be listed, corresponding to the analyses of
several different variates. They need not all have been produced by the same ANOVA statement
nor even be from the same design. Alternatively, if you just want to display output from the last
y-variate that was analysed, you need not specify the SAVE parameter in either ANOVA or
ADISPLAY: the save structure for the last y-variate analysed is saved automatically, and provides
the default for ADISPLAY.

Apart from CHANNEL, all the options of ADISPLAY also occur with ANOVA. CHANNEL can be
set to a scalar to divert the output to another output channel. Alternatively, it can specify the
identifier of text data structure to store the output (and in fact an undeclared structure will be
defined as a text, automatically).

The PRINT option selects which components of output are to be displayed. These are all
illustrated in this chapter, as indicated in this list.

aovtable analysis-of-variance table (4.1, 4.2.1, 4.3, 4.5 and 4.7)

information information summary, giving details of aliasing and non-
orthogonality (4.1.3 and 4.7.1) or of any large residuals
(4.2.1 and 4.7.1)

covariates estimated covariate regression coefficients (4.3.1)
effects tables of estimated treatment parameters (4.1.3 and 4.7.1)
residuals tables of estimated residuals (4.1.3 and 4.2.1)
contrasts estimated contrasts of treatment effects (4.5)
means tables of predicted means for treatment terms (4.1.3)
cbeffects estimated effects of treatment terms combining

information from all the strata in which each term is
estimated (4.7.1)

cbmeans predicted means for treatment terms combining
information from all the strata in which each term is
estimated (4.7.1 and 4.7.3)

stratumvariances estimated variances of the units in each stratum (4.7.1)
%cv coefficients of variation and standard errors of individual

units (4.1.3 and 4.2)
missingvalues estimates of missing values (4.4)

The default for PRINT with ADISPLAY is different from that with ANOVA. With ANOVA, the
default gives the output that you will require most often from a full analysis: aovtable,
information, covariates, means and missingvalues. You are most likely to use
ADISPLAY when you are working interactively, to examine one component of output at a time,
and it is not obvious that any one component will then be more popular than any other. So the
default for ADISPLAY produces no output (that is, PRINT=*). This also means that you do not
need to suppress the output explicitly when you are using UPRINT and CPRINT to examine
components of output from analysis of covariance (4.3).

The settings information, covariates and missingvalues have a slightly different
effect with ANOVA than with ADISPLAY. As they are part of the default specified for ANOVA, they
will not produce any output unless there is something definite to report. With ADISPLAY you
need to request them explicitly, so Genstat will always produce some sort of report. For example,
there are no missing values with the variate Gain analysed earlier in this section, there are no
covariates, and there is no aliasing or non-orthogonality. The information summary will also
contain warning messages about any large residuals (see 4.2.1) unless the NOMESSAGES option
has been set to residuals to exclude these: for example

ADISPLAY [PRINT=information; NOMESSAGES=residuals]

The criterion used to decide whether or not to report a residual is the same that used in regression
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analysis (3.1.2). In this set of data there are none. The other setting, nonorthogonality, of the
NOMESSAGES option suppresses the warning produced when there is orthogonality between
treatment terms (4.7.4) or covariates (4.3.1).

Example 4.1.3a

  19  ADISPLAY [PRINT=information,covariates,missingvalues]

Information summary
===================

All terms orthogonal, none aliased.

Covariate regressions
=====================

No covariates

Missing values
==============

Variate: Gain

No missing values

If you had asked for these three pieces of information by ANOVA, you would not have obtained
any output, since there is nothing positive to report.

The other default components produced by ANOVA are the analysis-of-variance table, shown
earlier in this section, and the tables of means.

Example 4.1.3b

  20  ADISPLAY [PRINT=means]

Tables of means
===============

Variate: Gain

Grand mean  87.9

   Source     beef   cereal     pork
              89.6     84.9     89.1

   Amount     high      low
              95.1     80.6

   Source   Amount     high      low
     beef             100.0     79.2
   cereal              85.9     83.9
     pork              99.5     78.7

Standard errors of differences of means
---------------------------------------

Table               Source      Amount      Source
                                            Amount
rep.                    20          30          10
d.f.                    54          54          54
s.e.d.                4.63        3.78        6.55
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A table of means is produced for each term in the treatment model. By using the PFACTORIAL
option you can exclude tables for terms containing more than a specified number of factors;
Genstat does not allow tables to have more than nine factors, so the default value of nine gives
all the available tables.

The means are predicted mean values: estimated expected values for each combination of
levels in the table, averaged over the levels of other factors. The table for each term is calculated
by taking the table of estimated effects for the term and then adding in the estimated effects of
all its margins. The grand mean is a margin, as is every term whose factors are a subset of those
in the table. For example, the effects of source of protein have only the grand mean as a margin,
and so the table of means for Source is calculated by adding the grand mean to each of the
Source effects. Source.Amount has three margins; its table of means is formed by adding the
grand mean and the main effects of Source and of Amount to the Source.Amount interaction
effects. (You can verify this from the tables of effects printed in Example 4.1.3d, below.)

An assumption of analysis of variance is that the effects of each error term (or residuals) are
independently distributed with zero mean and a common variance (see the initial part of 4.1); so
they have predicted values of zero. Consequently, even if a term from the block formula (4.2.1)
is a margin of a treatment term, its effects will not be included in the table of means. Similarly,
if the deviations from fitted contrasts have been ascribed to error (4.5), these effects are also
excluded; the table of means is then said to be smoothed (4.5).

Usually this process of prediction produces tables of means that are the same as the averages
of the observed values: for example, in the common situation where the design is orthogonal and
there are no covariates, the only further requirements for this to happen are that the term for the
table must have no block terms as margins nor any of its deviations ascribed to error. In an
analysis of covariance, the means are all adjusted to correspond to a common value, namely the
grand mean of each covariate (4.3.1). Adjusted means are also produced when there is non-
orthogonality: they are adjusted for the effects that are non-orthogonal to the term or to its
margins (4.7.4).

Genstat has printed an s.e.d. for each table of means in Example 4.1.3b ! that is, a standard
error for assessing the difference between a pair of means within the table. These are provided
by the default setting, differences, of the PSE option. The setting means (see Example 4.1.3c)
gives e.s.e.'s, that is effective standard errors for the means which can be used for calculating
standard errors for comparisons between means. In Example 4.1.3b, the means are uncorrelated
and so the e.s.e.'s are the same as the standard errors of the means (used for comparing a mean
with zero), but this may not be the case in a stratified design (4.2), nor if there are covariates
(4.3). The lsd setting gives least significant differences (see Example 4.1.3c), or you can put
PSE=* to suppress the standard errors altogether. More than one s.e.d., e.s.e. or l.s.d. will be
given when some of the comparisons between the means in a table have different standard errors,
as for example in split-plot designs (4.2.1).

Example 4.1.3c

  21  ADISPLAY [PRINT=means; PSE=means,lsd]

Tables of means
===============

Variate: Gain

Grand mean  87.9

   Source     beef   cereal     pork
              89.6     84.9     89.1

   Amount     high      low
              95.1     80.6
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   Source   Amount     high      low
     beef             100.0     79.2
   cereal              85.9     83.9
     pork              99.5     78.7

Standard errors of means
------------------------

Table               Source      Amount      Source
                                            Amount
rep.                    20          30          10
d.f.                    54          54          54
e.s.e.                3.28        2.67        4.63

Least significant differences of means (5% level)
-------------------------------------------------

Table               Source      Amount      Source
                                            Amount
rep.                    20          30          10
d.f.                    54          54          54
l.s.d.                9.29        7.58       13.13

The l.s.d.'s are the standard errors of differences between means, multiplied by the t-statistic for
the degrees of freedom of the standard error (see the d.f. line). For simple designs, as in Example
4.1, the degrees of freedom are merely the residual degrees of freedom. The situation for designs
with several error terms, like the split-plot in Example 4.2.1a, is explained in Section 4.2.1. By
default the t-statistic is for a 5% (two-sided) significance level, but this can be changed using the
LSDLEVEL option.

The replication of the means in each table is also printed. In an unweighted analysis of
variance, like that above, the replication is the number of units that received each combination
of the treatments in the table. In a weighted analysis, the weighted replication (wt. rep.) is given:
this is the sum of the weights of the units that received each treatment combination. If the
replication (or weighted replication) is the same for every combination in the table, it is printed
with the standard error; otherwise a table of replications is printed in parallel with the table of
means, as illustrated in 4.3.

When the means have different replications, standard errors are printed for three types of
comparison: between two means with the minimum replication, between two means with the
maximum replication, and between a mean with minimum replication and one with maximum
replication. But if, for example, there is only one mean with the minimum replication, the first
type of comparison will not arise. If Genstat detects such situations, the appropriate s.e.d. is
marked with an X. Note, however, that if you want standard errors for all possible comparisons,
you can save these in a symmetric matrix using AKEEP (4.6.1), and then display them using the
PRINT directive (1:3.2).

In stratified designs (4.2), there may be information on a treatment term in more than one
stratum. The setting means uses only the effects from the lowest stratum in which the term is
estimated (4.7.1). Alternatively, you can specify cbmeans to obtain means that combine
information from all the strata in which the term or its margins are estimated. These will provide
more accurate predictions. However, their distributional properties are not well understood, and
so it is better to use effects or ordinary means for testing. Combined estimates of means are
illustrated in 4.7.1 and 4.7.3, along with the combined estimates of effects (cbeffects) and
estimated stratum variances (stratumvariances) from which they are calculated.
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Example 4.1.3d

  21  ADISPLAY [PRINT=effects]

Tables of effects
=================

Variate: Gain

Source effects,  e.s.e. 3.28,  rep. 20

   Source     beef   cereal     pork
               1.7     -3.0      1.2

Amount response            -14.5,  s.e. 3.78,  rep. 30

Source.Amount effects,  e.s.e. 4.63,  rep. 10

   Source   Amount     high      low
     beef               3.1     -3.1
   cereal              -6.3      6.3
     pork               3.1     -3.1

Tables of effects are estimates of treatment parameters in the linear model (4.1). Although
effects are used less often than means for summarizing the results of an experiment, they may
be useful if you wish to study the model in more detail. The option PFACTORIAL applies to
tables of effects in the same way as to tables of means. In this example, there are tables for the
Source main effects and the Source.Amount interaction. (The Amount main effects are
presented as a response, as we explain later.)

Each term is subject to constraints that are generated by the fitting of the terms that come
before it in the linear model. The grand mean is fitted first of all. So the sum of the effects, each
multiplied by its replication (or weighted replication), is zero within every table. The replication
is printed in the header line of the table or, if the replications are unequal, with the table itself.
Here the effects within all the tables are equally replicated, and you can check that their sum is
zero within each table.

Similarly the table of Source.Amount interaction effects has zero row and column sums
because the main effects of Source and Amount have been fitted first.

The header also specifies an e.s.e. or a range of e.s.e.'s for the effects in the table: e.s.e. stands
for effective standard error ! the adjective effective reminds you that it is appropriate only for
comparisons that are unaffected by the constraints within the table. So the e.s.e. for Source is
appropriate for obtaining an s.e.d. to assess differences between effects, but not for testing the
sum of the effects, nor any individual effect, against zero.

To understand how the e.s.e. arises, we can consider the Source main effects. (If you do not
want to know about this piece of theory, skip this paragraph.) These effects are estimated by

and can be shown to have a variance of ó2(1/20 ! 1/60) where 20 is the replication of the
Source effects, and 60 is the total number of units. The second term in the formula (which is
the estimate of the grand mean) is common to all the estimates, and it is because of this that pairs
of effects have a non-zero covariance of !ó2/60. The variance of the difference between two
effects can be calculated by a familiar formula: it is the sum of the variances of the two effects
minus twice their covariance, giving an s.e.d. of %(2ó2/20). However an easier way of deriving
this s.e.d. is to notice that, when you subtract one estimate from the other, the second term
cancels out to leave the difference between two sums of independent random variables, each
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with variance ó2/20. We can thus refer to each estimated effect as having an effective variance
of ó2/20 and an effective covariance of zero when calculating the variance of a comparison
unaffected by the constraint. The general formula for the e.s.e. is:

e.s.e. = %(ó2/((weighted) replication × efficiency factor × covariance efficiency factor))
The efficiency factor is described in 4.7.1; for an orthogonal term its value is one. Likewise, the
covariance efficiency factor is one when there are no covariates (4.3). The variance ó2 is
estimated by the residual mean square of the stratum where the effects are estimated. Strata are
explained in 4.2. Here there is only one stratum and residual, so ó2 is estimated by 214.6 and the
e.s.e. is %(214.6/20).

When a factor has only two levels, like Amount above, Genstat prints the difference between
the two main effects. This difference is called a response. For interaction terms whose factors
all have only two levels, there are two forms of response. The choice between them is controlled
by the TWOLEVEL option. If you leave the default, TWOLEVEL=response, Genstat calculates the
response for an interaction between two factors as the difference between the two main-effect
responses, and so on; this is the form described in most textbooks. By putting
TWOLEVEL=Yates, you can obtain the effects specified by Yates (1937), which are defined so
that the standard error of the interaction effects remains the same as that of the main effects.
Alternatively, you can put TWOLEVEL=effects if you prefer not to have responses, but to have
the effects themselves, as for factors with more than two levels.

Example 4.1.3e

  23  ADISPLAY [PRINT=residuals]

Tables of residuals
===================

Variate: Gain

*Units* residuals,  s.e. 13.90,  rep. 1

  *units*        1        2        3        4        5        6        7
             -27.0     12.1     -5.5     10.8     23.1    -29.7      2.0

  *units*        8        9       10       11       12       13       14
             -11.9    -20.5     -3.2     11.1      3.3     18.0    -29.9

  *units*       15       16       17       18       19       20       21
              -3.5     10.8     13.1     -5.7      4.0     25.1     -1.5

  *units*       22       23       24       25       26       27       28
             -15.2     -3.9      7.3    -19.0      9.1      2.5      6.8

  *units*       29       30       31       32       33       34       35
              14.1      2.3      7.0      2.1      2.5    -28.2     -9.9

  *units*       36       37       38       39       40       41       42
              18.3      0.0     -3.9      8.5     -7.2     -9.9     27.3

  *units*       43       44       45       46       47       48       49
             -13.0     -8.9     -8.5     10.8    -16.9     -8.7     17.0

  *units*       50       51       52       53       54       55       56
               0.1     20.5     15.8      5.1    -17.7     11.0      6.1

  *units*       57       58       59       60
               5.5     -1.2    -25.9      3.3

Residuals correspond to the error parameters of the linear model (4.1). Here there is a single
error term, and thus a single set of residuals. There is no block model (4.2.1) to define factors
to index the units of the design, and so each estimated residual is printed with a unit number,
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under the heading *units*. The header line shows the replication or weighted replication, and
gives a standard error appropriate for comparing any residual with zero. If the replications or
weighted replications were unequal, these would be printed in parallel with the residuals, and
the range of standard errors would be printed, the lower value being appropriate for residuals
with the maximum replication or weighted replication, and the upper value for those with the
minimum replication or weighted replication.

Example 4.1.3f

  24  ADISPLAY [PRINT=%cv]

Stratum standard errors and coefficients of variation
=====================================================

Variate: Gain

   d.f.          s.e.         cv%
     54         14.65        16.7

The setting PRINT=%cv displays the residual number of degrees of freedom, the standard error
of a single unit of the design and the coefficient of variation (cv%), which is the standard error
of a single unit expressed as a percentage of the grand mean. The coefficient of variation is often
used as an index of the variability when comparing several experiments on the yields of the same
field crop. However it can be misleading, especially with transformed variables like the
logarithm of yield, where the grand mean may even be zero, or with other variables that can take
negative values. In designs with several error terms, the same information is presented for each
stratum, as shown in 4.2.1. If the units in a stratum have unequal replication or weighted
replication, there is no single standard error for a unit; so a missing value is printed instead.

The only component of output that we have not yet mentioned contains the estimates of
treatment contrasts, which you can obtain by putting PRINT=contrasts. These are shown in
4.5, together with an explanation of how to control their printing by the options PCONTRASTS
and PDEVIATIONS.

With analysis of covariance, you can also print output from the analyses of the covariates and
from the analysis of the y-variate ignoring the covariates. This is controlled by options CPRINT
and UPRINT respectively, as shown in 4.3.1.

The ARESULTSUMMARY procedure investigates an ANOVA analysis, to provide the information
that would be useful for a report.

ARESULTSUMMARY procedure
Provides a summary of results from an ANOVA analysis (R.W. Payne).

Options
PRINT = string tokens What to print (description, means, significant);

default desc, mean, sign
PSE = string tokens Standard errors to be printed with the means (sed,

sedsummary, lsd, lsdsummary, dfmeans); default
sed, dfme 

LSDLEVEL = scalar Significance level (%) for least significant differences;
default 5

SAVE = ANOVA save structure Save structure for the analysis; default uses the save
structure from the most recent ANOVA
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By default, all the information is printed, but you can control this with the PRINT option, whose
settings are:

description prints the name of the y-variate, any covariates and the
block and treatment models,

means prints relevant tables of means, and
significant lists the significant treatment terms.

The relevant tables of means are those that contain significant treatment effects. Also, each table
contains all the significant effects involving any of its factors. In the example for the procedure,
terms A, D, S and A.S are significant. Two tables of means are therefore presented, one classified
by  A and S, and the other by D. However, if the significant terms were A.S and D.S. there would
be only one table, classified by factors A, D and S.

The PSE option controls the information provided with the tables of means:
sed standard errors for differences between means,
sedsummary summary of the standard errors for differences,
dfmeans degrees of freedom for the standard errors of differences,
lsd least significant differences between the means, and
lsdsummary summary of the least significant differences.

The default is to print the standard errors of differences and their degrees of freedom. Note: if
all the differences between means have the same standard error of difference, a summary is
printed for the settings sed and lsd, instead of the full symmetric matrices of values.

The LSDLEVEL option specifies the significance level (%) to use in the calculation of least
significant differences (default 5%).

Example 4.1.3g shows that the key information from the analysis in Section 4.1 is the fact that
there is a significant effect of the amount of protein. This is reported by ARESULTSUMMARY,
together with the tables of means for the AMOUNT factor.

Example 4.1.3g

  25  ARESULTSUMMARY

Results from analysis of variance
=================================

Variate: Gain
Treatment structure: Source*Amount
Factorial: 3

Significant treatment terms
---------------------------

Amount     <0.1%    (pr. <.001)

Predicted means for Amount
==========================

       Amount
         high       95.13
          low       80.60

Standard error of difference 3.782

Degrees of freedom for standard error of difference 54
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4.1.4 Procedures for examining residuals

APLOT procedure
Plots residuals from an ANOVA analysis (R.W. Payne & A.D. Todd).

Options
RMETHOD = string token Type of residuals to plot (simple, standardized);

default simp
INDEX = variate X-variate for an index plot; default !(1,2...)
STRATUM = formula The stratum (or error term) whose residuals are to be

plotted; the default is to plot the residuals from the final
stratum

GRAPHICS = string token What type of graphics to use (lineprinter,
highresolution); default high

TITLE = text Overall title for the plots; if unset, the identifier of the y-
variate is used

SAVE = ANOVA save structure Specifies the analysis from which the residuals and
fitted values are to be taken; by default they are taken
from the most recent ANOVA

Parameters
METHOD = string tokens Type of residual plot (fittedvalues, normal,

halfnormal, histogram, absresidual, index);
default fitt, norm, half, hist

PEN = scalars, variates or factors Pen(s) to use for each plot

Procedure APLOT provides six types of plots of residuals from an ANOVA analysis. These are
selected using the METHOD parameter, with settings: fitted for residuals versus fitted values,
normal for a Normal plot, halfnormal for a half-Normal plot, histogram for a histogram of
residuals, absresidual for a plot of the absolute values of the residuals versus the fitted values,
and index for a plot against an "index" variable (specified by the INDEX option). Up to four can
be displayed at a time.

For a Normal plot, the Normal quantiles are calculated as follows:
qi = NED( (i!0.375) / (n+0.25) )

while for a half-Normal plot they are given by
qi = NED( 0.5 + 0.5 × (i!0.375) / (n+0.25) )
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Figure 4.1.4

The residuals and fitted values are
accessed automatically from the
structure specified by the SAVE
option. If the SAVE option is not set,
they are taken from the SAVE

structure of the last y-variate to have
been analysed by ANOVA. By default,
simple residuals are plotted, but you
c a n  s e t  o p t i o n
RMETHOD=standardized to plot
standardized residuals instead. If, as
in Section 4.2, your design has
several strata (or error terms), you
can set the STRATUM option to plot
the residuals from one of the higher
strata. The default is to plot the
residuals from the final stratum.

By default, high-resolution
graphics are used. Line-printer
graphics can be used by setting
option GRAPHICS=lineprinter.
With high resolution, the PEN

parameter can be used to specify the
graphics pen or pens to use for each
plot. The TITLE option can supply an overall title. If this is not set, the identifier of the y-variate
is used.

For example, typing the statement

APLOT fitted,normal,halfnormal,histogram

at the end of Example 4.1.3f would produce the plot in Figure 4.1.4.
If the data are from a field experiment, it may be interesting to study the spatial pattern of the

residuals, for example to see if there are any systematic trends in fertility. This can be done using
the AFIELDRESIDUALS procedure.

AFIELDRESIDUALS procedure
Display residuals in field layout (R.W. Payne & A.D.Todd).

Options
PRINT = string tokens Controls output (contour, shade, table); default

cont

GRAPHICS = string token Type of graph (highresolution, lineprinter);
default high

METHOD = string token Type of residuals to take from the save structure when
the RESIDUALS parameter is not specified (combined,
finalstratum, standardizedfinal); default comb

MARGIN = string token Whether to include margins in printed tables (yes, no);
default no

YORIENTATION = string token Y-axis orientation of the plot (reverse, normal); default
norm

PENCONTOUR = scalar Pen number to be used for the contours; default 1
PENFILL = scalar or variate Pen number(s) defining how to fill the areas between



4.1  Designs with a single error term 389

contours; default 3
PENSHADE = scalar or variate Pen(s) to use for the shade plot; default 3

Parameters
Y = variates or factors Specifies the y-coordinates of the plots
X = variates or factors Specifies the x-coordinates of the plots
RESIDUALS = variates Residuals to be plotted; default is to take the residuals

from the save structure specified by the SAVE option, or
from the most recent ANOVA if that is unspecified

SAVE = ANOVA, REML or regression save structures
Save structure of the ANOVA, REML or regression
analysis from which to take the residuals if the
RESIDUALS parameter is not specified; default is to take
the most recent ANOVA analysis

FIELDWIDTH = scalars Field width for printing the residuals; default 12
DECIMALS = scalars Number of decimal places to use when printing the

residuals
TITLE = texts Titles for the plots

The locations of the plots are defined by the Y and X parameters, specifying variates or factors
containing their y- and x-coordinates respectively. The residuals can be supplied, in a variate,
by the RESIDUALS parameter. If this is not set, the default is to take the residuals from the most
recent ANOVA analysis. You can take the residuals from some other analysis of variance, or from
a regression or REML analysis (see 3.1.1 and 5.3.1), by specifying its save structure using the
SAVE parameter.

The METHOD option determines the type of residuals that are taken. The default setting
combined gives residuals combining the residuals from all the strata or error terms in the
analysis, as these include all the random variation; for information about analyses with several
strata see Section 4.2. These are the residuals that would be saved using the CBRESIDUALS
option of the AKEEP directive (4.6.1), or the use of the RESIDUALS option in VKEEP with option
RMETHOD=all (5.9.1). Regression allows only a single error term, so combined is treated as the
same as the next setting, finalstratum.

The setting finalstratum uses simple residuals from the final stratum or error term. These
correspond to the RESIDUALS option of AKEEP with option RMETHOD=simple, or the
RESIDUALS option of VKEEP with option RMETHOD=final, or the RESIDUALS parameter of
RKEEP with option RMETHOD=simple.

The last setting, standardizedfinal, uses standardized residuals from the final stratum or
error term. These correspond to the RESIDUALS option of AKEEP with option
RMETHOD=standardized, or the RESIDUALS parameter of RKEEP with option
RMETHOD=deviance. They are calculated using standard errors from procedure VFRESIDUALS
for REML analyses (5.9.2).

Usually, the plots will all have different coordinates. However, if there are several plots with
the same coordinates, mean residuals are calculated for each location. Thus for example, if you
wanted only to look at the block and whole-plot residuals in a split-plot design (see 4.2.1), you
could request combined residuals and then set identical coordinates for the (sub-) plots within
each whole plot.
AFIELDRESIDUALS provides three forms of representation, selected using the PRINT option

as follows:
table prints the residuals in a table whose structure corresponds

to the field layout,
contour generates a contour plot if the plots are on a regular grid or
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a line graph if they are arranged in a single line, and
shade can produce a shade plot for plots that are on a regular

grid.
The GRAPHICS option determines the type of graphics that is used, with settings

highresolution (the default) and lineprinter. No graph can be produced if the plots are
in an irregular 2-dimensional arrangement. High-resolution contour plots require more than 3
rows and columns, and line-printer contour plots require more than 4 rows and columns. The
way in which the lines are drawn in high-resolution contour plots is defined by the properties of
the pen specified by the PENCONTOUR option, while the pen specified by the PENFILL parameter
defines how to shade the areas between the contours. Their defaults are 1 and 3 respectively.
Similarly, the pen or pens specified by the PENSHADE option control the colouring of the shade
plot; the default is to use pen 3. For more information see the DCONTOUR and DSHADE directives
(1:6.4.1 and 1:6.4.2).

The MARGIN option, with settings no (default) and yes, determines whether or not marginal
summaries are included with the printed tables. The FIELDWIDTH and DECIMALS parameters
can be used to specify the formats of the printed tables (as in the PRINT directive). The TITLE
parameter can supply a title for the plots. If this is unset, a default title is formed.

The YORIENTATION option controls the orientation of the y-coordinates in the plots and
tables. By default this is normal, so that they run upwards from the bottom of the page (as in
a map).

The use of AFIELDRESIDUALS is shown in Example 4.2 and Figure 4.2.1b.

4.1.5 Displaying tables of means

AGRAPH procedure
Plots tables of means from ANOVA (R.W. Payne).

Options
GRAPHICS = string token Type of graph (highresolution, lineprinter);

default high
METHOD = string token What to plot (means, lines, data, barchart,

splines); default mean
XFREPRESENTATION = string token

How to label the x-axis (levels, labels); default
labels uses the XFACTOR labels, if available

PSE = string token What to plot to represent variation (differences, lsd,
means, allmeans); default diff

LSDLEVEL = scalar Significance level (%) to use for least significant
differences; default 5

DFSPLINE = scalar Number of degrees of freedom to use when
METHOD=splines

YTRANSFORM = string tokens Transformed scale for additional axis marks and labels
to be plotted on the right-hand side of the y-axis
(identity, log, log10, logit, probit, cloglog,
square, exp, exp10, ilogit, iprobit, icloglog,
root); default iden i.e. none

PENYTRANSFORM = scalar Pen to use to plot the transformed axis marks and labels;
default * selects a pen, and defines its properties,
automatically

SAVE = ANOVA or regression save structure
Save structure to provide the table of means; default
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uses the save structure from the most recent ANOVA

Parameters
XFACTOR = factors Factor providing the x-values for each plot
GROUPS = factors or pointers Factor or factors identifying groups of points in each

plot; by default chosen automatically
TRELLISGROUPS = factors or pointers

Factor or factors specifying the different plots of a trellis
plot of a multi-way table

PAGEGROUPS = factors or pointers Factor or factors specifying plots to be displayed on
different pages

NEWXLEVELS = variates Values to be used for XFACTOR instead of its existing
levels

TITLE = texts Title for the graph; default defines a title automatically
YTITLE = texts Title for the y-axis; default is to use the identifier of the

y-variate, or to have no title if this is unnamed
XTITLE = texts Title for the x-axis; default is to use the identifier of the

XFACTOR

PENS = variates Defines the pen to use to plot the points and/or line for
each group defined by the GROUPS factors

AGRAPH plots tables of means from an ANOVA analysis. In its simplest form, the behaviour of
AGRAPH depends on the model. If the treatment model contains only main effects, it plots the
means for the first factor in the model. Otherwise it looks for the first treatment term involving
two factors; it then plots the means with one of these factors as the x-axis, and the second as a
grouping factor with levels identified by different plotting colours and symbols. By default, the
means are from the most recent ANOVA. However, you can plot means from an earlier analysis,
by using the SAVE option of AGRAPH to specify its save structure (saved using the SAVE
parameter of the ANOVA command that performed the analysis).

Usually, each mean is represented by a point. However, with high-resolution plots, the
METHOD option can be set to lines to draw lines between the points, or data to draw just the
lines and then also plot the original data values, or barchart to plot the means as a barchart,
or splines to plot the points together with a smooth spline to show the trend over each group
of points. The DFSPLINE specifies the degrees of freedom for the splines; if this is not set, 2 d.f.
are used when there are up to 10 points, 3 if there are 11 to 20, and 4 for 21 or more. The
GRAPHICS option controls whether a high-resolution or a line-printer graph is plotted; by default
GRAPHICS=high.

The PSE option specifies the type of error bar to be plotted with the means, with settings:
differences average standard error of difference;
lsd average least significant difference;
means average effective standard error for the means;
allmeans plots plus and minus the effective standard error around

every mean.
The LSDLEVEL option sets the significance level (%) to use for the least significant differences
(default 5). The allmeans setting is often unsuitable for plots other than barcharts when there
are GROUPS, as the plus/minus e.s.e. bars may overlap each other.

You can define the table of means to plot explicitly, by specifying its classifying factors using
the XFACTOR, GROUPS, TRELLISGROUPS and PAGEGROUPS parameters. The XFACTOR parameter
defines the factor against whose levels the means are plotted. With a multi-way table, there will
be a plot of means against the XFACTOR levels for every combination of levels of the other
factors classifying the table. The GROUPS parameter specifies factors whose levels are to be
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Figure 4.1.5a Figure 4.1.5b

included in a single window of the graph. For example, the statement below plots the means in
Example 4.1, with Amount on the x-axis and a different line for each level of Source

AGRAPH Amount; Source

The resulting graph is shown in Figure 4.1.5a. Similarly Figure 4.1.5b shows a plot with the lines
and the data, produced by

AGRAPH [METHOD=data] Amount; Source

You can set GROUPS to a pointer to specify several factors to define groups. For example

POINTER [VALUES=B,C] Groupfactors
AGRAPH [METHOD=line] XFACTOR=A; GROUPS=Groupfactors

to plot a line for every combination of the levels of factors B and C. Similarly, the
TRELLISGROUPS option can specify one or more factors to define a trellis plot. For example,

AGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; TRELLISGROUPS=C

will produce a plot for each level of C, in a trellis arrangement; each plot will again have factor
A on the x-axis, and a line for each level of the factor B. Likewise, the PAGEGROUPS parameter
can specify factors whose combinations of levels are to be plotted on different pages. So

AGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; PAGEGROUPS=C

will produce a plot for each level of C, but now on separate pages. Multi-way tables can plotted
even if the corresponding model term was not in the ANOVA analysis. For example you can plot
a two-way table even if the analysis contained only the main effects of the two factors; however,
the lines will then all be parallel and no standard errors or LSDs can be included.

The NEWXLEVELS parameter enables different levels to be supplied for XFACTOR if the
existing levels are unsuitable. If XFACTOR has labels, these are used to label the x-axis unless you
set option XFREPRESENTATION=levels.

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis and
the x-axis, respectively. The symbols, colours and line styles that are used in a high-resolution
plot are usually set up by AGRAPH automatically. If you want to control these yourself, you
should use the PEN directive to define a pen with your preferred symbol, colour and line style,
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for each of the groups defined by combinations of the GROUPS factors. The pen numbers should
then be supplied to AGRAPH, in a variate with a value for each group, using the PENS parameter.

The YTRANSFORM option allows you to include additional axis markings, transformed onto
another scale, on the right-hand side of the y-axis. Suppose, for example, suppose you have
analysed a variate of percentages that have been transformed to logits. You might then set
YTRANSFORM=ilogit (the inverse-logit transformation) to include markings in percentages
alongside the logits. The settings are the same as those of the TRANSFORM parameter of AXIS,
which is used to add the markings (1:6.9.7). You can control the colours of the transformed
marks and labels, by defining a pen with the required properties, and specifying it with the
PENYTRANSFORM option. Otherwise, the default is to plot them in blue.

For compatibility with previous releases, AGRAPH allows you to plot predicted means from an
analysis by the AUNBALANCED procedure (which uses the Genstat regression commands).
However, procedure AUGRAPH (new in Release 13) is now recommended instead; see Section
4.8.3. Also, in Release 13, a new procedure DTABLE was included to plot a user-supplied table.
Previously this could be done using the MEANS parameter of AGRAPH, which has now been
withdrawn.

The AFMEANS procedure provides another way of printing tables of means. It has the
advantage over ADISPLAY (4.1.3) that it can calculate and print predicted means for terms that
were not in the original analysis: the means must be classified by treatment factors from the
analysis, but the term defined by the full list of factors need not have been included in the
treatment model. So, for example, you can obtain an A × B table of means, even if the model
contained only the A and B main effects. Alternatively, in a more realistic scenario, you may have
significant A.B and B.C interactions, but no A.B.C interaction. You might then still want to
present an A × B × C table means, even though you might not want to include an A.B.C
interaction. You can also save the means, and their standard errors etc, in Genstat data structures
for later use..

AFMEANS procedure
Forms tables of means classified by ANOVA treatment factors (R.W. Payne).

Options
PRINT = string tokens What to print (means, sed, sedsummary, ese, lsd,

lsdsummary); default mean, sed
MEANS = table Saves means; default *
SED = symmetric matrix Saves matrices of standard errors of differences between

means; default *
ESE = table Saves effective standard errors; default *
LSD = symmetric matrix Saves least significant differences between means;

default *
LSDLEVEL = scalar Significance level (%) for least significant differences;

default 5
DFMEANS = symmetric matrices Saves degrees of freedom for comparisons between

every pair of entries in the table of means
EQFACTORS = factors Factors whose levels are to be assumed to be equal

within the comparisons between means, when
calculating effective standard errors

SAVE = ANOVA save structure Save structure to provide the table of means; default
uses the save structure from the most recent ANOVA
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Parameter
CLASSIFY = vectors Factors to classify table of means (from those in the

TREATMENTSTRUCTURE in the ANOVA analysis)

The factors classifying the table of means are specified by the CLASSIFY parameter. By default
the means are formed for the most recent ANOVA, but you can use the SAVE option to supply the
save structure from an earlier analysis.

Printed output is controlled by settings of the PRINT option:
means means,
ese effective standard errors of the means,
sed standard errors for differences between the means,
sedsummary summary of the standard errors for differences between the

means,
dfmeans degrees of freedom for the standard errors of differences

between means,
lsd least significant differences between the means, and
lsdsummary summary of the least significant differences between the

means.
The default is to print means and a summary of the standard errors of differences. The
LSDLEVEL option specifies the significance level (%) to use in the calculation of least significant
differences (default 5%). Note: if all the differences between means have the same standard error
of difference, a summary is printed for the settings sed and lsd, instead of the full symmetric
matrix of values. The EQFACTORS option allows you to specify factors within the tables of means
whose levels are assumed to be equal for the two means, when calculating effective standard
errors.

The MEANS, SED, ESE, LSD and DFMEANS options allow the results to be saved in appropriate
Genstat data structures.

4.1.6 Checking the assumptions

ACHECK procedure
Checks assumptions for an ANOVA analysis (R.W. Payne).

Options
PRINT = string tokens Controls printed output (tests, confirmation);

default conf
ASSUMPTION = string tokens Which assumptions to test (homogeneity, normality,

stability); default homo, norm, stab
PROBABILITY = scalar Critical value for the test probabilities to decide whether

to generate warning messages; default=0.025
SAVE = ANOVA save structure Specifies the analysis to be checked; by default this will

be the most recent ANOVA

No parameters

Procedure ACHECK checks some of the assumptions for an analysis of variance that has been
performed by the ANOVA directive. By default, the most recent ANOVA analysis is checked.
However, you can check an earlier analysis, by using the SAVE option of ACHECK to specify its
save structure (saved using the SAVE parameter of the earlier ANOVA command).

The assumptions to check are controlled by the ASSUMPTIONS option, with the following
settings.
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homogeneity performs Levene tests to check whether the residual
variance seems to be affected by any of the terms in the
analysis. With stratified designs it will make similar
checks for the residual variation in the higher strata (e.g.
for the whole-plot variation in a split-plot design).

normality performs a Shapiro-Wilk test to check for evidence that the
residuals do not come from a Normal distribution.

stability performs two Levene tests to check whether the residual
variance differs according to the size of the response. The
data are divided into three groups (small, intermediate and
large) according to the sizes of their fitted values. The tests
compare the variance of the residuals in the first (small)
group with those in the third (large) group, and the
variance of the second (intermediate) group with the
variance of other two groups combined.

By default, they are all tested.
ACHECK produces warning messages if any of the tests generates a test probability less than

or equal to the value specified by the PROBABILITY option. The default value is 0.025 (i.e.
2.5%), which is the same as the value used for the similar messages that may occur with the
summary of analysis in regression(3.1.2). It is important to realise that the estimated residuals
(from either regression or analysis of variance) will be correlated. The Levene and Shapiro-Wilk
tests assume that the residuals are independent Normally-distributed observations. Their test
probabilities may therefore be too low ! and generate too many significant results. So the use
of a smaller critical probability value provides some protection against spurious messages. You
can print the detailed test results by setting option PRINT=tests. (By default these are not
printed.) The default PRINT=confirmation prints a confirmation if there are no problems.

Example 4.1.6 shows the tests for the data in Example 4.1. None of the tests is significant (i.e.
there are no problems).

Example 4.1.6

  29  ACHECK [PRINT=tests]

Tests of assumptions for ANOVA
==============================

Variate: Gain

Levene tests for homogeneity of variance
========================================

Analysis of variance
====================

Variate: Absolute residuals

Source of variation     d.f.       s.s.       m.s.    v.r.  F pr.
Source                     2     0.2084     0.1042    0.28  0.756
Amount                     1     0.3149     0.3149    0.85  0.361
Source.Amount              2     0.3634     0.1817    0.49  0.616
Residual                  54    20.0437     0.3712
Total                     59    20.9304

Levene tests for stability of variance
======================================

                                     Test t-statistic        d.f.         pr.
                Small vs. large responses       1.022      41.763       0.312
Intermediate v.s. small & large responses       0.108      11.660       0.916
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Shapiro-Wilk test for Normality
===============================

Data variate:     Residuals
Test statistic W: 0.9766
Probability:      0.303

4.1.7 Permutation and exact tests for analysis of variance

APERMTEST procedure
Does random permutation tests for analysis-of-variance tables (R.W. Payne).

Options
PRINT = string tokens Controls printed output (aovtable, critical); default

aovt

PLOT = string What to plot (histogram); default *
NTIMES = scalar Number of permutations to make; default 999
EXCLUDE = factors Factors in the block model of the design whose levels

are not to be randomized
SEED = scalar Seed for the random number generator used to make the

permutations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

AOVTABLE = pointer Saves the aov-table, with permutation probabilities
CRITICAL = pointer Saves the aov-table, with critical values
SAVE = ANOVA save structure Save structure from the analysis of variance; default

uses the save structure from the most recent ANOVA

Random permutation tests provide an alternative to using the F probabilities printed for variance
ratios in an analysis-of-variance table in situations where the assumptions of the analysis are not
satisfied. These assumptions can be assessed by studying the residual plots produced by APLOT
(4.1.4), or by using the ACHECK procedure (4.1.6). In particular, the use of the F distribution to
calculate the probabilities is based on the assumption that the residuals from each stratum have
Normal distributions with equal variances, and so the histogram of residuals produced by APLOT
should look reasonably close to the Normal, bell-shaped curve. Experience shows the analysis
is robust to small departures from Normality. APERMTEST can be useful if the histogram looks
very non-Normal (and you are unable to redefine the analysis as a generalized linear model; see
FIT).

The simplest form of use is simply to specify the command

APERMTEST

straight after the ANOVA. APERMTEST recovers the necessary information about the analysis
automatically, and performs 999 random permutations (made using a default seed). The
probability for each variance ratio is then determined from its distribution over the randomly
permuted datasets.

The NTIMES option of APERMTEST allows you to request another number of permutations, and
the SEED option allows you to specify another seed. APERMTEST checks whether NTIMES is
greater than the number of possible permutations available for the data set. If so, APERMTEST
does an "exact" test instead, which uses the SETALLOCATIONS directive (1:4.3.4) to make each
possible permutation once.

The information about the analysis is obtained from the save structure of the most recent
ANOVA (which is stored automatically within Genstat). You can save the information from any
analysis of variance explicitly using the SAVE parameter of ANOVA. You can then perform
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permutation tests for that analysis by using the save structure as the setting of the SAVE option
of APERMTEST. The EXCLUDE option allows you to restrict the randomization so that one or
more of the factors in the block model is not randomized. The most common instance where this
is required is when one of the treatment factors involves time-order, which cannot be
randomized.

Output is controlled by the PRINT option, with settings:
aovtable for an analysis-of-variance table with the usual F

probabilities replaced by those from the permutation test;
and

critical for a table giving critical values for each variance ratio.
These can be saved using the AOVTABLE and CRITICAL parameters.

Example 4.1.7 does permutation tests for the data in Example 4.1, which confirm the earlier
conclusions. Notice that the seed has been set by default. To recreate the same analysis, we
should set the SEED option to 508631.

Example 4.1.7

  30  APERMTEST

* MESSAGE: Default seed for random number generator used with value 508631

Analysis of variance
====================

Variate: Gain
Probabilities determined from 999 random permutations

Source of variation  d.f.       s.s.       m.s.    v.r.  prob.
Source                  2      266.5      133.3    0.62  0.525
Amount                  1     3168.3     3168.3   14.77  0.002
Source.Amount           2     1178.1      589.1    2.75  0.075
Residual               54    11586.0      214.6
Total                  59    16198.9

4.1.8 Simultaneous confidence intervals for means

ACONFIDENCE procedure
Calculates simultaneous confidence intervals for ANOVA means (D.M. Smith).

Options
PRINT = string token Controls printed output (intervals); default inte
METHOD = string token Type of interval (individual, smm, product,

Bonferroni, Scheffe); default smm
FACTORIAL = scalar Limit on the number of factors in each term; default 3
PROBABILITY = scalar The required significance level; default 0.05
SAVE = ANOVA save structure Save structure to provide the tables of means and

associated information; default uses the save structure
from the most recent ANOVA

Parameters
TERMS = formula Treatment terms whose means are to be required
MEANS = pointer or table Saves the means
LOWER = pointer or table Saves the lower limits
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UPPER = pointer or table Saves the upper limits

ACONFIDENCE calculates sets of simultaneous confidence intervals i.e. intervals whose
formation takes account of the number of intervals formed, and the fact that the intervals are
(slightly) correlated because of the use of a common variance (see Hsu 1996 and Bechhofer,
Santner & Goldsman 1995). The methodology implemented in the procedure closely follows that
described in Section 1.3 of Hsu (1996).

The type of interval to be formed is specified by the METHOD option, with settings
individual, smm (studentized maximum modulus), product (inequality), Bonferroni and
Scheffe. The individual setting calculates the intervals as if they were independent, each
with the input probability. The smm setting calculates the intervals as correlated, each with a
probability adjusted for the multiplicity of intervals. The two settings product and
Bonferroni calculate the intervals as independent, but with a probability adjusted for the
multiplicity of intervals. These two settings produce very similar intervals although the
Bonferroni intervals are always slightly larger. The final setting Scheffe calculates the intervals
using pivoted F statistics; see Hsu (1996, Section 1.3.7). The default setting is smm because it
produces exact simultaneous confidence intervals.

The TERMS parameter specifies a model formula to define the treatment terms whose means
and confidence intervals are required. The means (and the necessary associated information) are
usually taken from the most recent analysis of variance (performed by ANOVA), but you can set
the SAVE option to a save structure from another ANOVA if you want to examine means from an
earlier analysis. As in ANOVA, the FACTORIAL option sets a limit on the number of factors in
each term (default 3). Note: intervals cannot be formed for means whose effects are estimated
in different strata.

The MEANS parameter can save the means. If the TERMS parameter specifies a single term,
MEANS should be set to a table. If TERMS specifies several terms, you must supply a pointer
which will then be set up to contain as many tables as there are terms. Similarly the LOWER
parameter can save the lower bounds of the confidence intervals, and the UPPER parameter can
save the upper bounds.

You can set option PRINT=* to suppress printing of the intervals; by default
PRINT=intervals.

Example 4.1.8 produces simultaneous confidence intervals of various types for the Source
means from Example 4.1.

Example 4.1.8

  31  ACONFIDENCE [METHOD=smm] Source

Studentized Maximum Modulus 95.0% confidence intervals
------------------------------------------------------

                     Mean       Lower       Upper
       Source
         beef       89.60       81.54       97.66
       cereal       84.90       76.84       92.96
         pork       89.10       81.04       97.16

  32  ACONFIDENCE [METHOD=individual] Source

Individual 95.0% confidence intervals
-------------------------------------
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                     Mean       Lower       Upper
       Source
         beef       89.60       83.03       96.17
       cereal       84.90       78.33       91.47
         pork       89.10       82.53       95.67

  33  ACONFIDENCE [METHOD=product] Source

Product inequality 95.0% confidence intervals
---------------------------------------------

                     Mean       Lower       Upper
       Source
         beef       89.60       81.53       97.67
       cereal       84.90       76.83       92.97
         pork       89.10       81.03       97.17

  34  ACONFIDENCE [METHOD=bonferroni] Source

Bonferroni inequality 95.0% confidence intervals
------------------------------------------------

                     Mean       Lower       Upper
       Source
         beef       89.60       81.51       97.69
       cereal       84.90       76.81       92.99
         pork       89.10       81.01       97.19

  35  ACONFIDENCE [METHOD=scheffe] Source

Scheffe 95.0% confidence intervals
----------------------------------

                     Mean       Lower       Upper
       Source
         beef       89.60       80.15       99.05
       cereal       84.90       75.45       94.35
         pork       89.10       79.65       98.55

4.1.9 Multiple comparison tests

AMCOMPARISON procedure
Performs pairwise multiple-comparison tests for ANOVA means (D.M. Smith).

Options
PRINT = string tokens Controls printed output (comparisons, critical,

description, lines, letters, plot, mplot,
pplot); default lett

METHOD = string token Test to be performed (tukey, snk, regwmr, duncan,
scheffe, fplsd, fulsd, bonferroni, sidak);
default fpls

FACTORIAL = scalar Limit on the number of factors in each term; default 3
DIRECTION = string token How to sort means (ascending, descending); default

asce

PROBABILITY = scalar The required significance level; default 0.05
STUDENTIZE = string token Whether to use the alternative LSD test where the

Studentized Range statistic is used instead of Student's t
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(yes, no); default no
SAVE = ANOVA save structure Save structure to provide the tables of means and

associated information; default uses the save structure
from the most recent ANOVA

Parameters
TERMS = formula Treatment terms whose means are to be compared
MEANS = pointer or variate Saves the (sorted) means
DIFFERENCES = pointer or symmetric matrix

Saves differences between the (sorted) means
LABELS = pointer or text Saves labels for the (sorted) means
LETTERS = pointer or text Saves letters indicating groups of means that do not differ

significantly
SIGNIFICANCE = pointer or symmetric matrix

Indicators to show significant comparisons between
(sorted) means

CIWIDTH = pointer or symmetric matrix
Saves the width of the confidence interval for the absolute
differences between the (sorted) means

Multiple-comparison tests are designed to take account of the fact that there may be many
possible comparisons between pairs of treatment means in an analysis of variance (with n
treatments there are n × (n!1) / 2). So, some researchers feel that their significance levels should
be adjusted to take account of all the tests that they might make ! and this can be achieved by
use of a multiple-comparison test. Conversely, it has been pointed out that multiple-comparisons
are unnecessary if you have only a small number of comparisons to make ! either because there
are few treatments, or because you should have identified beforehand the comparisons that you
feel are likely to be of interest. Also, they are inappropriate if the treatments have any sort of
structure. For example, the levels of a treatment factor may represent different amounts of a
substance like a fertiliser or a drug. It would then be more sensible to assess the treatment effect
over all its levels by fitting some sort of trend (see Section 4.5 for information about polynomial
and regression contrasts), and implausible to assume that only some of the amounts might have
an effect. Alternatively, the treatments may have a factorial structure, and you should then be
more interested in studying the main effects and interactions of the various factors (see 4.1). For
further discussion of the issues see Nelder (1971), Maindonald & Cox (1984) and Perry (1986).

If, however, multiple-comparison tests are required, they can be obtained using procedure
AMCOMPARISON. The methodology implemented in the procedure closely follows that described
in Chapter 5 of Hsu (1996).

The TERMS parameter specifies a model formula to define the treatment terms whose means
are to be compared. The means (and the necessary associated information) are usually taken from
the most recent analysis of variance performed by ANOVA, but you can set the SAVE option to a
save structure from another ANOVA if you want to examine means from an earlier analysis. As
in ANOVA, the FACTORIAL option sets a limit on the number of factors in each term (default 3).

Printed output is controlled by the PRINT option, with settings:
comparisons indicates the significance or non-significance of the

comparison between each pair of means;
critical gives critical values for the t-statistic for situations where

these do not vary amongst the comparisons (i.e. for the
Scheffe, Bonferroni and Sidak methods, as well as the
Fisher LSD methods provided all the comparisons have
the same number of residual degrees of freedom);
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description provides a description including information such as the
experiment-wise and compartment-wise error rates;

lines gives the means, with lines joining those that do not differ
significantly;

letters gives the means, with identical letters (a, b etc.) alongside
those that do not differ significantly;

mplot does a mean-mean scatter plot (synonym plot);
pplot displays the probabilities in a shade plot.

By default PRINT=letters.
The means are usually sorted into ascending order, but you can set option

DIRECTION=descending for descending order, or DIRECTION=* to leave them in their
original order. Note, though, that the lines joining means with non-significant differences may
then be broken.

If the standard errors for the differences between the means are unequal (as will happen, for
example, if the means have unequal replication), the memberships of the groups defined by the
lines or letters may be inconsistent. Suppose, for example, you have ordered means A, B and C.
If the s.e.d. for A vs. C is large compared to those for A vs. B and B vs C, you might find that
there is no significant difference between A and C, but there are significant differences between
A and B, and between B and C. So treatments A and B and treatments B and C would be in
different groups. However, treatments A and C (which are further apart) would be in the same
group. This contradicts the idea behind multiple comparisons, where you expect that if means
m1 and m2 are in the same group, than any mean between them should be in that group too. If
AMCOMPARISON finds inconsistencies like this, it gives a diagnostic and suppresses the printing
of lines and letters (but not the other types of output).

The mean-mean scatter plot allows you to assess the confidence region for the difference
between each pair of means visually. It has grid lines from both the x- and y-axis at the position
of each mean, and a diagonal line at 45 degrees marking y=x. The confidence interval for each
pair of means is plotted as a line at an angle of !45 degrees and centred on the intersection above
the line y=x of the grid lines for the two means (so the y grid line is for the larger of the two
means, and the x grid line is for the smaller mean). The difference between the means is
significant if their confidence line does not intersect the line y=x. For more details, see Hsu
(1996) pages 151-153.

The shade plot displays the probabilities in a symmetric matrix. The colour of each cell
represents the probability for the difference between the means for the treatments in the
corresponding row and column.

The type of test to be performed is specified by the METHOD option, with settings Tukey, SNK
(Student-Newman-Keuls), REGWMR (Ryan/Einot-Gabriel/Welsch multiple range test), Duncan,
Scheffe, FPLSD (Fisher's Protected Least Significant Difference), FULSD (Fisher's Unprotected
Least Significant Difference), Bonferroni and Sidak. The PROBABILITY option allows the
experiment-wise significance level for the intervals to be changed from the default 0.05 (e.g. to
0.01). The STUDENTIZE option can specify that the Fisher's protected or unprotected LSD tests
should use the Studentized Range statistic rather than Student's t (for further information see Hsu
1996, page 139).

The MEANS parameter can save the means, sorted according to the DIRECTION option and
omitting any that were non-estimable. If the TERMS parameter specifies a single term, MEANS
should be set to a variate. If TERMS specifies several terms, you must supply a pointer which will
then be set up to contain as many variates as there are terms. Similarly the LABELS parameter
can save labels to identify the means, in either a text (for a single term) or in a pointer of texts
(for several). Likewise the LETTERS parameter can save texts with the letters identifying means
that do not differ significantly, and the SIGNIFICANCE parameter can save symmetric matrices
containing ones or zeros according to whether the various comparisons were significant or non-
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significant. The DIFFERENCES parameter can save symmetric matrices containing the
differences between the (sorted) means, and the CIWIDTH parameter can save symmetric
matrices containing the widths of the confidence intervals for the differences.

We can obtain a Bonferroni multiple-comparison test for the Source means in Example 4.1.8
by

AMCOMPARISON [METHOD=bonferroni] Source

as shown in Example 4.1.9. (However, this is not really necessary, as there are only three
treatments here!)

Example 4.1.9

Bonferroni test
===============

Source
------

              Mean
cereal       84.90 a
  pork       89.10 a
  beef       89.60 a

4.1.10 Simultaneous confidence limits around a control

AMDUNNETT procedure
Forms Dunnett's simultaneous confidence interval around a control (R.W. Payne).

Options
PRINT = string token Controls printed output (interval); default inte
METHOD = string token Form of the alternative hypothesis (twosided,

greaterthan, lessthan); default twos
CIPROBABILITY = scalar Probability level for the confidence interval; default

0.95, i.e. a 95% confidence interval
LOWER = scalar Saves the lower confidence limit
UPPER = scalar Saves the upper confidence limit
SAVE = ANOVA save structure Save structure to provide the means; default uses the

save structure from the most recent ANOVA

Parameters
FACTOR = factors Define the model term whose means are to be compared
CONTROL = scalars or texts Scalar or single-valued text for each factor to identify

which of the means of the term is the control; default
uses the reference level of the FACTOR

Dunnett's test (Dunnett 1955, 1989) is useful when you want to compare several treatments with
a control treatment, and use a critical value that controls the chance that any one comparison may
be found significant when there are no true differences. (It is designed thus to take account of
the fact that you are making multiple comparisons with the control.)

The FACTOR parameter lists the factors that define the treatment term whose means are to be
compared. The means are usually taken from the most recent analysis of variance (performed by
ANOVA), but you can set the SAVE option to a save structure from another ANOVA if you want to
examine means from an earlier analysis. The CONTROL parameter specifies a list of scalars to
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identify the levels of the factors that correspond to the control, or you can use a string (or single-
valued text) to identify the level of any factor that has labels. If CONTROL is unset, AMDUNNETT
uses the reference level of the FACTOR.

The METHOD option defines the type of interval that is formed. By default AMDUNNETT forms
a two-sided interval. If you set METHOD=lowerthan, a lower confidence interval is formed to
assess the one-sided test of the null hypothesis that the treatment means are not lower than the
control mean. Alternatively, you can set METHOD=greaterthan, to obtain an upper confidence
interval to assess the one-sided test of the null hypothesis that the treatment means are not
greater than the mean of the control.

The probability for the confidence interval is specified by the CIPROBABILITY option; the
default 0.95 gives a 95% interval. The lower and upper values of the interval can be saved (in
scalars) using the LOWER and UPPER options, respectively. By default the interval is printed, but
this can be suppressed by setting option PRINT=*.

Example 4.1.10 continues Example 4.1.9, forming a simultaneous confidence interval around
the cereal level of the Source treatment. Again this is not really necessary, as there are only
three treatments, but the fact that the interval includes the means for both Beef and Pork
confirms the conclusion already noted from Example 4.1, that there are no differences between
the sources of protein.

Example 4.1.10

  37  AMDUNNETT  Source; CONTROL='cereal'

Dunnett's simultaneous two-sided confidence interval around control
-------------------------------------------------------------------

Source means.
Control level: cereal.

95% confidence interval: (74.38, 95.42)

Steel's many-one rank test (procedure STEEL), which provides a nonparametric alternative to
Dunnett's test, is described in Subsection 2.6.3.

4.2 Designs with several error terms

The units in the designs covered in 4.1 had no structure: they were assumed to be from a single
homogeneous population. The randomization was over the design as a whole, without taking
account of any groupings of the units, and there was thus a single error term. Often, however,
the population of units is not homogeneous. The rats used to study a set of diets might be
grouped according to their litter. An agricultural experiment might involve several different
fields, or parts of a field, all with different underlying levels of fertility. An industrial experiment
might need to be conducted on several different days, with different batches of material. Or you
might wish to impose a structure artificially, by trying to form sets of similar units (and perhaps
also subsets) with the aim of decreasing the variability of the experiment.

This structure should then be reflected in the way that you do the randomization and apply the
treatments. Some examples are described below. Others can be found in text books on design of
experiments: for example, Cochran & Cox (1957), John (1971), John & Quenouille (1977) and
Mead (1988).
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4.2.1 The BLOCKSTRUCTURE directive

BLOCKSTRUCTURE directive
Defines the blocking structure of the design and hence the strata and the error terms.

No options

Parameter
formula Block model (defines the strata or error terms for

subsequent ANOVA statements)

The BLOCKSTRUCTURE directive specifies the underlying (or blocking) structure of the design
that is to be analysed. Examples of its use are given below and in 4.3 and 4.7. For unstructured
designs with a single error term you can omit this directive, as described in Section 4.1.

In many designs, the units are nested. The simplest is the randomized block design. Here the
units are grouped into sets, known as blocks, the aim being that units in the same block should
be more similar than those in different blocks. The allocation of the treatments is randomized
independently within each block. The design thus has two sources of random variation:
differences between blocks as a whole, and differences between the units within each block. An
example is in 4.3, where the units are plots of land and the blocks are groupings of nearby plots.
The block model is

Blocks/Plots

indicating that the plots are nested within blocks, and thus that there is no special similarity, for
example, between the plot numbered 3 in block 1 and plot 3 of the other blocks. The expanded
version of the formula is

Blocks + Blocks.Plots

giving terms for the differences between blocks as a whole, and the differences between the units
within each block, as required.

In the simplest form of the randomized block design, there is a single treatment factor, each
of whose levels occurs once in every block. More complicated arrangements are possible, but
each treatment combination must still occur exactly the same number of times in every block.
This means that any differences found between the blocks cannot be caused by differences
between treatments. Thus the treatment terms are all estimated between the plots within the
blocks. If the blocks have been chosen successfully, the variation within the blocks should be
less than that between blocks, and so the treatment estimates will be less variable than if a
completely randomized design had been used.

For the example in Section 4.3, the treatments have the structure

TREATMENTSTRUCTURE Fumigant/(Dose*Type)

If you look at the first analysis shown in Section 4.3, which ignores the covariate discussed later
in that section, you can see that the analysis of variance is split into two components called
strata. The Blocks stratum contains the sums of squares between blocks; this all arises from the
variability between the blocks. The Blocks.Plots stratum contains the sum of squares for the
plots within the blocks; this is partitioned into the sums of squares due to each of the treatment
terms, and a residual against which these can be assessed.

Thus, you can deduce the block model from the structure of the units, which should
correspond to the way in which the randomization has been done. Genstat expands the block
model to form the list of block (or error) terms, each of which defines a stratum corresponding
to one of the sources of variability in the design. Alternatively, if you prefer to deduce the error
terms by some other means, as for example if you follow the philosophy of fixed and random
effects, you can specify the block model to be the sum of these terms.
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In the analysis, Genstat initially partitions the sums of squares according to the block model
alone. This gives the total sum of squares for each of the strata. Then it partitions each stratum
sum of squares into sums of squares for those treatment terms estimated in that stratum, and a
residual which provides an estimate of variability against which these treatment sums of squares
should be compared.

In the randomized block design, the treatments are estimated only in the final (bottom)
stratum. You would thus get the same sums of squares if you omitted the BLOCKSTRUCTURE
statement and put Blocks at the start of the treatment model. In the example, you would put

TREATMENTSTRUCTURE Blocks + Fumigant/(Dose*Type)

The effect would also be the same if you specified this treatment model and retained the block
model, because any model term that occurs in both the block and treatment models is deleted
from the block model. So Blocks would be deleted and there would then be a single stratum
Blocks.Plots. You may prefer this specification as it gives an analysis of variance that looks
more conventional. However the form in the example better reflects the structure of the design,
as it correctly identifies Blocks as an error term. It also allows for the possibility of treatments
being estimated between blocks, as in the balanced-incomplete-block design.

The simplest design in which the treatments are not all estimated in one stratum is the split-
plot design. This again is a nested structure. It was originally devised for agricultural
experiments where some of the factors can be applied to smaller plots of land than others.
However, it also occurs in industrial experiments (for example Cox 1958, page 149), in medical
experiments (Armitage 1974), and even in the study of cake mixtures (Cochran & Cox 1957,
page 299). A well-known example (Yates 1937, page 74; John 1971, page 99) is shown below.
There are two treatment factors: three different varieties of oats (line 8), and four levels of
nitrogen (line 9). Because of limitations on the machines for sowing seed, different varieties
cannot conveniently be applied to plots as small as those that can be used for the different rates
of fertilizer. So the design was set up in two stages. First of all, the blocks were each divided into
three plots of the size required for the varieties, and the three varieties were randomly allocated
to the plots within each block (exactly as in the randomized blocks design). Then each of these
plots, or whole-plots as they are usually known, was split into four sub-plots (one for each rate
of nitrogen), and the allocation of nitrogen was randomized independently within each whole-
plot.

To specify the block structure for this design, three factors are required (lines 4 to 6): Blocks
to indicate the block (1 to 6) to which each unit belongs, Wplots to indicate the whole-plot
(numbered 1 to 3 within each block), and Subplots to identify the sub-plot (numbered 1 to 4
within each whole-plot). You can use the same whole-plot numbers in each block, since the
block model (defined below) does not contain any main effect for whole-plots: that is, Genstat
will not assume any special similarity between whole-plots with the same numbers. In fact it is
best that you do use the same numbering, since otherwise the tables of residuals become very
sparse and wasteful of space. In situations like this, it is often convenient to arrange the values
of the factors in the block model in a systematic order, for example to reflect positions on the
field. This makes patterns in the tables of residuals easier to see. The GENERATE directive
(4.13.1) provides a convenient way of specifying their values (line 7).

The design has sub-plots nested within whole-plots, which are themselves nested within the
blocks: that is,

BLOCKSTRUCTURE Blocks/Wplots/Subplots

The block model expands to

Blocks + Blocks.Wplots + Blocks.Wplots.Subplots

(see 4.1.1 and 1:1.6.3), giving strata for variation between blocks, between whole-plots within
the blocks, and for sub-plots within the whole-plots (within blocks). The treatment model (line
24) specifies terms for the main effects of variety and of nitrogen, and for their interaction
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(4.1.1).
Just as in the randomized block design, the blocks all contain the same sets of treatments, and

so no treatments are estimated in the Blocks stratum. But varieties, which were applied to
whole-plots, are estimated in the Blocks.Wplots stratum; in conventional terminology this is
called the stratum for whole-plots within blocks. The variance ratio for varieties is calculated by
dividing the Variety mean square by the Blocks.Wplots residual mean square. It is easy to
see that this is the correct thing to do. When we look to see whether the varieties differ we are
really trying to answer the question: "Do the yields from the three sets of whole-plots, on the first
of which the variety Victory was grown, on the second Golden rain, and on the third Marvellous,
differ by more than the amount that we would expect for any three randomly chosen sets of
whole-plots?". Technically, variety is said to be confounded with whole plots. The terms for
Nitrogen, which was applied to sub-plots, and for the Variety.Nitrogen interaction are
both estimated in the stratum for sub-plots within whole-plots (Blocks.Wplots.Subplots).

Variance ratios are also produced for block terms, provided there is an appropriate term lower
in the hierarchy of strata with which to compare them. Here Blocks can be compared with
Blocks.Wplots, and Blocks.Wplots with Blocks.Wplots.Subplots. Thus, for example,
the variance ratio of 5.28 for Blocks indicates that the blocks of land in this experiment are
indeed more variable than the plots within each block. However, F probabilities are not produced
for variance ratios of block terms. Conversely, in the block formula for replicated Latin squares,
discussed later in this section,

Squares / (Rows * Columns)

which expands to

Squares + Squares.Rows + Squares.Columns
+ Squares.Rows.Columns

the term Squares could equally well be compared with either Squares.Rows or
Squares.Columns. The ratio of most interest would depend on the exact layout of the trial; for
example, if the squares were alongside each other, it might be interesting to see whether the
squares were more variable than columns within squares. Genstat has no information about
layout, so it leaves you to make these comparisons yourself.

Example 4.2.1a

   2  " Split-plot design (Yates 1937, p.74; also John 1971, p.99)."
   3  UNITS [NVALUES=72]
   4  FACTOR [LEVELS=6] Blocks
   5  & [LEVELS=3] Wplots
   6  & [LEVELS=4] Subplots
   7  GENERATE Blocks,Wplots,Subplots
   8  FACTOR [LABELS=!T(Victory,'Golden rain',Marvellous)] Variety
   9  & [LABELS=!T('0 cwt','0.2 cwt','0.4 cwt','0.6 cwt')] Nitrogen
  10  VARIATE Yield; EXTRA=' of oats'
  11  READ [SERIAL=yes] Nitrogen,Variety,Yield

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Yield     53.00     104.0     174.0        72         0

    Identifier    Values   Missing    Levels
      Nitrogen        72         0         4
       Variety        72         0         3

  24  TREATMENTSTRUCTURE Variety*Nitrogen
  25  BLOCKSTRUCTURE Blocks/Wplots/Subplots
  26  ANOVA  [FPROBABILITY=yes; PSE=differences,lsd] Yield

Analysis of variance
====================

Variate: Yield of oats
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Source of variation     d.f.       s.s.       m.s.    v.r.  F pr.

Blocks stratum             5    15875.3     3175.1    5.28

Blocks.Wplots stratum
Variety                    2     1786.4      893.2    1.49  0.272
Residual                  10     6013.3      601.3    3.40

Blocks.Wplots.Subplots stratum
Nitrogen                   3    20020.5     6673.5   37.69  <.001
Variety.Nitrogen           6      321.8       53.6    0.30  0.932
Residual                  45     7968.8      177.1

Total                     71    51985.9

* MESSAGE: the following units have large residuals.

Blocks 1            31.4   s.e. 14.8

Tables of means
===============

Variate: Yield of oats

Grand mean  104.0

  Variety     Victory Golden rain  Marvellous
                 97.6       104.5       109.8

 Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
              79.4     98.9    114.2    123.4

     Variety Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
     Victory              71.5     89.7    110.8    118.5
 Golden rain              80.0     98.5    114.7    124.8
  Marvellous              86.7    108.5    117.2    126.8

Standard errors of differences of means
---------------------------------------

Table              Variety    Nitrogen     Variety
                                          Nitrogen
rep.                    24          18           6
s.e.d.                7.08        4.44        9.72
d.f.                    10          45       30.23
Except when comparing means with the same level(s) of
Variety                                       7.68
d.f.                                            45

Least significant differences of means (5% level)
-------------------------------------------------

Table              Variety    Nitrogen     Variety
                                          Nitrogen
rep.                    24          18           6
l.s.d.               15.77        8.93       19.83
d.f.                    10          45       30.23

Except when comparing means with the same level(s) of
Variety                                      15.47
d.f.                                            45

This shows the default output from ANOVA, but with the addition of F probabilities in the
analysis-of-variance table, and least significant differences as well as standard errors of
differences. Notice that a separate s.e.d. (and l.s.d.) is given for comparisons between means in
the variety × nitrogen table when both means are for the same variety. To see why this is
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necessary, consider how you might calculate the difference between two of the means, using the
original data. One way would be to look at each block to find the pairs of sub-plots with these
two treatment combinations, and then to calculate the sum of the differences between the values
recorded on each pair. If the means are both for the same variety, each pair of sub-plots will be
within the same whole-plot; when you take the differences any whole-plot variation then cancels
out, to give a smaller s.e.d. The degrees of freedom for the s.e.d. between means with the same
variety is 45, which is the residual degrees of freedom for the Blocks.Wplots.Subplots
stratum. The other comparisons involve both whole plot and sub-plot variation. For comparisons
like these, approximate numbers of degrees of freedom are estimated using Satterthwaite's
method; these lie between the minimum of the residual degrees of freedom in any of the strata
where effects contributing to the table are estimated, and the sum of the residual degrees of
freedom in those strata.

Example 4.2.1a also illustrates the messages that are printed about large residuals. Checking
is done for the residuals of every stratum, and the criterion used is the same that used in
regression analysis (3.1.2). Here there are no large residuals in either the
Blocks.Wplots.Subplots or the Block.Wplots strata, but the residual for block 1 is 31.4
compared to its standard error of 14.8. In this instance, the message can be taken as confirming
the success of the choice of blocks: that is, that the yields of the plots in block 1 are consistently
higher than those in other blocks. Large residuals in the lower strata might indicate aberrant
values, or outliers.

The second section of output first plots the means, as shown in Figure 4.2.1a, and prints the
tables of residuals and estimated treatment effects from each stratum, followed by the
coefficients of variation. It then uses procedure AFIELDRESIDUALS (4.1.4) to plot the residuals
in field layout (Figure 4.2.1b). These are combined residuals (incorporating the block and whole-
plot residuals as well as the sub-plot residuals), so they should show the fertility trends in the
field.

Example 4.2.1b

  27  AGRAPH [METHOD=lines]
  28  ADISPLAY [PRINT=effects,residuals,%cv]

Tables of effects and residuals
===============================

Variate: Yield of oats

Blocks stratum
--------------

Blocks residuals,  s.e. 14.85,  rep. 12

   Blocks        1        2        3        4        5        6
              31.4     -5.8      3.3    -13.1     -8.1     -7.7

Blocks.Wplots stratum
---------------------

Variety effects,  e.s.e. 5.01,  rep. 24

  Variety     Victory Golden rain  Marvellous
                 -6.3         0.5         5.8

Blocks.Wplots residuals,  s.e. 9.14,  rep. 4

   Blocks   Wplots        1        2        3
        1             -11.4     14.0     -2.6
        2              -9.0     -0.3      9.3
        3               5.5      8.2    -13.7
        4             -11.5      4.1      7.4
        5              -9.7     -7.1     16.8
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        6              -0.4     -6.5      6.9

Blocks.Wplots.Subplots stratum
------------------------------

Nitrogen effects,  e.s.e. 3.14,  rep. 18

 Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
             -24.6     -5.1     10.2     19.4

Variety.Nitrogen effects,  e.s.e. 5.43,  rep. 6

     Variety Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
     Victory              -1.5     -2.9      3.0      1.5
 Golden rain               0.1     -0.9     -0.1      0.9
  Marvellous               1.5      3.8     -2.9     -2.4

Blocks.Wplots.Subplots residuals,  s.e. 10.52,  rep. 1

   Blocks   Wplots Subplots        1        2        3        4
        1        1               9.2    -19.1     11.5     -1.6
                 2              -5.9     -5.0     10.1      0.8
                 3               8.2    -13.2     17.6    -12.6
        2        1               1.6     -1.9     -4.7      5.0
                 2               9.6      8.6      5.5    -23.7
                 3               1.0    -19.5     13.8      4.7
        3        1               0.8      2.6     15.4    -18.8
                 2               5.7      4.0     -7.6     -2.1
                 3              -0.1     -8.1     11.7     -3.5
        4        1              16.4     -3.3      0.9    -14.0
                 2               9.0    -11.7     10.2     -7.5
                 3               6.0     -5.2      3.1     -3.9
        5        1             -11.1     -2.2     -7.9     21.2
                 2              16.3    -17.4     11.6    -10.5
                 3               6.1    -11.5     11.8     -6.4
        6        1              15.3    -10.4      2.6     -7.5
                 2              -6.6    -14.4     23.2     -2.2
                 3              11.1     -8.7      2.6     -5.0

Stratum standard errors and coefficients of variation
=====================================================

Variate: Yield of oats

Stratum                   d.f.          s.e.         cv%

Blocks                       5         16.27        15.6
Blocks.Wplots               10         12.26        11.8
Blocks.Wplots.Subplots      45         13.31        12.8

  29  VARIATE [VALUES=2(1...18)2] Row
  30  & [VALUES=(1,2)18,(3,4)18] Column
  31  AFIELDRESIDUALS Y=Row; X=Column
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Figure 4.2.1a Figure 4.2.1b

There are some designs where the units have a crossed instead of a nested structure. A simple
example is the Latin square. This was devised for agricultural experiments to cater for situations
where there are fertility trends both along and across the field, but it can be used whenever there
are two independent ways of grouping the units: for example time of testing and batch of
material, or the litter of the rat and its order by weight within the litter. In field experiments, the
plots are arranged in a square, with blocking factors called Rows and Columns. These each have
the same number of levels as there are treatments. Values of the single treatment factor are
arranged so that each level occurs once in each row and once in each column. The block
structure has rows crossed with columns: that is,

BLOCKSTRUCTURE Rows*Columns
( = Rows + Columns + Rows.Columns )

The treatments are estimated only in the Rows.Columns stratum. Removing variation between
rows and between columns should make these estimates less variable. We do not include output
from a Latin square, but recommend that you try an example from one of the books listed earlier
in this section.

More complicated designs can involve both crossing and nesting, for example:

BLOCKSTRUCTURE Squares/(Rows*Columns)
(= Squares + Squares.Rows + Squares.Columns +
Squares.Rows.Columns)

which is used for replicated Latin squares (John 1971, page 114), quasi-Latin squares (Cochran
& Cox 1957, pages 317-324; John & Quenouille 1977, pages 146-152) and lattice squares
(Cochran & Cox 1957, pages 483-506; John & Quenouille 1977, page 192). Another example
is

BLOCKSTRUCTURE (Rows*Columns)/Subplots
(= Rows + Columns + Rows.Columns + Rows.Columns.Subplots )

which is for a Latin square with the plots split into sub-plots (Kempthorne 1952, page 378).
If the factors in the block formula do not provide a unique index for every unit of the

experiment, the terms in the block model will not account for all the variation. Genstat must then
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define a final stratum to contain the variation between the sets of units whose levels are the same
for each block factor. At the end of the block model, Genstat therefore sets up an extra term
containing all the block factors, together with an extra "factor", denoted *units*, which
numbers the units within each set. So, for the randomized block design, you could put just

BLOCKSTRUCTURE Blocks

which would then become

BLOCKSTRUCTURE Blocks + Blocks.*units*

Likewise, for the split-plot design,

BLOCKSTRUCTURE Blocks/Wplots

would become

BLOCKSTRUCTURE Blocks/Wplots + Blocks.Wplots.*units*

Consequently, if you define no block structure at all, Genstat assumes

BLOCKSTRUCTURE *units*

giving a single source of variation representing random differences between the units; this
defines a completely randomized design, as in 4.1. However, you may prefer to define a more
meaningful labelling of the units, for example

BLOCKSTRUCTURE Rat

The factor Rat would be very easy to set up; it simply contains the numbers 1, 2, onwards. To
produce a factor equivalent to *units* in more complicated situations, you can use procedure
AFUNITS. For example

AFUNITS [BLOCKSTRUCTURE=Blocks/Wplots] Splot

to generate a factor Splots to index the units within Blocks and Wplots.

4.2.2 The ABLUPS procedure

ABLUPS procedure
Calculates BLUPs for block terms in an ANOVA analysis (R.W. Payne).

Options
PRINT = string token Controls printed output (blups); default blup
PTERMS = formula Specifies the block terms whose BLUPs are to be

printed; default is to print them all
PSE = string tokens Types of standard errors to be printed with the BLUPs

(differences, alldifferences, blups,
allblups); default diff, blup

SAVE = identifier Save structure for the ANOVA analysis; default is to take
the most recent ANOVA analysis

Parameters
TERMS = formula Block terms whose BLUPs etc are to be saved
BLUPS = table or pointer to tables Saves the BLUPs
SEBLUPS = table or pointer to tables

Standard errors for the BLUPs of each term
SEDMEANS = symmetric matrix or pointer to symmetric matrices

Standard errors of differences between the BLUPs of
each term
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The ABLUPS procedure can be used to calculate best linear unbiased predictors (BLUPs) for
block terms. These differ from the ordinary ANOVA residuals in that they are predictors rather
than estimates of the random effects; see 5.3.3 They usually have the property of shrinkage, i.e.
they are biased towards zero. As a result they are more likely to represent future observations
of the same terms.

This is illustrated in Example 4.2.2, which shows the BLUPs for the block terms in Example
4.2.1a. Notice that their absolute values are smaller than the residuals printed in Example 4.2.1b.

Example 4.2.2

  32  ABLUPS

BLUPS for block terms
---------------------

       Blocks
            1      25.422
            2      -4.706
            3       2.657
            4     -10.583
            5      -6.530
            6      -6.260

Standard error: 8.342

Standard error of differences: 9.013

       Wplots           1           2           3
       Blocks
            1      -3.854      14.077       2.348
            2      -7.116      -1.001       5.789
            3       4.299       6.209      -9.194
            4      -9.848       1.117       3.498
            5      -7.916      -6.064      10.751
            6      -1.316      -5.637       3.858

Standard error: 7.782

Average standard error of differences: 10.73
Minimum standard error of differences: 9.35
Maximum standard error of differences: 11.31

By default, the BLUPs are from most recent ANOVA analysis. However, you can use an earlier
analysis, by using the SAVE option of ABLUPS to specify its save structure (saved using the SAVE
parameter of the earlier ANOVA command). 

The BLUPs are usually printed. However, this can be suppressed by setting option PRINT=*.
The PTERMS option can be used to specify the block terms whose BLUPs are to be printed. The
default is to print the BLUPs for all the block terms.

The PSE option specifies which standard errors are printed, with the following settings.
differences prints a summary of the standard errors of differences

between pairs of BLUPs,
alldifferences prints all the standard errors of differences between pairs

of BLUPs,
blups prints a summary of the standard errors of the BLUPs, and
allblups prints all the standard errors of the BLUPs.

By default PSE=differences,blups.
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The parameters of ABLUPS can save the BLUPs and standard errors. The TERMS parameter
specifies the block terms whose BLUPs or standard errors are to be saved. The BLUPS parameter
saves tables of BLUPs, the SEMEANS parameter saves tables containing their standard errors, and
the SEDMEANS parameter saves symmetric matrices containing standard errors of differences
between pairs of  BLUPs. If you have a single term, you can supply a table or symmetric matrix
for each of these parameters, as appropriate. However, if you have several terms, you must
supply a pointer which will then be set up to contain as many tables or symmetric matrices as
there are TERMS. A fault is given if the pointer has been defined already with a different number
of elements to the number of TERMS.

4.2.3 Multitiered designs

The earlier part of this section has shown how one model formula is required to specify an
analysis of variance when there are several error terms. The underlying structure of the data
(which indicates the error terms for the analysis) is defined by a model formula specified by the
BLOCKSTRUCTURE directive (4.2.1), while the treatment terms to be fitted in the analysis are
defined in a model formula specified by the TREATMENTSTRUCTURE directive (4.1.1). However,
experiments that involve multiple randomizations (Brien & Payne 1999, Brien & Bailey 2006),
such as two-phase experiments, may require more than two model formulae to define their
analysis correctly.

For example, Brien (1983) considered a two-phase experiment set up to evaluate a set of
wines. These are evaluated at a tasting where several tasters are given the wines over a number
of sittings. One wine is presented to each taster at a sitting, and each wine is evaluated only once
by each taster. The order of presentation of the wines is randomized for each taster. The basic
observational unit is a glass of wine presented to a particular taster in the tasting phase. These
have a structure of tasters/sittings. If this phase represented the whole experiment,
tasters/sittings would be the block formula, and the treatment formula would be the factor
wines. So we would have

BLOCKSTRUCTURE tasters/sittings
TREATMENTSTRUCTURE wines

Now suppose that the wines were produced from a field experiment and, in fact, that each one

was produced from one of the plots of a randomized-block design. The second model formula
would then be blocks/plots, and the final formula would be treatments (the factor
identifying the treatments applied in the field). Designs like this can be analysed by procedure
AMTIER.

AMTIER procedure
Analyses a multitiered design by an analysis of variance specified by up to three model
formulae (C.J. Brien & R.W. Payne).

Options
PRINT = string tokens Controls printed output from the analysis (aovtable,

aovpseudotable, design, effects,
fittedvalues); default aovt

F1 = formula First model formula
F2 = formula Second model formula
F3 = formula Third model formula
FACTORIAL = scalar Limit on the number of factors in a model term
F2BALANCETYPE = string token Type of balance required for F2 (orthogonal,

firstorder); default orth
F3BALANCETYPE = string token Type of balance required for F3 (orthogonal,

firstorder); default orth
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PSEUDOTERMS = formula structures Specifies pseudo-terms for terms in the F1, F2 or F3
formulae

DESIGN = tree Saves or specifies details of the design and analysis
SEED = scalar Seed for random numbers to generate dummy variate for

determining the design; default 13579
TOLERANCE = variate Tolerance for zero sweeps in dummy and y-variate

analyses
DPRINT = string tokens Controls debug output (setup, analysis,

dummyanalysis); default * i.e. none

Parameters
Y = variates Each of these contains the data values for an analysis
RESIDUALS = variates Saves the residuals from each analysis
FITTEDVALUES = variates Saves the fitted values from each analysis
SAVE = pointers Save structure for each analysis (to use in AMTDISPLAY)

The three model formulae are specified by the options F1, F2 and F3. For the example in Brien
(1983), the statement would be

AMTIER [F1=tasters/sittings; F2=blocks/plots;\
       F3=treatments] Y

The Y parameter specifies the response variate. Residuals and fitted values can be saved by the
RESIDUALS and FITTEDVALUES parameters, respectively. The SAVE parameter can save a
pointer containing the full details of the analysis. This can be used as input to the AMTDISPLAY
procedure to obtain further output, or to the AMTKEEP procedure to save information into Genstat
data structures.

The FACTORIAL option sets a limit on the number of factor in the model terms generated from
the formulae. The F2BALANCETYPE and F3BALANCETYPE options control whether the terms
from the second and third model formulae are allowed to be first-order balanced rather than
orthogonal (see 4.7.2). The default is that the terms are required to be orthogonal. It is
emphasized that this applies only to terms from the same model formula. Even if the terms from
a model formula are required to be orthogonal, they may still only be structure balanced in
relation to terms from other formulae. However, if terms from any model formula are non-
orthogonal, then the experiment is not structure balanced, and so sums of squares for sources
differ depending on their order in the model formula. The PSEUDOTERMS option allows you to
specify a list of formula structures defining pseudo-terms for some of the terms in the formulae
(see 4.7.3). Each pseudoterm formula is of the form

group_term // pseudoterms_formula

All pseudo-terms must be defined explicitly as none are generated, for example from relations
between the group term and other factors. Furthermore, all marginal terms to a pseudoterm need
to be included in its formula, irrespective of whether they themselves are pseudoterms. Those
that are not pseudo-terms need to occur in one of the three main model formulae and will not be
included in the analysis sequence again as a result of their appearance in the pseudo-term
formula. The pseudo-terms are placed immediately before the group term in the analysis
sequence. Any repetitions of pseudo-terms are removed.

The DESIGN option can save a tree structure representing the design and analysis. You can
then specify this as the design in a subsequent AMTIER statement, to avoid having to go through
the process of determining the design structure with another response variate from the same
experiment. The design structure is determined by a similar dummy analysis process as in the
standard ANOVA directive. The TOLERANCE option specifies a variate with two values. The first
defines the tolerance multiplier for zero sweeps in the dummy analysis and the second defines
the multiplier for use in the analysis of the y-variates.
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Printed output is controlled by the PRINT option with settings:
aovtable to print the analysis-of-variance table,
aovpseudotable to print the analysis-of-variance table with lines for all the

pseudo-terms (generated by pseudo-factors) given
explicitly,

design to display the structure of the design,
effects to print tables of effects and residuals, and
fittedvalues to print a table with the y-variate, fitted valued and

residuals.
The DPRINT option controls debug output, with settings:

setup for information from the set-up stage,
analysis for information from the analysis of the y-variates, and
dummyanalysis for information from the dummy analysis.

Example 4.2.3 shows the analysis of the example in Brien (1983). Notice that the analysis-of-
variance table has three depths instead of the more usual two. The terms blocks and
blocks.plots (from the block structure of the field experiment) are estimated within the term
tasters.sittings of the tasting experiment, and the term treatments is estimated within
the term blocks.plots.

Example 4.2.3

   2  FACTOR [NVALUES=60; LEVELS=5] tasters
   3  &      [LEVELS=12] sittings
   4  &      [LEVELS=3] blocks
   5  &      [LEVELS=4] plots,treatments
   6  READ   tasters,sittings,blocks,plots,treatments

    Identifier    Values   Missing    Levels
       tasters        60         0         5
      sittings        60         0        12
        blocks        60         0         3
         plots        60         0         4
    treatments        60         0         4

  19  AMTIER [PRINT=aov; F1=tasters/sittings; F2=blocks/plots; F3=treatments]

Analysis of variance
====================

Source                         d.f.   e.f.
tasters                           4  1.000
tasters.sittings
  blocks                          2  1.000
  blocks.plots
    treatments                    3  1.000
    Residual                      6  1.000
  Residual                       44  1.000
Total                            59  1.000

The AMTDISPLAY procedure allows you to obtain further output, and the AMTKEEP procedure
allows you to save information into Genstat data structures.
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AMTDISPLAY procedure
Displays further output for multitiered experiments analysed by AMTIER (C.J. Brien & R.W.
Payne).

Option
PRINT = string tokens Controls printed output from the analysis (aovtable,

aovpseudotable, design, effects,
fittedvalues); default * i.e. none

Parameter
SAVE = pointers Save structure for each analysis (saved from AMTIER); if

this is not set the output is from the most recent AMTIER
analysis

AMTKEEP procedure
Saves information from the analysis of a multitiered design by AMTIER (C.J. Brien & R.W.
Payne).

Options
RESIDUALS = variate Saves the residuals
FITTEDVALUES = variate Saves the fitted values
AOVTABLE = pointer Saves the analysis-of-variance table
SKELETON = string token Whether to save only the  skeleton analysis-of-variance

table (yes, no); default no
PSEUDOLINES = string token Whether to include lines for pseudo-terms in the

analysis-of-variance table (yes, no); default no
OMITMISSINGLINES = string token Whether to omit lines of the analysis-of-variance table

that contain only missing values (yes, no); default no
SAVE = pointer Save structure for the analysis; if this is not set,

information is saved from the most recent AMTIER
analysis

No parameters

4.3 Analysis of covariance

You can do analysis of covariance for any of the designs that can be analysed by ANOVA (4.1).
As well as defining the block and treatment models (4.1.1 and 4.2.1), you must also define the
covariates. You can either specify a list of variates to act as covariates using the COVARIATE
directive (4.3.1), or define more complicated covariate models using the AFCOVARIATES
procedure (4.3.2). Then you can do the analysis by ANOVA (4.1.2), get further output by
ADISPLAY (4.1.3), and save information by AKEEP (4.6.1), all exactly as in an ordinary analysis
of variance.

The example used in this section illustrates the treatment structure of a factorial arrangement
of several types of treatment, as well as a control. This structure of factorial plus added control
can be useful when you wish to examine several ways of modifying a preparation, and also wish
to see what would happen if you applied nothing at all. This experiment was done at Rothamsted
in 1935 to study soil fumigants for decreasing the numbers of nematodes (or eelworms as they
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were then known). Further details are given in Cochran & Cox (1957, pages 45-46), although
there the data are analysed untransformed. There were four types of fumigant, each of which was
applied in either a single or a double dose. A randomized block design was used, with four
blocks of twelve plots. In each block, four plots were untreated (to act as controls), and there was
one plot for each dose of each type of fumigant. This first section of output analyses the
logarithm of the numbers of nematode cysts counted in a sample of 400 grammes of soil, taken
at the end of the experiment.

Example 4.3

   2  "Example of a factorial + added control and analysis of covariance
  -3    (Cochran & Cox 1957, p.46). A log transformation has been used,
  -4    and unit 43 has a missing value in the y-variate."
   5  UNITS [NVALUES=48]
   6  FACTOR [LEVELS=4] Blocks
   7  & [LEVELS=12] Plots
   8  FACTOR [LEVELS=5; LABELS=!T(None,CN,CS,CM,CK)] Type
   9  & [LEVELS=3; LABELS=!T(None,Single,Double)] Dose
  10  & [LEVELS=2; LABELS=!T('Not fumigated',Fumigated)] Fumigant
  11  GENERATE Blocks,Plots
  12  READ Dose,Type,Initnem,Finalnem

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Initnem     9.000     128.5     283.0        48         0
      Finalnem     80.00     311.7     708.0        48         1

    Identifier    Values   Missing    Levels
          Dose        48         0         3
          Type        48         0         5

  25  CALCULATE Fumigant = NEWLEVELS(Dose; !(1,2,2))
  26  & Initnem,Finalnem = LOG(Initnem,Finalnem)
  27  BLOCKSTRUCTURE Blocks/Plots
  28  TREATMENTSTRUCTURE Fumigant/(Dose*Type)
  29  ANOVA [FPROBABILITY=yes] Finalnem

Analysis of variance
====================

Variate: Finalnem

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r.  F pr.

Blocks stratum             3          4.0295     1.3432    7.24

Blocks.Plots stratum
Fumigant                   1          0.6918     0.6918    3.73  0.062
Fumigant.Dose              1          0.0650     0.0650    0.35  0.558
Fumigant.Type              3          0.6656     0.2219    1.20  0.325
Fumigant.Dose.Type         3          0.1212     0.0404    0.22  0.883
Residual                  35(1)       6.4898     0.1854

Total                     46(1)      11.7582

Tables of means
=============== 

Variate: Finalnem

Grand mean  5.618

 Fumigant Not fumigated    Fumigated
                  5.788        5.533
     rep.            16           32

      Fumigant     Dose    None  Single  Double
 Not fumigated            5.788
     Fumigated                    5.488   5.578
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      Fumigant     Type    None      CN      CS      CM      CK
 Not fumigated            5.788
                   rep.      16
     Fumigated                    5.529   5.370   5.763   5.470
                   rep.               8       8       8       8

      Fumigant     Dose    Type    None      CN      CS      CM      CK
 Not fumigated     None           5.788
                           rep.      16
     Fumigated   Single                   5.483   5.280   5.818   5.371
                           rep.               4       4       4       4
                 Double                   5.575   5.461   5.707   5.570
                           rep.               4       4       4       4

Standard errors of differences of means
---------------------------------------

Table             Fumigant    Fumigant    Fumigant    Fumigant
                                  Dose        Type        Dose
                                                          Type
rep.               unequal          16     unequal     unequal
d.f.                    35          35          35          35
s.e.d.                                      0.2153      0.3045  min.rep
                    0.1318      0.1522      0.1865      0.2407  max-min
                                            0.1522X     0.1522X max.rep

(No comparisons in categories where s.e.d. marked with an X)
(Not adjusted for missing values)

Missing values
==============

Variate: Finalnem

 Unit  estimate
   43     5.071

Max. no. iterations 3

The block model for this design (line 27) is discussed in 4.2.1. The treatment model requires
three factors (lines 8 to 10): Fumigant indicates whether or not the plot has been fumigated with
any type of fumigant at all, Type indicates the type of fumigant (if any), and Dose indicates how
much was used. If you examine the table of means classified by Fumigant, Dose and Type, you
can see that Dose and Type have a crossed structure within the 'fumigated' level of
Fumigant. This suggests a treatment model

Fumigant/(Dose*Type)

which expands to

Fumigant + Fumigant.Dose + Fumigant.Type
+ Fumigant.Dose.Type

As explained in 4.1.1, a term like Fumigant.Dose represents all the joint effects of these two
factors, after eliminating any terms that precede it in the model. The main effect Fumigant
removes the difference between no fumigant and any positive dose (either single or double). So
Fumigant.Dose represents the difference between a single and a double dose. Similarly,
Fumigant.Type represents differences between types of fumigant, and Fumigant.Dose.Type
represents the interaction between dose and type of fumigant. Notice that one of the units has
a missing value; this aspect of the analysis is explained in Section 4.4.

The numbers of nematodes were also sampled at the start of the experiment, before any
treatments were applied. This gives extra information about the plots, which we can incorporate
into the analysis by using the original numbers as a covariate. We have transformed the initial
numbers to logarithms, in the same way as the final numbers; so the model to be fitted assumes
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that the final numbers are related to some power of the original numbers.
You can use covariates to incorporate any quantitative information about the units into the

model. In field experiments there may often be linear trends in fertility. These can be estimated
and removed by fitting a covariate of the position of the plot along the direction of the trend. For
a quadratic trend, you would also include a covariate containing the squares of the positions. In
experiments on animals, you may wish to use measurements such as the original weight.
However the assumption is always that the y-variate is linearly related to the covariates.

After you have defined variates to contain the measurements that are to act as covariates and
done any transformations that may be required, you list them in the COVARIATE directive.

4.3.1 The COVARIATE directive

COVARIATE directive
Specifies covariates for use in subsequent ANOVA statements.

No options

Parameter
variates or pointers Covariates

Covariates are incorporated into the model as terms for a linear regression. Genstat fits the
covariates, together with the treatments, in each stratum. This should explain some of the
variability of the units in the stratum, and so decrease the stratum residual mean square.

In the simplest form of the COVARIATE directive, its (unnamed) parameter just contains a list
of the variates that are to be used as covariates. Alternatively, you can group some of the variates
into pointers. The analysis-of-variance table will then contain a line for each group instead of
the individual covariates in that group (see below).

Each treatment combination will have been applied to units whose mean value for each
covariate differs from that of other treatment combinations; so even in the absence of any
treatment effects, the y-values recorded for the different combinations would not be identical.
A further effect of the analysis is to adjust the treatment estimates for the covariates, to correct
for this. The adjustment causes some loss of efficiency in the treatment estimation. The
remaining efficiency is measured by the covariance efficiency factor, shown for each treatment
term in the "cov. ef." column of the analysis-of-variance table. The values are in the range zero
to one. A value of zero indicates that the treatment contrasts are completely correlated with the
covariates: after the covariates have been fitted there is no information left about the treatments.
A value of one indicates that the covariates and the treatment term are orthogonal. Usually the
values will be around 0.8 to 0.9. The covariance efficiency factor is analogous to the efficiency
factor printed for non-orthogonal treatment terms (see 4.7.1); details of its derivation can be
found in Payne & Tobias (1992).

A low value of the covariance efficiency factor for a treatment can be taken as a warning:
either the measurements used as covariates have been affected by the treatments, which may
occur when the measurements on covariates are taken after instead of before the experiment (see
for example Cochran & Cox 1957, page 90); or the random allocation of treatments has been
unfortunate in that some treatments are on units with generally low values of the covariates while
others are on generally high ones. (Note, that if you are forming a design with covariates and
know their values beforehand, you can use procedure COVDESIGN to perform a restricted
randomization that aims to give covariance efficiency factors close to 1 for the treatment terms;
see Part 3 of the Genstat Reference Manual.)

For a residual line in the analysis of variance, the value in the "cov. ef." column measures how
much the covariates have improved the precision of the experiment. This is calculated by
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dividing the residual mean square in the unadjusted analysis (which excludes the covariates) by
its value in the adjusted analysis.

The covariance efficiency factor is used by Genstat in the calculation of standard errors for
tables of effects, as shown by the formula in 4.1.3. So, if you want to calculate the net effect of
the analysis of covariance on the precision of the estimated effects of a treatment term, you
should multiply the covariance efficiency factor of the term by the value printed in the residual
line of the stratum where the term is estimated. Where a term has more than one degree of
freedom, the adjustment given by the covariance efficiency factor is an average over all the
comparisons between the effects of the term. However this adjustment should not differ by much
from those required for any particular comparison unless the randomization has been especially
unfortunate. For Fumigant in the example, the calculation is 0.99 × 2.35. So the e.s.e. of the
Fumigant effects from the adjusted analysis is less than that from the unadjusted analysis by
a factor of %2.3.

In the example we have printed tables of means, but no tables of effects. However, since the
table of means for Fumigant is calculated merely by adding the grand mean to each entry in its
table of effects (4.1.3), the same factor also applies to the s.e.d. of the Fumigant means. For a
table of means classified by several factors, Genstat combines the covariance efficiency factors
of the effects from which the means are calculated (4.1.3) into a harmonic mean, weighted
according to the numbers of degrees of freedom of each term: for example 4/(1/0.99 + 3/0.92)
for Fumigant.Type.

The adjusted analysis-of-variance table has an extra line in the analysis of each stratum, giving
the sum of squares due to the covariates. This is the extra sum of squares that is removed by the
covariates after eliminating all that can be ascribed to the treatments. It lets you assess whether
there is any evidence that the covariates are required in the model. If there are several covariates
Genstat will also print their individual contributions to that sum of squares, giving first the sum
of squares that can be explained by the first covariate in the COVARIATE list, then the extra sum
of squares that can be accounted for by fitting the second covariate, and so on. However, if some
of the covariates were grouped together into a pointer in the COVARIATE list, their contributions
will be pooled into a single line.

The line for each treatment term in the analysis-of-variance table contains the sum of squares
eliminating the covariates. It indicates whether there is evidence of any effects of that term, after
taking account of the differences in the values of the covariates on the units to which each
treatment was applied.

As explained in 4.7.4, when an analysis of variance contains non-orthogonal components, the
total sum of squares is given by adding the sum of squares for component 1 ignoring component
2 to that for component 2 eliminating component 1, and so on. Here, however, the sums of
squares are for covariates eliminating the treatment terms, and for each treatment term
eliminating the covariates. So you will find that the values in the s.s. column of the analysis-of-
variance table do not add up to the total.

Example 4.3.1

  30  COVARIATE Initnem
  31  ANOVA [PRINT=aovtable,covariates,means] Finalnem

Analysis of variance (adjusted for covariate)
=============================================

Variate: Finalnem
Covariate: Initnem

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r. cov.ef.  F pr.

Blocks stratum
Covariate                  1         3.35292    3.35292    9.91          0.088
Residual                   2         0.67657    0.33828    4.29    3.97
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Blocks.Plots stratum
Fumigant                   1         0.89557    0.89557   11.36    0.99  0.002
Fumigant.Dose              1         0.00179    0.00179    0.02    0.98  0.881
Fumigant.Type              3         1.41718    0.47239    5.99    0.92  0.002
Fumigant.Dose.Type         3         0.11913    0.03971    0.50    0.99  0.682
Covariate                  1         3.81015    3.81015   48.34          <.001
Residual                  34(1)      2.67969    0.07881            2.35

Total                     46(1)     11.75815

Covariate regressions
=====================

Variate: Finalnem

Covariate               coefficient        s.e.
Blocks stratum
Initnem                        0.48       0.153

Blocks.Plots stratum
Initnem                       0.522      0.0751

Combined estimates
Initnem                       0.512      0.0651

Tables of means (adjusted for covariate)
========================================

Variate: Finalnem
Covariate: Initnem

Grand mean  5.618

 Fumigant Not fumigated    Fumigated
                  5.818        5.518
     rep.            16           32

      Fumigant     Dose    None  Single  Double
 Not fumigated            5.818
     Fumigated                    5.520   5.515

      Fumigant     Type    None      CN      CS      CM      CK
 Not fumigated            5.818
                   rep.      16
     Fumigated                    5.783   5.357   5.692   5.239
                   rep.               8       8       8       8

      Fumigant     Dose    Type    None      CN      CS      CM      CK
 Not fumigated     None           5.818
                           rep.      16
     Fumigated   Single                   5.703   5.401   5.768   5.209
                           rep.               4       4       4       4
                 Double                   5.864   5.313   5.616   5.269
                           rep.               4       4       4       4

Standard errors of differences of means
---------------------------------------

Table             Fumigant    Fumigant    Fumigant    Fumigant
                                  Dose        Type        Dose
                                                          Type
rep.               unequal          16     unequal     unequal
d.f.                    34          34          34          34
s.e.d.                                      0.1449      0.2024  min.rep
                    0.0862      0.0999      0.1255      0.1600  max-min
                                            0.1025X     0.1012X max.rep
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(No comparisons in categories where s.e.d. marked with an X)
(Not adjusted for missing values)

The method that Genstat uses for analysis of covariance essentially reproduces the method that
you would use if you were doing the calculations by hand. First of all, it analyses each covariate
according to the block and treatment models. You can print information from these analyses
using the CPRINT option of either ANOVA or ADISPLAY. As ADISPLAY (4.1.3) does not constrain
you to list save structures that were all produced by the same ANOVA, CPRINT will produce
information about the covariate analyses from every save structure that you list; duplicate
information will thus be produced if several of the save structures are for analyses involving the
same covariates. The output from CPRINT, particularly the analysis-of-variance table, gives you
another way of assessing the relationship between treatments and covariates: a large variance
ratio for a treatment term in the analysis of one of the covariates would indicate either that the
treatment had affected the covariate or that the randomization had been unfortunate (as discussed
in the description of cov. ef. above).

Genstat then analyses each y-variate in turn. First of all it does the usual analysis ignoring the
covariates. You can control output from this unadjusted analysis by the UPRINT option of ANOVA
and ADISPLAY. (So the whole of the output given for the example could have been produced by
a single ANOVA statement.) Then the covariates are fitted by linear regression and the full,
adjusted, analysis is calculated. Output from the adjusted analysis is controlled by the PRINT
option of ANOVA and ADISPLAY. This option has an extra setting, which is not available for
UPRINT and CPRINT: PRINT=covariates prints the regression coefficients of the covariates
as estimated in each stratum.

4.3.2 The ACOVARIATES procedure

AFCOVARIATES procedure
Defines covariates from a model formula for ANOVA (R.W. Payne).

Options
COVARIATES = pointer Saves the covariates
COVGROUPS = pointer Saves the pointers defined to contain the covariates

formed for each term in TERMS
FACTORIAL = scalar Limit on number of factors in the model terms formed

from TERMS; default 3

Parameters
TERMS = formula Model terms from which to define covariates

The COVARIATE directive (4.3.1) covers only the simple situation where you have a list of
variates that you want to use as covariates, and does not allow for more complicated situations.
For example you might want to fit a different covariate regression coefficient within each block
of a randomized-block experiment, or to use the covariate to fit the effects of terms in an
unbalanced design.

The AFCOVARIATES procedure therefore provides an alternative to the COVARIATE directive,
to allow you to specify a model formulae to define the terms to be fitted as covariates in the
analysis. The model formula is specified by the TERMS parameter, using the same conventions
as for example in the Genstat regression commands (see 3.3). The dummy variables that are
generated to represent the model terms in the formula use the same parameterization as the
regression commands (3.3.2).
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So, for example, you can see whether you need to fit a different regression coefficient for the
variate Initnem within each block in Example 4.3.1 by specifying

AFCOVARIATES Initnem + Blocks.Initnem

As shown in Example 4.3.2, within the Covariates section of the analysis of variance there will
then be a line Initnem representing the overall covariate regression, and another term
Blocks.Initnem to assess whether a different regression is needed within each block. This
appears only in the Blocks.Plots stratum as it can only be estimated within blocks. In the
example, this has an F probability of 0.553 showing that in this case a common regression
coefficient is all that is needed.

Example 4.3.2

  32  AFCOVARIATES Initnem + Blocks.Initnem
  33  ANOVA [PRINT=aovtable] Finalnem

* MESSAGE: the sums of squares for individual covariates are sequential; each
one is for the covariate concerned eliminating previous covariates (as well as
treatments) and ignoring the later ones.

Analysis of variance (adjusted for covariates)
==============================================

Variate: Finalnem
Covariates: Initnem, Initnem.Blocks 2, Initnem.Blocks 3, Initnem.Blocks 4

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r. cov.ef.  F pr.

Blocks stratum
Covariates                 3         4.02949    1.34316
  Initnem                  1         3.35292    3.35292

Blocks.Plots stratum
Fumigant                   1         0.91945    0.91945   11.37    0.97  0.002
Fumigant.Dose              1         0.00084    0.00084    0.01    0.93  0.920
Fumigant.Type              3         1.39191    0.46397    5.74    0.91  0.003
Fumigant.Dose.Type         3         0.11952    0.03984    0.49    0.88  0.690
Covariates                 4         3.98241    0.99560   12.31          <.001
  Initnem                  1         3.81015    3.81015   47.11          <.001
  Initnem.Blocks           3         0.17226    0.05742    0.71          0.553
Residual                  31(1)      2.50744    0.08089            2.29

Total                     46(1)     11.75815

The COVARIATES option allows you to supply a pointer to store the covariates that are
calculated. Otherwise they will be unnamed, and thus usable only in the subsequent ANOVA
analyses. The covariates are grouped into a pointer for each model term specified by TERMS. The
COVGROUPS option allows you to supply a pointer to store these pointers. Otherwise they too will
be unnamed, and thus usable only in the ANOVA analyses. Each covariate is each defined with
an extra text, using the EXTRA parameter of the VARIATE directive (1:2.3.1), to indicate the
parameter that it represents. Also the IPRINT option of VARIATE is set to extra, so that this
extra text will be used in output instead of the identifier of the covariate itself. Similarly, the
COVGROUPS pointers are given extra texts indicating the model term that each one represents.

The FACTORIAL option sets a limit on the number of factors or variates in each of the terms
formed from the TERMS formula. Any term containing more than that limit is deleted.
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4.4 Missing values

Values from some of the units of an experiment may occasionally fail to be recorded. A
laboratory animal may become ill or die during the experiment for reasons unconnected with the
treatments. A human subject may withdraw from a clinical trial before it is complete. A plot in
a field experiment may become flooded and fail to produce any plants. A value may need to be
regarded as missing if a mistake has been made in its recording, or in the way in which the unit
was managed during the experiment.

To obtain the exact analysis in such circumstances these units should be excluded, but that
would lose the properties such as balance for which the experiment was designed. Consequently
techniques have been devised by which missing values are entered for these units, and then
estimated during the analysis. The estimates can be printed using the missingvalues setting
of the PRINT, CPRINT or UPRINT options of ANOVA or ADISPLAY. Example 4.4 uses the
ADISPLAY directive to print the missing value estimated in the analysis of covariance in
Example 4.3.2.

Example 4.4

  34  ADISPLAY [PRINT=missingvalues]

Missing values (adjusted for covariates)
========================================

Variate: Finalnem
Covariates: Initnem, Initnem.Blocks 2, Initnem.Blocks 3, Initnem.Blocks 4

 Unit  estimate
   43     5.632

Max. no. iterations 3

You can have missing values in the y-variates or the covariates, but not in the block or treatment
factors: that is, you should at least know where each unitsmissing unit belongs according to the
factors of the block model, and what treatments it was scheduled to receive. Genstat regards a
unit as missing for all the y-variates listed in an ANOVA statement if it is missing for any one of
them, or if it is missing for a covariate. This is because the analysis of covariance requires a
missing value in either the y-variate or a covariate to be set missing throughout (Wilkinson
1957); forming the complete list over all the y-variates avoids having to re-analyse the covariates
for each y-variate. If you have units where some but not all of the y-variates have missing values,
you may prefer to analyse each y-variate separately: for example

FOR Y=Weight,Age,Height
  ANOVA [DESIGN=Dsave] Y
ENDFOR

instead of

ANOVA Weight,Age,Height

Use of the DESIGN option (4.1.2) avoids Genstat having to redetermine the structure of the
design for each analysis.

Genstat uses the method of Healy & Westmacott (1956). This estimates the missing values by
an iterative approach in which they are initially set to the grand mean, then the analysis is
repeated with the estimate for each missing unit adjusted each time to set its residual to zero.
Genstat also employs the modification discussed by Preece (1971) which over-adjusts each
residual to accelerate convergence, but this is discontinued if divergence results instead. Missing
cells can occur in higher strata, for example if all the sub-plots in a whole-plot are missing.
These missing effects are estimated by a similar iteration of the analysis within the stratum.
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Likewise missing treatment effects are estimated by minimizing the sum of squares of the
treatment term concerned. There is a limit on the number of iterations; by default it is 40, but this
can be changed by the MAXCYCLE option of ANOVA. Genstat decides that the process has
converged when the residual sum of squares from the previous iteration exceeds the current
residual sum of squares by less than 10!5 times the current residual sum of squares. This value
of 10!5 can be changed using the third value of the variate in the TOLERANCES option of ANOVA.
Genstat prints the maximum number of iterations required in any of the strata of the design,
along with the estimates of the missing values. Convergence is usually fairly rapid: for the
example above, only three iterations were required.

In the analysis of variance, as shown in the example in 4.3, the numbers of degrees of freedom
are decreased to take account of the missing units and effects; the number subtracted is shown
in brackets. The analysis of variance is only approximate. The residual sums of squares are
correct (to within the tolerance of convergence) but the treatment sums of squares will be larger
than their correct value. (As a result, the sums of squares in the analysis-of-variance table will
no longer sum to the total.) If there are few missing values, this increase is unlikely to be large.
The estimated effects and means are correct but the calculation of the standard errors does not
take account of the missing units. So some standard errors will be too small. For further details,
see for example Cochran & Cox (1957, pages 80-82).

If the model has only one error term, you can obtain the exact analysis using regression
(Chapter 3). Alternatively you could use the method of Bartlett (1937), in which a dummy
covariate is specified for each missing value with minus one in the missing unit and zero
elsewhere. The missing units in the y-variates should be set to zero; the regression coefficients
of the covariates then estimate the missing values.

4.5 Contrasts between treatments

Sometimes there may be comparisons between the levels of a treatment factor that you
particularly wish to assess. With the three sources of protein in 4.1, you might wish to see
whether the animal sources (beef and pork) were uniformly better than the cereal source, or you
might suspect that the type of meat made little difference and so wish to compare beef with pork.
These comparisons are examples of contrasts. They are specified by defining a coefficient for
each level of the factor. The estimated value of the contrast is then obtained by taking the sum
of the coefficients each multiplied by the appropriate effect. For example the comparison
contrasts between the sources of protein are defined by coefficients:

                              Source: beef    cereal     pork
Contrast: animal versus cereal         0.5      !1.0      0.5
          beef versus pork             1.0       0.0     !1.0

To compare beef with pork you subtract one effect from the other; while for animal versus cereal
sources, you subtract the effect of cereal from the mean of the effects of the animal sources. As
shown by this example, to represent a comparison between the levels of the factor, the sum of
the coefficients must be zero. These particular contrasts are also orthogonal: they represent
independent comparisons between the effects. This is shown by the fact that the sum of the
pairwise products of the coefficients, weighted according to the replication of the levels of the
factor (here 20), is zero: 0.5×1.0×20 + (!1.0)×0.0×20 + 0.5×(!1.0)×20. However, comparison
contrasts need not always be orthogonal (see Example 4.5c).

With factors whose levels represent the application of different amounts of some substance
like a fertilizer or a drug, you may wish to model the relationship between the effect and the
amount. For example, with the nitrogen fertilizer in Section 4.2, you might wish to see if the
yield of oats increases linearly with the amount of fertilizer; you might also include a quadratic
term to check for curvature in the response. You can assess these by fitting polynomial contrasts.
Genstat also allows you to define other regression contrasts.

To specify contrasts, you put a function of the factor of interest into the treatment formula,
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instead of the factor itself. Comparisons between factor levels are specified by the COMPARISON
function. This has three arguments: the first specifies the factor amongst whose effects the
comparisons are being made; the second specifies the number of comparisons that are to be
fitted; and the third provides a matrix with a column for each level of the factor, and a row for
each comparison specifying the coefficients that define that comparison. In line 39 of Example
4.5a, which continues the analyses started in Example 4.1, the factor is Source and the matrix
is Compare (see lines 37 and 38).

Example 4.5a

  38  MATRIX [ROWS=!T('animal vs cereal','beef vs pork'); COLUMNS=3; \
  39     VALUES=0.5,-1,0.5,1,0,-1] Compare
  40  TREATMENTSTRUCTURE COMPARISON(Source; 2; Compare) * Amount
  41  ANOVA [PRINT=aov,contrasts; FPROBABILITY=yes] Gain

Analysis of variance
====================

Variate: Gain

Source of variation     d.f.       s.s.       m.s.    v.r.  F pr.
Source                     2      266.5      133.3    0.62  0.541
  animal vs cereal         1      264.0      264.0    1.23  0.272
  beef vs pork             1        2.5        2.5    0.01  0.914
Amount                     1     3168.3     3168.3   14.77  <.001
Source.Amount              2     1178.1      589.1    2.75  0.073
  animal vs cereal.Amount  1     1178.1     1178.1    5.49  0.023
  beef vs pork.Amount      1        0.0        0.0    0.00  1.000
Residual                  54    11586.0      214.6
Total                     59    16198.9

Tables of contrasts
===================

Variate: Gain

Source contrasts
----------------

animal vs cereal      4.5,  s.e. 4.01,  ss.div. 13.3

beef vs pork          0.5,  s.e. 4.63,  ss.div. 10.0

Source.Amount contrasts
-----------------------

animal vs cereal.Amount,  e.s.e. 5.67,  ss.div. 6.67

   Amount     high      low
               9.4     -9.4

beef vs pork.Amount,  e.s.e. 6.55,  ss.div. 5.00

   Amount     high      low
               0.0      0.0

In the analysis-of-variance table, the line for the main effect of Source is now accompanied by
two additional lines (indented to show that they relate to Source) giving the degrees of freedom,
sums of squares etc. for the two comparisons. Notice that they are labelled by the names given
to the rows of the contrast matrix Compare in line 37. If you do not label the rows, the contrasts
are labelled Comp1, Comp2, and so on. The interaction between Source and Amount is also
accompanied by extra lines showing how the comparisons are affected by the amount of protein.
For example, the line "animal vs cereal.Amount", allows you to examine whether there is
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any evidence that the difference between animal and cereal sources of protein varies according
to the amount of protein fed to the rats or, equivalently, whether there is evidence that the
response to the amount of protein varies according to whether the protein is from cereal or
animals. Here it appears that this first comparison does have an interaction with amount, but that
the second comparison (beef vs. pork) does not.

The estimates of the contrasts can be printed by including contrasts in the settings of the
PRINT option of ANOVA or ADISPLAY. So, you can check the values in Example 4.5a by
referring back to Examples 4.1.3b or 4.1.3d: for example the estimate of the beef vs. pork
contrast is indeed the difference between the effects of beef and pork (1.7 ! 1.2).

Polynomial contrasts are assessed by fitting orthogonal polynomials. The quadratic contrast
then represents the effect of adding a quadratic term into a linear polynomial, the cubic
represents the effect of adding a cubic term into a quadratic polynomial, and so on (see for
example: John 1971, page 50; John & Quenouille 1977, pages 33-36). The coefficients of the
orthogonal polynomials to examine the linear and quadratic effects of the Nitrogen factor in
Section 4.2 are

                   Nitrogen:  0.0   0.2   0.4   0.6
Contrast:  linear            !0.3  !0.1   0.1   0.3
           quadratic          0.4  !0.4  !0.4   0.4

Polynomial contrasts are specified by the POL function. This again has three arguments: the first
specifies the factor, the second is a number or a scalar giving the order of polynomial to be fitted
(1 for linear, 2 for quadratic, 3 for cubic and 4 for quartic), and the third is a variate specifying
numerical values for each level of the factor. Genstat calculates the orthogonal polynomials for
you. In the Nitrogen example, the levels are equally spaced and in ascending order of
magnitude, but this need not be so. You can omit the third argument if the levels already declared
with the factor are suitable. For Nitrogen, the declaration (line 9 in the output shown in 4.2.1)
specified only labels, and so the levels are the defaults 1 to 4. The variate Nitlev is defined to
supply the correct values (line 33).

Example 4.5b

  33  VARIATE [VALUES=0,0.2,0.4,0.6] Nitlev
  34  TREATMENTSTRUCTURE POL(Nitrogen; 2; Nitlev) * Variety
  35  ANOVA [PRINT=aovtable,contrasts] Yield

Analysis of variance
====================

Variate: Yield of oats

Source of variation     d.f.       s.s.       m.s.    v.r.

Blocks stratum             5    15875.3     3175.1    5.28

Blocks.Wplots stratum
Variety                    2     1786.4      893.2    1.49
Residual                  10     6013.3      601.3    3.40

Blocks.Wplots.Subplots stratum
Nitrogen                   3    20020.5     6673.5   37.69
  Lin                      1    19536.4    19536.4  110.32
  Quad                     1      480.5      480.5    2.71
  Deviations               1        3.6        3.6    0.02
Nitrogen.Variety           6      321.8       53.6    0.30
  Lin.Variety              2      168.3       84.2    0.48
  Quad.Variety             2       11.1        5.5    0.03
  Deviations               2      142.3       71.2    0.40
Residual                  45     7968.8      177.1

Total                     71    51985.9
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Tables of contrasts
===================

Variate: Yield of oats

Blocks.Wplots.Subplots stratum
------------------------------

Nitrogen contrasts
------------------

Lin      73.7,  s.e. 7.01,  ss.div. 3.60

Quad     -65.,  s.e. 39.2,  ss.div. 0.115

Deviations,  e.s.e. 3.14,  ss.div. 18.0

 Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
               0.1     -0.3      0.3     -0.1

Nitrogen.Variety contrasts
--------------------------

Lin.Variety,  e.s.e. 12.1,  ss.div. 1.20

  Variety     Victory Golden rain  Marvellous
                   7.          2.         -9.

Quad.Variety,  e.s.e. 67.9,  ss.div. 0.0384

  Variety     Victory Golden rain  Marvellous
                  -1.         12.        -11.

Deviations,  e.s.e. 5.43,  ss.div. 6.00

 Nitrogen  Variety     Victory Golden rain  Marvellous
    0 cwt                  0.7         0.1        -0.8
  0.2 cwt                 -2.2        -0.3         2.4
  0.4 cwt                  2.2         0.2        -2.4
  0.6 cwt                 -0.7        -0.1         0.8

In the analysis of variance, the sum of squares for Nitrogen is partitioned into the amount that
can be explained by a linear relationship of the yields with nitrogen (the line marked Lin), the
extra amount that can be explained if the relationship is quadratic (the line Quad), and the
amount represented by deviations from a quadratic polynomial. A cubic term would be labelled
as Cub, and a quartic as Quart. You are not allowed to fit more than fourth-order polynomials.

The interaction of nitrogen and variety is also partitioned: Lin.Variety lets you assess the
effect of fitting three different linear relationships, one for each variety, instead of a single
overall linear contrast; Quad.Variety represents three different quadratic contrasts; and
Deviations represents deviations from these three quadratic polynomials.

The estimated values of the contrasts are again printed in the section headed "Tables of
contrasts". The table of estimated contrasts for Quad.Variety, for example, gives the
differences between the overall contrast of !65 for Quad and the contrasts fitted for the three
varieties separately. So the estimated contrast for Golden rain is !65 + 12 = !53.

The "ss. div" value that accompanies the estimated contrasts is analogous to the replication
in a table of effects: it is the divisor used when calculating the estimated values of the contrasts.
This is useful mainly where there is a range of e.s.e.'s for a table of contrasts: the contrasts with
the smallest values of the ss. div. are those with the largest e.s.e., and vice versa. The ss. div. of
each estimated contrast is the sum of squares of the values of the orthogonal polynomial (or other
x-variable) used to calculate the contrast, weighted according to the replication (or weighted
replication in a weighted analysis of variance). The formula for the e.s.e. is similar to that for
tables of effects (4.1.3):



4.5  Contrasts between treatment terms 429

e.s.e. = %(ó2 / ( ss. div. * efficiency factor * covariance efficiency factor ) )
The variance ó2 is estimated from the residual mean square of the stratum (4.2) where the
contrasts are estimated. The efficiency factor (4.7.1) has the value one for terms that are
orthogonal, like those in this design. The covariance efficiency factor (4.3.1) equals one when
there are no covariates.

The third contrast function, REG, allows you to specify regression contrasts other than
polynomials. The first argument again specifies the factor, and the second is a number or scalar
giving the number of contrasts to be fitted, which can be from one up to the number of degrees
of freedom of the factor. The third argument is a matrix whose rows supply the x-variates for the
regression contrasts. The matrix has a column for each level of the factor and a row for each
contrast specifying the coefficients of the corresponding x-variate, similar to that for the
COMPARISONS function. However, Genstat orthogonalizes the x-variates for REG; so the sum of
squares, and the estimate, for the second contrast represent the improvement from fitting the
second contrast after the first has already been fitted, and so on. If you use a text to label the
rows of the matrix, Genstat will use it to annotate the output. Otherwise the contrasts are labelled
Reg1 to Reg7.

Where a term has two or more factors partitioned into contrasts, Genstat will fit interactions
between the contrasts. For example Lin.Lin looks at the linear change in the linear component
of each factor with the other. With two REG functions, terms like Reg1.Reg1 or Reg2.Reg1
will appear whose interpretation will depend on exactly what comparisons you have defined. If
the partitioning of a factor has a component for deviations, there will also be terms like
Dev.Lin, which represents the interaction between the deviations component of the first factor
and the linear part of the second factor. You can suppress the fitting of these interactions by
using the function POLND instead of POL, or REGND instead of REG. For example, putting
POLND(A; 1) instead of POL(A; 1) ensures that no interactions will be fitted between other
contrasts and the Dev component of A.

The CONTRASTS option in the ANOVA directive (4.1.2) places a limit on the order of contrast
to be fitted. For a term involving a single factor, the orders of successive terms run from one
upwards, with the deviations term (if any) numbered highest. So for Nitrogen in the example
above, the orders are Lin 1, Quad 2 and Deviations 3; while for Source they are "animal
vs cereal" 1, "beef vs pork" 2. In interactions between contrasts, the order is the sum of
the orders of the component parts, so Lin.Lin has order 2, Quad.Lin has order 3, Reg1.Quad
has order 3, Reg1.Reg3 has order 4, and so on. Where the component is a factor, it contributes
one to the sum, so Lin.Variety has order 2. The default value for CONTRASTS is 4. Option
PCONTRASTS sets a limit on the order of the contrasts that are printed by either ANOVA or
ADISPLAY (4.1.3); its default value is 9.

In Example 4.5c, we illustrate interactions between comparison and polynomial contrasts. This
time we want to compare each of the varieties with the first variety, Victory. So we have the
matrix

               Variety:  Victory  Golden rain Marvellous
Comparison:
Golden rain versus Victory    -1            1          0
Marvellous versus Victory     -1            0          1

These represent comparisons amongst the variety effects because the coefficients of each
comparison sum to zero (and ANOVA will give a fatal diagnostic if this is not true). However, they
are not orthogonal: the sum of the pairwise products of their coefficients is one (and not zero as
would be required for orthogonality). If we were to fit these contrasts using REG function they
would be orthogonalized to become

               Variety:  Victory  Golden rain Marvellous
Comparison:
Golden rain versus Victory    -1            1          0
Marvellous versus Victory   -0.5         -0.5          1
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which would not give what we want! Notice that we need to set option CONTRASTS=5 in the
ANOVA statement in line 40, as "Marvellous versus Victory.Dev" has order 2+3 = 5. The
variety by nitrogen interaction is now accompanied by interactions between the contrasts:
"Golden rain versus Victory.Lin" assesses how the linear effects of nitrogen differ
between Golden rain and Victory, "Golden rain versus Victory.Quad" assesses how the
quadratic effects of nitrogen differ between Golden rain and Victory, "Golden rain versus
Victory.Dev" assesses how the deviations from the two quadratic polynomials of nitrogen
differ between Golden rain and Victory, and so on.

Example 4.5c

  36  TEXT [VALUES='Golden rain versus Victory','Marvellous versus Victory']\
  37       Compname
  38  MATRIX [ROWS=Compname; COLUMNS=3; VALUES=-1,1,0, -1,0,1] Victcomp
  39  TREATMENTS COMPARISON(Variety;2;Victcomp) * POL(Nitrogen; 2; Nitlev)
  40  ANOVA [PRINT=aovtable,contrasts; CONTRASTS=5] Yield

Analysis of variance
====================

Variate: Yield of oats

Source of variation     d.f.       s.s.       m.s.    v.r.

Blocks stratum             5    15875.3     3175.1    5.28

Blocks.Wplots stratum
Variety                    2     1786.4      893.2    1.49
  Golden rain versus Victory
                           1      567.2      567.2    0.94
  Marvellous versus Victory
                           1     1776.3     1776.3    2.95
Residual                  10     6013.3      601.3    3.40

Blocks.Wplots.Subplots stratum
Nitrogen                   3    20020.5     6673.5   37.69
  Lin                      1    19536.4    19536.4  110.32
  Quad                     1      480.5      480.5    2.71
  Deviations               1        3.6        3.6    0.02
Variety.Nitrogen           6      321.8       53.6    0.30
  Golden rain versus Victory.Lin
                           1       19.8       19.8    0.11
  Marvellous versus Victory.Lin
                           1      163.3      163.3    0.92
  Golden rain versus Victory.Quad
                           1        3.5        3.5    0.02
  Marvellous versus Victory.Quad
                           1        2.1        2.1    0.01
Residual                  45     7968.8      177.1

Total                     71    51985.9

Tables of contrasts
===================

Variate: Yield of oats

Blocks.Wplots stratum
---------------------

Variety contrasts
-----------------

Golden rain versus Victory      6.9,  s.e. 7.08,  ss.div. 12.0

Marvellous versus Victory      12.2,  s.e. 7.08,  ss.div. 12.0
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Blocks.Wplots.Subplots stratum
------------------------------

Nitrogen contrasts
------------------

Lin      73.7,  s.e. 7.01,  ss.div. 3.60

Quad     -65.,  s.e. 39.2,  ss.div. 0.115

Deviations,  e.s.e. 3.14,  ss.div. 18.0

 Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
               0.1     -0.3      0.3     -0.1

Variety.Nitrogen contrasts
--------------------------

Golden rain versus Victory.Lin       -6.,  s.e. 17.2,  ss.div. 0.600

Marvellous versus Victory.Lin       -16.,  s.e. 17.2,  ss.div. 0.600

Golden rain versus Victory.Quad      14.,  s.e. 96.0,  ss.div. 0.0192

Marvellous versus Victory.Quad      -10.,  s.e. 96.0,  ss.div. 0.0192

If your design has few or no degrees of freedom for the residual, you may wish to regard the
deviations from some of the fitted contrasts as error components, and assign them to the residual
of the stratum where they occur. You can do this by the DEVIATIONS option of ANOVA (4.1.2);
its value sets a limit on the number of factors in the terms whose deviations are to be retained
in the model. For example, by putting DEVIATIONS=1, the deviations from the contrasts fitted
to all terms except main effects will be assigned to error. The option PDEVIATIONS in ANOVA
or ADISPLAY (4.1.3) similarly controls the printing of deviations: putting PDEVIATIONS=0, for
example, would ensure that no deviations are printed. When deviations have been assigned to
error, they will not be included in the calculation of tables of means (4.1.3), which will then be
labelled "smoothed". However the associated standard errors of the means are not adjusted for
the smoothing.

There are limitations on the models and designs for which Genstat can fit contrasts. In a
factorial model, each interaction that is partitioned into contrasts must have equal or proportional
replication (or proportional weighted replication in a weighted analysis of variance). Otherwise
Genstat gives an error. Here is an example of proportional replication for two factors A and B,
giving the numbers of replications for each combination of their levels.

           B:    1   2   3        Total over B
           A:
           1     4   8  12             24
           2     2   4   6             12
Total over A:    6  12  18             36

The fraction of the replication in each cell is the product of the fractions in the marginal total
cells: for example the cell for level 1 of A and level 3 of B has 12/36 (= 1/3) of the total
replication; the product of the marginal totals for these levels is also 1/3, being 24/36 × 18/36.

An exception to this rule occurs in nested models like the factorial with added control which
were discussed in 4.3.1. The table below shows what the replication of the factors Fumigant,
Dose and Type would be if, for illustration, there were also a triple level of dose.
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      Fumigant:  not fumigated         fumigated
      Type:      none  CN  CS  CM  CK  none  CN  CS  CM  CK
  Dose:
  none             16   !   !   !   !     !   !   !   !   !
single              !   !   !   !   !     !   4   4   4   4
double              !   !   !   !   !     !   4   4   4   4
triple              !   !   !   !   !     !   4   4   4   4

The treatment model has

Fumigant/(Dose*Type)
= Fumigant + Fumigant.Dose + Fumigant.Type
+ Fumigant.Dose.Type

None of the higher-order terms (such as Fumigant.Dose) has either equal or proportional
replication. However, within the 'fumigated' level of Fumigant, there is equal replication.
So Genstat can fit any contrast of the nested factors (Type and Dose) provided the level 'none'
is excluded. For example, you could estimate linear and quadratic contrasts of Dose using only
the non-zero doses by using the REG function:

MATRIX [ROWS=2; COLUMNS=4; VALUES= 0, !1,  0,   1 \
                                   0,  1, !2,   1 ] Quadcon
TREATMENTSTRUCTURE Fumigant / (REG(Dose;2;Quadcon) * Type)

But the rows of Quadcon must be specified in orthogonal form. Otherwise the automatic
orthogonalization, using the overall replication of Dose, would produce contrasts involving
'none'.

A further limitation is that contrasts cannot be fitted to terms that involve pseudo-factors
(4.7.3). In such situations, the specification of the contrasts is ignored by Genstat.

In nested models, no coherent meaning can be given to contrasts between levels of one of the
nested factors if the factor within which it is nested is also partitioned into contrasts. So, for
example, the specification

POL(A; 1) / POL(B; 2)

would generate an error.
The contrasts described above, that can be fitted directly by ANOVA, are all linear in their

coefficients. Procedure NLCONTRASTS in the Genstat Procedure Library extends this to enable
nonlinear contrasts to be fitted to the effects of a quantitative factor and its interaction with
another factor. Full details can be found in the Part 3 of the Genstat Reference Manual.

4.5.1 The APOLYNOMIAL procedure

APOLYNOMIAL procedure
Forms equations for a polynomial contrast fitted by ANOVA (R.W. Payne).

Options
PRINT = string token Whether to print the equation of the polynomial

(equation); default equa
SAVE = ANOVA save structure Save structure (from ANOVA) to provide details of the

analysis from which the equations are to be formed;
default uses the save structure from the most recent
ANOVA

Parameters
TERMS = formula Model terms whose polynomial equations are required
COEFFICIENTS = pointers Saves the coefficients of each polynomial
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The estimates of the polynomial contrasts do not (directly) give you the coefficients of the
polynomial that has been fitted. The polynomial coefficients can, however, be obtained using
procedure APOLYNOMIAL.

The TERMS parameter specifies the treatment terms whose equations are required. Each term
must contain no more than one factor with a polynomial function (POL or POLND), and no factors
with regression or comparison functions (REG, REGND or COMPARISON); otherwise it is ignored.
If TERMS is not set, APOLYNOMIAL takes the full treatment model.
APOLYNOMIAL usually prints the equation, but you can set option PRINT=* to suppress this.

The COEFFICIENTS parameter can supply a pointer to save the coefficients of the equations.
The pointer will contain a pointer for each term. These are given suffixes 0 upwards,
corresponding to the powers of the factor in each polynomial.

By default, the equation is formed for the contrasts estimated in the most recent analysis
performed by ANOVA, but the SAVE option can be used to supply the save structure from an
earlier analysis to use instead.
APOLYNOMIAL is illustrated in Example 4.5.1, which refits the polynomial contrasts in

Example 4.5b, and then calculates their equations.

Example 4.5.1

  40  TREATMENTSTRUCTURE POL(Nitrogen; 2; Nitlev) * Variety
  41  ANOVA [PRINT=*] Yield
  42  APOLYNOMIAL Nitrogen + Variety.Nitrogen

Equation of the polynomial for Nitrogen
---------------------------------------

 79.29  + 112.42 * Nitrogen  - 64.58  * Nitrogen**2

Equations of the polynomials for Nitrogen.Variety
-------------------------------------------------

      Variety
      Victory  70.67 + 120.46 * Nitrogen - 65.62  * Nitrogen**2
  Golden rain  79.82 + 106.58 * Nitrogen - 52.08  * Nitrogen**2
   Marvellous  87.38 + 110.21 * Nitrogen - 76.04  * Nitrogen**2

4.5.2 The ADPOLYNOMIAL procedure

ADPOLYNOMIAL procedure
Plots single-factor polynomial contrasts fitted by ANOVA (R.W. Payne).

Option
SAVE = ANOVA save structure Save structure (from ANOVA) to provide details of the

analysis from which the polynomials are to be plotted;
default uses the save structure from the most recent
ANOVA

Parameters
XFACTOR = factors Factor over which the polynomial contrasts have been

formed
GROUPS = factors or pointers Factor(s) for which different polynomial coefficients

should be plotted in the same graph
TRELLISGROUPS = factors or pointers

Factor or factors for which different polynomial
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Figure 4.5.2

coefficients should be plotted in a trellis plot
TITLE = texts Title for the graph; default defines a title automatically
YTITLE = texts Title for the y-axis; default ' '
XTITLE = texts Title for the x-axis; default is to use the identifier of the

XFACTOR

PENS = variates Defines the pen to use to plot the points and/or line for
each group defined by the GROUPS factors

ADPOLYNOMIAL plots polynomials fitted in
analyses by the ANOVA directive. It also
plots the corresponding means so that you
can see how well the polynomials fit. By
default, the polynomials are plotted from
the most recent analysis performed by
ANOVA, but the SAVE option can be used to
supply the save structure from an earlier
analysis to use instead.

The XFACTOR parameter specifies the
factor over whose effects the polynomial
contrasts have been fitted. If the analysis
contains interactions between the XFACTOR
and other factors, you can plot the
polynomials for all the combinations of
levels of these other factors by setting the
GROUPS and TRELLISGROUPS parameters.
If only GROUPS is specified, all the
polynomials are plotted in a single graph.
Alternatively, you can set the
TRELLISGROUPS parameter to one or more
of the factors to produce a trellis plot; there
is then a graph for each of the combination
of levels of the trellis factors (and each of
these graphs plots the polynomials for every level of the group factors, at the relevant levels of
the trellis factors). You should set GROUPS or TRELLISGROUPS to the factor if there is only one
factor, or to a pointer containing all the factors if there are several.

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis and
the x-axis, respectively. The symbols, colours and line styles that are used in a high-resolution
plot are usually set up by ADPOLYNOMIAL automatically. If you want to control these yourself,
you should use the PEN directive to define a pen with your preferred symbol, colour and line
style, for each of the groups defined by combinations of the GROUPS factors. The pen numbers
should then be supplied to ADPOLYNOMIAL, in a variate with a value for each group, using the
PENS parameter.

Figure 4.5.2 shows a plot the polynomials fitted in Examples 4.5b and 4.5.1, produced by the
command

ADPOLYNOMIAL Nitrogen; GROUPS=Variety
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4.6 Saving information from an analysis of variance

Most of the quantities calculated during an analysis of variance can be saved in data structures
within Genstat. This allows you to write analyses where the analysis of variance itself is only
a component part. One example is the multivariate analysis of variance (6.6.1). Alternatively,
you may wish to save components of the output (such as tables of means) for plotting, or for
printing in the form required for a publication.

You can save variates containing residuals for the final error term of the model, using the
RESIDUALS parameter of ANOVA (4.1.2). The FITTEDVALUES parameter similarly allows you
to save the fitted values. Other components of the output can be saved using AKEEP (4.6.1).
ASTATUS (4.6.2) can save details of the models defined for the analysis, and ASPREADSHEET
(4.6.3) allows you to save the complete output from an analysis into a spreadsheet. 

4.6.1 The AKEEP directive

AKEEP directive
Copies information from an ANOVA analysis into Genstat data structures.

Options
FACTORIAL = scalar Limit on number of factors in a model term; default 3
STRATUM = formula Model term of the lowest stratum to be searched for

effects; default * implies the lowest stratum
SUPPRESSHIGHER = string token Whether to suppress the searching of higher strata if a

term is not found in STRATUM (yes, no); default no
TWOLEVEL = string token Representation of effects in 2n experiments

(responses, Yates, effects); default resp
RESIDUALS = variate To save residuals from the final stratum (as in the

RESIDUALS parameter of ANOVA)
FITTEDVALUES = variate To save fitted values (data values or missing value

estimates, minus the residuals from the final stratum !
as in the FITTEDVALUES parameter of ANOVA)

CBRESIDUALS = variate To save the sum of the residuals from all the strata
CBCREGRESSION = variate To save the estimates of the covariate regression

coefficients, combining information from all the strata
CBCVCOVARIANCE = symmetric matrix

Saves the variance-covariance matrix of the combined
estimates of the covariate regression coefficients

TREATMENTSTRUCTURE = formula structure
To save the treatment formula used for the analysis

BLOCKSTRUCTURE = formula structure
To save the block formula used for the analysis

AFACTORIAL = scalar To save the setting of the FACTORIAL option used in the
ANOVA command that performed the analysis

WEIGHTS = variate To save the weights used in the analysis
YVARIATE = dummy Dummy to be set to the y-variate of the analysis
LSDLEVEL = scalar Significance level (%) to use in the calculation of least

significant differences; default 5
AOVTABLE = pointer To save the analysis-of-variance table as a pointer with a

variate or text for each column (source, d.f., s.s., m.s.
etc)

EQFACTORS = factors Factors whose levels are to be assumed to be equal
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within the comparisons between means calculated for
SEMEANS

RMETHOD = string token Type of residuals to form if parameter RESIDUALS is set
(simple, standardized); default simp

EXIT = scalar Saves an exit code indicating the properties of the
design

SAVE = identifier Defines the Save structure (from ANOVA) that provides
details of the analysis; default * gives that from the most
recent ANOVA

Parameters
TERMS = formula Model terms for which information is required
MEANS = tables Table to store means for each term (available for

treatment terms only)
SEMEANS = tables Table of effective standard errors for the means, usable

for calculating standard errors for differences between
means in the table, at equal levels of the factors
specified by the EQFACTORS option

SEDMEANS = symmetric matrices Standard errors for comparisons between every pair of
entries in the table of means

VCMEANS = symmetric matrices Variances and covariances of means
EFFECTS = tables or scalars Table or scalar (for terms with 1 d.f. when

TWOLEVEL=responses or Yates) to store effects (for
treatment terms only)

PARTIALEFFECTS = tables Table or scalar (for terms with 1 d.f. when
TWOLEVEL=responses or Yates) to store partial
effects (for treatment terms only)

REPLICATIONS = tables or scalars Table to store replications or scalar if they are all equal
RESIDUALS = tables Table to store residuals (for block terms only)
DF = scalars Number of degrees of freedom for each term
LSDMEANS = symmetric matrices Least significant differences of means
DFMEANS = symmetric matrices Degrees of freedom for comparisons between every pair

of entries in the table of means
SS = scalars Sum of squares for each term
EFFICIENCY = scalars Efficiency factor for each term
VARIANCE = scalars Unit variance for the effects of each term
RTERM = formula structures Residual terms: for a treatment term this saves the

lowest stratum where the term is estimated (down to the
stratum specified by the STRATUM option); for a block
term it saves all the strata to which it would be
appropriate to compare the term

CEFFICIENCY = scalars Covariance efficiency factor for each term
CREGRESSION = variates Estimated regression coefficients for the covariates in

the specified stratum
CVCOVARIANCE = symmetric matrix

Variance-covariance matrix of the covariate regression
CSSP = symmetric matrices Covariate sums of squares and products in the specified

stratum
CONTRASTS = pointers Estimates for the fitted contrasts of each treatment term,

stored in a pointer to scalars or tables; units of the
pointer are labelled by the contrast name (as used in the
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analysis-of-variance table)
XCONTRASTS = pointers X-variates used to fit contrasts, as orthogonalized by

ANOVA, stored in a pointer to tables; units of the pointer
are labelled as for CONTRASTS

SECONTRASTS = pointers Standard errors for estimated contrasts, stored in a
pointer to scalars or tables; units of the pointer are
labelled as for CONTRASTS

DFCONTRASTS = pointers Degrees of freedom for estimated contrasts, stored in a
pointer to scalars; units of the pointer are labelled as for
CONTRASTS

CBMEANS = tables Table to store estimates of the means, combining
information from all the strata (for treatment terms only)

SECBMEANS = tables Table of standard errors for the combined means, usable
for calculating standard errors for differences between
means in the table, at equal levels of the factors
specified by the EQFACTORS option

SEDCBMEANS = symmetric matrices Standard errors for comparisons between every pair of
entries in the table of combined means

VCCBMEANS = symmetric matrices Variances and covariances of combined means
LSDCBMEANS = symmetric matrices Least significant differences of combined means
DFCBMEANS = symmetric matrices Effective degrees of freedom for comparisons between

every pair of entries in the table of combined means
CBEFFECTS = tables or scalars Table or scalar (for terms with 1 d.f. when

TWOLEVEL=responses or Yates) to store estimates of
the effects, combining information from all the strata
(for treatment terms only)

CBVARIANCE = scalars Unit variance for the combined estimates of the effects
of each term

DFCEFFECTS = scalars Effective degrees of freedom for the combined estimates
of the effects of each term

CBCEFFICIENCY = scalars Covariance efficiency factor for the combined estimates
of each term

STRATUMVARIANCE = scalars Estimates of the stratum variances (for block terms only)
COMPONENT = scalars Stratum variance components (for block terms only)
STATUS = scalars Status code describing how the term is estimated

(together with its marginal terms, if the term is a
treatment term)

AKEEP allows you to copy components of the output from an analysis of variance into standard
Genstat data structures. You can save the information from the analysis in a save structure, using
the SAVE option of ANOVA (4.1.2) and then specify the same structure in the SAVE option of
AKEEP. Alternatively, Genstat automatically stores the save structure from the last y-variate that
has been analysed, and this is used as a default by AKEEP if you do not specify a save structure
explicitly.

Several options are provided to save information about the analysis as a whole. The
RESIDUALS and FITTEDVALUES options allow variates to be specified to store the residuals and
fitted values, respectively. The residuals, like those saved by the RESIDUALS parameter of
ANOVA, are taken only from the final stratum. The RMETHOD option controls whether these are
simple residuals (like those printed by ANOVA ! the default) or whether they are standardized
according to their estimated variances. As an alternative, the CBRESIDUALS option saves
residuals that incorporate the variability from all the strata. With an orthogonal design, these are
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simply the sum of the residuals from every stratum. For a non-orthogonal design, they are the
data values minus the combined estimates of the treatment effects (4.7.1). Likewise, the
CBCREGRESSION option allows you to save estimates of covariate regression coefficients that
combine information from all the strata, and the CBCVCOVARIANCE option can save their
variances and covariances. (The estimates and their variances and covariances from each
individual stratum can be saved using the CREGRESSION and CVCOVARIANCE parameters, as
described below.)

The TREATMENTSTRUCTURE, BLOCKSTRUCTURE and WEIGHTS options save the treatment and
block formulae, and the weights variate (if any) that were used to specify the analysis. The
AFACTORIAL option can save the value used for the FACTORIAL option in the ANOVA comamnd
that did the analysis, and the YVARIATE option can be set to a dummy to point to the variate that
was analysed (i.e. the variate defined by the Y parameter of ANOVA; see 4.1.2). Information about
the properties of the design can be saved using the EXIT option, which is described in 4.7.5.

The AOVTABLE option saves the analysis-of-variance table, as a pointer with a variate or a text
for each column of the table. The pointer elements are labelled with the column labels of the
table, and the variates contain missing values where the table has blanks. These can be printed
as blanks by setting option MISSING=' ' in the PRINT directive. Example 4.6a saves and prints
the analysis-of-variance table from Examples 4.5b and 4.5.1.

Example 4.6a

  45  AKEEP       [AOVTABLE=a]
  46  PRINT       [MISSING=' '] a[1...6]; JUSTIFICATION=left,5(right);\
  47              FIELD=20,5(10); DECIMALS=0,0,1,1,2,2; SKIP=0,5(1)

a['Source']           a['d.f.']  a['s.s.']  a['m.s.']  a['v.r.'] a['F pr.']
Blocks stratum                5    15875.3     3175.1       5.28
Blocks.Wplots stratum
Variety                       2     1786.4      893.2       1.49       0.27
Residual                     10     6013.3      601.3       3.40
Blocks.Wplots.Subplots stratum
Nitrogen                      3    20020.5     6673.5      37.69       0.00
  Lin                         1    19536.4    19536.4     110.32       0.00
  Quad                        1      480.5      480.5       2.71       0.11
  Deviations                  1        3.6        3.6       0.02       0.89
Nitrogen.Variety              6      321.7       53.6       0.30       0.93
  Lin.Variety                 2      168.3       84.2       0.48       0.62
  Quad.Variety                2       11.1        5.5       0.03       0.97
  Deviations                  2      142.3       71.2       0.40       0.67
Residual                     45     7968.8      177.1
Total                        71    51985.9

The parameters of AKEEP save information about particular model terms in the analysis. The
TERMS parameter specifies a model formula, which Genstat expands to form the series of model
terms about which you wish to save information. As in ANOVA (4.1.2), the FACTORIAL option
sets a limit on the number of factors in each term. Any term containing more than that limit is
deleted. The subsequent parameters allow you to specify identifiers of data structures to store
various components of information for each of the terms that you have specified. If there are
components that are not required for some of the terms, you should insert a missing identifier
(*) at that point of the list. For example

AKEEP Source + Amount + Source.Amount; MEANS=*,*,Meangain;\
  SS=Ssource,Samount,Ssbya; VARIANCE=Vsource,*,*

sets up a table Meangain containing the source by amount table of means; it forms scalars
Ssource, Samount and Ssbya to hold the sums of squares for Source, Amount and
Source.Amount respectively, and scalar Vsource to store the unit variance for the effects of
Source.
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The structures to hold the information are defined automatically, so you need not declare them
in advance. If you have declared any of the tables already, its classification set will be redefined,
if necessary, to match the factors in the table that you wish to store. Thus Meangain here would
be redefined to be classified by the factors Source and Amount, if it had previously been
declared with some other set of classifying factors. Sizes of variates and symmetric matrices will
also be redefined if necessary.

Most of the components are self-explanatory. Tables of means and effects are described in
4.1.2; these are relevant only for treatment terms. Standard errors for a table of means can be
saved using the SEMEANS parameter. For some designs, such as split-plots, different standard
errors are needed for the means according to which pair of means is to be compared. The
EQFACTORS option allows you to specify factors within the tables of means whose levels are
assumed to be equal for the two means. Alternatively, the SEDMEANS parameter can save a
symmetric matrix containing a standard error of difference for each pair of means, the VCMEANS
parameter can save a symmetric matrix with the variances and covariances for the means, and
the LSDMEANS parameter can save a symmetric matrix containing least significant differences.
The LSDLEVEL option specifies the significance level to use; default 5(%). The DFMEANS
parameter saves a symmetric matrix with the degrees of freedom for comparing each pair of
means. The rows and columns of these matrices are labelled by the factor name and level (or
label if available) of the mean concerned.

Note: the AFMEANS procedure (4.1.5) provides an alternative way of saving predicted means
and their standard errors etc. It has the advantage over AKEEP that the term need not have been
included in the analysis. So, for example, you can obtain an A × B table of means, even if the
model contained only the A and B main effects.

Partial effects (which are also available only for treatment terms) differ from the usual effects,
presented by Genstat, only when there is non-orthogonality. The usual effects of a treatment term
are estimated after eliminating the terms that precede it in the model (4.1.1), whereas the partial
effects are those that would be estimated after eliminating the subsequent treatment terms as well
(4.7.4). The TWOLEVEL option controls what it stored for terms whose factors all have only two
levels. The settings response (the default) or Yates generate a scalar response, as described
in 4.1.3; whereas TWOLEVELS=effects produces a table of effects. Replication tables are
described in 4.1.3 and appear in the example in 4.3. The replications must be stored in a table
if the values are unequal. For equal replications you can supply either a scalar or a table, but if
the saving structure has not been declared AKEEP will define it as a scalar. Tables of residuals,
available for block terms, are illustrated in 4.1.3 and 4.2.1. The RMETHOD option controls
whether or not they are standardized.

Example 4.6b saves and prints tables of means for Variety, Nitrogen and
Variety.Nitrogen, that were discussed in Section 4.2.1 (see Example 4.2.1a).

Example 4.6b

  48  AKEEP       Nitrogen + Variety + Nitrogen.Variety;\
  49              MEANS=Nmean,Vmean,NVmean; SEMEANS=Nsem,Vsem,NVsem
  50  &           [EQFACTORS=Variety] Nitrogen.Variety; SEMEANS=NVsem_same_V
  51  PRINT       Nmean,Nsem; FIELD=8

                Nmean    Nsem
     Nitrogen
        0 cwt    79.4   3.137
      0.2 cwt    98.9   3.137
      0.4 cwt   114.2   3.137
      0.6 cwt   123.4   3.137

  52  &           Vmean,Vsem; FIELD=8
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                Vmean    Vsem
      Variety
      Victory    97.6   5.006
  Golden rain   104.5   5.006
   Marvellous   109.8   5.006

  53  &           NVmean,NVsem,NVsem_same_V; FIELD=14

      Variety       Victory
                     NVmean         NVsem  NVsem_same_V
     Nitrogen
        0 cwt          71.5         6.870         5.433
      0.2 cwt          89.7         6.870         5.433
      0.4 cwt         110.8         6.870         5.433
      0.6 cwt         118.5         6.870         5.433

      Variety   Golden rain
                     NVmean         NVsem  NVsem_same_V
     Nitrogen
        0 cwt          80.0         6.870         5.433
      0.2 cwt          98.5         6.870         5.433
      0.4 cwt         114.7         6.870         5.433
      0.6 cwt         124.8         6.870         5.433

      Variety    Marvellous
                     NVmean         NVsem  NVsem_same_V
     Nitrogen
        0 cwt          86.7         6.870         5.433
      0.2 cwt         108.5         6.870         5.433
      0.4 cwt         117.2         6.870         5.433
      0.6 cwt         126.8         6.870         5.433

Four components can be saved in scalars: sums of squares (4.1), numbers of degrees of freedom
(4.1), efficiency factors (4.7.1) and unit variances. The unit variance of a treatment term is the
residual mean square of the stratum where the term is estimated, divided by its efficiency factor
and covariance efficiency factor. Thus you can calculate the estimated variance of any of the
effects of the term by dividing its unit variance by the replication of the effect (4.1.3).

For a treatment term, the RTERM parameter can be used to save a formula containing the model
term corresponding to the lowest stratum in which it is estimated (down to and including any
stratum defined by the STRATUM option). This can then be used as the setting of the TERMS
parameter of a subsequent AKEEP statement to obtain further information about the stratum, for
example its number of residual degrees of freedom  (see Example 4.1.8). For a block term,
RTERM saves all the strata to which it would be appropriate to compare the term. So, with a block
structure of

Blocks/Plots/Subplots

the command

AKEEP Blocks + Blocks.Plots; RTERM=Rb,Rbp

would define Rb as the formula !f(Blocks.Plots), and Rbp as the formula
!f(Blocks.Plots,Subplots). Alternatively, with a block structure of

Reps/(Rows*Columns)

the command

AKEEP Reps; RTERM=Rr

would define Rr as the formula !f(Reps.Rows + Reps.Blocks).
There are three parameters that allow you to save information about the covariates (4.3). To

save the regression coefficients estimated in a particular stratum, you should specify the model
term of the stratum with the TERMS parameter and a variate with the CREGRESSION parameter.
Genstat defines the variate to have a length equal to the number of covariates, and stores the
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estimated regression coefficients of the covariates in the order in which they were listed in the
COVARIATE statement (4.3.1). For the example in 4.3.1, you could put

AKEEP Blocks.Plots; CREGRESSION=B

to save the regression coefficient estimated for the covariate in the Blocks.Plots stratum; B
will be declared implicitly as a variate of length one, as there was only one covariate. The
CVCOVARIANCE parameter saves the variances and covariances of the estimated covariate
regression coefficients, in a symmetric matrix. The CSSP parameter allows you to obtain sums
of squares and products between the covariates for the specified model term. These are arranged
in a symmetric matrix. The value in row i on the diagonal is the sum of squares for the term in
the analysis of variance that has as its y-variate the ith covariate listed in the COVARIATE
statement. The value in row i and column j is the cross-product between the effects estimated for
the term in the analysis of variance of covariate i and those estimated for the same term in the
analysis of covariate j.

Four parameters save information about contrasts (4.5). For each treatment term there will
generally be several contrasts, so the information is stored in pointers with one element for each
contrast. Example 4.6c shows how to save the estimates, the x-variates, the standard errors and
the degrees of freedom for the contrasts of Nitrogen and of Variety.Nitrogen fitted in
Example 4.6a. The structure Ncontr, for example, is defined as a pointer with three elements,
labelled 'Lin', 'Quad' and 'Deviations': Ncontr['Lin'] (that is Ncontr[1]) is a scalar containing the
estimated linear contrast of Nitrogen; Ncontr['Quad'] similarly contains the estimated quadratic
contrast; while Ncontr['Deviations'] is a one-way table, classified by Nitrogen, containing the
deviations from the fitted quadratic polynomial. Lines 56-63 of the program print the information
for each contrast, to show the structure of each identifier and what it stores.

Example 4.6c

  54  AKEEP Nitrogen+Nitrogen.Variety; XCONTRASTS=Nxvar,NVxvar; \
  55    CONTRASTS=Ncontr,NVcontr; SECONTRASTS=Nse,NVse; DFCONTRASTS=Ndf,NVdf
  56  PRINT Ncontr[1],Nse[1],Ndf[1]; FIELD=14

 Ncontr['Lin']    Nse['Lin']    Ndf['Lin']
         73.67         7.014         1.000

  57  PRINT Ncontr[2],Nse[2],Ndf[2]; FIELD=14

Ncontr['Quad']   Nse['Quad']   Ndf['Quad']
        -64.58         39.21         1.000

  58  PRINT Ncontr[3],Nse[3]; FIELD=22 & Ndf[3]; FIELD=22

               Ncontr['Deviations']     Nse['Deviations']
     Nitrogen
        0 cwt                0.1000                 3.137
      0.2 cwt               -0.3000                 3.137
      0.4 cwt                0.3000                 3.137
      0.6 cwt               -0.1000                 3.137

     Ndf['Deviations']
                 1.000

  59  PRINT Nxvar[]; FIELD=14

               Nxvar['Lin'] Nxvar['Quad'] Nxvar['Deviations']
     Nitrogen
        0 cwt       -0.3000       0.04000         1.000
      0.2 cwt       -0.1000      -0.04000         1.000
      0.4 cwt        0.1000      -0.04000         1.000
      0.6 cwt        0.3000       0.04000         1.000

  60  PRINT NVcontr[1],NVse[1]; FIELD=24 & NVdf[1]; FIELD=24
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               NVcontr['Lin.Variety']     NVse['Lin.Variety']
      Variety
      Victory                   7.417                   12.15
  Golden rain                   1.667                   12.15
   Marvellous                  -9.083                   12.15

     NVdf['Lin.Variety']
                   2.000

  61  PRINT NVcontr[2],NVse[2]; FIELD=24 & NVdf[2]; FIELD=24

              NVcontr['Quad.Variety']    NVse['Quad.Variety']
      Variety
      Victory                  -1.042                   67.91
  Golden rain                  12.500                   67.91
   Marvellous                 -11.458                   67.91

    NVdf['Quad.Variety']
                   2.000

  62  PRINT NVcontr[3],NVse[3]; FIELD=24 & NVdf[3]; FIELD=24

      Variety                 Victory
                NVcontr['Deviations']      NVse['Deviations']
     Nitrogen
        0 cwt                   0.725                   5.433
      0.2 cwt                  -2.175                   5.433
      0.4 cwt                   2.175                   5.433
      0.6 cwt                  -0.725                   5.433

      Variety             Golden rain
                NVcontr['Deviations']      NVse['Deviations']
     Nitrogen
        0 cwt                   0.083                   5.433
      0.2 cwt                  -0.250                   5.433
      0.4 cwt                   0.250                   5.433
      0.6 cwt                  -0.083                   5.433

      Variety              Marvellous
                NVcontr['Deviations']      NVse['Deviations']
     Nitrogen
        0 cwt                  -0.808                   5.433
      0.2 cwt                   2.425                   5.433
      0.4 cwt                  -2.425                   5.433
      0.6 cwt                   0.808                   5.433

      NVdf['Deviations']
                   2.000

  63  PRINT Nxvar[1,2]; FIELD=14 & NVxvar[3]; FIELD=14

               Nxvar['Lin'] Nxvar['Quad']
     Nitrogen
        0 cwt       -0.3000       0.04000
      0.2 cwt       -0.1000      -0.04000
      0.4 cwt        0.1000      -0.04000
      0.6 cwt        0.3000       0.04000

              NVxvar['Deviations']
      Variety       Victory   Golden rain    Marvellous
     Nitrogen
        0 cwt         1.000         1.000         1.000
      0.2 cwt         1.000         1.000         1.000
      0.4 cwt         1.000         1.000         1.000
      0.6 cwt         1.000         1.000         1.000
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The CBMEANS, CBSEMEANS, CBSEDMEANS, LSDCBMEANS, VCCBMEANS, DFCBMEANS,
CBEFFECTS, CBVARIANCE, DFCEFFECTS, CBCEFFICIENCY and STRATUMVARIANCES

parameters save details of estimates that combine information from all the strata of the design,
and the COMPONENT parameter saves the stratum variance components. These are explained in
4.7.1.

In designs where there is partial confounding, and treatment terms are estimated in more than
one stratum (4.7.1), options STRATUM and SUPPRESSHIGHER allow you to specify the strata
from which the information is to be taken. This is relevant to tables of effects and partial effects,
sums of squares, efficiency factors, unit variances, sums of squares and products between
covariates, and information about contrasts. By default, Genstat searches all the strata, and takes
the information from the lowest of the strata where the term is estimated. If you set the STRATUM
option, only strata down to the specified stratum are searched. By setting
SUPPRESSHIGHER=yes, you can restrict the search to only that stratum. For Example 4.7.1a,

AKEEP [STRATUM=Blocks] K.D; EFFECTS=EffKD;\
  EFFICIENCY=EfacKD

would take the effects estimated for K.D in the Blocks stratum, and put them into the table
EffKD, and it would put their efficiency factor into the scalar EfacKD.

You cannot save tables of means if you have excluded any stratum from the search. Likewise,
tables of residuals and residual sums of squares cannot be saved for any of the excluded strata.
If a term is not estimated in any of the strata that are searched, the corresponding data structures
are filled with missing values.

The STATUS parameter saves an integer code that describes the type of term, and how it is
estimated. If the term is a treatment term, the code also gives information about how its marginal
terms are estimated. (For example, the interaction term A.B has the main effects A and B as
margins.)

1 the term is a treatment term; the term itself and all of its
margins are orthogonal, and are estimated in the same
stratum.

2 the term is a treatment term; the term itself and all of its
margins have the same efficiency factor, and are estimated
in the same stratum.

3 the term is a treatment term; the term and its margins have
different efficiency factors, but are all estimated in the
same stratum.

4 the term is a treatment term; the term itself and all of its
margins are orthogonal, but are estimated in different
strata.

5 the term is a treatment term; the term itself and all of its
margins have the same efficiency factor, but are estimated
in different strata.

6 the term is a treatment term; the term and its margins have
different efficiency factors and are all estimated in
different strata.

0 the term is a treatment term; and term itself or one of its
margins is aliased.

!1 the term is an orthogonal block term.
!2 the term is a non-orthogonal block term.
* the term was not in either the block or treatment model but

all of its factors occurred somewhere in the analysis
(AKEEP gives a fault if the term contains factors that did
not occur anywhere in the analysis); all other parameters
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are then ignored for that term.
As explained in Section 4.2.1, Genstat will set up an extra "factor" denoted *Units* if the

block formula does not specify the final stratum explicitly. AKEEP allows you to refer to this
"factor", if necessary, by putting the string '*Units*' (or '*units*' or '*UNITS*') in the
TERMS formula. Thus, to save the residual sum of squares in Example 4.1 you could put

AKEEP '*Units*'; SS=RatRSS

4.6.2 The ASTATUS procedure

The ASTATUS procedure provides an alternative to AKEEP (4.6.1) for accessing details of the
models defined for ANOVA. It is particularly useful if you want to check models that have been
defined automatically, for example by the Genstat design procedures (4.9).

ASTATUS procedure
Provides information about the settings of ANOVA models and variates (R.W. Payne).

Option
PRINT = string tokens Controls printed output (y, model, weights); default

mode

Parameters
Y = pointers Pointer of length 1 to save the identifier of the y-variate

of the most recent ANOVA or that used to form INSAVE
TREATMENTSTRUCTURE = formula structures

Saves the current setting of TREATMENTSTRUCTURE or
the setting used to form INSAVE

BLOCKSTRUCTURE = formula structures
Saves the current setting of BLOCKSTRUCTURE or the
setting used to form INSAVE

COVARIATE = pointers Saves the current COVARIATE setting or the setting used
to form INSAVE

DESIGN = pointers Pointer of length 1 to save the design structure in the
most recent ANOVA or the one used to form INSAVE

WEIGHTS = pointers Pointer of length 1 to save the identifier of the variate of
weights (if any) in the most recent ANOVA or that used to
form INSAVE

SAVE = asave structures Saves the save structure from the most recent ANOVA
INSAVE = asave structures Provides a save structure from which to save Y,

TREATMENTSTRUCTURE, BLOCKSTRUCTURE and
COVARIATE; default * uses the current settings

ASTATUS allows information to be printed and saved about the model settings and other
information involved in an ANOVA analysis.

By default ASTATUS prints the current settings defined by the directives
TREATMENTSTRUCTURE, BLOCKSTRUCTURE and COVARIATE. This is governed by the default
setting, model, of the PRINT option. The y setting prints the name of the y-variate from the most
recent ANOVA, and the weights setting prints the identifier of the variate of weights (if any).
Alternatively, if the INSAVE parameter is set to the save structure from an ANOVA analysis, the
y-variate, weights and model settings will be those used to form the save structure.

If the INSAVE parameter is not set, the Y parameter can be used to save the identifier of the
y-variate most recently analysed by ANOVA, in a pointer of length one. The
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TREATMENTSTRUCTURE parameter saves the current setting defined by the
TREATMENTSTRUCTURE directive (in a formula structure), and the BLOCKSTRUCTURE parameter
similarly saves the current setting defined by the BLOCKSTRUCTURE directive. The COVARIATE
parameter saves the current setting defined by the COVARIATE directive (in a pointer). The
DESIGN parameter can save the design structure, which contains the information for the analysis,
in a pointer of length one. Finally, the WEIGHTS parameter can save the identifier of the variate
of weights in the most recent ANOVA, in a pointer of length one; the pointer is not formed if this
was an unweighted analysis.

Alternatively, if INSAVE is set to an ANOVA save structure, the parameters Y,
TREATMENTSTRUCTURE, BLOCKSTRUCTURE, COVARIATE, DESIGN and WEIGHTS save the
settings used to form INSAVE.

The SAVE parameter saves the save structure from the most recent ANOVA (regardless of the
setting of INSAVE).

Example 4.6d continues Example 4.6c, showing the models defined in the earlier parts of the
analysis (see Examples 4.2.1a and 4.5b).

Example 4.6d

  64  ASTATUS

Treatment structure: POL(Nitrogen; 2; Nitlev)*Variety
Block structure: Blocks/Wplots/Subplots
Covariates: not set
Factorial: 3

4.6.3 The ASPREADSHEET procedure

ASPREADSHEET procedure
Saves results from an analysis of variance in a spreadsheet (R.W. Payne).

Options
MEANS = pointer Pointer to tables to contain the treatment means; default

means

SEMEANS = pointer Pointer to tables to contain the effective standard errors
of treatment means; default ese

SEDMEANS = pointer Pointer to matrices to contain standard errors of
differences of treatment means; default sed

EFFECTS = pointer Pointer to tables to contain the treatment effects; default
effects

REPLICATIONS = pointer Pointer to tables of treatment replications; default
replication

RESIDUALS = variate Variate to save the residuals in the fittedvalues
page; default residuals

FITTEDVALUES = variate Variate to save the fitted values in the fittedvalues
page; default fittedvalues

AOVTABLE = pointer Pointer to a text and variates containing the information
in the analysis-of-variance table; default aovtable

COVINFORMATION = pointer Pointer to a text and variates containing the information
about the estimated covariate regression coefficients;
default cov

MVINFORMATION = pointer Pointer to a text and variates containing the information
the about estimated missing values; default missing
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EQFACTORS = factors Factors whose levels are to be assumed to be equal
within the comparisons between means, when
calculating effective standard errors

RMETHOD = string token Type of residuals to form (simple, standardized);
default simp

SPREADSHEET = string tokens What to include in the spreadsheet (aovtable,
covariates, effects, means, semeans, sedmeans,
replications, fittedvalues, missingvalues);
default aovt, cova, mean, sedm, repl, fitt, miss

OUTFILENAME = texts Name of Genstat workbook file (.gwb) or Excel (.xls or
.xlsx) file to create

SAVE = ANOVA save structure Specifies which analysis to save; default * i.e. most
recent one

No parameters

ASPREADSHEET puts results from an analysis of variance into a spreadsheet. By default the
results are from the most recent ANOVA, but you use the SAVE option to specify the save structure
from some other analysis.

The SPREADSHEET option specifies which pages of the spreadsheet to form, with settings:
aovtable analysis of variance table,
covariates estimated covariate regression coefficients and their

standard errors (if any covariates in the analysis),
effects tables of treatment effects,
means tables of treatment means,
semeans tables of effective standard errors of treatment means,
sedmeans symmetric matrices of standard errors of differences of

treatment means,
replications replication tables of treatment terms,
fittedvalues y-variate, fitted values and residuals,
missingvalues estimates for missing values (if any).

By default, SPREADSHEET = aovt, cova, mean, sedm, repl, fitt, miss.
To help avoid clashes between the columns of the spreadsheets if you want to save results

from more than one analysis, the parameters MEANS, SEMEANS, SEDMEANS, EFFECTS,
REPLICATIONS, RESIDUALS, FITTEDVALUES, AOVTABLE, COVINFORMATION and
MVINFORMATION allow you to specify identifiers for the columns (or sets of columns) that will
store the corresponding results in the current spreadsheet.

The EQFACTORS option allows you to specify factors within the tables of means whose levels
are assumed to be equal for the two means, when calculating effective standard errors.

The RMETHOD option controls whether the residuals are simple residuals (like those printed
by ANOVA ! the default) or whether they are standardized according to their variances. 

You can save the data in either a Genstat workbook (.gwb) or an Excel spreadsheet (.xls or
.xlsx), by setting the OUTFILENAME option to the name of the file to create. If the name is
specified without a suffix, '.gwb' is added (so that a Genstat workbook is saved). If
OUTFILENAME is not specified, the data are put into a spreadsheet opened inside Genstat.

So, you could save the analysis-of-variance table, means and standard errors of differences of
means in an Excel spreadsheet called Oatsresults.xlsx by giving the command

ASPREADSHEET [SPREADSHEET=aovtable,means,sedmeans;\
              OUTFILE='Oatsresults.xlsx]
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4.7 Non-orthogonality and balance

So far, all the examples in this chapter have all been orthogonal. Each treatment term has been
estimated in only one stratum. Any confounding between block and treatment terms has been
complete: for example, in the split-plot design in 4.2.1, differences between varieties were
completely confounded with whole-plots, and so were estimated only in that stratum.

The ANOVA directive can also analyse designs where there is partial confounding or where
there is non-orthogonality, provided there is still the necessary property of balance. These
concepts are discussed in this section.

4.7.1 Efficiency factors

The example below is of a design where there is partial confounding. Full details are given by
Yates (1937, page 21) and by John (1971, page 135). This is an experiment to study the effects
of three factors N, K and D on the yields of King Edward potatoes. The factor levels were as
follows.
 N: sulphate of ammonia at rates of 0 and 0.45 cwt per acre
 K: sulphate of potash at rates of 0 and 1.12 cwt per acre
 D: dung at rates of 0 and 8 tons per acre
The treatment formula (line 22) is

N * K * D  =  N + K + D + N.K + N.D + K.D + N.K.D

There were eight treatment combinations, but the blocks each had only four plots. Consequently
some of the treatment terms needed to be confounded between blocks. This was done by
confounding N.K.D between blocks 1 and 2, N.K between blocks 3 and 4, N.D between blocks
5 and 6, and K.D between blocks 7 and 8. There was thus only partial confounding: the
interaction terms could be estimated within some of the blocks but not others. To illustrate how
this was done, we can consider N.K: this represents the difference in the effect of N according
to the level of K (and vice versa). Representing the treatment combinations as triplets of letters,
giving respectively the level of N (! or n), K (! or k) and D (! or d), this can be written as

{ ('n!!' + 'n!d') ! ('!!!' + '!!d') }
 ! { ('nk!' + 'nkd') ! ('!k!' + '!kd') }
= ('n!!' + 'n!d' + '!k!' + '!kd')
 ! ('!!!' + '!!d' + 'nk!' + 'nkd')

The combinations in the first pair of brackets all occur in block 3, while those in the second pair
all occur in block 4. Thus within blocks 3 and 4 there is no information on N.K; but information
is available within the other 6 blocks. Thus N.K is estimated with efficiency 6/8 (= 0.75) in the
Blocks.Plots stratum. The difference between the mean of the yields of the plots in block 3 and
those in block 4 also provides an estimate of N.K; this represents the remaining 1/4 of the
efficiency available for estimating N.K.

If a term is orthogonal, its efficiency factor equals one: the term is estimated with full
efficiency in the stratum concerned. The efficiency factors of non-orthogonal terms are listed in
the Information Summary obtained by setting option PRINT=information in either ANOVA or
ADISPLAY (4.1.3). Terms that are aliased with earlier terms in the model (and so cannot be
estimated) are also listed: these have zero efficiency factors. You can obtain details of the model
terms with which they are aliased, using the ALIAS procedure.

The efficiency factors are not always so easy to derive and interpret as here: the original
definition by Yates (1936) was for the balanced incomplete-block design. But they always
represent the proportion of the information available to estimate a term.

Example 4.7.1a

   2  " Partially confounded factorial (Yates 1937, p.21; John 1971, p.135)."
   3  UNITS [NVALUES=32]
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   4  FACTOR [LEVELS=8] Blocks
   5  & [LEVELS=4] Plots
   6  & [LEVELS=2; LABELS=!T(_,n)] N
   7  & [LABELS=!T(_,k)] K
   8  & [LABELS=!T(_,d)] D
   9  GENERATE Blocks,Plots
  10  READ [PRINT=data,errors] N,K,D; FREPRESENTATION=labels

  11   _ _ _   n k _   n _ d   _ k d       n _ _   _ k _   _ _ d   n k d
  12   n _ _   _ k _   n _ d   _ k d       _ _ _   _ _ d   n k _   n k d
  13   n _ _   _ _ d   n k _   _ k d       _ _ _   _ k _   n _ d   n k d
  14   _ k _   _ _ d   n k _   n _ d       _ _ _   n _ _   _ k d   n k d  :
  15  VARIATE Yield
  16  READ Yield

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Yield     87.00     291.6     471.0        32         0

  21  BLOCKSTRUCTURE Blocks/Plots
  22  TREATMENTSTRUCTURE N * K * D
  23  ANOVA Yield

Analysis of variance
====================

Variate: Yield

Source of variation     d.f.       s.s.       m.s.    v.r.

Blocks stratum
N.K                        1      780.1      780.1    3.02
N.D                        1      276.1      276.1    1.07
K.D                        1     2556.1     2556.1    9.91
N.K.D                      1      112.5      112.5    0.44
Residual                   3      774.1      258.0    0.81

Blocks.Plots stratum
N                          1     3465.3     3465.3   10.86
K                          1   161170.0   161170.0  505.21
D                          1   278817.8   278817.8  873.99
N.K                        1       28.2       28.2    0.09
N.D                        1     1802.7     1802.7    5.65
K.D                        1    11528.2    11528.2   36.14
N.K.D                      1       45.4       45.4    0.14
Residual                  17     5423.3      319.0

Total                     31   466779.7

Information summary
===================

Model term                e.f.  non-orthogonal terms

Blocks stratum
  N.K                    0.250
  N.D                    0.250
  K.D                    0.250
  N.K.D                  0.250

Blocks.Plots stratum
  N.K                    0.750  Blocks
  N.D                    0.750  Blocks
  K.D                    0.750  Blocks
  N.K.D                  0.750  Blocks

* MESSAGE: the following units have large residuals.

Blocks 6     Plots 4            28.2   approx. s.e. 13.0
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Tables of means
===============

Variate: Yield

Grand mean  291.6

        N        _        n
             281.2    302.0

        K        _        k
             220.6    362.6

        D        _        d
             198.2    384.9

        N        K        _        k
        _             211.3    351.1
        n             229.9    374.1

        N        D        _        d
        _             196.5    365.9
        n             200.0    404.0

        K        D        _        d
        _             105.4    335.9
        k             291.1    434.0

                 K        _                 k
        N        D        _        d        _        d
        _             106.1    316.5    286.9    415.2
        n             104.6    355.3    295.3    452.8

Standard errors of differences of means
---------------------------------------

Table                    N           K           D           N
                                                             K
rep.                    16          16          16           8
d.f.                    17          17          17          17
s.e.d.                6.31        6.31        6.31        8.93
Except when comparing means with the same level(s) of
N                                                         9.65
K                                                         9.65

Table                    N           K           N
                         D           D           K
                                                 D
rep.                     8           8           4
d.f.                    17          17          17
s.e.d.                8.93        8.93       13.15
Except when comparing means with the same level(s) of
N                     9.65                   13.64
K                                 9.65       13.64
D                     9.65        9.65       13.64
N.K                                          14.12
N.D                                          14.12
K.D                                          14.12

(Notice in the output that the underline symbol has been used instead of minus for the zero level,
to avoid having to put quotes around the labels when they are read in lines 11 to 14.)

As we explained in 4.1.3, the means produced by setting PRINT=means in ANOVA or
ADISPLAY take the effects of each term only from the lowest stratum where it is estimated. Thus
it would estimate N.K for example only from the Blocks.Plots stratum. The different
efficiency factors for the component terms of the two-way and three-way tables of means in the
example lead to different standard errors for some comparisons. For example, the s.e.d. for the
N.K.D table is 13.15 when comparing means with different levels of all three factors, it is 13.64
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if the level of one of the factors is identical for both means, and it is 14.12 if two of the factors
are at identical levels.

The effects from the lowest stratum are usually those that are estimated most precisely; the
lower strata generally have smaller mean squares and, in most designs, terms will have higher
efficiency factors in the lower strata. Moreover, under the usual assumptions of Normality of
residuals, differences between the means can be tested by the usual t-statistics. Nevertheless, for
prediction you will often want to present means and effects that combine the information about
each term from all the strata where it is estimated. Provided the design possesses the condition
of first-order balance that is required for it to be analysed by Genstat (see 4.7.2), and provided
there is no non-orthogonality between treatment terms, you can use the PRINT settings
cbeffects and cbmeans to print combined estimates of the effects and the means respectively.
(The design is then a generally-balanced design; see Payne & Tobias 1992).

Example 4.7.1b

  24  ADISPLAY [PRINT=effects,cbeffects,cbmeans]

Tables of effects
=================

Variate: Yield

Blocks stratum
--------------

N.K response                39.5,  s.e. 22.72,  rep. 8

N.D response               -23.5,  s.e. 22.72,  rep. 8

K.D response               -71.5,  s.e. 22.72,  rep. 8

N.K.D response             -30.0,  s.e. 45.43,  rep. 4

Blocks.Plots stratum
--------------------

N response                  20.8,  s.e. 6.31,  rep. 16

K response                 141.9,  s.e. 6.31,  rep. 16

D response                 186.7,  s.e. 6.31,  rep. 16

N.K response                 4.3,  s.e. 14.58,  rep. 8

N.D response                34.7,  s.e. 14.58,  rep. 8

K.D response               -87.7,  s.e. 14.58,  rep. 8

N.K.D response             -11.0,  s.e. 29.17,  rep. 4

Tables of combined effects
==========================

Variate: Yield

N response                  20.8,  s.e. 6.36,  rep. 16,
                                   effective d.f. 17.90

K response                 141.9,  s.e. 6.36,  rep. 16,
                                   effective d.f. 17.90

D response                 186.7,  s.e. 6.36,  rep. 16,
                                   effective d.f. 17.90
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N.K response                12.3,  s.e. 12.94,  rep. 8,
                                   effective d.f. 23.89

N.D response                21.6,  s.e. 12.94,  rep. 8,
                                   effective d.f. 23.89

K.D response               -84.0,  s.e. 12.94,  rep. 8,
                                   effective d.f. 23.89

N.K.D response             -15.3,  s.e. 25.88,  rep. 4,
                                   effective d.f. 23.89

Tables of combined means
========================

Variate: Yield

        N        _        n
             281.2    302.0

        K        _        k
             220.6    362.6

        D        _        d
             198.2    384.9

        N        K        _        k
        _             213.3    349.1
        n             228.0    376.0

        N        D        _        d
        _             193.2    369.1
        n             203.3    400.7

        K        D        _        d
        _             106.3    335.0
        k             290.2    434.9

                 K        _                 k
        N        D        _        d        _        d
        _             106.2    320.3    280.2    417.9
        n             106.3    349.6    300.2    451.9

Standard errors of differences of combined means
------------------------------------------------

Table                    N           K           D           N
                                                             K
rep.                    16          16          16           8
s.e.d.                6.36        6.36        6.36        9.00
effective d.f.       17.90       17.90       17.90       17.90
Except when comparing means with the same level(s) of
N                                                         9.08
effective d.f.                                           21.76
K                                                         9.08
effective d.f.                                           21.76
Table                    N           K           N
                         D           D           K
                                                 D
rep.                     8           8           4
s.e.d.                9.00        9.00       12.78
effective d.f.       17.90       17.90       19.94
Except when comparing means with the same level(s) of
N                     9.08                   12.83
effective d.f.       21.76                   21.76
K                                 9.08       12.83
effective d.f.                   21.76       21.76
D                     9.08        9.08       12.83
effective d.f.       21.76       21.76       21.76
N.K                                          12.89
effective d.f.                               23.14
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N.D                                          12.89
effective d.f.                               23.14
K.D                                          12.89
effective d.f.                               23.14

The combined estimates of the effects of any treatment term take the form of a weighted average
of the estimates from each of the strata, where the weight for any particular stratum is given by
the efficiency factor of the term in that stratum, divided by the variance of the units of the
stratum. One common method of estimating the stratum variances simply uses the residual mean
squares. However, this method does not make use of all the available information - the
differences between the various estimates of each treatment effect also contain information about
variability. Moreover, there may sometimes be strata with no residual degrees of freedom, as in
the square lattice shown in 4.7.3. Thus, a rather more powerful algorithm is used (Payne &
Tobias 1992). This is equivalent to the use of residual maximum likelihood (REML) but, for the
generally-balanced designs on which it operates, is very much more efficient particularly in its
use of workspace (Payne & Welham 1990). The estimated stratum variances, together with the
effective degrees of freedom and the variance components of the strata, can be printed by setting
PRINT=stratumvariance. The effective degrees of freedom of the combined effects and
means are calculated from the effective degrees of freedom of the stratum variances using an
algorithm based on Satterthwaite's method (see Payne 2004).

Example 4.7.1c

  25  ADISPLAY [PRINT=stratumvariances]

Estimated stratum variances
===========================

Variate: Yield

Stratum                      variance  effective d.f.  variance component

Blocks                         371.56           6.099               11.87
Blocks.Plots                   324.10          17.901              324.10

4.7.2 Balance

The condition of first-order balance required for a design and its specification to be analysable
by the ANOVA directive is explained algorithmically by Wilkinson (1970) and mathematically by
James & Wilkinson (1971) and Payne & Tobias (1992). Essentially it is that the contrasts of each
term should all have a single efficiency factor, wherever the term is estimated. In the example
in 4.7.1, all the terms have only one degree of freedom, and so represent only one contrast. There
is thus no difficulty in verifying that the design is balanced.

Suppose instead that the treatment combinations were represented by a single factor T with
eight levels:

    FACTOR [LABELS=!T('!!!','!!d','!k!','!kd',\

                'n!!','n!d','nk!','nkd')] T

The main effect of T would not be balanced: the comparison of levels

'!!!' '!!d' '!k!' '!kd'

with

'n!!' 'n!d' 'nk!' 'nkd'

has efficiency factor one in the Blocks.Plots stratum and zero in the Blocks stratum (this
contrast is equivalent to the main effect of N in the original specification); but the comparison
of levels
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'n!!' 'n!d' '!k!' '!kd'

with

'!!!' '!!d' 'nk!' 'nkd'

has efficiency 0.25 in the Blocks stratum and 0.75 in the Blocks.Plots stratum (this is
equivalent to N.K in the original specification). Thus the main effect of T is not balanced, since
in the Block.Plots stratum some of its contrasts have efficiency factor one, while others have
efficiency factor 0.75. Genstat can detect this imbalance and will give you an error diagnostic:
see later in this section.

For the design to have been balanced for T, a further three pairs of blocks would be required.
By confounding the comparison corresponding to the main effect of N between the first pair of
extra blocks, that for K between the second pair, and that for D between the third pair, all the
contrasts of T would be estimated within twelve of the (now) fourteen blocks, and confounded
in the other two. The extended design would thus be balanced - as you may wish to verify!

To analyse the original design with a single treatment term T, a more complicated
specification is required involving pseudo-factors.

4.7.3 Pseudo-factors

Unbalanced designs with a single error term can be analysed using the AUNBALANCED procedure
(Section 4.8.1), and those with several error terms can be analysed by REML. Alternatively, you
may be able to use the pseudo-factorial operator // to partition an unbalanced treatment term
into pseudo-terms, which are each balanced ! and thus retain the more comprehensive output
available from ANOVA. In our example, there is a factor T, some of whose contrasts have
efficiency one in the Blocks.Plots stratum and zero elsewhere, while others have efficiency
0.25 in the Blocks stratum and 0.75 in the Blocks.Plots stratum. If instead of

TREATMENTSTRUCTURE T

we specify

TREATMENTSTRUCTURE T // (N + K + D + N.K + N.D + K.D)

the terms within the brackets that follow the operator // are linked to the term T as pseudo-
terms. (Without the brackets, only the term immediately after // would be linked to T.) When
the time comes for T to be fitted, the pseudo-terms N, K, D, N.K, N.D and K.D are fitted first. All
the contrasts wholly estimated in the Blocks.Plots stratum are thus removed (by N, K and D),
as well as some of the other contrasts. The remaining contrasts (denoted by T in the information
summary) are all estimated with efficiency 0.25 between blocks and 0.75 within blocks. Thus
all the pseudo-terms are balanced: those specified explicitly (N, K, D, N.K, N.D and K.D), and the
final pseudo-term which represents the contrasts not accounted for by N, K, D, N.K, N.D and K.D.
So by using the pseudo-factors, the design becomes analysable. In this example all the pseudo-
terms represent single degrees of freedom - the final pseudo-term corresponds to the contrast
represented earlier by N.K.D - but later we give an example where the pseudo-terms each have
several degrees of freedom.

The sums of squares of the pseudo-terms are automatically combined to form the sum of
squares for T in the analysis-of-variance table. Similarly the effects are all added together to form
the table of means for T.

Example 4.7.3a

  26  FACTOR [LABELS=!T('_ _ _','_ _ d','_ k _','_ k d', \
  27                    'n _ _','n _ d','n k _','n k d')] T
  28  READ [PRINT=data,error] T; FREPRESENTATION=labels

  29  '_ _ _' 'n k _' 'n _ d' '_ k d'     'n _ _' '_ k _' '_ _ d' 'n k d'
  30  'n _ _' '_ k _' 'n _ d' '_ k d'     '_ _ _' '_ _ d' 'n k _' 'n k d'
  31  'n _ _' '_ _ d' 'n k _' '_ k d'     '_ _ _' '_ k _' 'n _ d' 'n k d'
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  32  '_ k _' '_ _ d' 'n k _' 'n _ d'     '_ _ _' 'n _ _' '_ k d' 'n k d' :
  33  TREATMENTSTRUCTURE T // (N + K + D + N.K + N.D + K.D)
  34  ANOVA Yield

Analysis of variance
====================

Variate: Yield

Source of variation     d.f.       s.s.       m.s.    v.r.

Blocks stratum
T                          4     3724.9      931.2    3.61
Residual                   3      774.1      258.0    0.81

Blocks.Plots stratum
T                          7   456857.5    65265.4  204.58
Residual                  17     5423.3      319.0

Total                     31   466779.7

Information summary
===================

Model term                e.f.  non-orthogonal terms

Blocks stratum
  N.K                    0.250
  N.D                    0.250
  K.D                    0.250
  T                      0.250

Blocks.Plots stratum
  N.K                    0.750  Blocks
  N.D                    0.750  Blocks
  K.D                    0.750  Blocks
  T                      0.750  Blocks

* MESSAGE: the following units have large residuals.

Blocks 6     Plots 4            28.2   approx. s.e. 13.0

Tables of means
===============

Variate: Yield

Grand mean  291.6

        T   _ _ _   _ _ d   _ k _   _ k d   n _ _   n _ d   n k _   n k d
        N       1       1       1       1       2       2       2       2
        K       1       1       2       2       1       1       2       2
        D       1       2       1       2       1       2       1       2
            106.1   316.5   286.9   415.2   104.6   355.2   295.3   452.8

Standard errors of differences of means
---------------------------------------

Table                    T
rep.                     4
d.f.                    17
s.e.d.               13.15
Except when comparing means with the same level(s) of
N                    13.64
K                    13.64
D                    13.64
N.K                  14.12
N.D                  14.12



4.7  Non-orthogonality and balance 455

K.D                  14.12

The basic idea, then, is to use each pseudo-term to pick out a set of contrasts whose efficiency
factors are all the same, wherever they are estimated. This should be reasonably straightforward,
provided you understand how your design has been constructed. Pseudo-factors are set up
automatically by the Genstat design procedures (4.9), and can also be formed by the GENERATE
and FPSEUDOFACTORS directives (4.13.1 and 4.13.7). A further example is given below, but first
we demonstrate that Genstat can indeed detect an unbalanced design. If we do not include the
pseudo-factors, the design would be unbalanced. The error message correctly identifies T as the
unbalanced term.

Example 4.7.3b

  35  TREATMENTSTRUCTURE T
  36  ANOVA Yield

******** Fault, code AN 1, statement 1 on line 36

Command: ANOVA Yield
Design unbalanced - cannot be analysed by ANOVA.
Model term T (non-orthogonal to term Blocks) is unbalanced,
in the Blocks.Plots stratum.

The traditional example for pseudo-factors is the partially balanced lattice. This has a single
treatment factor, with number of levels equal to the square of some integer, k. To form the
design, this factor is arbitrarily represented as the factorial combinations of two pseudo-factors,
below called A and B, each with k levels. For further details see Yates (1937) or Kempthorne
(1952). The example below is a simple lattice, taken from Cochran & Cox (1957, page 406).
Here the treatment factor, Variety, has 25 levels. The correspondence between levels of
Variety and the two pseudo-factors is:

  B:   1   2   3   4   5
A:
1      1   2   3   4   5
2      6   7   8   9  10
3     11  12  13  14  15
4     16  17  18  19  20
5     21  22  23  24  25

The simple lattice has two replicates, each with k blocks of k plots: the block model is

Rep/Block/Plot = Rep + Rep.Block + Rep.Block.Plot

The main effect of A is confounded with the blocks in the first replicate: block 1 has the five
levels of Variety that correspond to level 1 of A, block 2 has those with level 2, and so on.
Similarly, B is confounded with the blocks of the second replicate. Thus A and B are each
confounded with blocks in one out of the two replicates. So they have efficiency 0.5 in the
Rep.Block (or blocks-within-replicates) stratum, and 0.5 in the Rep.Block.Plot (or plots-
within-blocks) stratum. The treatment model is

Variety//(A + B)

The partially confounded parts of Variety are specified by the two pseudo-terms, A and B, and
will be fitted first. The remaining contrasts of Variety correspond to the interaction between
A and B, which is all estimated in the Rep.Block.Plot stratum. This final pseudo-term is thus
also balanced, so the design can be analysed. The analysis-of-variance table in Example 4.7.3c
differs from that presented by Cochran & Cox (1957); they do not present the treatment sums
of squares between and within blocks, but merely a sum of squares unadjusted for blocks.
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Example 4.7.3c also prints the table of means combining information from both the Rep.Block
and the Rep.Block.Plot strata (4.7.1), and the stratum variances and variance components.

Example 4.7.3c

   2  " 5x5 Simple lattice (Cochran & Cox 1957, p.406)."
   3  UNITS [NVALUES=50]
   4  FACTOR [LEVELS=2] Rep
   5  & [LEVELS=5] Block,Plot,A,B
   6  & [LEVELS=25; VALUES=(1...25),(1,6...21),(2,7...22), \
   7     (3,8...23),(4,9...24),(5,10...25)] Variety
   8  GENERATE Rep,Block,Plot
   9  & [TREATMENTS=Variety; REPLICATES=Rep; BLOCKS=Block] A,B
  10  READ Yield

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Yield     4.000     13.62     30.00        50         0

  13  BLOCKSTRUCTURE Rep/Block/Plot
  14  TREATMENTSTRUCTURE Variety//(A+B)
  15  ANOVA [PRINT=aovtable,cbmeans,stratumvariances] Yield

Analysis of variance
====================

Variate: Yield

Source of variation     d.f.       s.s.       m.s.    v.r.

Rep stratum                1     212.18     212.18

Rep.Block stratum
Variety                    8     350.00      43.75

Rep.Block.Plot stratum
Variety                   24     711.12      29.63    2.17
Residual                  16     218.48      13.65

Total                     49    1491.78

Tables of combined means
========================

Variate: Yield

  Variety        1        2        3        4        5        6        7
        A        1        1        1        1        1        2        2
        B        1        2        3        4        5        1        2
             19.07    16.97    14.65    14.77    12.85    13.17     9.07

  Variety        8        9       10       11       12       13       14
        A        2        2        2        3        3        3        3
        B        3        4        5        1        2        3        4
              6.75     8.37     8.45    23.55    12.46    12.63    20.75

  Variety       15       16       17       18       19       20       21
        A        3        4        4        4        4        4        5
        B        5        1        2        3        4        5        1
             19.33    12.62    10.53    10.70     7.32    11.40    11.63

  Variety       22       23       24       25
        A        5        5        5        5
        B        2        3        4        5
             18.53    12.20    17.33    15.40
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Standard errors of differences of combined means
------------------------------------------------

Table              Variety
rep.                     2
s.e.d.               4.234
effective d.f.       18.88
Except when comparing means with the same level(s) of
A                    3.974
effective d.f.       18.01
B                    3.974
effective d.f.       18.01

Estimated stratum variances
===========================

Variate: Yield

Stratum                      variance  effective d.f.  variance component

Rep                           212.180           1.000               4.015
Rep.Block                     111.805           7.129              19.630
Rep.Block.Plot                 13.655          16.871              13.655

Example 4.7.3c also illustrates how to use the GENERATE directive (line 8) to form the values
of pseudo-factors; the details are explained in 4.13.1.

4.7.4 Non-orthogonality between treatment terms

The examples earlier in this section illustrate non-orthogonality between treatment and block
terms. Balanced designs can also occur where the non-orthogonality is between treatment terms.
However the interpretation of the analysis requires more care; indeed there may be information
that Genstat is unable to calculate. (Similar difficulties occur in ordinary regression with
observational data, see Chapter 8: usually the explanatory variables will not be orthogonal to
each other and so their sums of squares, and thus the importance that may be ascribed to them,
will depend on the order in which they are fitted.)

Suppose that the treatment model is

A + B + C

that B is non-orthogonal to A, and that C is non-orthogonal to both A and B. Genstat fits the model
sequentially. Thus the sum of squares produced for A is for A ignoring B and C: no account is
taken of these two factors, which are still to be fitted. With B, A has already been fitted and thus
eliminated, whereas C has not. So the sum of squares produced for B is for B eliminating A and
ignoring C. The sum of squares for C, which is fitted last, is eliminating both A and B.

Each sum of squares can be expressed as the difference between the residual sums of squares
before and after fitting a particular term. So the sums of squares that are presented by Genstat
will automatically add to the total sum of squares. Examining these enables you to check whether
any of the terms in the model has an effect. However, to be sure that there is an effect of A, for
example, that cannot be explained by B and C requires the sum of squares for A eliminating B and
C. To obtain this you could redefine the treatment model as either

B + C + A

or

C + B + A

but the design would not necessarily be balanced according to these specifications.
Similarly, the effects estimated for each term are eliminating those terms fitted before it, and

ignoring those that are still to be fitted. Partial effects, defined as the effects of a term
eliminating all the other treatment terms, are calculated during the analysis and can be obtain
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using AKEEP (4.6.1).
A table of means for A.B, if this were in the model, would require the effects for A eliminating

B, those for B eliminating A, and those for the interaction A.B. However, with the treatment
model  A + B + C,  the necessary effects for A are not available. Consequently, no means are
presented for terms that contain mutually non-orthogonal margins (like A and B for the table
A.B).

A maximum of 10 mutually non-orthogonal terms is allowed. For example, term T[10] may
be non-orthogonal to T[9], which is non-orthogonal to T[8], and so on down to term T[2],
which is non-orthogonal to term T[1]; but to include an extra term T[11] in the sequence would
exceed the limit. This limit should be sufficient for any designed experiment. Data with many
non-orthogonal terms are, in any case, analysed more efficiently by the regression directives
described in Chapter 8.

Note that, if the terms A, B and C here had been orthogonal, the sum of squares and effects
obtained for any one of them would remain the same irrespective of which of the other two terms
had been fitted. For example, the sum of squares for A ignoring B and C would be identical to that
for A eliminating B and C. Thus each of these three terms could be assessed independently,
without regard to the other two. If two terms are far from orthogonal, you may find that the
effects of either term ignoring the other are significant, but that neither set of effects is
significant when the other term is eliminated. Deciding which of the terms are important may
then be very difficult, and you may have to recommend that another experiment be done. This
illustrates that orthogonality between treatment terms is not merely a convenience for making
the computations more efficient: it also greatly simplifies the interpretation of the results.

4.7.5 The method of analysis

In this subsection we briefly describe the algorithm that is used to do the analysis of variance.
However, for most purposes you will not need this information.

The model formulae defined by the BLOCKSTRUCTURE and TREATMENTSTRUCTURE are
interpreted by an extension of the algorithm of Rogers (1973); further details are given by
Wilkinson & Rogers (1973) and Payne (1990).

The method used to do the analysis is described in detail by Payne & Wilkinson (1977),
Wilkinson (1970) and Payne & Tobias (1992). It operates on a working vector which initially
contains the data values, and finally contains the residuals. The terms in the model are fitted by
a series of sweep operations. Each sweep estimates the effects of a term, and then subtracts them
from the current working vector, which then becomes the working vector for the next sweep. The
first sweep is for the grand mean. The block terms are fitted next, to give an initial partitioning
into strata. Then the treatments are fitted within each stratum.

If a term is orthogonal, its estimated effects are simply the corresponding table of means
calculated from the current working vector. If the term is non-orthogonal to any of the terms
already fitted, some of the information about the term is unavailable, and its effects are the totals
calculated from the current vector, divided by its replication and efficiency factor. For the term
to be balanced, the information still available must be the same for all the contrasts between the
effects of the term, so that there is a single efficiency factor for all the contrasts. If the term is
orthogonal, the efficiency factor is one. A zero efficiency factor indicates that the term is
completely aliased with earlier terms in the model, and so cannot be estimated.

A sweep for a non-orthogonal term reintroduces effects for the terms to which it is non-
orthogonal. Before sweeping for the next term in the model, these effects are removed by a
sequence of re-analysis sweeps for the terms concerned. If any term in the re-analysis sequence
is itself non-orthogonal, it must itself be followed by its own re-analysis sequence, and so on.
Genstat allows for re-analysis sequences to be nested only ten deep, which is why there is the
limit of ten mutually non-orthogonal terms (4.7.4).

When there are several strata, the analysis of each one is introduced by a special sweep known
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as a pivot, in which the value in each unit of the working vector is replaced by the corresponding
effect calculated for the block term of the stratum. During the analysis of a stratum, the re-
analysis sweeps for its own block term take the form of recalculating the effects and repeating
the pivot.

Procedure ASWEEP, which can perform all these types of sweep, is provided in the Procedure
Library for those who wish to study the process further.

The algorithm, unlike multiple regression algorithms, does not distinguish between the
individual contrasts of each term (unless you partition it up into pseudo-terms: 4.7.3). This
makes the computations more efficient, but it means that only balanced terms can be fitted.

The design can be analysed if all the terms in the model are balanced: that is if they each have
a single efficiency factor for their effects, in any stratum where they are estimated. The design
is then said to have first-order balance with respect to the specified model (Wilkinson 1970,
James & Wilkinson 1971, Payne & Tobias 1992): for a brief description, see 4.7.2.

A further consequence of the way in which the effects of each terms are all fitted together is
that, if any part of a term is present in a stratum, Genstat must assume that all its effects can be
estimated there. Thus if a term is only partially estimable in a stratum (due to partial aliasing or
to partial confounding), the degrees of freedom will be incorrect. In such situations Genstat
prints a warning diagnostic. To obtain an analysis with the correct numbers of degrees of
freedom you should use pseudo-factors (4.7.3) to identify the parts of a term that are estimated
in the different strata.

Genstat determines the structure of the design by a process known as the dummy analysis
(4.1.2). This is similar to the analysis of the data, but involves extra sweeps to detect whether
each term can be estimated in a particular stratum, and to determine its efficiency factor there.
In these sweeps, a near-zero sum of squares is taken to indicate that the term cannot be estimated.
However the test cannot be against an exact value of zero, because computer calculations always
involve errors of round-off. Thus Genstat tests against a number slightly larger than zero; this
zero limit is calculated as the total sum of squares in the working variate (after removing the
grand mean) multiplied by the first element of the variate specified in the TOLERANCE option of
ANOVA (4.1.2). By default, this first element contains the value 10!7. A similar limit checks for
zero sums of squares in the analysis of the data, but here the multiplier is given in the second
element of the TOLERANCE variate; the default value is 10!9.

The working vector for the dummy analysis contains random values from a Cauchy
distribution. The starting value for their generation is set by the SEED option of ANOVA (4.1.2).
Thus if you have doubts about a particular dummy analysis, for example if you think that a term
is incorrectly listed as aliased, you can change the starting value and repeat the analysis with a
different working vector.

A simpler and quicker form of the dummy analysis is available for designs that are orthogonal,
and for which all the effects of each term have equal replication. (An orthogonal design is one
in which each term has efficiency factor either zero or one in each stratum.) This incorporates
a check which will detect any non-orthogonality, unless the design is particularly complicated
and terms are aliased. The ORTHOGONAL option of ANOVA (4.1.2) allows you to specify whether
non-orthogonality should cause Genstat to switch to the full dummy analysis, or to terminate the
analysis with an error diagnostic.

You can use the EXIT option of ANOVA or AKEEP to save an "exit code" summarizing the
properties of the design as determined by the dummy analysis:

0 design orthogonal;
1 design has general balance (blocks terms mutually

orthogonal, treatment terms mutually orthogonal, some
treatment terms non-orthogonal to the block terms);

2 blocks terms mutually orthogonal, treatment terms non-
orthogonal;
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3 block terms non-orthogonal, treatment terms orthogonal;
4 block terms non-orthogonal, treatment terms non-

orthogonal;
* design unbalanced (ANOVA failed to analyse it).

The final code, *, occurs only with ANOVA. AKEEP will be unavailable if ANOVA has failed.

4.7.6 Screening tests for unbalanced designs

ASCREEN procedure
Performs screening tests for designs with orthogonal block structure (R.W. Payne).

Options
PRINT = string tokens Which tests to print (conditional, marginal,

efficiency); default cond, marg
FACTORIAL = scalar Limit on the number of factors in each treatment term;

default 3
EXCLUDEHIGHER = string token Whether to exclude higher-order interactions in the

initial model for the conditional test of each term (yes,
no); default no

FORCED = formula Terms that must be included (together with any
covariates) in the initial models for every term; default *
i.e. none

Parameter
Y = variates Variates to be analysed

ASCREEN can be used to assess the treatment terms in an analysis of variance when the design
is unbalanced but its error terms that are all orthogonal to one another. This includes any design
with a hierarchical block structure, for example

Blocks / Plots

or

Replicates / Wholeplots / Subplots

ASCREEN thus provides a way of testing treatment terms in designs that cannot be analysed by
ANOVA. Once ASCREEN has been used to decided which terms need to be included in the
treatment model, the treatment effects and means can be estimated using REML (Chapter 5).

Before using ASCREEN, the block and treatment models for the design must be defined by the
BLOCKSTRUCTURE and TREATMENTSTRUCTURE directives, in exactly the same way as for an
analysis by ANOVA. As in ANOVA, the FACTORIAL option sets a limit on number of factors in each
treatment term (default 3). You can also define covariates using the COVARIATE directive. The
y-variate is specified by the Y parameter of ASCREEN.
ASCREEN forms marginal and conditional tests for the treatment terms like those produced by

the RSCREEN procedure (3.2.9). These are produced for the analysis of each stratum of the design
(i.e. for the variation associated with each error term). The PRINT option has settings
conditional and marginal to control which tests are produced if there is more than one error
term; by default both are printed. However, if there is only one error term, ASCREEN uses
procedure RSCREEN, which always prints both. There is also a setting, efficiency, which
prints the minimum, maximum and harmonic mean efficiency factor of the terms in each of the
strata if there is more than one. These efficiency factors show the amount of information
available to construct the marginal test for each of the terms in the strata where it can be
estimated. The harmonic mean is presented, rather than an ordinary average, as this corresponds
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to the average variance of differences amongst the effects of the term (remember that the
variance is proportional to the reciprocal of the efficiency factor).

In a marginal test, each term is assessed by adding it to the simplest possible model. So, with
a treatment model of

A + B + C + D + A.B + A.C + A.D + B.C + C.D + A.B.C + A.B.D +
A.C.D + B.C.D + A.B.C.D

the main effect of A is added it to the null model, while the interaction term A.B is added to a
model containing only the main effects of A and B.

In a conditional test, each term is added to the most complex possible model. So the main
effect A is added to an initial model excluding any term that has A as one of its margins. A is a
margin of any term that contains A as one of its factors. So the terms to exclude for A are A.B,
A.C, A.D, A.B.C, A.B.D, A.C.D and A.B.C.D. Similarly the interaction A.B is added to a
model excluding any term that has A.B as a margin; i.e. any term that contains A and B amongst
its factors. So A.B.C, A.B.D and A.B.C.D are excluded with A.B. The other terms to be
included in the initial model depend on the setting of the EXCLUDEHIGHER option. With the
default setting of no, all other terms are included in the initial model. So, the initial model for
A would be

B + C + D + B.C + C.D + B.C.D

Alternatively, if EXCLUDEHIGHER=yes, the initial model contains only terms with no more
factors than the term being tested. So, the initial model for A would be

B + C + D

The FORCED option allows you to specify a model formula with terms that must be included

in the initial model for the conditional and marginal tests of every treatment term. The forced
model automatically includes any covariates.

Example 4.7.6 continues the analysis of Example 4.7.1, reinstating the original treatment
formula. As the treatments are orthogonal to each other, the first ASCREEN analysis generates the
marginal and conditional variance ratios are identical (and are the same as those in the analysis-
of-variance table in Example 4.7.1a). Only blocks 1, 3, 5 and 7 are used for the second analysis,
so that the treatments become mutually non-orthogonal. As there are no residual degrees of
freedom in the Blocks stratum, no tests are made.

Example 4.7.6

  37  TREATMENTSTRUCTURE N * K * D
  38  ASCREEN  Yield

Screening tests for designs with orthogonal block structure
===========================================================

Y-variate: Yield

Blocks stratum
--------------

Term   Marginal v.r.  d.f.    pr. Conditional v.r.  d.f.    pr.
N.K             3.02     1  0.180             3.02     1  0.180
N.D             1.07     1  0.377             1.07     1  0.377
K.D             9.91     1  0.051             9.91     1  0.051
N.K.D           0.44     1  0.556             0.44     1  0.556

Residual sum of squares: 774.1
Residual degrees of freedom: 3

Blocks.Plots stratum
--------------------
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Term   Marginal v.r.  d.f.    pr. Conditional v.r.  d.f.    pr.
N              10.86     1  0.004            10.86     1  0.004
K             505.21     1 <0.001           505.21     1 <0.001
D             873.99     1 <0.001           873.99     1 <0.001
N.K             0.09     1  0.770             0.09     1  0.770
N.D             5.65     1  0.029             5.65     1  0.029
K.D            36.14     1 <0.001            36.14     1 <0.001
N.K.D           0.14     1  0.711             0.14     1  0.711

Residual sum of squares: 5423
Residual degrees of freedom: 17

  39  " With only blocks 1, 3, 5 & 7, the treatments become non-orthogonal."
  40  RESTRICT Yield; Blocks.IN.!(1,3,5,7)
  41  ASCREEN  Yield

Screening tests for designs with orthogonal block structure
===========================================================

Y-variate: Yield

Blocks stratum
--------------

Residual sum of squares: 0
Residual degrees of freedom: 0

Blocks.Plots stratum
--------------------

Term   Marginal v.r.  d.f.    pr. Conditional v.r.  d.f.    pr.
N              28.96     1  0.002             3.81     1  0.099
K              95.80     1 <0.001           244.20     1 <0.001
D             293.13     1 <0.001           381.44     1 <0.001
N.K            33.69     1  0.001             0.07     1  0.801
N.D             0.34     1  0.583             2.22     1  0.187
K.D            43.20     1 <0.001            10.41     1  0.018

Residual sum of squares: 1716
Residual degrees of freedom: 6

4.8 Unbalanced designs

The ANOVA directive analyses only balanced designs or, more accurately, only designs with first-
order balance, as explained in Section 4.7.2. However, you do not need to master this as ANOVA
itself detects when a design is unbalanced, and gives a failure diagnostic. If this happens with
a design with a single error term, you can analyse it instead using the AUNBALANCED procedure
which carries out analysis of variance using the Genstat regression facilities.

Unbalanced designs with several error terms should be analysed using the commands for REML
analysis of linear mixed models (Chapter 5). However, if the additional random terms contain
very little information about the treatments, it may be more convenient (and equally effective)
to treat these as fixed nuisance terms, and use AUNBALANCED. Decisions like this can be made
using the  AOVANYHOW procedure, described in Section 4.8.7. Finally, if your design is detected
as being unbalanced but you feel that is should be balanced, you can use the AN1ADVICE
procedure to see if this may have been caused by an error in the data (4.8.8).
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4.8.1 The AUNBALANCED procedure

AUNBALANCED procedure
Performs analysis of variance for unbalanced designs (R.W. Payne).

Options
PRINT = string tokens Controls printed output from the analysis (aovtable,

effects, means, residuals, screen, %cv); default
aovt, mean

FACTORIAL = scalar Limit on number of factors in a treatment term; default 3
PFACTORIAL = scalar Limit on number of factors in printed tables of predicted

means; default 3
NOMESSAGE = string tokens Which warning messages to suppress (dispersion,

leverage, residual, aliasing, marginality,
vertical, df, inflation); default * i.e. none

FPROBABILITY = string token Printing of probabilities for variance ratios in the
analysis-of-variance table (yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-tests of effects (yes, no);
default no

PLOT = string tokens Which residual plots to provide (fittedvalues,
normal, halfnormal, histogram); default * i.e. none

COMBINATIONS = string token Factor combinations for which to form predicted means
(present, estimable); default esti

ADJUSTMENT = string token Type of adjustment to be made when predicting means
(marginal, equal, observed); default marg

WEIGHTS = variate Weights for each unit; default * i.e. all units with weight
one

PSE = string tokens Types of standard errors to be printed with the predicted
means (differences, alldifferences, lsd,
alllsd, means, ese); default diff

LSDLEVEL = scalar Significance level (%) for least significant differences;
default 5

RMETHOD = string token Type of residuals to plot (simple, standardized);
default simp

Parameters
Y = variates Data values to be analysed
RESIDUALS = variates Variate to save the residuals from each analysis
FITTEDVALUES = variates Variate to save the fitted values from each analysis
SAVE = identifiers To save details of each analysis to use subsequently with

the AUDISPLAY procedure

The use of AUNBALANCED is similar to ANOVA (4.1.2). The treatment terms to be fitted must be
specified, before calling the procedure, by the TREATMENTSTRUCTURE directive (4.1.1). You can
specify covariates to be included in the analysis, using the COVARIATE directive (4.3).
AUNBALANCED will also take account of any blocking structure specified by the
BLOCKSTRUCTURE directive (4.2), but it does not use this to generate a "stratified analysis" with
several error terms like those produced by ANOVA, but merely treats the blocking terms as
"nuisance" terms to be removed in the analysis before assessing the treatment terms; see
Example 4.8.1b.
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The parameters of the procedure are identical to those of ANOVA. The variates to be analysed
are specified by the Y parameter. If the Y variate is restricted, only the units not excluded by the
restriction will be analysed. Residuals and fitted values can be saved using the RESIDUALS and
FITTEDVALUES parameters respectively. Finally, the SAVE parameter allows details of the
analysis to be saved so that further output can be obtained using the AUDISPLAY procedure.
(Note that this is a regression save structure, not an ANOVA structure, so it cannot be used with
the directives ADISPLAY or AKEEP.) 

Printed output is controlled by the PRINT option, with settings: aovtable to print the
analysis-of-variance table, effects to print the effects (as estimated by Genstat regression; see
Section 3.3.3), means to print tables of predicted means with standard errors, residuals to
print residuals and fitted values, screen to print "screening" tests for treatment terms, and %cv
to print the coefficient of variation. The default is to print the analysis-of-variance table and
tables of means.

The FACTORIAL option, as in ANOVA, sets a limit on the number of factors that a higher-order
term, such as an interaction, can contain; any terms with more factors are deleted from the
analysis. Similarly, the PFACTORIAL option limits the number of factors in terms for which
predicted means are printed. The WEIGHTS option allows a variate of weights to be specified for
a weighted analysis of variance. Probabilities can be printed for variance ratios by setting option
FPROBABILITY=yes, and probabilities for t-tests of effects by setting option
TPROBABILITY=yes. The NOMESSAGE option allows various warning messages (produced by
the FIT directive) to be suppressed, and the PLOT option allows various residual plots to be
requested: fittedvalues for a plot of residuals against fitted values, normal for a Normal
plot, halfnormal for a half Normal plot, and histogram for a histogram of residuals. By
default, simple residuals are plotted, but you can set option RMETHOD=standardized to plot
standardized residuals instead.

Tables of means are calculated using the PREDICT directive (see Section 3.3.4). These are
illustrated in Example 4.8.2 below. The first step (A) of the calculation forms the full table of
predictions, classified by every factor in the model. The second step (B) averages the full table
over the factors that do not occur in the table of means. The COMBINATIONS option
specifies which cells of the full table are to be formed in Step A. The default setting,
estimable, fills in all the cells other than those that involve parameters that cannot be
estimated, for example because of aliasing. Alternatively, setting COMBINATIONS=present
excludes the cells for factor combinations that do not occur in the data. The ADJUSTMENT option
then defines how the averaging is done in Step B. The default setting, marginal, forms a table
of marginal weights for each factor, containing the proportion of observations with each of its
levels; the full table of weights is then formed from the product of the marginal tables. The
setting equal weights all the combinations equally. Finally, the setting observed uses the
WEIGHTS option of PREDICT to weight each factor combination according to its own individual
replication in the data.

The PSE option controls the types of standard errors that are produced to accompany the tables
of means, with settings:

differences summary of standard errors for differences between pairs
of means;

alldifferences standard errors for differences between all pairs of means;
lsd summary of least significant differences between pairs of

means;
alllsd least significant differences between all pairs of means;
means standard errors of the means (relevant for comparing them

with zero);
ese approximate effective standard errors ! these are formed

by procedure SED2ESE with the aim of  allowing good
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approximations to the standard errors for differences to be
calculated by the usual formula of sedi,j = SQRT( esei

2 +
esej

2 ).
The default is differences. The LSDLEVEL option sets the significance level (as a percentage)
for the least significant differences.

