
Genstat®

Syntax and data management

www.vsni.co.uk

The Guide to the Genstat® Command Language
(Release 21)

Part 1: Syntax and Data Management

Genstat is developed by VSN International Ltd, in collaboration with practising statisticians at
Rothamsted and other organisations in Britain, Australia, New Zealand and The Netherlands.

Published by: VSN International, 2 Amberside, Wood Lane,
Hemel Hempstead, Hertfordshire HP2 4TP, UK

E-mail: info@genstat.co.uk
Website: http://www.genstat.co.uk/

First published 2000, as The Guide to Genstat
This edition published 2020, for Genstat Release 21

Citation: VSN International (2020). The Guide to the Genstat Command Language
(Release 21), Part 1 Syntax. VSN International, Hemel Hempstead, UK.

Genstat is a registered trade of VSN International. All rights reserved.

© 2020 VSN International

Preface

Modern biological research began at Rothamsted in 1843, when Sir John Bennet Lawes started
the Broadbalk wheat experiment which is now the world’s longest-running field experiment.
Rothamsted also pioneered the application of statistics in biological research when Sir Ronald
Fisher was appointed in 1919 to study the accumulated results of Broadbalk and its many
subsequent experiments. Fisher soon realised the need for improved statistical techniques over
the whole range of agricultural and biological research, and the groundwork for modern applied
statistics was laid by him and his colleagues during the 1920s and 1930s.

Statistical computing began at Rothamsted when Fisher’s successor Frank Yates obtained an
Elliot 401 computer – one of the first computers to be used away from its manufacturing base,
and one of the first to be used for statistical work. This extended the tradition, started by Fisher,
of conducting statistical research to solve real problems arising from biological research. The
resulting new methods could now be implemented in the Rothamsted statistical programs to
enable them to be used more effectively in practice. The development of Genstat at Rothamsted
began in 1968, when John Nelder took over from Yates as Head of Statistics. Roger Payne took
over leadership of Genstat when Nelder retired in 1985.

Genstat began to be distributed outside Rothamsted during the 1970’s and, in 1979, its
distribution was taken over by the Numerical Algorithms Group (NAG), one of the world’s
oldest technical computing companies. More recently Genstat has been developed and marketed
by VSN International (VSNi). VSNi was formed in 2000 as a spin-off company from
Rothamsted and NAG. This brought together the Genstat development group from Rothamsted
with the statistical commercialization group from NAG to provide a stronger collaboration of
research and development with sales and marketing. However, the development group retain
their close links with the research community through the continuing links between VSNi and
Rothamsted. So users benefit from the rigorous quality control required in a commercial setting,
while still retaining the underlying excitement from the research environment.

Acknowledgements

The development of Genstat has involved many people over the years. In particular, special
thanks are due to:

A.E. Ainsley, N.G. Alvey, D.B. Baird, C.F. Banfield, R.I. Baxter, K.E. Bicknell,
I.C. Channing, B.R. Cullis, P.G.N. Digby, A.N. Donev, M.F. Franklin, A.R. Gilmour,
A.I. Glaser, J.C. Gower, S.A. Harding, T.J. Hastie, S.K. Haywood, A.F. Kane, A. Kobilinsky,
W.J. Krzanowski, P.W. Lane, S.D. Langton, P.J. Laycock, P.K. Leech, J.H. Maindonald,
G.W. Morgan, D.A. Murray, J.A. Nelder, A. Papritz, H.D. Patterson, R.W. Payne,
D.L. Robinson, G.J.S. Ross, P.J. Rowley, H.R. Simpson, D.M. Soutar, R.J. Tibshirani,
A.D. Todd, R. Thompson, G. Tunnicliffe Wilson, L.G. Underhill, P.J. Verrier,
R.W.M. Wedderburn, S.J. Welham, R.P. White, R. Webster and G.N. Wilkinson.