Example 4.8.1a analyses results from an experiment to study the effects of factors A, B and C
on the yield Y of a production process. The intention was originally to run the experiment in two
separate days, and to have two observations of each treatment combination on each day.
However, due to time constraints, there were several combinations (chosen at random) in each
of the days that could only be performed once. As a result of this unequal replication the design
is unbalanced and, if we attempt to analyse it by ANOVA, we obtain a fault message reporting that
the design is unbalanced (see the start of Example 4.8.1a). So instead, in line 6, we use
AUNBALANCED.

Example 4.8.1a

   2  FILEREAD [PRINT=summary; NAME='product.dat'] Day,A,B,C,Y;\
   3    FGROUP=4(yes),no

Summary
-------

The file product.dat is assumed to contain 5 structure(s), with one value for
each structure on each record.

The file contains 67 values for each of the following structures:

  Identifier      Type   Missing
         Day    factor         0
           A    factor         0
           B    factor         0
           C    factor         0
           Y   variate         0

   4  TREATMENTSTRUCTURE Day+A*B*C
   5  ANOVA Y

******** Fault 1, code AN 1, statement 1 on line 5

Command: ANOVA Y
Design unbalanced - cannot be analysed by ANOVA
Model term A.B (non-orthogonal to term Day) is unbalanced.

   6  AUNBALANCED [PRINT=aov; FPROBABILITY=yes] Y

Analysis of an unbalanced design using Genstat regression
=========================================================

Variate: Y

Accumulated analysis of variance
--------------------------------

Change                      d.f.         s.s.         m.s.      v.r.  F pr.
+ Day                          1        914.0        914.0      3.67  0.061
+ A                            2       1706.8        853.4      3.42  0.041
+ B                            2        418.8        209.4      0.84  0.438
+ C                            1       1065.9       1065.9      4.28  0.044
+ A.B                          4       1166.0        291.5      1.17  0.336
+ A.C                          2       2456.7       1228.3      4.93  0.011
+ B.C                          2        284.4        142.2      0.57  0.569
+ A.B.C                        4       1397.4        349.4      1.40  0.248
Residual                      48      11960.4        249.2
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Total                         66      21370.4        323.8

AUNBALANCED uses the Genstat regression directives to fit the model, and so it produces an
accumulated analysis-of-variance, like those in Sections 3.2 and 3.3, indicating the order in
which the terms were fitted. The order here is determined by the order in the
TREATMENTSTRUCTURE directive. We have specified the term Day first there because this is a
nuisance term, reflecting random variability which we want to eliminate before we assess the
treatments. The +A line then gives the (main) effect of A after eliminating Day. The +B line gives
the main effect of B, eliminating Day and A, and so on. Each line in the table presents the effect
of a particular term, eliminating the terms in the lines above, but ignoring the terms in the lines
below. (This is technically true also for the analysis-of-variance tables produced by ANOVA, but
generally the treatment terms in balanced designs are orthogonal, and the order of fitting does
not matter; see Section 4.7.4 for more details.) Here the treatment terms are non-orthogonal, and
we may obtain different sums of squares if they are fitted in a different order: for example if we
change the order of the treatment factors to be C*A*B, the sums of squares for A, B and C will
be 1699.1, 429.4 and 1063.0 respectively (see Example 4.8.1b). These results would lead to the
same conclusions to those from Example 4.8.1a (namely that there are main effects of A and C,
and an A by C interaction), but in a design with a greater degree of non-orthogonality you would
be well advised to investigate several orderings.

Alternatively, AUNBALANCED can print screening tests (produced using the procedure
RSCREEN, described in Section 3.2.9) which are based on the two most relevant orderings for
each term. Marginal tests assess the effect of adding each term to the simplest possible model:
so, here Day, A, B and C are added to a model that contains no other terms, A.B is added to a
model containing only A and B (as an interaction cannot be fitted before its main effects), and
so on. Conditional tests assess the effect of adding each term to the fullest possible model (i.e.
a model containing all terms other than those to which the term is marginal): so, for example,
A is added to a model containing Day, B, C and B.C (that is, all the terms except the interactions
involving A).

If there are block terms or covariates, these are fitted (in that order) before the treatment terms.
Any block terms and covariates are also included in the models to which terms are added for the
marginal tests (as well as in those for the conditional tests). As already mentioned, Day here is
a nuisance term. By specifying this in the BLOCKSTRUCTURE statement in line 7 of Example
4.8.1b, we ensure that it is removed before any testing of the treatment terms. No screening tests
are now done for Day, and the marginal tests for A, B and C now assess the effect of adding these
terms to a model that contains only Day, the marginal test for A.B assesses the effect of adding
A.B to a model that contains Day, A and B, and so on. Example 4.8.1b also shows the effect of
specifying the treatment terms in a different order, C*A*B instead of A*B*C.

Example 4.8.1b

   7  BLOCKSTRUCTURE Day
   8  TREATMENTSTRUCTURE C*A*B
   9  AUNBALANCED [PRINT=aov,screen; FPROBABILITY=yes] Y

Screening of terms in an unbalanced design
==========================================

Variate: Y

Marginal and conditional test statistics and degrees of freedom
---------------------------------------------------------------

    degrees of freedom for denominator (full model): 48
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 term     mtest  mdf     ctest  cdf
    C      4.27    1      4.78    1
    A      3.42    2      3.47    2
    B      0.76    2      0.84    2

 term     mtest  mdf     ctest  cdf
  C.A      5.25    2      4.81    2
  C.B      0.71    2      0.57    2
  A.B      1.04    4      1.00    4

 term     mtest  mdf     ctest  cdf
C.A.B      1.40    4      1.40    4

P-values of marginal and conditional tests
------------------------------------------

 term     mprob     cprob
    C     0.044     0.034
    A     0.041     0.039
    B     0.474     0.439

 term     mprob     cprob
  C.A     0.009     0.013
  C.B     0.498     0.569
  A.B     0.395     0.415

 term     mprob     cprob
C.A.B     0.248     0.248

Analysis of an unbalanced design using Genstat regression
=========================================================

Variate: Y

Accumulated analysis of variance
--------------------------------

Change                      d.f.         s.s.         m.s.      v.r.  F pr.
+ Day                          1        914.0        914.0      3.67  0.061
+ C                            1       1063.0       1063.0      4.27  0.044
+ A                            2       1699.1        849.6      3.41  0.041
+ B                            2        429.4        214.7      0.86  0.429
+ C.A                          2       2605.7       1302.9      5.23  0.009
+ C.B                          2        301.9        151.0      0.61  0.550
+ A.B                          4        999.4        249.9      1.00  0.415
+ C.A.B                        4       1397.4        349.4      1.40  0.248
Residual                      48      11960.4        249.2

Total                         66      21370.4        323.8

4.8.2 The AUDISPLAY procedure

AUDISPLAY procedure
Produces further output for an unbalanced design (after AUNBALANCED) (R.W. Payne).

Options
PRINT = string tokens Controls printed output from the analysis (aovtable,

effects, means, residuals, %cv); default aovt,
mean

PFACTORIAL = scalar Limit on number of factors in printed tables of predicted
means; default 3

FPROBABILITY = string token Printing of probabilities for variance ratios in the
analysis-of-variance table (yes, no); default no
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TPROBABILITY = string token Printing of probabilities for t-tests of effects (yes, no);
default no

PLOT = string tokens Which residual plots to provide (fittedvalues,
normal, halfnormal, histogram); default * i.e. none

COMBINATIONS = string token Factor combinations for which to form predicted means
(present, estimable); default esti

ADJUSTMENT = string token Type of adjustment to be made when predicting means
(marginal, equal, observed); default marg

PSE = string tokens Types of standard errors to be printed with the predicted
means (differences, alldifferences, lsd,
alllsd, means, ese); default diff

LSDLEVEL = scalar Significance level (%) for least significant differences;
default 5

RMETHOD = string token Type of residuals to plot (simple, standardized);
default simp

PMEANTERMS = formula Treatment terms for which predicted means are to be
printed; default * implies all the treatment terms

Parameter
SAVE = identifiers Save structure (from AUNBALANCED) containing details

of the analysis for which further output is required; if
omitted, output is from the most recent use of
AUNBALANCED

Procedure AUDISPLAY can be used to produce further output for an unbalanced design. It has
options PRINT, FPROBABILITY, TPROBABILITY, COMBINATIONS, ADJUSTMENT, PSE,
LSDLEVEL and RMETHOD like those of AUNBALANCED (4.8.1), except that no screening tests are
available. It has a SAVE parameter, like that of ADISPLAY, which can be set to the save structure
from the analysis for which further output is required, but the structure here is a regression save
structure, not an ANOVA save structure. If SAVE is not set, output will be produced for the most
recent analysis from AUNBALANCED; however, none of the Genstat regression directives (MODEL,
TERMS, FIT, ADD, DROP and so on) must then have been used in the interim. Also there is an
option PMEANTERMS, which can be used to specify the treatment terms for which predicted
means are to be printed; by default, they are printed for all the treatment terms (subject, of
course, to the PFACTORIAL option).

In Example 4.8.2, which continues Example 4.8.1b, we use AUDISPLAY to print tables of
means, all the standard errors of differences and approximate effective standard errors. The
discrepancies between the true standard errors of differences and those calculated from the
approximate effective standard errors are very small for this example ! the maximum is only
0.25%. You can produce multiple comparisons for means from unbalanced analyses by using the
AUMCOMPARISON procedure; this has similar options and parameters to the AMCOMPARISON
procedure, described in 4.1.9.

Example 4.8.2

  10  AUDISPLAY [PRINT=means; PSE=differences,alldifferences,ese]

Analysis of an unbalanced design using Genstat regression
=========================================================

Variate: Y
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Predictions from regression model
---------------------------------

Response variate: Y

               Prediction
            C
            1       110.6
            2       102.4

Standard error of differences between predicted means        3.903

Approximate effective standard errors
-------------------------------------

    C
    1       3.903
    2           *

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy              *
Maximum % discrepancy            *

Predictions from regression model
---------------------------------

Response variate: Y

               Prediction
            A
            1       113.2
            2       101.2
            3       105.3

Approximate effective standard errors
-------------------------------------

    A
    1       3.391
    2       3.224
    3       3.550

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy              0
Maximum % discrepancy         0.00

Standard errors of differences between pairs of predicted means
---------------------------------------------------------------

Rows and columns are labelled by the labels/levels of the factors:

        A  1   1           *
        A  2   2       4.679           *
        A  3   3       4.909       4.796           *
                           1           2           3

Minimum standard error of differences        4.679
Average standard error of differences        4.795
Maximum standard error of differences        4.909
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Predictions from regression model
---------------------------------

Response variate: Y

               Prediction
            B
            1       103.2
            2       108.1
            3       108.3

Approximate effective standard errors
-------------------------------------

    B
    1       3.228
    2       3.450
    3       3.475

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy              0
Maximum % discrepancy         0.00

Standard errors of differences between pairs of predicted means
---------------------------------------------------------------

Rows and columns are labelled by the labels/levels of the factors:

        B  1   1           *
        B  2   2       4.724           *
        B  3   3       4.742       4.896           *
                           1           2           3

Minimum standard error of differences        4.724
Average standard error of differences        4.788
Maximum standard error of differences        4.896

Predictions from regression model
---------------------------------

Response variate: Y

               Prediction
            A           1           2           3
            C
            1       125.9       101.7       104.6
            2       100.9       100.7       105.9

Approximate effective standard errors
-------------------------------------

    A           1           2           3
    C
    1       4.786       4.563       5.248
    2       4.786       4.563       4.790

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy       0.005482
Maximum % discrepancy         0.08
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Standard errors of differences between pairs of predicted means
---------------------------------------------------------------

Rows and columns are labelled by the labels/levels of the factors:

   C 1  A 1   1        *
   C 1  A 2   2    6.614        *
   C 1  A 3   3    7.103    6.955        *
   C 2  A 1   4    6.763    6.614    7.103        *
   C 2  A 2   5    6.614    6.454    6.955    6.614
   C 2  A 3   6    6.775    6.614    7.103    6.775    6.614        *
                       1        2        3        4        5        6

Minimum standard error of differences        6.454
Average standard error of differences        6.778
Maximum standard error of differences        7.103

Predictions from regression model
---------------------------------

Response variate: Y

               Prediction
            B           1           2           3
            C
            1       110.2       111.9       109.7
            2        96.5       104.5       106.9

Approximate effective standard errors
-------------------------------------

    B           1           2           3
    C
    1       4.564       5.191       4.808
    2       4.564       4.564       5.011

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy      0.0001776
Maximum % discrepancy         0.00

Standard errors of differences between pairs of predicted means
---------------------------------------------------------------

Rows and columns are labelled by the labels/levels of the factors:

   C 1  B 1   1        *
   C 1  B 2   2    6.912        *
   C 1  B 3   3    6.629    7.075        *
   C 2  B 1   4    6.454    6.912    6.629        *
   C 2  B 2   5    6.454    6.912    6.629    6.454
   C 2  B 3   6    6.778    7.215    6.944    6.778    6.778        *
                       1        2        3        4        5        6

Minimum standard error of differences        6.454
Average standard error of differences        6.770
Maximum standard error of differences        7.215

Predictions from regression model
---------------------------------

Response variate: Y
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               Prediction
            B           1           2           3
            A
            1       115.2       112.3       111.8
            2        97.9        99.9       106.4
            3        96.7       113.2       106.8

Approximate effective standard errors
-------------------------------------

    B           1           2           3
    A
    1       5.581       5.581       6.482
    2       5.581       5.581       5.581
    3       5.581       6.801       6.055

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy        0.01798
Maximum % discrepancy         0.20

Standard errors of differences between pairs of predicted means
---------------------------------------------------------------

Rows and columns are labelled by the labels/levels of the factors:

   A 1  B 1   1        *
   A 1  B 2   2    7.894        *
   A 1  B 3   3    8.551    8.551        *
   A 2  B 1   4    7.894    7.894    8.551        *
   A 2  B 2   5    7.894    7.894    8.551    7.894        *
   A 2  B 3   6    7.894    7.894    8.551    7.894    7.894
   A 3  B 1   7    7.894    7.894    8.551    7.894    7.894
   A 3  B 2   8    8.799    8.799    9.393    8.799    8.799
   A 3  B 3   9    8.232    8.232    8.888    8.232    8.232
                       1        2        3        4        5

   A 2  B 3   6    *
   A 3  B 1   7    7.894        *
   A 3  B 2   8    8.799    8.799        *
   A 3  B 3   9    8.232    8.232    9.104        *
                       6        7        8        9

Minimum standard error of differences        7.894
Average standard error of differences        8.313
Maximum standard error of differences        9.393

Predictions from regression model
---------------------------------

Response variate: Y

                            Prediction
                         B           1           2           3
            C            A
            1            1       136.1       124.1       116.2
                         2       102.1       101.8       101.3
                         3        92.3       110.6       112.6
            2            1        95.1       100.8       107.6
                         2        93.8        98.1       111.3
                         3       101.1       115.8       101.2

Approximate effective standard errors
-------------------------------------
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         B           1           2           3
    C    A
    1    1       7.892       7.892       9.136
         2       7.892       7.892       7.892
         3       7.892      11.162       7.892
    2    1       7.892       7.892       9.136
         2       7.892       7.892       7.892
         3       7.892       7.892       9.142

Discrepancy between sed and value calculated from ese's
-------------------------------------------------------

Maximum discrepancy        0.03227
Maximum % discrepancy         0.25

Standard errors of differences between pairs of predicted means
---------------------------------------------------------------

Rows and columns are labelled by the labels/levels of the factors:

   C 1  A 1  B 1    1        *
   C 1  A 1  B 2    2    11.16        *
   C 1  A 1  B 3    3    12.07    12.07        *
   C 1  A 2  B 1    4    11.16    11.16    12.07        *
   C 1  A 2  B 2    5    11.16    11.16    12.07    11.16
   C 1  A 2  B 3    6    11.16    11.16    12.07    11.16
   C 1  A 3  B 1    7    11.16    11.16    12.07    11.16
   C 1  A 3  B 2    8    13.67    13.67    14.42    13.67
   C 1  A 3  B 3    9    11.16    11.16    12.07    11.16
   C 2  A 1  B 1   10    11.16    11.16    12.07    11.16
   C 2  A 1  B 2   11    11.16    11.16    12.07    11.16
   C 2  A 1  B 3   12    12.07    12.07    12.89    12.07
   C 2  A 2  B 1   13    11.16    11.16    12.07    11.16
   C 2  A 2  B 2   14    11.16    11.16    12.07    11.16
   C 2  A 2  B 3   15    11.16    11.16    12.07    11.16
   C 2  A 3  B 1   16    11.16    11.16    12.07    11.16
   C 2  A 3  B 2   17    11.16    11.16    12.07    11.16
   C 2  A 3  B 3   18    12.07    12.07    12.95    12.07
                             1        2        3        4

   C 1  A 2  B 2    5        *
   C 1  A 2  B 3    6    11.16        *
   C 1  A 3  B 1    7    11.16    11.16        *
   C 1  A 3  B 2    8    13.67    13.67    13.67        *
   C 1  A 3  B 3    9    11.16    11.16    11.16    13.67
   C 2  A 1  B 1   10    11.16    11.16    11.16    13.67
   C 2  A 1  B 2   11    11.16    11.16    11.16    13.67
   C 2  A 1  B 3   12    12.07    12.07    12.07    14.42
   C 2  A 2  B 1   13    11.16    11.16    11.16    13.67
   C 2  A 2  B 2   14    11.16    11.16    11.16    13.67
   C 2  A 2  B 3   15    11.16    11.16    11.16    13.67
   C 2  A 3  B 1   16    11.16    11.16    11.16    13.67
   C 2  A 3  B 2   17    11.16    11.16    11.16    13.67
   C 2  A 3  B 3   18    12.07    12.07    12.07    14.42
                             5        6        7        8

   C 1  A 3  B 3    9        *
   C 2  A 1  B 1   10    11.16        *
   C 2  A 1  B 2   11    11.16    11.16        *
   C 2  A 1  B 3   12    12.07    12.07    12.07        *
   C 2  A 2  B 1   13    11.16    11.16    11.16    12.07
   C 2  A 2  B 2   14    11.16    11.16    11.16    12.07
   C 2  A 2  B 3   15    11.16    11.16    11.16    12.07
   C 2  A 3  B 1   16    11.16    11.16    11.16    12.07
   C 2  A 3  B 2   17    11.16    11.16    11.16    12.07
   C 2  A 3  B 3   18    12.07    12.07    12.07    12.95
                             9       10       11       12
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   C 2  A 2  B 1   13        *
   C 2  A 2  B 2   14    11.16        *
   C 2  A 2  B 3   15    11.16    11.16        *
   C 2  A 3  B 1   16    11.16    11.16    11.16        *
   C 2  A 3  B 2   17    11.16    11.16    11.16    11.16
   C 2  A 3  B 3   18    12.07    12.07    12.07    12.07
                            13       14       15       16

   C 2  A 3  B 2   17        *
   C 2  A 3  B 3   18    12.07        *
                            17       18

Minimum standard error of differences        11.16
Average standard error of differences        11.74
Maximum standard error of differences        14.42

4.8.3 The AUGRAPH procedure

AUGRAPH procedure
Plots tables of means from AUNBALANCED (R.W. Payne).

Options
GRAPHICS = string token Type of graph (highresolution, lineprinter);

default high
METHOD = string token What to plot (means, lines, data, barchart,

splines); default mean
XFREPRESENTATION = string token How to label the x-axis (levels, labels); default

labels uses the XFACTOR labels, if available
PSE = string token What to plot to represent variation (differences, lsd,

means, allmeans); default diff
COMBINATIONS = string token Factor combinations for which to form predicted means

(present, estimable); default esti
ADJUSTMENT = string token Type of adjustment to be made when predicting means

(marginal, equal, observed); default marg
LSDLEVEL = scalar Significance level (%) to use for least significant

differences; default 5
DFSPLINE = scalar Number of degrees of freedom to use when

METHOD=splines

YTRANSFORM = string tokens Transformed scale for additional axis marks and labels
to be plotted on the right-hand side of the y-axis
(identity, log, log10, logit, probit, cloglog,
square, exp, exp10, ilogit, iprobit, icloglog,
root); default iden i.e. none

PENYTRANSFORM = scalar Pen to use to plot the transformed axis marks and labels;
default * selects a pen, and defines its properties,
automatically

SAVE = regression save structure Save structure to provide the table of means; default
uses the save structure from the most recent
AUNBALANCED analysis (provided no other regression
analysis has been done in the interim)

Parameters
XFACTOR = factors Factor providing the x-values for each plot
GROUPS = factors or pointers Factor or factors identifying groups of points in each
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plot; by default chosen automatically
TRELLISGROUPS = factors or pointers

Factor or factors specifying the different plots of a trellis
plot of a multi-way table

PAGEGROUPS = factors or pointers Factor or factors specifying plots to be displayed on
different pages

NEWXLEVELS = variates Values to be used for XFACTOR instead of its existing
levels

TITLE = texts Title for the graph; default defines a title automatically
YTITLE = texts Title for the y-axis; default is to use the identifier of the

y-variate, or to have no title if this is unnamed
XTITLE = texts Title for the x-axis; default is to use the identifier of the

XFACTOR

PENS = variates Defines the pen to use to plot the points and/or line for
each group defined by the GROUPS factors

AUGRAPH plots tables of predicted means from an analysis by AUNBALANCED. The SAVE option
can be set to the save structure from the analysis from which the means should be taken. If SAVE
is not set, the means will be from the most recent analysis by AUNBALANCED; however, none of
the Genstat regression directives (MODEL, TERMS, FIT, ADD, DROP and so on) must then have
been used in the interim.

In its simplest form, the behaviour of AUGRAPH depends on the model. If the treatment model
contains only main effects, it plots the means for the first factor in the model. Otherwise it looks
for the first treatment term involving two factors; it then plots the means with one of these
factors as the x-axis, and the second as a grouping factor with levels identified by different
plotting colours and symbols. The means are predicted by the AUKEEP procedure using the
averaging and adjustment methods specified by the COMBINATIONS and ADJUSTMENT options;
see AUKEEP (4.8.4) for details.
Usually, each mean is represented by a point. However, with high-resolution plots, the METHOD
option can be set to lines to draw lines between the points, or data to draw just the lines and
then also plot the original data values, or barchart to plot the means as a barchart, or splines
to plot the points together with a smooth spline to show the trend over each group of points. The
DFSPLINE specifies the degrees of freedom for the splines; if this is not set, 2 d.f. are used when
there are up to 10 points, 3 if there are 11 to 20, and 4 for 21 or more. The GRAPHICS option
controls whether a high-resolution or a line-printer graph is plotted; by default GRAPHICS=high.

The PSE option specifies the type of error bar to be plotted with the means, with settings:
differences average standard error of difference;
lsd average least significant difference;
means average effective standard error for the means;
allmeans plots plus and minus the effective standard error around

every mean.
The LSDLEVEL option sets the significance level (%) to use for the least significant differences
(default 5). The allmeans setting is often unsuitable for plots other than barcharts when there
are GROUPS, as the plus/minus e.s.e. bars may overlap each other.

You can define the table of means to plot explicitly, by specifying its classifying factors using
the XFACTOR, GROUPS, TRELLISGROUPS and PAGEGROUPS parameters.

The XFACTOR parameter defines the factor against whose levels the means are plotted. With
a multi-way table, there will be a plot of means against the XFACTOR levels for every
combination of levels of the factors specified by the GROUPS, TRELLISGROUPS and
PAGEGROUPS parameters. The GROUPS parameter specifies factors whose levels are to be
included in a single window of the graph. So, for example, if you specify
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Figure 4.8.3

AUGRAPH [METHOD=line] XFACTOR=A; GROUPS=B

AUGRAPH will produce plot the means in a single window with factor A on the x-axis, and a line
for each level of the factor B. You can set GROUPS to a pointer to specify several factors to define
groups. For example

POINTER [VALUES=B,C] Groupfactors
AUGRAPH [METHOD=line] XFACTOR=A; 

plots a line for every combination of the levels of the factors B and C.
The TRELLISGROUPS option can specify one or more factors to define a trellis plot. 
Figure 4.8.3 shows a plot of the means from Example 4.8.1a, generated by the command 

AUGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; TRELLISGROUPS=C

This produces a plot for each
level of C, in a trellis
arrangement; each plot has
factor A on the x-axis, and a
line for each level of the factor
B.

Similarly, the PAGEGROUPS parameter can specify factors whose combinations of levels are
to be plotted on different pages. So

AUGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; PAGEGROUPS=C

will produce a plot for each level of C, but now on separate pages. Multi-way tables can plotted
even if the corresponding model term was not in the ANOVA analysis. For example you can plot
a two-way table even if the analysis contained only the main effects of the two factors; however,
the lines will then all be parallel and no standard errors or LSDs can be included.

The NEWXLEVELS parameter enables different levels to be supplied for XFACTOR if the
existing levels are unsuitable. If XFACTOR has labels, these are used to label the x-axis unless you
set option XFREPRESENTATION=levels.

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis and
the x-axis, respectively. The symbols, colours and line styles that are used in a high-resolution
plot are usually set up by AUGRAPH automatically. If you want to control these yourself, you
should use the PEN directive to define a pen with your preferred symbol, colour and line style,
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for each of the groups defined by combinations of the GROUPS factors. The pen numbers should
then be supplied to AUGRAPH, in a variate with a value for each group, using the PENS parameter.

The YTRANSFORM option allows you to include additional axis markings, transformed onto
another scale, on the right-hand side of the y-axis. Suppose, for example, suppose you have
analysed a variate of percentages that have been transformed to logits. You might then set
YTRANSFORM=ilogit (the inverse-logit transformation) to include markings in percentages
alongside the logits. The settings are the same as those of the TRANSFORM parameter of
AXIS,which is used to add the markings (1:6.9.7). You can control the colours of the transformed
marks and labels, by defining a pen with the required properties, and specifying it with the
PENYTRANSFORM option. Otherwise, the default is to plot them in blue.

4.8.4 The AUKEEP procedure

AUKEEP procedure
Saves output from analysis of an unbalanced design (by AUNBALANCED) (R.W. Payne).

Options
FACTORIAL = scalar Limit on number of factors in the model terms generated

from the TERMS parameter; default 3
RESIDUALS = variate To save residuals from the analysis
FITTEDVALUES = variate To save fitted values
COMBINATIONS = string token Factor combinations for which to form predicted means

(present, estimable); default esti
ADJUSTMENT = string token Type of adjustment to be made when predicting means

(marginal, equal, observed); default marg
LSDLEVEL = scalar Significance level (as a percentage) for the least

significant differences
RMETHOD = string token Type of residuals to form if the RESIDUALS option is set

(simple, standardized); default simp
SAVE = identifier Save structure (from AUNBALANCED) containing details

of the analysis for which further output is required; if
omitted, output is from the most recent use of
AUNBALANCED

Parameters
TERMS = formula Model terms for which information is required
MEANS = table or pointer to tables Predicted means for each term
SEMEANS = table or pointer to tables

Standard errors of the means for each term
SEDMEANS = symmetric matrix or pointer to symmetric matrices

Standard errors of differences between means
ESEMEANS = table or pointer to tables

Approximate effective standard errors of the means:
these are formed by procedure SED2ESE with the aim of
allowing good approximations to the standard errors for
differences to be calculated by the usual formula sedi,j =
%( esei

2 + esej
2 )

LSD = symmetric matrix or pointer to symmetric matrices
Least significant differences
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You can save output for the analysis of variance of an unbalanced design using procedure
AUKEEP.

The RESIDUALS and FITTEDVALUES options allow variates to be specified to store the
residuals and fitted values, respectively. The RMETHOD option controls whether simple or
standardized residuals are saved; by default RMETHOD=simple.

The SAVE option can be set to the save structure from the analysis from which output is to be
saved. If SAVE is not set, output will be produced for the most recent analysis from
AUNBALANCED; however, none of the Genstat regression directives (MODEL, TERMS, FIT, ADD,
DROP and so on) must then have been used in the interim. The COMBINATIONS, ADJUSTMENT
and LSDLEVEL options operate as in AUNBALANCED.

The parameters of AUKEEP save information about particular model terms in the analysis. With
the TERMS parameter you specify a model formula, which Genstat expands to form the series of
model terms about which you wish to save information. As in AUNBALANCED, the FACTORIAL
option sets a limit on the number of factors in each term. Any term containing more than that
limit is deleted. The subsequent parameters allow you to specify identifiers of data structures to
store various components of information for each of the terms that you have specified. The
MEANS parameter saves tables of predicted means, the SEMEANS parameter saves tables of
standard errors for the means, the SEDMEANS parameter saves symmetric matrices of standard
errors of differences, the ESEMEANS parameter saves tables of approximate effective standard
errors, and the LSD parameter saves symmetric matrices of least significant differences. If you
have a single term, you can supply a table or symmetric matrix for each of these parameters, as
appropriate. However, if you have several terms, you must supply a pointer which will then be
set up to contain as many tables or symmetric matrices as there are terms. The LSDLEVEL option
sets the significance level (as a percentage) for the least significant differences.

So, following Example 4.8.2, we could save the A by C means in table ACmeans and their
standard errors of differences in symmetric matrix ABsed, by

AUKEEP A.C; MEANS=ABmeans; SEDMEANS=ACsed

4.8.5 The AUPREDICT procedure

AUPREDICT procedure
Forms predictions from an unbalanced design (after AUNBALANCED) (R.W. Payne).

Options
PRINT = string tokens What to print (description, predictions, se, sed,

sedsummary, ese, lsd, lsdsummary, vcovariance);
default pred, sed

MODEL = formula Model to use to calculate the predictions; default * i.e.
full model fitted by AUNBALANCED

FACTORIAL = scalar Limit on number of factors or variates in each term
specified by MODEL; default 3

COMBINATIONS = string token Factor combinations for which to form predicted means
(present, estimable); default esti

ADJUSTMENT = string token Type of adjustment to be made when predicting means
(marginal, equal, observed); default marg

PREDICTIONS = tables or scalars Saves predictions; default *
SE = tables or scalars Saves standard errors of predictions; default *
SED = symmetric matrices Saves matrices of standard errors of differences between

predictions; default *
LSDLEVEL = scalar Significance level (%) for least significant differences;
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default 5
VCOVARIANCE = symmetric matrices

Saves variance-covariance matrices of predictions;
default *

SAVE = identifier Save structure (from AUNBALANCED) containing details
of the analysis for which predictions are required; if
omitted, output is from the most recent use of
AUNBALANCED

Parameters
CLASSIFY = vectors Variates and/or factors to classify table of predictions
LEVELS = variates or scalars To specify values of variates, levels of factors

AUPREDICT can produce predicted means following an analysis of variance by AUNBALANCED
of an unbalanced design. The predictions are calculated using the PREDICT directive (see
Section 3.3.4). The first step (A) of the calculation forms the full table of predictions, classified
by every factor in the model. The second step (B) averages the full table over the factors that do
not occur in the table of means. The COMBINATIONS option specifies which cells of the
full table are to be formed in Step A. The default setting, estimable, fills in all the cells other
than those that involve parameters that cannot be estimated, for example because of aliasing.
Alternatively, setting COMBINATIONS=present excludes the cells for factor combinations that
do not occur in the data. The ADJUSTMENT option then defines how the averaging is done in Step
B. The default setting, marginal, forms a table of marginal weights for each factor, containing
the proportion of observations with each of its levels; the full table of weights is then formed
from the product of the marginal tables. The setting equal weights all the combinations equally.
Finally, the setting observed uses the WEIGHTS option of PREDICT to weight each factor
combination according to its own individual replication in the data.

Printed output, which extends the output available from PREDICT, is controlled by settings
of the PRINT option:

description standardization policies used when forming the
predictions,

predictions predictions,
se predictions and standard errors,
sed standard errors for differences between the predictions,
sedsummary summary of the standard errors for differences between the

predictions,
lsd least significant differences between the predictions,
lsdsummary summary of the least significant differences between the

predictions,
ese approximate effective standard errors ! these are formed

by procedure SED2ESE with the aim of  allowing good
approximations to the standard errors for differences to be
calculated by the usual formula of sedi,j = %( esei

2 + esej
2 ),

and
vcovariance variance and covariances of the predictions.

The default is to print predictions and a summary of the standard errors of differences. The
standard errors (and sed's) are relevant for the predictions when considered as means of those
data that have been analysed, with the means formed according to the averaging policy defined
by the options of PREDICT. The word prediction is used because these are predictions of what
the means would have been if the factor levels been replicated differently in the data; see Lane
& Nelder (1982) for more details. The LSDLEVEL option specifies the significance level (%) to
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use in the calculation of least significant differences (default 5%).
Another extension in AUPREDICT is that you can produce predictions using a smaller model

than the full model that has been fitted by AUNBALANCED. This can be useful if the full model
contains many parameters. A substantial amount of time and computer workspace may then be
needed to calculate the predictions and standard errors. Very large models may even exceed the
capacity of some PCs. The model is specified by the MODEL option. The FACTORIAL option sets
a limit on number of factors or variates in each term specified by MODEL; default 3.

You might choose to omit a term from the full model when forming a particular table of
predictions if the term is orthogonal to all the terms involved in the table. For example, you
might omit the term blocks when forming an A-by-B table of predictions if each combination
of levels of the factors A and B is replicated the same number of times in every block. The
justification is that an orthogonal term cannot affect the size of any of the differences between
predictions. Different weighting of the levels of the orthogonal term may affect the overall mean
of the predictions, but this is usually unimportant. If you omit the term, it is though you had
included it with weightings based on the observed replication of its levels in the data set ! and
in any well-designed data set these should provide a satisfactory outcome. You might also omit
a term if it is nearly orthogonal to the terms involved in the table, and you are happy to ignore
its effect on the predictions. In Example 4.8.4, we produce an A by C table of predictions from
the analysis in Example 4.8.1b, but ignoring the interaction A.B.C.

Example 4.8.5

  11  AUPREDICT [PRINT=predictions,sed; MODEL=Day+A*B*C-A.B.C] A,C

Predictions from regression model
---------------------------------

Response variate: Y

               Prediction
            C           1           2
            A
            1       126.1       100.6
            2       101.7       100.8
            3       105.3       106.4

Standard errors of differences between pairs of predicted means
---------------------------------------------------------------

Rows and columns are labelled by the labels/levels of the factors:

   A 1 C 1   1        *
   A 1 C 2   2    6.741        *
   A 2 C 1   3    6.608    6.605        *
   A 2 C 2   4    6.605    6.608    6.448        *
   A 3 C 1   5    7.031    7.001    6.871    6.870        *
   A 3 C 2   6    6.769    6.759    6.605    6.608    7.050        *
                      1        2        3        4        5        6

The PREDICTIONS, SE, SED, ESE, LSD and VCOVARIANCE options allow the results of the
prediction to be save in appropriate Genstat data structures.

The SAVE option allows you to specify save structure from the analysis for which further
output is required. If SAVE is not set, output will be produced for the most recent analysis from
AUNBALANCED; however, none of the Genstat regression directives (MODEL, TERMS, FIT, ADD,
DROP and so on) must then have been used in the interim.
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4.8.6 The AUSPREADSHEET procedure

AUSPREADSHEET procedure
Saves results from an analysis of an unbalanced design (by AUNBALANCED) in a spreadsheet
(R.W. Payne).

Options
MEANS = pointer Pointer to tables to contain the treatment means; default

means

SEMEANS = pointer Pointer to tables to contain the standard errors of
treatment means; default sem

SEDMEANS = pointer Pointer to matrices to contain standard errors of
differences of treatment means; default sed

ESEMEANS = pointer Pointer to matrices to contain effective standard errors
of treatment means; default ese

EFFECTS = pointer Pointer to contain the estimated effects, their standard
errors, t-statistics and probabilities; default effects

REPLICATIONS = pointer Pointer to tables of treatment replications; default
replication

RESIDUALS = variate Variate to save the residuals in the fittedvalues
page; default residuals

FITTEDVALUES = variate Variate to save the fitted values in the fittedvalues
page; default fittedvalues

COMBINATIONS = string token Factor combinations for which to form predicted means
(present, estimable); default esti

ADJUSTMENT = string token Type of adjustment to be made when predicting means
(marginal, equal, observed); default marg

AOVTABLE = pointer Pointer to a text and variates containing the information
in the analysis-of-variance table; default aovtable

RMETHOD = string token Type of residuals to form (simple, standardized);
default simp

SPREADSHEET = string tokens What to include in the spreadsheet (aovtable,
effects, means, semeans, sedmeans, esemeans,
replications, fittedvalues); default aovt, mean,
sedm, repl, fitt

OUTFILENAME = texts Name of Genstat workbook file (.gwb) or Excel (.xls or
.xlsx) file to create

SAVE = identifier Save structure (from AUNBALANCED) containing details
of the analysis for which further output is required; if
omitted, output is from the most recent use of
AUNBALANCED

No parameters

AUSPREADSHEET puts results from the analysis of an unbalanced design into a spreadsheet. By
default the results are from the most recent analysis by AUNBALANCED, but you use the SAVE
option to specify the save structure from some other analysis.

The SPREADSHEET option specifies which pages of the spreadsheet to form, with settings:
aovtable analysis of variance table,
effects estimates of effects, with their standard errors, t-statistics

and probabilities,
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means tables of treatment means,
semeans tables of standard errors of treatment means,
sedmeans symmetric matrices of standard errors of differences of

treatment means,
esemeans tables of effective standard errors of treatment means,
replications replication tables of treatment terms,
fittedvalues y-variate, fitted values and residuals.

By default, SPREADSHEET = aovt, mean, sedm, repl, fitt.
Tables of means are obtained from the AUKEEP procedure, with the COMBINATIONS and

ADJUSTMENT options operating as described in 4.8.5.
To help avoid clashes between the columns of the spreadsheets if you want to save results

from more than one analysis, the parameters MEANS, SEMEANS, SEDMEANS, ESEMEANS,
EFFECTS, REPLICATIONS, RESIDUALS, FITTEDVALUES and AOVTABLE allow you to specify
identifiers for the columns (or sets of columns) that will store the corresponding results in the
current spreadsheet.

You can save the data in either a Genstat workbook (.gwb) or an Excel spreadsheet (.xls or
.xlsx), by setting the OUTFILENAME option to the name of the file to create. If the name is
specified without a suffix, '.gwb' is added (so that a Genstat workbook is saved). If
OUTFILENAME is not specified, the data are put into a spreadsheet opened inside Genstat.

So, you could save the analysis-of-variance table, means and standard errors of differences of
means in an Excel spreadsheet called Product.xlsx by giving the command

AUSPREADSHEET [SPREADSHEET=aovtable,means,sedmeans;\
              OUTFILE='Product.xlsx]

4.8.7 The AOVANYHOW procedure

AOVANYHOW procedure
Performs analysis of variance using ANOVA, regression or REML as appropriate (R.W. Payne).

Options
PRINT = string tokens Controls printed output from the analysis (aovtable,

information, means, residuals); default aovt,
info, mean

METHOD = string token Whether to complete the analysis or just form a
recommendation (analyse, recommend); default anal

FACTORIAL = scalar Limit on number of factors in a treatment term; default 3
FPROBABILITY = string token Printing of probabilities for variance ratios in the

analysis-of-variance table (yes, no); default no
PLOT = string tokens Which residual plots to provide (fittedvalues,

normal, halfnormal, histogram); default * i.e. none
COMBINATIONS = string token Factor combinations for which to form predicted means

(present, estimable); default esti
ADJUSTMENT = string token Type of adjustment to be made when predicting means

(marginal, equal, observed); default marg
WEIGHTS = variate Weights for each unit; default * i.e. all units with weight

one
PSE = string tokens Types of standard errors to be printed with the predicted

means (differences, alldifferences, lsd,
alllsd, means; default diff

LSDLEVEL = scalar Significance level (%) for least significant differences;
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default 5
EFLOSS = scalar Maximum loss of efficiency occurring on any treatment

contrast if the analysis is done by regression
EFLIMIT = scalar Limit on the loss of efficiency for the analysis to be

done by regression; default 0.1
EXIT = scalar Exit code indicating the recommended method of

analysis

Parameters
Y = variates Data values to be analysed
RESIDUALS = variates Variate to save the residuals from each analysis
FITTEDVALUES = variates Variate to save the fitted values from each analysis
SAVE = identifiers To save details of each analysis to use subsequently with

the AOVDISPLAY procedure

AOVANYHOW assesses a data set to select the most appropriate method for analysis of variance.
If the design is orthogonal or balanced it uses the ANOVA directive (4.1.2). Otherwise, if there is
no blocking in the design (i.e. there is only one random term) it uses the Genstat regression
facilities through either AUNBALANCED (4.8.1) or A2WAY (2.3.3). Finally, if there are additional
random terms, it looks to see if these contain any useful information about the treatments in
order to choose between regression and REML (5.1.3). The EFLIMIT option sets a limit on the
amount of information that may be lost on any of the treatment contrasts if the analysis to be
done by regression instead of REML; the default of 0.1 implies that no more than 10% of the
information on any contrast may be estimated between the random terms.

The method of use is similar to that for ANOVA. The treatment terms to be fitted must be
specified, before calling the procedure, by the TREATMENTSTRUCTURE directive. Similarly, any
covariates must be indicated by the COVARIATE directive. Any blocking structure must be
specified by the BLOCKSTRUCTURE directive.

The parameters of the procedure are identical to those of ANOVA. The variates to be analysed
are specified by the Y parameter. If the Y variate or any of the factors or covariates is restricted,
only the units not excluded by the restriction will be analysed. Residuals and fitted values can
be saved using the RESIDUALS and FITTEDVALUES parameters respectively. Finally, the SAVE
parameter allows details of the analysis to be saved so that further output can be obtained using
the AOVDISPLAY procedure.

Printed output is controlled by the PRINT option. The settings are limited to those that can
produce analogous output from any of the analysis methods:

aovtable analysis-of-variance table from ANOVA or regression, or
Wald and F tests for fixed effects from REML,

information design type, efficiency factors and name of the command
used for the analysis,

means tables of (predicted) means, and
residuals residuals (fitted values are printed too for analyses by

regression or REML).
Probabilities can be printed for variance ratios by setting option FPROBABILITY=yes. 

The SAVE parameter allows you to save a pointer containing information about the analysis.
You can use this as the input for the SAVE parameter of the AOVDISPLAY procedure to print (or
reprint) any of the information provided by the PRINT option above. AOVDISPLAY  has options
PRINT, FPROBABILITY, PLOT, COMBINATIONS, ADJUSTMENT, PSE, LSDLEVEL, EFLOSS and
EXIT, and a parameter SAVE that operate in the same way as those of AOVANYHOW. Alternatively,
the first element of the SAVE pointer is the save structure from the command that was used for
the analysis. So, if you use this with the display commands associated with that analysis
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command, you can display the more specialized output from the command (for example,
variance components from REML).

Tables of means from regression and REML are calculated using the directives PREDICT (3.3.4)
and VPREDICT (5.5.1), respectively. The first step (A) of their calculations forms the full table
of predictions, classified by every factor in the model. The second step (B) averages the full table
over the factors that do not occur in the table of means. The COMBINATIONS option
specifies which cells of the full table are to be formed in Step A. The default setting,
estimable, fills in all the cells other than those that involve parameters that cannot be
estimated, for example because of aliasing. Alternatively, setting COMBINATIONS=present
excludes the cells for factor combinations that do not occur in the data. The ADJUSTMENT option
then defines how the averaging is done in Step B. The default setting, marginal, forms a table
of marginal weights for each factor, containing the proportion of observations with each of its
levels; the full table of weights is then formed from the product of the marginal tables. The
setting equal weights all the combinations equally. Finally, for regression analyses, the setting
observed uses the WEIGHTS option of PREDICT to weight each factor combination according
to its own individual replication in the data.

The PSE option controls the types of standard errors that are produced to accompany the tables
of means, with settings:

differences summary of standard errors for differences between pairs
of means;

alldifferences standard errors for differences between all pairs of means;
lsd summary of least significant differences between pairs of

means;
alllsd least significant differences between all pairs of means;
means effective standard errors for analyses by ANOVA, or

approximate effective standard errors for analyses by
regression or REML ! these are formed by procedure
SED2ESE with the aim of  allowing good approximations
to the standard errors for differences to be calculated by
the usual formula of sedi,j = %( esei

2 + esej
2 ).

The default is differences. The LSDLEVEL option sets the significance level (as a percentage)
for the least significant differences.

The PLOT option allows various residual plots to be requested: fittedvalues for a plot of
residuals against fitted values, normal for a Normal plot, halfnormal for a half Normal plot,
and histogram for a histogram of residuals.

The FACTORIAL option sets a limit on the number of factors that a higher-order term, such as
an interaction, can contain; any terms with more factors are deleted from the analysis. The
WEIGHTS option allows a variate of weights to be specified for a weighted analysis of variance. 

You can save a scalar indicating the recommended method of analysis by using the EXIT
option. The scalar can take values with the following meanings.

0. The design is orthogonal. Analyse by ANOVA (4.1.2).
1. The design is balanced. Analyse by ANOVA (4.1.2).
2. The design unbalanced. It has 1 or 2 treatment factors and no blocking. Analyse by A2WAY

(2.3.3).
3. The design unbalanced and has 1 or 2 treatment factors. No more than a proportion

defined by the EFLIMIT option of the information on any treatment contrast is estimated
between block terms. Analyse by A2WAY (2.3.3).

4. The design unbalanced, and there are either weights or more than 2 treatment factors.
There is no blocking. Analyse by AUNBALANCED (4.8.1).

5. The design is unbalanced, and there either are weights or more than 2 treatment factors.
No more than a proportion defined by the EFLIMIT option of the information on any
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treatment contrast is estimated between block terms. Analyse by AUNBALANCED (4.8.1).
6. The design unbalanced with several block (i.e. random) terms. Analyse by REML (5.1.3).

The EFLOSS option can save the maximum loss of efficiency that would occur on any treatment
contrast if the analysis is done by regression.

You can set option METHOD=recommend to request that AOVANYHOW will just form a
recommendation for the command to be used if the analysis cannot be done by ANOVA. The only
available PRINT option is then information, which tells you which command is recommended.
You can still use the EXIT and EFLOSS options, but residuals and fitted values will be saved (by
the RESIDUALS and FITTEDVALUES parameters) if the analysis should be done by ANOVA.

Example 4.8.7 shows that less than 1% of the available treatment information was lost by
using AUNBALANCED instead of REML to analyse the data in Example 4.8.1a.

Example 4.8.7

  12  AOVANYHOW [PRINT=information] Y

Analysis of variance by ANOVA, REML or regression
=================================================

Information summary
-------------------

Design is unbalanced. It does not have a one- or two-way treatment structure,
and no more than 0.801% of information on any treatment contrast is estimated
between block terms. Analyse by AUNBALANCED.

4.8.8 The AN1ADVICE procedure

AN1ADVICE procedure
Aims to give useful advice if a design that is thought to be balanced fails to be analysed by
ANOVA (R.W. Payne).

Options
PRINT = string tokens Controls printed output (advice, suspects); default

advi

FACTORIAL = scalar Limit on number of factors in a treatment term; default 3
METHOD = string tokens Method to use to predict the correct pattern of

replication (median, mode, proportional); default
mode

WEIGHTS = variate Weights for the analysis; default * i.e. all units have
weight one

SUSPECTS = variate Saves the numbers of the units whose factor values are
suspected to be incorrect

Parameter
Y = variates Data values to be analysed (this is needed only if the

analysis is to take place on a restricted set of units)

As already mentioned, the ANOVA directive analyses "balanced" designs, and will itself detect
whether or not a design can be analysed. So if you are not sure about a particular design, you can
run it through ANOVA and see whether it succeeds or fails with an "AN 1" diagnostic (see
Example 4.8.1a). Sometimes the design will genuinely be unbalanced, but on other occasions it
may be that errors have been made in entering the data. So the aim of AN1ADVICE is to give
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useful advice if you find that a set of data that you had expected to be balanced fails to be
analysed by ANOVA. 

The use of AN1ADVICE is very similar to ANOVA (4.1.2). You must first define the model that
is to be fitted in the analysis, using the TREATMENTSTRUCTURE and BLOCKSTRUCTURE
directives (see 4.11 and 4.2.1). As in ANOVA, the treatment terms to be included in the model are
controlled by the FACTORIAL option, and the WEIGHT option can specify weights for a weighted
analysis of variance.
AN1ADVICE has a parameter Y to specify the variate whose values are being analysed.

However, this is required only if you are analysing a subset of the units. (You would then have
used the RESTRICT directive, directly or through a menu, to restrict Y to the units concerned.)

In a balanced design, the joint replications of sets of factors in the design will usually have a
systematic pattern. Often there will be equal replication. Then, for example, if you look at the
replication table for any pair of factors, it will contain a single value (the number of times each
pair of their levels occurs in the design). Alternatively, the replications may have a proportional
pattern. For example, you may have a "control" level of one of the factors with perhaps twice as
many replicates as the other, "test", levels. Then, in every replication table involving that factor,
the cells for the "control" level will have values twice as large as those in the corresponding
"test" cells. So AN1ADVICE examines the factors in the model terms that ANOVA has found to be
unbalanced, and examines their replications to try to identify cells whose values seem to be too
small or too large.

The METHOD option controls how AN1ADVICE works out what the replication in each table
ought to be. The default setting, mode, assumes that the values should all be equal, and that the
non-zero value that occurs most often in the table is the correct one. The setting median is
similar except that the right value is assumed to be the median of the non-zero values. Finally,
the proportional setting estimates the correct values for each table by assuming that the
replication has a proportional pattern.

The PRINT option controls the printed output, with settings:
advice prints advice including replication tables of the factors that

seem to be incorrect, highlighting the cells that seem to be
too small or too large, and

suspects prints the units with the combinations of factor levels that
seem to occur too often in the design.

The default is PRINT=advice. The list of suspect units can also be saved, in a variate, using the
SUSPECTS option.

If you believe that the design should be balanced, you may find that the factor values (or
weights) of some of suspect units have been entered incorrectly. Alternatively, you may find that
some units with the factor combinations whose replication has been highlighted as too low have
been accidentally omitted from the data. If these mistakes can be corrected, the design may
become balanced. Alternatively, if you cannot find any mistakes in the data, you will need to use
AOVANYHOW (4.8.7), AUNBALANCED (4.8.1) or REML (5.3.1) instead.

Example 4.8.8 looks again at the data in Example 4.8.7a, and finds that the lack of balance is
associated with unequal replication of factor B over days.

Example 4.8.8

  16  AN1ADVICE  [PRINT=advice]

Advice about the cause of an unbalanced design
==============================================

The term B is unbalanced i.e. its contrasts do not all have the same efficiency
factor. It is non-orthogonal to the term Day, so it is the "adjustment" for Day
that is causing its efficiency factors to be unequal.
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In a balanced design, the joint replications of the factors will usually have
an "even" pattern. The table below shows the replications of the unevenly
replicated factors in the two terms, highlighting those that differ from the
most common replication.

          Day           1               2
            B
            1          12 *?*          12 *?*
            2          11              11
            3          11              10 *?*

If you believe that the design should be balanced, you may find that the factor
values of some of the units with the factor combinations highlighted above have
been entered incorrectly or accidently omitted from the data. If these mistakes
can be corrected, the design may become balanced. Alternatively, if you cannot
find any mistakes in the data, you will need to use regression or REML instead
of ANOVA.

4.9 Selecting and generating an experimental design

Genstat has a comprehensive set of directives and procedures for design of experiments. In the
first part of this section we describe the procedures that allow you to select and generate a
design. The final part describes the AFRESPONSESURFACE which uses the BLKL algorithm of
Atkinson & Donev (1992) to construct designs for estimating response surfaces (4.9.14). Later
sections describe the facilities for displaying designs (4.10), randomization (4.11), determining
sample sizes (4.12), generating factors or pseudo-factors (4.13), adding additional plots to a
design or combining designs (4.13), and constructing new design keys (4.13). Collectively, these
directives and procedures are known as the Genstat Design System. The procedures cover many
different types of design. These are listed below, together with the name (in brackets) of the
procedure that you can use to select and generate designs of that type.

Orthogonal hierarchical designs ! designs such as randomized blocks, split-plots, split-split-
plots, &c. (AGHIERARCHICAL)

Complete factorial designs (with interactions confounded with blocks) ! these are available
for treatments that all have the same number of levels k, where k is a prime number or a
power of a prime number. The design will be a minimum-aberration design. To explain
this, we first define the resolution of a design as the largest integer r such that no
interaction term with r factors is confounded with blocks. The aberration of the design is
the number of interaction terms with r+1 factors that are confounded. A minimum
aberration design is defined as a design with the smallest aberration out of the designs
with the highest available resolution. So, essentially this selects the best design by
minimizing the number of interactions with the minimum number of factors that are
confounded. (AGFACTORIAL)

Fractional factorial designs (with blocking if required) ! these are formed by taking one block
of a minimum-aberration factorial design. If required, the resulting fractional factorial can
be further dividing into its own blocks. (AGFACTORIAL)

Factorial designs from a repertoire (with confounding) ! these have several treatment factors
and a single blocking factor (giving strata for blocks and plots within blocks). The blocks
are too small to contain a complete replicate of the treatment combinations and so various
interaction are confounded with blocks. (AGDESIGN)

Fractional factorial designs from a repertoire (with blocking) ! again there are several
treatment factors but the design does not contain every treatment combination and so
some interactions are aliased; there can also be a blocking factor and some interactions
will then be confounded with blocks. (AGFRACTION)

Latin squares ! designs are available for any number of treatments (subject to workspace
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limitations) also, where feasible, more than one orthogonal treatment factor can be
generated to form Graeco-Latin squares etc. (AGLATIN).

Latin squares balanced for carry-over effects ! these are relevant when the same plots or
subjects are treated during several successive time periods, and there is interest both in
the direct effect of a treatment during the period in which it is applied and its carry-over
(or "residual") effect during later periods (AGCROSSOVERLATIN).

Complete and quasi-complete Latin squares ! Latin squares designed to guard against
interference between plots; a complete Latin square is a Latin square in which each
ordered pair of treatments appears exactly once within the rows of the square, and exactly
once within the columns; a quasi-complete Latin has similar properties, but here each
unordered pair occurs exactly twice within the rows, and exactly twice within the columns
(AGQLATIN).

Semi-Latin squares ! n × n Latin squares whose individual plots are split into k sub-plots to
cater for a treatment factor with n × k levels; three types are available Trojan squares,
interleaving Latin squares and inflated Latin squares (AGSEMILATIN).

Lattice designs ! designs for a single treatment factor with number of levels that is the square
of some integer k. The design has replicates, each containing k blocks of k plots, and
different treatment contrasts can be confounded with blocks in each replicate.
(AGSQLATTICE)

Lattice squares ! these are similar to lattices except that the blocking structure with the
replicates has rows crossed with columns; again different treatment contrasts can be
confounded with the rows and columns in each replicate. (AGSQLATTICE)

Alpha designs ! these again have a single treatment factor but there is no constraint on the
number of levels; the blocking structure has replicates and blocks within replicates; see
Patterson & Williams (1976). (AGALPHA)

Balanced-incomplete-block designs ! designs where the experimental units are grouped into
blocks such that every pair of treatments occurs in an equal number of blocks. All
comparisons between treatments are thus made with equal accuracy, so the design is
balanced and, in particular, can be analysed by ANOVA. (AGBIB)

Cyclic designs ! these are designs with a single blocking factor which defines blocks that are
too small to contain every treatment. Usually there is a single treatment factor, but you can
also generate the cyclic superimposed designs of Hall & Williams (1973) in which there
are two treatment factors and the treatment structure fits only the main effects. An
alternative refinement (Davis & Hall 1969) has a crossed blocking structure generally
taken to represent Subjects*Time. (AGCYCLIC)

Neighbour-balanced designs ! designs that allow an adjustments to be made for the effect that
a treatment may have on adjacent plots. (AGNEIGHBOUR).

Central composite designs ! used to study multi-dimensional response surfaces.
(AGCENTRALCOMPOSITE)

Box-Behnken designs ! used to study multi-dimensional response surfaces. (AGBOXBEHNKEN)
Plackett Burman (main effect) designs ! for estimating main effects of factors with two levels,

using a minimum number of experimental units; see Plackett & Burman (1946).
(AGMAINEFFECT)

Loop designs ! for use e.g. in time-course microarray experiments (AGLOOP)
Reference-level designs ! for use e.g. in two-colour microarray experiments, (AGREFERENCE)

The procedures are very convenient to use interactively. Genstat then guides you through the
process by asking questions first to select the design, then to give details such as the names of
the factors, and so on. If you wish to avoid some of the question-and-answer process, the
procedures all have options and parameters to supply the information otherwise obtained by the
various questions and, provided you supply all the required information, they can also be used
in batch.
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To save you remembering the names of the individual procedures, there is also a general
procedure DESIGN that can be used interactively to provide a single point of access to all the
design types. DESIGN has an option called STATEMENT which allows you to save a Genstat text
structure containing a command to use the relevant subsidiary procedure, and setting all the
options and parameters required to recreate the design. DESIGN is called if you chose Select

Design in Genstat for Windows, when it generates a pop-up menu. In other implementations, the
question takes a more "conversational" form, as shown in Example 4.9.1a. The same is true for
all the design questions which, in fact, are generated within the procedures using the QUESTION
procedure. The alternative Standard Design menu of Genstat for Windows uses
AGHIERARCHICAL, AGLATIN and AGLATTICE to generate completely randomized designs,
randomized blocks, Latin and Graeco-Latin squares, split-plots, strip-plots (or criss-cross
designs) and lattices. There are menus to generate factorial designs in blocks and fractional
factorial designs, which use AGFACTORIAL.

The procedures mentioned above generate and randomize the designs automatically, calling
other directives and procedures to perform the necessary tasks, and there is no need for you to
be aware of any of the details. However, we give more information during this section in case
you want to study the process in more depth or to add new designs. The design system is based
on a range of standard generators. Some of these, such as the Galois fields used to generate Latin
squares or the Hadamard matrices required for main-effect designs, can be formed by Genstat
when required ! and so there is no limitation on the available designs. There is also no limitation
on the orthogonal hierarchical designs, which are constructed directly. Repertoires of other
generators, such as design keys, are stored in backing-store files which are scanned by the design
generation procedures to form menus listing the available possibilities. Algorithms are available
to form new design keys (4.13.6), and these can then be added to the design files to become an
integral part of the system. Table 4.9 lists the various generators, the design types that they can
construct, and the associated procedures and directives.
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Table 4.9: Directives and procedures for constructing designs in Genstat

Generator Designs Generation Selection Assembly (and
construction)

design key Factorial,
Lattice sq.

AKEY

(GENERATE)
AGDESIGN FDESIGNFILE

(FKEY and
FPSEUDOFACTOR)

Fractional AGFRACTION

Galois field Latin square AGLATIN

Semi-Latin
square

AGSEMILATIN

Square Lattice AGSQLATTICE

Terraced
group

Complete
Latin sq.

AGQLATIN

Alpha
array

Alpha
designs

AFALPHA AGALPHA

Initial block Cyclic
design

AFCYCLIC AGCYCLIC

Total cycles Balanced
neighbour

AGNEIGHBOUR

Hadamard
matrix

Balanced-
incomplete-

block

AGBIB

Box Behnken AGBOXBEHNKEN

Plackett
Burman

AGMAINEFFECT

Loop AGLOOP

Reference
level

AGREFERENCELEVEL

Central
Composite

AGCENTRALCOMPOSITE

Any type DESIGN

4.9.1 Orthogonal hierarchical designs

AGHIERARCHICAL procedure
Generates orthogonal hierarchical designs (R.W. Payne).

Options
PRINT = string token Controls whether or not to print a plan of the design

(design); if unset in an interactive run
AGHIERARCHICAL will ask whether the design is to be
printed, in a batch run the default is not to print the
design

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
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interactive run, and not to analyse if it is unset in a batch
run

SEED = scalar Seed to be used to randomize the design; a negative
value implies no randomization

STATEMENT = text Saves a command to recreate the design (useful if the
design information has been specified in response to
questions from AGHIERARCHICAL)

EXCLUDELEVELS = scalars Levels of the first block factor to exclude during
randomization

Parameters
BLOCKFACTORS = factors Specifies the identifier for the block factor used to index

the units of each stratum (or level of the hierarchy)
TREATMENTFACTORS = factors or pointers

Specifies the identifier of the treatment factor or factors
applied to the units of each stratum

LEVELS = scalars or pointers Number of levels for the treatment factors in each
stratum; if required, a pointer can contain an extra scalar
to specify replication

AGHIERARCHICAL can generate any hierarchical equally-replicated factorial design. This
category covers many popular designs, including completely randomized designs (i.e. designs
with no blocking; see Section 4.1), randomized complete block designs (4.2.1 and 4.3), split-
plots (4.2.1), split-split-plots, and so on. The designs can have any number of block and
treatment factors, and the factors can have any number of levels. It can be used either
interactively or in batch. If you are running Genstat interactively, you can simply issue the
command

AGHIERARCHICAL

with no options or parameters. It will then ask questions to define the necessary details of the
design. If, however, you wish to recreate the same design later, the STATEMENT option allows
you to save a Genstat text structure containing a command specifying the same information. Yhe
options and parameters of the procedure allow you to avoid the questions or to use the procedure
when running Genstat in batch.

The units of each stratum (or level of the hierarchy) are identified by a block factor: for
example Replicates, Blocks, Plots, Subplots, Subjects &c. These can be supplied by the
BLOCKFACTORS parameter. The TREATMENTFACTORS parameter defines factors for the
treatments applied to the units of the strata, and LEVELS defines the levels of treatments and
replication of block factors. For example, in Example 4.9.1a,

AGHIERARCHICAL [PRINT=design; ANALYSE=yes; SEED=392384] \
  Blocks,Plots; *,A; 3,5

defines a randomized block design generated with three blocks, and a single treatment factor A
(applied to the plots) with five levels.

Example 4.9.1a

   2  AGHIERARCHICAL [PRINT=design; ANALYSE=yes; SEED=392384]\
   3    Blocks,Plots; *,A; 3,5
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Treatments on each unit of the design
=====================================

 Blocks   1   2   3
  Plots
      1   4   2   3
      2   3   1   1
      3   1   4   5
      4   2   5   2
      5   5   3   4

Treatment factor: A.

Analysis of variance
====================

Source of variation     d.f.

Blocks stratum             2

Blocks.Plots stratum
A                          4
Residual                   8

Total                     14

If there are several factors in a stratum, the identifiers should be placed into a pointer. For
example,

AGHIERARCHICAL Blocks,Plots; *,!p(A,B); 3,2

for a randomized block design with two treatment factors, A and B, both with two levels.
Similarly, if the factors in a stratum have different numbers of levels, the LEVELS parameter may
contain pointers. For example

AGHIERARCHICAL [PRINT=design; ANALYSE=yes; SEED=581386]\
  Blocks,Plots; TREATMENTFACTORS=*,!p(Type,Amount);\
  LEVELS=3,!p(2,3)

defines the randomized block design in Example 4.9.1b, where Type has two levels and Amount
has three.
AGHIERARCHICAL not only defines the values of the factors, it also contains

BLOCKSTRUCTURE and TREATMENTSTRUCTURE statements to define the structure of the design.
We can see what structure has been defined for the design, using the ASTATUS procedure (4.6.2).

Example 4.9.1b

   4  AGHIERARCHICAL [PRINT=design; ANALYSE=yes; SEED=581386]\
   5    Blocks,Plots; TREATMENTFACTORS=*,!p(Type,Amount);\
   6    LEVELS=3,!p(2,3)

Treatment combinations on each unit of the design
=================================================

 Blocks   1     2     3
  Plots
      1   2 2   1 2   1 2
      2   1 1   1 3   1 1
      3   1 2   1 1   1 3
      4   2 3   2 1   2 2
      5   1 3   2 3   2 3
      6   2 1   2 2   2 1

Treatment factors are listed in the order: Type, Amount.
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Analysis of variance
====================

Source of variation     d.f.

Blocks stratum             2

Blocks.Plots stratum
Type                       1
Amount                     2
Type.Amount                2
Residual                  10

Total                     17

   7  ASTATUS

Treatment structure: Type*Amount
Block structure: Blocks/Plots
Covariates: not set

The pointer can contain an extra element to indicate that there is to be replication (as well as
treatments) in a stratum:

AGHIERARCHICAL Blocks,Plots;\
  TREATMENTFACTORS=*,!p(Type,Amount);\
  LEVELS=3,!p(2,3,4)

indicates that there are to be four replicates of the Type and Amount combinations on the plots
of each block. (There is no way of requesting this sort of replication, other than by including a
"dummy" treatment factor to be generated and then ignored, if you are using AGHIERARCHICAL
interactively.)

The SEED option allows you to specify a seed to randomize the design. In a batch run, this has
a default of !1, to suppress randomization. The PRINT option can be set to design to print the
plan of the design. By default, if you are running Genstat in batch, the plan is not printed.
Similarly the ANALYSE option governs whether or not AGHIERARCHICAL produces a skeleton
analysis-of-variance table (containing just source of variation, degrees of freedom and efficiency
factors). You can use the EXCLUDELEVELS parameter to specify levels of the first block factor
that you do not wish to randomize. (This can be useful in "demonstration experiments", when
the treatments may need to be kept in a systematic order in some parts of the trial, but it is not
a good idea in more normal situations.)

The treatment combinations are generated with equal replication, but you can use "dummy"
factors together with the NEWLEVELS function to define designs where some treatment factor
levels have additional replication. The factor Amount in Example 4.9.1c has two plots in each
block with level 1, and one plot each for levels 2 and 3. This is achieved by first generating a
factor (here called Adum) with four levels, and then using the NEWLEVELS function (line 12) to
map levels 1 and 2 of Adum to level 1 of Amount, level 3 of Adum to level 2 of Amount, and level
4 of Adum to level 3 of Amount. Notice also how the option setting MODIFY=yes is used in the
FACTOR statement in line 13 to add labels to the definition of the factor Type. Alternatively, you
can use the AMERGE procedure (4.13.3) to add extra treatment levels such as controls, as shown
in Example 4.13.3.

Example 4.9.1c

   8  AGHIERARCHICAL [PRINT=*; ANALYSE=no; SEED=-1]\
   9    Blocks,Plots; TREATMENTFACTORS=*,!p(Type,Adum);\
  10    LEVELS=3,!p(2,4)
  11  FACTOR [LEVELS=3] Amount
  12  CALCULATE Amount = NEWLEVELS(Adum; !(1,1,2,3))
  13  FACTOR [LABELS=!t(standard,test); MODIFY=yes] Type
  14  PRINT Blocks,Plots,Type,Amount
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      Blocks       Plots        Type      Amount
           1           1    standard           1
           1           2    standard           1
           1           3    standard           2
           1           4    standard           3
           1           5        test           1
           1           6        test           1
           1           7        test           2
           1           8        test           3
           2           1    standard           1
           2           2    standard           1
           2           3    standard           2
           2           4    standard           3
           2           5        test           1
           2           6        test           1
           2           7        test           2
           2           8        test           3
           3           1    standard           1
           3           2    standard           1
           3           3    standard           2
           3           4    standard           3
           3           5        test           1
           3           6        test           1
           3           7        test           2
           3           8        test           3

  15  TABULATE [PRINT=counts; CLASSIFICATION=Type,Amount]

                    Count
       Amount           1           2           3
         Type
     standard           6           3           3
         test           6           3           3

4.9.2 Complete and fractional factorial designs

AGFACTORIAL procedure
Generates minimum aberration block or fractional factorial designs (P.J. Laycock, P.J. Rowley
& R.W. Payne).

Options
PRINT = string token Controls whether or not to print a plan of the design

(design); if unset in an interactive run AGFACTORIAL
will ask whether the design is to be printed, in a batch
run the default is not to print the design

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (yes, no); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

FACTORIAL = scalar Limit on number of factors in treatments terms in the
analysis of variance; default 3

Parameters
LEVELS = scalars, variates or texts Levels for the treatment factors in each design
NTREATMENTFACTORS = scalars Number of treatment factors
NUNITS = scalars Number of units per block
NFRACTIONBLOCK = scalars Defines the number of the block to use to define a

fractional factorial, or can be set to zero to take a block
at random; if unset in an interactive run AGFACTORIAL



4.9  Selecting and generating an experimental design 495

will ask whether to form a fractional factorial design, in
a batch run the default is to form the full (block) design

NSUBUNITS = scalars Number of units in each sub-block
SEED = scalars Seed to be used to randomize each design; a negative

value implies no randomization
TREATMENTFACTORS = pointers Specifies identifiers for the treatment factors
BLOCKS = factors Identifier for the block factor
SUBBLOCKS = factors Identifier for the sub-block factor
PSEUDOFACTORS = pointers Specifies identifiers for pseudo-factors
UNITLABELS = variates Specifies the identifier of a variate to store a unique

numerical label for each unit in the design
NDESIGN = scalars Saves or defines the design number
NSUBDESIGN = scalars Saves or defines the sub-design number
STATEMENT = texts Saves a command to recreate each design (useful if the

design information has been specified in response to
questions from AGFACTORIAL)

AGFACTORIAL generates efficient block or fractional factorial designs using the minimum
aberration algorithm of Laycock & Rowley (1995), implemented in the AFMINABERRATION
directive (4.13.9). It also sets the block and treatment formulae (using the BLOCKSTRUCTURE and
TREATMENTSTRUCTURE directives), and generates any pseudo-factors needed to analyse the
design using the ANOVA directive.

To explain minimum aberration for a block design, we start by defining the resolution of a
design as the largest integer r such that no interaction term with r factors is confounded with
blocks. The aberration of the design is the number of interaction terms with r+1 factors that are
confounded. A minimum aberration design is defined as a design with the smallest aberration
out of the designs with the highest available resolution. So, essentially this minimizes the number
of interactions with the minimum number of factors that are confounded. The definition for a
fractional factorial design is essentially the same. The fractional factorial is constructed by taking
only one block from the block design, and the terms that were confounded with blocks in the
block design become aliased in the fractional factorial.
AGFACTORIAL can be used either in batch or interactively. In an interactive run, it obtains the

information necessary to select and define the design by asking questions. You need set the
parameters only if you wish to anticipate some of the questions, or if you wish to use
AGFACTORIAL in batch. If, however, you wish to recreate the same design later, the STATEMENT
parameter allows you to save a Genstat text structure containing a command specifying the same
information.

The LEVELS parameter defines the number of levels of the treatment factors, either as a scalar
or by providing a text or variate with the required number of levels, to use for the LEVELS option
of the FACTOR directive. This must be a prime number (e.g. 2, 3, 5, 7, 11) or a power of a prime
number (e.g. 4, 8, 9). The number of treatment factors is specified by the NTREATMENTFACTOR
parameter. The number of the units in each block (or, equivalently, the number of units in a
fractional factorial) is specified by the NUNITS parameter; this must be a power of the number
of levels. The NFRACTIONBLOCK parameter allows you to form a fractional factorial, either by
setting it to the number of the block to take, or by setting it to zero to take a block at random; if
you set NFRACTIONBLOCK to a scalar containing a missing value, AGFACTORIAL forms a block
design. You can define blocks for a fractional factorial (or, equivalently, sub-blocks for a block
design) by defining their size using NSUBUNITS parameter; this too must be a power of the
number of levels.

The SEED parameter allows you to specify a seed to be used to randomize the design. In batch
the default seed is !1, to suppress randomization. If you do not set SEED when running
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interactively AGFACTORIAL will ask for a seed, and again a negative value suppresses any
randomization.

The TREATMENTFACTORS parameter can specify a pointer to supply identifiers for the
treatment factors in the design. For example, if there are two factors you could define their
identifiers to be A and B by forming the pointer Tf (say) with the statement

POINTER [VALUES=A,B] Tf

and then setting TREATMENTFACTORS=Tf. Alternatively, and more succinctly, you could put
TREATMENTFACTORS=!p(A,B), where !p(A,B) is an unnamed pointer containing the required
two identifiers. The BLOCKS and SUBBLOCKS parameters allow you to specify identifiers for the
block and sub-block factors. Designs where the treatment factors have more than two levels may
require pseudo-factors to be defined in order for them to be analysed by ANOVA. The
PSEUDOFACTORS parameter can specify a pointer to supply their identifiers. If the treatment,
block or sub-block factors and any necessary pseudo-factors are not specified in a batch run,
AGFACTORIAL will use identifiers that are local within the procedure and thus lost at the end of
the procedure. If you are running interactively, AGFACTORIAL will ask you to provide identifiers,
and these will remain available after AGFACTORIAL has finished running.

The UNITLABELS parameter can specify a variate to store a unique number to label each of
the units in the design. In the first block, the variate contains the numbers one up to the number
of units per block. The second block contains these numbers plus the smallest power of ten
greater than the number of units per block, the third block contains the numbers plus twice this
power of ten, and so on.

The PRINT option can be set to design to print the plan of the design, and summary to print
a summary of the design properties. By default, if you are running Genstat in batch, these are not
printed. If you do not set PRINT when running interactively, AGFACTORIAL will ask whether or
not you wish to print them. Similarly the ANALYSE option governs whether or not AGFACTORIAL
produces a skeleton analysis-of-variance table (containing just source of variation, degrees of
freedom and efficiency factors). Again AGFACTORIAL assumes that this is not required if
ANALYSE is unset in a batch run, and asks whether it is required if ANALYSE is unset in an
interactive run. The FACTORIAL option sets a limit on the number of factors in the treatment
terms in the analysis of variance; by default, this is three.

The NDESIGN parameter can save a unique design number  for the design, and the
NSUBDESIGN can save a unique number for the sub-design of the design (as defined by Laycock
& Rowley 1995). You can input these with NDESIGN and NSUBDESIGN later, along with the
same settings for LEVELS, NTREATMENTFACTORS, NUNITS and NSUBUNITS, to generate the
design factors again without repeating the design search.

Example 4.9.2 uses AGFACTORIAL first to form a complete factorial with six factors, each
with two levels, in four blocks of size 16. It then forms a fractional factorial, again with six
factors with two levels, but now in four blocks of size eight (so this is a ½ fraction).

Example 4.9.2

  2  "2x2x2x2x2x2 design in 4 blocks of size 16"
  3  AGFACTORIAL [PRINT=design; ANALYSE=yes; FACTORIAL=4]\
  4              2; NTREATMENTFACTORS=6; NUNITS=16; NSUBUNITS=!s(*);\
  5              NFRACTIONBLOCK=!s(*); TREATMENTFACTORS=!p(A,B,C,D,E,F);\
  6              BLOCKS=Blocks; UNITLABELS=Labels; SEED=-1
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Treatment combinations on each unit of the design
=================================================

  Blocks   1             2             3             4
 _units_
       1   1 1 1 1 1 1   1 1 1 2 1 2   1 1 1 2 1 1   1 1 1 1 1 2
       2   1 1 1 1 2 2   1 1 1 2 2 1   1 1 1 2 2 2   1 1 1 1 2 1
       3   1 1 2 2 1 1   1 1 2 1 1 2   1 1 2 1 1 1   1 1 2 2 1 2
       4   1 1 2 2 2 2   1 1 2 1 2 1   1 1 2 1 2 2   1 1 2 2 2 1
       5   1 2 1 2 1 2   1 2 1 1 1 1   1 2 1 1 1 2   1 2 1 2 1 1
       6   1 2 1 2 2 1   1 2 1 1 2 2   1 2 1 1 2 1   1 2 1 2 2 2
       7   1 2 2 1 1 2   1 2 2 2 1 1   1 2 2 2 1 2   1 2 2 1 1 1
       8   1 2 2 1 2 1   1 2 2 2 2 2   1 2 2 2 2 1   1 2 2 1 2 2
       9   2 1 1 2 1 2   2 1 1 1 1 1   2 1 1 1 1 2   2 1 1 2 1 1
      10   2 1 1 2 2 1   2 1 1 1 2 2   2 1 1 1 2 1   2 1 1 2 2 2
      11   2 1 2 1 1 2   2 1 2 2 1 1   2 1 2 2 1 2   2 1 2 1 1 1
      12   2 1 2 1 2 1   2 1 2 2 2 2   2 1 2 2 2 1   2 1 2 1 2 2
      13   2 2 1 1 1 1   2 2 1 2 1 2   2 2 1 2 1 1   2 2 1 1 1 2
      14   2 2 1 1 2 2   2 2 1 2 2 1   2 2 1 2 2 2   2 2 1 1 2 1
      15   2 2 2 2 1 1   2 2 2 1 1 2   2 2 2 1 1 1   2 2 2 2 1 2
      16   2 2 2 2 2 2   2 2 2 1 2 1   2 2 2 1 2 2   2 2 2 2 2 1

Treatment factors are listed in the order: A, B, C, D, E, F.

Analysis of variance
====================

Source of variation     d.f.

Blocks stratum
A.B.C.D                    1
A.B.E.F                    1
C.D.E.F                    1

Blocks.*Units* stratum
A                          1
B                          1
C                          1
D                          1
E                          1
F                          1
A.B                        1
A.C                        1
B.C                        1
A.D                        1
B.D                        1
C.D                        1
A.E                        1
B.E                        1
C.E                        1
D.E                        1
A.F                        1
B.F                        1
C.F                        1
D.F                        1
E.F                        1
A.B.C                      1
A.B.D                      1
A.C.D                      1
B.C.D                      1
A.B.E                      1
A.C.E                      1
B.C.E                      1
A.D.E                      1
B.D.E                      1
C.D.E                      1
A.B.F                      1
A.C.F                      1
B.C.F                      1
A.D.F                      1
B.D.F                      1
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C.D.F                      1
A.E.F                      1
B.E.F                      1
C.E.F                      1
D.E.F                      1
A.B.C.E                    1
A.B.D.E                    1
A.C.D.E                    1
B.C.D.E                    1
A.B.C.F                    1
A.B.D.F                    1
A.C.D.F                    1
B.C.D.F                    1
A.C.E.F                    1
B.C.E.F                    1
A.D.E.F                    1
B.D.E.F                    1
Residual                   7

Total                     63

  7  "1/2 fraction of a 2x2x2x2x2x2 design in 4 blocks of size 8"
  8  AGFACTORIAL [PRINT=design; ANALYSE=yes; FACTORIAL=2]\
  9              2; NTREATMENTFACTORS=6; NUNITS=32;\
 10              NFRACTIONBLOCK=1; NSUBUNITS=8; SUBBLOCKS=block;\
 11              TREATMENTFACTORS=!p(a,b,c,d,e,f); UNITLABELS=label; SEED=-1

Treatment combinations on each unit of the design
=================================================

   block   1             2             3             4
 _units_
       1   1 1 1 1 1 1   1 1 1 1 2 2   1 1 1 2 1 2   1 1 1 2 2 1
       2   1 1 2 2 1 1   1 1 2 2 2 2   1 1 2 1 1 2   1 1 2 1 2 1
       3   1 2 1 2 2 2   1 2 1 2 1 1   1 2 1 1 2 1   1 2 1 1 1 2
       4   1 2 2 1 2 2   1 2 2 1 1 1   1 2 2 2 2 1   1 2 2 2 1 2
       5   2 1 1 2 2 2   2 1 1 2 1 1   2 1 1 1 2 1   2 1 1 1 1 2
       6   2 1 2 1 2 2   2 1 2 1 1 1   2 1 2 2 2 1   2 1 2 2 1 2
       7   2 2 1 1 1 1   2 2 1 1 2 2   2 2 1 2 1 2   2 2 1 2 2 1
       8   2 2 2 2 1 1   2 2 2 2 2 2   2 2 2 1 1 2   2 2 2 1 2 1

Treatment factors are listed in the order: a, b, c, d, e, f.

Analysis of variance
====================

Source of variation     d.f.

block stratum
e.f                        1
Residual                   2

block.*Units* stratum
a                          1
b                          1
c                          1
d                          1
e                          1
f                          1
a.b                        1
a.c                        1
b.c                        1
a.d                        1
b.d                        1
c.d                        1
a.e                        1
b.e                        1
c.e                        1
d.e                        1
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a.f                        1
b.f                        1
c.f                        1
d.f                        1
Residual                   8

Total                     31

4.9.3 Factorial designs with confounding

AGDESIGN procedure
Generates generally balanced designs (R.W. Payne).

Options
PRINT = string token Controls whether or not to print a plan of the design and

whether to print a catalogue of the designs in the subfile
(design, catalogue); if unset in an interactive run
AGDESIGN will ask whether the design is to be printed,
in a batch run the default is not to print anything

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

FILENAME = text Name of the backing store file containing the design
information; default uses the standard design file

SUBFILE = identifier Subfile of the backing store file to be used

Parameters
DESIGN = variates Contains codes to indicate the choice of design
TREATMENTFACTORS = pointers Specifies identifiers for the treatment factors
BLOCKFACTORS = pointers Specifies identifiers for the block factors
PSEUDOFACTORS = pointers Specifies identifiers for any pseudo-factors
REPLICATEFACTOR = factors Specifies the identifier of the factor to represent the

replicates (if any) in each design
UNITLABELS = variates Specifies the identifier of a variate to store a unique

numerical label for each plot in the design
SEED = scalars Seed to be used to randomize each design; a negative

value implies no randomization
STATEMENT = texts Saves a command to recreate each design (useful if the

design information has been specified in response to
questions from AGDESIGN)

These designs are generated by procedure AGDESIGN using design keys, selected from a stored
repertoire. You do not need to know the details of how this is done, nor of where the keys are
stored, nor or which designs are available. The keys are accessed automatically, together with
the other information required to form the design, and AGDESIGN generates a menu listing the
choices. This is illustrated in Example 4.9.3, which shows the questions and answers (printed
in bold font) to select and form a design for three treatment factors, A, B and C, each at three
levels. In Genstat for Windows the questions are the same, but they appear in pop-up menus.

The design has four replicates each with three blocks of nine plots. There are 27 treatment
combinations, so some contrasts from the A.B.C interaction must be confounded with blocks.
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(For an explanation of confounding see Section 4.7.1.) The "which version" question shows that
there are four different ways in which we can do this. By choosing one of each version to provide
the required four replicates, we ensure that each of the possible contrasts forming the A.B.C
interaction is confounded in one of the replicates. As a result the design is balanced, as you can
see from the analysis of variance at the end of the example. If, however, we had not selected all
four versions the design would have been partially balanced and AGDESIGN would have
generated the necessary pseudo-factors (see 4.7.3) for it to be analysable. Like
AGHIERARCHICAL (Section 4.9.1) AGDESIGN not only forms the factors, it also sets the block
and treatment formulae (using the BLOCKSTRUCTURE and TREATMENTSTRUCTURE directives)
to allow the design to be analysed by ANOVA.

Example 4.9.3

> AGDESIGN

Which design would you like:
a         Single replicate of a 2x2x2 factorial in blocks of size 4
b         Single replicate of a 2x2x2x2 factorial in blocks of size 8
c         Single replicate of a 2x2x2x2x2x2 factorial in blocks of size 16
d         Single replicate of a 2x2x2x2 factorial in blocks of size 4
e         Single replicate of a 2x2x2x2x2 factorial in blocks of size 8
f         Single replicate of a 2x2x2x2x2x2 factorial in blocks of size 8
g         Single replicate of a 3x3x3 factorial in blocks of size 9
h         Single replicate of a 3x3x3x3 factorial in blocks of size 9
i         Three replicates of a 2x2x3 factorial in blocks of size 6
j         Three replicates of a 2x2x2x3 factorial in blocks of size 6
k         Single replicate of a 2x3x3 factorial in blocks of size 6
l         Single replicate of a 4x4 factorial in blocks of size 4
m         Single replicate of a 4x2x2 factorial in blocks of size 8
n         Three replicates of a 4x2x3 factorial in blocks of size 12
o         Single replicate of a 4x2x2x2 factorial in blocks of size 8
p         Half replicate of a 4x2x2x2x2 factorial in blocks of size 8
Code (a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p) > g

    Which version(s) would you like:
1   different d.f. of A.B.C confounded with blocks: a+2b+2c
2   a+2b+c
3   a+b+2c
4   a+b+c
Numbers > 1,2,3,4

What would you like to call treatment factor 1?
Identifier > A

What would you like to call treatment factor 2?
Identifier > B

What would you like to call treatment factor 3?
Identifier > C

Pseudo-factors in the treatment formula will have suffixed identifiers
(for example pf[1], pf[2] ...). What identifier would you like to use?
Identifier (Default:Pseudofa) > PF

What would you like to call the replicate (version) factor?
Identifier (Default:Replicat) > Rep

What would you like to call the block factor?
Identifier (Default:Blocks) > Block

What would you like to call unit-within-block factor?
Identifier (Default:Units) > Plot

Seed for randomization (-1 for none)?
Number (Default: -1) > 349865

Do you want to print the design?
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n         no
y         yes
Code (n,y; Default n) > y

Treatment combinations on each unit of the design
=================================================

       Block   1       2       3
   Rep  Plot
     1     1   3 2 2   3 3 3   3 1 1
           2   2 3 3   1 1 3   1 3 3
           3   3 1 3   1 3 1   1 2 1
           4   1 3 2   2 1 1   2 2 2
           5   2 2 1   2 3 2   3 3 2
           6   3 3 1   3 2 1   3 2 3
           7   1 2 3   2 2 3   1 1 2
           8   1 1 1   1 2 2   2 1 3
           9   2 1 2   3 1 2   2 3 1
     2     1   1 1 2   1 2 3   2 2 1
           2   2 2 3   1 3 2   1 2 2
           3   3 1 3   2 3 1   2 3 3
           4   1 3 3   2 2 2   3 1 1
           5   3 3 1   2 1 3   3 2 3
           6   2 1 1   3 2 1   1 3 1
           7   2 3 2   1 1 1   2 1 2
           8   3 2 2   3 3 3   1 1 3
           9   1 2 1   3 1 2   3 3 2
     3     1   3 3 1   3 2 1   2 1 2
           2   1 2 2   3 3 2   3 1 1
           3   2 1 3   2 1 1   3 2 2
           4   1 1 1   1 3 1   2 3 1
           5   2 3 2   2 2 2   3 3 3
           6   3 2 3   2 3 3   2 2 3
           7   1 3 3   1 1 2   1 3 2
           8   3 1 2   3 1 3   1 1 3
           9   2 2 1   1 2 3   1 2 1
     4     1   3 1 3   2 3 3   3 3 3
           2   1 3 3   1 1 3   3 2 2
           3   3 3 2   2 1 1   2 3 2
           4   2 3 1   3 3 1   2 1 3
           5   2 1 2   1 3 2   1 1 2
           6   3 2 1   2 2 2   1 3 1
           7   1 2 2   1 2 1   3 1 1
           8   1 1 1   3 2 3   1 2 3
           9   2 2 3   3 1 2   2 2 1

Treatment factors are listed in the order: A, B, C.

Do you want to check the design by ANOVA?
n         no
y         yes
Code (n,y; Default n) > y

Analysis of variance
====================

Source of variation     d.f.

Rep stratum                3

Rep.Block stratum
A.B.C                      8

Rep.Block.Plot stratum
A                          2
B                          2
C                          2
A.B                        4
A.C                        4
B.C                        4
A.B.C                      8
Residual                  70
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Total                    107

Information summary
===================

Model term                e.f.  non-orthogonal terms

Rep.Block stratum
  A.B.C                  0.250

Rep.Block.Plot stratum
  A.B.C                  0.750  Rep.Block

> Do you want to form a unit label variate?
n         no
y         yes
Code (n,y; Default n) > n

The repertoire of factorial designs with confounding is accessed automatically by AGDESIGN
from a subfile of one of the backing-store files that accompanies the procedure library. The
backing-store file is specified by the FILENAME option. Its default file has four subfiles.
FACTORIAL ! factorial designs (with confounding), as used in Example 4.9.3 above.
LATTICE ! square lattice designs: designs for a single treatment factor with number of levels

that is the square of some integer k; the design has replicates, each containing k blocks of
k plots, and different treatment contrasts can be confounded with blocks in each replicate.
(A wider selection of square lattices are available, however, from procedure
AGSQLATTICE: see 4.9.6.)

LATTSQ ! lattice squares: these are similar to lattices except that the blocking structure with
the replicates has rows crossed with columns; again different treatment contrasts can be
confounded with the rows and columns in each replicate. (AGSQLATTICE also provides
a wider selection of lattice squares: see 4.9.6.)

LATIN ! Latin squares: designs are available for 3 to 14 treatments; several different
orthogonal squares are available for most of these so, for example, Graeco Latin squares
can be formed by using a different square for each of the two treatment factors. (These are
also available, however, from procedure AGLATIN: see 4.9.4.)

If the default FILENAME is being used, the usual abbreviation rules are used to match SUBFILE
with the names of the subfiles in the default file, and the FACTORIAL subfile is taken by default.

You can also form your own repertoires of designs using the FDESIGNFILE procedure. This
requires a data file, details of whose format can be obtained by setting option
PRINT=filestructure when running FDESIGNFILE. Further information is given by Payne
(1995), or in the description of procedure FDESIGNFILE in Part 3 of the Genstat Reference
Manual.
AGDESIGN has two other options. The PRINT option can be set to design to print the plan

of the design. By default, if you are running Genstat in batch, the plan is not printed. If you do
not set PRINT when running interactively, AGDESIGN will ask whether or not you wish to print
the design. The other setting catalogue lists the designs in the subfile. Similarly the ANALYSE
option governs whether or not AGDESIGN produces a skeleton analysis-of-variance table
(containing just source of variation, degrees of freedom and efficiency factors). Again
AGDESIGN assumes that this is not required if ANALYSE is unset in a batch run, and asks whether
it is required if ANALYSE is unset in an interactive run.

The information required to select the design and give identifiers to its factors can be defined
using the parameters of AGDESIGN. In an interactive run, as shown in Example 4.9.3, AGDESIGN
will ask questions to obtain any necessary information that is not supplied in this way; when
running in batch, if any of the required information has not been specified, AGDESIGN will
terminate with a warning message.
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The DESIGN parameter can supply a variate whose first value selects the "type" of design: for
example, in the LATTICE subfile, this would select between a 3×3 lattice, a 4×4 lattice, and so
on. Some of these designs are available in several different "versions": for example, in lattice
designs there are several ways of defining which treatment contrasts are to be confounded with
blocks. If there is more than one version, the second and subsequent values of the DESIGN
variate indicate which version, or versions, are required. These need not be distinct so, for
example, you can replicate a basic design several times. If the variate has a single value,
AGDESIGN will select the first version.

The TREATMENTFACTORS parameter can specify a pointer to supply identifiers for the
treatment factors in the design. For example, if there are two factors you could define their
identifiers to be A and B by forming the pointer Tf (say) with the statement

POINTER [VALUES=A,B] Tf

and then setting TREATMENTFACTORS=Tf. Alternatively, and more succinctly, you could put
TREATMENTFACTORS=!p(A,B), where !p(A,B) is an unnamed pointer containing the required
two identifiers. Similarly the BLOCKFACTORS parameter can specify a pointer to define the
identifiers for the block factors in the basic design. If you have requested several versions, or
several replicates, of the basic design AGDESIGN will also need a factor to represent the
replicates. The identifier of this factor can be supplied using the REPLICATEFACTOR parameter.
Partially balanced designs, such as lattices, will require pseudo-factors in the treatment formula
to enable the design to be analysed by ANOVA. Identifiers can be supplied for these using the
PSEUDOFACTORS parameter.

The UNITLABELS parameter can specify a variate to store a unique number to label each of
the plots in the design. In the first replicate (or version) in the generated design, the variate
contains the numbers one up to the number of plots per replicate. The second replicate (if any)
contains these numbers plus the smallest power of ten greater than the number of plots per
replicate, the third replicate contains the numbers plus twice this power of ten, and so on.

The SEED parameter allows you to specify a seed to randomize the design. In a batch run, this
has a default of !1, to suppress randomization. If SEED is unset in an interactive run, you will
be asked to provide a seed (and again a negative value will leave the design unrandomized).

The STATEMENT parameter is useful when you are using AGDESIGN interactively. It allows
you to save a Genstat text structure containing a command specifying the same information that
you will have given in answer to the questions asked by AGDESIGN.

4.9.4 Latin squares

AGLATIN procedure
Generates mutually orthogonal Latin squares (I. Wakeling & R.W. Payne).

Options
PRINT = string token Controls printed output (design, squares, list); if

unset in an interactive run AGLATIN will ask whether the
design is to be printed, in a batch run the default is not
to print anything

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

Parameters
NROWS = scalars Specifies the number of rows (and columns) in each
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square
NSQUARES = scalars Number of squares to form (i.e. number of treatment

factors to generate)
SEED = scalars Seed to be used to randomize each design; a negative

value implies no randomization
TREATMENTFACTORS = pointers Pointer to identifiers for the treatment factors
ROWS = factors Identifier for the row factor
COLUMNS = factors Identifier for the column factor
MAXNSQUARES = scalars Returns the maximum number of squares available with

the specified number of rows and columns
STATEMENT = texts Saves a command to recreate each design (useful if the

design information has been specified in response to
questions from AGLATIN)

AGLATIN generates a Latin square, or a set of orthogonal Latin squares (for example two
orthogonal squares provides a Graeco-Latin square). If you are running Genstat interactively, you
need not set any of the options or parameters of AGLATIN. The information required to generate
the squares is then obtained by questions. You need set the parameters only if you wish to
anticipate some of the questions, or if you wish to use AGLATIN in batch. If, however, you wish
to recreate the same design later, the STATEMENT parameter allows you to save a Genstat text
structure containing a command specifying the same information.

The size of the squares (i.e. the number of rows and columns) can be specified by the NROWS
option, and the number of squares (i.e. the number of treatment factors to be generated) can be
specified by the NSQUARES option. The MAXNSQUARES parameter can be used to ascertain how
many squares are available. If this is set but NSQUARES is not set, the procedure then stops.
Otherwise, when AGLATIN is being used interactively, if NSQUARES is unset you will be asked
how many squares you want.

The squares are represented as a row factor, a column factor and NSQUARES treatment factors
all of length NROWS**2. The ROWS and COLUMNS parameters can supply identifiers for the row
and column factors, so that they are accessible outside the procedure. The TREATMENTFACTORS
parameter can specify a pointer to supply identifiers for the treatment factors. For example, if
there is one factors you could define its identifiers to be Treat by forming the pointer Tf (say)
with the statement

POINTER [VALUES=Treat] Tf

and then setting TREATMENTFACTORS=Tf. Alternatively, and more succinctly, you could put
TREATMENTFACTORS=!p(Treat), where !p(Treat) is an unnamed pointer containing the
required identifier, see line 4 of Example 4.9.4. Similarly you can have a pointer with two
identifiers if there are two treatment factors, as in line 7 of Example 4.9.4.

The SEED parameter allows you to specify a seed to randomize the design. In a batch run, this
has a default of !1, to suppress randomization. If SEED is unset in an interactive run, you will
be asked to provide a seed (and again a negative value will leave the design unrandomized).

The PRINT option controls whether AGLATIN prints the design. The setting design prints it
as a square table of treatment factors tabulated by the row and column factors, squares prints
each treatment factor separately (again tabulated by rows and columns), and list prints row,
column and treatment factor values as a list. By default, if you are running Genstat in batch, the
nothing is printed. If you do not set PRINT when running interactively, AGLATIN will ask what
you want to print. Similarly the ANALYSE option governs whether or not AGLATIN produces a
skeleton analysis-of-variance table (containing just source of variation, degrees of freedom and
efficiency factors). Again AGLATIN assumes that this is not required if ANALYSE is unset in a
batch run, and asks whether it is required if ANALYSE is unset in an interactive run.
AGLATIN generates the squares using Galois fields, obtained from procedure GALOIS. Details
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are given in the description of AGLATIN in Part 3 of the Genstat Reference Manual.
Example 4.9.4a uses AGLATIN to generate a six by six Latin square and then a 12 by 12

Graeco-Latin square (that is a square design with two orthogonal treatment factors, here called
Latin and Graeco).

Example 4.9.4a

   2  " 6 x 6 Latin square."
   3  AGLATIN  [PRINT=design; ANALYSE=yes] 6; NSQUARES=1;\
   4    TREATMENTFACTOR=!p(Treat); ROWS=Rows; COLUMNS=Columns; SEED=876413

Treatments on each unit of the design
=====================================

 Columns   1   2   3   4   5   6
    Rows
       1   5   6   4   3   1   2
       2   3   1   2   4   5   6
       3   1   2   3   5   6   4
       4   2   3   1   6   4   5
       5   4   5   6   2   3   1
       6   6   4   5   1   2   3

Treatment factor: Treat.

Analysis of variance
====================

Source of variation     d.f.

Rows stratum               5

Columns stratum            5

Rows.Columns stratum
Treat                      5
Residual                  20

Total                     35

   5  " 7 x 7 Graeco-Latin square."
   6  AGLATIN  [PRINT=design; ANALYSE=yes] 7; NSQUARES=2;\
   7    TREATMENTFACTORS=!p(Latin,Graeco); ROWS=Rows; COLUMNS=Columns;\
   8    SEED=712753

Treatment combinations on each unit of the design
=================================================

 Columns   1     2     3     4     5     6     7
    Rows
       1   1 2   6 5   2 4   4 1   3 6   5 3   7 7
       2   2 3   7 6   3 5   5 2   4 7   6 4   1 1
       3   3 4   1 7   4 6   6 3   5 1   7 5   2 2
       4   7 1   5 4   1 3   3 7   2 5   4 2   6 6
       5   6 7   4 3   7 2   2 6   1 4   3 1   5 5
       6   4 5   2 1   5 7   7 4   6 2   1 6   3 3
       7   5 6   3 2   6 1   1 5   7 3   2 7   4 4

Treatment factors are listed in the order: Latin, Graeco.

Analysis of variance
====================

Source of variation     d.f.

Rows stratum               6

Columns stratum            6
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Rows.Columns stratum
Latin                      6
Graeco                     6
Residual                  24

Total                     48

AGCROSSOVERLATIN procedure
Generates Latin squares balanced for carry-over effects (R.W. Payne).

Options
PRINT = string token Controls printed output (design); if unset in an

interactive run ACROSSOVERGLATIN will ask whether
the design is to be printed, in a batch run the default is
not to print anything

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (yes, no); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

Parameters
LEVELS = scalars or variates Number of treatments (scalar) or levels for the

treatments
SEED = scalars Seed to be used to randomize the design; a negative

value implies no randomization
TREATMENTS = factors Identifier for a factor to represent the direct effects of

the treatments
SUBJECTS = factors Identifier for a factor to represent the subjects
PERIODS = factors Identifier for a factor to represent the periods
CARRYOVERFACTOR = factors Identifier for a factor to represent the carry-over (or

"residual") effect of the treatments in the period
immediately after the period in which they were applied

NOCARRYOVER = factors Identifier for a factor to represent the comparison
between none and any carry-over effect of the
treatments

STATEMENT = texts Saves a command to recreate each design (useful if the
design information has been specified in response to
questions from AGCROSSOVERLATIN)

Genstat can also generate the specialized Latin squares that are used for cross-over trials. These
are designed to study the effects of various treatments on a set of plots (in a field experiment)
or subjects (in a medical trial). The special feature of these experiments is that the same plots
or subjects are treated during several successive time periods, and there is interest both in the
direct effect of a treatment during the period in which it is applied and its carry-over (or
"residual") effect during later periods. AGCROSSOVERLATIN can generate designs for a single
treatment factor for the most usual situation, where the carry-over effect is assumed to last over
only one subsequent period. The design balances the direct and carry-over effects by ensuring
that each treatment follows each other treatment an equal number of times. For an even number
of treatments t the design consists of a single t × t Latin square, while for an odd number t it is
formed from a pair of Latin squares.

The design can be analysed by ANOVA by setting



4.9  Selecting and generating an experimental design 507

BLOCKSTRUCTURE Subjects * Periods
TREATMENTSTRUCTURE Nocarryover / Carryover + Treatments

The factor Carryover represents the carry-over effects of the treatments, and factor
Nocarryover assesses whether there were any carry-over effects at all (essentially this is a
comparison between the periods 2 onwards where there were carry-over effects from earlier
times, and period 1 where there was none). So the treatment formula expands to specify terms

Nocarryover none versus any carry-over effect
Nocarryover.Carryover differences in carry-over effect amongst the treatments

(assuming that there was an earlier treatment)
Treatments direct effects of treatments, eliminating any carry-over

effect
The direct and carry-over effects are not orthogonal, so it may be of interest also to specify

TREATMENTSTRUCTURE Treatments + Nocarryover / Carryover

in order to estimate the carry-over effects eliminating the direct effects.
AGCROSSOVERLATIN operates similarly to AGLATIN. If it is used interactively the information

required to generate the design can be obtained by questions. You need set the parameters only
if you wish to anticipate some of the questions, or if you wish to use AGCROSSOVERLATIN in
batch. If, however, you wish to recreate the same design later, the STATEMENT parameter allows
you to save a Genstat text structure containing a command specifying the same information.

The number of treatments can be defined using the LEVELS parameter. The SEED parameter
allows you to specify a seed to be used to randomize the design. In batch the default seed is !1,
to suppress randomization. If you do not set SEED when running interactively
AGCROSSOVERLATIN will ask for a seed, and again a negative value suppresses any
randomization.

Parameters TREATMENTS, CARRYOVERFACTOR and NOCARRYOVER allow you to specify
identifiers for factors to represent the direct effects of the treatments, the carry-over effects in
the subsequent period, and the comparison between none and any carry-over effect. Similar the
parameters SUBJECTS and PERIODS can specify identifiers for factors to represent the subjects
(or plots) and time periods respectively. If these parameters are not specified in a batch run,
AGCROSSOVERLATIN will use identifiers that are local within the procedure and thus lost at the
end of the procedure. If you are running interactively, AGCROSSOVERLATIN will ask you to
provide identifiers, and these will remain available after AGCROSSOVERLATIN has finished
running.

The PRINT options can be set to design to print the design. By default, if you are running
Genstat in batch, the nothing is printed. If you do not set PRINT when running interactively,
AGCROSSOVERLATIN will ask what you want to print. The ANALYSE option similarly controls
whether AGCROSSOVERLATIN produces a dummy analysis-of
-variance table, exactly as in AGLATIN.

Example 4.9.4b generates a cross-over design for five treatments. This is based on two Latin
squares, and so there are ten subjects (and five periods).

Example 4.9.4b

   2  AGCROSSOVERLATIN [PRINT=design; ANALYSE=yes] 5; SEED=33841;\
   3    TREATMENTS=Direct; CARRYOVERFACTOR=Carryover;\
   4    NOCARRYOVER=Nocarryover; SUBJECTS=Subjects; PERIODS=Periods
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Treatment combinations on each unit of the design
=================================================

  Periods   1       2       3       4       5
 Subjects
        1   3 1 0   4 2 3   5 2 4   1 2 5   2 2 1
        2   3 1 0   5 2 3   4 2 5   2 2 4   1 2 2
        3   2 1 0   5 2 2   1 2 5   3 2 1   4 2 3
        4   1 1 0   2 2 1   4 2 2   5 2 4   3 2 5
        5   2 1 0   1 2 2   5 2 1   4 2 5   3 2 4
        6   4 1 0   3 2 4   1 2 3   5 2 1   2 2 5
        7   5 1 0   3 2 5   2 2 3   4 2 2   1 2 4
        8   1 1 0   4 2 1   2 2 4   3 2 2   5 2 3
        9   4 1 0   1 2 4   3 2 1   2 2 3   5 2 2
       10   5 1 0   2 2 5   3 2 2   1 2 3   4 2 1

Treatment factors are listed in the order: Direct, Nocarryover, Carryover.

 Labels of Nocarryover:
           1 no carry-over
           2    carry-over

* MESSAGE: non-orthogonality between treatment terms. The effects (printed or
used to calculate means), the efficiency factor and the sum of squares for each
treatment term are for that term eliminating previous terms in the TREATMENT
formula and ignoring subsequent terms.

Analysis of variance
====================

Source of variation     d.f.

Subjects stratum
Nocarryover.Carryover      4
Residual                   5

Periods stratum
Nocarryover                1
Residual                   3

Subjects.Periods stratum
Nocarryover.Carryover      4
Direct                     4
Residual                  28

Total                     49

Information summary
===================

Model term                e.f.  non-orthogonal terms

Subjects stratum
  Nocarryover.Carryover  0.050

Subjects.Periods stratum
  Nocarryover.Carryover  0.950  Subjects
  Direct                 0.947  Nocarryover.Carryover

AGQLATIN procedure
Generates complete and quasi-complete Latin squares (R.W. Payne).

Options
PRINT = string token Controls printing of the design (design); if unset in an

interactive run AGQLATIN will ask whether the design is
to be printed, in a batch run the default is not to print
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anything
ANALYSE = string token Controls whether or not to analyse the design, and

produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

Parameters
NROWS = scalars Specifies the number of rows (and columns) in the

square
SEED = scalars Seed to be used to randomize each design; a negative

value implies no randomization
TREATMENTS = factors Identifier for the treatment factor
ROWS = factors Identifier for the row factor
COLUMNS = factors Identifier for the column factor
STATEMENT = texts Saves a command to recreate each design (useful if the

design information has been specified in response to
questions from AGQLATIN)

A complete Latin square is a Latin square in which each ordered pair of treatments appears
exactly once within the rows of the square, and exactly once within the columns. For example,
in the four-by-four square below, the pair (1,2) is in row 1 (and only in row 1) while the pair
(2,1) is only in row 4. Likewise (1,2) is only only in column 1 and (2,1) only in column 4.

Columns   1   2   3   4
   Rows
      1   1   2   4   3
      2   2   3   1   4
      3   4   1   3   2
      4   3   4   2   1

A quasi-complete Latin has similar properties, but here each unordered pair occurs exactly twice
within the rows, and exactly twice within the columns. See, for example, the five-by-five Latin
square below.

Columns   1   2   3   4   5
   Rows
      1   1   2   5   3   4
      2   2   3   1   4   5
      3   5   1   4   2   3
      4   3   4   2   5   1
      5   4   5   3   1   2

Complete Latin squares can be constructed for any even number of rows, while quasi-complete
squares are available for any odd number of rows. They are constructed using the method of
Williams (1949), which is based upon terraced groups (Bailey 1984). Designs based on these
squares are useful for example in experiments where there is the possibility of interference
between a plot and its neighbours. Complete Latin squares should be used if the interference is
likely to be directional, as for example in a field experiment to assess fungicides where spores
may be carried from one plot to another by a prevailing wind. Otherwise the choice of design
will depend upon wether an odd or even number of treatments is required.

If you are running Genstat interactively, you need not set any of the options or parameters of
AGQLATIN. All the information required to generate the design is then obtained by a series of
questions. You need set the parameters only if you wish to anticipate some of the questions, or
if you wish to use AGQLATIN in batch. If, however, you wish to recreate the same design later,
the STATEMENT parameter allows you to save a Genstat text structure containing a command
specifying the same information.
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The size of the square (i.e. the number of rows and columns) can be specified by the NROWS
option. The ROWS, COLUMNS and TREATMENTS parameters can supply identifiers for the row,
column and treatment factors, so that they are accessible outside the procedure.

The SEED parameter allows you to specify a seed to randomize the design, by making a
random permutation of the treatment labels. In a batch run, SEED has a default of !1, to suppress
randomization. If SEED is unset in an interactive run, you will be asked to provide a seed (and
again a negative value will leave the design unrandomized).

The PRINT option can be set to design to print the design. By default, if you are running
Genstat in batch, the nothing is printed. If you do not set PRINT when running interactively,
AGQLATIN will ask what you want to print. Similarly the ANALYSE option governs whether or
not AGQLATIN produces a skeleton analysis-of-variance table (containing just source of
variation, degrees of freedom and efficiency factors). Again AGQLATIN assumes that this is not
required if ANALYSE is unset in a batch run, and asks whether it is required if ANALYSE is unset
in an interactive run.

4.9.5 Semi-Latin squares

An (n × n)/k semi-Latin square is like an n × n Latin square except that there are k letters in each
cell. The combinations of the rows and columns of a semi-Latin square are called blocks. Each
of the n × k letters occurs once in each row and once in each column. The design thus has n rows
and columns, k (sub-) units within each row × column combination (or block), and n × k
treatments. The analysis should contain strata for rows, columns, rows.columns and
rows.columns.units, as well as treatment effects which may be estimated in either the
rows.columns or the rows.columns.units strata. Procedure AGSEMILATIN can construct three
types of semi-Latin square.

Trojan squares: a Trojan square consist of a set of k mutually orthogonal n × n Latin squares,
on k disjoint sets of treatments. Each block of the semi-Latin square contains the treatments
which occur in the corresponding cell of all the individual squares (Bailey 1988). AGSEMILATIN
can construct Trojan squares for any value of n for which a Graeco-Latin square exists. Thus,
for example, no Trojan square exists for n = 6. In a Trojan square k must be greater than 1 and
less than n (Edmondson 1998), and for some values of n, k must be less than that. The maximum
values of k for n up to 15 for a Trojan square are

n:   3   4   5   7   8   9   11   12   13   14   15
k:   2   3   4   6   6   8   10     2   12    2     2

In a Trojan square, some treatment effects are estimated in both the rows.columns and the
rows.columns.units strata, while others (which need to be represented by a pseudo-factor) are
estimated only in the rows.columns.units stratum. Trojan squares are optimal semi-Latin squares
(Bailey 1992).

Inflated Latin squares: an (n × n)/k inflated Latin square consists of an n × n Latin square with
each letter replaced by k new symbols (Bailey 1988). AGSEMILATIN can construct inflated Latin
squares for any value of n greater than 2, and any value of k greater than 1. The analysis requires
a pseudo-factor to distinguish the treatment contrasts that are estimated in the rows.columns
stratum from those estimated in the rows.columns.units stratum.

Interleaving Latin squares: these are formed similarly to the Trojan square, except that there
is no longer the requirement for the k Latin squares to be orthogonal (Bailey 1988). If the squares
are orthogonal, the design is a Trojan square and can be analysed by ANOVA with the help of a
pseudo-factor as described above. For n=2 the design is an inflated Latin square and can be
analysed by ANOVA, again with the help of a pseudo-factor. Otherwise, the design is unbalanced.
It is possible to generate a balanced analysis by omitting the row.column stratum, but this is not
reasonable and Yates (1935) advises against such an analysis. AGSEMILATIN can construct
interleaving Latin squares for any value of n or k greater than 1.
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AGSEMILATIN procedure
Generates semi-Latin squares (W. van den Berg).

Options
PRINT = string token Controls whether or not to print a plan of the design

(design); if unset in an interactive run AGSEMILATIN
will ask whether the design is to be printed, in a batch
run the default is not to print anything

METHOD = string token Method to use to construct the semi-Latin square
(Trojan, interleaving, inflated); if unset in an
interactive run AGSEMILATIN will ask what type is
required, in a batch run the default is Trojan

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

Parameters
NROWS = scalars Number of rows and columns of the semi-Latin square
NUNITS = scalars Number of units (i.e. treatments) within each block
SEED = scalars Seed for randomization; a negative value implies no

randomization
TREATMENTS = factors Identifier for the treatment factor
ROWS = factors Identifier for the row factor
COLUMNS = factors Identifier for the column factor
UNITS = factors Identifier for the unit factor
PSEUDOFACTOR = factors Identifier for the pseudo-factor
STATEMENT = texts Saves a command to recreate the design (useful if the

design information has been specified in response to
questions from AGSEMILATIN)

AGSEMILATIN generates the factors and pseudo-factor required to define a semi-Latin square.
It also sets the block and treatment formulae (using the BLOCKSTRUCTURE and
TREATMENTSTRUCTURE directives) to allow the design, if balanced, to be analysed by ANOVA.

The type of semi-Latin square can be chosen using the METHOD option with setting either
Trojan, inflated, or interleaving. In a batch run the default is Trojan, while in an
interactive run AGSEMILATIN will ask what type you want. AGSEMILATIN has two other
options. The PRINT option can be set to design to print the plan of the design. By default, if
you are running Genstat in batch, the plan is not printed. If you do not set PRINT when running
interactively, AGSEMILATIN will ask whether or not you wish to print the design. Similarly the
ANALYSE option governs whether or not AGSEMILATIN produces a skeleton analysis-of-variance
table (containing just source of variation, degrees of freedom and efficiency factors). Again
AGSEMILATIN assumes that this is not required if ANALYSE is unset in a batch run, and asks
whether it is required if ANALYSE is unset in an interactive run.

The information required to select the design and give identifiers to its factors can be defined
using the parameters of AGSEMILATIN. The number of rows and columns of the design (n) can
be defined using the parameter NROWS. Similarly, the number of units (k) for each row-column
combination (that is, the number of treatments per block) can be defined by the parameter
NUNITS. Parameters TREATMENTS, ROWS, COLUMNS, UNITS and PSEUDOFACTOR allow you to
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specify identifiers for the treatment, row, column and unit factors, and for the pseudo-factor. The
SEED parameter allows you to specify a seed to randomize the design. In a batch run, this has a
default of !1, to suppress randomization. If SEED is unset in an interactive run, you will be asked
to provide a seed (and again a negative value will leave the design unrandomized). If one of the
other parameters is unset in an interactive run, you will be asked to provide a name.

The STATEMENT parameter allows you to save a Genstat text structure containing a command
to recreate the design. This is particularly useful when you are running AGSEMILATIN
interactively, and specifying the information in response to questions.

The various types of square are illustrated in Example 4.9.5.

Example 4.9.5

   2  AGSEMILATIN [PRINT=design; METHOD=trojan; ANALYSE=yes]\
   3    NROWS=5; NUNITS=4; SEED=135143; TREATMENTS=Treat;\
   4    COLUMNS=Column; ROWS=Row; UNITS=Plot; PSEUDOFACTOR=Pseudo

Trojan Square: NROWS (n) = 5, NUNITS (k) = 4.

                   [1]
            Column   1   2   3   4   5
      Row     Plot
        1        1   3  11  13   8   5
                 2   9  17   4  20   7
                 3  19  15  12  18  16
                 4   1  10   2  14   6
        2        1   2  20  19  12   4
                 2   6  13  15   9  17
                 3  11   7  14  16   8
                 4  18   1   5  10   3
        3        1   5   6   1   2   9
                 2  10  12   8  19  13
                 3  20  14  16   7  15
                 4   4   3  11  17  18
        4        1  12  16  17  11   1
                 2  15  19   9   3  14
                 3   7  18  20   5   2
                 4   8   4   6  13  10
        5        1  14   2   7   6  20
                 2  16   8  10   1  12
                 3  17   9  18   4  11
                 4  13   5   3  15  19

Analysis of variance
====================

Source of variation     d.f.

Row stratum                4

Column stratum             4

Row.Column stratum
Treat                     16

Row.Column.Plot stratum
Treat                     19
Residual                  56

Total                     99
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Information summary
===================

Model term                e.f.  non-orthogonal terms

Row.Column stratum
  Treat                  0.250

Row.Column.Plot stratum
  Treat                  0.750  Row.Column

   5  AGSEMILATIN [PRINT=design; METHOD=inflated; ANALYSE=yes]\
   6    NROWS=5; NUNITS=4; SEED=314612; TREATMENTS=Treat;\
   7    COLUMNS=Column; ROWS=Row; UNITS=Plot; PSEUDOFACTOR=Pseudo

Inflated Latin Square: NROWS (n) = 5, NUNITS (k) = 4.

                   [1]
            Column   1   2   3   4   5
      Row     Plot
        1        1   9   7  14  15  16
                 2   4   8  17  19  20
                 3   3  10   1  11   5
                 4   2  13  12   6  18
        2        1   8  15   9  16  12
                 2  10   6   4   5  17
                 3   7  19   3  20   1
                 4  13  11   2  18  14
        3        1   5  14  11   2  10
                 2  18  17  19   9   7
                 3  16   1  15   3  13
                 4  20  12   6   4   8
        4        1   1   4   5  13  19
                 2  17   9  20   8  15
                 3  12   3  16  10  11
                 4  14   2  18   7   6
        5        1  15  16   8  17   4
                 2  19  20   7   1   3
                 3  11   5  10  14   9
                 4   6  18  13  12   2

Analysis of variance
====================

Source of variation     d.f.

Row stratum                4

Column stratum             4

Row.Column stratum
Treat                      4
Residual                  12

Row.Column.Plot stratum
Treat                     15
Residual                  60

Total                     99

   8  AGSEMILATIN [PRINT=design; METHOD=interleaving; ANALYSE=yes]\
   9    NROWS=5; NUNITS=6; SEED=235978; TREATMENTS=Treat;\
  10    COLUMNS=Column; ROWS=Row; UNITS=Plot; PSEUDOFACTOR=Pseudo

Interleaving Latin Square: NROWS (n) = 5, NUNITS (k) = 6.
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                   [1]
            Column   1   2   3   4   5
      Row     Plot
        1        1  27  21  11   5   3
                 2   4  28  20   9  17
                 3  14  18   2  12  30
                 4   8  24  13   7  23
                 5  16  15  29  26  22
                 6   6   1  10  25  19
        2        1  20  23   7  27   6
                 2  28  25   3  29  12
                 3  26   4  24   2  15
                 4   9   5  17   1  14
                 5  22  11  21  19  18
                 6  13   8  16  30  10
        3        1  15  17   1  10   2
                 2  11  13   9  21  16
                 3   7  12   6   8   5
                 4  18   3  14  22  28
                 5  30  20  26   4  29
                 6  19  27  23  24  25
        4        1  23  19   5  17  13
                 2   2   9  15  28   4
                 3  21  30  18  11   8
                 4  29  10  25   3  20
                 5  12  16  27   6   1
                 6  24  26  22  14   7
        5        1   1   7  12  18  26
                 2  10   6  19  16   9
                 3  17  29  28  15  11
                 4   3  14   4  23  27
                 5   5   2   8  13  24
                 6  25  22  30  20  21

******** Warning from AGSEMILATIN:
Interleaved Latin Squares with 5 rows and columns and 6 columns are
unbalanced, and so cannot be analysed by ANOVA.

4.9.6 Square lattice and lattice square designs

A square lattice is a design for a single treatment factor with a number of levels that is the square
of some integer k; the design has replicates, each containing k blocks of k units (or plots), and
different treatment contrasts are confounded with blocks in each replicate. The block structure
of the design is thus

Replicates / Blocks / Units

The lattice square is similar, but it has a row-by-column structure with k rows and k columns
within each replicate. So the block structure is now

Replicates / (Rows * Columns)

These designs can be generated by the procedure AGSQLATTICE. They are used, for example,
in variety trials where there are many treatments to examine and the variability of the units is
such that the block size needs to be kept reasonably small. For some numbers of treatments, it
is possible to generate enough different replicates so that every treatment contrast is confounded
with blocks in one of the replicates of a square lattice, or with rows and with columns in one of
the replicates of a lattice square. The design is then balanced. If insufficient replicates are
available, or if you choose to use less than the full set available, the design is unbalanced and
needs pseudofactors for its analysis by the ANOVA directive. However, AGSQLATTICE can
generate these for you automatically.
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AGSQLATTICE procedure
Generates square lattice and lattice square designs (R.W. Payne).

Options
PRINT = string token Controls whether or not to print a plan of the design

(design); if unset in an interactive run AGSQLATTICE
will ask whether the design is to be printed, in a batch
run the default is not to print the design

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

DESIGNTYPE = string token What type of design to form (squarelattice,
latticesquare); default squa

Parameters
LEVELS = scalars Number of treatments in each design
NREPLICATES = scalars Number of replicates in each design, taken by default to

be the maximum number available in a batch run
SEED = scalars Seed for randomization; a negative value implies no

randomization
TREATMENTS = factors Identifier for the treatment factor for each design
PSEUDOFACTORS = pointers Identifier for the pseudofactors required if the design is

not a balanced lattice
REPLICATES = factors Identifier for the replicate factor for each design
BLOCKS = factors Identifier for the factor to index the blocks within

replicates of each design
ROWS = factors Identifier for the factor to index the rows within

replicates of a lattice square
COLUMNS = factors Identifier for the factor to index the columns within

replicates of a lattice square
UNITS = factors Identifier for the factor to index the units (or plots)

within the blocks of each design
STATEMENT = texts Saves a command to recreate the design (useful if the

design information has been specified in response to
questions from AGSQLATTICE)

EXCLUDEREPLICATES = scalars or variates
Replicates to exclude during randomization

If you are running Genstat interactively, you need not set any of the options or parameters of
AGSQLATICE. The information required to generate the design is then obtained by a series of
questions. Its options and parameters allow you to anticipate questions, or to define all the
necessary information if you want to use AGSQLATTICE in batch. However, if you wish to
recreate the same design later, the STATEMENT parameter allows you to save a Genstat text
structure containing a command specifying the same information.

The DESIGNTYPE option controls whether a square lattice or a lattice square is generated. By
default, if you are running Genstat in batch, a square lattice is generated. If you do not set
DESIGNTYPE when running interactively, AGSQLATTICE will ask what sort of design you want. 

The number of treatments can be defined using the LEVELS parameter. Similarly, the



516 4  Analysis of variance and design of experiments

NREPLICATES parameter can define the number of replicates; by default, in a batch run, the
maximum available number of replicates is formed. The SEED parameter allows you to specify
a seed to be used to randomize the design. In batch the default seed is !1, to suppress
randomization. If you do not set SEED when running interactively AGSQLATTICE will ask for a
seed, and again a negative value suppresses any randomization. You can use the
EXCLUDEREPLICATES parameter to specify a scalar or variate giving numbers of replicates that
you do not wish to randomize. (This can be useful in "demonstration experiments", when the
treatments may need to be kept in a systematic order in some parts of the trial, but it is not a good
idea in more normal situations.)

The TREATMENTS and REPLICATES parameters allow you to specify identifiers for the
treatment and replicate factors, and the PSEUDOFACTORS parameter allows you to specify a
pointer to represent the pseudo-factors if these are required. The BLOCKS and UNITS parameters
specify identifiers for the block-within-replicate and unit-within-block factors of a square lattice,
while the ROWS and COLUMNS parameters specify identifiers for the row- and column-within-
replicate factors of a lattice square. If any of these parameters is not specified in a batch run,
AGSQLATTICE will use an identifier that is local within the procedure and thus lost at the end
of the procedure. If you are running interactively, AGSQLATTICE will ask you to provide
identifiers, and these will remain available after it has finished running.
AGSQLATTICE has a PRINT option which can be set to design to print the plan of the design.

By default, if you are running Genstat in batch, the plan is not printed. If you do not set PRINT
when running interactively, AGSQLATTICE will ask whether or not you wish to print the design.
Similarly the ANALYSE option governs whether or not AGSQLATTICE produces a skeleton
analysis-of-variance table (containing just source of variation, degrees of freedom and efficiency
factors). Again AGSQLATTICE assumes that this is not required if ANALYSE is unset in a batch
run, and asks whether it is required if ANALYSE is unset in an interactive run. 

Example 4.9.6 generates a 5 by 5 square lattice with three replicates.

Example 4.9.6

   2  " 5 x 5 Square lattice with 3 replicates."
   3  AGSQLATTICE [PRINT=design; ANALYSE=yes; DESIGNTYPE=squarelattice] 25;\
   4    NREPLICATES=3; SEED=-1; TREATMENTS=variety; PSEUDOFACTORS=pf;\
   5    REPLICATES=rep; BLOCKS=block; UNITS=plot

Treatments on each unit of the design
=====================================

        plot    1    2    3    4    5
   rep block
     1     1    1    2    3    4    5
           2    6    7    8    9   10
           3   11   12   13   14   15
           4   16   17   18   19   20
           5   21   22   23   24   25
     2     1    1    6   11   16   21
           2    2    7   12   17   22
           3    3    8   13   18   23
           4    4    9   14   19   24
           5    5   10   15   20   25
     3     1    1   10   14   18   22
           2    2    6   15   19   23
           3    3    7   11   20   24
           4    4    8   12   16   25
           5    5    9   13   17   21

Treatment factor: variety.
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Analysis of variance
====================

Source of variation     d.f.

rep stratum                2

rep.block stratum
variety                   12

rep.block.plot stratum
variety                   24
Residual                  36

Total                     74

Information summary
===================

Model term                e.f.  non-orthogonal terms

rep.block stratum
  pf[1]                  0.333
  pf[2]                  0.333
  pf[3]                  0.333

rep.block.plot stratum
  pf[1]                  0.667  rep.block
  pf[2]                  0.667  rep.block
  pf[3]                  0.667  rep.block

   6  ASTATUS

Treatment structure:  variety // pf[1],pf[2],pf[3]
Block structure:  rep/block/plot
Covariates: not set

4.9.7 Alpha designs

Alpha designs form a very flexible class of resolvable incomplete block designs. A resolvable
design is one in which each block contains only a selection of the treatments, but the blocks can
be grouped together into subsets in which each treatment is replicated once. The groupings of
blocks thus form replicates, and the block structure of the design is

Replicates / Blocks / Units

Such designs are particularly useful when there are many treatments to examine and the
variability of the units is such that the block size needs to be kept small. Alpha designs were thus
devised originally for the analysis of plant breeding trials (Patterson & Williams 1976), where
many varieties may need to be evaluated in a single trial, and have the advantage that they can
provide effective designs for any number of treatments. The designs are unbalanced, and are
analysed using REML (Chapter 5).

The formation of an alpha design requires a generating array, and the effectiveness of the
design that is produced will be very dependent on the choice of array. Procedure AGALPHA
provides arrays for up to 100 treatments.

AGALPHA procedure
Forms alpha designs by standard generators for up to 100 treatments (M.F. Franklin & R.W.
Payne).

Option
PRINT = string token Controls whether or not to print a plan or the generator

of of the design (design, generator); if unset in an
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interactive run AGALPHA will ask whether the design and
generator are to be printed, in a batch run the default is
not to print anything

Parameters
LEVELS = scalars Number of treatments
NREPLICATES = scalars Number of replicates
NBLOCKS = scalars Number of blocks per replicate
SEED = scalars Seed for randomization; a negative value implies no

randomization
TREATMENTS = factors Identifier for the treatment factor
REPLICATES = factors Identifier for the replicate factor
BLOCKS = factors Identifier for the factor to index the blocks within

replicates
UNITS = factors Identifier for the factor to index the units (or plots)

within each block
STATEMENT = texts Saves a command to recreate each design (useful if the

design information has been specified in response to
questions from AGALPHA)

If you are running Genstat interactively, you need not set any of the options or parameters of
AGALPHA. It then asks questions to determine the necessary information to select the generating
array: for example, the number of treatments, the number of blocks per replicate and so on. The
parameters allow you to anticipate questions, or to define all the necessary information if you
want to use AGALPHA in batch. If, however, you wish to recreate the same design later, the
STATEMENT parameter allows you to save a Genstat text structure containing a command
specifying the same information.

The number of treatments can be defined using the LEVELS parameter. Similarly, the
NREPLICATES and NBLOCKS parameters define the number of replicates and the number of
blocks per replicate. If the number of blocks per replicate is greater than or equal to the number
of units (or plots) per block, generators are available for either two, three or four replicates;
otherwise there can only be two. The SEED parameter allows you to specify a seed to be used to
randomize the design. In batch the default seed is !1, to suppress randomization. If you do not
set SEED when running interactively AGALPHA will ask for a seed, and again a negative value
suppresses any randomization. The remaining parameters, TREATMENTS, REPLICATES, BLOCKS
and UNITS, allow you to specify identifiers for the treatment, replicate, block-within-replicate
and unit-within-block factors. If these are not specified in a batch run, AGALPHA will use
identifiers that are local within the procedure and thus lost at the end of the procedure. If you are
running interactively, AGALPHA will ask you to provide identifiers, and these will remain
available after AGALPHA has finished running.
AGALPHA has a PRINT option which can be set to design to print the plan of the design, and

generator to print the generator of the design. By default, if you are running Genstat in batch,
neither are printed. If you do not set PRINT when running interactively, AGALPHA will ask
whether you wish to print the design or generator.

Example 4.9.7 uses AGALPHA to generate an alpha design for 30 treatments (varieties) with
three replicates each with six blocks of five plots.

Example 4.9.7

   2  " Alpha design for 30 treatments, with 3 replicates
  -3    and 6 blocks per replicate."
   4  AGALPHA  [PRINT=design] 30; NREPLICATES=3; NBLOCKS=6; SEED=37653;\
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   5    TREATMENTS=Variety; REPLICATES=Rep; BLOCKS=Block; UNITS=Plot

Treatments on each unit of the design
=====================================

        Plot    1    2    3    4    5
   Rep Block
     1     1   20   19    6   14    4
           2    2   26   15    9   12
           3   28   16    5   25    3
           4   24   11   22    8   27
           5   10   29   30   21    1
           6   13   17   23    7   18
     2     1   28   19   26   22   29
           2   15    4   30   13    3
           3   20   18   10   27    9
           4   12   17   21    5    8
           5    7   14   25    1   11
           6    6   16    2   23   24
     3     1   22   18    1    6    3
           2   20   21   15   16    7
           3    2   25    8   19   10
           4   13   29   24    5    9
           5   17   14   26   27   30
           6   28   11   23    4   12

Treatment factor: Variety.

AGALPHA provides a repertoire of alpha arrays from Patterson, Williams & Hunter (1978) and
Williams (1975). If you have your own array, you can generate the design using procedure
AFALPHA (which is used by AGALPHA). This has a very similar syntax to AGALPHA, except that
the GENERATOR parameter (which specifies the generator) replaces the NREPLICATES and
NBLOCKS parameters of AGALPHA (the numbers of replicates and blocks are determined by the
dimensions of the alpha array).

AFALPHA procedure
Generates alpha designs (R.W. Payne).

Option
PRINT = string token Whether to print the design (design); default * i.e. no

printing

Parameters
GENERATOR = matrices generating array (of size number-of-plots-per-block by

number-of-reps)
LEVELS = scalars or variates Defines the levels of each treatment factor; if this is

omitted, the levels of the TREATMENT factor are used, if
available, otherwise LEVELS is determined from the
generating array on the assumption that the blocks are to
be of equal size

SEED = scalar Seed to be used to randomize the design, if required
TREATMENTS = factors Specifies the treatment factor for each design
REPLICATES = factors Specifies the replicate factor
BLOCKS = factors Specifies the block factor
UNITS = factors Specifies the factor to index the units within each block
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4.9.8 Balanced-incomplete-block designs

Incomplete block designs occur when the units in an experiment need to be divided into blocks
that are not large enough to contain a unit for every treatment. In a balanced-incomplete-block
design the contents of the blocks are arranged so that every pair of treatments occurs in an equal
number of blocks. All comparisons between treatments are thus made with equal accuracy, so
the design is balanced and, in particular, can be analysed by ANOVA. AGBIB can generate a
balanced-incomplete-block design for any number of treatments in blocks of size two. It also has
a selection of designs whose blocks contain more than two plots, which are generated from
Hadamard matrices as described by Hedayat & Wallis (1978).

AGBIB procedure
Generates balanced incomplete block designs (R.W. Payne).

Options
PRINT = string token Controls whether or not to print a plan of the design and

whether to print a catalogue of the designs in the subfile
(design, catalogue); if unset in an interactive run
AGBIB will ask whether the design is to be printed, in a
batch run the default is not to print anything

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
interactive run, and not to analyse if it is unset in a batch
run

Parameters
LEVELS = scalars Number of treatments
NBLOCKS = scalars Number of blocks
NUNITS = scalars Number of units per block
SEED = scalars Seed for randomization; a negative value implies no

randomization
TREATMENTS = factors Identifier for the treatment factor
BLOCKS = factors Identifier for the factor to index the blocks
UNITS = factors Identifier for the factor to index the units within each

block
STATEMENT = texts Saves a command to recreate each design (useful if the

design information has been specified in response to
questions from AGBIB)

If you are running Genstat interactively, you need not set any of the options or parameters of
AGBIB. It then asks questions to determine the necessary information to form the design. The
options and parameters allow you to anticipate questions, or to define all the necessary
information if you want to use AGBIB in batch. If, however, you wish to recreate the same design
later, the STATEMENT parameter allows you to save a Genstat text structure containing a
command specifying the same information.

Example 4.9.8 shows the questions and answers (printed in bold font) to form a balanced-
incomplete-block design for seven treatments in seven blocks of four plots. In Genstat for
Windows the questions would be the same, but would appear in pop-up menus.
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Example 4.9.8

> AGBIB

Do you want blocks of size 2?
n         no
y         yes
Code (n,y; Default n) > n

Design  Number  of  Number of  Number of plots  No. blocks  containing
number  treatments    blocks      per block     each set of treatments
     1           3          3                2                       1
     2           3          6                2                       2
     3           4          6                2                       1
     4           5         10                2                       1
     5           5         10                3                       3
     6           6         10                3                       2
     7           7          7                3                       1
     8           7          7                4                       2
     9           7         14                3                       2
    10           7         14                4                       4
    11           8         14                4                       3
    12           8         14                4                       1
    13           9         18                4                       3
    14           9         18                5                       5
    15          10         18                5                       4
    -1  exit
     0  more designs...
Number (Default: 0) > 8

What would you like to call the treatment factor?
Identifier (Default:Treatmen) > Treat

What would you like to call the block factor?
Identifier (Default:Blocks) > Block

What would you like to call the unit-within-block factor?
Identifier (Default:Units) > Plot

Seed for randomization (-1 for none)?
Number (Default: -1) > 583109

Do you want to print the design?
n         no
y         yes
Code (n,y; Default n) > y

Treatments on each unit of the design
=====================================

 Block   1   2   3   4   5   6   7
  Plot
     1   4   7   2   4   6   3   5
     2   1   6   4   2   7   7   3
     3   6   2   7   3   1   5   1
     4   5   5   1   6   3   4   2

Treatment factor: Treat.

Do you want to check the design by ANOVA?
n         no
y         yes
Code (n,y; Default n) > y
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Analysis of variance
====================

Source of variation     d.f.

Block stratum
Treat                      6

Block.Plot stratum
Treat                      6
Residual                  15

Total                     27

Information summary
===================

Model term                e.f.  non-orthogonal terms

Block stratum
  Treat                  0.125

Block.Plot stratum
  Treat                  0.875  Block

Alternatively, you can set the LEVELS parameter to the required number of treatments, the
NBLOCKS parameter to the number of blocks and the NUNITS parameter to the number of units
per block; AGBIB then selects the design (if available) automatically.

The SEED parameter allows you to specify a seed to be used to randomize the design. In batch
the default seed is !1, to suppress randomization. If you do not set SEED when running
interactively AGBIB will ask for a seed, and again a negative value suppresses any
randomization.

Parameters TREATMENTS, BLOCKS and UNITS, allow you to specify identifiers for the
treatment, the block and unit-within-block factors. If these are not specified in a batch run,
AGBIB will use identifiers that are local within the procedure and thus lost at the end of the
procedure. If you are running interactively, AGBIB will ask you to provide identifiers, and these
will remain available after AGBIB has finished running.

The PRINT option controls printed output, with setting design to print a plan of the design,
and catalogue to print a list of the available designs. By default, if you are running Genstat in
batch, nothing is printed. If you do not set PRINT when running interactively, AGBIB will ask
whether or not you wish to print the design, after it has been generated. Similarly the ANALYSE
option governs whether or not AGBIB produces a skeleton analysis-of-variance table (containing
just source of variation, degrees of freedom and efficiency factors). Again AGBIB assumes that
this is not required if ANALYSE is unset in a batch run, and asks whether it is required if
ANALYSE is unset in an interactive run.

4.9.9 Cyclic designs

Cyclic designs provide an effective way of assessing treatments using a block design where the
blocks are each too small to hold all the treatments. In its simplest form, the cyclic method of
generation starts with an initial block, containing some subset of the treatments. The members
of this subset are then represented by ordinal numbers in the range 0...m!1 where m is the
number of treatment levels. The second and subsequent blocks are then generated by successive
addition modulo m of one to the numbers in the subset. Thus, for seven treatments (0...6) and an
initial block (0,1,4), the subsequent blocks would contain treatments (1,2,5), (2,3,6), (3,4,0),
(4,5,1), (5,6,2) and (6,0,3). As can be seen, if m is a prime number, m blocks are generated with
each initial block. However, if m can be expressed as the product of other integers, shorter cycles
can occur. For example, for m=8 and initial block (0,1,4,5), four blocks are generated altogether,
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the others being (1,2,5,6), (2,3,6,7) and (3,4,7,0). Procedure AFCYCLE, which generates cylic
designs in Genstat, allows for all of this. It is also possible to have more than one initial block,
and the increment need not be one.

The efficiency of the design depends very much on the choice of initial blocks. Procedure
AGCYCLIC provides a repertoire of initial blocks mainly from the program DSIGNX (Franklin &
Mann 1986), and including designs from Davis & Hall (1969), Hall & Williams (1973) and John,
Wolock & David (1972). Cyclic designs are generally unbalanced, and are thus analysed using
REML (Chapter 5).

AGCYCLIC procedure
Generates cyclic designs from standard generators (M.F. Franklin & R.W. Payne).

Options
PRINT = string token Controls whether or not to print a plan of the design

(design); if unset in an interactive run AGCYCLIC will
ask whether the design is to be printed, in a batch run
the default is not to print the design

METHOD = string token Type of design ! ordinary cyclic, cyclic change-over or
cyclic superimposed (cyclic, changeover,
superimposed); if unset in an interactive run
AGCYCLIC will ask about the type of design, in a batch
the default is assumed to be cyclic

Parameters
LEVELS = scalars Number of treatments
NBLOCKS = scalars Number of blocks
NUNITS = scalars Number of units per block, or number of periods in a

cyclic change-over design
SEED = scalars Seed for randomization; a negative value implies no

randomization
TREATMENTS = factors Identifier for the treatment factor
SUPERIMPOSED = factors Identifier for the second treatment factor in a cyclic

superimposed design
BLOCKS = factors Identifier for the factor to index the blocks
UNITS = factors Identifier for the factor to index the units within each

block, or the periods of a cyclic change-over design
INITIALBLOCKS = variates or pointers

To save one (variate) or more (pointer to variates) initial
blocks

STATEMENT = texts Saves a command to recreate the design (useful if the
design information has been specified in response to
questions from AGCYCLIC)

If you are running Genstat interactively, you need not set any of the options or parameters of
AGCYCLIC. It then asks questions to determine the necessary information to form the design. It
will also tell you which block sizes are available for your chosen number of treatments. The
options and parameters allow you to anticipate questions, or to define all the necessary
information if you want to use AGCYCLIC in batch. If, however, you wish to recreate the same
design later, the STATEMENT parameter allows you to save a Genstat text structure containing
a command specifying the same information.

The first question, which can be anticipated by setting the METHOD option, determines the type
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of cyclic design. In addition to the standard cyclic designs, AGCYCLIC can also generate the
cyclic change-over designs of Davis & Hall (1969) and the cyclic superimposed designs of Hall
& Williams (1973). The change-over designs are used for trials in which subjects are given
different treatments in different time periods; these thus have a crossed block structure
subjects*periods. (Note that procedure AFCARRYOVER can be used after AGCYCLIC to
generate factors to represent the carry-over effects if required.) The extension in the cyclic
superimposed design is that there are two treatment factors (each with the same number of
levels); the design is intended to estimate their main effects but not their interaction.

The PRINT option controls whether AGCYCLIC prints a plan of the design. By default, if you
are running Genstat in batch, the plan is not printed. If you do not set PRINT when running
interactively, AGCYCLIC will ask whether or not you wish to print the design, after it has been
generated.

The number of treatments can be defined using the LEVELS parameter. Similarly, the
NBLOCKS and NUNITS parameters define the number of blocks and the number of units per block
(or the number of periods in a cyclic change-over design). The SEED parameter allows you to
specify a seed to be used to randomize the design. In batch the default seed is !1, to suppress
randomization. If you do not set SEED when running interactively AGCYCLIC will ask for a seed,
and again a negative value suppresses any randomization.

Parameters TREATMENTS, SUPERIMPOSED, BLOCKS and UNITS, allow you to specify
identifiers for the treatment, the superimposed treatment (for a cyclic superimposed design), the
block and unit-within-block factors. If these are not specified in a batch run, AGCYCLIC will use
identifiers that are local within the procedure and thus lost at the end of the procedure. If you are
running interactively, AGCYCLIC will ask you to provide identifiers, and these will remain
available after AGCYCLIC has finished running. Finally, the INITIAL parameter allows you to
save the initial blocks, in a variate if there is only one, or in a pointer (to a list of variates) if
there are several.

Example 4.9.9 uses AGCYCLIC to generate a cyclic design for 20 treatments in blocks of size
three.

Example 4.9.9

   2  " Cyclic design for 20 treatments in blocks of size 3."
   3  AGCYCLIC [PRINT=design; METHOD=cyclic] 20; NBLOCKS=20; NUNITS=3;\
   4    SEED=149634; TREATMENTS=Treat; BLOCKS=Block; UNITS=Plot

Treatments on each unit of the design
=====================================

 Block    1    2    3    4    5    6    7    8    9   10   11   12   13   14
  Plot
     1   11   12    6    1   19   13   17   16   20    5    9    2    4   14
     2    7    8    1   20   14   12   16   11    4   10   14   17    8   18
     3    6    7    2    5   15   17    1   12   19    6   10   18    3   13

 Block   15   16   17   18   19   20
  Plot
     1   16   11   13    7   18    5
     2   20   10    9    2   19    9
     3   15   15    8    3    3    4

Treatment factor: Treat.

If you have your own initial blocks, you can generate the design using AFCYCLIC. The INITIAL
parameter specifies the initial blocks. If the design is to be generated from a single initial block,
INITIAL should be set to a variate containing the levels corresponding to the treatments
concerned; if there are several, the appropriate variates should be placed into a pointer. Similarly
the INCREMENT parameter, which specifies the increment to be used, should be set to a scalar
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if the same increment is to be used for all the initial blocks, otherwise to a pointer of scalars. The
LEVELS, SEED, TREATMENTS, BLOCKS and UNITS parameters operate as in AGCYCLIC.

AFCYCLIC procedure
Generates block and treatment factors for cyclic designs (R.W. Payne).

Option
PRINT = string token Whether to print the design (design); default * i.e. no

printing

Parameters
INITIALBLOCKS = variates or pointers

Defines one (variate) or more (pointer to variates) initial
blocks for a treatment factor

INCREMENT = scalars or pointers Defines the size of the successive increments (scalar) or
increments (pointer to scalars) for each initial block

LEVELS = scalars or variates Defines the levels of each treatment factor; this need not
be specified if the factor has already been declared

SEED = scalar Seed to be used to randomize each design, if required
TREATMENTS = factors Specifies treatment factors
BLOCKS = factors Specifies block factors
UNITS = factors Specifies factors to index the units within each block

4.9.10 Neighbour-balanced designs

In experiment designs it is often necessary to allow for the possibility that a treatment may have
an effect on neighbouring plots, as well as on its own plot. For example, in variety trials, tall
varieties may shade their neighbours. Likewise, in experiments on insecticides and fungicides,
there may be cross infection from plots receiving control or ineffective treatments to
neighbouring plots. In both of these examples the neighbour effect may depend on direction (for
example of prevailing wind or of sunlight), so it is usual to distinguish between left and right
neighbours. To avoid bias when comparing the effects of treatments in these situations, it is
important to ensure that no treatment is unduly disadvantaged by its neighbours. This is best
done by using a neighbour-balanced design. Here the allocation of treatments is such that every
treatment occurs equally often with each other treatment as a right neighbour, and as a left
neighbour.

The table below shows a design for five treatments in 5 blocks of size 4. Notice that in
addition to the experimental plots, the design also needs a line of treated border plots on each
side. These provide the neighbouring treatments for plots 1 and 4, but do not provide yields or
other response variables. The border plots are not included in the generated factor values.

   Plot  border  1   2   3   4  border
 Block
     1     5  |  2   3   1   5  |  2
     2     3  |  5   4   1   3  |  5
     3     4  |  2   5   3   4  |  2
     4     1  |  4   3   2   1  |  4
     5     4  |  5   1   2   4  |  5

Methods of constructing and randomizing neighbour-balanced designs for n treatments in either
n blocks of n!1 plots or in n!1 blocks of n plots are described by Azais, Bailey & Monod (1993)
together with generators for 3#n#16 (other than for n=4 or 6 with n!1 blocks of size n, for which
no designs are available). AGNEIGHBOUR uses these methods and generators, together with some
further generators for blocks of n!1 plots formed using the method of Azais (1987).
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AGNEIGHBOUR procedure
Generates neighbour-balanced designs (R.W. Payne).

Options
PRINT = string token Controls printed output (catalogue, design); if unset

in an interactive run AGNEIGHBOUR will ask whether the
design is to be printed, in a batch run the default is not
to print anything

METHOD = string token Type of design, n!1 blocks of n plots, or n blocks of
n!1 plots (N_1BLOCKS, NBLOCKS); if unset in an
interactive run AGNEIGHBOUR will ask about the type of
design, in a batch the default is assumed to be n blocks
of n!1 plots

Parameters
LEVELS = scalars Number of treatments
SEED = scalars Seed for randomization; in batch there is a default of

12345
TREATMENTS = factors Identifier for the treatment factor
BLOCKS = factors Identifier for the factor to index the blocks within

replicates
UNITS = factors Identifier for the factor to index the units within each

block, or the periods of a cyclic change-over design
LEFTNEIGHBOUR = factors To save the treatment on the left neighbouring unit
RIGHTNEIGHBOUR = factors To save the treatment on the right neighbouring unit
STATEMENT = texts Saves a command to recreate each design (useful if the

design information has been specified in response to
questions from AGNEIGHBOUR)

If you are running Genstat interactively, you need not set any of the options or parameters of
AGNEIGHBOUR. It then asks questions to determine the necessary information to form the design,
and indicates the numbers of treatments for which designs are available. The options and
parameters allow you to anticipate questions, or to define all the necessary information if you
want to use AGNEIGHBOUR in batch. If, however, you wish to recreate the same design later, the
STATEMENT parameter allows you to save a Genstat text structure containing a command
specifying the same information.

The first question, which can be anticipated by setting the METHOD option, determines the type
of design: n blocks of n!1 plots (METHOD=nblocks) or in n!1 blocks of n plots
(METHOD=n_1blocks). The default in batch is n_1block. The PRINT option controls printed
output, with setting design to print a plan of the design, and catalogue to print a list of the
available designs. By default, if you are running Genstat in batch, nothing is printed. If you do
not set PRINT when running interactively, AGNEIGHBOUR will ask whether or not you wish to
print the design, after it has been generated.

The number of treatments can be defined using the LEVELS parameter. This can be set to zero
to avoid constructing a design, as may be required if you merely wish to print the catalogue. The
SEED parameter allows you to specify a seed to be used to randomize the design. If you do not
set SEED when running interactively AGNEIGHBOUR will ask for a seed. In batch there is a default
of 12345. Setting a negative seed suppresses any randomization. Parameters TREATMENTS,
BLOCKS and UNITS, allow you to specify identifiers to save the treatment, the block and unit-
within-block factors. If these are not specified in a batch run, AGNEIGHBOUR will use identifiers



4.9  Selecting and generating an experimental design 527

that are local within the procedure and thus lost at the end of the procedure. If you are running
interactively, AGNEIGHBOUR will ask you to provide identifiers and these will remain available
after AGNEIGHBOUR has finished running. There are also parameters LEFTNEIGHBOUR and
RIGHTNEIGHBOUR to allow you to save the treatments on the left and right neighbouring plots.

Some of the designs are such that each ordered pair of treatments occurs the same number of
times as the left and right neighbours of some other treatment, the design is then said to be
neighbour-balanced at distance 2. These designs have the further advantage that they are
balanced if analysed with ANOVA with

BLOCKSTRUCTURE     BLOCKS / UNITS
TREATMENTSTRUCTURE TREATMENTS+ LEFTNEIGHBOUR \
  + RIGHTNEIGHBOUR

(Other designs can be analysed by REML; Chapter 5.)

Example 4.9.10

   2  " Neighbour design for 7 treatments in blocks of size 7."
   3  AGNEIGHBOUR [PRINT=catalogue,design; METHOD=n_1block] 7; \
   4    SEED=2041996; TREATMENTS=Treat; BLOCKS=Block; UNITS=Plot; \
   5    LEFTNEIGHBOUR=Left; RIGHTNEIGHBOUR=Right

Neighbour designs
----------------

Balanced neighbour designs are available for n treatments in n blocks of n-1
plots for any value of n>2, or in n-1 blocks of n plots for the following
values of n:  3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19.

Treatments on each unit of the design
=====================================

  Plot   1   2   3   4   5   6   7
 Block
     1   3   1   4   6   2   5   7
     2   5   4   7   6   3   2   1
     3   7   4   5   1   2   3   6
     4   1   3   7   5   2   6   4
     5   7   2   4   3   5   6   1
     6   7   1   6   5   3   4   2

Treatment factor: Treat.

The design assumes that the plots in each block are arranged in a continuous
line, and that there is a gap between each pair of blocks. There must also be
border plots: the treatments in the left-hand plots must be duplicated on the
right-hand-side, and those in the right-hand plots must be duplicated on the
left-hand side.
   6  " This design is balanced: produce a dummy analysis."
   7  BLOCKSTRUCTURE Block / Plot
   8  TREATMENTSTRUCTURE Treat + Left + Right
   9  ANOVA

* MESSAGE: non-orthogonality between treatment terms. The effects (printed or
used to calculate means), the efficiency factor and the sum of squares for each
treatment term are for that term eliminating previous terms in the TREATMENT
formula and ignoring subsequent terms.

Analysis of variance
====================

Source of variation     d.f.

Block stratum              5
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Block.Plot stratum
Treat                      6
Left                       6
Right                      6
Residual                  18

Total                     41

Information summary
===================

Model term                e.f.  non-orthogonal terms

Block.Plot stratum
  Left                   0.972  Treat
  Right                  0.933  Treat  Left

4.9.11 Central composite designs

Central composite designs are used for estimating quadratic response surfaces: that is, the model
to be fitted to the results is a quadratic function of the various factors. The design is made up of
three sets of points.
a) a factorial design: usually this contains all combinations of the factors at a pair of levels

(l1,l2), but for five or more factors it is feasible to use a fractional factorial (and still be
able to estimate all the parameters of the response surface)

b) star points: this set contains a pair of points for each factor where the other factors take
the value (l1+l2)/2 and the factor has the values s1 and s2

c) centre points: here all the factors have the value (l1+l2)/2

AGCENTRALCOMPOSITE procedure
Generates central composite designs (R.W. Payne).

Options
PRINT = string token Controls printed output (design); if unset in an

interactive run AGCENTRALCOMPOSITE will ask whether
the design is to be printed, in a batch run the default is
not to print anything

NCENTRALPOINTS = scalar Defines the number of central points to include; default
4

NSTARPOINTS = scalar Defines the number of star points to include; default 1
LFACTORIAL = variate Defines the treatment levels in the factorial part of the

design; default !(!1,1)
LSTAR = variate Defines the treatment levels for the star points; default is

to use the levels defined by LFACTORIAL
FRACTION = scalar Denominator for fractional factorial; default 1 specifies

a complete design
SEED = scalar Seed to be used to randomize each design; a negative

value implies no randomization
STATEMENT = text Saves a command to recreate the design (useful if the

design information has been specified in response to
questions from AGCENTRALCOMPOSITE)

Parameter
TREATMENTFACTOR = factors Treatment factors
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The treatment factors for AGCENTRALCOMPOSITE are listed using the TREATMENTFACTOR
parameter. If this is omitted in an interactive run, you will be asked how many factors you want
and their names. The number of central points is specified by the NCENTRALPOINTS option; by
default this is taken to be four. The LFACTORIAL option can supply a variate to specify the levels
to be used in (a); the defaults are 1 and !1 (so the central point is at zero). Similarly, LSTAR
specifies the levels for (b), which are taken, by default, to be the same as in (a). The star levels
must, however, be equally spaced around the centre point. Option NSTARPOINTS defines how
may replicates to have of each star point. The FRACTION option supplies the denominator of a
fractional design, if required for (a); the default of one indicates that a complete factorial design
is to be used. The SEED option allows you to specify a seed to be used to randomize the design.
In batch the default seed is !1, to suppress randomization. If you do not set SEED when running
interactively AGCENTRALCOMPOSITE will ask for a seed, and again a negative value suppresses
any randomization. The PRINT option can be set to design to print the plan of the design. By
default, if you are running Genstat in batch, the plan is not printed. If you do not set PRINT when
running interactively, AGCENTRALCOMPOSITE will ask whether or not you wish to print the
design.

The STATEMENT option allows you to save a Genstat text structure containing a command to
recreate the design. This is particularly useful if AGCENTRALCOMPOSITE is being used
interactively, and the information to define the design has been provided in response to questions
from the procedure.

Example 4.9.11

   2  " Unrandomized plan of a central composite design for
  -3    2 treatment factors with factorial levels -1 and +1,
  -4    star points at -1.5 and +1.5, and 4 central points at 0."
   5  AGCENTRALCOMPOSITE [PRINT=design; NCENTRAL=4; NSTAR=1;\
   6    LFACTORIAL=!(-1,1); LSTAR=!(-1.5,1.5); SEED=-1] A,B

           A           B
        -1.0        -1.0
        -1.0         1.0
         1.0        -1.0
         1.0         1.0
         0.0         0.0
         0.0         0.0
         0.0         0.0
         0.0         0.0
        -1.5         0.0
         1.5         0.0
         0.0        -1.5
         0.0         1.5

4.9.12 Box-Behnken designs

Box-Behnken designs are often used to study response surfaces. The design is usually formed
to allow a quadratic response surface to be fitted. The factors are studied at three equally-spaced
levels, below denoted by !1, 0 and 1. The construction uses a balanced incomplete block design
to select successive sets of factors to be applied at all factorial combinations of !1 and +1, while
other factors are held at 0. For example, with three factors A, B and C, the relevant balanced
incomplete block design would have three blocks (A,B), (A,C) and (B,C). So the design would first
have a section with A and B varying but C constant

 A     B     C
!1    !1     0
!1    +1     0
+1    !1     0
+1    +1     0
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then a section where B is held constant but A and C take all combinations of !1 and +1

 A     B     C
!1     0    !1
!1     0    +1
+1     0    !1
+1     0    +1

and finally a section with A constant

 A     B     C
 0    !1    !1
 0    !1    +1
 0    +1    !1
 0    +1    +1

In addition, there can be some "central points", where all the factors take the central value

 A     B     C
 0     0     0
 0     0     0
 0     0     0
 0     0     0

AGBOXBEHNKEN procedure
Generates Box Behnken designs (R.W. Payne).

Options
PRINT = string token Controls printed output (design); if unset in an

interactive run AGBOXBEHNKEN will ask whether the
design is to be printed, in a batch run the default is not
to print anything

NCENTRALPOINTS = scalar Defines the number of central points to include; default
4

LEVELS = variate Defines the outer levels to be used; default !(!1,1)
NCOMBINATIONS = scalar Number of factors to vary in combination at once;

default 2
SEED = scalar Seed to be used to randomize each design; a negative

value implies no randomization
STATEMENT = text Saves a command to recreate the design (useful if the

design information has been specified in response to
questions from AGBOXBEHNKEN)

Parameter
TREATMENTFACTOR = factors Treatment factors

The treatment factors for AGBOXBEHNKEN are listed using the TREATMENTFACTOR parameter.
If this is omitted in an interactive run, you will be asked how many factors you want and their
names. The number of central points is specified by the NCENTRALPOINTS option; by default
this is taken to be four. The LEVELS option can supply a variate to specify the outer treatment
levels; the defaults are 1 and !1 (so the central point is at zero). The NCOMBINATIONS option
defines the number of factors whose combinations of (outer) levels are to be varied at once. For
the default of two, the relevant balanced incomplete block design is formed within
AGBOXBEHNKEN. Other values can be supplied, but the corresponding balanced incomplete block
design must be one of those obtainable from procedure AGBIB. You can find out the possibilities
by putting

AGBIB [PRINT=catalogue]
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The SEED parameter allows you to specify a seed to be used to randomize the design. In batch

the default seed is !1, to suppress randomization. If you do not set SEED when running
interactively AGBOXBEHNKEN will ask for a seed, and again a negative value suppresses any
randomization. The PRINT option can be set to design to print the plan of the design. By
default, if you are running Genstat in batch, the plan is not printed. If you do not set PRINT when
running interactively, AGBOXBEHNKEN will ask whether or not you wish to print the design.

The STATEMENT option allows you to save a Genstat text structure containing a command to
recreate the design. This is particularly useful if AGBOXBEHNKEN is being used interactively, and
the information to define the design has been provided in response to questions from the
procedure.

Example 4.9.12

   2  " Unrandomized plan of a Box-Behnken design for 4 treatments."
   3  AGBOXBEHNKEN [PRINT=design; NCENTRAL=4; LEVELS=!(-1,1);\
   4    SEED=-1] A,B,C,D

           A           B           C           D
          -1          -1           0           0
          -1           1           0           0
           1          -1           0           0
           1           1           0           0
          -1           0          -1           0
          -1           0           1           0
           1           0          -1           0
           1           0           1           0
          -1           0           0          -1
          -1           0           0           1
           1           0           0          -1
           1           0           0           1
           0          -1          -1           0
           0          -1           1           0
           0           1          -1           0
           0           1           1           0
           0          -1           0          -1
           0          -1           0           1
           0           1           0          -1
           0           1           0           1
           0           0          -1          -1
           0           0          -1           1
           0           0           1          -1
           0           0           1           1
           0           0           0           0
           0           0           0           0
           0           0           0           0
           0           0           0           0

4.9.13 Plackett Burman (main effect) designs

AGMAINEFFECT procedure
Generates designs to estimate main effects of two-level factors (R.W. Payne).

Options
PRINT = string token Controls printed output (design, catalogue); if unset

in an interactive run AGMAINEFFECT will ask whether
the design or catalogue are to be printed, in a batch run
the default is not to print anything

ANALYSE = string token Controls whether or not to analyse the design, and
produce a skeleton analysis-of-variance table using
ANOVA (no, yes); default is to ask if this is unset in an
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interactive run, and not to analyse if it is unset in a batch
run

FOLDED = string token Whether to include an extra "folded" replicate with the
levels of each factor interchanged (no, yes); default no

SEED = scalar Seed to be used to randomize each design; a negative
value implies no randomization

STATEMENT = texts Saves a command to recreate the design (useful if the
design information has been specified in response to
questions from AGMAINEFFECT)

Parameter
TREATMENTFACTOR = factors Treatment factors

AGMAINEFFECT generates designs for estimating main effects of factors with two levels, using
a minimum number of experimental units; see Plackett & Burman (1946). The designs are based
on Hadamard matrices, which are generated by procedure FHADAMARDMATRIX. However, the
numbers of treatment factors for which designs are available can be printed by setting option
PRINT=catalogue. They are all expressible as 4n!1 for some integer n. The treatment factors
are listed using the TREATMENTFACTOR parameter. If this is omitted in an interactive run, you
will be asked how many factors you want and their names.

The basic design allows the main effects to be estimated, but has no residual degrees of
freedom. This is fine if you merely want to screen the main effects to identify the largest.
Otherwise you can generate a design for more factors than are needed, and then use the degrees
of freedom of the unnecessary factors to provide the residual. Alternatively, if you set option
FOLDED=yes, AGMAINEFFECT will include a "folded" replicate of the design: this is identical
to the initial replicate except that the levels of the factors are swapped (level one instead of level
two and vice versa). This particular arrangement has the advantage that no main effect is aliased
with any first-order interaction.

The SEED parameter allows you to specify a seed to be used to randomize the design. In batch
the default seed is !1, to suppress randomization. If you do not set SEED when running
interactively AGMAINEFFECT will ask for a seed, and again a negative value suppresses any
randomization. The PRINT option can be set to design to print the plan of the design. By
default, if you are running Genstat in batch, the plan is not printed. If you do not set PRINT when
running interactively, AGMAINEFFECT will ask whether or not you wish to print the design.
Similarly the ANALYSE option governs whether or not AGMAINEFFECT produces a skeleton
analysis-of-variance table (containing just source of variation, degrees of freedom and efficiency
factors). Again AGMAINEFFECT assumes that this is not required if ANALYSE is unset in a batch
run, and asks whether it is required if ANALYSE is unset in an interactive run. The ANOVA option
ORTHOGONAL is set to assumed for the analysis. (If this is not done, the larger designs can take
a very long time to analyse.)

The STATEMENT option allows you to save a Genstat text structure containing a command to
recreate the design. This is particularly useful if AGMAINEFFECT is being used interactively, and
the information to define the design has been provided in response to questions from the
procedure.

Example 4.9.13 shows two Plackett-Burman designs for seven treatment factors. The first has
only eight units, and thus no residual degrees of freedom. Data from designs like this can be
analysed graphically using procedure A2PLOT. The second design also has a folded replicate, and
thus eight residual degrees of freedom.
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Example 4.9.13

   2  " Design with 8 units for 7 factors."
   3  AGMAINEFFECT [PRINT=design; ANALYSE=yes; FOLDED=no;\
   4    SEED=357417] A,B,C,D,E,F,G

           A     2     1     2     1     1     2     1     2
           B     1     1     2     2     2     2     1     1
           C     1     2     2     1     1     2     2     1
           D     1     2     2     1     2     1     1     2
           E     1     1     2     2     1     1     2     2
           F     2     1     2     1     2     1     2     1
           G     2     2     2     2     1     1     1     1

Analysis of variance
====================

Source of variation     d.f.
A                          1
B                          1
C                          1
D                          1
E                          1
F                          1
G                          1
Total                      7

   5  " Include a folded replicate."
   6  AGMAINEFFECT [PRINT=design; ANALYSE=yes; FOLDED=yes;\
   7    SEED=357417] A,B,C,D,E,F,G

            A     2     1     1     1     2     2     1     2
            B     1     1     1     2     1     2     1     1
            C     1     2     1     1     2     1     2     1
            D     1     2     2     1     1     2     1     2
            E     1     1     2     2     2     1     2     2
            F     2     1     2     1     1     1     2     1
            G     2     2     2     2     2     2     1     1

            A     1     1     1     2     2     2     1     2
            B     2     1     2     1     2     2     2     2
            C     2     1     1     2     2     2     2     1
            D     2     1     2     2     2     1     1     1
            E     2     1     1     1     2     1     1     2
            F     1     1     2     2     2     1     2     2
            G     1     1     1     1     2     1     2     1

Analysis of variance
====================

Source of variation     d.f.
A                          1
B                          1
C                          1
D                          1
E                          1
F                          1
G                          1
Residual                   8
Total                     15
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4.9.14 Response surface designs

AFRESPONSESURFACE directive
Uses the BLKL algorithm to construct designs for estimating response surfaces.

Options
PRINT = string token Printed output required (monitoring); default * i.e. no

printing
TERMS = formula Model to be fitted when the design is used; no default

i.e. this option must be specified
CONSTANT = string token How to treat the constant in the model (estimate,

omit); default esti
FACTORIAL = scalar Limit for expansion of terms in the model; default 2
NUNITS = scalar Number of units (or trials) in the design
NDELETION = scalar Number of design points to consider for deletion;

default takes NUNITS/4, or 4 is this is larger
NINCLUSION = scalar Number of design points to consider for inclusion;

default takes NUNITS/4, or 4 is this is larger
NRUNS = scalar Number of times to run the algorithm; default 100
ADJUSTMENTSTEP = scalar Maximum amount by which to perturb the design points

in the adjustment algorithm; default * i.e. no
adjustments are tried

NBLOCKS = scalar Number of blocks; default 1 i.e. design not blocked
BLOCKFACTOR = factor Saves the block factor (if any) for the design
BLOCKSIZE = scalar or variate Number of units in each block of the design
PREVIOUSBLOCKS = factor Supplies values of the blocking factor for any previous

experiments that are to be included in the analysis of the
results of the design

SEED = scalar Seed for random numbers used to construct the initial
design; default 124195

MIXTURE = variates Lists any variates that are part of a mixture (their values
must be greater than zero and sum to one)

DETERMINANT = scalar Saves the determinant of the information matrix for the
best design

MEANGRID = scalar Saves the mean value of the standardized variance of
predictions obtained from the design over a grid of x-
values

MAXGRID = scalar Saves the maximum value of the standardized variance
of predictions obtained from the design over a grid of x-
values

NGRIDPOINTS = scalar Number of grid points in each x-direction to use for
MEANGRID and MAXGRID; default 5

Parameters
X = variates Lists the variates to be investigated in the design; these

need not be supplied if none of the other parameters are
required

X2 = variates Lists identifiers to be used to represent squares of the x-
variates in the model

X3 = variates Lists identifiers to be used to represent cubes of the x-
variates in the model
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SUPPORTPOINTS = variates Support points for each x-variate in the design; if these
are not (all) specified, they are formed automatically

PREVIOUSVALUES = variates Supplies values of the x-variates for any previous
experiments that are to be included in the analysis of the
results of the design

AFRESPONSESURFACE uses the BLKL algorithm of Atkinson & Donev (1992) to construct a
design to estimate parameters of a response-surface model ! and Alex Donev's assistance with
this Genstat implementation is gratefully acknowledged. The algorithm searches for a D-optimal
design: that is, a design that will provide a maximum value for the determinant of the
information matrix of the model parameters. The model is specified using the TERMS option,
with the CONSTANT option indicating whether or not it is to contain the constant term (or
intercept). The FACTORIAL sets a limit on the number of variates in each model term; by default
this is 2.

The NUNITS option specifies the number of units in the design. If there is to be a blocking
factor in the design, the NBLOCKS option specifies its number of levels, and the BLOCKFACTOR
option saves its values. The BLOCKSIZE option specifies the number of units to be contained in
each block of the design, in a scalar (if they are all the same) or a variate. If the block sizes are
fixed, the specified sizes must sum to the number of units. However, if you specify sizes that sum
to a value greater that the required number of units, the algorithm will search for the optimum
block sizes.

When the model is to contain squares or cubes of x-variables, you will need to specify
identifiers to represent these using the parameters of the directive. (When using regression
directives such as FIT to fit the model, you can use the POL function but this is not recognised
by AFRESPONSESURFACE.) The x-variates in the model must then all be listed by the X
parameter. The corresponding squares are listed by the X2 parameter, and the cubes by the X3
parameter.

The BLKL algorithm starts by forming an initial design by making a random selection of
points from the set of support points. The SEED option defines the seed for the random numbers
used to make the selection (default 124195). The algorithm then uses an exchanges algorithm
to improve the design. At each exchange, the K points with the lowest variance of prediction
amongst the points of design are considered for replacement by the L points with the highest
variance of prediction amongst the candidate points for inclusion in the design. The algorithm
makes the best one of these exchanges, continuing until there are none that increase the
determinant. The values for K and L are specified by the NDELETION and NINCLUSION options
respectively. The best values depend on the design parameters, including the number of model
parameters and the number of residual degrees of freedom. If they are unset,
AFRESPONSESURFACE sets them to the number of units divided by 4, or 4 if this larger. The
NRUNS option can be set to request that the algorithm is run several times, with different starting
designs; the default is 100. The design parameters are saved only for the best design found, but
you can set option PRINT=monitoring to print information about each attempt.

The DETERMINANT option allows you to saves the determinant of the information matrix for
the best design. An alternative way of evaluating the design is to examine the standardized
variance of the predictions that would be obtained from the design at other points, not in the
design. The MEANGRID option can save the mean value of the standardized variance of prediction
over a grid of x-values, and the MAXGRID option can save the maximum value. Number of grid
points in each x-direction is specified by the NGRIDPOINTSMETHOD option (default 5).

Example 4.9.14a forms a design with 17 units for estimating a response surface modelled by
an equation involving the terms: constant, x1, x2, x3, x4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4, x1

2, x2
2, x3

2

and x4
2. The squared terms are represented by the variates X1_2, X2_2, X3_2, X4_2, specified

by the X2 parameter.
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Example 4.9.14a

   2  AFRESPONSESURFACE [NDELETION=10; NINCLUSION=40; NRUNS=1000; NUNITS=17;\
   3        TERMS=X1 * X2 * X3 * X4 + X1_2 + X2_2 + X3_2 + X4_2;\
   4        CONSTANT=estimate; DETERMINANT=Det; MAXGRID=Dmax; MEANGRID=Dave]\
   5        X=X1,X2,X3,X4; X2=X1_2,X2_2,X3_2,X4_2
   6  PRINT X1,X2,X3,X4; FIELD=8; DECIMALS=3

      X1      X2      X3      X4
  -1.000   0.000  -1.000  -1.000
  -1.000  -1.000   0.000  -1.000
   1.000   1.000   0.000  -1.000
  -1.000   1.000  -1.000   0.000
   1.000   0.000   1.000  -1.000
  -1.000   1.000   0.000   1.000
  -1.000  -1.000   1.000   0.000
   0.000  -1.000   1.000  -1.000
   0.000   1.000  -1.000  -1.000
  -1.000   0.000   1.000   1.000
   1.000  -1.000   1.000   1.000
   0.000   0.000   0.000   0.000
   1.000   1.000   1.000   1.000
   1.000  -1.000  -1.000  -1.000
   1.000   1.000  -1.000   1.000
  -1.000   1.000   1.000  -1.000
  -1.000  -1.000  -1.000   1.000

   7  &     Det,Dmax,Dave

         Det        Dmax        Dave
  1.5288E+13       38.43       15.04

If you specify the X parameter, you can also use the SUPPORTPOINTS parameter to specify the
x-values of the points to be considered when constructing the design; if this is not specified,
these support points are formed automatically. Note that the variates are all assumed to be scaled
to have values between !1 and 1. However, the criterion for D-optimality is unaffected by linear
transformations of the X-variables. So you can rescale afterwards in any way you like. The
PREVIOUSVALUES parameter can supply values of the x-variates for any previous experiments
that are to be included in the analysis of the results of the new experiment, or to specify points
that must be included in the design. The PREVIOUSBLOCKS option should then indicate the
blocks to which these previous observations belonged. These parameters are both illustrated in
Example 4.9.14b.

Example 4.9.14b

   8  VARIATE [NVALUES=15] S1,S2,S3
   9  READ    [PRINT=data,errors] S1,S2,S3

  10  -0.5774 -0.5774 -0.5774
  11   0.5774 -0.5774 -0.5774
  12  -0.5774  0.5774 -0.5774
  13   0.5774  0.5774 -0.5774
  14  -0.5774 -0.5774  0.5774
  15   0.5774 -0.5774  0.5774
  16  -0.5774  0.5774  0.5774
  17   0.5774  0.5774  0.5774
  18   1.0000  0.0000  0.0000
  19  -1.0000  0.0000  0.0000
  20   0.0000  1.0000  0.0000
  21   0.0000 -1.0000  0.0000
  22   0.0000  0.0000  1.0000
  23   0.0000  0.0000 -1.0000
  24   0.0000  0.0000  0.0000 :
  25  VARIATE [NVALUES=6] P1,P2,P3
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  26  READ    [PRINT=data,errors] P1,P2,P3

  27   1.0000  0.0000  0.0000
  28  -1.0000  0.0000  0.0000
  29   0.0000  1.0000  0.0000
  30   0.0000 -1.0000  0.0000
  31   0.0000  0.0000  1.0000
  32   0.0000  0.0000 -1.0000 :
  33  AFRESPONSESURFACE [NUNITS=16; NDELETION=3; NINCLUSION=3;\
  34        TERMS=X1 * X2 * X3 + X1_2 + X2_2 + X3_2; CONSTANT=estimate;\
  35        DETERMINANT=Det; MAXGRID=Dmax; MEANGRID=Dave] \
  36        X=X1,X2,X3; X2=X1_2,X2_2,X3_2; SUPPORTPOINTS=S1,S2,S3
  37  SORT  [INDEX=X1,X2,X3] X1,X2,X3
  38  PRINT X1,X2,X3; FIELD=8; DECIMALS=3

      X1      X2      X3
  -1.000   0.000   0.000
  -0.577  -0.577  -0.577
  -0.577  -0.577   0.577
  -0.577   0.577  -0.577
  -0.577   0.577   0.577
   0.000  -1.000   0.000
   0.000   0.000  -1.000
   0.000   0.000   0.000
   0.000   0.000   0.000
   0.000   0.000   1.000
   0.000   1.000   0.000
   0.577  -0.577  -0.577
   0.577  -0.577   0.577
   0.577   0.577  -0.577
   0.577   0.577   0.577
   1.000   0.000   0.000

  39  &     Det,Dmax,Dave

         Det        Dmax        Dave
        2669       106.5       30.81

AFRESPONSESURFACE allows for a set of mixture variates, whose values must all be positive and
which must sum to 1. The variates in the mixture are specified using the MIXTURE option. This
is illustrated by the variates X1, X2 and X3 in Example 4.9.14c.

Example 4.9.14c

  40  AFRESPONSESURFACE [NUNITS=12; NDELETION=3; NINCLUSION=3; NRUNS=500;\
  41        TERMS=X1 + X2 + X3 + X4 + X1.X2 + X1.X3 + X2.X3 + X4_2;\
  42        CONSTANT=omit; MIXTURE=X1,X2,X3;\
  43        DETERMINANT=Det; MAXGRID=Dmax; MEANGRID=Dave] \
  44        X=X1,X2,X3,X4; X2=*,*,*,X4_2
  45  PRINT X1,X2,X3,X4; FIELD=8; DECIMALS=3

      X1      X2      X3      X4
   0.000   0.000   1.000  -1.000
   0.000   0.000   1.000   1.000
   0.000   1.000   0.000   1.000
   0.500   0.500   0.000  -1.000
   1.000   0.000   0.000   1.000
   0.500   0.000   0.500   0.000
   0.000   0.500   0.500   0.000
   1.000   0.000   0.000   0.000
   0.000   1.000   0.000   0.000
   0.000   0.500   0.500  -1.000
   0.500   0.000   0.500  -1.000
   0.500   0.500   0.000   1.000

  46  &     Det,Dmax,Dave
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         Det        Dmax        Dave
      0.1875       992.0       145.5

There is also be a final adjustment algorithm which can be used except when the design contains
mixtures. This examines the design points one at a time to see whether the design can be
improved by moving it a small amount along any x-axis. If an increase is possible, the point
providing the greatest increase is moved. The process is then repeated until no improvment is
possible. This phase is selected by setting the ADJUSTMENTSTEP option to the maximum amount
(e.g. 0.2) by which the point may be moved on any axis.

Procedure RQUADRATIC can be used to analyse response-surface designs. This fits a quadratic
surface, and can also estimate its stationary point (minimum or maximum).

4.9.15 Designs for nonlinear and generalized linear models

AFNONLINEAR procedure
Forms D-optimal designs to estimate the parameters of a nonlinear or generalized linear model
(W. van den Berg).

Options
PRINT = string token Controls printed output (results, monitoring);

default resu, moni
PLOT = string token Controls whether to plot the design (design); default

desi

YARGUMENT = identifier Data structure that stores the results of the function
when it is calculated by expressions supplied by the
FUNCTION option; must be set

XARGUMENT = identifier Date structure representing the x-variate in the
expressions supplied by the FUNCTION option; must be
set

FUNCTION = expression structures Specifies the function whose parameters are to be
estimated; must be set

FNDERIVATIVES = expression structures
Specifies expressions to calculate derivative of the
function with respect to each parameter; must be set

ITERATIVEWEIGHTS = identifier Data structure that stores the iterative weights in the
expressions supplied by the FNITERATIVEWEIGHTS
option

FNITERATIVEWEIGHTS = expression structures
Specifies expressions to calculate the iterative weights
when estimating the parameters of a generalized linear
model

XSUPPORT = variate Supplies the support points for the initial design, and
saves those of the final design; if no initial values are
supplied, an initial design is formed at random

XWEIGHTS = variate Supplies the weights for the support points for the initial
design, and saves those of the final design; if no initial
values are supplied, equal weights are used initially

GRID = variate Specifies the grid points where the design will be
evaluated

A0 = scalar Initial update weight; default 0.1
SEED = scalar Seed for the random numbers used to select the initial
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design when not supplied by XSUPPORT and XWEIGHTS
NCYCLE = scalar Number of iterations to make between at each value of

A0, before halving it for the next batch of iterations;
default 100

MAXCYCLE = scalar Maximum number of iterations; default 2500
TOLERANCES = variate Variate with two values specifying the convergence

criterion and the tolerance for zero weights; default
!(1.E-6, 1.E-5)

Parameters
PARAMETER = scalars Parameters of the nonlinear or generalized linear model

(with values giving an indication of their likely
estimated values)

DERIVATIVE = identifiers Data structures that store the results of the calculation of
the derivative for each parameter, in the expressions
specified by the FNDERIVATIVES option

AFNONLINEAR constructs a design for estimating the parameters of a nonlinear or generalized
linear model involving a single continuous variable x. The aim is to find the best values of x (i.e.
the best support points) at which to observe the model, and a weight for each one. The design
should then contain replicate observations at each of the support points, with the numbers of
replicates in the same proportions as their weights. Suppose, for example, we have support points
1, 2 and 4, with weights 0.25, 0.25 and 0.5. A suitable design might then consist of observations
at x-values 1, 2, 4 and 4 (i.e. 4 should have twice the replication of either 1 or 2). The designs
that are produced are known as continuous designs, as the weights are not constrained to give
an exact integer partitioning of the available points for any specific design size N. Instead you
need to round N multiplied by each weight to the nearest feasible integer.

The model is specified in one, or more, expression structures by the FUNCTION option. The
YARGUMENT gives the identifier of the data structure that receives the result of the function in
the expressions, and the XARGUMENT gives the identifier of the data structure that provides the
x-values. For example, we could define the negative exponential model 

y = e(!b × x) + c
by

EXPRESSION Func; VALUE=!e( Y = EXP(-1*B*X) + C)
AFNONLINEAR [FUNCTION=Func; YARGUMENT=Y; XARGUMENT=X; ...

Notice that the data structures X and Y do not need to be declared. AFNONLINEAR simply needs
to know which they are within the expression, so that it can replace them by the sets of x- and
y-values that it really needs (using the REFORMULATE directive).

The parameters of the model (here B and C) must be specified by the PARAMETER parameter.
These must be scalars, with values that give an indication of their likely estimated values.
AFNONLINEAR also needs to be able to calculate the derivative of the function with respect to
each parameter. You must specify expressions to do this using the FNDERIVATIVES option, and
indicate the data structures that will receive the results of the calculations using the DERIVATIVE
parameter. So, for the negative exponential above, we need 

EXPRESSION  Gfunc[1,2]; VALUE=!e( GradB = -1*X*EXP(-1*B*X) ),\
                              !e( GradC = 1 )
AFNONLINEAR [FUNCTION=Function; YARGUMENT=Y; XARGUMENT=X;\
            FNDERIVATIVE=Gfunc[]; XSUPPORT=X; XWEIGHTS=W;\
            GRID=Grid] PARAMETER=B,C; DERIVATIVE=GradB,GradC

The GRID option defines the x-values at which the design is evaluated. These should cover the

range of feasible x-values.
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Figure 4.9.15

The XSUPPORT option saves the support points of the design, in a variate. If the variate has
values already defined on entry to AFNONLINEAR, these are used to provide the support points
for the initial design where AFNONLINEAR begins its search. Otherwise AFNONLINEAR chooses
an initial design at random by selecting m points at random from the grid points, where m is
twice the number of parameters in the model. The SEED option specifies a seed for the random
numbers that are used to make the selection. The default value of zero continues an existing
sequence of random numbers if any have already been used in the current Genstat job, or obtains
a random seed using system clock if none have been used already.

The XWEIGHTS option saves the weights of the support points, in a variate, and can supply
weights for an initial design. Otherwise AFNONLINEAR starts with equal weights. 

To form designs for generalized linear models, you also need to supply expressions to
calculate the iterative weights at various x-values. The FNITERATIVEWEIGHTS option supplies
the expressions, and the ITERATIVEWEIGHTS option indicate the data structure that will receive
the results of the calculations.

By default AFNONLINEAR produces a
plot showing the function and prediction
variance at the selected grid points, but you
can suppress this by setting option PLOT=*.
Figure 4.9.15 shows the plot, produced in
Example 4.9.15, for the negative model
discussed above.
AFNONLINEAR uses the algorithm of

Federov (1972). This involves a sequence
of iterations in which a new support point
may be added, or the weight of an existing
point may be increased. The A0 option
specifies the weights to be given to a new
point, or to be added to an existing point.
(The weights of the other support points are
then decreased, proportionally, so that the
weights still add up to one.) The NCYCLE
option controls how many iterations are
made with each value of AO (default 100);
so, at the end of each set of NCYCLE iterations, AO is divided by two in order for the weights to
converge to a stable solution.

The TOLERANCES option can be set to a variate of length two, to specify the convergence
criterion and the tolerance for zero weights (defaults 10!6 and 10!5, respectively). The algorithm
stops when the number of support points equals the number of parameters, and the prediction
variance minus the number of parameters is less than the first TOLERANCES value. Weights less
than the second TOLERANCES value are set to zero at each iteration (so that the corresponding
points leave the design).

Example 4.9.15 uses AFNONLINEAR to form a design for the negative exponential model,
discussed above.

Example 4.9.15

   2  VARIATE     [VALUES=3,4] X
   3  VARIATE     [VALUES=0.6,0.4] W
   4  VARIATE     [VALUES=0,0.1... 5] Grid
   5  SCALAR      B,C; VALUE=1,5
   6  EXPRESSION  Function; VALUE=!e( Y = EXP(-1*B*X) + C )
   7  EXPRESSION  Gfunction[1,2]; VALUE=!e( GradB = -1*X*EXP(-1*B*X) ),\
   8                                    !e( GradC = 1 )
   9  AFNONLINEAR [PRINT=results; FUNCTION=Function; YARGUMENT=Y; XARGUMENT=X;\
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  10              FNDERIVATIVE=Gfunction[]; XSUPPORT=X; XWEIGHTS=W; GRID=Grid]\
  11              PARAMETER=B,C; DERIVATIVE=GradB,GradC

Design for estimating a nonlinear model
=======================================

Function: Y = EXP((-1*B*X)) + C
Number of iterations: 1100
Maximum variance: 2.000
A_0: 0.00004883

Design points     Weights
       1.0000      0.5000
       0.0000      0.5000

4.9.16 Reference-level designs

AGREFERENCE procedure
Generates reference-level designs e.g. for microarray experiments (R.W. Payne).

Option
PRINT = string token Controls whether or not to print a plan of the design

(design); if unset in an interactive run AGREFERENCE
will ask whether the design is to be printed, in a batch
run the default is not to print the design

Parameters
LEVELS = scalars Number of treatments
REFLEVEL = scalars, variates or pointers

Reference level(s); if this is unset in an interactive run
you will be asked which reference level or levels you
want, in a batch run the default is level 1

REFUNIT = scalars, variates or pointers
Unit(s) to which to allocate the reference level(s); if this
is unset in an interactive run you will be asked which
reference level or levels you want, in a batch run the
default is to choose the unit at random within each block

SEED = scalars Seed for randomization; a negative value implies no
randomization

TREATMENTS = factors Identifier for the treatment factor
BLOCKS = factors Identifier for the block (plate) factor
UNITS = factors Identifier for the factor for the units within each block

(or colours in a microarray experiment)
STATEMENT = texts Saves a command to recreate the design (useful if the

design information has been specified in response to
questions from AGREFERENCE)

Reference-level designs can be useful in experiments where the main aim is to compare new
treatments with a control, or reference, treatment. The design is made up of blocks of size two,
each of which compares the control with one of the new treatments. So, if there are four
treatment and the reference treatment is treatment 1, the basic design would have three blocks
containing the pairs of treatments (1, 2), (1, 3) and (1, 4). The design is particularly relevant to
two-colour microarray experiments, where each slide compares a pair of treatments, one of
which is stained with a red dye and the other with a green dye.
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If you are running Genstat interactively, you do not need to specify any of the options or
parameters of AGREFERENCE. It then asks questions to determine the necessary information to
form the design: for example, the number of treatments, and which of the treatments is the
control. The options and parameters allow you to anticipate questions, or to define all the
necessary information if you want to use AGREFERENCE in batch. If, however, you wish to
recreate the same design later, the STATEMENT parameter allows you to save a Genstat text
structure containing a command specifying the same information.

The number of treatments (including the reference treatment) can be defined using the LEVELS
parameter. Similarly, the REFLEVEL parameter can define the reference treatment or treatments.
You can supply a scalar to define a single reference treatment, or a variate, or a pointer
containing several scalars, to define several. The REFUNIT similarly indicates which unit is to
be used for the reference treatment within each block. (In a microarray experiment, the "unit"
would be the colour, red or green, and each block would be a slide.) The numbers specified for
the reference unit should be either 1 to use the first unit, or 2 to use the second, or 0 to use a unit
selected at random for each block.

You can thus construct several versions of the basic design, each using a different reference
level and/or unit. For example

VARIATE     [VALUES=1,2] V12
AGREFERENCE 6; REFLEVEL=1; REFUNIT=V12

would define a design with two blocks to compare the reference treatment with each of the other
five treatments (see Example 4.9.16). In one of the blocks the reference treatment would be on
unit one (e.g. colour red on a microarray plate) and in the other it would be on unit two (e.g.
colour green). Similarly

AGREFERENCE 6; REFLEVEL=V12; REFUNIT=1

would generate two versions of the basic design. The first would have treatment one as the
reference, and the second would have treatment two as the reference (both allocated to unit one).

AGREFERENCE 4; REFLEVEL=V12; REFUNIT=V12

would generate two versions of the basic design. The first would have treatment one as the
reference (allocated to unit 1), and the second would have treatment two as the reference
(allocated to unit 2).

The SEED parameter allows you to specify a seed to be used to randomize the design. In batch
the default seed is !1, to suppress randomization. If you do not set SEED when running
interactively AGREFERENCE will ask for a seed, and again a negative value suppresses any
randomization. Note that the randomization takes account of the settings of the REFUNIT
parameter.

The remaining parameters, TREATMENTS, BLOCKS and UNITS, allow you to specify identifiers
for the factors representing treatments, blocks (or plates in a microarray experiment) and units
within blocks (or colours in a microarray experiment). If these are not specified in a batch run,
AGREFERENCE will use identifiers that are local within the procedure and thus lost at the end of
the procedure. If you are running interactively, AGREFERENCE will ask you to provide identifiers,
and these will remain available after AGREFERENCE has finished running.
AGREFERENCE has a PRINT option which can be set to design to print the plan of the design.

By default, if you are running Genstat in batch, neither are printed. If you do not set PRINT when
running interactively, AGREFERENCE will ask whether or not you wish to print the design.

Example 4.9.16

   2  VARIATE     [VALUES=1,2] V12
   3  AGREFERENCE [PRINT=design] 6; REFLEVEL=1; REFUNIT=V12; SEED=142527;\
   4              TREATMENTS=Treat; BLOCKS=Plate; UNITS=Color
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Treatments on each unit of the design
=====================================

 Plate   1   2   3   4   5   6   7   8   9  10
 Color
     1   3   4   1   1   1   1   2   1   6   5
     2   1   1   2   4   3   6   1   5   1   1

Treatment factor: Treat.

4.9.17 Loop designs

AGLOOP procedure
Generates loop designs e.g. for time-course microarray experiments (R.W. Payne).

Option
PRINT = string token Controls whether or not to print a plan of the design

(design); if unset in an interactive run AGLOOP will ask
whether the design is to be printed, in a batch run the
default is not to print the design

Parameters
LEVELS = scalars Number of treatments
INCREMENTS = scalars, variates or pointers

Increment or increments to be used to form the loops
SEED = scalars Seed for randomization; a negative value implies  no

randomization
TREATMENTS = factors Identifier for the treatment factor
BLOCKS = factors Identifier for the block (plate) factor
UNITS = factors Identifier for the factor for the units within each block

(or colours in a microarray experiment)
STATEMENT = texts Saves a command to recreate the design (useful if the

design information has been specified in response to
questions from AGLOOP)

Loop designs are also used in two-colour microarray experiments (see 4.9.16). Suppose that the
treatments are t1, t2 ... tn. Then, before randomization in the basic form of the design, the first
slide would compare t1 (using red) with t2 (using green), the second slide would compare t2 (red)
with t3 (green), and the nth slide would compare tn (red) with t1 (green). The design has the
advantage that treatments are balanced with colours. This basic form is also very effective for
making comparisons between treatments that are adjacent in the sequence t1 ... tn, as might be the
main point of interest when the treatments correspond to time.

Comparisons between more widely spaced treatments are less well estimated So an alternative
possibility is to choose more than one increment, and construct additional cycles through the
treatments using modulo arithmetic. The design is then known as an interwoven loop design.
None of the increments, other than 1, must be a divisor of the number of treatments as its cycle
would then fail to include all the treatments. For example, with 8 treatments an increment of 3
would be satisfactory (1, 4, 7, 2, 5, 8, 3, 6, 1) but 2 would not (1, 3, 5, 7, 1). Note also, that 5
(which is 8 ! 3) would be equivalent to 3 (1, 6, 3, 8, 5, 2, 7, 4, 1); the treatments appear in the
reverse order, so the adjacent pairs are the same.

If you are running Genstat interactively, there is no need to specify any of the options or
parameters of AGLOOP. It then asks questions to determine the necessary information to form the
design: for example, the number of treatments and the increments to use. The option and
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parameters allow you to anticipate questions, or to define all the necessary information if you
want to use AGLOOP in batch. If, however, you wish to recreate the same design later, the
STATEMENT parameter allows you to save a Genstat text structure containing a command
specifying the same information.

The number of treatments can be defined using the LEVELS parameter. Similarly, the
INCREMENTS parameter can supply a scalar defining a single increment, or a variate, or a pointer
containing several scalars, to define several. The SEED parameter allows you to specify a seed
to be used to randomize the design. In batch the default seed is !1, to suppress randomization.
If you do not set SEED when running interactively AGLOOP will ask for a seed, and again a
negative value suppresses any randomization. Note that, the randomization is constrained to
ensure that the treatments remain balanced with colour.

The remaining parameters, TREATMENTS, BLOCKS and UNITS, allow you to specify identifiers
for the factors representing treatments, blocks (or plates in a microarray experiment) and units
within blocks (or colours in a microarray experiment). If these are not specified in a batch run,
AGLOOP will use identifiers that are local within the procedure and thus lost at the end of the
procedure. If you are running interactively, AGLOOP will ask you to provide identifiers, and these
will remain available after AGLOOP has finished running.
AGLOOP has a PRINT option which can be set to design to print the plan of the design. By

default, if you are running Genstat in batch, neither are printed. If you do not set PRINT when
running interactively, AGLOOP will ask whether or not you wish to print the design.

Example 4.9.17 shows an interwoven loop design for 8 treatments with increments of 1 and
3. The design is unrandomized, so that the looping can be seen more clearly.

Example 4.9.17

   2  AGLOOP   [PRINT=design] LEVELS=8; INCREMENT=!(1,3); SEED=-1;\
   3           TREATMENTS=time; BLOCKS=plate; UNITS=color

Treatments on each unit of the design
=====================================

 plate   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
 color
     1   1   2   3   4   5   6   7   8   1   4   7   2   5   8   3   6
     2   2   3   4   5   6   7   8   1   4   7   2   5   8   3   6   1

Treatment factor: time.

4.10 Displaying a design

This section describes the procedures for printing designs, displaying field plans and generating
data forms.

4.10.1 Printing a design: the PDESIGN procedure

PDESIGN procedure
Prints or stores treatment combinations tabulated by the block factors (R.W. Payne).

Options
PRINT = string token Controls the printing of the design (design); default

desi

BLOCKSTRUCTURE = formula Defines the block factors for the design; the default is to
take those specified by the BLOCKSTRUCTURE directive

TREATMENTSTRUCTURE = formula Defines the treatment factors for each design; the default
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is to take those specified by the TREATMENTSTRUCTURE
directive

TABLES = pointer Contains tables to store the tabulated factor values for
printing outside the procedure in some other format

FREPRESENTATION = string token How to represent the factor values (labels, levels);
default leve

No parameters

PDESIGN allows the treatment combinations allocated to each plot in a design to be displayed
as tables, classified by the block factors.

The combinations are represented using the levels of the treatment factors. If any factor also
has labels these are printed alongside the levels, as a key, after the tables. The levels are printed
in formats that are determined automatically in a way that avoids wasted space or unnecessary
decimal places. Alternatively, if you set option FREPRESENTATION=labels, the labels are
displayed in the table, instead of the levels.

The block factors are obtained from the block structure of the design, which can be specified
explicitly using the BLOCKSTRUCTURE option; otherwise PDESIGN will use any structure that
has already been defined by a BLOCKSTRUCTURE statement earlier in the job. Similarly, the
treatment factors are obtained either from the TREATMENTSTRUCTURE option of the procedure,
or from an earlier TREATMENTSTRUCTURE statement.

If the display produced by the procedure is unsuitable, printing can be suppressed by setting
option PRINT=* (by default PRINT=design), and the tables of treatment levels can be saved
for printing outside the procedure by setting the TABLES option to a pointer. This will be
returned with an element for each treatment factor, pointing to a table classified by the block
factors and storing the tabulated levels of the treatment.

Example 4.10.1 uses PDESIGN to print the plan of the split-plot design in Example 4.2.1
(continuing from the end of Example 4.6d). We have specified the block structure and treatment
structure explicitly, but could have allowed PDESIGN to have taken these from
BLOCKSTRUCTURE and TREATMENTSTRUCTURE statements earlier in the example.

Example 4.10.1

  65  PDESIGN [BLOCKSTRUCTURE=Blocks/Wplots/Subplots;\
  66    TREATMENTSTRUCTURE=Variety*Nitrogen]

Treatment combinations on each unit of the design
=================================================

          Subplots   1     2     3     4
   Blocks   Wplots
        1        1   3 4   3 3   3 2   3 1
                 2   1 1   1 2   1 4   1 3
                 3   2 1   2 2   2 3   2 4
        2        1   3 3   3 1   3 2   3 4
                 2   1 4   1 1   1 2   1 3
                 3   2 2   2 1   2 3   2 4
        3        1   2 2   2 3   2 4   2 1
                 2   3 4   3 2   3 3   3 1
                 3   1 1   1 4   1 2   1 3
        4        1   3 3   3 4   3 1   3 2
                 2   2 1   2 3   2 4   2 2
                 3   1 2   1 3   1 4   1 1
        5        1   2 4   2 1   2 3   2 2
                 2   1 3   1 4   1 1   1 2
                 3   3 3   3 4   3 2   3 1
        6        1   1 3   1 1   1 4   1 2
                 2   2 4   2 3   2 1   2 2
                 3   3 1   3 2   3 3   3 4
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Treatment factors are listed in the order: Variety, Nitrogen.

 Labels of Variety:
           1     Victory
           2 Golden rain
           3  Marvellous

 Labels of Nitrogen:
           1       0 cwt
           2     0.2 cwt
           3     0.4 cwt
           4     0.6 cwt

4.10.2 Plotting the plan of a design: the DDESIGN procedure

DDESIGN procedure
Plots the plan of an experimental design (K.E. Bicknell & R.W. Payne).

Options
Y = variate Specifies the y position of the plots in standard

coordinates 1 ... number of rows of plots in the
experiment (taking 1 as the top row of the window)

X = variate Specifies the x-coordinate of the plots in standard
coordinates 1 ... number of columns of experimental
plots

TITLE = text Title for the plan
WINDOW = scalar Window number for the plan; default 3
KEYWINDOW = scalar Window number for the key; default 0
SCREEN = string token Whether to clear the screen before plotting (clear,

keep); default clea
KEYDESCRIPTION = text Overall description for the key; default *
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

CHARACTERS = scalar Sets a limit on the length of each factor label; default *
i.e. none

SIZE = scalar Provides a multiplier by which to scale the sizes of the
factor labels on the plan

Parameters
FACTOR = factors Factors to be listed on the plan and to define the layout

(the procedure determines the style of line to divide each
pair of plots in the design from the grid pen of the first
factor in the list with which they have different levels);
default * forms the list from first the factors specified by
a preceding BLOCKSTRUCTURE statement, and then
those specified by a preceding TREATMENTSTRUCTURE
statement

PEN = scalars Pen to be used to write the levels of each factor on the
plan (if PEN=0 the levels of that factor are not included);
default 1 if the FACTOR parameter is specified,
otherwise 0 for block factors and 1 for treatment factors

PENGRID = scalars Pens to be used to draw the boundaries between the
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plots in the design (according to the first FACTOR with
which they have different levels but ignoring factors
with PENGRID=0); default 1,2...

LABELS = texts Labels to be used for each factor if its own levels or
labels are inappropriate

DDESIGN uses high-resolution graphics to produce a plan of an experimental design. The plots
in the design are assumed to be arranged on a rectangular grid. The rows of the plots are assumed
to run from 1 (at the top of the graph) upwards and are specified by a variate supplied by the Y
option. The columns (again running from 1 upwards) specified by a variate supplied by the X
option. If either Y or X is not specified, DDESIGN will generate values automatically according
to the factors in the design.

The TITLE, WINDOW, KEYWINDOW, SCREEN, KEYDESCRIPTION and ENDACTION options
operate as usual in high-resolution graphics. The CHARACTERS option allows a limit to be set on
the length of each factor label when written on the plan, and the SIZE option allows the size of
the plotted factor labels to be scaled (using the SIZE parameter of the PEN directive).

The factors involved in the experiment can be listed using the FACTOR parameter. If this is
omitted DDESIGN forms the list firstly from the factors in the previous BLOCKSTRUCTURE
statement (or a "units" factor if there was none), and then from the factors (if any) in the previous
TREATMENTSTRUCTURE statement.

These factors are then used to draw the plan and to label the plots in the design. The PEN
parameter allows the levels or labels of the factors to be drawn using different pens (and thus,
for example, in different colours). If the pen for any factor is defined as zero, its levels/labels are
not included. However, it can still be used to determine the lines drawn to delimit the plots. For
these lines, DDESIGN considers each pair of adjacent plots and checks through the list of factors
to find the first one for which they have different levels. It then uses the grid pen (defined by the
PENGRID parameter) to draw the dividing line. If the grid pen of any factor is zero, it is ignored.

This makes it very easy to achieve the usual style of plan in which stronger lines are used for
example to indicate the boundaries between different blocks than between the plots within
blocks. For example, the parameter settings to draw a randomized block design with a single
treatment factor Treat in this way would be

FACTOR=Block,Plots,Treat; PEN=1; PENGRID=1,2,0

if all the factors are to have their levels listed within the plots, or
FACTOR=Block,Plots,Treat; PEN=0,0,1; PENGRID=1,2,0

if only Treat is to be listed. Note that, as each pair of plots will have different levels of either
Block or Plot (or both), the PENGRID specified here for Treat is irrelevant.

If a plot has no neighbour in some direction, DDESIGN will check the next but one plot; if this
too is not used in the design, the grid pen of the first FACTOR is used to mark the boundary.

The final parameter, LABELS, allows alternative labels to be specified for each factor if the
existing ones are inappropriate.

For example, the plan of the split-plot design in Example 4.2.1 can be plotted by

DDESIGN [Y=Row; X=Column] Blocks,Wplots,Subplots,\
  Variety,Nitrogen; PEN=0,0,0,1,1; PENGRID=1,2,3,0,0

The resulting graph is in Figure 4.10.2.
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Figure 4.10.2

4.10.3 Plans and data forms in spreadsheets: the ADSPREADSHEET procedure

ADSPREADSHEET procedure
Puts the data and plan of an experimental design into a spreadsheet (R.W. Payne).

Options
DATA = factors or variates Data variables (e.g. design factors and covariates) to put

into the data spreadsheet; default takes the factors
defined by previous BLOCKSTRUCTURE and
TREATMENTSTRUCTURE directives

NEWDATA = variates New variates (e.g. measurements to be taken during the
experiment) to create and put into the data spreadsheet;
default * i.e. none

Y = variate or factor Specifies the y position of the plots for the plan
spreadsheet

X = variate or factor Specifies the x-coordinate of the plots for the plan
spreadsheet

CONSTANTFACTORS = string tokens Whether to put factors whose levels are constant in the
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y- or x-direction in a separate row or column of the Plan
spreadsheet (y, x); default * i.e. neither

SEPARATOR = text Separator for factor values in the plan spreadsheet;
default '; '

OMITGAPS = string token Whether to omit gaps when the plots in the plan are
equally spaced (yes, no); default no

FOREGROUND = scalar, variate or text
Foreground colours to use for the plots in the
experiment; default 'Black'

BACKGROUND = scalar, variate or text
Background colours to use for the plots in the
experiment; default 'BlanchedAlmond'

CFACTORS = factors Factors to determine the colour to use for each plot;
default uses the first block factor or no colouring
otherwise

GAPFOREGROUND = text or scalar Foreground colour for gaps and surrounding plots;
default 'Black'

GAPBACKGROUND = text or scalar Background colour for gaps and surrounding plots;
default 'LightGreen'

YFOREGROUND = text or scalar Foreground colour for factors constant in y-direction;
default 'Black'

YBACKGROUND = text or scalar Background colour for factors constant in y-direction;
default 'PaleTurquoise'

XFOREGROUND = text or scalar Foreground colour for factors constant in x-direction;
default 'Black'

XBACKGROUND = text or scalar Background colour for factors constant in x-direction;
default 'LightCyan'

SPREADSHEET = string tokens Which spreadsheets to form (data, plan); default data
OUTFILENAME = texts Name of Genstat workbook file (.gwb) or Excel (.xls or

.xlsx) file to create

Parameters
FACTOR = factors Factors to include in the plan spreadsheet; if unset,

includes the factors defined by a previous
TREATMENTSTRUCTURE directive

LABELS = texts Labels to be used for each factor if its own levels or
labels are inappropriate

ADSPREADSHEET puts information about an experimental design into a spreadsheet. By default
the spreadsheet is opened within Genstat itself, but you can save it to an external file by
supplying its name using the OUTFILENAME option. The file can be a Genstat workbook (.gwb)
or an Excel spreadsheet (.xls or .xlsx). If the name is specified without a suffix, '.gwb' is added
(so that a Genstat workbook is saved).

The contents of the data spreadsheet are specified by the DATA and NEWDATA options. The
DATA option lists existing data variables (i.e. design factors and covariates) to put into the data
spreadsheet. If this is unset, the default is to take the factors defined by previous
BLOCKSTRUCTURE and TREATMENTSTRUCTURE directives; ADSPREADSHEET gives a failure
diagnostic if the DATA option is unset and there has been no previous BLOCKSTRUCTURE or
TREATMENTSTRUCTURE. The NEWDATA option allows you to include new spreadsheet columns
to provide blank cells for new variates like measurements that are to be taken during the
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experiment. For security all the existing variables are protected so that they are read-only.
The locations of the plots in the plan spreadsheet are specified by variates or factors supplied

by the X and Y parameters; these define the row and column of the plots in the sheet,
respectively (with row coordinates increasing from top to bottom, and column coordinates
increasing from left to right in the usual way). The plots need not be equally spaced. However,
ADSPREADSHEET looks to see whether the coordinates in either direction are taken from a
regular grid, possibly with some gaps: for example coordinates (1, 2, 4, 6) are on a grid with
spacing 1 and gaps at 3 and 5. If so, ADSPREADSHEET will include rows or columns for all the
coordinates, including the gaps (i.e, 1, 2, 3, 4, 5 and 6 for the example), unless you set option
OMITGAPS=yes. The x-coordinates are shown in a units column of the spreadsheet, and the y-
coordinates are given in a row at the bottom of the plan. If either Y or X is not specified,
ADSPREADSHEET will generate values automatically according to the factors in the design !
factors from a previous BLOCKSTRUCTURE directive, if available, otherwise from a previous
TREATMENTSTRUCTURE directive.

The factors to include in the plan can be specified using the FACTOR parameter. If this is
omitted, ADSPREADSHEET takes the factors from a previous TREATMENTSTRUCTURE directive
(and fails if there has been none). The values of each factor are represented by its labels, if
available, or otherwise its levels. The LABELS parameter allows alternative labels to be specified
for each factor, if the existing levels or labels are too unsuitable. The values of the factors in
each plot are listed in the equivalent cell of the spreadsheet. By default, they are separated from
each other by a semi-colon and a space, but you can supply alternative separating characters
using the SEPARATOR option. You can set option CONSTANTFACTORS to x to list the values of
factors whose values are constant in the x direction separately, in a column on the left-hand side
of the sheet. Similarly, the setting y causes factors whose values are constrant in the y-direction
to be listed in a row at the top of the sheet.

The colouring of the cells in a Genstat can be controlled using the FOREGROUND,
BACKGROUND, CFACTORS, GAPFOREGROUND, GAPBACKGROUND, YFOREGROUND, YBACKGROUND,
XFOREGROUND and XBACKGROUND options. The colours can be specified as numbers defining
RGB values, or texts containing names of the standard Genstat colours; see the PEN diective for
details. The FOREGROUND and BACKGROUND options control the colours of the text and
background, respectively, of the spreadsheet cells that correspond to plots in the experiment. You
can give the plots different colours by supplying several values (in texts or variates).
ADSPREADSHEET then uses a different colour for each combination of levels of the factor or
factors specified by the CFACTORS option. If several colours are defined, but CFACTORS is not
set, the first factor in the block factor (in BLOCKSTRUCTURE) is used. If there are no block
factors, the first defined colour is used for all the plots. The GAPFOREGROUND and
GAPBACKGROUND options define the colour to use for the cells representing gaps in the
experiment or surrounding it. The YFOREGROUND and YBACKGROUND options specify the colour
for the text and background in the cells containing the names and levels of the factors constant
in the y-direction. The XFOREGROUND and XBACKGROUND options similarly specify the colour
for the text and background for the factors constant in the x-direction. 

If X or Y or any of the factors in the plan is restricted, only the unrestricted plots will be
included in the plan spreadsheet.

For example, the factor values and plan of the split-plot design in Example 4.2.1 can be
displayed in a spreadsheet by

ADSPREADSHEET [Y=Row; X=Column; SPREADSHEET=data,plan]
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Figure 4.10.3b

The Data tab of the resulting spreadsheet is shown
in Figure 4.10.3a, and the Plan tab is shown in
Figure 4.10b. The blue marks on the factor columns
of the Data tab indicate that these columns are
"protected" to prevent their values being changed.

4.11 Randomization

Randomization can be done using either the ARANDOMIZATION procedure or the RANDOMIZE
directive. ARANDOMIZE uses RANDOMIZE internally, but packages the facilities more
conveniently for experimental designs. It also allows the ordering of the levels of the treatment
factors to be permuted, as may be required for example in incomplete-block designs.

Figure 4.10.3a
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4.11.1 The RANDOMIZE directive

RANDOMIZE directive
Randomizes the units of a designed experiment or the elements of a factor or variate.

Options
BLOCKSTRUCTURE = formula Block model according to which the randomization is to

be carried out; default * i.e. as a completely-randomized
design

EXCLUDE = factors (Block) factors whose levels are not to be randomized
SEED = scalar Seed for the random-number generator; default 0

Parameters
factors or variates Structures whose units are to be randomized according

to the defined block model

In its simplest form, RANDOMIZE merely performs a random permutation of the units of a list of
factors or variates. You list these structures with the parameter of RANDOMIZE. Genstat gives
them all exactly the same permutation, which is produced by a set of random numbers generated
from the SEED option. For example

RANDOMIZE [SEED=144556] X,Y

puts the values of X and Y into an identical random order. The seed can be any positive integer,
but only the last six digits of its integer part are used. Thus the seeds 2144556 and 7144556.3
are both equivalent to the seed 144556. If you put SEED=*, or leave it unset, Genstat picks a seed
at random.

If you have restricted any of the structures in the parameter list (1:4.4.1), then all will be
treated as though they were restricted; moreover, all the restricted structures must be restricted
in exactly the same way.

The main use of RANDOMIZE, however, is to randomize the allocation of treatments to units
in a designed experiment. In the analysis of designed experiments, the underlying structure of
an experiment is defined by the block formula, as described in 4.2. Provided the only operators
in a block formula are the nesting (/) and crossing (*) operators, this also specifies the correct
randomization of the experiment.

The nesting operator specifies that one factor is to be randomized within another one. The
simplest example is the randomized block design: its block formula is Blocks/Plots; a
separate randomization of plots is done for each block. Another example is a split-plot design,
the formula for which is Blocks/Wplots/Subplots; this means randomize first the levels of
Blocks, then the levels of Wplots within levels of Blocks, and finally the levels of Subplots
within the levels of Blocks and Wplots. In other words, there is a separate randomization of
Wplots for each Block, and a separate randomization of Subplots for each Wplot. A similar
formula and randomization would apply to a resolvable incomplete-block design.

The crossing operator specifies that the factors are to be randomized independently of each
other. For example the formula Rows*Cols means randomize the levels of Rows and Cols
separately. Thus the same randomization of Cols appears within each Row. This is the block
formula associated with a row and column design, for example a Latin square. This is illustrated
in Example 4.11.2, which does the randomization using ARANDOMIZE (which then uses
RANDOMIZE).

You specify the block formula by the BLOCKSTRUCTURE option, which thus defines the way
in which the randomization is to be carried out. Genstat does not randomize the factors in the
block structure themselves, unless you put them into the parameter list. This is because the
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original order of the block-factor levels often describes actual positions in the experiment; for
example, in a field. So you will be interested in keeping these values, rather than the random
ordering of them that is used to allocate treatments.

Example 4.11.1a, shows the randomization of a randomized block design.

Example 4.11.1a

   2  UNITS [NVALUES=16]
   3  FACTOR [LEVELS=4; VALUES=4(1...4)] Blocks
   4  & [VALUES=(1...4)4] Plots
   5  & [LABELS=!T(A,B,C,D)] Dose
   6  PRINT Blocks,Plots,Dose

      Blocks       Plots        Dose
           1           1           A
           1           2           B
           1           3           C
           1           4           D
           2           1           A
           2           2           B
           2           3           C
           2           4           D
           3           1           A
           3           2           B
           3           3           C
           3           4           D
           4           1           A
           4           2           B
           4           3           C
           4           4           D

   7  RANDOMIZE [BLOCKSTRUCTURE=Blocks/Plots; SEED=556743] Dose
   8  PRINT Blocks,Plots,Dose

      Blocks       Plots        Dose
           1           1           C
           1           2           B
           1           3           D
           1           4           A
           2           1           C
           2           2           B
           2           3           A
           2           4           D
           3           1           B
           3           2           C
           3           3           D
           3           4           A
           4           1           A
           4           2           C
           4           3           D
           4           4           B

Notice that the values of the Blocks and Plots factors have not been randomized because they
did not appear in the parameter list. Note also that the block formula for this design is
Blocks/Plots and not just Blocks. This is because the formula must define each experimental
unit by a unique combination of the block factor levels, for example block 1, plot 3. To put a
block formula of just Blocks would not give Genstat any information about what to do with the
elements of the blocks.

You should use the EXCLUDE option if you want to restrict the randomization so that one or
more of the factors in the block formula is not randomized. The most common instance where
this is required is when one of the treatment factors is time-order, which cannot be randomized.
For example, suppose the main plot treatments in a split-plot experiment were lengths of time
between two chemicals being mixed together, and that the analysis is of the amount of gas
produced. If all the jars of chemicals needed to be mixed up at the beginning of the day, and the
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analyses were performed after the appropriate time lapse, the standing times would have to be
in the same order in each replicate. A suitable randomization is shown in Example 4.11.1b.

Example 4.11.1b

   2  UNITS [NVALUES=18]
   3  FACTOR [LEVELS=3; VALUES=6(1,2,3)] Block
   4  & [LABELS=!T(A,B,C); VALUES=(1...3)6] Method
   5  & [LEVELS=2; LABELS=!T('2 hours','4 hours'); VALUES=3(1,2)3] Time
   6  & [LABELS=*] Mplot
   7  PRINT Block,Time,Method

       Block        Time      Method
           1     2 hours           A
           1     2 hours           B
           1     2 hours           C
           1     4 hours           A
           1     4 hours           B
           1     4 hours           C
           2     2 hours           A
           2     2 hours           B
           2     2 hours           C
           2     4 hours           A
           2     4 hours           B
           2     4 hours           C
           3     2 hours           A
           3     2 hours           B
           3     2 hours           C
           3     4 hours           A
           3     4 hours           B
           3     4 hours           C

   8  RANDOMIZE [BLOCKSTRUCTURE=Block/Mplot/Method; EXCLUDE=Mplot; \
   9     SEED=888667] Time,Method
  10  PRINT Block,Time,Method

       Block        Time      Method
           1     2 hours           C
           1     2 hours           A
           1     2 hours           B
           1     4 hours           A
           1     4 hours           B
           1     4 hours           C
           2     2 hours           C
           2     2 hours           B
           2     2 hours           A
           2     4 hours           C
           2     4 hours           B
           2     4 hours           A
           3     2 hours           C
           3     2 hours           B
           3     2 hours           A
           3     4 hours           B
           3     4 hours           A
           3     4 hours           C

In this example we have also used a simplification of the terminology for the block structure: we
have used a treatment factor, Method, to specify what is actually a term in the block formula.
The strict specification of the structure should have a block factor that is synonymous with
Method; but having to specify such duplicate structures can be wasteful, and may not conform
to the way in which such experiments are described colloquially. In fact the RANDOMIZE
statement in line 8 could be modified further to remove the Mplot factor:

RANDOMIZE [BLOCKSTRUCTURE=Block/Time/Method; EXCLUDE=Time;\
  SEED=888667] Method

The SEED option determines which randomization Genstat gives. If you use the same seed, you
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will get the same random numbers, and hence the same randomization (provided the block
formula and the block factors are the same as before). If you omit SEED Genstat picks a seed at
random, and prints a message to tell you what it is in case you want to reproduce the
randomization later.

4.11.2 The ARANDOMIZE procedure

ARANDOMIZE procedure
Randomizes and prints an experimental design (R.W. Payne).

Options
PRINT = string token Allows the (randomized) design to be printed;

(design); default *
BLOCKSTRUCTURE = formula Defines the block factors according to which the

randomization is to be carried out; default takes the
existing specification as defined by the
BLOCKSTRUCTURE directive

EXCLUDE = factors (Block) factors whose levels are not to be randomized
SEED = scalar Seed to generate the random numbers used to define the

randomization; default 0
LPERMUTE = string token Whether to randomly permute treatment factor levels

(no, yes); default no

Parameters
OLDVECTOR = factors or variates Vectors whose values are to be randomized; default is to

use the factors occurring in the formula (if any)
specified by the most recent TREATMENTSTRUCTURE
directive

NEWVECTOR = factors or variates Vectors to store the randomized values; by default these
overwrite the values in the original vectors

ARANDOMIZE provides a convenient way of randomizing the treatment allocations in an
experimental design. It has several advantages over the RANDOMIZE directive (which is used
inside the procedure).

First of all, the BLOCKSTRUCTURE option, which (as in RANDOMIZE) specifies the block model
formula to indicate how the randomization is to take place, will use any setting that has already
been defined by the BLOCKSTRUCTURE directive as its default. Moreover, the formula need not
index all the units of the design, as is required by RANDOMIZE; if necessary ARANDOMIZE will
set up an extra factor _units_ simular to the factor *units* used by ANOVA.
ARANDOMIZE allows the original (unrandomized) values to be retained. There are two

parameters: OLDVECTOR to specify the factors or variates to be randomized, and NEWVECTOR to
allow new structures to be supplied to store the randomized values. If no NEWVECTOR is
specified, the randomized values replace the original values of the corresponding OLDVECTOR.
By default, NEWVECTOR is assumed to contain the list of factors in the model formula (if any)
specified by the previous TREATMENTSTRUCTURE directive. RESTRICT can be used, as usual,
to restrict the set of units to be randomized.

The levels of the treatment factors can be randomized by setting option LPERMUTE=yes;
ARANDOMIZE then randomly permutes the numbering of the levels of each treatment factor on
the units of the design. There is also a PRINT option which can be set to design to print the
design. The other two options, EXCLUDE and SEED, are as in RANDOMIZE. EXCLUDE lists block
factors whose levels are not to be permuted during the randomization; for example the period
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factor might need to be excluded in the randomization of a trial to study carry over effects. SEED
defines the seed used to generate the random numbers used for the randomization; the default
of 0 ensures that a seed will be chosen at random if SEED is not set.

Example 4.11.2 shows the randomization of a Latin square generated as in Example 4.9.4.
AGLATIN contains a BLOCKSTRUCTURE statement setting the block formula to Rows*Cols, and
a TREATMENTSTRUCTURE statement setting a treatment formula of Treat, so there is no need
to set the BLOCKSTRUCTURE and TREATMENTSTRUCTURE options of ARANDOMIZE. In the
randomization, Rows and Cols are randomized separately, so the same randomization of Treat
appears within each row and column ! thus preserving the properties of the Latin square.

Example 4.11.2

   2  AGLATIN [PRINT=design; ANALYSE=no] 6; NSQUARES=1;\
   3    TREATMENTFACTOR=!p(Treat); ROWS=Rows; COLUMNS=Columns; SEED=-1

Treatments on each unit of the design
=====================================

 Columns   1   2   3   4   5   6
    Rows
       1   1   2   3   4   5   6
       2   2   3   1   5   6   4
       3   3   1   2   6   4   5
       4   4   5   6   1   2   3
       5   5   6   4   2   3   1
       6   6   4   5   3   1   2

Treatment factor: Treat.

   4  ARANDOMIZE [SEED=876413]
   5  PDESIGN

Treatments on each unit of the design
=====================================

 Columns   1   2   3   4   5   6
    Rows
       1   5   6   4   3   1   2
       2   3   1   2   4   5   6
       3   1   2   3   5   6   4
       4   2   3   1   6   4   5
       5   4   5   6   2   3   1
       6   6   4   5   1   2   3

Treatment factor: Treat.

4.12 Sample size and power calculations

Genstat has procedures for determining the sample size (i.e. replication) required for experiments
that are to be analysed by t-tests (4.12.1), analysis of variance (4.12.2) or non-parametric tests
(4.12.5-8), or by using either product moment correlations (4.12.9) or Lin's concordance
correlation coefficient (4.12.10). You can also calculate the power (or probability of detection)
for terms in analysis of variance (4.12.3). Power calculations for regression analyses are
described in 3.1.8.
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4.12.1 Sample size for t-tests

STTEST procedure
Calculates the sample size for t-tests, including equivalence tests (R.W. Payne).

Options
PRINT = string token What to print (replication, power); default repl,

powe

NSAMPLES = scalar Number of samples for the t-test (1 or 2); default 2
PROBABILITY = scalar Significance level at which the response is to be tested;

default 0.05
POWER = scalar The required power (i.e. probability of detection) of the

test; default 0.9
TMETHOD = string token Type of test to be done (onesided, twosided,

equivalance, noninferiority); default ones
RATIOREPLICATION = scalar Ratio of replication sample2:sample1 (i.e. the size of

sample 2 should be RATIOREPLICATION times the size
of sample 1); default 1

REPLICATION = variate Replication values for which to calculate and print or
save the power; default * takes 11 replication values
centred around the required number of replicates

Parameters
RESPONSE = scalars Response to be detected
VAR1 = scalars Anticipated variance of sample 1
VAR2 = scalars Anticipated variance of sample 2; default * assumes the

same variance as sample 1
NREPLICATES = scalars Saves the required number of replicates
VREPLICATION = variates Numbers of replicates for which powers have been

calculated
VPOWER = variates Power (i.e. probability of detection) for the various

numbers of replicates

STTEST calculates the number of replicates (or sample size) required for various types of t-test.
The calculations can be done for a one-sample t-test (testing for evidence that the mean of the
sample differs from a specific value) or a two-sample test (testing that means of the samples are
different). The number of samples is specified by the NSAMPLES option (default 2).

The size of response that should be detectable is supplied by the RESPONSE parameter. (This
is difference between the sample mean of a one-sample test and the specific value, or the
difference between the means of the two samples in a two-sample test.) The VAR1 parameter
supplies the variance of the observations in the sample of a one-sample test or of the first sample
of a two-sample test. If the second sample of a two-sample test has a different variance from the
first sample, this can be supplied by the VAR2 parameter.

The significance level for the test is specified by the PROBABILITY option (default 0.05 i.e.
5%). The required probability for detection of the response (that is, the power of the test) is
specified by the POWER option (default 0.9). It is generally assumed that the sizes of the samples
in the two-sample test should be equal. However, you can set the RATIOREPLICATION option
to a scalar, R say, to indicate that the size of the second sample should be R times the size of the
first sample. The NREPLICATES parameter allows you to save the required size of the first
sample.
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The PRINT option controls printed output, with settings:
replication to print the required number of replicates in each sample

(i.e. the size of each sample);
power to print a table giving the power (i.e. probability of

detection) provided by a range of numbers of replicates.
By default both are printed.

The replications and corresponding powers can also be saved, in variates, using the
VREPLICATION and VPOWER parameters. The REPLICATION option can specify the replication
values for which to calculate and print or save the power; if this is not set, the default is to take
11 replication values centred around the required number of replicates.

By default, STTEST assumes a one-sided t-test is to be used, but you can set option
TMETHOD=twosided to take a two-sided t-test instead. Other settings of TMETHOD enable you
to test for equivalence or for non-inferiority. To demonstrate equivalence of the two samples
(TMETHOD=equivalence), their means m1 and m2 must differ by less than some threshold d;
this is specified by RESPONSE and should represent a limit below which the difference can be
assumed to have no physical (or clinical) importance. Statistically, equivalence implies
comparing a null hypothesis that the samples are not equivalent, i.e.

(m1 ! m2) # !d
or

(m1 ! m2) $ d
with the alternative hypothesis that they are equivalent, i.e.

!d < (m1 ! m2) < d
A one-sample test for equivalence operates similarly, but here d specifies the threshold for the
sample mean itself. To demonstrate non-inferiority of sample 1 compared to sample 2, the null
hypothesis becomes

(m1 ! m2) $ !d
(which, in fact, represents a simple one-sided t-test). For more details of the method, see Part 3
of the Genstat Reference Manual, or the description of ASAMPLESIZE (4.12.2).

The DSTTEST procedure can produce plots showing the probability distributions for the null
and alternative hypotheses, to help you to understand the various types of test.

DSTTEST procedure
Plots power and significance for t-tests, including equivalence tests (R.W. Payne).

Options
NSAMPLES = scalar Number of samples for the t-test (1 or 2); default 2
PROBABILITY = scalar Significance level at which the response is to be tested;

default 0.05
TMETHOD = string token Type of test to be done (onesided, twosided,

equivalence, noninferiority); default ones
RATIOREPLICATION = scalar Ratio of replication sample2:sample1 (i.e. the size of

sample 2 should be RATIOREPLICATION times the size
of sample 1); default 1

Parameters
RESPONSE = scalars Response to be detected
VAR1 = scalars Anticipated variance of sample 1
VAR2 = scalars Anticipated variance of sample 2; default * assumes the

same variance as sample 1
NREPLICATES = scalars Number of replicates
RDF = scalars Number of residual degrees of freedom; default *
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calculates these automatically, assuming a standard
t-test

In the plots the area of the distribution for the null hypothesis, where the null hypothesis would
be rejected, is coloured in red. Its size corresponds to the significance level of the t-test, which
is set by the PROBABILITY option (default 0.05), as in STTEST. The area of the distribution for
the alternative hypothesis, where the null hypothesis would be rejected, is coloured in dark blue,
unless it overlaps the red colour of the null hypothesis. The size of the dark blue area (including
that overlapped by red) corresponds to the power of the test. The area of the distribution for the
alternative hypothesis, where the null hypothesis would still be accepted, is coloured in light
blue.

The TMETHOD and RATIOREPLICATION options also operate as in STTEST, as do the
RESPONSE, VAR1, VAR2 and NREPLICATES parameters. However, DSTTEST has an additional
parameter, RDF, which can be used to specify the number of degrees of freedom for the test. By
default DSTTEST calculates these automatically assuming a standard t-test. RDF allows DSTTEST
to be used, for example, to show t-tests of differences of means from an analysis of variance.

Example 4.12.1 illustrate s the various types of test. Figures 4.12.1a-f display the
corresponding hypotheses.

Example 4.12.1

   2  "1) one-sample test, required response 2, anticipated variance 3."
   3  STTEST  [PRINT=replication,power; NSAMPLES=1] 2; VAR1=3;\
   4          NREPLICATES=nrep

Sample size for t-tests
=======================

Power for a one-sample t-test
-----------------------------

Response 2, variance 3, one-sided significance level 0.05.

No. replicates         Power
             3         0.384
             4         0.552
             5         0.684
             6         0.782
             7         0.852
             8         0.901
             9         0.934
            10         0.957
            11         0.972
            12         0.982
            13         0.988

Replication
-----------

To detect a response of 2, with sample variance 3, at a one-sided significance
level of 0.05, with a power of 0.9, using a one-sample t-test, requires a
replication of 8.

   5  DSTTEST [NSAMPLES=1] 2; VAR1=3; NREPLICATES=nrep
   6  "2) two-sample test, required response 2, anticipated variances 5."
   7  STTEST  [PRINT=replication,power] 2; VAR1=5; NREPLICATES=nrep

Sample size for t-tests
=======================
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Power for a two-sample t-test
-----------------------------

Response 2, variance 5, one-sided significance level 0.05.

No. replicates         Power
            18         0.838
            19         0.855
            20         0.871
            21         0.886
            22         0.899
            23         0.910
            24         0.920
            25         0.930
            26         0.938
            27         0.945
            28         0.951

Replication
-----------

To detect a response of 2, with sample variance 5, at a one-sided significance
level of 0.05, with a power of 0.9, using a two-sample t-test, requires a
replication of 23 for each sample.

   8  DSTTEST 2; VAR1=5; NREPLICATES=nrep
   9  "3) two-sample test, required response 2, anticipated variances 5 & 6."
  10  STTEST  [PRINT=replication,power] 2; VAR1=5; VAR2=6; NREPLICATES=nrep

Sample size for t-tests
=======================

Power for a two-sample t-test
-----------------------------

Response 2, sample 1 variance 5, sample 2 variance 6, one-sided significance
level 0.05.

No. replicates         Power
            20         0.842
            21         0.858
            22         0.872
            23         0.885
            24         0.897
            25         0.908
            26         0.917
            27         0.926
            28         0.934
            29         0.941
            30         0.947

Replication
-----------

To detect a response of 2, with sample variances 5 and 6, at a one-sided
significance level of 0.05, with a power of 0.9, using a two-sample t-test,
requires a replication of 25 for each sample.

  11  DSTTEST 2; VAR1=5; VAR2=6; NREPLICATES=nrep
  12  "4) two-sample test, required response 2, anticipated variance 5,
 -13      sample sizes in a ratio 1:2."
  14  STTEST  [PRINT=replication,power; RATIOREPLICATION=2] 2; VAR1=5;\
  15          NREPLICATES=nrep

Sample size for t-tests
=======================

Power for a two-sample t-test
-----------------------------
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Response 2, variance 5, one-sided significance level 0.05.

No. reps. sample 1  No. reps. sample 2         Power
                12                  24         0.798
                13                  26         0.826
                14                  28         0.851
                15                  30         0.873
                16                  32         0.891
                17                  34         0.907
                18                  36         0.921
                19                  38         0.933
                20                  40         0.943
                21                  42         0.952
                22                  44         0.959

Replication
-----------

To detect a response of 2, with sample variance 5, at a one-sided significance
level of 0.05, with a power of 0.9, using a two-sample t-test, requires a
replication of 17 for sample 1 and 34 for sample 2.

  16  DSTTEST [RATIOREPLICATION=2] 2; VAR1=5; NREPLICATES=nrep
  17  "5) demonstrating equivalence with threshold 5, anticipated variance 20,
 -18      significance level 0.05, power 0.95."
  19  STTEST  [PRINT=replication,power; POWER=0.95;\
  20          TMETHOD=equivalence] 5; VAR1=20; NREPLICATES=nrep

Sample size for t-tests
=======================

Power for a test of equivalence
-------------------------------

Threshold for non-equivalence 5, variance 20, significance level 0.05.

No. replicates         Power
            17         0.878
            18         0.899
            19         0.917
            20         0.932
            21         0.945
            22         0.955
            23         0.963
            24         0.970
            25         0.976
            26         0.980
            27         0.984

Replication
-----------

To demonstrate equivalence with a threshold of 5, sample variance 20, a
significance level of 0.05 and a power of 0.95, requires a replication of 22 for
each sample.

  21  DSTTEST [TMETHOD=equivalence] 5; VAR1=20; NREPLICATES=nrep
  22  "6) demonstrating non-inferiority with threshold 4,
 -23      anticipated variance 20, significance level 0.05, power 0.90."
  24  STTEST  [PRINT=replication,power; TMETHOD=noninferiority] 4; VAR1=20;\
  25          NREPLICATES=nrep

Sample size for t-tests
=======================

Power for a test of non-inferiority
-----------------------------------

Threshold for non-equivalence 4, variance 20, significance level 0.05.
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Figure 4.12.1a Figure 4.12.1b

Figure 4.12.1c Figure 4.12.1d

No. replicates         Power
            18         0.838
            19         0.855
            20         0.871
            21         0.886
            22         0.899
            23         0.910
            24         0.920
            25         0.930
            26         0.938
            27         0.945
            28         0.951

Replication
-----------

To demonstrate non-inferiority with a threshold of 4, sample variance 20, a
significance level of 0.05 and a power of 0.9, requires a replication of 23 for
each sample.

  26  DSTTEST [TMETHOD=noninferiority] 4; VAR1=20; NREPLICATES=nrep
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Figure 4.12.1e Figure 4.12.1f

4.12.2 Sample size for analysis of variance

ASAMPLESIZE procedure
Finds the replication to detect a treatment effect or contrast (R.W. Payne & P. Brain).

Options
PRINT = string tokens Prints the replication or produces a printed summary of

the power etc for the various amounts of replication
(power, replication); default powe, repl

TERM = formula Treatment term to be assessed in the analysis
REPLICATES = factor Factor identifying the replication in the design
MINREPLICATION = scalar Minimum number of replicates to try; default 2
MAXREPLICATION = scalar Maximum feasible number of replicates; default * i.e.

no limit
TREATMENTSTRUCTURE = formula Treatment structure of the design; determined

automatically from an ANOVA save structure if
TREATMENTSTRUCTURE is unset or if SAVE is set

BLOCKSTRUCTURE = formula Block structure of the design; determined automatically
from an ANOVA save structure if BLOCKSTRUCTURE is
unset or if SAVE is set

COMPONENTS = variate or scalar Variate of variance components of all the terms in the
block structure or, if TERM is estimated in the final
stratum of the design, scalar containing only the
variance component of the final stratum itself;
determined automatically (if possible) from an ANOVA
save structure if unset

FACTORIAL = scalar Limit on the number of factors in treatment terms;
default 3

PROBABILITY = scalar Significance level at which the response is required to
be detected (assuming a one-sided test); default 0.05

POWER = scalar The required power (i.e. probability of detection) of the
test; default 0.9

TMETHOD = string token Type of test to be made (onesided, twosided,
equivalence, noninferiority, fratio); default
ones
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XCONTRASTS = variate X-variate defining a a contrast to be detected
CONTRASTTYPE = string token Type of contrast (regression, comparison) default

rege

SAVE = asave ANOVA save structure to provide the information about
the design

Parameters
RESPONSE = scalars Size of the difference or contrast between TERM effects

that is to be detected
NREPLICATES = scalars Number of replicates required to detect RESPONSE

When designing an experiment, it is often possible to vary the replication of the treatments. For
example, in a randomized block design you can adjust the number of blocks, or in a design with
no blocking structure you can choose how many units to allocate to each of the treatments.

To decide how many replicates to include, you need to specify the size of difference between
treatment effects that you would like the design to be able to detect. The treatment term of
interest is specified using the TERM option of ASAMPLESIZE, and the difference that you want
to detect between its effects is given by the RESPONSE parameter. As an alternative to detecting
a difference between treatment effects, you can ask to detect a contrast, but here the treatment
term must be a main effect (that is, TERM must involve just one factor). The XCONTRASTS option
then specifies a variate containing the coefficients defining the contrast, and the CONTRASTTYPE
option indicates whether this is a regression contrast (as specified by the REG function) or a
comparison (as specified by COMPARISON).

The PROBABILITY option specifies the significance level that you will be using in the future
analysis to detect the treatment difference (default 0.05, i.e. 5%). The POWER option specifies
the probability with which you want the experiment to be able to detect the difference (that is,
the power of the test); by default this is 0.9 i.e. 90%. In the language of hypothesis testing,
PROBABILITY specifies the type I error rate, and POWER specifies one minus the type II error
rate. By default, ASAMPLESIZE assumes a one-sided t-test is to be used, but you can set option
TMETHOD=twosided to take a two-sided t-test instead. Alternatively, you can save the
information explicitly in an ANOVA save structure, using the SAVE parameter of ANOVA, and then
use this same save structure as the setting of the SAVE option of ASAMPLESIZE.

Other settings of TMETHOD enable you to test for equivalence or for non-inferiority. With
equivalence (TMETHOD=equivalence), RESPONSE provides a threshold below which the
treatments can be assumed to be equivalent. If the treatments have effects e1 and e2, the null
hypothesis that the treatments are not equivalent is that either

(e1 ! e2) # !RESPONSE
or

(e1 ! e2) $ RESPONSE
with the alternative hypothesis that they are equivalent, i.e.

!RESPONSE < (e1 ! e2) < RESPONSE
With non-inferiority (TMETHOD=noninferiority), RESPONSE again specifies the threshold
for the effect of one treatment to be superior to another. So, for example, to demonstrate non-
inferiority of treatment 1 compared to treatment 2, the null hypothesis becomes

(e1 ! e2) $ !RESPONSE
(which, in fact, represents a simple one-sided t-test).

To determine the replication, ASAMPLESIZE needs to know the about the structure of the
design, and the likely amount of variability. This is most easily obtained by taking the analysis
of a design with similar units and the same block and treatment structures as those that are to be
used in the new design. To do this, you should analyse the earlier set of data with the ANOVA
directive in the usual way. First define the strata (or error terms) for the design using the
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BLOCKSTRUCTURE directive, and the treatment model to be fitted using the
TREATMENTSTRUCTURE directive. Then analyse the y-variate using the ANOVA. Provided you do
not give any other ANOVA commands in the interim, ASAMPLESIZE will pick up the information
automatically from the save information held within Genstat about that analysis. Alternatively,
you can save the information explicitly in an ANOVA save structure, using the SAVE parameter
of ANOVA, and then use this same save structure as the setting of the SAVE option of
ASAMPLESIZE.

If you do not have a suitable earlier set of data, you should set up the design factors to contain
the values required to define the units of the design for any convenient number of replicates. (It
does not matter how many replicates you choose, as the form of the design should be the same
in every replicate.) Then use the TREATMENTSTRUCTURE and BLOCKSTRUCTURE options of
ASAMPLESIZE to define the treatment model and the block model, and the COMPONENTS option
to specify the variance components of the strata. Note: if TERM is estimated in the bottom (or
final) stratum of the design, COMPONENTS can be set to a scalar to specify only the variance
component of this stratum ! which is then equal to its residual mean square.

There is also the compromise possibility that you can take the information about the design
and the block and treatment model from an ANOVA save structure (generated for example by the
analysis of an artificial data set), but use the COMPONENTS option to specify different variance
components from those in the analysis in the save structure.

The treatment terms to be included are controlled by the FACTORIAL option. This sets a limit
(by default 3) on the number of factors in a treatment term. Treatment terms containing more
than that number are deleted.

Finally, you must set the REPLICATES option to the factor in the block formula whose number
of levels is to be increased or decreased to change the replication of the treatments. You can set
the MINREPLICATION option to indicate the minimum number of replicates to try; by default
this is 2. You can use the MAXREPLICATION option to define a maximum feasible number of
replicates; by default this is no limit. The number of replicates that is required can be saved using
the NREPLICATES parameter.

The PRINT option controls the printed output, with settings:
power prints a table summarising the situation for a range of

numbers of replicates (defined by MINREPLICATION and
MAXREPLICATION if set, otherwise set automatically to a
range covering the required number of replicates) ! the
table contains the residual degrees of freedom, the residual
mean square, the standard error of difference (sed),
RESPONSE divided by the sed, the t-value for a difference
of RESPONSE, and the detection probability (i.e. power) at
the level defined by the PROBABILITY option;

replication prints the required replication.
By default both are printed.

Example 4.12.2a determines the number of blocks required to detect a treatment difference
of 3 in a randomized block design with an anticipated residual mean square of 2.5 in the final
stratum Block.Plot (i.e. within blocks); there is a single treatment factor Treat with 3 levels.
We first use AGHIERARCHICAL to define the design for one replicate (or block), and then call
ASAMPLESIZE to discover how many blocks are actually needed.

Example 4.12.2a

   2  AGHIERARCHICAL [PRINT=*; ANALYSE=no; SEED=-1] Block,Plot;\
   3                 TREATMENTFACTORS=*,Treat; LEVELS=1,3
   4  ASAMPLESIZE    [PRINT=power,rep; TERM=Treat; REPLICATES=Block;\
   5                 TREATMENTSTRUCTURE=Treat;\
   6                 BLOCKSTRUCTURE=Block/Plot; COMPONENT=2.5]\
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   7                 1; NREPLICATES=Nrep

Sample size for analysis of variance
====================================

Power
-----

 Number of  Residual   Residual    s.e.d.  RESPONSE   t-value     Power
replicates      d.f.       m.s.            / s.e.d.
        39        76      2.500    0.3581     2.793     1.665     0.869
        40        78      2.500    0.3536     2.828     1.665     0.877
        41        80      2.500    0.3492     2.864     1.664     0.884
        42        82      2.500    0.3450     2.898     1.664     0.891
        43        84      2.500    0.3410     2.933     1.663     0.897
        44        86      2.500    0.3371     2.966     1.663     0.903
        45        88      2.500    0.3333     3.000     1.662     0.909
        46        90      2.500    0.3297     3.033     1.662     0.914
        47        92      2.500    0.3262     3.066     1.662     0.919
        48        94      2.500    0.3227     3.098     1.661     0.924
        49        96      2.500    0.3194     3.130     1.661     0.928

Replication
-----------

To detect a treatment difference of 1.000, at a significance level of 0.050,
with a power of 0.900, using a one-sided test, requires a replication of 44.

In Example 4.12.2b, we have a split-plot design, with block structure Rep/Wplot/Subplot.
The factor Variety with 3 levels is applied to whole plots (and is thus estimated in the
Rep.Wplot stratum) and the factor Nitrogen with 4 levels is applied to the sub-plots (and is
thus estimated in the Rep.Wplot.Subplot stratum). The variance components for Rep,
Rep.Wplot and Rep.Wplot.Subplot are anticipated to be 6, 3 and 5 respectively, and we
wish to detect varietal differences of 3. Again we first define a split-plot with a single replicate,
and then use ASAMPLESIZE to find out how many reps we need.

Example 4.12.2b

   2  AGHIERARCHICAL [PRINT=*; ANALYSE=no; SEED=-1] Rep,Wplot,Subplot;\
   3                 TREATMENTFACTORS=*,Variety,Nitrogen; LEVELS=1,3,4
   4  ASAMPLESIZE    [PRINT=power,rep; TERM=Variety; REPLICATES=Rep;\
   5                 TREATMENTSTRUCTURE=Variety*Nitrogen;\
   6                 BLOCKSTRUCTURE=Rep/Wplot/Subplot;\
   7                 COMPONENTS=!(6,3,5)] 3; NREPLICATES=Nrep

Sample size for analysis of variance
====================================

Power
-----

 Number of  Residual   Residual    s.e.d.  RESPONSE   t-value     Power
replicates      d.f.       m.s.            / s.e.d.
         4         6      17.00     1.458     2.058     1.943     0.570
         5         8      17.00     1.304     2.301     1.860     0.676
         6        10      17.00     1.190     2.521     1.812     0.758
         7        12      17.00     1.102     2.722     1.782     0.821
         8        14      17.00     1.031     2.910     1.761     0.869
         9        16      17.00     0.972     3.087     1.746     0.905
        10        18      17.00     0.922     3.254     1.734     0.931
        11        20      17.00     0.879     3.413     1.725     0.950
        12        22      17.00     0.842     3.565     1.717     0.965
        13        24      17.00     0.809     3.710     1.711     0.975
        14        26      17.00     0.779     3.850     1.706     0.982
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Replication
-----------

To detect a treatment difference of 3.000, at a significance level of 0.050,
with a power of 0.900, using a one-sided test, requires a replication of 9.

ASAMPLESIZE calculates the standard error of difference between two treatment effects using
the equation

%( s2 × 2 / (r × e))
where s2 is the stratum variance of the stratum where the treatment term is estimated, e is the
efficiency factor, and r is the replication of each effect as in 4.1.3. For a regression contrast the
standard error is

%( s2 × 2 / (r × sdiv × e))
where sdiv is the sum of squares of the XCONTRASTS variate, and for a comparison contrast the
standard error is

%( s2 × sdiv / (r × e))
(see 4.5). ASAMPLESIZE assumes that the treatment effects have equal replication, and also that
all the effects (or residuals) of each block term have equal replication.

The stratum variance can be calculated as the variance component of the stratum S where the
treatment term is estimated multiplied by the replication of its effects (residuals), plus the
variance component of each stratum to which the stratum S is marginal, again multiplied by the
replication of its effects (residuals). See for example Payne & Tobias (1992).

Comparing the null hypothesis that the treatments are not equivalent, i.e.
(m1 ! m2) # !d

or
(m1 ! m2) $ d

with the alternative hypothesis that they are equivalent, i.e.
!d < (m1 ! m2) < d

defines an intersection-union test, in which each component of the null hypothesis must be
rejected separately. Here this implies performing two one-sided t-tests (this is known as a TOST
procedure). If the significance level for the full test is to be á, each t-test must have significance
level á (see Berger & Hsu 1996). To obtain a detection probability (or power) of (1 ! â), each
of the t-tests must have detection probabilities of (1 ! â/2).

To demonstrate non-inferiority of treatment 1 compared to treatment 2, the null hypothesis is
(m1 ! m2) $ !d

This is equivalent to a one-sided t-test.
For the F-test, it is assumed that one effect will be !0.5 × RESPONSE, another will be 0.5 ×

RESPONSE, and the others will be zero. This gives the smallest sum of squares for any table of
effects with a maximum pair-wise difference of RESPONSE, which represents the most difficult
case that needs to be detected.

4.12.3 Power for analysis of variance

APOWER procedure
Calculates the power (probability of detection) for terms in an analysis of variance (R.W.
Payne).

Options
PRINT = string token Prints the power (power); default powe
TERM = formula Treatment term to be assessed in the analysis
TREATMENTSTRUCTURE = formula Treatment structure of the design; determined

automatically from an ANOVA save structure if
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TREATMENTSTRUCTURE is unset or if SAVE is set
BLOCKSTRUCTURE = formula Block structure of the design; determined automatically

from an ANOVA save structure if BLOCKSTRUCTURE is
unset or if SAVE is set

FACTORIAL = scalar Limit on the number of factors in treatment terms;
default 3

PROBABILITY = scalar Significance level at which the response is required to
be detected (assuming a one-sided test); default 0.05

TMETHOD = string token Type of test to be made (onesided, twosided,
equivalence, noninferiority, fratio); default
ones

XCONTRASTS = variate X-variate defining a contrast to be detected
CONTRASTTYPE = string token Type of contrast  (regression, comparison) default

rege

SAVE = asave ANOVA save structure to provide the information about
the design

Parameters
RESPONSE = scalars, variates or tables

Size of the difference or contrast between the effects of
TERM that is to be detected, or (for TMETHOD=fratio)
pattern of effects or means to be detected

RMS = scalars Anticipated residual mean square corresponding to
TERM; can be omitted if a SAVE structure is available

POWER = scalars or variates Power (i.e. probability of detection) for RESPONSE

When assessing an experimental design, it can be useful to know how likely a treatment response
of a specified size may be detected. This probability of detection, known as the power of the
design with respect to the response of interest, helps to determine whether the experiment is
sufficiently large or accurate to achieve its purpose.

The treatment term to test is specified using the TERM option of APOWER, and the difference
that you want to detect between its effects is given by the RESPONSE parameter. As an
alternative to detecting a difference between treatment effects, you can ask to detect a contrast.
However, here the treatment term must be a main effect (that is, TERM must involve just one
factor). The XCONTRASTS option then species a variate containing the coefficients defining the
contrast, and the CONTRASTTYPE option indicates whether this is a regression contrast (as
specified by the REG function) or a comparison (as specified by COMPARISON).

The PROBABILITY option specifies the significance level that you will be using in the analysis
to detect the treatment difference or contrast; the default is 0.05, i.e. 5%. By default, APOWER
assumes that a one-sided t-test is to be used, but you can set option TMETHOD=twosided to take
a two-sided t-test instead.

Other settings of TMETHOD enable you to test for equivalence or for non-inferiority.  With
equivalence (TMETHOD=equivalence), RESPONSE defines a threshold below which the
treatments can be assumed to be equivalent. If the treatments have effects e1 and e2, the null
hypothesis that the treatments are not equivalent is that either

(e1 ! e2) # !RESPONSE
or

(e1 ! e2) $ RESPONSE
with the alternative hypothesis that they are equivalent, i.e.

!RESPONSE < (e1 ! e2) < RESPONSE
(see 4.1.2 for further details). With non-inferiority (TMETHOD=noninferiority), RESPONSE
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again specifies the threshold for the effect of one treatment to be superior to another. So, for
example, to demonstrate non-inferiority of treatment 1 compared to treatment 2, the null
hypothesis becomes

(e1 ! e2) $ !RESPONSE
which represents a simple one-sided t-test.

You can also set TMETHOD=fratio, to assess the power of the F test in the analysis of
variance table to detect a pattern of effects for TERM. You can specify the pattern by setting
RESPONSE to a table containing the anticipated effects or means. Alternatively, you can set it to
a y-variate containing, in each unit, the value of the effect or mean for the treatment (or treatment
combination) to be applied to that unit of the design.

To determine the power, you need to define the design and specify the anticipated residual
mean square for the stratum where the treatment term is estimated. This is most easily obtained
by taking the analysis of a design with similar units and the same block and treatment structures
as those that are to be used in the new design. To do this, you should analyse the earlier set of
data with the ANOVA directive in the usual way. First define the strata (or error terms) for the
design using the BLOCKSTRUCTURE directive, and the treatment model to be fitted using the
TREATMENTSTRUCTURE directive. Then analyse the y-variate using the ANOVA directive.
Provided you do not give any other ANOVA commands in the interim, APOWER will pick up the
information automatically from the save information held within Genstat about the most recent
ANOVA analysis. Alternatively, you can save the information explicitly in an ANOVA save
structure, using the SAVE parameter of ANOVA, and then use this same save structure as the
setting of the SAVE option of APOWER.

If you do not have a suitable earlier set of data, you should set up the design factors to contain
the values required to define the units of the design. Then use the BLOCKSTRUCTURE and
TREATMENTSTRUCTURE options of APOWER to define the strata and the treatment model, and the
RMS option to specify the anticipated residual mean square for the stratum where TERM is
estimated. There is also the compromise possibility that you can take the information about the
design, the strata and treatment model from an ANOVA save structure (generated for example by
the analysis of an artificial data set), but use the RMS parameter to specify a different residual
mean square from the one in the analysis in the save structure. The treatment terms to be
included are controlled by the FACTORIAL option; this sets a limit (by default 3) on the number
of factors in a treatment term: terms containing more than that number are deleted.

The POWER parameter can save the power. This is printed by default, but you can set option
PRINT=* to stop this.

Example 4.12.3 takes the split-plot design analysed in Example 4.2.1. The statement in line
67 determines the power of the design to detect a difference between two varieties of 20,
assuming that the corresponding mean square (for the Blocks.Wplots stratum) will be 600
(and the defaults of a one-sided test with significance level of 0.05 i.e. 5%). Line 70 determines
the power of the design to detect a difference between two nitrogen levels of 15, assuming that
the corresponding mean square (for the Blocks.Wplots.Subplots stratum) will be 200. Then
lines 71 and 72-3 determine the power to detect a linear regression contrast of Nitrogen
(defined by the variate Nitlev: see 4.5), of 25.

Example 4.12.3

  70  APOWER   [PRINT=power; TERM=Variety] 20; RMS=600

Power of analysis of variance
=============================

For testing a treatment difference at a significance level of 0.050 using a
one-sided test.
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      Response         Power
         20.00         0.838

  71  APOWER   [PRINT=power; TERM=Nitrogen] 15; RMS=200

Power of analysis of variance
=============================

For testing a treatment difference at a significance level of 0.050 using a
one-sided test.

      Response         Power
         15.00         0.932

  72  APOWER   [PRINT=power; TERM=Nitrogen; XCONTRASTS=Nitlev;\
  73           CONTRASTTYPE=regression] 25; RMS=200

Power of analysis of variance
=============================

For testing a regression contrast at a significance level of 0.050 using a
one-sided test.

      Response         Power
         25.00         0.951

4.12.4 Sizes of effects and contrasts detectable in an analysis of variance

ADETECTION procedure
Calculates the minimum size of effect or contrast detectable in an analysis of variance (R.W.
Payne).

Options
PRINT = string token Prints the minimum size of response that can be detected

(detected); default dete
TERM = formula Treatment term to be assessed in the analysis
TREATMENTSTRUCTURE = formula Treatment structure of the design; determined

automatically from an ANOVA save structure if
TREATMENTSTRUCTURE is unset or if SAVE is set

BLOCKSTRUCTURE = formula Block structure of the design; determined automatically
from an ANOVA save structure if BLOCKSTRUCTURE is
unset or if SAVE is set

FACTORIAL = scalar Limit on the number of factors in treatment terms;
default 3

PROBABILITY = scalar Significance level at which the response is required to
be detected (assuming a one-sided test); default 0.05

TMETHOD = string token Type of test to be made (onesided, twosided,
equivalence, noninferiority); default ones

XCONTRASTS = variate X-variate defining a contrast to be detected
CONTRASTTYPE = string token Type of contrast (regression, comparison); default

rege

TOLERANCE = scalar Tolerance for the iterations to calculate the detectable
response

SAVE = ANOVA save structure Save structure to provide the information about the
design

Parameters
POWER = scalars or variates Specifies the power i.e. probability with which the
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response should be detected
RMS = scalars Anticipated residual mean square corresponding to

TERM; can be omitted if a SAVE structure is available
DETECTED = scalars or variates Minimum size of difference or contrast between the

effects of TERM that is to be detected

ADETECTION finds the minimum size of effect or contrast that is detectable with a specified
power (or probability) in an analysis of variance. The treatment term to test is specified using
the TERM option of ADETECTION, and the power with which you want to detect it is given by the
POWER parameter. You can save the size of response using the DETECTED parameter. This is
printed by default, but you can set option PRINT=* to stop this.

As an alternative to detecting a difference between treatment effects, you can ask to detect a
contrast. However, here the treatment term must be a main effect (that is, TERM must involve just
one factor). The XCONTRASTS option then species a variate containing the coefficients defining
the contrast, and the CONTRASTTYPE option indicates whether this is a regression contrast (as
specified by the REG function) or a comparison (as specified by COMPARISON).

The PROBABILITY option specifies the significance level that you will be using in the analysis
to detect the treatment difference or contrast; the default is 0.05, i.e. 5%. By default,
ADETECTION assumes that a one-sided t-test is to be used, but you can set option
TMETHOD=twosided to take a two-sided t-test instead.

As with ASAMPLESIZE (4.12.2) and APOWER (4.12.3) other settings of TMETHOD enable you
to test for equivalence or for non-inferiority.  With equivalence (TMETHOD=equivalence),
RESPONSE defines a threshold below which the treatments can be assumed to be equivalent. If
the treatments have effects e1 and e2, the null hypothesis that the treatments are not equivalent
is that either

(e1 ! e2) # !RESPONSE
or

(e1 ! e2) $ RESPONSE
with the alternative hypothesis that they are equivalent, i.e.

!RESPONSE < (e1 ! e2) < RESPONSE
With non-inferiority (TMETHOD=noninferiority), RESPONSE again specifies the threshold
for the effect of one treatment to be superior to another. So, for example, to demonstrate non-
inferiority of treatment 1 compared to treatment 2, the null hypothesis becomes

(e1 ! e2) $ !RESPONSE
which represents a simple one-sided t-test. See 4.12.2 for more details.
ADETECTION needs to know the design, and the size of residual mean square anticipated for

the stratum where the treatment term is estimated. This is provided most easily by supplying the
analysis of a design with similar units and the same block and treatment structures as those that
are to be used in the new design. To do this, you should analyse the earlier set of data with the
ANOVA directive in the usual way. First define the strata (or error terms) for the design using the
BLOCKSTRUCTURE directive, and the treatment model to be fitted using the
TREATMENTSTRUCTURE directive. Then analyse the y-variate using the ANOVA directive.
Provided you do not give any other ANOVA commands in the interim, ADETECTION will pick up
the information automatically from the save information held within Genstat about the most
recent ANOVA analysis. Alternatively, you can save the information explicitly in an ANOVA save
structure, using the SAVE parameter of ANOVA, and then use this same save structure as the
setting of the SAVE option of ADETECTION.

If you do not have a suitable earlier set of data, you should set up the design factors to contain
the values required to define the units of the design. Then use the BLOCKSTRUCTURE and
TREATMENTSTRUCTURE options of ADETECTION to define the strata and the treatment model,
and the RMS option to specify the anticipated residual mean square for the stratum where TERM
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is estimated. There is also the compromise possibility that you can take the information about
the design, the strata and treatment model from an ANOVA save structure (generated for example
by the analysis of an artificial data set), but use the RMS parameter to specify a different residual
mean square from the one in the analysis in the save structure. The treatment terms to be
included are controlled by the FACTORIAL option; this sets a limit (by default 3) on the number
of factors in a treatment term: terms containing more than that number are deleted.

The procedure involves an iterative search to find the response that gives the specified power.
The TOLERANCE option sets the convergence criterion (on the probability scale); the default is
10!7.

Example 4.12.4 takes the same situations as in Example 4.12.3. The statement in line 74
determines the minimum size of variety effect that is detectable with power 0.9, assuming that
the corresponding mean square (for the Blocks.Wplots stratum) will be 600 (and taking the
default options of a one-sided test with significance level of 0.05 i.e. 5%). Line 75 determines
the minimum size of nitrogen effect that is detectable with power 0.9, assuming that the
corresponding mean square (for the Blocks.Wplots.Subplots stratum) will be 200. Then
lines 75 and 76-7 determine minimum detectable regression contrast of Nitrogen (defined by
the variate Nitlev: see 4.5).

Example 4.12.4

  74  ADETECTION [TERM=Variety] 0.9; RMS=600

Response detected by analysis of variance
=========================================

For testing a treatment difference at a significance level of 0.050 using a
one-sided test.

         Power      Response
         0.900         22.27

  75  ADETECTION [TERM=Nitrogen] 0.9; RMS=200

Response detected by analysis of variance
=========================================

For testing a treatment difference at a significance level of 0.050 using a
one-sided test.

         Power      Response
         0.900         14.01

  76  ADETECTION [TERM=Nitrogen; XCONTRASTS=Nitlev; CONTRASTTYPE=regression]\
  77              0.9; RMS=200

Response detected by analysis of variance
=========================================

For testing a regression contrast at a significance level of 0.050 using a
one-sided test.

         Power      Response
         0.900         22.15
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4.12.5 Sample size for binomial tests

SBNTEST procedure
Calculates the sample size for binomial tests (R.W. Payne & D.A. Murray).

Options
PRINT = string token What to print (replication, power); default repl,

powe

PRMETHOD = string token Method to be used to calculate the probabilities for the
binomial test (angular, normalapproximation,
exact); default norm

PROBABILITY = scalar Significance level for the test; default 0.05
POWER = scalar The required power (i.e. probability of detection) of the

test; default 0.9
TMETHOD = string token Type of test to be done (onesided, twosided); default

ones

NULL = scalar Probability under the null hypothesis for the one-sample
test; default 0.5

RATIOREPLICATION = scalar Ratio of replication sample2:sample1 (i.e. the size of
sample 2 should be  RATIOREPLICATION times the size
of sample 1); default 1

REPLICATION = variate Replication values for which to calculate and print or
save the power; default * takes 11 replication values
centred around the required number of replicates

Parameters
P1 = scalars Probability to detect in sample 1
P2 = scalars Probability to detect in sample 2
NREPLICATES = scalars Saves the required number of replicates
VREPLICATION = variates Numbers of replicates for which powers have been

calculated
VPOWER = variates Power (i.e. probability of detection) for the various

numbers of replicates

SBNTEST calculates the number of replicates (or sample size) required for a binomial test (2.3.4).
A one-sample binomial test assesses the evidence that the probability of success within a sample
differs from some specific value. The probability that needs to be detected is specified by the P1
parameter, and the value from which it needs to be distinguished (i.e. the value under the null
hypothesis) is specified by the NULL option. If NULL is not set, the default is 0.5. Alternatively,
a two-sample test assess the evidence that probabilities within two samples are different. The
anticipated probability within the first sample is then specified by the P1 parameter, and the
probability within the second sample (from which it must be distinguished) is specified by the
P2 parameter.

The PRMETHOD option defines the type of binomial test that is to be done. The
normalapproximation setting relates to a test based on the Normal approximation to the
binomial distribution (see the BNTEST procedure), while the angular setting is for a test using
an angular transformation of the probabilities. The final setting, exact, is available only for the
one-sample test and assumes an exact test using the binomial distribution.

The significance level for the test is specified by the PROBABILITY option (default 0.05 i.e.
5%). The required probability for detection of the difference between the probabilities (that is,
the power of the test) is specified by the POWER option (default 0.9). It is generally assumed that
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the sizes of the samples in the two-sample test should be equal. However, you can set the
RATIOREPLICATION option to a scalar, R say, to indicate that the size of the second sample
should be R times the size of the first sample. By default, SBNTEST assumes a one-sided test is
to be used, but you can set option TMETHOD=twosided to take a two-sided test instead. The
NREPLICATES parameter allows you to save the required size of the first sample.

The PRINT option controls printed output, with settings:
replication to print the required number of replicates in each sample

(i.e. the size of each sample);
power to print a table giving the power (i.e. probability of

detection) provided by a range of numbers of replicates.
By default both are printed.

The replications and corresponding powers can also be saved, in variates, using the
VREPLICATION and VPOWER parameters. The REPLICATION option can specify the replication
values for which to calculate and print or save the power; if this is not set, the default is to take
11 replication values centred around the required number of replicates.

Example 4.12.5 first discovers that a sample size of 53 would be needed to detect a probability
of 0.7 (compared to the default of 0.5, with a power of 0.9, using a significance level of 0.05).
As this is a one-sample test, Genstat can make an exact calculation for the probabilities, using
the binomial distribution. The second part of the example uses the Normal approximation to
determing that a replication of 106 is needed in each of two samples to detect the difference
between probabilities 0.400 and 0.600 (at the default one-sided significance level of 0.050 and
a power of 0.900).

Example 4.12.5

   2  SBNTEST [PRINT=replication,power; PRMETHOD=exact] 0.7

Sample size for a binomial test
===============================

Power
-----

To detect 0.700 compared to probability 0.500 under null hypothesis,
significance level 0.050 (one-sided).

Sample size         Power
         48         0.836
         49         0.881
         50         0.859
         51         0.898
         52         0.880
         53         0.914
         54         0.897
         55         0.879
         56         0.913
         57         0.897
         58         0.926

(calculated using the binomial distribution)

Replication
-----------

To detect a probability of 0.700 compared to a null hypothesis value of 0.500,
at a one-sided significance level of 0.050 and a power of 0.900, requires a
replication of 53.

   3  SBNTEST [PRINT=replication,power] 0.4; P2=0.6
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Sample size for a binomial test
===============================

Power
-----

First probability 0.400, second probability 0.600, significance level 0.050
(one-sided).

Sample size         Power
        101         0.889
        102         0.892
        103         0.895
        104         0.897
        105         0.900
        106         0.902
        107         0.904
        108         0.907
        109         0.909
        110         0.911
        111         0.913

(calculated using a Normal approximation)

Replication
-----------

To detect the difference between probabilities 0.400 and 0.600, at a one-sided
significance level of 0.050 and a power of 0.900, requires a replication of
106 for each sample.

4.12.6 Sample size for Poisson tests

SPNTEST procedure
Calculates the sample size for a Poisson test (R.W. Payne & D.A. Murray).

Options
PRINT = string token What to print (replication, power); default repl,

powe

PRMETHOD = string token Method to be used to calculate the probabilities for the
test (normalapproximation, exact); default norm

PROBABILITY = scalar Significance level for the test; default 0.05
POWER = scalar The required power (i.e. probability of detection) of the

test; default 0.9
TMETHOD = string token Type of test to be done (onesided, twosided); default

ones

NULL = scalar Mean under the null hypothesis for the one-sample test;
must be set when MU2 is unset

RATIOREPLICATION = scalar Ratio of replication sample2:sample1 (i.e. the size of
sample 2 should be  RATIOREPLICATION times the size
of sample 1); default 1

REPLICATION = variate Replication values for which to calculate and print or
save the power; default * takes 11 replication values
centred around the required number of replicates

Parameters
MU1 = scalars Mean to detect in sample 1
MU2 = scalars Mean to detect in sample 2
NREPLICATES = scalars Saves the required number of replicates
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VREPLICATION = variates Numbers of replicates for which powers have been
calculated

VPOWER = variates Power (i.e. probability of detection) for the various
numbers of replicates

SPNTEST calculates the number of replicates (or sample size) required for a Poisson test. In the
one-sample Poisson test, the data consist of a set of counts that are assumed to have been
generated by the same Poisson distribution, and the sample size is the number of counts that have
been observed. The mean that needs to be detected is specified by the MU1 parameter, and the
value from which it needs to be distinguished (i.e. the value under the null hypothesis) is
specified by the NULL option. 

Alternatively, a two-sample test assesses the evidence that the there is a difference between
the means of the Poisson distributions that  have generated two separate samples of counts. The
anticipated mean for the first sample is then specified by the MU1 parameter, and the mean for
the second sample is specified by the MU2 parameter.

The other options and parameters operate as in SBNTEST (4.12.5).

Example 4.12.6

   2  "1) one-sample test, to detect a mean of 3,
  -3      against the null hypothesis that the mean is 2."
   4  SPNTEST [NULL=3; PRMETHOD=exact] 2

Sample size for a Poisson test
==============================

Power
-----

To detect a mean of 2.00 compared to a mean of 3.00 under null hypothesis,
significance level 0.05 (one-sided).

Sample size         Power
         18         0.822
         19         0.854
         20         0.880
         21         0.875
         22         0.898
         23         0.916
         24         0.912
         25         0.928
         26         0.941
         27         0.938
         28         0.949

(calculated using the Poisson distribution)

Replication
-----------

To detect a mean of 2.00 compared to a null hypothesis value of 3.00, at a
one-sided significance level of 0.05 and a power of 0.90, requires a replication
of 23.

   5  "2) two-sample test, to distinguish samples with means of 5 and 10."
   6  SPNTEST [TMETHOD=twosided] MU1=5; MU2=10

Sample size for a Poisson test
==============================
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Power
-----

First mean 5.00, second mean 10.00, significance level 0.05 (two-sided).

Sample size         Power
          2         0.447
          3         0.609
          4         0.733
          5         0.823
          6         0.885
          7         0.927
          8         0.955
          9         0.972
         10         0.983
         11         0.990
         12         0.994

(calculated using a Normal approximation)

Replication
-----------

To detect the difference between means 5.00 and 10.00, at a two-sided
significance level of 0.05 and a power of 0.90, requires a replication of 7 for
each sample.

4.12.7 Sample size for sign tests

SSIGNTEST procedure
Calculates the sample size for a sign test (R.W. Payne).

Options
PRINT = string token What to print (replication, power); default repl,

powe

PROBABILITY = scalar Significance level at which the response is to be tested;
default 0.05

POWER = scalar The required power (i.e. probability of detection) of the
test; default 0.9

TMETHOD = string token Whether to a one- or two-sided test is to be made
(onesided, twosided); default twos

REPLICATION = variate Replication values for which to calculate and print or
save the power; default * takes 11 replication values
centred around the required number of replicates

Parameters
RESPONSE = scalars Probability of response (i.e. the probability that an

observation in one sample will be greater than the
equivalent observation in the other sample) that should
be detectable

NREPLICATES = scalars Saves the required number of replicates
VREPLICATION = variates Numbers of replicates for which powers have been

calculated
VPOWER = variates Power (i.e. probability of detection) for the various

numbers of replicates
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SSIGNTEST calculates the number of replicates (or sample size) required for a sign test (2.4.2).
The probability of response (i.e. the probability that an observation in one sample will be greater
than the equivalent observation in the other sample) that should be detectable is supplied by the
RESPONSE parameter. The other options and parameters operate as in SBNTEST (4.12.5).

Example 4.12.7

   2  SSIGNTEST [PRINT=replication,power] 0.7

Sample size for a sign test
===========================

Power
-----

To detect a probability of response of 0.700, at a significance level of 0.050
(one-sided).

No. replicates         Power
            48         0.836
            49         0.881
            50         0.859
            51         0.898
            52         0.880
            53         0.914
            54         0.897
            55         0.879
            56         0.913
            57         0.897
            58         0.926

Replication
-----------

To detect a probability of response of 0.700 using a sign test with a
one-sided significance level of 0.050 and a power of 0.900 requires a replication of
53.

4.12.8 Sample-size for McNemar's test

SMCNEMAR procedure
Calculates sample sizes for McNemar's test (R.W. Payne).

Options
PRINT = string token What to print (replication, power); default repl,

powe

PRMETHOD = string token Method to be used to calculate the power of the
McNemar test (normalapproximation, exact);
default exac

PROBABILITY = scalar Significance level at which the test is to be made;
default 0.05

POWER = scalar The required power (i.e. probability of detection) of the
test; default 0.9

TMETHOD = string token Whether a one- or two-sided test is to be made
(onesided, twosided); default twos

REPLICATION = variate Sample sizes for which to calculate and print or save the
power; default * takes 11 replication values centred
around the required number of replicates
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Parameters
CHANGEPROBABILITY = scalars Probability of any sort of change
RATIOPROBABILITIES = scalars Ratio of the two probabilities of change
NREPLICATES = scalars Saves the required sample size
VREPLICATION = variates Sample sizes for which powers have been calculated
VPOWER = variates Power (i.e. probability of detection) for the various

numbers of replicates

The McNemar test is useful for analysing studies where subjects are assessed before and after
a treatment. The response on each occasion is assumed to be categorized by a factor with two
levels, with level 1 usually representing a negative response, and level 2 a positive response. The
test is based on a table giving the numbers of subjects giving each combination of responses over
the two occasions. Suppose that the table contains the values A, B, C and D as below:

Second occasion

First occasion negative positive

positive A B

negative C D

The test statistic assesses the equality of A and D, which represent the changes from positive to
negative, and negative to positive, respectively; see 2.9.3.

In its original form, the test leads to a chi-square test. However, this may be inaccurate when
there are small numbers of subjects. Consequently procedure MCNEMAR also provides an exact
probability (based on the binomial distribution). Similarly SMCNEMAR has an option, PRMETHOD,
to select whether you want to calculate the power of the test by approximating the probabilities
by a Normal distribution, or using the binomial distribution as in the exact calculation (settings
normalapproximation and exact, respectively). The default is exact.

To calculate the sample size, SMCNEMAR needs to know the overall probability of change (i.e.
the probability of a subject being amongst those in either A or D), and the ratio of the
probabilities of the two types of change (A versus D). These are specified by parameters
CHANGEPROBABILITY and RATIOPROBABILITIES, respectively. By default the calculations
are done for a one-sided test (testing for evidence that the change is in a specific direction (e.g.
negative to positive). However, you can set option TMETHOD=twosided for a two-sided test
(testing for either type of change).

As in SBNTEST (4.12.5), the significance level for the test and the power of the test are
specified by options PROBABILITY and POWER option. The options PRINT and REPLICATION,
and the parameters NREPLICATES, VREPLICATION and VPOWER, also operate as described in
4.12.5.

Example 4.12.8 shows that 115 subjects are needed if the aim is to detect a ratio of
probabilities of 2, assuming that there is an overall probability of change of 0.7 (and taking the
default of a one-sided significance level of 0.05 and a power of 0.9).

Example 4.12.8

   2  SMCNEMAR CHANGEPROBABILITY=0.7; RATIOPROBABILITIES=2

Sample size for McNemar's test
==============================

(Exact calculation using the binomial distribution)

Power
-----
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Ratio of probabilities of change to detect 2.000, assuming a probability of
any change of 0.700, with significance level 0.050 (one-sided).

Sample size         Power
        110         0.888
        111         0.891
        112         0.894
        113         0.896
        114         0.899
        115         0.901
        116         0.904
        117         0.906
        118         0.908
        119         0.910
        120         0.913

Replication
-----------

To detect a ratio of change probabilities of 2.000, assuming an overall
probability of change of 0.700, at a one-sided significance level of 0.050 and
a power of 0.900, requires a replication of 115.

4.12.9 Sample size for the Mann-Whitney test

SMANNWHITNEY procedure
Calculates the sample sizes for the Mann-Whitney test (R.W. Payne).

Options
PRINT = string token What to print (replication, power); default repl,

powe

PROBABILITY = scalar Significance level at which the test is to be made;
default 0.05

POWER = scalar The required power (i.e. probability of detection) of the
test; default 0.9

TMETHOD = string token Whether to a one- or two-sided test is to be made
(onesided, twosided); default twos

RATIOREPLICATION = scalar Ratio of replication sample2:sample1 (i.e. the size of
sample 2 should be RATIOREPLICATION times the size
of sample 1); default 1

REPLICATION = variate Sample sizes for which to calculate and print or save the
power; default * takes 11 replication values centred
around the required number of replicates

Parameters
NULLPROBABILITIES = variates Probabilities under null hypothesis
ODDSRATIO = scalars Odds ratio for test group vs. control
NREPLICATES = scalars Saves the required sample size
VREPLICATION = variates Sample sizes for which powers have been calculated
VPOWER = variates Power (i.e. probability of detection) for the various

numbers of replicates

The Mann-Whitney U test is a non-parametric test for differences in location between two
samples (2.5.1). This procedure, SMANNWHITNEY, allows you to calculate the sample sizes
required for the test, provided you can supply some information about the probability
distributions from which the samples are likely to be generated. For simplicity, the data are
assumed to be classified into ordered categories. These may be natural categories (such as "very
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good", "good", "moderate" and "poor") or they may be formed by splitting a continuous scale
intervals (e.g. "under 18", "18-25", "25-40", "40-60" and "over 60"). You then use the
NULLPROBABILITIES parameter to specify a variate containing the probability value for each
category. This indicates the probability distribution which you feel would generate the data of
both samples under the null hypothesis. The accuracy of the subsequent calculations will depend
on how many categories you take for a continuous variate. However, Whitehead (1993) suggests
that there is little to gain in taking more than five.

To assess the power of the test, you next need to indicate how small a difference between the
sample distributions the test should be able to detect. The assumption now is that there will be
a control sample, with probability distribution as supplied, and a test sample for which the
distribution is shifted by multiplying the odds (i.e. p/(1!p)) of the cumulative distribution by a
constant amount. (This corresponds to the proportional-odds model of McCullagh 1980.) This
constant is supplied by the ODDSRATIO parameter. An example, with odds-ratio 2, is show
below.

Null hypothesis Alternative hypothesis

probability cumulative
probability

odds probability cumulative
probability

odds

0.20 0.20 0.25 0.33 0.33 0.50

0.40 0.60 1.50 0.42 0.75 3.00

0.30 0.90 9.00 0.20 0.95 18.00

0.10 1.00 * 0.05 1.00 *

The cumulative probabilities are produced as part of the information generated by setting the
PRINT option to power. So you can evaluate possible ratios to check that they generate plausible
distributions.

By default the calculations are done for a one-sided test, but you can set option
TMETHOD=twosided for a two-sided test instead. It is generally assumed that the sizes of the
samples in the two-sample test should be equal. However, you can set the RATIOREPLICATION
option to a scalar, R say, to indicate that the size of the second sample should be R times the size
of the first sample.

As in SBNTEST (4.12.5), the significance level for the test and the power of the test are
specified by options PROBABILITY and POWER option. The options PRINT,
RAQTIOREPLICATION and REPLICATION, and the parameters NREPLICATES, VREPLICATION
and VPOWER, also operate as described in 4.12.5

Example 4.12.9 considers the second example of Whitehead (1993). Note, however, that the
results below differ slightly, as the Genstat implementation omits the approximation of taking
n/(n+1) to be equal to one.

Example 4.12.9

   2  VARIATE [VALUES=0.2,0.5,0.2,0.1] Controlprob
   3  SMANNWHITNEY [TMETHOD=twosided] Controlprob; ODDSRATIO=EXP(0.887)

Sample size for a two-sided Mann-Whitney test
=============================================

Power
-----

Sample size         Power
         90         0.885
         91         0.889
         92         0.892
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         93         0.895
         94         0.899
         95         0.902
         96         0.905
         97         0.907
         98         0.910
         99         0.913
        100         0.916

Tested at a significance level of 0.050, assuming that the data are ordered
categories with probabilities
  Sample 1  Sample 2
     0.200     0.378
     0.700     0.850
     0.900     0.956
     1.000     1.000
(based on an odds-ratio of 2.428).

Replication
-----------

To detect an odds-ratio of 2.43 between the cumulative probabilities of the
samples, using a Mann-Whitney test with a two-sided significance level of
0.050 and a power of 0.900, requires a replication of 95 for each sample.

4.12.10 Sample size for correlations

SCORRELATION procedure
Calculates the sample size to detect specified correlations (R.W. Payne).

Options
PRINT = string token What to print (replication, power); default repl,

powe

PROBABILITY = scalar Significance level at which the correlation or difference
between correlations is to be tested; default 0.05

POWER = scalar The required power (i.e. probability of detection) of the
test; default 0.9

TMETHOD = string token Whether to a one- or two-sided test is to be made
(onesided, twosided); default ones

RATIOREPLICATION = scalar Ratio of replication sample2:sample1 (i.e. the size of
sample for group 2 should be RATIOREPLICATION
times the size of sample for group 1); default 1

REPLICATION = variate Replication values for which to calculate and print or
save the power; default * takes 11 replication values
centred around the required number of replicates

Parameters
COR1 = scalars Anticipated correlation in group 1
COR2 = scalars Anticipated correlation in group 2
NREPLICATES = scalars Saves the required number of replicates
VREPLICATION = variates Numbers of replicates for which powers have been

calculated
VPOWER = variates Power (i.e. probability of detection) for the various

numbers of replicates

SCORRELATION can be used to determine sample sizes when you wish to assess the correlation
between two variables within a single group of subjects, or when you wish to compare the
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correlations between two groups of subjects. The correlation in this case is the product moment
correlation coefficient, as calculated by the CORRELATION function (1:4.2.2), the
FCORRELATION procedure (2.8.1) or the CORRELATE directive (7.1.1). (So the variables are
assumed to have Normal distributions.)

If there is a single group of subjects the correlation is specified (in a scalar) by the COR1
parameter, and the assumption is that we wish to assess whether this is non-zero. With two
groups the correlations are specified by the COR1 and COR2 parameters (again in scalars). As in
SBNTEST (4.12.5), the significance level for the test and power are specified by options
PROBABILITY and POWER option. The options PRINT, RATIOREPLICATION and REPLICATION,
and the parameters NREPLICATES, VREPLICATION and VPOWER, also operate as described in
4.12.5.

Example 4.12.10 first shows that a replication of 30 is required to detect a correlation of 0.5
compared to a value of zero, with power 0.9, and one-sided significance level 0.05. It then shows
that replication of 75 is required for each of two samples to detected correlations 0.2 and 0.6,
with power 0.9, at one-sided significance level 0.05.

Example 4.12.10

   3  SCORRELATION [PRINT=replication,power] 0.2; COR2=0.6

Sample size for testing a correlation
=====================================

Power
-----

Correlation 0.500, significance level 0.050 (one-sided).

No. replicates         Power
            25         0.851
            26         0.865
            27         0.877
            28         0.889
            29         0.899
            30         0.909
            31         0.918
            32         0.926
            33         0.933
            34         0.940
            35         0.945

Replication
-----------

To detect the difference between correlation 0.500 and zero, at a
one-sided significance level of 0.050 and a power of 0.900, requires
a replication of 30.

   3  SCORRELATION [PRINT=replication,power] 0.2; COR2=0.6

Sample size for comparing correlations
======================================

Power
-----

First correlation 0.200, second correlation 0.600, significance level 0.050
(one-sided).

No. replicates         Power
            70         0.884
            71         0.888
            72         0.892
            73         0.896
            74         0.899
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            75         0.903
            76         0.906
            77         0.910
            78         0.913
            79         0.916
            80         0.919

Replication
-----------

To detect the difference between correlations 0.200 and 0.600, at a
one-sided significance level of 0.050 and a power of 0.900, requires
a replication of 75 for each sample.

4.12.11 Sample size for Lin's concordance correlation coefficient

SLCONCORDANCE procedure
Calculates the sample size for Lin's concordance correlation coefficient (R.W. Payne).

Options
PRINT = string token What to print (replication, power); default repl,

powe

PROBABILITY = scalar Significance level at which the non-reproducibility is to
be tested; default 0.05

POWER = scalar The required power (i.e. probability of detection) of the
test; default 0.9

REPLICATION = variate Replication values for which to calculate and print or
save the power; default * takes 11 replication values
centred around the required number of replicates

Parameters
CORRELATION = scalars Correlation for two samples with the smallest amount of

non-reproducibility required to be detected
CONCORDANCE = scalars Value of Lin's concordance for two samples with the

smallest amount of non-reproducibility required to be
detected

MEANSHIFT = scalars Value of the shift in means (divided by the harmonic
mean of the standard deviations) for two samples with
the smallest amount of non-reproducibility required to
be detected

SDRATIO = scalars Value of the ratio of the standard deviations for two
samples with the smallest amount of non-reproducibility
required to be detected

NREPLICATES = scalars Saves the required number of replicates
VREPLICATION = variates Numbers of replicates for which powers have been

calculated
VPOWER = variates Power (i.e. probability of detection) for the various

numbers of replicates

Procedure SLCONCORDANCE determines sample sizes for assessments involving Lin's
concordance correlation coefficient (2.8.7). The coefficient is defined by the equation

ñc  =  ñ  ×  Cb

The term ñ is the standard Pearson product-moment correlation coefficient, while Cb is a bias
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correction factor which is calculated by
Cb  =  2 / (v + 1/v + u2

v  =  s1 / s2

u  = (m1 ! m2) / %(s1 × s2)
where mi and si (i = 1,2) are the mean and standard deviation of the ith set of measurements. The
quantity u represents the shift in the mean between the two sets of measurements divided by the
harmonic mean of their standard deviations, while v is the ratio of the two standard deviations.

If the coefficient is given a Z-transformation, the result has an approximate Normal
distribution, with a standard deviation that depends on ñc, ñ and u (see Lin 1989, 2000). So, to
calculate the sample size, SLCONCORDANCE needs to know the values of these quantities for two
sets of measurements displaying the smallest amount of non-reproducibility that is required to
be detected. The correlation coefficient (ñ) is specified by the CORRELATION parameter, the
concordance coefficient by the CONCORDANCE parameter, and u by the MEANSHIFT parameter.
Alternatively, you can omit either CONCORDANCE or MEANSHIFT provided you specify the ratio
of the standard deviations, v, using the SDRATIO parameter. (SLCONCORDANCE can then calculate
the omitted quantity using the equations above.) As in SBNTEST (4.12.5), the significance level
for the test and power are specified by options PROBABILITY and POWER option. The options
PRINT, RATIOREPLICATION and REPLICATION, and the parameters NREPLICATES,
VREPLICATION and VPOWER, also operate as described in 4.12.5.

Example 4.12.11 shows that a replication of 33 would be needed to detect samples with a
correlation of 0.95 and a concordance of 0.9 with power 0.9 by a one-sided test with significance
level 0.05.

Example 4.12.11

   2  SLCONCORDANCE CORRELATION=0.95; CONCORDANCE=0.9; MEANSHIFT=0.1

Sample size for Lin's concordance coefficient
=============================================

Power
-----

To detect samples with a correlation of 0.950 and a concordance of 0.900 by
a one-sided test with significance level 0.050.

No. replicates         Power
            28         0.854
            29         0.866
            30         0.876
            31         0.886
            32         0.895
            33         0.904
            34         0.912
            35         0.919
            36         0.926
            37         0.932
            38         0.937

Replication
-----------

To detect samples with a correlation of 0.950 and a concordance of 0.900 by
a one-sided test with significance level 0.050 and a power of 0.900 requires
a replication of 33.
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4.13 Design tools

This section describes the specialist commands for constructing designs. The GENERATE
directive (4.13.1) provides an easy way of generating blocking factors or any other factors whose
values occur in a systematic order. It can also form the values of treatment factors, using the
design-key method, and define values for the pseudo-factors required to specify some types of
partially balanced experimental design. The AKEY procedure (4.13.2) provides an alternative
interface to the facilities in GENERATE, customized to be more convenient for experimental
designs. In particular, it combines the two main uses of GENERATE, allowing you to generate the
block factors in systematic order, and then (in the same statement) to generate the treatment
factors using a design key. It can also print the design. The AMERGE procedure can add additional
plots to a design (4.13.3), the APRODUCT procedure can combining simple designs into more
complicated arrangements (4.13.4), and the AFAUGMENTED procedure can add plots for control
treatments to a basic design to form an augmented design (4.13.5). The FKEY directive (4.13.6)
forms design keys for new multi-stratum experimental designs (allowing you to control the
confounding and aliasing of treatments). You can then use the FPSEUDOFACTORS directive
(4.13.7) to determine the patterns of confounding and aliasing from the design key, and extend
the treatment model to incorporate the necessary pseudo-factors for the design to be analysed by
ANOVA. Alternatively, the FBASICCONTRASTS can be used to split up a model term into all its
basic contrasts (4.13.8). These will be the parts of the term that may have been aliased or
allocated to different strata.

4.13.1 Generating factor values: the GENERATE directive

GENERATE directive
Generates factor values for designed experiments.

Options
TREATMENTS = formula Model term for which pseudo-factors are to be

generated; default *
REPLICATES = formula Factors defining replicates of the design; default *
BLOCKS = formula Block formula (for design-key generation) or term (for

generation of pseudo-factors); default *
KEY = matrix Key matrix (number of factors in the parameter list by

number of factors in the BLOCKS formula) to generate
the factors by the design key method; default *

BASEVECTOR = variate Base vector for design key generation; default *

Parameter
factors Factors whose values are to be generated

GENERATE is invaluable when you have a set of data that is to be read in a systematic order: for
example, you may want to take all the observations within one group, then the same number of
observations within the next group, and so on until an equal number of observations has been
read for every group. You can then define values of the grouping factor or factors by GENERATE;
so the only values that you need to read are the observed data. Designed experiments are the
obvious instance where the data are structured in this way: for example, you might have all the
data from the first block, then all those from the second block, and so on.

The best way to understand GENERATE is to look at some examples. The values of a set of
factors that you have defined by GENERATE are said to be in standard order: that is their units
are arranged so that the levels of the first factor occur in the same order as in its levels vector
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then, within each level of the first factor, the levels of the second factor are arranged similarly,
and so on. For example

FACTOR [NVALUES=24; LEVELS=2] A
& [LEVELS=!(4,1,2)] B
& [LEVELS=4] C
GENERATE A,B,C

gives A, B and C the values

A: 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
B: 4 4 4 4 1 1 1 1 2 2 2 2 4 4 4 4 1 1 1 1 2 2 2 2
C: 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Placing a number or a scalar in the parameter list has the same effect as if a factor with that
number of levels had been listed. Thus to generate values only for A and C, all that you require
is

GENERATE A,3,C

To generate values for just B and C is even simpler since the cycling process is itself recycled
until all the units have been covered. Omitting A therefore causes all combinations of a level of
B with a level of C to be used twice, in the same pattern as displayed above; so you need specify
only

GENERATE B,C

You get a warning if one of the cycles is incomplete, as would happen for example if B and C had
18 values instead of 24.

This first use of GENERATE, then, is particularly appropriate for generating the blocking
factors in an experimental design as can be seen in line 7 of Example 4.2.1a, line 11 of Example
4.3, line 9 of Example 4.7.1a, and line 8 of Example 4.7.3c.

Another use, obtained by setting the BLOCKS, KEY and BASEVECTOR options, is to form values
of treatment factors using the design-key method. This method, described by Patterson (1976)
and Patterson & Bailey (1978), provides a very flexible way of specifying the allocation of
treatments in an experimental design. The method assumes that the units are identified by a set
of what are called "plot" factors. In Genstat terms, these will often be the same as the factors that
occur in the block formula of the design (4.2), and they are specified by the BLOCKS option of
GENERATE. The setting is a formula, but remember this can be just a list of factors if you do not
wish to indicate their inter-relationships; if the setting is more than just a list, Genstat forms the
set of plot factors by taking the factors from the block formula in the order in which they occur
there. Of course, the factors need not be identical to those in the block formula. For example if
one these factors has a non-prime number of levels, it may need to be specified instead as the
combination of two or more (pseudo) factors: for example, in a block design with blocks of size
eight, the plots might need to be indexed by three factors with two levels. The treatment factors
to be generated are again specified by the parameter of GENERATE.

The KEY option specifies a matrix known as the design key, which indicates how the values
of each treatment factor are to be calculated from the plot factors. The matrix has a row for each
treatment factor and a column for each plot factor; below kij represents the element in row i and
column j. (This is the transpose of the form used by Patterson 1976, but in Genstat it seems more
convenient to specify the treatments by rows.) There is also an option called BASEVECTOR,
which can specify a variate with an element bi for each treatment factor to allow the levels of the
factor to be shifted cyclically; if this is unset, Genstat assumes bi=0.

The calculation assumes that the values of the plot factors are represented by the integers zero
upwards (and GENERATE will perform this mapping automatically if necessary). The value q[i]u

in unit u of treatment factor i is then given by
q[i]u  =  bi  +  ki1 × p[1]u  +  ki2 × p[2]u  +  ...  +  kin × p[n]u modulo ti

where p[1]u ... p[n]u are the values of the plot factors in unit u, and ti is the number of levels of
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treatment factor i (which should be a prime number). The calculated values are integers in the
range 0, 1 ... ti!1, but GENERATE will again map these to the defined levels if necessary. Further
details are given in Section 4.13.2, which describes the procedure AKEY. This procedure extends
the GENERATE facilities by allowing the block factors to be generated automatically, and
providing a convenient way of handling plot or treatment factors with non-prime numbers of
levels. It also allows the design to be printed after the factors have been generated. The use of
a design key in GENERATE is shown in Example 4.13.6a.
GENERATE can also be used to form the values of pseudo-factors in partially-balanced designs,

as shown in line 9 of Example 4.7.3c:

GENERATE [TREATMENTS=Variety; REPLICATES=Rep;\
  BLOCKS=Block] A,B

The treatment term to which the pseudo-factors are to be linked is specified by the TREATMENTS
option; here this is the main effect of variety. The factors that identify the replicates are specified
by the REPLICATES option, and those that identify the blocks within each replicate are specified
by the BLOCKS option. The settings of these two options are model formulae, but Genstat merely
scans them to find which factors they contain; so you may again find it easiest simply to give the
factors as a list. Here the replicates and blocks are identified by the single factors Rep and Block
respectively. The parameter of GENERATE lists the pseudo-factors. These have as many levels
as there are blocks within each replicate. The blocks in the first replicate are used to determine
which combinations of the factors in the treatment term correspond to each level of the first
pseudo-factor, those in the second replicate are used for the second pseudo-factor, and so on.
Here the first pseudo-factor is A, and the five blocks of replicate 1 contain Variety levels 1-5,
6-10, 11-15, 16-20 and 21-25. Thus the plots with varieties 1 to 5 are allocated level 1 of A, and
so on. If a treatment combination occurs in more than one block within the same replicate, the
level of the corresponding pseudo-factor is not determined uniquely and Genstat will report an
error.

4.13.2 Generating factor values using design keys: the AKEY directive

AKEY procedure
Generates values for treatment factors using the design key method (R.W. Payne).

Options
PRINT = string token Allows the generated TREATMENTFACTOR values to be

printed, tabulated by the BLOCKFACTORS (design);
default * i.e. no printing

BLOCKFACTORS = factors Defines the block factors for the design; default is to
take those in the formula already specified by the
BLOCKSTRUCTURE directive, in the order in which they
occur there

KEY = matrix Matrix (number of treatment factors × number of block
factors) key for the design

BASEVECTOR = variate Base vector (length = number of treatment factors) for
the design; default is a variate of zeros

ROWPRIMES = variate Prime numbers for the rows of the KEY matrix
COLPRIMES = variate Prime numbers for the columns of the KEY matrix
ROWMAPPINGS = variate Mappings from the rows of the KEY to the

TREATMENTFACTORS

COLMAPPINGS = variate Mappings from the columns of the KEY to the
BLOCKFACTORS



4.13  Design tools 589

Parameter
TREATMENTFACTORS = factors Defines the treatment factors for the design; default is to

take those in the formula already specified by the
TREATMENTSTRUCTURE directive, in the order in which
they occur there

AKEY generates the values of the block factors, if necessary, in systematic order and then
generates the treatment factors from the block factors using a design key.

The design key method, described by Patterson (1976) and Patterson & Bailey (1978),
provides a very flexible way of specifying the allocation of treatments in an experimental design.
Patterson & Bailey (1978) provide several examples of keys. These are used in the on-line
examples of AKEY which can be accessed using procedure LIBEXAMPLE:

LIBEXAMPLE 'AKEY'; EXAMPLE=Keyex

Two of them are also used in the examples below.
The method assumes that the units are identified by a set of what are termed "plot" factors.

Generally these will be the same factors that are used in the block formula. Thus, in the
procedure, they are specified by an option called BLOCKFACTORS which will take the factors
from the formula already set by the BLOCKSTRUCTURE directive (outside the procedure) as its
default. However, if any of these factors has a non-prime number of levels, it will need to be
defined as the combination of two or more (pseudo) factors, as shown in Example 4.13.2b. The
method can also be used to generate pseudo-factors for use in the treatment formula; the "plot"
factors may then be the treatment factors themselves (see Example 4.13.7). If these "plot" factors
do not already have values, they will be generated in "standard order" using the GENERATE
directive.

The factors whose values are to be generated are specified by the TREATMENTFACTORS
parameter. Again this can be omitted, and AKEY will then take the factors from the existing
setting of the TREATMENTSTRUCTURE directive, in the order in which they occur there.

If any of the factors is restricted, only the part of the design not excluded by the restriction will
be generated.

The generated values of the factors can be printed by setting option PRINT=design. The
other options define how the values are generated. The KEY option specifies a matrix known as
the design key, which indicates how the values of each treatment factor are to be calculated from
the plot factors. The matrix has a row for each treatment factor and a column for each plot factor;
below kij represents the element in row i and column j. (This is the transpose of the form used
by Patterson 1976, but in Genstat it seems more convenient to specify the treatments by rows.)
There is also an option called BASEVECTOR, which can specify a variate with an element Bi for
each treatment factor to allow the levels of the factor to be shifted cyclically; by default this is
a variate of zeros.

The calculation assumes that the values of the plot factors are represented by the integers zero
upwards (and AKEY will perform this mapping automatically if necessary). The value q[i]u in unit
u of treatment factor i is then given by

q[i]u  =  bi  +  ki1 × p[1]u  +  ki2 × p[2]u  +  ...  +  kin × p[n]u modulo ti

where p[1]u ... p[n]u are the values of the plot factors in unit u, and ti is the number of levels of
treatment factor i. The calculated values are integers in the range 0, 1 ... ti!1, but AKEY will again
map these to the defined levels if necessary. However, all this takes place behind the scenes,
within AKEY. The numbers of levels ti must be prime numbers. They need not all be equal, but
the key will usually be zero in any element where the row and column factors have different
numbers of levels: that is, each treatment factor will usually be generated only from "plot"
factors with the same number of levels as the treatment factor itself.

To illustrate the process, the treatments to be allocated (before randomization) to the plots of
an N × N Latin Square may be calculated as
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Latin-factor-value = Row-factor-value + Column-factor-value modulo N
The values of the extra factor in a Graeco-Latin square can then be formed as

Graeco-factor-value = Row-factor-value + 2 × Column-factor-value modulo N
The design key thus has rows (1,1) and (1,2); Example 4.13.2a uses this to this generate a 5 × 5
Graeco-Latin square.

Example 4.13.2a

   2  " 5x5 Graeco-Latin square."
   3  FACTOR [NVALUES=25; LEVELS=5] Row,Column,A,B; DECIMALS=0
   4  GENERATE Row,Column
   5  " Specify key matrix (row and column labelling is unnecessary
  -6    other than to indicate how the matrix is stored)."
   7  MATRIX [ROWS=!t(A,B); COLUMNS=!t(Row,Column); VALUES=1,1, 1,2] GLkey
   8  AKEY [PRINT=design; BLOCKFACTORS=Row,Column; KEY=GLkey] A,B

Treatment combinations on each unit of the design
=================================================

 Column   1     2     3     4     5
    Row
      1   1 1   2 3   3 5   4 2   5 4
      2   2 2   3 4   4 1   5 3   1 5
      3   3 3   4 5   5 2   1 4   2 1
      4   4 4   5 1   1 3   2 5   3 2
      5   5 5   1 2   2 4   3 1   4 3

Treatment factors are listed in the order: A, B.

If any of the block or treatment factors has a non-prime number of levels, it must be specified
as the combination of two or more (pseudo) factors: for example, in a block design with blocks
of size four, the plots will need to be specified by two (pseudo) factors with two levels. Thus the
COLPRIMES option allows you to supply a variate listing the prime numbers for each column of
the key, and the COLMAPPINGS option a variate to indicate the "plot" factor corresponding to
each column. In Example 4.13.2b, we have four blocks of four plots. The COLPRIME option in
line 10 specifies that the prime for each column is 2. The COLMAP option specifies that the first
two columns correspond to the first "plot" factor (Block in the example), and columns 3 and 4
correspond to the second "plot" factor (Plot in the example). The default for COLMAP is a
variate containing the integers 1 up to the number of "plot" factors, so it can be omitted if no
pseudo-factors are required. COLPRIME can also be omitted, provided the "plot" factors have
already been declared with their numbers of levels (and provided there are no "plot" pseudo-
factors); see Example 4.13.2a. The ROWPRIME and ROWMAP options similarly allow you to
specify pseudo-factors to generate the treatment factors.

Notice that we need not have specified the BLOCKFACTORS option of AKEY in line 9 of
Example 4.13.2b, but could have let AKEY construct the setting from the block formula defined
by the BLOCKSTRUCTURE statement in line 6. Likewise, the parameter setting A,B,C,D in line
10 could have been omitted, and deduced instead from the treatment formula defined in line 7.

Example 4.13.2b

 2  " Single-replicate design with 4 blocks of 4 plots
-3    and 4 treatment factors each with 2 levels."
 4  FACTOR [NVALUES=16; LEVELS=2] A,B,C,D
 5  & [LEVELS=4] Block,Plot
 6  BLOCKSTRUCTURE Block/Plot
 7  TREATMENTSTRUCTURE A*B*C*D
 8  MATRIX [ROWS=4; COLUMNS=4; VALUES=0,0,1,0, 0,0,0,1, 1,0,1,1, 0,1,1,1] Bkey
 9  AKEY [PRINT=design; BLOCKFACTORS=Block,Plot; KEY=Bkey;\
10    COLPRIME=!(4(2)); COLMAP=!(1,1,2,2)] A,B,C,D
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Treatment combinations on each unit of the design
=================================================

  Plot   1         2         3         4
 Block
     1   1 1 1 1   1 2 2 2   2 1 2 2   2 2 1 1
     2   1 1 1 2   1 2 2 1   2 1 2 1   2 2 1 2
     3   1 1 2 1   1 2 1 2   2 1 1 2   2 2 2 1
     4   1 1 2 2   1 2 1 1   2 1 1 1   2 2 2 2

Treatment factors are listed in the order: A, B, C, D.

11  ANOVA [FACTORIAL=4]

Analysis of variance
====================

Source of variation     d.f.

Block stratum
C.D                        1
A.B.C                      1
A.B.D                      1

Block.Plot stratum
A                          1
B                          1
C                          1
D                          1
A.B                        1
A.C                        1
B.C                        1
A.D                        1
B.D                        1
A.C.D                      1
B.C.D                      1
A.B.C.D                    1

Total                     15

The design key thus provides a very convenient way of defining treatment factors. Essentially,
the key identifies each factor i with the set of contrasts (in the usual terminology)

and the skill when forming a design is in selecting the best set for each factor. The Genstat
design system has a repertoire of keys, which are used by procedures DESIGN and AGDESIGN
to generate a range of designs, including factorials, fractional factorials, Latin squares and
Lattices (4.9.3). You can also construct new design keys using the directive FKEY, described in
Section 4.13.6.

4.13.3 Adding extra units to a design: the AMERGE procedure

AMERGE procedure
Merges extra units into an experimental design (R.W. Payne).

Option
SORT = string token Whether to sort the factors afterwards (no, yes); default

no

Parameters
FACTOR = factors Factors to which the new units are to be added
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NEWUNITS = factors, variates or scalars
Extra units to be added to each factor

AMERGE provides a convenient way of adding extra units into an experimental design. In
Example 4.13.3 we use AMERGE to incorporate an extra, control, treatment replicated twice to
each block of a randomized block design generated by AGHIERARCHICAL (4.9.1). More
complicated uses may join together two completely different designs, for example a randomized
block design to a balanced incomplete block design.

The factors of the design which is to be augmented are specified using the first parameter
(FACTOR), and the units that are to be added to each one are specified by the NEWUNITS
parameter. The same number of units must be added to every FACTOR, and their levels (and
labels) will be extended, if necessary, according to those defined on the units that are added.
New units of a factor that are to receive different levels should be specified in a factor or a
variate. Alternatively, if every new unit is to receive the same level of the FACTOR, NEWUNIT can
be set to a scalar. Any restrictions on the vectors are ignored.

The SORT option allows the FACTOR values to be sorted after the new units have been added.
Otherwise, they are simply placed at the end of the existing values.

Example 4.13.3

   2  AGHIERARCHICAL [PRINT=design; ANALYSE=no; SEED=-1] Blocks,Units;\
   3    TREATMENTFACTORS=*,!p(Type,Amount);\
   4    LEVELS=3,!p(2,3)

Treatment combinations on each unit of the design
=================================================

 Blocks   1     2     3
  Units
      1   1 1   1 1   1 1
      2   1 2   1 2   1 2
      3   1 3   1 3   1 3
      4   2 1   2 1   2 1
      5   2 2   2 2   2 2
      6   2 3   2 3   2 3

Treatment factors are listed in the order: Type, Amount.

   5  AMERGE [SORT=yes] Blocks,Units,Type,Amount;\
   6    NEWUNITS=!(2(1...3)),!((7,8)3),0,0
   7  PDESIGN [BLOCKSTRUCTURE=Blocks/Units; TREATMENTSTRUCTURE=Type*Amount]

Treatment combinations on each unit of the design
=================================================

  Units   1     2     3     4     5     6     7     8
 Blocks
      1   1 1   1 2   1 3   2 1   2 2   2 3   0 0   0 0
      2   1 1   1 2   1 3   2 1   2 2   2 3   0 0   0 0
      3   1 1   1 2   1 3   2 1   2 2   2 3   0 0   0 0

Treatment factors are listed in the order: Type, Amount.

   8  ARANDOMIZE [PRINT=design; BLOCKSTRUCTURE=Blocks/Units;\
   9    SEED=266203] Type,Amount

Treatment combinations on each unit of the design
=================================================

  Units   1     2     3     4     5     6     7     8
 Blocks
      1   2 1   1 3   1 2   2 2   0 0   0 0   2 3   1 1
      2   1 3   0 0   2 2   0 0   2 3   1 2   1 1   2 1
      3   2 3   0 0   2 2   2 1   1 1   0 0   1 3   1 2
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Treatment factors are listed in the order: Type, Amount.

  10  FACTOR [LEVELS=2] Control
  11  CALCULATE Control = NEWLEVELS(Type; !(1,2,2))
  12  BLOCKSTRUCTURE Blocks/Units
  13  TREATMENTS Control/(Type*Amount)
  14  ANOVA

Analysis of variance
====================

Source of variation     d.f.

Blocks stratum             2

Blocks.Units stratum
Control                    1
Control.Type               1
Control.Amount             2
Control.Type.Amount        2
Residual                  15

Total                     23

For clarity, we first print the design with the units sorted. We then randomize the design, using
the ARANDOMIZE procedure (4.11.2). Finally we define a factor Control to represent the
comparison between the new control and the other treatments (see Section 4.3), and produce a
dummy analysis of variance for the complete design.

4.13.4 Taking the product of two experimental designs: the APRODUCT procedure

APRODUCT procedure
Forms a new experimental design from the product of two designs (R.W. Payne).

Options
PRINT = string token Controls printing of the design (design); default desi
ANALYSE = string token Whether to analyse the design by ANOVA (yes, no);

default no
METHOD = string token How to combine the designs (cross, nest); default

nest

BF1 = formula Block formula for design 1
TF1 = formula Treatment formula for design 1
BF2 = formula Block formula for design 2
TF2 = formula Treatment formula for design 2

No parameters

APRODUCT forms an experimental design by taking the product of two other designs. The
METHOD option controls whether the product is formed by nesting the second design within the
first, or by crossing the two designs together. Example 4.13.4 extends the Latin square formed
in Example 4.11.2 to include an extra stratum of subplots nested within the plots of the square,
with a two-level factor Subtreat applied to the (two) subplots within each plot. This is
achieved by nesting an extra design, with single block factor Subplot and treatment factor
Subtreat below the original design. The block structure for the new design is

(Row * Column) / Subplot

and the treatment structure is
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Treat * Subtreat

Nesting is thus useful when you want to subdivide the units of a design and apply further
treatments (in this case those defined by the factor Subtreat) to the resulting subplots.

Alternatively, suppose that the extra design has a single factor Extra in the block structure
and a single treatment factor Newtreat. If we cross the two designs, the new design will have
a block structure of (Rows*Columns)*Extra, that is Rows*Columns*Extra, in which we
have duplicated the Latin square for every level of Extra. Crossing is useful if you need to
introduce a new blocking structure into an existing design. For example, the factor Extra might
represent different time periods or different locations in which a Latin square design is to be
used, and the factor Newtreat the different systematic conditions that might apply on each
occasion.

With both nesting and crossing, the new design will contain a unit for every combination of
the block factors in the two original designs, and so every combination of the treatment factors
in the first design will occur with every combination of the treatment factors in the second
design. The treatment structure is thus defined for the new design by crossing the treatment
structures of the two original designs, to estimate all the original treatment terms and their
interactions.
APRODUCT redefines the values of the factors as required for the new design. None of the

factors must be restricted, and any existing restrictions are cancelled. APRODUCT also executes
BLOCKSTRUCTURE and TREATMENTSTRUCTURE directives with the new block and treatment
formulae. These are thus available for subsequent commands, such as the ARANDOMIZE
command used to randomize the allocation of Subtreat in line 9 of Example 4.13.4, and the
ANOVA command used in line 10 to produce a dummy analysis-of-variance table. The new
formulae can also be accessed, outside the procedure, using the ASTATUS procedure (4.9.1).

The PRINT option of APRODUCT can be set to design to print the new design, and the
ANALYSE option can be set to yes to produce a skeleton analysis of variance from ANOVA.
Options BF1, TF1, BF2, and TF2 define the block structure and treatment structure of the first
and then the second design.

Example 4.13.4

   6  FACTOR [LEVELS=2; VALUES=1,2] Subplot,Subtreat
   7  APRODUCT [PRINT=*; METHOD=nest; ANALYSE=no; \
   8    BF1=Rows*Columns; TF1=Treat; BF2=Subplot; TF2=Subtreat]
   9  ARANDOMIZE [PRINT=design; SEED=641732]

Treatment combinations on each unit of the design
=================================================

         Subplot   1     2
    Rows Columns
       1       1   3 2   3 1
               2   5 1   5 2
               3   1 2   1 1
               4   4 1   4 2
               5   2 2   2 1
               6   6 1   6 2
       2       1   6 1   6 2
               2   2 1   2 2
               3   4 1   4 2
               4   1 2   1 1
               5   5 2   5 1
               6   3 1   3 2
       3       1   5 2   5 1
               2   1 2   1 1
               3   6 2   6 1
               4   3 2   3 1
               5   4 2   4 1
               6   2 1   2 2
       4       1   1 1   1 2
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               2   6 2   6 1
               3   2 1   2 2
               4   5 1   5 2
               5   3 2   3 1
               6   4 2   4 1
       5       1   4 2   4 1
               2   3 2   3 1
               3   5 1   5 2
               4   2 2   2 1
               5   6 1   6 2
               6   1 2   1 1
       6       1   2 2   2 1
               2   4 1   4 2
               3   3 2   3 1
               4   6 1   6 2
               5   1 2   1 1
               6   5 2   5 1

Treatment factors are listed in the order: Treat. Subtreat.

  10  ANOVA

Analysis of variance
====================

Source of variation     d.f.

Rows stratum               5

Columns stratum            5

Rows.Columns stratum
Treat                      5
Residual                  20

Rows.Columns.Subplot stratum
Subtreat                   1
Treat.Subtreat             5
Residual                  30

Total                     71

4.13.5 Augmented designs: the AFAUGMENTED procedure

AFAUGMENTED procedure
Forms an augmented design (R.W. Payne).

Options
PRINT = string tokens Controls printed output  (design); default * i.e. none
TREATMENTSTRUCTURE = formula Treatment terms, other than GENOTYPES, to be included

in the analysis
BLOCKSTRUCTURE = formula Defines the block structure of the basic design
COVARIATE = variates Specifies any covariates to be included in the analysis
LEVTEST = variate Test genotypes to add to the design
LEVCONTROL = scalar or variate Specifies the control genotype(s) if these are not already

in the GENOTYPES factor
GENOTYPES = factor Genotype factor
CONTROLS = factor Factor identifying the controls
TESTVSCONTROL = factor Factor representing the comparison between test and

control genotypes
SUBPLOTS = factor Factor to represent the subplots to be created for the test

genotypes in the basic design
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NSUBPLOTS = scalar Number of subplots to create within each plot of the
basic design

SUBCONTROLS = scalar or variate Subplots to be used for control genotypes, if not already
pre-allocated in the GENOTYPES and SUBPLOTS factors;
default selects subplots for the controls at random within
each whole plot

NREPTEST = scalar or variate Number of times to replicate the test genotypes; default
1

SEED = scalar Seed for the random numbers used to randomize the
allocation of the genotypes (a negative value implies no
randomization); default 0

No parameters

An augmented design is a design for assessing large numbers of treatments, usually test
genotypes in a variety trial. The trial also contains controls; these are replicated while the tests
are usually unreplicated.

The design is constructed from a basic design, which can be any standard design, for example,
a randomized complete block design or a Latin square. In the simplest situation, a control
genotype is allocated to each plot of the basic design. The design is then expanded, or
augmented, so that each plot of the basic design is split into subplots. (So the plots of the basic
design become the whole plots of the augmented design.) The control genotype is allocated to
one of the subplots in each plot, and test genotypes are allocated to the other subplots.

So you first need to generate the basic design, using a procedure like AGHIERARCHICAL or
AGLATIN. You can then use AFAUGMENTED to augment it.

In the simplest situation, the basic design has blocking factors identifying its plots, and a
treatment factor defined to indicate the control genotype allocated to each plot. For example, Lin
& Poushinsky (1983) used a 4 × 4 Latin square as their basic design, with 4 different control
genotypes. In Genstat this can be constructed using AGLATIN (4.9.4), as shown in lines 4-5 of
Example 4.13.5a. They then split each plot into 9 subplots, allocating the control to subplot 5 in
each plot, and randomly allocated 128 test genotypes (numbered 5-132) to the other subplots
across the design (lines 6-8). The BLOCKSTRUCTURE option specifies the blocking structure of
the basic design (here rows crossed with columns), and thus the blocking factors that need to be
expanded. The GENOTYPES option specifies the genotypes factor which, on input, indicates the
control genotype on each plot. The NSUBPLOTS option specifies the number of subplots to define
within each plot, and the SUBCONTROL option specifies the subplot to contain the control. The
LEVTEST option specifies which levels of the augmented GENOTYPES factor are to represent the
test genotypes. Setting option PRINT=design prints the design, using procedure PDESIGN; by
default it is not printed.

Example 4.13.5a

   2  " Augmented design based on a 4x4 Latin square,
  -3    as in Lin & Poushinsky (1983, Biometrics)."
   4  AGLATIN     [PRINT=*; ANALYSE=no] NROWS=4; NSQUARES=1; SEED=584578;\
   5              TREATMENTFACTORS=!p(Genotype); ROWS=Row; COLUMNS=Column
   6  AFAUGMENTED [PRINT=design; BLOCKSTRUCTURE=Row*Column;\
   7              LEVTEST=!(5...132); LEVCONTROL=5; GENOTYPES=Genotype;\
   8              NSUBPLOTS=9; SUBCONTROL=5; TESTVSCONTROL=TvsC; CONTROLS=Control
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Treatments on each unit of the design
=====================================

          Subplots     1     2     3     4     5     6     7     8     9
      Row   Column
        1        1    21    35    16    47     3    53    29    91    93
                 2   114    32   120     6     1    48   107    92   106
                 3    52    61     7   118     2   130   115   109    46
                 4    86    12    78    38     4   113   101    22    97
        2        1    80   125    73    18     4    75    83   105    68
                 2    51    77   102   132     2    14   104    89    59
                 3   119    40    17    31     1    39    41    62     9
                 4     5    11    60    10     3    85    15    13    43
        3        1    57    23    90    37     1   100    42    67   117
                 2   108    82    34    27     3    24    65   124    26
                 3    71    66    56    49     4    84    74   131    36
                 4    44   111    63   128     2    70   122    58    99
        4        1    96    98    25    45     2    50   126   110    28
                 2    76   127    81    94     4   121    64    79    55
                 3    72   112    30   116     3   103    33    95    87
                 4   123   129    20    54     1     8    88    19    69

Treatment factors are listed in the order: Genotype.

   9  PRINT       TvsC,Genotype,Control,Row,Column

        TvsC    Genotype     Control         Row      Column
        test          21           5           1           1
        test          35           5           1           1
        test          16           5           1           1
        test          47           5           1           1
     control           3           3           1           1
        test          53           5           1           1
        test          29           5           1           1
        test          91           5           1           1
        test          93           5           1           1
        test         114           5           1           2
        test          32           5           1           2
        test         120           5           1           2
        test           6           5           1           2
     control           1           1           1           2
        test          48           5           1           2
        test         107           5           1           2
        test          92           5           1           2
        test         106           5           1           2
        test          52           5           1           3
        test          61           5           1           3
        test           7           5           1           3
        test         118           5           1           3
     control           2           2           1           3
        test         130           5           1           3
        test         115           5           1           3
        test         109           5           1           3
        test          46           5           1           3
        test          86           5           1           4
        test          12           5           1           4
        test          78           5           1           4
        test          38           5           1           4
     control           4           4           1           4
        test         113           5           1           4
        test         101           5           1           4
        test          22           5           1           4
        test          97           5           1           4
        test          80           5           2           1
        test         125           5           2           1
        test          73           5           2           1
        test          18           5           2           1
     control           4           4           2           1
        test          75           5           2           1
        test          83           5           2           1
        test         105           5           2           1
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        test          68           5           2           1
        test          51           5           2           2
        test          77           5           2           2
        test         102           5           2           2
        test         132           5           2           2
     control           2           2           2           2
        test          14           5           2           2
        test         104           5           2           2
        test          89           5           2           2
        test          59           5           2           2
        test         119           5           2           3
        test          40           5           2           3
        test          17           5           2           3
        test          31           5           2           3
     control           1           1           2           3
        test          39           5           2           3
        test          41           5           2           3
        test          62           5           2           3
        test           9           5           2           3
        test           5           5           2           4
        test          11           5           2           4
        test          60           5           2           4
        test          10           5           2           4
     control           3           3           2           4
        test          85           5           2           4
        test          15           5           2           4
        test          13           5           2           4
        test          43           5           2           4
        test          57           5           3           1
        test          23           5           3           1
        test          90           5           3           1
        test          37           5           3           1
     control           1           1           3           1
        test         100           5           3           1
        test          42           5           3           1
        test          67           5           3           1
        test         117           5           3           1
        test         108           5           3           2
        test          82           5           3           2
        test          34           5           3           2
        test          27           5           3           2
     control           3           3           3           2
        test          24           5           3           2
        test          65           5           3           2
        test         124           5           3           2
        test          26           5           3           2
        test          71           5           3           3
        test          66           5           3           3
        test          56           5           3           3
        test          49           5           3           3
     control           4           4           3           3
        test          84           5           3           3
        test          74           5           3           3
        test         131           5           3           3
        test          36           5           3           3
        test          44           5           3           4
        test         111           5           3           4
        test          63           5           3           4
        test         128           5           3           4
     control           2           2           3           4
        test          70           5           3           4
        test         122           5           3           4
        test          58           5           3           4
        test          99           5           3           4
        test          96           5           4           1
        test          98           5           4           1
        test          25           5           4           1
        test          45           5           4           1
     control           2           2           4           1
        test          50           5           4           1
        test         126           5           4           1
        test         110           5           4           1
        test          28           5           4           1
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        test          76           5           4           2
        test         127           5           4           2
        test          81           5           4           2
        test          94           5           4           2
     control           4           4           4           2
        test         121           5           4           2
        test          64           5           4           2
        test          79           5           4           2
        test          55           5           4           2
        test          72           5           4           3
        test         112           5           4           3
        test          30           5           4           3
        test         116           5           4           3
     control           3           3           4           3
        test         103           5           4           3
        test          33           5           4           3
        test          95           5           4           3
        test          87           5           4           3
        test         123           5           4           4
        test         129           5           4           4
        test          20           5           4           4
        test          54           5           4           4
     control           1           1           4           4
        test           8           5           4           4
        test          88           5           4           4
        test          19           5           4           4
        test          69           5           4           4

Note that, if there are insufficient test genotypes, some plots may contain NSUBPLOTS minus one
subplots. An error is given if there are too few genotypes for any of the plots to contain
NSUBPLOTS subplots. 

The SEED option specifies a seed for the random numbers that are used to make the
allocations. The default value of zero continues an existing sequence of random numbers if any
have already been used in the current Genstat job, or obtains a random seed using the system
clock if none have been used already. You can also set SEED=-1 if you want to suppress any
randomization.

If the design has other treatments (as well as GENOTYPES), these can be specified using the
TREATMENTSTRUCTURE option. This takes a model formula as its setting (so you would define
the treatment terms that are to be included in the analysis). However, but it is sufficient just to
list the factors if you prefer. These will then be expanded similarly to the blocking factors.
Likewise, if you have covariates whose values are defined on the plots of the basic design, these
can be specified using the COVARIATE option.

You can use the CONTROLS option to save a factor with a level for each control, and another
level for all the test genotypes. You can also use the TESTVSCONTROL option to save a factor
with one level for the control genotypes, and another level for the test genotypes. (These will be
identical if there is only one control genotype.)

If you want to specify several controls in each whole plot of the augmented design, you can
define the basic design to have subplots already, namely those with the controls. Example
4.13.5b has a balanced-incomplete-block design for three treatments as the basic design. The first
block has controls 1 and 3, the second has 2 and 3, and the third has 1 and 2. So we start with
two subplots. The AFAUGMENTED command in lines 14-15 expands the design to have eight
subplots, adding 18 test genotypes. . The SUBCONTROLS option is now set to a variate to put the
controls onto subplots 3 and 6, randomizing the allocation within each plot.

Example 4.13.5b

  10  " Augmented design based on a balanced-incomplete-block design to
 -11    show how to form a design with more than one control per whole-plot."
  12  FACTOR      [LEVELS=3; VALUES=1,1,2,2,3,3] Blocks
  13  FACTOR      [LEVELS=3; VALUES=1,3,2,3,1,2] Genotypes
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  14  AFAUGMENTED [PRINT=design; BLOCKSTRUCTURE=Blocks; LEVTEST=!(101...118);\
  15              GENOTYPES=Genotypes; NSUBPLOTS=8; SUBCONTROL=!(3,6)

Treatments on each unit of the design
=====================================

 Subplots     1     2     3     4     5     6     7     8
   Blocks
        1   102   108     1   115   107     3   104   106
        2   109   101     2   110   103     3   105   117
        3   113   116     2   114   118     1   112   111

Treatment factor: Genotypes.

You can predefine the SUBPLOTS factor if you want to allocate the controls to the subplots
explicitly, yourself. For example,

FACTOR      [LEVELS=8; VALUES=3,6,3,6,3,6] Blocks
AFAUGMENTED [PRINT=design; BLOCKSTRUCTURE=Blocks;\
            LEVTEST=Tests; GENOTYPES=Genotypes;\
            NSUBPLOTS=8; SUBCONTROL=Csubs

puts control 1 in block 1 explicitly onto subplot 3, and control 2 in block 1 explicitly onto
subplot 6, etc. The NSUBPLOTS option of AFAUGMENTED then need not be set, but will default
to the number of levels defined for SUBPLOTS. Of course, if you do predefine the SUBPLOTS
factor, you no longer need to have the same number of controls in each plot.

You can even define a null basic design. The "augmented" design will then simply consist of
some control and test genotypes allocated to the (sub)plots within the field (with the SUBPLOTS
and SUBCONTROL options determining the allocation of the controls as before). This provides
a way of defining the controls in a systematically repeating way, as shown in Example 4.13.4c.

Example 4.13.5c

  16  " Augmented design with a null basic design, to show how
 -17    to form a design with systematic repeating controls."
  18  " design with systematic repeating controls "
  19  FACTOR      [LEVELS=32; VALUES=2,6...30] plots
  20  FACTOR      [LEVELS=2; VALUES=(1,2)4] genotypes
  21  AFAUGMENTED [SUBPLOTS=plots; LEVTEST=!(3...26);\
  22              GENOTYPES=genotypes; CONTROLS=controls
  23  PRINT       plots,genotypes,controls

       plots   genotypes    controls
           1           4           3
           2           1           1
           3          13           3
           4          11           3
           5          19           3
           6           2           2
           7           5           3
           8          23           3
           9          15           3
          10           1           1
          11           6           3
          12          25           3
          13           3           3
          14           2           2
          15          24           3
          16          17           3
          17          26           3
          18           1           1
          19          21           3
          20           9           3
          21          20           3
          22           2           2
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          23          12           3
          24          22           3
          25           7           3
          26           1           1
          27          18           3
          28          14           3
          29           8           3
          30           2           2
          31          10           3
          32          16           3

By default, the test genotypes are unreplicated. You can set the NREPTEST option to a scalar
to replicate every test genotype the same number of times, or to a variate to have different
numbers of replicates (as, for example. in a partially-replicated design).

4.13.6 Construction of design keys

Design keys provide the basis of the representation used to store the repertoire of designs
obtainable from procedure AGDESIGN (4.9.3). This covers a range of standard situations, but
cannot allow for every eventuality. The FKEY directive allows you to form keys for other
circumstances and, if these are likely to occur frequently, you can extend or replace the standard
repertoire using procedure FDESIGNFILE (see Part 3 of the Genstat Reference Manual).

FKEY directive
Forms design keys for multi-stratum experimental designs, allowing for confounded and
aliased treatments.

Options
BASICFACTORS = factors Factors indexing the units of the design
ADDEDFACTORS = factors Factors to be allocated to the units of the design
KEY = matrix Stores the design key (ADDEDFACTORS ×

BASICFACTORS)
INKEY = matrix Can be used to input existing allocations for some of the

added factors
HIERARCHIES = matrix Can be used to specify that some of the factors must be

constant within each combination of levels of other
factors; the matrix has a row for each added factor and
columns first for the basic factors and then for the added
factors, ones in the entries where the row factor must be
constant within the combinations of the column factors,
zero elsewhere

SEED = scalar Can provide a seed to generate a random permutation of
the sets of basic effects that may be allocated to each
added factor, thus producing design randomly selected
from all those that might be possible; default * i.e. no
permutation

ROWPRIMES = variate Prime numbers for the rows of the KEY matrix
COLPRIMES = variate Prime numbers for the columns of the KEY matrix
ROWMAPPINGS = variate Mappings from the rows of the KEY to the

TREATMENTFACTORS

COLMAPPINGS = variate Mappings from the columns of the KEY to the
BLOCKFACTORS

SAVE = identifier Structure to save all the information about the formation
of the design; this can then be input later to give a
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different design (if possible) with the same properties

Parameters
REQUIRED = formula structures Formulae each defining a list of terms that are to be

estimated in the analysis
NONNEGLIGIBLE = formula structures

Formulae each specifying terms that cannot be ignored
in the context of the corresponding REQUIRED formula

The assumption in FKEY is that the units of the design are indexed by a set of factors known as
the basic factors. The key allows the values of another set of factors, known here as the added
factors, to be calculated from the basic factors. These factors are listed using the BASICFACTORS
and ADDEDFACTORS options. They must all have been declared previously as factors, and their
numbers of levels must have been defined. Usually the basic factors are the factors that will be
used to define the block formula of the design (for example, blocks, plots, rows, columns,
subplots and so on) and the added factors are the treatment factors, but in partial replicates, for
example, the basic factors may be the treatment factors and the added factors the block factors.

If the basic and added factors all have prime numbers of levels the key is saved, by the KEY
option, as a matrix with a row for each added factor and a column for each basic factor.
However, if the levels are not all prime, factors that do not have prime numbers of levels need
to be broken up into "pseudo-factors". Thus, a factor with six levels will be represented by the
combinations of levels of two pseudo-factors, one with two levels and one with three levels. In
simple cases it is straightforward to do this by hand, as shown in Example 4.13.6a. Alternatively,
FPSEUDOFACTORS can do the pseudo-factoring automatically, and this is illustrated in Example
4.13.6b.

The main properties of the design are derived from the REQUIRED and NONNEGLIGIBLE
parameters. Example 4.13.6a considers the simple case of a block design containing three blocks
of nine plots. The experiment is to have three treatment factors, A, B and C, and these will be the
added factors. The design has a block structure of plots nested within blocks

Blocks/Plots

but as there are nine plots within each block we use two plot factors Plot1 and Plot2, each
with three levels, to identify the plots and the block structure becomes

Blocks/(Plot1.Plot2)

So we have three basic factors, Block, Plot1 and Plot2. In the analysis we wish to be able to
estimate all main effects and interactions of the factors A, B and C, except the three-factor
interaction A.B.C; these terms are specified by the formula structure supplied using the
REQUIRED parameter. The NONNEGLIGIBLE parameter specifies model terms that cannot be
ignored in the analysis: that is, the model terms with which these required terms cannot be
confounded. Here we have the main effect Blocks and all main effects and interactions of the
factors A, B and C.

The key is saved in matrix K, and then used at line 7 to generate the values of A, B and C from
the values of Block, Plot1 and Plot2, generated in line 6. The dummy analysis of variance
table (from line 10) shows that the main effects and two-factor interactions can all be estimated
within blocks as required.

Example 4.13.6a

   2  FACTOR [NVALUES=27; LEVELS=3] Block,Plot1,Plot2,A,B,C
   3  FKEY [BASIC=Block,Plot1,Plot2; ADDED=A,B,C; KEY=K] \
   4    REQUIRED=!f(A*B*C-A.B.C); NONNEGLIGIBLE=!f(Block+A*B*C)
   5  PRINT K; DECIMALS=0
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                        K
                        1           2           3

            1           0           1           0
            2           0           0           1
            3           1           1           1

   6  GENERATE Block,Plot1,Plot2
   7  & [BLOCKS=Block,Plot1,Plot2; KEY=K] A,B,C
   8  BLOCKSTRUCTURE Block/(Plot1.Plot2)
   9  TREATMENT A*B*C
  10  ANOVA [FACTORIAL=2]

Analysis of variance
====================

Source of variation     d.f.

Block stratum              2

Block.Plot1.Plot2 stratum
A                          2
B                          2
C                          2
A.B                        4
A.C                        4
B.C                        4
Residual                   6

Total                     26

When pseudo-factors are required for the added factors, the ROWPRIMES option can be used to
save a variate storing the (prime) number of levels corresponding to each row of the key, and the
ROWMAPPINGS option can save a variate with an element for each row containing the number of
the corresponding added factor. So, if we had two added factors, one with five and one with six
levels, the ROWPRIMES variate might contain the values 5, 2, and 3, and the ROWMAPPINGS
variate the values 1, 2, and 2. The second added factor (with six levels) would then be
represented by two pseudo-factors, corresponding to the second and third rows of the key. The
COLPRIMES and COLMAPPINGS options can similarly save details of the pseudo-factors required
for basic factors with non-prime numbers of levels.

In Example 4.13.6b, we repeat the construction of the design in Example 4.13.6a but now with
a nine-level factor Plot. This is broken up automatically by FKEY into two pseudo-factors. The
variate Cprime stores the primes for the columns of the key (all 3), and variate Cmap indicates
that the first column corresponds to Block (the first basic factor), and the second and third
columns correspond to Plot (the second basic factor). The variates saved by ROWPRIMES,
COLPRIMES, ROWMAPPINGS, and COLMAPINGS can be used in procedure AKEY (4.13.2), together
with the key, to generate the factors automatically without the need to worry about the pseudo-
factoring; see lines 16 and 17.

Example 4.13.6b

  11  FACTOR [LEVELS=9] Plot
  12  FKEY [BASIC=Block,Plot; ADDED=A,B,C; KEY=K; \
  13    COLPRIMES=Cprime; COLMAPPINGS=Cmap] \
  14    REQUIRED=!f(A*B*C-A.B.C); NONNEGLIGIBLE=!f(Block+A*B*C)
  15  PRINT K,Cprime,Cmap; DECIMALS=0

                        K
                        1           2           3

            1           0           1           0
            2           0           0           1
            3           1           1           1
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       Cprime           3           3           3

         Cmap           1           2           2

  16  AKEY [PRINT=design; BLOCKFACTORS=Block,Plot; KEY=K; \
  17    COLPRIMES=Cprime; COLMAPPINGS=Cmap] A,B,C

Treatment combinations on each unit of the design
=================================================

  Plot  1      2      3      4      5      6      7      8      9
 Block
     1  1 1 1  1 2 2  1 3 3  2 1 2  2 2 3  2 3 1  3 1 3  3 2 1  3 3 2
     2  1 1 2  1 2 3  1 3 1  2 1 3  2 2 1  2 3 2  3 1 1  3 2 2  3 3 3
     3  1 1 3  1 2 1  1 3 2  2 1 1  2 2 2  2 3 3  3 1 2  3 2 3  3 3 1

 Treatment factors are listed in the order: A B C

  18  BLOCKSTRUCTURE Block/Plot
  19  TREATMENT A*B*C
  20  ANOVA [FACTORIAL=2]

Analysis of variance
====================

Source of variation     d.f.

Block stratum              2

Block.Plot stratum
A                          2
B                          2
C                          2
A.B                        4
A.C                        4
B.C                        4
Residual                   6

Total                     26

The algorithm that FKEY uses to construct the key is based on the method developed by Franklin
& Bailey (1977), Franklin (1985) and Kobilinsky (1995). Essentially this considers the possible
orthogonal sets of contrasts amongst the main effects and interactions of the basic factors, and
tries in turn to find a feasible set against which to confound each added factor. Often there are
several feasible ways in which this can be done. To avoid FKEY selecting the same key every
time, you can set the SEED option to an integer that will be used to generate a random
permutation of the order in which the sets of basic contrasts are considered, thus producing
design randomly selected from all those that might be possible; by default no permutation takes
place. Alternatively, you can use the SAVE option to save all the information about the formation
of the design; this can then be input later to provide the next possible key (if available) with the
requested properties.

In Example 4.13.6c, we first use the SEED option to select a key at random from those that are
feasible, and then the SAVE option to select three different keys.

Example 4.13.6c

  21  " Use the SEED option to select a feasible design at random."
  22  FKEY [BASIC=Block,Plot; ADDED=A,B,C; KEY=K; SEED=284762]\
  23    REQUIRED=!f(A*B*C-A.B.C); NONNEGLIGIBLE=!f(Block+A*B*C)
  24  PRINT K; DECIMALS=0
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                        K
                        1           2           3

            1           0           0           1
            2           0           1           2
            3           1           1           1

  25  AKEY [BLOCKFACTORS=Block,Plot; KEY=K; \
  26    COLPRIMES=Cprime; COLMAPPINGS=Cmap] A,B,C
  27  ANOVA [FACTORIAL=2]

Analysis of variance
====================

Source of variation     d.f.

Block stratum              2

Block.Plot stratum
A                          2
B                          2
C                          2
A.B                        4
A.C                        4
B.C                        4
Residual                   6

Total                     26

  28  " form three keys."
  29  FOR [NTIMES=3]
  30    FKEY [BASIC=Block,Plot; ADDED=A,B,C; KEY=K; SAVE=Ksave] \
  31      REQUIRED=!f(A*B*C-A.B.C); NONNEGLIGIBLE=!f(Block+A*B*C)
  32    PRINT K; DECIMALS=0
  33  ENDFOR

                        K
                        1           2           3

            1           0           1           0
            2           0           0           1
            3           1           1           1

                        K
                        1           2           3

            1           0           1           0
            2           1           0           1
            3           0           1           1

                        K
                        1           2           3

            1           0           1           0
            2           0           1           1
            3           1           0           1

If the design has more than two strata suitable for the estimation of treatment effects, the
REQUIRED and NONNEGLIGIBLE parameters can specify lists of formulae, in parallel, one pair
of formulae for each stratum. Each REQUIRED formula specifies the terms that must be estimated
in one of the strata (or in a stratum below it), and the corresponding NONNEGLIGIBLE formula
specifies the terms that cannot be ignored there. In Example 4.13.6d we have a block formula

Block / Wplot / Subplot

which produces three strata

Block + Block.Wplot + Block.Wplot.Subplot
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The Subplot factor has nine levels, so FKEY again breaks this down, as in Example 4.13.6b.
The first formula in the REQUIRED list !f((A+B+C)*(A+B+C)), in parallel with the formula

!f(Block+Block.Wplot) in the NONNEGLIGIBLE list, indicates that we do not want the main
effects or two-factor interaction of factors A, B and C to be confounded with each other nor with
Block or Block.Wplot; this ensures that they will be estimated in the
Block.Wplot.Subplot  s t r a t u m.  T h e  s e c o n d  p a i r  o f  f o r mu l a e ,
!f((A+B+C+D+E)*(A+B+C+D+E)) and !f(Block), indicate that we want to estimate the main
effects and two-factor interactions of all the five treatment factors A, B, C, D and E in the
Block.Wplot stratum or below; in effect this means we are willing to have D and E and any of
their interactions estimated in the Block.Wplot stratum. As a result, D and part of the A.E
interaction are estimated in the Block.Wplot stratum. Section 4.13.7 shows how to set up a
pseudo-factor for this part of the A.E interaction and thus ensure the correct analysis.

Example 4.13.6d

   2  FACTOR [NVALUES=81; LEVELS=3] Block,Wplot,A,B,C,D,E
   3  & [LEVELS=9] Subplot
   4  FKEY [BASIC=Block,Wplot,Subplot; ADDED=A,B,C,D,E; KEY=K; \
   5    COLPRIMES=Clevel; COLMAPPINGS=Cmapping] \
   6    REQUIRED=!f((A+B+C)*(A+B+C)),!f((A+B+C+D+E)*(A+B+C+D+E)); \
   7    NONNEGLIGIBLE=!f(Block+Block.Wplot),!f(Block)
   8  PRINT K,Clevel,Cmapping; FIELD=6; DECIMALS=0

                  K
                  1     2     3     4

            1     0     0     1     0
            2     0     0     0     1
            3     1     0     1     1
            4     0     1     0     0
            5     1     1     2     0

       Clevel     3     3     3     3

     Cmapping     1     2     3     3

   9  AKEY [BLOCKFACTORS=Block,Wplot,Subplot; KEY=K; \
  10    COLPRIMES=Clevel; COLMAPPINGS=Cmapping] A,B,C,D,E
  11  BLOCKSTRUCTURE Block/Wplot/Subplot
  12  TREATMENTSTRUCTURE A*B*C*D*E
  13  ANOVA [FACTORIAL=2]

******** Warning, code AN 17, statement 1 on line 13

Command: ANOVA [FACTORIAL=2]
Partial confounding.
A.E is partially confounded with Block.Wplot

Analysis of variance
====================

Source of variation     d.f.

Block stratum              2

Block.Wplot stratum
D                          2
A.E                        4

Block.Wplot.Subplot stratum
A                          2
B                          2
C                          2
E                          2
A.B                        4
A.C                        4
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B.C                        4
A.D                        4
B.D                        4
C.D                        4
A.E                        4
B.E                        4
C.E                        4
D.E                        4
Residual                  24

Total                     80

In a multi-stratum design, you may wish to insist that some factors are applied to complete units
of one of the strata; for example, in the split-plot design in Section 9.1 varieties are applied to
complete whole-plots within each of the blocks. This can be done using the HIERARCHIES
option, which allows you to indicate that some of the added factors must be constant within each
combination of levels of other factors. For example, in Example 4.2.1, the levels of the factor
Variety must remain constant within each combination of Wplots and Blocks. These
constraints are specified, if required, by supplying a matrix with a row for each added factor and
columns first for the basic factors and then for the added factors. The matrix contains ones in the
entries where the row factor must be constant within the combinations of the column factors, and
zeros elsewhere. So, in Example 4.2.1, we would specify the matrix

            Blocks  Wplots  Subplots  Variety  Nitrogen
Variety          1       1         0        0         0
Nitrogen         0       0         0        0         0

Notice that the combinations of factors within which the added factor must remain constant can
include other added factors.

In Example 4.13.6e we use the HIERARCHIES option to ensure that the factor E is applied to
complete whole-plots within each block. So the fifth row of Hmat (which corresponds to E) has
a one in the first column (Block) and the second column (Wplot), and zero elsewhere.

Example 4.13.6e

  14  MATRIX [ROWS=5; COLUMNS=8; VALUES=32(0), 2(1),6(0)] Hmat
  15  PRINT Hmat; FIELD=6; DECIMALS=0

               Hmat
                  1     2     3     4     5     6     7     8

            1     0     0     0     0     0     0     0     0
            2     0     0     0     0     0     0     0     0
            3     0     0     0     0     0     0     0     0
            4     0     0     0     0     0     0     0     0
            5     1     1     0     0     0     0     0     0

  16  FKEY [BASIC=Block,Wplot,Subplot; ADDED=A,B,C,D,E; \
  17    KEY=K; HIERARCHIES=Hmat] \
  18    REQUIRED=!f((A+B+C)*(A+B+C)), !f((A+B+C+D+E)*(A+B+C+D+E)); \
  19    NONNEGLIGIBLE=!f(Block+Block.Wplot),!f(Block)
  20  PRINT K; FIELD=6; DECIMALS=0

                  K
                  1     2     3     4

            1     0     0     1     0
            2     0     0     0     1
            3     1     0     1     1
            4     0     1     1     0
            5     1     1     0     0

  21  AKEY [BLOCKFACTORS=Block,Wplot,Subplot; KEY=K; \
  22    COLPRIMES=Clevel; COLMAPPINGS=Cmapping] A,B,C,D,E
  23  BLOCKSTRUCTURE Block/Wplot/Subplot
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  24  TREATMENTSTRUCTURE A*B*C*D*E
  25  ANOVA [FACTORIAL=2]

******** Warning, code AN 17, statement 1 on line 25

Command: ANOVA [FACTORIAL=2]
Partial confounding.
A.D is partially confounded with Block.Wplot

Analysis of variance
====================

Source of variation     d.f.

Block stratum              2

Block.Wplot stratum
E                          2
A.D                        4

Block.Wplot.Subplot stratum
A                          2
B                          2
C                          2
D                          2
A.B                        4
A.C                        4
B.C                        4
A.D                        4
B.D                        4
C.D                        4
A.E                        4
B.E                        4
C.E                        4
D.E                        4
Residual                  24

Total                     80

FKEY can also be used to extend an existing design, by allocating further factors to the units. The
existing key should then be input using the INKEY option, with zeros in the rows for the new
added factors.

In Example 4.13.6f we start with a key that generates a design for three 2-level factors A, B and
C in two blocks of four plots. Originally, we thus have a basic factor Block (with two levels) for
the blocks, and two basic factors Plot1 and Plot2 (also with two levels) to represent the four
plots.

We then extend the design by replicating it twice (to give four blocks altogether) and by
splitting the plots each into two subplots. So we now have factors Block1 and Block2 for the
blocks, Plot1 and Plot2 for the plots, and Subplot for the subplots. The key KeyABC
indicates how the factors A, B and C are derived from the extended set of blocking (or basic)
factors, and has two rows of zeros for two extra factors D and E (both at two levels) that the
design is to contain. These two rows are then filled in by FKEY to give the full key ExtKey.

Example 4.13.6f

   2  FACTOR [NVALUES=8; LEVELS=2] Block,Plot1,Plot2,A,B,C
   3  MATRIX [ROWS=3; COLUMNS=3; VALUES=1,1,1, 0,1,0, 0,0,1] Key
   4  GENERATE Block,Plot1,Plot2
   5  & [BLOCKS=Block,Plot1,Plot2; KEY=Key] A,B,C
   6  BLOCKSTRUCTURE Block / (Plot1.Plot2)
   7  TREATMENTSTRUCTURE A * B * C
   8  ANOVA [FACTORIAL=2]
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Analysis of variance
====================

Source of variation     d.f.

Block stratum              1

Block.Plot1.Plot2 stratum
A                          1
B                          1
C                          1
A.B                        1
A.C                        1
B.C                        1

Total                      7

   9  FACTOR [NVALUES=32; LEVELS=2] Block1,Block2,Plot1,Plot2,Subplot,\
  10    A,B,C,D,E
  11  MATRIX [COLUMNS=!t(Block1,Block2,Plot1,Plot2,Subplot); \
  12    ROWS=!t(A,B,C,D,E); VALUES=0,1,1,1,0, 0,0,1,0,0, 0,0,0,1,0, \
  13    0,0,0,0,0, 0,0,0,0,0] KeyABC
  14  PRINT KeyABC; FIELD=9; DECIMALS=0

                KeyABC
                Block1   Block2    Plot1    Plot2  Subplot

            A        0        1        1        1        0
            B        0        0        1        0        0
            C        0        0        0        1        0
            D        0        0        0        0        0
            E        0        0        0        0        0

  15  FKEY [BASIC=Block1,Block2,Plot1,Plot2,Subplot; ADDED=A,B,C,D,E; \
  16    KEY=ExtKey; INKEY=KeyABC] REQUIRED=!f((A+B+C+D+E)*(A+B+C+D+E)); \
  17    NONNEGLIGIBLE=!f(Block1.Block2+(A+B+C+D+E)*(A+B+C+D+E))
  18  PRINT ExtKey; FIELD=9; DECIMALS=0

                ExtKey
                     1        2        3        4        5

            1        0        1        1        1        0
            2        0        0        1        0        0
            3        0        0        0        1        0
            4        0        0        0        0        1
            5        1        0        1        0        1

  19  GENERATE Block1,Block2,Plot1,Plot2,Subplot
  20  & [BLOCKS=Block1,Block2,Plot1,Plot2,Subplot; KEY=ExtKey] A,B,C,D,E
  21  BLOCKSTRUCTURE (Block1.Block2) / (Plot1.Plot2) / Subplot
  22  TREATMENTS A * B * C * D * E
  23  ANOVA [FACTORIAL=2]

Analysis of variance
====================

Source of variation     d.f.

Block1.Block2 stratum      3

Block1.Block2.Plot1.Plot2 stratum
A                          1
B                          1
C                          1
A.B                        1
A.C                        1
B.C                        1
D.E                        1
Residual                   5
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Block1.Block2.Plot1.Plot2.Subplot stratum
D                          1
E                          1
A.D                        1
B.D                        1
C.D                        1
A.E                        1
B.E                        1
C.E                        1
Residual                   8

Total                     31

FKEY can form keys for small designs fairly quickly, but for complicated arrangements you may
find that it takes some time to check the various possibilities.

4.13.7 Forming pseudo-factors from a design key

FPSEUDOFACTORS directive
Determines patterns of confounding and aliasing from design keys, and extends the treatment
model to incorporate the necessary pseudo-factors.

Options
TREATMENTSTRUCTURE = formula Treatment model for the design
BLOCKSTRUCTURE = formula Block model for the design
FACTORIAL = scalar Limit on the number of factors in each treatment term
LROWS = factors or scalars Numbers of levels of factors, or factors, corresponding

to the rows of the key matrices
LCOLUMNS = factors or scalars Numbers of levels of factors, or factors, corresponding

to the columns of the key matrices
NEWTREATMENTSTRUCTURE = identifier

Store the extended treatment model
PSEUDOFACTORS = pointer Pseudo-factors required for the keys
NPSEUDOFACTORS = scalar Number of pseudo-factors required for the keys
KEYPSEUDOFACTORS = matrix Key to generate the pseudo-factors from the treatment

factors
KEYCONTRASTS = matrix Key partitioning the treatment terms into orthogonal sets

of contrasts

Parameters
KEY = matrices Design keys
KEYINVERSE = matrices Store the inverses of the design keys
ALIASSETS = variates Stores aliasing information about the orthogonal sets of

treatment contrasts
RESOLUTION = scalars Saves the resolution number of the design constructed

by each key

The FPSEUDOFACTORS directive operates on a list of design keys, specified using the KEY
parameter. It assumes that a design is to be formed by generating a replicate using each design
key, and forms pseudo-factors to allow the ANOVA directive to cope with partial confounding or
aliasing in the design. The factors corresponding to the rows of the keys are specified by the
LROWS option, and those for the columns are specified by the LCOLUMNS option. If LROWS is not
specified, FPSEUDOFACTORS will take the factors from the formula specified by the
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TREATMENTSTRUCTURE parameter, in the order that they occur there. Similarly, the
BLOCKSTRUCTURE option can provide a default for LCOLUMNS.

The KEYINVERSE parameter allows the inverse keys to be saved (provided the keys are
invertible). These are keys that would allow the factors corresponding to the columns of the
original key to be generated from those corresponding to the rows (instead of row factors from
column factors, as with the original key). If you merely wish to save the inverses, you can
specify scalars defining the numbers of levels of the factors instead of the factors themselves.

The BLOCKSTRUCTURE option defines the block structure within each replicate, so the full
block structure would be Rep/(#BLOCKSTRUCTURE) where Rep is factor to identify the
replicates. The TREATMENTSTRUCTURE option specifies the treatment terms to be estimated
using the design, and the FACTORIAL option allows a limit to be set on the number of factors in
the terms that are generated as, for example, in the ANOVA directive. FPSEUDOFACTORS
examines the keys to see whether any treatment terms are partially aliased or partially
confounded. Provided the factors of each such term all have the same (prime) number of levels
it can then extend the treatment formula, inserting pseudo-factors for these terms, so that the
ANOVA directive can produce a correct analysis. The extended formula can be saved using the
NEWTREATMENTSTRUCTURE option, and the NPSEUDOFACTORS option saves the number of
pseudo-factors that are needed. The pseudo-factors themselves are represented by the elements
of a pointer specified by the PSEUDOFACTORS option, and the KEYPSEUDOFACTORS option can
save the key matrix required to generate their values from the values of the treatment factors.

This is illustrated in Example 4.13.7a which continues Example 4.13.6e. First of all, in lines
26-28, we form factors Subplot1 and Subplot2 to represent the nine subplots. Unlike the
FKEY directive, described in Section 4.13.6, FPSEUDOFACTORS requires all the factors to have
prime numbers of levels.

The block structure is now Block/Wplot/(Subplot1.Subplot2) and the stratum 
Block.Wplot.Subplot1.Subplot2 corresponds to the stratum Block.Wplot.Subplot 
in Example 4.13.7a.

The key K defines the relationship between the treatment factors A, B, C, D and E, and the
factors in the block structure Block, Wplot, Subplot1 and Subplot2. Notice that, as LROWS
and LCOLUMNS are not specified, the factors for the rows and columns of the key are taken from
the treatment and block formulae.

In the new treatment structure Ntreat, pseudo-factor Pf[1] is attached to the term A.D to
represent the part of this term that is estimated in the Block.Wplot.Subplot1.Subplot2
stratum (the remainder of the term is estimated in the Block.Wplot stratum). The pseudo-factor
key PfK indicates that, in fact, Pf[1] represents the contrasts D1E1. This key is used to generate
the pseudo-factors at line 36, the new treatment structure is specified for ANOVA in line 36, and
you can see that the resulting analysis (from line 37) now has the correct degrees of freedom for
A.D.

Example 4.13.7a

  26  FACTOR [NVALUES=81; LEVELS=3] Subplot1,Subplot2
  27  CALCULATE Subplot1, Subplot2 = NEWLEVELS(Subplot; \
  28    !(1,1,1,2,2,2,3,3,3), !(1,2,3,1,2,3,1,2,3) )
  29  FPSEUDOFACTORS [TREATMENTSTRUCTURE=A*B*C*D*E; FACTORIAL=2; \
  30    BLOCKSTRUCTURE=Block/(Wplot)/(Subplot1.Subplot2); \
  31    NEWTREATMENTSTRUCTURE=Ntreat; PSEUDOFACTORS=Pf; \
  32    KEYPSEUDOFACTORS=PfK] K
  33  PRINT PfK,Ntreat; DECIMALS=0

              PfK
                1   2   3   4   5

            1   1   0   0   1   0
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Ntreat
A + B + C + D + E + A.B + A.C + B.C + A.D // Pf[1] + B.D + C.D + A.E
+ B.E + C.E + D.E

  34  FACTOR [NVALUES=81; LEVELS=3] Pf[]
  35  GENERATE [BLOCKS=A,B,C,D,E; KEY=PfK] Pf[]
  36  TREATMENTSTRUCTURE #Ntreat
  37  ANOVA [FACTORIAL=2]

Analysis of variance
====================

Source of variation     d.f.

Block stratum              2

Block.Wplot stratum
E                          2
A.D                        2
Residual                   2

Block.Wplot.Subplot stratum
A                          2
B                          2
C                          2
D                          2
A.B                        4
A.C                        4
B.C                        4
A.D                        2
B.D                        4
C.D                        4
A.E                        4
B.E                        4
C.E                        4
D.E                        4
Residual                  26

Total                     80

FPSEUDOFACTORS can also determine the aliasing relationships of treatment terms in fractional
factorial designs. The KEYCONTRASTS option can save a design key that partitions the treatment
terms into orthogonal sets of contrasts. (The matrix thus has a row for each set of contrasts, and
a column for each treatment factor.) The ALIASSETS parameter saves a variate, for each design
key, with length equal to the number of rows in the KEYCONTRASTS matrix. The variate stores
integers indicating the alias group of each set of contrasts so, if two elements of the variate are
equal, this indicates that the corresponding sets of contrasts are aliased in the replicate generated
by the design key concerned. The RESOLUTION parameter saves the resolution number for the
replicate generated by each design key. This is the minimum number of factors involved in any
pair of aliased terms.

This is illustrated in Example 4.13.7b which generates a design containing four 3-level factors
in three blocks of 9 plots (it is thus a 1/3rd fraction of a 34 design in blocks of size nine).
Generating a factional factorial is easy with FKEY. We simply specify more treatment factors
than blocking factors. The REQUIRED formula indicates that we want to estimate the main effects
of all the treatment factors, and the NONNEGLIGIBLE formula indicates that we do not want them
to be confounded with blocks.

Example 4.13.7b

   2  " Generate a fractional factorial design: a 1/3 fraction of a 3**4."
   3  FACTOR [NVALUES=27; LEVELS=3] A,B,C,D,Block,Pl1,Pl2
   4  MATRIX [ROWS=!t(A,B,C,D); COLUMNS=!t(Block,Plot)] Key3to4th
   5  FKEY [BASIC=Block,Pl1,Pl2; ADDED=A,B,C,D; KEY=Key3to4th] \
   6    REQUIRED=!f(A+B+C+D); NONNEGLIGIBLE=!f(A+B+C+D+Block)
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   7  PRINT Key3to4th; FIELD=4; DECIMALS=0

             Key3to4th
             Block Plot

            A   0   1   0
            B   1   1   0
            C   1   2   0
            D   0   0   1

   8  AKEY [BLOCKFACTORS=Block,Pl1,Pl2; KEY=Key3to4th] A,B,C,D
   9  BLOCKSTRUCTURE Block/(Pl1.Pl2)
  10  TREATMENTSTRUCTURE A+B+C+D
  11  ANOVA

Analysis of variance
====================

Source of variation     d.f.

Block stratum              2

Block.Pl1.Pl2 stratum
A                          2
B                          2
C                          2
D                          2
Residual                  16

Total                     26

  12  " Determine how the interactions are aliased."
  13  FPSEUDOFACTORS [TREATMENTSTRUCTURE=A*B*C*D; FACTORIAL=2; \
  14    BLOCKSTRUCTURE=Block/(Pl1,Pl2); KEYCONTRAST=Kcon] \
  15    KEY=Key3to4th; ALIASSET=Alias; RESOLUTION=Resolution
  16  PRINT Kcon,Alias; DECIMALS=0; FIELD=4

             Kcon             Alias
                1   2   3   4

            1   1   0   0   0   1
            2   0   1   0   0   2
            3   0   0   1   0   3
            4   0   0   0   1   4
            5   1   1   0   0   3
            6   2   1   0   0   5
            7   1   0   1   0   5
            8   2   0   1   0   2
            9   0   2   1   0   1
           10   0   2   2   0   5
           11   1   0   0   1   6
           12   1   0   0   2   7
           13   0   1   0   1   8
           14   0   1   0   2   9
           15   0   0   1   1  10
           16   0   0   1   2  11

  17  &     Resolution; DECIMALS=0

  Resolution
           3

FPSEUDOFACTORS is then used to determine how the interactions are aliased. For example, the
first and ninth elements of alias both contain one, indicating that a is aliased with b2c.
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4.13.8 Forming the basic contrasts of a model term

FBASICCONTRASTS procedure
Breaks a model term down into its basic contrasts (R.W. Payne).

Options
TERM = formula Model term to split into basic contrasts
PSEUDOFACTORS = pointer Pseudo-factors representing the basic contrasts
NEWTERMS = formula structure Model formula containing the term followed by the

pseudofactors

No parameters

If you do not have the design keys that were used to generate a partially-confounded design, an
alternative is to use the FBASICCONTRASTS procedure to break up each partially-confounded
interaction into its sets of basic contrasts.

The interaction is specified using the TERM option. The PSEUDOFACTORS option saves a
pointer containing the factors generated to represent the basic contrasts. Finally, the NEWTERMS
option can save a new model formula containing the interaction followed by the pseudo-factor
operator // and then the list of pseudo-factors. For example, for the interaction of two 3-level
factors A and B, the NEWTERMS formula would be

A.B // (Pf[1,2])

where Pf[] is the pointer of pseudo-factors.

4.13.9 Minimum aberration designs

AFMINABERRATION directive
Forms minimum aberration factorial or fractional-factorial designs.

Options
PRINT = string tokens Controls printed output (summary, keyblocks,

keydefining, monitoring); default *
NTIMES = scalar Number of designs to try in a random search; default 0

does the full search
SEED = scalar Seed for the random number generator used to search

the designs randomly; default 0

Parameters
LEVELS = scalars Number of levels of the treatment factors, must be a

power of a prime number
NTREATMENTFACTORS = scalars Number of treatment factors
NUNITS = scalars Number of units in each block of a block design or in

the principal block of a fractional factorial
NSUBUNITS = scalars Number of units in each (sub-)block
KEYBLOCKS = matrices Design key for the blocks and sub-blocks
KEYDEFINING = matrices Design key specifying the defining contrasts
RESOLUTION = scalars Saves the resolution of the design
ABERRATION = scalars Saves the aberration of the design
SUBRESOLUTION = scalars Saves the resolution of the sub-design
SUBABERRATION = scalars Saves the aberration of the sub-design 
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NDESIGN = scalars Saves or defines the design number
NSUBDESIGN = scalars Saves or defines the sub-design number

The concept of minimum aberration provides an effective way of selecting either a full factorial
design where treatment contrasts are confounded with blocks, or a fractional factorial.
(Essentially, these are equivalent ! the fractional factorial design is formed by taking only one
block of the full factorial.) The resolution of the design is defined as the largest integer r such
that no interaction term with r factors is confounded with blocks (or aliased). The aberration of
the design is the number of interaction terms with r+1 factors that are confounded (or aliased).
A minimum aberration design is a design with the smallest aberration out of the designs with the
highest available resolution. It is thus a design that is closest to the next level of resolution.
AFMINABERRATION searches for minimum aberration designs using the algorithm of Laycock

& Rowley (1995), and we gratefully acknowledge Patrick Laycock's assistance with the
implementation into Genstat. The number of treatment factors is specified by the NFACTORS
parameter. Their number of levels is specified by the LEVELS parameter. This must be an integer
power of a prime number. The number of units in each block (or the number of plots in the
equivalent fractional factorial) is specified by the NUNITS parameter, and must be a power of
LEVELS.
AFMINABERRATION can also form a sub-blocking factor that can be used to define blocks if

the design is to be used to form a fractional factorial. The number of units in each sub-block is
defined by the NSUBBLOCKS parameter (and again must be a power of LEVELS).

If there are very many designs to search, you may prefer to examine only a random selection.
The NTIMES option sets the number of designs to try; its default of zero requests the standard
(full) search. The SEED option sets the seed for the random numbers that are used to select the
designs randomly; the default of zero continues the existing sequence or (if none) initializes the
seed automatically. (Note that this version of the random number generator is shared with other
design construction algorithms, such as FKEY.)

Printed output is controlled by the PRINT option, with settings:
summary summarizes the design properties;
keyblocks prints a design key to generate the block and sub-block

factors from the treatment factor (or pseudo-factors to
generate them if they have more than p levels);

keydefining prints a design key specifying the defining contrasts i.e. all
the treatment contrasts confounded with blocks or sub-
blocks;

monitoring prints monitoring information about the design
construction.

You can save the design keys using the KEYBLOCKS and KEYDEFINING parameters. In
addition, the NDESIGN parameter can save a unique "design number" for the design, and the
NSUBDESIGN parameter can save a unique number for the sub-design of the design. You can
input these with NDESIGN and NSUBDESIGN later, along with the same settings for
NTREATMENTFACTORS, LEVELS, NUNITS and NSUBUNITS, to obtain the design keys without
repeating the design search. The RESOLUTION and ABERRATION parameters can save the
resolution and aberration of the (main) design, and the SUBRESOLUTION and SUBABERRATION
parameters can save the resolution and aberration of a sub-design.

You can use the design keys to form the design using the GENERATE directive or the AFKEY
procedure. Alternatively, you may prefer to use the AGFACTORIAL procedure (4.9.2), which
combines a call to AFMINABERRATION with a program to form the factors and generate the
design automatically.
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This chapter describes the facilities for analysis of linear mixed models, estimation of variance
components and modelling of covariance structures using the method of residual maximum
likelihood (REML), sometimes also known as restricted maximum likelihood.

The REML algorithm estimates the treatment effects and variance components in a linear
mixed model: that is, a linear model with both fixed and random effects. Like regression, REML
can be used to analyse unbalanced data sets; but, unlike regression, it can account for more than
one source of variation in the data, providing an estimate of the variance components associated
with the random terms in the model. You can also model the covariance structures of the random
terms.

The REML method has many applications. It can be used to obtain information on sources and
sizes of variability in data sets. This can be of interest where the relative size of different sources
of variability must be assessed, for example to identify the least reliable stages in an industrial
process, or to design more effective experiments. REML provides efficient estimates of
treatment effects in unbalanced designs with more than one source of error. For example, it can
be used to provide estimates of treatment effects that combine information from all the strata of
an unbalanced design. It can also be used to combine information over similar experiments
conducted at different times or in different places. So you can obtain estimates that make use of
the information from all the experiments, as well as the separate estimates from each individual
experiment. Finally its ability to model correlated error structures can be useful in a wide range
of situations, including repeated measurements, spatial data and random coefficient regression.

The model for a REML analysis can be defined using the commands:
VCOMPONENTS defines the model for REML (5.2.1)

VCYCLE controls advanced aspects of the algorithm (5.3.10)
VSTRUCTURE defines a variance structure for random effects in a REML

model (5.4.1)
VPEDIGREE generates an inverse relationship matrix for use in

VSTRUCTURE when fitting animal or plant breeding
models by REML (5.6.1)

VFPEDIGREE checks and prepares pedigree information from several
factors, for use by VPEDIGREE (5.6.2)

VRESIDUAL defines the residual term for a REML model (5.8.2)
VRMETAMODEL forms the random model for a REML meta analysis (5.8.1)
VSTATUS prints the current model settings for REML (5.4.2)

The REML directive carries out the analysis, and a range of other directives and procedures are
then available to save information in Genstat data structures, to produce further output or for
other REML-based analyses:

REML fits a variance-component model by residual (or restricted)

maximum likelihood (5.3.1)
VDISPLAY displays further output from a REML analysis (5.3.2)
VGRAPH plots tables of means from a REML analysis (5.3.4)
VDEFFECTS plots one- or two-way tables of effects estimated in a REML

analysis (5.3.4)
VPLOT plots residuals from a REML analysis (5.3.5)
VDFIELDRESIDUALS display residuals from a REML analysis in field layout

(5.3.5)
VBOOTSTRAP performs a parametric bootstrap of the fixed effects in a

REML analysis (5.3.6)
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VCRITICAL uses a parametric bootstrap to estimate critical values for
a fixed term in a REML analysis (5.3.6)

VSCREEN performs screening tests for fixed terms in a REML analysis
(5.3.6)

VCHECK checks standardized residuals from a REML analysis (5.3.7)
VRCHECK checks effects of a random term in a REML analysis (5.3.7)
VSOM analyses a simple REML variance components model for

outliers using a variance shift outlier model (5.3.7)
VAIC calculates the Akaike and Schwarz (Bayesian) information

coefficients (5.3.8)
VRACCUMULATE forms a summary accumulating the results of a sequence

of REML random models (5.3.8)
VPREDICT forms predictions from a REML model (5.5.1)
VTCOMPARISONS calculates comparison contrasts within a multi-way table

of predicted means from a REML analysis (5.5.2)
VMCOMPARISON performs pairwise comparisons between REML means
VKEEP copies information from a REML analysis into Genstat data

structures (5.9.1)
VFRESIDUALS obtains residuals, fitted values and their standard errors

from a REML analysis (5.9.2)
VSPREADSHEET saves results from a REML analysis in a spreadsheet (5.9.3)
VFIXEDTESTS saves fixed tests from a REML analysis (5.9.4)
VALLSUBSETS fits all subsets of the fixed terms in a REML analysis
VAYPARALLEL does the same REML analysis for several y-variates, and

collates the output
VFLC performs an F-test of random effects in a linear mixed

model based on linear combinations of the responses, i.e.
an FLC test

VFUNCTION calculates functions of variance components from a REML
analysis

VHERITABILITY calculates generalized heritability for a random term in a
REML analysis

VPOWER uses a parametric bootstrap to estimate the power
(probability of detection) for terms in a REML analysis

VRFIT fits terms from a REML fixed model in a Genstat regression
VRADD adds terms from a REML fixed model into a Genstat

regression
VRDISPLAY displays output for a REML fixed model fitted in a Genstat

regression
VRDROP drops terms in a REML fixed model from a Genstat

regression
VRKEEP saves output for a REML fixed model fitted in a Genstat

regression
VRSETUP sets up Genstat regression to assess terms from a REML

fixed model
VRSWITCH adds or drops terms from a REML fixed model in a Genstat

regression
VRTRY tries the effect of adding and dropping individual terms

from a REML fixed model in a Genstat regression
VRPERMTEST performs permutation tests for random terms in REML

analysis
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VSAMPLESIZE estimates the replication to detect a fixed term or contrast
in a REML analysis, using parametric bootstrap

VSURFACE fits a 2-dimensional spline surface using REML, and
estimates its extreme point

VUVCOVARIANCE forms the unit-by-unit variance-covariance matrix for
specified variance components in a REML model.

F2DRESIDUALVARIOGRAM calculates and plots a 2-dimensional variogram from a
2-dimensional array of residuals

Procedures are being developed to to provide automatic selection of REML random models for

single trials, series of trials and meta analysis.
VABLOCKDESIGN analyses an incomplete-block design by REML, allowing

automatic selection of random and spatial covariance
models

VAROWCOLUMNDESIGN analyses a row-and-column design by REML, with
automatic selection of the best random and spatial
covariance model

VALINEBYTESTER provides combinabilities and deviances for a line-by-tester
t r i a l  a n a l y s e d  b y  VABLOCKDESIGN  o r
VAROWCOLUMNDESIGN

VLINEBYTESTER analyses a line-by-tester trial by REML
VASERIES analyses a series of trials with incomplete-block or

row-and-column designs by REML, automatically selecting
the best random models

VASDISPLAY displays further output from an analysis by VASERIES
VASKEEP copies information from an analysis by VASERIES into

Genstat data structures
VASMEANS saves experiment × treatment means from analysis of a

series of trials by VASERIES
VAMETA performs a REML meta analysis of a series of trials
VFMODEL forms a model-definition structure for a REML analysis
VFSTRUCTURE adds a covariance-structure definition to a REML model-

definition structure
VMODEL specifies the model for a REML analysis using a model-

definition structure defined by VFMODEL
VAOPTIONS defines options for the fitting of models by VARANDOM and

associated procedures
VARANDOM finds the best REML random model from a set of models

defined by VFMODEL
VARECOVER recovers when REML, is unable to fit a model, by

simplifying the random model
There is also a suite of procedures that use REML to estimate QTLs from single environment,

multi-environment and multi-trait trials:
DQMAP displays a genetic map

DQMKSCORES plots a grid of marker scores for genotypes and indicates
missing data

DQMQTLSCAN plots the results of a genome-wide scan for QTL effects in
multi-environment trials

DQRECOMBINATIONS plots a matrix of recombination frequencies between
markers

DQSQTLSCAN plots the results of a genome-wide scan for QTL effects in
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single-environment trials
GPREDICTION produces genomic predictions (breeding values) using

phenotypic and molecular marker information
QBESTGENOTYPES sorts individuals of a segregating population by their

genetic similarity with a defined target genotype, using the
identity by descent (IBD) information at QTL positions for
one or more traits

QCANDIDATES selects QTLs on the basis of a test statistic profile along
the genome

QDESCRIBE prints summary statistics of genotypes
QEIGENANALYSIS uses principal components analysis and the Tracy-Widom

statistic to find the number of significant principal
components to represent a set of variables

QEXPORT exports genotypic data for QTL analysis
QFLAPJACK creates a Flapjack project file from genotypic and

phenotypic data
QGSELECT obtains a representative selection of genotypes by means

of genetic distance sampling or genetic distance
optimization

QIBDPROBABILITIES reads molecular marker data and calculates IBD
probabilities

QIMPORT imports genotypic and phenotypic data for QTL analysis
QKINSHIPMATRIX forms a kinship matrix from molecular markers
QLDDECAY estimates linkage disequilibrium (LD) decay along a

chromosome
QLINKAGEGROUPS forms linkage groups using marker data from experimental

populations
QMAP constructs genetic linkage maps using marker data from

experimental populations
QMASSOCIATION performs multi-environment marker trait association

analysis in a genetically diverse population using bi-allelic
and multi-allelic markers

QMATCH matches different data structures to be used in QTL
estimation

QMBACKSELECT performs a QTL backward selection for loci in multi-
environment trials or multiple populations

QMESTIMATE calculates QTL effects in multi-environment trials or
multiple populations

QMKDIAGNOSTICS generates descriptive statistics and diagnostic plots of
molecular marker data

QMKRECODE recodes marker scores into separate alleles
QMKSELECT obtains a representative selection of markers by means of

genetic distance sampling or genetic distance optimization
QMQTLSCAN performs a genome-wide scan for QTL effects (Simple and

Composite Interval Mapping) in multi-environment trials
or multiple populations

QMTBACKSELECT performs a QTL backward selection for loci in multi-trait
trials

QMTESTIMATE calculates QTL effects in multi-trait trials
QMTQTLSCAN performs a genome-wide scan for QTL effects (Simple and

Composite Interval Mapping) in multi-trait trials
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QMVAF calculates percentage variance accounted for by QTL
effects in a multi-environment analysis

QMVESTIMATE replaces missing molecular marker scores using
conditional genotypic probabilities

QMVREPLACE replaces missing marker scores with the mode scores of
the most similar genotypes

QRECOMBINATIONS calculates the expected numbers of recombinations and the
recombination frequencies between markers

QREPORT creates an HTML report from QTL linkage or association
analysis results

QSELECTIONINDEX calculates (molecular) selection indexes by using
phenotypic information and/or molecular scores of
multiple traits

QSASSOCIATION performs multi-environment marker trait association
analysis in a genetically diverse population using bi-allelic
and multi-allelic markers

QSBACKSELECT performs a QTL backward selection for loci in single-
environment trials

QSESTIMATE calculates QTL effects in single-environment trials
QSIMULATE simulates marker data and QTL effects for single and

multiple environment trials
QSQTLSCAN performs a genome-wide scan for QTL effects (Simple and

Composite Interval Mapping) in single-environment trials
QTHRESHOLD calculates a threshold to identify a significant QTL
VGESELECT selects the best variance-covariance model for a set of

environments
Section 5.1 introduces the linear mixed models fitted by REML, and describes the underlying

methodology. Section 5.2 explains how these models are defined in Genstat using the
VCOMPONENTS directive. Section 5.3 describes the REML directive and presents examples to show
how to interpret the output of a mixed-models analysis. Section 5.4 describes the VSTRUCTURE
directive, which allows you to model the variance structure of the data to cater for correlated
random effects. Section 5.5.1 explains how to form predictions using the VPREDICT directive.
Section 5.6 is relevant to the analysis of an animal or plant breeding experiment, describing the
VPEDIGREE directive which generates a sparse inverse relationship matrix from a given pedigree
for use in VSTRUCTURE. Section 5.7 describes how to generate cubic spline terms to be fitted as
part of the random model. The smoothing parameter is estimated by REML and the fitted spline
is interpreted as a BLUP (best linear unbiased predictor). Spline terms can be particularly useful
for investigating non-linear profiles in repeated measurements data. Section 5.8 describes the use
of the VRMETAMODEL procedure and VRESIDUAL directive for specifying meta-analyses
combining data from several experiments. Finally, Section 5.9 explains how to use the VKEEP
directive to copy results from an analysis into Genstat data structures, and the VSPREADSHEET
procedure to save them in a spreadsheet.

This chapter corresponds to the Mixed Models (REML) menus in Genstat for Windows, and
can provide guidance about the model specification for these menus as well as explanations of
the output. The Linear Mixed Models menu is the most general. The Y-Variate field of the menu
corresponds to the Y parameter of REML (5.3.1), and the Fixed Model and Random Model fields
correspond to the FIXED option and RANDOM parameter of VCOMPONENTS (5.2.1). The Spline

Model field allows cubic smoothing splines to be specified, and the subsidiary Linear Mixed

Models - Correlated Errors menu uses VSTRUCTURE to specify correlation models. Genstat for
Windows also has several specialized menus for repeated measurements and spatial data.
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5.1 Models for REML estimation

This section describes the linear mixed models that can be fitted using the REML algorithm in
Genstat. The fixed and random parts of the model are discussed 5.1.1, before a formal
description of the model is given in 5.1.2. Section 5.1.3 then explains the theory behind the
residual maximum likelihood method.

5.1.1 Fixed and random effects

Fixed effects are used to describe treatments imposed in an experiment where it is the effect of
those specific choices of treatment that are of interest. Random effects are generally used to
describe the effects of factors where the values present in the experiment represent a random
selection of the values in some larger homogeneous population. It is then possible to make some
inference about this population, for example to estimate its variance and to assess the
contribution from a factor to the total variation in the data. Predictions of random effects may
also be of interest.

For example, consider the split-plot experiment of Section 4.2, used to assess the effects on
yield of three oat varieties with four levels of nitrogen application. In this experiment, specific
levels of nitrogen application have been used and the aim is to estimate the effects of these
levels; so they would be considered as fixed effects in the model, as would the three oat varieties.
However, the effects of the actual blocks and plots in the experiment are not of interest in
themselves, but they do provide a means of estimating the variability of the more general
population of blocks and plots in order to get an estimate of background variation against which
to compare the fixed effects. Blocks and plots would therefore be defined as random effects. In
this case, the fixed effects correspond to the effects used as treatments in ANOVA and the random
effects would correspond to the blocking factors in ANOVA. The REML analysis of this example
is shown in 5.3.1.

Another example (from Dempster et al. 1984) involves an experiment to assess the effect of
an experimental compound on maternal performance (see 5.3.3). Twenty-seven female rats
(dams) were treated with either a control substance or a high or low dose of an experimental
compound in order to examine the effects on their litters. The experimental data were then the
weights of each individual pup. The different treatments are specified as fixed effects. Since
litter size and the sex of the pup influence weight, these factors must also be included, and as the
effects of the specific values of these factors in the experiment are of interest, we define them
as fixed effects. Further variation is introduced into the data from the effects of different dams.
Since the dams could be considered as a random selection from a wider homogeneous population
they are introduced to the model as a random effect. The effect of pups is clearly also a random
effect. In fact, since the pups are the units of the experiment, the variation between pups is the
error variance component (*units*).

The choice of fixed and random terms is not always determined by the structure of the
experiment, but may depend on the information required. For example, variety trials are often
carried out over different sites and in several years. If a general assessment of varieties over time
is required, then the years present in the trial are considered as a random selection of years, and
year would be defined as a random term in the model. On the other hand, if the effect of the
specific years present in the trial was to be assessed, year would be defined as a fixed term.

Further discussion of the choice of fixed and random effects can be found in Snedecor &
Cochran (1989) and Searle (1971).

In general, both the fixed and random parts of the model are constructed from several factors
or variates. The structure of both parts is specified using model formulae, in the same way that
models are specified for regression (3.3.1) or analysis of variance (4.1.1). The model for both
the fixed and random parts can contain factors and variates and can use the usual crossing and
nesting operators (5.2).
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In the split-plot example, the fixed part of the model must include the main effects of oat
variety and nitrogen application plus their interaction, and is specified as

Nitrogen*Variety

where Nitrogen is a factor indicating nitrogen application on each unit, and Variety is a
factor indicating the variety grown on each unit. The random part of the model describes the
nested blocking structure of subplots within whole-plots within blocks and is specified as

Block/Wplot/Subplot

where Block is a factor indicating which block contains each unit, Wplot is a factor indicating
which whole-plot contains the unit within its block, and Subplot is a factor indicating which
subplot contains the unit within its whole-plot (see 5.3.1).

Similarly, the fixed model in the rat reproductive study described above might be written as
Dose*Sex+Littersize with random model Dam/Pup (5.3.3).

5.1.2 The linear mixed model with independent random effects

Returning to the split-plot example, the model for the yield yijk from block i, whole-plot j, subplot
k is

yijk = m + vr + as + vars + bi + wij + åijk

where the fixed part of the model consists of: m the overall constant; vr the main effect of variety
r (where r indicates the variety assigned to unit ijk); as the main effect of nitrogen application
at level s (where s indicates the nitrogen application on unit ijk); and vars their interaction. The
random model terms are bi the effect of block i, wij the effect of whole-plot j within block i, and
åijk the random error for unit ijk (which here is the same as the subplot effect, since the subplots
are the smallest units of the experiment).

This model can be re-written as a general linear mixed model by grouping the fixed and
random terms and using matrix and vector notation:

y = Xá + Zâ + å
where

y  is a vector of data (length n)
 á  is a vector of fixed effects (length p) with nxp design matrix X

â  is a vector of random effects (length q) with nxq design matrix Z
å  is a vector of random error (length n).

In the split-plot example above, there are 72 units. The vector á contains the fixed effects m,
v1,v2,v3, a1...a4 and va11...va34. The rows of matrix X correspond to the units of the experiment and
the columns correspond to the fixed effects. The values in each row of X are 1 or 0 to indicate
presence or absence of each effect for that unit. Similarly, the vector â contains the random
effects bi (i=1...6) and wij (i=1...6; j=1...3) and matrix Z indicates which units occur within each
block and whole-plot.

More generally, the random model Zâ is constructed from c model terms (in this example, it
consists of the two random model terms Block and Block.Wplot). Z and â can then be
partitioned as Z = { Z1 | Z2 | ... | Zc } and â = ( â1 â2 ... âc )N where âi is a vector of length qi. The
model can then be written in terms of the separated random model terms as

It is assumed that the random effects âi and å are mutually independent Normally distributed
random variables with zero mean, such that Cov(å)=ó2In, where In is the identity matrix of size
n, Cov(âi)=ói

2Iqi where Iqi is an identity matrix of size qi, and Cov(âi,âj)=0 for i=/ j. Therefore,
effects that occur in different random model terms are independent. This means that the
variance-covariance matrix for the whole set of random effects takes a particularly simple form,
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since Cov(â)=diag{ó1
2Iq1,...óc

2Iqc} is diagonal. The variance parameters ói
2 associated with the

random model terms are called the variance components of the model. The variance parameter
ó2 associated with the random error å is called the residual variance (or the variance of the factor
*units*). The REML algorithm estimates the variance components using residual maximum
likelihood, and then uses the variance parameter estimates to form the generalized least squares
estimates of the treatment effects and the best linear unbiased predictors (BLUPs) of the random
effects.

The general linear model defined above has the properties

where H = ZÃZN+In and Ã = diag{ ã1Iq1 ... ãcIqc }.
The expected value of the data is a function of the fixed terms alone, and its variance-

covariance matrix can be expressed either as a function of the variance components
{ ói

2 ; i=1...c } or as a function of ó2 and the set { ãi ; i=1...c } which are ratios of the variance
components to ó2, the residual variance, and are called the "gammas". When the model is defined
solely in terms of its expectation and variance-covariance matrix, the components can be
interpreted as constituent parts of the variance-covariance matrix. Therefore, so long as the
variance-covariance matrix of the data remains positive definite overall, there is no constraint
on the individual variance components to remain positive.

Although the random effects are assumed to be independent here, this model leads directly to
a correlated variance structure V for the data. Units of the data vector y will be correlated if they
share the same effect of a random term and, assuming all variance components are positive, this
correlation will increase as the number of common random effects increases. For example, in the
split-plot experiment above, the variance of the data is

Var(yijk) = ób
2 + ów

2 + ó2

where ób
2 and ów

2 are the variance components for blocks and whole-plots respectively.
Covariances within blocks and whole-plots are then

Cov(yijk, yiml) = ób
2

Cov(yijk, yijl) = ób
2 + ów

2

So correlation is higher for two plots within the same whole-plot than for two plots in the same
block (but different whole-plots). This is known as a uniform or compound symmetry variance
structure. Other variance models can be imposed by using the assumption

Var(âi) = Gi

for some symmetric matrix Gi. Sections 5.4 onwards show to fit these models.

5.1.3 REML estimation

The method of residual maximum likelihood (REML) was introduced by Patterson & Thompson
(1971). It was developed in order to avoid the biased variance component estimates that are
produced by ordinary maximum likelihood estimation: because maximum likelihood estimates
of variance components take no account of the degrees of freedom used in estimating treatment
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effects, they have a downwards bias which increases with the number of fixed effects in the
model. This in turn leads to under-estimates of standard errors for fixed effects, which may lead
to incorrect inferences being drawn from the data. Estimates of variance parameters which take
account of the degrees of freedom used in estimating fixed effects, like those generated by
ANOVA in balanced data sets, are more desirable.

The REML method splits the data into two parts: treatment contrasts which contain
information only on the fixed effects; and error contrasts (that is, all contrasts with zero
expectation) which contain information on the variance components. The error contrasts alone
are then used to estimate the variance parameters, since they contain all of the information
available on the variance parameters. This is done by projecting the data into the residual space:
the vector space of error contrasts, where all the data contrasts have zero expectation. The
projected data has log-likelihood RL where

!2RL(y) = (n!p*)log2ð ! log|XNX| + log|V| + log|XNV!1X| + (y!Xá^)NV!1(y!Xá^)
with n as the number of data values and p* as the number of degrees of freedom used in
estimating fixed effects; that is, rank(X). Variance components are then estimated by maximizing
the log-likelihood function RL of the projected data.

The log-likelihood of the original data is L, where
!2L(y) = nlog2ð + log|V| + (y!Xá)NV!1(y!Xá).

Compared with the usual log-likelihood L, the log-likelihood of the residual data, RL, contains
several extra terms. The only extra term involving the variance components (which is therefore
the only extra term used in estimating the variance components) is log|XNV!1X| which effectively
removes the degrees of freedom used in estimating the fixed effects.

To take the simplest example, the maximum likelihood estimate of the variance of a set of n
observations yi from the same population would be G(yi!y–)2/n which has expectation (n!1)ó2/n,
whereas the more usual unbiased (REML) estimate is G(yi!y–)2/(n!1).

Similarly, in an orthogonal design, the REML estimates of the variance components are
identical to the unbiased estimates that can be produced from residual mean squares in the
analysis of variance. However, REML can also be used with unbalanced data to produce
estimates of variance components that do not suffer the downward bias associated with
maximum-likelihood estimation.

Once the variance components have been estimated, they are used to construct an estimate of
the variance-covariance matrix, V^ . The fixed effects are then estimated by generalized least
squares

á^ = (XNV^ !1X)!1XNV^ !1y  with  Var(á^) = (XNV^ !1X)!1.
Predictions of the random effects are given by the best linear unbiased predictors (BLUPs)

â^  = (ZNZ+Ã!1)!1ZN(y!Xá^).

5.2 Specifying linear mixed models

The VCOMPONENTS directive sets up the linear mixed model to be analysed by REML similarly
to the way in which the TREATMENTSTRUCTURE and BLOCKSTRUCTURE directives set up the
model for ANOVA (Chapter 4). This section first summarises the syntax of VCOMPONENTS (5.2.1).
It then describes the parameterization of the fixed model (5.2.2), shows how the random model
is defined (5.2.3) and explains how to define initial values or set constraints on the variance
components (5.2.4).
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5.2.1 The VCOMPONENTS directive

VCOMPONENTS directive
Defines the variance-components model for REML.

Options
FIXED = formula Fixed model terms; default *
ABSORB = factor Defines the absorbing factor (appropriate only when

REML option METHOD=Fisher); default * i.e. none
CONSTANT = string token How to treat the constant term (estimate, omit);

default esti
FACTORIAL = scalar Limit on the number of factors or covariates in each

fixed term; default 3
CADJUST = string token What adjustment to make to covariates before analysis

(mean, none); default mean
RELATIONSHIP = matrix Defines relationships constraining the values of the

components; default *
SPLINE = formula Defines random cubic spline terms to be generated: each

term must contain only one variate, if there is more than
one factor in a term, separate splines are calculated for
each combination of levels of the factors

EXPERIMENTS = factor Factor defining the different experiments in a multi-
experiment (meta-) analysis

Parameters
RANDOM = formula Random model terms
INITIAL = scalars Initial values for each component and the residual

variance
CONSTRAINTS = string tokens How to constrain each variance component and the

residual variance (none, positive, fixrelative,
fixabsolute); default none

The VCOMPONENTS directive specifies the linear mixed model to be fitted by subsequent REML
statements. The fixed terms in the model are defined by a model formula supplied using the
FIXED option, and the random model terms are defined by a model formula supplied by the
RANDOM parameter. Thus, for example, the model for the split-plot experiment described in 5.1.1
would be specified by

VCOMPONENTS [FIXED=Nitrogen*Variety] \
  RANDOM=Block/Wplot/Subplot

where Nitrogen and Variety are factors indicating the treatments applied to each unit, and
Block, Wplot and Subplot are factors indicating the block, whole-plot (within block) and
subplot (within whole-plot) to which each unit belongs; see Example 5.3.1.

The model for the rat reproduction experiment would be

VCOMPONENTS [FIXED=Dose*Sex+Littersize] RANDOM=Dam/Pup

In this case, each pup is a separate unit. The analysis of this experiment is shown in 5.3.3.
If you do not specify the fixed model, the default fixed model consists of just the constant

term, which then becomes the grand mean. If the random model is unset, only a single source of
variation (the residual component) is used. In this case, REML will produce the same analysis
as the regression facilities which, since they take full advantage of the simple variance structure
of the model, would be computationally more efficient. Note that any model term found in both
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the fixed and the random model will be deleted from the random model and retained in the fixed
model only. A complete definition of the operators available in model formulae is given in 4.1.1.

By default, it is assumed that within each random model term the variance-covariance matrix
takes the form ói

2I, that is, equal variation and no correlation between different levels of the
factor. You can use the VSTRUCTURE directive, described in 5.4.1, to define other variance
structures.

As well as defining the basic model using the FIXED option and RANDOM parameter, the
VCOMPONENTS directive can also be used to modify the model or to add extra information.

A constant term is automatically included in the fixed part of the model but this can be omitted
by setting option CONSTANT=omit, provided you have also specified a fixed model.

You can supply initial values for the gamma ratios of the variance components using the
INITIAL parameter, and you can impose constraints on the gamma parameters using either the
RELATIONSHIP option or the CONSTRAINTS parameter. The CONSTRAINTS parameter allows
you to request that any gamma parameter should be held positive or fixed at its initial value. The
default setting, none, allows the variance components to become negative, provided the overall
estimated variance-covariance matrix for the data remains positive definite. The RELATIONSHIP
option can be used to define linear relationships between the variance components, for example
that component A should be constrained to be twice component B. Full details are given in 5.2.4.

The ABSORB option allows you to specify a factor from either the fixed or the random model
to act as an absorbing factor for the model, when the METHOD option of REML is set to Fisher.
The absorbing factor is used to divide the model terms into two groups; this partition is then used
in calculations during the fitting process to reduce the size of the matrices that have to be
inverted and stored. Use of an absorbing factor can therefore save computing time and data
space. However, although exactly the same model is fitted when an absorbing factor is used,
some of the standard errors are unavailable (see 5.3.3, 5.3.9). A good choice of absorbing factor
might be a factor with a large number of levels, or any factor whose effects and standard errors
are not of interest. The choice of an absorbing factor is considered in detail in 5.3.9. Absorbing
factors are irrelevant with the AI method of REML, as this uses sparse-matrix methods which are
very economical with data space (Gilmour et al. 1995).

The SPLINE option, described in more detail in Section 5.7, allows cubic smoothing splines
to be defined for inclusion in the random model.

If an EXPERIMENTS factor is specified, a different residual variance will be estimated for each
factor level. The VRESIDUAL directive (Section 5.8.2) can be used to specify more complex
variance models at each site.

5.2.2 The fixed model

You define the fixed terms to be included in the linear mixed model using the FIXED option of
VCOMPONENTS. The model formula that you specify can include both factors and variates.

Factors are used, as in regression and analysis of variance, to represent qualitative effects.
Consider a simple example where a factor Dose might be used to describe the effect of different
doses (none, low or high). This would be specified using the FIXED option of VCOMPONENTS

VCOMPONENTS [FIXED=Dose]

and would lead to the model
yij = a + bi + åij

where yij is the data value for unit j which received dose i, a is the overall constant, and the
parameters bi describe the effects of the different doses. As in regression models, unless the
constant term is omitted, some form of constraint is needed to avoid over-parameterization. For
model terms containing only factors, the parameters corresponding to the first levels of the
factors are constrained to be zero, as in Genstat regression (4.3.2). The parameters for other
levels of the factor are then comparisons with the first level. Here, for example, b1 (Dose=none)
would be set to zero, and parameter b2 (Dose=low) would estimate the difference between the
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low dose and no dose. Similarly, b3 would estimate the difference between high dose and no
dose. Note that the parameter a is not the grand mean, since it contains both the grand mean and
the effect of the first level of factor Dose; it is an estimate of the expected value of y when the
first level of the factor is applied. The parameters bi are then the adjustments to be added to a
to estimate the expected value for the other levels of Dose.

Also, whenever a parameter is found to be completely aliased with parameters fitted earlier
in the model, the aliased parameter is set to zero.

Variates can be included in the model to represent a linear relationship between the y-variate
and a covariate. By default covariates are centred so, for example, if a variate X is added to the
FIXED model above

VCOMPONENTS [FIXED=Dose+X]

the model to be fitted becomes
yij = a + bi + c × ( xij ! xG )  + åij

where xij is the value of the covariate for unit ij, xG is the mean of the covariate (weighted when
appropriate) and c estimates the slope (or regression coefficient) of the linear relationship
between the expected value of y and the covariate X. The parameter a is a constant term
representing the grand mean plus the effect of dose level 1 (none) plus an adjustment for the
covariate mean i.e. a is the intercept for dose level 1 plus cxG; b2 (or b3) represent the difference
in intercept between dose levels 2 (or 3) and level 1.

When interactions of factors and variates are included in the model, terms are added to fit a
different regression coefficient for each level of the factor. If the interaction between X and Dose
is added to our example

VCOMPONENTS [FIXED=Dose*X]

the model becomes
yij =  a + bi + c × ( xij ! xG ) + di × ( xij ! xG ) + eij

Again, constraints are required to avoid over-parameterization: parameter d1 is constrained to be
zero, so that d2 (or d3) represents the difference in slope between dose levels 2 (or 3) and level
1.

You can request that uncentred covariates are used by setting option CADJUST=none. The
fitted model becomes

yij  =  a + bi + c xij + di xij + eij

and the constant term a now represents the grand mean plus the intercept for dose level 1. The
covariates must either all be centred or all remain unadjusted. One way of centring some
covariates but not others is to centre the desired covariates before analysis using CALCULATE and
then proceed with CADJUST=none. With the default setting, CADJUST=mean, tables of predicted
means will be produced at the mean covariate values. When CADJUST=none, predictions will
be produced at zero values of each covariate. The amount by which each covariate is adjusted
(by REML) can be obtained using the CADJUSTMENT parameter of VKEEP (see 5.9.1).

When the VCOMPONENTS option setting CONSTANT=omit is used, the same parameterization
convention is used, with the exception that the first fixed model term containing only factors (if
such a term is present) will have no constraint imposed.

You can set a limit on the number of factors and variates allowed within each term of the fixed
model using the FACTORIAL option of the REML directive (see 5.3.1).

5.2.3 The random model

The model formula for the random part of the model is specified using the RANDOM parameter
of the VCOMPONENTS directive and can also include both factors and variates. Each random
model term defines a set of random effects and an associated variance component. For example,
the nested block structure of the split-plot experiment is specified by

VCOMPONENTS [FIXED=Nitrogen*Variety] \
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  RANDOM=Block/Wplot/Subplot

so three variance components are included in the model representing the variation due to the
blocks, the whole-plots and the subplots.

The random term which corresponds to the residual variation between units, or error variance
ó2, is called the residual component and is considered separately from the rest of the random
terms within the algorithm. If the residual component is not specified, it is automatically added
onto the end of the random model. Here the Block.Wplot.Subplot term is the residual
component since it represents the variation between units at the lowest level of the experiment;
that is, the subplots. The same model could have been specified as

VCOMPONENTS [FIXED=Nitrogen*Variety] RANDOM=Block/Wplot

and the residual component would have been added automatically. Genstat would then refer to
it as *units*.

If the model is viewed in terms of random effects, then for a random model term specified by
factors, an effect is included for each combination of the levels of the factors. For example, the
random model in the split-plot example is

yijk = {fixed model terms} + bi + wij + åijk

with one parameter bi (i=1...6) for each of the blocks and one parameter wij (i=1...6, j=1...3) for
each whole-plot within each block. To avoid over-parameterization, the random effects are
constrained so that their sum is zero within each model term. When variance components are
estimated as negative values, standard errors are not available for the effects of the
corresponding random terms.

You can also include variates in the RANDOM formula to specify random covariates. This may
be useful, for example, in specifying models where a linear response to an explanatory variable
varies randomly between groups or individuals. Note that covariance between the intercept and
a random slope is usually required to give a sensible model, as in random coefficient regression
(see Section 5.4.5). Some rescaling of each covariate may be required ! if the covariate values
are either very small or very large ! in order to bring the estimated variance component to a
reasonable value. Currently the minimum value allowed is 0.001 × ó2.

In general, care must be taken not to specify the residual component more than once, unless
some form of constraint is imposed, or unless one of these is the subject of a variance model
(specified by VSTRUCTURE) ! see Example 5.4.4c. Otherwise no estimation will be possible.

In a very few cases, you may wish to add the residual component onto the end of the random
model even though it has already been specified. For example, in some algorithms for fitting
generalized linear mixed models, it is necessary to estimate the residual component on the linear
predictor scale whilst fixing the variance parameter on the natural scale. You can tell Genstat to
add an `extra' residual component to the model by using the string '*units*' at the end of the
random model. For example

VCOMPONENTS Block/Plot+'*units*'; CONSTRAIN=none,none,fix;\
  INITIAL=1,1,2
REML [WEIGHTS=W] Y

will produce the variance structure
ób

2 ZbIbZbN + óp
2 In + 2 diag{ wi ; i=1...n }.

This facility should rarely be needed and should be used with care.

5.2.4 Setting initial values and constraints on variance components

Computing time can be saved by specifying good initial values for some, or all, of the variance
parameters. This is especially helpful if the data set is large or many model terms are to be fitted.
The initial values are specified using the INITIAL parameter of the VCOMPONENTS directive.
The values run in parallel with the expanded form of the RANDOM model, which follows the rules
given in 4.1.1. The initial values for all except the residual component should be specified in
terms of the gamma ratios defined in 5.2.1, that is, as the ratios of the variance components to
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the error variance. For the residual component, an initial estimate of the residual variance
component itself should be supplied.

For example, the split-plot model

Block/Wplot/Subplot

expands to

Block + Block.Wplot + Block.Wplot.Subplot

and would require three initial values: e.g.

VCOMPONENTS RANDOM=Block/Wplot/Subplot; INITIAL=7,3,1

The random model

Row*Column

would expand to

Row + Column + Row.Column

and would also require three initial values: e.g.

VCOMPONENTS RANDOM=Row*Column; INITIAL=5,8,20

As usual, the list of initial values is recycled if it is shorter than the list of terms in the RANDOM
model formula. You must remember that the residual component will be added onto the end of
the random model (unless it is specified explicitly) and so you must give an initial value for the
error variance at the end of the list. For example, if the random model for the split-plot
experiment is specified as Block/Wplot, then the residual component will be added onto the
end of the random model to give three terms in total, so three initial values must be specified

VCOMPONENTS RANDOM=Block/Wplot; INITIAL=7,3,1

Any gamma for which no initial value is available should be given an initial value of 1, which
is the default when no initial values are specified.

By default, the estimates of variance components are allowed to take any non-zero value
(positive or negative) such that the variance-covariance matrix of the data (V) remains positive
definite. However, you may sometimes wish to constrain the components to remain positive.
This can be done by setting parameter CONSTRAINTS=positive. You can give a list of strings
to specify different constraints for each term in the random model. These again run in parallel
with the expanded form of the random model (plus residual component if necessary), and will
be recycled if the list is too short. For example,

VCOMPONENTS RANDOM=Block/Wplot; CONSTRAINTS=positive

would constrain all estimates of components to be positive in the split-plot example. If the
Block component alone was to be held positive, the command would be

VCOMPONENTS RANDOM=Block/Wplot; \
  CONSTRAINTS=positive,none,positive

The constraints can be relaxed again to allow negative components by setting
CONSTRAINTS=none, which is the default.

If the value of a gamma or a variance component is sufficiently well known for there to be no
need for further estimation, it can be fixed at its initial value. You can fix the gamma (that is, the
ratio of the variance component to the error variance) for a model term by setting
CONSTRAINTS=fixrelative (=fix for short). For example, the command

VCOMPONENTS Row*Column; INITIAL=5,8,20; \
  CONSTRAINTS=none,fix,none

means that the gamma for the second component will be fixed at 8, that is, the Column
component will be estimated by 8ó2.

When the METHOD option of REML is set to Fisher, you can also fix the absolute value of the
variance component at its initial value by setting CONSTRAINTS=fixabsolute. You must then
specify the value of the component (not the gamma ratio) in the list of initial values. Thus the
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command

VCOMPONENTS Row*Column; INITIAL=5,8,20; \
  CONSTRAINTS=none,fixabs,none

means that the final estimated value of the Column component will be 8.
Note that components that are constrained to be fixed (relative or absolute) at their initial

values do not appear in the output as estimated variance components although they are included
in the model. Components fixed at zero will be reset to 10!3ó2 with a warning.

Constraints on the residual component are treated slightly differently to those on the other
components. Clearly, the error variance cannot be allowed to become negative, so the default
constraint is that the error variance remains positive. The error variance can be fixed at its initial
value, using either the fixabsolute or fixrelative setting. Note that a single parameter
setting CONSTRAINTS=fix will be recycled, to fix all the gamma ratios and the residual
component at their initial values.

None of these variance parameters are allowed to become zero. No estimation can take place
if the error variance is zero, which may happen because the fixed model contains as many
parameters as data values. When the METHOD option of REML is set to Fisher, any random term
that is found to be completely aliased with other model terms (so that it cannot be estimated) will
be deleted automatically from the random model, and the analysis will be rerun. If any of the
gammas becomes very close to zero for any other reason, it will be reset to a small positive value
(10!3ó2); REML generates a warning diagnostic if this has to be done repeatedly.

If components that have been constrained to be positive are estimated to be negative, they will
also be reset to a small positive value (10!3ó2). If a component remains negative when the
algorithm converges, a warning will be given since the constrained component is being held at
an artificial value and may bias other estimates. In this case, it may be wise to estimate the value
of the component without constraint to investigate whether the component is effectively zero
(see Section 5.3.3) or whether it takes a relatively large negative value, which may indicate some
unexpected structure in the variability of the data. Omission of an important term from the fixed
model can lead to unexpected negative components, so the structure of the data should also be
checked in order to detect any missing terms in the fixed model. Constraining components to be
positive does save some data space which may be useful for very large problems.

You can also apply linear equality constraints between the variance components. These are
defined by a matrix which is supplied using the RELATIONSHIP option of VCOMPONENTS. The
matrix must be square, with one row and one column for each component (including the residual
component, even if this is not specified explicitly in the random model). The entries in each row
of the matrix define the constraints on the component corresponding to that row, in terms of
multiples of the other components.

For example, consider the random model R*C, and suppose we wish to constrain the
component for R to be twice the component for C, that is óR

2=2óC
2. This random model has 3

terms, therefore we need a 3×3 matrix. The rows and columns of the matrix correspond to the
terms of the expanded model R+C+R.C in order. The first row is used to define constraints on
the component for the first random model term, which is the R component. Since this is to be
constrained to be twice the C component, the values for this row are 2 for the column
corresponding to the C component (the second model term and therefore the second column) and
zero elsewhere. The second row is used to define constraints on the second component, C. Since
this component is unconstrained, the row has value 1 for the C component (second column), and
zeros elsewhere, that is, the C component is constrained to be itself. Similarly R.C, the residual
component, is unconstrained and the final row has zeros except for value 1 in the R.C (the third)
column. The statements to define this model would then be

MATRIX [ROWS=3; COLUMNS=3; VALUES=0,2,0, 0,1,0, 0,0,1] M
VCOMPONENTS [FIXED=F; RELATIONSHIP=M] R*C

giving
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component
R
C

R.C

R

0
0
0

C

2
1
0

R.C

0
0
1

Constraint
óR

2=2óC
2

none
none

In this case, since the residual component is specified in the model as R.C, there is no need to
add an extra row and column to the matrix. However, if the same model had been specified as
R+C, a third row and column would still have been needed in the matrix to correspond to the
residual component.

If a component is defined to be a multiple of the residual component, it will be treated as if
it had been constrained fixed using parameter CONSTRAINTS=fix and will not appear in the list
of estimated variance components.

5.3 Analysing linear mixed models

This section explains how to fit and display output from the analysis of a linear mixed model.
The REML directive is described in 5.3.1, the VDISPLAY directive in 5.3.2, and the VPLOT
procedure in 5.3.5. The split-plot design, already analysed in Section 4.2, is used in the first
example (5.3.1 and 5.3.2). This illustrates that REML produces the same results as ANOVA for
balanced designs, although the results are presented slightly differently. As with ANOVA, tables
of means and effects are available for fixed model terms. REML also provides these tables for
random model terms (see 5.3.3).

In general, REML analyses have two purposes: to study fixed effects when there are several
sources of variability, and to estimate the variance components and assess the relative
importance of the sources of variability. To some extent, of course, most analyses will involve
both purposes, but for clarity we look at the two situations separately. Section 5.3.6 illustrates
the output from a REML analysis to study the fixed effects in the rat reproduction experiment.
This is an unbalanced data set where there is more than one source of variation in the data. REML
estimation in this situation is more appropriate than a linear regression analysis since it makes
use of all the available information on the fixed effects. Section 5.3.8 illustrates the output
available for assessing the structure of the variability in the data from a factory production
process. In this situation REML provides estimates of the variance components and a formal
assessment of the random model.

5.3.1 The REML directive

Once you have defined a variance components model using VCOMPONENTS, you can then fit the
model to the data (the y-variates) using the REML directive.

REML directive
Fits a variance-components model by residual (or restricted) maximum likelihood.

Options
PRINT = string tokens What output to present (model, components,

effects, means, stratumvariances, monitoring,
vcovariance, deviance, Waldtests,
missingvalues, covariancemodels); default mode,
comp, Wald, cova

PTERMS = formula Terms (fixed or random) for which effects or means are
to be printed; default * implies all the fixed terms

PSE = string token Standard errors to be printed with tables of effects and
means (differences, estimates,
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alldifferences, allestimates, none); default
diff

WEIGHTS = variate Weights for the analysis; default * implies all weights 1
MVINCLUDE = string tokens Whether to include units with missing values in the

explanatory factors and variates and/or the y-variates
(explanatory, yvariate); default * i.e. omit units
with missing values in either explanatory factors or
variates or y-variates

SUBMODEL = formula Defines a submodel of the fixed model to be assessed
against the full model (for METHOD=Fisher only)

RECYCLE = string token Whether to reuse the results from the estimation when
printing or assessing a submodel (yes, no); default no

RMETHOD = string token Which random terms to use when calculating
RESIDUALS (final, all, notspline); default fina

METHOD = string token Indicates whether to use the standard Fisher-scoring
algorithm or the new AI algorithm with sparse matrix
methods (Fisher, AI); default AI

MAXCYCLE = scalar Limit on the number of iterations; default 30
TOLERANCES = variate Tolerances for matrix inversion; default * i.e.

appropriate default values
PARAMETERIZATION = string token Parameterization to use for the variance component

estimation (gammas, sigmas) default * i.e. use
whichever is  most appropriate for model

CFORMAT = string token Whether printed output for covariance models gives the
variance matrices or the parameters
(variancematrices, parameters); default vari

FMETHOD = string token Controls whether and how to calculate F-statistics for
fixed terms (automatic, none, algebraic,
numerical); default auto

WORKSPACE = scalar Number of blocks of internal memory to be allocated for
use by the estimation algorithm when METHOD=AI

Parameters
Y = variates Variates to be analysed
RESIDUALS = variates Residuals from each analysis
FITTEDVALUES = variates Fitted values from each analysis
EXIT = scalar Exit status of the fit (0 if successful)
SAVE = REML save structures Saves the details of each analysis for use in subsequent

VDISPLAY and VKEEP directives

The REML directive performs the analysis, allowing control over the estimation process and the
output that is produced. Some advanced aspects of the estimation process can be controlled using
the VCYCLE directive (5.3.10), but these very rarely need to be changed.

The first parameter, Y, lists the variates that are to be modelled. You can restrict any of the y-
variates or any of the factors or variates in the fixed and random models to indicate that only a
subset of the units are to be used in the analysis (see 1:4.4.1). If more than one of these vectors
is restricted, they must all be restricted to the same set of units.

The parameters FITTEDVALUES and RESIDUALS allow you to store the fitted values and
residuals from the fitted model. The EXIT parameter saves the "exit status" of each analysis. This
is set to zero if it was completed successfully; for details of the other codes, see Section 5.9.1.
Parameter SAVE can be used to name the REML save structure for use with later VKEEP and
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VDISPLAY directives.
The three options PRINT, PTERMS and PSE all control the printed output. The PRINT option

selects the output to be displayed. The different settings are explained in detail in different
sections of this chapter, as indicated below:

model description of model fitted (5.3.1)
components estimates of variance components (5.3.5)
effects tables of effects; that is, estimates of parameters á and â

(5.3.6)
means tables of means; that is, predicted means for factor

combinations (5.3.2)
stratumvariances approximate stratum variances from a decomposition of

the information matrix for the variance components
(available only for METHOD=Fisher; see 5.3.2)

monitoring monitoring information at each iteration (5.4)
vcovariance variance-covariance matrix of the estimated components

(5.4.4)
deviance deviance of the fitted model ( !2 × log-likelihood RL) plus

deviance of submodel if specified (5.4.3 and 5.4.4)
waldtests Wald tests for all fixed terms in model (5.3.6)
missingvalue estimates of missing values (relevant when option

MVINCLUDE=yvariate)
covariancemodels estimated covariance models (in the format requested by

the CFORMAT option; see Section 5.4.4)

The default setting consists of model, components, waldtests and covariancemodels.
Options PTERMS and PSE control the tables of means and effects that are printed, and their
accompanying standard errors (see 5.3.2). The FMETHOD option controls whether to accompany
the Wald tests for fixed effects with approximate F statistics and corresponding numbers of
residual degrees of freedom (see 5.3.6).

The FACTORIAL option is used to set a limit on the number of factors and variates allowed in
each fixed term; any term containing more than that number is deleted from the model.

The MVINCLUDE option allows the inclusion of units with missing values. By default, units
where there is a missing value in the y-variate or in any of the factors or variates in the model
terms are excluded. The setting explanatory allows units with missing values in factors or
variates in the model to be included. For missing covariate values, this is equivalent to
substituting the mean value. The setting yvariate includes units with missing values in the y-
variate. This can be useful to retain the balanced structure of the data for use with direct product
covariance matrices (see VSTRUCTURE, Section 5.4.1), or to produce predictions of data values
for given values of explanatory factors and/or variates.

The WEIGHTS option can be used to specify a weight for each unit in the analysis. This is
useful when it is suspected that the size of the random error varies between units. For example,
if the random error for unit i is known to have variance vió

2, a weight variate should be used
containing values wi=1/vi.

Option SUBMODEL is used to specify a sub-model of the fixed model (but only applies when
METHOD=Fisher). This model will be fitted as well as the full fixed model, using a slightly
modified version of the algorithm, and the difference in deviances between the full and sub-
model can be used as a likelihood-based test to assess the importance of the fixed terms dropped
from the full model. This is explained in detail in 5.3.6. Once the full model has been fitted, the
RECYCLE option can be used to test a series of sub-models of the fixed model. If option
RECYCLE=yes is set, then only the estimation for the sub-model is performed. Information for
the full fixed model is picked up from the corresponding save structure. When the RECYCLE
option is set, only the deviance and model settings of PRINT can be used. Note that the change
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in deviance will not be printed unless the setting PRINT=deviance is used.
The RMETHOD option controls the way in which residuals and fitted values are formed. For the

default setting RMETHOD=final, the fitted values y^ are calculated from all the fixed and random
effects: y^ = Xá^  + Zâ^ . The residuals are the difference between the data and the fitted values and,
in this case, are estimates of the values of å, the *units* random error. These residuals can be
used to check the Normality and variance homogeneity assumptions for the random error. To get
fitted values constructed from the fixed terms alone, omitting all random terms, the setting
RMETHOD=all must be used. The fitted values are then y^ = Xá^ , and the residuals are predictors
of Zâ+å. The setting RMETHOD=notspline means that the residuals will be formed from all the
random effects, excluding spline terms (see 5.7). Procedure VPLOT (5.3.5) can also be used to
produce various diagnostic plots.

The METHOD option specifies whether to use the AI(Average Information) algorithm (Gilmour
et al. 1995) with sparse matrix methods to maximize the residual likelihood, or Fisher scoring
with full matrix manipulation. By default the sparse Average Information algorithm is used, and
it will also be used (regardless of the setting of METHOD) if covariance models are specified by
VSTRUCTURE or if the EXPERIMENTS option of VCOMPONENTS is set to indicate a multi-
experiment analysis. The AI algorithm generally runs faster per iteration than Fisher scoring and
uses much less workspace, but it may require slightly more iterations to reach convergence.
When sparse matrix methods are used, standard errors of differences will not be available for
random effects, although standard errors are available. Note that when METHOD=AI, the
SUBMODEL and RECYCLE options do not apply.

The TOLERANCES option controls the tolerances for matrix inversion. Three values can be
specified in a variate. The first two values are matrix inversion tolerances for the information
matrix and the mixed model equations respectively and take the value 10!5 by default. The third
value is used to detect zero frequency counts for factor combinations in the mixed model
equations: 10!6 is used by default.

Option MAXCYCLE can be used to change the maximum number of iterations performed by the
algorithm from the default of 30.

The PARAMETERIZATION option allows you to control whether the variance model is
parameterized in terms of the gamma ratios defined in 5.1.2 (that is as ratios of variance
components to the error variance), or whether the variance components themselves are used. By
default, REML attempts to select the parameterization automatically to suit the model to be fitted.

The WORKSPACE option specifies the number of blocks of internal memory to be allocated for
use by the estimation algorithm when METHOD=AI. If this is not set, REML sets the number
automatically according to the complexity of the model to be fitted.

Example 5.3.1 shows how to analyse the split-plot design from Section 4.2.1 using REML.

Example 5.3.1

   2  " Split-plot design (Yates 1937, p.74; also John 1971, p.99)."
   3  UNITS [NVALUES=72]
   4  FACTOR [LEVELS=6] Blocks
   5  & [LEVELS=3] Wplots
   6  & [LEVELS=4] Subplots
   7  GENERATE Blocks,Wplots,Subplots
   8  FACTOR [LABELS=!T(Victory,'Golden rain',Marvellous)] Variety
   9  & [LABELS=!T('0 cwt','0.2 cwt','0.4 cwt','0.6 cwt')] Nitrogen
  10  VARIATE Yield; EXTRA=' of oats'
  11  READ [SERIAL=yes] Nitrogen,Variety,Yield

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Yield     53.00     104.0     174.0        72         0

    Identifier    Values   Missing    Levels
      Nitrogen        72         0         4
       Variety        72         0         3
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  24  VCOMPONENTS [Nitrogen*Variety] Blocks/Wplots/Subplots
  25  REML [METHOD=Fisher] Yield

REML variance components analysis
=================================

Response variate:  Yield of oats
Fixed model:       Constant + Nitrogen + Variety + Nitrogen.Variety
Random model:      Blocks + Blocks.Wplots + Blocks.Wplots.Subplots
Number of units:   72

Blocks.Wplots.Subplots used as residual term

Non-sparse algorithm with Fisher scoring

Estimated variance components
-----------------------------

Random term               component        s.e.
Blocks                        214.5       168.8
Blocks.Wplots                 106.1        67.9

Residual variance model
-----------------------

Term                         Model(order)  Parameter      Estimate      s.e.
Blocks.Wplots.Subplots       Identity      Sigma2            177.1      37.3

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Nitrogen                        113.06       3         37.69    45.0  <0.001
Variety                           2.97       2          1.49    10.0   0.272
Nitrogen.Variety                  1.82       6          0.30    45.0   0.932

Dropping individual terms from full fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Nitrogen.Variety                  1.82       6          0.30    45.0   0.932

* MESSAGE: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

This example shows the default output from REML. First, a summary of the model is given by the
setting model; this includes details of the response variate, the fixed and random model terms,
the number of units analysed and whether options such as the absorbing factor, weights or
mvinclude are set. The number of units analysed takes account of units excluded because of
restrictions, zero weights or missing values in either the response variate or the factors and
variates in the model. After the model description, the estimates of the variance components are
printed with their standard errors. Finally, Wald tests are printed for the fixed model terms.
Provided the design and models are not too large or complicated, the default setting of the
FMETHOD option also produces F statistics with their numerator (n.d.f.) and denominator (d.d.f.)
numbers of degrees of freedom. With an orthogonal design, like that in Example 5.3.1, the F
statistics are identical to those produced by ANOVA (see Example 4.2.1), and can be used in
exactly the same way. In other situations, they have approximate F distributions and so the F
probabilities (F pr) should be used with care especially if the value is close to a critical value.
The Wald and F statistics, and the FMETHOD option, are explained in more detail in 5.3.6.
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5.3.2 Further output: the VDISPLAY directive

VDISPLAY directive
Displays further output from a REML analysis.

Options
PRINT = string tokens What output to present (model, components,

effects, means, stratumvariances,
monitoring, vcovariance, deviance,

Waldtests, missingvalues, covariancemodels);
default mode, comp, Wald, cova

CHANNEL = identifier Channel number of file, or identifier of a text to store
output; default current output file

PTERMS = formula Terms (fixed or random) for which effects or means are
to be printed; default * implies all the fixed terms

PSE = string token Standard errors to be printed with tables of effects and
means (differences, estimates,
alldifferences, allestimates, none); default
diff

CFORMAT = string token Whether printed output for covariance models gives the
variance matrices or the parameters
(variancematrices, parameters); default vari

FMETHOD = string token Controls whether and how to calculate F-statistics for
fixed terms (automatic, none, algebraic,
numerical); default auto

Parameter
REML save structures Save structure containing the details of each analysis;

default is to take the save structure from the latest REML
analysis

You can store the information from a REML analysis using the parameter SAVE in the REML
statement, and then specify the same structure with the SAVE parameter of VDISPLAY. Several
SAVE structures can be specified, corresponding to the analyses of several different variates.
These need not have been analysed using the same REML statement, or even from the same model
(as defined by VCOMPONENTS). Alternatively, if you just want to display output from the last y-
variate that was analysed, there is no need to use the SAVE parameter in either REML or
VDISPLAY: the save structure for the last y-variate analysed is saved automatically, and provides
the default for VDISPLAY.

The options of VDISPLAY are the same as those that control output from REML: PRINT,
PTERMS, PSE, CFORMAT and FMETHOD, plus the CHANNEL option which allows output to be
directed to another output channel or into a text structure. The available settings of PRINT are
identical to those in REML.

Example 5.3.2 continues Example 5.3.1, and uses VDISPLAY to print approximate stratum
variances and tables of predicted means. The approximate stratum variances, which are available
only when the Fisher method is used (see line 25 of Example 5.3.1), are derived from a
decomposition of the information matrix for the variance components and are accompanied by
the matrix of coefficients used to construct the stratum variances from the components.

In this orthogonal design, the approximate stratum variances are exactly the same as the
residual mean squares from the strata in Example 4.2.1. Note that this will be the case only when
the design is orthogonal: that is when the efficiency factors for the treatments are either 1 or 0
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in each stratum. Also, under these circumstances, the estimates of variance components are the
same as those that can be obtained from the analysis of variance by equating the residual mean
squares to their expectations:
     EMS(Blocks)   = 3175.1 = 12ób

2 + 4ób.w
2 + ó2

     EMS(Wplots)   =  601.3 = 4ób.w
2 + ó2

     EMS(Subplots) =  177.1 = ó2

then ób
2 = 214.5, ób.w

2 = 106.1, ó2 = 177.1 as above.
The second part of the output shows the predicted means for all factor combinations from the

fixed model. For this design the means are the same as the standard means produced by ANOVA.
For non-orthogonal (but balanced) designs, like the lattice in Example 4.7.3, the REML means are
the same as the combined means produced by ANOVA. That is, in balanced designs where
treatment terms can be estimated in several strata, the REML means combine all the available
information.

Example 5.3.2

  26  VDISPLAY [PRINT=means,stratumvariances]

Approximate stratum variances
-----------------------------

Stratum                            variance    effective d.f.
Blocks                               3175.1         5.00
Blocks.Wplots                         601.3        10.00
Blocks.Wplots.Subplots                177.1        45.00

Matrix of coefficients of components for each stratum:

                  Blocks       12.00        4.00        1.00
           Blocks.Wplots        0.00        4.00        1.00
  Blocks.Wplots.Subplots        0.00        0.00        1.00

Table of predicted means for Constant
-------------------------------------

            104.0    Standard error:    6.64

Table of predicted means for Nitrogen
-------------------------------------

Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
             79.4     98.9    114.2    123.4

Standard error of differences: 4.436

Table of predicted means for Variety
------------------------------------

Variety      Victory  Golden rain   Marvellous
                97.6        104.5        109.8

Standard error of differences: 7.079

Table of predicted means for Nitrogen.Variety
---------------------------------------------

      Variety      Victory  Golden rain   Marvellous
     Nitrogen
        0 cwt         71.5         80.0         86.7
      0.2 cwt         89.7         98.5        108.5
      0.4 cwt        110.8        114.7        117.2
      0.6 cwt        118.5        124.8        126.8
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Standard errors of differences

Average:           9.161
Maximum:           9.715
Minimum:           7.683

Average variance of differences: 84.74

Standard error of differences for same level of factor:

               Nitrogen     Variety
Average:          9.715       7.683
Maximum:          9.715       7.683
Minimum:          9.715       7.683

5.3.3 Tables of means and effects for fixed and random terms

This section gives more detail about the tables of effects for fixed and random terms provided
by a REML analysis. It then describes how tables of predicted means are constructed by
VDISPLAY. Tables of predictions can also be produced by the VPREDICT directive (5.5.1), which
provides far more control over the types of predictions that are produced and the way in which
they are calculated.

The estimates of parameters á and â in the general linear model are called the effects. Tables
of effects generally differ from those obtained from ANOVA since REML uses a different
parameterization of the linear model, described in 5.2.2 and 5.2.3.
 The estimates of á and â satisfy the"mixed model equations":

The fixed effects are estimated by the usual generalized least squares estimators
á^ = (XNV^ !1X)!1XNV^ !1y

and the random effects are predicted by best linear unbiased prediction (BLUP)
â^  = (ZNZ+Ã^ !1)!1ZN(y!Xá^).

The variance-covariance matrix for the whole set of parameters ( áN âN!â^ N ) is

and the variance matrix for the estimated parameters is obtained by using the estimated values
of the variance parameters in Ã^ . The estimated variance-covariance matrix for the fixed effect
parameters can then be shown to be Var(á^) = (XNV^ !1X)!1.

The difference between estimates of fixed and random parameters can be seen from the form
of the estimates. If the matrix Ã^ !1 is zero, the random effects are estimated as though they were
fixed effects. For positive Ã^ , the BLUP estimates â^  for random effects are smaller than if the
effects had been estimated as fixed effects. For this reason, the BLUP random effects estimates
are often called"shrunken" parameter estimates. The amount of shrinkage depends both on the
values {ãi} and on the information available for each element of â^ . Consider the simple case of
a model

yij = âi + åij

where yij measures the jth replicate for the ith group (i=1...p; j=1...ni), and there are two variance
components ó1

2 and ó2. The BLUP estimator for the random effects is
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The amount of shrinkage increases as ã=ó1
2/ó2 decreases; that is, shrinkage increases as the

variability ó1
2 of the random effect â decreases relative to the residual variance ó2. The shrinkage

discounts the likely contribution from the random error to the apparent random effect, using a
factor that depends on their relative variability. This is intuitively satisfactory since high/low
values in â may be due partly to high/low values of å. Clearly this effect would be expected to
decrease as the replication for each element of â increases. In fact, for fixed ã, the shrinkage
decreases as the amount of information (here the replication ni) on each random effect increases.
So the random effects for which most information is available, where the estimates are most
reliable, are shrunk least.

The BLUP estimates can be interpreted as predictions of the random effects given the data,
formed by regressing â on residuals calculated by adjusting the data for the fixed effects only.

Tables of effects are obtained by setting option PRINT=effects, as shown in Example
5.3.6a. The constraints imposed upon the parameters á and â are explained in Sections 5.2.2 and
5.2.3 respectively.

The setting PRINT=means produces tables of predicted means based on the estimates of
parameters á and â. In a generally balanced design, the tables of means produced by REML for
fixed model terms are the same as the combined means produced by setting option
PRINT=cbmeans in ANOVA, which are the same as the ordinary means when the design is
orthogonal (see Examples 5.3.2 and 4.2.1). There is no such correspondence for unbalanced data.
With REML, the means are calculated from a linear transformation of the estimated parameter
values, taking no account of the frequency counts for different factor combinations. Therefore,
these predicted means will correspond to the averages over the factor combinations only with
orthogonal data. In other cases, tables of means can be thought of as mean effects of factor levels
adjusted for the mean values of any covariates and for any lack of balance in the other factors:
that is, as the means you would have expected if the data had been orthogonal. If there are no
random terms in the model, the means from REML are those that would be calculated from fitting
a regression model to the fixed terms and then using PREDICT with option settings
COMBINATIONS=full and ADJUST=equal (see 3.3.4).

Predicted means are calculated using all the parameter estimates and taking means over the
model terms not present in the table. For fixed model terms, means need be taken only over the
estimates for fixed model terms, since means over random terms will always be zero. For
example, in the split-plot design of Example 5.3.1 above, if c, v1...v3, a1...a4 and va11,va12...va34

are the estimated parameters for the constant, Variety, Nitrogen and the
Variety.Nitrogen interaction respectively, the means for Variety are calculated by

mean{ Variety i } = c + vi + mean{ aj } + mean{ vaij }
and those for Variety.Nitrogen by:

mean{ Variety i, Nitrogen j } = c + vi + aj + vaij .
For random terms, means must be taken over the parameter estimates for all the terms in the
model. Since the means are based on the shrunken parameter estimates described above,
predicted means for random terms will also be shrunk.

When various parameter combinations do not occur and the calculation of a mean effect
involves taking means over any of the missing combinations, then that mean will also be a
missing value.

Option PTERMS controls the model terms for which tables of means or effects are produced.
By default, if means or effects are requested but option PTERMS is not set, tables are printed for
all the fixed model terms and none of the random terms. For covariates in the model, the linear
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regression parameter associated with the covariate can be printed as an effect, but predicted
means are not available. Predicted means for other model terms are adjusted to the mean value
of the covariate. If you want tables for terms from the random model, or for only a subset of
terms in the fixed model, you can use PTERMS to list exactly which tables you require. The
setting of PTERMS can contain the string 'Constant' (in capital or lower-case letters, or any
mixture), to obtain details of the constant term.

By default, each table is accompanied by a summary ! minimum, mean and maximum ! of
standard errors of differences (seds) for the entries in the table. This can be changed by option
PSE: putting PSE=* suppresses the production of standard errors, the setting estimates gives
a summary of the standard errors of individual table entries, while the settings
alldifferences and allestimates give the full matrix of standard errors of differences and
the table of standard errors respectively, as well as the summary. Only one setting of PSE is
allowed at a time.

When METHOD=AI, the sparse matrix methods that are used do not return the whole covariance
matrix for the random effects. So only standard errors, and not standard errors of differences, are
available for these terms.

When an absorbing factor is used, the variance-covariance matrix is not available for the
estimated parameters in the absorbing factor model. Therefore standard errors cannot be
provided for tables of effects for terms in the absorbing factor model. For tables of means the
situation is as follows: for fixed model terms, no errors are available for any term which is in the
absorbing factor model or has a fixed interaction in the absorbing factor model; for random
model terms, no errors are available for any term which is in the absorbing factor model or has
an interaction in the absorbing factor model. No standard errors are available for tables of means
if there are fixed effects in the absorbing factor model, although standard errors of differences
may be available, subject to the conditions above.

In linear mixed models with more than one source of error variation the ratio of an effect to
its standard error is not, in general, distributed as Student's t. This happens because the variance
of an effect is some linear combination of "stratum variances": that is, a weighted sum of
variables proportional to ÷2 distributions, rather than a simple multiple of a single ÷2 variable. For
the same situation the F ratios for fixed terms, shown in Example 5.3.2, have only approximate
F distributions.

Provided the design and models are not too large or complicated, REML is able to estimate
denominator numbers of degrees of freedom for the F ratios. The estimation uses the methods
devised by Kenward & Roger (1997), which are essentially based on the Satterthwaite method
used by ANOVA (4.2.1, 4.7.1). These degrees of freedom can also be used as degrees of freedom
for (approximate) t-statistics calculated for contrasts within tables of predicted means of the
corresponding fixed terms. Note, though, that the degrees of freedom are relevant for assessing
the fixed term as a whole, and may vary over the contrasts amongst the means of the term. So
they should be used with caution. (If you are interested in a specific comparison, you should set
up a 2-level factor to fit this explicitly in the analysis.)

The degrees of freedom can also be used in the VLSD procedure to calculate (approximate)
least significant differences for predicted means of fixed terms.

VLSD procedure
Prints approximate least significant differences for REML means (R.W. Payne).

Options
PRINT = string tokens Controls printed output (means, sed, lsd, df); default

lsd
FACTORIAL = scalar Limit on the number of factors in each term; default 3
LSDLEVEL = scalar Significance level (%) to use in the calculation of least
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significant differences; default 5
DFMETHOD = string token Specifies which degrees of freedom to use for the t-

statistics (fddf, given, tryfddf); default fddf
DFGIVEN = scalar Specifies the number of degrees of freedom to use for

the t-statistics when DFMETHOD=given, or if d.d.f. are
unavailable when DFMETHOD=tryfddf

FMETHOD = string token Controls how to calculate denominator degrees of
freedom for the F-statistics, if these are not already
available in the REML save structure  (automatic,
algebraic, numerical); default auto

SAVE = REML save structure Save structure to provide the table of means; default
uses the save structure from the most recent REML

Parameters
TERMS = formula Treatment terms whose means are to be compared;

default * takes the REML fixed model
MEANS = pointer or table Saves the means for each term
SED = pointer or symmetric matrix Saves standard errors of differences between means
LSD = pointer or symmetric matrix Saves approximate least significant differences matrix

for the means
DF = pointer or scalar Saves the degrees of freedom used to calculate the t

critical values for the LSDs
DDF = pointer or scalar Saves the denominator degrees of freedom in the F test

for the term
DFRANGE = pointer or scalar Saves the range of denominator degrees of freedom in

the F tests for the term and any terms that are marginal
to the term (available only when denominator degrees of
freedom of F-statistics are being used)

The TERMS parameter specifies a model formula to define the fixed terms whose predicted means
are to be compared. The means are usually taken from the most recent analysis performed by
REML, but you can set the SAVE option to a save structure from another REML if you want to
examine means from an earlier analysis. As in VCOMPONENTS (5.2.1), the FACTORIAL option
sets a limit on the number of factors in each term (default 3).

The DFMETHOD option specifies how to obtain the degrees of freedom for the t-statistics. The
default is to use the numbers of denominator degrees of freedom printed by REML in the d.d.f.
column in the table of tests for fixed tests (produced by setting option PRINT=wald). The
degrees of freedom are relevant for assessing the fixed term as a whole, and may vary over the
contrasts amongst the means of the term. So the LSDs should be used with caution. (If you are
interested in a specific comparison, you should set up a 2-level factor to fit this explicitly in the
analysis.) The FMETHOD option controls how the denominator degrees of freedom should be
calculated, if they are not already available in the REML save structure (e.g. because they were
printed in the original analysis). The settings are the same as in the REML directive (5.3.1), except
that there is no none setting. (You would set this option only if you really do want to calculate
them.)

In some of the more complicated analyses, REML may be unable to calculate the denominator
degrees of freedom. You might then want to supply the number of degrees of freedom yourself,
using the DFGIVEN option, rather than having no least significant differences at all. For example,
you could use the number of denominator degrees of freedom from the analysis of an earlier
similar design. However, the results will only be as good as the degrees of freedom that you have
supplied, and thus should be used with caution! You can set option DFMETHOD=tryfddf to use
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the denominator degrees of freedom, if these can be calculated, or those specified by DFGIVEN
otherwise. The setting DFMETHOD=given always uses the degrees of freedom specified by
DFGIVEN.