Contents

1 Introduction, syntax and terminology 1
1.1 Running Genstat 1

1.1.1 Interactive mode 2
1.1.2 Batch mode 4

1.2 Genstat programs 5
1.2.1 On-line help 5
1.2.2 Declarations 6
1.2.3 Assigning values 6
1.2.4 Calculations 6
1.2.5 Printing 6
1.2.6 Statements 6
1.2.7 Punctuation 7
1.2.8 Comments 7

1.3 Characters 8
1.3.1 Letters 8
1.3.2 Digits 8
1.3.3 Simple operators 8
1.3.4 Brackets 8
1.3.5 Punctuation symbols 8
1.3.6 Special symbols 9
1.3.7 Non-ASCII characters 9

1.4 Items 9
1.4.1 Numbers 10
1.4.2 Strings 10
1.4.3 Identifiers 13
1.4.4 System words 14
1.4.5 Missing values 15
1.4.6 Operators 15

1.5 Lists 16
1.5.1 Number lists 16
1.5.2 String lists 17
1.5.3 Identifier lists 17
1.5.4 Ways of compacting lists 19

1.6 Expressions and formulae 20
1.6.1 Functions 20
1.6.2 Expressions 20
1.6.3 Formulae 22

1.7 Statements 23
1.7.1 Syntax of options and parameters

24
1.7.2 Roles of options and parameters

25
1.7.3 Types of option and parameter

settings 26
1.7.4 Repetition of a statement and its

options 28
1.8 Ways of compacting programs 28

1.8.1 Procedures 28
1.8.2 Macros 28

1.9 Conventions for examples in later
chapters 30

2 Data structures 31

2.1 Declarations 32
2.1.1 The VALUES option and

parameter 32
2.1.2 The DECIMALS parameter 33
2.1.3 The EXTRA parameter and

IPRINT option 33
2.1.4 The MINIMUM and MAXIMUM

parameters 33
2.1.5 The DREPRESENTATION

parameter 34
2.1.6 The MODIFY option 36

2.2 Single-valued data structures 36
2.2.1 Scalars 36
2.2.2 Dummies 36
2.2.3 Expression data structures 37
2.2.4 Formula data structures 38

2.3 Vectors 39
2.3.1 Variates 39
2.3.2 Texts 40
2.3.3 Factors 41
2.3.4 The UNITS directive 43

2.4 Matrices 44
2.4.1 Rectangular matrices 44
2.4.2 Diagonal matrices 45
2.4.3 Symmetric matrices 46

2.5 Tables 47
2.6 Pointers 51
2.7 Compound structures 54

2.7.1 The LRV structure 54
2.7.2 The SSPM structure 56
2.7.3 The TSM structure 57
2.7.4 Customized compound structures

58
2.8 Tree structures 60
2.9 Save structures 60
2.10 Deleting, renaming and duplicating data

structures 61
2.10.1 The DELETE directive 61
2.10.2 The RENAME directive 63
2.10.3 The DUPLICATE directive 65
2.10.4 The PDUPLICATE procedure 66

2.11 Listing or accessing details of data
structures 66
2.11.1 The LIST directive 66
2.11.2 The DUMP directive 68
2.11.3 The GETATTRIBUTE directive

70

3 Input and output 72
3.1 Reading data 74

3.1.1 The FILEREAD procedure 74
3.1.2 Introduction to the READ

directive 77

vi Contents

3.1.3 Syntax of the READ directive 81
3.1.4 Implicit declaration of structures

84
3.1.5 Reading non-numerical data:

texts, factors and pointers 85
3.1.6 Skipping unwanted data (in free

format) 86
3.1.7 Reading fixed-format data 86
3.1.8 Reading data with variable

formats 89
3.1.9 Reading from a text structure 90
3.1.10 Reading large data sets 90
3.1.11 Automatic re-scaling of data 92
3.1.12 Automatic sorting of data (using

the UNITS structure) 92
3.1.13 Errors while reading 92

3.2 Printing data 95
3.2.1 Main features of the PRINT

directive 95
3.2.2 Printing of multi-way structures

102
3.2.3 The CAPTION directive 105
3.2.4 The PAGE directive 106
3.2.5 The DECIMALS procedure 106
3.2.6 The MINFIELDWIDTH