Printed output is controlled by the PRINT option, with settings:
means prints the means;
sed prints standard errors for differences between the means;
lsd prints least significant differences for the means;
df prints the degrees of freedom used to calculate the t

critical value required for the LSD, together with the
denominator degrees of freedom in the F test for the term
if these are not the same.

The significance level to use in the calculation of the least significant differences can be changed
from the default of 5% using the LSDLEVEL option.

The MEANS parameter can save the means. If the TERMS parameter specifies a single term,
MEANS must be undeclared or set to a table. If TERMS specifies several terms, you must supply
a pointer which will then be set up to contain as many tables as there are terms. Similarly the
SED parameter can save the standard errors of differences, the LSD parameter can save the
approximate least significant differences, the DF parameter can save the degrees of freedom, and
the DDF parameter can save the denominator degrees of freedom in the F tests.

When a term involves several factors, its means may be be formed from the effects of several
terms. For example, the means for the term A.B will involve the effects for the terms A and B (if
these are in the model), as well as those for the term A.B. Different contrasts between the means
will then have different denominator degrees of freedom. For caution, if VLSD is using the
number of denominator degrees of freedom, it uses the smallest number over the terms that are
involved in calculating each table of the means. (This corresponds to the largest t-statistic.) If
the difference in the t-statistics calculated from smallest and largest numbers of degrees of
freedom differ by more than 1%, VLSD prints a warning message. If the denominator degrees of
freedom are being used, their range for each term can be saved by the DFRANGE parameter.

Example 5.3.3 calculates least significant differences for the Nitrogen means in Example
5.3.2. In this case, the least significant differences are not approximate as the Nitrogen
contrasts all have the same variance, as shown in Example 4.2.1a, and so the values match those
produced by ANOVA in Example 4.2.1a too.

Example 5.3.3

  27  VLSD Nitrogen

Approximate least significant differences (5% level) of REML means
==================================================================

Nitrogen
--------

Nitrogen   0 cwt   1           *
Nitrogen 0.2 cwt   2       8.934           *
Nitrogen 0.4 cwt   3       8.934       8.934           *
Nitrogen 0.6 cwt   4       8.934       8.934       8.934           *
                               1           2           3           4

The same methods are used in procedure VMCOMPARISON to perform (approximate) Fisher's LSD
tests; details are in Part 3 of the Genstat Reference Manual.
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5.3.4 Plots of means and effects

VGRAPH procedure
Plots tables of means from REML (R.W. Payne).

Options
GRAPHICS = string token Type of graph (highresolution, lineprinter);

default high
METHOD = string token What to plot (points, means, linesandpoints,

onlylines, data, barchart, splines); default poin
when XFACTOR is a factor, and only when it is a variate

XFREPRESENTATION = string token
How to label the x-axis (levels, labels); default
labe uses the XFACTOR labels, if available

PSE = string token What to plot to represent variation when points are
plotted at the means (differences, lsd, means,
allmeans); default diff

LSDLEVEL = scalar Significance level (%) to use for approximate least
significant differences; default 5

DFSPLINE = scalar Number of degrees of freedom to use when
METHOD=splines

YTRANSFORM = string tokens Transformed scale for additional axis marks and labels
to be plotted on the right-hand side of the y-axis
(identity, log, log10, logit, probit, cloglog,
square, exp, exp10, ilogit, iprobit, icloglog,
root); default iden i.e. none

PENYTRANSFORM = scalar Pen to use to plot the transformed axis marks and labels;
default * selects a pen, and defines its properties,
automatically

SAVE = REML save structure Save structure to provide the table of means if the
MEANS parameter is unset; default uses the save
structure from the most recent REML

Parameters
XFACTOR = factors or variates Provides the x-values for each plot; by default this is

chosen automatically
GROUPS = factors or pointers Factor or factors identifying groups in each plot; by

default chosen automatically
TRELLISGROUPS = factors or pointers

Factor or factors specifying the different plots of a trellis
plot of a multi-way table

PAGEGROUPS = factors or pointers Factor or factors specifying plots to be displayed on
different pages

NEWXLEVELS = variates Values to be used for XFACTOR; default uses the existing
levels if XFACTOR is a factor, and the minimum and
maximum values if it is a variate

TITLE = texts Title for the graph; default is to define a title
automatically if GROUPS is set, or to have none if it is
unset

YTITLE = texts Title for the y-axis; default is to use the identifier of the
y-variate, or to have no title if this is unnamed
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XTITLE = texts Title for the x-axis; default is to use the identifier of the
XFACTOR

PENS = variates Defines the pen to use to plot the points and/or line for
each group defined by the GROUPS factors

VGRAPH plots tables of predicted means from REML. In its simplest form, the behaviour of
VGRAPH depends on the model. If the fixed model contains only main effects, it plots the means
for the first factor in the fixed model. Otherwise it looks for the first fixed term involving two
factors; it then plots the means with one of these factors as the x-axis, and the second as a
grouping factor with levels identified by different plotting colours and symbols.

By default, the means are from the most recent REML. However, you can plot means from an
earlier analysis, by using the SAVE option of VGRAPH to specify its save structure (saved using
the SAVE parameter of the REML command that performed the analysis). VGRAPH uses the
VPREDICT directive (5.5.1) with default option settings to obtain the means. This should give
the same means as those printed by REML or VDISPLAY. If you want to use VPREDICT with other
option settings, you can plot these using the DTABLE procedure (1:4.11.7).

The GRAPHICS option controls whether a high-resolution or a line-printer graph is plotted; by
default GRAPHICS=high.

The METHOD option controls how the predicted means are plotted in high-resolution graphics,
with settings:

points to plot a point at each mean;
means synonym of points;
linesandpoints to plot points and join them by lines;
onlylines to draw lines between the means;
data to draw lines between the means, and then also plot the

original data values;
barchart to plot the means as a barchart;
splines to plot points at the means together with a smooth spline

to show the trend over each group of means; the
DFSPLINE specifies the degrees of freedom for the
splines; if this is not set, 2 d.f. are used when there are up
to 10 points, 3 if there are 11 to 20, and 4 for 21 or more.

The default is to plot points when XFACTOR is a factor, and onlylines when it is a variate.
Only points are available in line-printer graphics.

The PSE option specifies the type of error bar to be plotted, when points are plotted for the
means, with settings:

differences average standard error of difference;
lsd average approximate least significant difference

(calculated using the VLSD procedure);
means average effective standard error for the means;
allmeans plots plus and minus the effective standard error around

every mean.
The LSDLEVEL option sets the significance level (%) to use for the approximate least significant
differences (default 5). The allmeans setting is often unsuitable for plots other than barcharts
when there are GROUPS, as the plus/minus e.s.e. bars may overlap each other.

You can define the table of means to plot explicitly, by specifying its classifying factors using
the XFACTOR, GROUPS, TRELLISGROUPS and PAGEGROUPS parameters. The XFACTOR parameter
can define a factor against whose levels the means are plotted. It can also specify a variate, and
VPREDICT then sets up a factor automatically, to classify the table, with levels at the values
specified by the NEWXLEVELS parameter. With a multi-way table, there will be a plot of means
against the XFACTOR levels for every combination of levels of the factors specified by the
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GROUPS, TRELLISGROUPS and PAGEGROUPS parameters. The GROUPS parameter specifies
factors whose levels are to be included in a single window of the graph. So, for example, if you
specify

VGRAPH [METHOD=line] XFACTOR=A; GROUPS=B

VGRAPH will produce plot the means in a single window with factor A on the x-axis, and a line
for each level of the factor B. You can set GROUPS to a pointer to specify several factors to define
groups. For example

POINTER [VALUES=B,C] Groupfactors
VGRAPH [METHOD=line] XFACTOR=A; GROUPS=Groupfactors

to plot a line for every combination of the levels of factors B and C.
Similarly, the TRELLISGROUPS option can specify one or more factors to define a trellis plot.
For example,

VGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; TRELLISGROUPS=C

will produce a plot for each level of C, in a trellis arrangement; each plot will
again have factor A on the x-axis, and a line for each level of the factor B. Likewise, the
PAGEGROUPS parameter can specify factors whose combinations of levels are to be plotted on
different pages. So

VGRAPH [METHOD=line] XFACTOR=A; GROUPS=B; PAGEGROUPS=C

will produce a plot for each level of C, but now on separate pages. Multi-way tables can plotted
even if the corresponding model term was not in the ANOVA analysis. For example you can plot
a two-way table even if the analysis contained only the main effects of the two factors; however,
the lines will then all be parallel and no standard errors or LSDs can be included.

The NEWXLEVELS parameter enables different levels to be supplied for an XFACTOR factor,
if its existing levels are unsuitable. If the factor has labels, these are used to label the x-axis
unless you set option XFREPRESENTATION=levels. When XFACTOR is a variate, NEWXLEVELS
can specify the values where the predictions are to be made. By default, they are made at its
minimum and maximum values.

Note that the values predicted by VPREDICT, for an XFACTOR variate, will not include any
spline effects, nor can it take account of any relationships between different variates in the
model. (For example, the model may include a variate and its square.) To take account of
relationships like these, you should use VPREDICT directly, specifying the linked variables with
the PARALLEL parameter (5.5.1). Save the table of predictions, and then plot it using DTABLE
(1:4.11.7).

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis and
the x-axis, respectively. The symbols, colours and line styles that are used in a high-resolution
plot are usually set up by VGRAPH automatically. If you want to control these yourself, you
should use the PEN directive to define a pen with your preferred symbol, colour and line style,
for each of the groups defined by combinations of the GROUPS factors. The pen numbers should
then be supplied to VGRAPH, in a variate with a value for each group, using the PENS parameter.
The YTRANSFORM option allows you to include additional axis markings, transformed onto
another scale, on the right-hand side of the y-axis. Suppose, for example, suppose you have
analysed a variate of percentages that have been transformed to logits. You might then set
YTRANSFORM=ilogit (the inverse-logit transformation) to include markings in percentages
alongside the logits. The settings are the same as those of the TRANSFORM parameter of AXIS,
which is used to add the markings (1:6.9.7). You can control the colours of the transformed
marks and labels, by defining a pen with the required properties, and specifying it with the
PENYTRANSFORM option. Otherwise, the default is to plot them in blue.
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Figure 5.3.4a

Figure 5.3.4a shows the default means
plot for the analysis in Examples 5.3.1 and
5.3.2, produced by the statement

VGRAPH

VDEFFECTS procedure
Plots one- or two-way tables of effects estimated in a REML analysis (R.W. Payne).

Options
GRAPHICS = string token Type of graph (highresolution, lineprinter);

default high
METHOD = string token What to plot (effects, lines); default effe
XFREPRESENTATION = string token

How to label the x-axis (levels, labels); default
labels uses the XFACTOR labels, if available

PSE = string What s.e. to plot to represent variation (differences,
effects, alleffects); default diff

SAVE = REML save structure Save structure of the analysis to display; the default is to
take the most recent REML analysis

Parameters
XFACTOR = factors Factor providing the x-values for each plot
GROUPS = factors Factor identifying the different sets of points from a

two-way table of effects
COVARIATES = variates X-variates for regression coefficients or pointer
NEWXLEVELS = variates Values to be used for XFACTOR instead of its existing

levels
TITLE = texts Title for the graph; default defines a title automatically
YTITLE = texts Title for the y-axis; default ' '
XTITLE = texts Title for the x-axis; default is to use the identifier of the

XFACTOR
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VDEFFECTS plots tables of effects estimated in a REML analysis. By default the effects are from
the most recent analysis, but you use the SAVE option to specify the save structure from some
other analysis.

The XFACTOR parameter indicates the factor against whose levels the effects are plotted. You
can also specify a second factor, using the GROUPS parameter, to plot a two-way table of effects.
A separate set of points is then plotted for every level of GROUPS.

By default, the effects will be for the model term XFACTOR (if GROUPS is not set) or
XFACTOR.GROUPS (if GROUPS is set). You can also specify one, or more, variates for the term,
using the COVARIATES parameter. If COVARIATES is set to a single variate, xvar say, the term
will be XFACTOR.xvar or XFACTOR.GROUPS.xvar (representing regression coefficients for
xvar). Alternatively, it can be set to a pointer containing several variates, for example x1var
and x2var .  The term will be then be XFACTOR.x1var.x2var  or
XFACTOR.GROUPS.x1var.x2var (representing regression coefficients for the product of the
variates x1var and x2var).

The NEWXLEVELS parameter enables different levels to be supplied for XFACTOR if the
existing levels are unsuitable. If XFACTOR has labels, these are used to label the x-axis unless you
set option XFREPRESENTATION=levels.

Usually, each estimate is represented by a point (using pens 1, 2, and so on for each level in
turn of the GROUPS factor). However, with high-resolution plots, the METHOD option can be set
to lines to draw lines between the points. The GRAPHICS option controls whether a high-
resolution or a line-printer graph is plotted; by default GRAPHICS=high.

The PSE option specifies how to represent the variability of the effects, as follows:
differences plots an error bar showing the average standard error for

differences between pairs of effects;
effects plots an error bar showing the average standard error of

the effects;
alleffects plots a bar around each estimate showing plus and minus

its standard error.
The TITLE, YTITLE and XTITLE parameters allow you to supply titles for the graph, the y-

axis and the x-axis respectively.
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Figure 5.3.4b

Example 5.3.4b prints and plots the nitrogen
effects and e.s.e.'s from the analysis in
Examples 5.3.1 and 5.3.2.

Example 5.3.4b

  29  VDISPLAY  [PRINT=effects; PTERMS=Nitrogen]

Table of effects for Nitrogen
-----------------------------

Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
             0.00    18.17    39.33    47.00

Standard error of differences: 7.683

  30  VDEFFECTS [PSE=alleffects] Nitrogen

5.3.5 Residual plots

This section describes the procedures for plotting residuals. Other procedures for checking
residuals, for example to identify potential outliers, are described in Section 5.3.7. (Section 5.3.7
uses the example in Section 5.3.6. This does have some large residuals, unlike the Example 5.3.1
which is used in this section.)

VPLOT procedure
Plots residuals from a REML analysis (S.J. Welham).

Options
RMETHOD = string token Which random terms to use when calculating the

residuals (final, all, notspline, stfinal, stall);
default uses the setting from the REML statement

INDEX = variate X-variate for an index plot; default !(1,2...)
GRAPHICS = string token What type of graphics to use (lineprinter,

highresolution); default high
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TITLE = text Overall title for the plots; if unset, the identifier of the y-
variate is used

SAVE = REML save structure Specifies the (REML) save structure from which the
residuals and fitted values are to be taken; default * uses
the SAVE structure from the most recent REML analysis

Parameters
METHOD = string tokens Type of residual plot (fittedvalues, normal,

halfnormal, histogram, absresidual, index);
default fitt, norm, half, hist

PEN = scalars, variates or factors Pen(s) to use for each plot

Procedure VPLOT provides up to four types of residual plots from a REML analysis. These are
selected using the METHOD parameter, with settings: fitted for residuals versus fitted values,
normal for a Normal plot, halfnormal for a half-Normal plot, and histogram for a histogram
of residuals, absresidual for a plot of the absolute values of the residuals versus the fitted
values, and index for a plot against an "index" variable (specified by the INDEX option). The
default is to produce the first four types of plot. The PEN parameter can specify the graphics pen
or pens to use for each plot. The TITLE option can supply an overall title. If this is not set, the
identifier of the y-variate is used.

For a Normal plot, the Normal quantiles are calculated as follows:
qi = NED((i!0.375) / (n+0.25)) i=1...n

while for a half!Normal they are given by
qi = NED(0.5 + 0.5×(i!0.375) / (n+0.25)) i=1...n

The residuals and fitted values are accessed automatically from the analysis specified by the
SAVE option. If the SAVE option has not been set, they are taken from the last SAVE structure
from the most recent REML analysis.

The RMETHOD option controls which random terms are used to calculate the residuals:
all all the random effects,
final only the final random term,
notspline all except any random spline terms,
stall standardized residuals using all the random effects, and
stfinal standardized residuals using only the final random term.

The default takes the setting from the REML directive that produced the analysis. Note that
residuals based on the final random term will not be calculated when any of the variance
components are negative, as the associated negative correlations can generate very misleading
patterns. VPLOT will then generate a warning that all the residuals are missing, and you should
use RMETHOD=all instead.

By default, high-resolution graphics are used. Line-printer graphics can be obtained by setting
option GRAPHICS=lineprinter.
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Figure 5.3.5a

Figure 5.3.5a shows the default
set of residual plots for the analysis
in Examples 5.3.1 and 5.3.2,
produced by the statement

VPLOT

VDFIELDRESIDUALS procedure
Display residuals from a REML analysis in field layout (R.W. Payne).

Options
PRINT = string tokens Controls printed output (table); default * i.e. none
PLOT = string tokens Controls the graphs that are displayed (contour,

shade); default cont
RMETHOD = string token Which random terms to use to calculate the residuals

(final, all, notspline, stfinal, stall); default
all

GRAPHICS = string token Type of graph (highresolution, lineprinter);
default high

MARGIN = string token Whether to include margins in printed tables (yes, no);
default no

YORIENTATION = string token Y-axis orientation of the plot (reverse, normal); default
norm

PENCONTOUR = scalar Pen number to be used for the contours; default 1
PENFILL = scalar or variate Pen number(s) defining how to fill the areas between

contours; default 3
PENSHADE = scalar or variate Pen(s) to use for the shade plot; default 3
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Parameters
Y = variates or factors Specifies the y-coordinates of the plots
X = variates or factors Specifies the x-coordinates of the plots
SAVE = REML save structures Save structure of the REML analysis from which to take

the residuals; default is to take the most recent REML
analysis

FIELDWIDTH = scalars Field width for printing the residuals; default 12
DECIMALS = scalars Number of decimal places to use when printing the

residuals
TITLE = texts Titles for the plots

VDFIRLDRESIDUALS allows you to display residuals from a REML analysis in a two dimensional
layout as, for example, from a field experiment. This can be useful to study the spatial pattern
of the residuals, for example to see if there are any systematic trends in fertility.

The locations of the plots are defined by the Y and X parameters, specifying variates or factors
containing their y- and x-coordinates respectively. By default the residuals are taken from the
most recent REML analysis. However, you can take the residuals from some other analysis, by
specifying its save structure using the SAVE parameter.

The RMETHOD option controls which random terms are used to calculate the residuals:
all all the random effects (default),
final only the final random term,
notspline all except any random spline terms,
stall standardized residuals using all the random effects, and
stfinal standardized residuals using only the final random term.

Usually, the plots in the experiment will all have different coordinates. However, if there are
several plots with the same coordinates, mean residuals are calculated for each location. Thus
for example, if you wanted only to look at the block and whole-plot residuals in a split-plot
design, you could form the residuals from all the random terms, and then set identical
coordinates for the (sub-) plots within each whole plot.
VDFIELDRESIDUALS provides two types of graph, selected by the settings of  the PLOT option

as follows:
contour generates a contour plot if the plots are on a regular grid,

or a line graph if they are arranged in a single line, and
shade produces a shade plot for plots that are on a regular grid.

By default PLOT=contour. You can also set option PRINT=table to print the residuals in a
table, whose structure corresponds to the field layout,

The GRAPHICS option determines the type of graphics that is used, with settings
highresolution (the default) and lineprinter. No graphs can be produced if the plots are
in an irregular 2-dimensional arrangement. High-resolution contour plots require more than three
rows and columns, and line-printer contour plots require more than four rows and columns.
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Figure 5.3.5b

The way in which the lines are
drawn in high-resolution contour plots
is defined by the properties of the pen
specified by the PENCONTOUR option,
while the pen specified by the
PENFILL parameter defines how to
shade the areas between the contours.
Their defaults are 1 and 3 respectively.
Similarly, the pen or pens specified by
the PENSHADE option control the
colouring of the shade plot; the default
is to use pen 3. For more information
see the DCONTOUR and DSHADE

directives.
The MARGIN option, with settings no

(default) and yes, determines whether
or not marginal means are included
with the printed tables. The
FIELDWIDTH  and DECIMALS

parameters can be used to specify the
formats of the printed tables (as in the
PRINT directive). The TITLE

parameter can supply a title. If this is
not set, a default title is formed.

The YORIENTATION option controls
the orientation of the y-coordinates in
the plots and tables. By default this is
normal, so that they run upwards from the bottom of the page (as in a map).

The program below defines coordinates for the plots of the split-plot design in Example 5.3.1,
and then displays the residuals in the contour plot shown in Figure 5.3.5b.

VARIATE [VALUES=2(1...18)2] Row
& [VALUES=(1,2)18,(3,4)18] Column
VDFIELDRESIDUALS Y=Row; X=Column

5.3.6 Assessing and plotting fixed effects

We now consider in more detail the rat reproduction example described in 5.1.1 (Dempster et
al. 1984). This is an unbalanced design with fixed effects and more than one variance
component. In this case, it is the fixed effects, here different doses of the experimental compound
and its interactions, that are the primary interest. We describe below how to produce tests for the
significance of fixed effects. These tests have only asymptotic distributions and not the exact
distributional properties associated with tests from ANOVA and linear regression. Care is therefore
needed when making inferences from small samples.

The experiment was designed to compare three doses of an experimental compound for
improving maternal performance (control, low and high), so the thirty female rats (dams) were
randomly split into 3 groups of 10, and the three groups were randomly assigned to the three
different treatments. All the pups in each litter were then weighed. The fixed model is Dose *
Sex + Littersize, since the sex of the pup and the size of the litter both affect pup weight, and
including the Dose.Sex interaction meant that any differential effect of the compound on male
or female pups could be estimated. Three of the litters had to be dropped from the study, which
meant that one treatment group had only seven litters. Also, litters contain different numbers of
male and female pups, as well as being of different total size. This means that the experiment is
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not balanced, and so cannot be analysed using ANOVA. If it had only one component of variance,
the experiment could be analysed by linear regression. However, further variation is introduced
into the data by the effects of different dams. Since the dams could be considered as a random
selection from the wider population we use the dams as a random effect. The effect of pups is
also a random effect. Since the pups are the units of the experiment, the variation between pups
is in fact the error variance component. There are therefore two components of variance, due to
dams and to pups within dams. Example 5.3.6a shows the analysis of this experiment.

Since the different doses are applied to different dams, most of the information on the
compounds is contained in the differences between the dams. Including dams as a random effect
means that REML can make use of the between-dam information when estimating the effects of
compounds. The variance component due to dam is also estimated, and used to construct
appropriate standard errors for the effects.

Example 5.3.6a

   2  UNITS [NVALUES=322]
   3  FACTOR [LEVELS=27] Dam
   4  &      [LEVELS=18] Pup
   5  FACTOR [LEVELS=2; LABELS=!T('M','F')] Sex
   6  FACTOR [LEVELS=3; LABELS=!T('C','Low','High')] Dose
   7  VARIATE Littersize,Weight
   8  OPEN 'RATS.DAT'; CHANNEL=2; FILETYPE=input
   9  READ [CHANNEL=2] Dose,Sex,Littersize,Dam,Pup,Weight; \
  10    FREPRESENTATION=2(labels),4(levels)

    Identifier   Minimum      Mean   Maximum    Values   Missing
    Littersize     2.000     13.33     18.00       322         0
        Weight     3.680     6.084     8.330       322         0

    Identifier    Values   Missing    Levels
          Dose       322         0         3
           Sex       322         0         2
           Dam       322         0        27
           Pup       322         0        18

  11  CLOSE 2
  12  VCOMPONENTS [FIXED=Littersize+Dose*Sex] RANDOM=Dam/Pup
  13  REML [PRINT=model,components,effects] Weight

REML variance components analysis
=================================

Response variate:  Weight
Fixed model:       Constant + Littersize + Dose + Sex + Dose.Sex
Random model:      Dam + Dam.Pup
Number of units:   322

Dam.Pup used as residual term

Sparse algorithm with AI optimisation
All covariates centred

Estimated variance components
-----------------------------

Random term               component        s.e.
Dam                          0.0970      0.0332

Residual variance model
-----------------------

Term                         Model(order)  Parameter      Estimate      s.e.
Dam.Pup                      Identity      Sigma2            0.165    0.0137
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Table of effects for Constant
-----------------------------

            6.612    Standard error: 0.1099

Table of effects for Littersize
-------------------------------

          -0.1279    Standard error: 0.01881

Table of effects for Dose
-------------------------

Dose            C          Low         High
           0.0000      -0.4528      -0.9046

Standard errors of differences

Average:          0.1815
Maximum:          0.1936
Minimum:          0.1587

Average variance of differences: 0.03319

Table of effects for Sex
------------------------

Sex            M            F
          0.0000      -0.4116

Standard error of differences: 0.07356

Table of effects for Dose.Sex
-----------------------------

          Sex            M            F
         Dose
            C      0.00000      0.00000
          Low      0.00000      0.07008
         High      0.00000      0.10719

Standard errors of differences

Average:          0.1210
Maximum:          0.1342
Minimum:          0.1063

Average variance of differences: 0.01482

Tables of effects contain the values of the estimated parameters á^  and â^ . By default REML prints
estimated effects á^  only for the fixed model terms, as shown in Example 5.3.6a. The effects are
subject to constraints (as described in 5.2.2) so that parameters corresponding to the first level
of a factor are set to zero. The constant term is then not the grand mean, but the mean for a unit
with the first level of all the factors: that is, Dose=Control and Sex=male (and mean value for
the covariate Littersize). The other parameters represent differences from the first levels of
the factors.

As discussed earlier (5.3.3), individual parameter estimates are not in general distributed as
Student's t. However, the importance of individual terms in the model can be assessed formally
using either Wald and approximate F statistics or a likelihood-based test.

The Wald statistic to test the null hypothesis á1=0 for a fixed model term is defined as
á^1N[Var(á^1)]

!1á^1. In an orthogonal design (see 4.7), this corresponds to the treatment sum of
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squares divided by the stratum mean square. So, under the usual assumption that the residuals
come from Normal distributions, the Wald statistic divided by its degrees of freedom will have
an F distribution, Fm,n, where m is the number of degrees of freedom of the fixed term, and n is
the number of residual degrees of freedom for the fixed term. Unless the design is large or
complicated, Genstat estimates n by default, and prints it in the column headed "d.d.f." (i.e.
denominator degrees of freedom); m is in the column headed "n.d.f." (i.e. numerator degrees of
freedom). For orthogonal designs, the F statistics and probabilities are identical to those
produced by the Analysis of Variance menus, and can be used in exactly the same way. In other
situations, the printed F statistics have approximate F distributions. So you need to be careful
if the value is close to a critical value.

The degree-of-freedom estimation uses the methods devised by Kenward & Roger (1997). The
computations can be time consuming with large or complicated models. So REML and VDISPLAY
have an FMETHOD option to control whether and how they are done. With the default setting,
automatic, Genstat assesses the model itself and decides automatically whether to do the
computations and which method to use. The other settings allow you to decide this for yourself:

none no F statistics are produced;
algebraic the calculations use algebraic derivatives (which may

involve large matrix calculations);
numerical the calculations use numerical derivatives (which require

an extra evaluation of the mixed model equations for every
variance parameter).

The Wald statistics themselves would have exact ÷2 distributions if the variance parameters
were known but, as they must be estimated, they are only asymptotically distributed as ÷2. In
practical terms, the ÷2 values will be reliable if the residual degrees of freedom for a fixed term
is large compared to its own degrees of freedom. Otherwise they tend to give significant results
rather too frequently. The F statistics, if available, are more reliable than the Wald statistics. If
they are not available, Genstat produces probabilities for the Wald statistics instead, which
should again be used with care especially when the value is close to a critical value.

The first part of the table presents Wald and F statistics for a sequential fit of the fixed terms.
Each line represents the effect of adding a term to a model containing the terms in all the
preceeding lines. When there is only one fixed term, or when the fixed terms are orthogonal, the
order is unimportant. However, with non-orthogonal fixed effects, the statistics will depend on
the order in which the terms were specified in the fixed model. You may therefore need to
specify the model in several different ways to obtain all the required tests. Marginality should
be taken into account: that is, main effects must always be listed before their interactions (see
3.3.3). Problems of interpretation associated with non-orthogonal model terms are discussed
further in 4.7.4.

As an example, for the fixed model

A * B = A + B + A.B

there will be three Wald and F statistics in this part of the table: the first, due to A, can be used
to compare model H0: E(yij)=ì with model H1: E(yij)=ì+ai; the second, due to fixed model term
B, compares model H1 with model H2: E(yij)=ì+ai+bj; and the third statistic, due to model term
A.B, compares model H2 with model H3:

E(yij) = ì + ai + bj + abij.
The second part of the table looks at the effect of removing terms from the complete fixed

model: so the lines here allow you to assess the effects of a term after eliminating all the other
fixed terms. This is particularly useful for seeing how the model might be simplified. For the
fixed model A*B the only relevant term here would be the A.B interaction. We cannot remove
a main effect (such as A or B) from a model that contains an interaction involving that factor.

The Wald and F statistics are obtained by setting the REML option PRINT to waldtests. For
some very large models, the statistics cannot be calculated when METHOD=Fisher is used.



656 5  REML analysis of mixed models

Example 5.3.6b

  14  VDISPLAY [PRINT=waldtests]

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Littersize                       27.99       1         27.99    31.5  <0.001
Dose                             24.29       2         12.15    23.9  <0.001
Sex                              57.96       1         57.96   299.8  <0.001
Dose.Sex                          0.80       2          0.40   302.1   0.672

Dropping individual terms from full fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Littersize                       46.25       1         46.25    31.5  <0.001
Dose.Sex                          0.80       2          0.40   302.1   0.672

* MESSAGE: denominator degrees of freedom for approximate F-tests are 
calculated using algebraic derivatives ignoring fixed/boundary/singular 
variance parameters.

The approximate F statistic for the Dose.Sex interaction is 0.4 on 2 and 302.1 degrees of
freedom, and is not significant under the corresponding F distribution. To preserve marginality,
we would always fit the interaction after the main effects, so there is no need to recalculate the
F statistic for the interaction using a different fixed model order. The Dose.Sex interaction can
therefore be dropped from the model. To judge which of the main effects should be retained, it
is then necessary to fit the model terms in several different orders, as shown in Example 5.3.6c.

Example 5.3.6c

  15  VCOMPONENTS [FIXED=Dose+Sex+Littersize] RANDOM=Dam/Pup
  16  REML [PRINT=waldtests] Weight

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Dose                              9.83       2          4.91    24.0   0.016
Sex                              53.96       1         53.96   301.7  <0.001
Littersize                       46.43       1         46.43    31.4  <0.001

Dropping individual terms from full fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Dose                             22.84       2         11.42    24.0  <0.001
Sex                              58.27       1         58.27   301.7  <0.001
Littersize                       46.43       1         46.43    31.4  <0.001

* MESSAGE: denominator degrees of freedom for approximate F-tests are
calculated using algebraic derivatives ignoring fixed/boundary/singular
variance parameters.

  17  VCOMPONENTS [FIXED=Sex+Dose+Littersize] RANDOM=Dam/Pup
  18  REML [PRINT=waldtests] Weight
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Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Sex                              55.81       1         55.81   301.7  <0.001
Dose                              7.98       2          3.99    24.0   0.032
Littersize                       46.43       1         46.43    31.4  <0.001

Dropping individual terms from full fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Sex                              58.27       1         58.27   301.7  <0.001
Dose                             22.84       2         11.42    24.0  <0.001
Littersize                       46.43       1         46.43    31.4  <0.001

* MESSAGE: denominator degrees of freedom for approximate F-tests are 
calculated using algebraic derivatives ignoring fixed/boundary/singular 
variance parameters.

From Example 5.3.6c, it is clear that for any model order, all three remaining fixed model terms
are important in explaining the pattern of the data.

For this data set, where the estimated numbers of residual degrees of freedom are quite large,
the F probabilities can be expected to be reasonably reliable. For smaller data sets, or when the
F statistics cannot be calculated, the use of a likelihood-based test statistic may be preferable.

A likelihood ratio test statistic for fixed model terms using REML has been proposed by
Welham & Thompson (1997) and can be calculated using the REML directive when
METHOD=Fisher. Unlike linear regression, the difference in log-likelihoods between two nested
fixed models does not give a sensible test statistic. This is because it is the residual likelihood
RL, the likelihood of the data after projection into the residual space, that is maximized rather
than the likelihood of the original data. For the residual likelihood, two different fixed models
correspond to two different projections and, hence, effectively to two different data sets on
which the same random terms are estimated. The statistic proposed by Welham and Thompson
can be used to test a fixed model against a nested sub-model. The method calculates the
likelihood for the full fixed model as usual. The same projection is then used for the sub-model
and fixed effects to be dropped in the sub-model are constrained to be zero. This gives log-
likelihoods calculated from the same projected data-set, using the same random model, but with
some fixed effects constrained to zero for the sub-model. The difference in log-likelihoods
therefore gives a likelihood ratio test in the usual way, where !2(RL!RL0) is the test statistic
which has an asymptotic ÷2 distribution with degrees of freedom equal to the degrees of freedom
of the fixed model terms constrained to be zero in the sub-model.

Simulations have indicated that for small samples this statistic tends to be slightly
conservative, that is, it gives a significant test statistic slightly less often than would be expected
when the null hypothesis is true.

You can obtain likelihood ratio test statistics by using the SUBMODEL option of REML to define
the nested sub-model that is to be fitted and compared to the full fixed model. In other words,
the sub-model is the full model with the terms of interest dropped out. These tests are available
only with the Fisher estimation method, and so they cannot be calculated when variance models
are being fitted (see Section 5.4). For our example above, we would first try dropping the
Dose.Sex interaction. Some constant terms are omitted from the calculation of the deviances
by REML, and so the absolute values of the deviances are not usable; in fact, as shown in the
example, the printed deviance may even be negative. However, it is only the difference between
the deviance, printed in the Change line, that is of interest (and here the omitted constants will
have cancelled out).
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Example 5.3.6d

  19  VCOMPONENTS [FIXED=Littersize+Dose*Sex] RANDOM=Dam/Pup
  20  REML [PRINT=deviance; METHOD=Fisher;\
  21    SUBMODEL=Littersize+Dose+Sex] Weight

Deviance: -2*Log-Likelihood
---------------------------

Submodel:          Constant + Littersize + Dose + Sex
Full fixed model:  Constant + Littersize + Dose + Sex + Dose.Sex

Source             deviance  d.f.
Submodel          -173.6844   315
Full model        -174.4796   313
Change               0.7952     2

The inference from the change in deviances is the same as that from the F statistic, again
suggesting that the Dose.Sex interaction is not important in explaining the pattern of the data.
The Dose.Sex interaction can thus be removed from the model, and the other fixed model terms
can then be dropped in turn to assess their importance.

The option RECYCLE is very useful for saving computing time when testing a series of sub-
models like this. Ordinarily, each time the REML directive is used with the SUBMODEL option set,
two runs of the algorithm are made: one to estimate the full model and one to estimate the sub-
model. Clearly, for subsequent sub-models, the only new information required is from the sub-
model run. The RECYCLE option is used to specify that only the sub-model run is to be made and
the remainder of the information is to be picked up from the save structure. If no save structure
is specified, the save structure from the most recent REML analysis is used automatically. Note
that if you have analysed several y-variates using a single REML statement, then unless you
specify a save structure for each y-variate (using the SAVE parameter), only the information from
the last y-variate specified will be available. So if the pointer Y held 4 variates to analyse, you
would need to use statements of the form

REML [PRINT=deviance; SUBMODEL=Sub1] Y[]; SAVE=S[1...4]
& [RECYCLE=yes; SUBMODEL=Sub2] Y[]; SAVE=S[]

to get the test statistics for the two submodels for each of the variates.
In Example 5.3.3e, only one variate is analysed, so there is no need to specify the save

structure.

Example 5.3.6e

  22  VCOMPONENTS [FIXED=Littersize+Dose+Sex] RANDOM=Dam/Pup
  23  REML [PRINT=deviance; METHOD=Fisher; SUBMODEL=Dose+Sex] Weight

Deviance: -2*Log-Likelihood
---------------------------

Submodel:          Constant + Dose + Sex
Full fixed model:  Constant + Dose + Sex + Littersize

Source             deviance  d.f.
Submodel            -154.85   316
Full model          -182.37   315
Change                27.52     1

  24  & [PRINT=deviance; SUBMODEL=Littersize+Dose; RECYCLE=yes] Weight

Deviance: -2*Log-Likelihood
---------------------------

Submodel:          Constant + Littersize + Dose
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Full fixed model:  Constant + Dose + Sex + Littersize

Source             deviance  d.f.
Submodel            -129.91   316
Full model          -182.37   315
Change                52.46     1

  25  & [PRINT=deviance; SUBMODEL=Littersize+Sex; RECYCLE=yes] Weight

Deviance: -2*Log-Likelihood
---------------------------

Submodel:          Constant + Littersize + Sex
Full fixed model:  Constant + Dose + Sex + Littersize

Source             deviance  d.f.
Submodel            -166.54   317
Full model          -182.37   315
Change                15.84     2

Again, the results agree with the F statistics, and it seems that all the remaining terms in the fixed
model are important in explaining the data.

You can specify a sub-model consisting of the constant term alone by using the string
'Constant': that is by putting SUBMODEL='Constant'. The string is case-insensitive: any
combination of upper and lower case within the string is accepted.

The use of CONSTRAINTS=positive in a VCOMPONENTS statement may lead to biased results
when testing sub-models, since the omission of an important fixed model term often leads to
negative estimates of variance components. A warning is given if the constraints have to be
enforced when fitting the sub-model, and it is then recommended that the analysis be rerun with
parameter setting CONSTRAINTS=none.

Other proposals have been made for the testing of fixed effects using REML estimation
procedures. Several of these are based on estimating the full fixed model, fixing the values of
the gammas, and then estimating the nested sub-model. The change in residual sum of squares
under this procedure is equivalent to the Wald statistic. The change in log-likelihood under this
procedure may also give a useful test statistic. These statistics can be constructed by fitting
several models and fixing the gammas using the INITIAL and CONSTRAINTS parameters of the
VCOMPONENTS directive (5.2.4) then saving the required values from the REML analysis using the
VKEEP directive (5.9.1).

Another, more recent, strategy is to use bootstrapping techniques.

VBOOTSTRAP procedure
Performs a parametric bootstrap of the fixed effects in a REML analysis (C.J. Brien).

Options
PRINT = string tokens Controls printed output (observedteststatistics,

pvalues, vdiagnostics, nnotconverged,
monitoring, all); default obse, pval

VPRINT = string tokens Controls the output from the REML analysis of each
sample (model, components, effects, means,
stratumvariances, monitoring, vcovariance,
deviance, Waldtests, missingvalues,
covariancemodels); default * i.e. none

PLOT = string What to plot (histogram); default *
NBOOT = scalar Number of bootstrap samples to take; default 99
NRETRIES = scalar Maximum number of extra samples to take when some

REML analyses fail to converge; default NBOOT
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SEED = scalar Seed for random number generation; default 0 continues
an existing sequence or, if none, selects a seed
automatically

METHOD = string token Indicates whether to use the standard Fisher-scoring
algorithm or the new AI algorithm with sparse matrix
methods (Fisher, AI); default AI

MAXCYCLE = scalar Sets a limit on the number of iterations in the REML
analyses; default 30

FMETHOD = string token Controls whether and how to calculate F statistics for
fixed terms (automatic, none, algebraic,
numerical); default none

WMETHOD = string token Controls which Wald statistics are saved (add, drop);
default add

WORKSPACE = scalar Number of blocks of internal memory to be set up for
use by the REML algorithm

Parameters
SAVE = REML save structures Specifies the (REML) save structure of the original

analysis; default * uses the SAVE structure from the
most recent REML analysis

UMEANS = variates Specifies the expected values for the units under the null
hypothesis of no effects from the FIXEDTERMS

UVCOVARIANCE = symmetric matrices
Specifies the variances and covariances of the units
under the null hypothesis of no effects from the
FIXEDTERMS

FIXEDTERMS = formula Specifies the fixed terms to test; default * tests all the
fixed terms in the original analysis

FSTATISTICS = pointers Saves a pointer with a variate for each of the
FIXEDTERMS, containing the F statistics from the
bootstrap samples

PVALUES = pointers Saves a pointer with a scalar for each of the
FIXEDTERMS, containing the test probability obtained
from the position of its F statistic within those from the
bootstrap samples

NNOTCONVERGED = scalars Saves the number of bootstrap samples whose REML
analysis failed to converge

VBOOTSTRAP performs a parametric bootstrap for fixed effects in a REML analysis. The model
to be fitted must be defined using the VCOMPONENTS and VSTRUCTURE directives, in the usual
way. The SAVE parameter supplies the save structure from the original analysis; if this is not set,
the most recent REML analysis is used.

The bootstrap samples are generated from a multivariate Normal distribution with dimension
equal to the number of units in the analysis. The UMEANS parameter supplies the expected values
for the distribution, Usually, this contains the fitted values under the null model for the terms
being tested. If UMEANS is not set, a variate containing the grand mean of the response is used.
The UVCOVARIANCE parameter supplies the variances and covariances of the units. If this is not
set, the unit-by-unit variance-covariance matrix from the original analysis is used (see the
UVCOVARIANCE option of VKEEP). Note: you can use the VUVCOVARIANCE procedure to form
the variance-covariance matrix, if you know the variance components for a REML model that
contains no covariance models.
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By default all the fixed terms in the original analysis are tested simultaneously. However, you
can set the FIXEDTERMS parameter to test a smaller model, and you should then also set UMEANS
to specify the expected values under the null model.

The NBOOT option specifies the number of bootstrap samples to take (default 99). The
NRETRIES option specifies the maximum number of extra samples to take when some REML
analyses fail to converge; the default is to use the same number as specified by NBOOT. The SEED
option supplies the seed for the random number generator used to make the permutations; default
0 continues from the previous generation or (if none) initializes the seed automatically. The
NNOTCONVERGED parameter can save the number of samples whose analyses did not converge,
in a scalar.

Printed output is controlled buy the PRINT option, with settings:
observedteststatistics

to print the values of the observed Wald or F statistics for
the fixed terms in the original REML analysis,

pvalues to print the bootstrap p-values of the observed Wald or F
statistics for the fixed terms,

vdiagnostics to print the diagnostics from the REML analyses performed
on the bootstrap samples,

nnotconverged to print the number of samples whose analyses did not
converge,

monitoring to print the progress of the bootstrapping,
all to print all the information.

By default, the observed statistics and the p-values are printed.
The VPRINT option controls the output from the REML analyses of the bootstrap samples, with

the same settings as the PRINT option of REML. By default, nothing is printed.
The bootstrap p-values are calculated by taking the proportion of F statistics in the bootstrap

samples that are larger than the observed F statistic of each fixed term. The WMETHOD option
controls whether these statistics are obtained from the table where terms are added sequentially
(the default), or from the table where suitable terms are dropped from the full fixed model. Note
that, if you use the table where terms are dropped, the only terms that can be tested are those that
are not marginal to any other term in the fixed model: for example, the main effect A cannot be
tested if the model contains an interaction, such as A.B.

The bootstrap F statistics can be saved, in a pointer with a variate for each of the
FIXEDTERMS, using the FSTATISTICS parameter. The p-values can be saved, in a pointer with
a scalar for each of the FIXEDTERMS, using the PVALUES parameter. You can obtain a plot of
a histogram showing the position of the observed F statistic, compared to those from the
bootstrap samples, by setting option PLOT=histogram.

The MAXCYCLE option sets a limit on the number of iterations in the REML analyses (default
30). The METHOD option controls whether REML uses the standard Fisher-scoring algorithm, or
the new AI algorithm with sparse matrix methods (the default). The FMETHOD option controls
whether and how to calculate F statistics for fixed terms; the default is not to calculate the
statistics. (This is relevant if tests for fixed effects are being printed in the REML analyses of the
bootstrap samples.) The WORKSPACE option specifies the number of blocks of internal memory
to be set up for use by the REML algorithm; the default is to use the same value as in the original
REML analysis.

Example 5.3.3f uses bootstrapping to test the Dose.Sex interaction is needed in model.

Example 5.3.6f

  26  " To perform a bootstrap test for the interaction Dose.Sex:
 -27    1) fit full model to get variances & covariances of the units;"
  28  VCOMPONENTS [FIXED=Littersize+Dose*Sex] RANDOM=Dam/Pup
  29  REML        [PRINT=*] Weight; SAVE=fullfixed
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  30  VKEEP       [UVCOVARIANCE=V]
  31  " 2) fit a model with no interaction, and get the fitted values;"
  32  VCOMPONENTS [FIXED=Littersize+Dose+Sex] RANDOM=Dam/Pup
  33  REML        [PRINT=*] Weight; FITTEDVALUES=fit
  34  " 3) parameteric bootstrap to test the interaction."
  35  VCOMPONENTS [FIXED=Littersize+Dose*Sex] RANDOM=Dam/Pup
  36  VBOOTSTRAP  [NBOOT=999; SEED=265600] SAVE=fullfixed;\
  37              UMEANS=fit; UVCOVARIANCE=V; FIXEDTERMS=!f(Dose.Sex)

Observed test statistics
------------------------

              Numerator df  Observed F Observed Wald Wald p-value
       Source
     Dose.Sex            2      0.3984        0.7968       0.6714

Parametric bootstrap p-values from 999 samples
----------------------------------------------

                 p-values
       Source
     Dose.Sex      0.6660

The results confirm the earlier conclusion, that there is no evidence to suggest that there is an
interaction.

Bootstrapping can also be used to estimate the true critical values to be used for the Wald and
F tests. These take account of the biases in the statistics, discussed earlier in this section.

VCRITICAL procedure
Uses a parametric bootstrap to estimate critical values for a fixed term in a REML analysis
(R.W. Payne & C.J. Brien).

Options
PRINT = string tokens Prints the critical values (critical, fcritical,

tcritical, wcritical); default crit, fcri, tcri,
wcri

VPRINT = string tokens Controls the output from the REML analyses (model,
components, effects, means, stratumvariances,
monitoring, vcovariance, deviance, Waldtests,
missingvalues, covariancemodels); default * i.e.
none

TERM = formula Fixed term to be tested
UMEANS = variate Specifies the expected values for the units under the null

hypothesis of no effects from the TERM; default is to use
the constant from the SAVE structure

UVCOVARIANCE = symmetric matrix
Specifies the variances and covariances of the units
under the null hypothesis of no effects from the TERM;
default is to take this from the SAVE structure

WCRITICAL = variate Saves the critical values of the Wald statistic
FCRITICAL = variate Saves the critical values of the F statistic
NBOOT = scalar Number of bootstrap samples to take; default 99
NRETRIES = scalar Maximum number of extra samples to take when some

REML analyses fail to converge; default NBOOT
SEED = scalar Seed for random number generation; default 0 continues
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an existing sequence or, if none, selects a seed
automatically

PROBABILITIES = scalar or variate
Significance levels for which critical values are
required; default 0.05

METHOD = string token Indicates whether to use the Fisher-scoring algorithm or
the AI algorithm with sparse matrix methods (Fisher,
AI); default AI

MAXCYCLE = scalar Sets a limit on the number of iterations in the REML
analyses; default 30

FMETHOD = string token Controls how to calculate estimated denominator
degrees of freedom when these are to be saved
(automatic, none, algebraic, numerical); default
auto

WMETHOD = string token Controls which Wald statistics are saved (add, drop);
default add

TMETHOD = string token Type of test to be made for the contrasts (twosided,
greaterthan, lessthan, equivalence,
noninferiority); default twos

WALD = variate Saves the Wald statistics from the samples
FSTATISTIC = variate Saves the F statistics from the samples
NDF = scalar Saves the numerator degrees of freedom for the Wald

and F statistics
DDF = variate Saves the estimated denominator degrees of freedom for

the F statistics
NNOTCONVERGED = scalar Saves the number of bootstrap samples whose REML

analysis failed to converge
WORKSPACE = scalar Number of blocks of internal memory to be set up for

use by the REML algorithm
SAVE = vsave REML save structure to provide the information about

the analysis

Parameters
XCONTRASTS = variates or tables X-variate defining a contrast to be detected
CONTRASTTYPE = string tokens Type of contrast (regression, comparison) default

rege

ESTIMATE = variates Saves the estimated values of the contrasts from the
samples

SE = variates Saves the standard errors for the estimates of the
contrasts from the samples

CRITICAL = variates Saves the critical values for the contrasts
TCRITICAL = variates Saves the critical values for the t-statistics of the

contrasts

As mentioned, earlier in this secton, the conventional way to assess fixed terms in a REML
analysis is to use either the Wald or the F tests, in the table of tests for fixed effects that is
produced by setting option PRINT=wald in either REML or VDISPLAY. The Wald have the
disadvantage of being biased, i.e. they tend to generate significant results too frequently. The F
tests are more reliable. However, their denominator degrees of freedom need to be estimated,
using the method of Kenward & Roger (1997), and this may not be feasible for some data sets.
These denominator degrees of freedom can also be used in t-tests to assess contrasts amongst the
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effects of a term; see procedure VTCOMPARISONS. However, those tests must be used with
caution, as the degrees of freedom are relevant for assessing the fixed term as a whole, and may
differ over the various contrasts.
VCRITICAL provides an alternative method of assessment, that may be useful if the decision

from the conventional tests is not clear-cut, or if contrasts are to be assessed. It uses a parametric
bootstrap, in the same way as the VBOOTSTRAP procedure. However, it differs from
VBOOTSTRAP, in that it generates critical values, rather than assessing the significance of terms
in a specific data set. These critical values can be used test hypotheses with a specific data set,
and the critical values for the F, Wald and t-statistics may be useful with similar data sets. The
critical values for the t-statistics also allow you to determine the size of the contrast that may be
detectable in these investigations.

As in VBOOTSTRAP, the model to be fitted must be defined using the VCOMPONENTS and
VSTRUCTURE directives. The bootstrap samples are generated from a multivariate Normal
distribution with dimension equal to the number of units in the analysis. The UMEANS option
supplies the expected values for the distribution. This should contain the fitted values under the
null model for the term being tested. The UVCOVARIANCE option supplies the variances and
covariances of the units. If either UMEANS or UVCOVARIANCE is not specified, defaults are taken
from the REML analysis supplied by the SAVE option, or from the most recent REML if SAVE is
not set. For UMEANS the default is a variate containing the constant estimated in that analysis. For
UVCOVARIANCE it is the unit-by-unit variance-covariance matrix from the analysis (see the
UVCOVARIANCE option of VKEEP). Note: you can use the VUVCOVARIANCE procedure to form
the variance-covariance matrix, if you know the variance components for a REML model that
contains no covariance models.

The NBOOT option specifies the number of bootstrap samples to take (default 99). The
NRETRIES option specifies the maximum number of extra samples to take when some REML
analyses fail to converge; the default is to use the same number as specified by NBOOT. The SEED
option supplies the seed for the random number generator used to form the samples; default 0
continues from the previous generation or (if none) initializes the seed automatically. The
NNOTCONVERGED option can save the number of samples whose analyses did not converge, in
a scalar.

The fixed term to be assessed is specified by the TERM option. If the term is a main effect (i.e.
if TERM contains just one factor) you can use the XCONTRASTS parameter to specify variates or
tables containing the coefficients defining the contrasts amongst the effects of the term. The
CONTRASTTYPE option indicates whether each of these is a regression contrast (as specified in
analysis of variance by the REG function) or a comparison (as specified by the COMPARISON
function). 

The TMETHOD option specifies the type of test that is to be used to assess the contrasts, with
the following settings.

twosided assumes a two-sided test to assess whether the contrast
differs from zero (default).

lessthan assumes a one-sided test to assess whether the contrast is
less than zero.

greaterthan assumes a one-sided test to assess whether the contrast is
greater than zero.

noninferiority assumes a test to check that the contrast is not significantly
less then zero. (See Method for more details.)

equivalence assumes a one-sided test to check that the contrast does not
differ significantly from zero; see Method for more details.

The PROBABILITIES option specifies the significance levels for which you want to obtain
critical values; the default is 0.05, i.e. 5%.
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Printed output is controlled buy the PRINT option, with the following settings.
critical prints critical values for the contrasts,
fcritical prints critical values for the F statistics,
tcritical prints critical values for the t-statistics of the contrasts,
wcritical prints critical values for the Wald statistics,
nnotconverged prints the number of bootstrap samples whose analysis

failed to converge, and
monitoring prints monitoring information, showing the progress of the

bootstrap sampling.
By default, all the critical values printed.

The VPRINT option controls the output from the REML analyses of the bootstrap samples, with
the same settings as the PRINT option of REML. By default, nothing is printed.

The critical values for the contrasts and their t-statistics can be saved, in variates, by the
CRITICAL and TCRITICAL parameters, respectively. The critical values for the F and Wald
statistics can be saved, again in variates by the FCRITICAL and WCRITICAL options.

You can also save the values estimated for the various statistics, in the analyses of the
bootstrap samples, in variates (with a unit for each sample). Those for the contrasts and their
standard errors can be saved the ESTIMATES and SE parameters, respectively. The F and Wald
statistics can be saved by the FSTATISTIC and WALD options. The degrees of freedom for the
Wald statistics and numerator degrees for the F statistics can be saved, in a scalar, using the NDF
option. The estimated denominator degrees of freedom for the F tests can be saved, in a variate,
using the DDF option.

The MAXCYCLE, METHOD, WMETHOD, FMETHOD and WORKSPACE option control various aspects
of the REML analyses, as in VBOOTSTRAP.

Example 5.3.3g continues from Example 5.3.6f, and uses bootstrapping to estimate critical
values for the Dose.Sex interaction. The bias in the Wald statistic is demonstrated by the
difference between the value of 6.598, estimated by VCRITICAL for the 5% critical value of the
Wald statistic, and the value 5.991 calculated from a standard Chi-square distribution. 

Example 5.3.6g

  38  " Parametric bootstrap to get critical values for Dose.Sex."
  39  VCRITICAL   [PRINT=critical,fcritical,tcritical,wcritical; NBOOT=999;\
  40              SEED=36820; UMEANS=fit; UVCOVARIANCE=V; TERM=Dose.Sex]

Critical values
===============

Term: Dose.Sex
Probability: 0.05
F-statistic: 3.299
Wald statistic: 6.598

  41  CALCULATE   Wcrit = EDCHISQUARE(0.95; 2)
  42  PRINT       Wcrit; DECIMALS=3

       Wcrit
       5.991

When a fixed model contains many terms, it can be very time-consuming to determine which
ones are genuinely required. The VSCREEN procedure may then be useful.
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VSCREEN procedure
Performs screening tests for fixed terms in a REML analysis (R.W. Payne).

Options
PRINT = string tokens Controls printed output (ftests, waldtests); default

ftes, wald
EXCLUDEHIGHER = string token Whether to exclude higher-order interactions in the

conditional models (yes, no); default no
FORCED = formula Terms that must always be included in the model (no

tests on these terms); default *
FSAVE = pointer Saves the F tests
WSAVE = pointer Saves the Wald tests
SAVE = REML save structure Specifies the analysis whose fixed terms are to be tested;

by default this will be the most recent REML

No parameters

VSCREEN calculates marginal and conditional tests for fixed terms in a REML analysis. By
default, these are from the recent REML analysis. However, you can take  an earlier analysis, by
using the SAVE option of VSCREEN to specify its save structure (saved using the SAVE parameter
of the earlier REML command).

In the marginal test, the term is added to the simplest possible model. For example, the main
effect of A would be added to the null model, and the interaction A.B would be added to a model
containing only the main effects A and B.

In the conditional test, the term is added to the most complex possible model that contains no
terms involving the term to be tested. For example, interaction A.B would be added to the model
containing all terms except those involving A.B (such as the interaction A.B.C). By default, the
most complex model includes terms with more factors or variates than the term being tested. For
example, the interaction C.D.E would be included when testing A.B. You can exclude these
higher-order terms by setting option EXCLUDEHIGHER=yes (and VSCREEN will print a message
to remind you that this has been done).

You can specify terms that should always be included in the model by using the FORCED
option. These terms are fitted first, and are not tested. 

The PRINT option controls printed output, with the following settings.
ftests presents F statistics for the terms. If denominator degrees

of freedom (ddf) are available from the earlier REML
analysis, probabilities are also given. Note, however, that
these ddf are correct only for models that correspond to
those in the sequential Wald table in the REML analysis.
They should be acceptable for the other models, but you
should be cautious when probabilities are close to critical
values.

waldtests presents Wald statistics for the terms. These  suffer from
the usual biases of Wald tests in REML analyses, and so
should again be used with caution.

You can save the results of the F tests and the Wald tests, in pointers, using the FSAVE and
WSAVE options, respectively. The elements of the pointers are labelled by the headers of the
columns used in the printed output.

Example 5.3.6h calculates screening tests for the fixed model originally fitted in Example
5.3.6a. This shows that Littersize, Dose and Sex are all required in the fixed model.
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Example 5.3.6h

  43  VCOMPONENTS [FIXED=Littersize+Dose*Sex] RANDOM=Dam/Pup
  44  REML        [PRINT=*] Weight
  45  VSCREEN

Screening tests for fixed effects
---------------------------------

Fixed term    d.f.   Marginal     pr.   Conditional     pr.
                    Wald test             Wald test
Littersize       1      27.99  <0.001         46.25  <0.001
      Dose       2       9.91   0.007         23.01  <0.001
       Sex       1      55.50  <0.001         57.96  <0.001
  Dose.Sex       2       1.24   0.537          0.80   0.671

Fixed term  n.d.f.  d.d.f.   Marginal     pr.   Conditional     pr.
                               F test                F test
Littersize       1      31      27.99  <0.001         46.25  <0.001
      Dose       2      24       4.96   0.016         11.51  <0.001
       Sex       1     300      55.50  <0.001         57.96  <0.001
  Dose.Sex       2     302       0.62   0.538          0.40   0.672

An advantage of using VSCREEN to assess the fixed model, rather than running a succession of
REML analyses with different fixed models, is that the fixed terms are assessed against identical
estimates of the random variation (as in an analysis of variance). When terms are dropped from
(or added to) the fixed model in a REML analysis, the random variation will change. For example,
it will increase if a term with a Wald statistics greater than its number of degrees of freedom is
dropped. It may therefore be difficult to reach consistent decisions about which fixed terms are
genuinely required. Similar methods are used by the VALLSUBSETS procedure, which fits all
subsets of the fixed terms in a REML analysis. Likewise they are used by VRFIT and its associated
procedures. These allow you investigate the fixed model by fitting and modifying subsets of the
terms, in a similar way to FIT and its associated directives (3.1, 3.2).

Once you have used VSCREEN to decide which terms to keep in the fixed model, you can use
only those terms for prediction, by specifying them in the MODEL option of VPREDICT (5.5.1).

5.3.7 Assessing random effects

VCHECK procedure
Checks standardized residuals from a REML analysis (R.W. Payne).

Options
PRINT = string tokens Controls printed output (largeresiduals,

similarunits, stability); default larg
RMETHOD = string token Which random terms to use when calculating the

standardized residuals (final, all); default fina
RLIMIT = scalar Limit for detection of large standardized residuals; if

this is not set, the limit is set automatically according to
the number of residual degrees of freedom

COMMONFACTORS = factors Factors to define similar units; if this is not set, the
factors in the fixed model are used

REPORTFACTORS = factors Additional factors to include in the table of similar units
PROBABILITY = scalar Critical value for the test probabilities to decide whether
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to generate warning messages from the Levine test for
variance stability; default=0.025

NLARGERESIDUALS = scalar Saves the number of large standardized residuals that
have been detected

LARGERESIDUALUNITS = variate Saves the unit numbers of the large standardized
residuals

SIMILARINFORMATION = pointer Saves details of large standardized residuals and
residuals in similar units

STABILITYTEST = pointer Saves the results of the Levene test for stability of the
variance of the standardized residuals

SAVE = REML save structure Specifies the analysis to be checked; by default this will
be the most recent REML

No parameters

Procedure VCHECK performs some checks on the standardized residuals from a REML analysis.
By default, these are taken from the recent REML analysis. However, you can check an earlier
analysis, by using the SAVE option of VCHECK to specify its save structure (saved using the SAVE
parameter of the earlier REML command).

The RMETHOD option controls which random terms are used to calculate the standardized
residuals, with settings:

all uses all of the random effects, and
final uses only the final random term (default).

Output is controlled by the PRINT option, with the following settings.
largeresiduals reports any large standardized residuals, with their unit

numbers.
similarunits reports large standardized residuals, together with the

residuals from similar units.
stability performs two Levene tests to check whether the residual

variance differs according to the size of the response. The
data are divided into three groups (small, intermediate and
large) according to the sizes of their fitted values. The tests
compare the variance of the standardized residuals in the
first (small) group with those in the third (large) group,
and the variance of the second (intermediate) group with
the variance of other two groups combined..

By default PRINT=largeresiduals.
The RLIMIT option specifies the limit that must be exceeded by the absolute value of a

standardized residual for it to be identified as large. If this is not set, the default is taken as 2.0
if the number of degrees of freedom d of the random terms in the REML analysis is less than 20,
and 4.0 if d is greater than 15773. For other values of d, the default is the critical value of the
Normal distribution for a two-sided test with significance probability 1/d. These calculations are
the same as those used in regression and analysis of variance, and are intended to ensure that a
report should appear for any extreme outlier, but that reports should not appear too often just as
a result of random variation.

The NLARGERESIDUALS option saves the number of large standardized residuals that have
been found, and the LARGERESIDUALUNITS option can save a variate containing their unit
numbers.

The COMMONFACTORS option lists the factors whose levels should be shared by the units that
are listed in the report as similar to those with the large residuals. If this is not set, the default
is to take the factors in the fixed model. The REPORTFACTORS option lists any other factors that
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are to be included in the report. The SIMILARINFORMATION option can save a pointer
containing details of the table that has been printed. The first element of the pointer, labelled
'Column labels', contains labels to use as column headings for the other elements, The
second element, labelled 'Unit number', contains unit numbers. The third element, labelled
'Unit type', is a factor indicating whether each unit contains a large standardized residual, or
the standardized residual from a similar unit. The remaining columns contain the values of the
factors displayed in the report.

The results of the Levene test for stability of the variance of the standardized residuals can be
saved, in a pointer, by the STABILITYTEST option.

If nothing is to be saved and no printed output is requested, VCHECK provides a safety check.
It prints a warning message if any large standardized residuals are detected, or  if either of the
Levene tests generates a test probability less than or equal to the value specified by the
PROBABILITY option. The default value is 0.025 (i.e. 2.5%), which is the same as the value used
for the similar messages that may occur with the summary of analysis in regression of from
procedure ACHECK following an analysis of variance. It is important to realise that the estimated
residuals will be correlated. The Levene tests assume that the residuals are independent
Normally-distributed observations. Their test probabilities may therefore be too low ! and
generate too many significant results. So the use of a smaller critical probability value provides
some protection against spurious messages.

Example 5.3.7a examines the residuals from the analysis in Example 5.3.6e.

Example 5.3.7a

  46  VCHECK      [PRINT=largeresiduals,stability]

Large residuals
===============

        Unit    Residual
          56      -4.091
          58       3.020
          60       3.202
          66      -7.941
         227      -3.241

Levene tests for stability of variance
======================================

                                     Test t-statistic        d.f.         pr.
                Small vs. large responses       3.878      34.685      <0.001
Intermediate v.s. small & large responses       1.366     295.901       0.173

VCHECK has identified five units with large residuals. More worryingly, the Levene test shows
strong evidence that the variance differs according to whether the observed weights are small or
large. We will discuss this further at the end of this section. Next, though, we show how you can
perform similar checks on other random terms.

VRCHECK procedure
Checks effects of a random term in a REML analysis (R.W. Payne).

Options
PRINT = string tokens Controls printed output (largeblups, stability);

default larg
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TERM = formula Random term whose BLUPs are to be assessed; must be
set

RMETHOD = string token Which random terms to use to form the residuals that are
subtracted from the y-variate to provide the fitted values
(all, term); default all

RLIMIT = scalar Limit for detection of large standardized BLUPs; if this
is not set, the limit is set automatically according to the
number of BLUPs

NLARGEBLUPS = scalar Saves the number of large standardized BLUPs that have
been detected

LARGEBLUPUNITS = pointer Saves the factor levels of the large standardized BLUPs
STABILITYTEST = pointer Saves the results of the Levene test for stability of the

variance of the standardized BLUPs
SAVE = REML save structure Specifies the analysis from which the BLUPs are to be

taken; by default this will be the most recent REML

No parameters

Procedure VRCHECK checks effects (i.e. BLUPs) of a random term from a REML analysis. The
TERM option must be set to specify the random term to check. By default, its BLUPs are taken
from the recent REML analysis. However, you can use an earlier analysis, by using the SAVE
option of VRCHECK to specify its save structure (saved using the SAVE parameter of the earlier
REML command).

Output is controlled by the PRINT option, with the following settings.
largeblups reports any large standardized BLUPs.
stability performs two Levene tests to check whether the variance

of the random term differs according to the size of the
response. The BLUPs are divided into three groups (small,
intermediate and large) according to the sizes of the
corresponding fitted values. The tests compare the
variance of the standardized BLUPs in the first (small)
group with those in the third (large) group, and the
variance of the second (intermediate) group with the
variance of other two groups combined.

By default PRINT=largeblups.
The RMETHOD option specifies how to form the residuals that are subtracted from the y-variate

to provide the fitted values. The available settings are:
all uses all of the random effects (default), and
term uses only the random term specified by the TERM option.

It is important to realise that the estimated BLUPs will be correlated. The Levene tests assume
that they are independent Normally-distributed observations. Their test probabilities may
therefore be too low ! and generate too many significant results. They should thus be interpreted
with care.

The RLIMIT, NLARGERESIDUALS, LARGEBLUPUNITS and STABILITYTEST options are the
same as in VCHECK.

Example 5.3.7b examines the BLUPs for the random term Dam in Example 5.3.6e. Again
several seem to be large.

Example 5.3.7b

  47  VRCHECK     [TERM=Dam]
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Large BLUPs
===========

         Dam        BLUP        s.e.   BLUP/s.e.
           5      0.3460      0.1416       2.443
           7      0.3885      0.1557       2.496
           9     -0.6102      0.1485      -4.109
          13     -0.3728      0.1457      -2.558
          17     -0.4039      0.1410      -2.865
          18      0.4311      0.1427       3.021
          20      0.3180      0.1457       2.183
          22     -0.4921      0.1630      -3.020

The natural next step, if you think that you have some large residuals, may be to make a more
rigorous assessment. The VSOM procedure uses a mixed-model analysis with a variance shift
outlier model (VSOM) to search for potential outliers amongst the residuals or amongst the
effects (BLUPs) of another random term. The model defines an extra component of variation for
each unit (an individual or a group), in turn, and estimates the extra variance associated with it.

VSOM procedure
Analyses a simple REML variance components model for outliers using a variance shift outlier
model (S.J. Welham, F.N. Gumedze & D.B. Baird).

Options
PRINT = string tokens Specifies the output to be produced (fdr, outliers);

default fdr, outl
VPRINT = string tokens Controls the output from the REML analysis of the

baseline model (model, components, effects,
means, stratumvariances, monitoring,
vcovariance, deviance, Waldtests,
missingvalues, covariancemodels); default mode,
comp, Wald, cova

PLOT = string tokens Controls which plots are produced (indexplots,
residual); default inde, resi

INDEXPLOT = string tokens Selects the index plots to produce (omega, sigma2,
tsquared, lrt, method, all); default meth

RTERM = formula Random term to scan for outliers; default is the residual
term

METHOD = string token Method for calculating the statistics used to indicate an
outlier (full, partial, t); default t

THRMETHOD = string token Method for obtaining the threshold statistics
(approximate, bootstrap); default appr for
METHOD=full and boot otherwise

NBOOT = scalar Number of bootstrap samples to take to form the
threshold statistics; default 99 for METHOD=full and
499 otherwise

FIXED = formula Fixed model terms
RANDOM = formula Random model terms
CONSTANT = string token How to treat the constant term (estimate, omit);

default esti
FACTORIAL = scalar Limit on the number of factors or covariates in each

fixed term; default 3
VCONSTRAINTS = string token How to constrain the variance components and the
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residual variance (none, positive, fixrelative,
fixabsolute); default posi

INITIAL = variate Initial values for the variance components; default 1
SEED = scalar Seed for random number generation; default 0 continues

an existing sequence or, if none, selects a seed
automatically

SAVEITEMS = string tokens Selects the items to save (residuals, omega, sigma2,
gamma, tsquared, lrt, fdr,  approxthresholds,
thresholdstats, outliers, method, all); default
resi, omeg, sigm, meth, fdr, outl

Parameters
Y = variates Response variates
TITLE = texts Specifies the title or titles to use for the plots
SAVE = pointers Saves information from the analysis of each y-variate

By default, the VSOM assesses the residuals. However, you can set the RTERM option to a random
term in the analysis, to assess its effects: i.e. to see whether any of the groups of observations
defined by the random term seem to be aberrant. The METHOD option specifies how the extra
variance in the VSOM is estimated, with the following settings.

full refits the full model with the added variance term for each
unit; this can be very time-consuming.

partial approximates the change in likelihood by a partial
likelihood, where the baseline model parameters are held
fixed, and only the extra variance component for each unit
is estimated; this is much faster than re-estimating the full
model.

t uses the squared t-statistics (i.e. squared standardized
residuals) to approximate the change in likelihood
(default); this is the fastest approach.

To assess whether a unit is outside its expected distribution, thresholds are calculated at
various levels of significance. The THRMETHOD option specifies the method to use:

approximate uses the asymptotic distribution to calculate the
thresholds; and

bootstrap uses parametric bootstrap samples, with the variance
components in the baseline model, to calculate the
thresholds from the percentiles of the order statistics.

Each bootstrap sample is formed by taking the sum of the fitted fixed effects from the baseline
model, together with simulated effects for the random terms in the model. Each random effect
is simulated by Normal random numbers, with a mean of zero and the variance that was
estimated for that term in the baseline model. The NBOOT option defines how many random
samples to perform; the default is 99 for METHOD=full, and 499 otherwise. The SEED option
specifies the seed for the random number generator, used by the GRNORMAL function to make the
bootstrap samples. The default of zero continues the sequence of random numbers from a
previous generation or, if this is the first use of the generator in this run of Genstat, it initializes
the seed automatically from the computer clock. If you repeat the analysis with the same
(non-zero) seed, you will get the same random numbers, and hence the same results.

The FIXED and RANDOM options specify the fixed and random terms to be fitted in the
analysis, and the FACTORIAL option sets a limit on the number of factors and variates allowed
in each fixed term. If neither FIXED nor RANDOM is specified, their settings are taken from the
most recent VCOMPONENTS command. Its FACTORIAL setting is also taken if  VCOMPONENTS is
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providing  the fixed model. A fault is given if neither a fixed nor a random model is supplied.
Note that the analysis cannot handle covariance models (which would be  specified by the
VSTRUCTURE directive). The VCONSTRAINTS option specifies constraints on the variance
components, using the same settings as the CONSTRAINTS parameter of VCOMPONENTS. The
CONSTANT option allows you to omit the constant.

Printed output is controlled by the PRINT option, with the following settings:
outliers prints a summary of the potential outliers, as measured

against the threshold statistics, at various levels of
significance; and

fdr prints the estimated false discovery rates for the potential
outliers.

The false discovery rates (FDR) are estimated from the distribution of p-values calculated with
the t-statistics from the asymptotic model. This uses the FDRMIXTURE procedure, or else the
FDRBONFERRONI procedure if that fails. The FDR estimates the probability that the outlier is
generated by noise. If this is small, it is likely that the outlier is genuine. However, if it is larger
than 0.5, there is more chance that it was generated by noise. The FDR probabilities do not allow
for correlations between the estimates. So, if there are only 2-3 replicates of the fixed terms,
these may be too small, and should be interpreted with caution.

The VPRINT option controls the output from the REML analysis of the baseline model (as
specified by the FIXED and RANDOM options). This has the same settings and default as the
PRINT option of REML.

Graphical output is controlled by the PLOT option, with the following settings.
residual when RTERM is set, the DRESIDUALS procedure is used to

plot histograms and Normal plots of the specified random
effects; when RTERM is not set, DRESIDUALS is used to
plot histograms and Normal plots of the residuals together
with a plot of the residuals against the fitted values.

indexplots plots the statistics, selected by the INDEXPLOT option,
against their index (i.e. their position in the y-variate).

For residual and indexplots, points are plotted in red if they are greater than their 5%
bootstrap threshold, and in purple or green if greater than the 1% or 5% asymptotic thresholds
respectively. The index plot also displays reference lines for the order statistics (OS 1, OS 2...)
when METHOD=bootstrap, or the 5%, 1% and 0.1% and 0.01% asymptotic thresholds when
METHOD=approximate.

The plots that are produced as components of the index plot can be controlled by the
INDEXPLOT option, with the following settings:

omega variance shift as a ratio to the residual variance,
sigma2 estimated residual variance under VSOM,
tsquared squared t-statistic,
lrt likelihood ratio test,
method the statistic associated with the setting of the METHOD

option, i.e. lrt for full or partial, and tsquared for
t (default), and

all all the statistics.
 The Y parameter specifies the response variate. The TITLE parameter can supply a text, with
either one or three values, to label the graphs. If the text has a single value, this is used to prefix
the standard descriptions for the three graphs. If it has three values, these give (in full) the titles
for the comparison, indexplots, residual plots, respectively.

The SAVE parameter can save a pointer containing variates, storing the statistics calculated for
each group or individual. The labels of the pointer, and the corresponding statistics, are as
follows:
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'residuals' the standardized residuals,
'omega' the variance shift as a ratio to the residual variance,
'sigma2' the estimated residual variance under VSOM,
'gamma' the estimated variance component for RTERM under

VSOM,
'tsquared' the squared t-statistic,
'LRT' the partial likelihood ratio test if  THRMETHOD=partial

or the full likelihood ratio test otherwise,
'method' the statistic associated with the setting of the METHOD

option (lrt for full or partial, and tsquared for t),
'FDR' the false discovery rate base on the t-statistics,
'approxthresholds' the approximate thresholds used to indicate significant

departures,
'thresholdstats' the 95 percentiles of the order statistics from the bootstrap

samples in decreasing order, and
'outliers' the unit numbers of outliers above the thresholds.

The SAVEITEMS option controls which of the above items are saved.
Example 5.3.7a fits variance shift outlier models  to assess the residuals from the analysis in

Example 5.3.6e.

Example 5.3.7c

 48  VSOM        [VPRINT=*; FIXED=Littersize+Dose+Sex; RANDOM=Dam/Pup] Weight

Variance shift outlier model
============================

Analysis for residual term
==========================

Outlier detection based on test statistic t^2

Thresholds based on bootstrap with 499 simulated data sets
* MESSAGE: Default seed for random number generator used with value 523270

Units above test-wise threshold p <= 0.0001
-------------------------------------------

    Unit   Omega   Residual variance      Test statistic
      66   86.28              0.1322               63.06
      56   17.94              0.1563               16.73

Units above test-wise threshold 0.001 < p <= 0.01
-------------------------------------------------

    Unit   Omega   Residual variance      Test statistic
     227  10.473              0.1596              10.503
      60  10.599              0.1597              10.250
      58   9.269              0.1603               9.119
      48   7.953              0.1608               8.196

Units above test-wise threshold 0.01 < p <= 0.05
------------------------------------------------

    Unit   Omega   Residual variance      Test statistic
      45   5.792              0.1618               6.274
      61   5.845              0.1618               6.169
     109   5.058              0.1621               5.693
       6   4.782              0.1623               5.345
      51   4.460              0.1624               5.077
     301   3.852              0.1628               4.386
     293   3.510              0.1629               4.200
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Figure 5.3.7a Figure 5.3.7b

     283   4.112              0.1629               4.083

Units above experiment-wise threshold (p=0.05) on order statistics
------------------------------------------------------------------

    Unit   Omega   Residual variance      Test statistic   Threshold
      66   86.28              0.1322               63.06      14.630
      56   17.94              0.1563               16.73      10.316
     227   10.47              0.1596               10.50       8.952
      60   10.60              0.1597               10.25       7.835
      58    9.27              0.1603                9.12       7.132
      48    7.95              0.1608                8.20       6.701

False discovery rate analysis
-----------------------------

    Unit   t^2 statistic   Probability       FDR
      66           63.06      < 0.0001  < 0.0001
      56           16.73      < 0.0001    0.0062
     227           10.50        0.0011    0.1369
      60           10.25        0.0013    0.1532
      58            9.12        0.0024    0.2461
      48            8.20        0.0040    0.3465
      45            6.27        0.0120    0.5951
      61            6.17        0.0128    0.6086
     109            5.69        0.0168    0.6676
       6            5.35        0.0205    0.7080
      51            5.08        0.0240    0.7373
     301            4.39        0.0360    0.8040
     293            4.20        0.0402    0.8197
     283            4.08        0.0431    0.8292

The output confirms the earlier conclusion, from VCHECK, that there are some aberrant residuals
in that analysis. More interestingly Figure 5.3.7a, which contains residual plots with the potential
outliers plotted in red and green, reinforces the concerns about the stability of the variance. It is
important to ensure that the variance is stable before checking for outliers. However, Example
5.3.7d shows that some of the units still have large residuals even if the weights are transformed
to logarithms. 
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Example 5.3.7d

 49  CALCULATE   LogWeight = LOG10(Weight)
 50  VSOM        [VPRINT=*; FIXED=Littersize+Dose+Sex; RANDOM=Dam/Pup] LogWeight

Variance shift outlier model
============================

Analysis for residual term
==========================

Outlier detection based on test statistic t^2

Thresholds based on bootstrap with 499 simulated data sets

Units above test-wise threshold p <= 0.0001
-------------------------------------------

    Unit   Omega   Residual variance      Test statistic
      66  117.90           0.0006567               80.12
      56   17.47           0.0008335               16.34

Units above test-wise threshold 0.0001 < p <= 0.001
---------------------------------------------------

    Unit   Omega   Residual variance      Test statistic
     227   12.79           0.0008441               12.53

Units above test-wise threshold 0.001 < p <= 0.01
-------------------------------------------------

    Unit   Omega   Residual variance      Test statistic
     109   7.235           0.0008576               7.671
      60   7.526           0.0008577               7.624
      58   6.712           0.0008596               6.921

Units above test-wise threshold 0.01 < p <= 0.05
------------------------------------------------

    Unit   Omega   Residual variance      Test statistic
      48   4.862           0.0008637               5.438
       6   3.852           0.0008663               4.509
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Figure 5.3.7c Figure 5.3.7d

5.3.8 Examining sources of variability

Example 5.3.6 showed how REML can be used to estimate variance components in order to form
sensible estimates of fixed effects and their standard errors. Sometimes, however, you may be
more interested in studying the random effects, in order to gain knowledge about the sources of
variability in a data set. The results from REML analyses can help you do this: estimates of the
variance parameters are available with their variance covariance matrix; likelihood tests can be
used to compare competing random models; and a decomposition of the information matrix for
the variance parameters can indicate any underlying structure in the data. Also, procedure VAIC
can calculate the Akaike and Schwarz (Bayesian) information coefficients, and VRACCUMULATE
can accumulate this information over a sequence of random models to help you assess which one
is the most appropriate. Some of these facilities are illustrated in Example 5.3.8.

The data in the example were obtained to investigate sources and sizes of variability in an
industrial process, the production of car voltage regulators (Example S from Cox & Snell 1981,
Snell & Simpson 1991). Within the factory, each regulator was passed from the production line
to a setting station where it was adjusted to operate within the correct range of voltages. It would
then be passed to a testing station where it would be tested and sent back if outside the
acceptable range. An experiment was designed to examine the sources of variability in the
voltages produced by the regulators. This experiment used four testing stations, ten setting
stations and between four and eight regulators from each setting station. In this situation, small
components of variance can be tested for exclusion from the model and the approximate stratum
variances can be used to give insight into the structure of the data.

Using factors Teststat and Setstat to indicate the testing and setting stations used for
each unit, and factor Regulator which numbers regulators within each setting station, the
random model containing all possible sources of variation is

Teststat*(Setstat/Regulator).

The three-way interaction Teststat.Setstat.Regulator is the residual error component
in this model, and there are no fixed effects except the overall mean.

Example 5.3.8a

   2  " Voltage Regulator Performance
  -3    Investigation into sources of variability encountered
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  -4    during the production of voltage regulators for cars.
  -5    (Example S from Applied Statistics Principles and Examples,
  -6    D.R.Cox & E.J.Snell, 1981)."
   7  UNITS  [NVALUES=256]
   8  FACTOR [LEVELS=4; VALUES=(1...4)64] Teststat
   9  FACTOR [LEVELS=10; LABELS=!T(A,B,C,D,E,F,G,H,J,K); \
  10    VALUES=32(1),16(2),28(3),28(4),16(5),28(6), \
  11    32(7),24(8),24(9),28(10)] Setstat
  12  FACTOR [LEVELS=8; VALUES=4( 1...8, 1,2...4, 1,2...7, 1,2...7, \
  13    1,2...4, 1,2...7, 1,2...8, 1,2...6, 1,2...6, 1,2...7)] Regulator
  14  OPEN 'Voltage.dat'; CHANNEL=2; FILETYPE=input
  15  READ [CHANNEL=2] Voltage

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Voltage     15.30     16.12     17.80       256         0

  16  CLOSE 2; FILETYPE=input
  17  VCOMPONENTS [ABSORB=Setstat] Teststat*(Setstat/Regulator)
  18  REML [PRINT=model,components,stratumvariances,deviance;\
  19    METHOD=Fisher] Voltage

REML variance components analysis
=================================

Response variate:  Voltage
Fixed model:       Constant
Random model:      Teststat + Setstat + Teststat.Setstat + Setstat.Regulator
                   + Teststat.Setstat.Regulator
Number of units:   256
Absorbing factor:  Setstat

Teststat.Setstat.Regulator used as residual term

Non-sparse algorithm with Fisher scoring

Estimated variance components
-----------------------------

Random term               component        s.e.
Teststat                    0.00350     0.00320
Setstat                     0.01297     0.00902
Teststat.Setstat           -0.00413     0.00139
Setstat.Regulator           0.02980     0.00851

Residual variance model
-----------------------

Term                         Model(order)   Parameter    Estimate      s.e.
Teststat.Setstat.Regulator   Identity       Sigma2         0.0551   0.00606

Approximate stratum variances
-----------------------------

Stratum                            variance    effective d.f.
Teststat                            0.24453         3.00
Setstat                             0.47527         8.93
Teststat.Setstat                    0.02627        24.03
Setstat.Regulator                   0.17425        54.07
Teststat.Setstat.Regulator          0.05506       164.97

Matrix of coefficients of components for each stratum:

                   Teststat     62.40      0.00      7.04      0.00      1.00
                    Setstat      0.00     25.22      6.30      4.00      1.00
           Teststat.Setstat      0.00      0.00      6.98      0.00      1.00
           Setstat.Regulator     0.00      0.00      0.00      4.00      1.00
  Teststat.Setstat.Regulator     0.00      0.00      0.00      0.00      1.00
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Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                    -410.60   250

Note: deviance omits constants which depend on fixed model fitted.

Because a large number of effects are to be fitted in this model (135 parameters), Setstat is
used as an absorbing factor to reduce the amount of space required. More discussion of the
choice of absorbing factor is given in Section 5.3.9.

The Teststat.Setstat component is estimated as a small negative value. This would mean
that the variability due to the testing station and setting station together is less than the variability
expected from simply adding the variability of testing stations and setting stations. Rather than
assume this to be the case, and since the negative value is small relative to the other components,
it might seem more plausible that in reality the Teststat.Setstat component is zero.

The list of estimated variance components indicates that two of the components, Teststat
and Teststat.Setstat, are much smaller than the others. They are small compared to their
standard errors, but these estimates are based on only four testing stations. (The variance-
covariance matrix and standard errors for the components are obtained from the inverse of their
information matrix.) In order to decide whether the smaller components are effectively zero, or
whether they are really necessary to explain the variation in the data, you can use a likelihood
ratio test. You can obtain this by running REML again with the same fixed model but omitting the
component from the random model. The test statistic is given by the difference between the
deviances of the two models.

Example 5.3.8b

  20  VCOMPONENTS [ABSORB=Setstat] Teststat+(Setstat/Regulator)
  21  REML [PRINT=components,deviance] Voltage

Estimated variance components
-----------------------------

Random term               component        s.e.
Teststat                    0.00329     0.00334
Setstat                     0.01194     0.00881
Setstat.Regulator           0.03078     0.00845

Residual variance model
-----------------------

Term                       Model(order)  Parameter      Estimate      s.e.
Residual                   Identity      Sigma2           0.0511   0.00526

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                    -406.48   251

Note: deviance omits constants which depend on fixed model fitted.

The change in log-likelihood of 4.08 is large compared to a ÷2 variable on one d.f. which
indicates that the Teststat.Setstat component should be retained in the model.

The Akaike's and Schwarz (or Bayesian) information criteria provide alternative ways of
assessing the appropriateness of random models in REML. (The model with the smallest value of
AIC or SIC is considered best.) These can be obtained using the VAIC procedure.
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VAIC procedure
Calculates the Akaike and Schwarz (Bayesian) information coefficients for REML (R.W.
Payne).

Options
PRINT = string tokens Controls printed output (deviance, aic, bic, sic,

dffixed, dfrandom, changes); default aic
INCLUDE = string tokens Which constants to include that depend only on the

fixed model (determinant, pi); default pi
DMETHOD = string token Method to use to calculate log(determinant(XNX))

(choleski, lrv); default chol
REPEAT = string token Whether to repeat output from the previous VAIC (yes,

no); default no

Parameters
DEVIANCE = scalars Saves the deviance
AIC = scalars Saves the Akaike information coefficient
SIC = scalars Saves the Schwarz (Bayesian) information coefficient
DFFIXED = scalars Saves the number of parameters fitted in the fixed model
DFRANDOM = scalars saves the number of parameters fitted in the random

model (and any covariance models)
CHANGES = variates Saves changes since the previous VAIC; the units of the

variates are labelled by the names of the coefficients
(deviance, aic, sic, dffixed and dfrandom)

SAVE = REML save structures Save structure for which to calculate the coefficients;
default uses the save structure from the most recent
REML

The coefficients are calculated from the deviance:
aic = deviance + 2 × r
sic = deviance + log(n ! p) × r

where n is the total number of usable units in the analysis, r is the number of parameters fitted
in the random model (and any covariance models), and p is the number of parameters fitted in
the fixed model. They are usually calculated for the most recent REML analysis. However, you
can use the SAVE parameter to specify the SAVE structure from an earlier analysis.

The deviance provided by REML omits some constants that depend on the fixed model. In fact
the full deviance is given by

full-deviance = REML-deviance + (n!p)*log(2ð) ! log(det(XNX))
where X is the design matrix of the fixed model. Other software systems tend to include the first
term, involving ð, but omit the log-determinant term which is more time-consuming to calculate.
The inclusion of these terms in the calculation is controlled by the INCLUDE option, with settings

determinant !log(det(XNX))
pi +(n!p)*log(2ð)

The DMETHOD option controls how !log(det(XNX)) is calculated when this is included. However,
the default is INCLUDE=pi.

Printed output is controlled by the PRINT option, with settings:
deviance prints the deviance (adding the extra terms specified by

INCLUDE);
aic prints the Akaike information coefficient;
sic or sic (synonyms) prints the Schwarz (Bayesian) information coefficient;
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dffixed prints the number of parameters fitted in the fixed model;
dfrandom prints the number of parameters fitted in the random model

(and any covariance models).
changes prints changes in the values of the coefficients since the

previous use of VAIC, provided the fixed model of the
REML analysis has not also changed.

These can all be saved using the DEVIANCE, AIC, SIC, DFFIXED, DFRANDOM and CHANGES
parameters. By default VAIC prints just the Akaike information coefficient.

By default, each time that you use VAIC, its record of the current and previous REML analyses
is updated. However, you can set option REPEAT=yes to repeat output from the previous VAIC.
The analysis record is then not updated, so the information required to calculate changes remains
available.

The VRACCUMULATE procedure can be useful if you have a sequence of random models that
you want to evaluate.

VRACCUMULATE procedure
Forms a summary accumulating the results of a sequence of REML random models (R.W.
Payne).

Options
PRINT = string tokens Controls printed output (deviance, aic, bic, sic,

dffixed, dfrandom, change, exit); default devi,
aic, sic, dfra

METHOD = string token How to accumulate the current analysis (add,
printonly, restart); default add

INCLUDE = string tokens Which constants to include that depend only on the
fixed model (determinant, pi); default pi

DMETHOD = string token Method to use to calculate log(determinant(XNX))
(choleski, lrv); default chol

ACCUMULATED = pointer Saves the summary

Parameters
DESCRIPTION = text Single-line text to describe the analysis; default lists the

random terms added or deleted from the previous model
SAVE = REML save structure Save structure for the REML analysis to put into the

summary; default uses the save structure from the most 
recent REML

VRACCUMULATE allows you to accumulate results from a sequence of random models, so that you
can view them all at once. You can do this by giving the command

VRACCUMULATE [PRINT=*]

following all except the last analysis. Then, after the last analysis, give another VRACCUMULATE
command, but with the PRINT option now set to request the desired output, using the following
settings:

deviance prints the deviances;
aic prints the Akaike information coefficients;
bic or sic (synonyms) print the Schwarz (Bayesian) information coefficients;
dffixed prints the number of parameters fitted in the fixed models;
dfrandom prints the number of parameters fitted in the random

models (and any covariance models);
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change prints changes in the deviance and number of random d.f.
between successive lines of the summary and their (chi-
square) probabilities; and

exit exit codes (from VKEEP) indicating whether each analysis
was fitted successfully (the deviance and information
coefficients are set to missing values for unsuccessful fits).

The output indicates any point during the sequence of analyses where the fixed model has
changed. It is not valid to compare random models unless one of the models is an extension of
the other one, and the fixed model remained unchanged; if VRACCUMULATE detects that a
comparison is invalid, the change in deviance is set to a missing value. It also flags any lines
where it detects that there have been changes in the variance models (defined by VSTRUCTURE;
see 5.4.1); before you use the change in deviance between these lines, you should check that the
variance model defined in one of the lines is an extension of the model defined in the other one.

To print the information without adding another line to the summary, you can set option
METHOD=printonly. Setting METHOD=restart reinitializes the summary before adding the
current analysis. The default, METHOD=add, continues the existing summary by adding another
line. The INCLUDE and DMETHOD options control how the deviance is calculated, as in VAIC (see
above).

By default, the first line of the summary is labelled by the list of random terms in the model;
subsequent lines list the random terms added or deleted from the previous model. Alternatively,
you can supply your own labels using the DESCRIPTION parameter.
VRACCUMULATE usually adds a line to the summary for the most recent REML analysis.

However, you can use the SAVE parameter to specify the save structure from an earlier analysis.
The ACCUMULATED option allows you to save the summary in a pointer, with elements labelled

'description', 'deviance', 'aic', 'sic', 'dffixed', 'dfrandom', 'deviance change',
'd.f. change','fixed changed', 'var-mod. changed' and 'exit'.
ACCUMULATED['description'] is a text. The other elements are variates. The saved values
of the deviances and information coefficients all take account of the settings of the INCLUDE
option.

Example 5.3.8c uses VAIC and VRACCUMULATE  to print the Akaike information coefficient
and changes in deviance for the models fitted in Examples 5.3.8a and 5.3.8b. Notice that we have
set the first parameter (DESCRIPTION) in line 24 to define a narrower label for the first model.
The default label would list the terms explicitly, as

Teststat + Setstat + Teststat.Setstat + Setstat.Regulator

 The results confirm that the random term Teststat.Setstat should be retained in the model.

Example 5.3.8c

  22  VCOMPONENTS [ABSORB=Setstat] Teststat*(Setstat/Regulator)
  23  REML [PRINT=*] Voltage
  24  VRACCUMULATE [PRINT=*] 'Teststat*(Setstat/Regulator)'
  25  VAIC

Akaike information coefficient       68.06

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

  26  VCOMPONENTS [ABSORB=Setstat] Teststat+(Setstat/Regulator)
  27  REML [PRINT=*] Voltage
  28  VAIC

Akaike information coefficient       70.17

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

(based on the residual log-likelihood)
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  29  VRACCUMULATE [PRINT=deviance,change,aic]

Accumulated summary of REML random models
-----------------------------------------

                               Deviance      AIC  Change in    Change in
                                                   deviance  random d.f.
 Teststat*(Setstat/Regulator)     58.06    68.06          *            *
           - Teststat.Setstat     62.17    70.17       4.11            1

                                Change
                              chi-prob
 Teststat*(Setstat/Regulator)        *
           - Teststat.Setstat    0.043

Note: omits constant, -log(det(X'X)), that depends only on the fixed model.

(based on the residual log-likelihood)

The original analysis, in Example 5.3.8a, used METHOD=Fisher in order to obtain estimates of
the approximate stratum variances. These can be used to interpret the information on the
variance components available from the experiment. They are calculated from a Cholesky
decomposition of the information matrix of the variance components E( !M2RL/Mó^ 2 ), the
expected value of the second derivative of the residual likelihood RL, using the vector ã^ of
estimated variance components. This decomposition is motivated by analogy with the structure
of orthogonal designs. Since the decomposition is based on the residual likelihood RL it can give
no direct information on the fixed model terms, and therefore effectively gives a decomposition
of a random effects model with a grand mean only, ignoring any other fixed model terms.

In an orthogonal design, the information matrix Iî for the independent stratum variances { îs }
is diagonal with elements dfs/2îs

2 where dfs is the degrees of freedom of stratum s. Furthermore,
these stratum variances are linear combinations of the variance components which always
include the term ó2, so î=Ló where L is the matrix mapping the components onto the stratum
variances and has value 1 for all elements in the final row (corresponding to ó2). The information
matrix for the variance components Ió can then be calculated from the information matrix of the
stratum variances by Ió=LNIîL.

From the results of a REML analysis, the Cholesky decomposition of the information matrix
I of the estimated variance components can be written as I=TDTN, where T is the lower triangular
Cholesky decomposition of I, standardized so that all values in the last row of T are 1 and D is
a diagonal matrix containing the squares of the scaling factor for each column. This
decomposition gives the information matrix in a form similar to that which occurs naturally in
an orthogonal design. TN is then analogous to the matrix of coefficients used to construct the
stratum variances from the variance components and D is analogous to the information matrix
of the stratum variances.

The components of the decomposition can then be interpreted as if they had arisen from a
hypothetical orthogonal experiment which gives information on the variance components
equivalent to that available in the actual experiment. In other words, if it was carried out, the
hypothetical experiment would be expected to give estimates of the variance components with
precision similar to those in the actual experiment. This information can be useful for the
planning of future experiments.

For orthogonal experiments, the decomposition will give the stratum variances expected from
analysis of variance. As the model becomes non-orthogonal (either through the structure of the
fixed or random model) the relationship breaks down, although the decomposition is usually
fairly easy to interpret.

It should be remembered that the information matrix I represents the information on the
variance components available from the data projected to remove all the treatment contrasts and
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hence all the information on treatments. There is, however, no information about where the
treatment degrees of freedom would have been, and this may lead to a slightly unexpected
allocation of degrees of freedom where treatment efficiency factors are not all zero or one. The
decomposition can indirectly give information on the fixed model terms. The change in structure
when a fixed model term is dropped may give useful information about where the term was
estimated and the variation in the data it accounted for.

It should also be noted that the information matrix is evaluated at the estimated value of the
variance components, and thus depends on these values. For this reason, two experiments with
the same structure may give slightly different decompositions.

In some circumstances the decomposition cannot be interpreted. If any of the variance
components has been constrained in a VCOMPONENTS statement, using either CONSTRAINTS or
a RELATIONSHIP matrix, there is no information directly available on the constrained
components: the information on associated components is pooled, and the approximate stratum
variances cannot be related back to the individual random model terms. Also, since the Cholesky
decomposition works sequentially, for non-orthogonal random terms the decomposition will
depend on the order of the random model. In particular, results may be difficult to interpret if the
structure of the random model is non-hierarchical. Occasionally in these circumstances, the
Cholesky decomposition yields negative coefficients leading to negative stratum variances which
cannot be interpreted.

Example 5.3.8 gives a good illustration of how to interpret the decomposition in terms of the
underlying structure of the data. The data for the voltage regulators is not quite balanced, since
the number of regulators tested at each setting station varies between four and eight.

The structural information is contained in the matrix of coefficients (TN above) and the degrees
of freedom (the diagonal of D above). Within an orthogonal design, the coefficients would
indicate the replication of each level of the factors.

In Example 5.3.8a, the Setstat.Regulator stratumvariance (variation between regulators)
has equation îS.R=4ó2

S.R+ó2 indicating 4 readings for each regulator, which matches the
experiment since each regulator was measured on each of the 4 testing stations. Similarly, the
equation for the Teststat.Setstat stratum indicates 7 readings for each combination of
setting station and testing station. This again matches the structure of the data since 64 regulators
were tested on 10 setting stations, giving on average 6.4 regulators at each station. The equation
for the Setstat stratum disagrees with this slightly, suggesting 25 readings at each setting
station consisting of 6 regulators read 4 times each. Then the Teststat stratum again indicates
7 regulators and 62 readings at each testing station, which implies 9 setting stations. Putting
these results together gives a structure consisting of 4 testing stations, 9 setting stations and 6-7
regulators used at each setting station. The degrees of freedom more or less correspond to this
structure, suggesting 10 instead of 9 setting stations. This is the structure of a hypothetical
orthogonal experiment which would have given the same amount of information on the variance
components. Since the original experiment is nearly balanced, this hypothetical experiment is
quite similar.

There are no hard and fast rules for interpreting this decomposition. In Example 5.3.8a, there
was no fixed model. In general, the removal of treatment contrasts may affect both the
coefficients and the degrees of freedom, making interpretation less straightforward.

5.3.9 Technical details of the Fisher method and absorbing factors

For large data sets and models with many parameters, the REML algorithm may take a large
amount of computing time and/or data space when METHOD=Fisher is used. For this reason, the
sparse (AI) algorithm, is used by default. However, as some results are available only when
METHOD=Fisher, it may be helpful to understand the factors influencing the use of workspace.

The Fisher method estimates the variance components iteratively using Fisher scoring to solve
the normal equations. For the model
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described in detail in Section 5.1, the residual-log-likelihood RL can be written as

ignoring terms independent of the variance parameters. The first derivatives of RL with respect
to the gammas { ãi }, where ãi=ói

2/ó2, and the residual variance ó2 are

As well as the unknown variance parameters, these equations involve the estimates of the fixed
and random effects. At each iteration, these parameters can be estimated using current estimates
of the variance parameters and inverting the mixed model equations

Then, defining

It can be shown that trace( ZiNPZi ) = trace( UDi ) where U = Ã !1 ! Ã !1Q22Ã
 !1. The information

matrix I can also be written in terms of U, the estimates of â, and the residual sum of squares.
The REML algorithm implemented in Genstat takes the following steps at each iteration:

0) Obtain initial estimates of the variance parameters.
1) Calculate estimates of á and â by inverting the mixed model equations using current

estimates of the variance parameters. Form U.
2) Using á^, â^  and U calculated in step 1, form the first derivatives of the likelihood RL and

the information matrix I. Then use Fisher scoring (see equation below) to obtain updated
estimates of the variance parameters.

3) Check for convergence of variance parameter estimates: exit algorithm on convergence;
otherwise, return to step 1.

The inversion of the mixed model equations at step 1 involves inversion of a symmetric matrix
with number of rows equal to the number of fixed effects (nf) plus the number of random effects
(nr) in the model. For models specifying a large number of effects, the inversion of this matrix
can be time-consuming and requires (nf+nr)

2 units of double precision data space.
Since the size of the mixed model equations can limit the speed of the algorithm, it is sensible
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to try and reduce the size of this matrix. Use of an absorbing factor is one way of tackling the
problem. An absorbing factor is a factor from either the fixed or random model, which is used
to define a partition of the mixed model equations and hence decrease the size of matrices which
must be inverted and stored. However, the information required to calculate estimated errors for
some of the tables of means and effects will no longer be available (see Section 5.3.3). When an
absorbing factor is specified, the model terms are reordered into two groups: the first contains
all the model terms involving the absorbing factor; and the second contains all the other model
terms. Each part of the model may include both fixed and random terms. The general mixed
model above can be partitioned in this way, so that á1 and â1 denote the elements of á and â that
are associated with the absorbing factor model, with associated design matrices X1 and Z1, and
á2 and â2 are the remaining fixed and random parameters, with design matrices X2 and Z2. The
mixed model equations can be reordered to give

and Ã1 and Ã2 are the parts of Ã relating to â1 and â2 respectively, with zero rows added to
correspond to á1 and á2.

The first set of equations can be absorbed into the second set, giving the matrix

It is possible to write most of the expressions in the iterative REML algorithm in terms of the
matrices UNU+Ã1

!1 and WNM!1W+Ã2
!1 and their inverses. The inversion of the whole set of mixed

model equations can be avoided by working with these two matrices separately. Since the inverse
sum of squares matrix Q is the estimated variance-covariance matrix for the parameter estimates,
this separation means that estimates of covariances between the two sets of parameters are not
calculated. By reordering the parameters within the absorbing factor model by level of the
absorbing factor, the matrix UNU+Ã1

!1 becomes block diagonal, which means that any expression
involving the matrix UNU+Ã1

!1 can be calculated using each of these blocks in turn and
accumulating the result. This results in a further reduction in the size of matrices that have to be
stored, but since the same workspace is used for each block of UNU+Ã1

!1 and the whole matrix
is not stored, the covariances and variance estimates for parameters in the absorbing factor model
are not available.

The calculations for comparing different choices of absorbing factor are quite straightforward.
1) Choose an absorbing factor A with v levels.
2) Split the model terms into two groups and count the number of parameters defined by the

factor combinations in each group: (a) model terms containing the absorbing factor (n1

parameters) and (b) model terms not containing the absorbing factor (n2 parameters).
3) The matrices that must be inverted using absorbing factor A are then: one matrix of order

n2 plus v matrices of order n1 /v.
As well as considering the numerical advantages of an absorbing factor, it is also important to
check that the choice of absorbing factor does not mean that the estimates of error are lost for
important comparisons. It should also be noted that the inversion of very many smaller matrices
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can sometimes take longer than the inversion of a few matrices of intermediate size.
Further details are given by Thompson (1977).

5.3.10 Controlling advanced features of the REML algorithm

VCYCLE directive
Controls the operation of the REML algorithm.

Options
CONVERGENCE = string token Type of criterion for assessing convergence (deviance,

parameter); default * uses the deviance with the
average-information algorithm, and the variance
parameter values for the Fisher scoring algorithm

CRITERIONVALUE = scalar Sets the convergence criterion value; default * i.e.
determined automatically

STEPLENGTH = scalar Sets the default relative step size for the average-
information algorithm; default * i.e. determined
automatically

NDENSE = scalar Number of equations to use as dense in the average-
information algorithm; default * uses all fixed model
terms as dense

EQORDER = string token Method to use to reorder the mixed model equations for
fitting (none, a, b); default b

No parameters

VCYCLE allows you to control various aspects of the REML algorithm. The CONVERGENCE option
specifies the type of criterion to use to assess convergence. There are two possibilities, each of
which is used as the default for one of the fitting algorithms. For the average-information
algorithm the default is to check for convergence in deviance, whereas the Fisher scoring method
checks the variance parameter values. The criterion value can be specified by the
CRITERIONVALUE option. The defaults differ according to the type of criterion. For assessing
changes in variance parameter values a multiplier of 0.005 is used. So, for convergence, the
change in every variance parameter s must be less than 0.005 × s. When assessing change in
deviance, convergence occurs when the absolute change in the deviance is less than 0.0001.

The STEPLENGTH option allows you to change the default step size for the average-
information algorithm. Valid values are between zero and one, and the value is the proportion
of the average-information step taken. The default is to start with small steps and work up to full
steps.

The NDENSE option allows you to manipulate the number of equations used as dense in the
average-information algorithm (see Gilmour et al. 1995). The default includes all the fixed
model terms. This option is likely to be used only by advanced users. If NDENSE is set, the value
may be modified by the algorithm so that model terms are not split between the dense and sparse
sections. Note that Wald tests (dropping terms) are not available for terms in the sparse section.

The EQORDER option controls the order in which the mixed model equations are solved, with
settings:

none processes the equations in the order in which they are
specified in the model;

a method A; and
b method B (default).

This option needs to be set only rarely as method B, which corresponds to the ASReml option
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setting !EQORDER 3 (introduced to become the default in ASReml Release 2), is generally the
best. Method A corresponds to the ASReml option setting !EQORDER 1 (which was the default
in ASReml Release 1). For further details, see ASReml User Guide Release 2.

5.4 Modelling variance structures

REML estimates parameters in mixed models of the form
y  =  Xá + Ói Ziui + e

where á is a vector of fixed effects with design matrix X, the ui are vectors of random effects
with design matrices Zi and variances var(ui)=ó2

iGi and by default cov(ui,uj)=0, and e is a vector
of random error (usually called the residual) with var(e)=ó2R, cov(u,e)=0. The variance model
V for the data y is then

V  =  Ói ói
2ZiGiZiN + ó2R (sigma parameterization)

or     =  ó2 ( Ói ãiZiGiZiN + R ) (gamma parameterization)

In the earlier sections of this chapter, the matrices Gi and R are simply the identity matrix I. The
VSTRUCTURE directive can specify a wide range of parametric forms (including auto-regressive,
moving average, ante-dependence, unstructured or distance-based models) for the Gi and R
matrices to enable the modelling of covariance patterns within the data. This section describes
the range of models available, using examples from repeated measurements, spatial analysis of
field experiments, random coefficient regression and multivariate data. Output from specific
examples can be found for repeated measurements analysis in Section 5.4.3, spatial analysis in
Section 5.4.4 and random coefficient regression in Section 5.4.5.

5.4.1 The VSTRUCTURE directive

The directive VSTRUCTURE can be used to define the form of covariance structure for any term
in the random model defined for REML by VCOMPONENTS.

VSTRUCTURE directive
Defines a variance structure for random effects in a REML model.

Options
TERMS = formula Model terms for which the covariance structure is to be

defined
FORMATION = string token Whether the structure is formed by direct product

construction or by definition of the whole matrix
(direct, whole); default dire

CORRELATE = string token Whether to impose correlation across the model terms if
several are specified (none, positivedefinite,
unrestricted); default none

CINITIAL = scalars Initial values for covariance matrix across terms
COORDINATES = matrix or variates Coordinates of the data points to be used in calculating

distance-based models

Parameters
MODELTYPE = string tokens Type of covariance model associated with the term(s),

or with individual factors in the term(s) if
FORMATION=direct (identity, fixed, AR, MA,
ARMA, power, boundedlinear, circular,
spherical, linearvariance, banded,
correlation, antedependence, unstructured,
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diagonal, uniform, FA, FAequal) default iden
ORDER = scalar Order of model
HETEROGENEITY = string token Heterogeneity for correlation matrices (none,

outside); default none
METRIC = string token How to calculate distances when MODELTYPE=power

(cityblock, squared, euclidean); default city
FACTOR = factors Factors over which to form direct products
MATRIX = symmetric matrices, diagonal matrices or pointers

Defines matrix values for a term or the factors when
MODELTYPE=fixed

INVERSE = symmetric matrices, diagonal matrices or pointers
Define values for matrix inverses (instead of the fixed
matrices themselves) when MODELTYPE=fixed

DISTANCES = symmetric matrices Symmetric matrix of pre-formed distances to be used in
distance-based models of order one

COORDINATES = matrices, variates or pointers
Specifies coordinates of each factor level to be used in
calculating distance-based models

INITIAL = scalars, variates, matrices, symmetric matrices or pointers
Initial parameter values for each correlation matrix
(supplied in the structures appropriate for the model
concerned)

CONSTRAINTS = texts Texts containing strings none, fix or positive to
define constraints for the parameters in each model

EQUALITYCONSTRAINTS = variates
Non-zero values in the variate indicate groups of
parameters whose values are to be constrained to be
equal

VSTRUCTURE can be used only after VCOMPONENTS has defined the fixed and random models.
It can be used more than once to define different structures for different random terms. The
information is accumulated within Genstat, and it will all be used by subsequent REML
commands. You can check on the model and covariance structures defined at any time by using
the VSTATUS directive. To cancel a covariance structure for a term you simply need to use
VSTRUCTURE to change the model back to the default identity matrix. To cancel all covariance
structures you can give a new VCOMPONENTS command and redefine the fixed and random
models.

For a random term constructed from more than one factor, the covariance matrix can be
formed either as a single matrix for the whole term, or as the direct product of several matrices
corresponding to the factors. (For a more general discussion about the models that can be
generated using direct products, and limitation of this method, see Section 5.4.6). Below we
illustrate these concepts using a range of standard models.

Repeated measurements data
For example, consider an analysis of repeated measurements where data have been taken weekly
over 5 weeks from a set of 14 subjects. It is likely that data taken from the same subject will be
correlated, with correlation decreasing over time, but that subjects will be independent. If we
define factors Subject and Week to represent individual subjects and times of measurement,
the term Subject.Week will represent the residual vector e (since it indexes every unit in the
dataset). This can be written in terms of sub-vectors ei for subject i at times 1...5. We can then
impose some common covariance structure C on the sub-vectors ei to model correlation over
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time, and insist on independence between subjects, i.e. between the ei, giving var(ei)=C and
cov(ei,ej)=0. The resulting variance matrix on e can be written as a direct product of an identity
matrix and the covariance matrix C:

So the variance model for the residual can be constructed by considering the components of the
term: independence between subjects combined with correlation within subjects. In this case, no
other random terms are required to describe the structure of the variance model. If we take C to
be an auto-regressive process of order 1, this can be defined and the model fitted to data held in
variate Y as follows:

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] MODELTYPE=I,AR; ORDER=1; \
  FACTOR=Subject,Week
REML Y

The TERM option is used to specify the term to which the covariance structure is to be applied.
By default, a direct product form is assumed. You then specify the covariance model to be
applied to each factor in the term (see below for list of available models). However, it is not
necessary to specify factors for which the default identity model is required, so the following is
an equivalent specification:

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] MODELTYPE=AR; ORDER=1;
FACTOR=Week

To cancel the covariance structure for the term, a null setting is sufficient:

VSTRUCTURE [TERM=Subject.Week]

It is instructive to compare the auto-regressive model fitted above with the standard split-plot

analysis:

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject/Week
REML Y

The random model Subject/Week expands to Subject + Subject.Week, i.e. random
effects for subjects plus the residual. Although the covariance structure for the random subject
term here is of the form G = ó2

sI, the variance matrix for the data is of the form
V  =  ó2

sZZN + ó2I

In this case the random subject term generates correlations that are equal across all the times
within subjects. It is important to remember that including a random term in the model will
generate uniform correlations between units with the same values of the random factor(s). It is
often necessary to exclude these terms when the object is to model the correlations explicitly.
In fact, this model could alternatively be specified as

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] FACTOR=Week; MODELTYPE=uniform

Spatial analysis of field experiments
The repeated measurements example above naturally generates a block diagonal variance matrix
V, but it is easy to find examples where more complex structures arise by combining variance
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models. For example, consider the analysis of a field experiment laid out as 10 rows of 15
columns, where the object is to model spatial variation across the experiment to obtain more
accurate standard errors. The standard ANOVA model for this data can be specified as

VCOMPONENTS [FIXED=Cv] RANDOM=Row+Column+Row.Column

which assumes equal correlation within rows and within columns, plus an independent residual
error. However, for large experiments, equal correlation might not be a reasonable assumption
and an auto-regressive model over rows and over columns separately might be tried instead:

VCOMPONENTS [FIXED=Cv] RANDOM=Row.Column+'*units*'
VSTRUCTURE [TERM=Row.Column] MODELTYPE=ar,ar;  \
  ORDER=1; FACTOR=Row,Column 

Here, the Row and Column terms have been removed from the random model, as they are
superceded by the correlation from the composite term Row.Column. The term '*units*' has
been retained to provide an estimate of independent random error in addition to that predicted
by the AR(1) q AR(1) structure. This model might be interpreted as the correlation structure
describing the underlying spatial trend in the field, with the extra residual accounting for
experimental and measurement error in the data.

In situations where rows (or columns) were spaced irregularly, the correlation between units
might depend on the distances between them, and a distance-based covariance structure would
be more appropriate (see Sections 5.4.4 and 5.4.6).

Random coefficient regression
In some longitudinal data sets, individual profiles appear to increase linearly over time, but with
obvious variation in slope between subjects within treatment groups. In this case, a natural model
for the data consists of a common linear trend over time for treatment groups plus random
variation about the intercept and slope for subjects. If such a dataset is defined using variates
Time and Y to hold times of measurement and responses, and factors Subject and Tmt to code
for individuals and treatment groups, this model can be specified by

VCOMPONENTS [FIXED=Tmt*Time] RANDOM=Subject+Subject.Time

To make the fitted variance model invariant to the scale of time measurement, it is customary
to impose correlation between the intercept and slope for each subject, i.e. if we write ai and bi

to be the random deviation about the common intercept and slope for subject i

and this can also be specified via the direct product construction. Where correlation is to be
specified across terms in this way, the CORRELATE parameter of VSTRUCTURE is used to impose
the correlation across terms, and then the form of the within term correlation is specified using
the parameters of VSTRUCTURE as usual. Here the within term correlation is independence, the
default:

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject+Subject.Time
VSTRUCTURE [TERMS=Subject+Subject.Time; \
  CORRELATE=unrestricted; CINITIAL=!(1,0.5,0.05)]

It is often helpful to get initial values for the parameters by fitting the model without correlations
first. (See Section 5.4.5.)

Multivariate analysis
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In some circumstances, it is desirable to analyse two (or more) variables simultaneously to
investigate correlation between the variables and their response to treatments. For example,
suppose the number of leaves and average leaf area per plant has been measured from plants in
an experiment done using a randomised block design with four blocks of seven plots. The model
specification for a univariate analysis would be

VCOMPONENTS [FIXED=Tmt] RANDOM=Block/Plot

To analyse the two variates together, it is necessary to concatenate the two variables into a single
variate, to define new block and treatment factors to match, and to define a new factor
Variable to indicate which variate is in which units. If the block effects and residuals for
variate i are bi and ei respectively, then the variances of the two random terms can then be written
as

and the model defined by

FACTOR [LEVELS=2; VALUES=28(1,2)] Variable
FACTOR [LEVELS=4; VALUES=(#Block)2] Mblock
&      [LEVELS=7; VALUES=(#Plot)2] Mplot
&      [LEVELS=7; VALUES=(#Tmt)2] Mtmt
VCOMPONENTS [FIXED=Mtmt*Variable] \
            Variable.Mblock + Variable.Mblock.Mplot
VSTRUCTURE  [TERM=Variable.Mblock] FACTOR=Variable; \
            MODELTYPE=unstructured
VSTRUCTURE  [TERM=Variable.Mblock.Mplot] FACTOR=Variable; \
            MODELTYPE=unstructured

In future releases, facilities will be provided so that multivariate problems like this can be
specified simply by giving a set of variates in parallel with the block and treatment factors.

Model definitions
The examples above suggested various different structures that might be used to model
covariance patterns. The possible settings for the MODELTYPE parameter, generating symmetric
covariance matrices C (Ci,j = Cj,i for all i,j), are as follows:

identity identity matrix Ci, i = 1, Ci,j = 0,  for i=/ j

fixed fixed matrix Ci, j  specified

AR auto-regressive Ci, i = 1

order 1 or 2 Ci+1, i = ö1 / (1!ö2)
(ö2=0 for order 1) Ci, j = ö1 Ci!1, j + ö2 Ci!2, j,

i > j+1, !1 < ö1, ö2 < 1,
*ö1+ö2*<1, ö2!ö1<1, ö2>!1

MA moving average Ci, i = 1

order 1 or 2 Ci+1, i = !è1(1!è2)/(1+è2
1+è2

2)
(è2=0 for order 1) Ci+2, i = !è2 / (1+è2

1+è2
2)
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Ci, j = 0,  i>j+2
!1 < è1, è2 < 1,  è2±è1 < 1

ARMA auto-regressive Ci, i = 1

moving-average Ci+1, i =  (è!ö)(1!öè)
          / (1+è2-2öè)

order 1 Ci, j = öCi!1, j ,  i>j+1
!1 < ö, è < 1

power based on distance Ci, i = 1

order 1 or 2 Ci, j = ö1
d1ö2

d2

(ö1 = ö2 for order 1) d1, d2 = distance in 1st and
2nd dimensions
0 < ö1, ö2 < 1

boundedlinear based on distance order 1 Ci, j = 1 ! d/ö  for d # ö,

Ci, j = 0  for d > ö
0 < ö

circular based on distance order 1 Ci, j = 

1 ! (2/ð) {(d/ö)%(1!(d/ö)2)
+ sin!1(d/ö)}  for d # ö,
Ci, j = 0  for d > ö
0 < ö

spherical based on distance order 1 Ci, j = 1 ! 1.5 (d/ö)

+ 0.5 (d/ö)3  for d # ö,
Ci, j = 0  for d > ö
0 < ö

linearvariance based on distance order 1 Ci, j = 1 ! 2ö d / max(d)

0 < ö < 1

banded equal bands Ci, j = 1

1 < order < nrows!1 Ci+k, i = èk , 1 < k < order
!1 < èk < 1
Ci+k, i = 0, otherwise

correlation general correlation matrix Ci, i = 1

1 < order < nrows!1 Ci, j = èij ,
1 < *i!j* # order
Ci, j = 0,   *i!j* > order
!1 < èij < 1

uniform uniform matrix Ci, j = è   for all i,j

diagonal diagonal matrix Ci, i = èi

Ci, j = 0,  i�j

antedependence ante-dependence model C!1 = UD!1UN

1 < order < nrows!1 Di, i
!1 = di

!1,
Di, j = 0   for i�j
Ui, i = 1,
Ui, j = uij ,
1 # j!i # order
Ui, j = 0, for i>j

unstructured general covariance matrix Ci, j = èij ,

1 < order < nrows!1 0 < *i!j* # order
Ci, j = 0,   *i!j* > order
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FA factor analytic C = ËËN + Ø

order = 1 or 2 Ë is an nrows × q matrix
order=q
Øi = øi for i=1...nrows

FAequal factor analytic with common variance

order = 1 or 2 C = ËËN + Ø
Ë is an nrows × q matrix
order=q
Øi = ø for i=1...nrows

Where more than one model order can be used, the default is shown in bold and can be changed
by using the ORDER option. For the AR, MA, ARMA, power and banded models, the order is the
same as the number of parameters to be fitted. For the banded, correlation, ante-
dependence and unstructured models, the order is the number of non-zero off-diagonal
bands in the matrix. For the FA models, the order is the number of columns in the matrix Ë.

Initial parameter values can be specified using the INITIAL parameter. For most models, the
number of initial values required is the number of parameters, and default values can be
generated. However, for unstructured models, a full covariance matrix of initial values must
be given, and for the correlation model a full correlation matrix must be provided. For the
ante-dependence model, either a full covariance matrix can be provided, or a pointer to a U and
a D!1 matrix of the correct forms. For the FA and FAequal models, a pointer can be used to give
the initial Ë and Ø matrices, otherwise default initial values are generated. The FAequal model
can be used to get initial values for the FA model. Initial values are required for these models 
because the algorithm may not converge when many parameters are fitted if the starting values
are not realistic. Initial values might be generated from covariance matrices estimated by fitting
simpler models (for an example see Section 5.4.3), or from residuals from a null variance model.
A missing value in the initial values is taken to mean that the value is inestimable and it will be
fixed at a small value for the analysis. Alternatively, a parameter can be fixed at its initial value
using the CONSTRAINTS parameter. For each model defined, a text vector of constraint codes
can be given in parallel with the initial values. The codes (not case sensitive and able to be
abbreviated) may take value fix to indicate the parameter is to be fixed at its initial value,
positive to indicate it is to remain positive or none to indicate no constraints. The default is
a positive constraint or no constraint depending on context; for example, scaling parameters are
always constrained to remain positive. The EQUALITYCONSTRAINTS parameter allows you to
constrain some of the parameters to have the same value. The variate that it specifies contains
a zero value if there is no constraint, and an identical integer value for any set of parameters
whose values are to be equal. So, a variate containing the values (0,1,2,1,2) would constrain the
second parameter to be equal to the fourth parameter, and the third parameter to be equal to the
fifth parameter.

It may sometimes be desirable to allow for unequal variances for the models defined in terms
of correlation matrices: that is, for the AR, MA, ARMA, uniform, power, boundedlinear,
circular, spherical, linearvariance, banded and correlation models. This can be
done using option setting  HETEROGENEITY=outside. This means a diagonal matrix D of
variances will be applied to the correlation matrix C to generate a matrix D0.5CD0.5. In this case,
a number of extra parameters (equal to the number of effects in the factor or term) should be
added to the vector of initial values. These models allow investigation of a structured correlation
pattern for changing variances and are particularly useful in the analysis of repeated
measurements data when variance increases over time. For example, to allow for changing
variance over time in the repeated measurements example above, we specified

VCOMPONENTS [FIXED=Tmt] RANDOM=Subject.Week
VSTRUCTURE [TERM=Subject.Week] MODELTYPE=AR; FACTOR=Week; \
  HETEROGENEITY=outside
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REML Y

In some circumstances, you may wish to define a single model to apply to the whole term,

instead of using the direct product form illustrated above. In this case, you should set option
FORMATION=whole. Note that when a term consists of a single factor, it is not necessary to set
the FACTOR or FORMATION options.

If you set MODELTYPE=fixed, you must either give the values of the covariance matrix using
the MATRIX option, or give the inverse matrix using the INVERSE option. Values for the matrix
or its inverse can be supplied as diagonal matrices or symmetric matrices. In addition, values for
the inverse matrix can be supplied in sparse form as a pointer. The output from VPEDIGREE
(5.6.1) is designed for input here, but you can also define the inverse matrix explicitly. The
second element of the pointer should then be a variate containing the non-zero values of the
inverse in lower triangular order. The first element should be a factor, with number of levels
equal to n(n+1)/2 where n is the number of rows of the matrix. This factor must contain first a
block of n values giving the position in the variate of the first value stored for each row. This
must be followed by a list indicating in which column each non-zero value of the matrix occurs,
ordered by row.

When MODELTYPE=power is used to define a distance-based model, the model can be of order
1 (isotropic) or 2 (anisotropic). For models with ORDER=1, a single set of distances must be
formed. The necessary information can be supplied using either the COORDINATES option, or
the COORDINATES parameter, or the  DISTANCES parameter. With the COORDINATES option you
can specify either a matrix, or a list of variates, to define multi-dimensional coordinates for each
unit of the data. The length of the variates, or the number of rows of the matrix, must be equal
to the number of data values. The number of variates, or the number of columns of the matrix,
is equal to the number of dimensions. If FORMATION=direct is used, the coordinates for each
factor level are then calculated as the mean value of the units in the analysis with that level. In
this case, it is essential that the set of coordinates corresponding to levels of other factors in the
term is repeated for each level of the factor being processed. For example, a field experiment
with row coordinates 1...12 and column coordinates 1,3,5,7,11 for all rows can use direct product
formation. If one row had column coordinates 1,2,5,7,11 then direct product construction is not
possible (since the covariance matrix C would then change between rows) and in this case,
FORMATION=whole should be used (with constraints to restrict parameters to zero where
necessary).

Alternatively, you can use the COORDINATES parameter to specify a single variate, a pointer
to several variates or a matrix to define multi-dimensional coordinates for each level of the
FACTOR. This parameter takes precedence over the COORDINATES option. The length of the
variates, or the number of rows of the matrix, must be equal to the number of levels of the
FACTOR. The number of variates, or the number of columns of the matrix, is again equal to the
number of dimensions.

The distance calculation is defined by the METRIC option. For levels i and j with
n-dimensional coordinates {cik: k=1...n} and {cjk: k=1...n} the distance dij is defined as

dij  =  Ók |cik ! cjk| for METRIC=cityblock (the default); 
dij  =  Ók (cik ! cjk)

2 for METRIC=squared; and 
dij  = {Ók (cik ! cjk)

2}1/2 for METRIC=euclidean.
Finally, you can supply a symmetric matrix of pre-calculated distances, using the DISTANCES

parameter, and this takes precedence over the COORDINATES parameter and option. The number
of rows of the DISTANCES matrix must be equal to the number of levels of the FACTOR.

When MODELTYPE=power and  ORDER=2, the DISTANCES parameter cannot be used, and only
two-dimensional coordinates are allowed. The coordinates must be specified using either the
COORDINATES option or parameter, as described above. The distances are calculated within each
dimension separately, according to the setting of the METRIC option. In this case the Euclidean
and city-block distances are equivalent.
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The spherical family of geostatistical models correspond to the MODELTYPE settings
boundedlinear (for one-dimensional distances), circular (for one or two dimensions) and
spherical (for one or two dimensions). For further details, see Webster & Oliver (2007).
These models are based on distances, and require coordinates to be supplied using either the
COORDINATES option (to give coordinates for each data value), or the COORDINATES parameter
(to give coordinates for each factor level), as described for MODELTYPE=power above. The
parameter ö is interpreted as the range at which the correlation is considered to have decayed to
zero. A small value therefore indicates weak correlation, and a large value indicates stronger
correlation. These models do not have continuous second derivatives, and their log-likelihood
may be multi-modal. To detect this potential problem, it is therefore important to start their
estimation from several different initial values; this can be done using the INITIAL parameter
as described above. To ensure that the estimated correlation matrix differs from the identity
matrix, it is necessary for the range parameter to be larger than the minimum distance specified
by the coordinates; any initial value smaller than this will be adjusted.

The setting MODELTYPE=linearvariance specifies the linear variance model of Williams
(1986), extended by Piepho & Williams (2010). This model is parameterized so that the
parameter ö lies in the range [0,1], which allows correlations in the range [-1,1]. Values of ö
close to one indicate weak correlation and values close to zero indicate strong correlation
between neighbouring observations.

The CORRELATE option allows you to specify correlations between model terms that have
equal numbers of effects. A common correlation will then be fitted between parallel effects as
in the random coefficient regression example described above. Correlations between terms can
be cancelled using CORRELATE=none (the default). The CORRELATE option setting
positivedefinite can be used to ensure that the correlation matrix between the terms
remains positive definite. This constraint can be relaxed using the setting unrestricted (an
unstructured covariance matrix is then used to describe covariance across the terms). The model
fitting is done here in terms of a covariance matrix, where the diagonal elements are the gammas
for the correlated terms. The CINITIAL option is used to give initial values for this matrix. If
no initial values are given, the initial values are taken from initial gamma values given in
VCOMPONENTS when the model is declared. A missing value in the initial values is taken to mean
that the value is inestimable and it will be fixed at a value close to zero during the analysis.
When correlations are declared between terms, you must set FORMATION=whole. In the random
coefficient regression model above, no correlation structure is declared within terms since the
subjects are independent. However, it is possible to declare correlation/covariance models within
terms as usual. For example, an animal model might use VPEDIGREE to set up an inverse
relationship matrix A-1, then use this matrix to model covariances within terms:

VPEDIGREE INDIVIDUALS=animal; FEMALE=dam; MALE=sire;\
  INVERSE=Ainv
VCOMPONENTS [FIXED=Trt] RANDOM=animal+dam+env
VSTRUCTURE [TERM=animal+dam; CORRELATE=unrestricted; \
  FORM=whole] MODELTYPE=fixed; INVERSE=Ainv

These declarations set up random terms with covariance structures of the form: cov(animal) =
óa

2 A, cov(dam) = óa
2 A, cov(animal,dam) = óad A.

5.4.2 Displaying the model: the VSTATUS directive

The VSTATUS directive can be used to print out, and hence check, the fixed and random models
and covariance structures as set up by the VCOMPONENTS and VSTRUCTURE directives, prior to
using REML to run an analysis.

VSTATUS directive
Prints the current model settings for REML.
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Figure 5.4.3

Option
PRINT = string tokens What to print (model); default mode

No parameters

5.4.3 A repeated measurements example

The example in this section uses data
generated from an experiment at
Rothamsted by J. Lamptey. The data
analysed here consists of five
measurements of growth after 1, 3, 5, 7 and
10 weeks for 14 plants in a glasshouse, and
the measurements over time are shown for
each plant in Figure 5.4.3. (For details of
the DREPMEASURES procedure that
produced the plot, see Section 8.1.1)
Individual plants were either diseased or
healthy, i.e. two treatments, with seven
replicates of each, and the plants were
arranged in a completely randomised
design. An analysis is illustrated in
Example 5.4.3 below, using the saturated
treatment model Plant.Treatment

throughout in order to investigate the
structure of the residual variance. The first
analysis (Example 5.4.3a) is the standard
ANOVA split-plot analysis, specified by
setting random model Plant/Week, or
equivalently, Plant+Plant.Week. As explained earlier (Section 5.4.1), this generates a uniform
correlation over time, plus extra measurement error, and is equivalent to the second analysis,
which uses random model Plant.Week and specifies the uniform correlation structure
explicitly.

Example 5.4.3a

   2  " Repeated measurements analysis:
  -3    growth of 14 plants measured after 1,3,5,7,10 weeks."
   4  FACTOR       Plant
   5  &            [LABELS=!T(HC,MAV)] Treatment
   6  OPEN         '%GENDIR%/Examples/GuidePart2/Plant.dat'; CHANNEL=2
   7  READ         [CHANNEL=2] Plant,Treatment,Time,Height; \
   8               FREPRESENTATION=levels,labels,levels,levels

    Identifier   Minimum      Mean   Maximum    Values   Missing
          Time     1.000     5.200     10.00        70         0
        Height     21.00     66.04     130.5        70         0

    Identifier    Values   Missing    Levels
         Plant        70         0        14
     Treatment        70         0         2

   9  CLOSE        2
  10  GROUPS       Time; FACTOR=Week
  11  DREPMEASURES [GROUPS=Plant; TIMEPOINTS=Week] Height
  12  " Anova split-plot analysis."
  13  VCOMPONENTS [FIXED=Treatment*Week] Plant/Week
  14  REML        Height
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REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Week + Treatment + Week.Treatment
Random model:      Plant + Plant.Week
Number of units:   70

Plant.Week used as residual term

Sparse algorithm with AI optimisation

Estimated variance components
-----------------------------

Random term               component        s.e.
Plant                         159.8        75.7

Residual variance model
-----------------------

Term                           Model(order)  Parameter        Estimate      s.e.
Plant.Week                     Identity      Sigma2              126.5      25.8

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week                               217.83       4         54.46    48.0  <0.001
Treatment                            9.41       1          9.41    12.0   0.010
Week.Treatment                      20.41       4          5.10    48.0   0.002

Dropping individual terms from full fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week.Treatment                      20.41       4          5.10    48.0   0.002

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated
using algebraic derivatives ignoring fixed/boundary/singular variance
parameters.

  15  " Equivalent analysis using uniform correlation structure"
  16  VCOMPONENTS [FIXED=Treatment*Week] Plant.Week
  17  VSTRUCTURE  [TERM=Plant.Week] MODELTYPE=uniform; FACTOR=Week
  18  REML        [PRINT=model,components] Height

REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Week + Treatment + Week.Treatment
Random model:      Plant.Week
Number of units:   70

Plant.Week used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term                    Factor      Model                        Order  No. rows
Plant.Week              Plant       Identity                         1        14
                        Week        Uniform                          1         5
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Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter        Estimate      s.e.
Plant.Week                                   Sigma2              286.3      78.3
                 Plant         Identity      -                       -         -
                 Week          Uniform       theta1             0.5582    0.1304

To verify equivalence of the two analyses, it is necessary to take into account the different
parameterisations of the variance model. For the split-plot analysis, the variance model for yij

(plant i, week j) is
var(yij) = óp

2 + ó1
2 ,  cov(yij, yik) = óp

2  for j�k,  cov(yij, ykl) = 0 for i�k
where óp

2 and ó1
2 are the Plant and Plant.Week (or residual) variance components. For the

uniform correlation model, with residual ó2
2 and correlation parameter è:

var(yij) = ó2
2 ,  cov(yij, yik) = èó2

2  for j�k,  cov(yij, ykl) = 0 for i�k
Hence èó2

2 = óp
2  and ó2

2 = óp
2 + ó1

2.
Where estimated parameters for covariance models are given, the labelling of the parameters

corresponds to the model definitions given in Section 5.4.1.
Rather than uniform correlation over time, a more realistic model might decrease the

correlation as the time between measurements increases. For equally spaced data, the auto-
regressive model is often used. In Example 5.4.3a, the measurements are not equally spaced, so
Example 5.4.3b fits a power model where correlation depends on the distance between time
points calculated from the coordinates specified using the COORDINATES option of
VSTRUCTURE. Since distances are calculated across only one dimension (time), it is sufficient
to specify only one variate of coordinates corresponding to the different times of measurement.
The same answer would be obtained by also specifying plant values (as a variate vplant, say)
for the second dimension, i.e. COORDINATES=vplant,Time.

Note that this analysis would not be suitable if each plant was measured at different times, as
the direct product structure would not hold: see Section 5.4.6 for further details.

Example 5.4.3b

  19  " Power model:
 -20    - correlation decreases as time between measurements increase
 -21    - takes account of unequally spaced measurements
 -22    - co-ordinates must be specified as a list of variates or a matrix."
  23  VCOMPONENTS [FIXED=Treatment*Week] Plant.Week
  24  VSTRUCTURE  [TERM=Plant.Week; COORDINATES=Time] MODELTYPE=power; FACTOR=Week
  25  REML        [PRINT=model,components,wald,deviance] Height

* MESSAGE: Ordering of units in COORDINATES option expected to match ordering of
data values.

REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Week + Treatment + Week.Treatment
Random model:      Plant.Week
Number of units:   70

Plant.Week used as residual term with covariance structure as below

Sparse algorithm with AI optimisation
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Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term                    Factor      Model                        Order  No. rows
Plant.Week              Plant       Identity                         1        14
                        Week        Power - city block distance      1         5

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter        Estimate      s.e.
Plant.Week                                   Sigma2              301.6      96.8
                 Plant         Identity      -                       -         -
                 Week          Power(1)      phi_1              0.9190    0.0312

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     365.96    58

Note: deviance omits constants which depend on fixed model fitted.

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week                               159.27       4         39.75    46.3  <0.001
Treatment                            6.87       1          6.87    11.6   0.023
Week.Treatment                      24.51       4          6.12    46.3  <0.001

Dropping individual terms from full fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week.Treatment                      24.51       4          6.12    46.3  <0.001

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated
using numerical derivatives ignoring fixed/boundary/singular variance
parameters.

The calculation of the deviance omits the terms (n!p)log2ð!log|XNX|, and is the same as the
deviance printed out in monitoring information. The deviance cannot be used to compare models
with different fixed effects (Welham & Thompson 1997), but it can be used to compare different
nested random models.

Residuals from the analysis indicate variance increasing over time. This can be modelled
directly by specifying that heterogeneity is to be introduced into the power model, using
parameter HETEROGENEITY=outside, which means that a separate scaling parameter will be
estimated for each time point.

Example 5.4.3c

  26  " Heterogeneous power model - correlations follow power model,
 -27    variance allowed to change over time."
  28  VSTRUCTURE  [TERM=Plant.Week; COORDINATES=Time] MODELTYPE=power; \
  29              ORDER=1; FACTOR=Week; HETEROGENEITY=outside
  30  REML        [PRINT=model,components,wald,deviance] Height

* MESSAGE: Ordering of units in COORDINATES option expected to match ordering of
data values.
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REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Week + Treatment + Week.Treatment
Random model:      Plant.Week
Number of units:   70

Plant.Week used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term                    Factor      Model                        Order  No. rows
Plant.Week              Plant       Identity                         0        14
                        Week        Power - city block distance (het)
                                                                     1         5

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter        Estimate      s.e.
Plant.Week                                   Sigma2              1.000     fixed
                 Plant         Identity      -                       -         -
                 Week          Power(1) het  phi_1              0.9068    0.0415
                                             Scale row 1         60.79     28.50
                                             Scale row 2         73.18     36.87
                                             Scale row 3         308.7     138.6
                                             Scale row 4         435.5     172.5
                                             Scale row 5         381.8     139.2

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     342.99    54

Note: deviance omits constants which depend on fixed model fitted.

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week                               227.48       4         51.82    21.0  <0.001
Treatment                            0.00       1          0.00    13.2   0.971
Week.Treatment                      19.08       4          4.35    21.0   0.010

Dropping individual terms from full fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week.Treatment                      19.08       4          4.35    21.0   0.010

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated
using numerical derivatives ignoring fixed/boundary/singular variance
parameters.

The variance model for term Plant.Week now takes the form ó2R = ó2D0.5CD0.5 where C is the
power correlation matrix and D is a matrix of scaling parameters. In this specification, there are
too many scaling parameters, and either ó2 or D must be constrained. If, as here, the sigma
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parameterization (5.3.1) is being used, the constraint ó2=1 is imposed. Alternatively, with the
gamma parameterization, Genstat constrains the first scaling parameter d1=1. The estimated
variance for measurements at the time point i is then the variance component for the term (here
the residual, ó2) multiplied by the scaling parameter, ó2di.

The change in deviance of 22.97 on 4 df between the two fits (as a likelihood ratio test,
compared to a ÷2 distribution on 4 df) indicates that the heterogenous power model gives a better
fit to the variance structure. Note that tests based on change in deviance can be used only to
compare nested random models which use the same fixed model. Here, the first model can be
considered to have di=1 for all i.

This model can be compared to the fit given by an unstructured variance model. Initial values
must be specified for unstructured or ante-dependence models. These might either be saved from
a simpler model, such as the power model fitted above, or calculated using residuals obtained
after fitting a null variance model. Both methods are illustrated in Example 5.4.3d.

Example 5.4.3d

  31  " Save fitted covariance model as initial values for unstructured model."
  32  VKEEP       TERM=Plant.Week; COVARIANCEMODEL=Covpower
  33  PRINT       Covpower['Week']

             Covpower['Week']
            1        60.8
            2        54.8        73.2
            3        92.6       123.6       308.7
            4        90.4       120.7       301.5       435.5
            5        63.1        84.3       210.5       304.0       381.8
                        1           2           3           4           5

  34  " Unstructured model."
  35  VSTRUCTURE  [TERM=Plant.Week] MODELTYPE=unstructured; FACTOR=Week; \
  36              INITIAL=Covpower['Week']
  37  REML        [PRINT=model,components,wald,deviance] Height

REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Week + Treatment + Week.Treatment
Random model:      Plant.Week
Number of units:   70

Plant.Week used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term                    Factor      Model                        Order  No. rows
Plant.Week              Plant       Identity                         0        14
                        Week        Unstructured                     4         5

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter        Estimate      s.e.
Plant.Week                                   Sigma2              1.000     fixed
                 Plant         Identity      -                       -         -
                 Week          Unstructured  v_11                37.23     15.20
                                             v_21                23.39     13.21
                                             v_22                41.52     16.95
                                             v_31                51.65     32.03
                                             v_32                61.92     34.87
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                                             v_33                259.1     105.8
                                             v_41                70.81     46.14
                                             v_42                57.61     46.74
                                             v_43                331.8     145.2
                                             v_44                551.5     225.2
                                             v_51                73.79     46.21
                                             v_52                62.57     46.93
                                             v_53                330.9     144.3
                                             v_54                533.8     220.6
                                             v_55                542.2     221.3

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     316.07    45

Note: deviance omits constants which depend on fixed model fitted.

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week                               215.86       4         40.47     9.0  <0.001
Treatment                            1.71       1          1.71    12.0   0.215
Week.Treatment                      17.84       4          3.34     9.0   0.061

Dropping individual terms from full fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Week.Treatment                      17.84       4          3.34     9.0   0.061

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated
using algebraic derivatives ignoring fixed/boundary/singular variance
parameters.

  38  " Alternatively, generate initial values using residuals generated after
 -39    fitting with no variance model."
  40  VCOMPONENTS [FIXED=Treatment*Week]
  41  REML        [PRINT=*] Height; RESIDUALS=r
  42  " Residuals are in order plants within weeks, so matrix rows correspond
 -43    to weeks and columns to plants."
  44  MATRIX      [ROWS=5; COLUMNS=14; VALUES=#r] mres
  45  SYMMETRIC   [ROWS=5] vcov
  46  CALCULATE   vcov = mres *+ TRANSPOSE(mres)
  47  " Dividing by number of replicates within each week gives an easy but
 -48    conservative estimate as it takes no account of treatment d.f."
  49  CALCULATE   vcov = vcov / 14
  50  " Unstructured model from new initial values."
  51  VCOMPONENTS [FIXED=Treatment*Week] Plant.Week
  52  VSTRUCTURE  [TERM=Plant.Week] MODELTYPE=unstructured; FACTOR=Week; \
  53              INITIAL=!(#vcov)
  54  REML        [PRINT=deviance] Height

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     316.07    45

Note: deviance omits constants which depend on fixed model fitted.

Again, the matrix takes the form ó2C, where C is an unstructured covariance matrix, so the
identifiability constraint ó2=1 is imposed. With the gamma parameterization, the constraint
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would be c1,1=1.
For an ante-dependence analysis, a similar constraint is required. In this case the variance

structure is ó2R, where R-1=UD!1UN for some upper triangular U and diagonal matrix D!1, and
ó2=1. With gamma parameterization, d1 would be fixed at an arbitrary value.

Example 5.4.3e

  55  " Ante-dependence model order 1 - also requires initial values."
  56  VSTRUCTURE  [TERM=Plant.Week] antedependence; FACTOR=Week; \
  57              INITIAL=Covpower['Week']; ORDER=1
  58  REML        [PRINT=model,components,deviance] Height

REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Week + Treatment + Week.Treatment
Random model:      Plant.Week
Number of units:   70

Plant.Week used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term                    Factor      Model                        Order  No. rows
Plant.Week              Plant       Identity                         0        14
                        Week        Antedependence                   1         5

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter        Estimate      s.e.
Plant.Week                                   Sigma2              1.000     fixed
                 Plant         Identity      -                       -         -
                 Week          Antedependence(1)
                                             dinv_1            0.02686   0.01102
                                             dinv_2            0.03729   0.01547
                                             dinv_3           0.005996  0.002468
                                             dinv_4           0.007897  0.003233
                                             dinv_5            0.03906   0.01595
                                             u_12              -0.6284    0.2459
                                             u_23               -1.491     0.586
                                             u_34               -1.280     0.207
                                             u_45              -0.9678    0.0628

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     320.74    51

Note: deviance omits constants which depend on fixed model fitted.

  59  " Ante-dependence model order 2."
 -60  - use initial values from power model again ."
  61  VSTRUCTURE  [TERM=Plant.Week] antedependence; FACTOR=Week; \
  62              INITIAL=Covpower['Week']; ORDER=2
  63  REML        [PRINT=deviance] Height
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Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     317.30    48

Note: deviance omits constants which depend on fixed model fitted.

In this example, the ante-dependence model of order 1 appears to give a good fit to the data. The
ante-dependence model can be regarded as a generalisation of the auto-regressive model. In this
context, ó2/di is analogous to the AR process variance at each time point, and Uji is the regression
coefficient for time i on time j (i>j).

5.4.4 An example of spatial analysis of a field experiment

Example 5.4.4a shows the layout and standard analysis of a field experiment (at Slate Hall Farm
in 1976, previously analysed by Gilmour et al. 1995) laid out as a lattice square in 6 replicates.

Example 5.4.4a

   2  " Slate Hall Farm 1976:
  -3    data from Gilmour et al. (1995) Biometrics 51, 1440-1450.
  -4
  -5    Balanced Lattice Design with Replicates laid out as:
  -6
  -7              1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
  -8              1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
  -9              1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
 -10              1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
 -11              1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
 -12              4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
 -13              4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
 -14              4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
 -15              4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
 -16              4 4 4 4 4 5 5 5 5 5 6 6 6 6 6
 -17  "
  18  FACTOR      Replicate,Rowblock,Colblock,Variety; DECIMALS=0
  19  OPEN        'Slatehfm.dat'; CHANNEL=2
  20  READ        [CHANNEL=2] Replicate,Rowblock,Colblock,Variety,Yield

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Yield     917.0      1470      2119       150         0

    Identifier    Values   Missing    Levels
     Replicate       150         0         6
      Rowblock       150         0        30
      Colblock       150         0        30
       Variety       150         0        25

  21  CLOSE       2
  22  CALCULATE   Yield = Yield * 0.01
  23  FACTOR      [NVALUES=150; LEVELS=10] Row
  24  &           [LEVELS=15] Column
  25  GENERATE    Row,Column
  26  VARIATE     Vrow,Vcolumn; VALUES=Row,Column
  27  " Analysis using design blocking factors and AI method."
  28  VCOMPONENTS [FIXED=Variety] Replicate/(Rowblock*Colblock)
  29  REML        [PRINT=model,components,wald; METHOD=ai] Yield

REML variance components analysis
=================================

Response variate:  Yield
Fixed model:       Constant + Variety
Random model:      Replicate + Replicate.Rowblock + Replicate.Colblock
                   + Replicate.Rowblock.Colblock
Number of units:   150
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Replicate.Rowblock.Colblock used as residual term

Sparse algorithm with AI optimisation

Estimated variance components
-----------------------------

Random term               component        s.e.
Replicate                    0.4262      0.6890
Replicate.Rowblock           1.5595      0.5091
Replicate.Colblock           1.4812      0.4865

Residual variance model
-----------------------

Term                           Model(order)  Parameter  Estimate      s.e.
Replicate.Rowblock.Colblock    Identity      Sigma2        0.806    0.1340

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Variety                         212.26      24          8.84    79.3  <0.001

Dropping individual terms from full fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Variety                         212.26      24          8.84    79.3  <0.001

* MESSAGE: denominator degrees of freedom for approximate F-tests are 
calculated using algebraic derivatives ignoring fixed/boundary/singular 
variance parameters.

This is the conventional analysis and assumes uniform correlation separately across rows and
columns within replicates, which is also an assumption of the design when the experiment is laid
out. An alternative approach considers the layout as a two-dimensional array and attempts to
model the underlying variance patterns. With the assumption that the error process is separable,
i.e. correlation across rows is independent of columns and vice versa, the two-dimensional
variance structure can be modelled as a direct product of a correlation model across rows with
a correlation model across columns (see Cullis & Gleeson 1991).

Example 5.4.4b illustrates three methods of specifying the same analysis, via a two-
dimensional power model, a direct product of two one-dimensional power models, and as a direct
product of auto-regressive models. The direct product specification is more natural and more
efficient in this context, but it could not be used for plots laid out in an irregular pattern, in which
case the two-dimensional power model would be used.

Example 5.4.4b

  30  " Two-dimensional power model based on (Row,Column) co-ordinates."
  31  VCOMPONENTS [FIXED=Variety] Row.Column
  32  VSTRUCTURE  [TERM=Row.Column; FORMATION=whole; \
  33              COORDINATES=Vrow,Vcolumn] power; ORDER=2
  34  REML        [PRINT=model,components] Yield

* MESSAGE: Ordering of units in COORDINATES option expected to match ordering of
data values.

REML variance components analysis
=================================

Response variate:  Yield
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Fixed model:       Constant + Variety
Random model:      Row.Column
Number of units:   150

Row.Column used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term        Factor      Model                                 Order  No. rows
Row.Column  Whole term  Power - city block distance (+ scalar)    2       150

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter   Estimate      s.e.
Row.Column                                   Sigma2         3.876     0.775
                 Whole term    Power(2)      phi_1         0.4586    0.0826
                                             phi_2         0.6838    0.0633

  35  " Equivalent - more efficient - specification as power x power
 -36    using separability in layout."
  37  VCOMPONENTS [FIXED=Variety] Row.Column
  38  VSTRUCTURE  [TERM=Row.Column; COORDINATES=Vrow,Vcolumn] \
  39              MODELTYPE=power,power; FACTOR=Row,Column
  40  REML        [PRINT=model,components] Yield

* MESSAGE: Ordering of units in COORDINATES option expected to match ordering of
data values.

* MESSAGE: Ordering of units in COORDINATES option expected to match ordering of
data values.

REML variance components analysis
=================================

Response variate:  Yield
Fixed model:       Constant + Variety
Random model:      Row.Column
Number of units:   150

Row.Column used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term         Factor   Model                                 Order  No. rows
Row.Column      Row   Power - city block distance (+ scalar)    1        10
             Column   Power - city block distance               1        15

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter  Estimate      s.e.
Row.Column                                   Sigma2        3.876     0.775
                 Row           Power(1)      phi_1        0.4586    0.0826
                 Column        Power(1)      phi_1        0.6838    0.0633

  41  " AR1 x AR1 - equivalent to power model for equal spacing."
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  42  VCOMPONENTS [FIXED=Variety] Row.Column
  43  VSTRUCTURE  [TERM=Row.Column] AR,AR; FACTOR=Row,Column
  44  REML        [PRINT=model,components,deviance,wald] Yield

REML variance components analysis
=================================

Response variate:  Yield
Fixed model:       Constant + Variety
Random model:      Row.Column
Number of units:   150

Row.Column used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term        Factor   Model                        Order  No. rows
Row.Column     Row   Auto-regressive (+ scalar)       1        10
            Column   Auto-regressive                  1        15

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter  Estimate      s.e.
Row.Column                                   Sigma2        3.876     0.775
                 Row           AR(1)         phi_1        0.4586    0.0826
                 Column        AR(1)         phi_1        0.6838    0.0633

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     249.35   122

Note: deviance omits constants which depend on fixed model fitted.

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Variety                         313.04      24         13.04    80.0  <0.001

Dropping individual terms from full fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Variety                         313.04      24         13.04    80.0  <0.001

* MESSAGE: denominator degrees of freedom for approximate F-tests are 
calculated using algebraic derivatives ignoring fixed/boundary/singular 
variance parameters.

The AR(1) q AR(1) structure used in Example 5.4.4b models any underlying trend over the field,
but does not allow for any extra measurement error. This can be added to the model explicitly,
either by generating a new units factor, or by specifying the term '*units*' in the random
model to indicate that an extra residual term is to be added. The analysis is shown in Example
5.4.4c. Genstat produces a warning about the two residual terms and tells you which one is to
be used to provide the R matrix.
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Example 5.4.4c

  45  " AR1 x AR1 + independent error."
  46  VCOMPONENTS [FIXED=Variety] Row.Column+'*units*'
  47  VSTRUCTURE  [TERM=Row.Column] AR,AR; FACTOR=Row,Column; \
  48              INITIAL=!(.45),!(.68)
  49  REML        [PRINT=model,monitoring,components,deviance,wald] Yield

******** Warning, code VC 53, statement 1 on line 49

Command: REML [PRINT=model,monitoring,components,deviance,wald] Yield
More than one residual term specified - first term found will be used as R.

REML variance components analysis
=================================

Response variate:  Yield
Fixed model:       Constant + Variety
Random model:      Row.Column + '*units*'
Number of units:   150

Row.Column used as residual term with covariance structure as below

Sparse algorithm with AI optimisation

Covariance structures defined for random model
----------------------------------------------

Covariance structures defined within terms:

Term         Factor   Model                       Order  No. rows
Row.Column      Row   Auto-regressive (+ scalar)      1        10
             Column   Auto-regressive                 1        15

Convergence monitoring
----------------------

Cycle   Deviance   Current variance parameters: gammas, sigma2, others
    0    274.471   1.00000   1.35490  0.680000  0.450000
    1    267.202  0.691570   1.58926  0.671743  0.443532
    2    249.772  0.181262   2.52092  0.678574  0.458822
    3    244.705  0.177878   3.00935  0.779718  0.567184
    4    242.428 0.0975166   4.52996  0.834529  0.662769
    5    242.354  0.107328   4.54878  0.843781  0.680285
    6    242.353  0.106086   4.57634  0.843545  0.682242
    7    242.353  0.106171   4.57955  0.843782  0.682631
    8    242.353  0.106153   4.58026  0.843793  0.682685
    9    242.353  0.106153   4.58036  0.843798  0.682695

Estimated variance components
-----------------------------

Random term               component        s.e.
Extra units term              0.486       0.179

Residual variance model
-----------------------

Term             Factor        Model(order)  Parameter  Estimate      s.e.
Row.Column                                   Sigma2        4.580     1.670
                 Row           AR(1)         phi_1        0.6827    0.1023
                 Column        AR(1)         phi_1        0.8438    0.0684
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Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     242.35   121

Note: deviance omits constants which depend on fixed model fitted.

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Variety                         245.39      24         10.21    75.7  <0.001

Dropping individual terms from full fixed model

Fixed term              Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Variety                         245.39      24         10.21    75.7  <0.001

* MESSAGE: denominator degrees of freedom for approximate F-tests are 
calculated using algebraic derivatives ignoring fixed/boundary/singular 
variance parameters.

In this example, there is a relatively large reduction in the deviance (7.0 on 1 df) after adding the
extra random error term. The values of the auto-regressive coefficients also increase, indicating
that these had been artificially depressed in the absence of the random error term. However, the
auto-regressive coefficients still give a substantial decrease in correlation in both directions
across the layout, indicating that this may be a more realistic model than the lattice analysis,
although in practice there is little difference in the estimates of fixed effects from models in
Examples 5.4.4a and 5.4.4c.

Example 5.4.4d shows the two formats in which the estimated covariance models can be
printed: either as the component matrices (the default) or as their parameters (option
CFORMAT=parameters). Here there is a vector with two elements for each direction. The first
is the parameter of the AR1 process, and the other is zero (it would be non-zero if we had an
AR2 process).

Example 5.4.4d

  50  VDISPLAY    [PRINT=covariancemodels]

Estimated covariance models
---------------------------

Variance of data estimated in form:

V(y) = Sigma2( gZZ' + R )

where: V(y) is variance matrix of data
       Sigma2 is the residual variance
       g is the gamma for the random term
       Z is the incidence matrix for the random term
       R is the residual covariance matrix

Note: a gamma is the ratio of a variance component to the residual (Sigma2)

Random Term: Extra units term

Scalar Sigma2*g: 0.4862

Residual term: Row.Column
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Sigma2: 4.580

R uses direct product construction

Factor: Row
Model:  Auto-regressive

Covariance matrix:

 1  1.000
 2  0.683  1.000
 3  0.466  0.683  1.000
 4  0.318  0.466  0.683  1.000
 5  0.217  0.318  0.466  0.683  1.000
 6  0.148  0.217  0.318  0.466  0.683  1.000
 7  0.101  0.148  0.217  0.318  0.466  0.683  1.000
 8  0.069  0.101  0.148  0.217  0.318  0.466  0.683  1.000
 9  0.047  0.069  0.101  0.148  0.217  0.318  0.466  0.683  1.000
10  0.032  0.047  0.069  0.101  0.148  0.217  0.318  0.466  0.683  1.000
        1      2      3      4      5      6      7      8      9     10

Factor: Column
Model:  Auto-regressive

Covariance matrix (first 10 rows only):

 1  1.000
 2  0.844  1.000
 3  0.712  0.844  1.000
 4  0.601  0.712  0.844  1.000
 5  0.507  0.601  0.712  0.844  1.000
 6  0.428  0.507  0.601  0.712  0.844  1.000
 7  0.361  0.428  0.507  0.601  0.712  0.844  1.000
 8  0.305  0.361  0.428  0.507  0.601  0.712  0.844  1.000
 9  0.257  0.305  0.361  0.428  0.507  0.601  0.712  0.844  1.000
10  0.217  0.257  0.305  0.361  0.428  0.507  0.601  0.712  0.844  1.000
        1      2      3      4      5      6      7      8      9     10

  51  VDISPLAY    [PRINT=covariancemodels; CFORMAT=parameters]

Estimated covariance models
---------------------------

Variance of data estimated in form:

V(y) = Sigma2( gZZ' + R )

where: V(y) is variance matrix of data
       Sigma2 is the residual variance
       g is the gamma for the random term
       Z is the incidence matrix for the random term
       R is the residual covariance matrix

Note: a gamma is the ratio of a variance component to the residual (Sigma2)

Random Term: Extra units term

Scalar Sigma2*g: 0.4862

Residual term: Row.Column

Sigma2: 4.580

R uses direct product construction

Factor: Row
Model:  Auto-regressive
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Vector of parameters, vector of variances (if heterogeneous)

Parameters

  0.6827
  0.0000

Factor: Column
Model:  Auto-regressive

Vector of parameters, vector of variances (if heterogeneous)

Parameters

  0.8438
  0.0000

The variogram can be a useful diagnostic tool in these circumstances. Procedure
F2DRESIDUALVARIOGRAM can produce a two-dimensional variogram as described in Gilmour
et al. (1997), or the FVARIOGRAM directive can form one-dimensional variograms calculated in
specific directions (e.g. over rows or over columns).

5.4.5 An example of random coefficient regression

Random coefficient regression seeks to model individual profiles over time using linear models
with common parameters within treatment groups, allowing for random variation about these
parameters for individuals. We illustrate an analysis using the plant growth data of Example
5.4.3. The plant profiles in Figure 5.4.3 indicate that linear plus quadratic terms over time may
be required to model the profiles. We fit fixed effects model Treatment*(Time+Timesqrd)
to allow a separate quadratic profile over time for each treatment. The analysis in Example 5.4.5a
fits random terms Plant to generate a random intercept (or constant) for each plant, and
Plant.Time to generate a random slope for each plant, without correlation.

Example 5.4.5a

  64  " Random coefficient regression
 -65    Growth of 14 plants measured after 1,3,5,7,10 weeks.
 -66    Profiles suggest use of quadratic functions:
 -67    fit random intercept and slope for plants - no correlation."
  68  CALCULATE   Timesqrd = Time * Time
  69  VCOMPONENTS [FIXED=Treatment*(Time+Timesqrd)] Plant+Plant.Time
  70  REML        [PRINT=model,components,deviance] Height

REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Time + Treatment + Timesqrd + Time.Treatment +
Treatment.Timesqrd
Random model:      Plant + Plant.Time
Number of units:   70

Residual term has been added to model

Sparse algorithm with AI optimisation
All covariates centred

Estimated variance components
-----------------------------

Random term               component        s.e.
Plant                        173.05       75.62
Plant.Time                     6.43        3.14
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Residual variance model
-----------------------

Term                           Model(order)  Parameter        Estimate      s.e.
Residual                       Identity      Sigma2              60.30     13.48

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     415.57    61

Note: deviance omits constants which depend on fixed model fitted.

The analysis without correlation between random intercept and slope terms can be used to find
initial values for an analysis with correlation. The correlation is imposed by specifying the two
terms in VSTRUCTURE while also setting the CORRELATE option to unrestricted. The initial
values are entered as gamma values, i.e. the variance components divided by the residual
variance, using option CINITIAL to specify initial values for correlations across terms. Note that
in this situation covariates are centred by default. This centring can be switched off using
VCOMPONENTS option setting CADJUST=none, but in this case the initial values obtained from
the first fit are likely to be less useful. Example 5.4.5b shows estimation of the correlation
between the random intercept and slope terms for plants.

Example 5.4.5b

  71  " Fit random intercept and slope (with correlation) for plants,
 -72    using previous estimates as initial values."
  73  VCOMPONENTS [FIXED=Treatment*(Time+Timesqrd)] Plant+Plant.Time
  74  VSTRUCTURE  [TERMS=Plant+Plant.Time; FORMATION=whole; \
  75              CORRELATE=unrestricted; CINITIAL=!(3,0.1,0.1)]
  76  REML        [PRINT=#,deviance] Height

REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Time + Treatment + Timesqrd + Time.Treatment +
Treatment.Timesqrd
Random model:      Plant + Plant.Time
Number of units:   70

Residual term has been added to model

Sparse algorithm with AI optimisation
All covariates centred

Covariance structures defined for random model
----------------------------------------------

Correlated terms:

Set  Correlation across terms
  1  Unstructured

Set  Terms                   Covariance model within term
  1  Plant                   Identity
  1  Plant.Time              Identity
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Estimated parameters for covariance models
------------------------------------------

Random term(s)   Factor        Model(order)  Parameter        Estimate      s.e.
Plant + Plant.Time
                 Across terms  Unstructured  v_11                2.870     1.429
                                             v_21               0.5682    0.2749
                                             v_22               0.1066    0.0591
                 Within terms  Identity      -                       -         -

Note: the covariance matrix for each term is calculated as G or R where
      var(y) = Sigma2( ZGZ'+R ), i.e. relative to the residual variance, Sigma2.

Residual variance model
-----------------------

Term                           Model(order)  Parameter        Estimate      s.e.
Residual                       Identity      Sigma2              60.30     13.48

Estimated covariance models
---------------------------

Variance of data estimated in form:

V(y) = Sigma2( gZGZ' + I )

where: V(y) is variance matrix of data
       Sigma2 is the residual variance
       g is a gamma for the random term
       Z is the incidence matrix for the random term
       G is the covariance matrix for the random term
       I is the residual (identity) covariance matrix

Note: a gamma is the ratio of a variance component to the residual (Sigma2)

Correlated terms: Plant + Plant.Time

Across terms
Model: Unstructured

Covariance matrix:

1  2.870
2  0.568  0.107
       1      2

Within terms
Model: Identity (14 rows)

Residual term: added to model

Sigma2: 60.30

I is an identity matrix (70 rows)

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     394.48    60

Note: deviance omits constants which depend on fixed model fitted.
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Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Time                                63.44       1         63.44    51.2  <0.001
Treatment                            6.89       1          6.89    12.0   0.022
Timesqrd                            57.95       1         57.95    40.0  <0.001
Time.Treatment                       4.72       1          4.72    51.2   0.034
Treatment.Timesqrd                   5.41       1          5.41    40.0   0.025

Dropping individual terms from full fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
Time.Treatment                       9.77       1          9.77    51.2   0.003
Treatment.Timesqrd                   5.41       1          5.41    40.0   0.025

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated
using algebraic derivatives ignoring fixed/boundary/singular variance
parameters.

The model information lists sets of correlated terms. In the output, the parameter values for the
unstructured matrix are ratios of the residual, i.e. they must be multiplied by ó2 to get values
comparable with the variance components in Example 5.4.5a.

More than two terms may be correlated; they must all be specified together and the number
of initial values increased accordingly. For example, to include random variation in the quadratic
component

VCOMPONENTS [FIX=Treatment*(Time+Timesqrd)] \
  Plant/(Time+Timesqrd)
VSTRUCTURE [TERMS=Plant/(Time+Timesqrd); CORR=unr; \
  FORM=whole; CINITIAL=!(2.9,0.3,0.11,0.01,0.01,0.01)]

Also, more than one set of correlated terms may be defined by repeated use of VSTRUCTURE.
However, each set of correlated terms must be distinct. To remove correlations between terms,
you should repeat the VSTRUCTURE statement with option setting CORRELATE=no.

5.4.6 Direct products

We now discuss the issues that are relevant when considering direct product construction of
covariance models. Firstly, we explain the use of direct product construction in unbalanced data
sets. Secondly, we discuss how a model term may be identified either as a random effect ui with
associated variance Gi, or as the residual e with associated variance R.
  With unbalanced data there are several cases to consider, and it is easiest to do this via an
example. Consider a set of repeated measurements, where data have been taken from subjects
on five occasions. The following scenarios are possible:

i) all subjects had measurements taken on the same five dates;
ii) there were six (or more) dates on which measurements were taken, and each subject was

measured on five of these dates;
iii) the sample dates for each subject were different.

(Note that it may be the intervals between samples rather than the sample dates that are recorded,
but the same principles apply.)

In case (i), the structure of the experiment can be described in direct product terms, as
discussed earlier in Section 5.4.1, using the term Subject.Sample where Subject and
Sample are factors representing subjects and sample dates respectively.

In fact, whenever a random model term is defined in terms of an interaction of two factors
with, say, l1 and l2 levels, this generates a set of effects of size l1×l2, which matches the size of
the covariance matrix generated by direct product. If some combinations of the two factors are
missing from the data, as in case (ii), the random effects for the missing combinations will not
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be estimable. However, they remain in the model, so that the size of the random term is still
compatible with the size of the matrix direct product allowing this construction still to be used.
The parameters will then be estimated from covariances generated by the combinations that are
present.

In case (iii), the Sample factor will have different levels for each subject, so most of the
Subject.Sample combinations will be missing. In this case, a more efficient solution would
usually be to provide (subject,time) coordinates for each sample and fit a two-dimensional power
model over the whole term, with the subject parameter constrained to be zero to impose
independence between subjects:

VSTRUCTURE [TERM=Subject.Week; FORMATION=whole; \
  COORD=subject,time] MODELTYPE=power; ORDER=2; \
  INITIAL=!(0,0.1); CONSTRAIN=!T(Fix,None)

The size of the correlation matrix generated here is equal to the number of effects in the
Subject.Week term, which in this case is the number of data values. Note that the parameters
run in the order of the coordinates vectors, which must be variates not factors. The option setting
FORMATION=whole must be used because the values of time change within each level of the
Subject factor, so direct product construction is not possible (see the description of the
COORDINATES option in Section 5.4.3).

The rules for the allocation of a random model term to be either a random effect ui with
var(ui)=Gi or to be the residual e with var(e)=R (see Section 5.4.1) are fairly straightforward. The
form of the variance model is

V  =  ó2 ( Ój ãjZjGjZNj + R )

where matrix R corresponds to the residual term and must have n rows. To be used as the
residual, a term must satisfy the following criteria:

1) the replication of each effect in the term is either one or zero;
and either

2a) there is no covariance model defined for the term, and it has n or more effects,
or

2b) there is a covariance model defined for the term, and it has n effects.
A term with no covariance model is valid even with more than n effects, since removal of the
missing rows does not change the structure of the variance matrix ó2I. However, no term with
more than n effects can be used as the residual if it has a non-identity covariance structure
defined, since this matrix will also have more than n rows and would lose the structure that the
algorithm expects if rows are deleted.

The first term in the random model that satisfies the criteria will be used as the residual. If no
such term is found, a residual term with an independent error will automatically be added to the
model. This may result in an extra independent error term being fitted unintentionally. An
example of this occurs in case (ii) above: some of the Subject.Sample combinations are
missing, so the size of the Subject.Sample term is larger than the number of data points and
thus cannot be used as the residual. One work-around is to include missing values in the data set
for the missing combinations to give equal replication, and then use REML option
MVINCLUDE=yvariate to retain these missing values in the analysis. Alternatively, you could
fix the unwanted extra residual component at a small value using the INITIAL and CONSTRAIN
options of VCOMPONENTS. Note that you can ascertain whether one of the random model terms
has been used as the residual or whether a residual has been added to the model by setting option
PRINT=model in REML. Alternatively, you can use the VRESIDUAL directive to define a
correlation structure on the residual term of an experiment. This works in the same way as
VSTRUCTURE, but with the advantage that the algorithm then checks that the correct residual
term is used. Details are given in Section 5.8.2, together with a description of how VRESIDUAL
can be used to define separate residual terms for different experiments within a multi-experiment
(or meta-) analysis.
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5.5 Predictions from a REML analysis

This section describes the VPREDICT directive which can be used to form predictions of the
values of the response variate at particular values of the variables in the fixed or random models,
and the VTCOMPARISONS procedure which can calculate comparison contrasts of REML
predictions.

5.5.1 The VPREDICT directive

VPREDICT directive
Forms predictions from a REML model.

Options
PRINT = string tokens What to print (description, predictions, se, sed,

avesed, vcovariance); default desc, pred, se, aves
CHANNEL = scalar Channel number for output; default * i.e. current output

channel
MODEL = formula Indicates which model terms (fixed and/or random) are

to be used in forming the predictions; default * includes
all the fixed terms and relevant random terms

OMITTERMS = formula Specifies terms to be excluded from the MODEL; default
* i.e. none

FACTORIAL = scalar Limit on the number of factors or variates in each term
in the models specified by MODEL or OMITTERMS;
default 3

PRESENTCOMBINATIONS = identifiers
Lists factors for which averages should be taken across
combinations that are present

WEIGHTS = tables One-way tables of weights classified by factors in the
model; default *

PREDICTIONS = table or scalar To save the predictions; default *
SE = table or scalar To save standard errors of predictions; default *
SED = symmetric matrix To save standard errors of differences between

predictions; default *
VCOVARIANCE = symmetric matrix To save variances and covariances of predictions;

default *
SAVE = REML save structure Specifies the save structure from which to predict;

default * i.e. that from most recent REML

Parameters
CLASSIFY = vectors Variates and/or factors to classify table of predictions
LEVELS = variates, scalars or texts To specify values of variates and/or levels of factors for

which predictions are calculated
PARALLEL = identifiers Specifies variables in the classifying set whose values

change in parallel (rather than in all combinations)
NEWFACTOR = identifiers Identifiers for new factors that are defined when

LEVELS are specified

The VPREDICT directive can be used to produce predictions of the values of the response variate
at particular values of the variables in the fixed or random models. By default the predictions are
from the most recent REML analysis, but you can use another analysis by supplying its save
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structure using the SAVE option. However, VPREDICT is available only for analyses produced
using the average-information method: i.e. the REML statement must have option METHOD=AI
(see 5.3.1).

The CLASSIFY parameter specifies those variates or factors to be included in the table of
predictions, and the LEVELS parameter supplies the values at which the predictions are to be
made. For a factor, you can select some or all of the levels, while for a variate you can specify
any set of values. A single level or value is represented by a scalar; several levels or values must
be combined into a variate (which may of course be unnamed). Alternatively, if the factor has
labels, you can use these to select the levels for prediction by setting LEVELS to a text. A missing
value in the LEVELS parameter is taken to stand for all the levels of a factor, or the mean value
of a variate.

The PARALLEL parameter allows you to indicate that a factor or variate should change in
parallel with another factor or variate. both of these should have the same number of values
specified for it by the LEVELS parameter of VPREDICT. The predictions are then formed for each
set of corresponding values rather than for every combination of these values. For example, you
could put

VPREDICT Treatment,Timesqrd,Time; PARALLEL=*,Time,*;\
         LEVELS=*,!(0,1,9,25,49,81),!(0,1,3,5,7,9)

to produce predictions at times 0, 1, 3, 5, 7 and 9 for the treatments in Example 5.4.5. The model
contained both time and time squared, but you would want predictions only for matching values
of time and time squared. So the PARALLEL parameter specifies that Timesqrd should change
in parallel to Time.

When you specify LEVELS, VPREDICT needs to define a new factor to classify that dimension
of the table. By default this will be an unnamed factor, but you can use the NEWFACTOR
parameter to give it an identifier. The EXTRA attribute of the factor is set to the name of the
corresponding factor or variate in the CLASSIFY list; this will then be used to label that
dimension of the table of predictions.

The prediction calculations consist of two steps. The first step is to calculate a table of fitted
values. The MODEL, OMITTERMS and FACTORIAL options specify the model to use for this. The
formula specified by MODEL is expanded into a list of model terms, deleting any that contain
more variates of factors than the limit specified by the FACTORIAL option. Then, any terms in
the formula specified by OMITTERMS are removed. You can specify

OMITTERMS='Constant'

to omit the constant, e.g. if you want to obtain BLUPs for random terms.
The second step averages the fitted values over the classifications that are not in the list that

was supplied by the CLASSIFY parameter. The WEIGHTS option can supply one-way tables
classified by any of the factors in the model. These are used to calculate the weight to be used
for each fitted value when calculating the averages. Equal weights are assumed for any factor
for which no table of weights has been supplied. (for which no table of weights has been
supplied. (Note, this differs from the default in PREDICT, which uses marginal weights; see
3.3.4.) In the averaging all the fitted values are generally used. However, if you define a list of
factors using the PRESENTCOMBINATIONS option, any combination of levels of these factors that
does not occur in the data will be omitted from the averaging. Where a prediction is found to be
inestimable, i.e. not invariant to the model parameterization, a missing value is given.

Printed output is controlled by settings of the PRINT option with settings:
description describes the terms and standardization policies used when

forming the predictions,
predictions prints the predictions,
se produces predictions and standard errors,
sed prints standard errors for differences between the

predictions,
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avesed prints the average standard error of difference of the
predictions, and

vcovariance prints the variance and covariances of the predictions.
By default descriptions, predictions, standard errors and an average standard error of differences
are printed. You can also save the results, using the PREDICTIONS, SE, SED and VCOVARIANCE
options. You can send the output to another channel, or to a text structure, by setting the
CHANNEL option.

Example 5.5.1 forms predictions for the split-plot in Section 5.3.1. Notice the REML statement
in line 35, which reruns the analysis using the average-information method.

Example 5.5.1

  35  REML     [PRINT=*] Yield
  36  VPREDICT [PRINT=description,prediction,avesed] Nitrogen

Predictions from REML analysis
------------------------------

Model terms included for prediction: Constant + Nitrogen + Variety
+ Nitrogen.Variety
Model terms excluded for prediction: Blocks + Blocks.Wplots

Status of model variables in prediction:

  Variable           Type        Status
  Variety            factor      Averaged over - equal weights
  Nitrogen           factor      Classifies predictions
  Constant           factor      Included in prediction
  Blocks             factor      Ignored
  Wplots             factor      Ignored

Response variate: Yield of oats

Predictions

Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
             79.4     98.9    114.2    123.4

Approximate average standard error of difference: 4.436 (calculated on
variance scale)

  37  VPREDICT [PRINT=description,prediction,avesed] Variety

Predictions from REML analysis
------------------------------

Model terms included for prediction: Constant + Nitrogen + Variety
+ Nitrogen.Variety
Model terms excluded for prediction: Blocks + Blocks.Wplots

Status of model variables in prediction:

  Variable           Type        Status
  Variety            factor      Classifies predictions
  Nitrogen           factor      Averaged over - equal weights
  Constant           factor      Included in prediction
  Blocks             factor      Ignored
  Wplots             factor      Ignored

Response variate: Yield of oats

Predictions

Variety      Victory  Golden rain   Marvellous
                97.6        104.5        109.8
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Approximate average standard error of difference: 7.079 (calculated on
variance scale)

  38  VPREDICT [PRINT=description,prediction,sed] Variety,Nitrogen

Predictions from REML analysis
------------------------------

Model terms included for prediction: Constant + Nitrogen + Variety
+ Nitrogen.Variety
Model terms excluded for prediction: Blocks + Blocks.Wplots

Status of model variables in prediction:

  Variable           Type        Status
  Variety            factor      Classifies predictions
  Nitrogen           factor      Classifies predictions
  Constant           factor      Included in prediction
  Blocks             factor      Ignored
  Wplots             factor      Ignored

Response variate: Yield of oats

Predictions

     Nitrogen    0 cwt  0.2 cwt  0.4 cwt  0.6 cwt
      Variety
      Victory     71.5     89.7    110.8    118.5
  Golden rain     80.0     98.5    114.7    124.8
   Marvellous     86.7    108.5    117.2    126.8

Standard error of differences

        Variety Victory Nitrogen 0 cwt   1       *
      Variety Victory Nitrogen 0.2 cwt   2   7.683       *
      Variety Victory Nitrogen 0.4 cwt   3   7.683   7.683       *
      Variety Victory Nitrogen 0.6 cwt   4   7.683   7.683   7.683       *
    Variety Golden rain Nitrogen 0 cwt   5   9.715   9.715   9.715   9.715
  Variety Golden rain Nitrogen 0.2 cwt   6   9.715   9.715   9.715   9.715
  Variety Golden rain Nitrogen 0.4 cwt   7   9.715   9.715   9.715   9.715
  Variety Golden rain Nitrogen 0.6 cwt   8   9.715   9.715   9.715   9.715
     Variety Marvellous Nitrogen 0 cwt   9   9.715   9.715   9.715   9.715
   Variety Marvellous Nitrogen 0.2 cwt  10   9.715   9.715   9.715   9.715
   Variety Marvellous Nitrogen 0.4 cwt  11   9.715   9.715   9.715   9.715
   Variety Marvellous Nitrogen 0.6 cwt  12   9.715   9.715   9.715   9.715
                                                 1       2       3       4

    Variety Golden rain Nitrogen 0 cwt   5       *
  Variety Golden rain Nitrogen 0.2 cwt   6   7.683       *
  Variety Golden rain Nitrogen 0.4 cwt   7   7.683   7.683       *
  Variety Golden rain Nitrogen 0.6 cwt   8   7.683   7.683   7.683       *
     Variety Marvellous Nitrogen 0 cwt   9   9.715   9.715   9.715   9.715
   Variety Marvellous Nitrogen 0.2 cwt  10   9.715   9.715   9.715   9.715
   Variety Marvellous Nitrogen 0.4 cwt  11   9.715   9.715   9.715   9.715
   Variety Marvellous Nitrogen 0.6 cwt  12   9.715   9.715   9.715   9.715
                                                 5       6       7       8

     Variety Marvellous Nitrogen 0 cwt   9       *
   Variety Marvellous Nitrogen 0.2 cwt  10   7.683       *
   Variety Marvellous Nitrogen 0.4 cwt  11   7.683   7.683       *
   Variety Marvellous Nitrogen 0.6 cwt  12   7.683   7.683   7.683       *
                                                 9      10      11      12
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5.5.2 The VTCOMPARISONS procedure

VTCOMPARISONS procedure
Calculates comparison contrasts within a multi-way table of predicted means from a REML
analysis (R.W. Payne).

Options
PRINT = string token Controls printed output (contrasts, Waldtests);

default cont
MODEL = formula Indicates which model terms (fixed and/or random) are

to be used in forming the predictions; default * includes
all the fixed terms and relevant random terms

OMITTERMS = formula Specifies terms to be excluded from the MODEL; default
* i.e. none

FACTORIAL = scalar Limit on the number of factors or variates in each term
in the models specified by MODEL or OMITTERMS;
default 3

PRESENTCOMBINATIONS = identifiers
Lists factors for which averages should be taken across
combinations that are present

WEIGHTS = tables One-way tables of weights classified by factors in the
model; default *

GROUPS = factors Groups for which to estimate each contrast
DFMETHOD = string token Specifies which degrees of freedom to use for the

comparisons (fddf, given, tryfddf, none); default
fddf

DFGIVEN = scalar Specifies the number of degrees of freedom to use for
the comparisons when DFMETHOD=given, or if d.d.f. are
unavailable when DFMETHOD=tryfddf

FMETHOD = string token Controls how to calculate denominator degrees of
freedom for the F-statistics, if these are not already
available in the REML save structure  (automatic,
algebraic, numerical); default auto

SAVE = identifier REML save structure for the analysis from which the
comparisons are to be calculated

Parameters
CONTRAST = tables Defines the comparisons to be estimated
ESTIMATES = scalars or variates Saves the estimated contrasts
SE = scalars or variates Saves standard errors of the contrasts
VCOVARIANCE = symmetric matrices

Save the variance-covariance matrices of contrasts
estimated for GROUPS

STATISTIC = scalars or variates Saves saves the test statistic (t or Wald)
DF = scalars or variates Saves estimated numbers of residual degrees of freedom

of the contrasts
PROBABILITY = scalars or variates Saves the probabilities of the contrasts
WALD = scalars Wald statistic for each comparison, combining the tests

within groups
FSTATISTIC = scalars F statistics for each comparison, if available, combining

the tests within groups
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NDF = scalars Numerator d.f. for FSTATISTIC
DDF = scalars Denominator d.f. for FSTATISTIC

VTCOMPARISON makes comparisons within multi-way tables of predicted means from a REML
analysis. The data should previously have been analysed by the REML directive in the usual way.
The SAVE option can be used to specify the save structure from the analysis for which the
comparisons are to be calculated (see the SAVE option of REML). If SAVE is not specified, the
comparisons are calculated from the most recent REML analysis.

The means are calculated using the VPREDICT directive (5.5.1), with options MODEL,
OMITTERMS, FACTORIAL, PRESENTCOMBINATIONS and WEIGHTS all operating as in
VPREDICT. Each comparison is specified in a table supplied by the CONTRAST parameter.

The GROUPS option is useful if you want to calculate the same comparisons for several groups,
defined by the combimations of levels of one or more factors in the REML analysis. You can then
use the CONTRAST parameter to define the comparison-definition tables ignoring the groups, and
the GROUPS option to specify the factors defining the groups.

The DFMETHOD option specifies how to obtain the numbers of residual degrees of freedom for
the comparisons. The default is to use the numbers of denominator degrees of freedom printed
by REML in the d.d.f. column in the table of tests for fixed tests (produced by setting option
PRINT=wald). These degrees of freedom are relevant for assessing the fixed term as a whole,
and may differ over the various comparisons amongst its means, or for predictions produced with
different models or weightings from those used in REML and VDISPLAY. So the t-probabilities
should be used with caution. If you want a more exact probability for a comparison, you should
set up a covariate to fit this explicitly in the analysis. The FMETHOD option controls how the
denominator degrees of freedom should be calculated, if they are not already available in the
REML save structure (e.g. because they were printed in the original analysis). The settings are the
same as in the REML and VKEEP directives, except that there is no none setting. (You would set
this option only if you really do want to calculate them.)

In some of the more complicated analyses, REML may be unable to calculate the denominator
degrees of freedom. You might then want to supply the number of degrees of freedom yourself,
using the DFGIVEN option, rather than having no probabilities at all. For example, you could use
the number of denominator degrees of freedom from the analysis of an earlier similar design.
However, the results will only be as good as the degrees of freedom that you have supplied, and
thus should be used with caution! You can set option DFMETHOD=tryfddf to use the
denominator degrees of freedom, if these can be calculated, or those specified by DFGIVEN
otherwise. The setting DFMETHOD=given always uses the degrees of freedom specified by
DFGIVEN.

If no  d.d.f. are available, VTCOMPARISONS forms Wald statistics instead of t-statistics, and
calculates their probabilities using the fact that, asymptotically, they have chi-square
distributions with one degree of freedom. The Wald probabilities tend to be biased (giving too
many significant results), and should thus be used with caution. You can set DFMETHOD=none
to enforce the use of Wald statistics.

The PRINT option controls printed output, with settings:
contrasts to print the contrasts (default).
Waldtests when GROUPS is set this prints Wald tests combining the

tests of each contrast in the various groups, F tests are also
given provided REML has been able to estimate the d.d.f.

The ESTIMATE parameter allows you to save the estimates for the comparisons. If the GROUPS
option is not set, each comparison will have a single estimate which will be saved in a scalar.
Alternatively, if there are groups, there will be an estimate for each group, and these will be
saved in a variate defined with unit labels that identify the groups. Similarly, the SE parameter
can save the standard errors of the comparisons, the DF parameter can save their estimated
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number of residual degrees for freedom, the STATISTIC parameter can save their test statistics
(t or Wald), and the PROBABILITY parameter can save their probabilities.

When there are groups, the variances and covariances of the estimates for each contrast can
be saved in a symmetric matrix, using the VCOVARIANCE parameter. The WALD, FSTATISTIC,
NDF and DDF parameters can save the results of the tests combining the tests for each contrast
in the various groups.

Example 5.5.2 estimates the comparison between the zero nitrogen level and the mean of the
non-zero nitrogen levels in Examples 5.3.1 and 5.5.1.

Example 5.5.2

  39  TABLE     [CLASSIFICATION=Nitrogen; VALUES=-3,1,1,1] Ncomp
  40  CALCULATE Ncomp = Ncomp / 3
  41  VTCOMPARISONS Ncomp

Comparisons between REML means
------------------------------

Response variate:  Yield of oats

Contrast    estimate        s.e.           t        d.f.         pr.
   Ncomp      32.778       3.622        9.05       45.00      <0.001

5.6 Generating an inverse relationship matrix from a pedigree

5.6.1 The VPEDIGREE directive

VPEDIGREE directive
Generates an inverse relationship matrix for use when fitting animal or plant breeding models
by REML.

Options
SEX = string token Possible sex categories of parents (fixed, either);

default fixe
UNKNOWN = scalar Value to be treated as unknown

Parameters
INDIVIDUALS = factors Individuals on which data has been measured
MALEPARENTS = factors Male parents of the progeny
FEMALEPARENTS = factors Female parents of the progeny
INVERSE = pointer Inverse relationship matrix in sparse matrix form
POPULATION = variates Full list of identifiers generated from the individuals and

parents

VPEDIGREE is used to generate a sparse inverse relationship matrix for use when fitting animal
(or plant) breeding models by REML. It takes as input sets of three factors, specified in parallel
by the parameters INDIVIDUALS, MALEPARENTS and FEMALEPARENTS. The numerical levels
of these factors must give identifiers for the individuals from which data are available
(INDIVIDUALS) and the identifiers for the male and female parents of each individual
(MALEPARENTS and FEMALEPARENTS), with missing values where the parent is unknown. In the
current release, numerical codes for parents must be smaller than those for their progeny, and
duplicate lines must not appear in the pedigree factors. These constraints will be relaxed in
future releases.

An individual may appear as both progeny and a parent (for example, when data have been
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taken from several generations). Conversely, if a code appears in more than one list, it is
assumed to refer to a single individual.

The algorithm does not take account of any factor labels. So, if labels are to be used, the labels
vectors of the three factors should be identical in order to generate matching levels vectors and
thus avoid errors. A complete list of all individuals in the three factors is compiled and can be
saved using the POPULATION option and, on output, the three factors will be redefined with this
list as their levels vector.

The inverse relationship matrix that is generated is held in a special sparse matrix form (that
is, only non-zero values are stored), using a pointer. This is usable in the VSTRUCTURE directive
but not, currently, elsewhere in Genstat. The second element of the pointer is a variate storing
the non-zero values of the inverse matrix in lower-triangular order. The first element of the
pointer is an integer index vector. This vector is not a standard Genstat data structure, and so
cannot be used except by VSTRUCTURE.

By default, it is assumed that an individual can act as either a male or female parent but not
as both. Option SEX=either can be used to specify that individuals can act as both male and
female parents. This may be useful, for example, in plant breeding analyses.

Missing values in any of the factors will be regarded as representing unknown individuals.
Option UNKNOWN allows you to specify an additional scalar value used to represent unknown
individuals.

You might use VPEDIGREE, for example, to set up an inverse relationship matrix A!1, and then
use this matrix to model covariances within terms of an animal model. In cases where individuals
appear several times in the data set, the pedigree must be constructed from a shorter list in which
each individual appears only once. Given factors animal, dam and sire representing
individuals, female and male parents respectively, a reduced list could be set up as follows:

DUPLICATE [ATTRIBUTE=levels] animal,dam,sire; \
  NEWSTRUCTURE=ran,rdam,rsire
TABULATE [CLASS=animal] !(#animal),!(#dam),!(#sire); \
  MEAN=tan,tdam,tsire
FACTOR [MODIFY=yes; VALUES=#tan] ran
&      [VALUES=#tdam] rdam
&      [VALUES=#tsire] rsire

The factors ran, rdam and rsire then hold the reduced lists (i.e. without duplication) for
animals, dams and sires respectively. The relationship matrix can be constructed from these lists
using VPEDIGREE:

VPEDIGREE INDIVIDUALS=ran; FEMALE=rdam; MALE=rsire; \
  INVERSE=Ainv; POPULATION=List

The variate List holds a combined list of parents and progeny. The length of this list matches
the number of rows of the inverse relationship matrix Ainv, and this must also be the
number of levels of the factors using Ainv in the analysis. It is therefore necessary to
modify the levels vectors of the parent and progeny factors before proceeding with the analysis:

FACTOR [LEVELS=List] animal,dam,sire; \
  VALUES=animal,dam,sire
VCOMPONENTS [FIXED=Trt] RANDOM=animal+dam+env
VSTRUCTURE [animal+dam; CORRELATE=unr; FORMATION=whole] \
  MODELTYPE=fixed; INVERSE=Ainv

These declarations set up random terms with covariance structures of the form: cov(animal) =
óa

2 A, cov(dam) = ód
2 A, cov(animal, dam) = óad A.
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5.6.2 The VFPEDIGREE procedure

VFPEDIGREE procedure
Checks and prepares pedigree information from several factors, for use by VPEDIGREE and
REML (S.A. Gezan & R.W. Payne).

Options
FREPRESENTATION = string token Whether to match factor values by their levels or their

labels (levels, labels); default leve
UNKNOWN = scalar or string Value to be treated as unknown in the pedigree factors

Parameters
INDIVIDUALS = factors Individuals on which data have been measured
MALEPARENTS = factors Male parents (or sires) of the progeny
FEMALEPARENTS = factors Female parents (of dams) of the progeny
NEWINDIVIDUALS = factors New individuals factor, with levels standardized for use

in VPEDIGREE
NEWMALEPARENTS = factors New males factor, with levels standardized to match

those in the NEWINDIVIDUALS factor
NEWFEMALEPARENTS = factors New females factor, with levels standardized to match

those in the NEWINDIVIDUALS factor
OTHERFACTORS = pointers Pointer containing additional factors, that may be used

in the REML models, whose levels must also be
standardized to match those in the NEWINDIVIDUALS
factor

NEWOTHERFACTORS = pointers Pointer containing new additional factors, with
standardized levels

The VPEDIGREE directive is rather stringent about its input parameters. It can only use the levels
to match the male and female factors with the individuals, those levels must be in ascending
order, and the parents must be defined in the individuals factor before their offspring. So
VFPEDIGREE has been provided to allow sets of pedigree factors to be checked and pre-
processed, to ensure that they can be used successfully as input for VPEDIGREE.

As in VPEDIGREE, the INDIVIDUALS parameter specifies a factor to define the individuals
in the pedigree data set. The MALEPARENTS parameter specifies a factor to identify their male
parents (or sires), and the FEMALEPARENTS parameter optionally specifies a factor to identify
their female parents (or dams). The new modified factors can be saved using the
NEWINDIVIDUALS, NEWMALEPARENTS and NEWFEMALEPARENTS parameters. The
OTHERFACTORS parameter allows you to specify a pointer containing additional factors,
involving the individuals in the pedigree, that may be needed in the REML models. Factors to
store the standardized versions of these other factors can be supplied, again in a pointer, using
the NEWOTHERFACTORS parameter.

The FREPRESENTATION option indicates whether the factor values are to be matched by their
levels (the default) or their labels. If the INDIVIDUALS, MALEPARENTS and FEMALEPARENTS
factors are being matched by levels, and the number corresponding to each level needs to be
redefined, the factors will be given labels to help identify the original values. If INDIVIDUALS
has labels, these will be used. Otherwise the labels will be textual forms of the original levels.

Missing values in any of the factors will be treated as coding for unknown individuals. Option
UNKNOWN allows you to specify an additional code to represent unknown individuals. This should
be a scalar (e.g. 0 or !1) when FREPRESENTATION=levels, or a single-valued text (e.g. '*'
or '0') when FREPRESENTATION=labels.
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5.7 Including cubic spline terms in the random model

The cubic smoothing spline can be formulated as a linear mixed model with the smoothing
parameter as a variance ratio. This has been noted by many authors, but an accessible account
is given in Verbyla (1995) and Verbyla et al. (1999). REML provides the estimation of
smoothing parameters for cubic splines. This allows the inclusion of smoothing splines into
models with random terms and/or correlated errors, and is useful for investigating nonlinearity
in the data. In this formulation, the linear trend is estimated separately from the nonlinear trend,
and so the linear trend must be specified separately in the model.

Terms for which cubic splines are to be generated are specified using the SPLINE option of
VCOMPONENTS. Each term must contain one variate from which the cubic spline is to be
calculated. The terms may be interactions of factors with variates, in which case a separate cubic
spline is generated for each level of the combined factors. For example, consider the repeated
measurements example in Section 5.4.3 and 5.4.5 with treatments Treatment and times of
measurement indicated by variate Time. To investigate nonlinear patterns in treatments over
time, we might start by fitting a linear random coefficient regression model, as in Section 5.4.5,
but omitting the quadratic term so that we can look at all the nonlinear trend in the later parts of
the example. (The quadratic model is still useful, though, to provide initial values for the spline
model.)

Example 5.7a

  77  " Save random coefficient regression matrix for use as initial values "
  78  VKEEP       TERM=Plant; COVARIANCEMODEL=CovRCR
  79  PRINT       CovRCR['Across terms']

             CovRCR['Across terms']
            1       2.870
            2       0.568       0.107
                        1           2

  80  " Random cubic spline models:
 -81    growth of 14 plants measured after 1,3,5,7,10 weeks.
 -82    Baseline model without spline terms."
  83  VCOMPONENTS [FIXED=Treatment*Time] Plant+Plant.Time
  84  VSTRUCTURE  [TERMS=Plant+Plant.Time; FORMATION=whole; \
  85              CORRELATE=unrestricted; CINITIAL=CovRCR['Across terms']]
  86  REML        [PRINT=components,deviance] Height

Estimated parameters for covariance models
------------------------------------------

Random term(s)   Factor        Model(order)  Parameter        Estimate      s.e.
Plant + Plant.Time
                 Across terms  Unstructured  v_11                1.047     0.577
                                             v_21               0.2309    0.1111
                                             v_22              0.03114   0.02390
                 Within terms  Identity      -                       -         -

Note: the covariance matrix for each term is calculated as G or R where
      var(y) = Sigma2( ZGZ'+R ), i.e. relative to the residual variance, Sigma2.

Residual variance model
-----------------------

Term                           Model(order)  Parameter        Estimate      s.e.
Residual                       Identity      Sigma2              148.4      32.4

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     426.73    62
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Note: deviance omits constants which depend on fixed model fitted.

A random cubic spline term over time could then be introduced to model common deviations
about the linear trend, as in Example 5.7b.

Example 5.7b

  87  " Include a random cubic spline term over time."
  88  VCOMPONENTS [FIXED=Treatment*Time; SPLINE=Time] Plant+Plant.Time
  89  VSTRUCTURE  [TERMS=Plant+Plant.Time; FORMATION=whole; \
  90              CORRELATE=unrestricted; CINITIAL=CovRCR['Across terms']]
  91  REML        [PRINT=model,components,deviance] Height

REML variance components analysis
=================================

Response variate:  Height
Fixed model:       Constant + Time + Treatment + Time.Treatment
Random model:      Plant + Plant.Time
Spline model:      Spline(Time)
Number of units:   70

Residual term has been added to model

Sparse algorithm with AI optimisation
All covariates centred

Covariance structures defined for random model
----------------------------------------------

Correlated terms:

Set  Correlation across terms
  1  Unstructured

Set  Terms                   Covariance model within term
  1  Plant                   Identity
  1  Plant.Time              Identity

Estimated variance components
-----------------------------

Random term               component        s.e.
Spline(Time)                  36.55       36.43

Estimated parameters for covariance models
------------------------------------------

Random term(s)   Factor        Model(order)  Parameter        Estimate      s.e.
Plant + Plant.Time
                 Across terms  Unstructured  v_11                2.840     1.417
                                             v_21               0.5627    0.2726
                                             v_22               0.1053    0.0587
                 Within terms  Identity      -                       -         -

Note: the covariance matrix for each term is calculated as G or R where
      var(y) = Sigma2( ZGZ'+R ), i.e. relative to the residual variance, Sigma2.

Residual variance model
-----------------------

Term                           Model(order)  Parameter        Estimate      s.e.
Residual                       Identity      Sigma2              60.89     13.70
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Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     395.21    61

Note: deviance omits constants which depend on fixed model fitted.

The smoothing parameter is the residual variance divided by the variance component for the
spline term. The change in deviance can be used to indicate whether the model has been
improved by the addition of the cubic spline term. However, because the spline variance
component is constrained to be greater than zero, the deviance must be compared to a statistic
with the distribution (÷0

2+÷1
2)/2 rather than the usual ÷1

2 distribution. The change of 31.5 here
indicates a much better fit with the spline term.

You can save details of splines that have been fitted for each term using the new parameters
SPLBLUP, SPLDESIGN, SPLX and SPLSMOOTH of VKEEP. The information is saved in pointers
with an element for each combination of the levels of the factors in the term (i.e. for each spline
that has been fitted). The pointers elements are variates for SPLBLUP (best linear unbiased
predictors) and SPLX (knot points), matrices for SPLDESIGN (design matrices), and scalars for
SPLSMOOTH (smoothing parameters). This is illustrated in Example 5.7c, where the SPLBLUP,
SPLDESIGN and SPLX parameters are used to calculate and plot the spline.

Example 5.7c

  92  " Plot the spline term."
  93  VKEEP       Time; SPLBLUP=Tblup; SPLDESIGN=Tdes; SPLX=Tknot
  94  CALCULATE   Tspline = Tdes[1] *+ Tblup[1]
  95  YAXIS       1; LOWER=-50; UPPER=50
  96  PEN         1,2; METHOD=line
  97  DGRAPH      [TITLE='Common spline effect over time'] Tspline; Tknot[1]

The graph in Figure 5.7a shows the predicted deviation about the linear trend over time. The
scale used is approximately the range of the data, to give a more accurate impression of the
impact of the spline term on the fitted profiles.

To investigate whether each treatment group has the same nonlinear pattern, a spline term
Treatment.Time can be introduced, as in Example 5.7d. For this term, a cubic spline is
calculated and fitted separately for each factor level. However, the two splines are fitted using
a common variance component, i.e. a common smoothing parameter.

Example 5.7d

  98  " Fit separate splines for each treatment."
  99  VCOMPONENTS [FIXED=Treatment*Time; SPLINE=Treatment.Time] \
 100              Plant+Plant.Time
 101  VSTRUCTURE  [TERMS=Plant+Plant.Time; FORMATION=whole; \
 102              CORRELATE=unrestricted; CINITIAL=CovRCR['Across terms']]
 103  REML        [PRINT=components,deviance] Height

Estimated variance components
-----------------------------

Random term               component        s.e.
Spline(Time).Treatment        74.47       55.78
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Figure 5.7a Figure 5.7b

Estimated parameters for covariance models
------------------------------------------

Random term(s)   Factor        Model(order)  Parameter        Estimate      s.e.
Plant + Plant.Time
                 Across terms  Unstructured  v_11                3.917     1.943
                                             v_21               0.7620    0.3733
                                             v_22               0.1499    0.0804
                 Within terms  Identity      -                       -         -

Note: the covariance matrix for each term is calculated as G or R where
      var(y) = Sigma2( ZGZ'+R ), i.e. relative to the residual variance, Sigma2.

Residual variance model
-----------------------

Term                           Model(order)  Parameter        Estimate      s.e.
Residual                       Identity      Sigma2              44.96     10.64

Deviance: -2*Log-Likelihood
---------------------------

                   Deviance   d.f.
                     389.86    61

Note: deviance omits constants which depend on fixed model fitted.

 104  " Plot the splines."
 105  VKEEP       [RMETHOD=all; RESIDUALS=R1]
 106  VKEEP       [RMETHOD=notspline; RESIDUALS=R2]
 107  CALCULATE   TTspline = R1 - R2
 108  DGRAPH      [TITLE='Separate treatment splines'] TTspline; Time; \
 109              PEN=Treatment

The predicted profiles for treatments 1 and 2 are shown in Figure 5.7b. (This time we obtain the
splines by the slightly simpler process of saving residuals including and excluding the spline
term and then calculating the difference.) The change in deviance suggests that differences exist
in nonlinear trend between the two groups, although the predicted trend suggests that the
quadratic models used earlier provided a reasonable approximation.
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5.8 Combined analyses of several experiments

The ability of the REML directive to handle unbalanced data sets makes it very suitable for meta-
analysis. The analysis combines the original data from several experiments into a joint analysis
in which all the available information is used to provide efficient estimates of the effects of
interest. The REML meta-analysis differs from the meta-analyses that are often used, for example,
in medical research, where the original data may not be available. So the basic data here are the
effects estimated from the analyses of the individual trials. This type of meta-analysis can be
done using the META procedure  for a single treatment contrast. or by the VMETA procedure for
several treatments; see Genstat Reference Manual, Part 3 Procedures for details.

There are three main issues to consider in a REML meta-analysis. Firstly the residual variance
is likely to be different in each experiment. If the residual is represented by the same term in
every experiment, you just need to set the EXPERIMENTS option of VCOMPONENTS (5.2.1) to a
factor identifying the experiment to which each unit belongs. REML then fits a separate version
of the residual term for each level of the factor, so that a different residual variance is estimated
for each experiment. If you need to define a different term to act as the residual in some of the
experiments, you can use the VRESIDUAL directive (5.8.2).

The second issue is that you may wish to include different terms in the random models fitted
in some of the experiments. Suppose, for example, you want to include a random term for blocks
in the first, but none of the other, experiments. To do this you need to generate a factor with the
block levels on the first experiment, and missing values elsewhere. Then include the factor in
the random model, and set option MVINCLUDE=explanatory in the REML command. The option
changes the usual REML rule that any unit with a missing value in an explanatory variable is
omitted from the analysis. Instead they are still included, and the missing factor values are
ignored in the calculation of the model. You can also use this technique if you want to include
terms for blocks in several experiments, but each with its own variance component ! you just
need to generate a different block factor for each one. You can define the necessary factors (or
variates) using the ordinary manipulation commands, like CALCULATE (4.1.1), but procedure
VRMETAMODEL (5.8.1) may be more convenient as it allows you to define the random model at
the same time.

The third issue is that you may wish to specify a different residual variance model for each
experiment. This can also be done using the VRESIDUAL directive (5.8.2). 

5.8.1 The VRMETAMODEL procedure

VRMETAMODEL procedure
Forms the random model for a REML meta analysis (R.W. Payne).

Options
RANDOM = formula structure Saves the random model
EXPERIMENTSFACTOR = factor Factor defining which units are in each experiment
TERMS = formula Specifies terms, if any, to be fitted over the whole data

set; default * i.e. none

Parameters
EXPERIMENT = scalars, variates or texts

Experiments on which additional random terms are to be
fitted

LOCALTERMS = formula structures Random terms that are to be fitted only on the
corresponding experiment
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SAVEVECTORS = pointers Saves the factors (and/or any variates) defined to
represent the local terms on each experiment

In REML meta analyses the designs used in the various experiments need not be identical and,
even if they are all the same, the same random model may not be appropriate for every one. REML
does allow you to fit different random terms in the different experiments, but their definition can
be tedious. For example, if you wanted to include the term Blocks only in experiments 1 and
2 (and with a different variance component in each case), you would need to take two copies of
the factor, giving them names (e.g. Blocks1 and Blocks2) that will be recognisable in the
output. Then, set Blocks1 to missing except within experiment 1, and Blocks2 to missing
except in experiment 2. If you now add Blocks1 + Blocks2 to the overall random model, and
set option MVINCLUDE=explanatory in the REML statement, the terms Blocks1 and Blocks2
will each be fitted only in the desired experiment (1 or 2, respectively), and ignored elsewhere.

The process of forming the modified copies of the factors and devising names to label them
clearly on the output can be inconvenient. So procedure VRMETAMODEL has been provided to
make this clearer and more straightforward. In the output a term like Reps.Blocks, that is to
be fitted only e.g. at Rothamsted, will be labelled

Reps@Rothamsted.Blocks@Rothamsted

The random model is formed automatically, and can be saved in a formula structure by the

RANDOM option. The EXPERIMENTSFACTOR option must specify a factor to indicate which units
of the data set belong to each experiment, and the TERMS option can specify random terms that
are to be fitted over the whole data set.

The EXPERIMENT parameter lists the experiments where additional random terms are to be
fitted, using either the levels or the labels of EXPERIMENTSFACTOR. You can specify a variate
or a text with several values, if the terms are to be fitted with the same variance components in
more than one experiment.

The LOCALTERMS parameter specifies a formula structure for each experiment to define its
additional terms. The factors (and any variates) in the additional terms for each experiment are
copied, the required missing values are inserted, and the terms are added to the random model.

By default, the modified copies of the factors and variates that are formed to represent the
additional random terms will be unnamed, and exist only as part of the RANDOM model. (The
labels that appear in the output are attached to the factors by setting the EXTRA parameter in the
FACTOR statement or VARIATE statement that defined them inside VRMETAMODEL.) The
SAVEVECTORS parameter allows you to supply a pointer for each experiment, to save its factors
(and any variates), so that you use them to refer to the additional random terms e.g. in the VKEEP
directive (5.9.1). The elements of each pointer are labelled by the identifiers of the factors or
variates in the corresponding local terms to simplify their subsequent use.

Example 5.8.1 analyses three fungicide trials that took place in different years at the same site.
The data are in spreadsheet file MetaFungicide.gsh in the Genstat Data folder (line 2). There
were two cultivars, one susceptible and one resistant, and ten different fungicide treatments. A
split-plot design was used in each year, but the cultivars were applied to the whole-plots in 1997,
and the fungicides were applied to the whole-plots in 1998 and 1999. So, we have the same
treatments, but different designs in the different years, even though the blocking structures were
identical. Analyses of the individual experiments, shown in Chapter 2 of the Guide to REML in
Genstat, show that for each of experiments 1 and 2 (1997 and 1998) we need a random term for
blocks, while for experiment 3 (1999) we need a random term for the combinations of whole-
plots and blocks. So we set these as LOCALTERMS in line 5.

We also need to consider how to handle experiment effects and interactions between
experiments and the treatment terms. If we include these as in the fixed model, the treatment
terms will be tested using the within-experiment error, weighted according to precision within
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each experiment. Alternatively, if we include them in the random model, each treatment term
will in effect be compared with its interaction with experiment (unless this is zero). In that case,
a significant treatment effect would imply that the effect is consistent and large compared to its
variation across experiments ! thus giving a more stringent test. So in line 3, we set the TERMS
option to

year + year.(fungicide*cultivar)

Example 5.8.1

   2  SPLOAD      [PRINT=*] '%gendir%/data/MetaFungicide.gsh'
   3  VRMETAMODEL [TERMS=year + year.(fungicide*cultivar);\
   4              EXPERIMENTSFACTOR=year; RANDOM=random] 1997,1998,1999;\
   5              LOCALTERMS=!f(block),!f(block),!f(block.wholeplot)
   6  VCOMPONENTS [FIXED=fungicide*cultivar; EXPERIMENTS=year] #random
   7  REML        [MVINCLUDE=explanatory] yield

REML variance components analysis
=================================

Response variate:  yield
Fixed model:       Constant + fungicide + cultivar + fungicide.cultivar
Random model:      year + year.fungicide + year.cultivar + year.fungicide.
cultivar + block@1997 + block@1998 + block@1999.wholeplot@1999
Number of units:   180

Separate residual terms for each level of experiment factor: year

Sparse algorithm with AI optimisation
Units with missing factor/covariate values included
   - specific effect for term(s) omitted for units with missing values in
block@1997, block@1998, block@1999, wholeplot@1999

Estimated variance components
-----------------------------

Random term               component        s.e.
year                         0.5984      0.6107
year.fungicide               0.0223      0.0147
year.cultivar                0.0094      0.0127
year.fungicide.cultivar      0.0127      0.0114
block@1997                   0.0126      0.0150
block@1998                   0.0141      0.0166
block@1999.wholeplot@1999    0.0087      0.0271

Residual model for each experiment
----------------------------------

Experiment factor: year

Experiment Term  Factor        Model(order)  Parameter        Estimate      s.e.
1997.      Residual            Identity      Variance           0.0472    0.0112
1998.      Residual            Identity      Variance           0.0494    0.0110
1999.      Residual            Identity      Variance            0.118     0.034

Tests for fixed effects
-----------------------

Sequentially adding terms to fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
fungicide                           92.10       9         10.23    17.2  <0.001
cultivar                            41.92       1         41.92     2.1   0.021
fungicide.cultivar                  22.61       9          2.51    16.5   0.050
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Dropping individual terms from full fixed model

Fixed term                 Wald statistic  n.d.f.   F statistic  d.d.f.    F pr
fungicide.cultivar                  22.61       9          2.51    16.5   0.050

* MESSAGE: denominator degrees of freedom for approximate F-tests are calculated
using algebraic derivatives ignoring fixed/boundary/singular variance
parameters.

5.8.2 The VRESIDUAL directive

VRESIDUAL directive
Defines the residual term for a REML analysis, or the residual term for an experiment within
a meta-analysis (combined analysis of several experiments).

Options
EXPERIMENT = scalar Level of the EXPERIMENTS factor for which the residual

is being defined
TERM = formula Model term to be used as the residual
FORMATION = string token Whether the structure is formed by direct product

construction or by definition of the whole matrix
(direct, whole); default dire

VARIANCE = scalar Allows an initial estimate to be provided for the residual
variance of the experiment

CONSTRAINT = string token Allows the residual variance to be fixed at its initial
value (fix, positive) default posi

COORDINATES = matrix or variates Coordinates of the data points to be used in calculating
distance-based models

Parameters
MODELTYPE = string tokens Type of covariance model associated with the term(s),

or with individual factors in the term(s) if
FORMATION=direct (identity, fixed, AR, MA,
ARMA, power, boundedlinear, circular,
spherical, linearvariance, banded,
correlation, antedependence, unstructured,
diagonal, uniform, FA, FAequal) default iden

ORDER = scalar Order of model
HETEROGENEITY = string token Heterogeneity for correlation matrices (none,

outside); default none
METRIC = string token How to calculate distances when MODELTYPE=power

(cityblock, squared, euclidean); default city
FACTOR = factors Factors over which to form direct products
MATRIX = identifiers To define matrix values for the term or the factors when

MODELTYPE=fixed

INVERSE = identifiers To define values for matrix inverses (instead of the fixed
matrices themselves) when MODELTYPE=fixed

INITIAL = identifiers Initial parameter values for each correlation matrix
CONSTRAINTS = texts Texts containing strings none, fix or positive to

define constraints for the parameters in each model
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EQUALITYCONSTRAINTS = variates
Non-zero values in the variate indicate groups of
parameters whose values are to be constrained to be
equal

VRESIDUAL is used to define the residual term for a REML analysis or to define separate residual
terms for different experiments within a multi-experiment (or meta-) analysis. The TERM option
is used to specify the formula for the residual term. This term need not have been specified
previously by the VCOMPONENTS statement.

For a single experiment, VRESIDUAL can be used to impose a covariance structure on the
residual term. This could also be done by specifying the covariance structure using VSTRUCTURE
(5.4.1), but VRESIDUAL has the advantage that the algorithm then checks that the term is
consistent with the structure of the data.

In a multi-site experiment, VRESIDUAL can be used to specify a different residual model for
each separate experiment. The EXPERIMENT option is used to specify the experiment(s) for
which the model is to be used. The settings identify levels of a factor, defining the experiments,
which is specified by the EXPERIMENTS option of VCOMPONENTS.

The VARIANCE option is used to give an initial value for the residual variance in the current
experiment(s). You can set option CONSTRAINT=fix to fix the residual variance at the initial
value rather than estimating it (as a positive value).

The definition of the residual terms then follows mainly as for the definition of correlated
error terms through VSTRUCTURE The exception is that power models can be defined only in
terms of the coordinates of the data points, not by specifying coordinates for the factor levels.
(So the DISTANCES and COORDINATES parameters of VSTRUCTURE are not present in
VRESIDUAL.)

For a multi-experiment analysis, the factors and variates for the separate experiments should
be concatenated into structures which run over all the experiments. For example, consider an
experiment set up at two sites to compare a set of 24 varieties in four replicates. In one site the
experiment was laid out as a grid of eight rows by 12 columns, in the other a grid of 16 rows by
six columns was used. In these circumstances, a single set of factors (of length 192) can be used
to specify the design, using factors to describe variety, rows and columns, plus a factor expt
defining the allocation of units to experiments. Note that the factor row will have 16 levels and
col will have 12 levels, but REML will determine internally that site 1 has only 8 rows and site
2 only 6 columns.

VCOMPONENTS [FIXED=Variety; EXPERIMENTS=Expt]
VRESIDUAL [EXPERIMENT=1; TERM=Row.Col] MODELTYPE=AR,AR; \
  ORDER=1,1; FACTOR=Row,Col
VRESIDUAL [EXPERIMENT=2; TERM=Row.Col] MODELTYPE=AR,AR; \
  ORDER=1,1; FACTOR=Row,Col

Where some factors differ between experiments, these should be defined on the units relevant
to the appropriate experiment(s) and missing elsewhere. When an EXPERIMENTS factor has been
defined, the default action of the MVINCLUDE option of REML is changed to include units with
missing y-values and missing factor levels.
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5.9 Saving information from a REML analysis

5.9.1 The VKEEP directive

VKEEP directive
Copies information from a REML analysis into Genstat data structures.

Options
RESIDUALS = variate Residuals from the analysis
FITTEDVALUES = variate Fitted values from the analysis
SIGMA2 = scalar Variance component for the lowest stratum
VCOVARIANCE = symmetric matrix Variance-covariance matrix for the estimates of the

variance components
VESTIMATES = variate Saves a vector of all parameters in the variance model
VARESTIMATES = symmetric matrix

Variance-covariance matrix for the parameters in the
variance model (as saved by VESTIMATES)

VLABELS = text Vector of text labels for the VESTIMATES and
VARESTIMATES structures

MVESTIMATES = variate Estimates of missing values
MVSE = variate Standard errors of missing-value estimates
MVUNITS = variate Unit numbers of missing values
ALLEFFECTS = variate Full set of estimated fixed and random effects
ALLVCOVARIANCE = symmetric matrix

Variance-covariance matrix for the full set of fixed and
random effects not associated with the absorbing factor

DEVIANCE = scalar Residual deviance from fitting the full fixed model
DF = scalar Residual degrees of freedom after fitting the full fixed

model
SUBDEVIANCE = scalar Residual deviance after fitting the submodel of the fixed

model
SUBDF = scalar Residual degrees of freedom after fitting the submodel

of the fixed model
RSS = scalar Residual sum of squares from fitting the FIXED model

by general least squares with a covariance matrix
derived from the estimated variance components

INDEX = variate Index of units included in the analysis
MODELS = pointer Pointer to formulae giving the fixed, random, spline and

residual terms fitted
RMATRIX = pointer Saves details of the covariance model fitted to the

residual
RMETHOD = string token Which random terms to use when calculating

RESIDUALS (final, all, notspline); default uses
the setting from the REML statement

CFORMAT = string token Whether the covariance matrices or the parameters are
saved for a COVARIANCEMODEL (variancematrices,
parameters); default vari

UVCOVARIANCE = symmetric matrix
Unit-by-unit variance-covariance matrix

DFFIXED = scalar Number of degrees of freedom in the fixed model
DFRANDOM = scalar Number of degrees of freedom in the random model
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FMETHOD = string token Controls how to calculate F-statistics for fixed terms
(automatic, none, algebraic, numerical); default
auto

WMETHOD = string token Controls which Wald statistics are saved (add, drop);
default drop

WORKSPACE = scalar Saves the workspace setting that was used by the REML
command

YVARIATE = dummy Dummy to be set to the y-variate of the analysis
EXIT = scalar Exit status of the fit (0 if successful)
SAVE = REML save structure Save structure from the required analysis; default *

takes the save structure from the latest REML statement

Parameters
TERMS = formula Terms for which information is to be saved
COMPONENTS = scalars Estimated variance components
COVARIANCEMODEL = pointers Saves details of the covariance model fitted to a random

term
MEANS = tables Table of predicted means for each term
SEDMEANS = symmetric matrices Standard errors of differences between the predicted

means
VARMEANS = symmetric matrices Variance-covariance matrix of the means
EFFECTS = tables Table of estimated regression coefficients for each term
SEDEFFECTS = symmetric matrices Standard errors of differences between the estimated

parameters of each term
VAREFFECTS = symmetric matrices Variance-covariance matrix of the effects of a term
DESIGNMATRIX = matrices Saves the design matrix for the term
SPLBLUP = pointers Best linear unbiased predictors for spline terms, saved in

a pointer with a variate for each combination of the
levels of the factors in the term

SPLDESIGN = pointers Design matrices (Z) for spline terms, saved in a pointer
with a matrix for each combination of the levels of the
factors in the term

SPLX = pointers Knot points for spline terms, saved in a pointer with a
variate for each combination of the levels of the factors
in the term

SPLSMOOTH = pointers Smoothing parameters estimated for spline terms, saved
in a pointer with a scalar for each combination of the
levels of the factors in the term

CADJUSTMENT = scalars For a term involving covariates, saves the adjustment
made to its values during the analysis

WALD = scalar Wald statistic (fixed terms only)
FSTATISTIC = scalars F statistics (fixed terms only)
NDF = scalar Numerator d.f. (fixed terms only)
DDF = scalar Denominator d.f. (fixed terms only)

You can use the VKEEP directive to copy results from a REML analysis into Genstat data
structures. Genstat automatically stores the save structure for the last y-variate that was analysed
using REML, and by default this save structure provides the information for VKEEP. As for
VDISPLAY, you can save the information from a REML analysis in a save structure using the SAVE
parameter in the REML directive, then access the information by specifying the same structure
in the SAVE option of VKEEP.
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Overall information from the analysis is saved using the options of VKEEP, while the
parameters are used to save information for specific model terms. The terms (fixed, random or
a mixture) for which you require information are defined by a formula using the TERMS
parameter. The other parameters can then be used to specify structures for saving information
for each of the model terms.

Options RESIDUALS and FITTEDVALUES are used to specify variates to hold the residuals and
fitted values, which are defined according to the setting of the RMETHOD option, as for the REML
directive. The residual variance can be stored in a scalar using option SIGMA2. So, for example,
after a REML analysis, to save the residuals and fitted values into variates called Res and Fit
respectively, you can use the command

VKEEP [RESIDUALS=Res; FITTED=Fit]

The variance-covariance matrix for the estimates of the variance component can be saved

using the VCOVARIANCE option. (The estimates themselves are saved using the COMPONENTS
parameter, as described below.)

The VESTIMATES option is used to save a variate containing all the variance parameters
estimated in the model. The VARESTIMATES option can supply a symmetric matrix to save the
variance-covariance matrix for the estimates of the variance parameters, matching the ordering
and contents of VESTIMATES. The vector of labels for these parameters can be saved the
VLABELS option. The ALLEFFECTS option allows you to save the full set of fixed and random
effects, excluding those in the absorbing factor model, and the ALLVCOVARIANCE option can be
used to store their variance-covariance matrix. This matrix will often be very large, and is useful
only for looking at covariances between effects associated with different model terms, since the
variance-covariance matrices for individual model terms can be stored using the VAREFFECTS
parameter. The unit-by-unit variance-covariance matrix can be saved using the UVCOVARIANCE
option (and this may be even larger). This uses the random and residual terms, but not spline
terms. It cannot be formed if the model contains sparse inverse covariance matrices, for example
from VPEDIGREE (5.6.1).

The MVESTIMATES option can save a variate containing estimates of the missing values, the
MVSE option saves their standard errors, and the MVUNITS option saves a list of the units that are
missing.

The residual deviance from fitting the full fixed model or the submodel can be saved using
options DEVIANCE and SUBDEVIANCE respectively, and the associated residual degrees of
freedom can be saved using options DF and SUBDF. The degrees of freedom fitted by the (full)
fixed model can be saved by the DFFIXED option, and the degrees of freedom in the random
model can be saved by the DFRANDOM option. The RSS option can save the residual sum of
squares from fitting the fixed model by generalized least squares.

The INDEX option saves an index of the units that were included in the analysis. (This will
depend on the patterns of missing values, if any, and the setting of the MVINCLUDE option of
REML.) The MODELS option can be used to save a pointer, with labels 'Fixed', 'Spline',
'Random' and 'Residual', containing formulae for the model terms fitted as fixed, spline,
random or residual terms. The labels can be specified in either lower or upper case, or any
mixture. The YVARIATE option can be set to a dummy to point to the variate that was analysed
(i.e. the variate defined by the Y parameter of REML).

The formula given in the TERMS parameter is expanded to give a series of model terms. The
other parameters of VKEEP are taken in parallel with these terms. The string 'Constant' can
be used within the formula to save structures associated with the constant term. Example 5.9.1a
shows how to save information from the split-plot analysis in Section 5.3.1.

Example 5.9.1a

  42  VKEEP TERMS=Variety; MEANS=MV; SEDMEANS=SedV; VARMEANS=VarV
  43  & [SIGMA2=Sigma2] Blocks/Wplots; COMPONENTS=Cb,Cwp
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  44  PRINT MV

                       MV
      Variety
      Victory        97.6
  Golden rain       104.5
   Marvellous       109.8

  45  PRINT [RLPRINT=integers,labels; CLPRINT=integers; RLWIDTH=20] SedV

                                SedV
 Variety     Victory   1           *
 Variety Golden rain   2       7.079           *
 Variety  Marvellous   3       7.079       7.079           *
                                   1           2           3

  46  PRINT [RLPRINT=integers,labels; CLPRINT=integers] VarV

                               VarV
Variety     Victory   1       60.80
Variety Golden rain   2       35.75       60.80
Variety  Marvellous   3       35.75       35.75       60.80
                                  1           2           3

  47  PRINT Cb,Cwp,Sigma2

          Cb         Cwp      Sigma2
       214.5       106.1       177.1

The COMPONENTS parameter allows you to save the estimated variance component for each
random term in the TERMS list.

Tables of means for each term can be saved using the MEANS parameter, and standard errors
of differences between the means are saved by SEDMEANS. You can also save the estimated
variance-covariance matrix for the means of each term using parameter VARMEANS.

The EFFECTS parameter is used to save tables of estimated parameters. A symmetric matrix
of the standard errors of differences between the effects of each term can be saved using
parameter SEDEFFECTS, and the estimated variance-covariance matrix for the parameters can
be saved using parameter VAREFFECTS. The DESIGNMATRIX parameter saves the design matrix
used to fit the effects of each term.

You can save details of splines that have been fitted for each term using the SPLBLUP,
SPLDESIGN, SPLX and SPLSMOOTH parameters. The information is saved in pointers with an
element for each combination of the levels of the factors in the term (i.e. for each spline that has
been fitted). The pointers elements are variates for SPLBLUP (best linear unbiased predictors)
and SPLX (knot points), matrices for SPLDESIGN (design matrices), and scalars for SPLSMOOTH
(smoothing parameters).

If the term involves a covariate, the CADJUSTMENT parameter can save the adjustment that will
have been made to its values during the analysis. This will be zero if option CADJUST was set
to none when the fixed and random models were defined by VCOMPONENTS. Alternatively, if
CADJUST had its default setting of mean, each covariate will have been centred by subtracting
its (weighted) mean.

Details of the covariance model fitted to each random term can be saved using the
COVARIANCEMODEL parameter. The information is saved in a pointer. The contents of the pointer
depend upon the complexity of the covariance model fitted and the setting of the CFORMAT
parameter. First we consider the default setting: CFORMAT=variancematrices. If no
covariance model has been fitted, the pointer will have two elements for the scalar (variance
component) and the covariance matrix (identity ! a diagonal matrix with number of rows equal
to the number of levels of the term). If a covariance model has been fitted, the component
matrices used to construct the model will be saved. The full covariance matrix can then be
generated by taking a direct product of the component matrices and multiplying by the scalar.
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Alternatively, if CFORMAT=parameters, the pointer contains the component parameters of the
model. The RMATRIX option provides an alternative way of saving the covariance model fitted
to the residual term.

Example 5.9.1b saves details of the covariance models fitted in Example 5.4.4d.

Example 5.9.1b

  52  VKEEP Row.Column; COVARIANCEMODEL=Variancematrices
  53  PRINT #Variancematrices

Variancematrices['Scalar']       4.580

 Variancematrices['Row']

        1      1.0000
        2      0.6827      1.0000
        3      0.4661      0.6827      1.0000
        4      0.3182      0.4661      0.6827      1.0000
        5      0.2172      0.3182      0.4661      0.6827      1.0000
        6      0.1483      0.2172      0.3182      0.4661      0.6827
        7      0.1012      0.1483      0.2172      0.3182      0.4661
        8      0.0691      0.1012      0.1483      0.2172      0.3182
        9      0.0472      0.0691      0.1012      0.1483      0.2172
       10      0.0322      0.0472      0.0691      0.1012      0.1483
                    1           2           3           4           5

        6      1.0000
        7      0.6827      1.0000
        8      0.4661      0.6827      1.0000
        9      0.3182      0.4661      0.6827      1.0000
       10      0.2172      0.3182      0.4661      0.6827      1.0000
                    6           7           8           9          10

 Variancematrices['Column']

        1      1.0000
        2      0.8438      1.0000
        3      0.7120      0.8438      1.0000
        4      0.6008      0.7120      0.8438      1.0000
        5      0.5069      0.6008      0.7120      0.8438      1.0000
        6      0.4278      0.5069      0.6008      0.7120      0.8438
        7      0.3609      0.4278      0.5069      0.6008      0.7120
        8      0.3046      0.3609      0.4278      0.5069      0.6008
        9      0.2570      0.3046      0.3609      0.4278      0.5069
       10      0.2168      0.2570      0.3046      0.3609      0.4278
       11      0.1830      0.2168      0.2570      0.3046      0.3609
       12      0.1544      0.1830      0.2168      0.2570      0.3046
       13      0.1303      0.1544      0.1830      0.2168      0.2570
       14      0.1099      0.1303      0.1544      0.1830      0.2168
       15      0.0928      0.1099      0.1303      0.1544      0.1830
                    1           2           3           4           5

        6      1.0000
        7      0.8438      1.0000
        8      0.7120      0.8438      1.0000
        9      0.6008      0.7120      0.8438      1.0000
       10      0.5069      0.6008      0.7120      0.8438      1.0000
       11      0.4278      0.5069      0.6008      0.7120      0.8438
       12      0.3609      0.4278      0.5069      0.6008      0.7120
       13      0.3046      0.3609      0.4278      0.5069      0.6008
       14      0.2570      0.3046      0.3609      0.4278      0.5069
       15      0.2168      0.2570      0.3046      0.3609      0.4278
                    6           7           8           9          10

       11      1.0000
       12      0.8438      1.0000
       13      0.7120      0.8438      1.0000
       14      0.6008      0.7120      0.8438      1.0000
       15      0.5069      0.6008      0.7120      0.8438      1.0000
                   11          12          13          14          15
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  54  VKEEP [CFORMAT=parameters] Row.Column; COVARIANCEMODEL=Parameters
  55  PRINT #Parameters

Parameters['Scalar'] Parameters['Row']['Parameters']
               4.580                          0.6827
                                              0.0000

 Parameters['Column']['Parameters']
                             0.8438
                             0.0000

The Wald statistic for a fixed term can be saved using the WALD parameter. The WMETHOD option
controls whether these are from the table where terms are added sequentially to the model, or
that where terms are dropped from the full fixed model (5.3.1). The associated F statistic, and
its numerator and denominator numbers of degrees of freedom, can be saved by the
FSTATISTIC, NDF and DDF parameters, respectively. The FMETHOD option specifies which
algorithm to use to calculate the denominator numbers of degrees of freedom (5.3.6). The
default, automatic, will use any stored values that have been calculated for this analysis by
earlier REML, VDISPLAY or VKEEP statements; otherwise it will choose automatically between
the two available methods.

The WORKSPACE option can save the workspace setting that was used by the REML command
that performed the analysis. This may not be the same as the setting of the WORKSPACE option
in the command, as REML may increase the specified value if it is found to be insufficient.

The EXIT option saves a code defining the exit status of the analysis. The codes (which are
also used in the EXIT parameter of REML) are as follows:

0 analysis was completed successfully;
1 analysis did not converged within the specified number of iterations (but no fault

occurred);
2 the fit was halted because no progress could be made;
3 the fit was halted the log-likelihood was diverging;
4 a parameter has gone out of bounds;
5 insufficient workspace;
6 no save structure is available (no REML command or a fault occurred (may be set by

VKEEP but not by REML);
7 value of deviance at final iteration larger than at previous iteration(s);
!1 the algorithm performed an iteration but failed for an indeterminate reason before the exit

status was established;
!2 a failure occurred prior to calling the fitting algorithm.

5.9.2 The VFRESIDUALS procedure

VFRESIDUALS procedure
Obtains residuals, fitted values and their standard errors from a REML analysis (S.J. Welham).

Options
RESIDUALS = variate Saves the residuals
SERESIDUALS = variate Saves standard errors of the residuals
FITTEDVALUES = variate Saves the fitted values
SEFITTEDVALUES = variate Saves prediction standard errors for the fitted values
RMETHOD = string token Which random terms to use when calculating the

residuals (final, all); default fina
MAXNUNITS = scalar Maximum number of units for which the full variance-

covariance matrix will be formed; default 1000
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EXIT = scalar Exit code set to zero if the saving was successful, one
otherwise

SAVE = REML save structure Save structure for the required analysis; default uses the
save structure from the most recent REML

No parameters

VFRESIDUALS saves residuals, fitted values and their standard errors from a REML analysis. The
residuals are formed as differences between the data and the fitted model. The RMETHOD option
controls which random terms are used to calculate the residuals, with settings:

all uses all of the random effects, and
final uses only the final random term (default).

The final setting thus provides conditional residuals, with the fitted model is calculated from
all of the fixed and random terms in the model. The all setting provides marginal residuals, with
the fitted model is calculated from the fixed terms alone. VFRESIDUALS is currently unable to
form standard errors for models containing spline terms.

The residuals and fitted values can be saved, in variates, using the RESIDUALS and
FITTEDVALUES options, respectively. The SERESIDUALS option saves the standard errors of
the residuals, and the SEFITTEDVALUES option saves the prediction standard errors of the fitted
values (i.e. the square root of the prediction error variances).

The standard errors can be calculated in several different ways, and VFRESIDUALS will
attempt to use the most efficient method. One method involves saving the full variance-
covariance matrix for the data. This can be time-consuming for large data sets, so the
MAXNUNITS option sets a limit (default 1000) on the size of data set for which this may be used.

By default, VFRESIDUALS forms the residuals etc. from the most recent REML analysis.
However, you can form them from an earlier analysis, by using the SAVE option to specify its
save structure (saved using the SAVE parameter of the REML command that performed the
analysis).

Example 5.9.2 saves and prints the residuals and fitted values from the split-plot analysis in
Section 5.3.1. The standard errors are all equal because the design is balanced.

Example 5.9.2

  48  VFRESIDUALS [RESIDUALS=residual; SERESIDUALS=seresidual;\
  49              FITTEDVALUES=fittedvalue; SEFITTEDVALUES=sefittedvalue]
  50  PRINT       Yield,fittedvalue,sefittedvalue,residual,seresidual

       Yield fittedvalue sefittedvalue    residual  seresidual
       156.0       148.4         7.647       7.599       10.89
       118.0       138.7         7.647     -20.734       10.89
       140.0       130.1         7.647       9.933       10.89
       105.0       108.2         7.647      -3.234       10.89
       111.0       111.0         7.647       0.001       10.89
       130.0       129.2         7.647       0.834       10.89
       174.0       158.0         7.647      16.001       10.89
       157.0       150.3         7.647       6.668       10.89
       117.0       107.8         7.647       9.230       10.89
       114.0       126.3         7.647     -12.270       10.89
       161.0       142.4         7.647      18.564       10.89
       141.0       152.6         7.647     -11.603       10.89
       104.0       105.3         7.647      -1.345       10.89
        70.0        74.8         7.647      -4.845       10.89
        89.0        96.7         7.647      -7.678       10.89
       117.0       115.0         7.647       1.988       10.89
       122.0       112.8         7.647       9.207       10.89
        74.0        65.8         7.647       8.207       10.89
        89.0        84.0         7.647       5.040       10.89
        81.0       105.1         7.647     -24.126       10.89
       103.0        99.6         7.647       3.417       10.89
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        64.0        81.1         7.647     -17.083       10.89
       132.0       115.8         7.647      16.250       10.89
       133.0       125.9         7.647       7.083       10.89
       108.0       105.5         7.647       2.544       10.89
       126.0       121.6         7.647       4.378       10.89
       149.0       131.8         7.647      17.211       10.89
        70.0        87.0         7.647     -16.956       10.89
       144.0       135.7         7.647       8.300       10.89
       124.0       117.4         7.647       6.634       10.89
       121.0       126.0         7.647      -5.033       10.89
        96.0        95.5         7.647       0.467       10.89
        61.0        65.0         7.647      -3.963       10.89
       100.0       112.0         7.647     -11.963       10.89
        91.0        83.1         7.647       7.871       10.89
        97.0       104.3         7.647      -7.296       10.89
       109.0        96.7         7.647      12.264       10.89
        99.0       106.4         7.647      -7.402       10.89
        63.0        66.2         7.647      -3.236       10.89
        70.0        88.1         7.647     -18.069       10.89
        80.0        70.5         7.647       9.466       10.89
        94.0       105.2         7.647     -11.201       10.89
       126.0       115.4         7.647      10.633       10.89
        82.0        89.0         7.647      -7.034       10.89
        90.0        82.6         7.647       7.418       10.89
       100.0       103.7         7.647      -3.748       10.89
       116.0       111.4         7.647       4.585       10.89
        62.0        64.4         7.647      -2.415       10.89
        96.0       110.4         7.647     -14.387       10.89
        60.0        65.6         7.647      -5.554       10.89
        89.0       100.2         7.647     -11.221       10.89
       102.0        84.1         7.647      17.946       10.89
       112.0        98.2         7.647      13.761       10.89
        86.0       105.9         7.647     -19.906       10.89
        68.0        58.9         7.647       9.094       10.89
        64.0        77.1         7.647     -13.073       10.89
       132.0       121.4         7.647      10.612       10.89
       124.0       131.1         7.647      -7.054       10.89
       129.0       112.7         7.647      16.279       10.89
        89.0        90.9         7.647      -1.888       10.89
       118.0       103.3         7.647      14.742       10.89
        53.0        63.9         7.647     -10.924       10.89
       113.0       110.9         7.647       2.076       10.89
        74.0        82.1         7.647      -8.091       10.89
       104.0       112.9         7.647      -8.936       10.89
        86.0       102.8         7.647     -16.770       10.89
        89.0        68.1         7.647      20.897       10.89
        82.0        86.6         7.647      -4.603       10.89
        97.0        84.3         7.647      12.735       10.89
        99.0       106.1         7.647      -7.098       10.89
       119.0       114.8         7.647       4.235       10.89
       121.0       124.4         7.647      -3.431       10.89

5.9.3 The VSPREADSHEET procedure

VSPREADSHEET procedure
Saves results from a REML analysis in a spreadsheet (R.W. Payne).

Options
COMPONENTS = variate Variate to contain the variance components; default

components

MEANS = pointer Pointer to tables to contain the means; default means
SEDMEANS = pointer Pointer to matrices to contain the standard errors of

differences of the means; default sedmeans
VARMEANS = pointer Pointer to matrices to contain the variance-covariance

matrices of the means; default varmeans
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EFFECTS = pointer Pointer to tables to contain the effects; default effects
SEDEFFECTS = pointer Pointer to matrices to contain the standard errors of

differences of the effects; default sedeffects
VAREFFECTS = pointer Pointer to matrices to contain the variance-covariance

matrices of the effects; default vareffects
REPLICATIONS = pointer Pointer to tables of replications; default replication
WALDTABLE = pointer Pointer to a text and variates containing the information

in the table of tests for fixed effects; default waldtable
PTERMS = formula Terms (fixed or random) for which effects or means are

to be saved; default * implies all the fixed terms
FMETHOD = string token Controls whether and how to calculate F-statistics for

fixed terms (automatic, none, algebraic,
numerical); default auto

SPREADSHEET = string tokens What to include in the spreadsheet (components,
waldtable, effects, sedeffects, vareffects,
means, sedmeans, varmeans, replications);
default comp, wald, mean, sedm, repl

OUTFILENAME = texts Name of Genstat workbook file (.gwb) or Excel (.xls or
.xlsx) file to create

SAVE = REML save structure Specifies which REML analysis to save; default * i.e.
most recent one

No parameters

VSPREADSHEET puts results from a REML analysis into a spreadsheet. By default the results are
from the most recent REML, but you use the SAVE option to specify the save structure from some
other analysis.

The SPREADSHEET option specifies which pages of the spreadsheet to form, with settings:
components variance components,
waldtable tests for fixed effects,
effects tables of effects,
sedeffects standard errors of differences of effects,
vareffects variance-covariance matrices of effects,
means tables of means,
sedmeans standard errors of differences of means,
varmeans variance-covariance matrices of means,
replications replication tables.

(Note: this includes only the information readily assembled from VKEEP. So, for example,
parameters of correlation models are not available.) By default, SPREADSHEET = comp, wald,
mean, sedm, repl.

To help avoid clashes between the columns of the spreadsheets if you want to save results
from more than one analysis, the parameters COMPONENTS, WALDTABLE, EFFECTS,
SEDEFFECTS, VAREFFECTS, MEANS, SEDMEANS, VARMEANS and REPLICATIONS allow you to
specify identifiers for the columns (or sets of columns) that will store the corresponding results
in the current spreadsheet.

You can save the data in either a Genstat workbook (.gwb) or an Excel spreadsheet (.xls or
.xlsx), by setting the OUTFILENAME option to the name of the file to create. If the name is
specified without a suffix, '.gwb' is added (so that a Genstat workbook is saved). If
OUTFILENAME is not specified, the data are put into a spreadsheet opened inside Genstat.

So, you could save the variance components, Wald tests, means and standard errors of
differences of means in an Excel spreadsheet called Oatsresults.xlsx by giving the
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command

VSPREADSHEET [SPREADSHEET=components,waldtable,means,sedmeans;\
              OUTFILE='Oatsresults.xlsx]

5.9.4 The VFIXEDTESTS procedure

VFIXEDTESTS procedure
Saves fixed tests from a REML analysis (R.W. Payne).

Options
FIXEDTESTS = pointer Saves the fixed tests
FMETHOD = string token Controls whether and how to calculate F-statistics

(automatic, none, algebraic, numerical); default
auto

WMETHOD = string token Controls which tests are saved (add, drop); default
drop

SAVE = REML save structure Specifies the save structure from the required analysis;
default * i.e. most recent one

No parameters

VFIXEDTESTS saves the results of the fixed tests in a REML analysis. By default the results are
from the most recent REML, but you use the SAVE option to specify the save structure from some
other analysis.

The WMETHOD option controls whether the tests are from the table where terms are added
sequentially to the model, or that where terms are dropped from the full fixed model.

The FMETHOD option specifies which algorithm to use to calculate the denominator numbers
of degrees of freedom required for F tests. The default, automatic, will use any stored values
that have been calculated for this analysis by earlier REML, VDISPLAY or VKEEP statements;
otherwise it will choose automatically between the two available methods.

The tests are saved, in a pointer, using the FIXEDTESTS option. The pointer is labelled by the
headings from the tests for fixed tests that appear in the REML output. If the denominator degrees
of freedom are available, the labels and their corresponding vectors are as follows:

Term text containing the names of the fixed terms,
Wald statistic variate containing the Wald statistics,
n.d.f. variate containing the numerator degrees of freedom,
F statistic variate containing the F statistics,
d.d.f. variate containing the denominator degrees of freedom,
F pr. variate containing the probabilities for the F tests.

If the denominator degrees of freedom are not available (either because they could not be
calculated, or because FMETHOD has been set to none), the labels F statistic, d.d.f. and
F pr. are omitted, and instead there is

Chi pr. variate containing the probabilities for chi-square tests for
the Wald statistics.

The vectors have an element for each fixed term, with missing values if its test results are
unavailable. For example, with the fixed model Nitrogen*Variety, tests for the main effects
Nitrogen and Variety would be available only when WMETHOD=add. This is illustrated in
Example 5.9.4, which saves and prints the fixed tests from the split-plot analysis in Section 5.3.1.
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Example 5.9.4

  51  VFIXEDTESTS [FIXEDTESTS=Drop]
  52  PRINT       Drop[]

    Drop['Term'] Drop['Wald statistic'] Drop['n.d.f.'] Drop['F statistic']
        Nitrogen                      *              *                   *
         Variety                      *              *                   *
Nitrogen.Variety                  1.817          6.000              0.3028

 Drop['d.d.f.'] Drop['F pr.']
              *             *
              *             *
          45.00        0.9322

  53  VFIXEDTESTS [FIXEDTESTS=Add; WMETHOD=add]
  54  PRINT       Add[]

     Add['Term'] Add['Wald statistic'] Add['n.d.f.'] Add['F statistic']
        Nitrogen                113.06         3.000              37.69
         Variety                  2.97         2.000               1.49
Nitrogen.Variety                  1.82         6.000               0.30

 Add['d.d.f.'] Add['F pr.']
         45.00       0.0000
         10.00       0.2724
         45.00       0.9322
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6 Multivariate and cluster analysis

In this chapter we are concerned with statistical methods for analysing more than one variable
simultaneously (which correspond to the multivariate analysis menus in Genstat for Windows).
Very often such methods initially combine information on all the given variables into a measure
of association, such as a distance or dissimilarity; so, in a sense, they become univariate. Indeed
in some fields of application, notably psychology and the social sciences, a single variable of
associations may be observed directly, rather than calculated from more basic information.
Multivariate analysis is concerned with two forms of data: (a) information on p variables for
each of n samples (this can be called the data matrix); or (b) information, usually presented as
a symmetric matrix, giving associations between all pairs of samples or all pairs of variables.

In the simplest cases the data matrix has no further structure, and may be regarded as the
multivariate generalization of a simple random sample. Genstat does not have a special data
structure for a data matrix; generally you must either list the corresponding variables, or collect
them in a pointer (1:2.6). From a data matrix you can use the FSSPM directive to calculate the
symmetric matrix of sums of squares and products, or alternatively, the correlation matrix of the
variables. These are stored in a compound data structure known as an SSPM structure, which
also contains the means of the variables and other information (6.1.1). However, you can easily
extract the basic symmetric matrix from this more general structure.

Just as univariate samples may have structure imposed on the units, so may multivariate
samples. In canonical variates analysis the units belong to a set of k mutually exclusive groups.
For this Genstat lets you calculate the matrix of sums of squares and products, pooled within
groups, as well as the means of all the variables in all the groups (6.1.1); these means are held
as a set of p variates, each with k values, from which Genstat can calculate a matrix of between-
group sums of squares and products. Sums of squares and products arising from more general
sample structures are provided by AKEEP (1:4.6.1).

Correlations and sums of squares and products are elementary examples of how associations
can be measured between variables; methods based on such measures are sometimes termed R-
techniques and include such methods as principal components analysis and canonical variates
analysis. Measures of association between units lead to methods known as Q-techniques which
include ordination techniques, such as principal coordinates analysis and multidimensional
scaling, and cluster analysis.

You can think of matrices of distances or dissimilarities as being generated by a cloud of n
points in a multidimensional Euclidean space, where the distance between the points
representing two samples is or is related to the corresponding distance or dissimilarity in the
given matrix. To visualize such a cloud of points is difficult, and much multivariate analysis is
concerned with providing approximate graphical representations that are easily interpreted by
eye. These representations fall into two main classes: those depending on scatter plots of points
in two or, more rarely, three dimensions; and those expressed in the form of networks, especially
rooted trees. The plotted distance is usually supposed to approximate to the "true" distance in
multidimensional space. Alternatively you may need to examine angle, inner product or area,
rather than distance: for example, angles are used to interpret the output from biplots (Gabriel
1971). Apart from the minimum spanning tree given by the HDISPLAY directive (6.19.2), all
other standard network-type displays in Genstat are in the form of rooted trees. An important
example is the dendrogram generated as the result of a hierarchical cluster analysis (6.19.1). This
represents the similarity of groupings of the units by recording the similarity levels at which they
merge together. The root of the tree is the point at which they all merge into a single group.
Other tree structures are generated by forming classification trees (6.21) and identification keys
(6.22). These aim to provide ways of identifying the group of an object based on its observed
properties. Genstat also provides regression trees, where the aim is to predict a response variate
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(3.9).
Many multivariate techniques are implemented as standard Genstat directives. Others are

suppled as procedures which make use of the comprehensive toolkit that Genstat provides, for
example, matrix calculations (1:4.1.3 and 1:4.2.4), singular value decompositions (1:4.10.1),
eigenvalue decompositions (1:4.10.2). All the main techniques (and all of those that can be
performed by the menus of Genstat for Windows) are described in this chapter. Details of the
others can be found in Part 3 of the Genstat Reference Manual.

FSSPM calculates values for SSPM structures ! sums of squares

and products, means, etc (6.1.1)
ROBSSPM forms robust estimates of sum-of-squares-and-products

matrices (6.1.1)
FCORRELATION forms correlations between variates (2.8.1)
FVCOVARIANCE forms the variance-covariance matrix for a list of variates
FSIMILARITY forms a similarity matrix or a between-group similarity

matrix from a units-by-variates data matrix (6.1.2)
HREDUCE forms a reduced similarity matrix, by groups (6.1.3)
MANTEL assesses the association between similarity matrices

(6.1.5)
ECANOSIM does a nonparametric analysis of similarities (ANOSIM) to

test for differences between two or more groups of
sampling units (6.1.6)

PCP principal components analysis (6.2.1)
LRVSCREE prints a scree diagram and/or a difference table of latent

roots (6.2.2)
CVA canonical variates analysis (6.3.1)
CVASCORES calculates scores for individual units in canonical variates

analysis (6.3.2)
CVAPLOT plots mean and unit scores from a canonical variates

analysis (6.3.3)
FACROTATE rotates factor loadings from a PCP, CVA or FCA (6.4)
FCA performs factor analysis (6.11)
DISCRIMINATE performs discriminant analysis (6.5.1)
SDISCRIMINATE selects the best set of variates to discriminate between

groups (6.5.2)
QDISCRIMINATE selects the best set of variates to discriminate between

groups (6.5.3)
MANOVA multivariate analysis of variance and covariance (6.6.1)
RMULTIVARIATE multivariate linear regression (6.6.2)
MVAOD does an analysis of distance of multivariate data
RIDGE produces ridge regression and principal component

regression analyses (6.7)
PLS fits a partial least squares regression model (6.8)
CANCORRELATION canonical correlation analysis (6.9)
PCO principal coordinates analysis (6.10.1)
ADDPOINTS adds points for new objects to a PCO (6.10.2)
PCORELATE relates principal coordinates to original data variates

(6.10.3)
MDS non-metric multidimensional scaling (6.12)
CORANALYSIS does correspondence analysis, or reciprocal averaging

(6.13.1)
MCORANALYSIS does multiple correspondence analysis (6.13.2)
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CABIPLOT plots results from correspondence analysis or multiple
correspondence analysis (6.13.3)

RDA performs redundancy analysis (6.14)
CCA performs canonical correspondence analysis (6.15)
DBIPLOT plots a biplot from an analysis by PCP, CVA or PCO

(6.16.1)
CRBIPLOT plots correlation or distance biplots after RDA, or ranking

biplots after CCA (6.16.2)
CRTRIPLOT Plots ordination biplots or triplots after RDA or CCA

(6.16.3)
GGEBIPLOT plots biplots to assess genotype and  genotype-by-

environment variation
SKEWSYMMETRY provides an analysis of skew-symmetry for an asymmetric

matrix (6.17)
ROTATE Procrustes rotation (6.18.1)
GENPROCRUSTES generalized Procrustes analysis (6.18.2)
PCOPROCRUSTES performs a multiple Procrustes analysis (6.18.3)
HCLUSTER hierarchical cluster analysis from a similarity matrix

(6.19.1)
HDISPLAY displays results associated with hierarchical clustering

(6.19.2)
HLIST lists a data matrix in abbreviated form (6.19.3)
HSUMMARIZE summarizes data variates by clusters (6.19.4)
DDENDROGRAM draws dendrograms with control over structure and style

(6.19.5)
DMST gives a high resolution plot of an ordination with

minumum spanning tree (6.19.6)
HCOMPAREGROUPINGS compares groupings generated, for example, from cluster

analyses (6.19.7)
CLUSTER non-hierarchical clustering from a data matrix (6.20.1)
CLASSIFY obtains a starting classification for non-hierarchical

clustering (6.20.2)
BCLASSIFICATION constructs a classification tree (6.21.1)
BCDISPLAY displays a classification tree (6.21.2)
BCKEEP saves information from a classification tree (6.21.5)
BCVALUES forms values for nodes of a classification tree (6.21.3)
BPRUNE prunes a tree using minimal cost complexity (1:4.12.8,

3.9.3, 6.21.3)
BCIDENTIFY identifies specimens using a classification tree (6.21.4)
BCFOREST constructs a random classification forest
BCFDISPLAY displays information about a random classification forest
BCFIDENTIFY identifies specimens using a random classification forest
BKEY constructs an identification key (6.22.1)
BKDISPLAY displays an identification key (6.22.2)
BKIDENTIFY identifies specimens using a key (6.22.3)
BKKEEP saves information from an identification key
IDENTIFY identifies an unknown specimen from a defined set of

objects (6.22.5)
IRREDUNDANT forms irredundant test sets for the efficient identification

of a set of objects (6.11.6)
AMMI allows exploratory analysis of genotype × environment
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interactions
CINTERACTION clusters rows and columns of a two-way interaction table
CONVEXHULL finds the points of a single or a full peel of convex-hulls
DPARALLEL displays multivariate data using parallel coordinates

(2.7.2)
MULTMISSING estimates missing values for units in a multivariate data set
NORMTEST performs tests of univariate and/or multivariate normality
RLFUNCTIONAL fits a linear functional relationship model

For general reading in applied multivariate analysis see for example Manly (1986), Mardia,

Kent & Bibby (1979), Krzanowski (1988), Chatfield & Collins (1986) and Gower (1985a). For
work in classification and cluster analysis, see Gordon (1981).

6.1 Measures of association

Section 6.1.1 describes the SSPM and FSSPM directives which form the Genstat SSPM structure
(2.7.2). This contains sums of squares and products, means and associated information, and can
be used as input to several multivariate commands including PCP (6.2.1) and CVA (6.3.1). It then
describes the ROBSSPM procedure which can form robust estimates. Sections 6.1.2 - 6.1.4 explain
how to form similarity matrices. Finally, Section 6.1.5 describes the MANTEL procedure which
assessing the association between two similarity matrices. Related commands, described
elsewhere, include CORRELATE directive (which forms correlation matrices: see 7.7.1), and
FVCOVARIANCE (which forms variance-covariance matrices: see Part 3 of the Genstat Reference
Manual).

6.1.1 Forming sums of squares and products

Several Genstat commands require matrices of sums of squares and products as their input.
These are stored by Genstat in a data structure known as an SSPM. You first declare the
structure using the SSPM directive, and then form its values using FSSPM.

SSPM directive
Declares one or more SSPM data structures.

Options
TERMS = formula Terms for which sums of squares and products are to be

calculated; default *
FACTORIAL = scalar Maximum number of vectors in a term; default 3
FULL = string token Full factor parameterization (yes, no); default no
GROUPS = factor Groups for within-group SSPMs; default *
DF = scalar Number of degrees of freedom for sums of squares;

default *

Parameters
IDENTIFIER = identifiers Identifiers of the SSPMs
SSP = symmetric matrices Symmetric matrix to contain the sums of squares and

products for each SSPM
MEANS = variates Variate to contain the means for each SSPM
NUNITS = scalars Number of units or sum of weights for each SSPM
WMEANS = pointers Pointers to variates of group means for each SSPM

For a multivariate analysis, the setting of the TERMS option is simply the list of variates from
which the sums of squares and products are to be calculated, and the FACTORIAL and FULL
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options are irrelevant (these may be used in regression, when TERMS can supply a model
formula). The SSPM is a compound structure with four components (identified by their suffixes).
[1] or ['SUMS'] is a symmetric matrix containing the(corrected) sums of squares and

products. The number of rows and columns of this matrix will equal the number of parameters
defined by the expanded terms list: that is, the number of variates plus the number of dummy
variates generated by the model formula. (See the TERMS directive: 3.2.3.)
[2] or ['MEANS'] is a variate containing the mean for each variate or dummy variate.
[3] or ['NUNITS'] is a scalar holding the total number of units used in constructing the

sums of squares and products matrix. If the SSPM is weighted, this scalar will hold the sum of
the weights.

The within-group SSPM (produced when the GROUPS option is set, and used for canonical
variates analysis) has an additional element:
[4] or ['WMEANS'] is a pointer, pointing to variates holding within-group means. There is

one variate for each row of the 'SUMS' matrix plus one extra. They are all of the same length,
namely the number of levels of the GROUPS factor. The extra variate holds counts of the number
of units in each group.

The first parameter of SSPM provides an identifier for the SSPM structure(s). The other
parameters allow you to specify identifiers for the four components of the SSPM(s), so that you
can refer to them directly. Genstat will declared them automatically as structures of the correct
types and sizes. You can declared them in advance if you prefer but, if so, they must be of the
correct type. You can also use them to provide values for the SSPM (instead of using the TERMS
option to list the variates from which the values are to be calculated, later, by the FSSPM
directive). You can then also set the DF option to indicate the degrees of freedom for the sums
of squares.

Having declared the SSPM, you can form its values using FSSPM.

FSSPM directive
Forms the values of SSPM structures.

Options
PRINT = string tokens Printed output required (correlations, wmeans,

SSPM); default * i.e. no printing
WEIGHTS = variate or symmetric matrix

Variate of weights for weighted SSP, or symmetric
matrix of weights (one row and column for each unit of
data); default * i.e. all units with weight one

SEQUENTIAL = scalar Used for sequential formation of SSPMs; a positive
value indicates that formation is not yet complete (see
READ directive); default * i.e. not sequential

Parameter
SSPMs Structures to be formed

FSSPM forms the values for the component parts of SSPM structures, based on the information
specified by the SSPM directive, when they were declared. The method used to form the SSPM
is based on the updating formula for the means and corresponding corrected sums of squares and
cross products (Herraman 1968).
FSSPM has one parameter which lists the SSPM structures whose values are to be formed.

Genstat takes account of restrictions on any of the variates or factors forming the terms of the
SSPM, or on the weights variate or grouping factor if you have specified them. If any of these
vectors has a missing value, the corresponding unit is excluded from all the means and all the
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sums of squares and products. You can also exclude units by setting their weights to zero.
When you have very many units, you may not be able to store them all at the same time within

Genstat. You can then use the SEQUENTIAL option of READ (1:3.1.10) to read the data in
conveniently sized blocks, and the SEQUENTIAL option of FSSPM to control the accumulation
of the sums of squares and products. The SSPM is updated for each block of data in turn until
the end of data is found.

Example 6.1.1 shows the use of SSPM and FSSPM to form a within-group SSPM. The data
variates are seven measurements made on 28 brooches found at the archaeological site of the
cemetery at Munsingen (Doran & Hodson 1975). They have all been transformed by taking
logarithms. The SSPM is used later in Section 6.3 for a canonical variates analysis. (These seven
variables are also used in the first example of the CLUSTER directive in Section 6.20.1, and the
grouping used here is that obtained from CLUSTER).

Example 6.1.1

   2  UNITS [NVALUES=28]
   3  POINTER [VALUES=Foot_lth,Bow_ht,Coil_dia,Elem_dia,Bow_wdth, \
   4    Bow_thck,Length] Data
   5  FACTOR [LEVELS=4] Groupno
   6  READ Groupno,Data[]

    Identifier   Minimum      Mean   Maximum    Values   Missing
      Foot_lth     2.398     3.278     4.554        28         0
        Bow_ht     2.079     2.842     3.296        28         0
      Coil_dia     1.792     2.166     2.833        28         0
      Elem_dia     1.099     2.026     2.708        28         0
      Bow_wdth     3.045     4.064     5.176        28         0
      Bow_thck     2.708     3.621     4.357        28         0
        Length     3.296     4.003     4.860        28         0

    Identifier    Values   Missing    Levels
       Groupno        28         0         4

  35  SSPM  [TERMS=Data[]; GROUPS=Groupno] W
  36  FSSPM [PRINT=SSPM,wmeans] W

Degrees of freedom
------------------

Sums of squares:  24
Sums of products: 23

Sums of squares and products
----------------------------

     Foot_lth   1       2.0191
       Bow_ht   2      -0.2031       1.3884
     Coil_dia   3       0.2782       0.6409       0.8659
     Elem_dia   4       0.5373       0.7506       0.7578       2.8110
     Bow_wdth   5      -0.2362       0.2028      -0.1215      -0.9082
     Bow_thck   6      -0.4963       1.1359       0.1268       0.2570
       Length   7       0.9921       0.7013       0.5380       0.2839
                             1            2            3            4

     Bow_wdth   5       2.0679
     Bow_thck   6       0.6171       2.4207
       Length   7       0.1339       0.3782       1.3242
                             5            6            7

Means over all groups
---------------------

     Foot_lth   1        3.278
       Bow_ht   2        2.842
     Coil_dia   3        2.166
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     Elem_dia   4        2.026
     Bow_wdth   5        4.064
     Bow_thck   6        3.621
       Length   7        4.003

Number of units used
--------------------

           28

Within-group means
------------------

Grouping factor: Groupno

                             1            2            3            4
     Foot_lth   1        2.956        3.082        4.188        3.228
       Bow_ht   2        2.680        2.873        3.001        2.802
     Coil_dia   3        2.141        2.073        2.517        2.071
     Elem_dia   4        1.493        2.304        2.283        1.741
     Bow_wdth   5        3.457        4.078        4.059        4.762
     Bow_thck   6        3.352        3.837        3.901        3.143
       Length   7        3.775        3.899        4.592        3.938
     Constant   8        6.000       12.000        5.000        5.000

Alternatively, procedure ROBSSPM allows you to form robust estimates of SSPMs, and the
related variance-covariance and correlation matrices, using the method of Campbell (1980). This
weights the units differentially so that those that are extreme, in a multivariate sense, contribute
less to the calculated means and sums of squares and products. The extremeness of a unit is
judged by its Mahalanobis distance from the estimated mean.

ROBSSPM procedure
Forms robust estimates of sum-of-squares-and-products matrices (P.G.N. Digby).

Options
PRINT = string tokens Controls printed output (sspm, distances, weights,

vcovariance, means, correlations, outliers);
default * i.e. no output

B1 = scalar The value from which the threshold distance is derived
(see the Method Section); default 2

B2 = scalar The value indicating the decline in weight as the
distance of a unit above the threshold increases, (see the
Method Section); default 1.25

MAXCYCLE = scalar Maximum number of iterations; default 100
TOLERANCE = scalar The minimum change in the average squared-weight that

has to be achieved for the iterative process to converge;
default 1.0!8

Parameters
DATA = pointers Supplies the set of variates in each datamatrix
SSPM = SSPMs SSPM structure to contain the robust estimates of the

sums of squares and products, the robust estimates of the
means, and the sum of the weights for each datamatrix

DISTANCES = variates To contain the Mahalanobis distances of the units from
the mean

WEIGHTS = variates To contain the weights used for each unit when forming
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the robust estimates
VCOVARIANCE = symmetric matrices

To contain the robust estimates of the matrices of
variances and covariances

CORRELATIONS = symmetric matrices
This contains on output the correlations from the robust
estimates of the variances and covariances

The variates from which the sums of squares and products are to be calculated are specified, in
a pointer, by the DATA parameter. They may be restricted or may contain some missing values,
in which case the units concerned will be ignored.

Output is controlled by the PRINT option, with settings: sspm prints the estimated sums-of-
squares-and-products, the estimated means, and the sum of the weights; distances prints the
Mahalanobis distances for all the units, including any excluded by restrictions; weights prints
the weights for all the units; vcovariance prints the estimated variance-covariance matrix;
means prints the estimated means; correlations prints correlations derived from the
variance-covariance matrix; outliers prints unit numbers, weights, and distances for outliers.
By default there is no printed output.

If the outliers, weights or distances are to be printed, then an appropriate summary of the
number of units, number of outliers and so on will be printed too. The outlier information
consists of the unit numbers, weights and Mahalanobis distances, printed across the page.

The estimation process is iterative, with the maximum number of iterations controlled by the
MAXCYCLE option (default 100). Initial (unweighted) estimates of the means and sums of squares
and products are formed from all the units, subject to any restriction on the data and excluding
any units with missing values for any of the variates. From the estimates, Mahalanobis distances
of the units from their means are calculated, and used to determine the weights for the units. The
weights are then used to reform the SSPM structure, new distances are calculated, and so on.
Convergence occurs when the average change in the derived weights is less than the some
tolerance. The default tolerance is 1.0!8, but this can be redefined by the TOLERANCE option.
Lack of convergence usually indicates some problem with the data, perhaps that the threshold
has been set too low.

The weight w of each unit is given by
w = 1 d # t
w = (t/d) × exp( !0.5 × (d!t)2 / B22 ) d > t

where t, the threshold distance, is given by
t = % v + B1 / % 2

As explained by Campbell (1980), under Fisher's square root approximation, B1 equates to a
percentage point of the standard Gaussian distribution.

The parameters in the calculation of the weights are specified by options B1 and B2. Campbell
(1980) regards three possibilities as potentially most useful. If B1 is infinite, the usual (non-
robust) estimates are obtained. With B1=2 and B2 infinite, the weight decreases inversely with
distance (w=t/d); this can be obtained in the procedure by setting B2 to a missing value. Finally,
there is the combination used as a default by ROBSSPM, namely B1=2 and B2=1.25.

Parameters SSPM, DISTANCES, WEIGHTS, VCOVARIANCE and CORRELATIONS allow the
various components of the output to be saved.

6.1.2 Forming similarity matrices: the FSIMILARITY directive

Many forms of multivariate analysis operate on symmetric matrices that give similarities
between all pairs of samples: these are termed Q-methods. The FSIMILARITY directive (which
is used by the Form Similarity Matrix menu of Genstat for Windows) forms similarity matrices,
essentially using the method described by Gower (1971). The similarity coefficient that is
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calculated allows variables to be qualitative, quantitative, or dichotomous, or mixtures of these
types; values of some of the variables may be missing for some samples. The values of a
similarity coefficient vary between zero and unity, though some authors express them as
percentages in the range 0-100%. Two samples have a similarity of unity only when both have
identical values for all variables; a value of zero occurs when the values for the two samples
differ maximally for all variables. Thus similarity is the complement of dissimilarity, and to
convert a similarity sij into a dissimilarity you can evaluate expressions like 1!sij or %(1!sij).
Whether a set of dissimilarities obeys the metric axioms (particularly the triangle inequality), or
can be regarded as being generated by distances between pairs of points in a multidimensional
Euclidean space, depends on the particular coefficient and on the data themselves. Genstat can
evaluate similarities using many of the standard similarity coefficients for qualitative and
quantitative variables; Gower (1985) and Gower & Legendre (1986) discuss some of the
properties of these coefficients. In Genstat the resulting similarity matrices are ordinary
symmetric matrices, so you can use the standard matrix operations (1:4.10); their main use in
multivariate analysis is for principal coordinates analysis (6.10.1), or other forms of metric
scaling or non-metric scaling, or for hierarchical cluster analysis (6.19).

FSIMILARITY directive
Forms a similarity matrix or a between-group-elements similarity matrix or prints a similarity
matrix.

Options
PRINT = string token Printed output required (similarities, summary);

default * i.e. no printing
STYLE = string token Print percentage similarities in full or just the 10% digit

(full, abbreviated); default full
METHOD = string token Form similarity matrix or rectangular

between-group-element similarity matrix
(similarities, betweengroupsimilarities);
default simi

SIMILARITY = matrix or symmetric matrix
Input or output matrix of similarities; default *

GROUPS = factor Grouping of units into two groups for
between-group-element similarity matrix; default *

PERMUTATION = variate Permutation of units (possibly from HCLUSTER) for
order in which units of the similarity matrix are printed;
default *

UNITS = text or variate Unit names to label the rows of the similarity matrix;
default *

MINKOWSKI = scalar Index t for use with TEST=minkowski

Parameters
DATA = variates or factors The data values
TEST = string tokens Test type, defining how each DATA variate or factor is

treated in the calculation of the similarity between each
unit (simplematching, jaccard, russellrao,
dice, antidice, sneathsokal,  rogerstanimoto,
cityblock, manhattan, ecological, euclidean,
pythagorean, minkowski, divergence, canberra,
braycurtis, soergel); default * ignores that variate
or factor
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RANGE = scalars Range of possible values of each DATA variate or factor;
if omitted, the observed range is taken

FSIMILARITY forms a symmetric matrix of similarities, or a rectangular matrix of similarities
between the units in two groups. You can save either form of similarity matrix, using the
SIMILARITY option. FSIMILARITY can also be used to print the symmetric matrix of
similarities after it has formed it; alternatively, you can input an existing similarity matrix for
printing, using the SIMILARITY option.

The DATA parameter specifies a list of variates or factors, all of which must be of the same
length. If any of the variates or factors is restricted, or if the factor in the GROUPS option is
restricted, then that restriction is applied to all the variates or factors. Any restriction on any
other variate or factor must be to the same set of units. The dimension of the resulting symmetric
matrix of similarities is taken from the number of units that contribute to the similarity matrix.
If you want to print an existing similarity matrix, the DATA parameter (and the TEST and RANGE
parameters) should be omitted, and the SIMILARITY option used to input the matrix concerned.

The TEST parameter specifies a list of strings, one for each variate or factor in the DATA
parameter list, that define their "types". If you want to exclude a variate or factor from
contributing, you should specify an empty string (* or ''). Otherwise the similarity between
units i and j is calculated as

3k { wk(xik, xjk) sk(xik, xjk) } / 3k wk(xik, xjk) 
where xik is the value of the DATA variate or factor k in unit i, and the contribution functions sk

and weight functions wk for a variate k of the available types are defined in the tables below (for
further details see Gower 1971, 1985).

The first table contains the types appropriate for variates that are recording the presence or
absence of a characteristic; they cannot be used with factors.

Type Contribution sk Weight wk

Jaccard if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 0 0

if only one of xi or xj = 0, then 0 1

RussellRao if xi � 0 and xj � 0, then 1 1

if xi = 0 or xj = 0, then 0 1

Dice if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 0 0

if only one of xi or xj = 0, then 0 0.5

antidice if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 0 0

if only one of xi or xj = 0, then 0 2

SneathSokal if xi � 0 and xj � 0, then 1 1

if xi = xj = 0, then 1 1

if only one of xi or xj = 0, then 0 0.5

RogersTanimoto if xi � 0 and xj � 0, then 1 1
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if xi = xj = 0, then 1 1

if only one of xi or xj = 0, then 0 2

The simplematching type is appropriate for qualitative variables, which may be either variates
or factors.

Type Contribution sk Weight wk

simplematching if xi = xj, then 1 1

if xi � xj, then 0 1

The next table shows the types that can be used for quantitative variates (but not factors). In the
definitions, r is the range of the variate, t is the Minkowski index (defined by the MINKOWSKI
option). Note, however, that BrayCurtis and Soergel should not be mixed with other types.

Type Contribution sk Weight wk

cityblock 1 ! |xi ! xj| / r 1

Manhattan synonymous with cityblock

ecological 1 ! |xi ! xj| / r 1

unless xi = xj = 0 0

Euclidean 1 ! {(xi ! xj) / r}2 1

Pythagorean synonymous with Euclidean

Minkowski 1 ! |xi ! xj|
t / rt 1

Divergence 1 ! {(xi ! xj) / (xi + xj)}
2 1

Canberra 1 ! |xi ! xj| / (|xi| + |xj|) 1

BrayCurtis 1 ! |xi ! xj| / (xi + xj) xi + xj

Soergel 1 ! |xi ! xj| / max(xi, xj) max(xi, xj)

The RANGE parameter contains a list of scalars, one for each variate or factor in the DATA list.
This allows you to check that the values of each variate or factor lie within the given range. If
any variate or factor fails the range check, FSIMILARITY gives an error diagnostic and
terminates without forming the similarity matrix. The range is also used to standardize
quantitative variates; this allows you to impose a standard range, for example when variates are
measured on commensurate scales. You can omit the RANGE parameter for all or any of the
variates or factors by giving a missing identifier or a scalar with a missing value; Genstat then
uses the observed range. If PRINT=summary, Genstat prints the name, the minimum value, and
the range for each variate and factor.

The three parameters of the FSIMILARITY directive are also used, for the same purposes, in
the directives PCORELATE (6.10.3), HLIST (6.19.3), and HSUMMARIZE (6.19.4).

The METHOD option controls what type of matrix is produced. The default setting,
similarities, gives a symmetric matrix of similarities amongst a single set of units. The
betweengroupsimilarities setting gives a rectangular matrix of similarities between two
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sets of units. To form a rectangular matrix of similarities, you must also define the grouping of
units by setting the GROUPS option (see below).

The PRINT, STYLE, and PERMUTATION options govern the printing of a symmetric matrix of
similarities. You can either form the similarity matrix within FSIMILARITY, or input it by the
SIMILARITY option. To print the similarity matrix you should set option
PRINT=similarities. The STYLE option has two settings, full (the default) or
abbreviated. The similarity matrix printed in full style has its values displayed as percentages
with one decimal place. If you put STYLE=abbreviated, the values of the similarity matrix are
printed as single digits with no spaces, the digit being the 10's value of the similarity as a
percentage. In both cases, though, the actual similarities in the range 0-1 are stored in the
similarity matrix itself. The PERMUTATION option allows you to specify a variate with values
corresponding to the order in which you want the rows of the similarity matrix to be printed. The
reordering of the rows is most effective when the permutation arises from a hierarchical
clustering and corresponds to the dendrogram order (6.19.1).

Example 6.1.2

   2  " Data from Observers Book of Automobiles 1986
  -3
  -4    16 Italian cars and 12 measurements/characteristics
  -5
  -6     1.  engine capacity        c.c.        Engcc
  -7     2.  number of cylinders                Ncyl
  -8     3.  fuel tank              litres      Tankl
  -9     4.  unladen weight         kg          Weight
 -10     5.  length                 cm          Length
 -11     6.  width                  cm          Width
 -12     7.  height                 cm          Height
 -13     8.  wheelbase              cm          Wbase
 -14     9.  top speed              kph         Tspeed
 -15    10.  time to 100kph         secs        Stst
 -16    11.  carburettor/inj/diesel 1/2/3       Carb
 -17    12.  front/rear wheel drive 1/2         Drive
 -18  "
  19  UNITS [NVALUES=16]
  20  VARIATE Engcc,Ncyl,Tankl,Weight,Length,Width,Height,Wbase,Tspeed,Stst,\
  21    Carb,Drive,Vct[1...3]
  22  POINTER Cd; VALUES=!P(Engcc,Ncyl,Tankl,Weight,Length, \
  23    Width,Height,Wbase,Tspeed,Stst)
  24  READ [PRINT=errors] #Cd,Carb,Drive
  41  TEXT [VALUES=Estate,'Arna1.5','Alfa2.5',Mondialqc,\
  42    Testarossa,Croma,Panda,Regatta,Regattad,Uno,\
  43    X19,Contach,Delta,Thema,Y10,Spider] Carname
  44  FACTOR [Carname; LEVELS=16] Fcar; VALUES=!(1...16)
  45  SYMMETRICMATRIX [ROWS=Carname] Carsim
  46  " Form similarity matrix between cars."
  47  FSIMILARITY [SIMILARITY=Carsim; PRINT=similarities] #Cd,Carb,Drive; \
  48    TEST=4(cityblock),4(Euclidean),2(cityblock),2(simplematch)

Similarity matrix: Carsim
-------------------------

Estate      1    ----
Arna1.5     2    97.6  ----
Alfa2.5     3    81.5  80.0  ----
Mondialqc   4    57.6  54.6  76.2  ----
Testarossa  5    38.9  35.5  56.1  82.7  ----
Croma       6    79.4  77.6  76.2  76.8  56.7  ----
Panda       7    82.0  85.5  61.8  29.6  10.3  54.6  ----
Regatta     8    98.1  96.9  82.3  58.9  39.4  82.0  80.1  ----
Regattad    9    83.9  82.2  67.5  52.5  32.9  75.6  75.6  84.4  ----
Uno        10    88.4  90.9  69.3  40.9  21.1  65.0  96.0  86.6  81.5  ----
X19        11    87.0  85.8  82.8  57.8  42.5  60.2  75.8  83.6  70.0  78.7
Contach    12    46.2  43.2  61.8  70.9  88.5  44.0  21.5  45.8  30.9  30.2
Delta      13    95.9  95.1  83.7  58.5  39.3  81.4  81.3  95.9  80.6  87.1
Thema      14    78.5  76.5  75.4  77.4  57.1  98.7  52.9  81.1  74.8  63.7
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Y10        15    89.5  92.4  69.2  37.7  19.0  62.1  92.9  87.5  74.0  92.5
Spider     16    77.8  76.1  82.3  74.6  58.3  78.2  62.9  77.2  70.6  67.3
                    1     2     3     4     5     6     7     8     9    10

X19        11    ----
Contach    12    53.1  ----
Delta      13    82.6  47.1  ----
Thema      14    59.1  44.0  80.2  ----
Y10        15    83.0  30.5  88.4  60.5  ----
Spider     16    86.0  50.6  78.8  77.2  70.4  ----
                   11    12    13    14    15    16

You use the GROUPS option to specify a partition of the units into two groups, by giving a factor
with two levels. The units with level 1 of the factor correspond to the rows of the matrix, while
the units with level 2 correspond to the columns.

The UNITS option allows you to label the rows of the output similarity matrix if the variates
of the DATA parameter do not have any unit labels, or if you want to use different labels from
those labelling the units of the variates. This labelling also applies to the rows and columns of
a matrix of similarities between group elements.

6.1.3 Forming similarities between groups: the HREDUCE directive

Sometimes you may want to regard an n-by-n similarity matrix as being partitioned into b-by-b
rectangular blocks. For example, the cars in 6.1.2 could be classified by their manufacturer. You
might then want to form a reduced matrix of similarities, between the different manufacturers
instead of between the individual members of the full set of cars. Another example is when there
are b soil samples, each with information recorded on several soil horizons, which may be
different in the different samples. The n sampling units are the full set of horizons that have been
observed for the soil samples. The similarity matrix can be computed for these in the usual way
(6.1.2), but you may be more interested in obtaining a reduced similarity matrix between the b
soil samples. To do this you have to arrange for each of the b2 blocks of the full matrix to be
replaced by a single value. Each diagonal block must be replaced by unity. Several possibilities
exist for replacing the off-diagonal blocks: e.g. the maximum, minimum, or mean similarity
within the block. Alternatively you could take the view that at least the first horizons of each of
two soil samples should agree; you would then replace the block by its first value. Rayner (1966)
suggested a more complex method, known as the zigzag method, which recognized that certain
horizons might be absent from some soil samples. This leads to finding successive optimal
matches, conditional on the constraint that one horizon cannot match a horizon that has already
been assigned to a higher level; after finding these optima, an average is taken for each horizon.
Again Genstat produces a symmetric similarity matrix, which you can use subsequently for
matrix operations or in the appropriate multivariate directives.

HREDUCE directive
Forms a reduced similarity matrix (referring to the GROUPS instead of the original units).

Options
PRINT = string token Printed output required (similarities); default * i.e.

no printing
METHOD = string token Method used to form the reduced similarity matrix

(first, last, mean, minimum, maximum,
zigzag); default firs

Parameters
SIMILARITY = symmetric matrices Input similarity matrix
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REDUCEDSIMILARITY = symmetric matrices
Output (reduced) similarity matrix

GROUPS = factors Factor defining the groups
PERMUTATION = variates Permutation order of units (for METHOD = firs, last or

zigz)

The SIMILARITY parameter specifies the similarity matrix for the full set of n observations; this
must be present and have values. The REDUCEDSIMILARITY parameter specifies an identifier
for the reduced similarity matrix, of order b; this will be declared implicitly if you have not
declared it already. The factor that defines the classification of the units into groups must be
specified by the GROUPS parameter. The units can be in any order, so that for example the units
of the first group need not be all together nor given first. The labels of the factor label the
reduced similarity matrix.

The PERMUTATION parameter, if present, must specify a variate. It defines the ordering of
samples within each group, and so must be specified for methods first, last, and zigzag.
Within each group, the unit with the lowest value of the permutation variate is taken to be the
first sample, and so on. Genstat will, if necessary, use a default permutation of one up to the
number of rows of the similarity matrix.

If you set option PRINT=similarities, the values of the reduced symmetric matrix are
printed as percentages.

The METHOD option specifies how the reduced similarity matrix is to be formed. In Example
6.1.3, the similarity matrix for each car is reduced to a similarity matrix for each manufacturer
as represented by the factor Maker. The METHOD option is set to mean. The resulting matrix is
printed, and finally stored in the symmetric matrix Makersim.

Example 6.1.3

  49  " Form reduced similarity matrix for makers."
  50  FACTOR [LABELS=!t(Fiat,'Alfa Romeo',Lancia,Ferrari,Lamborghini,\
  51    Pinninfarina)] Maker; VALUES=!(2,2,2,4,4,1,1,1,1,1,1,5,3,3,3,6)
  52  SYMMETRICMATRIX [ROWS=Maker] Makersim
  53  HREDUCE [PRINT=similarities; METHOD=mean] Carsim; \
  54    REDUCEDSIMILARITY=Makersim; GROUPS=Maker

Similarity matrix reduced to groups defined by Maker,
using the mean similarity within each group
=====================================================

Reduced similarity matrix: Makersim
-----------------------------------

Fiat         1    ----
Alfa Romeo   2    82.1  ----
Lancia       3    79.5  84.0  ----
Ferrari      4    43.3  53.1  48.2  ----
Lamborghini  5    37.6  50.4  40.5  79.7  ----
Pinninfarina 6    73.7  78.7  75.5  66.5  50.6  ----
                     1     2     3     4     5     6

6.1.4 Forming associations using CALCULATE

An appropriate similarity coefficient can be calculated by FSIMILARITY (6.1.2) for most sets
of data. However, many different coefficients of similarity, or distance, have been suggested
(see, for example, Gower & Legendre 1986). FSIMILARITY does not cover all of these, but you
will generally be able to form the others by using CALCULATE (1:4.1). Sometimes you may need
to convert similarities to dissimilarities (distances), or vice versa. This can be done in many
ways; the most common are D=1!S and D=%(1!S), but D=!log(S) can also be useful. So there
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are also situations where you may need to transform such matrices using CALCULATE. For
example, by putting

FSIMILARITY [SIMILARITY=Smat] V[1...9]; TEST=Euclidean

the symmetric matrix Smat will contain similarities constructed from Euclidean squared
distances standardized by the ranges of the variates. If you do not want standardization by range,
Euclidean distances can be obtained from the PCO directive (6.10.1); but these may then have
to be transformed to similarities, for example if you want to use hierarchical cluster analysis
(6.19). If Smat has been obtained from the PCO directive, its values should be squared first, to
get Euclidean squared distances, and then transformed to similarities:

CALCULATE Smat = Smat*Smat
& Smat = 1-Smat/MAX(Smat)

The FSIMILARITY directive allows variates of different types; for example, dichotomous
variates (with values 0 or 1) can have the TEST parameter set to Jaccard or simplematching.
Other variates with values on a continuous scale can have the TEST parameter set to cityblock
or Euclidean. When both types of variates are present, the resulting similarities will be a
weighted average of the component similarities. For example, with five dichotomous variates,
Binary[1...5], and three continuous variates, Cont[1...3]

FSIMILARITY [SIMILARITY=Mixed] Binary[1...5],Cont[1...3]; \

  TEST=(Jaccard)5,(cityblock)3

will give the similarity matrix Mixed as a weighted average of the Jaccard similarity matrix
constructed from Binary[1...5] and the city-block similarity matrix constructed from
Cont[1...3]. If, instead of the city-block coefficient, you want to use the unstandardized
Euclidean coefficient, you must construct this yourself, as shown above, and then do the
averaging:

SYMMETRIC [ROWS=N] Jaccard,Euclid,Mixed
FSIMILARITY [SIMILARITY=Jaccard] Binary[1...5]; TEST=jaccard
PCO Cont[]; DISTANCES=Euclid
CALCULATE Euclid = Euclid*Euclid
& Euclid = 1-Euclid/MAX(Euclid)
& Mixed = (5*Jaccard+3*Euclid)/8

Gower (1985b) lists 15 different similarity coefficients that have been used for dichotomous
variables. Of these, only the simple-matching and Jaccard coefficients can be formed directly
with FSIMILARITY; these are the most commonly used. However, a further seven similarity
coefficients can be formed using either, or both, of these two. For example, for the five variates
Binary[1...5] the Czekanowski coefficient can be calculated from the Jaccard coefficient,
using these statements:

FSIMILARITY [SIMILARITY=Jaccard] Binary[1...5];\
  TEST=jaccard
CALCULATE Czekanow = 2 * Jaccard / (1 + Jaccard)

Gower (1985b) gives details of the other relationships.
The city-block and Euclidean measures of distance are special cases of the Minkowski

distance, which for some positive value of t is:

where rk is usually the range of the kth variable. Although similarities derived from this distance
cannot be formed with FSIMILARITY directly, the symmetric matrix Minkwski giving such
similarities can be formed from the variates X[1...p] using these statements:

CALCULATE Minkwski=0
FOR Thisx=X[1...p]
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  FSIMILARITY [SIMILARITY=Temp] Thisx; TEST=cityblock
  CALCULATE Minkwski = Minkwski+Temp**t
ENDFOR
CALCULATE Minkwski = EXP(LOG(Minkwski)/t)

6.1.5 Assessing the association between similarity matrices: the MANTEL procedure

MANTEL procedure
Assesses the association between similarity matrices (J.W. McNicol, E.I. Duff & D.A. Elston).

Options
PRINT = string token Controls printed output (test); default * i.e. none
METHOD = string token The type of metric by which to compare the distance

matrices (correlation, rankcorrelation,
mantel); default corr

NPERMUTATIONS = scalar The number of permutations of the units in the second
distance matrix X on which the significance of the
correlation between Y and X is to be based; default 100

Parameters
Y = symmetric matrices The first distance or similarity matrix: the order of the

units of this matrix is held fixed
X = symmetric matrices The second distance or similarity matrix: the rows of X

are permuted to allow the significance of the correlation
between Y and X to be assessed

SEED = scalars Random number seed for the permutations; default set
by RANDOMIZE

M = scalars Association between Y and X
MPERMUTED = variates Associations between Y and the permuted X's
CUPROB = scalars The proportion of MPERMUTED values greater than or

equal to M
YOFFDIAGONAL = variates Variate to save the off-diagonal elements of the

distance/similarity matrix Y
XOFFDIAGONAL = variates Variate to save the off-diagonal elements of the

distance/similarity matrix X

The extent to which two similarity/distance matrices describe the same relationships among the
units can be measured by comparing their off-diagonal elements. The metrics to be used can be
selected using the METHOD option: product-moment correlation (correlation), rank correlation
(rankcorrelation) and SUM(X*Y) (Mantel). The last of these is the metric originally
proposed by Mantel (1967). If the metric rankcorrelation is selected, the data are restricted
to non-missing units and Spearman's rank correlation is used.

The significance of the association is assessed by a permutation test. The rows/columns of the
second matrix are permuted at random and the association is recalculated for each permutation.
Significance is estimated by the percentage of the permutations with association less/more than
or equal to that of the original association.

If the number of random permutations, specified by the NPERMUTATIONS option, is set to a
number greater than or equal to the total number of distinct permutations d!, where d is the
dimension of the symmetric matrices, the full randomization test is implemented. Otherwise the
rows/columns of the second matrix are permuted at random without regard to the duplication of
specific permutations. By default, 100 permutations are done. The SEED parameter can supply
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a seed for the random numbers used to generate the random permutations. By default SEED=0,
so the random numbers will continue any existing sequence, used earlier in the Genstat program,
or be initialised by the RANDOMIZE directive.

The two matrices to be compared are specified by the Y and X parameters. The M parameter
allows the value of the statistic for the original matrices to be saved, the MPERMUTED parameter
saves the values from the permuted matrices, and the CUPROB parameter saves the proportion of
the permuted associations that are greater than the association between the original matrices. The
off-diagonal elements of the matrices, on which the calculations are based, can be saved as
variates using the XOFFDIAGONAL and YOFFDIAGONAL parameters.

The PRINT option can be set to test to print the values of M and CUPROB; by default there
is no output.

Example 6.1.5

   2  " Data from Tables 1.1, 1.2 and 1.3 of Manly (1991)."
   3  SYMMETRIC [ROWS=8] Assoc,Dist1,Dist2
   4  READ      Assoc

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Assoc   -0.1600    0.3533     1.000        36         0

  13  READ      Dist1

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Dist1    0.0000     2.000     5.000        36         0

  22  READ      Dist2

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Dist2    0.0000     1.389     4.000        36         0

  31  PRINT     Assoc,Dist1,Dist2; FIELD=7; DECIMALS=2

      Assoc

   1   1.00
   2   0.30   1.00
   3   0.14   0.50   1.00
   4   0.23   0.50   0.54   1.00
   5   0.30   0.40   0.50   0.61   1.00
   6  -0.04   0.04   0.11   0.03   0.15   1.00
   7   0.02   0.09   0.14  -0.16   0.11   0.14   1.00
   8  -0.09  -0.06   0.05  -0.16   0.03  -0.06   0.36   1.00
          1      2      3      4      5      6      7      8

      Dist1

   1   0.00
   2   1.00   0.00
   3   2.00   1.00   0.00
   4   1.00   2.00   3.00   0.00
   5   2.00   3.00   4.00   1.00   0.00
   6   3.00   4.00   5.00   2.00   1.00   0.00
   7   2.00   3.00   4.00   3.00   4.00   5.00   0.00
   8   1.00   2.00   3.00   2.00   3.00   4.00   1.00   0.00
          1      2      3      4      5      6      7      8

      Dist2

   1   0.00
   2   1.00   0.00
   3   2.00   1.00   0.00
   4   1.00   1.00   1.00   0.00
   5   2.00   1.00   1.00   1.00   0.00
   6   3.00   2.00   2.00   2.00   1.00   0.00
   7   2.00   1.00   2.00   2.00   2.00   3.00   0.00
   8   1.00   2.00   3.00   2.00   3.00   4.00   1.00   0.00
          1      2      3      4      5      6      7      8
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  32  MANTEL    [PRINT=test; NPERMUTATIONS=25] Y=Assoc; X=Dist1; SEED=615023

Mantel test based on product-moment correlations
================================================

  25 permutations performed
Association between the original matrices:                   -0.2170
Percent permutations with equal or greater association:        84.00

  33  MANTEL    [PRINT=test; NPERMUTATIONS=25] Y=Assoc; X=Dist2; SEED=712378

Mantel test based on product-moment correlations
================================================

  25 permutations performed
Association between the original matrices:                   -0.6054
Percent permutations with equal or greater association:       100.00

6.1.6 Nonparametric analysis of similarities: the ECANOSIM procedure

ECANOSIM procedure
Performs an analysis of similarities i.e. ANOSIM (D.A. Murray).

Options
PRINT = string token Controls printed output (test); default test
PLOT = string token Type of plot (boxplot, histogram); default hist
NTIMES = scalar Number of permutations to make; default 999
BLOCKS = factor Factor specifying groups for a stratified test; default *

i.e. none
SEED = scalar Seed for the random number generator used to make the

permutations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

Parameters
DATA = symmetric matrices Similarity matrix
GROUPS = factors Specify the different groups for each matrix
STATISTIC = scalars Save the R statistics
PROBABILITY = scalars Save the probabilities

Analysis of similarities (ANOSIM) is a nonparametric method to test whether there is a
significant difference between two or more groups of sampling units (Clarke 1993). The method
performs a permutation test based on the ranks of measures of similarity between sampling units.
The data should be supplied as a similarity matrix using the DATA parameter. The GROUPS
parameter specifies a factor containing the groups for each corresponding row of the similarity
matrix.

The ANOSIM statistic R is calculated by the difference of the between-group (rb) and within-
group (rw) mean rank similarities:

R = (mean(rb) ! mean(rw)) / (n × (n ! 1) / 4)
The denominator is chosen so the R lies in the range (!1, 1) where 0 represents no difference
between the groups. The similarites are ranked where a rank of 1 corresponds to the highest
similarity.

The statistical significance of the R statistic is assessed by a permutation test. ECANOSIM
performs 999 random permutations (made using a default seed), and calculates the R statistic for
each permutation. The probability for the R statistic is then determined from its distribution over
the randomly permuted datasets. The NTIMES option of ECANOSIM allows you to request another
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Figure 6.1.6

number of permutations, and the SEED option allows you to specify another seed. For designs
with no blocking ECANOSIM checks whether NTIMES is greater than the number of possible
permutations available for the data set. If so, ECANOSIM does an exact test instead, which uses
each possible permutation once.

The histogram setting of the PLOT
option can be used to produce a distribution
of the R values. ANOSIM assumes under
the null hypothesis that distances within
groups are smaller than those between
groups, and that the ranked dissimilarities
within groups have equal median and
range. The boxplot setting for the PLOT
option can be used to help check these
assumptions.

The R statistic can be saved using the
STATISTIC parameter, and the probability
can be saved using the PROBABILITY
parameter. By default the the R statistic and
probability are printed, but this can be
suppressed by setting option PRINT=*.

The analysis of similarities is illustrated
in Example 6.1.6 and Figure 6.1.6.

Example 6.1.6

   2  FACTOR      [LEVELS=5; VALUES=1,1,1,2,2,2,3,3,3,4,5,5,5,5] Groups
   3  VARIATE     [NVALUES=14] Data[1...5]; VALUES=!(5(1),9(0)),\
   4              !(8(1),4(0),1,0),!(0,4(1),0,4(1),0,0,1,0),\
   5              !(0,5(1),0,3(1),4(0)),!(3(0),3(1),0,1,1,0,4(1))
   6  FSIMILARITY [SIMILARITY=Sim] Data[]; TEST=jaccard
   7  ECANOSIM    [SEED=26351; PLOT=histogram] Sim; GROUPS=Groups

Analysis of Similarities (ANOSIM)
---------------------------------

R Statistic: 0.542
Probability: 0.003
Based on 999 random permutations

6.2 Principal components analysis

Principal components analysis finds linear combinations of a set of variates that maximize the
variation contained within them, thereby displaying most of the original variability in a smaller
number of dimensions. Principal components analysis operates on sums of squares and products,
or a correlation matrix, or a matrix of variances and covariances, formed from the variates.
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6.2.1 The PCP directive

PCP directive
Performs principal components analysis.

Options
PRINT = string tokens Printed output required (loadings, roots,

residuals, scores, tests); default * i.e. no
printing

NROOTS = scalar Number of latent roots for printed output; default *
requests them all to be printed

SMALLEST = string token Whether to print the smallest roots instead of the largest
(yes, no); default no

METHOD = string token Whether to use sums of squares, correlations or
variances and covariances (ssp, correlation,
vcovariance, variancecovariance); default ssp

Parameters
DATA = pointers or matrices or SSPMs

Pointer of variates forming the data matrix, or matrix
storing the variate values by columns, or SSPM giving
their sums of squares and products (or correlations) etc

LRV = LRVs To store the principal component loadings, roots and
trace from each analysis

SSPM = SSPMs To store the computed sum-of-squares-and-products or
correlation matrix

SCORES = matrices To store the principal component scores
RESIDUALS = matrices or variates To store residuals from the dimensions fitted in the

analysis (i.e. number of columns of the SCORES matrix,
or as defined by the NROOTS option)

SAVE = pointers Saves details of the analysis; if unset, an unnamed save
structure is saved automatically (and this can be
accessed using the GET directive)

You supply the input for PCP using the first parameter; this list may have more than one entry,
in which case Genstat repeats the analysis for each of the input structures. Instead of supplying
an SSPM, you can supply a pointer containing the set of variates, or a matrix storing the variate
values by columns. Genstat will then calculate the sums of squares and products, or correlations,
or variances and covariances for the analysis (see option METHOD below).

For example, these two forms of input are equivalent:

SSPM [TERMS=Height,Length,Width,Weight] S
FSSPM S
PCP [PRINT=roots] S

and

PCP [PRINT=roots] !P(Height,Length,Width,Weight)

But the first form does mean that you have the sums of squares and products available for later
use, in the SSPM S. Here the pointer is unnamed (1.6.3). But you may wish to use a named
pointer. For example:

POINTER [VALUES=Height,Length,Width,Weight] Dmat
PCP [PRINT=roots] Dmat
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By default the PCP directive does not print any results: you use the PRINT option to specify what
output you require. The printed output is in five sections, each with a corresponding setting, as
illustrated in the examples below.

The columns of the matrices of principal component loadings and scores correspond to the
latent roots. Each latent root corresponds to a single dimension, and gives the variability of the
scores in that dimension. The loadings give the linear coefficients of the variables that are used
to construct the scores in each dimension. Example 6.2.1a shows a principal components analysis
of four variates of length 12.

Example 6.2.1a

   2  UNITS   [NVALUES=12]
   3  POINTER [VALUES=Height,Length,Width,Weight] Dmat
   4  READ    [PRINT=data,errors,summary] Dmat[]

   5  4.1 5.2 1.2 3.1 4.2 1.5 3.2 5.6 2.3 0.2 0.1 0.2
   6  6.2 4.1 4.1 4.1 2.3 6.2 6.3 5.1 0.2 0.9 4.9 7.3
   7  10.1 5.6 3.2 9.4 1.2 9.8 1.0 1.0 6.1 9.7 1.0 3.7
   8  6.1 9.6 9.7 5.5 2.3 5.0 9.4 8.1 4.5 4.9 0.3 1.8 :

    Identifier   Minimum      Mean   Maximum    Values   Missing
        Height    0.2000     4.133     10.10        12         0
        Length    0.2000     5.225     9.800        12         0
         Width    0.1000     3.700     9.700        12         0
        Weight    0.2000     4.575     9.400        12         0

   9  PCP [PRINT=roots,scores,loadings,tests] Dmat

Principal components analysis
=============================

Latent roots
------------

              1           2           3           4
          181.8       130.2        82.5        18.5

Percentage variation
--------------------

              1           2           3           4
          44.01       31.52       19.98        4.49

Trace
-----

       413.2

Latent vectors (loadings)
-------------------------

                        1           2           3           4
       Height     0.21529     0.37981     0.78747     0.43506
       Length     0.25623     0.86524    -0.34389    -0.25970
        Width     0.74104    -0.21726    -0.37937     0.50964
       Weight     0.58211    -0.24474     0.34308    -0.69537

Significance tests for equality of final k roots
------------------------------------------------

      k  Chi-square      df
      2        4.52       2
      3        7.35       5
      4       10.11       9
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Principal component scores
--------------------------

                        1           2           3           4
            1      -2.725       0.870       0.425      -0.256
            2      -0.714      -3.340       1.875       0.029
            3      -6.897      -3.191       0.149       1.715
            4       0.177      -0.159       1.700       1.725
            5       2.087      -0.546      -2.585      -0.091
            6       0.521      -6.164      -1.130      -1.871
            7       3.819       1.518       6.415      -1.112
            8      -3.541       4.306      -4.085      -1.354
            9      -0.940       5.420       0.734      -1.074
           10       6.529       3.002      -1.915       2.134
           11       5.824      -2.992      -2.319      -0.285
           12      -4.139       1.276       0.738       0.441

The significance tests are for equality of the k smallest roots: li (i = 1, 2, ... k). The test statistic
is

where n is the number of units and p is the number of variables. Asymptotically, the statistics
have a chi-square distribution with (k+2)(k!1)/2 degrees of freedom. If any latent roots are zero,
Genstat excludes them from the calculation of the test statistic; the effective value of p is reduced
accordingly.

If you omit the NROOTS option, Genstat prints by default the results corresponding to all the
latent roots. The number of latent roots is the number of variates involved in the input to PCP.
The NROOTS option allows you to print only part of the results, corresponding to the first or last
r latent roots. You may then want to print the residuals. Example 6.2.1b prints the results
corresponding to the first two latent roots; the residuals are formed from the remaining two
columns of scores.

Example 6.2.1b

  10  PCP [PRINT=scores,residuals; NROOTS=2] Dmat

Principal components analysis
=============================

Principal component scores
--------------------------

                        1           2
            1      -2.725       0.870
            2      -0.714      -3.340
            3      -6.897      -3.191
            4       0.177      -0.159
            5       2.087      -0.546
            6       0.521      -6.164
            7       3.819       1.518
            8      -3.541       4.306
            9      -0.940       5.420
           10       6.529       3.002
           11       5.824      -2.992
           12      -4.139       1.276
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Residuals
---------

            1       0.496
            2       1.875
            3       1.721
            4       2.422
            5       2.587
            6       2.186
            7       6.510
            8       4.304
            9       1.301
           10       2.867
           11       2.337
           12       0.860

To print results corresponding to the r smallest latent roots, you must set option NROOTS to r and
option SMALLEST to yes. Now if residuals are printed they will be formed from the scores
corresponding to the largest roots. The NROOTS and SMALLEST options apply to the latent roots
and vectors, the principal component scores and the residuals. So you cannot print directly, for
example, the first two columns of scores and the last three columns of loadings. This is rarely
required but, if necessary, it can be done by saving the relevant results and printing them
separately.

In Example 6.2.1c the three smallest roots are printed, together with the residuals. These
correspond to the first column of scores, and can be compared with the scores in Example 6.2.1a.
You can see that all the residuals are positive: this is because residuals from multivariate
analyses generally occupy several dimensions, so they represent distances in multidimensional
space and signs cannot be attached to them.

Example 6.2.1c

  11  PCP [PRINT=roots,residuals; NROOTS=3; SMALLEST=yes] Dmat

Principal components analysis
=============================

Latent roots
------------

              1           2           3
         130.23       82.54       18.55

Percentage variation
--------------------

              1           2           3
          31.52       19.98        4.49

Trace
-----

       413.2

Residuals
---------

            1       2.725
            2       0.714
            3       6.897
            4       0.177
            5       2.087
            6       0.521
            7       3.819
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            8       3.541
            9       0.940
           10       6.529
           11       5.824
           12       4.139

By default, the PCP directive operates on the SSPM but you can set the METHOD option to
correlations to operate on a derived matrix of correlations, as shown in Example 6.2.1d, or
to vcovariance (or its synonym variancecovariance) to use variances and covariances.
Note that when correlations are analysed the significance-test statistics no longer have
asymptotic chi-square distributions.

The LRV parameter allows you to save the principal component loadings, the latent roots and
their sum (the trace) in an LRV structure, while the SCORES parameter saves the principal
component scores in a matrix. If you have declared the LRV already, its number of rows must
be the same as the number of variates supplied in an input pointer or implied by an input SSPM.
The number of rows of the SCORES matrix, if previously declared, must be equal to the number
of units.

The number of columns of the LRV and of the SCORES matrix corresponds to the number of
dimensions to be saved from the analysis, and this must be the same for both of them. If the
structures have been declared already, Genstat will take the larger of the numbers of columns
declared for either, and declare (or redeclare) the other one to match. If neither has been declared
and option SMALLEST retains the default setting no, Genstat takes the number of columns from
the setting of the NROOTS option. Otherwise, Genstat saves results for the full set of dimensions.
The trace saved as the third component of the LRV structure, however, will contain the sums of
all the latent roots, whether or not they have all been saved. Procedure LRVSCREE can be used
to produce a "scree" diagram which can be helpful in deciding how many dimensions to save;
see Section 6.2.2.

The SSPM parameter can save the SSPM structure used for the analysis. A particularly
convenient instance is when you have supplied an SSPM structure as input but, for example,
have set METHOD=correlation: the SSPM that is saved will then contain correlations instead
of sums of squares and products.

The RESIDUALS parameter allows you to save the principal component residuals, in a matrix
with number of rows equal to the number of units and one column. If the latent roots and vectors
(loadings) are saved from the analysis, the residuals will correspond to the dimensions not saved;
the same applies if you save scores. If neither the LRV nor scores are saved, the saved residuals
will correspond to the smallest latent roots not printed.

Example 6.2.1d

  12  LRV [ROWS=Dmat; COLUMNS=2] Latent
  13  SSPM [TERMS=Dmat[]] Corrmat
  14  MATRIX [ROWS=12; COLUMNS=1] Res
  15  PCP [PRINT=roots,scores,tests; METHOD=correlation] Dmat; \
  16    LRV=Latent; SSPM=Corrmat; RESIDUALS=Res

Principal components analysis
=============================

Latent roots
------------

              1           2           3           4
          1.748       1.209       0.855       0.188

Percentage variation
--------------------
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              1           2           3           4
          43.70       30.23       21.37        4.70

Trace
-----

       4.000

Significance tests for equality of final k roots
------------------------------------------------

* Note: correlation matrix used - test statistics are not asymptotically
chi-square.

      k  Chi-square      df
      2        5.78       2
      3        8.55       5
      4       11.87       9

Principal component scores
--------------------------

                        1           2           3           4
            1     -0.8216      0.3398      0.1748     -0.1050
            2     -0.0629     -0.8009      0.8807      0.0190
            3     -2.2460     -0.7633      0.6032      0.5641
            4      0.1569      0.2320      0.5762      0.5669
            5      0.4327     -0.4906     -0.8664     -0.0032
            6      0.1126     -2.1210      0.0571     -0.5723
            7      1.8402      1.0603      1.7467     -0.4016
            8     -1.4535      0.8414     -1.5076     -0.4720
            9     -0.1915      1.6947     -0.1622     -0.4031
           10      1.8470      0.7249     -1.0655      0.7278
           11      1.6518     -1.2754     -0.7506     -0.0374
           12     -1.2657      0.5581      0.3136      0.1169

  17  PRINT Latent[],Res

              Latent['Vectors']
                        1           2

       Height      0.3476      0.6121
       Length      0.1981      0.6896
        Width      0.6201     -0.3067
       Weight      0.6749     -0.2359

                          1           2
Latent['Roots']       1.748       1.209

Latent['Trace']       4.000

                      Res
                        1

            1      0.2039
            2      0.8809
            3      0.8259
            4      0.8083
            5      0.8664
            6      0.5752
            7      1.7923
            8      1.5798
            9      0.4345
           10      1.2904
           11      0.7516
           12      0.3347
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The SAVE parameter can supply a pointer to save a multivariate save structure contining all the
details of the analysis. If this is unset, an unnamed save structure is saved automatically (and this
can be accessed using the GET directive). Alternatively, you can set SAVE=* to prevent any save
structure being formed if, for example, you have a very large data set and want to avoid
committing the storage space.

If the variables used to form the SSPM structure are restricted, then the analysis will be
subject to that restriction. Similarly, if a pointer to a set of variates is used as input to PCP, then
any restriction on the variates will be taken into account by the analysis. If you want principal
component scores or residuals to be printed or saved from the analysis, the original data must
be available. The matrices to save such results must have been declared with as many rows as
the variates have values, ignoring the restriction. You can calculate the analysis from one subset
of units, but calculate the scores and residuals for all the units, by using as input to PCP an SSPM
structure formed using a weight variate with zeros for the excluded sampling units and unity for
those to be included. For example, to exclude a known set of outliers from an analysis, but to
print scores for them, these statements could be used:

POINTER [NVALUES=5] V
FACTOR [LABELS=!T(No,Yes)] Outlier
READ [CHANNEL=2] Outlier,V[]
CALCULATE Wt = Outlier .IN. 'No'
SSPM [TERMS=V] S
FSSPM [WEIGHT=Wt] S
PCP [PRINT=scores] S

Principal component regression is provided by procedure RIDGE (6.7).

6.2.2 Scree diagrams of latent roots: the LRVSCREE procedure

LRVSCREE procedure
 Prints a scree diagram and/or a difference table of latent roots (P.G.N. Digby).

Options
PRINT = string tokens Printed output (scree, differences); default scre
PLOT = string token What to plot in high-resolution graphics (scree);

default scre
TITLE = text Title for the graph; default * i.e. none
WINDOW = scalar Window to use for the graph; default 1

Parameters
ROOTS = LRVs or any numerical structures

Latent roots to be displayed; if an LRV is supplied the
trace will also be extracted from it

TRACE = scalars Supplies or saves the total of the latent roots
DIFFERENCES = pointers Contains 3 variates to save the difference table

Procedure LRVSCREE displays a set of latent roots in a convenient form. The input to the
procedure is a set of latent roots (ROOTS), either as an LRV or any structure with numerical
values. Optionally a scalar (TRACE) can be specified, either to supply or to save the total of the
latent roots.

Printed output is controlled by the PRINT option. The setting scree produces a scree diagram,
annotated with the latent roots on their original scale and expressed both as per-thousandths of
the total and as cumulated per-thousandths. The setting differences prints these quantities as
a table, together with the first three differences among the per-thousandth values; i.e. the first
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Figure 6.2.2

difference column gives the differences from each per-thousandth to the next, the second
difference column gives differences among the first-difference values, and so on. Large first-
difference values indicate latent roots ocurring prior to large declines in the scree diagram. Large
second and third differences mark the locations of series of two or more latent roots of similar
magnitude, which can be thought of as plateaus on the scree diagram. Large positive, or negative,
second differences indicate the first, or last, latent root of a plateau. Large negative third
differences occur at the last latent root of one plateau that is followed by another plateau. See
the example for illustration.

By default the scree diagram is also plotted in high-resolution graphics but this can be
suppressed by setting option PLOT=*. The TITLE option can supply a title for the plot, and the
WINDOW option specifies which window is used (by default window 1).

The DIFFERENCES parameter allows a pointer to be specified to contain three variates storing
the columns of the  difference table.

Example 6.2.2 shows a scree diagram for
the latent roots from the principal
components analysis in Example 6.2.1a.
The resulting graph is in Figure 6.2.2. Here
there are only four roots, so the diagram is
not especially informative. Example
6.10.1a shows the use of LRVSCREE

following a principal coordinates analysis
with ten roots.

Example 6.2.2

  18  PCP [PRINT=*] Dmat; LRV=Lrv
  19  LRVSCREE Lrv

  No     Root   %%  Cum   %  Scree Diagram (* represents 2%)

   1    181.8  440  440  44 **********************
   2    130.2  315  755  32 ****************
   3     82.5  200  955  20 **********
   4     18.5   45 1000   4 **

Scale:  1 asterisk represents 2 units.

6.3 Canonical variates analysis

The CVA directive, for canonical variates analysis, operates on a within-group SSPM (6.1.1).
This structure contains information on the within-group sums of squares and products, pooled
over all the groups; it also contains the group means and group sizes, from which Genstat can
derive the between-group sums of squares and products. The directive finds linear combinations
of the original variables that maximize the ratio of between-group to within-group variation,
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thereby giving functions of the original variables that can be used to discriminate between the
groups. The squares of the distances between group means are Mahalanobis D2 statistics when
all the dimensions are used; otherwise they are approximations. You can form exact Mahalanobis
distances with the PCO directive (6.10.1).

6.3.1 The CVA directive

CVA directive
Performs canonical variates analysis.

Options
PRINT = string tokens Printed output required (roots, loadings, means,

residuals, distances, tests); default * i.e. no
printing

NROOTS = scalar Number of latent roots for printed output; default *
requests them all to be printed

SMALLEST = string token Whether to print the smallest roots instead of the largest
(yes, no); default no

Parameters
WSSPM = SSPMs Within-group sums of squares and products, means etc

(input for the analyses)
LRV = LRVs Saves loadings, roots and trace from each analysis
SCORES = matrices Saves canonical variate means
RESIDUALS = matrices Saves distances of the means from the dimensions fitted

in each analysis
DISTANCES = symmetric matrices Saves inter-group-mean Mahalanobis distances
ADJUSTMENTS = matrices Saves the adjustment terms
SAVE = pointers Saves details of the analysis; if unset, an unnamed save

structure is saved automatically (and this can be
accessed using the GET directive)

You specify the input for CVA using its first parameter, WSSPM, this may contain a list of
structures, in which case Genstat repeats the analysis for each of them. The input must be an
SSPM structure, declared with the GROUPS option of the SSPM directive (6.1.1) set to a factor
giving the grouping of the units. If the variates used to form this SSPM structure are restricted,
then the SSPM is restricted in the same way, and so the CVA directive takes account of the
restriction. The other four parameters can be used to save the results.

The three options of the CVA directive control the printed output. By default there is no printed
output, and so you should set the PRINT option to indicate which sections you want.

Example 6.3.1a uses the within-group SSPM formed in Example 6.1.1. This is based on data
from Doran & Hodson (1975) who gave some measurements made on 28 brooches found at the
archaeological site of the cemetery at Munsingen. Seven of these variables are used in the
example, and have been transformed by taking logarithms. For a grouping of the 28 brooches
into four groups (formed by the CLUSTER directive in Example 6.20.1 below), canonical variates
analysis is used to determine possible differences among the groups, and which variables
contribute to such differences.
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Example 6.3.1a

  37  CVA [PRINT=roots,loadings,means,tests] WSSPM=W

Canonical variates analysis
===========================

Latent roots
------------

              1           2           3
          4.543       3.777       2.537

Percentage variation
--------------------

              1           2           3
          41.85       34.79       23.37

Trace
-----

       10.86

Latent vectors (loadings)
-------------------------

                        1           2           3
     Foot_lth      -1.130       2.656       3.397
       Bow_ht       0.633      -1.631       4.799
     Coil_dia      -3.501       1.708       1.450
     Elem_dia       2.669       0.623      -2.802
     Bow_wdth       3.468       0.758       0.757
     Bow_thck      -1.859       2.028      -2.478
       Length       1.279       0.110      -3.598

Significance tests for dimensionality greater than k
----------------------------------------------------

      k     Chi-square        df
      0          97.60        21
      1          60.78        12
      2          27.16         5

Canonical variate means
-----------------------

                        1           2           3
            1      -2.967      -1.998       0.613
            2       0.825      -0.122      -1.584
            3      -1.254       3.545       0.825
            4       2.835      -0.856       2.241

Adjustment terms
----------------

                        1           2           3
            1        8.40       19.90        1.94

The CVA directive (line 37) specifies that the latent roots, the vectors (loadings), and the means
of the canonical variate groups are to be printed, together with values for the significance tests
for the latent roots that indicate the number of dimensions required.
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If there are g groups, at most g!1 independent combinations of the variables can be found to
discriminate amongst them. However, if there are fewer than g!1 variables, v say, then at most
v independent combinations can be calculated. Thus there will be at most min(g!1, v) non-zero
latent roots, with associated loadings and canonical variate scores for the group means. In the
example above min(g!1, v) is 3.

The significance tests that are printed are for a significant dimensionality greater than k, that
is for the joint significance of the first, second, ..., (k+1)th latent roots. This test is printed for
k=0, 1, ... min(g!1, v)!1. If the test is non-significant for k=r, then the values of chi-square for
k>r should be ignored as the indication is that the remaining dimensions have no interesting
structure. The test statistic (Bartlett 1938) is

which is asymptotically distributed as chi-square with (v!k)×(g!k!1) degrees of freedom. Here
n is the number of units, g is the number of groups, v is the number of variables, and li is the ith
latent root. If the coefficient [n!g!½(v!g)] is less than zero, there are too few units for the
statistics to be calculated and a message is printed to this effect. In any case, the tests should be
treated with caution unless n!g is very much larger than v.

The latent vectors, or loadings, are scaled in such a way that the average within-group
variability in each canonical variate dimension is 1: thus the within-group variation is equally
represented in each dimension. Since the latent roots are the successive maxima of the ratio of
between-group to within-group variation, loadings corresponding to roots less than 1 are for
dimensions in the canonical variate space that exhibit more within-group variation than between-
group variation. In the example, all three roots are greater than 1, suggesting that differences
between the four groups exist in all three dimensions; this is in accordance with the significance
tests, which indicate a dimensionality greater than 2. It may not be easy to interpret the latent
vectors but, for example, the second latent vector here contrasts the second variable (the height
of the bow of the brooch) with the others. This suggests that the second canonical variate
distinguishes brooches with a relatively narrow shape. The FACROTATE directive (6.4) may help
you to interpret the loadings. However, canonical variates analysis and principal components
analysis can still be useful, even if the loadings cannot be interpreted.

The scores for the means are arranged so that their centroid, weighted by group size, is at the
origin. This is done by subtracting a constant (or adjustment) term, for each canonical variate
dimension, from the scores initially formed as a linear combination of the group means of the
original variables. For example, the constant term of !19.90 occurs in the second score for the
third mean, !3.545, formed as:

!2.656v–13 +1.631v–23 !1.708v–33 !0.623v–43 !0.758v–53 !2.028v–63 !0.110v–73 +19.90
where v– ij is the mean of the ith variable for the jth group. If you ask for the group mean scores
to be printed, then the corresponding constant terms are also printed under the heading
"Adjustment terms", as shown in Example 6.3.1a above. You can see from the canonical variate
means that the second canonical variate separates the third group from the other three.

Results can be printed for a subset of the latent roots by setting the NROOTS and SMALLEST
options of CVA. NROOTS specifies the number of roots for which you want the results to be
printed. By default these will be the largest roots, unless you set SMALLEST=yes; then the results
will be printed for the smallest non-zero roots. When you print a subset of the results, residuals
can be formed and printed from the dimensions that are not displayed.

If you ask for distances, they are formed from the group mean scores for the canonical variate
dimensions that are printed. If results are printed for the full dimensionality, the distances will
be Mahalanobis distances between the groups.

The LRV parameter allows you to save the loadings, latent roots, and their sum (the trace) in
an LRV structure, while the SCORES parameter saves the canonical variate means. If you have
declared the LRV already, its number of rows must be the same as the number of variates
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involved in forming the input SSPM. The number of rows of the SCORES matrix, if previously
declared, must be equal to the number of groups.

The number of columns of the LRV and of the SCORES matrix corresponds to the number of
dimensions to be saved from the analysis, and this must be the same for both of them. If the
structures have been declared already, Genstat will take the larger of the numbers of columns
declared for either, and declare (or redeclare) the other one to match. If neither has been declared
and option SMALLEST retains the default setting no, Genstat takes the number of columns from
the setting of the NROOTS option. Otherwise, Genstat saves results for the full set of dimensions.
The trace saved as the third component of the LRV structure, however, will contain the sums of
all the latent roots, whether or not they have all been saved. Procedure LRVSCREE (6.2.2) can be
used to produce a "scree" diagram which can be helpful in deciding how many dimensions to
save.

The RESIDUALS parameter allows you to save the distances of the means from the dimensions
fitted in the analysis in a matrix with number of rows equal to the number of groups and one
column. If the latent roots and vectors (loadings) are saved from the analysis, the residuals will
correspond to the dimensions not saved; the same applies if you save scores. If neither the LRV
nor scores are saved, the saved residuals will correspond to the smallest latent roots not printed.

The DISTANCES parameter allows you to save the inter-group-mean Mahalanobis distances
in a symmetric matrix, and the ADJUSTMENTS parameter saves the adjustment terms in a matrix
with one row and g columns.

In Example 6.3.1b the NROOTS option specifies that the results to be printed are for the two
largest latent roots. The residuals that are printed thus correspond to the remaining roots, here
only the third. Likewise, the printed distances are formed from the first two canonical variate
means. The structure Lrv saves the latent roots and vectors for these two dimensions; this is used
by the CVASCORES procedure in Example 6.3.2, below, to calculate scores for the individual
units for these two dimensions.

Example 6.3.1b

  38  CVA [PRINT=residuals,distances; NROOTS=2] W; LRV=Lrv

Canonical variates analysis
===========================

Residuals
---------

            1       0.613
            2       1.584
            3       0.825
            4       2.241

Inter-group distances
---------------------

   1       0.000
   2       4.231       0.000
   3       5.802       4.215       0.000
   4       5.913       2.140       6.007       0.000
               1           2           3           4

The SAVE parameter can supply a pointer to save a multivariate save structure contining all the
details of the analysis. If this is unset, an unnamed save structure is saved automatically (and this
can be accessed using the GET directive). Alternatively, you can set SAVE=* to prevent any save
structure being formed if, for example, you have a very large data set and want to avoid
committing the storage space.
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6.3.2 Canonical variate scores: the CVASCORES procedure

CVASCORES procedure
Calculates scores for individual units in canonical variates analysis (S.A. Harding).

Option
PRINT = string tokens What output to print (scores, adjustments); default

scor

Parameters
WSSPM = SSPMs Within-group sums of squares and products structure
LRV = LRVs Loadings, roots and trace saved from CVA of the WSSPM
SCORES = matrices Unit scores
ADJUSTMENTS = matrices Mean Adjustments

Procedure CVASCORES calculates coordinates of the individual data points projected into the
canonical variate space of a canonical variates analysis. The WSSPM parameter must be set to the
within-group SSP matrix that was used as input to the CVA directive when calculating the
analysis, and the LRV parameter must supply the LRV structure formed by CVA. The scores can
be saved using the SCORES parameter, and the mean adjustments can be saved using the
ADJUSTMENTS parameter (these can be printed, but not saved, by CVA). The PRINT option allows
the scores and adjustments to be printed, with the default to print just the scores.

Example 6.3.2 continues Example 6.3.1b, and prints the scores of the individual brooches in
the first two dimensions.

Example 6.3.2

  39  CVASCORES W; LRV=Lrv

Canonical variate scores
========================

                        1           2

            1      -2.537       3.908
            2      -2.819      -2.101
            3      -0.494       0.205
            4       0.671       1.149
            5       1.900      -0.255
            6      -2.888      -0.688
            7      -2.766      -1.733
            8       4.899      -0.473
            9       1.046       0.249
           10       0.733       2.780
           11      -0.942       2.557
           12       2.531       0.672
           13       1.622      -0.766
           14       1.364      -0.446
           15       0.622      -1.241
           16       0.007      -0.657
           17       0.701      -0.560
           18       1.070      -1.226
           19      -2.632      -0.612
           20      -1.834       4.682
           21       1.843      -0.888
           22       3.831      -2.364
           23       1.005       0.317
           24       0.592      -0.736
           25       0.863       1.280
           26      -2.092      -2.536
           27      -4.606      -4.318
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           28      -1.690       3.801

6.3.3 Plotting canonical variate scores: the CVAPLOT procedure

CVAPLOT procedure
Plots the mean and unit scores from a canonical variates analysis (D.A. Murray).

Options
PLOT = string tokens Type of plot to be drawn (meanscores, unitscores,

confidenceregion); default mean, conf
GROUPS = factor Group allocations in the CVA
MSCORES = matrix Mean scores from the CVA; if unset these are calculated

using the CVA directive
USCORES = matrix Unit scores from the CVA; if unset these are calculated

using the CVASCORES procedure
WSSPM = SSPM Within-group sums of squares and products, means etc.

for the CVA; must be supplied if the scores and
groupings are not provided

CREGION = string tokens Type of confidence region to be drawn (mean,
population); default mean

CIPROBABILITY = scalar The probability level for the confidence region; default
0.95

TAREA = scalar Defines the transparency to use to shade the confidence
regions; default 255 i.e. no shading

Parameters
YDIMENSION = scalars Dimensions to be plotted in the y direction of each graph
XDIMENSION = scalars Dimension to be plotted in the x direction
TITLE = texts Title for each plot
WINDOW = scalars Window for each graph; default 1
SCREEN = string tokens Whether to clear the screen before plotting (clear,

keep); default clea
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Figure 6.3.3

Procedure CVAPLOT  plots
information from a canonical
variates analysis. The type of
graph to be displayed is controlled
by the PLOT option with settings
meanscores to draw mean scores,
unitscores to display the unit
scores and confidenceregion to
display confidence regions about
the means or the tolerance region
for a population.

The CREGION option specifies
the type of confidence region that
is drawn. The setting mean will
draw the confidence region about
the population means, and
population plots the tolerance
region for the populations. By
default a 95% confidence region is
calculated, but this can be changed
by setting the CIPROBABILITY
option to the required value
(between 0 and 1).

You can shade the confidence regions by setting the TAREA option. This defines a
transparency value (between 0 and 255) for the shaded regions, in a similar way to the TAREA
option of PEN. The default value of 255 indicates that the regions are completely transparent (i.e.
completely unshaded); a line is then drawn around each region.

Matrices containing the mean scores and units scores (saved from CVA and CVASCORES) can
be supplied directly, using options MSCORES and USCORES respectively; option GROUPS should
then supply a factor defining the groupings of the units in the canonical variates analysis.
Alternatively, you can supply a within-group SSPM and the scores will be calculated within the
procedure, using the CVA directive and the CVASCORES procedure, and the groups will be
accessed from within the SSPM.

The YDIMENSION and XDIMENSION parameters specify which dimensions are to be plotted
in the y and x directions; by default these are dimensions 1 and 2 respectively. The WINDOW
parameter indicates the window to be used for each plot (default 1), the TITLE parameter
provides a title for each plot, and the SCREEN parameter indicates whether existing plots on the
screen are to be kept or cleared each time (the default being to clear the screen).

Figure 6.3.3 contains a graph of the scores for the brooches discussed in Sections 6.1.1, 6.3.1
and 6.3.2, plotted by the statement

CVAPLOT [PLOT=mean,unit,confidence; WSSPM=W] \
  YDIMENSION=1,1,2; XDIMENSION=2,3,3; \
  TITLE='1 vs 2','1 vs 3','2 vs 3'; \
  WINDOW=5,7,8; SCREEN=clear,keep,keep

6.4 Factor rotation: the FACROTATE directive

Principal components analysis (6.2), canonical variates (6.3) and factor analysis (6.11) all define
a set of dimensions (sometimes called axes) that are linear combinations of the original variables.
The individual coefficients of these combinations are called loadings, and can be used to
interpret the dimensions. With principal components analysis, the loadings must lie in the range
[!1, 1]; this is the situation that we discuss in the initial part of this subsection. The situation



6.4  Factor rotation: the FACROTATE directive 781

with canonical variates and factor analysis is slightly different and is described at the end of this
subsection.

When several dimensions are considered it is possible to define an equivalent set of new
dimensions, whose loadings are linear combinations of the original loadings. If the absolute
values of the loadings for a new dimension are either close to 0 or close to 1, you can interpret
the dimension as mainly representing only those original variables with large positive (or
negative) loadings. You may sometimes want new dimensions determined by loadings like these,
because they are easier to interpret. The methods by which these new dimensions can be
obtained are generally known collectively as factor rotation because the new dimensions
represent a rotation of the axes of the original dimensions. The FACROTATE directive provides
two methods of orthogonal factor rotation: varimax rotation and quartimax rotation (Cooley &
Lohnes 1971). The default method, varimax rotation, maximizes the variance of the squares of
the loadings within each new dimension: the effect of this rotation should be to spread out the
squared-loadings to the extremes of their range. Quartimax rotation uses the fourth power of the
loadings instead of the second power.

FACROTATE directive
Rotates factor loadings from a principal components, canonical variates or factor analysis.

Options
PRINT = string tokens Printed output required (communalities, loadings,

orthogonalrotationmatrix, rotation); default *
i.e. no printing

METHOD = string token Criterion (varimax, quartimax); default vari
NROOTS = scalar Sets the number of dimensions to rotate from the

original loadings; default * i.e. all

Parameters
OLDLOADINGS = matrices Original loadings
NEWLOADINGS = matrices Rotated loadings for each set of OLDLOADINGS
COMMUNALITIES = matrices Communalities of the variables in each rotation
ROTATION = matrices Saves the orthogonal rotation from the original solution

to the rotated space

The first parameter, OLDLOADINGS, specifies a list of matrices, that contain the loadings for the
original dimensions. These can be obtained from the first element of the LRV structures, that can
be saved by the LRV parameter of PCP, CVA and FCA. The matrices to save the new loadings are
specified by the NEWLOADINGS parameter. The ROTATION parameter can save the orthogonal
rotations from the original solutions to the rotated spaces.

One way of supplying the loadings for the original variables is by saving the latent roots and
vectors from a principal components analysis (6.2) using the LRV parameter. You can then either
supply the whole LRV, or just the first structure of the LRV (which is the matrix of loadings).
Example 6.4a is similar to Example 6.2.1a; however, here the first two latent roots and vectors
are saved and used as input to the FACROTATE directive.

Example 6.4a

   2  UNITS [NVALUES=12]
   3  POINTER [VALUES=Height,Length,Width,Weight] Dmat
   4  READ [PRINT=errors] Dmat[]
   9  LRV [ROWS=Dmat; COLUMNS=2] Latent
  10  PCP [PRINT=loadings] Dmat; LRV=Latent
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Principal components analysis
=============================

Latent Vectors (Loadings)
-------------------------

                        1           2           3           4
       Height     0.21529     0.37981     0.78747     0.43506
       Length     0.25623     0.86524    -0.34389    -0.25970
        Width     0.74104    -0.21726    -0.37937     0.50964
       Weight     0.58211    -0.24474     0.34308    -0.69537

  11  FACROTATE [PRINT=rotation,communalities] Latent[1]

Factor rotation
===============

Communalities
-------------

                        1
       Height      0.1906
       Length      0.8143
        Width      0.5963
       Weight      0.3988

Rotated factors
---------------

                        1           2
       Height      0.0630      0.4320
       Length     -0.0747      0.8993
        Width      0.7694      0.0660
       Weight      0.6312     -0.0172

The LRV structure Latent is declared 1n line 9, and is used 1n line 10 to save the latent roots
and vectors. The full set of latent vectors is printed from the PCP directive to allow you to
compare the original loadings with those after rotation. The original loadings seem to tell us that
the first new axis is some negative measure of overall size, and that the second is a contrast
between the first two variables (Height and Length) and last two (Width and Weight). The
new loadings give the first axis as largely consisting of Width and Weight, and the second as
largely consisting of Height and Length.

Note that under either method of factor rotation, the total contribution of each of the original
variables always remains the same as in the input set of loadings (for mathematical reasons).
These contributions are called the communalities of the variables, and can be expressed as the
sum of the squared loadings: they indicate how much of the variation of each of the original
variables is retained in either set of dimensions (whether the original set from the principal
component analysis, or the new set from the rotation). For example, the communality for the first
variable can be calculated from the set of new dimensions as follows

0.1906  =  (!0.0630)2 + (0.4320)2

Equivalently, from the original set, it is
0.1906  =  (!0.2153)2 + (0.3798)2

The communalities can be saved using the COMMUNALITIES parameter.
If you keep all the loadings from a principal components analysis, each of the variables will

have communality 1. Factor rotation in this case will simply give a set of new loadings, each of
which will represent just one of the variables, with loading 1. Thus factor rotation is sensible
only if you keep merely the higher-dimensional loadings.

The loadings from canonical variates analysis (6.3) are not constrained to lie in the range
(!1, +1). The factor rotation methods operate in a similar manner as for principal component
loadings. Again, the objective is to obtain loading values, such that each is either relatively small
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or relatively large. Also the communalities of the variables remain the same in the rotated
loadings as in the original loadings, and the new loadings are obtained as an orthogonal rotation
of the old loadings. However, the complete set of loadings can generally be retained from
canonical variates analysis and used for factor rotation, without giving meaningless results. This
is because the original dimensions from the canonical variates analysis do not contain all the
dimensionality of the original variables, unless the number of variables is less than the number
of groups. So a factor rotation of all the dimensions will not merely recover the original
variables, as would happen with loadings from principal components analysis. Likewise,
loadings from the full set of available dimensions in a factor analysis (6.11) can be also be
retained for rotation without recovering the original variables.

Printed output is controlled by the PRINT option, with the following settings:
communalities to print the communalities;
loadings to print the rotated loadings, under the caption "Rotated

factors"; 
orthogonalrotationmatrix

to print the rotation matrix;
rotation this is the original setting used to print the rotated

loadings. It is retained as a synonym of loadings to
allow earlier programs to run. However, in view of the
confusion with the ROTATION parameter, it may be deleted
in a future release.

By default, nothing is printed.
The NROOTS option sets the number of dimensions to rotate from the original loadings (the

other dimensions are left unchanged). The default is to rotate them all.
This is illustrated in Example 6.4b, which rotates the loadings as produced by Example 6.3.1a.

Example 6.4b

   2  UNITS [NVALUES=28]
   3  POINTER [VALUES=Foot_lth,Bow_ht,Coil_dia,Elem_dia,Bow_wdth, \
   4     Bow_thck,Length] Data
   5  FACTOR [LEVELS=4] Groupno
   6  READ [PRINT=errors] Groupno,Data[]
  35  SSPM [TERMS=Data[]; GROUPS=Groupno] W
  36  FSSPM W
  37  LRV [ROWS=Data; COLUMNS=3] L
  38  CVA [PRINT=loadings] WSSPM=W; LRV=L

Canonical variates analysis
===========================

Latent Vectors (Loadings)
-------------------------

                        1           2           3
         Data
     Foot_lth      -1.130       2.656       3.397
       Bow_ht       0.633      -1.631       4.799
     Coil_dia      -3.501       1.708       1.450
     Elem_dia       2.669       0.623      -2.802
     Bow_wdth       3.468       0.758       0.757
     Bow_thck      -1.859       2.028      -2.478
       Length       1.279       0.110      -3.598

  39  FACROTATE OLDLOADINGS=L[1]; NEWLOADINGS=L[1]
  40  PRINT L[1]
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             L['Vectors']
                        1           2           3
         Data
     Foot_lth       0.135       4.381       0.810
       Bow_ht       0.210       1.670       4.823
     Coil_dia      -2.513       3.254      -0.612
     Elem_dia       2.560      -2.192      -2.001
     Bow_wdth       3.530      -0.111       0.837
     Bow_thck      -1.074       0.471      -3.512
       Length       1.041      -2.606      -2.593

Rather than print the rotated loadings directly from the analysis (line 39), the program saves and
prints them separately (line 40). This might be appropriate if you intend to calculate canonical
variate scores for the units, in the rotated factor space. If you do intend to do this, you will also
have to calculate new canonical variate means in the rotated factor space; however, this is easy
to do as they are simply the group means of the rotated scores for the units.

6.5 Discriminant analysis

Linear discriminant analysis uses a "training" set of data to find the best dimensions to
distinguish between a set of groups. It can then use this information to allocate some new
observations to the groups (i.e. to identify the group to which each new observation belongs).
The DISCRIMINATE procedure (6.5.1) can be used if you want to use all the available variates
that provide information about the attributes of the data units (or if you have already selected the
best variates to use). Alternatively, you can use the SDISCRIMINATE procedure (6.5.2) to select
the best set of variates from those available. DISCRIMINATE assumes that the groups share a
common variance-covariance matrix. The QDISCRIMINATE procedure is available for situations
where this is not a reasonable assumption (6.5.3).

6.5.1 The DISCRIMINATE procedure

DISCRIMINATE procedure
Performs discriminant analysis (L.H. Schmitt & P.G.N. Digby).

Options
PRINT = string tokens Printed output from the analysis (counts, lrv, tests,

ccorrelations, icorrelations, correlations,
adjustments, means, gdistances, scores,
distances, newgroups, table, validation);
default coun

NROOTS = scalar The number of dimensions to be used for printed and
saved output, and used in calculating the distances and
the allocation of units; default is to use the full
dimensionality

REALLOCATE = string token Whether units from the training set are to be reallocated
to groups (no, yes); default no

PLOT = string tokens Features for the plots (means, mlabels, scores,
polygons, confidencecircle); default mean,
scor, poly (Note: * suppresses plotting)

VALIDATIONMETHOD = string token Validation method to use to calculate error rates
(bootstrap, crossvalidation, jackknife,
prediction); default cros

NSIMULATIONS = variate Number of bootstraps or cross-validation sets to use for
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selection and for validation; default !(10,50)
NCROSSVALIDATIONGROUPS = scalar

Number of groups for cross-validation, default 10
SEED = scalar Seed for random number generation; default 0
YROOT = scalars Specifies roots for plotting on y-axes
XROOT = scalars Specifies roots for plotting on x-axes
TITLE = string tokens Titles for plots
WINDOW = scalars Windows for plots
SCREEN = string tokens Action before each plot (keep, clear); default clea

Parameters
DATA = pointers Each pointer contains a set of variates to be analysed
GROUPS = factors Define groupings for the units in each training set, or

missing values for the units to be allocated
NEWGROUPS = factors Saves allocations (and reallocations)
ALLOCATION = factors Saves allocations to groups including those not present

in the training set
MEANS = matrices or pointers Saves scores for group means
SCORES = matrices or pointers Saves scores for units
DISTANCES = matrices Saves unit to group-mean squared distances
LRV = LRVs Saves the LRVs from the canonical variates analyses
ADJUSTMENTS = matrices Saves adjustments to the canonical variates analyses
GDISTANCES = symmetric matrices Saves the distances between groups
CCORRELATIONS = matrices Saves canonical correlation coefficients
ICORRELATIONS = symmetric matrices

Saves within-group correlation matrices of the input
variates

CORRELATIONS = matrices Saves within-group correlations between the input and
canonical variates

DISCRIMINATE performs discriminant analysis (see, for example, Mardia, Kent & Bibby 1979).
The input for the procedure is given by a pointer and a factor, specified by the DATA and

GROUPS parameters, respectively. The pointer contains a set of variates defining the attributes
of the units. Any unit with a missing value in any of the variates is excluded from the analysis.
Units can also be excluded from the analysis by restricting the factor or variates; any such
restrictions must be consistent (the rules here are exactly as used by the FSSPM directive). The
factor specifies the pre-defined groupings of the units from which the allocation is derived (the
"training set"); the units to be allocated by the analysis have missing factor values.

A canonical variates analysis (CVA) is used to obtain the scores for the group means and the
LRV containing the loadings (L), roots and trace. Scores are then calculated for all the units (i.e.
ignoring any restrictions or missing values), using the formula

( X L ) ! ( J A )
where X is a matrix containing the full set of units-by-variables data, J is a column vector of
one's, and A is a row vector of adjustments required to place the scores for the units onto the
same scale as those for the group means.

Mahalanobis squared distances between the units and the group means are calculated from the
canonical variate scores. Each unit is then allocated to the group for which it has the smallest
Mahalanobis squared distance to the group mean.

Printed output is controlled by the option PRINT with settings:
counts tables of the number of units in each group with a

complete set of observations;
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lrv canonical variate loadings, latent roots and trace;
tests chi-square tests (as given by CVA);
ccorrelations canonical correlation coefficients (see Klecka 1980);
icorrelations within-group correlation matrix of the input variates;
correlations within-group correlations between the input and canonical

variates;
adjustments adjustments required to the canonical variate scores;
means canonical variate scores for the group means;
gdistances inter-group distances (as given by CVA);
scores canonical variate scores for the units;
distances Mahalanobis squared distances between the units and the

group means;
newgroups initial grouping and the allocation of units to groups;
table tables of counts of allocations; and
validation estimated error rates (see the VALIDATION option below).

The NROOTS option specifies how many dimensions are to be printed and retained for the
latent roots and vectors, and for the scores of the means and units. The distances of the units
from the group means, and thus the allocation of units, are also formed from the scores in the
number of dimensions specified by NROOTS. By default results are for the full dimensionality,
i.e. the smaller of the number of variates and one less than the number of groups.

The REALLOCATE option specifies whether the units in the training set are to be reallocated
to groups by the procedure. If the default setting no is used then their group values, either printed
or saved, will be missing.

The VALIDATIONMETHOD option specifies the validation method, with settings for
cross-validation, jackknife and bootstrap. Cross-validation works by randomly splitting the units
into a number of groups specified by the NCROSSVALIDATIONGROUPS option (default 10). It
then omits each of the groups, in turn, and predicts how the the omitted units are allocated to the
discrimination groups. Jackknifing leaves the units out one at a time, and uses the rest of the data
to predict the group of the omitted unit. The bootstrap method works by drawing a bootstrap
sample of units (a random sample of units with replacement of the same size as the original
sample), and predicting the units that are not present in the random sample. The resulting
bootstrap error rate is then calculated as a weighted average of the error rate of the omitted
observations and the predictive error rate of the bootstrap sample. The weights used are 0.632
and 0.368 respectively, and so this is known as the 632 rule.

The NSIMULATIONS option sets the number of simulations for cross-validation or
bootstrapping. It should be set to a variate with two values: the first value defines the number
of simulations to use during selection (default 10), and the second sets the number to use in the
estimation of the error rates (default 50).

The SEED option provides the seed for the random numbers used for the randomizations
during in the simulations. The default value of 0 continues an existing sequence of random
numbers, if none have been used in the current Genstat job, it initializes the seed automatically
using the computer clock.

The PLOT option provides for group means, labels for group means, unit scores, group
polygons enclosing units, and 95% confidence circles around group means. The YROOT and
XROOT options specify the roots for the axes. The TITLE, WINDOW and SCREEN options allow
further control of the plots. More than one plot can be output by having a list of scalars for
YROOT. In this case, the values of XROOT, TITLE, WINDOW and SCREEN are cycled in parallel.
A rug-like plot is drawn if only one root is extracted or if YROOT is set to a missing value.

Results from the analysis can be saved using the parameters NEWGROUPS, ALLOCATION,
MEANS, SCORES, DISTANCES, LRV, ADJUSTMENTS, GDISTANCES, CCORRELATIONS,
ICORRELATIONS and CORRELATIONS. The structures specified for these parameters need not
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be declared in advance. The default is to save MEANS and SCORES in matrices. However, if you
declare either as a pointer, it will instead store the results as a data matrix (i.e. a pointer of
variates corresponding to the columns of the matrix). The results correspond to p dimensions,
where p is the smaller of either the number of variates, or the number of groups minus one.

Example 6.5.1 performs a discriminant analysis for two of the species in Fisher's Iris data (see
Table 1.2.2 in Mardia, Kent & Bibby 1979). DISCRIMINATE reallocates the observations to the
closest group (according to its Mahalanobis squared distance from the group mean). As the
output shows, this results in the reallocation of one observation from Septosa to Versicolour. An
analysis of the whole of Fisher's Iris data, including graphs, can be accessed within Genstat using
procedure LIBEXAMPLE, or the Example Programs menu of Genstat for Windows.

Example 6.5.1

   2  SPLOAD       [PRINT=*] '%GENDIR%/Data/Iris.gsh'
   3  POINTER      [VALUES=Sepal_Length,Sepal_Width] Measurements
   4  " Take a subset of the sepal data with species Setosa and Versicolour."
   5  SUBSET       [Species.IN.!t(Setosa,Versicolor); SETLEVELS=yes]\
   6               Species,Measurements[]
   7  " Use DISCRIMINATE: allowing training set to be reallocated;
  -8    printing LRV and adjustments from CVA."
   9  DISCRIMINATE [PRINT=lrv,adjustments; PLOT=*; REALLOCATE=yes]\
  10               Measurements; GROUPS=Species; NEWGROUPS=New_Species

Discriminant analysis
=====================

Latent vectors, roots, and trace from CVA
-----------------------------------------

Vectors:

       Scores   Scores[1]
        Sepal
       Length       2.561
        Width      -3.167

Roots:

       Scores
    Scores[1]       5.087

    Trace:       5.087

Adjustments applied to columns of scores
----------------------------------------

                        1
            1       4.196

  30  "Tabulate the original grouping and the reallocation of units."
  31  TABULATE [PRINT=counts; CLASSIFICATION=Species,New_Species; MARGIN=yes]

                    Count
  New_Species      Setosa Versicolour       Count
      Species
       Setosa          49           1          50
  Versicolour           0          50          50
        Count          49          51         100
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6.5.2 The SDISCRIMINATE procedure

SDISCRIMINATE procedure
Selects the best set of variates to discriminate between groups (D.B. Baird, L.H. Schmitt &
J.W. McNicol).

Options
PRINT = string tokens Printed output from the analysis (summary, steps,

validation, specificity, discrimination,
monitoring); default summ, vali, spec, disc

PLOT = string tokens What plots to produce (errorrate, steps,
specificity, discriminant); default erro, steps,
spec, disc

DDISCRIMINANT = string tokens What to display on the discriminant plot (means,
mlabels, scores, polygons, confidencecircle);
default means, mlabels, scores, conf

METHOD = string token The variable selection method to use (forward,
backward); default forw

NSELECT = scalar Number of variates to select; default 4
CRITERION = string token Criterion to use to select variables (wilkslambda,

crossvalidation, bootstrap, jackknife); default
wilk

MODELCHOICE = string token Which model to save (optimal, nselect); default
opti

VALIDATIONMETHOD = string token Validation method to use to calculate error rates
(bootstrap, crossvalidation, jackknife,
prediction); default cros

NSIMULATIONS = variate Number of bootstraps or cross-validation sets to use for
selection and for validation; default !(10,50)

NCROSSVALIDATIONGROUPS = scalar
Number of groups for cross-validation, default 10

SEED = scalar Seed for random number generation; default 0
YROOT = scalar Specifies the root for plotting on the y-axis
XROOT = scalar Specifies the root for plotting on the x-axis

Parameters
DATA = pointers Each pointer contains a set of variates that are available

to be selected
GROUPS = factors Define groupings for the units in each training set
FORCED = pointers Variates that must be included in the model
SELECTED = pointers Saves the variates in the final model
STEPS = pointers Saves the criterion values for each step in the model

selection
ERRORRATE = scalars Saves the validation error rate for the final model
SPECIFICITY = tables Saves the specificity table for the final model
ALLOCATION = factors Saves the groups allocated by the final model
LRV = LRVs Saves the LRVs from the final discriminant analysis
SCORES= matrices or pointers Save discriminant scores for unit from the final model

SDISCRIMINATE uses forward selection or backwards elimination to search for the best set of
variates to discriminate between groups. The variates that are available for the discrimination
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must be specified, in a pointer, by the DATA parameter. The membership of the groups must be
specified, in a factor, by the GROUPS parameter. If there are some variates that must always be
included in the model, these can be specified, in a pointer, by the FORCED parameter.

Printed output is controlled by the option PRINT, with settings:
summary summary of the model fitting,
steps criterion values evaluated at each step of the model fitting,
validation error rates at each model step,
specificity specificity of allocation (i.e. the proportion of each group

that is assigned correctly),
discrimination the standard discriminant analysis output for the final

model, and
monitoring criterion values for each model tried.

The default is PRINT=summ,vali,spec,disc.
The PLOT option controls what plots are displayed, with settings:

errorrate error rate at each selection step,
steps criterion values at each step of the model fitting,
specificity specificity at each selection step, and
discriminant the standard discriminant plot from the final model.

By default these are all plotted. The DDISCRIMINANT option allows group means, labels for
group means, unit scores, group polygons enclosing units, and 95% confidence circles around
group means to be included on the discriminant plot. The YROOT and XROOT options specify the
roots for the axes.

The selection method is defined by the METHOD option. The forward setting starts with the
FORCED model and then, at each step, looks to see which of DATA variates not already in the
model gives the best improvement; this is the default. The backward setting starts with the
model, and looks to see which variate in model (other than those in FORCED) gives the least
reduction in the criterion when eliminated at that step.

The criterion for evaluating the model is defined by the CRITERION option, with settings:
wilkslambda uses the ratio of the determinant of the within-group sums

of squares and products to the determinants of the total
sums of squares and products (default),

crossvalidation uses the cross-validation error rate,
bootstrap uses the bootstrap error rate, and
jackknife uses jackknifing.

Cross validation and bootstrapping take much longer than the use of Wilks' lambda.
The number of variates in the final model (excluding those in the FORCED model) is set by

NSELECT option. The MODELCHOICE option indicates how to choose the final model. The default
setting optimal takes the model from the step with the minimum validation error. Alternatively,
the nselect setting takes the model with the number of variates specified by the NSELECT
option.

The VALIDATIONMETHOD option specifies the validation method, with settings for prediction,
cross-validation, jackknife and bootstrap. Cross-validation works by randomly splitting the units
into a number of groups specified by the NCROSSVALIDATIONGROUPS option (default 10). It
then omits each of the groups, in turn, and predicts how the the omitted units are allocated to the
discrimination groups. Jackknifing leaves the units out one at a time, and uses the rest of the data
to predict the group of the omitted unit. The bootstrap method works by drawing a bootstrap
sample of units (a random sample of units with replacement of the same size as the original
sample), and predicting the units that are not present in the random sample. The resulting
bootstrap error rate is then calculated as a weighted average of the error rate of the omitted
observations and the predictive error rate of the bootstrap sample. The weights used are 0.632
and 0.368 respectively, and so this is known as the 632 rule.
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The NSIMULATIONS option sets the number of simulations for cross-validation or
bootstrapping. It should be set to a variate with two values: the first value defines the number
of simulations to use during selection (default 10), and the second sets the number to use in the
estimation of the error rates (default 50).

The SEED option provides the seed for the random numbers used for the randomizations
during in the simulations. The default value of 0 continues an existing sequence of random
numbers, if none have been used in the current Genstat job, it initializes the seed automatically
using the computer clock.

The SELECTED parameter can save the contents of the chosen model, in a pointer. The STEPS
parameter can save a pointer with a variate for each step of the selection, containing the criterion
evaluated for each DATA variate at then step. The variates contain a missing value if the DATA
variate had already been included or excluded from the model. The ERRORRATE parameter can
save a variate with the minimum value of the validation error rate after each step. The
SPECIFICITY parameter can save the specificity table for the final model. The LRV parameter
can save the latent roots, vectors and trace from the final discriminant analysis, and the
ALLOCATION and SCORES parameters can save the assigned groups and discriminant scores.

Example 6.5.2 finds the three variates that give the best discrimination for all the species in
Fisher's Iris data.

Example 6.5.2

   2  SPLOAD        [PRINT=*] '%GENDIR%/Data/Iris.gsh'
   3  " Use SDISCRIMINATE to find the best 3 variates for discrimination."
   4  POINTER       [VALUES=Sepal_Length,Sepal_Width,Petal_Length,Petal_Width]\
   5                Vars
   6  SDISCRIMINATE [PRINT=summary,validation,specificity; PLOT=*; NSELECT=3;\
   7                SEED=719122] Vars; GROUPS=Species

Stepwise discriminant analysis
==============================

Summary information for stepwise selection of variables
-------------------------------------------------------

Forward selection
Selection criterion: Wilks' lambda

Best 3 variables:
         Variable   Criterion
     Petal_Length     0.05863
      Sepal_Width     0.03688
      Petal_Width     0.02498

Optimal variables selected
--------------------------

Petal_Length
 Sepal_Width
 Petal_Width

Validation error rate
---------------------

Using 10-fold cross-validation to calculate errors
Error: 3.15%
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Percentage of each group allocated to groups
--------------------------------------------

Decision           True group
                 Setosa  Versicolor   Virginica
     Setosa      100.00        0.00        0.00
 Versicolor        0.00       95.08        4.52
  Virginica        0.00        4.92       95.48

6.5.3 The QDISCRIMINATE procedure

QDISCRIMINATE procedure
Performs quadratic discrimination between groups i.e. allowing for different variance-
covariance matrices (D.B. Baird).

Options
PRINT = string tokens Printed output from the analysis (allocation,

counts, distance, probabilities, specificity,
summary, table, validation, vcovariance);
default spec, summ, vali

VALIDATIONMETHOD = string token Validation method to use to calculate error rates
(bootstrap, crossvalidation, jackknife,
prediction); default cros

NSIMULATIONS = scalar Number of bootstraps or cross-validation sets; default 50
NCROSSVALIDATIONGROUPS = scalar

Number of groups for cross-validation, default 10

Parameters
DATA = pointers Each pointer contains a training set of variates to be

used to form a quadratic discrimination
GROUPS = factors Define groupings for the units in each training set
PRIORPROBABILITIES = variates Prior probabilities of group membership; default * i.e.

equal
SEED = scalars Seed for the random numbers used in bootstrapping or

cross-validation; default 0 continues from the previous
generation or (if none) initializes the seed automatically

ERRORRATE = scalars Saves the validation error rate
SPECIFICITY = tables Saves the specificity table
ALLOCATION = factors Saves the groups allocated by the discriminant rule
PROBABILITIES = matrices or pointers

Save posterior probabilities of membership of the
groups (in the columns of a matrix or the variates in a
pointer) for the units in the training set (in the rows)

QDISCRIMINATE performs a quadratic discrimination analysis to identify members of a set of
groups using their observations on a set of variates. The quadratic discrimination rule assumes
that the values of the variates within each group are distributed with a multi-variate Normal
distribution, and that the variance-covariance matrix of the distributions are different for each
group. This differs from the more familiar linear discriminant analysis, performed by procedure
DISCRIMINATE, where the groups are assumed to have the same variance-covariance matrix.

The variates to be used to discriminate between the groups are specified in a pointer by the
DATA parameter, and the membership of the groups is specified in a factor by the GROUPS
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parameter. The non-missing units of the GROUPS factor provide a training set to estimate the
discriminant rule. Units that you would like to allocate to groups using the discriminant rule
should be included in the data set with missing values in the GROUPS factor.

You can specify prior probabilities for the groups using the PRIORPROBABILITIES option;
by default the groups are all assumed to be equally likely. You can use this to allow for unequal
costs of mis-allocation by weighting the prior probabilities like this:

PRIORPROBABILITIES = Cost * Prior / SUM(Cost * Prior)

where Cost is a variate defining the cost of mis-allocation for each group.
Printed output is controlled by the option PRINT, with settings:

allocation the allocated group for each unit,
counts number of units in each group with a complete set of

observations,
distance generalized pairwise distance between group means,
probabilities the posterior probability of being allocated to each group,
specificity specificity of allocation (i.e. the proportion of each group

that is assigned correctly),
summary summary of the model fitting,
table table of counts of training units allocated to each group,
validation the error rate, and
vcovariance variance-covariance matrices for the groups

The default is PRINT=spec,summ,vali.
The VALIDATIONMETHOD option specifies the validation method, with settings for prediction,

cross-validation, jackknife and bootstrap. Prediction calculates 
the error rate as the proportion of the training set that were misallocated. Cross-validation works
by randomly splitting the units into a number of groups specified by the
NCROSSVALIDATIONGROUPS option (default 10). It then omits each of the groups, in turn, and
predicts how the the omitted units are allocated to the discrimination groups. Jackknifing leaves
the units out one at a time, and uses the rest of the data to predict the group of the omitted unit.
The bootstrap method works by drawing a bootstrap sample of units (a random sample of units
with replacement of the same size as the original sample), and predicting the units that are not
present in the random sample. The resulting bootstrap error rate is then calculated as a weighted
average of the error rate of the omitted observations and the predictive error rate of the bootstrap
sample. The weights used are 0.632 and 0.368 respectively, and so this is known as the 632 rule.

The NSIMULATIONS option sets the number of simulations for cross-validation or
bootstrapping; default 50.

The SEED parameter provides the seed for the random numbers used for the randomizations
during in the simulations. The default value of 0 continues an existing sequence of random
numbers, if none have been used in the current Genstat job, it initializes the seed automatically
using the computer clock.

The ERRORRATE parameter can save the validation error rates. The SPECIFICITY parameter
can save the proportion of each group that is assigned correctly. The ALLOCATION parameter can
save the assigned groups, and the PROBABILITIES parameter can save the posterior
probabilities of the groups.

Example 6.5.3 continues Example 6.5.1, and finds that quadratic discrimination gives the same
results as ordinary linear discrimination with the sepal measurements for the species Septosa and
Versicolour in Fisher's Iris data.

Example 6.5.3

 13  " Use QDISCRIMINATE to perform quadratic discrimination."
 14  QDISCRIMINATE [PRINT=specificity,summary,validation;\
 15                VALIDATIONMETHOD=bootstrap; NSIMULATIONS=100]\
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 16                Measurements; GROUPS=Species; ALLOCATION=New_Species;\
 17                SEED=324741

Quadratic discriminant analysis
===============================

Fitted variables: Sepal_Length, Sepal_Width
Groups: Species (Setosa, Versicolor)
Number of units in each group: 50, 50
Total number of units: 100
Number in training set: 100
Prior probabilities equal

Validation error rate, using bootstrapping with 632 rule to calculate errors
----------------------------------------------------------------------------

Error: 0.99%

Percentage of each training group allocated to groups
-----------------------------------------------------

      Decision        Setosa    Versicolor
    True group
        Setosa         99.26          0.74
    Versicolor          1.25         98.75

Based on 100 simulations

 18  "Tabulate the original grouping and the reallocation of units."
 19  TABULATE     [PRINT=counts; CLASSIFICATION=Species,New_Species; MARGIN=yes]

                    Count
  New_Species      Setosa  Versicolor       Count
      Species
       Setosa          49           1          50
   Versicolor           0          50          50
        Count          49          51         100

6.6 Multivariate analysis of variance and regression

Multivariate analysis of variance, covariance and regression can be performed using procedures
MANOVA and RMULTIVARIATE. MANOVA uses the ANOVA directive and is thus designed for
balanced situations (see Section 4.7.2), while RMULTIVARIATE uses the Genstat regression
facilities (Chapter 3) and so can be used for analyse unbalanced analyses of variance as well as
ordinary regressions.

The analysis of multivariate distance (Gower & Krzanowski 1999) is another way of assessing
a linear statistical model with multivariate data. It patitions the total squared distance between
the units into the components that can be explained by each of the terms in the model, and
assesses their significance by doing a permutation test. So, unlike multivariate analysis of
variance, there is no need to assume multivariate Normality, (Note, though that you can also do
permutation tests in MANOVA.)

6.6.1 The MANOVA procedure

MANOVA procedure
Performs multivariate analysis of variance and covariance (R.W. Payne & G.M. Arnold).

Options
PRINT = string tokens Printed output required from the multivariate analysis of

covariance (ssp, tests, permutationtest); default
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test

APRINT = string tokens Printed output from the univariate analyses of variance
of the y-variates (as for the ANOVA PRINT option);
default *

UPRINT = string tokens Printed output from the univariate unadjusted analyses
of variance of the y-variates (as for the ANOVA UPRINT
option); default *

CPRINT = string tokens Printed output from the univariate analyses of variance
of the covariates (as for the ANOVA CPRINT option);
default *

TREATMENTSTRUCTURE = formula Treatment formula for the analysis; if this is not set, the
default is taken from the setting (which must already
have been defined) by the TREATMENTSTRUCTURE
directive

BLOCKSTRUCTURE = formula Block formula for the analysis; if this is not set, the
default is taken from any existing setting specified by
the BLOCKSTRUCTURE directive and if neither has been
set the design is assumed to be unstratified (i.e. to have a
single error term)

COVARIATES = variates Covariates for the analysis; by default MANOVA uses
those listed by a previous COVARIATE directive (if any)

FACTORIAL = scalar Limit on the number of factors in a treatment term
LRV = pointer Contains elements first for the treatment terms and then

the covariate term (if any), allowing the LRV's to be
saved from one of the analyses; if a term is estimated in
more than one stratum, the LRV is taken from the lowest
stratum in which it is estimated

FPROBABILITY = string token Printing of probabilities for F statistics and Chi-square
variables (no, yes); default no

SELECTION = string tokens Which test statistics to print when PRINT=test
(lawleyhotellingtrace, pillaibartletttrace,
roysmaximumroot, wilkslambda}; default lawl,
pill, roys, wilk

NTIMES = scalar Number of permutations to make when PRINT=perm;
default 999

EXCLUDE = factors Factors in the block model of the design whose levels
are not to be randomized

SEED = scalar Seed for the random number generator used to make the
permutations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

Parameter
Y = variates Y-variates for an analysis

Procedure MANOVA performs multivariate analysis of variance or covariance for balanced data.
The data variates are specified by the Y parameter. If any of the y-variates is restricted, the

analysis will involve only the units not excluded by the restriction.
The model for the design is specified by options of the procedure. TREATMENTSTRUCTURE

specifies a model formula to define the treatment terms in the analysis; if this is unset, MANOVA
will use the model already defined by the TREATMENTSTRUCTURE directive (4.1.1), or will fail
if that too has not been set. BLOCKSTRUCTURE defines the underlying structure of the design, and
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MANOVA will use the model (if any) previously defined by the BLOCKSTRUCTURE directive
(4.2.1) if this is not set; this can be omitted if there is only one error term (i.e. if the design is
unstratified). The COVARIATES option specifies any covariates; by default MANOVA will take
those already listed (if any) by the COVARIATE directive. The FACTORIAL option can be used
to set a limit on the number of factors in the terms generated from the treatment formula.

The LRV option allows a pointer to be saved containing an LRV structure for each treatment
term, storing its canonical variate loadings, roots and trace. When covariates have been specified,
the pointer will also contain a final LRV structure for the covariate term. If a term is estimated
in more than one stratum, the LRV is taken from the stratum that occurs last in the BLOCKTERMS
pointer.

The PRINT option indicates the output required from the multivariate analysis of covariance,
with settings ssp to print the sums of squares and products matrices, tests to print the various
test statistics, and permutationtest to calculate probabilities for the test statistics using a
permutation test.

The SELECTION option controls which test statistics are given when PRINT=tests. The
available statistics are Wilks' Lambda (with approximate F test), the Pillai-Bartlett trace, Roy's
maximum root test and the Lawley-Hotelling trace. The default is to print them all.

By default, when PRINT=perm, MANOVA makes 999 random permutations and determines the
probability of each test statistic from its distribution over these randomly generated datasets. The
NTIMES option allows you to request another number of allocations, and the SEED option allows
you to specify the seed to use for the random numbers used to make the permutations. The
permutations are done by the RANDOMIZE directive, using the block model defined by the
BLOCKSTRUCTURE option. The EXCLUDE option allows you to restrict the randomization so that
one or more of the factors in the block model is not randomized. The most common situation
where this is required is when one of the treatment factors involves time-order, which cannot be
randomized.

The APRINT, UPRINT and CPRINT options control output from the univariate analyses of each
of the y-variates, corresponding to ANOVA options PRINT, UPRINT and CPRINT, respectively (see
4.1.2, 4.1.3 and 4.3.1). FPROBABILITY controls whether or not probabilities are produced for
F-ratios and for Chi-square variables in the analysis; by default these are omitted.

Example 6.6.1

   2  " Data from Chatfield & Collins (1986) pages 142, 147, 149, 156."
   3  FACTOR [LEVELS=3; VALUES=3(1...3)] Block
   4  & [VALUES=(1...3)3] Treat,Plot
   5  VARIATE [NVALUES=9] V[1...3]
   6  READ [PRINT=errors] V[]
  10  MANOVA [PRINT=ssp,tests; TREATMENTSTRUCTURE=Treat; \
  11    BLOCKSTRUCTURE=Block/Plot; LRV=!p(TLRV)] V[]

Multivariate analysis of variance
=================================

Y-variates: V[1], V[2], V[3].

SSP matrices
============

Block  stratum
--------------
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Residual
--------

         V[1]      0.7800
         V[2]      0.0300      0.7800
         V[3]      0.9600      0.6600      1.6800
                     V[1]        V[2]        V[3]

Degree of freedom: 2

Block.Plot  stratum
-------------------

Treat
-----

         V[1]       1.680
         V[2]       1.380       1.140
         V[3]      -1.260      -1.080       1.260
                     V[1]        V[2]        V[3]

Degree of freedom: 2

Residual
--------

         V[1]      0.4600
         V[2]      0.0300      0.3000
         V[3]     -0.4000     -0.4800      1.0600
                     V[1]        V[2]        V[3]

Degree of freedom: 4

Test statistics
===============

Block.Plot  stratum
-------------------

 Term  d.f.  Wilks' lambda  Rao F  n.d.f.  d.d.f. F prob.
Treat     2       0.004313   9.48       6       4   0.024

 Term  d.f.  Pillai-Bartlett  Roy's maximum  Lawley-Hotelling
                       trace      root test             trace
Treat     2            1.361         0.9932             146.2

  12  " Print the canonical variates information stored from the MANOVA."
  13  PRINT TLRV[]

             TLRV['Vectors']
                        1           2           3

         V[1]      10.846       0.575      -2.111
         V[2]      21.135       1.558       2.955
         V[3]      13.538       2.857       0.422

                        1           2           3
TLRV['Roots']      145.61        0.58        0.00

TLRV['Trace']       146.2
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6.6.2 The RMULTIVARIATE procedure

RMULTIVARIATE procedure
Performs multivariate linear regression with accumulated tests (H. van der Voet).

Options
PRINT = string tokens Controls printed output (model, summary,

accumulated); default mode, summ, accu
RPRINT = string tokens Controls printed output from the univariate regression

analyses (model, deviance, summary, estimates,
correlations, fittedvalues, accumulated,
monitoring); default *

FACTORIAL = scalar Limit for expansion of model terms; default 3
NOMESSAGE = string tokens Which warning messages to suppress when fitting the

complete model ! messages are always suppressed when
fitting models for individual tests (aliasing,
marginality); default *

RESULTS = pointer To save results from accumulated and summary tests in
a pointer containing terms, degrees of freedom of terms,
Wilks' Lambda, Rao's F-statistic, degrees of freedom for
numerator and denominator of Rao's F and P-value of
Rao's F

Parameter
TERMS = formula List of explanatory variates and factors, or model

formula

RMULTIVARIATE calculates hierarchical tests, based on Wilks' Lambda, for the terms in a
multivariate linear regression model. The use of RMULTIVARIATE must be preceded by a MODEL
statement (3.1.1) to define the response variables and, if required, a vector of weights and an
offset. Generalized linear models are not allowed. Note that the FIT directive (3.1.2) performs
a regression analysis for each of the response variables in turn, whereas RMULTIVARIATE
performs multivariate modelling and testing.

The TERMS parameter specifies the model terms to be assessed. The FACTORIAL option sets
a limit on the number of factors and variates in each term, similarly to the FACTORIAL option
of FIT; by default this is 3. Printed output from the multivariate analysis is controlled by the
PRINT option: model gives a description of the model, summary prints test results for the full
model, while accumulated gives accumulated test results for each term in the model formula.
The RPRINT option controls output from univariate regressions of the individual variates, which
are performed (by FIT) in order to calculate the multivariate analysis. The NOMESSAGE option
can be used to suppress aliasing and marginality warning messages when fitting the full model.

The RESULTS option can be used to save both accumulated and summary test results in a
pointer. This pointer contains a text structure saving the individual model terms and six variates
saving the number of degrees of freedom associated with each term, Wilks' Lambda, Rao's
F-statistic, degrees of freedom for numerator and denominator of Rao's F-statistic and the
calculated P-value. Directives RDISPLAY and RKEEP can be used subsequent to
RMULTIVARIATE, to display further output and store results from the univariate regressions of
each response variate.

Units with one or more missing values in any term are excluded from the analysis. This
implies that successive calls of RMULTIVARIATE may give different test results if terms with
missing values are dropped or added. Any restriction applied to vectors used in the regression
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model will apply also to the results from RMULTIVARIATE.

Example 6.6.2

   2  " Data from Chatfield & Collins (1986) pages 143 and 176."
   3  FACTOR   [NVALUES=18; LEVELS=!(4,20,34)] temp
   4  FACTOR   [NVALUES=18; LABELS=!T(Male,Female)] sex
   5  GENERATE temp,sex,3
   6  VARIATE  [NVALUES=18] initweight,finalweight,tumourweight
   7  READ     initweight,finalweight,tumourweight

    Identifier   Minimum      Mean   Maximum    Values   Missing
    initweight     17.20     19.67     21.56        18         0
   finalweight     15.90     19.51     23.30        18         0
  tumourweight    0.1600    0.2633    0.4500        18         0

  14  MODEL    finalweight,tumourweight
  15  RMULTIVARIATE [RPRINT=accumulated] initweight + temp * sex

Multivariate regression analysis
================================

Response variates:  finalweight, tumourweight
Terms: initweight + temp*sex

Regression analysis
===================

Accumulated analysis of variance
--------------------------------

Response variate: finalweight

Change                         d.f.         s.s.         m.s.      v.r.
+ initweight                      1       14.045       14.045      6.40
+ temp                            2       22.630       11.315      5.15
+ sex                             1        1.553        1.553      0.71
+ temp.sex                        2        2.624        1.312      0.60
Residual                         11       24.157        2.196

Total                            17       65.007        3.824

Response variate: tumourweight

Change                         d.f.         s.s.         m.s.      v.r.
+ initweight                      1     0.000166     0.000166      0.05
+ temp                            2     0.025480     0.012740      3.76
+ sex                             1     0.055261     0.055261     16.29
+ temp.sex                        2     0.006772     0.003386      1.00
Residual                         11     0.037320     0.003393

Total                            17     0.125000     0.007353

Summary of multivariate analysis
--------------------------------

      term  df  WLambda     RaoF  df1  df2  pvalue
 All terms   6   0.1025     3.54   12   20   0.006

Accumulated multivariate tests
------------------------------

      term  df  WLambda     RaoF  df1  df2  pvalue
initweight   1   0.5977     3.37    2   10   0.076
      temp   2   0.3123     3.95    4   20   0.016
       sex   1   0.3464     9.43    2   10   0.005
  temp.sex   2   0.7830     0.65    4   20   0.633
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6.6.3 The MVAOD procedure

MVAOV procedure
Does an analysis of distance of multivariate data (R.W. Payne & R.P. White).

Options
PRINT = string tokens Controls printed output (aodtable,

permutationtest); default aodt
TERMS = formula Model terms to fit in the analysis; must be specified
FACTORIAL = scalar Limit on the number of factors or variates in a term for it

to be included in the analysis; default 3
NTIMES = scalar Number of permutations to use in the permutation test;

default 999
SEED = scalar Seed for the random number generator used to make the

permutations; default 0 continues from the previous
generation or (if none) initializes the seed automatically

Parameters
DATA = symmetric matrices Supplies the squared distances between the data points
SSD = variates Saves the sums of squared distances
DF = variates Saves the numbers of degrees of freedom
PRPERMUTATION = variates Saves probabilities from the permutation test
DISTANCES = pointers Contains a symmetric matrix of distances for each

model term

MVAOD implements the analysis of multivariate distance devised by Gower & Krzanowski (1999).
This is useful when you have units whose positions in multi-dimensional space may be explained
by a linear statistical model. It provides a breakdown of the sums of squared distances between
the units, similar to that provided for sums of squares in an analysis of variance. So, the total
squared distance between the units is partitioned into the components that can be explained by
each of the terms in the model. These cannot be tested directly as in an analysis of variance, as
it is unclear what probability distributions would be appropriate. Instead the importance of the
terms can be assessed by doing a permutation test, in which the several permutations of the units
are made, and the significances of the sums of squared distances from the observed data are
calculated by seeing where they lie in the distribution of values obtained from all the analyses
(the original analysis and those of the permuted data sets).

The squared distances between the units must be supplied in a symmetric matrix, using the
DATA parameter. In some situations, these may be actual distances. Alternatively, the units may
often be described by a collection of attribute ranging from continuous measurements to
categorical variables, like the presence or absence of a particular feature. In these circumstances,
the FSIMILARITY directive (6.1.2) can be used combine these attributes to give a symmetric
matrix that represents the similarity between each pair of units. This can then be converted into
a squared distance matrix, for example, by subtracting the similarities from one. (So MVAOD can
be regarded as providing an alternative to multivariate analysis of variance, for units whose
attributes are not all continuous variables.)

The model to fit in the analysis is specified by the TERMS option. The FACTORIAL option sets
a limit on the number of factors of variates that the terms can contain; any terms with more
factors of variates are deleted from the analysis.

Printed output is controlled by the PRINT option, with settings:
aodtable for an analysis-of-distance table, giving the sums of
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squared distances and numbers of degrees of freedom for
each model term; and

permutationtest adds a column to the analysis-of-distance table containing 
probabilities from the permutation test.

The NTIMES option specifies the number of permutations to perform; the default is 999. The
SEED option specifies the seed to use to generate the random numbers that are used to select the
permutations; the default of zero continues the sequence of random numbers from a previous
generation or, if none have yet been used in this Genstat job, it initializes the seed automatically.
MVAOD checks whether NTIMES is greater than the number of possible permutations available for
the data set. If so, it does an exact test instead, which uses each possible permutation once.

The SSD, DF and PRPERMUTATION parameters allow you to save the sums of squared
distances, degrees of freedom and permutation probabilities. These are each saved in a variate,
with each unit labelled by the name of the model term concerned. There are also have two final
units in each variate to save the corresponding information for residual and the total.

The DISTANCES parameter can save a pointer containing a symmetric matrix for each model
term. Each matrix has a row for each combination of levels of the factors in the corresponding
term, and its values are the distances between the factor combinations in the multi-dimensional
space defined by the possible effects of the term. So, to investigate the relationships between the
effects of the term, you could convert the DISTANCES to similarities, and then use them as input
for a principal coordinates analysis (6.10.1).

Example 6.6.3 analyses the data set in Gower & Krzanowski (1999). Note that the analysis
here differs from theirs, as they do an unweighted analysis that ignores the differenses in group
size. The analysis shows evidence for main effects of the factors N and S.

Example 6.6.3

   2  " Data from Gower & Krzanowski 1999, Applied Statistics, 48, 505-519."
   3  SPLOAD       [PRINT=*] FILE='%gendir%/examples/Publicbad.gsh'
   4  " Form similarity matrix using city-block metric."
   5  FSIMILARITY  [SIMILARITY=pbsimilarity] publicbad[]; TEST=cityblock
   6  " Convert to squared distances."
   7  CALCULATE    pbdistances = 1 - pbsimilarity
   8  " Factorial model - note: this is on a different scale and gives a
  -9    slightly different breakdown from Table 2 of Gower & Krzanowski,
 -10    as their analysis ignored differences in group size.
 -11    Only 99 permutations are made, to save computing time."
  12  MVAOD        [PRINT=aod,permutation; TERMS=N*T*S*G; NTIMES=99; SEED=629856]\
  13               pbdistances

Analysis of distance
====================

Term        d.f.  Sum of squared     pr.
                        distance
N              1           1.644   0.010
T              1           0.115   0.520
S              1           0.559   0.010
G              1           0.165   0.340
N.T            1           0.173   0.270
N.S            1           0.188   0.170
T.S            1           0.143   0.450
N.G            1           0.111   0.590
T.G            1           0.140   0.420
S.G            1           0.084   0.830
N.T.S          1           0.183   0.310
N.T.G          1           0.069   0.860
N.S.G          1           0.097   0.760
T.S.G          2           0.058   1.000
Residual     224          30.818
Total        239          34.547
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Probabilities determined from 99 random permutations

6.7 Ridge and principal component regression: the RIDGE procedure

RIDGE procedure
Produces ridge regression and principal component regression analyses (A.J. Rook & M.S.
Dhanoa).

Options
PRINT = string token What to print (correlation, pcp, ridge); default

corr

PLOT = string token Graphical output required (ridgetrace); default *

Parameters
Y = variates Response variate in regression model
X = pointers Containing explanatory variates in regression model

Procedure RIDGE produces analyses for identifying and overcoming collinearity among the
independent variates in a multiple regression analysis. The correlation matrix, variance inflation
factors (the diagonal elements of the inverse of the correlation matrix) and the ratio of the
squared error in the least squares regression coefficients to the expected squared error in
orthogonal data are calculated. Principal component regressions excluding 1, 2 or 3 minor
principal axes are calculated and transformed back to the original variables on either the original
or standardized scale. The "Positive correlation spread association" (PCSA) (Vinod 1976) is also
calculated. This is an overall measure of the suitability of the data for the application of principal
component regression and ridge regression. Ridge regressions (Hoerl & Kennard 1970) are
calculated and the ridge coefficients are printed together with 2 indices of stability proposed by
Vinod (1976): the index of stability of relative magnitudes (ISRM) and the numerical largeness
of more significant regression coefficients (NLMS). These are 0 and 1 respectively in orthogonal
data. High-resolution graphs of the ridge trace can be plotted against Hoerl & Kennard's k scale
and Vinod's m scale.

The parameters of the procedure are used to input the data: the Y parameter supplies the y-
variate, and the X parameter specifies a pointer containing the x-variates. None of these variates
must be restricted nor contain missing values.

Printed output is controlled by the PRINT option: correlation prints the correlation matrix,
variance inflation factors and ratio of squared error to that in orthogonal data, pcp prints
principal component analysis and principal component regression, and ridge prints ridge
coefficients and stability parameters.

Graphical output is controlled by the PLOT option: ridgetrace produces ridge traces.

Example 6.7

   2  " Data on French economy from Chatterjee & Price
  -3    (1991, pages 182, 185, 213, 218 and 220)."
   4  VARIATE [NVALUES=11] Import,Doprod,Stock,Consum
   5  READ    Import,Doprod,Stock,Consum

    Identifier   Minimum      Mean   Maximum    Values   Missing
        Import     15.90     21.89     28.10        11         0
        Doprod     149.3     194.6     239.0        11         0
         Stock    0.7000     3.300     5.600        11         0
        Consum     108.1     139.7     167.6        11         0

  17  RIDGE [PRINT=correlation,pcp] Import; !p(Doprod,Stock,Consum)
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Regression analyses for multicollinear data
===========================================

Correlation matrix among predictor variables
--------------------------------------------

       Doprod       1.000
        Stock       0.026       1.000
       Consum       0.997       0.036       1.000
                   Doprod       Stock      Consum

Variance inflation factors
--------------------------

      Doprod       Stock      Consum
      186.00        1.02      186.11

Ratio of squared error in OLS estimates of regression coefficients
to error if data were orthogonal
------------------------------------------------------------------

       124.4

Principal components analysis
=============================

Latent roots
------------

           1           2           3
       19.99        9.98        0.03

Percentage variation
--------------------

           1           2           3
       66.64       33.27        0.09

Trace
-----

       30.00

Latent vectors (loadings)
-------------------------

                        1           2           3
       Doprod     0.70633     0.03569    -0.70698
        Stock     0.04350    -0.99903    -0.00697
       Consum     0.70654     0.02583     0.70720

Regression analysis
===================

 Response variate: stany
     Fitted terms: pcp[1], pcp[2], pcp[3]

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.  F pr.
Regression       3      9.91897      3.30632    326.41  <.001
Residual         8      0.08103      0.01013
Total           11     10.00000      0.90909
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Percentage variance accounted for 99.0
Standard error of observations is estimated to be 0.101.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           11        0.970        0.70

Estimates of parameters
-----------------------

Parameter      estimate         s.e.      t(8)  t pr.
pcp[1]           0.6900       0.0225     30.65  <.001
pcp[2]          -0.1913       0.0319     -6.01  <.001
pcp[3]           -1.160        0.614     -1.89  0.095

Regression coefficients of original variables on standardized scale
-------------------------------------------------------------------

                  Ordinary        Smallest    Two smallest  Three smallest
                     least       principal       principal       principal
                   squares       component      components      components
                                  excluded        excluded        excluded
    Doprod         -0.3393          0.4805          0.4874               0
     Stock          0.2130          0.2211          0.0300               0
    Consum          1.3027          0.4826          0.4875               0

Regression coefficients of original variables on original scale
---------------------------------------------------------------

                  Ordinary        Smallest    Two smallest  Three smallest
                     least       principal       principal       principal
                   squares       component      components      components
                                  excluded        excluded        excluded
  Constant         -10.128          -9.130          -7.746          21.891
    Doprod          -0.051           0.073           0.074           0.000
     Stock           0.587           0.609           0.083           0.000
    Consum           0.287           0.106           0.107           0.000
 R-squared           0.990           0.987           0.952           0.091

Correlation of standardised response variable with principal component scores
-----------------------------------------------------------------------------

      pcp[1]      pcp[2]      pcp[3]
      0.9756     -0.1911     -0.0602

Positive correlation spread association
---------------------------------------

      0.8180

6.8 Partial least squares: the PLS procedure

PLS procedure
Fits a partial least squares regression model (I. Wakeling & N. Bratchell).

Options
PRINT = string tokens Printed output required (data, xloadings,

yloadings, ploadings, scores, leverages,
xerrors, yerrors, scree, xpercent, ypercent,
predictions, groups, estimates, fittedvalues);
default esti, xper, yper, scor, xloa, yloa, ploa
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NROOTS = scalar Number of PLS dimensions to be extracted
YSCALING = string token Whether to scale the Y variates to unit variance; (yes,

no); default no
XSCALING = string token Whether to scale the X variates to unit variance; (yes,

no); default no
NGROUPS = scalar Number of cross-validation groups into which to divide

the data; default 1 (i.e. no cross-validation performed)
SEED = scalar or factor A scalar indicating the seed value to use when dividing

the data randomly into NGROUPS groups for the cross-
validation or a factor to indicate a specific set of
groupings to use for the cross-validation; default 0

LABELS = text Sample labels for X and Y that are to be used in the
printed output; defaults to the integers 1...n where n is
the length of the variates in X and Y

PLABELS = text Sample labels for XPREDICTIONS that are to be used in
the printed output; default uses the integers 1, 2 ...

Parameters
Y = pointers Pointer to variates containing the dependent variables
X = pointers Pointer to variates containing the independent variables
YLOADINGS = pointers Pointer to variates used to store the Y component

loadings for each dimension extracted
XLOADINGS = pointers Pointer to variates used to store the X component

loadings for each dimension extracted
PLOADINGS = pointers Pointer to variates used to store the loadings for the

bilinear model for the X block
YSCORES = pointers Pointer to variates used to store the Y component scores

for each dimension extracted
XSCORES = pointers Pointer to variates used to store the X component scores

for each dimension extracted
B = matrices A diagonal matrix containing the regression coefficients

of YSCORES on XSCORES for each dimension
YPREDICTIONS = pointers A pointer to variates used to store predicted Y values for

samples in the prediction set
XPREDICTIONS = pointers A pointer to variates containing data for the independent

variables in the prediction set
ESTIMATES = matrices An nX+1 by nY matrix (where nX and nY are the numbers

of variates contained in X and Y respectively) used to
store the PLS regression coefficients for a PLS model
with NROOTS dimensions

FITTEDVALUES = pointers Pointer to variates used to store the fitted values for each
Y variate

LEVERAGES = variates Variate used to store the leverage that each sample has
on the PLS model

PRESS = variates Variate used to contain the Predictive Residual Error
Sum of Squares for each dimension in the PLS model,
available only if cross-validation has been selected

RSS = variates Variate used to store the Residual Sum of Squares for
each dimension extracted

YRESIDUALS = pointers Pointer to variates used to store the residuals from the Y
block after NROOTS dimensions have been extracted,
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uncorrected for any scaling applied using YSCALING
XRESIDUALS = pointers Pointer to variates used to store the residuals from the X

block after NROOTS dimensions have been extracted,
uncorrected for any scaling applied using XSCALING

XPRESIDUALS = pointers Pointer to variates used to store the residuals from the
XPREDICTIONS block after NROOTS dimensions have
been extracted

The regression method of Partial Least Squares (PLS) was initially developed as a calibration
method for use with chemical data. It was designed principally for use with overdetermined data
sets and to be more efficient computationally than competing methods such as principal
components regression. If Y and X denote matrices of dependent and independent variables
respectively, then the aim of PLS is to fit a bilinear model having the form T=XW, X=TPN+E and
Y=TQN+F, where W is a matrix of coefficients whose columns define the PLS factors as linear
combinations of the independent variables. Successive PLS factors contained in the columns of
T are selected both to minimise the residuals in E and simultaneously to have high squared
covariance with a single Y variate (PLS1) or a linear combination of multiple Y variates (PLS2).
The columns of T are constrained to be mutually orthogonal. See Helland (1988) or Hoskuldsson
(1988) for a more comprehensive description of the method.

The PLS procedure allows the calculation of PLS1 and PLS2 models with cross-validation to
assist in the determination of the correct number of dimensions to include in the model. If the
NGROUPS option is set, the data are randomly divided into groups; samples in each group are then
modelled from the remaining samples only. The sum of squares of differences between these
"leave out predictions" and the observed values of Y are called PRESS. Many tests of
significance for determining the correct number of dimensions are based on comparing values
of PRESS for PLS models of varying rank. Values of PRESS are used in the procedure to
perform Osten's (1988) test of significance, and may also be plotted in a scree diagram. In
addition to the factor scores, factor loadings and residuals, the procedure also calculates a
leverage measure (Naes & Martens 1989, page 276) and a single linear combination of the X
variables (ESTIMATES) which summarises the entire PLS model.

To use a PLS model to make predictions from new observations on the X variables, two
methods are available. Either the user may do this manually by using the model as specified in
the estimates matrix, or the new X data may be specified beforehand as the pointer to variates
XPREDICTIONS and the corresponding predictions obtained as YPREDICTIONS.

The data for PLS are supplied using the X and Y parameters, as pointers to variates containing
the columns of the X and Y matrices. Other parameters allow output to be saved in appropriate
data structures. The procedure will fail if there are missing values present in either the X or Y
variates.

The procedure will work with restricted variates, fitting a PLS model to the subset of objects
indicated by the restriction. If there are different restrictions on different data variates then these
restrictions will be combined and the analysis performed on the subset of samples that is
common to all the restrictions. Note that the unrestricted length of all of the data variates must
be the same and the number of samples in the common subset must be at least three. Any
restrictions on a text supplied for the LABELS option or a factor for the SEED option will be
ignored. On exit from the procedure all the data variates, and if supplied the SEED factor and
LABELS text, will all be returned restricted to the common subset of samples. Output data
structures that correspond to the samples (i.e. XSCORES, YSCORES, FITTEDVALUES,
LEVERAGES, YRESIDUAL and XRESIDUAL) will also be returned restricted to the common
subset, and missing values will be used for those values that have been restricted out.

When restricted data are supplied and LABELS are also given then the appropriate subset of
labels will be appear in the output; if LABELS are not defined then default labels reflecting the
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position of the restricted data in the unrestricted variate will be used instead.
No restrictions are allowed in the variates supplied in the XPREDICTIONS parameter or the

PLABELS option.
Output from PLS is selected using the following settings of the PRINT option.

data the unscaled data values (with labels).
xloadings X-component loadings (columns of the matrix W ! see

above).
yloadings variable loadings for the bilinear model of the matrix of

dependent variables. Note that these are standardized to
unit length and are not the same as the columns of the
matrix Q above. To obtain Q, form the matrix C, whose
columns are the standardized loadings, and post-multiply
by the diagonal matrix supplied as the output parameter B.

ploadings variable loadings for the bilinear model of the matrix of
independent variables (columns of the matrix P ! see
above).

scores X and Y component scores. The X component scores are
the columns of the matrix T and are mutually orthogonal.
The Y component scores, usually given the symbol u, are
not in fact needed in the calculation of the PLS model
unless an iterative algorithm is used (see method section).
They are provided here for completeness, as sometimes it
is useful to plot the Y component scores against the X
component scores to give a visual indication of the degree
of fit for each PLS dimension.

leverages measure of leverage.
xerrors residual sum of squares and residual standard deviations

for all the independent variables. When NGROUPS>1
additional statistics are calculated from the cross-validated
residuals, derived when each object is left out. The PRESS
value is equal to the sum of squares of cross-validated
standard deviations for each X variable multipled by N!1,
where N is the total number of observations. The cross-
validated standard deviations may therefore be used to
measure the predictive ability of the model for each of the
variables.

yerrors residual sum of squares and residual standard deviations
for all the dependent variables (see xerrors above).

scree scree diagram of PRESS.
xpercent percentage variance explained for the X variables.
ypercent percentage variance explained for the Y variables.
predictions predicted values for any observations that were not

included in the PLS model but were supplied using the
XPREDICTIONS parameter.

groups details of groupings used for cross-validation.
estimates estimated PLS regression coefficients.
fittedvalues fitted values from the PLS regressions.

The default settings are estimates, xpercent, ypercent, scores, xloadings, yloadings,
ploadings.
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Example 6.8

   2  " 24 calibration samples used to determine the protein content of
  -3    wheat from spectroscopic readings at six different wavelengths
  -4    (Fearn, T., 1983, Applied Statistics 32, 73-79)."
   5  VARIATE [NVALUES=24] L[1...6],%Protein[1]
   6  READ    L[1...6],%Protein[1]

    Identifier   Minimum      Mean   Maximum    Values   Missing
          L[1]     450.0     487.4     592.0        24         0
          L[2]     111.0     140.5     229.0        24         0
          L[3]     233.0     264.5     360.0        24         0    Skew
          L[4]     352.0     390.6     484.0        24         0
          L[5]     340.0     400.3     524.0        24         0
          L[6]    -16.00    0.2083     51.00        24         0    Skew
   %Protein[1]     7.750     9.966     12.55        24         0

  19  " Fit a 3 dimensional PLS model to the standardized data using
 -20    leave-one-out cross-validation. All three dimensions are
 -21    significant using Osten's test"
  22  PLS [PRINT=estimates,xpercent,ypercent,xloadings,yloadings,ploadings;\
  23      NROOTS=3; NGROUPS=24; SEED=708003; XSCALING=yes; YSCALING=yes]\
  24      Y=%Protein; X=L

Partial least-squares regression analysis
=========================================

PRESS and Osten's F-test for significance of a dimension
--------------------------------------------------------

                     PRESS         F  d.f. 1  d.f. 2  Prob > F
      Dim  1        18.897      7.48       6     138    <0.001
      Dim  2        10.307     18.34       6     132    <0.001
      Dim  3         0.981    199.71       6     126    <0.001

Estimates of PLS regression coefficients
----------------------------------------

    YLAB %Protein[1]
   CXLAB
Constant     40.5744
    L[1]     -0.0370
    L[2]      0.1524
    L[3]      0.1247
    L[4]     -0.1846
    L[5]      0.0129
    L[6]     -0.0653

Percentage of the Y variances explained
---------------------------------------

          %Protein[1]
   Dim  1        22.5
        2        40.3
        3        35.0

Percentage of the X variances explained
---------------------------------------

              L[1]     L[2]     L[3]     L[4]     L[5]     L[6]
   Dim  1     99.4     98.8     99.3     98.8     91.4     99.0
        2      0.1      1.1      0.7      0.3      7.0      0.0
        3      0.3      0.0      0.0      0.8      1.6      0.0
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X component loadings
--------------------

         X   Dim  1   Dim  2   Dim  3
      L[1]   0.4109   0.0348  -0.2988
      L[2]   0.4857  -0.4823   0.1272
      L[3]   0.4732  -0.3908   0.1395
      L[4]   0.3371   0.5289  -0.5292
      L[5]   0.3159   0.5648   0.7540
      L[6]   0.3974   0.1210  -0.1630

P loadings
----------

         X   Dim  1   Dim  2   Dim  3
      L[1]   0.4160  -0.1415  -0.3155
      L[2]   0.4148  -0.4073   0.1318
      L[3]   0.4157  -0.3085   0.1283
      L[4]   0.4148   0.2167  -0.5365
      L[5]   0.3989   1.0096   0.7508
      L[6]   0.4152   0.0249  -0.1294

Y component loadings
--------------------

                Y   Dim  1   Dim  2   Dim  3
      %Protein[1]   1.0000  -1.0000   1.0000

Orthogonal partial least squares regression can be performed by the OPLS procedure.

6.9 Canonical correlation analysis: the CANCORRELATION procedure

CANCORRELATION procedure
Does canonical correlation analysis (P.G.N. Digby).

Option
PRINT = string tokens Printed output from the analysis (correlations,

pcoeff, qcoeff, pscores, qscores); default * i.e. no
output

Parameters
PVARIATES = pointers Pointer to P-set of variates to be analysed
QVARIATES = pointers Pointer to Q-set of variates to be analysed
CORRELATIONS = diagonal matrices

Stores the canonical correlations from each analysis
PCOEFF = matrices Stores the coefficients for the P-set of variates
QCOEFF = matrices Stores the coefficients for the Q-set of variates
PSCORES = matrices Stores the unit scores from the P-set of variates
QSCORES = matrices Stores the unit scores from the Q-set of variates

Procedure CANCORRELATION provides canonical correlation analysis (see, for example, Mardia,
Kent & Bibby 1979 or Digby & Kempton 1987). The data for the procedure consists of two
pointers specified by the PVARIATES and QVARIATES parameters; these contain two sets of
variates. The variates may have missing values, or be restricted. Any unit for which any of the
variates is missing will be excluded from the analysis, and any restrictions on the variates must
be consistent. The other parameters allow results to be saved from the analysis.
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Printed output is controlled by the option PRINT with settings: correlations to print the
canonical correlations (also expressed as percentages, and cumulative percentages, of their total),
pcoeff to print the canonical correlation coefficients for the P-set of variates, qcoeff to print
the canonical correlation coefficients for the Q-set of variates, pscores to print the canonical
correlation scores for the units calculated from the P-set of variates, and qscores to print the
canonical correlation scores for the units calculated from the Q-set of variates.

Example 6.9

   2  " Data from Table 3.7 of Digby & Kempton (1987)."
   3  TEXT [VALUES='1d','3a','3d','4a','4d','7a','7d','8a','8d','9a','9d', \
   4    '10a','10d','11/1a','11/1d','11/2a','11/2d','14a','14d','16a','16d',\
   5    '17a','17d','18d'] Plot
   6  POINTER [VALUES=N,Nstar,P,K,Lime] Treatments
   7  & [VALUES=Axis_1,Axis_2,Axis_3,Axis_4] Species
   8  VARIATE [NVALUES=Plot] Treatments[],Species[]
   9  READ [PRINT=errors] Treatments[]
  14  READ [PRINT=errors] Species[]
  23  CALCULATE Species[] = Species[] / 100
  24  CANCORRELATION [PRINT=correlations,pcoeff,qcoeff] Treatments; Species

Canonical correlation analysis
==============================

Canonical correlations
----------------------

                 CA_Corrs      %Corrs   Cum%Corrs

            1      0.9804       35.99       35.99
            2      0.8994       33.02       69.01
            3      0.5907       21.69       90.70
            4      0.2533        9.30      100.00

Loadings for the P-set of variates
----------------------------------

                        1           2           3           4
   Treatments
            N      0.1515      0.0031      0.0813      0.0857
        Nstar      0.0264     -0.1443      0.0232      0.3538
            P      0.0409     -0.1077      0.1249      0.1487
            K      0.0794     -0.1956     -0.3124     -0.3109
         Lime     -0.1112     -0.2150      0.2632     -0.1681

Loadings for the Q-set of variates
----------------------------------

                        1           2           3           4
      Species
       Axis_1    -0.01003     0.06995     0.01411     0.02015
       Axis_2     0.09108     0.00145     0.00622     0.02793
       Axis_3     0.03738     0.00317     0.15526    -0.03726
       Axis_4    -0.03252    -0.01647     0.07699     0.11913

6.10 Principal coordinates analysis

Principal coordinates analysis (or metric scaling) is a method of generating an "ordination" of
a set of objects. The term ordination is used mainly in biometrics, particularly in ecology, where
it usually refers to attempts to order a set of objects along some environmental gradient.
Archaeologists use the term seriation to refer to the same set of techniques, whilst the phrase
multidimensional scaling is used in some other areas. There is no fixed statistical terminology
for these methods; however, they have in common an attempt to "order" a set of objects in one
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dimension with a generalization to give some useful distribution of the objects in
multidimensional space. Other ordination methods available in Genstat include principal
components analysis (6.2.1) and correspondence analysis (6.13). These methods operate with
data in the form of a data matrix or a two-way table. Principal coordinates analysis operates on
a symmetric matrix measuring the associations between a set of objects, which can be produced
using the methods in Sections 6.1.2 - 6.1.4.

Suppose that symmetric matrix, A, contains values representing the associations amongst a set
of n units. Principal coordinates analysis (Gower 1966) attempts to find a set of points for the
n units in a multidimensional space so that the squared distance between the ith and jth points
is given by:

dij = aii + ajj ! 2aij

If A is a similarity matrix (see 6.4.1) then aii and ajj are both equal to 1 (as every unit is
completely similar to itself). So this is equivalent to:

dij = 2 × (1 ! aij)
Thus similar units are placed close together and dissimilar units are further apart.

Often the data consist of distances rather than similarities (6.1.4). If B is a distance matrix (i.e.
element bij is the observed distance between the ith and jth units), then the preliminary
transformation

A = ! B × B / 2
will give points with inter-point squared distance

dij = aii + ajj ! 2aij

  = 0 + 0 ! 2 × (!bij × bij / 2 )
  = bij

2

Therefore the analysis will give points whose inter-point distances match the supplied distances.
The coordinates of the points are arranged so that their centroid, or mean position, is at the

origin. Furthermore they are arranged relative to their principal axes, so that the first dimension
of the solution gives the best one-dimensional fit to the full set of points, the first two dimensions
give the best two-dimensional fit, and so on. The analysis also gives the distances of the points
from their centroid, the origin. Associated with each dimension of the set of coordinates is a
latent root which is the sum of squares of the coordinates of all the points in that dimension.

For n units, if there is an exact solution it will be in at most n!1 dimensions. However, such
a solution may not always be available, because the matrix of distances derived from the
associations may not be Euclidean: that is, the distances may not be reproducible by points in
a Euclidean space of any number of dimensions. If an incomplete solution results, either because
the Euclidean property does not hold or because not all the dimensions are to be used, then a
residual can be calculated for each unit; this residual is the difference between (a) the distance
from the point for that unit in the incomplete solution to the centroid, and (b) the equivalent
distance derived from the original data. When the Euclidean property does not hold, some of the
residuals may be complex numbers; Genstat represents these as missing values.

If you regard a set of p variables of length n as giving the coordinates of a set of n points in
p dimensions, then you can construct the symmetric matrix with values that give the Euclidean
distance between the n points (for example B above). If this matrix is then transformed to an
association matrix as

A = !B×B/2
the principal coordinates analysis of the association matrix will give identical results to a
principal components analysis of the original set of variables.

Another special case of principal coordinates analysis occurs when a within-group SSPM
structure is to be analysed. Now you can calculate Mahalanobis squared distances amongst the
group means as

dij
2 = (xi ! xj) W

!1 (xi ! xj)N
where xi is the row vector of means for the ith group, and W is the pooled within-group
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covariance matrix. These squared distances can be transformed to associations, and used as input
to principal coordinates analysis to obtain an ordination of the groups. In general, results from
this will be different from those of canonical variates analysis, since the ordination operates on
a Mahalanobis distance matrix unweighted by group size, whereas the CVA directive (6.3.1)
operates on a matrix of between-group sums of squares and products, weighted by group size.

Having obtained an ordination, you may sometimes want to add points to the ordination for
additional units. For example, with canonical variates analysis, Genstat gives the scores for the
group means; you may want to add points to the group-mean ordination for each of the units. It
is easy to take the data for the new units, apply the centring of the analysis, and use the loadings
matrix to get coordinates for the new units.

When you use principal coordinates analysis to analyse an association matrix, there is no
loadings matrix. However, if you know the squared distances of the new units from the old, the
technique of Gower (1968) can be used to add points to the ordination for the new units. You
can do this in Genstat by using the ADDPOINTS directive (6.10.2), together with results saved
from the preceding PCO directive.

The assumption that the squared inter-point distance is directly related to the values in the
association matrix may be too strict with some types of data, for example in psychology. This
has led to a family of methods known as non-metric scaling or multidimensional scaling, several
variants of which are provided by the MDS directive in Section 6.12.

6.10.1 The PCO directive

PCO directive
Performs principal coordinates analysis, also principal components and canonical variates
analysis (but with different weighting from that used in CVA) as special cases.

Options
PRINT = string tokens Printed output required (roots, scores,

loadings, residuals, centroid, distances);
default * i.e. no printing

NROOTS = scalar Number of latent roots for printed output; default *
requests them all to be printed

SMALLEST = string token Whether to print the smallest roots instead of the largest
(yes, no); default no

Parameters
DATA = identifiers These can be specified either as a symmetric matrix of

similarities or transformed distances or, for the
canonical variates analysis, as an SSPM containing
within-group sums of squares and products etc or, for
principal components analysis, either as a pointer
containing the variates of the data matrix or as a matrix
storing the variates by columns

LRV = LRVs Latent vectors (i.e. coordinates or scores), roots and
trace from each analysis

CENTROID = diagonal matrices Squared distances of the units from their centroid
RESIDUALS = matrices or variates Distances of the units from the fitted space
LOADINGS = matrices Principal component loadings, or canonical variate

loadings
DISTANCES = symmetric matrices Computed inter-unit distances calculated from the

variates of a data matrix, or inter-group Mahalanobis
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distances calculated from a within-group SSPM
SAVE = pointers Saves details of the analysis; if unset, an unnamed save

structure is saved automatically (and this can be
accessed using the GET directive)

In its simplest form, the PCO directive needs to be supplied with a symmetric matrix, with values
giving the associations amongst a set of objects. This could, for example, be a similarity matrix
(6.1.2). The DATA parameter provides the symmetric matrix of associations and the PRINT option
specifies what is to be printed, using the following settings of the PRINT option:

roots prints the latent roots and trace;

scores prints the principal coordinate scores;
loadings when the directive is being used for principal components

analysis or canonical variates analysis, this specifies that
the loadings from the analysis are to be printed;

residuals prints the residuals, this is relevant only if results are to be
printed corresponding to only some of the latent roots;

centroid prints the distances (not squared distances) of each unit
from their overall centroid;

distances prints the matrix of inter-unit distances (not squared
distances).

The NROOTS and SMALLEST options control the printed output of roots, scores, loadings, and
residuals. By default, results are printed for all the roots, but you can set the NROOTS option to
specify a lesser number. If option SMALLEST has the default setting no these are taken to be the
largest roots, but if you set SMALLEST=yes the results are for the smallest non-zero roots. The
inter-unit distances are unaffected by the setting of the NROOTS option.

Nathanson (1971) gives squared distances amongst ten types of galaxy: those of an elliptical
shape, eight different types of spiral galaxy, and irregularly-shaped galaxies. The spiral types
vary from those that are mainly made up of a central core (coded as types SO and SBO) to those
that are extremely tenuous (Sc and SBc). Example 6.10.1a below uses these data to form an
ordination of the ten galaxy types. It also illustrates the use of the LRVSCREE procedure (6.2.2)
to produce a "scree" diagram of the latent roots (this time only as a printed histogram rather than
as a graph like Figure 6.2.2), to help determine how many roots to consider. The final part of the
example produces a graph of the ordination, shown in Figure 6.10.1.

Example 6.10.1a

   2  TEXT [VALUES=E,SO,SBO,Sa,SBa,Sb,SBb,Sc,SBc,I] Galaxies
   3  SYMMETRICMATRIX [ROWS=Galaxies] Galaxy
   4  READ [PRINT=data,errors] Galaxy
   5  0
   6  1.87 0
   7  2.24 0.91 0
   8  4.03 2.05 1.51 0
   9  4.09 1.74 1.59 0.68 0
  10  5.38 3.41 3.15 1.86 1.27 0
  11  7.03 3.85 3.24 2.25 1.89 2.02 0
  12  6.02 4.85 4.11 3.00 2.13 1.71 1.45 0
  13  6.88 5.70 5.12 3.72 3.01 2.97 1.75 1.13 0
  14  4.12 3.77 3.86 3.93 3.27 3.77 3.52 2.79 3.29 0 :
  15  CALCULATE Galaxy = -Galaxy/2
  16  PCO [PRINT=roots,scores,centroid] Galaxy; LRV=PCOlrv

Principal coordinates analysis
==============================
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Latent roots
------------

              1           2           3           4           5           6
          6.662       3.058       1.267       1.171       0.737       0.516

              7           8           9          10
          0.381       0.291       0.109       0.000

Percentage variation
--------------------

              1           2           3           4           5           6
          46.94       21.55        8.93        8.25        5.19        3.64

              7           8           9          10
           2.69        2.05        0.77        0.00

Trace
-----

       14.19

Latent vectors (coordinates)
----------------------------

                        1           2           3           4           5
            1      1.3965     -0.6742      0.4808      0.2564      0.0072
            2      1.0082      0.1916     -0.2521      0.0488      0.2665
            3      0.8176      0.3197     -0.2581      0.2306      0.1209
            4      0.1744      0.6571     -0.0324     -0.0699     -0.5732
            5      0.0114      0.5111      0.0315     -0.1844     -0.2450
            6     -0.4237      0.4417      0.5654     -0.5320      0.2897
            7     -0.8244      0.3341     -0.5082      0.2136      0.3103
            8     -0.9375     -0.2451      0.3141      0.0592      0.1534
            9     -1.1167     -0.4324      0.1205      0.5713     -0.2104
           10     -0.1057     -1.1036     -0.4615     -0.5937     -0.1195

                        6           7           8           9
            1      0.0422      0.1080      0.1334     -0.1166
            2     -0.3960     -0.1314      0.0950      0.1501
            3      0.3759     -0.0046     -0.3260      0.0324
            4      0.1177      0.1796      0.1790      0.0944
            5     -0.1582     -0.3563     -0.0828     -0.1802
            6     -0.0839      0.2260     -0.1229      0.0145
            7      0.0376      0.1792      0.1915     -0.1381
            8      0.3087     -0.3187      0.1693      0.0968
            9     -0.2703      0.0838     -0.1915      0.0410
           10      0.0263      0.0344     -0.0450      0.0058

* MESSAGE: vectors corresponding to zero or negative roots are not printed

Centroid distances
------------------

                        1           2           3           4           5
                    1.657       1.181       1.074       0.940       0.740

                        6           7           8           9          10
                    1.065       1.132       1.140       1.392       1.346

  17  LRVSCREE [PLOT=*] PCOlrv

  No     Root   %%  Cum   %  Scree Diagram (* represents 2%)

   1    6.662  469  469  47 ************************
   2    3.058  215  685  22 ***********
   3    1.267   89  774   9 *****
   4    1.171   83  857   8 ****
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Figure 6.10.1

   5    0.737   52  909   5 ***
   6    0.516   36  945   4 **
   7    0.381   27  972   3 **
   8    0.291   21  992   2 *
   9    0.109    8 1000   1 *
  10    0.000    0 1000   0

Scale:  1 asterisk represents 2 units.

  18  CALCULATE PCOscore[1,2] = PCOlrv[1]$[*; 1,2]
  19  FRAME     3; SCALING=xyequal
  20  XAXIS     3; YORIGIN=0
  21  YAXIS     3; XORIGIN=0
  22  PEN       1; SYMBOLS=0; LABELS=Galaxies
  23  DGRAPH    [TITLE='Principal coordinate analysis'; WINDOW=3; KEY=0] \
  24            PCOscore[2]; PCOscore[1]

Line 3 declares a symmetric matrix to hold
the galaxy data; the rows (and columns) are
labelled by the codes from Nathanson
(1971). Line 15 transforms the data from
squared distances to associations, as
explained at the start of Section 6.10. Line
16 specifies that the PCO directive is to
print the latent roots, the scores for the 10
galaxy types, and their distances from their
centroid. The first two latent roots are
much larger than the others, and so we can
infer that a good ordination of the galaxy
types can be found from the first two
columns of scores (or dimensions).

Ignoring for the moment the score for the
irregular galaxies (0.1057), the first column
of scores follows a trend from the elliptical
galaxies, through the densely packed spiral
types, to the tenuous spiral types. The
irregularly shaped galaxies are placed somewhere near the middle of the others on this first
principal axis.

The second axis places the irregular galaxies at the top of the ordination; the other types again
roughly follow a trend, but now it is curved. Remember that at most nine dimensions are needed
to obtain an exact solution for 10 points; so here the last latent root is zero, and only nine
columns of scores are printed.

Instead of a symmetric matrix of associations, the input to PCO can be a pointer whose values
are the identifiers of a set of variates, or a matrix storing the variates by columns. Now the PCO
directive will construct the matrix of inter-unit squared distances, and will base the analysis on
associations derived from this. As described above, this is equivalent to a principal components
analysis; however, the results are derived by analysing the distance matrix rather than an SSPM.
When there are more units than variates, using PCO for principal components analysis is less
efficient than using the PCP directive; however, if there are more variates than units the PCO
directive is more efficient.

When PCO is used for principal components analysis, all the variates must be of the same
length and none of their values may be missing; any restrictions on the variates are ignored.

Suppose that we have data, as parts per million, for 12 chemical elements measured on eight
insects. Analysing the 12 variates with the PCP directive will form the matrix of sums of squares
and products for the 12 variates, and use that for the analysis. In Example 6.10.1b the more
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efficient approach is adopted, analysing the 8-by-8 inter-insect distance matrix instead.

Example 6.10.1b

   2  UNITS [NVALUES=8]
   3  POINTER Elements; VALUES=!P(Na,Mg,P,S,Cl,K,Ca,Zn,Fe,Si,Al,Cu)
   4  READ Elements[]

    Identifier   Minimum      Mean   Maximum    Values   Missing
            Na     137.0     266.6     408.0         8         0
            Mg     481.0     627.2     889.0         8         0
             P      1227      1437      1740         8         0
             S     412.0     590.6     786.0         8         0
            Cl     115.0     201.8     432.0         8         0
             K      1344      1690      2352         8         0
            Ca     28.00     71.62     127.0         8         0
            Zn    0.0000     7.625     15.00         8         0
            Fe     9.000     26.12     47.00         8         0
            Si     8.000     22.00     38.00         8         0
            Al     1.000     14.50     30.00         8         0
            Cu    0.0000     13.12     30.00         8         0

  13  CALCULATE Elements[] = LOG(Elements[]+1)
  14  PCO [PRINT=roots,scores,distances] Elements

Principal coordinates analysis
==============================

Latent Roots
------------

            1          2         3         4         5         6         7
       25.960     11.437     3.795     1.549     0.790     0.617     0.056

Percentage variation
--------------------

            1          2         3         4         5         6         7
        58.73      25.87      8.58      3.50      1.79      1.39      0.13

Trace
-----

       44.20

Latent vectors (coordinates)
----------------------------

             1         2         3         4         5         6         7
   1    1.0057   -1.9782    0.8397    0.4943    0.0315    0.1066    0.0856
   2   -2.6013    0.2070    0.4511    0.4229   -0.3377   -0.1168   -0.1242
   3   -2.2071   -1.7375   -0.7367   -0.6271    0.0455   -0.0908    0.0243
   4    1.7203    0.6858    0.8343   -0.7711   -0.3456    0.0282   -0.0018
   5    1.6349   -0.0188    0.0597   -0.0440    0.6029   -0.1580   -0.1229
   6    1.3564    0.8063   -0.7473    0.3134   -0.1868   -0.4868    0.0779
   7    1.1926    0.2210   -0.9985    0.1934   -0.1663    0.5364   -0.0393
   8   -2.1015    1.8145    0.2976    0.0183    0.3565    0.1813    0.1003

Distance matrix
---------------

   1    0.000
   2    4.263    0.000
   3    3.764    2.573    0.000
   4    3.060    4.529    4.894    0.000
   5    2.361    4.388    4.362    1.607    0.000
   6    3.291    4.204    4.502    2.030    1.520    0.000
   7    2.929    4.124    4.072    2.253    1.584    1.228    0.000
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   8    4.967    1.909    3.780    4.161    4.196    3.859    3.939    0.000
            1        2        3        4        5        6        7        8

The data are defined on lines 2 and 3, and input on line 4. You can see from the report from
READ that the amounts of the 12 elements differ considerably from each other. Often with such
data, logarithms are taken before any analysis; this has been done on line 13. The PRINT option
in the PCO statement (line 14) requests printing of the latent roots, the scores for the eight insects,
and the matrix of inter-insect distances. These are shown above. You should note that distances
are printed not squared distances, even though the analysis has been calculated from squared
distances.

The third type of input to PCO is an SSPM structure. This must be a within-group SSPM: that
is, you must have set the GROUP option of the SSPM directive (6.1.1) when the SSPM was
declared. Now the PCO directive will calculate the Mahalanobis distances amongst the group
means, and base the analysis on them. As described at the start of Section 6.10, this will give
results similar to a canonical variates analysis. The representation of distances in four
dimensions will be better than that of CVA, but CVA will be better if you are interested in loadings
for discriminatory purposes. In Example 6.10.1c, we analyse the same data as in the examples
of CVA (6.3). These consist of seven variables measured on 28 brooches; the brooches are
classified into four groups.

Example 6.10.1c

   2  POINTER [VALUES=Foot_lth,Bow_ht,Coil_dia,Elem_dia,Bow_wdth, \
   3     Bow_thck,Length] Data
   4  FACTOR [LEVELS=4] Groupno
   5  READ [PRINT=errors] Groupno,Data[]
  34  SSPM [TERMS=Data[]; GROUPS=Groupno] W
  35  FSSPM W
  36  PCO [PRINT=roots,scores,distances] W

Principal coordinates analysis
==============================

Latent Roots
------------

              1           2           3
          19.91       16.85        6.98

Percentage variation
--------------------

              1           2           3
          45.52       38.52       15.95

Trace
-----

       43.73

Latent vectors (coordinates)
----------------------------

                        1           2           3
            1       1.816       2.980       0.631
            2      -0.571       0.038      -2.262
            3       2.162      -2.815       0.560
            4      -3.407      -0.204       1.071
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Distance matrix
---------------

   1       0.000
   2       4.767       0.000
   3       5.806       4.855       0.000
   4       6.133       4.383       6.172       0.000
               1           2           3           4

The first part the example, up to line 35 calculates the within-group SSPM. The PCO statement
(line 36) prints the latent roots, the scores (that is canonical variate means for the four groups),
and the matrix of inter-group Mahalanobis distances. Notice again that Mahalanobis distances
are printed, not squared distances.

The second and subsequent parameters of PCO allow you to save the results. The number of
units that determine the sizes of the output structures differs according to the input to PCO. For
a matrix or a symmetric matrix the number of units is the number of rows of the matrix, for a
pointer it is the number of values in the variates that the pointer contains, while for an SSPM the
number of units is the number of groups.

The latent roots, scores, and trace can be saved in an LRV structure using the LRV parameter.
If you have declared the LRV already, its number of rows must equal the number of units.

If the input to PCO is a pointer, a matrix, or an SSPM, the principal component or canonical
variate loadings can be saved in a matrix using the LOADINGS parameter. The number of rows
of the matrix is equal to the number of variates (either those specified by an input pointer or
those specified in the SSPM directive for an input SSPM structure), or the number of columns
in an input matrix.

The number of columns of the LRV and of the LOADINGS matrix corresponds to the number
of dimensions to be saved from the analysis, and this must be the same for both of them. If the
structures have been declared already, Genstat will take the larger of the numbers of columns
declared for either, and declare (or redeclare) the other one to match. If neither has been declared
and option SMALLEST retains the default setting no, Genstat takes the number of columns from
the setting of the NROOTS option. Otherwise, Genstat saves results for the full set of dimensions.
The trace saved as the third component of the LRV structure, however, will contain the sums of
all the latent roots, whether or not they have all been saved.

The distances of the units from their centroid can be saved in a diagonal matrix using the
CENTROID parameter. The diagonal matrix has the same number of rows as the number of units,
defined above. The RESIDUALS parameter allows you to save residuals, formed from the
dimensions that have not been saved, in a matrix with one column and number of rows equal to
the number of units. Finally, the inter-unit distances can be saved in a symmetric matrix using
the DISTANCES parameter. The number of rows of the symmetric matrix is again the same as the
number of units.

The SAVE parameter can supply a pointer to save a multivariate save structure contining all
the details of the analysis. If this is unset, an unnamed save structure is saved automatically (and
this can be accessed using the GET directive). Alternatively, you can set SAVE=* to prevent any
save structure being formed if, for example, you have a very large data set and want to avoid
committing the storage space.
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6.10.2 The ADDPOINTS directive

ADDPOINTS directive
Adds points for new objects to a principal coordinates analysis.

Option
PRINT = string tokens Printed output required (coordinates, residuals);

default * i.e. no printing

Parameters
NEWDISTANCES = matrices Squared distances of the new objects from the original

points
LRV = LRVs Latent roots and vectors from the PCO analysis
CENTROID = diagonal matrices Centroid distances from the PCO analysis
COORDINATES = matrices Saves the coordinates of the additional points in the

space of the original points
RESIDUALS = matrices or variates Saves the residuals of the new objects from that space

The input to ADDPOINTS is specified by the first three parameters. The NEWDISTANCES
parameter specifies an s×n matrix containing squared distances of the s new units from the n old
units. The LRV and CENTROID parameters specify structures defining the configuration of old
units; these have usually been produced by a PCO statement (6.10.1).

The PRINT option controls the printed output; by default nothing is printed. The option has
two settings:

coordinates prints the coordinates of the new points;

residuals prints the residual distances of the new units from the
coordinates in the space of the old units.

For example, suppose that three original objects are equidistant, with a squared distance of four
units amongst them. An ordination of these squared distances will place the points at the corners
of an equilateral triangle of side two units. The coordinates of the three points will be (!0.5774,
1.0000), (!0.5774, !1.0000), and (1.1547, 0.0000). Now suppose that a new object is known to
be equidistant from the original objects, at some squared distance d from them. If d is 4/3 the
new object can be located precisely at the centroid of the three original points (that is at the
origin), and all the distances in the system will be satisfied exactly. However if d>4/3, it would
be possible to satisfy all the distances in three dimensions by placing the new object at a squared
distance of d!4/3 above, or below, the plane in which the original points lie. The fitted
coordinates in the space of the original objects will be the projection of the new point onto the
plane (that is, at the centroid of the original points); the residual for the new object will be the
square root of d!4/3. If d<4/3 the new distances can be satisfied only by introducing an
imaginary third dimension in which squared distance is negative: the fitted coordinates will be
the same as above, but the residual will be a complex number, which the ADDPOINTS directive
will print and store as a missing value.

The other parameters can be used to save the results. The COORDINATES parameter allows you
to specify an s×k matrix to save the coordinates for the new units; the residuals can be saved in
an s×1 matrix using the RESIDUALS parameter. The value k is determined by the dimensionality
of the input coordinates from the preceding PCO statement.

In Example 6.10.2, we use the data from Example 6.10.1a on the different galaxy types, and
construct an ordination of the eight spiral forms. Then points for the irregular and elliptical types
are added to this ordination. First we need to extract from the data the symmetric matrix of
distances for the spiral types and also a matrix giving the distances of the two other types from
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the spiral types (lines 26 and 28). Remember that the input distances were transformed ready for
the PCO in 6.10.1; this transformation is also appropriate for the distances amongst the spiral
types used as input to PCO in line 32. However, the ADDPOINTS directive requires squared
distances so the reverse transformation is required for the distances of the irregular and elliptical
galaxy types from the spiral types (line 30).

Example 6.10.2

  25  TEXT      Gname2,Gname8; VALUES=!T(E,I),!T(SO,SBO,Sa,SBa,Sb,SBb,Sc,SBc)
  26  SYMMETRICMATRIX [ROWS=Gname8] G8
  27  CALCULATE G8 = Galaxy$[!(2...9)]
  28  MATRIX    [ROWS=Gname2; COLUMNS=Gname8] G2
  29  CALCULATE G2 = Galaxy$[!(1,10); !(2...9)]
  30  &         G2 = -2 * G2
  31  LRV       [ROWS=Gname8; COLUMNS=2] L8
  32  PCO       [PRINT=roots] G8; LRV=L8; CENTROID=C8

Principal coordinates analysis
==============================

Latent Roots
------------

         1        2        3        4        5        6        7        8
     5.006    1.359    0.838    0.724    0.508    0.358    0.216    0.000

Percentage variation
--------------------

         1        2        3        4        5        6        7        8
     55.57    15.08     9.30     8.04     5.64     3.98     2.40     0.00

Trace
-----

       9.009

  33  ADDPOINTS [PRINT=coordinates,residuals] G2; LRV=L8; CENTROID=C8

Adding points to a principal coordinates analysis
=================================================

Coordinates of added points
---------------------------

                        1           2
            1      1.1003      0.5186
            2     -0.1787      0.4406

Residuals
---------

         1       1.445
         2       1.474

6.10.3 Relating associations to data variables: the PCORELATE directive

One way of interpreting the principal coordinates obtained from a similarity matrix is by relating
them to the original variables of the data matrix. For each coordinate and each data variate, an
F-statistic can be computed as if the variable and the coordinate vector were independent. This
is not the case but, although the exact distribution of these pseudo F-values is not known, they
do serve to rank the variables in order of importance of their contribution to the coordinate
vector.
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Qualitative variables (variates or factors with TEST settings simplematching -

rogerstanimoto) are treated as grouping factors, and the mean coordinate for each group is
calculated. Only 10 groups are catered for; group levels above 10 are combined. The pseudo F-
statistic gives the between-group to within-group variance ratio. Missing values are excluded.

Quantitative variables (i.e. variates with other settings) are grouped on a scale of 0-10 (where
zero signifies a value up to 0.05 of the range), and mean coordinates for each group are
calculated. The printed pseudo F statistic is for a linear regression of the principal coordinate on
the ungrouped data variable, after standardizing the data variable to have unit range; the
regression coefficient is also printed.

PCORELATE directive
Relates the observed values on a set of variates or factors to the results of a principal
coordinates analysis.

Options
COORDINATES = matrix Points in reduced space; no default i.e. this option must

be specified
NROOTS = scalar Number of latent roots for printed output; default *

requests them all to be printed

Parameters
DATA = variates The data variables
TEST = string tokens Test type, defining how each variable is treated in the

calculation of the similarity between each unit
(simplematching, jaccard, russellrao, dice,
antidice, sneathsokal,  rogerstanimoto,
cityblock, manhattan, ecological, euclidean,
pythagorean, minkowski, divergence, canberra,
braycurtis, soergel); default * ignores that variable

RANGE = scalars Range of possible values of each variable; if omitted, the
observed range is taken

The DATA parameter lists the variables that are to be related to the PCO results and the TEST
parameter indicates their "type" as in the FSIMILARITY directive (6.1.2). The RANGE parameter
contains a list of scalars, one for each variable in the DATA list, allowing you to standardize
quantitative variables. Notice that you do not need to supply the complete list of data variables
(with their corresponding types and ranges), only those that you wish to relate to the PCO results.
In Example 6.10.3, where we analyse the similarities between the cars discussed in Section 6.1.2,
we examine two of the original variables.

The COORDINATES option must be present and must be a matrix. This represents the units in
reduced space. Usually the coordinates will be from a principal coordinates analysis (6.10.1).
The number of rows of the matrix must match the number of units present in the variables, taking
account of any restriction.

The output from PCORELATE can be extensive. You may not be interested in relating the
variables to the higher dimensions of the principal coordinates analysis even though you may
have saved these in the coordinate matrix. The NROOTS option can request that results for only
some of the dimensions are printed, for example NROOTS=3 for the first three dimensions as in
Example 6.10.3. If NROOTS is not specified, PCORELATE prints information for all the saved
dimensions: that is, for the number of columns of the coordinates matrix.
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Example 6.10.3

   2  UNITS [NVALUES=16]
   3  VARIATE Engcc,Ncyl,Tankl,Weight,Length,Width,Height,Wbase,Tspeed,Stst,\
   4    Carb,Drive,Vct[1...3]
   5  POINTER Cd; VALUES=!P(Engcc,Ncyl,Tankl,Weight,Length, \
   6    Width,Height,Wbase,Tspeed,Stst)
   7  READ [PRINT=errors] #Cd,Carb,Drive
  24  TEXT [VALUES=Estate,'Arna1.5','Alfa2.5',Mondialqc,\
  25    Testarossa,Croma,Panda,Regatta,Regattad,Uno,\
  26    X19,Contach,Delta,Thema,Y10,Spider] Carname
  27  FACTOR [Carname; LEVELS=16] Fcar; VALUES=!(1...16)
  28  SYMMETRICMATRIX [ROWS=Carname] Carsim
  29  " Form similarity matrix between cars."
  30  FSIMILARITY [SIMILARITY=Carsim; PRINT=*] #Cd,Carb,Drive; \
  31    TEST=4(cityblock),4(Euclidean),2(cityblock),2(simplematch)
  32  " Produce output from ordination of Carsim and
 -33    relate matrix of coordinates to the original variates "
  34  LRV [ROWS=Carname; COLUMNS=6] Carpco; VECTORS=Carvec
  35  PCO [PRINT=roots] Carsim; LRV=Carpco

Principal coordinates analysis
==============================

Latent Roots
------------

              1           2           3           4           5           6
         2.3578      0.8407      0.4220      0.3180      0.2171      0.1795

              7           8           9          10          11          12
         0.1022      0.0559      0.0504      0.0405      0.0277      0.0207

             13          14          15          16
         0.0194      0.0127      0.0121      0.0000

Percentage variation
--------------------

              1           2           3           4           5           6
          50.42       17.98        9.02        6.80        4.64        3.84

              7           8           9          10          11          12
           2.19        1.19        1.08        0.87        0.59        0.44

             13          14          15          16
           0.41        0.27        0.26        0.00

Trace
-----

       4.677

  36  PCORELATE [COORDINATES=Carvec; NROOTS=3] Weight,Carb; \
  37    TEST=cityblock,simplematch

Relate principal coordinates to original data
=============================================

  Variate: Weight
  Minimum: 720.0         Range: 786.0     Test type: City block
  Data scaled by factor of 0.01272

            F       *       0       1       2       3       4       5
 Counts             0       1       2       2       3       2       1
 Vector 1 335.8  0.0000  0.4145  0.4600  0.1931  0.2148  0.0469 -0.1521
 Vector 2   0.1  0.0000 -0.1075 -0.1815 -0.1519  0.0847  0.0395  0.4599
 Vector 3   0.0  0.0000  0.1475  0.0786 -0.1350  0.0672 -0.1742  0.0559
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              6       7       8       9      10
 Counts       2       0       0       2       1
 Vector 1 -0.1288  0.0000  0.0000 -0.6205 -0.8082
 Vector 2  0.2076  0.0000  0.0000 -0.1494 -0.1349
 Vector 3 -0.1034  0.0000  0.0000  0.0508  0.1613

Regression coefficients:    -0.0016    0.0001    0.0000

  Variate: Carb    Test type: Simple Matching

            F       *       1       2       3
 Counts             0      10       5       1
 Vector 1   4.2  0.0000  0.1567 -0.3558  0.2118
 Vector 2   4.4  0.0000 -0.1131  0.1900  0.1812
 Vector 3   0.6  0.0000 -0.0007 -0.0336  0.1745

In Example 6.10.3, the coordinates for the cars in a reduced space of six dimensions are saved
in the matrix, Carvec. The first three coordinates account for 71.2% of the trace.

6.11 Factor analysis: the FCA directive

FCA directive
Performs factor analysis.

Options
PRINT = string tokens Printed output required (communalities, loadings,

coefficients, scores, residuals, cresiduals,
vresiduals, tests); default * i.e. no printing

NDIMENSIONS = scalar Number of factors to fit; no default, must be specified
METHOD = string token Whether to use correlations or variances and

covariances (correlation, vcovariance,
variancecovariance); default vcov

MAXCYCLE = scalar Maximum number of iterations; default 50
TOLERANCE = scalar Minimum value to assume for the unique component øi

2

of each observed variable; default 10!6

Parameters
DATA = pointers or matrices or symmetric matrices or SSPMs

Pointer of variates forming the data matrix, or matrix
storing the variate values by columns, or symmetric
matrix storing their variances and covariances, or SSPM
giving their sums of squares and products

NUNITS = scalars When DATA is set to a symmetric matrix of variances
and covariances, NUNITS must specify the number of
units from which they were calculated if tests are
required

LRV = LRVs To store the loadings, latent roots and trace from each
analysis

SSPM = SSPMs To save the SSPM formed from a DATA matrix or
pointer

COMMUNALITIES = variates Saves the communalities
COEFFICIENTS = matrices Saves the factor score coefficients
SCORES = matrices or pointers Saves the factor analysis scores
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RESIDUALS = matrices or pointers Saves residuals from the dimensions fitted in the
analysis

CRESIDUALS = symmetric matrices Saves the residual correlation or covariance matrix
VRESIDUALS = variates Saves the residual variances

Factor analysis aims to find a set of "latent" (or unobservable) variables {z1...zk} that account for
the variances and covariances S between a set of p observed variables {x1...xp}. In the
terminology of factor analysis, the latent variables {zi} are known as factors. However, they are
continuous variables, and thus are represented in Genstat by variate rather than by factor data
structures. So to avoid confusion, when we refer to the latent variables below, factor will be
printed in italic font.

The data for a factor analysis consists of observed measurements on the variables {xi} made
on a set of subjects. The assumption is that, for each subject, the values of the observed variables
are related to the factors by a linear model

x  =  ì  +  Ã z  +  å
where x is the vector of observed variables,

z is the vector of factors,
ì is a vector of means for the observed variables,
Ã is a matrix of loadings defining the relationship between observed and latent variables,

and
å is a vector of residuals.

The elements of the residual vector å are assumed to have mean zero and to be uncorrelated, i.e.
the dispersion matrix of å is assumed to be diagonal

cov(å)  =  Ø  =  diag(ø1
2, ... øp

2)
(They thus differ from the residuals formed in a principal components analysis, which will be
correlated; see e.g. Krzanowski 1988 Section 16.2 for more details). The factors themselves are
assumed to have variance one and to be uncorrelated, i.e.

cov(z)  =  I.
So the correlations between the observed variables {xi} arise only through their relations with
the factors, and not because of any correlation between the residuals or between the factors.

The DATA parameter specifies the data for the factor analysis. You can supply either a pointer
containing a set of variates, one for each observed variable {xi}, or a matrix storing the observed
variables by columns, or a symmetric matrix containing variances and covariances between the
variables, or an SSPM structure (formed using FSSPM from the variates of observed
measurements). When DATA specifies a symmetric matrix of variances and covariances, you
must also set the NUNITS parameter to specify the number of units from which they were
calculated if you want FCA to print tests.