procedure 107
3.3 Accessing external files 108

3.3.1 The OPEN directive 110
3.3.2 The CLOSE directive 112
3.3.3 The SKIP directive 113
3.3.4 The ENQUIRE directive 114

3.4 Managing input and output channels 115
3.4.1 Taking input statements from

other files: the INPUT directive
115

3.4.2 The RETURN directive 116
3.4.3 Sending output to another file: the

OUTPUT directive 117
3.4.4 Saving a transcript of input or

output: the COPY directive 118
3.5 Storing and retrieving data structures 119

3.5.1 Simple use of backing store 119
3.5.2 Subfiles, userfiles and workfiles

120
3.5.3 The STORE directive 121
3.5.4 The RETRIEVE directive 123
3.5.5 The CATALOGUE directive 125
3.5.6 The MERGE directive 127

3.6 Storing and retrieving programs and data
in unformatted files 129
3.6.1 The RECORD directive 129
3.6.2 The RESUME directive 129

3.7 Storing and reading data with
unformatted files 130

3.8 Input and output from other systems 131

4 Calculations and data manipulation 132

4.1 Numerical calculations 137
4.1.1 The CALCULATE directive 137
4.1.2 Expressions with scalars and

vectors 142
4.1.3 Expressions with matrices 145
4.1.4 Expressions with tables 148
4.1.5 Rules for implicit declarations

149
4.1.6 Rules for qualified identifiers 151

4.2 Functions for use in expressions 154
4.2.1 General and mathematical

functions 155
4.2.2 Scalar functions 158
4.2.3 Variate functions 160
4.2.4 Matrix functions 161
4.2.5 Table functions 166
4.2.6 Dummy functions 167
4.2.7 Character functions 167
4.2.8 Elements of structures 168
4.2.9 Statistical functions 171
4.2.10 Date-time functions 178
4.2.11 Tree functions 178
4.2.12 Graphics functions 179
4.2.13 Image functions 179

4.3 Operations on sets of values: copying,
comparison and Boolean calculations
183
4.3.1 Copying between sets of

structures: the EQUATE directive
183

4.3.2 Comparing sets: the
SETRELATE directive 187

4.3.3 Boolean arithmetic: the
SETCALCULATE directive 188

4.3.4 All subsets of a set of objects: the
SETALLOCATIONS directive
190

4.3.5 Locations of a value in a data
structure: the
GETALLOCATIONS directive
192

4.4 Operations on vectors 193
4.4.1 Applying a restriction to the units

of a vector: the RESTRICT
directive 194

4.4.2 Forming a subset of the units in a
vector: the SUBSET procedure
196

4.4.3 Sorting vectors into numerical or
alphabetical order: the SORT
directive 197

4.4.4 Appending values of vectors: the
APPEND procedure 199

4.4.5 Combining data sets: the STACK
procedure 200

4.4.6 The UNSTACK procedure 203
4.4.7 Merging data sets: the JOIN

procedure 205
4.5 Operations on variates 207

4.5.1 Interpolation 208
4.5.2 Monotonic regression 210
4.5.3 Converting a text into a variate

212
4.6 Operations on factors 213

4.6.1 Forming factors from variates and
texts: the GROUPS directive 214

4.7 Operations on text 217
4.7.1 Text concatenation: the

CONCATENATE directive 218
4.7.2 Appending or concatenating

values of scalars, variates, texts,
factors or pointers: the
TXCONSTRUCT directive 220