The METHOD option has settings vcovariance (with synonym variancecovariance) and
correlation, to control whether FCA forms a matrix of variances and covariances or a matrix
of correlations for the analysis. The same factors will be obtained if you use a correlation matrix,
but the loadings will be scaled to be between zero and one. The number of factors, q, to fit must
be specified by the NDIMENSIONS option. Arising from the numbers of parameters in the model
(see Krzanowski 1988 Section 16.2.2) this is subject to the constraint

(p ! q)2  $  p + q.
The PRINT option controls printed output, with settings:

communalities the proportion of variation explained by the factors for
each observed variable, (var(xi) ! øi

2) / var(xi);
loadings the matrix of factor loadings Ã;
coefficients the factor score coefficients;
scores the factor scores calculated from the model for each

subject;
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residuals the vectors of residuals å,
cresiduals the residual correlation or covariance matrix i.e. a

symmetric matrix showing the amount of unexplained
correlation or covariance between each pair of variables;

vresiduals the residual variances; and
tests a chi-square goodness of fit test for the model.

By default nothing is printed. Note, however, that scores and residuals cannot be produced when
DATA is set to a symmetric matrix of variances and covariances.

The communalities, factor coefficients, scores, residuals, residual correlations or covariances
and residual variances can also be saved using the COMMUNALITIES, COEFFICIENTS, SCORES,
RESIDUALS, CRESIDUALS and VRESIDUALS parameters, respectively. The LRV parameter
allows an LRV structure to be saved, with the loadings in the ['vectors'] component, and the
eigenvalues of the matrix Ø!½ S Ø!½ in the ['roots'] component; the loadings are scaled
eigenvectors of Ø!½ S Ø!½. (Remember, S is the matrix of variances and covariances of the
observed variables {xi}.) The SSPM parameter can save the SSPM structure constructed from a
DATA pointer for the analysis. A particularly convenient instance is when you have supplied an
SSPM structure as input but, for example, have set METHOD=correlation: the SSPM that is
saved will then contain correlations instead of sums of squares and products.

Example 6.11 analyses a correlation matrix for nine variates, calculated from a sample of 211
subjects, used in Section 2.4 of Lawley & Maxwell (1963). This is also used as an example in
the documentation for NAG subroutine G03CCF.

Example 6.11

 2  TEXT [VALUES=Gaelic,English,History,Arithmetic,Algebra,Geometry] Subjects
 3  SYMMETRICMATRIX [ROWS=Subjects; VALUES=\
 4  1.000,\
 5  0.439, 1.000,\
 6  0.410, 0.351, 1.000,\
 7  0.288, 0.354, 0.164, 1.000,\
 8  0.329, 0.320, 0.190, 0.595, 1.000,\
 9  0.248, 0.329, 0.181, 0.470, 0.464, 1.000] Correlation
10  FCA [PRINT=communalities,loadings,cresiduals,tests; NDIMENSION=2]\
11      Correlation; NUNITS=220

Factor analysis
===============

Factor loadings
---------------

   Subjects
     Gaelic   1      0.5533     -0.4286
    English   2      0.5682     -0.2883
    History   3      0.3922     -0.4500
 Arithmetic   4      0.7404      0.2728
    Algebra   5      0.7239      0.2113
   Geometry   6      0.5954      0.1317

Factor communalities
--------------------

     Subjects
       Gaelic   1      0.4898
      English   2      0.4059
      History   3      0.3563
   Arithmetic   4      0.6226
      Algebra   5      0.5686
     Geometry   6      0.3718
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Residual correlation matrix
---------------------------

     Gaelic   1    0.000000
    English   2    0.001067    0.000000
    History   3    0.000162   -0.001551    0.000000
 Arithmetic   4   -0.004777    0.011978   -0.003627    0.000000
    Algebra   5    0.019029   -0.030347    0.001196    0.001385    0.000000
   Geometry   6   -0.024985    0.028712    0.006770   -0.006742    0.005210
                          1           2           3           4           5

   Geometry   6    0.000000
                          6

Factor analysis test statistics
-------------------------------

Log-likelihood:               -1.190
Goodness of fit statistic:     2.335
Degrees of freedom:                4
Probability:                   0.674

FCA estimates the parameters of the model by maximum likelihood, assuming multivariate
Normality, using subroutines G03CAF and G03CCF from the NAG Library. The MAXCYCLE
option sets a limit on the number of iterations (default 50). The TOLERANCE option specifies the
minimum value to assume for the unique component øi

2 of each observed variable so that the
communality is always less than one; the default is 10!6.

6.12 Multidimensional scaling: the MDS directive

MDS directive
Performs non-metric multidimensional scaling.

Options
PRINT = string tokens Printed output required (coordinates, roots,

distances, fitteddistances, stress,

monitoring); default * i.e. no printing
DATA = symmetric matrix Distances amongst a set of units
METHOD = string token Whether to use non-metric scaling, or metric scaling

with linear regression of the fitted distances to the actual
distances (nonmetric, linear); default nonm

SCALING = string token Whether least-squares, least-squares-squared, or
log-stress scaling is to be used (ls, lss,
logstress); default ls

TIES = string token Treatment of tied data values (primary, secondary,
tertiary); default prim

WEIGHTS = symmetric matrix Weights for each distance value; default * i.e. all
distances with weight one

INITIAL = matrix Initial configuration; default * i.e. a principal coordinate
solution is used

NSTARTS = scalar Number of starting configurations to be used, by making
random perturbations to the initial configuration; default
10

SEED = scalar Seed for the random-number generator; default 0
MAXCYCLE = scalar Maximum number of iterations; default 30
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Parameters
NDIMENSIONS = scalars Number of dimensions for each solution
COORDINATES = matrices To store the coordinates of the units for each solution
STRESS = scalars To store the stress value for each solution
DISTANCES = symmetric matrices To store the distances amongst the points for the units in

the fitted number of dimensions
FITTEDDISTANCES = symmetric matrices

To store the fitted distances from the monotonic
(METHOD=nonmetric) or linear (METHOD=linear)
regression

The MDS directive carries out iterative scaling, including metric and non-metric scaling. The
input data consists of a symmetric matrix whose values may be interpreted, in a general sense,
as distances between a set of objects. The matrix is specified by the DATA option; thus only one
matrix can be analysed each time the MDS directive is used.

The objective of the MDS directive is to find a set of coordinates whose inter-point distances
match, as closely as possible, those of the input data matrix. When plotted, the coordinates
provide a display which can be interpreted in the same way as a map: for example, if points in
the display are close together, their distance apart in the data matrix was small.

The algorithm invoked by the MDS directive uses the method of steepest descent to guide the
algorithm from an initial configuration of points to the final matrix of coordinates that has the
minimum stress of all configurations examined.

Printed output is controlled by the PRINT option; by default nothing is printed. There are six
possible settings:

coordinates prints the solution coordinates, rotated to principal

coordinates;
roots prints the latent roots of the solution coordinates;
distances prints the inter-unit distances, computed from the solution

configuration;
fitteddistances prints the fitted values from the regression of the inter-unit

distances on the distances in the data matrix, the
regression may be monotonic or linear through the origin,
depending on the setting of the METHOD option;

stress prints the stress of the solution coordinates;
monitoring prints a summary of the results at each iteration.

The METHOD option determines whether metric or non-metric scaling is given. The algorithm
involves regression of the distances, calculated from the solution coordinates, against the
dissimilarities in the symmetric matrix specified by the DATA option. With the default setting,
METHOD=nonmetric, monotonic regression is used; if METHOD=linear, the algorithm uses
linear regression through the origin.

The stress function to be minimized can be selected using the STRESS option. There are three
possibilities.

ls (least squares):

lss (least-squares-squared):
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logstress:

where the dij are the elements of the dissimilarity matrix calculated for the fitted configuration,
the d^ ij are the fitted values from the regression selected by the METHOD option, the wij are the
corresponding weights and m is the number of off-diagonal elements in the dissimilarity matrix.

The TIES option allows you to vary the way in which tied data values in the input data matrix
are to be treated. By default, the treatment of ties is primary, and no restrictions are placed on
the distances corresponding to tied dissimilarities in the input data matrix. In the secondary
treatment of ties, the distances corresponding to tied dissimilarities are required to be as nearly
equal as possible. Kendall (1977) describes a compromise between the primary and secondary
approaches to ties: the block of ties corresponding to the smallest dissimilarity are handled by
the secondary treatment, the remaining blocks of ties are handled by the primary treatment. This
tertiary treatment of ties is useful when the dissimilarities take only a few values. For example,
in the reconstruction of maps from abuttal information, the dissimilarity coefficient takes only
two values: zero if localities abut, and one if they do not. The block of ties associated with the
dissimilarity of zero are handled by the secondary treatment, and the block of ties with
dissimilarity one by the primary treatment.

The WEIGHT option can be used to specify a symmetric matrix of weights. Each element of
the matrix gives the weight to be attached to the corresponding element of the input data matrix.
If the option is not set, the elements of the data matrix are weighted equally: wij=1 for all i and
j. The most important use of the option occurs when the matrix of weights contains only zeros
and ones; the zeros then correspond to missing values in the input data matrix, allowing
incomplete data matrices to be scaled. Up to about two thirds of the data matrix may be missing
before the algorithm breaks down. This enables experimenters to design studies in which only
a subset of all the dissimilarities need to be observed. This is particularly useful when there are
a large number of units; if the number of units is m, say, a complete m × m data matrix requires
m(m!1)/2 dissimilarities to be observed.

Since the algorithm is an iterative one, making use of the method of steepest descent, there is
no guarantee that the solution coordinates found from any given starting configuration has the
minimum stress of all possible configurations. The algorithm may have found a local, rather than
the global, minimum. This problem may be partially overcome by using a series of different
starting configurations. If several of the solutions arrive at the same lowest stress solution, then
you may be reasonably confident of having found the global minimum. The NSTARTS option
determines the number of starting configurations to be used. The starting configuration used on
the first start can be specified by the INITIAL option; if this is not set, the default is to take the
principal coordinate solution obtained from a PCO analysis of the input dissimilarity matrix.
Subsequent starting configurations are found by perturbing each coordinate of the first starting
configuration by successively larger amounts. This strategy generally results in at least one
starting configuration that does not get entrapped in a local minimum: however there can be no
guarantee that the global minimum for the stress function has been found. Experience suggests
that, for safety, the NSTARTS option should be set equal to at least 10. By default NSTARTS=10.

The SEED option supplies the seed for the random numbers that are used to perturb the initial
configuration. The default of zero continues the existing sequence of random numbers if MDS has
already been used in the current Genstat job. If MDS has not yet been used, Genstat picks a seed
at random.

The MAXCYCLES option determines the maximum number of iterations of the algorithm. The
default of 30 should usually be sufficient. However, it may be necessary to set a larger value for
very large data matrices or when using the logstress setting of the SCALING option. The
monitoring setting of the PRINT option may be used to see how convergence is progressing.

The NDIMENSIONS parameter must be set to a scalar (or scalars) to indicate the number(s) of
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dimensions in which the multidimensional scaling is to be performed on the data matrix. An MDS
statement with a list of scalars will carry out a series of scaling operations, all based on the same
matrix of dissimilarities, but with different numbers of dimensions.

The remaining parameters of the MDS directive allow output to be saved in Genstat data
structures. The COORDINATES parameter can list matrices to store the minimum stress
coordinates in each of the dimensions given by the NDIMENSIONS parameter, and the STRESS
parameter can specify scalars to store the associated minimum stresses. The parameters
DISTANCES and FITTEDDISTANCES can specify symmetric matrices to store the distances
computed from the coordinates matrix and the fitted distances computed from the monotonic or
linear regressions, respectively.

Example 6.12 shows the use of non-metric multidimensional scaling with the inter-galaxy
distances of Example 6.10.1a, printing the stress, the coordinates, and the roots. The remainder
of the example plots the two-dimensional solution obtained as Figure 6.12a, and also the
"Shepard diagram" in Figure 6.12b. This shows the distances that have been computed from the
solution obtained ! the distances between the points in Figure 6.12a ! plotted as crosses against
the actual distances in the input data, and also the fitted monotonic regression line using circles
to show the fitted values. The small distances, typically of the points in Figure 6.12a from their
immediate neighbours, have been fitted well, as have most of the large distances.

Example 6.12

   2  TEXT    [VALUES=E,SO,SBO,Sa,SBa,Sb,SBb,Sc,SBc,I] Galaxies
   3  SYMMETRICMATRIX [ROWS=Galaxies] Galaxy
   4  READ    [PRINT=errors] Galaxy
  15  MDS     [PRINT=roots,coordinates,stress; DATA=Galaxy; SEED=934306]\
  16          NDIMENSIONS=2; COORDINATES=MDScoord; DISTANCES=MDSdist; FITTED=MDSfit

Multidimensional scaling
========================

Least-squares scaling criterion
-------------------------------

Distances fitted using monotonic regression (non-metric MDS).
Primary treatment of ties.

Stress
------

      0.0469

Coordinates
-----------

                        1           2
     Galaxies
            E     -1.5717     -0.4588
           SO     -0.9217      0.1298
          SBO     -0.7469      0.4075
           Sa     -0.2278      0.5630
          SBa      0.0266      0.2905
           Sb      0.4536      0.6067
          SBb      0.9005      0.2550
           Sc      0.8588     -0.1838
          SBc      1.2015     -0.4086
            I      0.0271     -1.2012

Latent roots
------------

            1       7.126
            2       2.874
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Figure 6.12a Figure 6.12b

  17  CALCULATE Score[1,2] = MDScoord$[*; 1,2]
  18  VARIATE Actual,OnMDS,FitMDS; Galaxy,MDSdist,MDSfit
  19  PEN     1,2,3; SYMBOLS=0,1,2; METHOD=(point)2,line; \
  20          LABELS=Galaxies,*,*; LINESTYLE=1; SIZE=1.5,1,1
  21  FRAME   3; SCALING=xyequal
  22  DGRAPH  ['Non-metric multidimensional scaling'; WINDOW=3; \
  23          KEYWINDOW=0] Score[2]; Score[1]
  24  DGRAPH  ['Shepard diagram'; WINDOW=4; KEYWINDOW=0] \
  25          OnMDS,FitMDS; Actual; PEN=2,3

6.13 Correspondence analysis

This Chapter describes the procedure CORANALYSIS (6.13.1) which does ordinary
correspondence analysis, MCORANALYSIS (6.13.2) which does multiple correspondence analysis,
and CABIPLOT (6.13.3) which can display biplots of their results.

6.13.1 The CORANALYSIS procedure

CORANALYSIS procedure
Does correspondence analysis, or reciprocal averaging (P.G.N. Digby & A.I. Glaser).

Options
PRINT = string tokens Printed output from the analysis (roots, rowscores,

rowinertias, rowchisquare, rowmass,
rowquality, colscores, colinertias,
colchisquare, colmass, colquality); default * i.e.
no output

METHOD = string token Type of analysis required (correspondence,
digbycorrespondence, biplot, reciprocal);
default corr

NROOTS = scalar Number of latent roots for printed output; default *
requests them all to be printed

%METHOD = string token How to represent proportions or %s in quality statistics
(permills, percentages, proportions); default



830 6  Multivariate and cluster analysis

prop

NDIMENSIONS = scalar Number of dimensions for which quality statistics are
required; default 2

ROWSUBSET = scalars Indexes of subset rows
COLSUBSET = scalars Indexes of subset columns
ROWPASSIVE = scalars Indexes of passive rows
COLPASSIVE = scalars Indexes of passive columns

Parameters
DATA = matrices or data matrices Data to be analysed
ROOTS = diagonal matrices Saves the squared singular values from each analysis
ROWSCORES = matrices Saves the scores for the rows of the data matrix
COLSCORES = matrices Saves the scores for the columns of the data matrix
ROWINERTIAS = matrices Saves the inertias for the rows of the data matrix
COLINERTIAS = matrices Saves the inertias for the columns of the data matrix
ROWQUALITY = matrices Saves the quality statistics for rows of the data
COLQUALITY = matrices Saves the quality statistics for columns of the data
SAVE = pointers Saves details of the analysis for use by CAPLOT

Correspondence analysis is an ordination technique used to analyse two-way categorical data
tables. Ordination techniques approximate relationships between variables in a reduced number
of dimensions.

The type of analysis is specified by the METHOD option, with one of the following settings:
correspondence correspondence analysis (Greenacre 1984),
digbycorrespondence an alternative implementation of correspondence analysis

described by Digby & Kempton (1987),
reciprocal reciprocal averaging (see Digby & Kempton 1987), or
biplot a similar biplot-style analysis (again see Digby &

Kempton 1987).
The default setting is correspondence, and this should be retained if either of the options to
subset rows or columns are set.

The data matrix X, is scaled to have sum one for METHOD settings correspondence and
digbycorrespondence. The matrices U, S and V are taken from the singular-value
decomposition of

Y  =  (X ! R C) / %(R C)
for METHOD=correspondence and 

Y = ( R!½ X C!½ )
for the other methods, where R and C are diagonal matrices of row and column totals of the data
matrix X. The scores for the rows and columns from METHOD=correspondence are

A = ( R!½ U S )
and

B = ( C!½ V S ) 
The scores from METHOD=digbycorrespondence are similar, but are multiplied by the square
root of S.

With the other two methods X is not scaled to total one, and the scores are given by A = ( R!½

U Sm ) and B = ( C!½ V Sm ): the parameter m is zero for METHOD=reciprocal, and 0.5 for
METHOD=biplot.

The inertia values for the rows and columns are defined as
( R A AN ) SN

and
( C B BN ) SN
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where SN = S for METHOD=correspondence, and S = 1 for the other methods; see Greenacre
(1984) for further information.

The roots are the squares of the singular values. Note that the first singular value will always
be one for methods other than correspondence; this corresponds to a trivial solution given in
the first column of A and B above, which is automatically removed from the results printed and
saved from CORANALYSIS.

Rows and/or columns chosen as passive rows and/or columns are separated from the original
data matrix before it is scaled. Rows and/or columns chosen as subset rows and/or columns are
separated from Y after this scaling.

The data for the procedure are specified by the DATA parameter as either a matrix or a
datamatrix (i.e. a pointer to variates, all with the same length). The matrix must not contain any
missing values; it is unchanged on exit from the procedure.

Printed output is controlled by the PRINT option with settings:
roots to print the roots (together with the roots expressed as

percentages and cumulative percentages),
rowscores to print the scores for the rows of the data matrix,
rowinertias to print the inertias for the rows of the data matrix,
rowmass to print the row masses,
rowchisquare to print the row chisquare distances,
rowquality to print the quality statistics for the rows,
colscores to print the scores for the columns of the data matrix,
colinertias to print the inertias for the columns of the data matrix,
colmass to print the column masses,
colchisquare to print the column chisquare distances, and
colquality to print the quality statistics for the columns.

The NROOTS option controls the printed output of roots, scores and inertias. By default, results
are printed for all the roots, but you can set the NROOTS option to specify a lesser number.

The quality settings produce tables with the following columns:
! the mass of the row (or column), in proportion to the total mass;
! the "quality" of the representation i.e. how much of the inertia of a row (or column) is

represented by the dimensions shown;
! the proportion of the total inertia of the row (or column) compared to the total inertia for all

rows (or columns);
! principal coordinates of the rows (or columns) in the specified dimension;
! the amount of inertia for each row (or column) in the specified dimension relative to the total

amount of inertia given by the value of the quality statistic ! hence the sum of a specific row
(or column) across the dimensions shown will be equal to the value given by the quality
statistic;

! the proportion of inertia explained by a row (or column) in a dimension, compared to the total
inertia in that dimension.

The representation of the columns of proportions is controlled by the %METHOD option; these can
be printed either as proportions (default), percentages or as permills i.e. tenths of a percent. The
NDIMENSIONS option specifies the number of dimensions for which to print quality statistics;
default 2.

When carrying out correspondence analysis, there may be rows and/or columns (for example
outliers with low mass) that you would like to ignore during the calculation of the roots or
inertia, so that they have no influence. Instead of removing these rows and/or columns from the
data before running CORANALYSIS, an alternative is to list the indexes of the rows or columns
that are to be ignored using the ROWPASSIVE and/or COLPASSIVE options. These "passive" rows
will still be included in the table of quality statistics, where their relative contributions will be
shown and compared to total for all the passive rows or columns.
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You may want to apply a correspondence analysis calculated from the whole data set onto
only a subset of the rows and/or columns when some of the rows and/or columns divide into
groups with common traits. This can be done by setting the ROWSUBSET and/or COLSUBSET
options to the indexes of the rows and/or columns indexes in the subset of interest. If any of
these options is set, the METHOD option must be set to correspondence. If ROWPASSIVE and
ROWSUBSET (or COLPASSIVE and COLSUBSET) are both set, any indexes that occur in both will
be removed from the ROWSUBSET (or COLSUBSET).

Results from the analysis can be saved using the parameters ROOTS, ROWSCORES, COLSCORES,
ROWINERTIAS, COLINERTIAS, ROWQUALITY and COLQUALITY. The structures specified for
these parameters need not be declared in advance. The SAVE parameter can save full details of
the analysis for use by the CAPLOT procedure.

Example 6.13.1 analyses a set of data from Greenacre (2007).

Example 6.13.1

   2  " Data from Table 9.1 of Greenacre (2007)"
   3  TEXT [VALUES=S_Manager,J_Manager,S_Employee,J_Employee,Secretary] Staff
   4  &    [VALUES=SM,JM,SE,JE,Sy] Staff2
   5  &    [VALUES=None,Light,Medium,Heavy] Smoke
   6  MATRIX [ROWS=Staff; COLUMNS=Smoke] Smoking; VALUES= \
   7    !( 4, 2, 3, 2,  4, 3, 7, 4,  25,10,12, 4,  18,24,33,13,  10, 6, 7, 2)
   8  PRINT       Smoking; FIELDWIDTH=8; DECIMALS=0

              Smoking
        Smoke    None   Light  Medium   Heavy
        Staff
    S_Manager       4       2       3       2
    J_Manager       4       3       7       4
   S_Employee      25      10      12       4
   J_Employee      18      24      33      13
    Secretary      10       6       7       2

   9  CORANALYSIS [PRINT=roots,rowscores,colscores,rowinertia,colinertia; \
  10              METHOD=correspondence] Smoking

Correspondence analysis
=======================

Squared singular values
-----------------------

                   Roots     % Roots  Cumulative
                                         % roots
           1     0.07476       87.76       87.76
           2     0.01002       11.76       99.51
           3     0.00041        0.49      100.00

Row scores
----------

                   Dim. 1      Dim. 2      Dim. 3

    S_Manager      -0.241       1.936      -3.490
    J_Manager       0.947       2.431       1.657
   S_Employee      -1.392       0.107       0.254
   J_Employee       0.852      -0.577      -0.163
    Secretary      -0.735      -0.788       0.397
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Figure 6.13.1

Row inertias
------------

                   Dim. 1      Dim. 2      Dim. 3       Total  Proportion

    S_Manager     0.00025    0.002139  0.00028716     0.00267      0.0314
    J_Manager     0.00625    0.005521  0.00010595     0.01188      0.1395
   S_Employee     0.03828    0.000030  0.00000702     0.03831      0.4497
   J_Employee     0.02474    0.001520  0.00000498     0.02627      0.3084
    Secretary     0.00524    0.000807  0.00000846     0.00605      0.0711

Column scores
-------------

                   Dim. 1      Dim. 2      Dim. 3

         None     -1.4385      0.3047      0.0438
        Light      0.3637     -1.4094     -1.0817
       Medium      0.7180     -0.0735      1.2617
        Heavy      1.0744      1.9760     -1.2889

Column inertias
---------------

                   Dim. 1      Dim. 2      Dim. 3       Total  Proportion

         None     0.04889    0.000294   0.0000003     0.04919      0.5774
        Light     0.00231    0.004640   0.0001128     0.00706      0.0829
       Medium     0.01238    0.000017   0.0002115     0.01261      0.1480
        Heavy     0.01118    0.005066   0.0000890     0.01633      0.1917

  11  CABIPLOT    [COLSCALING=standard] LROWVARIABLES=Staff2

Figure 6.13.1 plots the scores in the first
and second dimensions, with the rows in
principal coordinates, and the columns in
standard coordinates (this corresponds to
Figure 9.2 of Greenacre 2007). The
CABIPLOT procedure, which was used to
produce the plot, is described in Section
6.13.3.
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6.13.2 The MCORANALYSIS procedure

MCORANALYSIS procedure
Does multiple correspondence analysis (A.I. Glaser).

Options
PRINT = string tokens Printed output from the analysis (roots, rowscores,

rowinertias, rowchisquare, rowmass,
rowquality, colscores, colinertias,
colchisquare, colmass, colquality); default * i.e.
no output

ROWMETHOD = string token Analysis method for rows i.e. units (indicator);
default indi

COLMETHOD = string token Analysis method for columns i.e. factors (adjusted,
burt, indicator); default adju

NROOTS = scalar Number of latent roots for printed output; default *
requests them all to be printed

%METHOD = string token How to represent proportions or %s in quality statistics
(permills, percentages, proportions); default
prop

NDIMENSIONS = scalar Number fo two dimensions for which quality statistics
are required; default 2

TOLERANCE = scalar Tolerance criteria for zero eigenvalues; default 10!6

Parameters
DATA = pointers Data to be analysed
ROOTS = diagonal matrices Saves the squared singular values from each analysis
ROWSCORES = matrices Saves the scores for the rows of the data
COLSCORES = matrices Saves the scores for the columns of the data
ROWINERTIAS = matrices Saves the total inertias for the rows of the data
COLINERTIAS = matrices Saves the total inertias for the columns of the data
ROWQUALITY = matrices Saves the quality statistics for rows of the data
COLQUALITY = matrices Saves the quality statistics for columns of the data
SUBINERTIAS = matrices Saves the inertias of the subtables of the Burt matrices
FREQUENCY = variates Frequencies for elements of DATA
SAVE = pointers Saves details of the analysis for use by CABIPLOT

Ordinary correspondence analysis is an ordination technique used to analyse relationships
between two categorical variables (6.13.1). Multiple correspondence analysis provides a similar
analysis for more than two variables.

The data consist of a list of factors, which are supplied in a pointer by the DATA parameter.
By default, each unit of the factors is assumed to represent a single observation. However, with
large data sets, you may want to use the FREQUENCY parameter to supply a variate defining
frequencies (or numbers of replications) for each unit. MCORANALYSIS uses the data to form an
indicator matrix D, with a row for each unit and a columns for each level of every factor. Each
row of the matrix has the value one in the columns corresponding to the levels of the factors that
occurred in that data unit and zero elsewhere. (This is equivalent to the design matrix that is used
in analysis of variance or regression.) The factors must not contain any missing values.

The relationships between the rows are assessed by doing an ordinary correspondence analysis
on the indicator matrix. This analysis also provides information on the relationships between the
columns (i.e. the factor levels). However, an alternative method for the columns does the
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correspondence analysis on the Burt matrix DND. A refinement of the use of the Burt matrix
discards eigenvalues below a threshold 1/Q, where Q is the number of DATA factors. This adjusts
for the inflation of the eigenvalues that arises from the within-factor diagonal blocks of the Burt
matrix; see Greenacre (2007) Chapter 19 for more details. The difference between the results
obtained using the indicator and Burt matrices is that the singular values obtained from the Burt
matrix will be the squares of those obtained from the indicator matrix. The adjusted method is
the default method for the columns, but the other two methods can be requested by using the
COLMETHOD option. With very large data sets it may be impractical to do the correspondence
analysis on the indicator matrix for rows. So MCORANALYSIS allows this to be suppressed by
setting option ROWMETHOD=*.

Printed output is controlled by the PRINT option with settings:
roots to print the roots (together with the roots expressed as

percentages and cumulative percentages),
rowscores to print the scores for the rows of the indicator matrix,
rowinertias to print the inertias for the rows of the indicator matrix,
rowmass to print the row masses,
rowchisquare to print the row chisquare distances,
rowquality to print the quality statistics for the rows,
colscores to print the scores for the columns of the indicator or Burt

matrix (as selected by the COLMETHOD option),
colinertias to print the inertias for the columns,
colmass to print the column masses,
colchisquare to print the column chisquare distances,
colquality to print the quality statistics for the columns, and
subinertias to print the inertias of the subtables of the Burt matrix.

The NROOTS option controls the printed output of roots, scores and inertias. By default, results
are printed for all the roots greater than the limit defined by the TOLERANCE option. However,
you can set the NROOTS option to specify a lesser number.

The quality settings produce tables with the following columns:
! the mass of the row (or column), in proportion to the total mass;
! the "quality" of the representation i.e. how much of the inertia of a row (or column) is

represented by the dimensions shown;
! the proportion of the total inertia of the row (or column) compared to the total inertia for all

rows (or columns);
! principal coordinates of the rows (or columns) in the specified dimension;
! the amount of inertia for each row (or column) in the specified dimension relative to the total

amount of inertia given by the value of the quality statistic ! hence the sum of a specific row
(or column) across the dimensions shown will be equal to the value given by the quality
statistic;

! the proportion of inertia explained by a row (or column) in a dimension, compared to the total
inertia in that dimension.

The representation of the columns of proportions is controlled by the %METHOD option; these can
be printed either as proportions (default), percentages or as permills i.e. tenths of a percent. The
NDIMENSIONS option specifies the number of dimensions for which to print quality statistics;
default 2.

Results from the analysis can be saved using the parameters ROOTS, ROWSCORES, COLSCORES,
ROWINERTIAS, COLINERTIAS, ROWQUALITY and COLQUALITY. The structures specified for
these parameters need not be declared in advance. The SAVE parameter can save full details of
the analysis for use by the CABIPLOT procedure.



836 6  Multivariate and cluster analysis

6.13.3 The CABIPLOT procedure

CABIPLOT procedure
Plots results from correspondence analysis or multiple correspondence analysis (A.I. Glaser).

Options
DIMENSIONS = scalars Two numbers specifying which axes of the ordinations

to plot; default 1,2
PLOT = string tokens Which scores to plot (rowscores, rowactive,

rowpassive, colscores, colactive, colpassive);
default rows, cols for correspondence analysis and
cols for multiple correspondence analysis

ROWSCALING = string token Scaling to use for row coordinates (principal,
standard, mass, sqrtmass); default prin

COLSCALING = string token Scaling to use for column coordinates (principal,
standard, mass, sqrtmass); default prin

COLOURMETHOD = string tokens Whether colour of symbol should show level of inertia
of rows or columns (rowinertia, colinertia);
default * 

SIZEMETHOD = string tokens Whether size of symbol should show row or column
masses (rowmass, colmass); default *

FACCOLOURS = text, variate or scalar
Specifies a colour or colours for the factors in a multiple
correspondence analysis; if this is unset, a different
colour is selected automatically for every factor

WINDOW = scalar Which graphical window to use; default 1
KEYWINDOW = scalar Graphical window for the key
SAVE = pointer Supplies results from a analysis by CORANALYSIS or

MCORANALYSIS; default uses the most recent analysis

Parameters
TITLE = texts Titles for the plot
LMROWVARIABLES = string tokens How to label the row scores (identifiers, labels,

none, numbers); default labe if LROWVARIABLES is
set, otherwise iden

LMCOLVARIABLES = string tokens How to label the column scores (identifiers,
labels, none, numbers); default labe if
LCOLVARIABLES is set, otherwise iden

LROWVARIABLES = texts Labels for row variables
LCOLVARIABLES = texts Labels for column variables

CABIPLOT provides a graphical representation of results from a correspondence analysis
procuced by procedure CORANALYSIS (6.13.1), or a multiple-correspondence analysis produced
by procedure MCORANALYSIS (6.13.2). By default CABIPLOT plots both sets of scores
(rowscores, colscores) for correspondence analysis or just columns scores for multiple
correspondence analysis, but you can set option PLOT to select which ones are required. For
correspondence analysis, you can also select settings that will plot only active or passive scores
(see 6.13.1).

The row scores are plotted as blue circles, while the column scores are plotted as red squares;
active scores have filled symbols, but passive scores are not filled. With multiple correspondence
analysis, the FACCOLOURS option can be used to define the colour to use for each factor, using
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either RGB values (in a variate or scalar) or the standard Genstat colour names (in a text); see
PEN for more details. If insufficient colours are specified, CABIPLOT will recycle the list. So you
can set FACCOLOURS to a scalar or to a text with a single string if you want to use the same
colour for all the factors. If FACCOLOURS is not set, CABIPLOT  will select a different colour for
each factor automatically.

The ROWSCALING and COLSCALING options are define the scaling to use for the row and
columns coordinates respectively, with settings:

principal plots principal coordinates (default),
standard plots standard coordinates,
mass plots standard coordinates multiplied by the row (or

column) mass,
sqrtmass plots standard coordinates multiplied by the square root of

the row (or column) mass.
These are based on the row and column scores obtained from CORANALYSIS or MCORANALYSIS.
Principal coordinates are scaled so that they have inertia equal to the square of the singular
values, whereas the weighted sum-of-squares of the standard coordinates are equal to one. At
least one of ROWSCALING or COLSCALING must be set to principal, which is the default for
both options. These default settings produce a plot, which is not a biplot, but which is used very
often to illustrate relationships between and amongst variables. The reasoning behind
multiplying the standard coordinates by the corresponding mass or its square root is to "pull" the
rarer categories to be closer to the origin; see Chapter 13 of Greenacre (2007).

The COLOURMETHOD option has settings rowinertia and colinertia that plot the row or
coordinates scores, respectively, at a different level of shading; the coordinates with higher
inertias are plotted with darker colours then those with low inertias. The shading is proportional
to the square root of the inertia relative to the row or column with the highest inertia. Symbols
representing passive points will appear completely transparent on the plot as they are perceived
to have zero inertia.

The SIZEMETHOD option similarly has settings rowmass and colmass that plot the row and
column coordinates, respectively, in sizes that depend on the row and column mass. The sizes
of the symbols are proportional to the square root of the mass compared to the square root of the
row or column with the highest mass, plus a constant to ensure all symbols are visible.

By default the first two dimensions are plotted, but you can specify other dimensions to be
plotted using the DIMENSIONS option.

The data used in MCORANALYSIS may have many repeated values (particularly in survey data).
To avoid replotting the same points in a large data set (i.e. with more than 500 units), only one
point is plotted and the label refers to the first point in the data set. If the COLOURMETHOD or
SIZEMETHOD options are set, these will use the mass and/or inertia of the labelled point.

The labels for the row and column scores can be set using the LMROWVARIABLES and
LMCOLVARIABLES parameters, by selecting one of the following settings:

identifiers uses the identifiers of the row or column scores,
labels expects labels to be supplied (in a text) using the

LROWVARIABLES or LCOLVARIABLES parameter,
none gives no labels, and
numbers uses the row or column numbers of the original matrix.

The default for both parameters is identifiers, unless LROWVARIABLES or LCOLVARIABLES
is set, when the corresponding default becomes labels. Note that the texts supplied by
LROWVARIABLES or LCOLVARIABLES must have the same number of values as number of the
rows or columns in the original data matrix, even if active or passive points are being omitted
from the plot. Similarly, if the setting numbers is chosen, these will refer to the corresponding
row or column of the original matrix, ignoring any any active or passive rows or columns, or
subsetting of rows or columns in CORANALYSIS.
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By default CABIPLOT uses the results from the most recent analysis from by CORANALYSIS
or MCORANALYSIS. However, you can display results from an earlier analysis by saving the
information about the analysis with the SAVE parameter of CORANALYSIS or MCORANALYSIS,
and then using this as the setting of the SAVE option of CABIPLOT.

In Example 6.13.1, the statement

CABIPLOT [COLSCALING=standard] LROWVARIABLES=Staff2

is used to plot the scores in the first and second dimensions of a correspondence analysis of data
from Table 9.1 of Greenacre (2007). The rows are plotted using principal coordinates (the
default for the ROWSCALING option), while the columns are plotted in standard coordinates. The
resulting graph, which corresponds to Figure 9.2 of Greenacre (2007), is shown in Figure 6.13.1.

6.14 Redundancy analysis: the RDA procedure

RDA procedure
Performs redundancy analysis (A.I. Glaser).

Options
PRINT = string tokens What to print (variance, loadings, roots,

evalues, evectors, speciesscores, sitescores,
fitsitescores, correlations,
fitcorrelations, weights); default vari, root

NROOTS = scalar Number of eigenvalues and eigenvectors to include in
output; default * takes all the non-zero eigenvalues

NORMALIZE = string tokens Whether to normalize the Y, X and/or Z variates to have
unit sums-of-squares before the analysis (x, y, z);
default x, z

SCALING = string token Scaling for species and site scores (none, both); default
none

TOLERANCE = scalar Tolerance for detecting non-zero eigenvalues; default
10!5

Parameters
Y = pointers Each pointer defines a set of response variates to be

modelled
X = pointers Explanatory variates or factors to use for each pointer of

y-variates
Z = pointers Conditioning variates or factors to remove ("partial

out") before the analysis
LRV = LRVs LRV structure from each analysis, storing the

eigenvectors, eigenvalues and total variance
SPECIESSCORES = matrices Saves the "species scores" from each analysis
SITESCORES = matrices Save the "site scores" from each analysis
FITSITESCORES = matrices Save the fitted "site scores" from each analysis
CORRELATIONS = matrices Saves the correlations between the site scores and the x-

variates
FITCORRELATIONS = matrices Saves the correlations between the fitted site scores and

the x-variates
WEIGHTS = matrices Save the weights of the x-variates in the formation of the

site scores
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SAVE = pointers Save structure which provides information for use in
CRBIPLOT and CRTRIPLOT

Redundancy analysis is the direct extension of multiple regression to the modelling of
multivariate response data (see Sections 11.1 and 11.3 of Legendre & Legendre 1998). The
response data are a set of y-variates, specified in a pointer using the Y parameter. The
explanatory variables, which may be either variates or factors, are specified in a pointer by the
X parameter. Similarly, the Z parameter can be used to specify conditioning variables, which
again may be either variates or factors; this gives partial RDA, in which the effect of the z-
variables is removed before performing RDA. This may be useful in cases where the effects of
the elements of Z on Y are well known, or we may wish to isolate the effect of an individual
explanatory variable (in which case we would place all but one of the explanatory variables in
Z). If any of the variate or factors in the Y, X or Z pointers are restricted, only the defined subset
of the units will be used in the analysis. If all elements of a variable are equal to zero, CCA
removes the variable.

The PRINT option controls printed output, with settings:
roots the eigenvalues of the fitted values;
evalues synonym of roots;
loadings the eigenvectors associated with each eigenvalue, also

known as the "species scores";
evectors synonym of loadings;
speciesscores the "species scores" from the analysis (synonym of

loadings and evectors);
variance the fraction of the variance of the y-variates associated

with each eigenvalue;
sitescores the "site scores" of the y-variates (i.e. the ordination of the

units in the y-variate space);
fitsitescores the fitted "site scores" of the fitted values of the y-variates

(i.e. the ordination of the units in the y-variate space);
correlations the correlation between the site scores and the x-variables;
fitcorrelations the correlation between the fitted site scores and the x-

variables;
weights the weights of the x-variables in the formation of the site

scores.
By default PRINT=roots,variance. The LRV, SPECIESSCORES, SITESCORES,
FITSITESCORES, CORRELATIONS, FITCORRELATIONS and WEIGHTS parameters allow this
information to be saved.

The NROOTS option specifies the number of eigenvalues and eigenvectors to include in the
output. By default all the non-zero eigenvalues are included. The NORMALIZE option controls
whether to normalize the Y variates, or X or Z variables to have unit sums-of-squares before the
analysis. The default is to normalize the x- and z-variables but not the y-variates. (Note: this
normalization of the x's and z's does not affect the variances accounted for in the y-variates.) The
SCALING option controls scaling for species and site scores. If both is selected, both species and
site scores are multiplied by the square root of their corresponding eigenvalues. For RDA
choosing none is equivalent to Scaling type 1 in Legendre & Legendre (1998), whilst both is
equivalent to Scaling type 2 in the same book. The TOLERANCE option specifies a threshold for
the detection of non-zero eigenvalues (default 10!5). An eigenvalue is taken to be non zero if is
it greater than TOLERANCE multiplied by the total variance.

The SAVE parameter allows you to save a pointer containing full details of the analysis. This
can then be used to generate plots using the CRBIPLOT or CRTRIPLOT procedures; see 6.16.2
and 6.16.3. The most recent save structure is kept automatically inside Genstat to use as a default
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for the SAVE options of CRBIPLOT and CRTRIPLOT. So, you need save the pointer explicitly
only if you want to display output from more than one analysis at a time.

Example 6.14 analyses data from Table 11.3 of Legendre & Legendre (1998). The data
simulate fish observations from a beach at 10 sites with different water depths and substrates.

Example 6.14

   2  " Legendre & Legendre (1998), page 590, Table 11.3."
   3  POINTER [VALUES=Depth_m,Coral,Sand] X
   4  VARIATE [NVALUES=10] Species[1...6],X[]; VALUES=\
   5          !(1, 0, 0, 11, 11, 9, 9, 7, 7, 5),\
   6          !(0, 0, 1, 4, 5, 6, 7, 8, 9, 10),\
   7          !(0, 0, 0, 0, 17, 0, 13, 0, 10, 0),\
   8          !(0, 0, 0, 0, 7, 0, 10, 0, 13, 0),\
   9          !(0, 0, 0, 8, 0, 6, 0, 4, 0, 2),\
  10          !(0, 0, 0, 1, 0, 2, 0, 3, 0, 4),\
  11          !(1, 2, 3, 4, 5, 6, 7, 8, 9, 10),\
  12          !(0, 0, 0, 0, 1, 0, 1, 0, 1, 0),\
  13          !(1, 1, 1, 0, 0, 0, 0, 0, 0, 0)
  14  " RDA for species 1-6 with Depth_m, Coral and Sand."
  15  RDA     [PRINT=variance,loadings,roots,speciesscores,sitescores,\
  16          fitsitescores,correlations,fitcorrelations] Species; X;\
  17          SAVE=SaveRDA

Variance
--------

                 Variance  Proportion        Rank
  Constrained      108.34      0.9597           3
Unconstrained        4.55      0.0403           4
        Total      112.89

Eigenvalues (with respect to total variance = 112.9)
----------------------------------------------------

Canonical

       74.52       24.94        8.88

Non-canonical

       4.189       0.314       0.037       0.008

Fraction of total variance
--------------------------

Canonical eigenvalues

      0.6601      0.2209      0.0786

Non-canonical eigenvalues

      0.0371      0.0028      0.0003      0.0001

Cumulative fraction of total variance
-------------------------------------

Canonical eigenvalues

      0.6601      0.8811      0.9597

Non-canonical eigenvalues

      0.9968      0.9996      0.9999      1.0000
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Eigenvectors (species scores)
-----------------------------

Canonical

                    RDA.1       RDA.2       RDA.3

   Species[1]     -0.3013     -0.6462      0.3994
   Species[2]     -0.2004     -0.4727     -0.7446
   Species[3]     -0.7410      0.1681      0.2569
   Species[4]     -0.5501      0.1684     -0.2611
   Species[5]      0.1159     -0.5059      0.2932
   Species[6]      0.0629     -0.2154     -0.2568

Non-canonical

                     PC.1        PC.2        PC.3        PC.4

   Species[1]     -0.0066     -0.4048      0.7071     -0.1669
   Species[2]      0.0066      0.4048      0.7071      0.1669
   Species[3]     -0.6890     -0.2667      0.0000      0.6739
   Species[4]      0.5880      0.2151      0.0000      0.6863
   Species[5]      0.3789     -0.6662      0.0000      0.1237
   Species[6]     -0.1894      0.3331      0.0000     -0.0619

Site scores
-----------

Canonical

                    RDA.1       RDA.2       RDA.3

            1       6.828       5.644       1.152
            2       7.129       6.290       0.753
            3       6.929       5.818       0.008
            4       4.004      -6.972       4.257
            5     -13.634       0.855       3.962
            6       4.037      -5.828       1.125
            7     -12.119       1.035      -0.137
            8       4.069      -4.685      -2.006
            9     -11.345       1.383      -3.979
           10       4.102      -3.541      -5.137

Non-canonical

                     PC.1        PC.2        PC.3        PC.4

            1      0.2471      1.1435      0.2357      0.0127
            2      0.0000      0.0000     -0.4714      0.0000
            3     -0.2471     -1.1435      0.2357     -0.0127
            4      2.1425     -0.2823      0.0000      0.0014
            5     -3.8092     -0.1457      0.0000      0.1036
            6      0.7142     -0.0941      0.0000      0.0005
            7      0.2297      0.0889      0.0000     -0.2246
            8     -0.7142      0.0941      0.0000     -0.0005
            9      3.5796      0.0568      0.0000      0.1210
           10     -2.1425      0.2823      0.0000     -0.0014

Fitted site scores
------------------

Canonical

                    RDA.1       RDA.2       RDA.3

            1       6.795       5.495       2.249
            2       6.962       5.917       0.638
            3       7.129       6.339      -0.973
            4       3.552      -6.523       4.394
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            5     -12.700       0.247       3.172
            6       3.886      -5.679       1.171
            7     -12.366       1.091      -0.051
            8       4.220      -4.834      -2.051
            9     -12.032       1.936      -3.273
           10       4.554      -3.990      -5.274

Non-canonical

                     PC.1        PC.2        PC.3        PC.4

            1       0.177       0.277      -7.307      -4.953
            2       0.430       1.826      -7.307      -4.773
            3       0.684       3.374      -7.307      -4.594
            4       1.084      -5.723       2.828      -5.015
            5      -3.397      -3.486       3.536      10.382
            6       1.591      -2.626       2.828      -4.656
            7      -2.890      -0.389       3.536      10.741
            8       2.098       0.471       2.828      -4.296
            9      -2.383       2.708       3.536      11.101
           10       2.606       3.567       2.828      -3.937

Correlations
------------

Correlations of environmental variables with site scores

                    RDA.1       RDA.2       RDA.3

      Depth_m     -0.4220     -0.5572     -0.6987
        Coral     -0.9871      0.1503     -0.0115
         Sand      0.5557      0.8148      0.1447

Correlations of environmental variables with fitted site scores

                    RDA.1       RDA.2       RDA.3

      Depth_m     -0.4227     -0.5591     -0.7133
        Coral     -0.9885      0.1508     -0.0118
         Sand      0.5565      0.8176      0.1477

6.15 Canonical correspondence analysis: the CCA procedure

CCA procedure
Performs canonical correspondence analysis (A.I. Glaser).

Options
PRINT = string tokens Controls printed output (variance, loadings, roots,

evalues, evectors, speciesscores, sitescores,
fitsitescores, correlations,
fitcorrelations); default vari, root

NROOTS = scalar Number of eigenvalues and eigenvectors to include in
output; default * takes all the non-zero eigenvalues

NORMALIZE = string tokens Whether to normalize the Y, X and/or Z variates to have
unit sums-of-squares before the analysis (x, y, z);
default x, z

SCALING = string tokens Whether to scale for species or site score (species, site);
default spec
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TOLERANCE = scalar Tolerance for detecting non-zero eigenvalues; default
10!5

Parameters
Y = pointers Each pointer defines a set of response variates to be

modelled
X = pointers Explanatory variates or factors to use for each pointer of

y-variates
Z = pointers Conditioning variates or factors to remove ("partial

out") before the analysis
LRV = LRVs LRV structure from each analysis, storing the

eigenvectors, eigenvalues and total variance
SPECIESSCORES = matrices Save the "species scores" from each analysis
SITESCORES = matrices Save the "site scores" from each analysis
FITSITESCORES = matrices Save the fitted "site scores" from each analysis
CORRELATIONS = matrices Saves the correlations between the site scores and the x-

variates
FITCORRELATIONS = matrices Saves the correlations between the fitted site scores and

the x-variates
SAVE = pointers Save structure which provides information for use in

CRBIPLOT and CRTRIPLOT

CCA performs canonical correspondence analysis and partial canonical correspondence analysis;
see Sections 11.2 and 11.3 of Legendre & Legendre (1998)

Canonical correspondence analysis is the canonical form of correspondence analysis. It is
similar to redundancy analysis (see RDA). However, in CCA, we apply weighted multiple
regression to a transformed data matrix with the fitted values subjected to correspondence
analysis.

The Y parameter specifies the response data as a pointer to a set of y-variates. Each variate
contains observations of numbers of a particular species at a set of sites (the same sites and in
the same order for each species). The explanatory variables, which may be either variates or
factors, are specified in a pointer by the X parameter. Similarly, the Z parameter can be used to
specify conditioning variables, which again may be either variates or factors. When a pointer of
z-variables is supplied, CCA performs a partial canonical correspondence analysis, in which the
effects of the z-variables are removed prior to the canonical correspondence analysis. This can
be useful when the effects of the elements of Z on Y are well known, or if we wish to isolate the
effect of an single explanatory variable (in which case we would place all but one of the
explanatory variables in Z). If any of the variate or factors in the Y, X or Z pointers are restricted,
only the defined subset of the units will be used in the analysis. If all elements of a variable are
equal to zero, CCA removes the variable.

The PRINT option controls printed output, with settings:
roots the eigenvalues of the fitted values;
evalues synonym of roots;
loadings the eigenvectors associated with each eigenvalue, also

known as the "species scores";
evectors synonym of loadings;
speciesscores the "species scores" from the analysis (synonym of

loadings and evectors);
variance the fraction of the variance of the y-variates associated

with each eigenvalue;
sitescores the "site scores" of the y-variates (i.e. the ordination of the
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units in the y-variate space);
fitsitescores the fitted "site scores" of the fitted values of the y-variates

(i.e. the ordination of the units in the y-variate space);
correlations the correlation between the site scores and the x-variables;
fitcorrelations the correlation between the fitted site scores and the x-

variables.
By default PRINT=roots,variance. The LRV, SPECIESSCORES, SITESCORES,
FITSITESCORES, CORRELATIONS and FITCORRELATIONS parameters allow this information
to be saved.

The NROOTS option specifies the number of eigenvalues and eigenvectors to include in the
output. By default all the non-zero eigenvalues are included. The NORMALIZE option controls
whether to normalize the Y variates, or X or Z variables to have unit sums-of-squares before the
analysis. The default is to normalize the x and z-variables but not the y-variates. (Note:
normalization of only the x's and z's does not affect the variances accounted for in the y-variates.)

The SCALING option controls which scores are scaled by CCA: either the species scores or the
site scores. The scaling is done by multiplying them by their corresponding eigenvalues.
Choosing 'site' is equivalent to Scaling type 1 in Legendre & Legendre (1998), whilst 'species'
is equivalent to their Scaling type 2.

The TOLERANCE option specifies a threshold for the detection of non-zero eigenvalues (default
10!5). An eigenvalue is taken to be non-zero if is it greater than TOLERANCE.

The SAVE parameter allows you to save a pointer containing full details of the analysis. This
can then be used to generate plots using the CRBIPLOT or CRTRIPLOT procedures. The most
recent save structure is kept automatically inside Genstat to use as a default for the SAVE options
of CRBIPLOT and CRTRIPLOT; see 6.16.2 and 6.16.3. So, you need save the pointer explicitly
only if you want to display output from more than one analysis at a time.

Example 6.15 analyses the full data set in Table 11.3 of Legendre & Legendre (1998),
originally introduced in Example 6.14.

Example 6.15

  18  " Define extra variables for CCA analysis."
  19  VARIATE [NVALUES=10] Species[7...9],Other; VALUES=\
  20          !(2, 5, 0, 6, 6, 10, 4, 6, 6, 0),\
  21          !(4, 6, 2, 2, 6, 1, 5, 6, 2, 1),\
  22          !(4, 1, 3, 0, 2, 4, 4, 4, 0, 3),\
  23          !(0, 0, 0, 1, 0, 1, 0, 1, 0, 1)
  24  POINTER [VALUES=Depth_m,Coral,Sand,Other] X
  25  " CCA of full data set."
  26  CCA     [PRINT=variance,loadings,roots,speciesscores,sitescores,\
  27          fitsitescores,correlations,fitcorrelations] Species; X;\
  28          SAVE=SaveCCA

Variance
--------

                 Variance  Proportion        Rank
  Constrained      0.6319      0.8058           3
Unconstrained      0.1523      0.1942           6
        Total      0.7842

Eigenvalues (with respect to total variance = 0.784)
----------------------------------------------------

Canonical

      0.3661      0.1869      0.0788

Non-canonical

     0.08229     0.03513     0.02333     0.00990     0.00122     0.00042
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Fraction of total variance
--------------------------

Canonical eigenvalues

      0.4669      0.2383      0.1005

Non-canonical eigenvalues

     0.10494     0.04481     0.02975     0.01263     0.00156     0.00053

Cumulative fraction of total variance
-------------------------------------

Canonical eigenvalues

      0.4669      0.7052      0.8058

Non-canonical eigenvalues

      0.9107      0.9555      0.9853      0.9979      0.9995      1.0000

Eigenvectors (species scores)
-----------------------------

Canonical

                  CCA.1     CCA.2     CCA.3

   Species[1]    0.1104    0.2824    0.2030
   Species[2]    0.1414    0.3035   -0.3954
   Species[3]   -1.0155    0.0958    0.1983
   Species[4]   -1.0362    0.1096   -0.2210
   Species[5]    1.0537    0.5372    0.4381
   Species[6]    0.9986    0.5740   -0.6799
   Species[7]    0.2552   -0.1782    0.2041
   Species[8]    0.1466   -0.8574    0.0152
   Species[9]    0.4137   -0.7079   -0.2157

Non-canonical

                   CA.1      CA.2      CA.3      CA.4      CA.5      CA.6

   Species[1]    0.0019    0.0822    0.0857   -0.0122   -0.0425   -0.0047
   Species[2]    0.1413    0.0269    0.1433    0.0430    0.0476    0.0023
   Species[3]    0.1048   -0.1300    0.0244    0.0465    0.0269   -0.0350
   Species[4]   -0.2236    0.2437   -0.0259   -0.0534   -0.0316   -0.0256
   Species[5]   -0.2235    0.3239    0.1246   -0.1193    0.0416    0.0382
   Species[6]    0.3900   -0.2991    0.3285    0.2122   -0.0830    0.0440
   Species[7]   -0.4334   -0.0707   -0.1882    0.1269    0.0045    0.0123
   Species[8]   -0.0528   -0.3545   -0.0417   -0.1990   -0.0021    0.0078
   Species[9]    0.6903    0.1484   -0.3343   -0.0063   -0.0036    0.0123

Site scores
-----------

Canonical

                  CCA.1     CCA.2     CCA.3

            1     0.711    -3.082    -0.220
            2     0.585    -3.007     0.947
            3     0.763    -3.153    -2.139
            4     1.112     1.072     1.875
            5    -0.979    -0.060     0.696
            6     1.043     0.459     0.640
            7    -0.954    -0.085    -0.133
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            8     0.947    -0.108    -0.526
            9    -1.148     0.490    -0.478
           10     1.033     1.035    -2.747

Non-canonical

                   CA.1      CA.2      CA.3      CA.4      CA.5      CA.6

            1    1.2453    1.0729   -0.5062    0.2441   -3.6316   -1.1631
            2   -2.6997   -2.1368    0.8135    0.4715    0.9084    1.3472
            3    3.1163    2.3066   -0.6989   -1.3906    4.8412   -0.5621
            4   -0.6664    1.1015    1.4352   -1.1062    0.0137    0.0372
            5    0.6126   -0.9830    0.3157    0.5741    0.3286   -0.8680
            6   -0.2872    0.5739   -1.4498    1.7017    0.3062    0.4421
            7    0.4214    0.1116   -0.3942   -0.6740   -0.3790    1.7473
            8    0.0057   -1.2627   -1.0657   -1.4633   -0.1545   -0.7781
            9   -1.1702    1.0060    0.0735    0.0860    0.0418   -0.9358
           10    1.2808   -0.3630    1.9865    1.0536   -0.2481    0.4632

Fitted site scores
------------------

Canonical

                  CCA.1     CCA.2     CCA.3

            1    0.6921   -3.0805    0.3287
            2    0.6646   -3.0621   -0.2302
            3    0.6370   -3.0438   -0.7892
            4    1.1089    0.5004    1.5561
            5   -0.9700    0.0655    1.1206
            6    1.0537    0.5372    0.4381
            7   -1.0252    0.1023    0.0026
            8    0.9986    0.5740   -0.6799
            9   -1.0803    0.1391   -1.1154
           10    0.9434    0.6107   -1.7979

Non-canonical

                   CA.1      CA.2      CA.3      CA.4      CA.5      CA.6

            1    1.2453    1.0729   -0.5062    0.2441   -3.6316   -1.1631
            2   -2.6997   -2.1368    0.8135    0.4715    0.9084    1.3472
            3    3.1163    2.3066   -0.6989   -1.3906    4.8412   -0.5621
            4   -0.6664    1.1015    1.4352   -1.1062    0.0137    0.0372
            5    0.6126   -0.9830    0.3157    0.5741    0.3286   -0.8680
            6   -0.2872    0.5739   -1.4498    1.7017    0.3062    0.4421
            7    0.4214    0.1116   -0.3942   -0.6740   -0.3790    1.7473
            8    0.0057   -1.2627   -1.0657   -1.4633   -0.1545   -0.7781
            9   -1.1702    1.0060    0.0735    0.0860    0.0418   -0.9358
           10    1.2808   -0.3630    1.9865    1.0536   -0.2481    0.4632

Correlations
------------

Correlations of environmental variables with site scores

                    CCA.1       CCA.2       CCA.3

      Depth_m     -0.1861      0.6019     -0.6581
        Coral     -0.9923      0.0919      0.0461
         Sand      0.2128     -0.9176     -0.0376
        Other      0.8796      0.4441     -0.0247

Correlations of environmental variables with fitted site scores

                    CCA.1       CCA.2       CCA.3
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      Depth_m     -0.1864      0.6403     -0.7452
        Coral     -0.9938      0.0978      0.0522
         Sand      0.2131     -0.9761     -0.0426
        Other      0.8809      0.4724     -0.0279

6.16 Biplots

6.16.1 The DBIPLOT procedure

DBIPLOT procedure
Plots a biplot from an analysis by PCP, CVA or PCO (A.I. Glaser).

Options
PLOT = string tokens Additional features for the plot (convexhull, means);

default * i.e. none
METHOD = string token Type of axes to plot (predictive, interpolative);

default pred
HORIZONTAL = identifer Which axis to make horizontal; default * i.e. none
PREDICTIONS = matrix Saves predicted values
GROUPS = factor Factor defining groupings of individuals for a PCP

biplot; default * i.e. none
LMINDIVIDUALS = string tokens How to label the individuals (labels, none, numbers,

unitlabels); default labe if LINDIVIDUALS is set,
otherwise unit

LMVARIABLES = string tokens How to label the variables (identifiers, labels,
none, numbers); default labe if LVARIABLES is set,
otherwise iden

LINDIVIDUALS = texts Labels for individuals (i.e. scores)
LVARIABLES = texts Labels for variables (i.e. biplot axes)
MULTIPLIER = scalar Value to multiply vector loadings; default * i.e.

determined automatically
TITLE = text Title for the plot; if this is unset, an appropriate title is

formed auomatically
WINDOW = scalar Which graphical window to use; default 1 when there

are groups, otherwise 3
KEYWINDOW = scalar Which graphical window to use for the key when there

are groupings of individuals (0 for none); default 2
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);
default clea

SIZEMULTIPLIER = scalar Multiplier used in the calculation of the size in which to
draw symbols and labels; default 1

SAVE = pointer Supplies results from an ordination analysis by  PCP,
CVA or PCO; default uses the most recent analysis

Parameters
VARIABLE = identifiers Axis variables
DISPLAY = string tokens Whether to show, hide or omit each axis (show, hide,

omit); default show
COLOUR = texts or scalars Colour to use to plot each axis
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DBIPLOT plots biplots displaying the results from a principal components, canonical variates or
principal coordinates analysis, performed by the PCP, CVA or PCO directives (6.2.1, 6.3.1 &
6.10.1). By default DBIPLOT uses the results from the most recent PCP, CVA or PCO, but you can
display results from an earlier analysis by saving the information with the SAVE parameter of
PCP, CVA or PCO, and then providing this to DBIPLOT using its own SAVE parameter.

Following the approach of Gower & Hand (1996), the biplot can be viewed as a multivariate
analogue of the scatterplot. The information is plotted on the plane defined by the first two
principal axes of the analysis (i.e. the first two principal components for a PCP, or the first two
canonical variates for a CVA). The default title of the biplot contains the percentage of variance
explained by the first and second dimension combined, whilst the title of the x- and y-axis shows
the amount of variation explained by the first and second dimension individually (you can
specify your own title using the TITLE option). The scores from the analysis are plotted, to show
the positions of the individual observations. More importantly, the plot contains an oblique
"axis" for each variable (its biplot axis) that allows you to see how each individual's projection
into this plane relates to its value for the variable concerned. The type of axis to be displayed
will depend on how you want to use the plot. The possibilities, selected by the setting of the
METHOD option, are as follows:

predictive plots predictive axes (default),
interpolative plots interpolative axes.

Predictive axes show the values of the variables that are predicted by the projection into 2-
dimensions that is defined for each point by the analysis; essentially this is done by taking an
orthogonal projection of the point onto each the biplot axis. Interpolative axes show the values
of the variables that would lead to a point being placed at the position of the selected point on
the graph. So here the point is being predicted by the variables, rather than the variables by the
point. This is done by taking the sum of a set of vectors, one in the direction of each variable,
with lengths equal to the values of the variables for that point.

The axes are defined from the loadings from the analysis. With a PCP analysis (6.2.1) or a PCO
analysis based on a data matrix (6.10.1), the directions of the axes are given by loadings
calculated in the analysis (but the positions of the scale points on the axes differ between the two
types of axis). For a CVA analysis (6.3.1), the loadings define the interpolative axes for the
biplots, and their inverses define the predictive axes. However, no loadings are available for PCO
analyses based a dissimilarity matrices, and so no axes can be plotted. For further explanation,
and details of the underlying mathematics, see Gower & Hand (1996).

Arrows are plotted on the axes to represent their loadings (or inverse loadings); the loadings
show the approximate contribution of each variable in the first two dimensions. If the loadings
are all close to the origin, they are multiplied by a scalar to make them easier to read. By default,
the multiplier is calculated automatically, but you can supply a specific value by using the
MULTIPLIER option. To save the automatic value, you can set MULTIPLIER to a scalar
containing a missing value.

In general, each axis will be at an angle to the traditional x-axis. However, you can arrange
for one of the biplot axes to be in the direction of the x-axis, by setting the HORIZONTAL option
to the identifier of its variate. It should be noted that this operation is purely cosmetic and, if
HORIZONTAL is not set, then the direction of the x-axis will represent the direction of maximum
variance.

By default all the axes are plotted, each in a colour chosen automatically by DBIPLOT.
However, there are parameters to allow you to modify this for any axis. The VARIABLE
parameter specifies the axis to change (using its identifier). The DISPLAY parameter indicates
whether the axis is to be shown, hidden or omitted altogether. (The Graphics Viewer of Genstat
for Windows allows you to toggle displayed items to become hidden, or hidden items to become
displayed.) The COLOUR parameter defines the colour to be used, by supplying either a single-
valued text with the name of the colour or a scalar containing the RGB value for the colour (see
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the PEN directive for details).
The scores from PCP analyses are plotted to identify the position of each individual as a red

circle, unless you use the GROUPS option to define groupings of the individuals (the groups are
then plotted in different colours). With a CVA analysis, groupings are automatically defined from
the groups in the analysis itself.

Hotpoints are defined at the point for each of individual to allow you to view the values
corresponding to that individual on the axes. In the Graphics viewer in Genstat for Windows, you
can click on the hotpoint symbol and then click on any score to see how that point is represented
on each of the axes. In addition, whatever axes are defined, you can use the the PREDICTIONS
option to save a matrix with the predicted values of the individuals for all the variables.

The PLOT option allows you to illustrate other aspects of the scores.
convexhull draws a convex hull around the points (or the points in

each group if groupings have been defined).
means plots the group means for a CVA, or the group means for a

PCP (if the GROUPS option is set), or the overall mean for
a PCO biplot. (In other situations the centroid is the origin,
which is where all the oblique axes cross, so it would
clutter up an already congested plot.)

The types of label for the scores and loadings can be set using the LMINDIVIDUALS and
LMVARIABLES parameters respectively, by selecting one of the following settings:

identifiers uses the identifiers of the variables,
labels expects labels to be supplied (in a text) using the

LINDIVIDUALS or LVARIABLES parameter,
none gives no labels, and
numbers uses the row or column numbers of the scores and

variables.
If LINDIVIDUALS is set, the default for LMINDIVIDUALS is defined to be labels. Otherwise,
if LMINDIVIDUALS is not set, DIBPLOT will use the unit labels of the original data variates or
row labels of a data matrix if these are available, or the unit or row numbers if none have been
defined. The default for LMVARIABLES is identifiers, unless LVARIABLES is set it is defined
to be labels.

The WINDOW and KEYWINDOW options specify the windows to use for the plot and its key,
respectively, in the usual way. The SCREEN option controls whether the graphical display is
cleared before the biplot is plotted.

The SIZEMULTIPLIER option allows you to modify the sizes of the symbols and labels in the
plot. The default of 0.75 works well under most circumstances, but you might want to specify
a smaller value to prevent overlapping, when there are large numbers of points or axes to be
displayed.
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Figure 6.16.1

Figure 6.16.1 shows a predictive
biplot, plotted following the
principal components analysis in
Example 6.2.1 by giving the
command

DIPLOT

The figure shows the biplot
displayed in the Graphics Viewer
of Genstat for Windows. Notice
that the hotpoint tool has been
activated (by clicking on the button
on the right-hand side of the menu
bar), and a click has been made on
point 10 to show its predicted
values on the biplot axes.

6.16.2 The CRBIPLOT procedure

CRBIPLOT procedure
Plots correlation or distance biplots after RDA, or ranking biplots after CCA (A.I. Glaser).

Options
DIMENSIONS = scalars Two numbers specifying which axes of the ordinations

to plot; default 1,2
PLOT = string token Whether to plot site or species scores (sitescores,

speciesscores); default spec
WINDOW = scalar Which graphical window to use; default 1
KEYWINDOW = scalar Which graphical window to use for the key (zero for

none); default 2
SAVE = pointer Supplies results from an ordination analysis by CCA or

RDA; default uses the most recent analysis

Parameters
X1 = scalars, variates or texts First explanatory variable to plot; default 1
X2 = scalars, variates or texts Second explanatory variable to plot; default * i.e. none
LMXVARIABLES = string tokens How to label the x-variables (identifiers, labels,

none, numbers); default labe if LXVARIABLES is set,
otherwise iden

LMSPECIES = string tokens How to label the species scores (identifiers,
labels, none, numbers); default labe if LSPECIES is
set, otherwise numb

LMSITES = string tokens How to label the site scores (labels, none, numbers);
default labe if LSITES is set, otherwise numb

LXVARIABLES = texts Labels for variables
LSPECIES = texts Labels for species scores
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Figure 6.16.2a

LSITES = texts Labels for site scores

CRBIPLOT provides biplot representations of the results from RDA (6.14) or CCA (6.15), showing
projections of species or site scores onto one or two environmental variables. By default
CRBIPLOT plots the species scores, but you can set option PLOT=sitescores to plot site scores
instead.
CRBIPLOT usually plots the results from the most recent RDA or CCA analysis, but you can

display results from an earlier analysis by saving the information about the analysis with the
SAVE parameter of RDA or CCA, and then providing this to CRBIPLOT using its own SAVE option.

The type of biplot depends on the scaling method used in the analysis. In RDA, Scaling Type
1 (i.e. no scaling) produces a distance biplot, while Scaling Type 2 (which scales both species
and site scores) gives a correlation biplot. Similarly, for CCA, Scaling Type 1 (species scaling)
produces a biplot with the sites at the centroids of the species, and Scaling Type 2 (site scaling)
plots the species at the centroids of the site.

A distance biplot has the following features:
! distances among elements of Y show approximations of their Euclidean distances in

multidimensional space;
! when an element of Y is projected at right angles onto a variable this approximates the

position of the object on that variable;
! since the eigenvectors have length one, the length of a projection of an element of Y onto

a variable shows its contribution to the formation of that space;
! the angle amongst variables is meaningless.
Figure 6.16.2a shows a distance biplot from
the RDA analysis in 6.14, produced by the
statement

CRBIPLOT [SAVE=SaveRDA]

A correlation biplot has the following

features:
! distances among elements of Y are

not approximations of the Euclidean
distances between objects in
multidimensional space (so the
distance biplot is preferable if you
want to interpret relationships
amongst the elements of Y);

! when an element of Y is projected at
right angles onto a variable this
approximates the position of the
object on that variable;

! the length of a projection of an
element of Y onto a variable shows
its contribution to the formation of
that space;

! the angles between variables approximate their correlation.
In addition when we carry out CCA Scaling Type 1 (site scaling):

! distances among sites show approximations in reduced space of their chi-square distances;
! the sites are at the centroids of the species, and the centroids are calculated using weights

equal to the relative frequencies of the species (see Makarenkov & Legendre 2002);
! the position of an object on an explanatory variable can be obtained by projecting the

objects at right angle on the variable. This scaling is appropriate when the primary interest
is the ordination of sites.
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Figure 6.16.2b

With CCA Scaling Type 2 (species
scaling):
! it is the distances among species in

r e d u c e d  s p a c e  t h a t  a r e
approximations of their chi-square
distances;

! the species are at the centroids of the
sites in the graph;

! any species scores that lie close to
the point  representing an
explanatory variable are more likely
to be found with higher frequency at
that site than others further away (or
more likely to be in State '1' with
binary data).

This scaling is appropriate when the
primary interest is the relationship between
species. Figure 6.16.2b shows an example,
from the CCA analysis in 6.15, produced by
the statement

CRBIPLOT [SAVE=SaveRDA]

The explanatory variables to display can be specified using the X1 and X2 parameters. If the

variable is a variate, you can set them to its identifier. Alternatively, if it is either a variate or a
variable representing one of the levels of a factor, you can set them to the position of the variable
in the list of variables involved in the analysis. Finally, if the variable represents the level of a
factor, you can set them to a text containing the label used for the variable in the analysis. (You
can see the labels by looking at the row labels of the matrix showing the correlations between
the environmental variables and the site scores; see Examples 6.14 and 6.15). The DIMENSIONS
option lists the numbers of the two canonical axes to plot; default 1,2.

The labels for the species scores, site scores and x-variable(s) can be set using the
LMSPECIES, LMSITES and LMXVARIABLES parameters respectively, by selecting one of the
following settings:

identifiers uses the identifiers of the X variates with LMXVARIABLES,
or of the Y variates with LMSPECIES (not available with
LMSITES),

labels expects labels to be supplied (in a text) using the
LSPECIES, LSITES or LXVARIABLES parameter,

none gives no labels, and
numbers uses the column numbers of X and Y.

T h e  d e f a u l t s  a r e  LMSPECIES=numbers ,  LMSITES=numbers  a n d
LMXVARIABLES=identifiers, unless LSPECIES, LSITES or LXVARIABLES is set when the
corresponding default becomes labels.

6.16.3 The CRTRIPLOT procedure

CRTRIPLOT procedure
Plots ordination biplots or triplots after CCA or RDA (A.I. Glaser).

Options
DIMENSIONS = scalars Which dimensions of the ordinations to display; default
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1,2
PLOT = string token What to plot (sitescores, speciesscores,

xvariables); default spec, site, xvar
DGROUPS = string token Features to plot for the XGROUPS variate (ellipse,

hull, lines, spider); default * i.e. none
DBINARY = string token What to plot for binary variables (biplot, centroid);

default bipl
MULTIPLIER = scalar Value to multiply species and environmental variables

scores by when plotting RDA; default *, i.e. none
chosen

WINDOW = scalar Which graphical window to use; default 1
KEYWINDOW = scalar Which graphical window to use for the key (zero for

none); default 2
SAVE = pointer Supplies results from an ordination analysis by CCA or

RDA; default uses the most recent analysis

Parameters
LMXVARIABLES = string tokens How to label the x-variables (identifiers, labels,

none, numbers); default labe if LXVARIABLES is set,
otherwise iden

LMSPECIES = string tokens How to label the species scores (identifiers,
labels, none, numbers); default labe if LSPECIES is
set, otherwise numb

LMSITES = string tokens How to label the site scores (labels, none, numbers);
default labe if LSITES is set, otherwise numb

LXVARIABLES = texts Labels for variables
LSPECIES = texts Labels for species scores
LSITES = texts Labels for site scores
XGROUPS = variates, factors or scalars

X-variate to generate grouping information to appear on
the plot (see the DGROUPS option)

CRTRIPLOT plots ordination biplots or triplots following an analysis from either the RDA (6.14)
or CCA (6.15) procedures. By default it uses the results from the most recent RDA or CCA, but you
can display results from an earlier analysis by saving the information about the analysis with the
SAVE parameter of CCA or RDA, and then providing this to CRTRIPLOT using its own SAVE
option.

An ordination biplot displays the site scores, species scores and biplot scores of environmental
variables in a two or three dimensional plot. The site scores are plotted as crosses, the species
scores are plotted as dashed arrows. The biplot scores of non-binary variables are represented
as full lines. The DBINARY option controls how any binary variables are plotted: they can be
represented either by triangles plotted at the centroid of the site scores associated with the value
'1', or as arrows showing the biplot scores.

The DIMENSIONS option lists the dimensions of the ordination that you want to use. You can
list either two or three of these. The default is a two dimensional plot of dimensions 1 and 2. The
PLOT option allows you to control what results are plotted, using the following settings:

sitescores sites scores,
speciesscores species scores,
xvariables biplot scores of the environmental variables.

However, if any of the specified DIMENSIONS is higher than the number of canonical axes, the
biplot scores of the environmental variables will not be plotted.
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Figure 6.16.3a Figure 6.16.3b

In RDA plots, the species scores and biplot scores of environmental variables are usually much
smaller than the site scores. So their values are multiplied by a scalar to make them easier to
read. The value is set by the procedure and displayed in the output, but you can set your own
multiplier by using the MULTIPLIER option.

You can display additional information for one of the explanatory variables by setting the
XGROUPS option either to the identifier of the relevant variate or factor, or to a scalar containing
its position in the X pointer (see the X parameter of CCA and RDA). The information that appears
is controlled by the DGROUPS option, with settings:

ellipse draws an ellipse showing an approximate 95% confidence
interval for the group centroid (2-dimensional plots only),

hull draws an enclosing convex hull around the species scores
by XGROUPS (2-dimensional plots only),

lines links the species scores by XGROUPS, and
spider draws lines from the group centroid to each site score.

The group centroid is the (weighted) group mean of the site scores.
The labels for the species scores, site scores and x-variable(s) can be set using the

LMSPECIES, LMSITES and LMXVARIABLES parameters respectively, by selecting one of the
following settings:

identifiers uses the identifiers of the X and Y variates,
labels expects labels to be supplied (in a text) using the

LSPECIES, LSITES or LXVARIABLES parameter,
none gives no labels, and
numbers uses the column numbers of X and Y.

T h e  d e f a u l t s  a r e  LMSPECIES=numbers ,  LMSITES=numbers  a n d
LMXVARIABLES=identifiers, unless LSPECIES, LSITES or LXVARIABLES is set when the
corresponding default becomes labels.

Figures 6.16.3a and 6.16.3b show plots from the RDA and CCA analyses in 6.14 and 6.15,
respectively. These were produced by the statements

CRTRIPLOT [SAVE=SaveRDA]
CRTRIPLOT [SAVE=SaveCCA]
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6.17 Analysis of skew-symmetry: the SKEWSYMMETRY procedure

SKEWSYMMETRY procedure
Provides an analysis of skew-symmetry for an asymmetric matrix (P.G.N. Digby).

Option
PRINT = string tokens Printed output from the analysis (roots, scores);

default * i.e. no output

Parameters
DATA = matrices Asymmetric (square) matrices to be analysed
ROOTS = diagonal matrices Stores the squared singular values from the analysis; the

structure has one value for each plane fitted in the
analysis (e.g. if the DATA matrix has 11 rows and
columns, the ROOTS diagonal matrix will have 5 values)

SCORES = matrices Stores the coordinates of the points from the analysis;
each matrix has the same number of rows as the
corresponding DATA matrix, and has 2 columns for each
plane fitted in the analysis (e.g. if the DATA matrix has
11 rows and columns, the SCORES matrix will have 11
rows and 10 columns)

Procedure SKEWSYMM provides the canonical analysis of skew-symmetry described by Gower
(1977). The input to the procedure, specified by the parameter DATA, is a (square) asymmetric
matrix of associations. The rows and columns of the matrix usually represent the same set of
objects, but in different modes. For example, with migration data, the rows may represent the
Countries or States being departed from, and the columns the same locations but being arrived
at. The DATA matrix must not contain any missing values.

If A is the asymmetric matrix of associations, then S = A ! AN is skew-symmetric; this matrix
is analysed using a singular value decomposition, followed by a reflection and rotation, to
provide a set of roots and scores. The scores are coordinates for points representing the entities
labelling the rows or columns of the DATA matrix. In pairs, these coordinates give positions on
a series of planes, also called bimensions. So there is an even number of coordinates for each
point; if the DATA matrix has an odd number of rows/columns, there will be one fewer coordinate
than the number of rows or columns of the DATA matrix. The roots give the amount of (squared)
skew-symmetry explained in each pair of dimensions, allowing the "importance" of each plane
to be assessed.

The results are interpreted in terms of the areas of triangles. The skew symmetry between the
entities in rows (or columns) p and q is proportional to the area of the triangle OPQ, where O
is the origin, and P and Q are the points representing p and q respectively. (For further details
see either Gower 1977 or Digby & Kempton 1987.) Within each plane the coordinates are
arranged so that their centroid is at (0,y), for y>=0, and so that positive row-to-column skew
symmetry is represented in a clockwise direction. (Note that in planes other than the first it is
residual skew symmetry, after fitting the preceding planes, that is being modelled).

Printed output is controlled by the strings listed for the PRINT option: roots prints the roots
(also the roots expressed as percentages and cumulative percentages) and scores prints the
scores. Results from the analysis can be saved using the parameters ROOTS and SCORES. The
structures specified for these parameters need not be declared in advance. Column labels are
provided automatically for the SCORES matrix, but any row labels (useful to identify the entities)
are left unchanged.
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Example 6.17 analyses some data from Table 6.7 of Digby & Kempton (1987). Figures 6.17a
and 6.17b plot the first two axes of skew symmetry.

Example 6.17

   2  TEXT   [VALUES=Bare,Lichens,Grasses,Erica,'E/C',Calluna,'C/M', \
   3         Mosses,'C/A','Arctost.'] Vegstate
   4  &      [VALUES=B,L,G,E,EC,C,CM,M,CA,A] Labels
   5  MATRIX [ROWS=Vegstate; COLUMNS=Labels] Heath,Coords; VALUES= \
   6    !(15,18,47,15, 5, 1, 1, 1, 5, 3,  0,11,17,27, 0, 8, 1, 6, 3,14,\
   7       0, 0, 5,20, 5, 8, 1, 3, 0, 8,  0, 1, 0,10, 4,21, 3, 7, 0, 0,\
   8       0, 0, 0, 5,10, 5, 4, 0, 5, 0,  4, 1, 0, 7, 2,18,11, 1, 1, 3,\
   9       0, 3, 1, 0, 0, 0,101,29,16,3,  0, 0, 0, 0, 0, 3, 7,17, 0, 5,\
  10       0, 0, 0, 1, 0, 1, 0, 0, 6, 9,  0, 0, 0,10, 0,21, 0, 2, 5, 7)
  11  PRINT  Heath; FIELDWIDTH=6; DECIMALS=0

              Heath
       Labels     B     L     G     E    EC     C    CM     M    CA     A
     Vegstate
         Bare    15    18    47    15     5     1     1     1     5     3
      Lichens     0    11    17    27     0     8     1     6     3    14
      Grasses     0     0     5    20     5     8     1     3     0     8
        Erica     0     1     0    10     4    21     3     7     0     0
          E/C     0     0     0     5    10     5     4     0     5     0
      Calluna     4     1     0     7     2    18    11     1     1     3
          C/M     0     3     1     0     0     0   101    29    16     3
       Mosses     0     0     0     0     0     3     7    17     0     5
          C/A     0     0     0     1     0     1     0     0     6     9
     Arctost.     0     0     0    10     0    21     0     2     5     7

  12   " Use SKEWSYMM, saving SCORES, printing roots only "
  13  SKEWSYMM  [PRINT=roots] Heath; SCORES=Coords

Canonical analysis of Skew-Symmetry
===================================

Squared singular values for each plane
--------------------------------------

                 Sk_Roots      %Roots    Cum%Root

            1        9605       76.50       76.50
            2        2095       16.69       93.19
            3         773        6.16       99.35
            4          81        0.64       99.99
            5           1        0.01      100.00

  14  CALCULATE Score[1...4] = Coords$[*; 1...4]
  15  FRAME  3; SCALING=xyequal
  16  XAXIS  5,6; LOWER=-6.25,-2.75; UPPER=(5.25)2; YORIGIN=0
  17  YAXIS  5,6; LOWER=-3.25,-2.5; UPPER=8.25,5.5; XORIGIN=0
  18  PEN    3; SYMBOLS=0; LABELS=Vegstate; SIZE=1.25
  19  XAXIS  3; LOWER=-6.25; UPPER=5.25; YORIGIN=0
  20  YAXIS  3; LOWER=-3.25; UPPER=8.25; XORIGIN=0
  21  DGRAPH [TITLE='Skew-symmetry: first plane'; WINDOW=3; \
  22         KEYWINDOW=0] Score[2]; Score[1]; PEN=3
  23  XAXIS  3; LOWER=-2.75; UPPER=5.25; YORIGIN=0
  24  YAXIS  3; LOWER=-2.5; UPPER=5.5; XORIGIN=0
  25  DGRAPH [TITLE='Skew-symmetry: second plane'; WINDOW=3; \
  26         KEYWINDOW=0] Score[4]; Score[3]; PEN=3
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Figure 6.17a Figure 6.17b

6.18 Procrustes rotation

Multivariate analyses often give the coordinates of a set of points in some multidimensional
space. Typically these are obtained so that certain features of the underlying data are represented
by the distances between the points in the multidimensional space. One example is principal
components analysis, where the distance amongst the principal component scores represents the
Pythagorean distances between the values in the data matrix. Another example is canonical
variates analysis, where the distance between the canonical variate scores for the means is the
Mahalanobis distance between the groups. The distances amongst a set of points do not change
if the origin of the coordinate system is shifted, nor do they change if the axes of the coordinate
system are rotated.

Suppose that two sets of points are obtained for the same set of objects but with respect to
different coordinate systems. For example, two sets of data concerning the same set of objects
may be analysed using principal components analysis to give two sets of principal component
scores. Alternatively, one set of data may be analysed using two different methods, again giving
two sets of points for the same set of objects. The question that now arises is: can the two sets
of points be related to each other without disturbing the relationships contained inside the sets?
Since the properties of distance are unchanged by a shift of origin or a rotation of the axes, this
question is equivalent to asking whether the coordinate system for one set of points can be
shifted and rotated so that they match, as well as possible, the coordinates of the other set of
points.

Procrustes rotation, of which there are several variants (Gower 1975b, 1985a), addresses this
problem; orthogonal Procrustes rotation is the method most commonly used, and is provided by
the ROTATE directive. Suppose that there are two sets of coordinates for n points in r dimensions
contained in the n×r matrices X and Y. The X-set is arbitrarily supposed to be a fixed
configuration, and the Y-configuration is to be shifted and rotated so that it best matches the X-
set. Here best means minimizing the sum of the squared distances between the points in the X-set
and the matching shifted and rotated points in the Y-set. The best translation (shift of origin)
makes the centroids for the two sets of points coincide; this is easily done by translating both sets
of points so that their centroids are at the origin. After translation, to find the best rotation
involves doing a singular value decomposition (see, for example, Digby & Kempton 1987).

After translation and rotation the goodness of fit can be assessed by the residual sum of
squares, which is the sum of squared distances between each X-point and the corresponding Y-
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point, after translation and rotation. Sometimes the relationships contained inside X and inside
Y are similar but are expressed on different scales. You might then want the coordinates in the
Y-set to be stretched or contracted by a scaling factor; this can be estimated by least squares. But
least-squares scaling should not be used if X and Y are known to be on comparable scales: for
example, they may both have come from canonical variates analysis and thus express
Mahalanobis distance.

When you cannot say which configuration of points is the fixed set, you might want to know
about the results of both Procrustes rotations. The best translation remains the same: both
configurations of points are translated so that their centroids coincide, typically at the origin. If
the best rotation of Y to X is given by the orthogonal matrix H, then the best rotation of X to Y
is the transpose of H. If least-squares scaling is not used, the two residual sums of squares will
be the same, unless there is a reflection that has been suppressed. However, if scaling is used,
then in general these residuals will differ; you can overcome this by arranging that the two
configurations of points, after translation, have the same sum of squares: a convenient value is
unity. This initial scaling is particularly desirable when several configurations are to be
compared pair by pair.

In general, the best rotation of Y to X may contain a reflection. Usually this is acceptable;
however, you may sometimes want to stipulate that the rotation should be a pure rotation and not
contain any reflection (Gower 1975a).

Above we have assumed that the two matrices of coordinates have the same number of
columns: that is, that the dimensionalities of the two multidimensional spaces are the same. If
they differ, Genstat pads out the smaller matrix with columns of zero values, so that it matches
the larger.

6.18.1 The ROTATE directive

ROTATE directive
Does a Procrustes rotation of one configuration of points to fit another.

Options
PRINT = string tokens Printed output required (rotations, coordinates,

residuals, sums); default * i.e. no printing
SCALING = string token Whether or not isotropic scaling is allowed (yes, no);

default no
STANDARDIZE = string tokens Whether to centre the configurations (at the origin),

and/or to normalize them (to unit sum of squares) prior
to rotation (centre, normalize); default cent,norm

SUPPRESSREFLECTION = string token
Whether to suppress reflection (yes, no); default no

Parameters
XINPUT = matrices Inputs the fixed configuration
YINPUT = matrices Inputs the configuration to be fitted
XOUTPUT = matrices To store the (standardized) fixed configuration
YOUTPUT = matrices To store the fitted configuration
ROTATION = matrices To store the rotation matrix
RESIDUALS = matrices or variates To store distances between the (standardized) fixed and

fitted configurations
RSS = scalars To store the residual sum of squares
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The ROTATE directive provides orthogonal Procrustes rotation. You must set the parameters
XINPUT and YINPUT, which specify respectively the fixed configuration and the configuration
that you want to be translated and rotated; these are called X and Y above. The other parameters
are used for saving results from the analysis. For X and Y to refer to the same set of objects they
must have the same number of rows, and each object must be represented by the same row in
both X and Y. If the XINPUT matrix is n×p and the YINPUT matrix is n×q, Genstat does the
analysis using matrices that are n×r, where r is max(p, q). The smaller matrix is expanded with
columns of zeros, as explained above.

The PRINT option specifies which results you want to print; the settings are:
coordinates specifies that the fixed and fitted configurations are to be

printed; note that the fixed configuration is printed after
any standardization (see below), and the fitted
configuration is printed after standardization and rotation.

residuals prints the residual distances of the points in the fixed
configuration from the fitted points; this is after any
standardization and rotation.

rotations prints the orthogonal rotation matrix.
sums prints an analysis of variance giving the sums of squares

of each configuration, and the residual sum of squares; if
scaling is used, the scaling factor is also printed.

The three other options of the ROTATE directive control the form of analysis. The SCALING
option specifies whether you want least-squares scaling to be applied to the standardized YINPUT
matrix when finding the best fit to the fixed configuration. You should set SCALING=yes if you
want scaling; Genstat will then print the least-squares scaling factor with the analysis of
variance. By default there is no scaling.

The STANDARDIZE option specifies what preliminary standardization is to be applied to the
XINPUT and YINPUT matrices. It has settings:

centre centre the matrices to have zero column means;

normalize normalize the matrices to unit sums of squares.

The default is STANDARDIZE=centre,normalize. The initial centring ensures that the
configurations are translated to have a common centroid, and thus automatically provides the
best translation of Y to match X. The normalization arranges that the residual sum of squares
from rotating X to Y is the same as that for rotating Y to X. Switching off both centring and
standardization is rarely advisable, but can be requested by putting STANDARDIZE=*.

With some methods of multivariate analysis, for example the analysis of skew-symmetry
(6.17), the direction of travel about the origin is important. It is then undesirable to perform a
reflection as part of the rotation: the SUPPRESSREFLECTION option can be used to prevent this.
The default setting is no, which allows reflection to take place.

As an example, we again consider the galaxies discussed in 6.3. Figures 6.10.1 and 6.12a show
very similar relationships amongst the galaxy types even though they were produced by different
methods, principal coordinates analysis and non-metric multidimensional scaling respectively.
Indeed the pictures are almost identical, apart from one being the mirror image of the other.
Example 6.18.1 uses Procrustes rotation to assess their similarity. Whereas the scales in Figure
6.10.1 bear a relation to the actual distances input to PCO, those in Figure 6.12a need not because
in the MDS solution it is only the order of the distance values that is important. So the scaling
option of the ROTATE command (lines 11-12) has been set to yes: this also ensures that the sum
of squares of the fitted configuration plus that of the residual will equal the sum of squares of
the fixed configuration. To assist in the comparison of the two analyses in Example 6.18.1 no
normalization is done, and since both input configurations are already centred any
standardization has been suppressed. The rotation matrix for a simple reflection would take the
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Figure 6.18.1

form  and that from the ROTATE command is very similar to it, although there is also

a slight rotation of arccos(0.99888), that is, about 2.7 degrees. None of the residuals is especially
large or small: the second smallest is for the last galaxy type, the Irregulars, which may be
because their points are remote from the points for the other galaxy types.

The least-squares scaling factor of
0.9753 is the amount by which the MDS
solution has been scaled, after which
the sum of squares of its points from
the origin is 9.51. The sum of the
squared residuals is 0.21, which is also
the difference between the sums of
squares of the fixed and fitted
configurations. Lines 13-17 extract the
fixed and fitted coordinates and plot
them as Figure 6.18.1, with the larger
symbols being used for the fixed points
from the PCO analysis. Note that option
SCALING=xyequal is used in the
FRAME statement (line 14) ! as is
appropriate for output from many
multivariate analyses.

The second Procrustes rotation in
Example 6.18.1 (lines 18-19) is similar
to the first, except that reflection has
been suppressed. Whilst there is no
statistical reason to do this with these
configurations of points, it does illustrate what can happen if reflections are suppressed
unnecessarily. It is obvious with this example, where only two dimensions are being considered,
but with coordinates in more dimensions the effect may be less apparent. The rotation matrix
specifies rotation through 180 degrees (apart from 0.5 degree). The sums of squares for the two
configurations, and also the scaling factor, are the same as with the first analysis; however the
residual is now much larger so that the sums of squares do not add up, as noted below the table.

Example 6.18.1

   2  TEXT   [VALUES=E,SO,SBO,Sa,SBa,Sb,SBb,Sc,SBc,I] Galaxies
   3  MATRIX [ROWS=Galaxies; COLUMNS=2] Pco,Mds
   4  READ   [SERIAL=yes] Pco,Mds

    Identifier   Minimum      Mean   Maximum    Values   Missing
           Pco    -1.397 -0.50E-05     1.117        20         0
           Mds    -1.202  0.50E-05     1.572        20         0

  11  ROTATE [PRINT=rotations,residuals,sums; SCALING=yes; STANDARDIZE=*] \
  12         XINPUT=Pco; YINPUT=Mds; YOUTPUT=Mdsout

Procrustes rotation
===================

Orthogonal rotation
-------------------

                        1           2
            1    -0.99888     0.04733
            2     0.04733     0.99888
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Residuals
---------

                        1
            1      0.1914
            2      0.1505
            3      0.0832
            4      0.1389
            5      0.2271
            6      0.1700
            7      0.0600
            8      0.1405
            9      0.1164
           10      0.0696

Sums of Squares
---------------

Fitted Configuration           9.5124
Residual                       0.2077
Fixed Configuration            9.7201

Least-squares scaling factor = 0.9753

  13  CALCULATE Pco1,Pco2,Mdsout1,Mdsout2 = Pco$[*; 1,2],Mdsout$[*; 1,2]
  14  FRAME  3; SCALING=xyequal
  15  PEN    1,2; COLOUR='red','green'; SYMBOLS=0; LABELS=Galaxies; SIZE=1.5,1
  16  DGRAPH [TITLE='Procrustes rotation'; WINDOW=3; KEYWINDOW=0] \
  17         Pco2,Mdsout2; Pco1,Mdsout1; PEN=1,2
  18  ROTATE [PRINT=rotations,sums; SCALING=yes; STANDARDIZE=*;\
  19         SUPPRESSREFLECTION=yes] XINPUT=Pco; YINPUT=Mds

Procrustes rotation
===================

Orthogonal rotation
-------------------

                        1           2
            1    -0.99996     0.00908
            2    -0.00908    -0.99996

Sums of Squares
---------------

Fitted Configuration           9.5124
Residual                      11.4846
Fixed Configuration            9.7201

Least-squares scaling factor = 0.9753

* MESSAGE: a reflection has been suppressed, sums of squares need not total.

6.18.2 Generalized Procrustes rotation: the GENPROCRUSTES procedure

GENPROCRUSTES procedure
Performs a generalized Procrustes analysis (G.M. Arnold & R.W. Payne).

Options
PRINT = string tokens Printed output required (analysis, centroid,

column, individual, monitoring); default anal,
cent

SCALING = string token Type of scaling to use (none, isotropic, separate);
default none
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METHOD = string token Method to be used (Gower, TenBerge); default Gowe
NROOTS = scalar Number of roots (i.e. dimensions) to print for the output

configurations, consensus and rotation matrices, and
number of dimensions to save with the XOUTPUT,
CONSENSUS and ROTATIONS paramaters if their
matrices have alread not been defined; default is to print
and save all the dimensions

PLOT = string tokens Controls which graphs to display (consensus,
individuals, projections); default * i.e. none

NDROOTS = scalar Number of dimensions to display in the consensus and
individuals plots; default 3

TOLERANCE = scalar The algorithm is assumed to have converged when (last
residual sum of squares) ! (current residual sum of
squares) < TOLERANCE × (number of configurations);
default 0.00001

MAXCYCLE = scalar Limit on number of iterations; default 50

Parameters
XINPUT = pointers Each pointer points to a set of matrices holding the

original input configurations
XOUTPUT = pointers Each pointer points to a set of matrices to store a set of

final (output) configurations
CONSENSUS = matrices Stores the final consensus configuration from each

analysis
ROTATIONS = pointers Each pointer points to a set of matrices to store the

rotations required to transform each set of XINPUT
configurations to their final (scaled) XOUTPUT
configurations

RESIDUALS = pointers Each pointer points to a set of matrices to store the
distances of a set of scaled XINPUT configurations from
its consensus

RSS = scalars Stores the residual sum of squares from each analysis
ROOTS = diagonal matrices Stores the latent roots from referring the centroid

configuration to its principal axis form (consensus) for
each analysis

WSS = scalars Stores the initial within-configuration sum of squares
from each analysis

SCALINGFACTOR = variates Stores the isotropic scaling factors for configurations
from each analysis

PROJECTIONS = pointers Each pointer points to a set of matrices to store a set of
projection matrices

Generalized Procrustes analysis is widely used in sensory analysis of food, wine etc. to match
configurations of points which may arise, for example, from different assessors. The analysis
iteratively matches the configurations to a common centroid configuration using the operations
of translation to a common origin, rotation and reflection of axes, and possibly also scale
changes. This matching seeks to minimize the sum of the squared distances between the centroid
and each individual configuration summed over all points (the Procrustes statistic for each
configuration and the centroid, summed over all configurations). The final centroid is referred
to principal axes to give a unique consensus configuration. Two methods of scaling are available
(controlled by the SCALING option). Isotropic scaling, which scales the all the dimensions of
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each configuration by an equal amount, takes place during the Procrustes analysis. The
alternative is to scale each configuration prior to the analysis so that the trace of each matrix is
one (see Arnold 1992).

The XINPUT parameter specifies a pointer storing the configurations as matrices. The other
parameters (XOUTPUT, CONSENSUS, ROTATIONS, RESIDUALS, RSS, ROOTS, WSS,
SCALINGFACTOR and PROJECTIONS) save the various results. There are options for different
methods to use for the matching (SCALING, METHOD), control of convergence (TOLERANCE,
MAXCYCLE) and printing and plotting of results (PRINT, PLOT, NROOTS and NDROOTS).

The default method used by GENPROCRUSTES is that given by Gower (1975b). Suppose we
have a set of M input configurations Xi (i=1...M) each representing a configuration of N points
in V dimensions. Each matrix Xi is initially column-centred (and the individual column means
for each configuration can be printed by including column amongst the settings of PRINT
option). A constraint is required on the overall sum of squares to prevent the trivial solution of
matching by all configurations collapsing to the origin. In GENPROCRUSTES, the constraint used
is

3 ( trace ( XiN Xi ) ) = M.
An initial estimate of the centroid is found from these centred and scaled configurations;

firstly X2 is rotated to X1, with the rotated X2 saved as the new X2 and the centroid computed as
the mean of X1 and the new X2; X3 is rotated to this centroid which is then recalculated as the
mean of the three current configurations; and so on until all configurations Xi (i=1...M) have been
included. The centroid thus found is taken as the initial centroid estimate Y, with the rotated
values as the new Xi. The initial residual sum of squares Sr is calculated as

Sr = M × ( 1 ! trace ( YN Y )).
Each of the current configurations Xi is then rotated to Y and the rotated position saved as the

new Xi. The updated estimate of the centroid Yn is calculated as the mean of the new Xi (i=1...M)
and the new residual sum of squares calculated as

Srn = M × ( 1 ! trace ( YnN Yn )).
If isotropic scaling has been requested (by setting option SCALING=yes) new estimates roiN of
the individual scaling factors roi (originally set to 1) are now found by

roiN/roi= %( trace( XiNYn )/( trace( XiNXi ) × trace( YnNYn )))
and each Xi is updated by a factor of roiN/roi. The centroid is then recalculated as the mean of the
new Xi and the new residual sum of squares calculated in a similar manner to before. If the
change in residual Sr is less than a preset tolerance (controlled by option TOLERANCE) the
algorithm is taken to have converged. If not, the process is repeated until the tolerance is
reached, up to a maximum number of iterations as set by the option MAXCYCLE (default 50) after
which a message of non-convergence is printed and the procedure terminated. Monitoring
information about convergence can be printed by including the monitoring setting with the
PRINT option.

After convergence a unique consensus configuration is found by referring the final centroid
to principal axes; the corresponding latent roots may be saved using the ROOTS parameter. Final
results for the consensus and individual configurations (referred to the same principal axes) may
be printed using the centroid and individual settings of the PRINT option, and/or saved
using the parameters XOUTPUT, CONSENSUS and ROTATIONS. Analysis of variation for the M
configurations (including the individual scaling factors) and for the N points, along with the
initial within and between configurations sums of squares (WSS and BSS), the final residual sum
of squares (RSS) and number of steps in the iteration process may be printed using the analysis
setting of the PRINT option. The initial within-configuration sum of squares, final residual sum
of squares and individual isotropic scaling factors may also be saved using, respectively, the
WSS, RSS and SCALINGFAC parameters. (Note that the final results are still scaled by the original
factor from the initial overall constraint; to return to the original scale all sums of squares need
adjustment by a factor of WSS/M and configurations by the square root of that factor).
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Modifications to the method described above are given in TenBerge (1975), and may be
invoked by the TenBerge setting of the METHOD option. This may give considerable savings in
the time to reach convergence (Arnold 1988).

Note that the special case of M=2 corresponds to the classical pairwise Procrustes matching
(ROTATE directive) except that by fitting each configuration to a common centroid the
requirement to regard one of the initial configurations as fixed is obviated.

Example 6.18.2

   2  " Data from Gower (1975b). Note, however, that in Table 3 the
  -3    scaling factors printed were SQRT(ro[i]) instead of ro[i],
  -4    and in Table 4 the Between and Within Judges sums of squares
  -5    were transposed."
   6  MATRIX [ROWS=9; COLUMNS=7] X[1...3]
   7  READ [PRINT=errors; SERIAL=yes] X[]
  37  GENPROCRUSTES [PRINT=analysis,centroid; SCALING=isotropic] X

Generalized Procrustes analysis
===============================

Isotropic scaling

Rotation of centroid to principal axes
======================================

Latent roots
------------

        1        2        3        4        5        6        7
    0.609    0.081    0.064    0.027    0.012    0.004    0.002

Percentage variance
-------------------

        1        2        3        4        5        6        7
    76.12    10.12     8.05     3.36     1.54     0.56     0.26

Coordinates of the consensus configuration
==========================================

                     1        2        3        4        5        6        7
            1 -0.08776  0.17976 -0.08543  0.07956 -0.00947  0.01898 -0.00739
            2  0.14525  0.01582 -0.07554 -0.09195 -0.04359 -0.01877 -0.01829
            3 -0.14286 -0.00618 -0.06175 -0.05358 -0.02329  0.01879  0.03331
            4 -0.14958 -0.04543 -0.10026 -0.00187  0.08222 -0.02304  0.00067
            5 -0.14987  0.09345  0.13294 -0.05591  0.02574  0.00807 -0.01186
            6  0.31770  0.06500  0.11896  0.01323  0.01113 -0.01746  0.01775
            7  0.09444 -0.05719  0.00439  0.07142 -0.03728 -0.03146  0.00112
            8 -0.46364 -0.12395  0.07526  0.02665 -0.02299  0.00692 -0.00669
            9  0.43631 -0.12128 -0.00856  0.01245  0.01754  0.03797 -0.00861

Analysis of variation for the configurations
============================================

         Scaling Residual    Total
     1     1.071    0.240    0.931
     2     1.222    0.177    1.033
     3     0.832    0.181    1.036
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Analysis of variation for the entities
======================================

       Consensus Residual    Total
     1     0.162    0.066    0.228
     2     0.114    0.084    0.198
     3     0.087    0.079    0.166
     4     0.125    0.067    0.192
     5     0.159    0.129    0.287
     6     0.361    0.038    0.399
     7     0.059    0.026    0.085
     8     0.712    0.032    0.744
     9     0.622    0.079    0.701

Initial within-configuration sum of squares    53254.889
Initial between-configuration sum of squares   22114.815
Final residual sum of squares                      0.599
Number of steps to convergence 8

6.18.3 Multiple Procrustes analysis: the PCOPROCRUSTES procedure

PCOPROCRUSTES procedure
Performs a multiple Procrustes analysis (P.G.N. Digby).

Options
PROTATE = string tokens Printed output required from each Procrustes rotation

(rotations, coordinates, residuals, sums);
default * i.e. no output

PPCO = string tokens Printed output required from the PCO analysis (roots,
scores, centroid); default root, score, cent

SCALING = string token Whether isotropic scaling should be used for the
Procrustes rotations (no, yes); default no

STANDARDIZE = string tokens Whether to centre the configurations and/or normalize
them to unit sums-of-squares for the Procrustes rotations
(centre, normalize); default cent, norm

Parameters
DATA = pointers Each pointer points to a set of matrices holding the

original input configurations
LRV = LRVs Stores the latent vectors (i.e. coordinates), roots and

trace from the PCO analysis
CENTROID = diagonal matrices Stores the squared distances of the points representing

the input configurations from their overall centroid from
the PCO analysis

DISTANCES = symmetric matrices Stores the residual sums-of-squares from the Procrustes
rotations

Multiple Procrustes analysis operates on a set of M configurations of points, each representing
the coordinates of N units in V dimensions. The analysis compares them in pairs, keeping the
residual sums-of-squares, and then performs a principal coordinate analysis of the residual sums-
of-squares to obtain an ordination representing the individual configurations. The rows of the
matrices must represent the same set of units, in the same order; however there is no need for
them to have the same number of columns (although generally they will do). An example of the
use of multiple Procrustes analysis is given by Digby & Kempton (1987, pages 121-123).

The configurations of points are specified using the DATA parameter. This supplies a pointer
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Figure 6.18.3

containing a matrix with the data for each configuration. The PROTATE option controls the
output from the individual Procrustes rotations, and the PPCO option controls that from the
principal coordinate analysis. There are M×(M!1)/2 Procrustes rotations so, by default,
PROTATE=* to suppress any output. The SCALING and STANDARDIZE options control the way
in which the Procrustes rotations are carried out, using the SCALING and STANDARDIZE options
of ROTATE. However, the combination of SCALING=yes and STANDARDIZE=centre should
not be used, because then the results will be dependent on the order of the input matrices. The
LRV and CENTROID parameters can be used to save results from the principal coordinates
analysis, and the DISTANCES parameter can be used to save the symmetric matrix of the residual
sums-of-squares from the Procrustes analyses.

Example 6.18.3 uses multiple Procrustes
analysis to compare seven different ways of
generating ordinations of 16 grass species.
The first two dimensions of the solution are
plotted in Figure 6.18.3.

Example 6.18.3

   2  " Abundances of 16 grass species on 9 plots of land:
  -3    part of Table 1.1 in Digby & Kempton (1987)."
   4  UNITS [NVALUES=16]
   5  READ  [SERIAL=yes] Abund[1...6]

    Identifier   Minimum      Mean   Maximum    Values   Missing
      Abund[1]    0.0000     4.744     33.20        16         0    Skew
      Abund[2]    0.0000     4.206     13.10        16         0
      Abund[3]    0.0000     5.844     37.60        16         0    Skew
      Abund[4]    0.0000     5.300     37.00        16         0    Skew
      Abund[5]    0.0000     5.463     48.70        16         0    Skew
      Abund[6]    0.0000     6.250     82.70        16         0    Skew

  12  CALCULATE   LogAbund[1...6] = LOG10(Abund[1...6] + 1)
  13  &           PrsAbund[1...6] = Abund[1...6] > 0
  14  " Form similarity matrices using 5 different methods
 -15    on suitably transformed copies of the data."
  16  FSIMILARITY [SIMILARITY=Sjaccard] PrsAbund[]; Jaccard
  17  &           [SIMILARITY=Ssmc]     PrsAbund[]; simplematching
  18  &           [SIMILARITY=Scity]    LogAbund[]; cityblock
  19  &           [SIMILARITY=Secol]    LogAbund[]; ecological
  20  &           [SIMILARITY=Spythag]  LogAbund[]; Pythagorean
  21  POINTER     [NVALUES=7] Config
  22  MATRIX      [ROWS=16; COLUMNS=6] Config[]
  23  LRV         [ROWS=16; COLUMNS=6] Pcol
  24  " Use PCO on each similarity matrix, to get 5 ordinations', \
 -25    of 16 points in 6 dimensions."
  26  FOR         Dsim=Sjaccard,Ssmc,Scity,Secol,Spythag; Dcpco=Config[1...5]
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  27    PCO       Dsim; LRV=Pcol
  28    CALCULATE Dcpco = Pcol[1]
  29  ENDFOR
  30  " Use correspondence analysis on the data, and the data
 -31    transformed to presence/absence, to get 2 more
 -32    ordinations of 16 points in 6 dimensions."
  33  MATRIX      [ROWS=16; COLUMNS=6] MatAbund
  34  CALCULATE   MatAbund$[*; 1...6] = Abund[]
  35  CORANALYSIS [METHOD=digby] MatAbund; ROW=Config[6]
  36  CALCULATE   MatAbund = MatAbund > 0
  37  CORANALYSIS [METHOD=digby] MatAbund; ROW=Config[7]
  38  TEXT        [VALUES=Jc,SM,CB,Ec,Py,CA,CP] Points
  39  SYMMETRICMATRIX [ROWS=Points] MPdist
  40  " Use multiple Procrustes analysis to compare
 -41    the 7 different ordination methods."
  42  PCOPROCRUSTES Config; LRV=MPLRV; DISTANCE=MPdist

Principal coordinates analysis
==============================

Latent Roots
------------

            1         2         3         4         5         6         7
       0.8906    0.3382    0.1222    0.0730    0.0448    0.0279    0.0000

Percentage variation
--------------------

            1         2         3         4         5         6         7
        59.50     22.60      8.17      4.88      2.99      1.86      0.00

Trace
-----

       1.497

Latent vectors (coordinates)
----------------------------

                      1         2         3         4         5         6
          1      0.3034   -0.2079    0.0634    0.0900   -0.1420   -0.0297
          2      0.1453   -0.3166    0.1253   -0.0214    0.1164    0.0527
          3     -0.3986   -0.0368    0.0100   -0.0242    0.0456   -0.1315
          4     -0.4039    0.0673   -0.1162    0.1764    0.0191    0.0568
          5     -0.3864    0.0163   -0.0035   -0.1697   -0.0861    0.0599
          6      0.2435    0.4319    0.1676    0.0110    0.0180    0.0033
          7      0.4968    0.0458   -0.2466   -0.0620    0.0290   -0.0116

* MESSAGE: vectors corresponding to zero or negative roots are not printed.

Centroid distances
------------------

           Centdist
                  1        2        3        4        5        6        7
             0.4104   0.3922   0.4246   0.4647   0.4352   0.5238   0.5609

  43  PRINT MPdist; FIELD=8; DECIMALS=4

      MPdist

   1  0.0000
   2  0.1266  0.0000
   3  0.5836  0.4264  0.0000
   4  0.6492  0.5559  0.1032  0.0000
   5  0.6091  0.4731  0.0783  0.1465  0.0000
   6  0.4568  0.5849  0.6769  0.6628  0.6455  0.0000
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   7  0.2505  0.4066  0.8906  0.8905  0.8700  0.3905  0.0000
           1       2       3       4       5       6       7

  44  CALCULATE   MPscore[1,2] = MPLRV[1]$[*; 1,2]
  45  FRAME       3; SCALING=xyequal
  46  XAXIS       3; TITLE='Dimension 1'; LOWER=-0.55; UPPER=0.55
  47  YAXIS       3; TITLE='Dimension 2'; LOWER=-0.55; UPPER=0.55
  48  PEN         1; SYMBOLS=0; LABELS=Points; SIZE=1.5; COLOUR='blue'
  49  DGRAPH   [TITLE='Multiple Procrustes analysis: first two dimensions';\
  50              WINDOW=3; KEY=0] MPscore[2]; MPscore[1]
  51  PRINT    !T('The 7 methods are plotted as the points:', \
  52              '   Jc  Jaccard similarity coefficient;', \
  53              '   SM  simple-matching similarity coefficient;', \
  54              '   CB  city-block similarity coefficient;', \
  55              '   Ec  ecological similarity coefficient;', \
  56              '   Py  Pythagorean similarity coefficient;', \
  57              '   CA  correspondence analysis of data;', \
  58              '   CP  correspondence analysis of presence/absence.'); \
  59           JUSTIFICATION=left

The 7 methods are plotted as the points:
   Jc  Jaccard similarity coefficient;
   SM  simple-matching similarity coefficient;
   CB  city-block similarity coefficient;
   Ec  ecological similarity coefficient;
   Py  Pythagorean similarity coefficient;
   CA  correspondence analysis of data;
   CP  correspondence analysis of presence/absence.

6.19 Hierarchical cluster analysis

Hierarchical cluster analysis operates on a similarity matrix and aims to arrange the n sampling
units into homogeneous groups. Methods of constructing similarity matrices in Genstat are
described in Sections 6.1.2 - 6.1.4. The HCLUSTER directive offers several possibilities. The
general strategy is best appreciated in geometrical terms, with the n sampling units represented
by points in a multidimensional space. In agglomerative methods, these points initially represent
n separate clusters, each containing one member. At each of n!1 stages, two clusters are fused
into one bigger cluster, until at the final stage all units are fused into a single cluster: this process
can be represented by a hierarchical tree whose nodes indicate what fusions have occurred. The
methods fuse the two closest clusters and vary in how closest is defined. In single-linkage cluster
analysis, closest is defined as the smallest distance between any two samples from different
clusters; in centroid clustering it is the smallest distance between cluster centroids; and so on
(see Gordon 1981 for a full discussion). All these methods are in the hierarchical cluster analysis
menus in Genstat for Windows.

Genstat can display the tree fitted to a given similarity matrix, and provides a scale to show
the level of similarity at which the fusions have occurred; scaled tree like this is termed a
dendrogram. The endpoints of the dendrogram correspond to the units in some permuted order;
you can save this order, for example to use with FSIMILARITY (6.1.2). Of course, a hierarchical
tree does not by itself provide a classification. This can be derived by cutting the dendrogram
at some arbitrary level of similarity; each cluster then consists of those samples occurring on the
same detached branch of the dendrogram. A factor can be formed to indicate cluster membership,
and you can calculate indexes to assess the similarity between factors obtained from different
cluster analyses (6.19.7).

To assess the reliability of the clusters, you can perform a bootstrap analysis using the
HBOOTSTRAP procedure (6.19.8). For each bootstrap sample, a set of vectors is formed by
sampling with replacement from the variates and factors used to form the similarity matrix for
the original cluster analysis. HBOOTSTRAP does a cluster analysis using each bootstrap sample,
and counts the number of times each cluster occurs in the analyses. These numbers can be
printed, or plotted alongside the clusters in the dendrogram from the original analysis.
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6.19.1 The HCLUSTER directive

HCLUSTER directive
Performs hierarchical cluster analysis.

Options
PRINT = string tokens Printed output required (dendrogram,

amalgamations); default * i.e. no printing
METHOD = string token Criterion for forming clusters (singlelink,

nearestneighbour, completelink,
furthestneighbour, averagelink, mediansort,
groupaverage); default sing

CTHRESHOLD = scalar Clustering threshold at which to print formation of
clusters; default * i.e. determined automatically

Parameters
SIMILARITY = symmetric matrices Input similarity matrix for each cluster analysis
GTHRESHOLD = scalars Grouping threshold where groups are formed from the

dendrogram
GROUPS = factors Stores the groups formed
PERMUTATION = variates Permutation order of the units on the dendrogram
AMALGAMATIONS = matrices To store linked list of amalgamations

The input for HCLUSTER is provided by the SIMILARITY parameter, as a list of symmetric
matrices, one for each analysis. These matrices can be formed by FSIMILARITY (6.1.2),
HREDUCE (6.1.3) or CALCULATE (6.1.4). Missing values are allowed in the similarity matrix only
with the single-linkage method.

The GTHRESHOLD and GROUPS parameters must be either both present or both absent. When
you are deriving a classification, the level of similarity at which the dendrogram is to be cut is
specified by the scalar value in the GTHRESHOLD parameter. The level is given as a percentage
similarity. The resulting cluster membership is saved in a factor, whose identifier is specified by
the GROUPS parameter. The factor will be declared implicitly, if necessary, and it will have its
number of levels set to the number of clusters formed and its number of values taken from the
number of rows of the corresponding symmetric matrix.

The PERMUTATION parameter allows you to specify a variate to save the order in which the
units appear on the printed dendrogram. Genstat will define it to be a variate automatically, if
necessary, with number of values is taken from the number of rows of the corresponding
similarity matrix. Conventionally, the first unit on the dendrogram is unit 1 and so the first value
of the variate of permutations will be 1.

The AMALGAMATIONS parameter can specify a matrix to store information about the order in
which the units form groups, and at what level of similarity. At any stage in the process of
agglomeration, each group is represented by the unit with the smallest unit number: for example,
a group containing units 2, 5, 17 and 22 is represented by unit 2. This means that the final merge
is always between a group indexed by unit 1 and a group indexed by another unit. Since there
are n!1 stages of agglomeration, the matrix will have a number of rows one less than the number
of rows of the input similarity matrix. Each row represents a joining of two groups and consists
of three values. The first two values are the numbers indexing the two groups that are joining,
and the third value is the level of similarity. So the matrix has three columns. The matrix will
be declared implicitly, if necessary.
HCLUSTER can print two pieces of information. The first gives details of each amalgamation,

followed by a list of clusters that are formed at decreasing levels of similarity. The second is the
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dendrogram. The PRINT option allows you to control which of these are printed. If
METHOD=singlelink and the PRINT setting includes amalgamations, the minimum spanning
tree (6.19.2) will be printed instead of the stages at which the clusters merge. This is because
information from forming the minimum spanning tree is used to form the single linkage
clustering.

Alternatively, if you save the AMALGAMATIONS matrix, you can use procedure DDENDROGRAM
(6.19.5) to display the dendrogram using high-resolution graphics, as shown in Example 6.19.5.
Also the HFCLUSTERS procedure can be used to obtain the full set of clusters constructed during
the cluster analysis, and the similarity values at which they were formed; see Example 6.19.8.

The METHOD option has seven possible settings; these determine how the similarities amongst
clusters are redefined after each merge. The default singlelink, which has synonym
nearestneighbour, gives single linkage. The setting completelink (synonym
furthestneighbour) defines the distance between two clusters as the maximum distance
between any two units in those clusters. The setting averagelink defines the similarity
between a cluster and two merged clusters as the average of the similarities of the cluster with
each of the two. For groupaverage, an average is taken over all the units in the two merged
clusters. Median sorting (Gower 1967) is best thought of in terms of clusters being represented
by points in a multidimensional space; when two clusters join, the new cluster is represented by
the midpoint of the original cluster points.

The CTHRESHOLD option is a scalar which allows you to define the levels of decreasing
similarity at which the lists of clusters are printed with their membership. The decreasing levels
of similarity are formed by repeatedly subtracting the CTHRESHOLD value from the maximum
similarity of 100%. For example, setting CTHRESHOLD=10 will list the clusters formed at 90%
similarity, 80%, and so on. At each level, those units that have not joined any group are also
listed. If you do not set this option, the default value will be calculated from the range of
similarities at which merges occur, to give between 10 and 20 separate levels.

Example 6.19.1 uses the average linkage method to cluster the cars discussed in Section 6.1.2.
The amalgamations matrix is saved, in matrix Caramalg, so that we can plot the dendrogram
later on, in Example 6.19.5.

Example 6.19.1

   2  UNITS   [NVALUES=16]
   3  VARIATE Engcc,Ncyl,Tankl,Weight,Length,Width,Height,Wbase,Tspeed,Stst,\
   4          Carb,Drive,Vct[1...3]
   5  POINTER Cd; VALUES=!P(Engcc,Ncyl,Tankl,Weight,Length, \
   6          Width,Height,Wbase,Tspeed,Stst)
   7  READ    [PRINT=errors] #Cd,Carb,Drive
  24  TEXT    [VALUES=Estate,'Arna1.5','Alfa2.5',Mondialqc,\
  25          Testarossa,Croma,Panda,Regatta,Regattad,Uno,\
  26          X19,Contach,Delta,Thema,Y10,Spider] Carname
  27  FACTOR  [NVALUES=Carname; LEVELS=16] Fcar; VALUES=!(1...16)
  28  SYMMETRICMATRIX [ROWS=Carname] Carsim
  29  " Form similarity matrix between cars."
  30  FSIMILARITY [SIMILARITY=Carsim; PRINT=*] #Cd,Carb,Drive; \
  31           TEST=4(cityblock),4(Euclidean),2(cityblock),2(simplematch)
  32  HCLUSTER [PRINT=dendrogram; METHOD=averagelink] Carsim; \
  33           GTHRESHOLD=70; GROUPS=Cargrp; PERMUTATION=Carperm; \
  34           AMALGAMATIONS=Caramalg

Average linkage cluster analysis
================================

Dendrogram
----------

  ** Levels   100.0  90.0  80.0  70.0  60.0  50.0

Estate         1  ..
Regatta        8  ..)
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Arna1.5        2  ..)
Delta         13  ..).....
Panda          7  ..      )
Uno           10  ..)..   )
Y10           15  .....)..).....
Regattad       9  ..............)..
Alfa2.5        3  ...........      )
X19           11  ........   )     )
Spider        16  ........)..).....)..
Mondialqc      4  ..............      )
Croma          6  ..            )     )
Thema         14  ..)...........).....)........
Testarossa     5  ........                     )
Contach       12  ........)....................)...........

  35  FSIMILARITY [PRINT=similarities; SIMILARITY=Carsim; \
  36              PERMUTATION=Carperm; STYLE=abbreviated]

Abbreviated similarity matrix: Carsim
-------------------------------------

Estate      -
Regatta     9-
Arna1.5     99-
Delta       999-
Panda       8888-
Uno         88989-
Y10         889899-
Regattad    8888787-
Alfa2.5     88786666-
X19         888877878-
Spider      7777667788-
Mondialqc   55552435757-
Croma       787856677677-
Thema       7878566775779-
Testarossa  33331213545855-
Contach     444423336557448-

6.19.2 Displaying and saving information from a cluster analysis: the HDISPLAY directive

HDISPLAY directive
Displays results ancillary to hierarchical cluster analyses: matrix of mean similarities between
and within groups, a set of nearest neighbours for each unit, a minimum spanning tree, and the
most typical elements from each group.

Option
PRINT = string tokens Printed output required (neighbours, tree,

typicalelements, gsimilarities); default tree

Parameters
SIMILARITY = symmetric matrices

Input similarity matrix for each cluster analysis
NNEIGHBOURS = scalars Number of nearest neighbours to be printed
NEIGHBOURS = matrices Matrix to store nearest neighbours of each unit
GROUPS = factors Indicates the groupings of the units (for calculating

typical elements and mean similarities between groups)
TREE = matrices To store the minimum spanning tree (as a series of links

and corresponding lengths)
GSIMILARITY = symmetric matrices

To store similarities between groups
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The HDISPLAY directive prints ancillary information useful for interpreting cluster analyses, or
can save information to use elsewhere in Genstat, for example for plotting.

The SIMILARITY parameter specifies a list of symmetric similarity matrices. These are
operated on, in turn, to produce the output requested by the PRINT option and to save the
information specified by other parameters. Since the interpretations of the remaining parameters
are closely linked to the different settings of the PRINT option, each setting is discussed below
with the relevant parameters.

The NNEIGHBOURS parameter gives a list of scalars indicating how many neighbours will
appear in the printed table of nearest neighbours.

The NEIGHBOURS parameter can specify a list of identifiers to store details of nearest
neighbours. These will be declared implicitly, if necessary, as matrices. The rows of the matrices
correspond to the units; there should be an even number of columns. The values in the odd-
numbered columns represent the neighbouring units in order of their similarity, while the values
in the even-numbered columns are the corresponding similarities. If you have declared the matrix
previously and it does not have enough columns, then NEIGHBOURS stores as many neighbours
as possible. If there is an odd number of columns in the matrix, the last column is not filled. If
the matrix is declared implicitly, the number of columns will be twice the value of the
NNEIGHBOURS scalar.

If the PRINT option includes the setting neighbours, Genstat prints a table of nearest
neighbours for every sample, together with their values of similarity. The number of neighbours
printed is determined by the value of the NNEIGHBOURS scalar; if NNEIGHBOURS is not set, the
table is not printed. This information is also useful for interpreting clusters and ordinations. In
Example 6.19.2a, the table is printed for three nearest neighbours, and the matrix Carneig is
given values corresponding to the first two nearest neighbours.

Example 6.19.2a

  37  MATRIX [ROWS=Carname; COLUMNS=4] Carneig
  38  HDISPLAY [PRINT=neighbours] Carsim; NNEIGHBOURS=3; NEIGHBOURS=Carneig

Neighbours table derived from Carsim
====================================

Estate         1       8  98.1       2  97.6      13  95.9
Arna1.5        2       1  97.6       8  96.9      13  95.1
Alfa2.5        3      13  83.7      11  82.8       8  82.3
Mondialqc      4       5  82.7      14  77.4       6  76.8
Testarossa     5      12  88.5       4  82.7      16  58.3
Croma          6      14  98.7       8  82.0      13  81.4
Panda          7      10  96.0      15  92.9       2  85.5
Regatta        8       1  98.1       2  96.9      13  95.9
Regattad       9       8  84.4       1  83.9       2  82.2
Uno           10       7  96.0      15  92.5       2  90.9
X19           11       1  87.0      16  86.0       2  85.8
Contach       12       5  88.5       4  70.9       3  61.8
Delta         13       8  95.9       1  95.9       2  95.1
Thema         14       6  98.7       8  81.1      13  80.2
Y10           15       7  92.9      10  92.5       2  92.4
Spider        16      11  86.0       3  82.3      13  78.8

  39  PRINT Carneig

                  Carneig
                        1           2           3           4
      Carname
       Estate       8.000       0.981       2.000       0.976
      Arna1.5       1.000       0.976       8.000       0.969
      Alfa2.5      13.000       0.837      11.000       0.828
    Mondialqc       5.000       0.827      14.000       0.774
   Testarossa      12.000       0.885       4.000       0.827
        Croma      14.000       0.987       8.000       0.820
        Panda      10.000       0.960      15.000       0.929
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      Regatta       1.000       0.981       2.000       0.969
     Regattad       8.000       0.844       1.000       0.839
          Uno       7.000       0.960      15.000       0.925
          X19       1.000       0.870      16.000       0.860
      Contach       5.000       0.885       4.000       0.709
        Delta       8.000       0.959       1.000       0.959
        Thema       6.000       0.987       8.000       0.811
          Y10       7.000       0.929      10.000       0.925
       Spider      11.000       0.860       3.000       0.823

The GROUPS parameter specifies a factor to divide the units of each similarity matrix into
clusters. You may have formed the factor from a previous hierarchical cluster analysis (6.19.1).
This parameter must be set if the PRINT option includes the settings typicalelement or
gsimilarities.

If the PRINT option includes the setting typicalelement, Genstat prints the average
similarity of each group member with the other group members. This is to help you identify
typical members of each group: typical members will have relatively large average similarities
compared to those of the other members. Within each group, members are printed in decreasing
order of average similarity. In Example 6.19.2b, the cars are listed in order of their mean
similarity with the other cars of the same make.

Example 6.19.2b

  40  FACTOR [LABELS=!t(Fiat,'Alfa Romeo',Lancia,Ferrari,Lamborghini,\
  41    Pinninfarina)] Maker; VALUES=!(2,2,2,4,4,1,1,1,1,1,1,5,3,3,3,6)
  42  HDISPLAY [PRINT=typical] Carsim; GROUPS=Maker

Most typical members
====================

Similarity matrix: Carsim

Fiat
Regatta        8    83.3
Uno           10    81.6
Regattad       9    77.4
Panda          7    76.4
X19           11    73.7
Croma          6    67.5

Alfa Romeo
Estate         1    89.5
Arna1.5        2    88.8
Alfa2.5        3    80.7

Lancia
Delta         13    84.3
Y10           15    74.4
Thema         14    70.4

Ferrari
Testarossa     5    82.7
Mondialqc      4    82.7

Lamborghini
Contach       12   100.0

Pinninfarina
Spider        16   100.0

The GSIMILARITY parameter specifies a list of symmetric matrices in which you can save the
mean between-group and within-group similarities. Any structure that you have not declared
already will be declared implicitly to be a symmetric matrix with number of rows equal to the
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number of levels of the factor in the GROUPS parameter.
If the PRINT option includes the setting gsimilarities, Genstat prints the mean similarities

between-groups and within-groups. Self-similarities are excluded. Example 6.19.2c forms the
group similarity matrix based on the groups in the factor Maker, prints the matrix and saves the
values in the symmetric matrix Cargsim.

Example 6.19.2c

  43  HDISPLAY [PRINT=gsimilarities] Carsim; GROUPS=Maker; \
  44    GSIMILARITY=Cargsim

Mean similarities between and within groups
===========================================

Similarity matrix: Carsim
Between and within groups similarity matrix: Cargsim

Fiat         1    76.6
Alfa Romeo   2    82.1  86.4
Lancia       3    79.5  84.0  76.4
Ferrari      4    43.3  53.1  48.2  82.7
Lamborghini  5    37.6  50.4  40.5  79.7  ----
Pinninfarina 6    73.7  78.7  75.5  66.5  50.6  ----
                     1     2     3     4     5     6

  45  PRINT Cargsim

                  Cargsim

         Fiat      0.7665
   Alfa Romeo      0.8209      0.8635
       Lancia      0.7952      0.8401      0.7636
      Ferrari      0.4328      0.5313      0.4817      0.8266
  Lamborghini      0.3760      0.5036      0.4054      0.7971      1.0000
 Pinninfarina      0.7369      0.7873      0.7547      0.6647      0.5059
                     Fiat  Alfa Romeo      Lancia     Ferrari Lamborghini

 Pinninfarina      1.0000

             Pinninfarina

The TREE parameter can specify a matrix to save the minimum spanning tree. The matrix is set
up with two columns and number of rows equal to the number of units. For each unit, the value
in the first column is the unit to which that unit is linked on its left; the second column is the
corresponding similarity. The first unit is not linked to any unit on its left, as it is always the first
unit on the tree; so the first row of the matrix contains missing values. The HFAMALGAMATIONS
procedure can use the tree to form an amalgamations matrix, representing how the clusters would
be formed with this similarity matrix by single-linkage cluster analysis.

Setting the PRINT option to tree prints the minimum spanning tree associated with the
similarity matrix specified the SIMILARITY parameter. The minimum spanning tree (MST) is
not a Genstat structure, but it can be kept in the form described above: that is, in a matrix with
two columns. An MST is a tree connecting the n points of a multidimensional representation of
the sampling units. In a tree every unit is linked to a connected network and there are no closed
loops; the special feature of the MST is that, of all trees with a sampling unit at every node, it
is the one whose links have minimum total length. The links include all those that join nearest
neighbours; the MST is closely related to single linkage hierarchical trees (6.19.1). Minimum
spanning trees are also useful if you superimpose them on ordinations (6.10) to reveal regions
in which distance is badly distorted; if neighbouring points, as given by the MST, are distant in
the ordination then something is badly wrong (see Gower & Ross 1969). Plots like this can be
produced by procedure DMST (which uses HDISPLAY internally to form the MST); see Section
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6.19.6. In Example 6.19.2d, the MST is printed and then saved in the structure Cartree which
has been declared implicitly as a matrix.

Example 6.19.2d

  46  HDISPLAY [PRINT=tree] Carsim; TREE=Cartree

Minimum spanning tree
=====================

Similarity matrix: Carsim

  Estate  Arna1.5      Y10    Panda      Uno
       1......  2...... 15......  7...... 10
       (  97.6     92.4     92.9     96.0
       (
       (  Regatta    Croma    Thema Mondialq Testaros  Contach
       (......  8......  6...... 14......  4......  5...... 12
       (  98.1  (  82.0     98.7     77.4     82.7     88.5
       (        (
       (        ( Regattad
       (        (......  9
       (        (  84.4
       (        (
       (        (    Delta  Alfa2.5
       (        (...... 13......  3
       (           95.9     83.7
       (
       (      X19   Spider
       (...... 11...... 16
          87.0     86.0

Total length:   1343.4

  47  PRINT Cartree

                  Cartree
                        1           2
      Carname
       Estate           *           *
      Arna1.5       1.000       0.976
      Alfa2.5      13.000       0.837
    Mondialqc      14.000       0.774
   Testarossa       4.000       0.827
        Croma       8.000       0.820
        Panda      15.000       0.929
      Regatta       1.000       0.981
     Regattad       8.000       0.844
          Uno       7.000       0.960
          X19       1.000       0.870
      Contach       5.000       0.885
        Delta       8.000       0.959
        Thema       6.000       0.987
          Y10       2.000       0.924
       Spider      11.000       0.860

6.19.3 Examining the data by groups: the HLIST directive

HLIST lists the values of the data matrix in a condensed form, either in their original order or,
more usefully, in the order determined by a cluster analysis (6.19.1). This representation can be
very helpful for revealing patterns in the data, associated with clusters, or for an initial scan of
the data to pick out interesting features of the variables.
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HLIST directive
Lists the data matrix in abbreviated form.

Options
GROUPS = factor Defines groupings of the units; used to split the printed

table at appropriate places and to label the groups;
default *

UNITS = text or variate Names for the rows (i.e. units) of the table; default *

Parameters
DATA = variates or factors The data variables
TEST = string tokens Test type, defining how each variable is treated in the

calculation of the similarity between each unit
(simplematching, jaccard, russellrao, dice,
antidice, sneathsokal,  rogerstanimoto,
cityblock, manhattan, ecological, euclidean,
pythagorean, minkowski, divergence, canberra,
braycurtis, soergel); default * ignores that variable

RANGE = scalars Range of possible values of each variable; if omitted, the
observed range is taken

The DATA parameter specifies a list of variates or factors, all of which must be of the same
length. If any of them is restricted, then that restriction is applied to all of them. Any restriction
on any other variate or factor must be to the same set of units.

The TEST parameter specifies a list of strings, one for each variate or factor in the DATA
parameter list, to define its "type". This is similar to the TEST parameter used in FSIMILARITY
(6.1.2) to determine how differences in variate or factor values for each unit contribute to the
overall similarity between units. However, HLIST distinguishes only between qualitative
variables (factors or variates with settings simplematching - rogerstanimoto) and
quantitative variables (variates with other settings). The values of qualitative variates are printed
directly. If the range of a quantitative variate is greater than 10, the printed values are scaled to
lie in the range 0 to 10. This scaling is done by subtracting the minimum value, dividing by the
range and then multiplying by 10. If the range is less than 10, the values are printed unscaled;
so quantitative variates with values that are all less than 1 will appear as 0 in the abbreviated
table. The values are printed with no decimal places, and in a field-width of 3.

The RANGE parameter contains a list of scalars, one for each variable in the DATA list. This
allows you to check that the values of each variable lie within the given range. The range is also
used to standardize quantitative variates, so that you can impose a standard range for example
when variates are measured on commensurate scales. You can omit the RANGE parameter for all
or any of the variables by giving a missing identifier or a scalar with a missing value; Genstat
then uses the observed range.

The UNITS option allows you to change the labelling of the units in the table; you can specify
a text or a pointer or a variate.

You can use the GROUPS option to specify a factor that will split the units into groups. The
table from HLIST is then divided into sections corresponding to the groups. If the factor has
labels, these are used to annotate the sections; otherwise a group number is used.

In Example 6.19.3a, you can see the effect of scaling the quantitative variables, and not scaling
the qualitative variables.
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Example 6.19.3a

  48  HLIST [UNITS=Carname] #Cd,Carb,Drive; \
  49    TEST=4(cityblock),4(Euclidean),2(cityblock),2(simplematch)

Key to condensed data matrix
============================

       Variate   Minimum     Range      Test type
  1      Engcc      965.     4202.      City block      (3)
  2       Ncyl     4.000     8.000      City block      (3)
  3      Tankl     35.00     85.00      City block      (3)
  4     Weight     720.0     786.0      City block      (3)
  5     Length     338.0     121.0      Euclidean       (5)
  6      Width    149.00     51.00      Euclidean       (5)
  7     Height    107.00     39.00      Euclidean       (5)
  8      Wbase    216.00     50.00      Euclidean       (5)
  9     Tspeed     134.0     157.0      City block      (3)
 10       Stst      4.90     14.00      City block      (3)
 11       Carb     1.000     2.000      Simple Matching (1)
 12      Drive     1.000     1.000      Simple Matching (1)

Variates listed in condensed form
=================================

          Variate    1   2   3   4   5   6   7   8   9  10  11  12
          Test       3   3   3   3   5   5   5   5   3   3   1   1
          Range     10   8  10  10  10  10  10  10  10  10   2   1

Estate         1     1   0   1   3   6   2   6   5   2   4   0   1
Arna1.5        2     1   0   1   1   5   2   8   5   2   3   0   1
Alfa2.5        3     3   2   1   5   7   2   8   7   4   2   0   0
Mondialqc      4     5   4   6   9   9   5   4   9   7   1   1   0
Testarossa     5     9   8  10  10   9   9   1   7  10   0   1   0
Croma          6     2   0   4   5   9   5   9  10   4   2   1   1
Panda          7     0   0   0   0   0   0  10   0   0   8   0   1
Regatta        8     1   0   2   3   7   3   8   5   2   3   0   1
Regattad       9     1   0   2   3   7   3   8   5   1  10   2   1
Uno           10     0   0   0   0   2   1   9   4   0   8   0   1
X19           11     1   0   1   2   4   1   2   0   2   4   0   0
Contach       12    10   8  10   9   6  10   0   5   9   0   0   0
Delta         13     1   0   1   3   4   2   7   6   3   2   0   1
Thema         14     2   0   4   5  10   5   9  10   5   1   1   1
Y10           15     0   0   1   0   0   0   9   0   2   4   0   1
Spider        16     2   0   1   4   6   2   4   2   3   2   1   0

The UNITS option allows you to change the labelling of the units in the table, as shown in
Example 6.19.3a. You can specify a text or a pointer or a variate.

You can use the GROUPS option to specify a factor that will split the units into groups. The
table from HLIST is then divided into sections corresponding to the groups. If the factor has
labels, these are used to annotate the sections; otherwise a group number is used.

Example 6.19.3b

  50  HLIST [GROUPS=Maker; UNITS=Carname] #Cd,Carb,Drive; \
  51    TEST=4(cityblock),4(Euclidean),2(cityblock),2(simplematch)

Key to condensed data matrix
============================

       Variate   Minimum     Range      Test type
  1      Engcc      965.     4202.      City block      (3)
  2       Ncyl     4.000     8.000      City block      (3)
  3      Tankl     35.00     85.00      City block      (3)
  4     Weight     720.0     786.0      City block      (3)
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  5     Length     338.0     121.0      Euclidean       (5)
  6      Width    149.00     51.00      Euclidean       (5)
  7     Height    107.00     39.00      Euclidean       (5)
  8      Wbase    216.00     50.00      Euclidean       (5)
  9     Tspeed     134.0     157.0      City block      (3)
 10       Stst      4.90     14.00      City block      (3)
 11       Carb     1.000     2.000      Simple Matching (1)
 12      Drive     1.000     1.000      Simple Matching (1)

Variates listed in condensed form, grouped by Maker
===================================================

          Variate    1   2   3   4   5   6   7   8   9  10  11  12
          Test       3   3   3   3   5   5   5   5   3   3   1   1
          Range     10   8  10  10  10  10  10  10  10  10   2   1

Fiat
Croma          6     2   0   4   5   9   5   9  10   4   2   1   1
Panda          7     0   0   0   0   0   0  10   0   0   8   0   1
Regatta        8     1   0   2   3   7   3   8   5   2   3   0   1
Regattad       9     1   0   2   3   7   3   8   5   1  10   2   1
Uno           10     0   0   0   0   2   1   9   4   0   8   0   1
X19           11     1   0   1   2   4   1   2   0   2   4   0   0

Alfa Romeo
Estate         1     1   0   1   3   6   2   6   5   2   4   0   1
Arna1.5        2     1   0   1   1   5   2   8   5   2   3   0   1
Alfa2.5        3     3   2   1   5   7   2   8   7   4   2   0   0

Lancia
Delta         13     1   0   1   3   4   2   7   6   3   2   0   1
Thema         14     2   0   4   5  10   5   9  10   5   1   1   1
Y10           15     0   0   1   0   0   0   9   0   2   4   0   1

Ferrari
Mondialqc      4     5   4   6   9   9   5   4   9   7   1   1   0
Testarossa     5     9   8  10  10   9   9   1   7  10   0   1   0

Lamborghini
Contach       12    10   8  10   9   6  10   0   5   9   0   0   0

Pinninfarina
Spider        16     2   0   1   4   6   2   4   2   3   2   1   0

6.19.4 Relating groups to the original data variables: the HSUMMARIZE directive

The HSUMMARIZE directive helps you to see which clusters, if any, are distinguished by each
variable. It requires a factor to define the clusters, as well as the original data variables (variates
or factors), together with their types and, optionally, their ranges. From this it prints a frequency
table for each variable, classified by the grouping factor and the different values of the variable
concerned.

For qualitative variables (variates or factors with TEST settings simplematching -
rogerstanimoto) the values are integral, and for each group Genstat calculates an interaction
statistic labelled chi-square. This statistic does not have a significance level attached to it, but
it does draw attention to groups for which the distribution is markedly different from the overall
distribution.

For quantitative variables (i.e. variates with other settings) values are rounded to the nearest
point on an 11-point scale (0-10). The interaction statistic is analogous to Student's t, and it
draws attention to the groups for which the mean value is markedly different from the overall
mean (again with no significance level attached). Missing values are ignored in the computation
of these statistics.
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HSUMMARIZE directive
Forms and prints a group by levels table for each test together with appropriate summary
statistics for each group.

Option
GROUPS = factor Factor defining the groups; no default i.e. this option

must be specified

Parameters
DATA = variates or factors The data variable
TEST = string tokens Test type, defining how each variable is treated in the

calculation of the similarity between each unit
(simplematching, jaccard, russellrao, dice,
antidice, sneathsokal,  rogerstanimoto,
cityblock, manhattan, ecological, euclidean,
pythagorean, minkowski, divergence, canberra,
braycurtis, soergel); default * ignores that variable

RANGE = scalars Range of possible values of each variable; if omitted, the
observed range is taken

The parameters of the HSUMMARIZE directive are the same as those of the HLIST directive; see
Section 6.19.3.

As the output from this directive can be very long, only two tables are shown in Example
6.19.4; these illustrate the difference between tables for qualitative and quantitative variables.
The grouping factor is taken from the HCLUSTER example in 6.19.1. Each entry in the table gives
the number of units from a particular group that have a particular value of the variable.

Example 6.19.4

  52  HSUMMARIZE [GROUPS=Cargrp] Weight,Carb; \
  53    TEST=cityblock,simplematch

Grouped data frequency tables for each variate
==============================================

  Variate: Weight
  Minimum: 720.0         Range: 786.0     Test type: City block
  Data scaled by factor of 0.01272

Cargrp     *   0   1   2   3   4   5   6   7   8   9  10

 1         0   3   1   1   4   1   1   0   0   0   0   0
 2         0   0   0   0   0   0   2   0   0   0   1   0
 3         0   0   0   0   0   0   0   0   0   0   1   1

   Total   0   3   1   1   4   1   3   0   0   0   2   1

Cargrp    Total    Mean       t

 1           11    2.18   -1.75
 2            3    6.33    1.33
 3            2    9.50    2.48

   Total     16    3.88

  Variate: Carb    Test type: Simple Matching
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Cargrp     *   0   1   2  Total    Chi-sq

 1         0   9   1   1     11    2.53
 2         0   0   3   0      3    6.60
 3         0   1   1   0      2    0.40

   Total   0  10   5   1     16

6.19.5 Plotting the dendrogram: the DDENDROGRAM procedure

DDENDROGRAM procedure
Draws dendrograms with control over structure and style (P.G.N. Digby).

Options
STYLE = string token Style to use for the links of the dendrogram (average,

centroid, lower, full); default aver
ORDERING = string tokens How to define the order of the units for the dendrogram

(given, ziggurat, size, first); default zigg, size,
firs

REVERSE = string token Whether to reverse the order of the units in the
dendrogram (no, yes); default no

ORIENTATION = string token Specifies the orientation of a dendrogram produced by
high-resolution graphics (north, south, east, west);
default west

METHOD = string token Method used to represent the scale on which the
amalgamations have been made: settings other than the
default are relevant only for data not generated by
HCLUSTER or HDISPLAY (similarities,
percentages, distances); default simi

SCREEN = string token Setting to use for the SCREEN option of DGRAPH
(clear, keep); default clea

CHANGE = string token If a dendrogram-save structure from a previous
DDENDROGRAM is used as the DATA parameter then this
option specifies the area of the process where the first
changes occur: see the description of the SAVE
parameter (order, dendrogram, display); default
orde

GRAPHICS = string token Form of graphics to be used (lineprinter,
highresolution); default high

DSIMILARITY = string token Whether to display an axis for the similarities in
high-resolution graphics (no, yes); default no

LOWSIMILARITY = scalar Lower value to be used for the axis showing the
similarities; default * i.e. determined from the data

NPAGES = scalar Number of pages to use for a high-resolution plot;
default 1

PAGEINFORMATION = string tokens Controls what to include in a multi-page plot
(similarity, title, pagenumber); default simi,
titl, page

ENDACTION = string token Action to be taken after completing the plot (continue,
pause); default * uses the current setting

Parameters
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Figure 6.19.5a

DATA = matrices or pointers Data defining each dendrogram in the form of either a
matrix saved using the AMALGAMATIONS parameter of
HCLUSTER (methods other than single linkage), or a
matrix from the TREE parameter of HDISPLAY, or a
SAVE structure from a previous use of DDENDROGRAM

PERMUTATION = variates Specify or save permutations of the units for drawing
each dendrogram, according to ORDERING option

LABELS = variates or texts Supply labels to use for the units of each dendrogram;
these should be in the natural order of the units, not in a
permuted order

TITLE = texts Titles for the dendrograms
WINDOW = scalars Window to use for each dendrogram (window 1 if

unset); if this is set to zero the dendrogram is not drawn,
but results can still be saved using the PERMUTATION,
ZIGGURAT and SAVE parameters

PENS = scalars, variates, string or texts
Scalar or string specifying the graphics pen or symbol in
which to draw each (high-resolution or line-printer)
dendrogram; alternatively use of a variate or text allows
the structure of each dendrogram to be highlighted by
drawing different links with different graphics pens or
symbols

ZIGGURAT = variates Save the "ziggurat-degree" of the links in each
dendrogram

SAVE = pointers Save the information required to plot a dendrogram, for
use as input for the DATA parameter in a subsequent call
to DDENDROGRAM

DDENDROGRAM draws dendrograms
using line-printer or high-
resolution graphics, as indicated by
the GRAPHICS option. Figure
6.19.5a shows an example, which
reproduces (as a high-resolution
plot) the dendrogram in Example
6.19.1.

Dendrograms can be drawn in
many ways, often with apparently
quite different results, as illustrated
by Digby (1985). DDENDROGRAM
provides considerable control over
the way in which the dendrogram
is formed; in particular allowing
the order of the units and the style
used for drawing the links of the
dendrogram to be varied.

The information defining the
dendrogram is given by the DATA
parameter. This should be a matrix
containing the amalgamations information from hierarchical cluster analysis (from the
AMALGAMATIONS parameter of HCLUSTER; 6.19.1) or a matrix containing the minimum spanning
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tree information (from the TREE parameter of HDISPLAY 6.19.2); alternatively a SAVE structure
from a previous DDENDROGRAM can be used as input. However, the amalgamations matrix from
HCLUSTER is unusable if the clustering has been produced by single linkage, so the minimum
spanning tree information (which is equivalent) should be used as input instead.

The PERMUTATION parameter can be supplied with a variate, either to specify a permutation
of the rows of the dendrogram or to save the permutation generated by DDENDROGRAM, as
indicated by the ORDERING option. Setting ORDERING=given takes the ordering defined by the
PERMUTATION variate. The other settings of ORDERING define partial orderings of the units, and
are used in conjunction with each other to obtain the full ordering: ziggurat (Critchley 1983)
is associated with ultrametric distances amongst the units; size specifies that when 2 groups
merge the smaller is always placed before the larger in the order; first specifies that when 2
groups merge the group containing the lowest numbered unit is always placed before the other
in the order. The orders given by settings ziggurat and size are not completely specified and
recourse may be made to the other of these settings or to first. If ORDERING is not set to
given, a list of settings may be specified; then the first in the list is used, the second is used to
satisfy indeterminacies in the order given by the first setting in the list, and so on. The default
is the list of settings: ziggurat, size, first. Option REVERSE allows the ordering thus
obtained to be reversed.

The LABELS parameter can be given a variate or a text to supply labels for the rows of the
dendrogram. Labelling can be suppressed altogether by using a text containing only spaces.

The STYLE option controls the style to use in forming the links of the dendrogram: its setting
indicates where the line representing each new cluster should be placed. Assuming that the
dendrogram has the units on the left-hand side, the settings can be described as follows:
average (the default) the new line is midway between the old lines; centroid the new line is
placed at the mid-point of all the units in the group it represents; lower the new line is a
continuation of the lower of the two old lines (comparable with dendrograms from HCLUSTER);
full the new line is a continuation of the upper or lower of the two old lines, so that each
vertical line spans all the units in the group it represents.

The ORIENTATION option is relevant to high-resolution graphics, when it controls the
orientation of the dendrogram: for example the setting north results in a "hanging dendrogram"
with the units across the top. The default setting is west, which gives a dendrogram with the
units on the left-hand side; this is also how DDENDROGRAM draws dendrograms on the line-
printer.

The METHOD option indicates the scale on which the amalgamations have been made. This
option need be set only if the data have been obtained from a source other than HCLUSTER or
HDISPLAY.

The TITLE parameter specifies a title for each dendrogram. For high-resolution graphics, the
WINDOW parameter defines the graphics window to use for each plot. With line-printer graphics,
two "windows" are available: window 1 has a width of 101 characters, window 2 a width of 61
characters. If WINDOW is not set, window 1 is used. If it is set to zero, the dendrogram is not
drawn but results can still be saved using the PERMUTATION, ZIGGURAT and SAVE parameters;
however, if the SAVE structure is used later as input to DDENDROGRAM, the CHANGE option must
not be set to display as the dendrogram stage will not have been completed.

The LOWSIMILARITY option allows the lower value of the axis showing the similarities (or
percentage similarities or distances, according to the setting of the METHOD option) to be set e.g.
to zero. Otherwise, this is determined automatically from the minimum value in the data. By
default the axis is not plotted, but this can be changed by setting option DSIMILARITY=yes.

The NPAGES option allows the display to be split over several pages in a high-resolution plot. 



6.19  Hierarchical cluster analysis 883

The PAGEINFORMATION option then controls what information is shown on the pages:
similarity includes the similarity axis on pages 2 onwards when

DSIMILARITY=yes (otherwise it is only on page 1),
title includes the TITLE on pages 2 onwards, and
pagenumber includes page numbers.

As in other graphics commands, the SCREEN option controls whether to clear the
high-resolution graphics screen before plotting (default clear), and the ENDACTION option
controls whether Genstat pauses or continues after completing the plot.

For high-resolution graphics, the PENS parameter can be supplied with a scalar indicating the
graphics pen with which to draw the dendrogram. Alternatively, if required, a variate can be
specified to highlight the structure of the dendrogram by drawing different links with different
pens; the links are taken in the same order as the rows of the AMALGAMATIONS matrix from
HCLUSTER or in increasing order of the links of the minimum spanning tree. DDENDROGRAM will
use pen 1 if the PENS parameter is not set. Any pens used by DDENDROGRAM will be set to
METHOD=line, SYMBOLS=0, JOIN=given. If a scalar is supplied or PENS is not set, the pen
used will also have LINESTYLE set to 1. If a variate is used, appropriate settings of COLOUR and
LINESTYLE should set (using the PEN directive) prior to calling DDENDROGRAM. Similarly, with
line-printer graphics, the PENS parameter can be set either to a string or to a text, according to
whether the links are to be drawn with the same or different symbols; if the parameter is unset,
the plus symbol (+) is used for all the links.

The ZIGGURAT parameter can be used to save the "ziggurat-degree" (Critchley 1983) of each
link. This could then be used to form the setting of the PENS parameter for a later dendrogram,
in order to display particular aspects of the clustering more clearly.

The SAVE parameter can be used to save the various structures that control the drawing of a
dendrogram in order to save computing time when drawing a similar dendrogram. The SAVE
structure should then be used as the setting of the DATA parameter, and the CHANGE option used
to indicate the stage at which to start changing aspects of the previous dendrogram. The various
stages (in order) involve the following options and parameters:

order ORDERING and PERMUTATION;
dendrogram STYLE and METHOD;
display REVERSE, ORIENTATION, SCREEN, LABELS, TITLE,

WINDOW, PENS, DSIMILARITY and LOWSIMILARITY.

Example 6.19.5 plots dendrograms to display the average linkage clustering of the cars in
Section 6.19.1. First it uses the permutation variate Carperm to produce the dendrogram in the
same ordering as in Example 6.19.1; see Figure 6.19.5a. Then it shows four other styles; see
Figure 6.19.5b. Notice that the save structure DfrstAv is used in line 71 to avoid repeating all
the calculations.
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Figure 6.19.5b

Example 6.19.5

  54  TEXT Cars; VALUES=!T(Estate,'Arna1.5','Alfa2.5',Mondialqc,\
  55    Testarossa,Croma,Panda,Regatta,Regattad,Uno,\
  56    X19,Contach,Delta,Thema,Y10,Spider)
  57  FRAME 1; YLOWER=0; YUPPER=1; XLOWER=0; XUPPER=1
  58  DDENDROGRAM [STYLE=lower; ORDERING=given; LOWSIMILARITY=0; \
  59    DSIMILARITY=yes] Caramalg; PERMUTATION=Carperm; LABELS=Cars;\
  60    TITLE='Dendrogram as from HCLUSTER'; SAVE=DKeep
  61  " types of ordering "
  62  FRAME 5...8; YLOWER=2(0.5,0.0); YUPPER=2(1.0,0.5);\
  63               XLOWER=(0.0,0.5)2; XUPPER=(0.5,1.0)2
  64  DDENDROGRAM [STYLE=average; ORDERING=first; REVERSE=yes; SCREEN=clear;\
  65    ENDACTION=continue; CHANGE=order; DSIMILARITY=yes] DATA=DKeep;\
  66    TITLE='A: STYLE=average, ORDER=first'; WINDOW=5; SAVE=DSFrstAv
  67  DDENDROGRAM [STYLE=centroid; ORDERING=size,ziggurat;\
  68    SCREEN=keep; ENDACTION=continue; CHANGE=order; DSIMILARITY=yes]\
  69    DATA=DKeep; TITLE='B: STYLE=centroid, ORDER=size,zig'; WINDOW=6
  70  DDENDROGRAM [STYLE=lower; ORDERING=first; REVERSE=yes;\
  71    SCREEN=keep; ENDACTION=continue; CHANGE=dendrogram; DSIMILARITY=yes]\
  72    DATA=DSFrstAv; TITLE='C: STYLE=lower, ORDER=first'; WINDOW=7
  73  DDENDROGRAM [STYLE=full; ORDER=ziggurat,size; SCREEN=keep; \
  74    ENDACTION=pause; CHANGE=order; DSIMILARITY=yes] DATA=DKeep;\
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  75    PERMUTATION=PSave; TITLE='D: STYLE=full, ORDER=zig,size'; WINDOW=8;\
  76    ZIGGURAT=ZigDeg; SAVE=DSave

6.19.6 Plotting a minimum spanning tree: the DMST procedure

DMST procedure
Gives a high resolution plot of an ordination with minimum spanning tree (A.W.A. Murray).

Options
DIMENSIONS = scalars Two numbers specifying the dimensions to display on

the y- and x-axes; default 2,1
TITLE = text Title for the graph
WINDOW = scalar Window for the graph; default 1
KEYWINDOW = scalar Window for the key; default 2
SCREEN = string token Controls screen (clear, keep); default clea

Parameters
COORDINATES = matrices or datamatrices

Coordinates from ordination
TREE = matrices Minimum spanning tree
SIMILARITY = symmetric matrices Association matrix used to derive ordination
SYMBOLS = factors or texts Symbols to label the coordinates
PENCOORDINATES = scalars Pen to use for the coordinates
PENTREE = scalars Pen to use for the minimum spanning tree

DMST plots a minimum spanning tree using coordinates saved, for example, from a PCO (6.10.1).
The COORDINATES parameter specifies the coordinates for the units in the plot, using either a
matrix or a pointer to a set of variates (that is, a data matrix). The minimum spanning tree can
be supplied using the TREE parameter, or it can be calculated (by HDISPLAY; 6.19.2) from the
original association matrix specified using the SIMILARITY parameter. If TREE supplies a matrix
with no values, these will be set to the tree calculated from the SIMILARITY matrix. If the
COORDINATES structure was originally declared with row labels the procedure will automatically
use these to label the plots. Alternative symbols can be defined using the SYMBOLS parameter.
You can also specify the pens to be used to plot the coordinates and tree, using parameters
PENCOORDINATES and PENTREE respectively. The definition of these pens, outside the
procedure, thus allows the colour, size, font and linestyle of links in the tree to be controlled. By
default the coordinates are plotted with colour black and the tree with colour red, symbols are
0.8 of normal size, and the tree is plotted with a dotted line.

Options TITLE, WINDOW, KEYWINDOW and SCREEN function as usual for high resolution
graphics. If the WINDOW is unset a default layout with appropriately labelled axes is produced in
window 1. Axes will be scaled automatically unless limits have already been set outside the procedure.
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Figure 6.19.6

Example 6.19.6 uses
DMST to plot a minimum
spanning tree for species
recorded on the Park Grass
experiment at Rothamsted
(see Digby & Kempton
1987). The resulting graph
is in Figure 6.19.6.

Example 6.19.6

   2  " Data from Table 1.5 of Digby & Kempton (1987)."
   3  TEXT Spp,title,Spp; VALUES=\
   4       !t(Agr,Alo,Anx,Arr,Dac,Fes,Hel,Hol,Ppr,Ptr, \
   5          Lol,Lat,Tri,Anr,Her,Leo,Pla,Pot,Ran,Tar),\
   6       'Association of species on Park Grass (Czekanowski measure)'
   7  SYMMETRICMATRIX [ROWS=Spp] PGsim
   8  READ [PRINT=data,errors]  PGsim

   9  100
  10  75 100
  11  88 83 100
  12  72 95 81 100
  13  63 87 73 93 100
  14  85 84 93 85 77 100
  15  57 68 65 65 67 69 100
  16  84 89 91 88 80 87 62 100
  17  76 88 81 90 81 85 65 91 100
  18  63 84 73 85 88 77 62 80 81 100
  19  33 38 33 39 44 36 50 29 22 44 100
  20  58 79 69 85 83 73 60 76 77 83 40 100
  21  61 64 65 70 71 69 71 62 61 71 58 80 100
  22  29 60 46 62 58 49 40 50 57 63 20 56 40 100
  23  46 73 59 79 82 63 50 67 67 82 46 81 67 69 100
  24  43 32 37 38 42 40 48 37 38 36 40 45 64  0 22 100
  25  73 68 73 69 67 77 81 69 69 62 52 70 81 30 51 57 100
  26  29 23 25 24 27 27 36 25 29 20 17 21 36  0  8 62 40 100
  27  67 73 70 75 73 71 72 67 67 68 54 71 78 38 53 52 87 42 100
  28  77 92 85 93 89 89 71 91 93 89 37 85 71 59 76 41 78 28 76 100 :
  29  LRV  [ROWS=Spp; COLUMNS=3] L3
  30  PCO  [PRINT=roots] PGsim; LRV=L3
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Principal coordinates analysis
==============================

Latent Roots
------------

              1         2         3         4         5         6         7
         215.44    127.06     89.05     58.95     50.42     37.55     30.46

              8         9        10        11        12        13        14
          23.64     16.41     15.69     12.82     12.14     10.34      8.12

             15        16        17        18        19        20
           6.30      5.75      2.90      2.61      1.45      0.00

Percentage variation
--------------------

              1         2         3         4         5         6         7
          29.63     17.48     12.25      8.11      6.93      5.16      4.19

              8         9        10        11        12        13        14
           3.25      2.26      2.16      1.76      1.67      1.42      1.12

             15        16        17        18        19        20
           0.87      0.79      0.40      0.36      0.20      0.00

Trace
-----

       727.1

  31  FRAME 3; SCALING=xyequal
  32  YAXIS 3; TITLE='PCO axis 2'
  33  XAXIS 3; TITLE='PCO axis 1'
  34  DMST [WINDOW=3; KEY=0; TITLE=title] L3['Vectors']; SIM=PGsim

6.19.7 Comparing clusterings: the HCOMPAREGROUPINGS procedure

HCOMPAREGROUPINGS procedure
Compares groupings generated, for example, from cluster analyses (R.W. Payne).

Options
PRINT = string tokens Controls printed output (indexes, tests); default

inde

PLOT = string What to plot (histogram); default *
METHOD = string tokens Which indexes to calculate (arand, jaccard, rand);

default arand
NTIMES = scalar Number of permutations to make for the tests; default

999

Parameters
FIRSTGROUPING = factors First set of groupings
SECONDGROUPING = factors Second set of groupings
ESTIMATES = pointers Saves the values of the indexes calculated from the

original data set
SEED = scalars Seed for the random number generator used to make the

permutations; default 0 continues from the previous
generation or (if none) initializes the seed automatically



888 6  Multivariate and cluster analysis

PERMUTATIONESTIMATES = pointers
Saves the values of the indexes calculated from the
permuted data sets

HCOMPAREGROUPINGS calculates indexes to assess the similarity between two sets of groupings,
which are specified in factors using the FIRSTGROUPING and SECONDGROUPING parameters.
These may, for example, have been obtained from two different cluster analyses, and must not
be restricted.

The METHOD option selects the indexes, with settings:
arand adjusted Rand index,
jaccard Jaccard index, and
rand Rand index.

The Rand index (Rand 1971) is defined as
 ( np1  + np2  ) / 

NC2

where
np1 is the number of pairs of units that are in the same group in both factors,
np2 is the number of pairs of units that are in different groups in both factors,
N is the total number of units, and
NC2 is the total number of ways of selecting of 2 units from a sample of N units,

which can be calculated as N×(N!1)/2.
This ranges from zero (for no similarity) to one (for complete similarity).

The adjusted Rand index of Hubert & Arabie (1985) is defined as
{ 3 i 3 j (

mijC2 ) }  !  { 3 i ( 
aiC2 ) × 3 j ( 

bjC2 ) / ( 
NC2)  } /

!  { 3 i ( 
aiC2 ) + 3 j ( 

bjC2 ) }  !  { 3 i ( 
aiC2 ) × 3 j ( 

bjC2 ) / ( 
NC2)  } 

where
mij is the number of units that are in group i for the first factor, and group j for the second

factor,
ai is the number of units in group i of the first factor, and
bj is the number of units in group j of the second factor.

The first term in the numerator measures the agreement between the groupings. The second term
is the expected value of the first term, assuming a generalized hypergeometric distribution, and
the first term of the denominator is its maximum value. The index has a value of zero if the
groupings are independent, and one if they are in complete agreement.

The Jaccard index is defined as
np1  / ( 

NC2 !np2  )
This is similar to the Rand index, except that it excludes the pairs of units that are in different
groups in both factors.

The ESTIMATES parameter can save  a pointer, containing a scalar for each index, to save the
calculated values. The elements of the pointer are labelled by the index names, but defined so
that you can refer to them in either lower- or upper-case or a mixture.

The PRINT option controls the printed output, with settings:
indexes prints the indexes, and
tests prints probabilities obtained from random permutation

tests.
The random permutation tests allow you to assess whether the similarity may have arisen only

by chance. The NTIMES option specifies the number of permutations to take (default 999).
HCOMPAREGROUPINGS checks whether NTIMES is greater than the number of possible
permutations available for the data set. If so, it does an exact test instead, which uses each
possible permutation once. The SEED option specifies the seed that is used to obtain the random
numbers used to form the permutations.

The PERMUTATIONESTIMATES parameter can save  a pointer, containing a variate for each
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index, to save the values calculated in the random permutations. The elements of the pointer are
labelled by the index names, but defined so that you can refer to them in either lower- or upper-
case or a mixture.

You can set option PLOT=histogram to plot histograms showing where the calculated value
of each index lies within those obtained from the permutation tests.

Example 6.19.7 compares the  groupings, saved from the cluster analysis of the cars in
Example 6.19.1, with those from a cluster analysis that uses the single-linkage method instead
of average linkage. Unsurprisingly, the permutation test shows that the similarity bertween the
groupings is unlikely to have arisen by chance!

Example 6.19.7

  77  HCLUSTER [PRINT=dendrogram; METHOD=singlelink] Carsim; \
  78           GTHRESHOLD=90; GROUPS=Cargrpsing

Single linkage cluster analysis
===============================

Dendrogram
----------

  ** Levels   100.0  90.0  80.0  70.0

Estate         1  ..
Regatta        8  ..)
Arna1.5        2  ..)
Delta         13  ..)..
Y10           15  .....)
Panda          7  ..   )
Uno           10  ..)..)..
X19           11  ........)
Spider        16  ........)..
Regattad       9  ...........)
Alfa2.5        3  ...........)
Thema         14  .....      )
Croma          6  .....).....)..
Mondialqc      4  ...........   )
Testarossa     5  ........   )  )
Contach       12  ........)..)..)..............

  79  PRINT    Cargrp,Cargrpsing

      Cargrp  Cargrpsing
           1           1
           1           1
           1           5
           3           7
           3           8
           2           6
           1           1
           1           1
           1           4
           1           1
           1           2
           3           9
           1           1
           2           6
           1           1
           1           3

  80  HCOMPAREGROUPINGS [PRINT=indexes,tests; METHOD=arand,jaccard,rand]\
  81           FIRSTGROUPING=Cargrp; SECONDGROUPING=Cargrpsing; SEED=93587
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Rand index 0.6917, probability 0.014
Adjusted Rand index 0.3768, probability 0.014
Jaccard index 0.3729, probability 0.014
(probabilities from 999 random permutations)

6.19.8 Bootstrap analyses to assess the reliability of the clusters: the HBOOTSTRAP

procedure

HBOOTSTRAP procedure
Performs bootstrap analyses to assess the reliability of clusters from hierarchical cluster 
analysis (R.W. Payne).

Options
PRINT = string token Controls printed output (clusters, dendrograms;

default * i.e. none
METHOD = string token Criterion for forming clusters (singlelink,

nearestneighbour, completelink,
furthestneighbour, averagelink, mediansort,
groupaverage); default sing

CLIMIT = scalar Similarity value below which clusters are not recorded;
default 0

UNITS = text or variate Names to label the units of the clusters when they are
printed; default *

MINKOWSKI = scalar Index t for use with TEST=minkowski
CLUSTERS = pointer Specifies or saves the clusters
REPLICATION = variate Saves the replication of the clusters in the bootstrap

samples
NDATASAMPLE = scalar Number of DATA vectors to take in each sample; default

takes the same number as supplied by the DATA
parameter

NTIMES = scalar Number of times to resample; default 100
SEED = scalar Seed for random number generator; default continue

from previous generation or use system clock

Parameters
DATA = variates or factors The characteristics of the units to be clustered
TEST = string tokens Test type, defining how each DATA variate or factor is

treated in the calculation of the similarity between each
unit (simplematching, jaccard, russellrao,
dice, antidice, sneathsokal,  rogerstanimoto,
cityblock, manhattan, ecological, euclidean,
pythagorean, minkowski, divergence, canberra,
braycurtis, soergel); default * ignores that variate
or factor

RANGE = scalars Range of possible values of each DATA variate or factor;
if omitted, the observed range is taken

HBOOTSTRAP uses bootstrapping to assess the reliability of clusters formed in a  hierarchical
cluster analysis. The characteristics of the units to be clustered are described in a list of variates
and factors, specified by the DATA parameter. The TEST parameter defines how each one is to
be used when calculating similarities, and the RANGE parameter can specify ranges of their
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values. These operate as in the FSIMILARITY directive (6.1.2), which is used to form the
similarity matrix for each cluster analysis. The MINKOWSKI option specifies the index t for the
Minkowski tests.

For each bootstrap sample, a set of vectors is formed by sampling with replacement from the
DATA vectors. The NDATASAMPLE option specifies the number of vectors to take; by default this
is the same as the number of vectors supplied by DATA. The NTIMES option specifies the number
of bootstrap samples; default 100. The SEED option specifies the seed to use for the random
numbers used to select the sample; the default of zero continues an existing sequence of random
numbers or, if none, it initializes the sequence using the system clock. HBOOTSTRAP does a
cluster analysis with those vectors using the HCLUSTER directive, and obtains the clusters that
it forms using the HFCLUSTERS procedure. The CLIMIT option can be used to specify a limit,
below which any clusters will be excluded.

The CLUSTERS option can supply a pointer containing a list of clusters whose reliability is to
be assessed. This would usually have been obtained previously, from a cluster analysis
performed with all the DATA vectors, as in 6.19.1. Alternatively, if CLUSTERS is set to a pointer
whose number of values has not been defined, or to an undeclared data structure, this will be
defined as a pointer containing one of every cluster that has occurred during the bootstrapping.
Each cluster is represented as a variate, containing the number of each unit in that cluster. (This
number corresponds to the location of that unit in the DATA vectors.) 

The REPLICATION option can save a variate containing the number of times each cluster has
occurred during the bootstrapping. These replications can be used by the DCLUSTERLABELS
procedure  to label the clusters on a dendrogram.

The clusters and their replications can be printed by setting option PRINT=clusters. The
UNITS option can be set to a text or a variate, to provide textual labels or other numbers to use
for the units of the clusters, instead of the numbers in the CLUSTERS variates. The other PRINT
setting, dendrogram, prints the dendrogram of the cluster analysis from each bootstrap sample.

The whole process is shown in Example 6.18.8.

Example 6.19.7

  82  " obtain the clusters from the original cluster analysis "
  83  HFCLUSTERS  Caramalg; CLUSTERS=Clusters
  84  " see often these clusters occur in 100 bootstrap samples of data variables "
  85  HBOOTSTRAP  [PRINT=clusters; METHOD=averagelink; NTIMES=100; SEED=161647;\
  86              CLUSTERS=Clusters; REPLICATION=Reps] #Cd,Carb,Drive;\
  87              TEST=4(cityblock),4(Euclidean),2(cityblock),2(simplematch)

Clusters
========

 Replication 58 76 70 83 51 65 41 54 70 68 35 36 14 37 100
     Cluster {  {  {  {  {  {  {  {  {  {  {  {  {  {   {
              1  5  6  7 11  1  3  4  7  1  1  1  1  1   1
              8 12 14 10 16  2 11  5 10  2  2  2  2  2   2
              }  }  }  }  }  8 16 12 15  8  7  7  3  3   3
                             }  }  }  } 13  8  8  7  6   4
                                         } 10  9  8  7   5
                                           13 10  9  8   6
                                           15 13 10  9   7
                                            } 15 11 10   8
                                               } 13 11   9
                                                 15 13  10
                                                 16 14  11
                                                  } 15  12
                                                    16  13
                                                     }  14
                                                        15
                                                        16
                                                         }
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Figure 6.19.6

  88  " replot the original dendrogram "
  89  DDENDROGRAM [STYLE=average; ORDERING=given; LOWSIMILARITY=0; \
  90              DSIMILARITY=yes] Caramalg; PERMUTATION=Carperm;\
  91              LABELS=Cars; WINDOW=1
  92  " plot the numbers of occurrence on the dendrogram "
  93  DCLUSTERLABELS [WINDOW=1] #Clusters; LABEL=#Reps

First of all, in line 83, the HFCLUSTERS procedure is used to obtain the complete set of clusters
from the original cluster analysis. This requires the amalgamations matrix, which was saved in
Caramalg in line 34 of Example 6.18.1. For full details of HFCLUSTERS, see the Genstat
Reference Manual, Part 3 Procedures. For bootstrapping we just need the first two parameters:
the first specifies the amalgamations matrix, and the second saves the clusters (in a pointer).

The parameters of HBOOTSTRAP, in lines 86-87 reproduce the parameters settings from the
FSIMILARITY command used to form the similarity matrix for the original cluster analysis
(Example 6.19.1, lines 30-31). The setting of the METHOD option is the same as in the HCLUSTER
command that produced the original cluster analysis (Example 6.19.1, line 32). The NTIMES
option asks for 100 bootstrap samples to be taken. (This is actually the default, and so could have
been omitted.) The SEED option sets a seed for the random numbers. (We have done this here
so that, if you run the example, you will obtain the same results as here.) The CLUSTERS option
supplies the clusters (formed by HFCLUSTERS). Te REPLICATION option saves the number of
times they occur during the bootstrapping, and the PRINT option has been set to print them.

I n  l i n e s  8 9 - 9 1
DDENDROGRAM plots the
original dendrogram, and
i n  l i n e  9 3  t h e
D C L U S T E R L A B E L S

procedure is used to label
the clusters by their
replications. For full
details of HFCLUSTERS,
see the Genstat Reference
M a n u a l ,  P a r t  3
Procedures. Here we
simply needed to set the
WINDOW option to the
number of the window
c o n t a i n i n g  t h e
dendrogram, the first
parameter to the clusters,
and the second parameter
( L A BE L )  t o  t h e i r
replications. (The special
symbol # replaces the
pointer Clusters and the
variate Reps by their
individual elements.) The resulting plot, in Figure 6.19.8, suggests that most of the clusters are
sensitive to the choice of vectors in the cluster analysis.
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6.20 Non-hierarchical classification

A common statistical problem is to divide the units of a data set into some number of mutually
exclusive groups, or classes. Usually you would hope that the groups will be reasonably
homogeneous, and distinct from each other. When you do not know the most natural number of
classes in advance, you might be interested in several classifications into different numbers of
groups: you can then inspect these, and make a decision about the most acceptable number of
groups. One way of achieving such groupings is to take the results of a hierarchical classification
(6.19), and cut the dendrogram at appropriate levels to obtain groupings into several numbers
of classes. However, the statistical properties of the resulting groups are not at all clear, and the
hierarchical nature of the groupings into various numbers of classes can impose undue
constraints. An alternative approach is to optimize some suitably chosen criterion directly from
the data matrix, to obtain one or more non-hierarchical classifications.

Non-hierarchical classification (or K-means clustering) methods differ according to the
criterion that they optimize and in the algorithm used to search for an optimum value of the
chosen criterion. In Genstat one of four different criteria may be optimized, and the optimization
algorithm uses one of two different strategies.

Which criterion to choose depends on the type of data. Suppose first that they can be
considered as being a mixture of k multi-Normal distributions, with the same variance-
covariance matrix. Then the maximum-likelihood estimate of this matrix is given when the
grouping into k classes minimizes the determinant of the within-class variance-covariance
matrix, pooled over the k groups (Friedman & Rubin 1967); in other words, the optimization
criterion is to minimize this determinant.

When only two groups are to be formed, the criterion above is equivalent to maximizing the
Mahalanobis distance between the two classes. However, when the number of groups to be
formed is greater than two, maximizing the total Mahalanobis distance between the classes will
generally give different results to minimizing the determinant of the pooled within-class
dispersion matrix. Maximizing the total Mahalanobis distance is the second available criterion.

The third criterion maximizes the total Euclidean distance between the classes; this is
equivalent to minimizing the total within-class sum of squares: that is, the trace of the pooled
within-class dispersion matrix. This third criterion can be thought of as a simpler variant of the
first, that does not rely on the assumptions of multi-Normality or equal within-class dispersion.

The fourth criterion gives maximal predictive classification (Gower 1974). It is relevant when
all the data are binary: that is, when they take only two values, usually designated by zero and
one. Within each class, the class predictor is defined to be a list with one entry for each variate:
the ith entry is whichever value (zero or one) is more frequent in the class for the ith variate. The
criterion, W, to be maximized is the sum over the classes of the number of agreements between
units of each class and their class predictor. When several different classifications give the same
maximum value for W, a subsidiary criterion B is minimized. Whereas W measures within-class
homogeneity, B measures between-class heterogeneity: it is the sum of the number of correct
predictions for each unit when predicted by any of the class predictors of the classes other than
the one to which the unit is assigned.

The algorithm used in Genstat to search for optimal values of the chosen criterion proceeds
as follows. Starting from some initial classification of the units into the required number of
groups, the algorithm repeatedly transfers units from one group to another so long as such
transfers improve the value of the criterion. When no further transfers can be found to improve
the criterion, the algorithm switches to a second stage which examines the effect of swopping
two units of different classes. The algorithm alternates between the two types of search until
neither gives any improvement. Searching for swops is computationally more expensive than
searching for transfers, so only one swop is performed each time before the algorithm switches
to search for transfers. However, using only swops has the advantage that the group sizes remain
constant: if this is what you want, you can direct Genstat to search only for swops.
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There is no guarantee that the classification resulting from the above algorithm will be
globally optimal: to be sure of that, you would need to try all possible classifications of the units
into the required number of groups. All that is known is that no improvement can be made to the
criterion by either of the types of transfer strategy. The chance that the algorithm will produce
a near-optimal classification can be much improved by providing a good initial classification.
You could obtain this from a hierarchical classification method, or by examining a set of
principal component scores from the data. The effect of trying different initial classifications can
be interesting, and provides some information on the closeness to optimality.

These methods are all available through the cluster analysis menus in Genstat for Windows.

6.20.1 The CLUSTER directive

CLUSTER directive
Forms a non-hierarchical classification.

Options
PRINT = string tokens Printed output required (criterion, optimum, units,

typical, initial, random); default * i.e. no printing
DATA = matrix or pointer Data from which the classification is formed, supplied

as a units-by-variates matrix or as a pointer containing
the variates of the data matrix

CRITERION = string token Criterion for clustering (sums, predictive, within,
Mahalanobis); default sums

INTERCHANGE = string token Permitted moves between groups (transfer, swop);
default tran (implies swop also)

START = factor Initial classification; default * i.e. splits the units, in
order, into NGROUPS classes of nearly equal size

NSTARTS = scalar Number of starting configurations to be used; default 0
SEED = scalar Seed for the random numbers used to form random

starting configurations; default 0

Parameters
NGROUPS = scalars Numbers of classes into which the units are to be

classified: note, the values of the scalars must be in
descending order

GROUPS = factors Saves the classification formed for each number of
classes

CRITERIONVALUE = scalars Saves the criterion values (representing within-class
homogeneity)

BCRITERIONVALUE = scalars Saves the subsidiary criterion values (representing
between-class heterogeneity for maximal predictive
classification)

MEANS = matrices Saves the variate means for the groups of each
classification

PREDICTORS = matrices Saves the group predictors from maximal predictive
classification

Printed output is controlled by the PRINT option. This has the following possible settings.
criterion prints the optimal criterion value.
optimum prints the optimal classification.
units prints the data with the units ordered into the optimal
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classes.
typical prints a typical value for each class: for maximal

predictive classification this is the class predictor; for the
other methods it is the class mean.

initial if this is set, the requested sections of output are also
printed for the initial classification.

random if this is set, the requested sections of output are also
printed for the optimum configuration obtained from every
random start.

The DATA option supplies the data to be classified. This specifies a single structure that must
be either a matrix, with rows corresponding to the units and columns to the variables, or a pointer
whose values are the identifiers of the variates in the data matrix. Internally, CLUSTER operates
on a matrix, and so it will copy the variate values into a matrix if you supply a pointer as input;
thus, it is more efficient to supply a matrix, especially with large data sets.

The CRITERION option specifies which criterion CLUSTER is to optimize. The four available
settings are:

sums minimize the within-group sum of squares (and thus
maximize the between-group sum of squares);

predictive maximal predictive classification;
within minimize the determinant of the pooled within-class

dispersion matrix;
mahalanobis maximize the total Mahalanobis squared distance between

the groups.
The default is sums.

The INTERCHANGE option specifies which types of interchange (transfers or swops) are to be
used. The default is transfer, which is taken to imply that both transfers and swops are used,
since a swop is simply two transfers. If you set INTERCHANGE=swop, only swops are used. If
INTERCHANGE=* the algorithm does not attempt to improve the classification from the initial
classification; you might want this, in conjunction with the PRINT=initial setting, to display
the results for an existing classification which you do not wish to improve.

The START option can be used to supply a factor to define the initial classification. This might
be constructed using the CLASSIFY procedure (6.20.2). If there are k classes, CLASSIFY finds
the k units that are furthest apart in the multi-dimensional space defined by the data variates.
These are then used as the nuclei for the classes, with each remaining unit being allocated to the
class containing the nearest nucleus. The default splits the units, in order, into NGROUPS classes
of nearly equal size.

As an alternative to the use of CLASSIFY, the NSTARTS option allows you to specify a number
of random permutations of the initial classification to try. CLUSTER then saves the best
classification that it finds. By default, NSTARTS=0, i.e. no randomization is done. The SEED
option supplies the seed for the random numbers that are used to do the permutations. The
default of zero continues the existing sequence of random numbers, if CLUSTER has already been
used in the current Genstat job. If CLUSTER has not yet been used, Genstat picks a seed at
random.

The first parameter, NGROUPS, specifies the number of groups, or classes, to be formed. Often
you would want several classifications from a single data set, into different numbers of groups.
In this case, the NGROUPS parameter should be a list of scalars, defining the numbers of groups
in descending order. For the initial classification of the second classification, CLUSTER takes the
optimal classification from the first number of groups, and does some reallocation of units to
make a smaller number of groups. This is repeated, as often as required, to provide initial
classifications for all the later analyses; hence the need to specify the numbers in descending
order. Random starts are done only for the first number of groups.
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The GROUPS parameter can specify a list of factors to save the optimal classifications. The
CRITERIONVALUE parameter can specify a list of scalars to save the criterion values for each
number of groups. The subsidiary criterion values involved in maximal predictive classification
can be saved (also in scalars) using the BCRITERIONVALUE parameter. The MEANS parameter
can save matrices containing the means of the variates within the groups of the classifications,
and the PREDICTORS parameter can save matrixes containing the group predictors from maximal
predictive classifications.

Doran & Hodson (1975) give some measurements made on 28 brooches found at the
archaeological site of the cemetery at Munsingen. Seven of these variables, transformed to
logarithms, are used in Example 6.20.1a.

Example 6.20.1a

   2  UNITS [NVALUES=28]
   3  POINTER [VALUES=Foot_lth,Bow_ht,Coil_dia,Elem_dia,Bow_wdth, \
   4     Bow_thck,Length] Data
   5  READ Data[]

    Identifier   Minimum      Mean   Maximum    Values   Missing
      Foot_lth     2.398     3.278     4.554        28         0
        Bow_ht     2.079     2.842     3.296        28         0
      Coil_dia     1.792     2.166     2.833        28         0
      Elem_dia     1.099     2.026     2.708        28         0
      Bow_wdth     3.045     4.064     5.176        28         0
      Bow_thck     2.708     3.621     4.357        28         0
        Length     3.296     4.003     4.860        28         0

  34  CLUSTER [PRINT=criterion,optimum,initial; DATA=Data; SEED=-1] 5,4,3

Non-hierarchical clustering
===========================

Sums of squares criterion
-------------------------

Initial classification
----------------------

Number of classes = 5

Class contributions to criterion
--------------------------------

           1           2           3           4           5
       7.623       5.335       1.434       6.251       7.286

Criterion value = 27.93013

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     1     1     1     1     1     1     2     2     2     2     2     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     3     3     3     3     3     3     4     4     4     4     4     5
 Unit    25    26    27    28
Group     5     5     5     5

Optimum classification
----------------------

Number of classes = 5
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Class contributions to criterion
--------------------------------

           1           2           3           4           5
       2.205       1.715       1.965       2.361       2.633

Criterion value = 10.87899

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     4     5     3     1     1     5     5     2     1     1     4     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     3     3     3     3     3     2     3     4     2     2     3     1
 Unit    25    26    27    28
Group     1     5     5     4

Initial classification
----------------------

Number of classes = 4

Class contributions to criterion
--------------------------------

           1           2           3           4
       2.205       3.839       6.580       2.361

Criterion value = 14.98493

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     4     2     3     1     1     3     3     2     1     1     4     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     3     3     3     3     3     2     3     4     2     2     3     1
 Unit    25    26    27    28
Group     1     3     3     4

Optimum classification
----------------------

Number of classes = 4

Class contributions to criterion
--------------------------------

           1           2           3           4
       4.394       1.715       3.670       3.119

Criterion value = 12.89727

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     4     3     1     1     1     3     3     2     1     4     4     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     1     1     1     1     1     2     3     4     2     2     1     1
 Unit    25    26    27    28
Group     1     3     3     4
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Initial classification
----------------------

Number of classes = 3

Class contributions to criterion
--------------------------------

           1           2           3
      11.931       4.174       3.670

Criterion value = 19.77417

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     1     3     1     1     1     3     3     2     1     1     1     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     1     1     1     1     1     2     3     1     2     2     1     1
 Unit    25    26    27    28
Group     1     3     3     2

Optimum classification
----------------------

Number of classes = 3

Class contributions to criterion
--------------------------------

           1           2           3
      15.279       1.715       2.633

Criterion value = 19.62671

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     1     3     1     1     1     3     3     2     1     1     1     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     1     1     1     1     1     2     1     1     2     2     1     1
 Unit    25    26    27    28
Group     1     3     3     1

The seven variables, represented by the pointer Data, are defined on lines 3 and 4 and their
values are read in line 5. The PRINT option of the CLUSTER statement (line 34) specifies that the
criterion value and optimal classification are to be printed, and that the criterion value and initial
classification are to be printed before the transfer and swop algorithm is used. The criterion to
be optimized is the default, namely the minimum sum of squares within groups. The DATA option
supplies the seven variables, via their pointer. The first parameter specifies that classifications
are to be formed into five, then four, then three, groups.

The SEED option has been set to !1 and no initial classification has been supplied, so the
CLUSTER directive assigns the units to five classes, as described above. Thus the first six units
are in class 1, and so on. This classification is printed near the beginning of the output from
CLUSTER. It is preceded by the value of the minimum within-class sum of squares criterion for
this classification, and a break-down of this value into the contributions from each class; each
such contribution is the sum of squares within a class. At the optimal classification, Genstat
prints the criterion value obtained, and its contributions from each class. You can see that the
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optimal classification obtained is quite different from the initial classification: in fact only 12
of the 28 units are in the same class that they started in.

To obtain an initial classification into four groups the CLUSTER directive reassigns each unit
in group 5 to the nearest group: there are five such units, and four of them are closest to group
3. If you examine the initial and optimal classifications into four groups, and the optimal
classification into five groups, you will see that many of the units of group 3 have transferred
to group 1. This suggests that the optimal fifth group has become the third group; and that the
old third and first groups have merged. The initial classification into three groups is similarly
formed by reassigning the units in the fourth optimal group: of the five units involved, four are
reassigned to group 1. This suggests that group 1 is becoming dominant. In fact little
improvement is made to the criterion by forming the optimal classification for three groups; only
two units move, both to the first group.

Example 6.20.1b illustrates the maximal predictive criterion. Remember that this method has
a subsidiary criterion, B, as well as the main criterion W. The criterion W measures within-class
consistency, and has separate contributions from each class; the criterion B measures between-
class distinctness and has a contribution from all possible pairs of groups.

Example 6.20.1b

   2  POINTER [NVALUES=4] Y
   3  VARIATE [NVALUES=30] Y[]
   4  READ [PRINT=errors; SERIAL=yes] Y[]
   9  CLUSTER [PRINT=criterion,optimum,typical; DATA=Y; \
  10    CRITERION=predictive; SEED=-1] NGROUPS=5,2; GROUPS=Optimum[5,2]

Non-hierarchical clustering
===========================

Maximal predictive criterion
----------------------------

Equally optimum classifications
-------------------------------

Criterion value = 104.00000
Criterion B = 49.00000

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     3     4     2     1     1     5     3     4     3     5     1     1
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     2     4     3     5     5     1     3     4     2     5     2     5
 Unit    25    26    27    28    29    30
Group     3     5     3     1     5     1

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     3     4     2     1     1     5     3     4     3     5     1     1
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     2     3     3     5     5     4     3     4     2     5     2     5
 Unit    25    26    27    28    29    30
Group     3     5     3     1     5     1

Optimum classification
----------------------

Number of classes = 5

Class contributions to criterion
--------------------------------

           1           2           3           4           5
       25.00       14.00       28.00       12.00       25.00
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Criterion value = 104.00000

Class contributions to criterion B
----------------------------------

                     1           2           3           4           5
         1       0.000      10.000       3.000      13.000      18.000
         2       6.000       0.000      10.000      10.000       2.000
         3       4.000      20.000       0.000      14.000      12.000
         4       6.000       9.000       6.000       0.000       3.000
         5      17.000       7.000      15.000      11.000       0.000

Criterion B = 49.00000

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     3     4     2     1     1     5     3     4     3     5     1     1
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     2     3     3     5     5     1     3     4     2     5     2     5
 Unit    25    26    27    28    29    30
Group     3     5     3     1     5     1

Class predictors
----------------

            Y  Y[1]  Y[2]  Y[3]  Y[4]
            1     0     1     0     0
            2     0     0     1     1
            3     1     0     1     1
            4     0     0     0     1
            5     1     1     0     0

Optimum classification
----------------------

Number of classes = 2

Class contributions to criterion
--------------------------------

           1           2
       43.00       44.00

Criterion value = 87.00000

Class contributions to criterion B
----------------------------------

                     1           2
         1       0.000      18.000
         2      17.000       0.000

Criterion B = 35.00000
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Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     2     2     2     1     1     1     2     2     2     1     1     1
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     2     2     2     1     1     1     2     2     2     1     2     1
 Unit    25    26    27    28    29    30
Group     2     1     2     1     1     1

Class predictors
----------------

            Y  Y[1]  Y[2]  Y[3]  Y[4]
            1     1     1     0     0
            2     1     0     1     1

  11  TABULATE [PRINT=counts; CLASSIFICATION=Optimum[5,2]; MARGINS=yes]

                    Count
   Optimum[2]           1           2       Count
   Optimum[5]
            1           7           0           7
            2           0           4           4
            3           0           8           8
            4           0           3           3
            5           8           0           8
        Count          15          15          30

Lines 2-4 define and read the data, using the pointer Y to specify four variates each of 30 values.
The required non-hierarchical classifications are specified on lines 9 and 10. For each
classification the criterion values are printed, together with the optimal classification, and the
typical units for each group (that is, the class predictors). The GROUPS parameter has been used
to specify factors to hold the optimal classifications.

When the CLUSTER directive has found an optimal classification, it will report all the
classifications that it can find with the same optimum (provided that you have asked for the
optimal classification to be printed). Several equivalent optimal classifications may often occur
with maximal predictive classification, and may occur occasionally with the other criteria. When
equally optimal classifications are reported, they are preceded by the criterion value together
with the value of the subsidiary criterion (if relevant). If you compare the various optimal
classifications printed in Example 6.20.1b, you can see that there is some ambiguity over the
allocation of the 14th and 18th units.

After the details of the equally optimal classifications, Genstat prints the breakdown of the W
and B criteria for the optimal classification that was found first. The (i,j)th cell of the table of
class contributions to criterion B shows the number of correct predictions for units in group i
when predicted by the class predictor of class j. For example, amongst the four units in the
second group, six dichotomous values (out of 16) are correctly predicted by the first class
predictor. You can check this quite easily by comparing the first class predictor (0,1,0,0) with
the printed units of group 2.

The results for maximal predictive classification into two groups show a loss of within-class
consistency, but improved between-class distinctness. Gower (1974) gives suggestions on how
such difficulties may be resolved; for example, maximizing W!B would lead to choosing the
five-group classification. One preliminary to comparing two classifications is to tabulate them.
This has been done on line 11, using as input the factors saved from the CLUSTER statement (for
details of the TABULATE directive see 1:4.11.1). The table printed at the end of the output shows
that the first group of the classification into two groups is formed from groups 1 and 5 of the
five-group classification; group 2 is formed from groups 2, 3 and 4.

As mentioned already, the results of non-hierarchical classification can vary considerably
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according to the initial classification. Example 6.20.1c illustrates this, using the same data as
Example 6.20.1b.

Example 6.20.1c

  12  CLUSTER [PRINT=criterion; DATA=Y; CRITERION=predictive; SEED=-1]\
  13          NGROUPS=6,5

Non-hierarchical clustering
===========================

Maximal predictive criterion
----------------------------

Optimum classification
----------------------

Number of classes = 6

Class contributions to criterion
--------------------------------

           1           2           3           4           5           6
       18.00       24.00       19.00       22.00        4.00       22.00

Criterion value = 109.00000

Class contributions to criterion B
----------------------------------

                     1           2           3           4           5
         1       0.000       7.000      12.000       8.000      12.000
         2       7.000       0.000      17.000       9.000       9.000
         3      11.000      14.000       0.000      11.000       9.000
         4      12.000       6.000      10.000       0.000      12.000
         5       2.000       1.000       2.000       2.000       0.000
         6      10.000       8.000       2.000      10.000      14.000
                     6
         1       8.000
         2      11.000
         3       1.000
         4      14.000
         5       2.000
         6       0.000

Criterion B = 50.60000

Optimum classification
----------------------

Number of classes = 5

Class contributions to criterion
--------------------------------

           1           2           3           4           5
       18.00       24.00       19.00       22.00       24.00

Criterion value = 107.00000
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Class contributions to criterion B
----------------------------------

                     1           2           3           4           5
         1       0.000       7.000      12.000       8.000       8.000
         2       7.000       0.000      17.000       9.000      11.000
         3      11.000      14.000       0.000      11.000       1.000
         4      12.000       6.000      10.000       0.000      14.000
         5      12.000       9.000       4.000      12.000       0.000

Criterion B = 48.75000

The CLUSTER statement (lines 12 and 13) specifies that only the criterion value is to be printed,
and not the detailed classifications. The number of groups to be formed is first six, then five;
thus the initial classification is different from that in Example 6.6.1b. The criterion values are
both only slightly better than previously (W = 107.0 and B = 48.75 compared with W = 104.0 and
B = 49.0); however the contributions from the individual classes are quite different. This
example illustrates the difference that the choice of initial classification can make, even with a
relatively small number of units. In Example 6.20.1b the initial classification was the default
partition into five groups, whereas here it is the classification into six groups, with the sixth
group being dispersed.

6.20.2 Determining an initial classification: the CLASSIFY procedure

CLASSIFY procedure
Obtains a starting classification for non-hierarchical clustering (S.A. Harding).

No options

Parameters
DATA = pointers Each pointer contains a set of variates giving the

properties of the units to be grouped
NGROUPS = scalars Indicates the number of groups required
GROUPS = factors Stores the classifications formed

In non-hierarchical classification an initial classification is required, and it is advantageous to
have these classes as homogeneous as possible. This reduces the risk of converging to a local
optimum, and also encourages faster convergence of the iterative transfer algorithm used by the
CLUSTER directive (6.20.1).

When the number of groups is greater than the number of data variates plus one, CLASSIFY
forms the groups according to the positions of the units in the first dimension of a principal
coordinates analysis (6.10) of the DATA variates.

Otherwise it tries to find a suitable classification into the k groups by finding the k units that
are furthest apart in p-dimensional space (where p is the number of variates). These are then used
as nuclei for the classes, with each of the remaining units being allocated to the class with the
nearest nucleus.

The units defining the nuclei are found by first finding the two units that are furthest apart.
The third unit is the unit with greatest distance from the line joining the first two units. The
fourth is the unit with greatest distance from the plane containing the first three units, and so on
until the kth unit is the unit furthest from the (k!2) dimensional space spanned by the (k!1) units
already found.

The attributes of the units to be formed into groups are specified in a set of variates; these
should be placed into a pointer for use as the setting for the DATA parameter. The variates must
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not be restricted. The number of groups required is specified by the NGROUPS parameter; this
must be less than the number of variates plus 2, and than the number of units plus one. The group
allocations that are formed are stored in the factor indicated by the GROUPS parameter. This
factor need not be declared in advance but will be formed by the procedure.

Example 6.20.2 uses CLASSIFY to provide an initial classification into four groups four the
data in Example 6.19.1a. Notice that the same classification is then obtained by CLUSTER, but
the groups are numbered in a different order.

Example 6.20.2

  35  CLASSIFY Data; NGROUPS=4; GROUPS=InitCl
  36  CLUSTER  [PRINT=criterion,optimum,initial; DATA=Data;\
  37           START=InitCl] 4

Non-hierarchical clustering
===========================

Sums of squares criterion
-------------------------

Initial classification
----------------------

Number of classes = 4

Class contributions to criterion
--------------------------------

           1           2           3           4
       3.119       1.715       6.150       2.073

Criterion value = 13.05619

Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     1     4     3     3     3     4     3     2     3     1     1     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     3     3     3     3     3     2     3     1     2     2     3     3
 Unit    25    26    27    28
Group     3     4     4     1

Optimum classification
----------------------

Number of classes = 4

Class contributions to criterion
--------------------------------

           1           2           3           4
       3.119       1.715       4.394       3.670

Criterion value = 12.89727
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Classification of units
-----------------------

 Unit     1     2     3     4     5     6     7     8     9    10    11    12
Group     1     4     3     3     3     4     4     2     3     1     1     2
 Unit    13    14    15    16    17    18    19    20    21    22    23    24
Group     3     3     3     3     3     2     4     1     2     2     3     3
 Unit    25    26    27    28
Group     3     4     4     1

6.21 Classification trees

6.21.1 Constructing a classification tree

BCLASSIFICATION procedure
Constructs a classification tree (R.W. Payne).

Options
PRINT = string tokens Controls printed output (summary, details,

indented, bracketed, labelleddiagram,
numbereddiagram, graph, monitoring); default *
i.e. none

METHOD = string token Selection criterion to use when constructing the tree
(Gini, MPI); default Gini

GROUPS = factor Groupings of the individuals in the tree
TREE = tree Saves the tree that has been constructed
NSTOP = scalar Number of individuals in a group at which to stop

selecting tests; default 5
ANTIENDCUTFACTOR = string token Adaptive anti-end-cut factor to use (classnumber,

reciprocalentropy); default * i.e. none
OWNBSELECT = string token Indicates whether or not your own version of the

BSELECT procedure is to be used (yes, no); default no

Parameters
X = factors or variates X-variables available for constructing the tree
ORDERED = string tokens Whether factor levels are ordered (yes, no); default no

The starting point for a classification tree is a sample of individuals from several groups. The
characteristics of the individuals are described in Genstat by a set of factors or variates which
are specified by the X parameter of BCLASSIFICATION. The GROUPS option of
BCLASSIFICATION defines the group to which each individual in the sample belongs, and the
aim is to be able to identify the groups to which new individuals belong.

The tree progressively splits the individuals into subsets based on their values for the factors
or variates. Construction starts at a node known as the root, which contains all of the individuals.
A factor or variate is chosen to use there that "best" divides the individuals into two subsets.
Suppose the X vectors are all factors with two levels: the first subset will then contain the
individuals with level 1 of the factor, and the second will contain those with level 2. Also any
individual with a missing value for the factor is put into both groups; so you can use a missing
value to denote either variable or unknown observations. Factors may have either ordered or
unordered levels, according to whether the corresponding value ORDERED parameter is set to yes
or no. For example, a factor called Dose with levels 1, 1.5, 2 and 2.5 would usually be treated
as having ordered levels, whereas levels labelled 'Morphine', 'Amidone', 'Phenadoxone'
and 'Pethidine' of a factor called Drug would be regarded as unordered. For unordered



906 6  Multivariate and cluster analysis

factors, all possible ways of dividing the levels into two sets are tried. With variates or ordered
factors with more than 2 levels, a suitable value p is found to partition the individuals into those
with values less than or greater than p. The tree is then extended to contain two new nodes, one
for each of the subsets, and factors or variates are selected for use at each of these nodes to
subdivide the subsets further.

The effectiveness of the factor or variate to be chosen for each node depends on how the
groups are split between the resulting subsets - the aim is to form subsets that is each composed
of individuals from the same group. By default, this is assessed using Gini information (see
Breiman et al., 1984, Chapter 4) but you can set option METHOD=mpi to use the mean posterior
improvement criterion devised by Taylor & Silverman (1993). The ANTIENDCUTFACTOR option
allows you to request Taylor & Silverman's adaptive anti-end-cut factors (by default these are
not used). The process stops when either no factor or variate provides any additional
information, or the subset contains individuals all from the same group, or the subset contains
fewer individuals than a limit specified by the NSTOP option (default 5). These nodes where the
construction ends are known as terminal nodes.

The resulting tree can be saved using the TREE option. Details of the tree can be printed as
selected by the PRINT option, with settings:

summary prints a summary of the properties of the tree;
details gives detailed information about the nodes of the tree;
bracketed display as used to represent an identification key in

"bracketed" form (printed node by node).
indented display as used to represent an identification key in

"indented" form (printed branch by branch);
labelleddiagram diagrammatic display including the node labels;
numbereddiagram diagrammatic display with the nodes labelled by their

numbers;
graph plots the tree using high-resolution graphics.
monitoring prints information monitoring the construction process.

BCLASSIFICATION stores the information required for printing as part of the tree. If the X
vectors are all factors with 2 levels, the labels for the labelled diagram are formed as
"identifier==n1", where n1 is the first level of the factor. The lines of the indented and bracketed
forms are formed similarly if the factor has no extra test and no labels. Otherwise, the form is
"xname lname", where xname is the extra text if this has been defined (by the EXTRA parameter
of the FACTOR command) or else the identifier of the factor, and lname is the label if available
or the level if not. If the X vectors include variates or ordered factors with more than two levels
and there is no extra text, the labels are formed as "identifier<p" and "identifier>p", where p is
the value chosen to partition the data for the variate concerned. If there is an extra text for a
particular factor or variate, the labels are "xname < p" and "xname > p". The style is similar for
unordered factors, but here the labels involve the operators .IN. and .NI. instead of < and >.

Example 6.21.1 uses BCLASSIFICATION to construct a classification tree for Fisher's Iris data
(also see Examples 2.7.2 and 6.5) and display it in indented form. The first variable to examine
in the tree is Petal_Length. If this is less than 2.450, the iris specimen is identified as Setosa.
Otherwise you progress to index 2, and examine Petal_Width. So, a specimen of Versicolor
might be identified by the sequence: 1 Petal_Length > 2.450; 2 Petal_Width < 1.750; 3
Petal_Length > 4.950; 5 Petal_Width > 1.550 Versicolor. Notice that the same variable can
be used several times as the observed characteristics are refined on the way to an identification.

Example 6.21.1

   2  " Classification tree for Fisher's Iris Data."
   3  FACTOR   [NVALUES=150; LABELS=!t(Setosa,Versicolor,Virginica);\
   4           VALUES=50(1,2,3)] Species
   5  VARIATE  [NVALUES=150] Sepal_Length,Sepal_Width,Petal_Length,Petal_Width
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   6  READ     Sepal_Length,Sepal_Width,Petal_Length,Petal_Width

    Identifier   Minimum      Mean   Maximum    Values   Missing
  Sepal_Length     4.300     5.843     7.900       150         0
   Sepal_Width     2.000     3.057     4.400       150         0
  Petal_Length     1.000     3.758     6.900       150         0
   Petal_Width    0.1000     1.199     2.500       150         0

 157  " Form the classification tree."
 158  BCLASSIFICATION [PRINT=indented; GROUPS=Species; TREE=Tree]\
 159                  Sepal_Length,Sepal_Width,Petal_Length,Petal_Width

1 Petal_Length<2.450 Setosa
1 Petal_Length>2.450 2
 2 Petal_Width<1.750 3
  3 Petal_Length<4.950 4
   4 Petal_Width<1.650 Versicolor
   4 Petal_Width>1.650 Virginica
  3 Petal_Length>4.950 5
   5 Petal_Width<1.550 Virginica
   5 Petal_Width>1.550 Versicolor
 2 Petal_Width>1.750 6
  6 Petal_Length<4.850 Virginica
  6 Petal_Length>4.850 Virginica

BCLASSIFICATION calls procedure BCONSTRUCT (1:4.12.6) to form the tree. This uses a
special-purpose procedure BSELECT, which is customized specifically to select splits for use in
classification trees. You can use your own method of selection by providing your own BSELECT
and setting option OWNBSELECT=yes. In the standard version of BSELECT, the BASSESS
directive (1:4.12.7) is used to assess the potential splits.

6.21.2 Displaying a classification tree

BCDISPLAY procedure
Displays a classification tree (R.W. Payne).

Option
PRINT = string tokens Controls printed output (summary, details,

indented, bracketed, labelleddiagram,
numbereddiagram, graph); default * i.e. none

Parameter
TREE = tree Tree to be displayed

Further output for a classification tree can be obtained with the BCDISPLAY procedure. The tree
is specified by the TREE parameter, and the PRINT option selects the output (with settings that
all operate as in the PRINT option of BCLASSIFICATION).

Example 6.21.2 uses BCDISPLAY to print detailed information about the nodes of the tree in
Example 6.21.1. This displays the current prediction (i.e. the species number), the numbers of
observations at the node, the distributions of the species, and then either the test to be performed
or the conclusion reached (i.e. the identified species). Further examples are in Example 6.21.3.

Example 6.21.2

 160  BCDISPLAY [PRINT=details] Tree

Details of classification tree: Tree
====================================
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 1 Current prediction: 1.000
   Number of observations: 150
       Species  Setosa Versicolor Virginica
   Proportions   0.333   0.333   0.333
   Test: Petal_Length<2.450
   Next nodes: 2 3

  2 Current prediction: 1.000
    Number of observations: 50
        Species  Setosa Versicolor Virginica
    Proportions   1.000   0.000   0.000
    Conclusion: Setosa

  3 Current prediction: 2.000
    Number of observations: 100
        Species  Setosa Versicolor Virginica
    Proportions   0.000   0.500   0.500
    Test: Petal_Width<1.750
    Next nodes: 4 5

   4 Current prediction: 2.000
     Number of observations: 54
         Species  Setosa Versicolor Virginica
     Proportions   0.000   0.907   0.093
     Test: Petal_Length<4.950
     Next nodes: 6 7

    6 Current prediction: 2.000
      Number of observations: 48
          Species  Setosa Versicolor Virginica
      Proportions   0.000   0.979   0.021
      Test: Petal_Width<1.650
      Next nodes: 8 9

     8 Current prediction:  2.000
       Number of observations: 47
           Species  Setosa Versicolor Virginica
       Proportions   0.000   1.000   0.000
       Conclusion: Versicolor

     9 Current prediction:  3.000
       Number of observations: 1
           Species  Setosa Versicolor Virginica
       Proportions   0.000   0.000   1.000
       Conclusion: Virginica

    7 Current prediction: 3.000
      Number of observations: 6
          Species  Setosa Versicolor Virginica
      Proportions   0.000   0.333   0.667
      Test: Petal_Width<1.550
      Next nodes: 10 11

    10 Current prediction:  3.000
       Number of observations: 3
           Species  Setosa Versicolor Virginica
       Proportions   0.000   0.000   1.000
       Conclusion: Virginica

    11 Current prediction:  2.000
       Number of observations: 3
           Species  Setosa Versicolor Virginica
       Proportions   0.000   0.667   0.333
       Conclusion: Versicolor

   5 Current prediction: 3.000
     Number of observations: 46
         Species  Setosa Versicolor Virginica
     Proportions   0.000   0.022   0.978
     Test: Petal_Length<4.850
     Next nodes: 12 13

   12 Current prediction: 3.000
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      Number of observations: 3
          Species  Setosa Versicolor Virginica
      Proportions   0.000   0.333   0.667
      Conclusion: Virginica

   13 Current prediction: 3.000
      Number of observations: 43
          Species  Setosa Versicolor Virginica
      Proportions   0.000   0.000   1.000
      Conclusion: Virginica

6.21.3 Pruning a classification tree

Generally the construction of a classification tree will result in over-fitting. That is, it will form
a tree that keeps selecting factors or variates to subdivide the individuals beyond the point that
can be justified statistically. The solution is to prune the tree to remove the uninformative sub-
branches. The pruning uses accuracy figures, which are stored for each node of the tree. The tree
also stores a prediction for each node, which corresponds to the group with most individuals at
the node. For each node of a classification tree, the accuracy is the number of misclassified
individuals at the node, divided by the total number of individuals in the data set. It thus
measures the impurity of the subset at that node (how far it is from it from being homogeneous
i.e. having individuals all from a single group).

If possible, it is best to use "accuracy" figures that are derived from a different set or sets of
data from that which was used to construct the tree. The BCVALUES procedure allows these to
be calculated, together with new predictions for the nodes of the tree.

BCVALUES procedure
Forms values for nodes of a classification tree (R.W. Payne).

Options
GROUPS = factor Groupings of the observations in the data set
TREE = tree Tree for which predictions and accuracy values are to be

formed
REPLACE = string token Whether to replace the values stored in the tree (yes,

no); default no
PREDICTION = pointer New predictions for the nodes of the tree
ACCURACY = pointer New accuracy values for the nodes of the tree
REPLICATION = pointer New replication tables for the nodes of the tree

Parameter
X = factors or variates Values of the factors or variates used in the tree for the

new data set

The TREE option of BCVALUES specifies the tree for which the values are to be formed. The
GROUPS option specifies a factor defining the groupings of the observations in the new data set,
and the X parameter defines their levels for the factors or variates as used to construct the tree.
You can set option REPLACE=yes to use the new values to replace those already stored in the
tree. Alternatively, you can use the PREDICTION parameter to save the predictions, in a pointer.
This has an element for each node of the tree (and with the same suffix as that node) pointing
to a scalar storing the prediction for the node. Similarly, the ACCURACY parameter saves the
accuracies, in a pointer to a set of scalars, and the REPLICATION parameter saves the
replications of the groups at each node, in a pointer to a set of tables classified by the GROUPS
factor. You can use these later to replace the prediction and accuracy values in the original tree
by
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CALCULATE Tree[]['accuracy'] = ACCURACY[]
&         Tree[]['prediction'] = PREDICTION[]
&         Tree[]['replication'] = REPLICATION[]

Alternatively, you may want to combine them first with other estimates, for example to form
bootstrapped estimates.

The pruning is performed by the BPRUNE procedure, described in 3.9.3 and 1:4.12.8. Example
6.21.3 prunes the tree from Example 6.21.1. There is no independent set of data available here,
so the pruning is based on the accuracy values from the original data used to construct the tree.
Examining the accuracies of the pruned trees (the column headed RT) suggests that tree 4 is the
most appropriate choice. The BCUT directive (1:4.12.4) in line 164 replaces Tree with this tree,
Pruned[4], renumbering its nodes at the same time. BCDISPLAY then displays the new tree.

Example 6.21.3

 161  " Prune the tree."
 162  BPRUNE [PRINT=table] Tree; NEWTREE=Pruned

Characteristics of the pruned trees
===================================

  Tree          RT   Number of
   no.                terminal
                         nodes

     1      0.0133           7
     2      0.0133           6
     3      0.0200           5
     4      0.0267           4
     5      0.0400           3
     6      0.3333           2
     7      0.6667           1

 163  " Use the 4th tree - renumber nodes."
 164  BCUT [RENUMBER=yes] Pruned[4]; NEWTREE=Tree
 165  " Display the tree."
 166  BCDISPLAY  [PRINT=summary,indented] Tree

Summary of classification tree: Tree
====================================

Number of nodes: 7
Number of terminal nodes: 4
Misclassification rate: 0.027
Variables in the tree: Petal_Length, Petal_Width.

1 Petal_Length<2.450 Setosa
1 Petal_Length>2.450 2
2 Petal_Width<1.750 3
 3 Petal_Length<4.950 Versicolor
 3 Petal_Length>4.950 Virginica
2 Petal_Width>1.750 Virginica

6.21.4 Identification using a classification tree

BCIDENTIFY procedure
Identifies specimens using a classification tree (R.W. Payne).

Options
PRINT = string tokens Controls printed output (identification,

transcript); if PRINT is unset in an interactive run
BCIDENTIFY will ask what you want to print, in a batch
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run the default is iden
TREE = tree Specifies the tree
IDENTIFICATION = text Saves the identification of each specimen
TERMINALNODES = pointer Saves the numbers of the terminal nodes reached by

each specimen
PROBABILITIES = matrix Specimen × group matrix giving the probability that the

specimens belong to each group
MVINCLUDE = string token Whether to provide identifications for specimens with

missing or unavailable values of the x-variables
(explanatory); default expl

Parameters
X = variates or factors Explanatory variables
VALUES = scalars, variates or texts Values to use for the explanatory variables; if these are

unset for any variable, its existing values are used

BCIDENTIFY identifies specimens using a classification tree. The tree can be specified using the
TREE option. Alternatively, BCIDENTIFY will ask you for the identifier of the tree if you do not
specify TREE when running interactively.

The characteristics of the specimens can be specified in the variates or factors listed by the X
parameter. These must have identical names (and levels) to those used originally to construct the
tree. You can use the VALUES parameter to supply new values, if those stored in any of the
variates or factors are unsuitable.

If you do not set X when running interactively, BCIDENTIFY will ask you to supply the
relevant characteristics in turn, as required by the tree. Otherwise, if an x-variable in the tree is
not specified in the X parameter list, its values are assumed to be unavailable (i.e. missing).

By default, when the x-variable required at a node in the tree is unavailable or contains a
missing value, BCIDENTIFY will follow all the branches from that node, and form a combined
conclusion. You can set option MVINCLUDE=*, if you would prefer the identification to be
missing.

The PRINT option controls printed output, with settings:
identification prints the identifications obtained using the tree;
transcript prints the observed characteristics when supplied in

response to questions in an interactive run.
If you do not set PRINT in an interactive run, BCIDENTIFY will ask what you would like to print.
In batch, the default is to print the identifications.

The IDENTIFICATION option allows you to save the identifications (in a text). The
TERMINALNODES option allows you to save a pointer, with an element for each specimen,
containing the numbers of the terminal nodes reached in the tree to provide its identification.
This will be a scalar if the identification was derived from a single node, or a variate if it
involved more than one (because several branches have been taken, as the result of a missing x-
value). Finally, the PROBABILITIES option can save a specimen-by-group matrix giving the
probability that the specimens belong to each group.

Example 6.21.4 identifies six Iris specimens using the pruned tree from Example 6.21.3.
Notice that we can use the SETNVALUES option of the READ directive (1:3.1) to redefine the
lengths of the data variates (now six values instead of the original 150).

Example 6.21.4

 167  " Identify 6 new irises."
 168  READ [SETNVALUES=yes]\
 169       Sepal_Length,Sepal_Width,Petal_Length,Petal_Width
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    Identifier   Minimum      Mean   Maximum    Values   Missing
  Sepal_Length     4.600     5.833     6.700         6         0
   Sepal_Width     3.000     3.350     4.000         6         0
  Petal_Length     1.200     3.733     5.700         6         0
   Petal_Width    0.2000     1.333     2.500         6         0

 176  BCIDENTIFY [PRINT=*; TREE=Tree; IDENTIFICATION=Identification]\
 177             Sepal_Length,Sepal_Width,Petal_Length,Petal_Width
 178  PRINT      Sepal_Length,Sepal_Width,Petal_Length,Petal_Width,\
 179             Identification; FIELD=4(13),15; DECIMALS=1

 Sepal_Length  Sepal_Width Petal_Length  Petal_Width Identification
          4.6          3.4          1.4          0.3         Setosa
          5.8          4.0          1.2          0.2         Setosa
          5.6          3.0          4.1          1.3     Versicolor
          6.1          3.0          4.6          1.4     Versicolor
          6.7          3.3          5.7          2.5      Virginica
          6.2          3.4          5.4          2.3      Virginica

6.21.5 Saving information from a classification tree

BCKEEP procedure
Saves information from a classification tree (R.W. Payne).

No options

Parameters
TREE = trees Tree from which the information is to be saved
SUMMARY = variates Saves summary information about each tree
XVARIABLES = pointers Saves the identifiers of the x-variables in each tree

BCKEEP saves information from a classification tree, constructed by the BCLASSIFICATION
procedure. The tree can be saved using the TREE option of BCLASSIFICATION, and is specified
for BCKEEP using its TREE parameter.

The SUMMARY parameter saves a variate containing summary information. The first element
contains the number of nodes, the second contains the number of terminal nodes, and the third
contains the misclassification rate.

The XVARIABLES parameter saves a pointer containing the identifiers of the x-variables in the
tree.

Example 6.21.5 saves and prints information about the pruned tree from Example 6.21.3.

Example 6.21.5

 180  BCKEEP     Tree; SUMMARY=Summary; XVARIABLES=Xvariables
 181  PRINT      Summary & Xvariables

                              Summary

          Number of nodes       7.000
 Number of terminal nodes       4.000
   Misclassification rate       0.027

  Xvariables
Petal_Length
 Petal_Width
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6.22 Identification

6.22.1 Constructing an identification key

BKEY procedure
Constructs an identification key (R.W. Payne).

Options
PRINT = string tokens Controls printed output (indented, bracketed,

diagram, graph); default * i.e. none
TAXONNAMES = text Names of the taxa in the key; default * uses textual

versions of the numbers 1, 2 onwards
GROUPS = factor Groupings of the taxa, if the key is to identify the group

of a specimen rather than its taxon
CRITERION = string token Criterion to use to select the character to use at each

node of the key (CME, CMV, GME); default GME when
GROUPS is set, otherwise CME

PARTIAL = string token Controls whether or not to use partial separation; (yes,
no) default no

KEY = tree Saves the key

Parameters
CHARACTER = factors Characters available to construct the key
COST = scalars Cost of each character; default 1

Identification keys provide efficient ways of identifying objects, or taxa, whose properties can
be described by a set of discrete-valued tests. Many applications are biological. For example, in
botanical work, the taxa may be species of plant and the tests may require the observation of
characters like the colours of petals or numbers of leaves. Similarly, in microbiology, the tests
may involve the ability of an organism to grow in various media. Using a key involves doing a
sequence of tests which continues until the unknown specimen can be identified.

The characters that are available for constructing the key are specified, as a list of factors,
using the CHARACTER parameter. Each factor has a level for each possible value of the character
concerned, and you can insert a missing value for a particular taxon to indicate that its value for
the character is either variable or unknown. If an "extra" text has been defined for the factor
(using the EXTRA parameter of the FACTOR directive), BKEY will use this when printing the
textual forms of the key instead of the identifier of the factor. (So the characters can be described
in the key using any printable symbol, not just those that may be used in identifiers.) The COST
parameter allows you to specify a cost for each character. This may be how much it costs to
observe or may simply record your own personal preferences between the parameters. By default
all the costs are 1. The names of the taxa can be specified in a text using the TAXONNAMES
option. If this is omitted, they are simply numbered 1, 2 and so on. If the taxa are classified into
groups, BKEY can construct a key to identify the group of a specimen rather than the taxon itself.
These groupings can be supplied using the GROUPS factor.

The efficiency of a key is usually measured by its expected cost of identification. To find the
optimal key using a particular set of data essentially requires the construction and comparison
of all possible keys for the taxa that could be formed with the available tests. This is
impracticable even for moderate numbers of tests and taxa. Thus, heuristic algorithms are used
which construct the key sequentially, selecting first the test that "best" divides the taxa into sets
(where set k for test i contains all the taxa that can give result k to test i), then selecting the best
test to use with each set, continuing until the sets each contain only one taxon ! or until no
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further separation is possible. The "best" test can be defined using a selection criterion function
(Gower & Payne 1975). BKEY provides three criteria, which can be selected using the
CRITERION option, with settings:

CME is an estimate of the expected cost of completing the
identification from the current point of the key, assuming
that test i is used and that, below this point, the key is
completed optimally (this is the function CMe devised by
Payne 1981);

CMV is a less optimistic estimates, which assumes that the key
is completed by simple binary tests (i.e. tests for each of
which one particular taxon always gives a positive
response and other taxa give negative responses) which
corresponds to the function CMvN of Payne (1981);

GME is an equivalent version of CMv for the identification of
groups of taxa (see Payne, Yarrow & Barnett 1982).

CMe and CMvN (and two other criteria) were studied by Payne & Thompson (1989), who found
that each of them produced the best key for some sets of data. They thus concluded that
programs for key construction should allow their users to try several so that they can choose the
one that behaves best with any particular set of data.

Usually construction of the key stops when the possible taxa at that point share identical
values or have missing values for all the characters. However, if the missing values represent
variable rather than unknown values, it may still be worth using these tests in case a specimen
of the taxon concerned is obtained that happens to give a level different from the shared level.
This partial separation can be requested by setting option PARTIAL=yes.

The key can be printed in various formats, as requested by the PRINT option, or it can be
saved using the KEY option. The settings of PRINT are:

indented indented form ! prints the key branch by branch;
bracketed bracketed form ! prints the key test by test;
diagram diagrammatic representation;
graph plots the key using high resolution graphics.

BKEY stores the information required for printing as part of the tree. The labels for the diagram
are formed as "identifier==n1", where n1 is the first level of the factor. The lines of the indented
and bracketed keys are formed similarly if the factor has no extra test and no labels. Otherwise,
the form is "fname lname", where fname is the extra text if this has been defined (by the EXTRA
parameter of the FACTOR command) or else the identifier of the factor, and lname is the label if
available or the level if not.

Example 6.22.1 uses BKEY to construct a key to the common clincal yeasts.

Example 6.22.1

   2  " Construct a key to the common clinical yeasts: data from
  -3    see Payne (1992, COMPSTAT 92 Proceedings in Computational
  -4    Statistics, Volume 2, 239-244. Heidelberg: Physica-Verlag)."
   5  TEXT  [VALUES='Candida albicans','Candida glabrata',\
   6        'Candida parapsilosis','Candida tropicalis',\
   7        'Cryptococcus albidus','Cryptococcus laurentii',\
   8        'Filobasidiella neoformans',\
   9        'Issatchenkia orientalis',\
  10        'Kluyveromyces marxianus',\
  11        'Pichia guilliermondii','Rhodotorula glutinis',\
  12        'Rhodotorula mucilaginosa','Trichosporon beigelii'] Yeasts
  13  FACTOR     [NVALUES=Yeasts; LABELS=!t('-','+')]\
  14        C11; EXTRA='Maltose growth'
  15  &     C18; EXTRA='Lactose growth'
  16  &     C19; EXTRA='Raffinose growth'
  17  &     C36; EXTRA='D-Glucuronate growth'
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  18  &      N1; EXTRA='Nitrate growth'
  19  &      V5; EXTRA='Growth w/o Thiamin'
  20  &      O2; EXTRA='0.1% Cycloheximide growth'
  21  &      E5; EXTRA='Splitting cells'
  22  READ [PRINT=errors] C11,C18,C19,C36,N1,V5,O2,E5; FREPRESENTATION=labels
  36  PRINT  [MISSING='V'] C11,C18,C19,C36,N1,V5,O2,E5;\
  37         FIELDWIDTH=4; DECIMALS=0

                           C11 C18 C19 C36  N1  V5  O2  E5
                    Yeasts
          Candida albicans   +   -   -   -   -   +   +   -
          Candida glabrata   -   -   -   -   -   -   -   -
      Candida parapsilosis   +   -   -   -   -   +   -   -
        Candida tropicalis   +   -   -   -   -   +   +   -
      Cryptococcus albidus   +   V   V   +   +   -   -   -
    Cryptococcus laurentii   +   +   +   +   -   V   V   -
 Filobasidiella neoformans   +   -   V   +   -   -   -   -
   Issatchenkia orientalis   -   -   -   -   -   +   -   -
   Kluyveromyces marxianus   -   V   +   -   -   +   +   -
     Pichia guilliermondii   +   -   +   -   -   +   +   -
      Rhodotorula glutinis   +   -   V   -   +   V   V   -
  Rhodotorula mucilaginosa   V   -   +   -   V   -   V   -
     Trichosporon beigelii   V   +   V   +   -   -   V   +

  38  FACTOR [MODIFY=yes; LABELS=!t(negative,positive)]\
  39         C11,C18,C19,C36,N1,V5,O2,E5
  40  BKEY   [PRINT=bracketed; TAXONNAMES=Yeasts; CRITERION=cme;\
  41         KEY=YeastKey] C11,C18,C19,C36,N1,V5,O2,E5

 1 D-Glucuronate growth negative 2
   D-Glucuronate growth positive 11
 2 Maltose growth negative 3
   Maltose growth positive 6
 3 Raffinose growth negative 4
   Raffinose growth positive 5
 4 Growth w/o Thiamin negative Candida glabrata
   Growth w/o Thiamin positive Issatchenkia orientalis
 5 Growth w/o Thiamin negative Rhodotorula mucilaginosa
   Growth w/o Thiamin positive Kluyveromyces marxianus
 6 Raffinose growth negative 7
   Raffinose growth positive 9
 7 Nitrate growth negative 8
   Nitrate growth positive Rhodotorula glutinis
 8 0.1% Cycloheximide growth negative Candida parapsilosis
   0.1% Cycloheximide growth positive Candida albicans, Candida tropicalis
 9 Nitrate growth negative 10
   Nitrate growth positive Rhodotorula glutinis, Rhodotorula mucilaginosa
10 Growth w/o Thiamin negative Rhodotorula mucilaginosa
   Growth w/o Thiamin positive Pichia guilliermondii
11 Nitrate growth negative 12
   Nitrate growth positive Cryptococcus albidus
12 Lactose growth negative Filobasidiella neoformans
   Lactose growth positive 13
13 Splitting cells negative Cryptococcus laurentii
   Splitting cells positive Trichosporon beigelii

To use the key we start at index 1 and check whether the yeast is able to grow in D-Glucuronate.
If the result is negative, the next test is at index 2 (Maltose growth), while a positive result goes
to index 11 (Nitrate growth). So a specimen of Rhodotorula glutinis would be identified by 1 D-
Glucuronate growth negative, 2 Maltose growth positive, 6 Raffinose growth negative and 7
Nitrate growth positive. For more information about yeast identification, see Barnett, Payne &
Yarrow (2000).
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6.22.2 Displaying an identification key

BKDISPLAY procedure
Displays an identification key (R.W. Payne).

Option
PRINT = string tokens Controls printed output (indented, bracketed,

diagram, graph); default * i.e. none

Parameter
KEY = tree Key to be displayed

Further output for a identification key can be obtained with the BKDISPLAY procedure. The tree
is specified by the TREE parameter, and the PRINT option selects the output (with settings that
all operate as in the PRINT option of BKEY).

Example 6.22.2 shows the indented form of display for the key to the common clinical yeasts
constructed in Example 6.22.1.

Example 6.22.2

  42  BKDISPLAY [PRINT=indented] YeastKey

1 D-Glucuronate growth negative 2
 2 Maltose growth negative 3
  3 Raffinose growth negative 4
   4 Growth w/o Thiamin negative Candida glabrata
   4 Growth w/o Thiamin positive Issatchenkia orientalis
  3 Raffinose growth positive 5
   5 Growth w/o Thiamin negative Rhodotorula mucilaginosa
   5 Growth w/o Thiamin positive Kluyveromyces marxianus
 2 Maltose growth positive 6
  6 Raffinose growth negative 7
   7 Nitrate growth negative 8
    8 0.1% Cycloheximide growth negative Candida parapsilosis
    8 0.1% Cycloheximide growth positive Candida albicans, Candida tropicalis
   7 Nitrate growth positive Rhodotorula glutinis
  6 Raffinose growth positive 9
   9 Nitrate growth negative 10
   10 Growth w/o Thiamin negative Rhodotorula mucilaginosa
   10 Growth w/o Thiamin positive Pichia guilliermondii
   9 Nitrate growth positive Rhodotorula glutinis, Rhodotorula mucilaginosa
1 D-Glucuronate growth positive 11
11 Nitrate growth negative 12
 12 Lactose growth negative Filobasidiella neoformans
 12 Lactose growth positive 13
  13 Splitting cells negative Cryptococcus laurentii
  13 Splitting cells positive Trichosporon beigelii
11 Nitrate growth positive Cryptococcus albidus

6.22.3 Identification using a key

BKIDENTIFY procedure
Identifies specimens using a key (R.W. Payne).

Options
PRINT = string tokens Controls printed output (identification,

transcript); if PRINT is unset in an interactive
BKIDENTIFY will ask what you want to print, in a batch
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run the default is iden
KEY = tree Specifies the key
IDENTIFICATION = variate Saves the identification of each specimen
TERMINALNODE = variate Saves numbers of the terminal nodes reached by the

specimens

Parameter
CHARACTER = factors Character values of the specimens

BKIDENTIFY identifies specimens using an identification key. The key can be supplied using
the KEY option. Alternatively, BKIDENTIFY will ask you for the identifier of the key if you do
not specify KEY when running interactively.

The characteristics of the specimens can be specified by using the CHARACTER parameter. This
must be set to a list of factors with names (and levels) identical to those used originally to
construct the key. If you do not set CHARACTER when running interactively, BKIDENTIFY will
ask you to examine the characters in turn, as required by the key.

The PRINT option controls printed output, with settings:
identification prints the identifications obtained using the key;
transcript prints the observed characteristics when supplied in

response to questions in an interactive run.
If you do not set PRINT in an interactive run, BKIDENTIFY will ask what you would like to print.
In batch, the default is to print the identifications.

The IDENTIFICATION option allows you to save the identifications (in a text), and the
TERMINALNODE option allows you to save a variate containing the numbers of the terminal nodes
that the specimens reached in the key.

Example 6.22.3 uses BKIDENTIFY to see how well the key constructed in Example 6.22.1
identifies the common clinical yeasts. Notice that the characters available for constructing the
key do not enable Candida albicans to be distinguished from Candid tropicalis. No identification
can be made if a specimen has a missing entry recorded for one of tests in the key. This is the
situation with Rhodotorula glutinis for Raffinose growth at index 6, and with Rhodotorula
mucilaginosa for Maltose growth at index 2. (When constructing the key, a missing value is used
to record a variable entry, but during identification it is taken to mean that the test result is
unavailable.)

For more information the identification of these yeasts, see Barnett, Payne & Yarrow (2000).

Example 6.22.3

  43  BKIDENTIFY [PRINT=*; KEY=YeastKey; IDENTIFICATION=Identification]\
  44             C11,C18,C19,C36,N1,V5,O2,E5
  45  PRINT      Yeasts,Identification; JUST=left

Yeasts                    Identification
Candida albicans          Candida albicans,Candida tropicalis
Candida glabrata          Candida glabrata
Candida parapsilosis      Candida parapsilosis
Candida tropicalis        Candida albicans,Candida tropicalis
Cryptococcus albidus      Cryptococcus albidus
Cryptococcus laurentii    Cryptococcus laurentii
Filobasidiella neoformans Filobasidiella neoformans
Issatchenkia orientalis   Issatchenkia orientalis
Kluyveromyces marxianus   Kluyveromyces marxianus
Pichia guilliermondii     Pichia guilliermondii
Rhodotorula glutinis      *
Rhodotorula mucilaginosa  *
Trichosporon beigelii     Trichosporon beigelii
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6.22.4 Saving information from a key

BKKEEP procedure
Saves information from an identification key (R.W. Payne).

No options

Parameters
KEY = trees Identification key from which the information is to be

saved
SUMMARY = variates Saves summary information about each key
CHARACTERS = pointers Saves the identifiers of the characters in each key

BKKEEP saves information from an identification key, constructed by the BKEY procedure. The
key can be saved using the KEY option of BKEY, and is specified for BKKEEP using its KEY
parameter. The SUMMARY parameter saves a variate containing summary information. The first
element contains the number of nodes, and the second contains the number of terminal nodes.
The CHARACTERS parameter saves a pointer containing the identifiers of the characters in the
key.

Example 6.22.3 uses BKKEEP to save and print information about the key constructed in
Example 6.22.1.

Example 6.22.4

  46  BKKEEP     YeastKey; SUMMARY=Summary; CHARACTERS=Characters
  47  PRINT      Summary & Characters

                              Summary

          Number of nodes       27.00
 Number of terminal nodes       14.00

  Characters
         C36
         C11
          N1
         C19
         C18
          V5
          E5
          O2

6.22.5 Interactive identification

IDENTIFY procedure
Identifies an unknown specimen from a defined set of objects (R.W. Payne).

Options
PRINT = string tokens Controls printed output (identification,

transcript); default iden, tran
METHOD = string token Type of run (batch, interactive); if this is not set

IDENTIFY checks whether the run of Genstat itself is
batch or interactive

TAXA = text or factor Names for the taxa (i.e. the objects); default uses the
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positive integers 1, 2...
NMISTAKE = scalar Number of mistakes to allow for; default 0
IDENTIFICATION = text Saves the names of the taxa that are identified; default *

i.e. not saved
DIFFERENCES = variate Saves the number of differences between the observed

character states and those that can be displayed by each
taxon; default * i.e. not saved

Parameters
CHARACTER = factors or tables Define the characteristics of the taxa; must be set
OBSERVATION = scalars or texts Can define an observation for each character; default * 

i.e. none
COST = scalars Costs of observing each character; default 1

As an alternative to constructing and using an identification key, you can use the IDENTIFY
procedure to identify an unknown specimens interactively. The specimen is identified by
comparing observations that you specify for the specimen against the characteristics that you
have defined for the full set of taxa that may occur. Each character is assumed to have a set of
distinct possible states, which are represented by the levels of a factor.

So, like BKEY (6.22.1), IDENTIFY assumes that the values of the characters are discrete. Often
the characters will be binary, representing the presence or absence of some attribute.
Alternatively, they may involve counts, for example of numbers of leaves or petals. If you want
to use continuous variables, you will need to classify the values into ranges (for example using
the GROUPS directive).

Generally, the properties of the taxa with respect to each character can be defined by a factor,
whose levels represent the range of values that can occur for the character. If a taxon only ever
displays one state of the character (i.e. if it has a fixed response), the unit of the factor
corresponding to that taxon should be set to the relevant level. Conversely, if different specimens
of the taxon can display different states of the character (i.e. it has a variable response), the unit
should contain a missing value.

Representing the properties for a character by a factor assumes that, if a taxon is variable, any
of the states of the character may occur. Information will thus be lost for taxa that can show
several, but not all, of the states of a character. Thus IDENTIFY allows an alternative
representation, which uses a table classified by two factors: one representing the states of the
factor, and another representing the taxa. So, there is a the table has a row for each taxon. This
contains a zero value for the states that the taxon cannot display, and a non-zero value (usually
one) for those that it can display. The same convention is used with the IRREDUNDANT directive;
see 6.11.6 for an example.

The factors and/or tables defining the properties of the taxa must be listed using the
CHARACTER parameter. If any of these is a table, the TAXA option must be set to the factor used
to represent the taxa there. The levels of the factor (or its labels if present) then supply names
for the taxa that are used in the output. If there are no CHARACTER tables, TAXA can be set to a
text containing the taxon names instead. If TAXA is not set, IDENTIFY uses the integers 1, 2...
The COST parameter can be used to supply a list of scalars indicating the cost of observing each
character; if this is not set, the costs are all assumed to be equal to one.

The METHOD option defines whether IDENTIFY operates interactively, or in batch mode. If this
is not set, IDENTIFY checks whether Genstat itself is running interactively or in batch. In an
interactive run, IDENTIFY displays menus to guide you through to achieving an identification.
The main menu allows you to select any one of the following actions.
1) list potential identifications ! IDENTIFY compares the observations that you specify for

the specimen against the characteristics that you have defined for the taxa. It then lists the
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taxa (if any) that can display all of the character states that you have observed, then those
that can display all except one, all except two, and so on. The list is displayed in sections,
and you can terminate it at any time.

2) select and observe a character ! IDENTIFY assesses the characters using the selection
criterion function CMVN of Payne (1981), and lists them in order of their effectiveness.
Alongside each one it prints an estimate of the number (of cost if the COST parameter has
been set) of the characters that must be observed to complete the identification, assuming
that this one is observed next. After you have chosen a character, it displays another menu
for you to specify the state that you have observed.

3) specify an observed character (find in list) ! IDENTIFY lists the characters so that you can
indicate which one you wish to observe next. After you have chosen a character, it
displays another menu for you to specify the state that you have observed.

4) specify an observed character (type name) ! IDENTIFY asks you to type the name of the
character that you wish to observe next. If you type just the initial part of the name,
IDENTIFY will give you a list of all the characters whose names begin like that. After you
have chosen a character, it displays another menu for you to specify the state that you
have observed.

5) modify an observation ! IDENTIFY lists the characters that have already been observed
to allow you to choose which you want to modify. After you have chosen a character, it
displays another menu for you to specify the revised value.

6) display observations ! IDENTIFY displays the characters that have already been observed.
7) list the characteristics of a taxon ! IDENTIFY lists the taxa so that you can indicate the

one whose characteristics you wish to display.
8) show differences between 2 taxa ! IDENTIFY lists the taxa so that you can indicate the

two that you want to compare. IDENTIFY then lists the characters that differ between
them.

9) set configuration options ! IDENTIFY generates a menu allowing you to set various
configuration options. Firstly, you can ask IDENTIFY to take account of a specified
number of mistakes in your observations. It will then up to this number of differences
between your observations and the characteristics of each taxon when suggesting which
character to observe next, or when making an identification. The initial setting for the
number of mistakes is set by the NMISTAKE option, with a default of zero (i.e. none). You
can also control whether or not to produce a transcription of your activities and whether
or not to print the identification obtained at the end of your run. The initial settings for
these two aspects are set by the PRINT option; by default both are printed.

10) start a new identification (clearing observed characters) ! IDENTIFY clears the current
observations so that you can start again.

11) save/print identification and then exit ! IDENTIFY prints and saves the identification, as
requested, and then stops.

The identification is saved by setting the IDENTIFICATION option to a text to contain the
names of all the taxa that can display the observed character states, allowing for any requested
number of mistakes. You can also set the DIFFERENCES option to a variate to contain the
number of differences between the observed character states and those that can be displayed by
each taxon.

For a batch run, you should use the OBSERVATION parameter to supply values for all the
characters that you have observed. These can be either scalars (referring to levels of the factor)
or one-line texts (referring to its labels), or a missing value to denote characters that have not
been observed. This parameter can be also used in an interactive run, as an alternative to
supplying the observations through the menus.
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6.22.6 Irredundant test sets

IRREDUNDANT directive
Forms irredundant test sets for the efficient identification of a set of objects.

Options
PRINT = string tokens Controls printed output (numbers, diagram,

notdistinguished, messages); default numb, diag,
notd, mess

BESTSET = pointer Saves the best set
SETS = matrix Saves details of the available sets
NOTDISTINGUISHED = matrix Saves details of the objects that cannot be distinguished
METHOD = string token Algorithm to use (exact, sequential); default exac
TAXONNAMES = text or variate or factor

Defines labels for the objects (or taxa) to be identified;
default uses the unit labels vector of the CHARACTER
factors

GROUPS = factor Defines groupings of the objects so that the sets are
constructed to distinguish only between the objects that
belong to different groups; default constructs sets to
distinguish between individual objects

OBJECT = scalar or text If this is specified, sets are constructed just to
distinguish the specified object (or taxon) from the other
objects

NDISTINCTIONS = scalar Number of factors required in each set to distinguish
between each pair of objects; default 1

MAXPREFERENCE = scalar Maximum preference of the factors to be included in the
sets

MAXSIZE = scalar Limit on number of factors in a set (sets containing more
than this are discarded); default * i.e. none

NPRINT = scalar Number of sets to print (a positive number specifies the
number to print, a negative number sets a tolerance on
the difference between the sizes of the sets printed and
the size of the best set); default * prints them all

NSAVE = scalar Number of sets to save in the SETS matrix; default *
saves them all

LIMSETS = variate Variate containing two numbers n1 and n2, if this is
specified then every time that there are more than n1 sets
under construction using the exact method, the sets are
arranged in order of increasing size and all sets
containing more factors than set n2 are deleted

DISTINCTIONS = string token Whether or not to store the distinctions or recalculate
them at every stage in the exact algorithm (store,
calculate); default stor

CRITERION = string token Function to be use to select factors by the sequential
method (ndistinctions,
weightedndistinctions); default ndis

MAXCYCLE = scalar Maximum number of improvement cycles to perform
during the sequential method; default 20

EQUIVALENCE = scalar Value for determining equivalence of the selection
criteria of tests selected during the sequential method
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Parameters
CHARACTER = identifiers Factors, and/or tables classified by a single factor,

defining the properties of the objects to to be identified
COST = scalars Cost associated with each factor; default 1
PREFERENCE = scalar Preference rating for each factor (1 representing most

preferred etc.); default 1
VARIABLE = scalar or text Factor level used to represent variable information;

default is to use a missing value
INAPPLICABLE = scalar or text Factor level used to indicate that the information

provided by that factor is inapplicable for a particular
object

Like the other commands described in this Section, the IRREDUNDANT directive is relevant when
you have a set of objects (or taxa) whose properties can be described by a set of discrete-valued
tests. IRREDUNDANT helps you to select an efficient set of tests that can be applied, in a batch,
to identify any unknown specimen of any of the objects. (The batch of tests is then often printed
as a diagnostic table; see Payne & Preece 1980.) As all the tests in the set are to be used for
every identification, it is best for the set to contain as few tests as possible. So there should thus
be no redundant tests: these are tests that can be deleted from the set without causing any object
(or taxon) to be no longer identifiable. Sets of tests that contain no redundant tests are known
as irredundant.

Consider taxa A, B, C and D, whose responses to tests 1-5 are shown in the table below. The
symbol "+", for example in the entry for taxon A and test 1, indicates that all specimens of taxon
A will always give a positive result to test 1, the symbol "!" for taxon D with test 1 indicates a
negative result, and the symbol "v" for taxon B with test 3 indicates that some specimens of D
will give a positive result to test 3 but others will give a negative result.

Test
Taxon 1 2 3 4 5

A + + + ! +
B + ! v ! !
C + ! ! + +
D ! + + + !

As Example 6.22.6 shows, the table contains several irredundant sets, one of which contains
the tests 1, 3 and 5. (If, for example, test 3 is deleted from this set, taxa A and C can no longer
be distinguished). Another set contains tests 2 and 4. So, the irredundant sets can be of different
sizes. The optimum set will often be defined to be one containing a minimum number of tests.
Alternatively, if the test cost different amounts to apply, the optimum set may be one with
minimum total cost. However, whichever of these situations applies, the optimum set will be
irredundant, as otherwise a better set could be obtained by deleting a redundant test.

The characteristics of the taxa and tests are specified using the CHARACTER parameter. In the
simplest situation, this provides a list of factors, one for each test (or character), as with the BKEY
procedure (6.22.1). The factors contain a unit for each taxon, and the level stored in that unit
indicates how the taxon can respond to the test.

Example 6.22.6

   2  TEXT   [VALUES=A,B,C,D] Taxa
   3  FACTOR [NVALUES=4; LEVELS=2] T1,T2,T3,T4,T5
   4  READ   [PRINT=data,errors] T1,T2,T3,T4,T5
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   5  2  2  2  1  2
   6  2  1  *  1  1
   7  2  1  1  2  2
   8  1  2  2  2  1  :
   9  IRREDUNDANT [TAXONNAMES=Taxa] T1,T2,T3,T4,T5

Irredundant test sets
=====================

Pairs of objects that cannot be distinguished
---------------------------------------------

There are no pairs of objects that cannot be distinguished

Factors in the sets
-------------------

 1)  T1
 2)  T2
 3)  T3
 4)  T4
 5)  T5

 1) 2 tests: 2 4
 2) 2 tests: 2 5
 3) 2 tests: 4 5
 4) 3 tests: 1 3 5

Best irredundant set is number 1.

Diagram of the composition of the sets
--------------------------------------

              1 2 3 4

           T1 - - - 1
           T2 1 1 - -
           T3 - - - 1
           T4 1 - 1 -
           T5 - 1 1 1

Level 1 of the factors T1 - T5 represents a negative response, and level 2 represents a positive
response (see lines 5-8). The variable response of taxon B with test 3 is represented by a missing
value, but you can use the VARIABLE parameter to use a particular level of the factor instead.
There may be tests that are not applicable to some of the taxa. For example, when identifying
insects, tests concerning colours of wings are not applicable to those that do not fly! The level
to be used to indicate these responses is specified by the INAPPLICABLE parameter. Costs for
the test can be specified by the COST parameter; by default, these are all taken to be one. Names
for the taxa can be supplied, in either a text or a variate or a factor, using the TAXONNAMES
parameter. If this is not set, IRREDUNDANT uses the unit labels of the CHARACTER factors if any
have been defined (see the FACTOR directive), or otherwise the integers 1, 2 upwards.

The use of the VARIABLE option works well with responses that are completely variable i.e.
where the specimens of the taxon may give any of the available results to the test. However,
when the tests have more than two possible results, there may be taxa that can give some but not
all of the available results to a test. As with the IDENTIFY procedure (6.22.5), The responses to
a test like this should be specified by a two-way table classified by one factor with a level for
each possible result, and another with a level for each taxon. The table should then contain a
positive (e.g. one) whererever the taxon concerned can deliver the result, and zero elsewhere.
For example suppose that, with test T6, taxon A, C and D always give result 1, 2 and 3
respectively, but taxon B can give either or results 2 or 3. The relevant table could then be
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constructed and used as follows:

FACTOR [LABELS=Taxa] Taxfact
FACTOR [LEVELS=3] T6fact
TABLE  [CLASSIFICATION=T6fact,Taxfact; VALUES=\
       " level 1:"  1, 0, 0, 0, \
       " level 2:"  0, 1, 1, 0, \
       " level 3:"  0, 1, 0, 1 ] T6tab
IRREDUNDANT [TAXONNAMES=Taxfact] T1,T2,T3,T4,T5,T6tab

The standard irredundant sets contain at least one test to distinguish each pair of taxa.

However, to guard against mistakes in either the original data on during the subsequent use of
the set, you can set the NDISTINCTIONS option to ask for the set to include a larger number of
tests able to distinguish each pair. Another refinement is that you can set the GROUPS option to
a factor defining groupings of the taxa. The sets are then formed to distinguish only pairs of taxa
that belong to different groups. Alternatively, you may want a set of tests to either confirm
whether or not the specimen belongs to one particular taxon. The taxon of interest should then
be indicated by setting the OBJECT option to the number of the taxon or, if textual taxon names
have been defined, to the text identifying the taxon. Finally, if you set both GROUPS and OBJECT,
the sets will be constructed to confirm whether or not a specimen belongs to a particular group.
IRREDUNDANT takes account of restrictions on any of the CHARACTER factors or on

TAXONNAMES or GROUPS.
Two methods are provided for constructing the irredundant sets. The default is to use an exact

method (Payne 1991) which constructs all possible sets for the dataset concerned. However, with
some datasets, there may be too many sets to construct them all. If you run out of workspace (or
time), you can use the LIMSETS to specify a variate containing two integers n1 and n2. Then
whenever there are more than n1 sets under construction, the sets are arranged in order of
increasing size and all sets containing more factors than set n2 are deleted. The method then no
longer guarantees to find all the irredundant sets containing the fewest number of tests or with
the minimum total costs, but in the situations where this modification is needed, it is very
unlikely that it will fail to find any of them.

Alternatively, you can set option METHOD=sequential to use a sequential algorithm (Payne
& Preece 1980, Section 6.6). This does not guarantee to find a set with minimum size or cost,
but it takes much less computing time and should always should produce a satisfactory set. The
sequential method starts with an initial set containing all the essential tests, and then adds
additional tests, one at a time, until each pair of taxa can be distinguished. (A test is essential if
it is the only test which can distinguish between a particular pair of taxa.) The criterion for
selecting the test to add to the set at each stage is usually the number of pairs of taxa that the test
distinguishes, of those pairs not distinguished by tests already in the set. If costs have been
defined, this number of pairs is divided by the cost of the test concerned.

Setting option CRITERION=weighted uses a refinement, suggested by Barnett et al. (1983),
which weights each pair of taxa by the reciprocal of the number of tests that can distinguish
between them. The criterion is then the maximum weighted number of pairs of taxa (divided by
the cost of the test, if defined). This causes tests that distinguish "difficult" pairs of taxa (those
with nearly identical characteristics) to be selected earlier during the construction of the set, and
thus tends to generate smaller sets. You can set a preference rating for each test using the
PREFERENCE parameter; the most-preferred tests should have ratings of one, and less-preferred
tests should have ratings of two and upwards. Then, if at any stage there is then more than one
test with the best criterion value, the most-preferred test is selected. If these preferances are
especially important, you may also also want to set the EQUIVALENCE option to a scalar, e say.
Then all tests whose criterion values are within e of the current maximum are regarded as
equivalent, and the best test is selected from within these tests according to the preferences.

The main disadvantage of most sequential methods is that they produce only a single set of
tests. In order to allow a choice of sets and as a way of improving the original set, IRREDUNDANT
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can run through a sequence of cycles. In each of these, the tests in the best set are deleted in turn,
further tests are selected to separate the pairs of taxa distinguished only by the deleted test, and
any redundant tests are deleted. If no improvement is achieved, all the non-essential tests are
deleted, and the set is reformed without using those tests. The process can be then repeated until
no improvements are being achieved of until the number of cycles exceeds the setting of the
MAXCYCLE option (default 20).

Printed output is controlled by the PRINT option, with settings:
numbers numbers of the tests in the sets,
diagram table showing the contents of the sets,
notdistinguished lists of pairs of taxa that cannot be distinguished,
messages messages for example when the number of sets has been

reduced as requested by the LIMSETS option, or
concerning pairs of taxa than cannot be distinguished.

The default is PRINT=numb,diag,notd,mess.
The best set can be saved using the BESTSET option, as a pointer containing the relevant

factors. The SETS option can save a matrix, with a row for each set and a column for each test,
representing all the sets that have been formed. In each row the matrix generally stores the
number one in the columns corresponding to the tests in that set, and zero elsewhere. However,
if the sets have been constructed to confirm the identification of a single taxon, the matrix
contains more informative numbers than one. So, down each column wherever one would be
stored, it instead stores the level given by the taxon for the factor corresponding to the test
concerned. The NOTDISTINGUISHED option can save information about the pairs of taxa that
cannot be distinguished, or that are distinguished by less than NDISTINCTIONS tests. The matrix
has a row for each such pair of taxa, and three columns. Columns 1 and 2 contain the numbers
of the taxa in the pair, and column 3 contains the number of tests that can distinguish them.
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A time series in Genstat is a sequence of observations at equally spaced points in time. Each time
series is stored in a variate for which the unit number indexes the time points. Genstat cannot
deal explicitly with unequal spacing in time. So if you have such a sequence, you will need to
do some form of adjustment or interpolation before using the methods described here.
Alternatively, you could try the facilities for modelling repeated measurements by REML (5.4)
or those for regression and nonlinear models with correlated errors (8.1.6). Genstat will handle
missing values in time series, but these should not represent more than a small fraction of the
data. Usually you will want to describe or model the structure of a series. You can do this
without reference to any other variable than the series itself, by examining the relationship
between successive measurements. You can also treat a time series as a response variable, which
is related to present and past values of explanatory variables that are also time series. Forecasts
of future values of time series can be derived from these relationships. You can use filters to
modify time series, for example to smooth them, or to remove trends.

Most of this chapter describes how to analyse time series by the methods advocated by Box
& Jenkins (1970). They recommend a modelling procedure involving three stages: model
selection (a term used here in preference to that used by Box and Jenkins, which is
"identification"), model estimation and model checking (used here in preference to
"verification"). The facilities described in this chapter also provide the basic techniques for
spectral analysis, as described by Bloomfield (1976).

Section 7.1 describes how to derive sample statistics from time series, such as
autocorrelations: these help you select time-series models. Section 7.2 shows how to calculate
the Fourier transform, which can be useful for revealing cyclical behaviour; it also describes
how to construct the periodogram, often called the sample spectrum. Section 7.3 describes
autoregressive integrated moving-average (ARIMA) models, using the notation of Box and
Jenkins. It also describes how these are used as univariate models: that is, models to describe the
behaviour of a single series. There are directives to let you save the results of estimation, so that
you can check models. Once a model has been fitted, you can make forecasts of the future values
of the series. Section 7.4 shows how to fit regression models between time series, using an
ARIMA model to represent correlated errors. Section 7.5 shows how to extend this to general
transfer-functions between series: again you can estimate, check and forecast. Section 7.6 covers
the filtering of time series by transfer-function models, as used for example in exponential
smoothing or seasonal adjustment. Filtering can also be done by ARIMA models, as used in pre-
whitening. Section 7.7 presents some ways of displaying the properties of the fitted models, such
as the theoretical autocorrelations of ARIMA models.

The index for a time-series variate goes from 1 to N, N being the number of observations.
However for defining Fourier transformations, the conventional index is t=0...(N!1), and we
adhere to this too.

The information in this chapter is grouped mainly by type of analysis, rather than by
command. So first we summarize the commands, giving references to the sections where they
are described. Details of those not covered here can be found in the Genstat Reference Manual.
The directive CORRELATE provides sample correlation functions:

CORRELATE forms correlations between variates, autocorrelations of

variates, and lagged cross-correlations between variates
(7.1.1)

The analysis of Box-Jenkins models is specified by several directives:
TSM defines Box-Jenkins models (7.3.2, 7.5.1)

FTSM forms preliminary estimates of parameters in time-series
models (7.7.1)
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TRANSFERFUNCTION specifies input series and transfer-function models for
subsequent estimation of a model for an output series
(7.4.1, 7.5.2)

TFIT estimates parameters in Box-Jenkins models for time
series (7.3.3, 7.4.2, 7.5.3)

Information can be saved in Genstat data structures, or further output can be produced:
TDISPLAY displays further output after an analysis by TFIT (7.3.5)

TKEEP saves results after TFIT (7.3.6, 7.5.4)
TFORECAST forecasts future values (7.3.7, 7.4.3, 7.5.5)
TSUMMARIZE displays time series model characteristics (7.7.3)

You can filter a time series or perform spectral analysis, using the TFILTER and FOURIER
directives, or perform Kalman filtering with the KALMAN procedure.

TFILTER filters time series by time-series models (7.6.1)

FOURIER calculates cosine or Fourier transforms of a real or
complex series (7.2.1)

KALMAN calculates estimates from the Kalman filter
DKALMAN plots results from an analysis by KALMAN

The Genstat procedure library contains procedures which use the directives described in this
chapter, together with graphical presentation of the results, to extend the facilities and to enable
standard analyses to be carried out more conveniently.

BJESTIMATE fits an ARIMA model, with forecasts and residual checks

(7.3.1)
BJFORECAST plots forecasts of a time series using a previously fitted

ARIMA (7.3.8)
BJIDENTIFY displays time series statistics useful for ARIMA model

selection (7.1.3)
DFOURIER performs a harmonic analysis of a univariate time series

(7.2.7)
MCROSSPECTRUM performs a spectral analysis of a multiple time series

(7.2.8)
PERIODTEST gives periodogram-based tests for white noise in time

series
PREWHITEN filters a time series before spectral analysis
REPPERIODOGRAM gives periodogram-based analyses for replicated time

series
SMOOTHSPECTRUM forms smoothed spectrum estimates for univariate time

series (7.2.6)
TVARMA fits a vector autoregressive moving average (VARMA)

model
TVFORECAST forecasts future values from a vector autoregressive

moving average (VARMA) model
TVGRAPH plots a vector autoregressive moving average (VARMA)

model
In Genstat for Windows, ARIMA modelling can be done using the ARIMA Model Fitting

menu, while the Time Series - Data Exploration menu produces useful summaries and plots
using CORRELATE and BJIDENTIFY.
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7.1 Correlation

7.1.1 The CORRELATE directive

CORRELATE directive
Forms correlations between variates, autocorrelations of variates, and lagged
cross-correlations between variates.

Options
PRINT = string tokens What to print (correlations, autocorrelations,

partialcorrelations, crosscorrelations);
default *

GRAPH = string tokens What to display with graphs (autocorrelations,
partialcorrelations, crosscorrelations);
default *

MAXLAG = scalar Maximum lag for results; default * i.e. value inferred
from variates to save results

CORRELATIONS = symmetric matrix
Stores the correlations between the variates specified by
the SERIES parameter

Parameters
SERIES = variates Variates from which to form correlations
LAGGEDSERIES = variates Series to be lagged to form crosscorrelations with first

series
AUTOCORRELATIONS = variates To save autocorrelations, or to provide them to form

partial autocorrelations if SERIES=*
PARTIALCORRELATIONS = variates

To save partial autocorrelations
CROSSCORRELATIONS = variates To save crosscorrelations
TESTSTATISTIC = scalars To save test statistics
VARIANCES = variates To save prediction error variances
COEFFICIENTS = variates or matrices

To save prediction coefficients: in a variate to keep only
those for the maximum lag, or in a matrix to keep the
coefficients for all lags up to the maximum

The most straightforward use of the CORRELATE directive is to calculate correlation coefficients
between a set of variates. In Example 7.1.1, the PRINT option is set to correlations to display
the correlations as a lower-triangular matrix.

Example 7.1.1

   2  " Display correlations of 5 time series of United Kingdom Pig Production
  -3    from 'Data. A Collection of Problems from Many Fields for the Student
  -4    & Research Worker', D.F.Andrews & A.M.Herzberg, Springer-Verlag 1985."
   5  OPEN 'UKpig.dat';CHANNEL=3
   6  READ [CHANNEL=3] Year,Quarter,Gilts,Profit,Slaughter,Cleanpig,Herdsize

    Identifier   Minimum      Mean   Maximum    Values   Missing
          Year      1967      1973      1978        48         0
       Quarter     1.000     2.500     4.000        48         0
         Gilts     77.00     111.2     140.0        48         0
        Profit     5.049     7.064     8.639        48         0
     Slaughter     7.870     10.58     14.00        48         0
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      Cleanpig      2540      3085      3501        48         0
      Herdsize     703.0     803.1     922.0        48         0

   7  CLOSE 3
   8  CORRELATE [PRINT=correlations] Gilts,Profit,Slaughter,Cleanpig,Herdsize

Correlation matrix
------------------
        Gilts     1.000
       Profit     0.409     1.000
    Slaughter    -0.522    -0.611     1.000
     Cleanpig    -0.252    -0.396     0.428     1.000
     Herdsize     0.558     0.002    -0.127     0.592     1.000
                  Gilts    Profit Slaughter  Cleanpig  Herdsize

Example 7.1.1 prints the correlations between five time series of quarterly indicators of the pig
market. The correlations can be saved in a symmetric matrix using the CORRELATIONS option.
Note that, if there are missing values, CORRELATE uses only those units where none of the
variates is missing.

These correlations measure only the simultaneous relationship between the series. More useful
are the autocorrelations of the series, that is the correlations between values in the series lagged
by particular time intervals. The set of autocorrelations for all possible lags is the
autocorrelation function. You can derive the partial autocorrelation function from these. To
look at the relationship between two series, you should use the cross-correlation function
between one series and the other lagged by the various intervals.

The ways of interpreting the correlation functions are described by many standard books about
time series. The books by Anderson (1976) and Nelson (1973) are introductory texts, but do not
cover the whole range of models covered in this chapter. The book by Box & Jenkins (1970)
gives a full description.

7.1.2 Autocorrelation

You can use the CORRELATE directive to display the sample autocorrelation function of a series,
either as a table of numbers, or as a graph ! called a correlogram. In either case, you must
specify the maximum lag for which the autocorrelation is to be calculated, m say. You can do
this either by setting the MAXLAG option to m, or by specifying a variate with a pre-defined length
of m+1 to store the calculated values using the AUTOCORRELATIONS parameter. If you do not
specify the maximum lag, a default is determined from the length N of the time series as follows:

N default MAXLAG setting

< 21 N!1
21-40 20
41-120 int(N/2)
> 120 60 + int[ (N!120)/10 ]

Hence the value of MAXLAG increases as the length of the time series increases. Example 7.1.2
plots, saves and prints the autocorrelations up to lag 30 of the time series of Gilts used in
Example 7.1.1.

Example 7.1.2

   9  " Show the autocorrelation function of the time series of Gilts from
 -10    Example 7.1.1. The values are saved in a variate then printed."
  11  CORRELATE [MAXLAG=30; GRAPH=autocorrelations] Gilts; \
  12    AUTOCORRELATIONS=Giltsacf
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                                        Gilts

         -+---------+---------+---------+---------+---------+---------+-
         I*                                                            I
         I                                                             I
     0.8 I  *                                                          I
         I                                                             I
         I                                                             I
         I    *                 * *                                    I
         I                                                             I
         I                    *     *                                  I
     0.2 I      *           *                                          I
A        I                            *                                I
C        I........*.......*.............*...........*.*.*.*............I
F        I                                        *         *          I
         I              *                 *     *             * * * * *I
         I          *                       * *                        I
    -0.4 I            *                                                I
         I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
    -1.0 I                                                             I
         -+---------+---------+---------+---------+---------+---------+-
              0         5        10        15        20        25        30
                                         Lag

  13  PRINT [ORIENTATION=across; SQUASH=yes] Giltsacf

     Giltsacf      1.0000      0.7870      0.4772      0.2384     -0.0118
     Giltsacf     -0.2620     -0.3557     -0.2099     -0.0006      0.1668
     Giltsacf      0.3155      0.4775      0.5060      0.3458      0.1484
     Giltsacf     -0.0234     -0.1529     -0.2819     -0.3262     -0.2356
     Giltsacf     -0.1215     -0.0409     -0.0136      0.0397      0.0448
     Giltsacf     -0.0599     -0.1757     -0.1977     -0.1886     -0.2104
     Giltsacf     -0.1734

Genstat includes the autocorrelation at lag 0 in the autocorrelation function; this is always unity.
The formula used for the sample autocorrelation at lag k is

rk  =  (1 ! k/n) × Ck / C0

where

The number nk is the number of terms included in the sum. The series can contain missing
values, but the summation excludes any product that involves any missing values at all. The
value y! is the ordinary sample mean of the whole series, and n is the number of non-missing
values in the series. You can restrict a series, but the restricted set must consist of a contiguous
set of units. Thus, you can look at the autocorrelation function derived from just the first section
of a series, or from just the last section, or from a section in the middle; but you cannot use
restriction to exclude a section from the middle of the series, or to exclude just individual
observations.

The AUTOCORRELATIONS parameter allows you to save the calculated autocorrelations. If you
want to display a correlogram in a different form from the standard one produced by the GRAPH
option, you must save the autocorrelations and plot them explicitly using either the GRAPH or
DGRAPH directives. You will then need to define the variate of lags from 0 to m.

The TESTSTATISTIC parameter of CORRELATE allows you to save a statistic that can be used
to test the hypothesis that the true autocorrelation is zero for positive lags. It is defined as
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Provided n (the number of data values) is large and m (the maximum lag) is much smaller than
n, then under the null hypothesis, S has a chi-square distribution with m degrees of freedom.
Thus, a large value of S provides evidence of autocorrelation in a time series.

You can calculate autocorrelation functions for several series in one statement by specifying
several variates with the SERIES parameter.

7.1.3 The BJIDENTIFY procedure

Procedure BJIDENTIFY provides a convenient way of calculating and plotting autocorrelations,
together with partial correlations and the sample spectrum of a time series.

BJIDENTIFY procedure
Displays time series statistics useful for ARIMA model selection (G. Tunnicliffe Wilson &
S.J. Welham).

Options
PRINT = string token Controls printed output (description); default desc
GRAPHICS = string token What type of graphics to use (lineprinter,

highresolution); default high
WINDOWS = scalar or variate Windows to be used for the plots: a scalar N indicates

that plots are to be produced on separate pages in
window N (as currently defined), whereas a variate
specifies four separate windows to be redefined (within
the procedure) for plotting four graphs on one page;
default 1

PENS = variate The three pens to be used (after being defined
appropriately) for drawing the plots; default !(1,2,3)

Parameters
SERIES = variates Variates holding the time series for which the statistics

are to be produced
LENGTH = scalars or variates Specifies the units to be used from each series: a scalar

N indicates that the first N units of the series are to be
used, a variate of length 2 gives the index of the first and
last units of the subseries to be used; by default the
whole series is used

BJIDENTIFY displays time series statistics useful for ARIMA model selection. For a time series,
specified (in a variate) using the SERIES parameter, four graphs are produced. These are of the
series itself, its sample autocorrelation function and partial autocorrelation function, and its
sample spectrum (or periodogram). The LENGTH parameter can specify that only part of the
series is to be used: setting LENGTH to a scalar N indicates that the first N values are to be used;
alternatively, a variate of length 2 can be specified holding the positions of the first and last units
of the subseries. The maximum lag of the autocorrelations and the frequency grid for the
periodogram are determined automatically by the procedure.

Printed output can be suppressed by setting the option PRINT=*; by default,
PRINT=description, which gives a description of the series.
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Figure 7.1.3

Graphical output is controlled
by the options GRAPHICS,
WINDOWS and PENS. Option
GRAPHICS controls whether plots
are produced for line-printer output
or on the current high-resolution
graphics device; by default high-
resolution plots are given. Option
WINDOWS controls the way in
which the high-resolution plots are
arranged. If WINDOWS is set to a
scalar N, all the graphs are
produced in window N on separate
pages; the FRAME directive can
then be used to set the attributes of
window N before calling the
procedure. Alternatively, WINDOWS
can be set to a variate of length
four; the attributes of the four
windows specified are then
redefined within the procedure so
that four graphs are produced on
the same page. By default WINDOWS=1. The PENS option controls which pens are to be used for
the plots; the attributes of these pens are modified within the procedure. By default pens 1-3 are
used, but these can be changed by setting option PENS to a variate of length 3 containing the
numbers of the three different pens required.

Example 7.1.3 shows the use of BJIDENTIFY to calculate and plot the autocorrelations of the
series from Examples 7.1.1 and 7.1.2 above. In addition, the original series is plotted, together
with the partial autocorrelations and the sample spectrum described in Sections 7.1.4 and 7.2.2.
The graphs produced by BJIDENTIFY are shown in Figure 7.1.3.

Example 7.1.3

  14  " Use procedure BJIDENTIFY to display the time series and its sample
 -15    autocorelation function of the time series of Gilts, together with the
 -16    sample partial autocorrelations and sample spectrum or periodogram."
  17  BJIDENTIFY [WINDOWS=!(1,2,3,4)] Gilts

 Analysis of whole of series Gilts, length 48
 showing sample acf and pacf up to lag 24
 and sample spectrum with frequency range divided into 80 intervals

7.1.4 Partial autocorrelation

Genstat forms partial autocorrelations from an autocorrelation function. The value at lag k is
defined as

corr( yt, yt!k * yt!1, yt!2 ... yt!k+1 )
representing the excess correlation between values separated by k timepoints that is not
accounted for by the intermediate points; it is denoted by ök,k because it is also the value of the
last in the set of coefficients in the autoregressive prediction equation:

yt = c + ök,1yt!1 + ... + ök,kyt!k + ek,t

Genstat calculates these coefficients recursively for k=1...m by
ök,k = ( rk ! ök!1,1rk!1 ! ... ! ök!1,k!1r1 ) / vk!1

ök,j = ök!1,j ! ök,kök!1,k!j ,  j=1...k!1
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vk  = vk!1 (1 ! ök,k
2 )

It starts with v0=1, the quantity vk being the kth order prediction error variance ratio
variance(ek,t) / variance(yt).

Partial correlations provide a valuable alternative way of displaying the autocorrelation structure
of a series. You can display the partial autocorrelation function either as a table of numbers, or
as a graph as shown in Example 7.1.3. Two methods are available for doing this. You can supply
the series using the SERIES parameter, in which case the autocorrelations are formed first,
automatically, and the partial autocorrelations are then derived from them. Alternatively, you can
set SERIES=*, and provide the autocorrelations using the AUTOCORRELATIONS parameter.

You can save the partial autocorrelation function using the PARTIALCORRELATIONS
parameter. You can set the VARIANCES and COEFFICIENTS parameters to variates to save the
prediction-error variances v0...vm, and the prediction coefficients 1, öm,1 ... öm,m for the maximum
lag m. Genstat sets the first coefficient to 1, and also the first element of the partial
autocorrelation sequence to 1: you should find this to be a useful convention for the lag 0 values.
Alternatively, if the COEFFICIENTS parameter is set to a matrix structure, the rows of this
matrix will be used to save the prediction coefficients for all the orders up to the maximum lag.
Example 7.1.4 uses some of the previously calculated autocorrelations to produce partial
autocorrelations and the matrix of prediction coefficients. Note that the partial autocorrelations
also appear down the diagonal of the matrix. The graph in Figure 7.1.3 suggests that an order of
7 would be appropriate for a predictor, the coefficients being in the row labelled 7 of the matrix.

Example 7.1.4

  18  " The first 10 autocorrelations formed in Example 7.1.3 for the
 -19    time series of Gilts are used to calculate the prediction coefficients
 -20    up to a maximum lag of 10. These are saved in a matrix and printed."
  21  VARIATE [NVALUES=11] Shortacf
  22  CALCULATE Shortacf = Giltsacf$[!(1...11)]
  23  TEXT [VALUES='00','01','02','03','04','05','06','07','08','09','10'] \
  24    Laglabels
  25  MATRIX [ROWS=Laglabels; COLUMNS=Laglabels] Predcoef
  26  CORRELATE SERIES=*; AUTOCORRELATIONS=Shortacf; COEFFICIENTS=Predcoef
  27  PRINT [RLWIDTH=10] Predcoef; FIELDWIDTH=6; DECIMALS=2

           Predcoef
 Laglabels    00    01    02    03    04    05    06    07    08    09    10
 Laglabels
        00  1.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00
        01  1.00  0.79  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00
        02  1.00  1.08 -0.37  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00
        03  1.00  1.10 -0.43  0.05  0.00  0.00  0.00  0.00  0.00  0.00  0.00
        04  1.00  1.12 -0.57  0.42 -0.34  0.00  0.00  0.00  0.00  0.00  0.00
        05  1.00  1.06 -0.50  0.32 -0.15 -0.17  0.00  0.00  0.00  0.00  0.00
        06  1.00  1.09 -0.48  0.28 -0.07 -0.33  0.15  0.00  0.00  0.00  0.00
        07  1.00  1.03 -0.35  0.30 -0.18 -0.14 -0.28  0.40  0.00  0.00  0.00
        08  1.00  0.99 -0.32  0.32 -0.17 -0.16 -0.25  0.30  0.10  0.00  0.00
        09  1.00  0.98 -0.33  0.33 -0.16 -0.16 -0.26  0.31  0.06  0.04  0.00
        10  1.00  0.99 -0.33  0.34 -0.17 -0.17 -0.27  0.33  0.04  0.09 -0.06

CORRELATE will print a warning if you include missing values in an autocorrelation function that
you have supplied, or if for some other reason the autocorrelations are invalid. In particular, if
a partial autocorrelation value is obtained outside the range (!1, 1), Genstat will truncate the
sequence at the previous lag.

7.1.5 Cross-correlation

You can calculate cross-correlations between two series by specifying one series with the
SERIES parameter and the other with the LAGGEDSERIES parameter. You must define the
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Figure 7.1.5

maximum lag, as for autocorrelations (7.1.2). You can plot or tabulate the resulting function.
Example 7.1.5 shows the correlation between one series and the later values of a second series,
along with the correlation of the second series with later values of the first. This second set of
correlations may be considered as correlations between the first series and the second series at
negative lags. The two sets of correlations are displayed in the same graph to emphasize this
interpretation.

Example 7.1.5

  28  " Save and plot the crosscorrelations between the series
 -29    Profit and Gilts in Example 7.1.1."
  30  CORRELATE [MAXLAG=20] SERIES=Profit,Gilts; LAGGEDSERIES=Gilts,Profit;\
  31            CROSSCORRELATIONS= P_G_ccf , G_P_ccf
  32  VARIATE [VALUES=0...20] Lag
  33  CALCULATE Neglag=-Lag
  34  FRAME [GRID=xy,yx] 1; XLOWER=0.05; XUPPER=0.95; YLOWER=0.45; YUPPER=0.95
  35  XAXIS 1; TITLE='LAG'; LOWER=-21; UPPER=21
  36  YAXIS 1; TITLE='CCF'; LOWER=-1.0; UPPER=1.0
  37  PEN   1; LINESTYLE=1; METHOD=line; SYMBOL=2
  38  DGRAPH [TITLE='Cross correlations between Profit and Gilts'; \
  39    WINDOW=1; KEYWINDOW=0] Y=P_G_ccf,G_P_ccf; X=Lag,Neglag; PEN=1

The graph produced by Example
7.1.5 is displayed in Figure 7.1.5.

Missing values are allowed, as
for autocorrelations. Genstat
calculates the sample cross-
correlation between the first series
xt and the lagged series yt at lag k
using:

rk = (1 ! k/n) Ck / (sx sy)

where

The series xt and yt may be of different lengths. The summation includes all possible terms, but
excludes any product containing missing values; the number nk is the number of terms included
in the sum. The values x! and y! are the sample means, and sx, sy are the sample standard
deviations. The number n is the minimum of the number of values of x and of y, excluding
missing values. You can restrict either series to a set of contiguous units: if both are restricted,
their restrictions must match.

You can save the cross-correlation function using the CROSSCORRELATIONS parameter. You
can also save a test statistic using the TESTSTATISTIC parameter; this is used similarly to the
statistic described in Section 7.1.2 to test for lack of lagged cross-correlation in one direction of
the relationship between two series. However the test is valid only if each of the series has a zero
autocorrelation function. Cross-correlations take precedence in the storage. Thus if you request
both autocorrelations and cross-correlations in a single CORRELATE statement, the stored test
statistic will relate to the cross-correlations: that for the autocorrelations will not be stored.
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7.2 Fourier transformation

This section describes various types of Fourier transformation. These allow you to do most types
of spectral analysis with a few Genstat statements. You may want to put these into procedures
(1:5.3) for repeated use. The Genstat procedure library contains four procedures that use Fourier
transformations. BJIDENTIFY, which plots the sample spectrum, is described in 7.1.3. The other
three are described at the end of this section. SMOOTHSPECTRUM (7.2.6) can be used to calculate
and plot smoothed spectrum estimates, DFOURIER (7.2.7) performs a harmonic analysis of a
univariate time series, and MCROSSPECTRUM (7.2.8) performs a spectral analysis of a multiple
time series.

The Fourier or spectral analysis of time series is described comprehensively by Bloomfield
(1976) and Jenkins & Watts (1968). The Fourier transformation of a series calculates the
coefficients of the sinusoidal components into which the series can be analysed. There are four
types of transformation described below, which are appropriate for different types of symmetry
in the series. You may often want the length of the variate holding the supplied series to
determine implicitly a natural grid of frequencies at which values of the transform are calculated.
Genstat will do this if you have not previously declared the identifier supplied for the transform.
Alternatively you may want to determine the transform at a finer grid of frequencies, and you
can achieve this by declaring a transform variate that is as long as you require. You can do this
only for the two types of Fourier transform that apply to real series.

You can also recover the series corresponding to a particular transform; that is, you can invert
a transformation.

The conventional index for the series that is being transformed is 0...(N!1) in the defining
formulae, so that the first element corresponds to the origin for the sinusoidal components in the
analysis.

7.2.1 The FOURIER directive

FOURIER directive
Calculates cosine or Fourier transforms of real or complex series.

Option
PRINT = string tokens What to print (transforms); default *

Parameters
SERIES = variates Real part of each input series
ISERIES = variates Imaginary part of each input series
TRANSFORM = variates To save real part of each output series
ITRANSFORM = variates To save imaginary part of each output series
PERIODOGRAM = variates To save periodogram of each transform

Series of real numbers are stored in single variates, and series of complex numbers in pairs of
variates. You can use the FOURIER directive to calculate the cosine transform of the real series
{ at , t=0...N!1 } stored in a variate A by

FOURIER [PRINT=transform] A

You calculate the Fourier transform of the complex series { at+ibt , t=0...N!1 } by storing the
values at in one variate, A say, the corresponding values bt in another, B say, and giving the
statement:

FOURIER [PRINT=transform] A; ISERIES=B

You can restrict the series specified by either the SERIES or ISERIES parameter to a contiguous
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set of units ! as for the CORRELATE directive (7.1). Genstat applies the transformation only to
the restricted series of values. Similarly, you may supply restricted variates with the TRANSFORM
and ITRANSFORM parameters to save the transform: Genstat will then carry out the
transformation so as to supply the required number of values (if that is possible according to the
rules at the end of Section 7.2.2). There must be no missing values in the variates in the SERIES
or ISERIES parameters, unless you exclude them by a restriction.

Genstat carries out the Fourier transformation using a fast algorithm which relies on the order
of the transformation being highly composite (de Boor 1980). In practice, an appropriate order
is a round number such as 300 or 6000, consisting of a digit followed by zeroes. If, however, the
order has a large prime factor, the transformation may take much longer. For example, a
transformation of order 499 is about 25 times slower than one of order 500. In the description
below, therefore, we clearly state the order of each form of the transformation, to illustrate a
sensible choice of size.

7.2.2 Cosine transformation of a real series

This can be used to calculate the spectrum from a set of autocorrelations. Suppose the variate
R contains the values r0 ... rn, and the variate F is to hold the calculated values f0 ... fm of the
spectrum. These values correspond to angular frequencies of ðj/m; that is, periods of 2m/j, for
j=0...m. You apply the transformation by putting

FOURIER R; TRANSFORM=F

If F has not been declared previously, this statement defines it automatically as a variate with
n+1 values (so m=n). If F has been declared to have m+1 values, then m must be greater than or
equal to n; otherwise Genstat will redeclare F to have n+1 values.

The transform is defined when m>n by

When m=n the final term in this sum is
rn cos(ðj) = rn (!1)j

and it appears without the multiplier 2. The order of the transformation is 2m.
If R contains sample autocorrelations, you must multiply it by a variate holding a lag window

in order to obtain a smooth spectrum estimate (see Bloomfield 1976, page 166, or Jenkins &
Watts 1968, page 243).

7.2.3 Fourier transformation of a real series

This can be used to calculate the periodogram of a time series. Suppose the variate X of length
N contains the supplied series values x0...xN!1 . The result of the transformation is a set of
coefficients a0...am of the cosine components and b0...bm of the sine components of the series,
held in variates A and B, say. Normally the number of such components is related to the length
of the series by taking m=N/2 if N is even or m=(N!1)/2 if N is odd. Then the coefficients
correspond to angular frequencies of 2ðj/N, which is the same as saying that they correspond to
periods N/j for j=0...m. Since by definition b0=0, and bm=0 if N is even, there are N "free"
coefficients in A and B (which you can think of as the real and imaginary parts of a complex
transform with values aj+ibj). You can save the periodogram values p0...pm in a variate P, say:
these are the squared amplitudes of the sinusoidal components, and are calculated by Genstat as
pj = aj

2+bj
2.

You obtain the transform by putting

FOURIER X; TRANSFORM=A; ITRANSFORM=B; PERIODOGRAM=P

If you want only the periodogram, you can put
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FOURIER X; PERIODOGRAM=P

If you have not declared A previously Genstat defines it automatically, here as a variate of length
m+1 where m has the default value defined above. If you have previously declared A, it should
have length greater than or equal to m+1; otherwise Genstat declares it to have this length. In any
case, B and P should have the same length as A, and will be declared (or redeclared) if required.

In the usual case when A, B or P has the default length m+1, the transform is defined by:

In this case, the order of the transformation is N. If A, B and P have length mN+1 with mN>m,
Genstat computes the results at a finer grid of frequencies 2ðj/NN, j=0...mN where NN=2mN. These
replace 2ðj/N in the above defining sums. The upper limit on the sums remains as N!1, although
internally Genstat treats it as NN!1 with the extra values of xN...xNN!1 being taken as zero. The
order of the transformation is then NN. There are various conventions used for scaling the
periodogram with factors 2/m, 1/m or 1/ðm. You can apply these by using a CALCULATE
statement (1:4.1.1) after the transformation. You may also want to apply mean correction to the
series before calculating the periodogram. Figure 7.1.3 showed the sample spectrum of the time
series Gilts. This is just the scaled periodogram calculated using FOURIER as described above.
The graph shows a strong peak at frequency 0.08 corresponding to the obvious cycle of period
approximately 12 quarters. It also reveals a peak at frequency 0.25 which reflects an annual
pattern of period 4 quarters. This is difficult to detect simply by looking at the graph of the
series.

7.2.4 Fourier transformation of a complex series

This is the most general form of the Fourier transformation; the other three types are essentially
special cases in which some coefficients are zero or have a symmetric structure. Suppose variates
X and Y contain values x0 ... xN!1 and y0 ... yN!1, which may be viewed as the real and imaginary
parts of the series { xt+iyt, t=0 ... N!1 }. The results of the transformation are coefficients a0 ...
aN!1 and b0 ... bN!1 which can be held in variates A and B, say: these may similarly be considered
as parts of complex coefficients at+ibt, t=0 ... N!1.

You can do the transformation by putting

FOURIER SERIES=X; ISERIES=Y; TRANSFORM=A; ITRANSFORM=B

Both X and Y must be variates with the same length N. Similarly A and B must have length N, and
if they do not Genstat will declare (or redeclare) them as variates of length N. The order of the
transformation is N.

The results are defined by

or equivalently in complex form by
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The complex transform can be used in cross-spectral analysis.
You can view a Fourier transformation as an orthogonal matrix transformation. Hence its

inverse is another Fourier transformation (apart from some simple scaling). You can use this to
calculate convolutions. In particular, the correlations of a time series can be obtained by applying
the inverse cosine transformation to the periodogram. Example 7.2.4 shows that a repeated
Fourier transformation returns the original series ! with appropriate scaling.

Example 7.2.4

   2  " Repeat a Fourier transformation on random numbers."
   3  SCALAR Nvalues; VALUE=25
   4  CALCULATE Rstart,Istart = URAND(6672,0; Nvalues)
   5  FOURIER Rstart; ISERIES=Istart; TRANSFORM=Rmiddle; ITRANSFORM=Imiddle
   6  CALCULATE Rmiddle,Imiddle = Rmiddle,Imiddle * 1,-1 / SQRT(Nvalues)
   7  FOURIER Rmiddle; ISERIES=Imiddle; TRANSFORM=Rfinish; ITRANSFORM=Ifinish
   8  CALCULATE Rfinish,Ifinish = Rfinish,Ifinish * 1,-1 / SQRT(Nvalues)
   9  PRINT Rstart,Istart,Rmiddle,Imiddle,Rfinish,Ifinish; DECIMALS=4

      Rstart      Istart     Rmiddle     Imiddle     Rfinish     Ifinish
      0.4236      0.6865      2.5847     -2.6468      0.4236      0.6865
      0.4458      0.7316      0.0363     -0.5219      0.4458      0.7316
      0.3443      0.5548     -0.1036     -0.2434      0.3443      0.5548
      0.0174      0.7045      0.4952      0.2670      0.0174      0.7045
      0.0388      0.7507     -0.0092     -0.3748      0.0388      0.7507
      0.7562      0.9707      0.0938     -0.2235      0.7562      0.9707
      0.3171      0.7538     -0.0380      0.0790      0.3171      0.7538
      0.5931      0.6838     -0.0152      0.4113      0.5931      0.6838
      0.9229      0.0015     -0.0863     -0.4419      0.9229      0.0015
      0.9485      0.5462      0.1806     -0.2726      0.9485      0.5462
      0.3938      0.1294     -0.2906      0.0565      0.3938      0.1294
      0.6251      0.4935      0.1896     -0.0188      0.6251      0.4935
      0.4973      0.7353      0.1773      0.2825      0.4973      0.7353
      0.1379      0.2087     -0.1829     -0.3463      0.1379      0.2087
      0.2643      0.6310     -0.4662     -0.2856      0.2643      0.6310
      0.9029      0.1571      0.2154      0.3256      0.9029      0.1571
      0.3597      0.1690     -0.2685     -0.0011      0.3597      0.1690
      0.6736      0.4674     -0.1093      0.3781      0.6736      0.4674
      0.7469      0.2263     -0.1546     -0.3584      0.7469      0.2263
      0.9657      0.8123     -0.2118     -0.0051      0.9657      0.8123
      0.0724      0.4666     -0.0544      0.0780      0.0724      0.4666
      0.4650      0.6966      0.1744     -0.0849      0.4650      0.6966
      0.5000      0.5380      0.5275      0.4453      0.5000      0.5380
      0.6257      0.7017     -0.2402      0.3814      0.6257      0.7017
      0.8854      0.4171     -0.3260     -0.3117      0.8854      0.4171

7.2.5 Fourier transformation of a conjugate sequence

It is easiest to think of the Fourier transform of a conjugate sequence as the reverse of the
transformation of a real series (7.2.2), with the roles of the series and the transform interchanged.
For the true inverse transformation some simple scaling is also required.

Thus if variates A and B of length m+1 are supplied containing values a0 ... am and b0 ... bm,
which may be viewed as parts of complex coefficients aj+ibj, the result of the transformation is
a single real series x0 ... xN!1 held in a variate X of length N.
X can be declared to have length N=2m or N=2m+1 (corresponding to the case N even or odd

in Section 7.2.2). The value of b0 must be zero; also if N=2m, the value of bm must be zero. If
either of these conditions is not satisfied, Genstat sets the values of these elements to zero and
gives a warning. If X has not been declared previously (or has been declared with a length equal
to neither 2m nor 2m+1), then it is declared (or redeclared) with a length governed by whether
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bm is 0: N=2m if bm=0, and N=2m+1 if bm=/ 0. The value of b0 is checked to be zero as before.
You can obtain the transform using the statement

FOURIER SERIES=A; ISERIES=B; TRANSFORM=X

The definition of the transform is, in the case N=2m+1,

In the case N=2m, the final term in the sum is simply
am cos(tð) = am (!1)t

and it appears without the multiplier 2. The order of this transformation is N.

7.2.6 The SMOOTHSPECTRUM procedure

SMOOTHSPECTRUM procedure
Forms smoothed spectrum estimates for univariate time series (G. Tunnicliffe Wilson & S.J.
Welham)

Options
PRINT = string token Controls printed output (description); default desc
METHOD = string token Method to be used for smoothing (lagwindow, direct,

YuleWalker, exactautoregressive); default lagw
BANDWIDTH = scalar Frequency domain bandwidth for the smoothing

window; must be set if METHOD=dire
MAXLAG = scalar Specifies the cut-off lag (i.e. the maximum lag of

autocovariance used in the spectrum calculation) for
METHOD=lagw, or the order of the autoregression for
METHOD=Yule or exac; if this option is not set then
BANDWIDTH must be set, and will be used to determine
an appropriate value of MAXLAG

DIVISIONS = scalar Determines the number of frequency divisions into
which the range [0.0, 0.5] is divided for calculating the
spectrum; the default is chosen so that the bandwidth
covers about four intervals

PROBABILITY = scalar Probability value used for confidence limits; default 0.9
TAPER = scalar The proportion of data to be tapered (applied for all

settings of METHOD except exac); default 0.0
SHAPE = scalar The shape of the trapezium window (a value of 1.0

specifies a rectangular, and 0.0 a triangular window);
default 0.5

YLOG = string token Whether to plot with a log-transformed Y-axis (yes,
no); default no

XLOG = string token Whether to plot with a log-transformed X-axis (yes,
no); default no

GRAPHICS = string token What sort of graphics to use (lineprinter,
highresolution); default high

WINDOW = scalar Window to be used for plotting; default 1
PENS = variate The two pens to be used (after being defined

appropriately) for drawing the plots; default !(1,2)
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Parameters
SERIES = variate The series for which the spectrum is to be calculated
LENGTH = scalar or variate Scalar specifying that the first N units of the series are to

be used, or a variate specifying the first and last units of
the series to be used

SPECTRUM = variate Saves the smoothed spectrum; need not be declared in
advance, but will be set up as a variate of the
appropriate length within the procedure

LOWER = scalar or variate Scalar to save the multiplier of the spectrum used to
calculate the lower limit, or a variate to save the values
of the lower limit

UPPER = scalar or variate Scalar to save the multiplier of the spectrum used to
calculate the upper limit, or a variate to save the values
of the upper limit

FREQUENCY = variate Saves the frequency values at which the spectrum is
calculated

SMOOTHSPECTRUM calculates smoothed spectrum estimates for a univariate time series. The
series is specified in a variate by the SERIES parameter. The parameter LENGTH can be used to
specify that only part of the series is to be used: if LENGTH is set to a scalar N, then only units
1...N are used; alternatively, it can define a sub-series by being set to a variate of length 2 holding
the numbers of the first and last units to be used. The spectrum can be saved by the SPECTRUM
parameter. The method to be used for the smoothing is controlled by the METHOD option, with
settings lagwindow for Parzen lag window smoothing, direct for frequency domain
smoothing using a trapezium window, YuleWalker for autoregressive spectrum estimation
based on Yule-Walker coefficients, and exactautoregressive for autoregressive estimation
based on exact likelihood estimation of the coefficients.

For frequency domain smoothing (METHOD=direct), option BANDWIDTH specifies the
bandwidth of the smoothing window and option SHAPE the shape of the trapezium window. The
BANDWIDTH option is also used to determine an appropriate default for the MAXLAG option if this
is not specified with other METHOD settings: for METHOD=lagwindow, MAXLAG specifies the cut-
off lag (i.e. the maximum lag of autocovariance used in the spectrum calculation), while for
METHOD=YuleWalker or exactautoregressive, it specifies the order of the autoregression.

The DIVISIONS option can define the number of frequency divisions into which the range
[0.0, 0.5] is divided for calculating the spectrum; if this is omitted a default is chosen so that the
bandwidth covers about four intervals. The frequency values at which the spectrum is calculated
can be saved, in a variate, by the FREQUENCY parameter. The proportion of data to be tapered
(relevant to all settings of METHOD except exactautoregressive) is controlled by the TAPER
option; by default there is no tapering.

The LOWER and UPPER parameters can be set to scalars to save the scaling factor used to
calculate the upper and lower bounds, or to variates to save the upper and lower bounds for the
SPECTRUM variate.

None of the input or output structures must be restricted (but restriction of the input series to
a contiguous set of units can be achieved by use of the LENGTH parameter, as described above).

Printed output can be suppressed by setting the option PRINT=*; by default,
PRINT=description. The PROBABILITY option indicates the probability value used for
confidence limits; 0.9 is used as the default.

The procedure will also plot the spectrum: option GRAPHICS controls whether this is for line
printer or on a high-resolution device. With high-resolution graphics, the plot will be produced
using the current settings of the window specified by the WINDOW option; by default WINDOW=1.
The FRAME directive can be used to set the attributes of the window prior to calling the
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Figure 7.2.6

procedure. The PENS option controls which pens are to be used for the plots; the attributes of
these pens are modified within the procedure. By default pens 1 and 2 are used, but these can be
changed by setting option PENS to a variate of length 2 containing the numbers of the two pens
required. Options YLOG and XLOG allow the X- and Y-axes to be represented on a logarithmic
scale.

Example 7.2.6 uses SMOOTHSPECTRUM 
to calculate and plot an estimate of the
spectrum of a time series of annual
temperature measurements. The graph
produced by SMOOTHSPECTRUM is shown
in Figure 7.2.6. The lag window method of
smoothing is specified as an option. Error
limits for the estimate are included in the
graph. The frequency scale is given in
cycles per unit time. There is evidence for
cycles of periods just over 3 years and 2
years.

Example 7.2.6

   2  " Smooth spectrum estimation for a series of annual
  -3    measurements of  Central England Average Temperature:
  -4    data from Manley, G. (1974), Central England temperatures:
  -5    monthly means 1659-1973, Quart.J.Met.Soc., 100, 378-405."
   6  VARIATE [NVALUES=315] Cetave
   7  OPEN    '%GENDIR%/Examples/GuidePart2/Cetave.dat'; 3
   8  READ    [CHANNEL=3] Cetave

    Identifier   Minimum      Mean   Maximum    Values   Missing
        Cetave     6.800     9.140     10.60       315         0

   9  CLOSE   3
  10  SMOOTHSPECTRUM [METHOD=lagwindow; BANDWIDTH=0.07; GRAPHICS=high] Cetave

Analysis of whole of series Cetave, length 315
Bandwidth used for estimate is  0.07132
Degrees of freedom of estimate are 44
Frequency division of estimates is 70
Probability value used for limits is 0.900
Upper and lower multipliers for limits are 1.477   0.7275
Lag window smoothing used with cut-off lag 26
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7.2.7 The DFOURIER procedure

DFOURIER procedure
Performs a harmonic analysis of a univariate time series (G. Tunnicliffe Wilson & R.P.
Littlejohn).

Options
PRINT = string tokens Controls printed output (accumulated, means, tsm);

default *
PLOT = string tokens What to plot (periodogram, harmonics, means,

residuals, cumulative, range); default peri,
harm, mean, resid

MODELTYPE = string token What harmonic regression model to fit (none, best,
full); default none

GROUPS = factor Groups for plot of means
ORDER = variate Order for time series model; default !(1,0,0)
COLOURS = text or variate Colour for each level of GROUPS
FACSHORTCYCLE = factor Factor giving levels of the short cycle
NCOMPONENTS = scalar Number of nested cycles, must be 0, 1, or 2; default 0
SHORTCYCLE  = scalar Length of the short cycle; default 24
LONGCYCLE = scalar Length of the long cycle; default 365.225
LABSHORTCYCLE = text Label for the short cycle; default 'daily'
LABLONGCYCLE = text Label for the long cycle; default 'annual'
NHSHORTCYCLE = scalar Number of harmonics for the short cycle; default 5
NHLONGCYCLE = scalar Number of harmonics for the long cycle; default 3
RANGE = variate Variate with two values, defining the frequency range

within [0,0.5] to draw a portion of the periodogram

Parameters
DATA = variates Time series
PERIODOGRAM = variates Saves the periodogram of DATA
FREQUENCY = variates Saves the frequencies at which the periodogram is

calculated
MEANS = tables Saves the table of means of the fitted model for each

value of FACSHORTCYCLE by each level of GROUPS
RESIDUALS = variates Saves the residuals from the fitted model
FITTEDVALUES = variates Saves the fitted values from the model
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Figure 7.2.7a

Figure 7.2.7b Figure 7.2.7c

DFOURIER  performs a
harmonic analysis for a
univariate time series which is
supplied, in a variate, by the
DATA parameter. In its basic
form, it can produce 3 pages of
graphs to study the series.
These graphs are all controlled
by the PLOT option. Setting
P L O T = p e r i o d o g r a m

produces a page of graphs
showing the time series, its
periodogram and its log
periodogram. The frequencies
for the periodogram are
calculated internally, and
noted in the output. These can
be saved, in a variate, by the
FREQUENCY parameters, and
the PERIODOGRAM parameter
can save the periodogram.

Figure 7.2.7a shows this
combination of plots for the
data in Example 7.2.7; these
are hourly temperatures from December 1998 to August 2001 at the Tara Base.

The cumulative setting of PLOT plots the cumulative periodogram (on a separate page), and
the range setting plots the periodogram over the range specified by the RANGE option (this must
be a value within [0,0.5]). See Figures 7.2.7b and 7.2.7c.

Other graphs are useful if you anticipate that the series will show some specific components.
The number of these components is specified by the NCOMPONENTS option, and may be either
0 (no components, the default), 1 (a "short" cycle) or 2 (a "short" and a "long" cycle). The
lengths of the long and short cycles are specified by the LONGCYCLE and SHORTCYCLE options,
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Figure 7.2.7d

respectively. The defaults 365.225 and 24, correspond to hourly measurement of annual and
daily cycles. The LABLONGCYCLE and LABSHORTCYCLE options supply labels for these cycles
for the plots, with defaults of 'annual' and 'daily' respectively. 

The components are particularly useful for analysing meterological time series (such as air
temperatures) measured hourly over several years, where you want to describe how the diurnal
pattern varies throughout the year. A single (non-sinusoidal) periodic component with period p
(e.g. p = 24 for hourly observations) produces a main spike in the periodogram at the frequency
f = 1/p, followed by a series of diminishing spikes at integer multiples of f known as harmonics.

When there are two periodic components with interacting rhythms, signals are observed in the
periodogram not only at harmonics of each frequency, but at integer differences of the lower
frequency from the higher. Thus, if hourly and annual frequencies are denoted by fd and fa, spikes
may be observed in the periodogram at

fda = n × fd + m × fa,
where n is a non-negative integer, and m is an integer, which must be positive when n is zero.

These spikes generated by
the interaction are generally
hard to discern in an ordinary
graph of the periodogram. The
harmonic setting of PLOT,
shown in Figure 7.2.7d,
produces a trellis plot that
zooms in on a narrow range of
about n × fd, for integer values
of n ranging from 1 up to a
value defined by the
NHSHORTCYCLE option. This
can be set to either 5 (default),
7 or 8, producing respectively
a 3 × 2, 4 × 2 or 3 × 3 array of
graphs. The NHLONGCYCLE

option specifies the number of
vertical lines to be drawn,
within each graph, at positions
corresponding to differences
due to the long cycle. This can
be set to 0, 1, 2 or 3 (default).
It should be set to 0 if there is
only one periodicity in the sampling protocol. The y-axes of the plots are scaled individually to
a suitable order of magnitude, which is denoted in each graph. The frequency range for each
panel is

n × fd +/! 5.1 × fa.
The MODELTYPE option allows a a harmonic regression analysis to be conducted on DATA. The

setting full fits sine and cosine terms for each frequency indicated in the harmonics graph.
Alternatively, the setting best fits the full model and then drops terms that are non-significant
at the 5% level. This does not guarantee that all terms remaining in the model are necessarily
significant at the 5% level. In practice, however, dropping these additional terms will usually
make little difference to the fitted model or residual variance. The accumulated setting of the
PRINT option prints the accumulated analysis of deviance table from the fit. 

With the tsm setting of the PRINT option, the model fitted as above is then used as the
TRANSFERFUNCTION in a time series analysis of DATA. The TSM is defined by the ORDER
option; by default this is set to a first-order autoregression (i.e. ORDER=!(1,0,0)). Note that
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Figure 7.2.7e

Figure 7.2.7f

this may take a long time to fit if there are many missing values in the data.
The fitted values and

residuals from the final model
(tsm is fitted after best,
which is fitted after full) can
b e  s a v e d  b y  t h e
F I T T E D V A L U E S  a n d
RESIDUALS parameters. The
residuals setting of PLOT,
shown in Figure 7.2.7d,
produces time-series plots of
the residuals, from the
BJIDENTIFY procedure.
DFOURIER forms tables of

means of the fitted values
classified by the the short
cycle component and another
factor, specified by the
GROUPS option. You can
supply the short cycle factor
using the FACSHORTCYCLE

option; this must have
SHORTCYCLE levels or a fault
wi l l  be generated. If
FACSHORTCYCLE is unset, the required factor will be internally generated with levels
1...SHORTCYCLE. The factor GROUPS may, for example, be month or season. The SHORTCYCLE
factor should be nested within GROUPS to provide meaningful output, but no checks are carried
out on this.

You can plot the means using the  means
setting of the PLOT option. The points in each
group are plotted  in different colours, and you
can supply these using the COLOURS option.  If
COLOURS is unset, the colours are set by
default. If GROUPS has 4 levels, it is assumed
they correspond to season, and pens 1 to 4 are
defined to be red, gold, blue and green,
corresponding to summer, autumn, winter and
spring. If GROUPS has 12 levels, it is assumed
that they correspond to months, and pens 1 to
12 are given decreasing intensities within the
seasonal shades in clusters of three. Thus pens
1 to 3 are given crimson, red and salmon for the
summer months. Note that this is tuned to a
southern hemisphere calendar.

Example 7.2.7

   2  " Hourly temperatures at Tara Base, courtesy of Alison Rutherford."
   3  IMPORT   [PRINT=*] '%gendir%/examples/DFOU-1.gsh'
   4  DFOURIER [PRINT=accumulated,means; MODELTYPE=best;\
   5           PLOT=periodogram,harmonics,means,residuals,cumulative,range;\
   6           GROUPS=season; FACSHORT=hour; NCOMPONENTS=2; NHSHORTCYCLE=5;\
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   7           NHLONGCYCLE=2; RANGE=!(0.13,0.225)] TB

Analysis of series TB, length 24120, showing sample spectrum with frequency
range divided into 80000 intervals.

Harmonic regression analysis: MODELTYPE = best
==============================================

Term               d.f.         s.s.         m.s.      v.r.   F pr.
       fd[1]          2    259276.75    129638.37   8859.64   0.000
       fd[2]          2     12099.20      6049.60    413.44   0.000
       fd[3]          2       302.21       151.11     10.33   0.000
       fd[4]          2       404.23       202.11     13.81   0.000
       fa[1]          2    572515.81    286257.91  19563.21   0.000
       fa[2]          2     10841.43      5420.71    370.46   0.000
   fad[1][1]          2     10620.24      5310.12    362.90   0.000
   fad[1][2]          2       332.34       166.17     11.36   0.000
   fad[2][1]          2       787.88       393.94     26.92   0.000
   fad[3][1]          2       753.38       376.69     25.74   0.000
   fad[3][2]          2       135.85        67.93      4.64   0.010
   fad[5][1]          2       184.83        92.42      6.32   0.002
   fda[1][1]          2      4274.13      2137.06    146.05   0.000
   fda[1][2]          2      1146.43       573.22     39.17   0.000
   fda[2][1]          2      1466.25       733.13     50.10   0.000
   fda[2][2]          2       149.85        74.92      5.12   0.006
   fda[3][1]          2       445.89       222.94     15.24   0.000
Residual          22581    330415.52        14.63
Total             22615   1206152.21        53.33

Table of means for Short Time Cycle by Group
============================================

       season           1           2           3           4
         hour
            0      11.821       7.675       1.441       6.479
            1      10.939       7.196       1.230       5.904
            2      10.244       6.744       1.056       5.572
            3       9.836       6.443       0.850       5.287
            4       9.579       6.273       0.629       4.883
            5       9.414       6.048       0.419       4.533
            6       9.623       5.733       0.195       4.642
            7      10.616       5.681       0.002       5.457
            8      12.425       6.376       0.097       6.878
            9      14.562       7.923       0.798       8.613
           10      16.429       9.891       2.134      10.394
           11      17.798      11.730       3.751      12.006
           12      18.843      13.241       5.223      13.250
           13      19.786      14.532       6.396      14.039
           14      20.646      15.610       7.305      14.492
           15      21.283      16.183       7.824      14.777
           16      21.528      15.954       7.612      14.820
           17      21.198      14.963       6.511      14.302
           18      20.141      13.567       4.893      13.047
           19      18.418      12.115       3.449      11.359
           20      16.439      10.769       2.608       9.819
           21      14.741       9.598       2.259       8.758
           22      13.562       8.686       2.033       8.022
           23      12.702       8.052       1.741       7.301

7.2.8 The MCROSSPECTRUM procedure

MCROSSPECTRUM procedure
Performs a spectral analysis of a multiple time series (G. Tunnicliffe Wilson & R.P.
Littlejohn).

Options
PRINT = string token Controls printed output (description); default desc
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PLOT = string tokens Variables for which to plot the analysis (explanatory,
response); default expl, resp

CORRECT = string token Whether to mean or trend correct the series (mean,
linear, quadratic, none); default mean

BANDWIDTH = scalar Bandwidth for smoothing, must be between 0 and 0.5; if
unset, a default is calculated automatically

MAXLAG = scalar Maximum lag for the time domain outputs; if unset, a
default is calculated automatically

PROBABILITY = scalar Probability value for confidence limits; default 0.95
TAPER = scalar The proportion of data to be tapered using a cosine bell

window; default 0
YLOG = string token Whether to plot the univariate spectra with a log10-

transformed y-axis (yes, no); default no

Parameters
Y = variates Response time series
X = variates or pointers Explanatory time series
SPECTRUM = pointers Saves autospectra, co-spectra and quad-spectra
FREQUENCY = variate Saves the frequency values at which the spectra are

calculated
VARSPECTRUM = pointers Saves information about the variation of the spectrum:

coefficient of variation, degrees of freedom, and lower
and upper multiplicative limits for the univariate spectra

MULTICOHERENCYSQUARED = pointers
Saves estimates, significance limits, lower and upper
confidence limits for the squared multiple coherency
between the response and explanatory series

PARTIALCOHERENCYSQUARED = pointers
Saves estimates, significance limits, lower and upper
confidence limits for the squared partial coherency of
the response series with each explanatory series

GAIN = pointers Saves estimates, lower and upper limits for the
estimated gain of response series from each of the
explanatory series

PHASE = pointers Saves estimates, lower and upper limits for the
estimated phase of response series from each of the
explanatory series

NOISESPECTRUM = variates Saves the estimated spectrum of the noise process
IMPULSERESPONSE = pointers Saves the impulse response from !maxlag to +maxlag:

estimates and significance limit
LAGS = variates Saves the lags for the impulse response
ACFNOISE = variates Saves the ACF of the noise process

MCROSSPECTRUM performs a spectral analysis of a multiple time series. The response series is
specified by the Y parameter. The explanatory series are specified by the X parameter; the setting
can be a single variate if there is only one explanatory series, or a pointer of variates if there are
several. All the series should be the same length, n say, and this must be greater than 10. There
must also be no missing values and no restrictions. The ALIGN parameter can supply a variate,
with a value for each explanatory variate, which specifies a shift s so that X(t!s) is more closely
aligned with Y(t). These are used to improve the accuracy of the analysis but the results still
relate to the original (unshifted) series.
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The band-width of the smooth is specified by the BANDWIDTH option. If this is unset, a default
is calculated automatically. If BANDWIDTH is less than 1/n, only the sample spectra are returned
with no smoothing. The MAXLAG option defines the maximum lag for the time domain outputs.
If this is not set, a default is calculated automatically. Also, if the supplied value of MAXLAG is
too great in relation to the series length or the bandwidth used, then it is adjusted as necessary.
The TAPER option specifies the tapering proportion (default 0), and the PROBABILITY option
defines the size of confidence limits and acceptance region for coherencies (default 0.95).

The CORRECT option has settings mean, linear, quadratic and none to control whether
a mean, linear or quadratic trend correction is applied to all the series. The default is mean
correction.

Printed output can be suppressed by setting the option PRINT=*; by default,
PRINT=description, which summarizes the variables used and the option settings. The plots
that are produced are controlled by the PLOT option, with settings:

explanatory produces a graphics page for each explanatory variable
containing the spectrum, its partial coherency squared with
the response variable, phase, gain and impulse response
function,

response produces a graphics page with the response and noise
spectra, the multiple coherency squared, and the
autocorrelation function for the noise process. Where
given, green lines denote null significance limits.

By default, both pages are produced.
The YLOG option specified the transformation to be made to the y-axes of the autospectra

plots. By default, the plot is on the natural, untransformed scale. Alternatively, you can set
YLOG=yes, to plot on the scale of logarithm, base 10.

The SPECTRUM parameter saves a pointer, with 2 suffixes, storing variates of spectra:
"diagonals" (e.g. [1][1], [2][2] etc.) store autospectra, "super-diagonals" ([1][2] etc.) store
co-spectra, and "sub-diagonals" ([2][1] etc.) store quad-spectra. The frequency values at which
the spectra are calculated can be saved, in a variate, by the FREQUENCY parameter. The
frequency range is from 0 to 0.5 cycles per sampling interval of the series. This range is divided
into a round number of intervals with approximately 10 divisions covering one bandwidth.

The VARSPECTRUM parameter saves a pointer with information about the variation of the
spectrum. The first element of the pointer is a variate storing the coefficient of variation of the
spectrum. Similarly the second element stores the corresponding degrees of freedom, and the
third and fourth elements store lower and upper multiplicative limits for the univariate spectra.

The MULTICOHERENCYSQUARED parameter saves a pointer containing the squared multiple
coherency between the response and explanatory series. The first element of the pointer is a
variate storing the estimates, the second element stores the significance limits, and the third and
fourth elements store the lower and upper confidence limits.

The PARTIALCOHERENCYSQUARED, GAIN, PHASE and IMPULSERESPONSE parameters each
save their results in variates within a pointer with two suffixes. The first suffix changes
according to the type of result, while the second suffix has an element 1...m for each of the m
explanatory variates. The PARTIALCOHERENCYSQUARED parameter saves results for the squared
partial coherency of response series with the explanatory series; its first suffix has elements 1-4
to store the estimates, the significance limits, and the lower and upper confidence limits. The
GAIN and PHASE parameters save the estimated gain and phase of response series from each of
the explanatory series; their first suffixes have elements 1...3, storing the estimates, the lower
and the upper limits. The IMPULSERESPONSE parameter saves the impulse response, from
!maxlag to +maxlag; its first suffix has elements 1 and 2, storing the estimates and the
significance limits.

The NOISESPECTRUM and ACFNOISE parameters store the estimated spectrum and ACF of
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the noise process, in a variate. Finally, the LAGS parameter stores the lags for the impulse
response, again in a variate.

7.3 ARIMA modelling

An ARIMA model is an equation relating the present value yt of an observed time series to past
values. The equation includes lagged values not only of the series itself, but also of an
unobserved series of innovations, at ; you can interpret the innovations as the error in predicting
yt from past values yt!1, yt!2 .... The usual statistical model assumes that the innovations are a
series of independent Normal deviates with mean zero and constant variance. The residuals
obtained from fitting the model can be used to estimate the innovations.

A time-series model is specified by three things: the orders, which are the numbers of lagged
values that appear in the equation; the parameters, which are the associated coefficients; and,
optionally, the actual values of the lags, if these differ from the progression 1...m, where m is the
number of lags. For example, consider the model

Lyt ! c = ö1(Lyt!1 ! c) + at ! è1at!1 ! è2at!2

This equation is for the first differences, Lyt, of the data, and so has differencing order d=1. The
constant term c represents the mean of Lyt. The model has autoregressive order p=1 with one
parameter ö1, and moving-average order q=2 with parameters è1 and è2.

Example 7.3 fits this model to a series of length 150, and produces forecasts of the next 10
points.

Example 7.3

   2  " Fit an ARIMA(1,1,2) model to the series of daylengths, 1821-1970.
  -3    Display the correlations, check the residuals, and forecast till 1980.
  -4    Data from Shi-fang et al. (1977)."
   5  OPEN 'Daylength.dat'; CHANNEL=3
   6  READ [CHANNEL=3; SETNVALUES=yes] Daylength

    Identifier   Minimum      Mean   Maximum    Values   Missing
     Daylength    -347.0     63.88     421.0       150         0

   7  CLOSE 3  
   8  TSM Erp; ORDERS=!(1,1,2)
   9  TFIT Daylength; TSM=Erp

Time-series analysis
====================

Output series: Daylength    Noise model: Erp

Residual deviance           = 36959.
Innovation variance         = 251.9

Number of units present     = 150
Residual degrees of freedom = 145

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

Erp       ARIMA        -      1      1      2      1
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Parameter estimates
-------------------

Model  Seas.   Diff.  Delay  Parameter  Lag  Ref  Estimate     s.e.      t
       Period  Order

Noise       1      0      -   Constant   -    1       3.98     4.52   0.88
            1      1      -   Phi (AR)   1    2      0.380    0.104   3.64
                            Theta (MA)   1    3    -0.5565   0.0897  -6.20
                                         2    4    -0.6194   0.0794  -7.80

  10  TKEEP RESIDUALS=Erpres
  11  CORRELATE [MAXLAG=50; GRAPH=autocorrelations] Erpres

                                        Erpres
         -+---------+---------+---------+---------+---------+---------+-
         I*                                                            I
         I                                                             I
     0.8 I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
     0.2 I                                                             I
A        I    *     *        * *                  *                    I
C        I.**....*.*.*..*..*..*.***.*..**...*...**.****..*.*****.......I
F        I   *  * *   **  * *        **  ***  **        * *     * *    I
         I                                                             I
         I                                                             I
    -0.4 I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
         I                                                             I
    -1.0 I                                                             I
         -+---------+---------+---------+---------+---------+---------+-
          0         9        18        27        36        45        54
                                         Lag

  12  TFORECAST [MAXLEAD=10]

Forecasts
=========

Maximum lead time: 10

Forecasts for future values
---------------------------

    Lead time     forecast  lower limit  upper limit
            1        297.0        270.9        323.1
            2        305.8        248.9        362.7
            3        311.6        216.6        406.5
            4        316.2        188.3        444.2
            5        320.5        164.4        476.5
            6         325.         144.         505.
            7         329.         126.         531.
            8         333.         111.         555.
            9         337.          96.         577.
           10         341.          83.         598.

The TSM statement specifies the orders (p,d,q) of the model as (1,1,2), and names the model Erp
(for Earth rotation period). The parameters of the model could also have been specified here; but
they have been omitted because they have yet to be estimated. The initial values for c, ö1, è1 and
è2 are therefore set by Genstat to zero (the default).

The TFIT statement fits the model to the series by an iterative process, and, in this example,
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the maximum number of iterations and the convergence criterion are determined by default. The
results display the estimated innovation variance (or residual variance) and estimates of the other
model parameters together with their standard errors. Note that the model also allows for a
transformation parameter, which by default is not estimated and has the fixed value of 1.0
indicating no transformation.

The TKEEP statement accesses the variate of residuals at; these can also be thought of as the
estimated innovations. CORRELATE is used to plot their autocorrelations as a way of checking
that the fitted model accounts for all the correlation in the data.

Finally the TFORECAST statement prints the forecasts of the next 10 values of the series
together with their 90% probability limits.

You can use the RESTRICT directive (1:4.4.1) to fit models to unbroken sub-series of the data.
Genstat automatically estimates missing values in a time series together with the model
parameters: all these estimates are allowed for in the number of degrees of freedom.

Further examples of all these directives are shown in Section 7.3.7. There is also a procedure
BJESTIMATE which allows most of the analyses in Example 7.3 to be carried out by issuing a
one-line command.

7.3.1 The BJESTIMATE procedure

BJESTIMATE procedure
Fits an ARIMA model, with forecast and residual checks (G. Tunnicliffe Wilson & S.J.
Welham).

Options
PRINT = string tokens Controls printed output (description, monitoring,

model); default desc, moni, mode
GRAPHICS = string token What type of graphics to use (lineprinter,

highresolution); default high
WINDOWS = scalar or variate Windows to be used for residual plots: a scalar N

indicates that plots are to be produced on separate pages
in window N (as currently defined), whereas a variate
specifies four separate windows to be redefined (within
the procedure) for plotting four graphs on one page;
default 1

PENS = variate The three pens to be used (after being defined
appropriately) for drawing the plots; default !(1,2,3)

Parameters
SERIES = variates Holds the time series to which the model is to be fitted
LENGTH = scalars or variates Specifies the units to be used from each series: a scalar

N indicates that the first N units of the series are to be
used, a variate of length 2 gives the index of the first and
last units of the subseries to be used; by default the
whole series is used

ORDERS = variates Variate holding the orders for the ARIMA model to be
fitted to each series

PARAMETERS = variates Variate specifying the initial values for the parameters
(to be used by the TFIT directive)

TSM = TSMs TSM to store each fitted model, also to supply values for
orders and parameters if ORDERS and PARAMETERS are
unset
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Figure 7.3.1a

RESIDUALS = variates Variate to save the residuals from fitting the model to
each series

BJESTIMATE fits an ARIMA model of specified orders to a time series given by the SERIES
parameter. If only part of the series is to be used, this should be specified by the parameter
LENGTH, using either a scalar N to indicate that the first N values should be used, or a variate of
length 2 holding the positions of the first and last units of the subseries to be included. If only
a subseries is used in the estimation, forecasts of any later series values are plotted to act as a
check on the fitted model. The fit of the model is examined using the procedure BJIDENTIFY
on the residual series; this residual series is plotted, together with its sample autocorrelations,
partial autocorrelations and periodogram. The residuals from the fitted model can be saved using
the RESIDUALS parameter.

The orders of the ARIMA model can be specified by the ORDERS parameter; alternatively, if
parameter TSM has been set to the identifier of a TSM structure to save the results, ORDERS can
be omitted and the orders will be taken from those of the TSM. Likewise, the PARAMETERS
parameter can be set to a variate of initial values for the TFIT directive, used by the procedure
to fit the model; if PARAMETERS is unset these will again be taken from the setting of the TSM
parameter, if available. Any unset initial values are determined automatically by TFIT.

Printed output is controlled by the option PRINT; by default, a description of the series,
monitoring of the estimation process and the fitted model are printed.

Graphical output is controlled by the options GRAPHICS, WINDOWS and PENS. Option
GRAPHICS controls whether plots are produced for line-printer output or on the current high-
resolution graphics device; by default high-resolution plots are given. Option WINDOWS controls
the way in which the high-resolution plots are arranged. First of all there may be a graph of
forecasts; this is plotted on a new page (i.e. a cleared screen), using the first window specified.
Then procedure BJIDENTIFY is called to produce four different plots of residuals. If WINDOWS
is set to a scalar N, the graphs are all produced in window N on separate pages; the FRAME
directive can be used to set the attributes of window N before calling the procedure.
Alternatively, WINDOWS can be set to a variate of length four; the attributes of the four windows
specified are then redefined within the procedure so that four graphs are produced on the same
page. By default WINDOWS=1. The PENS option controls which pens are used for the plots; the
attributes of these pens are modified appropriately within the procedure. By default pens 1-3 are
used, but these can be changed by setting option PENS to a variate of length 3 containing the
numbers of the three different pens
required.

Example 7.3.1 illustrates the use of
BJESTIMATE by fitting an ARIMA model
to the first 40 points of the series of Gilts
from Example 7.1.1. If a subset of the
series is used in procedure BJESTIMATE,
graphs of forecasts are produced for any
later timepoints. In this example, the last 8
points are forecast and plotted with the
actual values as displayed in Figure 7.3.1a.
A comparison of the forecasts to the actual
data provides a simple validation of the
fitted model.
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Figure 7.3.1b

The residuals are also
analysed using procedure
BJIDENTIFY  within
BJESTIMATE, producing
the graphs shown in
Figure 7.3.1b. Here only
the series and the model
orders are specified. The
model contains a seasonal
part; this is described in
Section 7.3.2.

Example 7.3.1

   2  " Fit a seasonal ARIMA model to the first 10 years of the quarterly
  -3    time series of Gilts used in Example 7.1.1 using procedure BJESTIMATE.
  -4    The final two years of data are forecast as a form of cross-validation
  -5    of the model, and the residuals are analysed."
   6  OPEN  'UKpig.dat';CHANNEL=3
   7  READ  [PRINT=errors; CHANNEL=3] \
   8        Year,Quarter,Gilts,Profit,Slaughter,Cleanpig,Herdsize
   9  CLOSE 3
  10  BJESTIMATE [GRAPHICS=high; WINDOWS=!(1,2,3,4)] SERIES=Gilts; LENGTH=40;\
  11        ORDERS=!(2,0,1,0,1,1,4)

Analysis of series x: first 40     values of series Gilts, length 48

Time-series analysis
====================

Output series: x            Noise model: amod

Residual deviance           = 1768.
Innovation variance         = 46.07

Number of units present     = 40
Residual degrees of freedom = 31

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

amod      ARIMA        -      2      0      1      1
                       -      0      1      1      4
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Parameter estimates
-------------------

Model  Seas.   Diff.  Delay  Parameter  Lag  Ref  Estimate    s.e.      t
       Period  Order

Noise       1      0      -   Constant   -    1     -1.893   0.741  -2.55
                              Phi (AR)   1    2      1.625   0.104  15.62
                                         2    3    -0.8691  0.0906  -9.60
                            Theta (MA)   1    4      0.649   0.197   3.29
            4      1      - Theta (MA)   4    5      0.777   0.172   4.51

7.3.2 Defining ARIMA models for time series with the TSM directive

TSM directive
Declares one or more TSM data structures.

Option
MODELTYPE = string token Type of model (arima, transfer); default arim

Parameters
IDENTIFIER = identifiers Identifiers of the TSMs
ORDERS = variates Orders of the autoregressive, integrated and moving-

average parts of each TSM
PARAMETERS = variates Parameters of each TSM
LAGS = variates Lags, if not default

Here we describe how to use the TSM directive for ARIMA models, which correspond to the
default setting of its MODELTYPE option (MODELTYPE=arima). The definition of transfer-
function models is described in Section 7.5.1.

In many applications you will need only a simple form of the directive, such as:

TSM Erp; ORDERS=!(1,1,2)

Notice that TSM simply sets up a named Genstat structure which you can then use in directives
such as TFIT. It can also, for example, be saved in a backing-store file (3.5) for further use. In
that sense it is analogous to a TERMS statement (3.2.3), which sets up a maximal model for
regression analysis, or a TREATMENTSTRUCTURE statement (4.1.1), which sets up a treatment
model for analysis of variance.

If a TSM identifier, say Erp, has been declared, you can print the whole model in a descriptive
format with the statement:

PRINT Erp

You can refer to the variates corresponding to the ORDERS, PARAMETERS and LAGS of the TSM
by Erp[1], Erp[2] and Erp[3], or for example by Erp['Orders']. Thus the autoregressive
order can be assigned to a scalar P by:

CALCULATE P = Erp[1]$[1]

since Erp[1] holds the orders of the TSM and its first element is the number of autoregressive
parameters.

You can change the values of a TSM at any time, for example by CALCULATE statements.
Genstat checks that the TSM values specify a valid model whenever they are used in a time-
series directive such as TFIT. However, you must be careful if you change the values of a TSM
that you are currently using to fit a model. For example, you could get strange results if you
changed the parameter values of the model between the TFIT and TFORECAST statements in
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Example 7.3.
Using the notation of Box & Jenkins (1970), the simple non-seasonal ARIMA model for the

time series yt is
ö(B) {Ldyt

(ë) ! c} = è(B)at

where B is the backward shift operator Bpyt =yt!p ,
L is the differencing operator Lyt =yt!yt!1 , L

dyt =L
d-1 (yt!yt!1 ), and

ö(B) = 1 ! ö1B ! ... ! öpB
p

è(B) = 1 ! è1B ! ... ! èqB
q

The parameter ë specifies a Box-Cox power transformation defined by
yt

(ë) = (yt
ë ! 1) / ë,    ë =/  0

yt
(0) = log(yt)

However, in the default case when ë is fixed and not estimated, the value ë=1 implies no
transformation and then yt

(1)=yt rather than yt!1. If ë=/ 1 or if ë is to be estimated, then Genstat will
not let you have values of yt #0. The usual case however is that ë=1 and is not to be estimated,
so that yt may take any values.

The ORDERS parameter is a list of variates, one for each of the models. For each simple
ARIMA model, the variate contains the three values p, d and q.

The PARAMETERS parameter is a list of variates, one for each of the models. For each simple
ARIMA model, the variate contains (3+p+q) values: ë, c, óa

2, ö1...öp, è1...èq. You must always
include the first three parameters. The parameter óa

2 is the innovation variance.
Whenever a TSM is used, Genstat checks its values. The orders must all be non-negative. The

parameters ë and c can take any values, but óa
2 must be non-negative. The next p+q values

specify the autoregressive and moving-average parameters: they must satisfy the stationarity and
invertibility conditions for ARIMA models (see Box & Jenkins 1970). An exception is that
before estimation the model parameters may be unset, in which case Genstat sets them to default
values. You can omit the PARAMETERS parameter, in which case an unnamed structure is defined
to contain the default values. However, you should usually specify the variate of parameters, and
if possible assign good preliminary values before estimation (see 7.7.1) as this will speed up the
model fitting process.

For convenience when setting the values of parameters, you may wish first to declare scalars
or variates containing the separate components:

SCALAR Lam,C,Ivar; VALUES=1,4,200
VARIATE [VALUES=0.4] Phi
& [VALUES=-0.5,-0.6] Theta

Then to pack these into the parameter variate, you can put

VARIATE [VALUES=Lam,C,Ivar,#Phi,#Theta] Erpar

Similarly, in order to extract the components after estimation, you can use the EQUATE directive
(1:4.3):

EQUATE Erpar; NEWSTRUCTURES=!P(Lam,C,Ivar,Phi,Theta)

The LAGS parameter is a list of variates, one for each of the models. For each simple ARIMA

model, this variate contains p+q values, one corresponding to each of the autoregressive and
moving-average parameters. Genstat then modifies the ARIMA model by defining

The LAGS parameter for this model contains l1...lp, m1...mq. The sequences of lags l1...lp must be
positive integers that are strictly increasing; the default values are 1...p if LAGS is not set. The
same rule applies to m1...mq.

The seasonal ARIMA model for the time series yt is an extension of the simple model, to the
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form
ö(B) Ö(Bs) { LdLs

Dyt
(ë) ! c } = è(B) È(Bs) at

where the extra, seasonal, operators associated with seasonal period s are of three types:

which is seasonal autoregression of order P;

which is seasonal differencing of order D; and

which is seasonal moving average of order Q.
When seasonal terms are to be included, you must extend the ORDERS parameter so that it

contains p, d, q, P, D, Q and s. Even if the non-seasonal part of the model has p=d=q=0, these
parameters must still be included at the beginning of the list. The seasonal orders must satisfy
P$0, D$0, Q$0 and s$1.
You must also extend the PARAMETERS parameter to contain:

ë, c, óa
2, ö1...öp, è1...èq, Ö1...ÖP, È1...ÈQ

You can modify the seasonal model to allow other lags:

The sequence of lags L1...LP must be strictly increasing and must be positive-integer multiples
of the period s; the default values are s, 2s ... Ps. The same rules apply to M1...MQ. For any
seasonal model, you must extend the LAGS parameter, if supplied, so that it contains

l1 ... lp, m1 ... mq, L1 ... LP, M1 ... MQ.
You can use multiple seasonal periods, by extending the variate of ORDERS with further

seasonal orders PN, DN, QN and sN. You must correspondingly extend the variates of PARAMETERS
and LAGS. It is also possible to set the seasonal periods to 1, which means you can estimate non-
seasonal models with factored operators.

You can declare an ORDERS variate to have more values than is necessary, provided that the
extra values are filled with zeroes, and that the number of values is 3+4k, k being the number of
seasonal periods. The same applies to PARAMETERS and LAGS variates, except that Genstat
ignores the extra values whatever they may be. Thus you can extend a simple model to a seasonal
model, simply by resetting the extra values.

Finally note that you can use the same ORDERS, PARAMETERS and LAGS variates in more than
one TSM.

7.3.3 The TFIT directive

TFIT directive
Estimates parameters in Box-Jenkins models for time series.

Options
PRINT = string tokens What to print (model, summary, estimates,

correlations, monitoring); default
mode,summ,esti

LIKELIHOOD = string token Method of likelihood calculation (exact,
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leastsquares, marginal); default exac
CONSTANT = string token How to treat the constant (estimate, fix); default

esti

RECYCLE = string token Whether to continue from previous estimation (yes,
no); default no

WEIGHTS = variate Weights; default *
MVREPLACE = string token Whether to replace missing values by their estimates

(yes, no); default no
FIX = variate Defines constraints on parameters (ordered as in each

model, tf models first): zeros fix parameters, parameters
with equal numbers are constrained to be equal; default
*

METHOD = string token Whether to carry out full iterative estimation, to carry
out just one iterative step, to perform no steps but still
give parameter standard deviations, or only to initialize
for forecasting by regenerating residuals (full,
onestep, zerostep, initialize); default full

MAXCYCLE = scalar Maximum number of iterations; default 15
TOLERANCE = scalar Criterion for convergence; default 0.0004
SAVE = identifier To name save structure, or supply save structure with

transfer-functions; default * i.e. transfer-functions taken
from the latest model

Parameters
SERIES = variate Time series to be modelled (output series)
TSM = TSM Model for output series
BOXCOXMETHOD = string token How to treat transformation parameter in output series

(fix, estimate); default fix
RESIDUALS = variate To save residual series

The main use of TFIT is to fit parameters to time-series models, although you can also use it to
initialize for the TFORECAST directive, even when the model parameters are already known. In
many applications of estimating a univariate ARIMA model, you will need only a simple form
of the directive, such as:

TFIT Daylength; TSM=Erp

Examples of TFIT are given at the beginning of Section 7.3 and in Section 7.3.7.
The SERIES parameter specifies the variate holding the time series data to which the model

is to be fitted.
The TSM parameter specifies the ARIMA model that is to be fitted to the time-series data. This

TSM must already have been declared and its ORDERS must have been set. If the LAGS parameter
of the TSM has been set, the lags must have been given values. However, if the PARAMETERS
of the TSM model have been set, these need not have been declared previously nor given values.
When the parameter values are not set, default values are used: these are all zero, except for the
transformation parameter, which is set to 1.0 if it is not to be estimated (see BOXCOXMETHOD and
FIX below). Any parameter values that you do specify will be used as initial values for the
parameters in the model; Genstat replaces any missing values by the default values. If any group
of autoregressive or moving-average parameters do not satisfy the required conditions for
stationarity or invertibility, all the parameters to be estimated are reset by Genstat to the default
values. After TFIT, the parameters of the TSM contain the estimated parameter values.

The BOXCOXMETHOD parameter allows you to estimate the transformation parameter ë.
The RESIDUALS parameter saves the estimated innovations (or residuals). As explained in the
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description of the LIKELIHOOD option in the next section, the residuals are calculated for
t=t0...N, where t0=1+p+d!q for a simple ARIMA model. If t0>1, missing values will be inserted
for t=1...t0!1.

The PRINT option controls printed output. If you specify monitoring, then at each cycle of
the iterative process of estimation, Genstat prints the deviance (7.3.4) for the current fitted
model, together with the current estimates of model parameters. The format is simple with the
minimum of description, to let you judge easily how quickly the process is converging; see
Example 7.4a. The other settings of PRINT control output at the end of the iterative process. If
you specify model, the model is briefly described, giving the identifier of the series and the
time-series model, together with the orders of the model. If you specify summary, the deviance
of the final model is printed, along with the residual number of degrees of freedom. If you
specify estimates, the estimates of the model parameter are printed in a descriptive format,
together with their estimated standard errors and reference numbers. If you specify
correlations, the correlations between estimates of parameters are printed, with reference
numbers to identify the parameters; see Example 7.3.5.

The LIKELIHOOD option specifies the criterion that Genstat minimizes to obtain the estimates
of the parameters: this is described in the next section. The default setting exact is
recommended for most applications.

You can use the CONSTANT option to specify whether Genstat is to estimate the constant term
c in the model. If CONSTANT=fix, the constant is held at the value given in the initial parameter
values; this need not be zero.

The RECYCLE option allows a previous TFIT statement to continue; this can save computing
time. If RECYCLE=yes, the most recent TFIT statement is continued, unless the SAVE option has
been set to the save structure from some other TFIT statement. The SERIES and TSM settings
are then taken from this previous TFIT statement: Genstat ignores any specified in the current
statement. Most of the settings of other parameters and options are carried over from the
previous statement, and new values are ignored. However, there are some exceptions. You can
change the RESIDUALS variate, you can reset MAXCYCLE to the number of further iterations you
require, and you can change the settings of TOLERANCE and PRINT. You can also change the
values of the variate in the WEIGHTS option; you can thus get reweighted estimation. You can
change the values of the SERIES itself, although you cannot change missing values; if the
MVREPLACE option was previously set to yes, you must put the original missing values back into
the SERIES variate before the new TFIT statement.

The WEIGHTS option includes in the likelihood a weighted sum-of-squares term

where wt, t=1...N are provided by the WEIGHTS variate. The values of wt must be strictly positive.
If t0<1, where t0=1+d+p!q, then wt is taken as 1 for t<1.

The MVREPLACE option allows you to request any missing values in the time-series to be
replaced by their estimates after estimation. Genstat will always estimate the missing values,
irrespective of the setting of MVREPLACE; so you can also obtain these estimates later from
TKEEP (7.3.6).

The FIX option allows you to place simple constraints on parameter values throughout the
estimation. The units of the FIX variate correspond to the parameters of the TSM, excluding the
innovation variance. The values of the FIX variate are used to define the parameter constraints
and must be integers. If an element of the FIX variate is set to 0, the corresponding parameter
is constrained to remain at its initial setting. If an element is not 0, and the value is unique in the
FIX variate, the parameter is estimated without any special constraint. If two or more values are
equal, the corresponding parameters are constrained to be equal throughout the estimation. The
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number that you give to a parameter by FIX will appear as the reference number of the parameter
in the printed model and correlation matrix. This option overrides any setting of CONSTANT and
BOXCOXMETHOD. Example 7.3.3a uses the FIX option to constrain some of the parameters in the
model as fitted in Example 7.3.

Example 7.3.3a

   2  " Fix parameters in ARIMA(1,1,2) model for daylength:
  -3    transformation fixed at 1, Constant unconstrained, AR parameter
  -4    fixed at previous estimate, MA parameters constrained to be equal."
   5  OPEN  'Daylength.dat'; CHANNEL=3
   6  READ  [PRINT=errors; CHANNEL=3; SETNVALUES=yes] Daylength
   7  CLOSE 3
   8  TSM   Erp; ORDERS=!(1,1,2)
   9  TFIT  [PRINT=*] Daylength; TSM=Erp
  10  TFIT  [FIX=!(0,1,0,2,2)] Daylength; TSM=Erp

Time-series analysis
====================

Output series: Daylength    Noise model: Erp

Residual deviance           = 37102.
Innovation variance         = 249.5

Number of units present     = 150
Residual degrees of freedom = 147

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

Erp       ARIMA        -      1      1      2      1

Parameter estimates
-------------------

Model  Seas.   Diff.  Delay  Parameter  Lag  Ref  Estimate    s.e.      t
       Period  Order

Noise       1      0      -   Constant   -    1       3.97    4.51   0.88
            1      1      -   Phi (AR)   1    0    0.38013   Fixed      -
                            Theta (MA)   1    2    -0.5906  0.0596  -9.90
                                         2    2    -0.5906  0.0596  -9.90

The MAXCYCLE option specifies the maximum number of iterations to be performed.
The TOLERANCE option specifies the convergence criterion. Genstat decides that convergence

has occurred if the fractional reduction in the deviance in successive iterations is less than the
specified value, provided also that the search is not encountering numerical difficulties that force
the step length in the parameter space to be severely limited. You can use monitoring to judge
whether, for all practical purposes, the iterations have converged. Genstat gives warnings if the
specified number of iterations is completed without convergence, or if the search procedure fails
to find a reduced value of the deviance despite a very short step length. Such an outcome may
be due to complexities in the likelihood function that make the search difficult, but can be due
to your specifying too small a value for TOLERANCE.

The SAVE option allows you to save the time-series save structure produced by TFIT. You can
use this in further TFIT statements with RECYCLE=yes, or in TFORECAST statements. It can also
be used by the TDISPLAY and TKEEP directives. Genstat automatically saves the structure from
the most recent TFIT statement, but this is over-written when the next TFIT statement is
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Figure 7.3.3

executed, unless you have used SAVE to give it an identifier of its own. You can access the
current time-series save structure by the SPECIAL option of the GET directive (1:5.6.2), and reset
it by the TSAVE option of the SET directive (1:5.6.1).

The METHOD option has four possible settings. The default setting is full which gives the
usual estimation to convergence or until the maximum number of iterations has been reached.

With the initialize setting of METHOD,
TFIT carries out only the residual regeneration
steps (that is, calculation of at for t=t0...N)
which are needed before TFORECAST (7.3.7)
can be used. If the model has just been
estimated using the default full setting, this is
unnecessary. The setting initialize is useful
when the time series is supplied with a known
model and a minimal amount of calculation is
wanted to prepare or initialize for forecasting.
None of the model parameters are changed, and
no standard errors of parameter estimates are
available. Missing values in the series are
estimated so this setting provides an efficient
way of getting their values when the time series
model is known; they can then be obtained
using TKEEP (7.3.6). The deviance value is also
available from TKEEP (7.3.6). This setting is
therefore useful for efficient calculation of deviance values when you want to plot the shape of
the deviance as a function of parameter values. Example 7.3.3b below illustrates this by
producing the contour plot (shown in Figure 7.3.3) of the log deviance for the daylength model
fitted in Example 7.3. All parameters have their estimated values except the two moving-average
parameters. These vary over a grid of 800 points. Values corresponding to non-invertible models
are skipped and the contours plotted inside the triangular region of invertible model parameters.

Example 7.3.3b

   2  " The deviance function for the model fitted to the series of
  -3    daylengths in Example 7.3 is plotted as the moving average
  -4    parameters are varied."
   5  OPEN 'Daylength.dat'; CHANNEL=3
   6  READ [CHANNEL=3; SETNVALUES=yes] Daylength

    Identifier   Minimum      Mean   Maximum    Values   Missing
     Daylength    -347.0     63.88     421.0       150         0

   7  CLOSE 3
   8  " Set the model parameters to their previously estimated values "
   9  VARIATE [VALUES=1,3.98,251.9,0.380,-0.5565,-0.6194] Modpar
  10  TSM Moderp; ORDERS=!(1,1,2); PARAMETERS=Modpar
  11  SCALAR R,Large,Mdev; VALUE=0.999,12000000,0
  12  " Set up a grid of parameter values over which to evaluate
 -13    the deviance."
  14  CALCULATE Vth1,Vth2 = !(-20...20),!(-10...10)*0.099999
  15  " Define the matrix to hold the deviance values "
  16  MATRIX [ROWS=41; COLUMNS=21] Devgrid
  17  FOR Drow=1...41; Dth1=#Vth1
  18    FOR Dcol=1...21; Dth2=#Vth2
  19    " Check that the parameters lie within the invertibility region."
  20    IF ((ABS(Dth2)<R).AND.((ABS(Dth1)/ABS(1-Dth2))<R))
  21      CALCULATE Modpar$[5,6] = Dth1,Dth2
  22      TFIT      [PRINT=*; METHOD=initialize] Daylength; Moderp
  23      TKEEP     DEVIANCE=Mdev
  24    ELSE
  25      " Set the deviance to a large value if the parameters are not
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 -26        invertible."
  27      CALCULATE Mdev = Large
  28    ENDIF
  29    CALCULATE ELEMENT(Devgrid; Drow; Dcol) = Mdev
  30    ENDFOR
  31  ENDFOR
  32  " Use log deviances so as to reveal the lower contours."
  33  CALCULATE Devgrid = LOG(Devgrid)
  34  FRAME 1; YLOWER=0.05; YUPPER=0.95; XLOWER=0.05; XUPPER=0.95; BOX=include
  35  XAXIS 1; ACTION=hide
  36  YAXIS 1; ACTION=hide
  37  DCONTOUR [WINDOW=1; KEYWINDOW=0] Devgrid; PENCONTOUR=1; PENFILL=0;\
  38           INTERVAL=0.2
  39  PEN    2,4; LINESTYLE=1; METHOD=closed,line; SYMBOLS=0; COLOUR='black'
  40  XAXIS  1; TITLE='Theta 2'; LOWER=-1; UPPER=1; ACTION=display
  41  YAXIS  1; TITLE='Theta 1'; LOWER=-2; UPPER=2; ACTION=display
  42  DGRAPH [WINDOW=1; KEYWINDOW=0; SCREEN=keep; TITLE='Deviance contours']\
  43         !(2,0),!(-2,0);!(-1,1); PEN=4

With the setting METHOD=zerostep the effect is the same as for initialize except that TFIT
also calculates the standard errors of the parameters as if they had just been estimated. These can
be used together with other quantities available from TKEEP (7.3.6) to construct confidence
intervals and carry out tests on the parameter values, which remain unchanged except that the
innovation variance in the ARIMA model is replaced by its estimate conditional on all other
parameters.

The setting METHOD=onestep gives the same results as specifying the option MAXCYCLE=1
in TFIT. It is convenient for carrying out quick tests of model parameters as illustrated in
Example 7.3.3c. The model fitted in Example 7.3 is extended to have three autoregressive
parameters, with the new parameters set to zero and the old parameters kept at their estimated
values. Then after one step of TFIT the estimates of the new autoregressive coefficients at lags
2 and 3 can be compared with their standard errors to see if there is evidence that they should
be retained in the model. In this case the evidence is insufficient. Although iteration to
convergence would be very quick for this example, the onestep setting can save time when
checking a complicated model for a variety of possible extensions.

Example 7.3.3c

   2  " The model previously fitted to the series of daylengths in Example
  -3    7.3 is extended to include two more autoregressive parameters, the
  -4    old parameters being kept at their estimated values. The option
  -5    METHOD=onestep of ESTIMATE is used to assess whether the new
  -6    parameters should be retained in the model."
   7  OPEN  '%GENDIR%/Examples/GuidePart2/Daylength.dat'; CHANNEL=3
   8  READ  [PRINT=errors; CHANNEL=3; SETNVALUES=yes] Daylength
   9  CLOSE 3
  10  TSM   Erp; ORDERS=!(1,1,2)
  11  TFIT  [PRINT=*] Daylength; TSM=Erp
  12  " Save the previous model parameters and redefine the model with
 -13    higher autoregressive orders and extended parameter variate."
  14  CALCULATE Modpar = Erp['Parameters']
  15  &         Modparx = !(Modpar$[1,2,3,4],0,0,Modpar$[5,6])
  16  " Save the parameter values."
  17  VARIATE   Oldparx; VALUES=Modparx
  18  TSM       Erp; ORDERS=!(3,1,2); PARAMETERS=Modparx
  19  TFIT      [METHOD=onestep] Daylength; TSM=Erp

******** Warning 32, code TS 21, statement 1 on line 19

Command: TFIT [METHOD=onestep] Daylength; TSM=Erp
The iterative estimation process has not converged.
The maximum number of cycles is 1
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Time-series analysis
====================

Output series: Daylength    Noise model: Erp

Residual deviance           = 36553.
Innovation variance         = 252.5

Number of units present     = 150
Residual degrees of freedom = 143

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

Erp       ARIMA        -      3      1      2      1

Parameter estimates
-------------------

Model   Seas.   Diff.  Delay  Parameter  Lag  Ref   Estimate        s.e.      t
        Period  Order

Noise        1      0      -   Constant   -    1        4.05        4.51   0.90
             1      1      -   Phi (AR)   1    2       0.319       0.155   2.05
                                          2    3       0.166       0.161   1.03
                                          3    4      -0.102       0.139  -0.73
                             Theta (MA)   1    5      -0.608       0.136  -4.46
                                          2    6      -0.544       0.138  -3.95

  20  " Calculate and print the changes in the parameter values excluding
 -21    the transformation and innovation variance parameters. "
  22  CALCULATE Delpar = Modparx-Oldparx
  23  &         Del = Delpar$[!(2,4,5...8)]
  24  PRINT     Del

         Del
     0.07414
    -0.06133
     0.16587
    -0.10153
    -0.05192
     0.07503

7.3.4 Technical information about how Genstat fits ARIMA models

This section describes the estimation of ARIMA models in more detail. You may want to skip
this if you are doing fairly routine work.

The first step in deriving the likelihood for a simple model is to calculate
wt = Ldyt ! c , t = 1+d ... N

This has a multivariate Normal distribution with dispersion matrix Vóa
2, where V depends only

on the autoregressive and moving-average parameters. The likelihood is then proportional to
{ óa

2m*V* } !½ exp{ !wNV!1w/2óa
2 }

where m=N!d. In practice Genstat evaluates this by using the formula

where t0=1+d+p!q. The term W is a quadratic form in the p values w1+d!q ... wp+d!q. It takes
account of the starting-value problem for regenerating the innovations at, and avoids losing
information as would happen if the process used only a conditional sum-of-squares function. If
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q>0, Genstat introduces unobserved values of w1+d!q ... wd in order to calculate the sum S. Genstat
uses linear least-squares to calculate these q starting values for w, thus minimizing S. We shall
call them back-forecasts, though if p>0 they are actually computationally convenient linear
functions of the proper back-forecasts. We shall call S the sum-of-squares function: it is the sum
of the quadratic form and the sum-of-squares term, and is identical to the value expressed by Box
and Jenkins as

using infinite back-forecasting; that is, using:

The values at for t=t0...N agree precisely with those of Box and Jenkins.
To clarify all this, consider examples with no differencing; that is, d=0. If p=0 and q=1, then

W=0 and t0=0, and one back-forecast w0 is introduced. If p=1 and q=0, then W=(1!ö1
2)w1

2 and
t0=2, and no back-forecasts are needed. If p=q=1, then W=(1!ö1

2)w0
2 and t0=1, and so one back-

forecast w0 is needed. In this case the proper back-forecast is in fact w0 /(1!è1ö1).
The value of *V* is a by-product of calculating W and the back-forecast. For example, if p=0

and q=1, then
*V* = (1 + è1

2 + ... + è1
2N)

If p=1 and q=0,
*V* = 1 / (1 ! ö1

2)
and if p=q=1,

*V* = 1 + (ö1 ! è1)
2 (1 + è1

2 + ... + è1
2N!2) / (1 ! ö1

2)
Concentrating the likelihood over óa

2 by setting óa
2=S/m yields a value proportional to { *V*1/m

S }!m/2.
The default setting of the LIKELIHOOD option is exact. In this case the concentrated

likelihood is maximized, by minimizing the quantity
D = *V*1/m S

which is called the deviance.
The setting leastsquares specifies that Genstat is to minimize only the sum-of-squares term

S. This criterion corresponds to the back-forecasting sum-of-squares used by Box and Jenkins,
and will in many cases give estimates close to those of the exact likelihood. However, some
discrepancy arises if the series is short or the model is close to the invertibility boundary. This
is because of limitations on the back-forecasting procedure, as described in the algorithms of
Box and Jenkins. The deviance value D that Genstat prints is, with this setting, simply S.

The setting marginal is described in Section 7.4.
When you use exact likelihood, the factor *V*1/m reduces bias in the estimates of the

parameter; you would get bias if you used leastsquares instead. However, *V*1/m is generally
close to one, unless the series is short or the model is either seasonal or close to the boundaries
of invertibility or stationarity. The leastsquares setting is therefore adequate for most long,
non-seasonal sets of data; using it may reduce the computation time by up to 50%. When you
specify that Genstat is to estimate the parameter ë of the Box-Cox transformation, Genstat also
includes the Jacobian of the transformation in the likelihood function. The result is an extra
factor G!2(ë!1) in the definition of the deviance, G being the geometric mean of the data,
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Note that this is not included unless ë is being estimated, even if ë=/ 1.
You can treat differences in Nlog(D) as a chi-square variable in order to test nested models:

this is supported by asymptotic theory, and by experience with models that have moderately
large sample sizes. Similarly, you can select between different models by using Nlog(D)+2k as
an information criterion, k being the number of estimated parameters. But both of these test
procedures are questionable if the estimated models are close to the boundaries of invertibility
or stationarity. Provided all the models that are being compared have the same orders of
differencing, with the differenced series being of length m, it is recommended that mlog(D) be
used rather than Nlog(D) in these tests since mlog(D) is precisely minus two multiplied by the
log-likelihood as defined above.

7.3.5 The TDISPLAY directive

TDISPLAY directive
Displays further output after an analysis by TFIT.

Options
PRINT = string tokens What to print (model, summary, estimates,

correlations); default mode,summ,esti
CHANNEL = scalar Channel number for output; default * i.e. current output

channel
SAVE = identifier Save structure to supply fitted model; default * i.e. that

from the last model fitted

No parameters

You can use TDISPLAY to print further output from an TFIT statement. However, if the TFIT
statement used the setting METHOD=initialize you will not be able to print the standard errors
or correlations between the parameter estimates (see 7.3.3).

The PRINT option has the same interpretation as in TFIT, except that information is not
available to monitor convergence. Example 7.3.5 illustrates TDISPLAY in a continuation of
Example 7.3.3a.

Example 7.3.5

  11  TFIT Daylength; TSM=Erp

Time-series analysis
====================

Output series: Daylength    Noise model: Erp

Residual deviance           = 36960.
Innovation variance         = 251.9

Number of units present     = 150
Residual degrees of freedom = 145

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

Erp       ARIMA        -      1      1      2      1
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Parameter estimates
-------------------

Model  Seas.   Diff.  Delay  Parameter  Lag  Ref  Estimate    s.e.      t
       Period  Order

Noise       1      0      -   Constant   -    1       3.98    4.52   0.88
            1      1      -   Phi (AR)   1    2      0.380   0.105   3.63
                            Theta (MA)   1    3    -0.5581  0.0901  -6.19
                                         2    4    -0.6181  0.0797  -7.75

  12  TDISPLAY [PRINT=correlations]

Time-series analysis
====================

Correlations
------------

   1  1.000
   2  0.007  1.000
   3  0.004  0.662  1.000
   4 -0.008  0.497  0.559  1.000
          1      2      3      4

The CHANNEL option allows you to send the output to another output channel.
You can use the SAVE option to specify the time-series save structure (from TFIT) from which

the output is to be taken. By default TDISPLAY uses the structure from the most recent TFIT
statement.

7.3.6 The TKEEP directive

TKEEP directive
Saves results after an analysis by TFIT.

Option
SAVE = identifier Save structure to supply fitted model; default * i.e. that

from last model fitted

Parameters
OUTPUTSERIES = variate Output series to which model was fitted
RESIDUALS = variate Residual series
ESTIMATES = variate Estimates of parameters
SE = variate Standard errors of estimates
INVERSE = symmetric matrix Inverse matrix
VCOVARIANCE = symmetric matrix Variance-covariance matrix of parameters
DEVIANCE = scalar Residual deviance
DF = scalar Residual degrees of freedom
MVESTIMATES = variate Estimates of missing values in series
SEMV = variate Standard errors of estimates of missing values
COMPONENTS = pointer Variates to save components of output series
SCORES = variate To save scores (derivatives of the log-likelihood with

respect to the parameters)

An TFIT statement produces many quantities that you may want to use to assess, interpret, and
apply the fitted model. The TKEEP directive allows you to copy these quantities into Genstat data
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structures. If the METHOD option of the TFIT statement was set to initialize, then the results
saved by the options SE, INVERSE, VCOVARIANCE and SCORE are unavailable. However, you
can save the estimates of the missing values and their standard errors. The residual degrees of
freedom in this case does not make allowance for the number of parameters in the model, but
does allow for the missing values that have been estimated.

The OUTPUTSERIES parameter specifies the variate that was supplied by the SERIES
parameter of the TFIT statement; this can be omitted.

You can use the RESIDUALS parameter to save the residuals in a variate, exactly as in the
TFIT directive.

The ESTIMATES parameter can supply a variate to store the estimated parameters of the TSM.
Each estimated parameter is represented once, but the innovation variance is omitted entirely.
Genstat includes only the first of any set of parameters constrained to be equal using the FIX
option of TFIT. The order of the parameters otherwise corresponds to their order in the variate
of parameters in TSM, and is unaffected by any numbering used in the FIX option.

The SE parameter allows you to specify a variate to save the standard errors of the estimated
parameters of the TSM. The values correspond exactly to those in the ESTIMATES variate.
Parameters in a time series model may be aliased. This is detected when the equations for the
estimates are being solved, and the message ALIASED is printed instead of the standard error
when the PRINT option of TFIT or TDISPLAY includes the setting estimates. The
corresponding units of the SE variate are set to missing values.

The INVERSE parameter can provide a symmetric matrix to save the product (XNX)!1, where
X is the most recent design matrix derived from the linearized least-squares regressions that were
used to minimize the deviance. The ordering of the rows and columns corresponds exactly to that
used for the ESTIMATES variate. The row of this matrix corresponding to any aliased parameter
is set to zero except that the diagonal element is set to the missing value.

The VCOVARIANCE parameter allows you to supply a symmetric matrix for the estimated
variance-covariance matrix, ó^ a

2(XNX)!1, of the TSM parameters. The ordering of the rows and
columns and the treatment of aliased parameters corresponds exactly to that used for the
ESTIMATES variate.

The DEVIANCE parameter specifies a scalar to hold the final value of the deviance criterion
defined by the LIKELIHOOD option of TFIT.

The DF parameter saves the residual number of degrees of freedom, defined for a simple
ARIMA model by N!d!(number of estimated parameters). If a seasonal model is used, this
number is further reduced by Ds.

The MVESTIMATES parameter specifies a variate to hold estimates of the missing values of the
series, in the order they appear in the series. You can thereby obtain forecasts of the series, by
extending the SERIES in TFIT with a set of missing values. This is less efficient than using the
TFORECAST directive, but it does have the advantage that the standard errors of the estimates
take into account the finite extent of the data, and also the fact that the model parameters are
estimated.

The SEMV parameter can supply a variate to hold the estimated standard errors of the missing
values of the series, in the order they appear in the series.

The COMPONENTS parameter is used when there are explanatory variables, and is described
in Section 7.5.4.

The SCORE parameter can specify a variate to hold the model scores. The scores are usually
defined as the first derivatives of the log likelihood with respect to the model parameters. To get
these, the scores supplied by TKEEP should be scaled by dividing by the estimated residual
variance and reversing its sign. The elements of the SCORE variate correspond exactly to the
parameters as they appear in the ESTIMATES variate. After using TFIT to fit a time series model,
the scores should in theory be zero provided the model parameters do not lie on the boundary
of their allowed range. The scores are used within TFIT to calculate the parameter changes at
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each iteration.
Example 7.3.6 is very similar to Example 7.3.3c which printed the parameter changes when

using TFIT with METHOD=onestep. Here METHOD is set to zerostep. The matrix obtained
from INVERSE and the variate from SCORE are multiplied to give values very close to the
parameter changes. This is not always the case because TFIT shortens the step if the new
parameters would have been outside their allowed range. A test statistic is calculated, as a
quadratic form in the scaled score and the matrix obtained from VCOVARIANCE. Under the null
hypothesis that the two new parameters have been set to their true values, the distribution of this
statistic is chi-square on two degrees of freedom. The value obtained is consistent with this.

Example 7.3.6

   2  " The model previously fitted to the series of daylengths in Example
  -3    7.3 is extended to include two more autoregressive parameters,
  -4    the old parameters being kept at their estimated values. The score
  -5    is saved after using ESTIMATE with the option METHOD=zerostep. The
  -6    Inverse matrix is also saved and used to calculate a variate of
  -7    parameter corrections. The Variance-Covariance matrix is saved and
  -8    used with the scaled score to form a test statistic to assess whether
  -9    the new parameters should be retained in the model."
  10  OPEN     '%GENDIR%/Examples/GuidePart2/Daylength.dat'; CHANNEL=3
  11  READ      [PRINT=errors; CHANNEL=3; SETNVALUES=yes] Daylength
  12  CLOSE     3
  13  TSM       Erp; ORDERS=!(1,1,2)
  14  TFIT      [PRINT=*] Daylength; TSM=Erp
  15  " Save the previous model parameters and redefine the model with
 -16    higher autoregressive orders and extended parameter variate."
  17  CALCULATE Modpar = Erp['Parameters']
  18  &         Modparx = !(Modpar$[1,2,3,4],0,0,Modpar$[5,6])
  19  TSM       Erp; ORDERS=!(3,1,2); PARAMETERS=Modparx
  20  TFIT      [METHOD=zerostep] Daylength; TSM=Erp

Time-series analysis
====================

Output series: Daylength    Noise model: Erp

Residual deviance           = 36959.
Innovation variance         = 255.4

Number of units present     = 150
Residual degrees of freedom = 143

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

Erp       ARIMA        -      3      1      2      1

Parameter estimates
-------------------

Model   Seas.   Diff.  Delay  Parameter  Lag  Ref   Estimate        s.e.      t
        Period  Order

Noise        1      0      -   Constant   -    1        3.98        4.55   0.87
             1      1      -   Phi (AR)   1    2       0.380       0.158   2.41
                                          2    3       0.000       0.180   0.00
                                          3    4       0.000       0.141   0.00
                             Theta (MA)   1    5      -0.557       0.132  -4.21
                                          2    6      -0.619       0.130  -4.77

  21  TKEEP     SCORE=Sc; INVERSE=W; VCOVARIANCE=V
  22  PRINT     Sc
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          Sc
         0.0
        -1.9
      1127.0
      -533.2
        19.3
      -127.1

  23  " Calculate and print the parameter correction variate."
  24  CALCULATE Del = PRODUCT(W; Sc)
  25  PRINT     Del

                      Del
                        1
            1     0.07477
            2    -0.06208
            3     0.16752
            4    -0.10249
            5    -0.05255
            6     0.07579

  26  " Form the scaled score and test statistic."
  27  CALCULATE Scsc = Sc/Modpar$[3]
  28  SCALAR    Tstat
  29  CALCULATE Tstat = QPRODUCT(T(Scsc); V)
  30  PRINT     Tstat

       Tstat
      0.9377

As in TDISPLAY, You can use the SAVE option to specify the time-series save structure from
which the output is to be taken. By default TKEEP uses the structure from the most recent TFIT
statement.

7.3.7 The TFORECAST directive

TFORECAST directive
Forecasts future values of a time series.

Options
PRINT = string tokens What to print (forecasts, limits, setransform,

sfe); default fore,limi
CHANNEL = scalar Channel number for output; default * i.e. current output

channel
ORIGIN = scalar Number of known values to be incorporated; default 0
UPDATE = string token Whether to update the forecast origin to the end of the

new observations (yes, no); default no
NEWOBSERVATIONS = variate Variate of length $ ORIGIN providing new values of the

time series to be incorporated (must be set if ORIGIN >
0)

SFE = variate Saves standardized forecast errors; default *
MAXLEAD = scalar Maximum lead time i.e number of forecasts to be made;

default * defines the number as the length of FORECAST
variate

FORECAST = variate Variate of length MAXLEAD to save forecasts of output
series; default *

SETRANSFORM = variate Saves standard errors of the forecasts (on transformed
scale, if defined); default *

LOWER = variate Saves lower confidence limits; default *
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UPPER = variate Saves upper confidence limits; default *
PROBABILITY = scalar Probability level for confidence limits; default 0.9
COMPONENTS = pointer Contains variates (of length ORIGIN + MAXLEAD) to

save components of the forecast
SAVE = identifier Save structure to supply fitted model; default * i.e. that

from last model fitted

Parameters
FUTURE = variates Variates (of length ORIGIN + MAXLEAD) containing

future values of input series
METHOD = string tokens How to treat future values of input series

(observations, forecasts); default obse

In many applications of forecasting with univariate ARIMA models, you will need only a simple
form of the directive. For example

TFORECAST [MAXLEAD=10]

will cause Genstat to print forecasts for 10 lead times, that is, the next 10 time points after the
end of your data. However, you must already have used TFIT to specify the time series to be
forecast, and the model to be used for forecasting. This information is supplied by the SAVE
option; if SAVE is not specified, TFORECAST uses the information from the most recent TFIT
statement. Once you have used TFIT, you can give successive TFORECAST statements to
incorporate new observations of the time series, and to produce forecasts from the end of the new
data.

If the time series is supplied with a known model (that is, one with all its orders and
parameters specified) you can use TFIT with option setting METHOD=initialize before you
use TFORECAST. This will carry out just sufficient calculations, in particular the regeneration
of the model residuals, for TFORECAST to be used. The model parameters will not be changed
! not even the innovation variance. This setting of METHOD restricts the structures, such as
parameter standard errors, that can be accessed using TDISPLAY and TKEEP after TFIT. The
SAVE structure created by using TFIT with METHOD=initialize thus requires less space than
that produced by the other settings.

The formal parameters of TFORECAST are relevant only when the time-series model
incorporates explanatory variables, and are described in Section 7.4.3.

The best way to understand the options of TFORECAST is by example. Example 7.3.7a
illustrates how to use TFIT to initialize for TFORECAST, with a series of 132 points and using
a previously estimated model.

Example 7.3.7a

   2  " Forecast number of airline passengers in 1960, using
  -3    a seasonal ARIMA model whose parameters have already
  -4    been estimated, and based on numbers observed 1949-59.
  -5    Data from Box and Jenkins (1970) page 304."
   6  OPEN      '%GENDIR%/Examples/GuidePart2/Airline.dat'; CHANNEL=3
   7  UNITS     [NVALUES=132]
   8  READ      [CHANNEL=3] Apt

    Identifier   Minimum      Mean   Maximum    Values   Missing
           Apt     104.0     262.5     559.0       132         0

   9  CLOSE     3
  10  VARIATE   [VALUES=0,1,1, 0,1,1,12] Ord
  11  &         [VALUES=0,0,0.00143, 0.34, 0.54] Par
  12  TSM       Airpass; ORDERS=Ord; PARAMETERS=Par
  13  TFIT      [PRINT=model; METHOD=initialize] Apt; TSM=Airpass
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Time-series analysis
====================

Output series: Apt          Noise model: Airpass

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

Airpass   ARIMA        -      0      1      1      1
                       -      0      1      1     12

  14  TFORECAST [MAXLEAD=12; FORECAST=Fcst12]

Forecasts
=========

Maximum lead time: 12

Forecasts for future values
---------------------------

    Lead time     forecast  lower limit  upper limit
            1        419.6        394.3        446.5
            2        398.9        370.2        429.7
            3        466.7        428.6        508.1
            4        454.4        413.5        499.5
            5        473.9        427.5        525.3
            6        547.6        490.1        611.8
            7        623.3        553.8        701.5
            8        631.7        557.4        716.0
            9        527.2        462.1        601.4
           10        462.8        403.1        531.2
           11        407.1        352.6        470.2
           12        452.7        389.7        525.8

The FORECAST option specifies that the forecast values are to be stored in the variate Fcst12:
you could then, for example, display them graphically.

Now suppose that a further set of observations of the time series has become available, for
example a variate New6 containing the next six values of the series. In order to revise the
forecasts, you can incorporate this new information as follows.

Example 7.3.7b

  15  " Read observed numbers for January to June 1960, and give revised
 -16    forecasts for these months with standardized forecast errors."
  17  READ      [PRINT=data; SETNVALUES=yes] New6

  18  417.0   391.0   419.0   461.0   472.0   535.0:
  19  TFORECAST [PRINT=sfe; ORIGIN=6; MAXLEAD=0; NEWOBSERVATIONS=New6]

Forecasts
=========

Forecast origin:   6
Maximum lead time: 0
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Incorporated observations
-------------------------

    Lead time    New value       s.f.e.
           -5         417.        -0.16
           -4         391.        -0.42
           -3         419.        -2.46
           -2         461.         2.39
           -1         472.         0.33
            0         535.        -0.40

The setting PRINT=sfe now causes Genstat to print the standardized errors of the forecast.
These are the innovation values that are generated as each successive new observation is
incorporated, divided by the square root of the TSM innovation variance. They provide a useful
check on the continuing adequacy of the model. For example, excessively large values
(compared to the standard Normal distribution) may indicate that you should revise the model.
The ORIGIN option specifies the number of new values to be incorporated, and the UPDATE
option specifies whether these new observations are to be incorporated internally onto the end
of the time series and the internal pointer moved to the end of the new observations. If
UPDATE=yes is used, then ORIGIN=0 in future calls to TFORECAST will point to the end of the
n new observations. If the default, UPDATE=no is used, the internal pointer remains at the end
of the original series. The number of future values to be forecast is set by option MAXLEAD.
These new values can be saved in a variate of length MAXLEAD using the FORECAST option.

Revised forecasts of the next six values of the series can then be produced by a further
statement, as shown in Example 7.3.7c.

Example 7.3.7c

  20  " Forecast for July to December 1960."
  21  TFORECAST [MAXLEAD=6; UPDATE=yes; FORECAST=Fcst6]

Forecasts
=========

Maximum lead time: 6

Forecasts for future values
---------------------------

    Lead time     forecast  lower limit  upper limit
            1        612.1        575.2        651.4
            2        620.4        575.8        668.4
            3        517.7        475.5        563.7
            4        454.5        413.5        499.5
            5        399.8        360.7        443.2
            6        444.6        397.9        496.7

The PROBABILITY option determines the width of the error limits on the forecast. It defines the
probability that the actual value will be contained within the limits at any particular lead time.
Note that the limits do not apply simultaneously over all lead times.

The SETRANSFORM option specifies a variate to store the standard errors that Genstat used in
calculating the error limits of the forecasts, starting at lead time 1. These are the standard errors
of the transformed series, according to the value of the Box-Cox transformation parameter; they
are functions of the model only, not of the data.

The LOWER option specifies a variate to store the lower limits of the forecasts. This must be
the same length as the FORECAST variate. The TFORECAST directive puts the values of the lower
limit into the variate, matching the forecasts in the FORECAST variate. The UPPER option
similarly allows the upper limits to be saved. Note that the limits are constructed as symmetric



972 7  Analysis of time series

percentiles, assuming Normality of the transformed time series. Similarly, the forecast is a
median value ! not necessarily the mode or the mean, unless the transformation parameter is 1.0.

The SFE option specifies a variate to save the standardized errors of the forecasts: see above.
The variate must be the same length as the FORECAST variate. The TFORECAST directive places
values of the errors in the variate, matching the new observations in the FORECAST variate.

The COMPONENTS option is relevant only when the time-series model incorporates explanatory
variables, and is described in Section 7.5.5.

7.3.8 The BJFORECAST procedure

BJFORECAST provides a convenient single command for calculating and plotting forecasts.
Internally it uses the TFORECAST directive, described in Section 7.3.7.

BJFORECAST procedure
Plots forecasts of a time series using a previously fitted ARIMA (G. Tunnicliffe Wilson & S.J.
Welham).

Options
PROBABILITY = scalar Probability value used for forecast limits; default 0.9
GRAPHICS = string token What type of graphics to use (lineprinter,

highresolution); default high
WINDOW = scalar Window to be used for plotting; default 1
PENS = variate The three pens to be used (after being defined

appropriately) for drawing the plots; default !(1,2,3)

Parameters
SERIES = variates Variates holding the time series to be used for producing

forecasts
LENGTH = scalars or variates Specifies the units to be used from each series: a scalar

N specifies that the first N units of the series are to be
used, a variate of length 2 gives the time index of the
first and last units of the subseries to be used; by default
the whole series is used

TSM = TSMs ARIMA model to be used for forecasting
TIMERANGE = variates The first and second elements of each variate specify

respectively the first and last time index, relative to the
whole series, of the range to be forecast

ORIGIN = scalars The time of the latest observation to be used to construct
forecasts with increasing leadtimes for each series; if
ORIGIN is unset, the default is to take the latest time
point in the series prior to the range given by
TIMERANGE, unless parameter LEADTIME is set, in
which case fixed leadtime forecasts are constructed

LEADTIME = scalars The fixed leadtime to be used to construct forecasts if
ORIGIN is unset

FORECAST = variates Save the values of the constructed forecasts
LOWER = variates Save the lower limits of the forecasts
UPPER = variates Save the upper limits of the forecasts
SFE = variates Save the standardized forecast errors, available only for

LEADTIME=1
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Figure 7.3.8

For a time series variate, given by the SERIES parameter, BJFORECAST plots forecasts
calculated from a previously fitted ARIMA model, specified by the TSM parameter. The set of
time points for which forecasts are produced is defined by setting the TIMERANGE parameter to
a variate of length 2 holding the first and last time index. If only part of the series is to be used
to initialize for forecasting, this is specified by setting parameter LENGTH, either to a scalar N to
indicate that the first N values are to be used, or to a variate of length 2 holding the positions of
the first and last units to be included. The procedure also prints a description of the series, and
details of the model involved in the initialization for forecasting.

There are two options to control the type of forecasting. Setting the ORIGIN parameter to a
scalar indicates that forecasts are calculated from this time point (at increasing leadtimes) for the
range of future times specified by the TIMERANGE parameter. Alternatively, if ORIGIN is unset,
it is possible to produce forecasts with a fixed leadtime, by setting the parameter LEADTIME to
the required value. If neither ORIGIN nor LEADTIME are set, a default origin is taken, namely
the last element before the time range to be forecast. Where possible, the values of the supplied
series are also plotted for comparison. If one-step-ahead forecasts are requested (fixed leadtime
set to 1), the standardized forecast errors are plotted as a tracking signal for use in checking the
continuing adequacy of the model.

The FORECAST parameter can be used to save the calculated forecasts in a variate and
parameters LOWER and UPPER can save the lower and upper confidence limits for these forecasts.
If the forecasts are from a fixed leadtime of 1, the standardized forecast errors can be saved in
a variate given by parameter SFE; because of the way in which the standard errors are calculated,
the last value of this variate is always missing. The PROBABILITY option indicates the
probability value to be used for the confidence limits, with 0.9 as the default value.

Option GRAPHICS controls whether plots are produced for line printer or for the current high-
resolution graphics device; by default high-resolution plots are produced. The window to be used
for high-resolution plots is specified by the WINDOW option; by default WINDOW=1. The FRAME
directive can be used to set the attributes of this window before calling the procedure, and these
will be unchanged on leaving the procedure. The PENS option controls which pens are to be used
for the plots; the attributes of these pens are modified within the procedure. By default pens 1-3
are used, but these can be changed by setting option PENS to a variate of length 3 containing the
numbers of the three different pens required.

Example 7.3.8 and Figure 7.3.8
show the use of the procedure
BJFORECAST to construct and plot
these same forecasts as in Example
7.3.7a, together with their error
limits.
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Example 7.3.8

   2  " Use procedure BJFORECAST to calculate and display forecasts
  -3    of the last 12 values based upon the previous 132."
   4  OPEN    '%GENDIR%/Examples/GuidePart2/Airline.dat'; CHANNEL=3
   5  READ    [CHANNEL=3] Apt

    Identifier   Minimum      Mean   Maximum    Values   Missing
           Apt     104.0     262.5     559.0       132         0

   6  CLOSE   3
   7  VARIATE [VALUES=0,1,1, 0,1,1,12] Ord
   8  VARIATE [VALUES=0,0.0,0.00143,0.34,0.54] Par
   9  TSM     Airpass; ORDERS=Ord; PARAMETERS=Par
  10  FRAME   1; YLOWER=0.1; YUPPER=0.9; XLOWER=0; XUPPER=1
  11  BJFORECAST Apt; TSM=Airpass; ORIGIN=132; TIMERANGE=!(133,144)

Forecasts from fixed origin 132 over time range 133 to 144 with probability
limits of size 0.900 using whole of series.

7.4 Regression with autocorrelated (ARIMA) errors

At the beginning of Chapter 3, we noted that regression analysis is not valid if the residuals
cannot be assumed to be independent. When modelling observations of a variable that are taken
at successive points in time, it is likely that there will be some dependence. A simple check for
this is to fit a regression model as in Chapter 3, and then calculate the sample autocorrelation
function (7.1.2) of the residuals from the regression. If you think that there might be appreciable
autocorrelation, you should try fitting the regression model using an ARIMA model for the
errors, as described in this section.

We shall use as an example a time series yt of daily gas demand (corrected for the effects of
days of the week), and a corresponding indicator xt of the coldness of the days, compiled from
temperature, windspeed, and so on. Example 7.4a fits a regression between the variates Demand
and Coldness which hold 104 consecutive values of the two series. A first-order autoregressive
model, AR(1), is specified for the errors: that is, the model is

yt  =  c  +  b xt  +  et

et  =  ö1 et!1  +  at

where at is the series of independent innovations of the errors et. We have set
PRINT=monitoring in the TFIT statement to show the course of the convergence.

Example 7.4a

   2  " Regress daily gas demand on coldness, using an AR(1) model for errors."
   3  OPEN  '%GENDIR%/Examples/GuidePart2/Demand.dat',\
   4        '%GENDIR%/Examples/GuidePart2/Cold.dat'; CHANNEL=2,3
   5  READ  [CHANNEL=2; SETNVALUES=yes] Demand

    Identifier   Minimum      Mean   Maximum    Values   Missing
        Demand     239.3     348.7     471.8       104         0

   6  &     [CHANNEL=3] Coldness

    Identifier   Minimum      Mean   Maximum    Values   Missing
      Coldness    -117.3    -49.87     42.60       104         0

   7  TSM   Erm; ORDERS=!(1,0,0)
   8  TRANSFERFUNCTION Coldness
   9  " Monitor convergence."
  10  TFIT [PRINT=monitoring,estimates] Demand; TSM=Erm; BOXCOX=estimate
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Convergence monitoring
----------------------

Cycle          Deviance      Current parameters
    1         12803380.           0.      1.00000           0.           0.
    2          8684909.       1.7447       1.2880       499.04     -0.45365
    3          209142.8       3.0618       1.2890       748.64      0.75300
    4          38869.89       5.3578       1.3048       1517.3      0.83100
    5          28399.29       5.3906       1.3060       1925.6      0.79741
    6          27741.34       5.6954       1.3124       1921.7      0.73305
    7          27618.36       5.6691       1.3059       1883.2      0.72642
    8          27601.48       5.6040       1.3032       1858.0      0.71415
    9          27571.63       5.2138       1.2901       1734.7      0.71193
   10          27538.84       4.7622       1.2747       1599.7      0.71021
   11          27506.65       4.4128       1.2613       1493.8      0.70996
   12          27475.55       4.0239       1.2457       1376.4      0.70890
   13          27445.39       3.7473       1.2332       1291.5      0.70889
   14          27416.51       3.4103       1.2173       1188.4      0.70777
   15          27388.23       3.1955       1.2057       1121.4      0.70800

******** Warning 46, code TS 21, statement 1 on line 10

Command: TFIT [PRINT=monitoring,estimates] Demand; TSM=Erm; BOXCOX=estimate
The iterative estimation process has not converged.
The maximum number of cycles is 15

Time-series analysis
====================

Parameter estimates
-------------------

Model   Seas.   Diff.  Delay  Parameter  Lag  Ref   Estimate        s.e.      t
        Period  Order

Input 1      1      0      0      Omega   0    1       2.898       0.896   3.24
Noise        1      0      -    Box-Cox   -    2      1.1894      0.0514  23.14
                               Constant   -    3       1029.        270.   3.80
                               Phi (AR)   1    4      0.7067      0.0714   9.89

The TSM statement specifies the AR(1) model for the errors. The TRANSFERFUNCTION statement
here merely specifies the explanatory variate. You could use this directive to specify a response
model that includes lagged effects of the explanatory variate (7.5.2), but in Example 7.4a, the
response model is a simple linear regression: this is the default.

The warning shows that the convergence criterion has not been reached within 15 iterations.
To satisfy the criterion, we could either increase the limit on the number of iterations by setting
the option MAXCYCLE=25, say, or initialize the parameters to rough estimates of the parameters
in the model, perhaps using the FTSM directive (7.7.1 and 7.7.2). The statements that follow
TFIT in this program use the best parameter values found by TFIT, without further comment.

The TFIT statement simultaneously estimates the regression coefficients c and b and the AR
parameter ö1. Also in this case, a Box-Cox transformation is estimated for the response variate,
Demand. Note in the printed results that the estimate of b appears under "Transfer-function
model 1", as a moving-average parameter at lag 0. By default, Genstat fixes the transformation
and constant parameters associated with the explanatory variables to be 1.0 and 0.0.
Alternatively, you could estimate these parameters, as described in Section 7.5.

The constant term c in the regression is included in the results for the autoregressive moving-
average model, as is the transformation parameter of the Demand variable, and the estimate of
ö1.

You can obtain forecasts of the demand series, by specifying future values of the explanatory
variable. In Example 7.4b, the variate Newcold contains the next seven values of coldness.
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Example 7.4b

  11  " Forecast gas demand for the next week, given values for coldness."
  12  READ      [CHANNEL=3; SETNVALUES=yes] Newcold

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Newcold    -138.3    -102.3    -75.60         7         0

  13  CLOSE     2,3
  14  TFORECAST [MAXLEAD=7] Newcold

Forecasts
=========

Maximum lead time: 7

Forecasts for future values
---------------------------

    Lead time     forecast  lower limit  upper limit
            1        318.6        290.9        346.0
            2        294.3        259.6        328.1
            3        313.9        277.0        350.0
            4        324.5        286.5        361.7
            5        278.4        238.5        317.2
            6        261.7        221.0        301.2
            7        299.2        259.5        338.0

Genstat constructs the forecasts by calculating the predicted linear response at the Newcold
values, and adding it to the forecast values of the autocorrelated errors. The forecast limits take
this into account.

In practice you would be unlikely to know the future values of explanatory variables.
Exceptions are where the variable has a fixed deterministic form such as in a trend, or a cycle,
or an intervention variable; or when the variable is under the control of the experimenter, as
when sales are related to prices; or when the analysis is retrospective, as in this example. You
can predict the explanatory variables in various ways. For example, ordinary weather forecasts
are used in practice to forecast gas demand. You cannot usually include the uncertainties in
predicting the explanatory variables in the error limits of the forecast. These uncertainties would
usually be assessed by trying out different future values of the explanatory variables. Thus the
TFORECAST statement in the example could be repeated with a variety of future values. But there
is one case where you can allow for the uncertainty of predicting the explanatory variables. This
is when the future values of the explanatory variables are predictions obtained using univariate
ARIMA models. Then you can allow for the errors by setting the ARIMA parameter of the
TRANSFERFUNCTION directive, and the METHOD parameter of the TFORECAST directive.

7.4.1 The TRANSFERFUNCTION directive

TRANSFERFUNCTION directive
Specifies input series and transfer-function models for subsequent estimation of a model for
an output series.

Option
SAVE = identifier To name time-series save structure; default *

Parameters
SERIES = variates Input time series
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TRANSFERFUNCTION = TSMs Transfer-function models; if omitted, model with 1
moving-average parameter, lag 0

BOXCOXMETHOD = string tokens How to treat transformation parameters (fix,
estimate); default fix

PRIORMETHOD = string tokens How to treat prior values (fix, estimate); default
fix

ARIMA = TSMs ARIMA models for input series

For regression with autocorrelated errors, you should use TRANSFERFUNCTION to specify the
variates that are to be the explanatory variables in a subsequent TFIT statement. Thus in many
applications you will need only a simple form of the directive, such as

TRANSFERFUNCTION Coldness

The first parameter, SERIES, specifies a list of variates holding the time series of explanatory

variables.
The BOXCOXMETHOD parameter allows you to estimate separate power transformations for the

explanatory variables: the variable xt is transformed to
xt

(ë) = (xt
ë ! 1) / ë , ë =/  0

xt
(0) = log(xt)

The default is no transformation, corresponding to xt
(ë) = xt. You can choose whether the

transformations are to be fixed or estimated, by specifying one string for each explanatory
variable.

The ARIMA parameter allows you to associate with each explanatory variable a univariate
ARIMA model for the time-series structure of that variable. If you think such a model is
inappropriate, then you should give a missing value in place of the TSM identifier, or leave this
parameter unset. You can use these models in any subsequent TFORECAST statement to
incorporate, into the error limits of the forecasts, an allowance for uncertainties in the predicted
explanatory variables; the allowance assumes that the future values of the explanatory variables
are forecasts obtained using these ARIMA models (7.4.3).

The TRANSFERFUNCTION and PRIORMETHOD parameters are not relevant in this context, and
are described in Section 7.5.2.

The SAVE option allows you to name the time-series save structure created by
TRANSFERFUNCTION. You can use this identifier in a later TFIT statement, and eventually in
a TFORECAST statement. If you do not name the save structure Genstat will use the most recent
save structure, which will be overwritten each time a new TRANSFERFUNCTION statement is
given.

7.4.2 Extensions to the TFIT directive for regression with ARIMA errors

The SERIES parameter of TFIT now specifies the response variate, and the TSM parameter
specifies the ARIMA model for the errors. Note however, that the transformation parameter of
this ARIMA model is used to define a transformation for the response variable, not the errors,
and the BOXCOXMETHOD parameter controls its estimation.

The constant term in the ARIMA model corresponds to the usual regression constant term only
if there is no differencing specified by the ARIMA model; otherwise it is equivalent to a constant
term in a regression between the differenced series.

The PRINT option is the same as described in Section 7.3.3. But note that the regression
estimates for the explanatory variables are printed in a sequence of simple transfer-function
models, followed by the ARIMA error model, as shown in Example 7.4a.

The LIKELIHOOD option settings exact and leastsquares are essentially the same as for
univariate ARIMA modelling in Section 7.3. The likelihood for the model is defined as that of
the univariate error series et which is defined in general by

et = yt ! b1x1,t ! ... ! bmxm,t
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(the xi being m explanatory variables). The constant term therefore appears in the model after any
differencing of et; for example

Let = c + (1 ! è1B )at

You can get bias in the estimates of the parameters of an ARIMA model because the regression
is estimated at the same time. You can guard against this by specifying
LIKELIHOOD=marginal. This can be particularly important if the series are short or if you use
many explanatory variables (Tunnicliffe Wilson 1989). The deviance is now defined as

D = S (*XNV!1X* *V*)1/m

where m is reduced by the number of regressors (including the constant term) and the columns
of X are the differenced explanatory series: the other terms are as in the exact likelihood
described in Section 7.3.4.

You can use this setting also for univariate ARIMA modelling, when the constant term is the
only explanatory term. Furthermore, Genstat deals with missing values in the response variate
by doing a regression on indicator variates; these too are included in the X matrix. However, you
cannot use marginal likelihood and estimate a transformation parameter in either the transfer-
function model or an ARIMA model. Neither can you use it if you set the FIX option in TFIT.
In these cases Genstat automatically resets the LIKELIHOOD option to exact.

At every iteration with the setting LIKELIHOOD=marginal, the regression coefficients are
the maximum-likelihood estimates conditional upon the estimated values of the parameters of
the ARIMA model: these are also the generalized least-squares estimates, conditioned in the
same way. This is so even if MAXCYCLE=0; that is, the coefficients of the regression are re-
estimated even at iteration 0. Therefore you must not use the marginal setting with the option
METHOD=initialize to initialize for TFORECAST. You can compare deviance values that were
obtained using marginal likelihood only for models with the same explanatory variables and the
same differencing structure in the error model.

You can use the setting CONSTANT=fix with marginal likelihood. You can use the FIX option
to impose constraints across any or all of the parameters of the regression and the ARIMA
model. In order to do this, you may find it easiest to use TFIT without the FIX option first, so
that you can ascertain the ordering of the parameters; then give a second statement with the
option set. The variate specified in the FIX option must have one element for each parameter that
is printed with a reference number. These are, in order, three parameters for each explanatory
variate, followed by the ARIMA model parameters. Genstat uses the variate to provide a
parameter numbering as described for the FIX option in Section 7.4.2. Note that this numbering
overrides the BOXCOXMETHOD parameter and the CONSTANT option. Thus you can constrain the
transformation parameters to be equal for all or some of the variables. You can also estimate a
constant term for an input series. For details of this see 7.5.3.

The results of TFIT, accessible by TDISPLAY and TKEEP, are essentially the same as in
univariate models. The variate of parameter estimates and associated structures now refers to the
whole set of parameters in the order in which they are printed. The variate of missing-value
estimates holds first the values from the response variate, and then those from the explanatory
variate, in the order in which they were listed in the SERIES parameter of TRANSFERFUNCTION.

7.4.3 Extensions to the TFORECAST directive for regression with ARIMA errors

A TFORECAST statement for regression with ARIMA errors must be preceded by a
TRANSFERFUNCTION statement and an TFIT statement: these initialize the save structure of the
time series that is to be used by TFORECAST. You use option METHOD=initialize of TFIT to
do this as described in Section 7.3.7.

You use the FUTURE parameter to specify a list of variates, corresponding to the list of variates
specified by the SERIES parameter of TRANSFERFUNCTION. These variates must all have the
same length. They hold future values of the explanatory variables to be used either for
constructing forecasts of the response variable, or for incorporating new observations in order
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to revise the forecasts. The use of these future values is similar to the use of the FORECAST
variate as described in Section 7.3.7. For example, let Fcdem be a variate of length seven in
Examples 7.4a or 7.4b. The statement

TFORECAST [MAXLEAD=7; FORECAST=Fcdem] FUTURE=Newcold

would cause forecasts of the next week's demand figures to be placed in Fcdem. Suppose that
in a week's time, the actual demand had been recorded and was held in the variate Newdem. Then
in order to revise the forecasts, you must first incorporate this new information by

TFORECAST [ORIGIN=7; MAXLEAD=0; FORECAST=Newdem] \
  FUTURE=Newcold

Note that if Newcold had previously contained forecasts from an ARIMA model, say, you would
have to alter it to contain the recorded values before this statement. You can get revised forecasts
of the next week's demand by once more amending Newcold, to hold the values for the coming
week, and then using

TFORECAST [UPDATE=yes; MAXLEAD=7; FORECAST=Fcdem] \
  FUTURE=Newcold

An alternative to the previous two statements would be to use variates of length 14, with

Newcold holding the seven values just recorded followed by the seven values for the coming
week. Similarly Newdem should hold the last seven days' demand, followed by seven missing
values. The statement

TFORECAST [ORIGIN=7; MAXLEAD=7; FORECAST=Newdem] \
  FUTURE=Newcold

would then incorporate the first seven values (up to the ORIGIN setting) of each variate, and use
the last seven values (specified by MAXLEAD) of Newcold to place revised forecasts into the last
seven values of Newdem.

You can use the METHOD parameter when some or all of the future values of the explanatory
variables are forecasts obtained using univariate ARIMA models. You can amend the error limits
of the forecasts for the response variable to allow for the uncertainty in these future values, but
you need to assume that there is no cross-correlation between the errors in these predictions. The
list of strings specified by the METHOD parameter indicates for each explanatory variable whether
such an allowance should be made. The future values of a series are by default treated as known
values if no corresponding ARIMA model is present, or if the transformation parameter of the
ARIMA model is not equal to the value used in the regression model for that series. You can
change the settings of the METHOD parameter in successive TFORECAST statements.

7.5 Multi-input transfer-function models

A transfer-function model allows for lagged effects of an explanatory variable on the response
variable, as well as for autocorrelated errors. Using the notation of Box & Jenkins (1970),
including a transfer-function model with an ARIMA model for a response variable gives the
equation

yt = í(B)xt + ø(B)at

where we shall now call yt the output series and xt the input series. You can have several input
series, so we shall call the full model for yt a multi-input model, corresponding to the term
"multiple regression" used in Chapter 8. Writing yt=zt+nt where zt = í(B)xt and nt = ø(B)at, we
shall call zt the component due to input xt, and nt the noise component. An ARIMA TSM is used
to represent the structure of nt, and a transfer-function TSM to represent the structure of zt as a
function of xt. For example, consider the lagged response, with *ä*<1:

yt = ù(xt!1 + äxt!2 + ä2xt!3 + ... ) + nt.
Then í(B) = ù B / (1 ! ä B).

Example 7.5 fits this model to a series of length 40, and produces forecasts of the next eight
points; see Figure 7.5.
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Example 7.5

   2  " One-input transfer-function model relating level of gilts to profits."
   3  VARIATE [VALUES=1...40] Time
   4  UNITS   Time
   5  " Read data on gilts and profits from separate files."
   6  OPEN    '%GENDIR%/Examples/GuidePart2/Gilts.dat',\
   7          '%GENDIR%/Examples/GuidePart2/Profits.dat'; CHANNEL=2,3
   8  READ    [CHANNEL=2] Gilts

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Gilts    -26.25     1.037     27.97        40         0

   9  &       [CHANNEL=3] Profits

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Profits    -1.807   0.02747     1.487        40         0

  10  " Set up transfer-function model with delay time 1 and one AR-type
 -11    parameter."
  12  TSM     [MODELTYPE=transfer]  Tf; ORDERS=!(1,1,0,0); PARAMETERS=!(1,0,0,0.1)
  13  TRANSFERFUNCTION Profits; TRANSFER=Tf
  14  " Set up ARIMA model for the noise, with one AR parameter."
  15  TSM     Ar; ORDERS=!(1,0,0); PARAMETERS=!(1,0,0,0)
  16  TFIT    Gilts; TSM=Ar

Time-series analysis
====================

Input series 1: Profits     Transfer fn: Tf
Output series: Gilts        Noise model: Ar

Residual deviance           = 900.6
Innovation variance         = 24.52

Number of units present     = 40
Residual degrees of freedom = 36

Summary of models
-----------------

          Orders:  Delay     AR   Diff     MA   Seas
Model     Type         B      P      D      Q      S

Tf        TF           1      1      0      0      1
Ar        ARIMA        -      1      0      0      1

Parameter estimates
-------------------

Model   Seas.   Diff.  Delay  Parameter  Lag  Ref   Estimate        s.e.      t
        Period  Order

Input 1      1      0      1      Delta   1    1      0.6273      0.0805   7.79
                                  Omega   0    2        8.74        1.16   7.51
Noise        1      0      -   Constant   -    3       -1.06        2.87  -0.37
                               Phi (AR)   1    4       0.740       0.118   6.26

  17  " Save the components of the series in variates."
  18  TKEEP   COMPONENTS=!P(Fprofits,Noise)
  19  PEN    1,2; COLOUR='black'; METHOD=line,point; SYMBOLS=0,1; LINE=1
  20  DGRAPH  [TITLE='Fitted series with original data'; WINDOW=3; KEY=0]\
  21          Fprofits,Gilts; Time; PEN=1,2
  22  " Read future values of profits, and forecast corresponding gilts."
  23  READ    [CHANNEL=3; SETNVALUES=yes] Nprofits

    Identifier   Minimum      Mean   Maximum    Values   Missing
      Nprofits    -1.165   -0.1374    0.4904         8         0
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Figure 7.5

  24  TFORECAST [MAXLEAD=8] Nprofits

Forecasts
=========

Maximum lead time: 8

Forecasts for future values
---------------------------

    Lead time     forecast  lower limit  upper limit
            1        -6.50       -14.64         1.65
            2       -10.37       -20.51        -0.24
            3       -17.20       -28.27        -6.12
            4       -16.11       -27.67        -4.55
            5       -12.25       -24.06        -0.44
            6        -4.39       -16.34         7.56
            7         1.10       -10.93        13.13
            8         4.14        -7.93        16.21

  25  CLOSE   2,3

In this example, the first TSM statement
defines the orders of the transfer-function
model, the initial values of parameters ä
and ù being given as 0.0 and 0.1
respectively. The second TSM statement
defines the autoregressive error structure.
The TRANSFERFUNCTION statement then
specifies the input series to be Profits,
and gives the associated transfer-function
model. The TFIT statement specifies the
output series and the noise model.

After the model has been estimated, the
TKEEP statement accesses the two
components of Gilts. The first of these,
Fprofits, is plotted together with Gilts,
to reveal how well the output series has
been modelled by the input series.

Finally, new values of the input series
are used to construct forecasts of the output
series, using the TFORECAST directive.

7.5.1 Declaring transfer-function models with the TSM directive

The basic structure of the TSM directive, and of the models that it defines, is given in Section
7.3.2. Here we describe the ORDERS, PARAMETERS and LAGS variates for the option setting
MODELTYPE=transferfunction.

The simple non-seasonal transfer-function model relates a component zt of the output series
to the corresponding input series xt, by the equation

ä(B) Ld zt  =  ù(B) Bb {xt
(ë) ! c}

where
ä(B)  =  1  !  ä1 B  ! ... !  äp B

P

ù(B)  =  ù0  !  ù1 B  ! ... !  ùq B
q .

The integer b>0 defines a pure delay, and the integer d>0 defines the order of differencing in the
transfer function.
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The parameter ë specifies a Box-Cox power transformation for the input series, and the
parameter c specifies a reference level for the transformed input. There is no mean correction
of the input series when transfer-function models are estimated, and you should use a value of
c close to the series mean so as to improve the numerical conditioning of the estimation
procedure. However, if the input series xt is trend-like rather than stationary, you could
alternatively use a value for c close to the early series values, because this reduces the transient
errors that arise when the transfer function is applied. The PRIORMETHOD parameter of
TRANSFERFUNCTION, described below, provides further means of handling these transients.

The parameters ë and c are not estimated unless you specify otherwise by the BOXCOXMETHOD
parameter of TRANSFERFUNCTION or the FIX option of TFIT. Often c in the transfer-function
model is aliased with the constant term in the ARIMA errors, and so they should not both be
estimated. In some circumstances, however, they both could be estimated, for example in a
differenced transfer-function model with stationary noise.

The ORDERS parameter for the simple transfer-function model described above specifies a
variate containing the four values b, p, d and q.

The PARAMETERS parameter specifies a variate containing 3+p+q values: ë, c, ä1, ... äp, ù0, ù1

... ùq. You must always include the parameters ë, c and ù0. When you use a transfer-function
model, Genstat will check its parameter values. In particular the operator ä(B) must satisfy the
stability or stationarity condition.

The LAGS parameter is optional, and may be used to change the lags associated with the
parameters, from the default values of 1 ... p, 1 ... q. The variate of lags contains values
corresponding to the parameters ä1 ... äp, ù1 ... ùq. They have the same interpretation as the lags
in ARIMA models, and must satisfy the same conditions as specified in Section 7.3.1. Note that
there is no lag associated with ù0, because the delay b provides the necessary flexibility for this.

You can also have seasonal extensions of transfer-function models:
ä(B)Ä(Bs)LdLs

Dzt  =  ù(B)Ù(Bs)Bb{xt
(ë) ! c}

Ä(Bs)  =  1  !  Ä1 B
s  ! ... ! ÄP BPs

Ù(Bs)  =  1  !  Ù1 B
s  ! ... ! ÙQ BQs

Note that there is no Ù0 coefficient, because ù0 is always present in the model and provides
sufficient flexibility.

The ORDERS parameter here contains b, p, d, q, P, D, Q and s, and the PARAMETERS parameter
contains ë, c, ä1 ... äp, ù0 ... ùq, Ä1 ... ÄP, Ù1 ... ÙQ. You can analogously extend the LAGS
parameter. You can have extensions to multiple seasonal periods, as for ARIMA models.

7.5.2 Extensions to the TRANSFERFUNCTION directive for multi-input models

This directive specifies several input series and the associated transfer-function model to be used
in a subsequent TFIT statement to fits a multi-input model to an output series.

The SERIES and BOXCOXMETHOD parameters are as described in Section 7.4.1.
The TRANSFERFUNCTION parameter specifies the transfer-function TSMs that are to be

associated with the input series. A missing value in place of a TSM identifier causes Genstat to
treat the corresponding input series as a simple explanatory variable, equivalent to a transfer-
function model with orders (0,0,0,0).

The PRIORMETHOD parameter specifies, for each input series, how Genstat is to treat the
transients associated with the early values of the transfer-function response. In calculating the
input component zt from the input xt, Genstat has to make assumptions about the unknown values
of xt which came before the observation period. The default is that xt (or generally xt

(ë)) is
assumed to be equal to the reference constant c of the transfer-function model. The pattern of
the transient can be controlled by introducing a number max(p+d,b+q) of nuisance parameters
to represent the combined effects of all earlier input values on the observed output. Setting
PRIORMETHOD=estimate specifies that these nuisance parameters are estimated so as to
minimize the transients. You should, however, be careful in using this. Often all you will have
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to do is make a sensible choice of the reference constant c. Estimating the transients is best done
as a final stage in refining the model; earlier, this may give poor numerical conditioning.

7.5.3 Extensions to the TFIT directive for multi-input models

TFIT fits a multi-input model to output series that have a specified model for the output noise.
The input series and transfer-function models must have been specified in an earlier
TRANSFERFUNCTION statement.

The PRINT option is the same as before, but note that the transfer-function models are printed
in a descriptive format similar to the ARIMA model, with parameter reference numbers used
throughout.

The LIKELIHOOD option settings exact and leastsquares are similar to the settings
described in Section 7.4.2 for regression with ARIMA errors. For example, with a single input,
the likelihood is defined as that for the univariate noise series nt, calculated as nt=yt!zt.

The marginal likelihood is permitted only when all the transfer-function models are equivalent
to simple regression.

You can use the FIX option as described in Sections 7.3.2 and 7.4.2, to impose constraints
among the parameters while the model is being estimated. These constraints operate here across
the whole set (in order) of the parameters of the transfer-function models and of the ARIMA
model, excluding the innovation variance. You can thus use this option to estimate the constant
term in a transfer-function model (but bear in mind the remarks in Section 7.5.1 about possible
aliasing).

7.5.4 Extensions to the TKEEP directive for multi-input models

After a multi-input model has been fitted using TFIT, you can use the COMPONENTS parameter
to access the components of the output series that are due to the various input series; you can
also access the output noise. In simple regression, the input components are proportional to the
input series. But the component resulting from a transfer-function model may be quite different
from this. You can examine these components separately, or sum them to show the total fit to
the output series that is explained by the input series. Note that the fitted values may appear to
be offset from that output series, because the constant term is part of the noise component, and
so is not included. Example 7.5 includes a graph of the output component due to the single input.
You may want to examine the output noise component. For example, if you thought that the
ARIMA model for the output noise was inadequate, you could investigate the noise component
with the univariate ARIMA modelling methods described earlier in this chapter.

7.5.5 Extensions to the TFORECAST directive for multi-input models

TFORECAST for multi-input models is the same as for regression models with ARIMA errors
(7.4.3). But it does have one further useful option.

The COMPONENTS option specifies a pointer to variates in which you can save components of
future values of the output series. There is a variate for each input component and for the output
noise component. These variates correspond exactly to the variates that were specified by the
FUTURE parameter for the input series, and by the FORECAST variate for the output series;
corresponding lengths must match. The values that the variates hold can therefore be components
of the forecasts of the output series, or can be new observations. The can be used to investigate
the structure of forecasts.

If the input series ARIMA model and the transfer-function model have differing
transformation parameters, then the METHOD option reverts to its default action of treating the
values of any future input series as known quantities rather than forecasts.
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Figure 7.6

7.6 Filtering time series

Filtering is a means of processing a time series so as to produce a new series. The purpose is
usually to reveal some features and remove other features of the original series. Filters in Genstat
are one-sided: that is, each value in the new series depends only on present and past values of
the original series. However, you can do two-sided filtering by using the SHIFT and REVERSE
functions of CALCULATE (1:4.2.1).

A filter is defined by a time-series model. For example, consider the exponentially weighted
moving average (EWMA) filter

yt = ë yt!1 + (1 ! ë ) xt

which smoothes xt to produce yt. Then
yt = {(1 ! ë) / (1 ! ë B)} xt.

You can represent this by a
transfer function applied to xt.
Example 7.6 applies this filter to
smooth a time series of annual
temperatures in Central England,
taking ë=0.8: the mean of the
series is subtracted from the series
before smoothing and restored
afterwards. The smoothed series,
Smtemp, is shown with the original
data in Figure 7.6. This is one way
to reduce transient errors at the
start of the smoothed series.

Example 7.6

   2  " Smoothing a series of Central England Temperatures using an
  -3    exponentially weighted filter: data from Manley, G. (1974),
  -4    Central England temperatures: monthly means 1659-1973,
  -5    Quart.J.Met.Soc., 100, 378-405. To illustrate the end-effect
  -6    problems of filtering a subset of the data is used."
   7  VARIATE   [NVALUES=315] Cetave
   8  OPEN      'Cetave.dat'; 3
   9  READ      [CHANNEL=3] Cetave

    Identifier   Minimum      Mean   Maximum    Values   Missing
        Cetave     6.800     9.140     10.60       315         0

  10  CLOSE     3
  11  VARIATE   [VALUES=36...235] Time
  12  CALCULATE Cetemp = Cetave$[Time]
  13  &         Tmean = MEAN(Cetemp)
  14  &         Mcetemp = Cetemp-Tmean
  15  TSM       [MODELTYPE=transfer] Ewma; ORDERS=!(0,1,0,0);\
  16            PARAMETERS=!(1,0,0.8,0.2)
  17  TFILTER   Mcetemp; NEWSERIES=Smtemp; FILTER=Ewma
  18  CALCULATE Smtemp = Smtemp+Tmean
  19  FRAME     1; YLOWER=0.2; YUPPER=0.9; XLOWER=0; XUPPER=1
  20  PEN       1,2; METHOD=line; LINE=0,1; SYMBOL=0; COLOUR='green','black';\
  21            THICKNESS=0.5,2.0
  22  DGRAPH    [TITLE='Smoothed Temperatures'] Cetemp,Smtemp; Time; PEN=1,2
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In this example the filter is defined by a transfer-function model. Alternatively, you can use an
ARIMA model to define a filter, in which case the model pre-whitens the series. Suppose, for
example, an AR(1) model is specified, with parameter ö1; the result of applying this to a series
xt is to generate a series at:

at  =  xt  !  ö1 xt!1

Such an operation is usefully applied to whiten a series before calculating its spectrum, or to
whiten a pair of series before calculating their cross-correlation.

7.6.1 The TFILTER directive

TFILTER directive
Filters time series by time-series models.

Option
PRINT = string tokens What to print (series); default *

Parameters
OLDSERIES = variates Time series to be filtered
NEWSERIES = variates To save filtered series
FILTER = TSMs Models to filter with respect to
ARIMA = TSMs ARIMA models for time series

The OLDSERIES and NEWSERIES parameters of TFILTER specify respectively the time series
to be filtered, and the series that result from filtering. A new series must not have the same
identifier as the series from which it was calculated. Genstat interprets any missing values in the
old series as zero. But if you use the ARIMA parameter (see below), Genstat replaces them by
interpolated values when it calculates the filtered series; the missing values remain in the old
series.

The FILTER parameter specifies the TSMs to be used for filtering. If the TSM is a transfer-
function model (7.5.1), the new series yt is calculated from the old series xt by

yt = { ù(B)Bb / ä(B)Ld } xt.
The filter does not use the power transformation nor the reference constant. This lets you

apply a single filter conveniently to a set of time series, for which different transformations and
different constants might be appropriate. You can always use the CALCULATE directive to apply
a transformation to a series before using TFILTER.

If the TSM is an ARIMA model (7.3.1), then the new series at is calculated from the old series
yt by

at = { ö(B)Ld / è(B)} yt.
Note that the TSM does not have to be the model appropriate for yt. Again, Genstat ignores the
parameters ë, c and óa

2; you can set them to 1,0,0, for example.
The ARIMA parameter specifies a time-series model for the old series. The purpose is to reduce

transient errors that arise in the early part of the new series: these arise because Genstat does not
know the values of the old series that came before those that have been supplied. If you do not
use this parameter, then Genstat takes these earlier values to be zero. This can cause
unacceptable transients which can only be partially removed by procedures such as mean-
correcting the old series. If you do use the ARIMA parameter, then Genstat uses the specified
model to estimate (or back-forecast) the values of the old series earlier than those that have been
supplied.
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Figure 7.6.1a

You do not have to have a good
ARIMA model for the old series in
order to achieve worthwhile
reductions in the transients. Thus a
model with orders (0,1,1) and
parameters (1,0,0,0.7) would
estimate the prior values to be
constant, at a level that is a
backward EWMA of the early
values of the series. Example
7.6.1a is a continuation of Example
7.6, in which the ARIMA
parameter is used. The results are
shown in Figure 7.6.1a: the
smoothed series, TCSmtemp, fits
the series much more closely at the
start; the old version of the
smoothed series, Smtemp, is also
shown on the graph (using a dashed line), to reveal the difference at the start of the series.

Example 7.6.1a

  23  " Filter the temperatures using an ARIMA model to reduce the transients"
  24  TSM       Back; ORDERS=!(0,1,1); PARAMETERS=!(1,0,0,0.7)
  25  TFILTER   Cetemp; NEWSERIES=TCSmtemp; FILTER=Ewma; ARIMA=Back
  26  PEN       3; METHOD=line; LINE=2; SYMB=0; COLOUR='black'; THICKNESS=2
  27  DGRAPH    [TITLE='Smoothed Temperatures: using ARIMA errors'] \
  28            Cetemp,Smtemp,TCSmtemp; Time; PEN=1,3,2

For a seasonal monthly time series, an appropriate ARIMA model could have orders
(0,1,1,0,1,1,12) and parameters (1,0,0,0.7,0.7). However you must give the supplied model a
transformation parameter ë=1. Any other value for ë breaks the assumption of linearity that
underlies the calculations for correcting the transients. The constant term in the ARIMA model
can be non-zero, and should be if that is appropriate for the old series. Note that the ARIMA
model does not define the filter.

If you specify the ARIMA parameter, Genstat uses this model to interpolate any missing values
in the old series before it calculates the new series. Suppose for example that the filter is the
identity, defined by a transfer-function model with orders (0,0,0,0) and parameters (1,0,0); then
the new series will be the old series with any missing values replaced.
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Figure 7.6.1b

Example 7.6.1b shows how a
two-sided filter arises by
smoothing the smoothed series a
second time after it has been
reversed. The ARIMA model has
its moving average parameter set to
zero because this is appropriate for
the series to which the filter is now
applied. The result is reversed
again and displayed using DGRAPH,
see Figure 7.6.1b.

Example 7.6.1b

  29  " Carry out two-sided filtering by applying the filter to the
 -30    smoothed series in reverse."
  31  CALCULATE Rsmtemp = REVERSE(TCSmtemp)
  32  &         Back[2]$[4] = 0
  33  TFILTER   Rsmtemp; NEWSERIES=Dsmtemp; FILTER=Ewma; ARIMA=Back
  34  CALCULATE Dsmtemp = REVERSE(Dsmtemp)
  35  DGRAPH    [TITLE='Smoothed Temperatures: two-sided filtering'] \
  36            Cetemp,Dsmtemp; Time; PEN=1,2

7.7 Forming preliminary estimates and displaying models

The TFIT directive (7.3.3) carries out a lot of computation to find the best estimates of the
parameters of a time-series model. The amount of computation can be reduced if you provide
rough initial values for the parameters, especially when there are many of them. You can get
Genstat to do this by using the FTSM directive. FTSM obtains moment estimators of a simple kind,
by solving equations between the unknown parameters of the ARIMA or transfer-function model
and the autocorrelations or cross-correlations calculated from the observed time series.
Sometimes these equations have no solution, or their solution provides values inconsistent with
the constraints demanded of the parameters. If so, Genstat sets the corresponding parameters to
missing values. The form of the directive is the same for ARIMA and transfer-function models,
but the interpretation is slightly different. So we describe the two cases separately.

The TSUMMARIZE directive helps you investigate time-series models by displaying various
characteristics. These are the theoretical autocorrelation function of an ARIMA model, and the
pi-weights and psi-weights; also the impulse-response function of a transfer-function model.
TSUMMARIZE can derive the expanded form of a model, in which all seasonal terms are
combined with the non-seasonal term.
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7.7.1 Preliminary estimation of ARIMA model parameters

FTSM directive
Forms preliminary estimates of parameters in time-series models.

Option
PRINT = string tokens What to print (models); default *

Parameters
TSM = TSMs Models whose parameters are to be estimated
CORRELATIONS = variates Auto- or cross-correlations on which to base estimates

for each model
BOXCOXTRANSFORM = scalars Box-Cox transformation parameter
CONSTANTTERM = scalars Constant term
VARIANCE = scalars Variance of ARIMA model, or ratio of input variance to

output variance for transfer model

A typical FTSM statement might be

FTSM [PRINT=model] Yatsm; CORRELATIONS=Yacf;\
  BOXCOX=Ytran; CONSTANTTERM=Ymean; VARIANCE=Yvar

You must previously have declared the time-series model Yatsm to be of type ARIMA with
appropriate orders, and lags if you need to specify them. Genstat takes this model to be
associated with observations of a time series yt. The aim of the directive is to set the values of
the variate of model parameters equal to preliminary estimates derived from the variate Yacf and
scalars Ytran, Ymn and Yvar.

The variate Yacf should contain sample autocorrelations r0 ... rm. You should obtain these
from the original time series, stored in variate Y say, by first using the CALCULATE directive to
transform Y according to the Box-Cox equations with transformation parameter Ytran (if you
do indeed want a transformation). You should then form the differences of the transformed
series, according to the degrees of differencing already set in the model; you can use the
DIFFERENCE function with the CALCULATE directive for this (1:4.2.1). Finally, you should use
the AUTOCORRELATIONS parameter of the CORRELATE directive (7.1.2) to store the
autocorrelations of the resulting series in Yacf. Often you will have done these operations
already in order to produce Yacf for selecting a model.

At the same time, you can supply the scalars Ytran, Ymean and Yvar to set the first three
elements of the parameters variate of Yatsm; these cannot be set using Yacf alone. The scalar
Ytran should be the parameter used to transform Y, and Genstat will copy it into the first
element of the variate of parameters. Genstat will copy the scalar Ymean into the second element,
which is the constant term of the model; the recommended value for this is the sample mean of
the series from which Yacf is calculated, but you may prefer the value 0. The scalar Yvar is
used to set the innovation variance, which is the third element of the variate of parameters. The
recommended value is the sample variance of the series from which Yacf is calculated. If you
set Yvar to 1.0, then Genstat will set the innovation variance to the variance ratio
Variance(e)/Variance(y), as estimated from Yacf according to the model.

If any of the BOXCOX, CONSTANTTERM or VARIANCE parameters is not set, Genstat will leave
unchanged the corresponding value in the variate of parameters of the model. The only exception
to this rule is if a parameter is missing. Then Genstat initially sets the transformation parameter
to 1.0 (corresponding to no transformation), and the constant to 0.0; the innovation variance is
left missing.
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7.7.2 Preliminary estimation of transfer-function model parameters

A typical FTSM statement for a transfer-function model might be

FTSM [PRINT=model] Xytsm; CORRELATIONS=Xyccf; \
  BOXCOX=Xtran; CONSTANTTERM=Xmean; VARIANCE=Xyvratio

You must previously have declared the time-series model Xytsm to be of type
transferfunction with appropriate orders, and lags if you need to specify them. Genstat
assumes that this model represents the dependence of an output series yt on an input series xt in
a multi-input model. The directive sets the values of the parameters of the model equal to
preliminary estimates derived from Xyccf, Xtran, Xmean and Xyvratio.

You should put into the variate Xyccf an estimate of the impulse-response function of the
model, from which Genstat will derive the parameters. This estimate is usually a sample cross-
correlation sequence r0 ... rm obtained from variates Y and X1 containing observations of yt and
xt according to one of the following four rules:

(a) In the simple case, the differencing orders of Xytsm are all zero, and you do not want to
use any Box-Cox transformation of either yt or xt. Then the cross-correlations should be
those between variates Alpha and Beta, say, derived from X and Y by filtering (or pre-
whitening), as described in Section 7.6.2. The ARIMA model that you used for the filter
should be the same for X and Y, and you should choose it so that the values of Alpha
represent white noise.

(b) If the differencing orders of Xytsm are not zero, then before you calculate the cross-
correlations you should further difference the series Beta as specified by these orders.

(c) If a Box-Cox transformation is associated with yt, you should apply it to Y before the
filtering. However this transformation parameter must not be associated with Xytsm: you
should assign it to the univariate ARIMA model that you have specified for the error term
(7.3.2).

(d) If a Box-Cox transformation is associated with xt, it must be the same as the one you used
in the ARIMA model for xt from which the series Alpha was derived. The scalar Xtran
must contain this transformation parameter. Genstat copies it into the first element of the
parameter variate of Xytsm. If the Box-Cox parameter is unset, Genstat leaves the
transformation parameter of Xytsm unchanged; it is set to 1.0 if it was originally missing.

Genstat copies the scalar Xmean into the second element of the variate of parameters. The
recommended value is the sample mean of X after any transformation has been applied. If you
do not set the CONSTANTTERM parameter, Genstat leaves the constant parameter of Xytsm
unchanged; it is set to 0.0 if it was originally missing.

You use the scalar Xyvratio to obtain the correct scaling of non-seasonal moving-average
parameters in Xytsm. All the other autoregressive parameters and moving-average parameters
are invariant under scale changes in yt and xt. You should set the scalar to the ratio of the sample
variances of the variates from which the cross-correlations were calculated; that is,
Variance(Beta)/Variance(Alpha). If you do not set this, Genstat uses the value 1.0.

You can use FTSM to go backwards from autocorrelations to the original time-series model.
If you apply it to the autocorrelations that were constructed from a time-series model by means
of TSUMMARIZE (7.7.3), it will recover the parameters of the model exactly, provided the model
is non-seasonal. If the model contains seasonal parameters, with seasonal period s, the
parameters will not be recovered exactly, except in one special circumstance: that is, when the
non-seasonal part of the model, considered in isolation from the seasonal part, has a theoretical
autocorrelation function that is zero beyond lag s/2. Otherwise, the non-seasonal and seasonal
parts of the model interact, and so Genstat loses accuracy in the recovered parameters. When you
use sample autocorrelations, this loss of accuracy tends to be small in comparison with the
sampling fluctuations of the estimates. But if s is small, say s=4 for quarterly data, the loss could
be serious. Exactly the same considerations apply to transfer-function models.
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7.7.3 The TSUMMARIZE directive

TSUMMARIZE directive
Displays characteristics of time series models.

Options
PRINT = string tokens What to print (autocorrelations, expansion,

impulse, piweight, psiweight); default *
GRAPH = string tokens What to display with graphs (autocorrelations,

impulse, piweight, psiweight); default *
MAXLAG = scalar Maximum lag for results; default 30

Parameters
TSM = TSMs Models to be displayed
AUTOCORRELATIONS = variates To save theoretical autocorrelations
IMPULSERESPONSE = variates To save impulse-response function
STEPFUNCTION = variates To save step function from impulse
PIWEIGHTS = variates To save pi-weights
PSIWEIGHTS = variates To save psi-weights
EXPANSION = TSMs To save expanded models
VARIANCE = scalars To save variance of each TSM

For an ARIMA model in the TSM parameter, you can set only the AUTOCORRELATIONS,
PSIWEIGHTS and PIWEIGHTS parameters. Also, you can set the IMPULSERESPONSE parameter
only for a transfer-function model. You can set the EXPAND parameter for either type of model.
The TSMs in any TSUMMARIZE statement must be completely defined; that is, you must have set
the orders and parameters, and the lags if you are using them. The only exceptions are that
Genstat takes the transformation parameter to be 1.0 if it is missing, and that the innovation
variance of an ARIMA model need not be set.

The MAXLAG option specifies the maximum lag to which Genstat is to do calculations: this
applies to autocorrelations, psi-weights, pi-weights and impulse responses.

You can set the PRINT and GRAPH options independently of the parameters: these store
results, and display the various characteristics of models.

The AUTOCORRELATIONS parameter allows you to store the theoretical autocorrelation
function of an ARIMA model. Such a model uniquely defines an autocorrelation function whose
values r0 ... rm are assigned by Genstat to the variate R, where m is the maximum lag. If the model
has differencing parameters d=D=0, then the autocorrelation function is that of a series yt that
follows this model.

If either d>0 or D>0, then the theoretical autocorrelations are calculated as if d=D=0, and so
they correspond to those of the differenced yt series. This is because the autocorrelations of yt

are undefined for non-stationary models.

Example 7.7.3

   2  " Display the autocorrelations of an AR[2] model."
   3  TSM        AR[2]; ORDERS=!(2,0,0); PARAMETERS=!(1,15,2.5,0.5,-0.5)
   4  TSUMMARIZE [MAXLAG=12; PRINT=autocorrelations] AR[2]
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Summary of model AR[2]
======================

          Lag          ACF
            0        1.000
            1        0.333
            2       -0.333
            3       -0.333
            4        0.000
            5        0.167
            6        0.083
            7       -0.042
            8       -0.062
            9       -0.010
           10        0.026
           11        0.018
           12       -0.004

The PSIWEIGHTS parameter allows you to store the theoretical psi-weights ø0 ... øm of an
ARIMA model. These are used internally by Genstat when error limits are calculated for
forecasts obtained using the model. You will need them for example if you want to calculate the
variance of the total of the forecast values up to some specified maximum lead time. They are
defined for a non-seasonal model by

1 + ø1B + ø2B
2 + ... = è(B) / { ö(B)Ld }

The PIWEIGHTS parameter allows you to store the theoretical pi-weights ð0 ... ðm of an
ARIMA model: these show explicitly how past values contribute to a forecast. The weights are
defined by:

1 ! ð1B ! ð2B
2 ! ... = { ö(B)Ld } / è(B)

The IMPULSERESPONSE parameter allows you to store the theoretical impulse-response
function, v0 ... vm, of a transfer-function model. This function can help you interpret the model.
The sequence is defined for a non-seasonal transfer-function model by:

í0 + í1B + í2B
2 + ... = ù(B)Bb / { ä(B)Ld }

7.7.4 Deriving the generalized form of a time-series model

For an ARIMA model you can combine into one generalized autoregressive operator all the
differencing operators, the non-seasonal autoregressive operators, and the seasonal
autoregressive operators. The non-seasonal and seasonal moving-average operators may similarly
be combined.

Normally you would want this expanded model to help you understand a series. But you might
also want to re-estimate the parameters in the expanded model, to test whether the differencing
operators or seasonal factors unnecessarily constrain the structure of the original model.

Example 7.7.4

   5  " Expand the seasonal ARIMA model used for modelling the number of
  -6    airline passengers in Section 7.3.7."
   7  VARIATE    [VALUES=0,1,1, 0,1,1,12] Ord
   8  &          [VALUES=0,0,0.00143, 0.34, 0.54] Par
   9  TSM        Airpass; ORDERS=Ord; PARAMETERS=Par
  10  PRINT      Airpass

Airpass

Innovation variance 0.001430

                       parameter
Transformation                0.
Constant                      0.

Non-seasonal; differencing order 1
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                lag    parameter
Moving-average    1     0.340000

Seasonal; period 12; differencing order 1

                lag    parameter
Moving-average   12     0.540000

  11  TSUMMARIZE [PRINT=expansion] Airpass

Expansion of model Airpass
==========================

Autoregressive moving-average model
-----------------------------------

Innovation variance 0.001430

                       parameter
Transformation                0.
Constant                      0.

Non-seasonal; no differencing

                lag    parameter
Autoregressive    1      1.00000
                 12      1.00000
                 13     -1.00000
Moving-average    1     0.340000
                 12     0.540000
                 13    -0.183600

If you have not previously defined one of the identifiers supplied by the EXPANSION parameter,
Genstat will automatically define it to be a TSM, and its component variates will be set up to
have the length defined by the corresponding model in the TSM parameter.

The expansion does not change the transformation parameter of the model, nor the constant
term, nor the innovation variance. If the model that you have supplied contains non-zero
differencing orders, then the generalized model does not satisfy the stationarity constraint on the
parameters; neither does the constant term have the same interpretation as it had in the supplied
model.

The expansion of transfer-function models exactly parallels that of ARIMA models.



8 Spatial and temporal modelling

This chapter describes the specialist facilities in Genstat for the analysis of data whose
distribution in space or time is the main interest. These are in addition to the covariance
modelling facilities provided by the REML directive (see Section 5.4).

Section 8.1 describes several of the procedures in the Genstat Library for the analysis of
repeated measurements. Others are covered elsewhere in this book, or in Part 3 of the Genstat
Reference Manual.

DREPMEASURES plots profiles and differences of profiles for repeated

measures data (8.1.1)
VORTHPOLYNOMIAL calculates orthogonal polynomial time-contrasts for

repeated measures (8.1.2)
AREPMEASURES produces an analysis of variance for repeated

measurements (8.1.3)
MANOVA performs multivariate analysis of variance and covariance

(6.6.1, 8.1.4)
RMULTIVARIATE provides multivariate linear regression with accumulated

testing of terms (6.6.2)
ANTORDER assesses order of ante-dependence for repeated measures

data (8.1.5)
ANTTEST calculates overall tests based on a specified order of

ante-dependence (8.1.5)
ANTMVESTIMATE estimates missing values in repeated measurements using

ante-dependence structure
RAR1 fits regressions with an AR1 or a power-distance

correlation model (8.1.6)
NLAR1 fits curves with an AR1 or a power-distance correlation

model (8.1.6)
CUMDISTRIBUTION fits frequency distributions to accumulated counts
DTIMEPLOT produces horizontal bars displaying a continuous time

record
GEE fits models to longitudinal data by generalized estimating

equations (3.5.10)
VHOMOGENEITY tests homogeneity of variances
AFCARRYOVER forms factors to represent carry-over effects in cross-over

trials
AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects

(4.9.4)

Profile plots, antedependence analysis, analysis of variance of repeated measurements and
multivariate analysis of variance are all accessible through repeated measurements menus in
Genstat for Windows (click on Stats on the menu bar, select Repeated Measurements and then
the analysis required).

Section 8.2 covers the specialist procedures for survival analysis.
KAPLANMEIER calculates the Kaplan-Meier estimate of the survivor

function (8.2.1)
RLIFETABLE calculates the life-table estimate of the survivor function

(8.2.3)
RPHFIT fits the proportional hazards model to survival data as a

generalized linear model (8.2.5)
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RPHCHANGE modifies a proportional hazards model fitted by RPHFIT
(8.2.5)

RPHDISPLAY prints output for a proportional hazards model fitted by
RPHFIT (8.2.5)

RPHKEEP saves information from a proportional hazards model fitted
by RPHFIT (8.2.5)

RPHVECTORS forms vectors for fitting proportional hazards data as a
generalized linear model

RSURVIVAL models survival times of exponential, Weibull or
extreme-value distributions (8.2.4)

RSTEST compares groups of right-censored survival data by
nonparametric tests (8.2.2)

These are all accessible through the survival analysis menus in Genstat for Windows (click on
Stats on the menu bar, select Survival Analysis and then the analysis required).

Section 8.3 describes the facilities for spatial analysis by "kriging", a method originating in
geostatistics for analysing data distributed in two dimensions. The kriging model specifies how
successive measurements of a variable in space are correlated with each other, in terms of a
"variogram". This is analogous to the "correlogram" used in the analysis of time series, but for
two-dimensional (spatial) data rather than one-dimensional (temporal) data. There are also
commands for "cokriging", which models the spatial behaviour of several variables at once
(8.3.4). This is useful if a variable, that is difficult or expensive to observe, is correlated with
other variables that are easier or cheaper.

FVARIOGRAM forms auto-variograms for individual variates or cross-

variograms for pairs of variates (8.3.1)
MVARIOGRAM fits models to an experimental variogram (8.3.2)
DVARIOGRAM plots fitted models to an experimental variogram (8.3.3)
KRIGE calculates kriged estimates using a model fitted to a

sample variogram (8.3.4)

KCROSSVALIDATION computes cross validation statistics for punctual kriging
FCOVARIOGRAM forms a covariogram structure containing auto-variograms

of individual variates and cross-variograms for pairs from
a list of variates (8.3.6)

MCOVARIOGRAM fits models to sets of variograms and cross-variograms
(8.3.7)

DCOVARIOGRAM plots 2-dimensional auto- and cross-variograms (8.3.8)
COKRIGE calculates kriged estimates using a model fitted to the

sample variograms and cross-variograms of a set of
variates (8.3.9)

These are also accessible through menus in Genstat for Windows, this time in the geostatistics
section (click on Stats on the menu bar, select Geostatistics and then the analysis required).

Finally, Section 8.4 introduces the procedures for plotting, manipulating and analysing spatial
or spatial and temporal point patterns.

DKSTPLOT produces diagnostic plots for space-time clustering

DPOLYGON draws polygons using high-resolution graphics
DPTMAP draws maps for spatial point patterns using high-resolution

graphics
DPTREAD adds points interactively to a spatial point pattern
DRPOLYGON reads a polygon interactively from the current graphics

device
DPSPECTRALPLOT calculates an estimate of the spectrum of a spatial point
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pattern
FHAT calculates an estimate of the F nearest-neighbour

distribution function
FZERO gives the F function expectation under complete spatial

randomness
GHAT calculates an estimate of the G nearest-neighbour

distribution function
GRLABEL randomly labels two or more spatial point patterns
GRTHIN randomly thins a spatial point pattern
GRTORSHIFT performs a random toroidal shift on a spatial point pattern
GRCSR generates completely spatially random points in a polygon
KCSRENVELOPES simulates K function bounds under complete spatial

randomness
KHAT calculates an estimate of the K function
KLABENVELOPES gives bounds for K function differences under random

labelling
KSED calculates s.e. for K function differences under random

labelling
KSTHAT calculates an estimate of the K function in space, time and

space-time
KSTMCTEST performs a Monte-Carlo test for space-time interaction
KSTSE calculates the standard error for the space-time K function
KTORENVELOPES gives bounds for the bivariate K function under

independence
K12HAT calculates an estimate of the bivariate K function
MSEKERNEL2D estimates the mean square error for a kernel smoothing
PTAREAPOLYGON calculates the area of a polygon
PTBOX generates a box bounding or surrounding a spatial point

pattern
PTCLOSEPOLYGON closes open polygons
PTDESCRIBE gives summary and second order statistics for a point

process
PTGRID generates a grid of points in a polygon
PTINTENSITY calculates the overall density for a spatial point pattern
PTKERNEL2D performs kernel smoothing of a spatial point pattern
PTK3D performs kernel smoothing of space-time data
PTREMOVE removes points interactively from a spatial point pattern
PTROTATE rotates a point pattern
PTSINPOLYGON returns points inside or outside a polygon

8.1 Repeated measurements

A repeated-measurements study is one in which subjects (animals, people, plots, etc) are
observed on several occasions. Each subject usually receives some randomly allocated treatment,
either at the outset or repeatedly through the investigation, and is then observed at successive
occasions to see how the treatment effects develop. Genstat has a comprehensive collection of
procedures for the analysis of such data (see the list at the start of this chapter). Most of them
assume that the repeated measurements are balanced, that is that the subjects are all observed
at the same times relative to the start of the study. The data are stored in separate variates, each
containing the measurements at one of the times.
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8.1.1 Plotting repeated measurements

DREPMEASURES procedure
Plots profiles and differences of profiles for repeated measures data (J.T.N.M. Thissen).

Options
TITLE = text Title for the plots; default *
GROUPS = factors List of one or two factors; one factor gives one plot

while a list with two factors gives as many plots as the
number of levels of the first factor in the list; must be set

TIMEPOINTS = variate or factor When the DATA parameter is set to a pointer containing
a separate variate of observations for each time this can
specify the actual time points (otherwise the suffixes of
the DATA pointer are used), when there is a single DATA
variate this must supply a factor to indicate the time of
each observation

DIFFERENCES = string token Can suppress plotting of the differences (no, yes);
default no

Parameters
DATA = pointers or variates Data observations either in a pointer to a list of variates

(one for each time), or a single variate (with
TIMEPOINTS set to a factor indicating the time of each
observation)

GROUPMEANS = tables To save the calculated treatment means at each
timepoint

It is usually helpful first to plot the data. Example 8.1.1 uses DREPMEASURES to plot data from
a study of the effects of the drugs morphine and trimethaphan on histamine release and
hypotension in dogs; see Figures 8.1.1a and 8.1.1b The treatments had a 2 × 2 factorial structure.
Half the dogs received intravenous morphine sulphate and the remainder received intravenous
trimethaphan as indicated by the Drug factor. The other aspect, factor Hist, was that some of
the dogs were treated so that their supplies of available histamine were deleted when the
treatment drugs were innoculated. Measurements were made of blood histamine immediately
before treatment and at one, three and five minutes afterwards.