4.7.3 Finding strings within the lines of
a text structure: the
TXPOSITION directive 223

4.7.4 Finding a subtext within a text:
the TXFIND directive 225

4.7.5 Replacing a subtext within a text:
the TXREPLACE directive 226

4.7.6 Extracting the individual words
from a text: the TXBREAK
directive 228

4.7.7 Splitting a text vertically into
individual texts: the TXSPLIT
procedure 230

4.7.8 Integer codes for textual
characters: the
TXINTEGERCODES directive
231

4.7.9 Progressions of character strings:
the TXPROGRESSION
procedure 233

4.7.10 Editing text: the EDIT directive
234

4.8 Operations on formulae and expressions
238
4.8.1 The FCLASSIFICATION

directive 238
4.8.2 The FARGUMENTS directive

241
4.8.3 The SET2FORMULA directive

243
4.8.4 The REFORMULATE directive

244
4.9 Operations on dummies and pointers 244

4.9.1 Assigning values to dummies and
individual elements of pointers:
the ASSIGN directive 245

4.10 Operations on matrices and compound
structures 248
4.10.1 The singular value

decomposition: the SVD directive
249

4.10.2 Eigenvalue decompositions: the
FLRV directive 251

4.10.3 Forming sums of squares and
products: the FSSPM directive
258

4.10.4 The QR decomposition 260
4.11 Operations on tables 261

4.11.1 Tabulation: the TABULATE
directive 261

4.11.2 Forming margins of tables: the
MARGIN directive 268

4.11.3 Forming tables of percentages:
the PERCENT and
T%CONTROL procedures 270

4.11.4 Combining or omitting slices of
tables and matrices: the
COMBINE directive 272

4.11.5 Inserting a table into another
table: the TABINSERT procedure
276

4.11.6 Forming a Pareto chart: the
TABSORT procedure 278

4.11.7 Plots of tables: the DTABLE
procedure 280

4.11.8 Interpreting multiple responses:
the FMFACTORS procedure 283

4.11.9 Finding multiple responses in free
text: the
FFREERESPONSEFACTOR
procedure 285

4.11.10Tabulation with multiple
responses: the MTABULATE
procedure 288

4.12 Operations on trees 290
4.12.1 Printing a tree: the BPRINT

procedure 291
4.12.2 Plotting a tree: the BGRAPH

procedure 291
4.12.3 Extending a tree: the BGROW

directive 291
4.12.4 Removing branches from a tree:

the BCUT directive 293
4.12.5 Joining a tree onto another: the

BJOIN directive 295
4.12.6 Constructing a tree: the

BCONSTRUCT procedure 297
4.12.7 Assessing potential splits: the

BASSESS directive 298
4.12.8 Pruning a tree: the BPRUNE

procedure 300
4.12.9 Identification using a tree: the

BIDENTIFY directive 301
4.13 Numerical algorithms: the NAG directive

302

5 Programming in Genstat 309
5.1 Genstat programs 311

viii Contents

5.1.1 The JOB directive 312
5.1.2 The ENDJOB directive 313
5.1.3 The STOP directive 314

5.2 Program control 314
5.2.1 FOR loops 314
5.2.2 Block-if structures 316
5.2.3 The multiple-selection control

structure 318
5.2.4 Exit from control structures 320

5.3 Procedures 322
5.3.1 The Genstat Procedure Library

322
5.3.2 Forming a procedure 323
5.3.3 Forming and using your own

procedure libraries 330
5.4 Useful commands for procedure writers

330
5.4.1 Diagnostics 332
5.4.2 Private data structures: the

WORKSPACE directive 334
5.4.3 Execution of macros 334
5.4.4 Incrementing a multi-digit counter

335
5.4.5 Information about commands 337
5.4.6 Information about syntax 338

5.5 Debugging Genstat programs 341
5.5.1 Breaking into the execution of a

program 341
5.5.2 Putting automatic breaks into a

program 343
5.6 The environment of a Genstat program

344
5.6.1 The SET directive 345
5.6.2 The GET directive 350
5.6.3 Changing the defaults of options

and parameters 354
5.6.4 Start-up files 355

5.7 Communicating with other programs 355
5.7.1 Suspending Genstat to give

commands to the operating
system 356

5.7.2 Executing external programs 357

6 Graphical display 359
6.1 Introduction to high-resolution graphics

361
6.2 High-resolution graphs in two and three

dimensions 364
6.2.1 The DGRAPH directive 364
6.2.2 The D3GRAPH directive 369

6.3 Histograms and bar charts 372
6.3.1 The DHISTOGRAM directive

373
6.3.2 The BARCHART directive 377

6.4 Plotting three-dimensional surfaces in
high-resolution 380
6.4.1 The DCONTOUR directive 380

6.4.2 The DSHADE directive 384
6.4.3 The DSURFACE directive 386
6.4.4 Three-dimensional histograms:

the D3HISTOGRAM directive
389

6.4.5 Density plots: the DXYDENSITY
procedure 391

6.5 Displaying pictures 394
6.5.1 The DBITMAP directive 394

6.6 Pie charts 395
6.6.1 The DPIE directive 395

6.7 Adding lines, annotation, error bars and
customized keys to a graph 397
6.7.1 The DTEXT procedure 397
6.7.2 The DREFERENCELINE

procedure 398
6.7.3 The DARROW procedure 399
6.7.4 The DERRORBAR procedure

401
6.7.5 The DKEY procedure 402

6.8 Multiple high-resolution plots 405
6.8.1 Clearing the graphics screen: the

DCLEAR directive 406
6.8.2 Sequences of high-resolution

plots 407
6.8.3 Trellis plots: the TRELLIS

procedure 407
6.8.4 Scatter-plot matrices: the

DMSCATTER procedure 412
6.9 The environment for high-resolution

graphics 415
6.9.1 The DEVICE directive 417
6.9.2 Re-displaying the graphics screen

419
6.9.3 The FRAME directive 419
6.9.4 The XAXIS directive 423
6.9.5 The YAXIS directive 427
6.9.6 The ZAXIS directive 429
6.9.7 The AXIS directive 430
6.9.8 The PEN directive 432
6.9.9 Colours 439
6.9.10 Accessing details of the graphics

environment 445
6.9.11 Storing and recovering the

graphics environment 447
6.9.12 The DFONT directive 447

6.10 Line-printer graphics 448
6.10.1 The LPGRAPH directive 449
6.10.2 The LPHISTOGRAM directive

453
6.10.3 The LPCONTOUR directive 457

7 Summary of other facilities 461
7.1 Basic statistics 461
7.2 Regression analysis 462
7.3 Analysis of variance 466
7.4 Design of experiments 469

7.5 REML analysis of linear mixed models
471

7.6 Multivariate and cluster analysis 474
7.7 Time series analysis 476
7.8 Repeated measurements 478
7.9 Survival analysis 478
7.10 Spatial statistics 479
7.11 Six sigma 480
7.12 Survey analysis 481
7.13 Ecological data 481
7.14 Statistical genetics and QTL estimation

482
7.15 Microarray data 483
7.16 Data mining 484
7.17 Other statistical methods 485

References 486

Index 487

1 Introduction, syntax and terminology

Genstat is a very general computer program for statistical analysis. All the usual analyses are
readily available using the commands in the language, as are many advanced techniques.
Furthermore, if you are running Genstat on a PC with Microsoft® WindowsTM, you will find that
almost anything you want will be available by using a menu. The menus in Genstat for Windows
operate by automatically generating and running "scripts" of Genstat commands. The commands
can be saved to provide an "audit trail" of your analysis. They record exactly what you have
done, and can be run again later to reproduce the analysis. So you may be interested to know
more about the command language in order to understand the scripts. You may then find that you
can save time by modifying an existing script to generate a new analysis. For example, you may
want to run a script several times with different datasets by defining a loop (see Section 5.2.1).

As you learn more about the language, you will see that Genstat is not just a collection of pre-
programmed commands for selecting from fixed recipes of available analyses. You can use the
command language to write your own programs to cover the occasions when the standard
analyses do not give exactly what you want, or when you want to develop a new technique. The
commands give you complete control over what is printed, and virtually anything that can be
printed from an analysis can be stored in a Genstat data structure (Chapter 2) and used as input
for another command. So any Genstat analysis can be used in the construction of a new
technique. Most users will need to do this only occasionally, since the standard facilities in
Genstat are extremely comprehensive. However, the ability to extend Genstat removes the
temptation, that occurs with some other packages, to use an inappropriate or approximate
technique when an unusual set of data has to be analysed. Programs can be formed into
procedures, to simplify their future use or to make them easily available to other users (see
Chapter 5).