The data can be specified in one of two ways. The first is to set the DATA parameter to a
pointer containing a list of variates, each one containing the measurements made on the subjects
at one of the successive occasions on which they were observed. The TIMEPOINTS option can
then supply a variate to define the time point corresponding to each DATA variate; if
TIMEPOINTS is unset, the suffixes of the DATA pointer are used. The second possibility is to
supply set DATA to a variate containing the data from all the times. The TIMEPOINTS option
must then be set to a factor indicating the time of each observation.

The grouping of the subjects can be specified by either one or two factors, input using the
GROUPS option. If one factor is specified, the means of the observations at each level of the
factor are plotted in one graph. If, as in Example 8.1.1, two factors are specified several graphs
are produced: each graph is a plot of the means of the observations at the various levels of the
second factor for a particular level of the first. The means are calculated with the directive
TABULATE. If the data variates contain missing values a warning is printed indicating that the
results may be misleading; missing values in repeated measurements can be estimated using
ANTMVESTIMATE (8.1.5).

If DATA is set to a pointer, you can arrange to plot only a subset of the measurements by
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Figure 8.1.1a Figure 8.1.1b

restricting any of the DATA variates or GROUPS factors. The variate specified by TIMEPOINTS
for a DATA pointer must not be restricted. Similarly if DATA is set to a variate, you can restrict
either the DATA variate or the GROUPS or TIMEPOINTS factors. If more than one variate or factor
is restricted, they must all be restricted to the same set of units.

Setting the DIFFERENCES option to yes produces two plots: one of the profiles and the other
of differences with the first level, and the TITLE option can provide a title for the plots.

Example 8.1.1

   2  " Blood histamine levels in dogs:
  -3    data from Morris & Zeppa, 1963, J. Surg. Res. 3, 313-317;
  -4    also see Cole & Grizzle, 1966, Biometrics 22, 810-828. "
   5  FACTOR [LABELS=!t(morphine,trimethaphan)] Drug
   6  & [LABELS=!t(intact,depleted)] Histlev
   7  READ Drug,Histlev,Hist[0,1,3,5]; FREPRESENTATION=labels

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Hist[0]   0.02000   0.07687    0.1700        16         0
       Hist[1]   0.05000    0.5331     3.130        16         0    Skew
       Hist[3]   0.02000    0.3644     2.060        16         0    Skew
       Hist[5]   0.02000    0.2707     1.230        16         1    Skew

    Identifier    Values   Missing    Levels
          Drug        16         0         2
       Histlev        16         0         2

  24  DREPMEASURES [GROUPS=Drug,Histlev] Hist

******** Warning, code UF 2, statement 63 in procedure DREPMEASURES

There are missing values in the DATA pointer; plots of means can be misleading.
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8.1.2 Analysis of polynomial contrasts

VORTHPOLYNOMIAL procedure
Forms orthogonal polynomials over time for repeated measures (J.T.N.M. Thissen).

Options
TIMEPOINTS = variate Variate of timepoints; default uses the suffixes of the

DATA pointer
MAXDEGREE = scalar The number of contrasts (excluding the mean); default is

the number of identifiers in the CONTRAST pointer
minus 1

Parameters
DATA = pointers Each pointer contains the data variates (observed at

successive times); must be set
CONTRAST = pointers To save the calculated contrasts: the first variate

contains the means, the second the linear polynomial
contrasts, the third the quadratic polynomial contrasts
etc; must be set

With measurements like milk yields or amounts of industrial production, for example, the main
interest may be in the total of the measurements for each subject. Alternatively, with
measurements of growth, you might want to analyse the change over the period. Polynomials can
also be popular and, with balanced repeated measurements, the coefficients of orthogonal
polynomials can be calculated automatically using procedure VORTHPOLYNOMIAL. The observed
data and timepoints are specified in the same way as for the DREPMEASURES procedure (8.1.1).
The calculated polynomial contrasts are saved in a pointer whose identifier must be specified by
the CONTRAST parameter. This contains a list of variates: the first variate saves the means over
the DATA variates, the second variate saves the linear polynomial contrast, the third the quadratic
polynomial, and so on. Provided the MAXDEGREE option is used to specify the required number
of contrasts, the pointer need not be declared in advance, and its suffixes will be defined to be
0, 1, 2 ... If MAXDEGREE is not set, the number of contrasts is taken from the length of the
CONTRAST pointer. If a subject has a missing value at any time, the contrasts for the subject will
also be missing. Example 8.1.2 forms the contrasts up to order 3 for the data plotted in Example
8.1.1, and then analyses them by analysis of variance, using the ANOVA directive (4.1.2). The
analysis indicates that there are indeed differences between the treatments but confirms the
impression from the graphs that, for this set of data, there is no particularly straightforward
polynomial representation.

Example 8.1.2

  25  CALCULATE Hist[] = LOG(Hist[])
  26  VORTHPOLYNOMIAL [MAXDEGREE=3] Hist; Pol
  27  TREATMENT Drug*Histlev
  28  ANOVA [PRINT=aov; FPROB=yes] Pol[]

Analysis of variance
====================

Variate: Pol[0]

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r.  F pr.
Drug                       1          1.5906     1.5906    2.88  0.118
Histlev                    1          4.1316     4.1316    7.48  0.019
Drug.Histlev               1          1.2996     1.2996    2.35  0.153
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Residual                  11(1)       6.0765     0.5524
Total                     14(1)      12.7890

Analysis of variance
====================

Variate: Pol[1]

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r.  F pr.
Drug                       1        0.085185   0.085185   22.25  <.001
Histlev                    1        0.098368   0.098368   25.69  <.001
Drug.Histlev               1        0.152116   0.152116   39.73  <.001
Residual                  11(1)     0.042116   0.003829
Total                     14(1)     0.374690

Analysis of variance
====================

Variate: Pol[2]

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r.  F pr.
Drug                       1        0.021733   0.021733    6.26  0.029
Histlev                    1        0.232346   0.232346   66.95  <.001
Drug.Histlev               1        0.029160   0.029160    8.40  0.014
Residual                  11(1)     0.038174   0.003470
Total                     14(1)     0.307387

Analysis of variance
====================

Variate: Pol[3]

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r.  F pr.
Drug                       1        0.002568   0.002568    1.26  0.285
Histlev                    1        0.146339   0.146339   72.06  <.001
Drug.Histlev               1        0.005825   0.005825    2.87  0.118
Residual                  11(1)     0.022338   0.002031
Total                     14(1)     0.168578

8.1.3 Repeated-measures analysis of variance

 The data in Examples 8.1.1 and 8.1.2 may seem to come from a split-plot design, with subjects
(dogs) corresponding to whole plots, and the occasions of observation to the sub-plots. There are,
however, some important differences between the two situations. With repeated measurements,
there is likely to be a greater correlation between observations that are made at adjacent time
points than between those that are more greatly spaced. Furthermore, the Time factor cannot, by
its very nature, be allocated at random to the occasions within subjects. In the customary split-
plot situation we can usually assume that there is an equal correlation between the sub-plots of
each whole plot and, even if this were not so, the sub-plot treatment should have been allocated
at random to the sub-plots within each whole plot.

Before discussing the formal conditions for the validity of the split-plot analysis, it is worth
pointing out, though, that this problem affects only the Subject.Time stratum. The Subject
stratum contains an analysis of variance of the measurements totalled over the subjects, and this
part of the analysis will be valid whatever the within-subject correlation structure. A further
point is that, when measurements are taken on only two occasions, the analysis in the
Subject.Time stratum will also be valid; there can then be only one within-subject correlation,
and the analysis in the Subject.Time stratum is of the difference between the observations at
time 2 and time 1 on each subject.

Another potential problem arising from the systematic nature of the Time factor is that effects
arising from the "length of treatment time" will be confounded with any effects arising from the
duration of the experiment, such as age of subject (which may be important with short-lived
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material such as aphids), season of year, time of day, and so on. This does not affect the validity
of the analysis, and some of the confusion may be capable of being unravelled by running the
experiment during more than one period. Nevertheless, care needs to be taken in drawing
conclusions about time-effects.

The Subject.Time information, describing the way in which the treatment effects change
differentially with time, is generally the aspect of most interest in the study. The formal
requirement for the validity of the analysis in the sub-plot stratum of a split-plot design is that
all the normalised contrasts in that stratum have an equal variance. The only practical
arrangement of covariances between times that satisfies this condition would have a single
variance down the diagonal and a single covariance off-diagonal. This pattern is known as a
uniform covariance structure or, equivalently, the matrix is said to show compound symmetry;
Box (1950) describes how this can be tested. In the usual split-plot analysis, the Subject.Time
sum of squares is assumed to be distributed as ó2 × ÷2

r where ó2 is a constant and ÷2
r has a chi-

square distribution on r degrees of freedom. Similarly, under the assumption that there is no
Treatment.Time interaction, the Treatment.Time sum of squares is assumed to be
distributed as ó2 × ÷2

t where ÷2
t has a chi-square distribution on t degrees of freedom. If the

variance-covariance structure does not exhibit compound symmetry, it is possible to show that
the distributions can still be approximated by chi-square distributions, but the degrees of freedom
are instead å × r and å × t. The correction factor å lies between one, which would give the
ordinary split-plot analysis, and 1/(number of times minus one), which would leave just one
degree of freedom within each subject (remember that when there are only two observation on
each subject, and thus just one within-subject degree of freedom, the analysis is valid); å can be
estimated be maximum likelihood, as described by Greenhouse & Geisser (1959).

AREPMEASURES procedure
Produces  an analysis of variance for repeated measurements (R.W. Payne).

Options
PRINT = string tokens Controls output about the covariance structure

(vcovariance, correlation, epsilon, test);
default epsi, test

APRINT = string tokens Printed output from the analysis of variance (as for the
ANOVA PRINT option); default *

TREATMENTSTRUCTURE = formula Defines the treatments given to the subjects; if this is not
set, the default is taken from any existing setting defined
by the TREATMENTSTRUCTURE directive

BLOCKSTRUCTURE = formula Defines any block structure over the subjects if this is
not set, the default is taken from any existing setting
defined by the BLOCKSTRUCTURE directive

COVARIATE = variates Specifies any covariates on the subjects if this is not set,
the default is taken from any existing setting defined by
the COVARIATE directive

FACTORIAL = scalar Limit in the number of factors in the terms generated
from the TREATMENTSTRUCTURE formula

TIMEPOINTS = variate, text or factor
When the DATA parameter supplies a separate variate of
observations for each time this can specify numbers or
labels for the time points, when there is a single DATA
variate this must supply a factor to indicate the time of
each observation

CONTRASTS = scalar Limit on the order of a contrast of a treatment term;
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default 4
DEVIATIONS = scalar Limit on the number of factors in a treatment term for

the deviations from its fitted contrasts to be retained in
the model; default 9

FPROBABILITY = string token Printing of probabilities for variance ratios in the aov
table (no, yes); default no

PSE = string tokens Standard errors to be printed with tables of means
(differences, lsd, means); default diff

MAXCYCLE = scalar Maximum number of iterations for estimating missing
values; default 20

LSDLEVEL = scalar Significance level (%) to use in the calculation of least
significant differences; default 5

EPSILON = scalar Saves the correction factor epsilon
SAVEFACTORS = pointer Saves the factors used in the analysis of variance
ASAVE = identifier Saves the ANOVA save structure from the analysis of

variance

Parameter
DATA = variates Data observations either in a list of variates (one for

each time), or a single variate (with TIMEPOINTS set to
a factor indicating the time of each observation)

Procedure AREPMEASURES can be used to generate an analysis of variance for repeated
measurements, estimating and applying the adjustment factor, å, for the degrees of freedom. The
estimated value of the adjustment factor, å, can be saved by the EPSILON option.

Information about the patterns of the covariances is controlled by the strings listed for the
PRINT option:

vcovariance variance-covariance matrix,
correlation correlation matrix,
epsilon Greenhouse-Geisser å,
test test for compound symmetry.

The output from the analysis of variance is controlled by the APRINT option, with settings
identical to those in the PRINT option of the ANOVA directive (4.1.2). The FPROBABILITY, PSE
and LSDLEVEL options also operate exactly as in ANOVA.

The treatments applied to the subjects can be specified (as a model formula) using the
TREATMENTSTRUCTURE option, the block structure (if any) on the subjects can be specified by
the BLOCKSTRUCTURE option, and the COVARIATE option can be used to list any covariates on
the subjects (i.e. these must be constant across the times on each subject). If any of these options
is unset, the default is taken from any existing setting defined by the directives
TREATMENTSTRUCTURE, BLOCKSTRUCTURE or COVARIATE, respectively. The FACTORIAL
CONTRASTS, DEVIATIONS and MAXCYCLE options operate as in the ANOVA directive (4.1.2).

In Example 8.1.3, we use AREPMEASURES to continue the analysis of the data above. Notice
that the data are specified (using the DATA parameter) as a list of variates, rather than in a
pointer. The TIMEPOINTS option can supply a variate or text to define numbers or labels to use
in output to identify the time point corresponding to each DATA variate. If this is unset, the labels
are formed automatically from the identifiers of the DATA variates themselves. In line 30 we
include only the observations that took place after the treatments were applied (Hist[0] could
of course be included as a covariate). AREPMEASURES uses ANOVA to produce the analysis of
variance, but sets a private parameter inside the ANOVA save structure so that the degree of
freedom adjustment is applied when calculating probabilities for variance ratios or least
significant differences.
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Example 8.1.3

  29  AREPMEASURES [PRINT=epsilon,correlation,vcovariance,test; APRINT=aov;\
  30    FPROBABILITY=yes] Hist[1,3,5]

Variance-covariance matrix
--------------------------

      Hist[1]   1      0.6702
      Hist[3]   2      0.6967      0.8064
      Hist[5]   3      0.5722      0.6841      0.5932
                            1           3           5

Common variance:   0.6899
Common covariance: 0.6510

Correlation matrix
------------------

      Hist[1]   1      1.0000
      Hist[3]   2      0.9478      1.0000
      Hist[5]   3      0.9075      0.9891      1.0000
                            1           3           5

Common correlation: 0.9436

Box's tests for compound symmetry of the covariance matrix
----------------------------------------------------------

Chi-square 18.82 on 4 degrees of freedom: probability 0.001

F-test 4.70 on 4 and 2904 degrees of freedom: probability 0.001

Greenhouse-Geisser epsilon
--------------------------

epsilon 0.7005

Analysis of variance
====================

Variate: Hist[1,3,5]

Source of variation     d.f.(m.v.)      s.s.       m.s.    v.r.  F pr.

Subject stratum
Drug                       1         7.45319    7.45319    4.05  0.067
Histlev                    1        25.54624   25.54624   13.88  0.003
Drug.Histlev               1         8.79034    8.79034    4.77  0.049
Residual                  12        22.09389    1.84116   48.88

Subject.Time stratum
d.f. correction factor 0.7005
Time                       2         1.37618    0.68809   18.27  <.001
Time.Drug                  2         0.16759    0.08380    2.22  0.150
Time.Histlev               2         1.97925    0.98963   26.27  <.001
Time.Drug.Histlev          2         0.21265    0.10633    2.82  0.102
Residual                  23(1)      0.86641    0.03767

Total                     46(1)     68.31623

(d.f. are multiplied by the correction factors before calculating
F probabilities)



8.1  Repeated measurements 1003

The DATA variates are appended into a single variate for the analysis, and the block and treatment
factors are expanded to match. You can specify a pointer using the SAVEFACTORS option to save
the expanded factors. The elements of the pointer are labelled by the factor names, and the time
factor is also included, with the label 'Time factor'. You would need to use these, for
example, if you wanted to plot the means using AGRAPH. So, for example, we could

AREPMEASURES [PRINT=epsilon,correlation,vcovariance,test;\
  APRINT=aov; FPROBABILITY=yes; SAVEFACTORS=f] Hist[1,3,5]
AGRAPH [METHOD=lines] f['Time factor']; GROUPS=f['Histlev']

to make a line plot of the time by Histlev means.
An alternative way of arranging the data is to put the observations from all the times into a a

single DATA variate. The TIMEPOINTS option must then be set to a factor indicating the time of
each observation. The block and treatment factors must be have been defined to match the DATA
variate (i.e. with a unit for every time × subject combination, all in the same order as in the DATA
variate itself), and each subject should be represented by a unique combination of the block
factors. If not, Genstat prints a warning and assumes that the subjects occur in the same order
within each time. To simplify the use of AREPMEASURES in general programs, the SAVEFACTORS
pointer is also formed when the data are in a single variate. (However, it then contains the
original factors.)

The ASAVE option allows you to save the save structure from the ANOVA analysis.

8.1.4 Multivariate analysis of variance

Multivariate analysis of variance provides an alternative way of producing a combined analysis
of all the repeated measurements, generating statistics that make no assumptions about the
covariance structure of the measurements. With balanced data (analysable using the ANOVA
directive), this can be done using the MANOVA procedure described in Section 6.6.1.
Alternatively, you can use the RMULTIVARIATE procedure described in Section 6.6.2. Example
8.1.4 uses MANOVA to continue the analysis of the data in Examples 8.1.1 - 8.1.3. Notice that we
do not need to specify the model to be analysed. There is only one error term, and so the
BLOCKSTRUCTURE option can be omitted. The TREATMENTSTRUCTURE option (which defines
the treatment terms for the analysis) can also be omitted as Genstat will then take the treatment
formula specified by the TREATMENTSTRUCTURE directive in line 27 of Example 8.1.2.

Example 8.1.4

  31  MANOVA Hist[]

Multivariate analysis of variance
=================================

Y-variates: Hist[0], Hist[1], Hist[3], Hist[5].

Test statistics
===============

        Term  d.f.  Wilks' lambda  Rao F  n.d.f.  d.d.f. F prob.
        Drug     1         0.2945   4.79       4       8   0.029
     Histlev     1         0.1127  15.75       4       8   0.001
Drug.Histlev     1         0.1806   9.07       4       8   0.005

        Term  d.f.  Pillai-Bartlett  Roy's maximum  Lawley-Hotelling
                              trace      root test             trace
        Drug     1           0.7055         0.7055             2.396
     Histlev     1           0.8873         0.8873             7.873
Drug.Histlev     1           0.8194         0.8194             4.537



1004 8  Spatial and temporal modelling

8.1.5 Ante-dependence structure

The lack of structure assumed for the covariances in multivariate analysis of variance means that
it can be inefficient with moderate or small data sets. In particular, it cannot be used at all if the
number of time points is greater than the number of residual degrees of freedom.

Ante-dependence analysis can be regarded as a generalization of multivariate analysis of
variance that allows for the patterns of covariances that typify repeated measurements. The
variates observed at the successive times are said to have an ante-dependence structure of order
r if each ith variate (i>r), given the preceding r, is independent of all further preceding variates
(Gabriel 1961, 1962). An ante-dependence structure of maximum order (number of times minus
one) is equivalent to the assumption of an unstructured variance-covariance matrix made in
multivariate analysis of variance. Procedure ANTORDER calculates statistics to assist in the
selection of an appropriate order of ante-dependence structure for sets of repeated measures data,
using the method of Kenward (1987). Once the order of ante-dependence structure has been
established, the individual variates can be analysed individually by analysis of covariance,
adjusting for the r previous variates, to assess the times at which treatment effects occurred.
Alteratively, procedure ANTTEST can be used to perform overall tests of treatment effects.
Knowledge of the ante-dependence structure may also be used by procedure ANTMVESTIMATE
to estimate missing values.

ANTORDER procedure
Assesses order of ante-dependence for repeated measures data (M.S. Ridout & R.W. Payne).

Options
TREATMENTSTRUCTURE = formula Treatment formula for the model at each time; if this is

not set, the default is taken from the setting (which must
already have been defined) of the
TREATMENTSTRUCTURE directive

BLOCKSTRUCTURE = formula Block formula for the model at each time; if this is not
set, the default is taken from any existing setting
specified by the BLOCKSTRUCTURE directive and if
neither has been set the design is assumed to be
unstratified (i.e. to have a single error term)

MAXORDER = scalar Maximum order against which to test; default is
maximum possible order

FACTORIAL = scalar Limit on the number of factors in a treatment term
TIME = factor Indicates the time of each observation when there is a

single DATA variate

Parameter
DATA = variates Data observations either in a list of variates (one for

each time), or a single variate (with TIME set to a factor
indicating the time of each observation)

The model for the analysis is specified by options of the procedure. TREATMENTSTRUCTURE
specifies a model formula to define the treatment terms in the analysis; if this is unset,
ANTORDER will use the model already defined by the TREATMENTSTRUCTURE directive, or will
fail if that too has not been set. BLOCKSTRUCTURE defines the underlying structure of the design,
and ANTORDER will use the model (if any) previously defined by the BLOCKSTRUCTURE directive
if this is not set; these can both be omitted if there is only one error term (i.e. if the design is
unstratified). Option MAXORDER specifies the maximum order of ante-dependence structure to
be tested; by default, this is taken as the maximum possible order (see Kenward 1987). So in
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Example 8.1.5a we can again use the default values, taking the treatment formula specified by
TREATMENTSTRUCTURE in line 27 of Example 8.1.2.

The data are specified by the DATA parameter in one of two ways. The first is to supply a list
of variates, each one containing the measurements made on the subjects at one of the successive
occasions on which they were observed.

The second possibility is to supply a single DATA variate containing the data from all the
times. The TIME option must then be set to a factor indicating the time of each observation. The
block and treatment factors must be defined to match the DATA variate, and each subject should
be represented by a unique combination of the block factors. If not, Genstat prints a warning and
assumes that the subjects occur in the same order within each time.

The data may contain missing values but these should represent "dropouts": that is, once
subjects start to record missing values, their observations should continue to be missing at all
subsequent times.

Example 8.1.5a

  32  ANTORDER Hist[]

Sequential comparison of ante-dependence structures
===================================================

                         Unadjusted                Adjusted
                         chi-square  Adjustment  chi-square
                          statistic      factor   statistic   d.f.     Prob
  Order  0  v. order  1      110.68       0.632       70.00      3   <0.001
  Order  1  v. order  2       20.46       0.559       11.44      2    0.003
  Order  2  v. order  3        0.87       0.467        0.41      1    0.524

Comparison of ante-dependence structures with max order
=======================================================

                         Unadjusted                Adjusted
                         chi-square  Adjustment  chi-square
                          statistic      factor   statistic   d.f.     Prob
  Order  0  v. order  3      132.01       0.576       75.97      6   <0.001
  Order  1  v. order  3       21.33       0.527       11.25      3    0.010
  Order  2  v. order  3        0.87       0.467        0.41      1    0.524

The tables of Chi-square values show that an ante-dependence structure of order 2 represents the
structure of the data better than an ante-dependence structure of order 1, but that it is not
necessary to move to a structure of order 3. Assuming order 2, we can now use procedure
ANTTEST to calculates overall tests for the treatment terms.

ANTTEST procedure
Calculates overall tests based on a specified order of ante-dependence (R.W. Payne & M.S.
Ridout).

Options
TREATMENTSTRUCTURE = formula Treatment formula for the model at each time; if this is

not set, the default is taken from the setting (which must
already have been defined) of the
TREATMENTSTRUCTURE directive

BLOCKSTRUCTURE = formula Block formula for the model at each time; if this is not
set, the default is taken from any existing setting
specified by the BLOCKSTRUCTURE directive and if
neither has been set the design is assumed to be
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unstratified (i.e. to have a single error term)
ORDER = scalar Number of past times for which to adjust; default is

maximum possible order
FACTORIAL = scalar Limit on the number of factors in a treatment term
TIME = factor Indicates the time of each observation when there is a

single DATA variate

Parameter
DATA = variates Data observations either in a list of variates (one for

each time), or a single variate (with TIME set to a factor
indicating the time of each observation)

The DATA parameter and the TREATMENTSTRUCTURE and BLOCKSTRUCTURE options of
ANTTEST are as in ANTORDER. Option ORDER specifies the order of ante-dependence structure
to be assumed for the tests; by default, this is taken as the maximum possible order.

Example 8.1.5b

  33  ANTTEST [ORDER=2] Hist[]

Tests of Drug assuming ante-dependence structure of order 2
-----------------------------------------------------------

        Test for change at each time   Overall  test up to each time
 time  Statistic   d.f.  Probability  Statistic    d.f.  Probability
    1      0.003      1        0.960      0.003       1        0.960
    2      4.063      1        0.044      4.251       2        0.119
    3      7.601      1        0.006     12.394       3        0.006
    4      0.087      1        0.768     11.823       4        0.019

Overall test using data from all the times

statistic 11.823, d.f. 4, probability 0.019

Tests of Histlev assuming ante-dependence structure of order 2
--------------------------------------------------------------

        Test for change at each time   Overall  test up to each time
 time  Statistic   d.f.  Probability  Statistic    d.f.  Probability
    1      2.318      1        0.128      2.318       1        0.128
    2     20.232      1       <0.001     23.368       2       <0.001
    3      3.583      1        0.058     26.149       3       <0.001
    4      0.513      1        0.474     25.329       4       <0.001

Overall test using data from all the times

statistic 25.329, d.f. 4, probability <0.001

Tests of Drug.Histlev assuming ante-dependence structure of order 2
-------------------------------------------------------------------

        Test for change at each time   Overall  test up to each time
 time  Statistic   d.f.  Probability  Statistic    d.f.  Probability
    1      0.141      1        0.707      0.141       1        0.707
    2      5.783      1        0.016      6.182       2        0.045
    3      7.636      1        0.006     14.268       3        0.003
    4      3.512      1        0.061     17.578       4        0.001

Overall test using data from all the times
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statistic 17.578, d.f. 4, probability 0.001

The overall test produced by ANTTEST confirms that there are differences in all the treatment
terms. The right-hand columns of each table contain overall tests using the data up to each
successive time, indicating how the weight of evidence builds up as the time progresses. The left-
hand columns assess the information contributed by each time that is additional to that provided
by earlier times (Kenward 1987, page 303); provided (as here) there is a reasonably large
correlation between measurements, they can be construed as testing for a treatment effect at each
time point.

Knowledge of the ante-dependence structure can be used to estimate missing values in simple
designs, as shown in Example 8.1.5c. The procedure, ANTMVESTIMATE, allows for a single
treatment factor, and assumes that there are replicate observations within each of its levels.

ANTMVESTIMATE procedure
Estimates missing values in repeated measurements (M.G. Kenward & R.W. Payne).

Options
PRINT = string tokens Controls output from the procedure (meanprofiles);

default * i.e. none
GROUPS = factor Factor indicating the plot on which each sequence of

observations was made
ORDER = scalar Order of ante-dependence structure (i.e. number of past

times for which to adjust)

Parameters
DATA = variates Observations at each time
NEWDATA = variates Data variates with missing observations replaced by

their estimates
MEANPROFILE = tables Estimated mean profiles at each time

The treatment factor is specified using the GROUPS option. In Example 8.1.5c we first need to
use procedure FACPRODUCT first, to construct a single factor from the combinations of Drug and
Histlev. The ORDER option specifies the order of ante-dependence structure; if this is not set,
ANTMVESTIMATE takes the maximum possible order (number of times minus one). Using this
assumption, ANTMVESTIMATE predicts the missing values and calculates the mean profiles at
each time. These can be saved, in tables indexed by the GROUPS factor, using the
MEANPROFILES parameter, or printed by setting the PRINT option to meanprofiles. The
NEWDATA parameter allows new variates to be saved with the missing values replaced by their
estimates.

Example 8.1.5c

  34  FACPRODUCT !p(Drug,Histlev); Treat
  35  ANTMVESTIMATE [GROUPS=Treat; ORDER=2] Hist[]; NEWDATA=RepmvH[0,1,3,5]
  36  PRINT Hist[0],RepmvH[0],Hist[1],RepmvH[1],\
  37    Hist[3],RepmvH[3],Hist[5],RepmvH[5]; FIELD=9,10

  Hist[0] RepmvH[0]  Hist[1] RepmvH[1]  Hist[3] RepmvH[3]  Hist[5] RepmvH[5]
   -3.219    -3.219   -1.609    -1.609   -2.303    -2.303   -2.526    -2.526
   -3.912    -3.912   -2.813    -2.813   -3.912    -3.912   -3.912    -3.912
   -2.659    -2.659    0.336     0.336   -0.734    -0.734   -1.427    -1.427
   -1.772    -1.772   -0.562    -0.562   -1.050    -1.050   -1.427    -1.427
   -2.303    -2.303   -2.408    -2.408   -2.040    -2.040   -1.966    -1.966
   -2.120    -2.120   -2.207    -2.207   -2.303    -2.303        *    -2.399
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   -2.659    -2.659   -2.659    -2.659   -2.659    -2.659   -2.659    -2.659
   -2.996    -2.996   -2.659    -2.659   -2.813    -2.813   -2.659    -2.659
   -3.507    -3.507   -0.478    -0.478   -1.171    -1.171   -1.514    -1.514
   -3.507    -3.507    0.049     0.049   -0.315    -0.315   -0.511    -0.511
   -2.659    -2.659   -0.186    -0.186    0.068     0.068   -0.223    -0.223
   -2.408    -2.408    1.141     1.141    0.723     0.723    0.207     0.207
   -2.303    -2.303   -2.408    -2.408   -2.408    -2.408   -2.526    -2.526
   -2.526    -2.526   -2.408    -2.408   -2.408    -2.408   -2.303    -2.303
   -2.040    -2.040   -2.303    -2.303   -2.120    -2.120   -2.120    -2.120
   -2.813    -2.813   -2.996    -2.996   -2.996    -2.996   -2.996    -2.996

8.1.6 Regression with correlated errors

RAR1 procedure
Fits regressions with an AR1 or a power-distance correlation model (R.W. Payne).

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, cparameter,
cmonitoring, cplot); default mode, summ, esti,
cpar

CALCULATION = expression structures
Calculation of explanatory variates involving nonlinear
parameters

CONSTANT = string token How to treat the constant (estimate, omit); default
esti

FACTORIAL = scalars Limit for expansion of model terms; default 3
POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no
DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no

TPROBABILITY = string token Printing of probabilities for t-statistics (yes, no); default
no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary, seobservations is
relevant only for a Normally distributed response, and
%cv only for a gamma-distributed response
(%variance, %ss, adjustedr2, r2,
seobservations, dispersion, %cv,
%meandeviance, %deviance, aic, bic, sic); default
%var, seob if DIST=normal, %cv if DIST=gamma, and
disp for other distributions

SELINEAR = string token Whether to calculate s.e.s for linear parameters when
nonlinear parameters are also estimated (yes, no);
default no

WEIGHTS = variate Prior weights for the units
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CMETHOD = string token Estimation method (maximumlikelihood, reml);
default maxi

CPARAMETER = scalars Correlation parameter
CPOSITIONS = variate Correlation positions
CGROUPS = factor Groupings of correlation positions
MAXCYCLE = scalars Maximum number of iterations; default 100
TOLERANCE = scalars Convergence criterion; default 10!5

Parameter
TERMS = formula Terms to be fitted

RAR1 allows you to fit regression and nonlinear models to data, such as repeated measurements,
where the residuals may follow an AR1 or a power-distance correlation model. The
CPOSITIONS option specifies the coordinates of the observations in the direction (e.g. time)
along which the correlation model operates. You can also use the CGROUPS option to specify a
factor to define groups of observations for the model ! the correlation model is then defined only
over the observations that belong to the same groups. The parameter phi of the AR1 or power-
distance model is estimated within RAR1, and is assumed to be the same for every group. (Note
that the model will be AR1 if the observations are each one unit apart within each group ! the
power-distance model is the natural extension of the AR1 model to unequally-spaced data.) You
can save the estimated value of phi, in a scalar, using the CPARAMETER option.

Otherwise, RAR1 is used much like FIT (3.1.2). It must be preceded by a MODEL statement
(3.1.1). You can also give an RCYCLE statement (3.5.4) first if you want to estimate nonlinear
parameters. The MODEL statement must have the WEIGHT option set to a symmetrix matrix, which
need not have any values defined. RAR1 will set the values according to the distances
(CPOSITIONS), groups (CGROUPS) and estimated parameter phi. These values remain set after
RAR1. So you can display or save further output using RDISPLAY (3.1.3), RGRAPH (3.1.6),
RCHECK (3.1.7) or RKEEP (3.1.4), in the usual way. You could also, for example, use RAR1 to fit
a full set of regression terms, and then use DROP (3.2.4) to investigate smaller models while still
using the phi estimate from the full model. RAR1 has a TERMS parameter to specify the terms to
be fitted, like the parameter of FIT. It also has options CALCULATION, CONSTANT, FACTORIAL,
POOL, DENOMINATOR, NOMESSAGE, FPROBABILITY, TPROBABILITY, SELECTION and
SELINEAR which operate like those of FIT. Note, however, that restrictions are not allowed.

The PRINT option is also similar, except that it has three additional settings:
cparameter prints the estimated value of the correlation phi, together

with a test for phi=0,
cmonitoring provides monitoring information for the estimation of phi,
cplot plots the likelihood (or REML likelihood) for phi.

Note, the likelihood values omit some constant terms that depend only on the regression terms.
The default is PRINT=model,summary,estimates,cparameter .

The other options control the estimation. The CMETHOD option controls whether phi is
estimated for regression models by REML or by maximum likelihood (default maxi); with
nonlinear models only maximum likelihood is available. The MAXCYCLE option defines the
maximum number of iterations (default 100) used to estimate phi, and the TOLERANCE option
specifies the convergence criterion i.e. the accurary to which phi is to be estimated (default 10!5).

Example 8.1.6a analyses the data from Example 7.4, and fits a regression of gas demand on
coldness, taking account of the correlations between the observations. Note that the analysis
differs from the time-series analysis given earlier, as there is now no Box-Cox transformation,
and the AR1 parameter phi is estimated by REML.
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Example 8.1.6a

  15  CALCULATE nunits = NVALUES(Demand)
  16  VARIATE   [VALUES=1...nunits] Time
  17  SYMMETRIC [ROWS=nunits] wmat
  18  MODEL     [WEIGHTS=wmat] Demand
  19  RAR1      [PRINT=model,summary,estimates,cparameter; CMETHOD=reml;\
  20            CPOSITIONS=Time] Coldness

Regression analysis
===================

 Response variate: Demand
    Weight matrix: wmat based on power-distance correlation model
     Fitted terms: Constant, Coldness

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       1       83793.      83792.9    151.68
Residual       102       56349.        552.4
Total          103      140142.       1360.6

Percentage variance accounted for 59.4
Standard error of observations is estimated to be 23.5.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
            2        333.3       -3.14
            3        346.0       -2.76
           28        463.4        3.04
           30        443.8        3.20
           35        449.9        3.49
           36        471.8        4.81
           37        458.7        3.99
           38        408.5        3.46
           56        239.3       -3.59
           86        404.0        3.46
           88        391.1        3.08
           89        411.1        2.94
           90        405.5        3.07
           92        371.7        2.94

Estimates of parameters
-----------------------

Parameter      estimate         s.e.    t(102)
Constant         395.45         6.81     58.05
Coldness         0.9545       0.0775     12.32

Correlation parameter estimate
------------------------------

Phi: 0.7233
Test for phi non-zero: chi-square 48.793 on 1 d.f., probability <0.001

Procedure NLAR1 operates similarly to RAR1 but provides the ability to fit standard curves as
well as nonlinear models.
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NLAR1 procedure
Fits curves with an AR1 or a power-distance correlation model (R.W. Payne).

Options
PRINT = string tokens What to print (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, cparameter,
cmonitoring, cplot); default mode, summ, esti,
cpar

CURVE = string token Which standard curve to fit (exponential,
dexponential, cexponential, lexponential,
logistic, glogistic, gompertz, ldl, qdl, qdq,
fourier, dfourier, gaussian, dgaussian); default
expo

SENSE = string token Sense of a standard curve (right, left); default righ
ORIGIN = scalars Constrained origin for a standard curve; default * i.e.

not constrained
NONLINEAR = string token How to treat nonlinear parameters between groups in

standard curves (common, separate); default comm
CALCULATION = expression structures

Define a nonlinear model involving explanatory variates
and nonlinear parameters; default * implies that a
standard curve is fitted

CONSTANT = string token How to treat the constant (estimate, omit); default
esti

FACTORIAL = scalars Limit for expansion of model terms; default 3
POOL = string token Whether to pool ss in accumulated summary between all

terms fitted in a linear model (yes, no); default no
DENOMINATOR = string token Whether to base ratios in accumulated summary on rms

from model with smallest residual ss or smallest residual
ms (ss, ms); default ss

NOMESSAGE = string tokens Which warning messages to suppress (dispersion,
leverage, residual, aliasing, marginality,
vertical, df, inflation); default *

FPROBABILITY = string token Printing of probabilities for variance and deviance ratios
(yes, no); default no

SELECTION = string tokens Statistics to be displayed in the summary of analysis
produced by PRINT=summary (%variance, %ss,
adjustedr2, r2, seobservations, dispersion,
%cv, %meandeviance, %deviance, aic, bic, sic);
default %var, seob

SELINEAR = string token Whether to calculate s.e.s for linear parameters when
nonlinear parameters are also estimated (yes, no);
default no

WEIGHTS = variate Prior weights for the units
CPARAMETER = scalars Correlation parameter
CPOSITIONS = variate Correlation positions
CGROUPS = factor Groupings of correlation positions
MAXCYCLE = scalars Maximum number of iterations; default 100
TOLERANCE = scalars Convergence criterion; default 10!5
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Parameter
TERMS = formula Terms to be fitted

User-defined nonlinear models are defined using the CALCULATION option, as in RAR1.
However, NLAR1 also has extra options CURVE, SENSE, ORIGIN and NONLINEAR that are used
to specify a standard curve, when CALCULATION is not set. These options operate exactly like
the identically-named options of FITCURVE (see 3.7.1), which is used inside NLAR1 to fit the
curves. Otherwise, the options and parameter of NLAR1 operate exactly like those of RAR1,
except that TERMS must contain no more than one variate and/or factor for a standard curve, and
that CPOSITIONS and CGROUPS will use that variate and factor, respectively, as their default if
they are unset.

Example 8.1.6b uses NLAR1 to fit an exponential curve. The message that the residuals do not
appear to be random is not surprising given their correlation structure (FITCURVE knows only
that there is a weight matrix, not how it was derived by NLAR1).

Example 8.1.6b

   2  VARIATE   [VALUES=5...30] x
   3  &         [VALUES=1.30,3.55,5.13,6.48,7.85,8.96,9.84,10.91,11.29,11.76,\
   4            12.12,12.55,12.70,13.14,13.47,13.78,14.01,14.11,14.55,14.71,\
   5            14.57,14.30,14.67,14.68,15.03,15.00] y
   6  SYMMETRIC [ROWS=26] wt
   7  MODEL     [WEIGHTS=wt] y
   8  NLAR1     [CURVE=exponential] x

Nonlinear regression analysis
=============================

 Response variate: y
    Weight matrix: wt based on power-distance correlation model
      Explanatory: x
     Fitted Curve: A + B*(R**X)
      Constraints: R < 1

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       2     196.4891     98.24454   3132.82
Residual        23       0.7213      0.03136
Total           25     197.2104      7.88841

Percentage variance accounted for 99.6
Standard error of observations is estimated to be 0.177.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
            8       10.910        2.46
           13       12.700       -2.37
           22       14.300       -2.22

* MESSAGE: the residuals do not appear to be random;
           for example, fitted values in the range 11.793 to 14.177
           are consistently larger than observed values
           and fitted values in the range 7.808 to 11.226
           are consistently smaller than observed values.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
            1        1.300        0.50
            2        3.550        0.28
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Estimates of parameters
-----------------------

Parameter         estimate         s.e.
R                  0.85432      0.00282
B                  -30.166        0.581
A                  15.1216       0.0732

Correlation parameter estimate
------------------------------

Phi: 0.4008
Test for phi non-zero: chi-square 4.313 on 1 d.f., probability 0.038

8.2 Survival analysis

Survival data are data in which the response variate is, for example, the lifetime of a component
or the survival time of a patient. Typically these are censored, i.e. some individuals survive
beyond the end of the study, and so their survival time is unknown. The survivor function F(t)
is defined as the probability that an individual is still surviving at time t.

The Kaplan-Meier estimate of the survivor function is simply the proportion surviving out of
the number at risk in each time interval. This can be calculated using the KAPLANMEIER
procedure.

8.2.1 Kaplan-Meier estimation

KAPLANMEIER procedure
Calculates the Kaplan-Meier estimate of the survivor function (J.T.N.M. Thissen).

Options
PRINT = string tokens What output to print and whether to display the Kaplan-

Meier estimate in a graph (estimate, mean,
quantiles, summary, graph); default esti, grap

GRAPHICS = string token Type of graphics to use (lineprinter,
highresolution); default high

TITLE = text General title for the graph; default *
WINDOW = scalar Window number for the high-resolution graph; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);
default clea

PROBABILITY = scalar Probability level of the confidence interval for the
Kaplan-Meier estimates; default 0.95

XLOWER = scalar Lower bound for x-axis; default 0
XUPPER = scalar Upper bound for x-axis; default * i.e. a value slightly

larger than the maximum of the TIME parameter (or
EVENT parameter if TIME is not set) is used

PLOT = string tokens What additional plotting features to include
(referenceline, censored); default * i.e. none

PERCENTILES = variate or scalar Percentiles at which to estimate quantiles of survival
times; default 25,50,75
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Parameters
TIME = variates Observed timepoints
CENSORED = variates Variate specifying whether the corresponding element of

TIME is censored (1) or not (0); default is to assume no
censoring

GROUPS = factors Factor specifying the different groups for which the
survivor function is estimated

EVENT = variates Saves the distinct TIME values when TIME is set;
otherwise supplies an input variate specifying the
endpoint of each interval

NDEATH = variates Saves the number of deaths at each EVENT when TIME is
set; otherwise supplies an input variate specifying the
number of deaths in each interval

NATRISK = variates Saves the number of units at risk at each EVENT when
TIME is set; otherwise supplies an input variate with the
number at risk in each interval

ESTIMATE = variates Saves the Kaplan-Meier estimates of the survivor
function

NEWGROUPS = factors Saves the grouping of the EVENT, NDEATH, NATRISK
and ESTIMATE variates when TIME is set

KAPLANMEIER allows for two different types of data. In the first type, illustrated at the start of
Example 8.2.1 and Figure 8.2.1a, the timepoints are all accurately observed. The observed
timepoints or the timepoints at which censoring took place are then specified using the TIME
parameter. The CENSORED parameter allows you to specify a variate containing the values 0 and
1 to indicate whether the corresponding element of TIME is censored (1) or not (0); if there was
no censoring, this can be omitted. The GROUPS parameter can be used to specify a factor to
indicate different groups whose survivor functions are to be estimated separately. The distinct
TIME values can be saved using the EVENT parameter, and the number of deaths and the number
of units at risk at each individual EVENT can be saved using parameters NDEATH and NATRISK
respectively. The Kaplan-Meier estimate can be saved with the ESTIMATE parameter. The
NEWGROUPS parameter can be used to save a factor indicating the group structure of the output
variates.

The second type of data, shown in the second half of Example 8.2.1 and Figure 8.2.1b, is
relevant when the units are observed at the end of time-intervals. The exact times are then
unknown and the data are defined using parameters EVENT, NDEATH and NATRISK to specify
respectively the timepoints, the number of deaths and the number at risk at the end of each
interval. The GROUPS parameter can again be used to request separate group estimates.

The PRINT option selects the output to be displayed with settings:
estimate the events, number of deaths, number of units at risk and

the Kaplan-Meier estimate with a confidence interval,
summary summary of censored and uncensored observations,
quantiles estimates quantiles of the distribution of survival times

(observed timepoints only),
mean mean and standard error (observed timepoints only),
graph plots the Kaplan-Meier estimate against the time points.

The default is PRINT=estimates,graph.
The probability level for the Kaplan-Meier estimate confidence interval can be set using the

PROBABILITY option; by default this is 0.95. Percentiles for estimating survival times can be
set using the PERCENTILES option; by default this is 25,50,75. If PRINT=graph is set, then the
PLOT option can be used to include censored observations and a reference line at S(t)=0.5 to
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indicate the median survival time. If GRAPHICS=highresolution different lines are drawn for
different groups, whereas GRAPHICS=lineprinter produces separate graphs for the different
groups. Lower and upper bounds for the x-axis can be set by options XLOWER and XUPPER, the
TITLE option can specify a title for the plots. Options WINDOW and KEYWINDOW control the
windows used for high-resolution graphs.

Example 8.2.1

   2  " First type of data."
   3  FACTOR [LEVELS=2; VALUES=19(1), 21(2)] Sample
   4  VARIATE [NVALUES=40] Day, Censored
   5  READ Day, Censored

    Identifier   Minimum      Mean   Maximum    Values   Missing
           Day     142.0     227.9     344.0        40         0
      Censored    0.0000    0.1000     1.000        40         0    Skew

  10  XAXIS 1; TITLE='Days'
  11  YAXIS 1; TITLE='Survivor function S'
  12  KAPLANMEIER [TITLE='Data from Table 1.1 in Kalbfleisch and Prentice']\

Kaplan-Meier estimation
=======================

Group 1
-------

Lower and Upper are the boundaries of the 95% confidence interval

 Time of   Number of      Number                  Kaplan-Meier
   death      deaths     at risk          Lower       estimate          Upper
   143.0           1          19          0.681          0.947          0.992
   164.0           1          18          0.641          0.895          0.973
   188.0           2          17          0.532          0.789          0.915
   190.0           1          15          0.479          0.737          0.881
   192.0           1          14          0.428          0.684          0.844
   206.0           1          13          0.379          0.632          0.804
   209.0           1          12          0.332          0.579          0.763
   213.0           1          11          0.287          0.526          0.719
   216.0           1          10          0.244          0.474          0.673
   220.0           1           8          0.196          0.414          0.621
   227.0           1           7          0.152          0.355          0.566
   230.0           1           6          0.112          0.296          0.509
   234.0           1           5          0.076          0.237          0.447
   246.0           1           3          0.031          0.158          0.374
   265.0           1           2          0.006          0.079          0.288
   304.0           1           1          0.000          0.000          0.000

Group 2
-------

Lower and Upper are the boundaries of the 95% confidence interval

 Time of   Number of      Number                  Kaplan-Meier
   death      deaths     at risk          Lower       estimate          Upper
   142.0           1          21          0.707          0.952          0.993
   156.0           1          20          0.670          0.905          0.975
   163.0           1          19          0.620          0.857          0.952
   198.0           1          18          0.569          0.810          0.924
   205.0           1          16          0.514          0.759          0.892
   232.0           2          15          0.412          0.658          0.820
   233.0           4          13          0.235          0.455          0.652
   239.0           1           9          0.196          0.405          0.605
   240.0           1           8          0.159          0.354          0.556
   261.0           1           7          0.124          0.304          0.506
   280.0           2           6          0.063          0.202          0.397
   296.0           2           4          0.017          0.101          0.275
   323.0           1           2          0.003          0.051          0.207
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Figure 8.2.1a Figure 8.2.1b

  14  " Second type of data."
  15  VARIATE [VALUES=  1,   2,   3,   4,   5,  6,  7, 8] Year
  16  VARIATE [VALUES=358, 269, 181, 136, 112, 68, 26, 6] Natrisk
  17  VARIATE [VALUES= 89,  88 , 45,  24,   8, 12,  0, 0] Ndeath
  18  KAPLANMEIER EVENT=Year; NDEATH=Ndeath; NATRISK=Natrisk

Kaplan-Meier estimation
=======================

Lower and Upper are the boundaries of the 95% confidence interval

 Time of   Number of      Number                  Kaplan-Meier
   death      deaths     at risk          Lower       estimate          Upper
   1.000          89         358          0.703          0.751          0.793
   2.000          88         269          0.453          0.506          0.556
   3.000          45         181          0.330          0.380          0.430
   4.000          24         136          0.265          0.313          0.361
   5.000           8         112          0.244          0.291          0.338
   6.000          12          68          0.194          0.239          0.287
   7.000           0          26          0.194          0.239          0.287
   8.000           0           6          0.194          0.239          0.287

8.2.2 Nonparametric tests

RSTEST procedure
Compares groups of right-censored survival data by nonparametric tests (D.A. Murray).

Options
PRINT = string token Controls printed output (test); default test
METHOD = string tokens Types of test required (logrank, breslow,

petoprentice, taroneware); default logr, bres,
peto, taro

BLOCKS = factor Factor specifying groupings for a stratified test; default
* i.e. none
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Parameters
TIMES = variates Observed timepoints
CENSORED = variates Variate specifying whether the corresponding element of

TIMES is censored (1) or not (0)
GROUPS = factors Factor specifying the different groups
TESTS = pointers Pointer to variates (length 3) to save test statistic, d.f.

and probability value for each chosen method

RSTEST calculates nonparametric tests to compare the survival distributions of two or more
groups of right-censored survival data. The type of test to be performed is specified by the
METHOD option, with settings:

logrank log-rank test (see Collett 1994, Section 2.5.2);
breslow Wilcoxon (Breslow) test (see Collett 1994, Section 2.5.3);
petoprentice Wilcoxon (Peto-Prentice) test (see Collett 1994, Section

11.1.2);
taroneware Tarone-Ware test (see Collett 1994, Section 11.1.2).

The observed timepoints or the timepoints at which censoring took place are specified using
the TIMES parameter. The CENSORED parameter specifies a variate containing the value one if
the corresponding element of TIMES is censored or zero if it was not. CENSORED can be omitted
if there was no censoring. The groups to be compared are indicated using the GROUPS parameter.
The BLOCKS option can be used to specify a factor to indicate different groupings for a stratified
test, for example these might represent different centres or laboratories. If the input variates or
factors are restricted, the tests will be based only on the units not excluded by the restriction.

The TESTS parameter allows the statistics to be saved in a pointer to a set of variates (length
3) for each of the chosen methods containing the statistic, its degrees of freedom and probability
level. If you are saving the tests you may want to set option PRINT=* to stop them being printed.

Example 8.2.2 illustrates the use of RSTEST, using data from Collett (1994).

Example 8.2.2

   2  " Survival times of melanoma patients in two treatment
  -3    groups stratified by age-group (Collett 1994, page 48)."
   4  VARIATE  [NVALUES=30] Day, Censor
   5  READ     Day,Censor

    Identifier   Minimum      Mean   Maximum    Values   Missing
           Day     4.000     15.30     34.00        30         0
        Censor    0.0000    0.6667     1.000        30         0

   9  FACTOR   [LEVELS=3;LABELS=!t('21_40','41_60','61_')] AgeGroup;\
  10           VALUES=!(6(1),3(2),2(3),9(1),7(2),3(3))
  11  FACTOR   [LEVELS=2;LABELS=!t('BCG','c.parvum')] Treat;\
  12           VALUES=!(11(1),19(2))
  13  RSTEST   [BLOCKS=AgeGroup] Day; CENSORED=Censor; GROUPS=Treat

Test Statistics for Equality of Survival Curves for Treat
=========================================================

     Stratified by AgeGroup

                           Statistic  d.f.  probability
                 Log-rank      0.688     1        0.407
       Wilcoxon (Breslow)      0.179     1        0.673
              Tarone-Ware      0.405     1        0.524
 Wilcoxon (Peto-Prentice)      0.666     1        0.414
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8.2.3 Life-table estimates

RLIFETABLE procedure
Calculates the life-table estimate of the survivor function (D.A.Murray).

Options
PRINT = string tokens Controls printed output (lifetable); default life
PLOT = string tokens Type of graph to be plotted (survivor, hazard, pdf);

default surv, haza, pdf
INTERVAL = scalar or variate A scalar defining the width of the intervals or a variate

containing the boundaries of the intervals

Parameters
TIMES = variates Observed timepoints
CENSORED = variates Variate specifying whether the corresponding element of

each TIMES variate is censored (1) or represents failures
(0)

FREQUENCY = variates Variate containing frequencies for the elements of
TIMES; by default these are all assumed to be 1

GROUPS = factors Factor specifying the different groups for which to
estimate life tables

LIFETABLE = pointers Pointer to variates to save the information from each life
table

RLIFETABLE calculates the life-table estimate, or actuarial estimate, of the survivor function
(see Chapter 4 of Lee 1992). The life-table method requires a fairly large number of observations
so that survival times can be grouped into intervals. These are specified using the INTERVALS
option. For equal intervals, you can set INTERVALS to a scalar to define their width.
Alternatively you can set INTERVALS to a variate containing the lower boundaries of the
intervals. The PLOT option can be used to produce plots of the survivor function (survivor),
estimated hazard function (hazard) and the probability density function (pdf). You can set the
option PRINT=* to suppress printing of the life table; by default PRINT=lifetable.

The observed timepoints (or the timepoints at which censoring took place) are specified using
the TIMES parameter. The CENSORED parameter specifies a variate containing the value one if
the corresponding element of TIMES is censored or zero if it was not. CENSORED can be omitted
if there was no censoring. If there are several observations (all censored or all uncensored) at a
time point, you can specify the time point only once and define the number of observations by
specifying a variate of counts using the FREQUENCY parameter. This is particularly useful if the
contents of the TIMES variate are intended to identify time intervals rather than discrete time
points. The GROUPS parameter can be used to request separate life tables for different groups of
data. If the input vectors are restricted, the life tables will be based only on the units not excluded
by the restriction. The LIFETABLE parameter allows the life table to be saved in a pointer to a
set of variates for each of the columns within the table.

Example 8.2.3 and Figures 8.2.3a-c illustrates the use of RSTEST, using data from Lee (1992).

Example 8.2.3

   2  " Survival data for 2418 male patients with angina pectoris
  -3    (Lee 1992, page 91)."
   4  VARIATE  [NVALUES=32] Time; VALUES=!((0.5...15.5)2)
   5  &        Censor; VALUES=!(16(0,1))
   6  &        Count; VALUES=!(456,226,152,171,135,125,83,74,51,42,43,34,\
   7           18,9,6,0,0,39,22,23,24,107,133,102,68,64,45,53,33,27,23,30)
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   8  RLIFETABLE [INTERVAL=!(0...15)] Time; CENSORED=Censor; FREQUENCY=Count;\
   9           LIFETABLE=Ltab

Life table survival estimates
=============================

                                                Effective Conditional
 Interval    Midpoint      Events    Censored        size probability
    0.000       0.500         456           0    2418.000       0.189
    1.000       1.500         226          39    1942.500       0.116
    2.000       2.500         152          22    1686.000       0.090
    3.000       3.500         171          23    1511.500       0.113
    4.000       4.500         135          24    1317.000       0.103
    5.000       5.500         125         107    1116.500       0.112
    6.000       6.500          83         133     871.500       0.095
    7.000       7.500          74         102     671.000       0.110
    8.000       8.500          51          68     512.000       0.100
    9.000       9.500          42          64     395.000       0.106
   10.000      10.500          43          45     298.500       0.144
   11.000      11.500          34          53     206.500       0.165
   12.000      12.500          18          33     129.500       0.139
   13.000      13.500           9          27      81.500       0.110
   14.000      14.500           6          23      47.500       0.126
   15.000           *           0          30      15.000       0.000

 Interval    Midpoint    Survival  Survival s.e.      Hazard  Hazard s.e.
    0.000       0.500       1.000              *       0.208        0.010
    1.000       1.500       0.811          0.008       0.124        0.008
    2.000       2.500       0.717          0.009       0.094        0.008
    3.000       3.500       0.652          0.010       0.120        0.009
    4.000       4.500       0.579          0.010       0.108        0.009
    5.000       5.500       0.519          0.010       0.119        0.011
    6.000       6.500       0.461          0.010       0.100        0.011
    7.000       7.500       0.417          0.010       0.117        0.014
    8.000       8.500       0.371          0.011       0.105        0.015
    9.000       9.500       0.334          0.011       0.112        0.017
   10.000      10.500       0.299          0.011       0.155        0.024
   11.000      11.500       0.256          0.011       0.179        0.031
   12.000      12.500       0.214          0.011       0.149        0.035
   13.000      13.500       0.184          0.012       0.117        0.039
   14.000      14.500       0.164          0.012       0.135        0.055
   15.000           *       0.143          0.013           *            *

                                                   Median         Median
                                                remaining      remaining
 Interval    Midpoint         pdf    pdf s.e.    lifetime  lifetime s.e.
    0.000       0.500       0.189       0.008       5.331          0.175
    1.000       1.500       0.094       0.006       6.250          0.200
    2.000       2.500       0.065       0.005       6.343          0.236
    3.000       3.500       0.074       0.005       6.226          0.236
    4.000       4.500       0.059       0.005       6.219          0.185
    5.000       5.500       0.058       0.005       5.908          0.181
    6.000       6.500       0.044       0.005       5.596          0.186
    7.000       7.500       0.046       0.005       5.167          0.271
    8.000       8.500       0.037       0.005       4.942          0.276
    9.000       9.500       0.036       0.005       4.826          0.414
   10.000      10.500       0.043       0.006       4.689          0.418
   11.000      11.500       0.042       0.007           *              *
   12.000      12.500       0.030       0.007           *              *
   13.000      13.500       0.020       0.007           *              *
   14.000      14.500       0.021       0.008           *              *
   15.000           *           *           *           *              *
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Figure 8.2.3a Figure 8.2.3b

Figure 8.2.3c

8.2.4 Survival distributions

RSURVIVAL procedure
Models survival times of exponential, Weibull, extreme-value, log-logistic or lognormal
distributions (R.W. Payne & D.A. Murray).

Options
PRINT = string tokens Controls printed output (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, loglikelihood); default mode, summ,
esti

TIMES = variate Time of each observation
DISTRIBUTION = string token Distribution of the survival times (exponential,
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weibull, extremevalue, loglogistic,
lognormal); default expo

CENSORED = variate Indicator for censored observations: 0 if uncensored, 1 if
right censored (subject survived the whole trial), !1 if
left censored (log-logistic distribution only); default
assumes no censored observations

PLOT = string token What to plot (survivorfunction); default *
GRAPHICS = string token Type of graphics (lineprinter, highresolution)

default high
ALPHA = scalar Saves the estimated value of the parameter á of the

Weibull and extreme-value distributions, if the scalar is
input with a non-missing value this provides the initial
estimate for á (which will also be the final estimate if
MAXCYCLE=1)

_2LOGLIKELIHOOD = scalar Saves !2 multiplied by the log-likelihood
SIGMA = scalar Saves the estimated value of the shape parameter sigma

of the log-logistic and lognormal distributions
SURVIVOR = variate Saves estimates of the survivor function
PARAMETERIZATION = string token Controls the parameterization used when saving the

survivor function for the Weibull distribution (ph, aft);
default ph

MAXCYCLE = scalar Maximum number of iterations to use to estimate á;
default 20

TOLERANCE = scalar Convergence limit for á; default 10!5

Parameter
TERMS = formula Defines the model to fit

RSURVIVAL models survival times assuming that they follow either an exponential, Weibull,
extreme-value, log-logistic or lognormal distribution, as indicated by the DISTRIBUTION option.
It also caters for right-censored observations, where the subject concerned survived the trial: the
CENSORED option can be used to specify a variate with an entry for each subject containing one
where the subject survived, otherwise zero. The log-logistic caters for left-censored observations,
which they can be specified by an entry of !1 in the CENSORED variate. The model to be fitted
to the survival times is specified using the TERMS parameter.

The analysis is performed using the Genstat generalized linear models facilities.
For the exponential, Weibull and extreme-value distributions a y-variate (= 1 ! CENSORED) is
specified indicating whether the subject died or survived, and an offset variate is included which
depends on the time variate (see Chapter 6 of Aitkin et al. 1989). For the exponential distribution
this offset is simply the logarithm of the times. With the Weibull distribution it is the Weibull
parameter á multiplied by the logarithm of the times, while for the extreme-value distribution
it is the parameter á multiplied by the times. The parameters of the TERMS model and á itself are
estimated alternately (with number of cycles controlled by the MAXCYCLE option) until
successive estimates are within a tolerance specified by the TOLERANCE option. The ALPHA
option can input an initial value for á and save the estimated value. By setting the MAXCYCLE
option to one, á can be fixed at the initial value; this is useful for comparing one model with
another, when the value of á should be fixed at the value estimated from the more complicated
model.

The log-logistic distribution is fitted using a logistic regression model with number of
successes 1!c and binomial denominator 2!c!b (where c is an index for a right-censored
observation and b is an index for a left-censored observation) using an offset variate of the
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logarithm of times divided by ó. The parameters of the TERMS model and ó (shape parameter)
are estimated alternately (with number of cycles controlled by the MAXCYCLE option) until
successive estimates are within a tolerance specified by the TOLERANCE option.

For the lognormal distribution maximization of the log-likelihood is achieved using an EM
algorithm details of which are given in Section 6.19 of Aitkin et al. (1989). The SIGMA option
can be used to save the estimated value of the shape parameter for both the log-logistic and
lognormal distributions. The importance of variables in the lognormal model should be assessed
by omitting the variable and comparing !2 times the log-likelihood; this can be saved using the
_2LOGLIKELIHOOD option.

The SURVIVOR option allows you to save estimates of the survivor function. For the Weibull
distribution the PARAMETERIZATION option can be used to choose whether to produce the
estimates for the survivor function using the proportional hazards or accelerated failure time
parameterization.

Printed output from the generalized linear model analysis is controlled by the PRINT option
with similar settings to those of the FIT directive, except that there is an extra setting
loglikelihood to print !2 × the log-likelihood. Further information can be printed
subsequently by using RDISPLAY in the usual way. The PLOT option can be set to
survivorfunction to produce plots of the empirical survivor function against the value
predicted by the model, when the exponential, Weibull and extreme-value distributions are
selected (see Aitken et al. 1989, pages 275-276). The GRAPHICS option determines the type of
graph, with settings highresolution (the default) or lineprinter.

Example 8.2.4

   2  " Data from Gehan (1965, Biometrika, 52, 203-223)."
   3  VARIATE   [VALUES=1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23,\
   4    6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35] Time
   5  & [VALUES=24(0),1,0,1,0,1,1,0,0,1,1,1,0,0,1,1,1,1,1] Censor
   6  FACTOR [LABELS=!t(control,'6-mercaptopurine'); VALUES=21(1,2)] Treat
   7  PRINT 'Exponential distribution'

Exponential distribution

   8  RSURVIVAL [TIMES=Time; CENSORED=Censor] Treat

Regression analysis
===================

 Response variate: 1-Censor
     Distribution: Poisson
    Link function: Log
   Offset variate: logtime
     Fitted terms: Constant, Treat

Summary of analysis
-------------------

                                        mean  deviance
Source        d.f.     deviance     deviance     ratio
Regression       1        16.49      16.4852     16.49
Residual        40        38.02       0.9504
Total           41        54.50       1.3293

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

* MESSAGE: the residuals do not appear to be random;
           for example, fitted values in the range 1.27 to 2.65
           are consistently larger than observed values
           and fitted values in the range 0.12 to 0.15
           are consistently smaller than observed values.
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* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           20         1.00       0.121
           21         1.00       0.126

Estimates of parameters
-----------------------

                                                  antilog of
Parameter                    estimate         s.e.      t(*)   estimate
Constant                       -2.159        0.218     -9.91     0.1154
Treat 6-mercaptopurine         -1.526        0.396     -3.86     0.2173

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
               Treat  control

   9  PRINT 'Weibull distribution'

Weibull distribution

  10  RSURVIVAL [DIST=weibull; TIMES=Time; CENSORED=Censor] Treat

Regression analysis
===================

 Response variate: 1-Censor
     Distribution: Poisson
    Link function: Log
   Offset variate: alphlogt
     Fitted terms: Constant, Treat

Summary of analysis
-------------------

                                        mean  deviance
Source        d.f.     deviance     deviance     ratio
Regression       2        21.21       10.607     10.61
Residual        39        52.83        1.355
Total           41        74.04        1.806

Dispersion parameter is fixed at 1.00.

* MESSAGE: deviance ratios are based on dispersion parameter with value 1.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           21         1.00       0.160

Estimates of parameters
-----------------------

                                                             antilog of
Parameter                    estimate         s.e.      t(*)   estimate
Constant                       -3.071        0.218    -14.07    0.04639
Treat 6-mercaptopurine         -1.731        0.398     -4.35     0.1771

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
               Treat  control
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Estimated value of alpha
------------------------

alpha = 1.366

Full details of the method can be found in Chapter 6 of Aitkin et al. (1989). For the exponential
distribution (pages 269-270), the survivor function is

S(t) = exp(!ë t)
with

ë = exp( G( bi xi) )
where bi are the parameter estimates, xi are the appropriate values of the
explanatory variates, and t is the time. The Weibull distribution (page 280)
is defined with density function

f(t) = á ë t**(á!1) exp(!ë (t**á))
and has survivor function

S(t) = exp(!ë t**á).
The extreme-value distribution (pages 283-284) has survivor function

S(t) = exp(-ë exp(át)).
The loglogistic distribution (pages 295-297) has the survivor function

S(t) = 1 / { 1 + (t / è)a }
with

è = exp(3(bi × xi))
and a = 1 / ó.
The lognormal distribution (pages 297-300) has survivor function

S(t) = 1 - CDFNORMAL( log( (t ! 3(bi × xi)) / ó))

8.2.5 Proportional hazards model

The data for a proportional hazards model (Cox 1972) consist of a set of subjects observed at one
or more times. The final time for each subject is usually at the time of death (or failure).
Otherwise, if the subject survives to the end of the trial (or experiment) the observation is said
to be censored. The model makes the assumption that the subjects have a baseline hazard
function which is modified proportionally by the various treatment terms. In Genstat it is
assumed that the survival times follow a piecewise exponential distribution (Breslow 1974). This
partitions the time axis using a set of discrete cut-points ai, and assumes a constant baseline
hazard ãi between each one. This corresponds to an exponential distribution with mean 1/ãi for
the survival times (in the absence of treatments) within each time interval. A cut-point is defined
at every time that a death (or failure) occurs and, if the covariates or treatments vary with time,
also at every time when the subjects are observed.

To fit a proportional hazards model as a generalized linear model, the variates and factors that
make up the treatment terms must be expanded so that, for each subject, there is a unit for every
time interval up to the last one during which the subject was observed. If (as usually happens)
the subject was not observed at every cutpoint, the covariates and treatments are taken to be
constant during the intervals between the times of the observations. The y-variate used within
the generalized linear model is an indicator that takes the value 0 if the subject was still surviving
within the time interval concerned, otherwise it has the value 1. The model also contains an
offset representing the log of the exposure time within each interval.

You can produce the expanded sets of values using procedure RPHVECTORS, and then fit
models yourself using the standard facilities for generalized linear models (see 3.5).
Alternatively, procedures RPHFIT, RPHCHANGE, RPHDISPLAY and RPHKEEP will organise this
for you automatically. They produce the expanded sets of values, and use them to replace the
original values while the model is fitted and displayed. The original values are then reinstated
before exit from the procedures, unless a fault has been generated e.g. from the regression



8.2  Survival analysis 1025

directives FIT &c. None of the vectors can be restricted (so any restrictions will be cancelled).

RPHFIT procedure
Fits a proportional hazards model to survival data as a generalized linear model (R.W. Payne).

Options
PRINT = string tokens Controls printed output (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, loglikelihood);
default mode, summ, esti

MAXIMALMODEL = formula Defines the full model to explore (using RPHCHANGE);
default uses the model defined by the TERMS parameter

SUBJECTS = factor Subject corresponding to each observation
TIMES = factor or variate Time of each observation
CENSORED = variate Contains the value 1 for censored observations,

otherwise 0; if unset it is assumed that there is no
censoring

OFFSET = variate Offset to include in the model
POOL = string token Whether to pool terms in the accumulated summary

generated by the fit

Parameter
TERMS = formula Model to fit

The CENSORED option of RPHFIT provides a variate with an entry for each subject containing
one when there is censoring, otherwise zero. If this is not specified, it is assumed that there is
no censoring. The SUBJECTS option provides a factor to indicate the subject corresponding to
each observation; this can be omitted if there is only one observation per subject. The time at
which each observation was made is defined by the TIME option, in either a factor or a variate.

The model to fit is specified by the TERMS parameter. This can be modified later by using
procedure RPHCHANGE. However, if you intend to use RPHCHANGE to include additional model
terms, you should use option MAXIMALMODEL of RPHFIT to define the largest model that you
may want to consider. (This option acts similarly to the TERMS directive in ordinary generalized
linear modelling). The OFFSET option allows you to supply an offset to be included in addition
to the log of the exposure time within each interval (required to define the proportional hazards
model).

The PRINT option controls printed output with similar settings to those of the FIT directive,
except that there is an extra setting loglikelihood to print !2 times the log-likelihood (see
Example 8.2.5b). The deviance produced for the terms in the regression model can be assessed
using chi-square distributions as usual, but the residual deviance is not usable, as the maximal
model assumed by the generalized linear models method is inappropriate. So, the residual line
is suppressed in the summary and accumulated analysis of deviance (Examples 8.2.5a and
8.2.5b). By default the terms in the model are fitted individually so that they will all have their
own lines in an accumulated analysis of deviance. However, you can set option POOL=yes to
fit them all at once.

Example 8.2.5a

  11  FACTOR      [LEVELS=42; VALUES=1...42] Subject
  12  RPHFIT      [TIMES=Time; SUBJECTS=Subject; CENSORED=Censor] Treat
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Regression analysis
===================

 Response variate: _
     Distribution: Poisson
    Link function: Log
  Grouping factor: Interval
     Fitted terms: Treat

Estimates of parameters
-----------------------

                                                             antilog of
Parameter                    estimate         s.e.      t(*)   estimate
Interval 1                     -2.551        0.711     -3.59    0.07799
Interval 2                     -2.470        0.711     -3.47    0.08459
Interval 3                     -3.075        1.000     -3.08    0.04621
Interval 4                     -2.334        0.713     -3.28    0.09689
Interval 5                     -2.232        0.714     -3.13     0.1073
Interval 6                     -1.713        0.588     -2.91     0.1803
Interval 7                      -2.76         1.00     -2.75    0.06346
Interval 8                     -1.357        0.509     -2.67     0.2574
Interval 10                     -2.43         1.01     -2.41    0.08837
Interval 11                    -1.693        0.715     -2.37     0.1839
Interval 12                    -1.465        0.718     -2.04     0.2311
Interval 13                     -1.90         1.01     -1.87     0.1503
Interval 15                     -1.86         1.01     -1.84     0.1555
Interval 16                     -1.69         1.02     -1.67     0.1841
Interval 17                     -1.65         1.01     -1.63     0.1919
Interval 22                    -0.573        0.729     -0.79     0.5638
Interval 23                    -0.151        0.744     -0.20     0.8596
Treat 6-mercaptopurine         -1.509        0.409     -3.69     0.2211

* MESSAGE: s.e.s are based on dispersion parameter with value 1.

Parameters for factors are differences compared with the reference level:
              Factor  Reference level
               Treat  control

Summary of analysis
-------------------

Source                d.f.     deviance  probability
regression               1      15.2109       <0.001

RPHDISPLAY procedure
Prints output for a proportional hazards model fitted by RPHFIT (R.W. Payne).

Option
PRINT = string tokens Controls printed output (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, loglikelihood); default mode, summ,
esti

No parameters

You can display further output using procedure RPHDISPLAY. The PRINT option has the same
settings as in RPHFIT. Example 8.2.5b prints the accumulated analysis of deviance.

Example 8.2.5b

  13  RPHDISPLAY  [accumulated, loglikelihood]
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Accumulated analysis of deviance
--------------------------------

Change   d.f.     deviance  probability
+ Treat     1      15.2109       <0.001

Log-likelihood
--------------

-2 x log-likelihood = 172.759
d.f. in fitted model = 1

RPHKEEP procedure
Saves information from a proportional hazards model fitted by RPHFIT (R.W. Payne).

Options
RESIDUALS = variate Saves the standardized residuals
FITTEDVALUES = variate Saves the fitted values
ESTIMATES = variate Saves estimates of the parameters
SE = variate Saves standard errors of the estimates
RESPONSE = variate Saves the response variate defined for the generalized

linear model
OFFSET = variate Saves the offset variate defined for the generalized

linear model
INDEX = variate Index variate used to produce the expanded covariates

and factors
RISKSET = factor Saves the expanded time factor
_2LOGLIKELIHOOD = scalar Saves !2 × log-likelihood for the fitted model
DFTERMS = scalar Saves the number of d.f. in the model specified by

TERMS

No parameters

RPHKEEP allows you to copy information into Genstat data structures from a proportional hazard
model that has been fitted by procedure RPHFIT. You do not need to declare the structures in
advance; Genstat will declare them automatically to be of the correct type and length.

The RESIDUALS and FITTEDVALUES options save the standardized residuals and the fitted
values. The ESTIMATES and SE options save the parameter estimates and their standard errors.
The RESPONSE and OFFSET options save the response variate and the offset variate that have
been defined for the generalized linear model. The INDEX variate saves the variate of indexes
used to construct the expanded x-variates and factors from original variates and factors of the
model. The RISKSET option saves a variate indicating the time interval corresponding to each
of their units. Finally, the _2LOGLIKELIHOOD option saves !2 times the log-likelihood, and the
DFTERMS option saves the number of degrees of freedom in the model specified by TERMS;see
Example 8.2.5c.

RPHCHANGE procedure
Modifies a proportional hazards model fitted by RPHFIT (R.W. Payne).

Options
PRINT = string tokens Controls printed output (model, deviance, summary,

estimates, correlations, fittedvalues,
accumulated, monitoring, loglikelihood);
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default mode, summ, esti
METHOD = string token How to change the model (add, drop, switch); default

add

POOL = string token Whether to pool terms in the accumulated summary
generated by the fit

Parameter
TERMS = formula Model specifying the change

You can use RPHCHANGE to modify the contents of a proportional hazards model that has been
fitted by procedure RPHFIT. The change to the model is specified by the TERMS parameter. The
setting of the METHOD option specifies how the model is to be changed:

add adds the terms specified by the TERMS parameter to the
fitted model;

drop drops those terms from the fitted model; and
switch drops any terms specified by the TERMS parameter that are

already in the fitted model, and adds those that are not (i.e.
this operates similarly to the SWITCH directive).

The default is METHOD=add. Note, though, that any term that is to be added must have been
included in the full model specified by the MAXIMALMODEL option of RPHFIT. The PRINT option
controls printed output, and the POOL option controls whether od not each each term will have
its own line in an accumulated analysis of deviance, as in RPHFIT.

Example 8.2.5c drops Treat from the model and calculates the change in log-likelihood
(which corresponds to the Change line in the accumulated analysis of deviance in Example
8.2.5b).

Example 8.2.5c

  14  RPHKEEP     [_2LOGLIKELIHOOD=llhd1; DFTERMS=df1]
  15  RPHCHANGE   [PRINT=summary,loglikelihood; METHOD=drop] Treat

Summary of analysis
-------------------

Source                d.f.     deviance  probability
regression               0       0.0000            *

Log-likelihood
--------------

-2 x log-likelihood = 187.970
d.f. in fitted model = 0

change in -2 x log-likelihood = 15.211
change in d.f. = -1

  16  RPHKEEP     [_2LOGLIKELIHOOD=llhd2; DFTERMS=df2]
  17  CALCULATE   change = llhd2 - llhd1
  18  &           df = df1 - df2
  19  PRINT       change,df; DECIMALS=3,0

      change          df
      15.211           1
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8.3 Geostatistics

Geostatistics embodies a suite of techniques for analysing data distributed in a space of one, two
or three dimensions and for estimating (predicting, kriging) local values in that space. It is based
on the Theory of Regionalized Variables, due largely to Matheron (1965, 1971). Both the theory
and the methods were developed for mining, but they are proving just as valuable for estimation
and mapping in the earth and environmental sciences generally, especially in two dimensions.
The international geostatistics conferences, and especially the European conferences on
environmental geostatistics (the geoENV series), demonstrate the scope and development in
environmental science (Monestiez et al. 2001, Sanchez-Vila 2004). The standard text by Journal
& Huijbregts (1978) covers the subject fairly comprehensively in the mining context, while
Webster & Oliver (2007) provide sufficient background for the options currently available in
Genstat.

In the theory a two-dimensional regionalized variable is regarded as a realization of a random
function, Z, with values Z(x) everywhere in the plane, where x denotes the spatial coordinates
[x1, x2] or [x, y], depending on convention. In this sense the realization is completely determined,
and Z is a mathematical variable. But its complexity is usually such as to defy mathematical
description. Add to this that in practice we can never know its values everywhere – we can
measure and record it at only a finite number of places – so that the only way forward is to treat
data as if they are samples from realizations of random processes. Matheron (1989) discusses
the rationale for such an approach.

Geostatistical analysis and estimation require a model. For the current implementation in
Genstat the model is

Z(x)  =  ìv + å(x) , (8.3.1)

where Z(x) is the value of a random variable, ìv is the mean of Z in some locality V, and å(x) is
an autocorrelated random term with a mean of zero and variance defined by

var[ å(x) – å(x + h) ]  =  E[ {å(x) – å(x + h)}2 ] , (8.3.2)

where the vector h, the lag, is the spatial separation between x and x + h. The mean is assumed
to be locally constant, so that

E[ Z(x) – Z(x + h) ]  =  0 , (8.3.3)

and var[ Z(x) – Z(x + h) ]  =  E[ {Z(x) – Z(x + h)}2 ]  =  2 ã(h) (8.3.4)

depends only on the separation h and not on position x. The quantity ã is the semivariance, and
as a function of h it is the variogram.

These assumptions constitute Matheron's Intrinsic Hypothesis, and they are sufficient for very
many applications. A somewhat more restrictive assumption is that of second-order stationarity
in which the mean of the random process is constant globally, i.e. E[ Z(x) ] = ì, and the spatial
covariance exists and is given by

C(h)  =   E[ {Z(x) – ì} {Z(x + h) – ì} ] ,

with C(0)  =  var[ Z(x) ]  =  E[ {Z(x) – ì}2 ] . (8.3.5)

The spatial covariance is related to the semivariance by
ã(h)  =  C(0) ! C(h). (8.3.6)

Note that for a variable that is intrinsic in the above sense the semivariance can exist when the
covariance does not. This makes the variogram more generally useful than the covariance
function for describing spatial variation.

The commonest form of geostatistical estimation is ordinary kriging. To estimate the average
value of Z in a block B it forms weighted averages of data:
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(8.3.7)
where ëi is the weight associated with the ith item of data. The estimation variance is

(8.3.8)
where ã(xi, xj) is the semivariance of Z between the sampling points xi and xj, ã

!(xi, B) is the
average semivariance between the sampling points and the block B being estimated, and ã!(B, B)
is the within-block variance. The block can be as small as a point, i.e. the same size and shape
(support) as that on which the measurements were made, and in that event ã!(xi, B) reduces to the
semivariance between the sampling point xi and the estimation point x0, and the within-block
variance, ã!(B, B), disappears.

The weights in equation (8.3.7) sum to 1 to avoid bias, and subject to this they are chosen to
minimize ó2(B). They must satisfy

and

(8.3.9)
for all j = 1, 2, . . . , N. The quantity ø is a Lagrange multiplier introduced for the minimization.

Equations (8.3.9) constitute the kriging system, which may be represented in matrix form by
Gë  =  b (8.3.10)

where G is the augmented matrix, of order N + 1, containing the semivariances between
sampling points, ë is the vector of weights and the Lagrange multiplier, and b is the vector
containing the average semivariances between the data and the block B. Matrix G is inverted and
multiplied by b to give the weights, which are then inserted into equation (8.3.7) to estimate
Z(B). In practice only the nearest few points to B or x0 carry significant weight, and so G can be
of order n + 1 where n n N and typically about 20.

The kriging variance is estimated from

(8.3.11)
Equations (8.3.8) to (8.3.11) contain semivariances. These are obtained from the variogram,

for which a mathematical function must therefore be available. The variogram must usually be
estimated and computed first.

Thus, starting with a set of data there are three stages in kriging, namely
(1) estimating semivariances at discrete lags to form an ordered set; the sample or

experimental variogram,
(2) fitting an allowed model to the experimental variogram, and
(3) the kriging itself.
In many applications the purpose of kriging is to make a map. Values are then kriged at the nodes
of a fine grid, through which isarithms, "contours", can then be threaded. Kriging is implemented
in Genstat with this in view.
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8.3.1 The FVARIOGRAM directive

FVARIOGRAM directive
Forms auto variograms for individual variates or cross-variograms for pairs of variates.

Options
PRINT = string token Controls printed output (statistics); default stat
Y = variate Y positions (needed only for 2-dimensional irregular

data)
X = variate X positions or interval (not needed for 2-dimensional

regular data i.e. when DATA is a matrix)
YMAX = scalar Maximum lag in the y direction (2-dimensional regular

data only)
XMAX = scalar Maximum lag in the x direction
STEPLENGTH = scalar or variate Length(s) of the steps in which lag is incremented
METHOD = string token How to estimate the variogram (moments,

cressiehawkins, dowd, genton); default mome
DIRECTIONS = scalar or variate Directions (degrees) along which to form the  variogram

(relevant only for 2-dimensional irregular data)
SEGMENTS = scalar or variate Angles subtended by the segments (degrees) over which

averaging is to be done (relevant only for 2-dimensional
irregular data)

Parameters
DATA = variates or matrices Measurements as a variate or, for data on a regular grid,

as a matrix
VARIOGRAMS = variates or matrices

Structure to store the sample variogram
COUNTS = variates or matrices Numbers of comparisons involved in the calculation of

each variogram
DISTANCES = variates or matrices Mean lag distances at each step
LAGPOINTS = pointer Saves lag classes, indexes to observations and directions

to plot in an h-scattergram

The FVARIOGRAM directive forms an experimental variogram from a set of values of a variable,
Z, distributed in one or two dimensions. By default the variogram is calculated by Matheron's
method of moments, as

(8.3.12)
where z(xi) and z(xi + h) are the values at positions xi + h, and m(h) is the number of paired
comparisons contributing to the estimate. For data on a regular grid or transect h is an integer
multiple of the sampling interval. For irregularly scattered data h is discretized so that for each
nominal lag there is a range of distance equal to the increment and an angular range set by the
user. The nominal lag is at the centre of both ranges. However, you can set the METHOD option
to calculate robust estimates instead. The cressiehawkins setting uses the estimator of Cressie
& Hawkins (1980), which aims to damp the effect of outliers from the secondary process:
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(8.3.13)
The dowd setting gives Dowd's (1984) estimator, which estimates the variogram for a dominant
intrinsic process in the presence of outliers:

(8.3.14)
Similarly the genton setting gives Genton (1978) method:

(8.3.15)
where orderk denotes the kth order statistic, and k is the number of distinct pairs that can selected
from a number of objects equal to the integer part of 1 + m(h)/2. For further details see Webster
& Oliver (2007) pages 67-68 and 115-116.

The data are specified using the DATA parameter. If they are on a regular grid, they should be
supplied in a matrix defined with a variate of column labels to provide the x-values and a variate
of row labels to provide the y-values. Alternatively, if they are irregularly scattered, then they
should be supplied in a variate, and the X and Y options should be set to variates to supply their
spatial coordinates.

The experimental variogram is controlled by five options. For irregular data the maximum
distance to which the variogram is calculated is set by the XMAX option for all directions. For
regular data XMAX defines the maximum lag distance in the X direction, and YMAX must also be
given to limit the distance in the Y direction. The increments in distance are set by the
STEPLENGTH option, where you can supply a scalar to define equally-spaced steps or a variate
to specify the steps themselves. The variogram may be computed in one or more directions.
These are given by the DIRECTIONS option in degrees counterclockwise from east in the usual
convention. Each direction is at the centre of an angular range, which is defined by the
SEGMENTS option. DIRECTIONS and SEGMENTS should be set to scalars if the variogram is to
be calculated for only one direction, or to variates if there are to be several.

A variogram can be computed without regard to direction by setting DIRECTIONS to 0 and
SEGMENTS to 180. This is advisable if variation seems to be isotropic, i.e. the same in all
directions, or if there are too few data to compute ã^(h) for two or more directions separately. The
lag then becomes a scalar *h* = h in distance only. Experience suggests that some 300 data are
needed to distinguish anisotropy.

By default some statistics are printed concerning the variogram, but these can be supressed
by setting option PRINT=*. Other information can be saved using the various parameters, in
variates if there is a single direction, or in matrices with one column for each direction if there
are several: VARIOGRAMS stores the ordered set of semivariances; DISTANCES stores the mean
lag distances at which the semivariances have been computed; and COUNTS stores the numbers
of paired comparisons from which the semivariances have been computed.

The LAGPOINTS parameter allows you to save a pointer containing lag classes, indexes to
observations and directions that can be used to plot an h-scattergram.
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Figure 8.3.1

Example 8.3.1 forms the variogram for
measurements of potassium taken on an
incomplete grid at Brooms Barn
Experimental Station in Suffolk. The plot
from the DGRAPH statement in line 21 is
shown in Figure 8.3.1.

Example 8.3.1

   2  " Data are levels of potassium at Brooms Barn Experimental Station
  -3    (see Webster, R. & Oliver, M.A. 1990, Statistical Methods in Soil
  -4    and Land Resource Survey, Oxford University Press, pages 267-269)."
   5  FILEREAD   [NAME='Broomesb.dat'; PRINT=summary] East,North,K

Summary
-------

The file Broomesb.dat is assumed to contain 3 structure(s), with one value for
each structure on each record.

The file contains 435 values for each of the following structures:

  Identifier      Type   Missing
        East   variate         0
       North   variate         0
           K   variate         1

   6  CALCULATE  LogK = LOG10(K)
   7  VARIATE    [VALUES=0,45,90,135] Angles
   8  &          [VALUES=45,45,45,45] Segments
   9  FVARIOGRAM [PRINT=statistics; Y=North; X=East; STEP=1; XMAX=13; \
  10             DIRECTIONS=Angles; SEGMENTS=Segments] \
  11             LogK; VARIOGRAM=LogKvar; COUNTS=Kcounts; DISTANCES=Midpoints

Variogram of LogK
=================

General mean:       1.398
General variance:   0.0180

Based on 434 observations
Maximum lag 13

  12  VARIATE    Vgram[#Angles],Lag[#Angles],Count[#Angles]



1034 8  Spatial and temporal modelling

  13  CALCULATE  Vgram[] = LogKvar$[*; 1...4]
  14  &          Lag[]   = Midpoints$[*; 1...4]
  15  &          Count[] = Kcounts$[*; 1...4]
  16  PRINT      Lag[0],Vgram[0],Count[0],Lag[45],Vgram[45],Count[45]

      Lag[0]    Vgram[0]    Count[0]     Lag[45]   Vgram[45]   Count[45]
           *           *         0.0           *           *         0.0
       1.000     0.00599       396.0       1.414     0.00805       374.0
       2.000     0.00806       362.0       2.425     0.00961      1024.0
       3.107     0.01155       971.0       3.606     0.01169       612.0
       4.081     0.01390       890.0       4.395     0.01319       859.0
       5.190     0.01526      1336.0       5.452     0.01613      1294.0
       6.160     0.01651      1227.0       6.555     0.01759       939.0
       7.138     0.01815      1106.0       7.469     0.01755      1489.0
       8.237     0.01939      1340.0       8.515     0.01802      1307.0
       9.212     0.02031      1157.0       9.551     0.01776      1144.0
      10.310     0.02096      1239.0      10.422     0.01723      1150.0
      11.282     0.02033      1060.0      11.395     0.01487       896.0
      12.259     0.01918       879.0      12.353     0.01433      1238.0

  17  &          Lag[90],Vgram[90],Count[90],Lag[135],Vgram[135],Count[135]

     Lag[90]   Vgram[90]   Count[90]    Lag[135]  Vgram[135]  Count[135]
           *           *           0           *           *           0
       1.000     0.00674         399       1.414     0.00836         376
       2.000     0.00897         375       2.426     0.01065        1032
       3.106     0.01011        1014       3.606     0.01236         620
       4.081     0.01135         968       4.396     0.01289         875
       5.187     0.01427        1490       5.454     0.01398        1336
       6.157     0.01612        1407       6.555     0.01648         989
       7.136     0.01692        1323       7.472     0.01841        1606
       8.232     0.01764        1684       8.519     0.02129        1461
       9.208     0.01681        1599       9.550     0.02299        1326
      10.304     0.01714        1929      10.425     0.02530        1381
      11.278     0.01757        1875      11.395     0.02630        1087
      12.255     0.01728        1808      12.356     0.02888        1522

  18  XAXIS      1; LOWER=0
  19  YAXIS      2; LOWER=0
  20  PEN        1...4; COLOUR='black'; SYMBOL=1...4
  21  DGRAPH     Vgram[]; Lag[]; PEN=1...4

8.3.2 The MVARIOGRAM procedure

MVARIOGRAM procedure
Fits models to an experimental variogram (S.A. Harding D.A. Murray & R. Webster).

Options
PRINT = string tokens Controls printed output from the fit (model, summary,

estimates, correlations, fittedvalues,
monitoring); default mode, summ, esti

MODELTYPE = string token Defines which model to fit (power, boundedlinear,
circular, spherical, doublespherical,
pentaspherical, exponential, besselk1,
gaussian, affinepower, linear, cubic, stable,
cardinalsine, matern); default powe

WEIGHTING = string token Method to be used for weighting (counts, cbyvar,
equal); default coun

CONSTANT = string token How to treat the constant (estimate, omit); default
esti

SMOOTHNESS = scalar Value of power parameter for the stable model, or í
parameter for the Matern model; default * i.e. estimate
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ISOTROPY = string token Defines whether to fit an isotropic or geometrical
anisotropic model (isotropic, geometrical); default
isot

WINDOW = scalar Window in which to plot a graph; default 0 i.e. no graph
TITLE = text Title for the graph
XUPPER = scalar Upper limit for the x-axis in the graph
PENDATA = scalar Pen to be used to plot the data; default 1
PENMODEL = scalar Pen to be used to plot the model; default 2

Parameters
VARIOGRAM = variates or matrices Experimental variogram to which the model is to be

fitted, as a variate if in only one direction or as a matrix
if there are several

COUNTS = variates or matrices Counts for the points in each variogram (not required if
WEIGHTING=equal)

DISTANCE = variates or matrices Mean lag distances for the points in each variogram
DIRECTION = variates Directions in which each variogram was computed
INITIAL = scalars or variates Scalar defining initial distance parameter for an

isotropic model, or variate with two values for a double-
spherical isotropic model, or a variate with three values
for a geometrical anisotropic model

ESTIMATES = variates Estimated parameter values
FITTEDVALUES = variates Fitted values
EXIT = scalars Exit status from the nonlinear fitting
SAVE = pointers Saves the model name and estimates in a pointer that

can be used in KRIGE

Procedure MVARIOGRAM uses the directives FIT, FITCURVE and FITNONLINEAR to fit various
models to the experimental variogram. Models must be authorized in the sense that they cannot
give rise to negative variances when data are combined. Technically they are conditionally
negative semi-definite (CNSD); see Webster & Oliver (1990, 2007) or Journel & Huijbregts
(1978) for an explanation.

The MODELTYPE option can be set to select the following bounded isotropic models with finite
ranges ! these all take the value c + c0 for h $ a, and the following values for h < a

boundedlinear c0 + ch/a

circular c0 + c {1 ! (2/ð)arccos(h/a)
   + (2h/(ða))%(1!h2/a2)}

spherical c0 + c {1.5h/a ! 0.5(h/a)3 }
doublespherical c0 + c1 {1.5h/a1 ! 0.5(h/a1)

3 }
   + c2 {1.5h/a2 ! 0.5(h/a2)

3 }
for h # a1

c0 + c1 + c2 {1.5h/a2 ! 0.5(h/a2)
3}

for a1 < h < a2

where c = c1 + c2

pentaspherical c0 + c {1.875h/a ! 1.25(h/a)3 + 0.375(h/a)5}
cubic c0 + c {7(h/a)2 ! 8.75(h/a)3 + 3.5(h/a)5 

   ! 0.75(h/a)7}

There are also bounded asymptotic models
besselk1 c0 + c {1 ! h/a K1(h/a) }

(Whittle's elementary correlation, Whittle 1954)
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exponential c0 + c {1 ! exp(!h/a)}
gaussian c0 + c {1 ! exp(!h2/a2)}
stable c0 + c {1 ! exp(!(h/a)b))}
matern c0 + c {1 ! 1 / (2(í!1) Ã(í)) (h/a)í Kí(h/a)}

unbounded models
power c0 + g há

(power function with exponent á strictly between 0 and 2)
linear c0 + c h

which is a special case of the power function with
exponent 1

and hole effect models
cardinalsine c0 + c × (1 ! a/h × sin(h/a)) .

Geometrically anisotropic models, i.e. ones that might be made isotropic by a simple linear
transformation of the spatial coordinates, can be fitted by setting option
ISOTROPY=geometrical. The following transformation is used:

omega(è)  =  %{ a2cos2(è!ö) + b2sin2(è!ö) }

where è represents the direction (specified by the DIRECTION parameter) converted from
degrees to radians. So, for example, a geometrical anisotropic power model would be

c0 + ( %{ a2cos2(è!ö) + b2sin2(è!ö) } h )power

(Note: this particular model can also be defined by setting MODELTYPE=affinepower; the
ISOTROPY option is then ignored.)

In all these models, the intercept term (or nugget variance) c0 can be omitted by setting the
CONSTANT option to omit; the default is estimate.

For the stable model (or powered exponential model; see Webster & Oliver 2007) the
SMOOTHNESS option controls the power parameter for the model. For the matern model it
specifies the í parameter. By default, the parameter is estimated. However, you can supply a 
value, to fix the parameter for the model fitting.

The data for the procedure can be taken directly from the FVARIOGRAM directive, with
parameters DISTANCES, VARIOGRAMS and COUNTS corresponding to those with the same names
in FVARIOGRAM. The data will be in variates if the variogram was calculated in only one
direction. If it is in several, they can either be in matrices (as generated by FVARIOGRAM) or in
variates. For MODELTYPE=affinepower directions must be supplied, using the DIRECTIONS
parameter. These should be in a variate with one value for each column if the other data are in
matrices; alternatively, they should be in a variate of the same length as the other variates.

The WEIGHTING option controls the weights that are used when fitting the model. The default
setting counts uses the values supplied by the COUNTS parameter, cbyvar uses the COUNTS
divided by the values in VARIOGRAM, and equal uses equal weights (of one).

The procedure generates rough starting values for the parameters before calling
FITNONLINEAR to convergence. If the solution does not converge there are two likely reasons.
The model may be unsuited for the particular experimental variogram. For example, a bounded
model is specified when the variogram is clearly unbounded, or vice versa. You should choose
only models that have approximately the right shape. Alternatively, the starting values may be
too far from a sensible solution. You should then supply initial values using the INITIAL
parameter. For a double-spherical isotropic model, INITIAL must be set to a variate with two
values representing the two distance parameters. For the other isotropic models it should be set
to a scalar defining the initial distance parameter. Finally, for a geometrical anisotropic model,
it should be set to a variate with three values, defining the initial values for ö, the maximum
distance parameter and the minimum distance parameter.

Printed output is controlled by the PRINT option, and includes all the usual settings as in FIT,
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FITCURVE or FITNONLINEAR. You can also produce a high-resolution graph of the data and the
fitted model, by setting the WINDOW option to the number of a suitable window. By default
WINDOW is zero, and no graph is produced. The TITLE option can supply a title for the plot.
Option XUPPER can define an upper value for the x-axis (i.e. distance), and PENDATA and
PENMODEL can supply the numbers of the pens to be used to plot the experimental variogram and
the fitted model respectively (by default 1 and 2). Alternatively, you can use the ESTIMATES
parameter to save the parameter estimates, and plot the variogram and model later with the
DVARIOGRAM procedure (8.3.3).

Example 8.3.2 continues the study of potassium concentrations in the soil at Brooms Barn, and
fits and plots linear, spherical and exponential models (Figures 8.3.2a-c). Notice that
CALCULATE is used at line 23 to set the counts to zero for the data at distances greater than 11.75
which, from the graph in Figure 8.3.1, would seem to be rather less reliable.

Example 8.3.2

  22  " Model the variogram."
  23  CALCULATE Kcounts=Kcounts*(Midpoints<11.75)
  24  FOR Mod='LINEAR','SPHERICAL','EXPONENTIAL'
  25    MVARIOGRAM [MODELTYPE=#Mod; PRINT=model,summary,estimates; \
  26               WEIGHTING=counts] LogKvar; COUNTS=Kcounts; \
  27               DISTANCES=Midpoints; ESTIMATES=est
  28    DVARIOGRAM [MODELTYPE=#Mod; TITLE=Mod] LogKvar; DISTANCES=Midpoints; \
  29               XUPPER=15; ESTIMATES=est
  30  ENDFOR

Variogram model: linear
=======================

y = c0 + c*x

Regression analysis
===================

 Response variate: y
   Weight variate: rwt
     Fitted terms: Constant, x

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       1       0.5758     0.575844     99.55
Residual        42       0.2429     0.005784
Total           43       0.8188     0.019042

Percentage variance accounted for 69.6
Standard error of observations is estimated to be 0.0761.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           44       0.0253        2.45
           46       0.0149       -2.74
           47       0.0176       -2.37

* MESSAGE: the error variance does not appear to be constant;
           large responses are more variable than small responses.

* MESSAGE: the following units have high leverage.
         Unit     Response    Leverage
           47       0.0176       0.119
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Estimates of parameters
-----------------------

Parameter      estimate         s.e.     t(42)
Constant       0.007944     0.000925      8.59
x              0.001200     0.000120      9.98

Variogram model: spherical
==========================

y = c0 + c*(1.5*x/a-0.5*(x/a)**3)  for x.lt.a
y = c0 + c                         for x.ge.a

Nonlinear regression analysis
=============================

 Response variate: y
   Weight variate: rwt
Nonlinear parameters: a
  Model calculations: spherical

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       2       0.6218     0.310915     64.72
Residual        41       0.1970     0.004804
Total           43       0.8188     0.019042

Percentage variance accounted for 74.8
Standard error of observations is estimated to be 0.0693.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           44       0.0253        2.92
           48       0.0263        3.05

* MESSAGE: the error variance does not appear to be constant;
           large responses are more variable than small responses.

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
a                    10.81         1.19
* Linear
c                  0.01528      0.00139
Constant           0.00460      0.00142

Variogram model: exponential
============================

y = c0 + c*(1-EXP(-x/a))

Nonlinear regression analysis
=============================

 Response variate: y
   Weight variate: rwt
Nonlinear parameters: a
  Model calculations: negex1
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Figure 8.3.2a Figure 8.3.2b

Summary of analysis
-------------------

Source        d.f.         s.s.         m.s.      v.r.
Regression       2       0.6162     0.308104     62.36
Residual        41       0.2026     0.004941
Total           43       0.8188     0.019042

Percentage variance accounted for 74.1
Standard error of observations is estimated to be 0.0703.

* MESSAGE: the following units have large standardized residuals.
         Unit     Response    Residual
           44       0.0253        2.85
           46       0.0149       -2.37
           48       0.0263        2.75

* MESSAGE: the error variance does not appear to be constant;
           large responses are more variable than small responses.

Estimates of parameters
-----------------------

Parameter         estimate         s.e.
a                     5.82         2.16
* Linear
c                  0.02054      0.00191
Constant           0.00280      0.00249
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Figure 8.3.2c

From an examination of the graphs and the % variance accounted for, the spherical model seems
to describe the variogram best. An alternative, but more time-consuming, method of assessing
the models would be to use the KCROSSVALIDATION procedure. This uses the variograms for
kriging, and sees how well the kriging predicts the true values. The observed value of z at each
sampling point in the data is omitted in turn from the whole set and predicted from the others.
The predictions are compared with the true values to give a mean deviation or error, and the
kriging variances are compared with the squared deviations to give a mean squared deviation
ratio. This process is known as "cross-validation".

The SAVE parameter of MVARIOGRAM saves the parameter estimates and associated
information required by the KRIGE directive. Alternatively, the ESTIMATES parameter saves just
the estimates themselves, which can be used by DVARIOGRAM to plot the fitted model. The
FITTEDVALUES parameter saves the fitted values, and the EXIT parameter saves the exit "status
code" from FIT, FITCURVE or FITNONLINEAR (a zero value indicates success; see 3.7.4.).

8.3.3 The DVARIOGRAM procedure

DVARIOGRAM procedure
Plots fitted models to an experimental variogram (S.A. Harding, D.A. Murray & R. Webster).

Options
MODELTYPE = string token Defines which model to plot (power, boundedlinear,

circular, spherical, doublespherical,
pentaspherical, exponential, besselk1,
gaussian, affinepower, linear, cubic, stable,
cardinalsine, matern); default powe

ISOTROPY = string token Defines whether this is an isotropic or geometrical
anisotropic model (isotropic, geometrical); default
isot

WINDOW = scalar Window in which to plot a graph; default 1
TITLE = text Title for the graph

Parameters
VARIOGRAM = variates Experimental variogram to which the model or matrices
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has been fitted, as a variate if in only one direction or as
a matrix if there are several

DISTANCE = variates Mean lag distances for the points in each or matrices
variogram

DIRECTION = variates Directions in which each variogram was computed
ESTIMATES = variates Estimated parameter values
XUPPER = scalar Upper limit for the x-axis in the graph
PENDATA = scalar Pen to be used to plot the data; default 1
PENMODEL = scalar Pen to be used to plot the model; default 2

DVARIOGRAM plots fitted models to an experimental variogram using estimates produced by
MVARIOGRAM.

The data can be taken directly from the FVARIOGRAM directive and MVARIOGRAM procedure.
The parameters DISTANCES and VARIOGRAMS correspond to those with the same names in
FVARIOGRAM. The data will be in variates if the variogram was calculated in only one direction.
If it is in several, they can either be in matrices (as generated by FVARIOGRAM) or in variates. For
the affinepower model, directions must be supplied using the DIRECTIONS parameter. These
should be in a variate with one value for each column if the other data are in matrices;
alternatively, they should be in a variate of the same length as the other variates.

The MODELTYPE and ISOTROPY options specify the fitted model that is to be plotted, exactly
as in the MVARIOGRAM procedure (8.3.2). The estimates for the model parameters are supplied
in a variate using the ESTIMATES parameter. These can be taken directly from MVARIOGRAM
using the ESTIMATES parameter. The number of values within the variate for the estimates will
depend on the model that has been fitted (see 8.3.2).

The placement of the graph within the graphical frame can be controlled using the WINDOW
option. The TITLE option can supply a title for the plot. Option XUPPER can define an upper
value for the x-axis (i.e. distance), and PENDATA and PENMODEL can supply the numbers of the
pens to be used to plot the experimental variogram and the fitted model respectively (by default
1 and 2).

The use of DVARIOGRAM was illustrated in lines 27 and 28 of Example 8.3.2.

8.3.4 The KRIGE directive

KRIGE directive
Calculates kriged estimates using a model fitted to the sample variogram.

Options
PRINT = string token Controls printed output (description, search,

weights, monitor, data); default desc
Y = variate Y positions (not needed for 2-dimensional regular data

i.e. when DATA is a matrix)
X = variate X positions (needed only for 2-dimensional irregular

data)
YOUTER = variate Variate containing 2 values to define the Y-bounds of

the region to be examined (bottom then top); by default
the whole region is used

XOUTER = variate Variate containing 2 values to define the X-bounds of
the region to be examined (left then right); by default the
whole region is used

YINNER = variate Variate containing 2 values to define the Y-bounds of
the interpolated region (bottom then top); no default
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XINNER = variate Variate containing 2 values to define the X-bounds of
the interpolated region (left then right); no default

BLOCK = variate Dimensions (length and height) of block; default !(0, 0)
i.e. punctual kriging

RADIUS = scalar Maximum distance between target point in block and
usable data

SEARCH = string token Type of search (isotropic, anisotropic); default
isot

MINPOINTS = scalar Minimum number of data points from which to compute
elements; default 7

MAXPOINTS = scalar Maximum number of data points from which to compute
elements (2 < MINPOINTS # MAXPOINTS < 41); default
20

NSTEP = scalar Number of steps for numerical integration; (3 < NSTEP
< 11); default 8

DRIFT = string token Amount of drift (constant, linear, quadratic);
default cons

YXRATIO = scalar Ratio of Y interval to X interval; default 1.0
INTERVAL = scalar Distance between successive interpolations; default 1.0

Parameters
DATA = variates or matrices Observed measurements as a variate or, for data on a

regular grid, as a matrix
ISOTROPY = string tokens Form of variogram (isotropic, Burgess,

geometrical); default isot
MODELTYPE = string tokens Model fitted to the variogram (power,

boundedlinear, circular, spherical,
doublespherical, pentaspherical,
exponential, besselk1, gaussian, cubic,
stable, cardinalsine, matern); default powe

NUGGET = scalars The nugget variance
SILLVARIANCES = variates Sill variances of the spatially dependent component;

default none
RANGES = variates Ranges of the spatially dependent component; default

none
GRADIENT = variates Slope of the unbounded component; default none
EXPONENT = variates Power of the unbounded component or power for the

stable model; default none
SMOOTHNESS = scalar Value of í parameter for the Matern model; defalt none
PHI = variates Phi parameters of an anistropic model (ISOTROPY =

Burg or geom)
RMAX = variates Maximum gradient or distance parameter of an

anistropic model
RMIN = variates Minimum gradient or distance parameter of an

anistropic model
PREDICTIONS = matrices Kriged estimates
VARIANCES = matrices Estimation variances
LAGRANGEMULTIPLIER = matrices or pointers

Saves the Lagrange multipliers from each kriging
solution

MEASUREMENTERROR = scalar Specifies the variance of the measurement error
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SAVE = pointers Supplies the model name and estimates, as saved from
MVARIOGRAM

The KRIGE directive computes the ordinary kriging estimates of a variable at positions on a grid
from data and a model variogram by solving the kriging system, equations (8.3.9) above.

The data must be supplied, using the DATA parameter, in one of the two forms as for
FVARIOGRAM: i.e. for data on a regular grid, in a matrix defined with a variate of column labels
to provide the x-values and a variate of row labels to provide the y-values or, for irregularly
scattered data, as a variate with the X and Y options set to variates to supply the spatial
coordinates.

By default all data are considered when forming the kriging system. However, a subset of the
data may be selected by limiting the area to a rectangle defined by XOUTER and YOUTER options.
Each of these should be set to a variate with two values to define lower and upper limits in the
x (East-West) and y (North-South) directions respectively.

The positions at which Z is predicted (estimated) are contained in a rectangle defined by the
XINNER, YINNER and INTERVAL options. XINNER and YINNER are set to variates similarly to
XOUTER and YOUTER, and their limits should not lie outside those of XOUTER and YOUTER.
INTERVAL is set to a scalar to define the distance between the successive positions in the rows
and columns of the grid at which kriging is to be done, specified in the same units as the data.
However, if the aim is to make a map, INTERVAL should be chosen so that it represents no more
than 2 mm on the final printed document. The optimality of the kriging will then not be degraded
noticeably by the subsequent contouring.

Kriging may be either punctual, i.e. at "points" which have the same size and shape as the
sample support, or on bigger rectangular blocks. The size of the blocks is specified by the BLOCK
option, in a variate whose two values define the length of the block first in the x direction
(eastings) and then in the y direction (northings). By default the BLOCK variate contains two zero
values, to give punctual kriging. The average semivariances between point and block, ã!(h) and
ã!(B, B) in equations (8.3.9) and (8.3.11), are computed by integrating the variogram numerically
over the block. The number of steps in each direction is defined by the NSTEP option. The
default of 8 is recommended as a compromise between speed and accuracy. The kriging may be
accelerated at the expense of accuracy by reducing NSTEP, or accuracy gained by increasing it.
The minimum is 4 and the maximum 10.

The minimum and maximum number of points for the kriging system, n in equations (8.3.9),
are set by the MINPOINTS and MAXPOINTS options. There is a minimum limit of 3 for
MINPOINTS and a maximum of 40 for MAXPOINTS, and MINPOINTS must be less than or equal
to MAXPOINTS. The defaults are 7 and 20 respectively. Data points may be selected around the
point or block to be kriged by setting the RADIUS option to the radius within which they must
lie. If the variogram is anisotropic, the search may be requested to be anisotropic by setting
option SEARCH to anisotropic; by default SEARCH=isotropic.

Universal kriging may be invoked by setting the DRIFT option to linear or to quadratic,
i.e. to be of order 1 or 2 respectively. By default is DRIFT=constant, to give ordinary kriging.
For data in a regular grid that is not square, the ratio of the spacing in the y direction to that in
the x direction is given by the YXRATIO option. The default is 1.0 for square.

The variogram is specified by its type and parameters. The model and estimates can be saved
using the SAVE parameter of MVARIOGRAM, and passed on to KRIGE using its SAVE parameter.
Alternatively, they can be supplied as follows.

The model can be defined by setting the MODELTYPE option to either power,
boundedlinear (one dimension only), circular, spherical, doublespherical,
pentaspherical, exponential, besselk1 (Whittle's function), gaussian, cubic, stable
(i.e. powered exponential), cardinalsine or  matern, as defined in 8.3.2. All models may
have a nugget variance, supplied using the NUGGET option; this is the constant estimated by
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MVARIOGRAM. For punctual kriging, you can specify the variance of any measurement error using
the MEASUREMENTERROR parameter. The parameters of the power function (the only unbounded
model) are defined by the GRADIENT and EXPONENT parameters. The parameter for the power
of the stable model is supplied using the EXPONENT parameter. The parameter í for the matern
function is supplied using the SMOOTHNESS parameter. The simple bounded models, i.e. all other
settings of MODELTYPE except doublespherical, require the SILLVARIANCES (the sill of the
correlated variance) and RANGES parameters. The latter is strictly the correlation range of the
boundedlinear, circular, spherical and pentaspherical models, while for the
asymptotic models it is the distance parameter of the model. The doublespherical model
requires SILLVARIANCES and RANGES to be set to variates of length two, to correspond to the
two components of the model.

The ISOTROPY parameter allows the variation to be defined to be either isotropic or
anisotropic in one of two ways: either Burgess anisotropy (Burgess & Webster 1980) or
geometric anisotropy (Journel & Huijbregts 1978, Webster & Oliver 1990). The anisotropy
is specified by three parameters, namely PHI, the angle in radians of the direction of maximum
variation, RMAX, the maximum gradient or distance parameter of the model, and RMIN, the
minimum gradient or distance parameter. the power, stable, exponential, Gaussian,
pentashperical, spherical, cubic, and circular functions may be anisotropic.
KRIGE calculates two matrices, one of predictions (or estimates), which can be saved using

the PREDICTIONS parameter, and the other of the prediction (estimation or kriging) variances
saved using the VARIANCES parameter. The matrices are arranged with the first row of each
matrix at the bottom following geographic rather than mathematical convention. You can save
the Lagrange multipliers from the kriging solution using the LAGRANGEMULTIPLIER parameter.
For ordinary Kriging the Lagrange multipliers are saved in a matrix (with a multiplier for each
point). For universal Kriging a pointer of matrices is saved, where a matrix to save the Lagrange
multipliers of each equation term.

The PRINT option can be set to data to print the data (2-dimensional regular data only). It
also allows intermediate results to be printed. The setting search lists the results of the search
for data around each position to be kriged, weights lists the kriging weights at each position
and monitor monitors the formation and inversion of the kriging matrices for each position.
These options enable you to check that the kriging is working reasonably. However, they can
produce a great deal of output, and should not be requested when kriging large matrices, such
as might be wanted for mapping.

Example 8.3.4 completes the examination of the Brooms Barn data by using KRIGE to produce
predictions of the potassium levels on a regular grid. First a small grid of values is produced for
printing, then a finer grid is produced for contouring (Figures 8.3.4a and 8.3.4b).

Example 8.3.4

  31  " Produce matrices of predictions Kest and prediction variances Kvar."
  32  KRIGE  [PRINT=d;  X=East; Y=North; YOUTER=!(1,30); XOUTER=!(1,18); \
  33         YINNER=!(1,30); XINNER=!(1,18); BLOCK=!(1.0,1.0); RADIUS=4.75;\
  34         MINPOINTS=7; MAXPOINTS=20; INTERVAL=2] \
  35         LogK; ISOTROPY=isotropic; MODELTYPE=spherical;  NUGGET=0.0046; \
  36         SILL=0.01528; RANGE=10.81; PREDICTIONS=Kest; VARIANCES=Kvar

Kriging of irregularly spaced data
==================================

Data rectangle:          1 to 18 in the X direction
                         1 to 30 in the Y direction
Interpolated rectangle:  1 to 18 in the X direction
                         1 to 30 in the Y direction
Block size:              1 by 1
Interpolation grid:      15 rows, 9 columns
Interpolation interval:  2
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Number of points required for interpolation

Minimum:  7
Maximum: 20

Data: LogK, 434 sites, initial search radius 4.75

Isotropic spherical model
-------------------------

Parameters:

Nugget variance                   0.004600
Sill variance                     0.015280
Range                              10.8100
Within-block variance             0.005712

  36  PRINT  Kest,Kvar; FIELD=7; DECIMALS=4

                Kest
               1.000  3.000  5.000  7.000  9.000 11.000 13.000 15.000 17.000

        30.00 1.3899 1.2306 1.1859 1.2975 1.3343 1.3367 1.3288 1.3210 1.3850
        28.00 1.3327 1.2228 1.2407 1.2172 1.2801 1.3976 1.4479 1.4927 1.4785
        26.00 1.2777 1.2074 1.2055 1.1949 1.2833 1.4003 1.3761 1.4376 1.4034
        24.00 1.3286 1.2377 1.1964 1.2080 1.3078 1.3519 1.3763 1.4095 1.4170
        22.00 1.3994 1.3113 1.2769 1.4288 1.6294 1.4297 1.4088 1.4187 1.4203
        20.00 1.4991 1.4199 1.3595 1.4777 1.5787 1.4379 1.4070 1.3699 1.4202
        18.00 1.5298 1.4277 1.4249 1.5298 1.5659 1.5382 1.5154 1.4733 1.4965
        16.00 1.4978 1.4149 1.3911 1.3519 1.4168 1.5365 1.5763 1.5680 1.5383
        14.00 1.4227 1.3754 1.2784 1.2846 1.4344 1.5506 1.4918 1.4896 1.4553
        12.00 1.4823 1.4692 1.2811 1.2742 1.4166 1.4729 1.4530 1.4497 1.4335
        10.00 1.4585 1.3819 1.2920 1.3201 1.3211 1.3669 1.4894 1.5313 1.4571
         8.00 1.4628 1.4633 1.3861 1.3741 1.3245 1.3236 1.4547 1.5048 1.4826
         6.00 1.3894 1.3603 1.3613 1.3713 1.3085 1.3334 1.4412 1.5032 1.4951
         4.00 1.3882 1.3463 1.3712 1.3869 1.3630 1.3895 1.4611 1.5369 1.5650
         2.00 1.3917 1.3963 1.3914 1.4226 1.4604 1.5063 1.5630 1.6051 1.5988

                Kvar
               1.000  3.000  5.000  7.000  9.000 11.000 13.000 15.000 17.000

        30.00 0.0014 0.0010 0.0011 0.0013 0.0013 0.0013 0.0013 0.0013 0.0027
        28.00 0.0013 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
        26.00 0.0013 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
        24.00 0.0016 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
        22.00 0.0044 0.0027 0.0026 0.0025 0.0013 0.0010 0.0010 0.0010 0.0010
        20.00 0.0051 0.0027 0.0026 0.0025 0.0013 0.0010 0.0010 0.0012 0.0012
        18.00 0.0056 0.0014 0.0010 0.0010 0.0010 0.0010 0.0010 0.0012 0.0012
        16.00 0.0068 0.0027 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
        14.00 0.0067 0.0016 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
        12.00 0.0063 0.0013 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
        10.00 0.0061 0.0013 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
         8.00 0.0061 0.0013 0.0014 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010
         6.00 0.0061 0.0013 0.0010 0.0019 0.0012 0.0010 0.0010 0.0010 0.0010
         4.00 0.0062 0.0013 0.0014 0.0033 0.0015 0.0010 0.0010 0.0010 0.0010
         2.00 0.0068 0.0014 0.0034 0.0054 0.0037 0.0014 0.0013 0.0016 0.0032

  38  KRIGE  [PRINT=d;  X=East; Y=North; YOUTER=!(1,30); XOUTER=!(1,18); \
  39         YINNER=!(1,30); XINNER=!(1,18); BLOCK=!(1.0,1.0); RADIUS=4.75;\
  40         MINPOINTS=7; MAXPOINTS=20; INTERVAL=0.5] \
  41         LogK; ISOTROPY=isotropic; MODELTYPE=spherical;  NUGGET=0.0046; \
  42         SILL=0.01528; RANGE=10.81; PREDICTIONS=Egrid; VARIANCES=Vgrid

Kriging of irregularly spaced data
==================================

Data rectangle:          1 to 18 in the X direction
                         1 to 30 in the Y direction
Interpolated rectangle:  1 to 18 in the X direction
                         1 to 30 in the Y direction
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Figure 8.3.4a Figure 8.3.4b

Block size:              1 by 1
Interpolation grid:      59 rows, 35 columns
Interpolation interval:  0.50

Number of points required for interpolation

Minimum:  7
Maximum: 20

Data: LogK, 434 sites, initial search radius 4.75

Isotropic spherical model
-------------------------

Parameters:

Nugget variance                   0.004600
Sill variance                     0.015280
Range                              10.8100
Within-block variance             0.005712

  43  GETATTRIBUTE [ATTRIBUTE=rows,columns] Egrid; SAVE=Dim
  44  CALCULATE Dim['rows'] = REVERSE(Dim['rows'])
  45  &         Nrow = NVALUES(Dim['rows'])
  46  MATRIX    [ROWS=Dim['rows']; COLUMNS=Dim['columns']] Ergrid,Vrgrid
  47  CALCULATE (Ergrid,Vrgrid)$[Nrow...1;*] = (Egrid,Vgrid)$[1...Nrow;*]
  48  " produce a contour map"
  49  FRAME     WINDOW=1,2; YLOWER=0; YUPPER=0.97,0.9; \
  50            XLOWER=0,0.65; XUPPER=0.65,0.99
  51  XAXIS     [RESET=yes] 1; LOWER=0.5; UPPER=18.5
  52  YAXIS     [RESET=yes] 1; LOWER=0.5; UPPER=30.5
  53  PEN       2,3; COLOUR='white','blue'
  54  DCONTOUR  [TITLE='Brooms Barn LogK'] Ergrid; PENFILL=!(2,3)
  55  DCONTOUR  [TITLE='LogK estimation variance'] Vrgrid; PENFILL=!(2,3)

8.3.5 Coregionalization and cokriging
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Genstat has four commands, FCOVARIOGRAM, MCOVARIOGRAM, DCOVARIOGRAM and COKRIGE
that can be used to model the spatial behaviour of several variables at once. These have been
produced in collaboration with Andreas Papritz (Institute of Terrestrial Ecology, ETH Zurich).
This section describes the underlying theory. The commands themselves are then described in
Sections 8.3.6 - 8.3.9. Further information can be found in Chapter 10 of Webster & Oliver
(2007).

Two or more random variables may be "coregionalized" in the sense that they are spatially
correlated individually (regionalized in the sense above) and spatially correlated with one
another. The ideas are formalized for two variables, Zu(x) and Zv(x), denoted u and v henceforth,
and both obeying Matheron's intrinsic hypothesis as set out at the start of this section.

In the augmented notation the expected difference for u at lag h is
E[ Zu(x) – Zu(x + h) ]  =  0 , (8.3.16)

and the variogram, specifically the autovariogram of u, is
ãuu(h) = ½ E[ {Zu(x) – Zu(x + h)}2 ] . (8.3.17)

The reason for the double subscript uu will become apparent presently. Similar expressions hold
for variable v, the autovariogram of which is ãvv(h).

The two variables have a cross-variogram, ãuv(h), defined as
ãuv(h) = ½ E[ {Zu(x) – Zu(x + h)} {Zv(x) – Zv(x + h)} ] . (8.3.18)

This function describes the way in which u is related spatially to v.
If both variables are second-order stationary, then both will have covariance functions. That

for Cuu(x) is
Cuu(h) = E[ {Zu(x) – ìu} {Zu(x + h) – ìu} ] . (8.3.19)

where ìu is the mean of u. The covariance function of v, Cvv(x), is defined similarly. The two
variables have a cross-covariance function:

Cuv(h) = E[ {Zu(x) – ìu} {Zv(x + h) – ìv} ] . (8.3.20)
This function is related to the cross-variogram by

ãuv(h) = Cuv(0) ! ½ {Cuv(h) + Cuv(!h)} (8.3.21)
Note, however, that Cuv(h) is in general different from Cuv(!h), whereas

ãuv(h) = ãuv(!h) (8.3.22)
for all h. 

The cross-variogram is estimated from data in a way analogous to that for the autovariogram
by the method of moments:

(8.3.23)
where the Zu(xi) and Zv(xi) are the measured values of u and v at xi, and  Zu(xi+h) and Zv(xi+h) are
those at xi+h. Note that there must be measurements of both u and v at some places. When there
are only a small number of matching locations or no common locations, Genstat provides an
alternative algorithm, described by Künsch, Papritz & Bassi (1997), which estimates the
generalized cross-covariances.

The models available for cross-variograms are the same as those for autovariograms. To
describe the coregionalization, however, the models must combine in a coherent way such that
the combination cannot give rise to "negative variances". For this one adopts the linear model
of coregionalization. In it the variogram for any pair of variables u and v is the sum of two or
more, K$2, basic functions, gk(h), multiplied by appropriate coefficients:

(8.3.24) 
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The coefficients bk
uv, in which the k is simply an index, not a power, are the variances and

covariances, i.e. nugget (the b1
uv) and sill variances of independent components of the

cross-variogram if they are bounded. The gk(h) are basic variogram functions of correlated
random variables with mean 0 and variance 1 and distance parameters to be determined. Thus,
a basic isotropic spherical function, for example, is

(8.3.25)
where h =*h*. Its sole parameter is ak, the range for the kth component. For unbounded
variograms the b1

uv are the nugget variances and the bk
uv for k>1 are the gradients.

The coefficients bk
uv = bk

vu for all k, and for each k the matrix of coefficients

must be positive definite. The matrix is symmetric, and so it is sufficient that bk
uu$0 and bk

vv$0
and that its determinant is positive or zero:

*bk
uv* = *bk

vu* # %(bk
uu b

k
vv) (8.3.26)

This is Schwarz's inequality.
For V coregionalized variables the full matrix of coefficients, [bk

ij], is of order V, and all its
principal minors must be positive or zero.

Schwarz's inequality has the following consequences for each pair of variables.
1. Every basic variogram function, gk(h), represented in a cross-variogram must also appear

in the two autovariograms, i.e. bk
uu � 0 and bk

vv � 0 if  bk
uv � 0. If a basic gk(h) is absent

from either autovariogram then it may not be present in the cross-variogram.
2. The reverse is permissible; bk

uv may be zero when either bk
uu or bk

vv or both exceed zero;
i.e. structures may appear in the autovariograms without their being present in the
cross-variogram.

Genstat ensures that the model fitted to the coregionalization is conditional semi-definite
(CNSD) by using the algorithm of Goulard & Voltz (1992). As a further check on the model one
can plot the cross experimental variogram for any pair of variables and the model for them on
a graph with the limiting values that would hold if correlation were perfect. This last condition
gives the hull of perfect correlation (Wackernagel 1995), which is obtained from the bk

uu and bk
vv

by
hull[ãuv(h)] = ± 3k=1,K { %(bk

uu b
k
vv) gk(h) } (8.3.27)

The line for the fitted model must lie within the hull to be acceptable. It also reveals the
strength of the cross correlation. If it lies close to either bound of the hull then the corelation is
strong. If, in contrast, the line lies far from both bounds then the correlation is weak.

Cokriging is an elaboration of the corresponding form of autokriging in which the additional
information in the cross correlations with subsidiary variables is taken into account in the
predictions.

Suppose there are V regionalized variables, l=1, 2, ... V, of which variable u, the target
variable, is to be predicted. Typically u will have been sampled less densely than the others. In
ordinary cokriging an estimate of u in a block B is the linear sum

(8.3.28)
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where the subscript l refers to the variables, and i refers to the sampling points of which there
are nl where variable l has been measured. The ëij are weights satisfying

(8.3.29)
These are the non-bias conditions, and subject to them the prediction variance of Z ^ u(B) for a
block, B, is minimized by solution of the kriging system:

(8.3.30)
for all v=1, 2, ... V and all j=1, 2 ... nv. The quantity ãlv(xi, xj) is the (cross) semivariance between
variables l and v at sites i  and j, separated by the vector xi!xj; ã

!
uv(xj, B) is the average (cross)

semivariance between a site j and the block B, and øv is the Lagrange multiplier for the vth
variable. If l=v or u=v, then the semivariances are the autosemivariances. This set of equations
is the extension of the autokriging system.

Solving these Equations 8.3.30 gives the weights, ëil, which are inserted into Equation 8.3.28
to estimate Zu(B). The cokriging variance is obtained from

(8.3.31)
where ã!uu(B, B) is the integral of ãuu(h) over B, i.e. the within-block variance of u.

The equations are represented in matrix form for only two variables, u and v, for simplicity.
Let Ãuv denote a matrix of semivariances (including cross semivariances where u�v) between
sampling points in a neighbourhood, and suppose that there are nu places at which variable u was
measured and nv where v was measured.

The matrix, of order nu × nv, is

(8.3.32)
Denote by buu and by  buv the vectors of autosemivariances for variable u and cross
semivariances:
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(8.3.33)

(8.3.34)
The matrix equation is then

(8.3.35)
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Denote the augmented matrix of Ãs by G, the vector of weights and Lagrange multipliers by ë,
and the right hand side vector by b;  then the solution of the equation is succinctly

ë = G!1 b . (8.3.36)
The cokriging (prediction) variance is given by

(8.3.37)
As in autokriging the block B may be of any reasonable size and shape, and it may be reduced

to a point, x0, having the same dimensions as the support on which the data were obtained. In
these circumstances the averages ã!uv(xj, B) become ãuv(xj, x0), and ã!uu(B, B) is zero and hence
disappears, so that

(8.3.38)

(8.3.39)

and

(8.3.40)

8.3.6 The FCOVARIOGRAM directive

FCOVARIOGRAM directive
Forms a covariogram structure containing auto-variograms of individual variates and cross-
variograms for pairs from a list of variates.

Options
PRINT = string token Controls printed output (statistics, variograms,

autovariograms); default stat
METHOD = string token Specifies what to do when the measurements are not all
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made at the same locations (allwithcrossnugget,
allnocrossnugget, commonpoints); default comm

COVARIOGRAM = pointer Pointer to store the variograms, cross-variograms and
associated information for use in MCOVARIOGRAM

MAXLAG = scalar Maximum lag in all directions
STEPLENGTHS = scalar or variate Length of the step or steps in which lag is incremented
DIRECTIONS = scalar or variates Directions along which to form the variogram, scalar for

a single direction in 2 dimensions, variate for several
directions in 2 dimensions, and pairs of variates for 3
dimensional data

SEGMENTS = scalar Angle subtended by each segment along the
DIRECTIONS

COORDSYSTEM = string token Coordinate system used for the geometry for discretizing
the lag (mathematical, geographical); default
math

MAXCONEDIAMETER = scalar Diameter at which the segments over which averaging is
to be done should cease to expand; default * implies no
limit

MINCOUNT = scalar Minimum number of points required at a particular lag
point for the cross-variogram to be estimated there;
default 1

DRIFT = string token Mean function (constant, linear, quadratic);
default cons

Parameters
DATA = variates Measurements as a variate
X1 = variates Locations of each set of measurements in the first

dimension
X2 = variates Locations of each set of measurements in the second

dimension (if recorded in more than 1 dimension)
X3 = variates Locations of each set of measurements in the third

dimension (if recorded in 3 dimensions)

To perform cokriging in Genstat, you must first form a covariogram structure containing the
necessary auto- and cross-variograms, using the FCOVARIOGRAM directive.

The data are supplied as a list of variates (one for each variable of interest) using the DATA
parameter. The locations of the measurements are supplied using the parameter X1 for data in
one dimension only, or X1 and X2 for two dimensions, or X1, X2 and X3 for three dimensions.
Any restrictions on the variates are ignored.

The METHOD option specifies how to calculate the cross-variograms. The setting
commonpoints specifies that only those points in common in every sample are to be included;
Equation 8.3.23 is then used (see Section 8.3.5). Alternatively, the setting allnocrossnugget
can be used when the sampling locations do not match. This uses an algorithm outlined in
Künsch, Papritz & Bassi (1997) that performs least-squares fitting of the cloud of products of
differences to estimate the expected value of these products. If there are no common points, the
nugget variance cannot be calculated. However, if there is partial sampling (some common
points), the setting allwithcrossnugget can be used to shift the cross-variograms by the
semivariance at the origin to estimate the nugget effect.

The maximum lag distance in all directions to which the variograms are calculated is set by
the MAXLAG option. The increments in distance are set by the STEPLENGTH option, where you
can supply a scalar to define equally-spaced steps or a variate to specify the steps themselves.
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The directions along which to form the variograms are supplied in degrees using the
DIRECTIONS option. The geometry used for the directions is given by the COORDSYSTEM option:
the setting mathematical specifies directions counter-clockwise from east, and
geographical specifies clockwise from north (for the first direction only in three dimensions).
Each direction is at the centre of an angular range. The angle is the same in every direction, and
is defined by the SEGMENTS option. For a single direction in two dimensions the DIRECTIONS
option should be set to a scalar, while for several directions it should be set to a variate. For
directions in three dimensions, DIRECTIONS should specify a pair of variates. The
MAXCONEDIATMETER option can be used to specify a diameter at which the segments cease to
expand. For cross-variograms that are formed using all points the minimum number of points
required at each lag can be specified using the MINCOUNT option. 

The DRIFT option can be used to calculate the variograms after removing a systematic
component. Setting the DRIFT option to linear or quadratic will fit a regression to the
observations and then form the variograms on the residuals. 

The COVARIOGRAM option allows you to specify pointer to save the auto-variograms, cross-
variograms and associated information. Its elements contain:

1 a matrix with columns of variograms and cross-variograms and rows indexed by lags
within directions;

2 a variate of counts at the lags in each direction;
3 distances of the lags in each direction;
4 horizontal angles;
5 vertical angles;
6 variances;
7 distance classes;
8 method;
9 pointer containing identifiers of the DATA variates;
10 number of dimensions.

This structure provides the information required to fit models to the covariogram using the
directive MCOVARIOGRAM.

The PRINT option can be set to statistics to display statistics for each of the variates. The
setting variograms displays each of the auto- and cross-variograms, while the setting
autovariogram displays only the auto-variograms.

In Example 8.3.6 the experimental auto- and cross-variograms of cadmium, zinc and nickel
taken on an incomplete grid at Swiss Jura are estimated where the cross-variograms have been
formed from common points, e.g. sites where both variables have been measured. The results are
saved into a pointer called save_cov for use within the MCOVARIOGRAM directive and to extract
values for plotting using the DGRAPH statement in lines 20 and 21 (Figures 8.3.6).

Example 8.3.6

   2  " Data are measurements of concentrations of trace metals in the topsoil
  -3    of the Swiss Jura. Data analyzed are Cadmium, Nickel and Zinc taken
  -4    from Goovaerts prediction subset. See Goovaerts (1997) Geostatistics
  -5    for Natural Resources Evaluation."
   6  FILEREAD     [PRINT=summary; NAME=\
   7               '%GENDIR%/Examples/GuidePart2/Goovaerts.dat']X1,X2,Cd,Ni,Zn
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Summary
-------

The file %GENDIR%/Examples/GuidePart2/Goovaerts.dat is assumed to contain 5
structure(s), with one value for each structure on each record.

The file contains 259 values for each of the following structures:

  Identifier      Type   Missing
          X1   variate         0
          X2   variate         0
          Cd   variate         0
          Ni   variate         0
          Zn   variate         0

   8  FCOVARIOGRAM [PRINT=statistics; MAXLAG=2.1; STEP=0.1; DIRECTIONS=0;\
   9               SEGMENTS=180; MAXCONE=500; MINCOUNT=1; \
  10               COVARIOGRAM=Save_cov] DATA=Cd,Ni,Zn; X1=X1; X2=X2

Sample statistics
-----------------

Variate        Mean    Variance     No.Obs.
     Cd       1.309       0.838         259
     Ni      19.730      67.780         259
     Zn      75.078     842.119         259

  11  " Plot the variograms and covariograms."
  12  GETATTRIBUTE [ATTRIBUTE=columns] Save_cov['semivar']; Lab
  13  FRAME        11...16; YLOWER=2(0.66,0.33,0); YUPPER=2(0.98,0.65,0.32);\
  14               XLOWER=(0,0.5)3; XUPPER=(0.5,1)3
  15  TEXT         scr; VALUE='clear'
  16  PEN          1; SYMBOL='circle'
  17  XAXIS        11...16; TITLE='Lag distance/km'; LOWER=0; LROTATION=45
  18  YAXIS        11...16; TITLE='Semi-variance'; LOWER=0
  19  FOR [INDEX=i; NTIMES=6]
  20    DGRAPH     [WINDOW=i+10; KEY=0; TITLE=Lab['columns']$[i]; SCREEN=#scr] \
  21               Save_cov['semivar']$[*;i]; Save_cov['distances']$[*;i]
  22    TEXT       scr; VALUE='keep'
  23  ENDFOR
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Figure 8.3.6

8.3.7 The MCOVARIOGRAM directive

MCOVARIOGRAM directive
Fits models to sets of variograms and cross-variograms.

Options
PRINT = string tokens Controls printed output from the fit (model, summary,

estimates, fittedvalues, monitoring); default
mode, summ, esti

WEIGHTING = string token Method to be used for weighting (counts, equal);
default coun

MAXLAG = scalar Maximum lag distance of points to be included in the
modelling

MINCOUNT = scalar Minimum number of points required at a particular lag
point for a pair of variables for this to be used to model
their cross-variogram; default 30 for equal weighting
and 10 for counts

MAXCYCLE = scalar Maximum number of iterations for model fitting; default
30
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TOLERANCES = variate Tolerances for model fitting; default * i.e. appropriate
default values

COORDSYSTEM = string token Coordinate system used for the geometry for discretizing
the lag (mathematical, geographical); default
math

COVARIOGRAM = pointers Experimental variograms, cross-variograms and
associated information defining the data for fitting the
model

Parameters
MODELTYPE = string tokens Defines the model structures to be fitted (nugget,

power, boundedlinear, circular, spherical,
pentaspherical, cubic, stable, besselk1,
cardinalsine, dampenedcosine); no default i.e.
must be specified

INITIAL = scalars or variates Scalar defining the initial distance parameter for fitting
an isotropic model structure or a variate defining initial
values for an anisotropic ellipse or ellipsoid for fitting
an geometrical anisotropic model

ISOTROPY = string tokens Specifies the zonal anisotropy to be used for model
structure (isotropic, x, y, z, xy, xz, yz); default
isot

ESTIMATES = pointers Structures to store the estimated nonlinear parameters
and sill values

LOWER = scalars Lower bound for each nonlinear distance parameter
UPPER = scalars Upper bound for each nonlinear distance parameter
STEPLENGTH = scalars Initial step length for each nonlinear distance parameter
SMOOTHNESS = scalars Value of exponent parameter for the power and stable

models, or theta parameter for the dampened-cosine
model

The next step is to use the MCOVARIOGRAM directive to fit models to the auto- and cross-
variograms formed by FCOVARIOGRAM (8.3.6). These are transferred using the COVARIOGRAM
options of the two directives.
 You can specify a combination of basic variogram functions to model the variograms, for
example, nugget plus spherical. MCOVARIOGRAM uses the algorithms from the directives FIT and
FITNONLINEAR to estimate the model parameters for the combination of basic variogram
functions. It then fits a linear model of coregionalization using the Goulard & Voltz (1992)
algorithm, where each step of the solution is checked for conditional semi-definiteness. The two-
step process is iterated until convergence.

The MODELTYPE parameter selects the combination of model structures to be used in the
model:

nugget c0

boundlinear ch/a for h # a, otherwise 0
circular c {1 ! (2/ð)arccos(h/a) + (2h/(ða))%(1!h2/a2)}
  for h # a, otherwise 0
spherical c {1.5h/a ! 0.5(h/a)3 }
  for h # a, otherwise 0
pentaspherical c {1.875h/a ! 1.25(h/a)3 + 0.375(h/a)5}
  for h # a, otherwise 0
cubic c {7(h/a)2 ! 8.75(h/a)3 + 3.5(h/a)5 - 0.75(h/a)7}
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stable c {1 ! exp(!(h/a)b))}
for 0 # b # 2

besselk1 c {1 ! h/a k1(h/a) }
cardinalsine c {1 ! a/h sin(h/a)}
dampenedcosine c {1 ! exp(!h/(as)) cos(h/a) }
power ghá

Initial values for the model structures should be supplied using the INITIAL parameter. For

an isotropic model the initial value should be specified as a scalar. You can specify a
geometrically anisotropic model by supplying the values within a variate. In two dimensions the
variate should contain three values that define an anisotropy ellipse. The first value should define
the first axis direction. This is the angle for the main direction of continuity (least change with
separating distance) measured in degrees, counter-clockwise from East if option COORDSYSTEM
is set to mathematical or clockwise from North if COORDSYSTEM is set to geographical.
The second value should contain the initial value for the distance parameter of the first axis, and
the last value of the variate should be the anisotropy ratio between the distance parameters along
the first axis (principal direction of continuity) and the second axis.

In three dimensions the variate should contain six values that define an anisotropy ellipsoid.
The first value defines the angle for the first axis (principal direction of continuity) which is
measured in degrees, counter-clockwise from East if COORDSYSTEM is set to mathematical or
clockwise from North if COORDSYSTEM is set to geographical. The second value defines the
dip angle for the first axis (rotation angle around the y-axis) which is measured in degrees up
from horizontal. The third value defines the rotation angle of the second and third axis around
the first axis (defined by the two previous angles). The fourth value should contain the initial
value for the distance parameter along the first axis. The fifth value defines the anisotropy ratio
between distance parameters along the first and second axis of the ellipsoid. The last value of
the variate defines the anisotropy ratio between the distance parameters along the second and
third axis of the ellipsoid.

Another form of anisotropy can occur when the sill of a semi-variogram varies in different
directions. This is known as zonal anisotropy and you can set a model structure to be zonal in
particular directions using the ISOTROPY parameter. A model structure can be zonal and
geometrically anisotropic.

For the power and stable models the SMOOTHNESS option controls the power parameter for
the model. By default, the parameter is estimated, however, you can supply a value to fix the
parameter for the model fitting. 

The WEIGHTING option controls the weights that are used when fitting the model. The default
setting counts uses the values supplied for the counts within the COVARIOGRAM option, and
equal uses equal weights (of one).

The MAXLAG option can be used to specify the maximum lag distance of points to be included
in the modelling. The MINCOUNT option specifies the minimum number of points to be used to
model the variograms at a particular lag.

The TOLERANCES option controls the criterion for convergence of the nonlinear regression
and Goulard & Voltz algorithm. The values should be supplied in a variate where the first value
is the criterion for the nonlinear regression and the second value is the criterion for the Goulard
& Voltz algorithm. The option MAXCYCLE can be used to change the maximum number of
iterations performed by the nonlinear regression from the default of 30.

The geometry used for the directions supplied using the COVARIOGRAM option is given by the
COORDSYSTEM option, where the setting mathematical specifies directions counter-clockwise
from East, and geographical clockwise from North (for the first angle only in 3 dimensions).

The ESTIMATES parameter allows you to specify an identifier to save the estimated nonlinear
parameters, sill values and associated information. This structure stores the information required
by the DCOVARIOGRAM procedure (8.3.8) or the COKRIGE directive (8.3.9).
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The PRINT option controls the output to be displayed, with settings:
model description of the models fitted,
summary summary of analysis,
estimates parameter estimates,
fittedvalues fitted semi-variances,
monitoring monitoring information at each iteration of the nonlinear

regression.
Example 8.3.7 models the coregionalization in Example 8.3.6, using double spherical

functions with nugget variances. For initial values the parameters obtained by Goovaerts (1997)
are used. The experimental auto- and cross-variograms along with other information defining the
data for fitting the model are supplied in a pointer saved from the FCOVARIOGRAM directive. The
model estimates are saved in a pointer called Save_est for use by DCOVARIOGRAM (8.3.8) and
COKRIGE (8.3.9).

Example 8.3.7

  24  " Model the coregionalization."
  25  MCOVARIOGRAM [PRINT=summary,estimates; WEIGHTING=counts;\
  26               MAXLAG=3; MINCOUNT=20; COVARIOGRAM=Save_cov]\
  27               MODELTYPE=nugget,spherical,spherical; INITIAL=*,0.2,1.3;\
  28               ESTIMATES=Save_est

Summary
-------

Number of adjustable parameters: 20
Residual Sum of Squares:         280780.

Model Estimates
---------------

Number of elementary correlation structures: 3

Correlation structure 1

  Anisotropy:  Isotropic
  Model:       Pure nugget

Sill variance(s):

           Cd     0.05172
           Ni     0.05265     0.09138
           Zn     0.05170     0.04123     0.05511
                       Cd          Ni          Zn

Correlation structure 2

  Anisotropy:  Isotropic
  Model:       Spherical

Distance parameter(s):

  Distance:  0.1096

Sill variance(s):

           Cd         0.6
           Ni         1.3        19.8
           Zn        10.9        57.8       515.3
                       Cd          Ni          Zn

Correlation structure 3



8.3  Geostatistics 1059

  Anisotropy:  Isotropic
  Model:       Spherical

Distance parameter(s):

  Distance:  1.566

Sill variance(s):

           Cd         0.2
           Ni         3.0        64.0
           Zn         7.3       126.7       403.9
                       Cd          Ni          Zn

8.3.8 The DCOVARIOGRAM procedure

DCOVARIOGRAM procedure
Plots models fitted to 2-dimensional auto- and cross-variograms (D.A. Murray).

Options
PLOT = string token Controls how to display the plotted variograms

(separate, scattermatrix); default scat
ESTIMATES = pointer Pointer containing model estimates saved from

MCOVARIOGRAM

Parameter
COVARIOGRAM = pointer Pointer to supply the semi-variances, distances and

associated information as saved from FCOVARIOGRAM

DCOVARIOGRAM plots 2-dimensional auto- and cross-variograms using data generated by
FCOVARIOGRAM (8.3.6). DCOVARIOGRAM can also be used to display the fitted model for
isotropic models using estimates generated from MCOVARIOGRAM (8.3.7).

The data should be supplied in a pointer that has been saved using the COVARIOGRAM option
from FCOVARIOGRAM. This pointer provides the auto-variograms, cross-variograms and
associated information required for the plots. The ESTIMATES option can be used to plot an
isotropic fitted model of coregionalization where the estimates are taken directly from
MCOVARIOGRAM. Graphical output is controlled using the PLOT option. The setting separate
produces each auto- and cross-variogram on a separate plot. Alternatively, they can be combined
onto a single scatter matrix using the scattermatrix setting.

Figure 8.3.8 shows a plot of the models fitted by MCOVARIOGRAM in Example 8.3.7, using the
command:

DCOVARIOGRAM [ESTIMATES=Save_est] Save_cov
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Figure 8.3.8

8.3.9 The COKRIGE directive

COKRIGE directive
Calculates kriged estimates using a model fitted to the sample variograms and cross-
variograms of a set of variates.

Options
PRINT = string token Controls printed output (description, search,

weights, conditionalprobabilities,
quantiles, crossvalidations); default desc

Y = variate Variate to predict in the cokriging
METHOD = string token Type of kriging (Normal, LogNormal); default Norm
X1OUTER = variate Variate containing 2 values to define the bounds of the

region to be examined in the first direction; by default
the whole region is used

X2OUTER = variate Variate containing 2 values to define the bounds of the
region to be examined in the second direction; by
default the whole region is used

X3OUTER = variate Variate containing 2 values to define the bounds of the
region to be examined in the third direction; by default
the whole region is used

X1INNER = variate Variate containing 2 values to define the bounds of the
interpolated region in the first direction; no default

X2INNER = variate Variate containing 2 values to define the bounds of the
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interpolated region in the second direction; no default
X3INNER = variate Variate containing 2 values to define the bounds of the

interpolated region in the third direction; no default
X1INTERVAL = scalar Distance between successive interpolations in the first

direction; default 1.0
X2INTERVAL = scalar Distance between successive interpolations in the

second direction; default 1.0
X3INTERVAL = scalar Distance between successive interpolations in the third

direction; default 1.0
POINTS = matrix Allows the point where predictions are required to be

specified explicitly if the X1-3INNER and X1-
3INTERVAL options are unset, otherwise if these are set,
saves the locations of the prediction points

BLOCKDIMENSIONS = variate or matrix
Dimensions of the block(s) in the 3 directions, a variate
defines identical blocks for each prediction point, a
matrix can be used to define different block sizes for
each point when the points are defined by the POINTS
option; default !(0,0,0) i.e. punctual kriging at every
point

POOLRADIUS = scalar Specifies the minimum distance for which points are
pooled; default * i.e. no pooling

SEARCHNEIGHBOURHOOD = string token
Search neighbourhood to be used (global, local);
default glob

MINPOINTS = scalars Minimum number of data points from which to compute
elements

MAXPOINTS = scalars Maximum number of data points in each direction from
which to compute elements

RADII = scalars or variates Scalar defining the maximum distance between target
point in block and usable data for each variable in 1
dimension, or radii of the ellipse or ellipsoid enclosing
the usable points in 2 or 3 dimensions

ELLIPSEAXIS = scalar or variate Angle or angles defining the direction of the axis of the
ellipse or ellipsoid, scalar for 2 dimensions and variate
containing 3 values for 3 dimensions

DRIFT = string token Mean function for universal cokriging (constant,
linear, quadratic, polygon); default cons

X1EXV = variate Variate containing locations of the explanatory model in
the first dimension

X2EXV = variate Variate containing locations of the explanatory model in
the second dimension (if recorded in 2 or 3 dimensions)

X3EXV = variate Variate containing locations of the explanatory model in
the third dimension (if recorded in 3 dimensions)

TERMS = variates List of variates for explanatory model; default * i.e.
none

POLYGONCOORDINATES = pointer Pointer containing the coordinates of polygons in 2
variates and the map unit numbers within a factor

COORDSYSTEM = string token Coordinate system used for the geometry for discretizing
the lag (mathematical, geographical); default
math
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CPTHRESHOLD = scalar or variate Threshold(s) for calculating the conditional probabilities
PERCENTQUANTILES = scalar or variate

Percentage points for which quantiles are required;
default 5 and 95

LOGBASE = string token Base of antilog transformation to be applied to the
predictions and variances for lognormal (co)kriging
(ten, e); default * i.e. none

Parameters
DATA = variates Measurements as one or more variates
X1 = variates Locations of the measurements in the first dimension
X2 = variates Locations of the measurements in the second dimension

(if recorded in 2 or 3 dimensions)
X3 = variates Locations of the measurements in the second dimension

(if recorded in 3 dimensions)
PREDICTIONS = variate Kriged estimates
VARIANCES = variate Estimation variances
MEASUREMENTERROR = scalars Variance of measurement error for punctual (co)kriging
ESTIMATES = pointers Estimates for the model structure
CONDITIONALPROBABILITIES = pointers

Structure to save conditional probabilities
QUANTILES = pointers Structure to save estimated quantiles
SAMPLESUPPORT = scalars Sampling size (length, area or volume according to the

dimensionality of the data) of the data points

The COKRIGE directive computes kriged estimates using a model fitted by MCOVARIOGRAM
(8.3.7) to the sample auto- and cross-variograms of a set of variates. These are transferred using
the ESTIMATES options of the two directives.

The data are supplied using the DATA, X1, X2 and X3 parameters, as in the FCOVARIOGRAM
directive (8.3.6). The target variable to predict is supplied using the Y option. Note that the target
variable must also be present in the list of variates supplied with the DATA parameter.

The METHOD option allows you to specify whether to perform Normal or logNormal cokriging.
The lognormal setting is only available for punctual cokriging. For logNormal cokriging the
LOGBASE option allows you to specify the base of the logarithms (ten or e) for back
transforming the kriged predictions and variances.

By default, Genstat uses global prediction where, for each prediction, all the data values are
used. However, it is often desirable to use a subset in a (spatial) neighbourhood around the
prediction location. This could be for computational reasons, or to assume local first-order
stationarity. You can choose whether to use a global or local search using the
SEARCHNEIGHBOURHOOD option.

You can select a subset of the data to be considered when forming the cokriging system by
specifying the area or volume defined by X1OUTER, X2OUTER and X3OUTER. Each of these
should be set to a variate with two values to define the lower and upper limits in each direction.

You can supply the positions at which the target variable is predicted (estimated) in two ways.
The first way is to generate the locations using the X1-3INNER and X1-3INTERVAL options.
X1INNER, X2INNER and X3INNER are set to variates with two values to define the lower and
upper limits in each direction, and the limits should not lie outside those of X1OUTER, X2OUTER
and X3OUTER. X1INTERVAL, X2INTERVAL and X3INTERVAL are set to scalars to define the
distance between the successive positions in the first, second and third direction. The intervals
should be specified using the same units as the data. You can save the generated locations by
supplying an identifier in the POINTS option. The second way is to explicitly supply the points
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where predictions are required. If the X1-3INNER and X1-3INTERVAL options are unset then you
can use the POINTS option to supply a matrix of prediction locations.

By default the cokriging is punctual, i.e. at points that have the same size and shape as the
sample support. The BLOCKDIMENSIONS option can be used to specify block cokriging. You can
either specify a variate containing the dimensions of the block(s) in the three directions or
alternatively supply a matrix defining different block sizes for each point when points are
supplied using the POINTS option. For punctual cokriging, you can specify the variance of any
measurement error using the MEASUREMENTERROR parameter.

The minimum and maximum number of points used for the kriging are set by the MINPOINTS
and MAXPOINTS options, respectively.

The RADII option defines the maximum distance between the target point in a block and
usable data. For an isotropic search you should supply a scalar to define the maximum distance
or radii of the ellipse (two dimensions) or ellipsoid (three dimensions). For an anisotropic search
you should supply the distances for each axis of the ellipse of ellipsoid. For an anisotropic search
the angle or angles defining the direction of the axes of the ellipse or ellipsoid for the search are
supplied using the ELLIPSEAXIS option. For two dimensions you should supply a scalar
containing the angle for the first axis which is measured in degrees, counter-clockwise from East
if option COORDSYSTEM is set to mathematical, or clockwise from North if COORDSYSTEM is
set to geographical. For three dimensions the first value defines the angle for the first axis
which is measured in degrees, counter-clockwise from East if COORDSYSTEM is set to
mathematical, or clockwise from North if COORDSYSTEM is set to geographical. The
second value defines the dip angle for the first axis (rotation angle around the y-axis) which is
measured in degrees up from horizontal. The third value defines the rotation angle of the second
and third axis around the first axis (defined by the two previous angles). The POOLRADIUS
option allows you to specify a minimum distance for which points can be pooled.

The PRINT option controls the printed output with settings:
description description of the length, area or volume being kriged and

the model that is used,
search the results of the search for data around each position that

is kriged,
weights the kriging weights at each position,
crossvalidation cross-validation statistics for punctual cokriging (the

cross-validation is calculated by estimating each sample
point from the data after excluding the sample value),

conditionalprobabilities conditional probabilities for the values specified by the
CPTHRESHOLD option,

quantiles quantiles for the values specified by the
PERCENTQUANTILES option.

Universal kriging may be invoked by setting the DRIFT option to linear or to quadratic,
i.e. to be of order 1 or 2. The default is DRIFT=constant, to give ordinary cokriging. You can
include explanatory variables in the mean function by listing explanatory variates with the
TERMS option, and their associated coordinates using the X1EXV, X2EXV and X3EXV options. For
two-dimensional cokriging, the DRIFT=polygon option allows you to specify categorical
variables defined by one or more closed polygons (map units). The map units and polygons
should be supplied in a pointer using the POLYGONCOORDINATES option. The pointer should
contain the coordinates of the polygons in two variates (x- and y-positions) and a factor where
each level defines a different map unit. If there is more than one polygon within a map unit these
should be separated with a row of missing values.

You can specify the sampling support size (length, area or volume) of the data points using
the SAMPLESUPPORT parameter.

The PERCENTQUANTILES option can specify percentage values for which to compute
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quantiles for the conditional distributions. The quantiles can be saved using the QUANTILES
parameter.

The CPTHRESHOLD option allows you to specify thresholds for calculating conditional
probabilities. The conditional  probabili t ies can be saved using the
CONDITIONALPROBABILITIES parameter.

The kriged predictions and variances can be saved using the PREDICTIONS and VARIANCES
parameters. If a grid or volume of points has been generated using the X1-3INNER and X1-
3INTERVAL options, the corresponding prediction locations can be saved using the POINTS
option.

Example 8.3.9 uses COKRIGE to produce predictions for cadmium (Cd) as the target variable.
The model estimates are supplied in a pointer saved from the MCOVARIOGRAM directive in
Example 8.3.7. The predictions are formed using punctual cokriging. The resulting predictions
and estimation variances for cadmium are plotted as shade diagrams in Figures 8.3.9a and 8.3.9b.

Example 8.3.9

  30  " Read the locations of the prediction points."
  31  MATRIX       [ROWS=1547; COLUMNS=2] Mpoints
  32  OPEN         '%GENDIR%/Examples/GuidePart2/Mpoints.dat'; CHANNEL=2
  33  READ         [CHANNEL=2] Mpoints

    Identifier   Minimum      Mean   Maximum    Values   Missing
       Mpoints     18.00     38.23     58.20      3094         0

  34  CLOSE        2; FILETYPE=input
  35  " Produce predictions and variances for target variable Cadmium."
  36  COKRIGE  [PRINT=description; Y=Cd; POINTS=Mpoints; RADII=20;\
  37           SEARCHNEIGHBOURHOOD=local] Cd; X1=X1; X2=X2;\
  38           ESTIMATES=Save_est; PREDICTIONS=Predictions;\
  39           VARIANCES=Variances

Co-Kriging of Cd
=================

Support Variables:
  Cd 259 support points

Number of points to be kriged:  1547

Number of points required for interpolation

Minimum:       7
Maximum:      20

Number of elementary correlation structures: 3

Correlation structure 1

  Anisotropy:  Isotropic
  Model:       Pure nugget

Sill variance(s):

           Cd     0.05172
                       Cd

Correlation structure 2

  Anisotropy:  Isotropic
  Model:       Spherical

Distance parameter(s):

  Distance:  0.1096



8.3  Geostatistics 1065

Figure 8.3.9a Figure 8.3.9b

Sill variance(s):

           Cd      0.6109
                       Cd

Correlation structure 3

  Anisotropy:  Isotropic
  Model:       Spherical

Distance parameter(s):

  Distance:  1.566

Sill variance(s):

           Cd      0.1965
                       Cd

  40  " Plot the predictions and variances."
  41  VARIATE  [NVALUES=NROWS(Mpoints)] Xpos,Ypos
  42  EQUATE   T(Mpoints); !p(Xpos,Ypos)
  43  GROUPS   [REDEFINE=yes] Xpos,Ypos; FACTOR=Xfac,Yfac; LEVELS=Xlevs,Ylevs
  44  TABULATE [CLASSIFICATION=Yfac,Xfac] Predictions,Variances;\
  45           MEANS=Zvals,Zvars
  46  MATRIX   [ROWS=!(#Ylevs); COLUMNS=!(#Xlevs)] Mpredictions; !(#Zvals)
  47  MATRIX   [ROWS=!(#Ylevs); COLUMNS=!(#Xlevs)] Mvariances; !(#Zvars)
  48  XAXIS    [RESET=yes] 1
  49  YAXIS    [RESET=yes] 1
  50  PEN      2,3; COLOUR='azure','midnightblue'
  51  DSHADE   [TITLE='Cokriged estimates for cadmium in the Swiss Jura';\
  52           YORIENTATION=normal; GRIDMETHOD=*] Mpredictions; PEN=!(2,3)
  53  DSHADE   [TITLE='Cokriging variances for cadmium in the Swiss Jura';\
  54           YORIENTATION=normal; GRIDMETHOD=*] Mvariances; PEN=!(2,3)
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Figure 8.4a

8.4 Analysis of spatial point patterns

Spatial point patterns are sets of n coordinates (in 2-D) representing locations of some objects
of interest (e.g. events, patients, aphids, trees, diseased plants etc). Genstat has several
procedures, listed at the start of this chapter, for plotting and manipulating spatial point patterns.
Also, if the points were recorded at different times, you can investigate their clustering in both
space and time. Some of these procedures use the PASS directive (1: 5.7.2) to link to Fortran
programs from the Splancs system of Rowlingson & Diggle (1993). This facility may therefore
not be available in some Genstat implementations.

The procedures are all described in Part 3 of the Genstat Reference Manual, on in Genstat's
on-line help. Alternatively, details can be be displayed in any implementation, using procedure
LIBHELP. You can also obtain an example of the use of any of the procedures, using procedure
LIBEXAMPLE. These are illustrated in Example 8.4, which shows the help information for
procedure KSTHAT (see Figure 8.4a), and then runs an example that plots the spatial and
temporal K functions (Figures 8.4b and 8.4c).

Example 8.4

   2  LIBHELP 'KSTHAT'
   3  LIBEXAMPLE 'KSTHAT'; EXAMPLE=KSTex
   4  SET [INPRINT=statements,macros]
   5  ##KSTex
     1  CAPTION   'KSTHAT example'; STYLE=meta

KSTHAT example
==============

     2  VARIATE [NVALUES=188] X
     3  READ X
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    Identifier   Minimum      Mean   Maximum    Values   Missing
             X     255.0     286.3     335.0       188         0

    14  VARIATE [NVALUES=188] Y
    15  READ Y

    Identifier   Minimum      Mean   Maximum    Values   Missing
             Y     247.0     338.8     399.0       188         0

    26  VARIATE [NVALUES=188] Times
    27  READ Times

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Times     413.0      3530      5775       188         0

    41  VARIATE [NVALUES=353] Xpoly
    42  READ Xpoly

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Xpoly     246.4     296.6     341.0       353         0

    71  VARIATE [NVALUES=353] Ypoly
    72  READ Ypoly

    Identifier   Minimum      Mean   Maximum    Values   Missing
         Ypoly     237.6     325.3     419.4       353         0

   101  VARIATE [VALUES=1,3...39] S
   102  VARIATE [VALUES=100,200...1500] T
   103  KSTHAT  Y=Y; X=X; TIMES=Times; YPOLYGON=Ypoly; XPOLYGON=Xpoly; S=S;\
   104          TVALUES=T; TLOWER=400; TUPPER=5800; KS=KS; KT=KT

Spatial K function
------------------

           S           K
        1.00          18
        3.00          88
        5.00         230
        7.00         413
        9.00         628
       11.00         899
       13.00        1220
       15.00        1562
       17.00        1896
       19.00        2272
       21.00        2665
       23.00        3110
       25.00        3565
       27.00        4023
       29.00        4481
       31.00        4912
       33.00        5369
       35.00        5863
       37.00        6317
       39.00        6824

Temporal K function
-------------------

           T           K
       100.0         226
       200.0         461
       300.0         663
       400.0         862
       500.0        1053
       600.0        1266
       700.0        1494
       800.0        1736
       900.0        1973
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      1000.0        2189
      1100.0        2416
      1200.0        2620
      1300.0        2827
      1400.0        3040
      1500.0        3256

Space-time K function
---------------------

                        1           2           3           4           5

            1       13560       27120       30510       38985       42375
            2       31646       71534       88484      117299      144675
            3       72325      163506      212954      272279      330165
            4      121059      266984      364034      473568      561964
            5      211471      414296      558506      717432      840072
            6      321008      601279      798735      999270     1162227
            7      401927      764611     1032106     1310538     1570385
            8      491360      928899     1247441     1584600     1922218
            9      558238     1043774     1463272     1858625     2261568
           10      633818     1231797     1723439     2180036     2635022
           11      692946     1384710     1936022     2450990     2985651
           12      785320     1578652     2207477     2765070     3363766
           13      912745     1801883     2503223     3150485     3850284
           14     1028906     2045878     2864760     3590862     4373671
           15     1169958     2309693     3185024     3999037     4889442
           16     1277868     2504828     3484788     4410355     5385120
           17     1401769     2722282     3769501     4781656     5839445
           18     1540372     3030228     4192284     5288243     6441146
           19     1619397     3259043     4524680     5706358     6960270
           20     1748590     3556102     4943481     6212366     7592532

                        6           7           8           9          10

            1       45765       45765       52545       62715       67800
            2      151455      163633      200923      231433      253468
            3      381748      407486      475286      547241      614455
            4      644954      713415      840085      973667     1079950
            5      963405     1055615     1245244     1449271     1634507
            6     1348989     1508612     1773266     2053339     2283814
            7     1842692     2111956     2437802     2788218     3091193
            8     2255625     2647771     3074807     3519430     3879727
            9     2678507     3158503     3634971     4160086     4567508
           10     3108551     3685846     4236599     4840989     5346470
           11     3576984     4228887     4879133     5560113     6130294
           12     4061343     4805047     5563718     6339193     7035254
           13     4653177     5491869     6363403     7265948     8081045
           14     5282999     6243677     7220190     8218300     9082406
           15     5886555     6971003     8062950     9173806    10177653
           16     6480578     7650908     8886269    10098853    11165138
           17     7041779     8323368     9715337    11056902    12219495
           18     7785361     9223000    10710866    12174099    13433192
           19     8446162     9996160    11645932    13222026    14559360
           20     9228670    10908768    12731137    14394844    15841520

                       11          12          13          14          15

            1       67800       67800       71190       71190       76275
            2      263638      268723      285673      300927      321267
            3      670904      691663      746713      814513      841883
            4     1165214     1249650     1347075     1455676     1520817
            5     1755366     1869207     2011366     2164866     2277939
            6     2447948     2590640     2776083     2993173     3193883
            7     3309830     3496445     3760902     4035104     4296265
            8     4148178     4365840     4685369     5041273     5374663
            9     4904134     5184892     5563122     6022638     6407442
           10     5792264     6151752     6589434     7112142     7563974
           11     6637467     7056101     7572675     8172865     8698543
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Figure 8.4b Figure 8.4c

           12     7636659     8128673     8714670     9381837     9987458
           13     8774975     9341165    10009526    10798399    11489539
           14     9857284    10561470    11357751    12274112    13093763
           15    11028839    11817614    12690811    13701981    14622649
           16    12117373    12983612    13926902    15042238    16054708
           17    13244569    14171773    15247780    16425534    17511140
           18    14570310    15575822    16695009    17983031    19171060
           19    15840481    16942006    18132757    19457213    20785120
           20    17208996    18417740    19705253    21084172    22515530

   105  YAXIS   1; TITLE='Estimate K'
   106  XAXIS   1; TITLE='distance'
   107  DGRAPH  [WINDOW=1; TITLE='Spatial K function'] KS; S
   108  XAXIS   1; TITLE='time'
   109  DGRAPH  [WINDOW=1; TITLE='Temporal K function'] KT; T
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in curve fitting 332
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in analysis of variance 383
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coefficient 102, 928
forming matrix 99
in curve fitting 335
in principal components analysis 770
matrix, between variables 928
matrix, saving 929
parameters in nonlinear regression 339
sample size to detect 582

Correlogram 929
Correspondence analysis 810, 829

biplot 836
multiple 834

Cosine transformation
inverse 938
of time series 936

Counts
analysis of 256
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forming 1051
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saving 934
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Dendrogram 758, 868, 869, 893

plotting 880-883
Density estimation 42
Density plot 17
Dependence 155

Derivative
in nonlinear regression 341
of fitted values 335
of function 348
of link function 273

DESCRIBE procedure 20
Design

analysable by ANOVA 365
minimum aberration 614
unbalanced 616

Design generation 367, 487
Design generator 368, 489
Design key 368, 369, 489, 499, 586-589, 591,

614
constructing all possible 604
construction of 601-608, 610
for designs with several strata 605
forming pseudo-factors from 610
inverting 610
to extend an existing design 608
with factors constrained to higher strata 607

Design matrix
in regression 159, 167, 174, 185, 191, 241
saving in regression 174

Design of experiments 367, 368, 487, 567, 586,
587
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Double Gaussian curve 329, 331
Double hierarchical generalized linear model 294

analysing 297
defining the fixed model 292
defining the random model 293
displaying 304
predictions 305
saving information from 309

Double Normal distribution 56
DPARALLEL procedure 97
DPROBABILITY procedure 39
DPTMAP procedure 1066
DREPMEASURES procedure 996
DROP directive 192
Dropping regression variables 193
DSTTEST procedure 558
Dummy 4
Dummy analysis 365, 376, 459

for orthogonal designs 459
Duncan's multiple range test 401
Dunnett's test 365, 402

DVARIOGRAM procedure 1040
ECABUNDANCEPLOT procedure 138
ECDIVERSITY procedure 136
ECFIT procedure 140
ECNICHE procedure 142
ECNPESTIMATE procedure 149
Ecological coefficient 757
Ecological data 135
Ecology 140, 142, 144, 153
Economics 153
ECRAREFACTION procedure 144
EDFTEST procedure 60
Effect of a treatment 370
Effective degrees of freedom 452

in smoothing 241, 242
Effective dose 284
Effective standard error 383

approximate for unbalanced design 464
for contrast in ANOVA 428

Effects
in REML 638

Efficiency
of effects in cross over designs 370

Efficiency factor 419, 447, 449, 452, 455
saving from ANOVA 440

Elimination of effects 163
Emax curve 329
Empirical distribution 25
End-effects in curve fitting 241
Environment of the Genstat job

  14
Environmental gradient 809
Equal weights in prediction 223, 464, 479

  484
Equation of a polynomial contrast 433
Equation order in REML 687
Equivalence test 557, 558

in ANOVA 564, 568, 571
in regression 183

Error structure
in REML 623

Error term in regression 155
Error terms in ANOVA 404
ESTIMATE directive 956, 977, 983
Euclidean coefficient 757, 761
Euclidean distance 761, 893
Euclidean space 747, 755, 810
Exact probability 101
Exact test

Fisher's exact test 19, 115
for analysis of similarities 765
for Cochran's Q statistic 120
for one-way anova  70
for t-statistic 70
in analysis of variance 800
in analysis of variance& 396
in regression and generalized linear models 184
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Steel's test 94
to compare groupings 888
with McNemar's test 118

Excess zeros in count data 318, 322
Exclusion of units in regression 190
Execute other programs 15
Exit code

from ANOVA 459
from regression 268, 336, 342

Expansion of formula 213
Experimental design

plotting 546
Experimental layout 546
Explanatory variate 155, 165, 191, 193
Exploratory analysis 18
Exploratory data analysis 20
Exploratory plots 18
Exponential curve 325, 328, 329
Exponential distribution 56, 1021

in regression 258
Exponential family 256, 258, 341
Exponentially weighted moving average control

chart 129
Expression 2, 4
Extended quasi likelihood 298
Extending a design 608
Extending a design key 608
Extreme observation 166, 263, 264
Extreme-value distribution 1021
F distribution 371

approximate for REML fixed terms 655
F statistic

in regression 166, 187, 200
F-statistic

from similarity matrix 819
FACROTATE directive 781
Factor 4

in nonlinear regression 343
merging labels 9
merging levels 9
standardize levels or labels 9
values in systematic order 586

Factor analysis 822, 823
Factor analytic model

in REML 694
Factor rotation 780
Factorial design 499
Factorial design with confounding 502
Factorial experiment 363
FACTORIAL option

in ANOVA 373
Factorial plus added control 374, 416
Failure to fit regression model 268
FCA directive 822
FCOVARIOGRAM directive 1051
FDESIGNFILE procedure 502
Feasible sets of contrasts 604

FEXACT2X2 procedure 115
FIELLER procedure 255
Fieller's theorem 255
Files 6
FILTER directive 985
Filtering 984
Finding strings within the lines of a text 9
First-order balance 365, 450, 452, 459
Fisher scoring

in REML 684
Fisher's exact test 19, 115
Fisher's LSD test 642
Fisher's Protected Least Significant Difference

401
Fisher's Unprotected Least Significant Difference

401
Fisher-scoring 282
FIT directive 164, 186
FITCURVE directive 326
FITINDIVIDUALLY procedure 267
FITMULTINOMIAL procedure 270
FITNONLINEAR directive 342
Fitted values

in regression 168, 272, 273, 344
in REML 632
initial for generalized linear model 270
saving from ANOVA 377, 437
saving from regression 163, 173, 191

Fitting a distribution 346
Fitting a generalized linear model one term at a

time 267
Fitting curves

with AR1 errors 1011
with power-distance correlation model 1011

Fixed effects
definition 621
estimates 623, 624, 638
parameterization of 626

Fixed terms
definition 626
testing in REML 654

FKEY directive 601
FLC test 617
Fletcher-Powell algorithm 341
Fletcher-Powell optimization 282
Folded replicate 532
FOR loop 13
FORECAST directive 968, 978, 983
Forecasting

from time series models 968
Formatted output 5
Forming a variogram 1031
Forming pseudo-factors 610
Formula 4

in ANOVA 372
in regression 190, 194, 212, 237
in REML 621
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Fortran 276
Forward selection 201, 203, 204
Fourier curve 329, 331
FOURIER directive 935
Fourier transformation 935

definition 936, 937, 939
fast 936
frequencies 935
index 926, 935
inverse 938
lag window 936
of a complex series 937
of conjugate sequence 938
of real series 936
order 936, 937, 939
restrictions on units 935
smooth spectrum estimate 936
to calculate convolutions 938

FPSEUDOFACTORS directive 610
Fractional factorial design 367, 487, 612

minimum aberration 494
FRIEDMAN procedure 92
Friedman's test 91, 92
FSIMILARITY directive 755
FSSPM directive 751
FTSM directive 988
Function in regression 235

changing order 238
list within 237

Function minimization 347
Function of parameters 337
Functional relationship model 750
Further output for an unbalanced design 468
Furthest-neighbour clustering 870
FVARIOGRAM directive 1031
G5XZXO subroutine 344
Galois field 489, 504
Gamma distribution 56

in regression 257, 258, 264, 266, 272, 345
Gamma ratios 623
Gamma statistic 106
Gauss-Newton algorithm 341
Gauss-Newton optimization 282
Gaussian curve 329, 331
GEE procedure 310
Generalized additive model 270, 274

stepwise regression 203
Generalized emax curve 329
Generalized estimating equations 310, 993
Generalized least squares 322, 623, 624

estimates 638
Generalized linear mixed model 287, 288, 292,

293, 297, 304, 307, 309, 365
predictions 305
tests for fixed terms 302
tests for random terms 301

Generalized linear model 161, 252

antilog of estimates 260, 266
dispersion 266
hierarchical 292-294, 297, 304, 305, 307, 309
in survival analysis 1021
monitoring information 279
plotting 255
random permutation test 183
search for best model 203
stepwise regression 203
structured dispersion model 293, 294
weighted 324

Generalized logistic curve 329, 330
Generalized nonlinear additive model 279
Generalized nonlinear model 296
Generalized Procrustes rotation 861, 862
Generally-balanced design 365, 367, 450, 452
GENERATE directive 586
Generating factor values

in systematic order 586, 589
using a design key 589

Generation of pseudo-factors 588
Generation of values of block factors 587, 589
Genomic prediction 619
Genotype × environment interaction 366
GENPROCRUSTES procedure 861
Genstat Design System 367, 487
Genstat for Windows

  1
Genstat spreadsheet file 6
Geometric distribution 54

in regression 257
Geometric series 140
Geostatistics 1029
Gini coefficient 20, 135, 153
Gini information 906
GLMM procedure 287
Gompertz curve 329, 330, 332
Goodness of fit 268
Goodness-of-fit

for continuous distributions 61
Gradient of curve 336
Graeco-Latin square 368, 489, 504, 505, 590
Grand mean 370
Graph

density plot 17
of HGLM model 308
of regression model 177

Graphics 15
default font 16

Graphics environment 12
Graphs of tables of means 390, 391
Greenhouse-Geisser epsilon 1000
GRIB2 meteorological data file 7
Grid evaluation of function

  348
Grid evaluation of likelihood 342, 344
Group similarity 759
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Group-average clustering 870
Grouped variable

in regression 210
Grouping factor

in regression 163, 191
Groupings

comparing 887
Groups

comparing 65
Growth curve 330
GSTATISTIC procedure 106
Hadamard matrix 12, 368, 489, 520
Half-Normal plot 179, 387, 649
Harmonic analysis 942
HBOOTSTRAP procedure 890
HCLUSTER directive 869
HCOMPAREGROUPINGS procedure 887
HDISPLAY directive 871
Heterogeneity factor 258, 285
Heterogeneity of variance in REML 701
Heteroscedasticity 167
HGANALYSE procedure 297
HGDISPLAY procedure 304
HGDRANDOMMODEL procedure 294
HGFIXEDMODEL procedure 292
HGFTEST procedure 302
HGKEEP procedure 309
HGNONLINEAR procedure 295
HGPLOT procedure 307
HGPREDICT procedure 305
HGRANDOMMODEL procedure 293
HGRTEST procedure 301
HGWALD procedure 304
Hierarchical cluster analysis 868
Hierarchical clustering 758
Hierarchical generalized linear model 292-294,

297, 301, 302, 304, 307, 309
analysing 297
conjugate 295
defining the fixed model 292
defining the random model 293
displaying 304
displaying the model definitions 296
double 294
graph of fitted model 308
model-checking plots 307
predictions 305
saving information from 309
structured dispersion model 293, 294
tests for fixed terms 302
tests for random terms 301
Wald test 304
with nonlinear parameters in fixed model 295

Hierarchical generalized nonlinear model 295
Hierarchical tree 868
Higher-order term in ANOVA 373
Histogram 25-27

of residuals 387, 649
Histogram of residuals 179
HLIST directive 876
Hot-deck imputation 11
HSUMMARIZE directive 879
HTML 5, 6
Hyperbola 331
ICE measure of species richness 150
Identification 749, 921

interactive 919
using a classification tree 910

Identification key 913
construction 913
display 916
identification by 916
saving information 918

Identifier 2
IDENTIFY procedure 918
Identity function 258
Immunity 283
Impulse-response function 991
Imputation 11
Indented tree 906
Index of gamma distribution 258
Index plot 387, 649
Individual-based rarefaction 145
Inequality within a distribution 135, 153
Infinite parameter estimate 264
Inflated Latin square 510
Influence in regression 167, 266, 336
Information matrix

from REML 683
Information summary 379, 447, 486
Initial block of a cyclic design 522
Initial classification 898
Initial classification for non-hierarchical

clustering 903, 904
Initial fitted values

for generalized linear model 270
Initial value

for parameter 338, 341, 345
for REML covariance model 694

Innovation variance 951
Innovations

as prediction errors 949
Input and output 5
Input log 1
Interaction 230, 363, 371, 373, 418

between contrasts 428, 429
in curve fitting 332
in nonlinear regression 343
in regression 212
involving function 213, 235

Interactive identification 918
Intercept 169
Interference between plots 488

in a design 509
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Interleaving Latin square 510
Interpretation of parameters 213
Intersection-union test 567
Interval data 271
Intervention analysis 976
Interwoven loop design 543
Inverse matrix

in regression 167
Inverse matrix in regression 174
Inverse Normal distribution

in regression 258, 264
Inverse polynomial model 257
Inverse relationship matrix 696, 724
Inverse-Normal distribution

in regression 345
Inverting a design key 610
IRREDUNDANT directive 921
Irredundant test set 749, 921
Isotropic models 1035
Isotropic scale change 862
Isotropic variation 1032, 1044
Items 2
Iterative fitting

of additive model 242, 244
of curves 325, 330, 335
of generalized linear model 265
of nonlinear model 339

Iterative model 266
Iterative scaling 826
Iterative weights 266, 268
Jaccard coefficient 756, 761
Jaccard index 888
Jackknife 136
Jittering of rugplots 32
Job 12
K-dominance plot 138, 139
K-means clustering 893
Kaplan-Meier estimate of survivor function 1013
KAPLANMEIER procedure 1013
Kappa coefficient 105
KAPPA procedure 105
KCONCORDANCE procedure 104
Kendall's coefficient of concordance 103
Kendall's rank correlation coefficient 19, 102
Kenward & Roger degrees of freedom 655
Kernel density

estimation 42
for circular data 46

KERNELDENSITY procedure 42
Key

identification 913, 916
KOLMOG2 procedure 90
Kolmogorov-Smirnov test 60, 88, 90
KRIGE directive 1041
Kriging 994, 1029

cokriging 1060
cross validation 1040

modelling a covariogram 1051, 1055
variance 1030

KRUSKAL procedure 91
Kruskal-Wallis test 91
KTAU procedure 102
Kurtosis 49
Labels for estimates 173
Lagrange multiplier 1030
Large data set

density plot 17
Large dataset 191
Large residuals

in ANOVA 379
Lasso 158
Latent root 767-769, 810, 814, 817

difference table 772, 773
scree diagram 772, 773

Latent variable
in factor analysis 823

LaTeX 5, 6
Latin square 367, 368, 410, 487, 489, 502-504,

506, 589
randomization 556
with split plots 410, 593

Lattice design 368, 455, 488, 489, 502, 514
Lattice square 367, 410, 488, 502
Law of diminishing returns 329
Law-like relationship 155
LCONCORDANCE procedure 108
LD50 255, 284
Least significant difference 381, 382, 439

for predictions 220
in REML 640

Least significant interval 367
Least squares 370
Least-squares scaling 858, 859
Lethal dose 284
Letter 2
Levene test 167
Leverage 167, 168, 173, 179, 191, 266, 335
Life-table estimate 1018

of survivor function 1018
Likelihood

explicit calculation 347
in curve fitting 325
in generalized linear model 264
in regression 258, 264, 339
in REML 624
in time series modelling 962, 977, 983

Likelihood in regression 263
Likelihood ratio test statistic for fixed model

terms 657
Limit

on number of cycles 269
on order of contrasts in ANOVA 429

Limiting the order of treatment terms fitted by
ANOVA 376
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Lin's concordance correlation coefficient 19, 108,
584

Line-by-tester trial 618
Line-plus-exponential curve 328, 330
Line-printer graphics 15
Linear component

of smoothing spline 242
Linear contrast 427
Linear functional relationship model 158
Linear mixed model 621

definition for REML 624
general form of 622
properties of 623

Linear model
in analysis of variance 370

Linear parameter
in nonlinear regression 341, 343

Linear predictor 256, 268, 273
Linear regression 155, 256
Linear relationship between explanatory variables

188
Linear variance model

in REML 693, 696
Linear-divided-by-linear curve 329, 330
Link function 252, 256, 258
Linkage disequilibrium 619
Loading

canonical variate 776, 782, 817
principal component 767, 770, 817

Local minimum 827
Locally weighted regression 245, 247

  235
Loess 245, 247
Log link function 259, 266
Log Normal distribution 56
Log series 140, 142
Log-likelihood ratio 263, 339, 347
Log-linear model 227, 256, 259, 270
Log-logistic distribution 1021
Logarithmic series distribution 54
Logistic curve 329, 330, 338
Logistic regression 257
Logit 257, 258, 271
Logit link function 259, 266
Lognormal distribution 49, 1021
Longitudinal data 310, 993
Loop design 543
Lorenz curve 20, 135, 153
LRV 4
LRVSCREE procedure 772
MacArthur fraction model 142
Mahalanobis distance 753, 754, 774, 776, 777,

810, 817, 857, 893, 895
Main effect 363, 373

in regression 212
Main-effects design 531
Mallows Cp 206

Manhattan coefficient 757
Manipulating data 7
Manipulation of formulae 10
Mann-Whitney test 88, 89

sample size for 580
MANNWHITNEY procedure 88
MANOVA procedure 793
MANTEL procedure 762
Mantel test 762
Mantel-Haenszel statistic 121
Marginal method 289
Marginal test 209, 460, 461, 466
Marginal weights 222
Marginality 212, 215
Mass spectra 16, 18
Matern model

 in Kriging 1036
Matrix 4
Maximal model 191, 263
Maximal predictive classification 893, 895, 899,

901
Maximum likelihood 258, 325, 339, 893
Maximum Likelihood Program 339
MCNEMAR procedure 118
McNemar's test 19, 118, 119

sample size for 578
MCOVARIOGRAM directive 1055
MCROSSPECTRUM procedure 946
MDS directive 825
Mean 49
Mean posterior improvement 906
Mean square 371
Means

in an SSPM 751
in analysis of variance 370, 379, 381
in REML 639
replication of 382

Measure of association 750
Median sorting 870
Mega-environment 366
Messages

about large residuals 379, 408
from regression 167-169, 188, 336
in regression 190

Meta analysis 191, 731
random model for REML' 731

Method of analysis
in ANOVA 458

Metric scaling 809, 826
Michaelis-Menten 158
Michaelis-Menten law 330
Microarray

experiment 541, 543
Minimal cost complexity pruning 353
Minimizing a function 347
Minimum aberration design 494, 614
Minimum detectable effect 368, 570
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Minimum spanning tree 870, 874
plotting 885, 886

Minkowski distance 761
Missing degrees of freedom 425
Missing factor combination 222, 224, 464, 479,

484
in prediction 225

Missing treatment effects 425
Missing value

estimation in ANOVA 424
in a stratified design 424
in analysis of covariance 424
in ANOVA 424
in ARIMA modelling 951, 958, 966
in cluster analysis 869
in regression 161, 169, 190, 191
in REML 633, 726
in repeated measurements 1007
in similarity calculation 755
in time series 930, 934, 936, 951, 958, 966, 985,

986
marker score 620
replacing 8
with ante-dependence 1007

Mitscherlich curve 329
Mixed model

definition for REML 624
equations 638, 685
general form of 622
properties of 623

Mixture design 537
Model checking 167

for generalized linear model 179
for regression 179

MODEL directive 161
Model for analysis of variance 364
Model formula

in ANOVA 373
in regression 212, 237
in REML 621

Model formulae in ANOVA 372
Model term 373
Model-checking

for hierarchical generalized linear model 307
Modelling a variogram 1034
Modelling variance structures

in REML 688
Modes

tables of 11
Monitoring

of iterative model 171, 244, 267, 335
Monotonic regression 826
Moving average model

in REML 692
MST 874
Multi-environment trial 618
Multi-site analysis 735

Multi-tiered analysis 413, 416
further output 416

Multidimensional scaling 809, 811, 825
Multinomial distribution 270

in regression 256, 257, 259, 264, 267, 345
Multiple comparison test 399, 468, 642

against control 365
Multiple correspondence analysis 834

biplot 836
Multiple linear regression 185
Multiple Procrustes analysis 865
Multiple responses 18
Multiple-response factor 11
Multiple-selection structure 13
Multiplicative effects

in generalized linear model 259, 266
Multivariate analysis 747

in REML 691
parallel coordinates 18

Multivariate analysis of covariance 793, 794
Multivariate analysis of distance 799
Multivariate analysis of variance 793, 794, 993,

1003, 1004
Multivariate graphics

parallel coordinates 18
Multivariate linear regression 208
Multivariate Normality

test of 59
Multivariate regression 793, 797, 993
Mutually orthogonal Latin squares 503
MVAOV procedure 799
MVARIOGRAM procedure 1034
NAG Library 7, 12
Natural immunity 284
Natural mortality 283, 284
Nearest neighbours 872
Negative binomial distribution 51, 53, 54, 140
Negative variance components 623, 629, 679
Neighbour-balanced design 367, 488, 525-527
Nelder-Mead simplex algorithm 159
Nested models 263
Nested treatment effects 373
Nested-product operator 212
Nesting an experimental design within another

design 593
Nesting operator

in ANOVA 373
in randomization 552

Newton algorithm 341
Newton-Raphson optimization 282
Neyman Type A distribution 54
Niche apportionment model 142
Niche division 142
Niche-apportionment 142
Niche-based model 135, 142
NLAR1 procedure 1011
Nominal data 270
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Non-constant variance 163
Non-hierarchical classification 893
Non-inferiority test 558

in ANOVA 564, 568, 571
in regression 183

Non-metric multidimensional scaling 825
Non-metric scaling 811, 826
Non-negligible model terms 602
Non-orthogonal design 376
Non-orthogonal split-plot design 368
Non-orthogonality 450, 457

in ANOVA 379
in regression 203

Non-standard distribution 272
Non-standard link function 272
Nonlinear contrasts

in ANOVA 432
Nonlinear parameter 329

in generalized linear model 275
Nonlinear regression 339
Nonparametric analysis of variance 91
Nonparametric regression 241
Nonparametric tests 65, 88, 102, 106, 119, 153,

578, 580, 1016
for survival data 1017

Normal distribution 55
in nonlinear regression 341
in regression 155, 252, 258, 264, 343, 345
tests for 58

Normal plot 179, 387, 649
Normal probability density 331
Normal quantile 387, 649
Normality

Shapiro-Wilk test for 58
testing 59

NORMTEST procedure 59
Np chart 130
Nugget variance 1036
Null model in regression 190, 193
Number of binomial successes 257
Number of binomial trials 257
Number of factors in ANOVA 376
Number of iterations

for generalized linear model 282
in missing-value estimation 425

Number of units used to form an SSPM 751
Numerical Algorithms Group 7
Octaves 140
Offset variate 163, 191, 257, 259, 332, 344
One-sample test 84
One-way analysis of variance 69
Operators in formulae

in ANOVA 372
Optimization 339
Option 1

name 2
settings 1

Order of contrast
in ANOVA 429

Order of fitting terms 186
Order of options 2
Ordering objects 809
Ordinal data 107

gamma statistic for 106
Ordinal response 257, 266, 270
Ordination 809, 844, 885

adding points 818
biplot 852

Orthogonal block structure 366, 460
Orthogonal contrasts 425, 429, 432
Orthogonal decomposition of design space 366
Orthogonal design 376
Orthogonal hierarchical design 367, 487, 489,

491
Orthogonal Latin squares 504
Orthogonal partial least squares 808
Orthogonal polynomial 237, 240, 427
Orthogonal polynomial contrasts over time 998
Outlier 167, 754, 772
Output style 5, 6
Output to a text

from ADISPLAY 379
Over-parameterization 214
Overdispersion 258
Own code for nonlinear models 344
P chart 130
Paired samples 67
Parallel coordinates 97
Parallel curve analysis 332
Parallel list of parameters 2
Parallel nonlinear regression 343
Parallel regression lines 210
Parallelism in additive model 252
Parameter 1

name 2
settings 1

Parameter constraints
in curve fitting 330

Parameter estimate 173
Parameter in regression 159
Parameterization

in fixed effect models 626
of random effect models 628
of regression model 225, 337

Parametric bootstrap
for critical values in a REML analysis 662

Pareto
chart 11
distribution 57
optimal set 12

Partial aliasing 459
in regression 215

Partial autocorrelation 932
Partial autocorrelation function 929, 931, 933



1094 Index

sample 932
Partial canonical correspondence analysis 843
Partial confounding 447, 459
Partial effects 457

saving from ANOVA 439
Partial least squares 803, 805

orthogonal 808
Partial test 210
Partially-balanced designs

generation of factors for 588
Pattern in residuals 167
PCO directive 811
PCOPROCRUSTES procedure 865
PCP directive 766
PDESIGN procedure 544
Pearson chi-square

from regression 174, 268
Pearson residuals 164, 267
Pedigree 726

checking 726
Percentage sum of squares 166
Percentage variance accounted for 166, 169, 266
Percentages

table of 11
Periodic behaviour 331
Periodogram 931, 936
Permutation test 396

for analysis of similarities 764
for analysis of variance- 396
for MANOVA 795
for one-way anova  70
for t-statistic 67, 69
to compare groupings 888

Peto-Prentice test 1017
pi-weights 991
Pivot in ANOVA 459
Plackett Burman design 488, 531, 532
Plain-text output 5
Plan of a design 368, 502, 504, 511, 518, 522,

524, 529, 545-547
Plant breeding models 724
Plot factors 587
PLS procedure 803
PNTEST procedure 82
Pointer 4

duplicating 4
Poisson distribution 54

in nonlinear regression 341
in regression 256-258, 264, 343, 345

Poisson test 82
Poisson-lognormal distribution 55, 140
Poisson-Pascal distribution 55
POL function

in ANOVA 427
Pólya-Aeppli distribution 55
Polynomial contrast 427, 432, 433

plotting 433

Polynomial ratio 330
Polynomial regression 236
Polytomous data 270
Pooling of deviance 267
Pooling sums of squares in regression 187
Power 368, 556

in analysis of variance 368, 564, 567
in regression 181
of a t-test 558
of an analysis of variance 565
of contrasts in cross over designs 370

Power distance model
in REML 693

Power fraction model 142
Power link function 258
Power model 700
Ppk index 135
Pre-whitening time series 985
PREDICT directive 216, 266
Prediction 218, 220, 479

after smoothing 244
comparison of 227
from generalized linear model 268
from polynomial model 236, 241
from regression tree 355
from REML 718
from unbalanced ANOVA 478
in regression with ARIMA errors 976
in REML 639
in time series modelling 968, 978
missing factor combination 225

Principal component regression 772, 801
Principal components analysis 765, 780, 810, 857

number of significant components 619
Tracy-Widom statistic 619

Principal coordinates analysis 809-811
adding points 818

PRINT directive 1, 2
PRINT option

in ANOVA 486
of ANOVA and ADISPLAY 379

Printed output
from ANOVA and ADISPLAY 379

Printing a design 544
Probabilities in analysis-of-variance table 371
Probability distributions 16, 18, 25, 39

estimation of parameters 47-58
plotting 39

Probability of detection
in regression 181

Probability plot 16, 18, 39
Probability-probability plot 40
Probit 252
Probit analysis 252, 256, 258, 273, 283

with control mortality 277
PROBITANALYSIS procedure 283
Procedure 1, 13, 14
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called by another procedure 14
definition 14

Procrustes rotation 857, 865, 866
generalized 861, 862

Product of two designs 369
Product of variates 212
Product-moment correlation 98, 99
Products of experimental designs 593, 594
Profile plots

of repeated measurements 996
Program 1
Programming 12
Projection matrix 12
Properties of a design 459
Proportional hazards model 1024

displaying output 1026
fitting 1025
modifying the model 1027
saving information 1027

Proportional replication 431
Proportional weighted replication 376
Proportional-hazards model 257, 271
Proportional-odds model 257, 271
Proportions

analysis of 256
Pruning a classification tree 909
Pruning a tree 353
Pseudo-factor 369, 453, 455, 459, 500, 510, 587,

610, 611
for design 590
generating 457, 588
to represent basic contrasts 614

Pseudo-factorial operator 453
Pseudo-term 453, 455
psi-weights 991
Punctual kriging 1043
Pythagorean coefficient 757
Pythagorean distance 857
Q-method 754
Q-Q plot 40
Q-techniques 747
QDISCRIMINATE procedure 791
QTL

eigenvalue analysis 619
Flapjack project file creation 619
missing marker score 620
Tracy-Widom statistic 619

Quadratic contrast 427
Quadratic surface

stationary point 123
Quadratic-divided-by-linear curve 329, 331
Quadratic-divided-by-quadratic curve 329, 331
Qualitative variable 210, 755
Quantal response 252
Quantile regression 158, 357, 358
Quantile-quantile plot 40
Quantitative variable 755

Quartimax rotation 781
Quasi-complete Latin square 508
Quasi-likelihood 258
R-squared statistic 166
R-techniques 747
R0KEEP procedure 322
R2 statistic 166
Rand index 888
Random coefficient regression 691, 713, 727
Random effects

definition 621, 627
estimates 623, 624, 638

Random faction model 142
Random order 552
Random permutation of basic contrasts 604
Randomization 363, 369, 404, 551, 552, 555, 556

of a design 552, 555, 556, 593
of a Latin square 556
test 762

RANDOMIZE directive 552
Randomized block design 368, 404, 405, 411,

417, 487, 489
randomization 552, 553

Randomized complete block design 491
Randomness of a sequence of observations 87
Rank

Steel's test for 91, 93, 403
Rank correlation 100
Rank correlation coefficient 19

Kendall's 102
Rank/abundance plot 138, 139
RAR1 procedure 1008
Rarefaction 135, 144
Ratio of polynomials 330
Rational function 330
Rayleigh's test of uniformity 24
RCHECK procedure 179
RCOMPARISONS procedure 227
RCYCLE directive 269, 338
RDA procedure 838
RDESTIMATES procedure 234
RDISPLAY directive 170, 186
Re-analysis sweep in ANOVA 458
Rectangular hyperbola 330
REDUCE directive 759
Reduced sampling effort 145
Reduced similarity matrix 760
Redundancy analysis 838, 839
Reference level 213
Reference-level design 541
Reflection 858, 860
REG function

in ANOVA 429
Regionalized variables 1029
Regression 155

abbreviated output 168
comparisons within tables of means 232
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contrasts amongst means 227
design matrix 167, 191
diagnostics 179, 183
exact test 184
exclusion of units 190
inverse matrix 167
missing value 190
model, plotting 177
model, saving 174
monotonic 826
nonlinear parameters 275
permutation test 184
plotting 255
plotting estimates 234
power in 181
principal component 772
random permutation test 183
saving estimates 188
saving results 188
saving results in a spreadsheet 175
structured dispersion model 293, 294
variance inflation factor 167
Wald test 196
weighted 322
with AR1 errors 1008
with correlated (ARIMA) errors 974
with power-distance correlation model 1008
zero-inflated 318, 322

Regression save structure 164, 171, 227
Regression tree 349, 351-353

constructing  349
displaying 351
forming values for 352
prediction from 355
pruning 352
saving information 356

RELATE directive 820
Related samples 19, 119
Relating groups to variables 878
Relative abundance of species 142
Relative potency 255
REML 616, 631

Akaike information coefficient 677, 679, 680,
682

algorithm 687
algorithm, controlling 687
all subsets of the fixed terms 617, 667
approximate stratum variances 683
average-information algorithm 634, 687
bootstrap for fixed effects 659
canonical decomposition of the information

matrix 683
checking pedigree 616, 726
checking standardized residuals 667
checks of  random effects 669
comparison of predicted means& 722
convergence criterion 687

effect of absorbing factor on standard errors 640
effects 638
equation ordering 687
error structure 623
F-test of random effects 617
Fisher method 684
fitted values 632
investigating the fixed model 617, 667
large residuals 667, 669
least significant differences 640
likelihood function 624
likelihood ratio test for fixed terms 657
likelihood ratio test for variance component 679
line-by-tester analysis 618
method 623
method for residuals and fitted values 634
missing values 633
model 616
model-definition structure 618
outlier 671
output 633
permutation tests for random terms 617
plotting effects 646
plotting means 643
predicted means 639
prediction from 718
random model for meta analysis' 731
recycled estimation 658
residuals 632
residuals in field layout 650
restriction of units 632
save structure 632, 636, 658, 737
saving fitted values and their s.e.'s 741
saving fixed tests 745
saving results from 445, 481, 736, 741, 743, 745
saving results from the analysis of a series of

trials 618
saving results in a spreadsheet 743
Schwarz information coefficient 677, 679, 680
screening tests 666
shrinkage 638
steplengths 687
testing fixed terms 652
testing nested models 657
testing of submodels 633
Wald test for fixed terms 654
weighted analysis 633

REML directive 631
Removing regression variables 193
Reparameterization of nonlinear model 341
Repeated measurements 310, 312, 366, 993, 995,

1003, 1009
analysis of polynomial contrasts 998
analysis of variance 999-1001
ante-dependence 1004, 1005
balanced 995
missing values 1007
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profile plots 996
with REML 689, 697, 716

Repertoire of designs 502
Replacing strings within a text structure 9
Replicated Latin squares 406, 410
Replication 382

in regression 220, 479
required in analysis of variance 368
required in ANOVA 563
saving from ANOVA 439

Required model terms 602
Residual component 628
Residual maximum likelihood 616
Residual plots 464

from ANOVA 387, 388
from regression 179, 183
from REML 648, 650

Residual sum of squares 174, 857
Residual term

in REML 717
Residual variance

as estimated innovation variance 951
Residual variation in REML 628
Residuals

as estimated innovations 949
canonical variate 776
from all strata in ANOVA 437
in analysis of variance 379
in ANOVA 370, 384
in field layout 388, 408
in principal components analysis 770
in regression 163, 168, 191, 266
in REML 632
in time series 957, 966
principal component 768, 769
saving from ANOVA 377, 437
saving from regression 173
spatial pattern of  388

Residuals in field layout 650
Resolution number 612
Resolution of a design 612
Response

saving from ANOVA 439
Response category 270
Response surface design 123, 369, 487, 534, 538
Response to a treatment 384
Response variate 155, 168, 191, 266, 340, 347
Restricted maximum likelihood 616
Restricted vectors

in ANOVA 376
in principal components analysis 772
in regression 161, 169, 191
in REML 632
in time series 930, 934, 935, 951

Restriction 8
RFUNCTION directive 337
RGRAPH procedure 177, 255

RIDGE procedure 801
Ridge regression 191, 801
RKEEP directive 171, 266, 335
RKESTIMATES directive 188
RLIFETABLE procedure 1018
RMULTIVARIATE procedure 797
ROBSSPM procedure 753
Robust estimate of sum-of-squares-and-products

matrix 750, 753, 754
Rose diagram 46
ROTATE directive 858
Rotation

Procrustes 857
Rotation of factor loadings 780
RPERMTEST procedure 183
RPHCHANGE procedure 1027
RPHDISPLAY procedure 1026
RPHFIT procedure 1025
RPHKEEP procedure 1027
RPOWER procedure 181
RSCREEN procedure 208
RSPREADSHEET procedure 175
RSTEST procedure 1016
RSURVIVAL procedure 1020
RTCOMPARISONS procedure 232
RTF 5, 6
Rugplot 31
RUGPLOT procedure 31
Rules of syntax 1
Runs test 87, 167
RUNTEST procedure 87
RWALD procedure 196
Ryan/Einot-Gabriel/Welsch multiple range test

401
Sample autocorrelation function 930, 931
Sample cross-correlation function 932, 934
Sample size 19, 368, 556

for a sign test 577
for a t-test 557
for analysis of variance 368, 563
for binomial test 573, 575
for Lin's concordance correlation coefficient 584
for Mann-Whitney test 580
for McNemar's test 578
to detect correlation 582

Sample spectrum 931, 932
Sample statistics 49
Sample-based rarefaction 145
Sampling effort 145
Satterthwaite's method 408
Save structure

for REML 632, 636, 658, 737
for time series 959, 965, 968, 977
in ANOVA 377, 379, 422, 437

Saving fitted values
from ANOVA 377, 437

Saving information
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from ANOVA 435
Saving output from unbalanced anova 477
Saving residuals

from ANOVA 377, 437
Saving results

from regression 188, 227, 480
saving from regression 173

Saving results from regression 268
SBNTEST procedure 573
Scalar 4
Scaled deviance 263
Scaling in curve fitting 330
Scatterplot 95, 96
Scheffe test 401
Schematic boxplot 30
Schwarz information coefficient 677, 679, 680
Schwarz information criterion 206
Score

canonical correlation 809
canonical variate 776
principal component 767, 770
principal coordinate 814, 817, 857

SCORRELATION procedure 582
Scree diagram 770, 812

of latent roots 772, 773
Screening test 208, 366, 460, 464, 466
Screening tests 666
SDISCRIMINATE procedure 788
Seasonal ARIMA model 955
Seasonal autoregression 956
Seasonal differencing 956
Seasonal moving average 956
Seasonal period 956
Seasonal transfer function model 982
Seed for randomization 554
Select Design menu 489
Semi-Latin square 368, 488, 510, 511
Semivariance 1029
Sense of curve 328
Sensory analysis 862
Separate constant terms 210
Separate slopes 210, 215
Separation plot 159
Sequential breakage model 142
Sequential formation of an SSPM 191, 752
Serial correlation 324
Seriation 809
Set calculations 7
Shapiro-Wilk test 58, 367
Shepard diagram 828
Short wordlengths 2, 3
Shrinkage

in REML 638
Sidak test 401
Sigmoid curve 330
Sign test 86

sample size for 577

Significance of changes 118
Significance test for latent roots 775
Significance test of latent roots 768
SIGNTEST procedure 86
Similarity 754, 760, 868

between groups 873
Similarity coefficient 754
Similarity level 869
Similarity matrix 810, 812

reduced 760
Simple lattice 455
Simple matching coefficient 757, 761
Simplex method 349
Sine curve 331
Single-linkage 868-870
Singular value decomposition 857
Site scores

in redundancy analysis 839
Six sigma 20, 123
Skeleton analysis-of-variance table 377
Skew-symmetry 855, 859
Skewness 49
SKEWSYMMETRY procedure 855
SLCONCORDANCE procedure 584
Slow convergence 265
SMANNWHITNEY procedure 580
SMCNEMAR procedure 578
Smoothed effects

list of 244
nonlinear components 244

Smoothed spectrum estimates of time series 939,
940

Smoothing
in time series 984

Smoothing spline 241, 247, 282
Smoothness 241
SMOOTHSPECTRUM procedure 939
SP plot 40
Space filling design 368
Sparse matrix methods for REML 634
Spatial analysis of field experiments 690, 706
Spatial covariance 1029
Spatial modelling 1029
Spatial point patterns 994, 1066
Spatial statistics 994, 1066
SPCAPABILITY procedure 134
SPCCHART procedure 132
SPCUSUM procedure 127
SPEARMAN procedure 100
Spearman's correlation coefficient 100
Species abundance 20, 135, 138, 140, 142, 144
Species accumulation curve 148

plotting 20, 135, 147
Species diversity 20
Species richness 20, 135, 148, 149
Spectography 331
Spectral analysis 935
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of multiple time series- 946
SPEWMA procedure 129
Spherical covariance model

in REML 693
Spline smoothing 241
Split-line model 159
Split-plot design 374, 405, 487, 489, 491

randomization 552
Split-split-plot design 487, 491
SPNTEST procedure 575
SPPCHART procedure 130
Spreadsheet

plan and data of experimental design4 548
SPSHEWHART procedure 124
Square lattice design 368, 514
SSIGNTEST procedure 577
Sspider-web plot 17
SSPM 4, 190, 191, 215, 770, 823, 824

forming 751
means 751
sums of squares and products 751
within groups 751

SSPM directive 750
Stabilized probability plot

  40
Stable parameterization 325
Stacking sets of vectors 8
Stagewise regression 201
Standard curve 325
Standard Design menu 489
Standard deviation

bias correction for 126, 128, 130
in Gaussian curve 331

Standard errors 449
for contrasts 428
in analysis of covariance 420
in generalized linear model 266
in generalized linear models 258
in linear regression 168
in nonlinear regression 344, 348
in regression 173
of differences between means 381, 407, 449
of differences for predictions 220
of mean, saving 439
of parameters 167
of predictions 221, 269

Standard order of factor values 586
Standardization

of effects 219, 223
of matrix 859
of residuals in regression 164, 266
of similarity 761

Standardized residuals
in regression 266

Star plot 17
Star point 528
Starting value 325

Stationary point of quadratic surface 123
Statistical process control 123

c chart 132
capability statistics 134
CUSUM table 127
exponentially weighted moving average control

chart 129
mean chart 124
np chart 130
p chart 130
range chart 124
Shewhart chart 124
standard deviation chart 124
u chart 132

Status of ANOVA 444
STEEL procedure 93
Steel's test 19, 93, 366, 403
Steepest descent algorithm 826, 827
STEM procedure 33
Stem-and-leaf plot 33
STEP directive 198
Step length 341
Stepwise regression 200, 202, 204
Stratified experimental designs 403
Stratum 404
Stratum variance 379

estimation in ANOVA 452
saving from ANOVA 443

Stress 826
String token 2
Structure

of an experimental design 363
Structured dispersion model 293, 294
STTEST procedure 557
Student Version 4
Student's t-test 67
Student-Newman-Keuls test 401
Studentized range 401
Sub-plot 405
Subset 8
Sum of squares 371

due to treatments 370
for non orthogonal treatment terms 457, 458
for pseudo-term 453
in regression 190

Summarizing regression 217
Summary statistics 20, 21, 23, 49, 79, 82

mode 11
Summation of effects 227
Summation operator 212
Sums of squares

saving from ANOVA 440
Sums of squares and products 751

between covariates 441
Superbinomial distribution 258
Supermultinomial distribution 258
SuperPoisson distribution 258
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Survey
merging strata 12

Survival analysis 993, 1013, 1016, 1018
exponential distribution 1020
extreme-value distribution 1020
Kaplan-Meier estimate 1013
log-logistic distribution 1020
lognormal distribution 1020
proportional hazards model 1024, 1025
Weibull distribution 1020

Survivor function
life-table estimate for 1018

Suspend execution 15
Sweep in ANOVA 458, 459
SWITCH directive 192
Symmetric matrix 4
Syntax 1
System word 2
Systematic order of factor values 586
t-statistic

in regression 168, 187, 213
t-test 65

plot power and significance 558
sample size for 557

Table 4
Table manipulation 11
Table of effects

saving from ANOVA 439
Table of means

for non orthogonal treatment terms 458
for pseudo-term 453
in ANOVA 449
plotting 390, 391, 474, 643
saving from ANOVA 439

Table of modes 11
Table of percentages 11
Table of residuals

in ANOVA 384, 408
saving from ANOVA 439

Tables
plotting 11

Tables of modes 11
TALLY procedure 35
Tally table 35
Tarone-Ware test 1017
Tau 102
Taxon 922
TDISPLAY directive 964
Temporary change to model 196
Terminology 1
TERMS directive 189
Test for equivalence 557, 558

in ANOVA 564, 568, 571
in regression 183

Test for non-inferiority 558
in ANOVA 564, 568, 571
in regression 183

Tests for Normality 58
Tests of univariate and multivariate normality 59
Text 4

changing case 9
forming from row or column labels of matrix 11
forming from scalars, variates, texts, factors or

pointers 9
Tied data 827
Time series 926

autocorrelation function 990
calculation of deviance 960
constraining parameters 958, 978, 983
convergence criteria 959
cosine transformation 936
deviance 963, 966, 978
estimation 975, 977, 983
exact likelihood method 963
filtering 984
forecasting 968, 983
forecasts from VARMA model 927
forming preliminary estimates 987
generalized form of model 991
harmonic analysis! 942
impulse-response function 991
index 926
initialization for forecasting 960, 969
least-squares likelihood method 963
marginal likelihood method 978, 983
missing values 930, 934, 936, 951, 958, 966
model checking 951, 971
moment estimators 987
one-step estimation 961
order and speed 936
output 958
output to other channels 965
parameter reference numbers 959, 978
pi-weights 991
pre-whitening 985
prediction 978
psi-weights 991
recycled estimation 958
residuals 957, 966
restriction on units 930, 951
restrictions on units 934, 935
revising forecasts 970
save structure 959, 965, 968, 977
save structure, accessing 960
save structure, resetting 960
scores 966
smoothing 984
spectral analysis of multiple time series9 946
standardized forecast errors 971, 972
testing nested models 978
tests of model parameters 961, 967
tolerance 959
univariate 926
VARMA model 927
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weights 958
with explanatory variables 974
zero-step estimation 961

Time-course microarray experiment 543
TKEEP directive 965, 983
Tolerance

for collinearity 191
for zero sums of squares in ANOVA 459
in ANOVA 377
in time series modelling 959

TOST procedure 567
Transfer-function model 974

accessing components 983
bias in estimates 978
Box-Cox transformation 977
definition 979
delay parameter 981
errors for explanatory variables 977
estimation 975, 977, 983
evaluation of likelihood 977
forecasting 976, 978, 983
lags of 982
likelihood function 977
marginal likelihood method 977, 983
minimizing transients 982
multi-input 979, 982
non-seasonal 981
orders of 982
parameter estimation 975
parameters of 982
preliminary parameter estimation 989
seasonal 982
specification of 981
specifying input series 977

TRANSFERFUNCTION directive 976, 982
Transformation

back onto the natural scale 269
of parameters 339
of predictions 268
of response 160, 252, 256

Treatment effects 379
Treatment factors 602
Treatment formula 372, 373

saving 438
Treatment model 363, 372
Treatment term 373
Treatments 363
TREATMENTSTRUCTURE directive 372
Tree

hierarchical 868
in indented form 351
pruning 353
utility procedures 12

Trend
Cochran-Armitage test for 122

Triangle inequality 755
Triplot 852

Trojan square 510
TRY directive 195
Trying effect of variables 196
TSM 4

in ARIMA modelling 950, 954
in filtering 985
printing 954
transfer-function modelling 981

TSM directive 954, 981
TSUMMARIZE directive 990
TTEST procedure 65
Tukey confidence intervals 401
Two-colour microarray experiment 541, 543
Two-dimensional power model 707
Two-phase experiment 413
Two-sample test 88
Two-straight-line model 159
Two-way analysis of variance 72
Two-way anova 72

further output  74
saving information 75

Two-way table 113
Typical unit 901
Unadjusted analysis of variance 422, 462, 463,

465-467
Unbalanced design 73, 76, 365, 455, 462, 463,

465-467, 616
advice about possible causes 485

Underdispersion 258
Unequal variances in REML 694
Uniform covariance structure 1000
Unit labels

for a design 369
in regression 168

Unit score 784
Units structure

in regression 168
Units used in regression 190
Unrandomized factors 553
Unstable model 237
VAIC procedure 680
Variance 49

known in generalized linear model 258
of residuals 167
of response 163
saving from ANOVA 440

Variance components 452, 616
constraints on 623, 626, 630
fixing 629
initial values 626, 628
linear equality constraints 630
negative 623, 629, 679

Variance function 256, 257, 272
Variance inflation factor 167, 801
Variance model

in REML 688
Variance of response 221
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Variance ratio 195, 371, 406
in regression 187

Variance shift outlier model 671
Variance-covariance matrix 174

forming 11, 748
Variance-mean relationship 258
Variate 4

forming from a matrix 11
Varimax rotation 781
Variogram 1029

forming 1031
in REML 713
modelling 1034
plotting 2d 1059
plotting fitted models 1040

VARMA model 927
forecasts 927
plotting 927

VBOOTSTRAP procedure 659
VCHECK  procedure 667
VCOMPONENTS directive 625
VCRITICAL procedure 662
VCYCLE directive 687
VDEFFECTS procedure 646
VDISPLAY directive 636
Vector autoregressive moving average model 927

forecasts 927
Versions of a design 500
Vertical asymptote 336
VFIXEDTESTS procedure 745
VFPEDIGREE procedure 726
VFRESIDUALS procedure 741
VGRAPH procedure 643
VKEEP directive 736
VLSD procedure 640
VMCOMPARISON procedure 642
Von Mises distribution 23
VORTHPOLYNOMIAL procedure 998
VPEDIGREE directive 724
VPLOT procedure 648
VPREDICT directive 718
VRACCUMULATE procedure 681
VRCHECK procedure 669
VRESIDUAL directive 734
VSCREEN procedure 666
VSOM procedure 671
VSPREADSHEET procedure 743
VSTATUS directive 696
VSTRUCTURE directive 688
VTCOMPARISONS procedure 722
W statistic 58
Wadley's problem 284, 285
Wald test

for hierarchical generalized linear model 304
for regression 196
in REML 654

Warnings about large residuals

in ANOVA 379
Wavelength 331
Weibull distribution 56, 1021
Weight

in ANOVA 486
Weight matrix in regression 322
Weight variate

saving from ANOVA 438
Weighted analysis of variance 376
Weighted replication 382
Weights

in curve fitting 331
in prediction 223
in regression 163, 168, 191, 267
in REML 633
in time series 958

Welch's analysis of variance 68
Welch's t-test 68
Whittaker plot 138
Whole-plot 405
WILCOXON procedure 85
Wilcoxon test 84, 85

for survival data 1017
Wilks Lambda 797
Wind-rose diagram 46
Wine tasting 413
Within-group means in an SSPM 751
Within-group SSPM 751, 773, 810
Within-groups analysis 191
Wordlengths 2, 3
Workspace 4

for REML 634
WSTATISTIC procedure 58
Yates definition of response 384
Zero in generalized linear model 263
Zero-inflated regression 318, 322
Zero-inflated regression models 158
Ziggurat 882
Ziggurat-degree 883
Zigzag method 759
Zipf model 140
Zipf-Mandelbrot model 140
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