This book, Part 1 of the Guide to the Genstat Command Language, describes the syntax of the
Genstat language, and the facilities that Genstat provides for input and output, data manipulation,
calculations and programming. Genstat's extensive statistical facilities are described in Part 2.
References below to Part 2 are prefixed by "2:". So, for example, 2:3.1 refers to Part 2 Section
3.1, while 3.1 refers to Section 3.1 in this book.

This chapter describes the basic rules, terminology and conventions of the Genstat language.
These are common to all Genstat commands. So, once you understand these, you can access any
of the facilities that Genstat provides. Section 1.1 illustrates the concepts with simple examples,
while the later sections contain the formal definitions.

The example output in the Guide is produced in Genstat's plain-text style to distinguish it more
clearly from the textual descriptions. However, as an alternative, you can generate output in
formatted styles, including RTF, HTML and LaTeX; see Sections 3.3.1 and 3.3.4. These
formatted styles also allow you to use subscripts, superscripts and Greek and mathematical
symbols; see Section 1.4.2.

1.1 Running Genstat

The Genstat language is designed for interactive use. In other words, you can give commands
to be executed by Genstat one at a time, so that you can see the result of each command before
you give the next one. Genstat can also be used in batch mode. Here you construct a file of
commands and supply them to Genstat all at once. Batch mode may be more convenient for
routine work, or when carrying out complicated analyses that may take a lot of computer time.

In Genstat for Windows, you can run Genstat interactively by typing commands into a text
window, and executing them one line at a time using the Run menu on the menubar. Batch mode
can be achieved either by submitting all the commands in a text window at once (again using the
Run menu), or by running the Submit File menu (also accessible from the Run menu).

2 1 Introduction, syntax and terminology

1.1.1 Interactive mode

First, we show how to run Genstat interactively. On many types of computer, you can start
Genstat running interactively by giving the instruction

Genstat

If this does not work, you will need to refer to the local documentation to find out how to get
started. For example, on workstations or mainframes, information may be available using the
Help system on the computer. In any case, though, a copy of the relevant instructions is supplied
to everyone who buys Genstat. For example, full details of how to run Genstat for Windows are
given in the book Genstat for Windows Introduction and the on-line tutorials that accompany it.
Genstat for Windows offers considerable flexibility over the ways in which commands are
supplied, which are all described in the Introduction. In this Guide, however, we cover only the
simpler situations that apply to all types of computer.

Genstat starts with some initial information telling you what version of Genstat and its
Procedure Library (see Section 5.3.1) you are using, and in most implementations (but not PC
Windows) it then displays a new line prefixed by the command prompt

>

You can now type in your first command. Generally the command will use a Genstat directive
(our term for a standard command). You can also use procedures. These are self-contained sets
of commands, like a sub-program in the Genstat language. Genstat has a library of standard
procedures, and you can also write your own. Details are given in Section 5.4, but all you need
to know for now is that the rules for using procedures are exactly the same as those for using
directives. Full details are given later in this chapter, but we explain the basic ideas now.

We introduce the rules in the context of a directive called PRINT. This displays data: either
on the screen when you are running interactively, or in an output file if you are running in batch
(Section 1.1.2). For example, you can give the simple command

PRINT 1

to display a single set of data: the number 1. The display looks like this:

> PRINT 1

 1.000

>

This is clearly not a very useful operation, because you already know what the set of data is, and
because it consists only of a single number; however, this will be generalized in Section 1.2. In
the meantime, you can see that the directive name, PRINT, is like a command verb which
instructs Genstat to do something, and the number 1 is like the object of the command. The
object is called the primary parameter of the command.

The PRINT directive works with sets of data. You can make it work with several sets of data
at once by giving a list; for example, the command

PRINT 1,2

has two sets, each containing one number. The display is:

> PRINT 1,2

 1.000 2.000

>

1.1 Running Genstat 3

In Genstat, lists are always constructed using commas. You must not use just spaces; for
example, the command

PRINT 1 2

will be faulted, producing an error message:

> PRINT 1 2

******** Fault (Code SX 12). Statement 1 on Line 3
At... PRINT 1 \2\:
Incompatible adjacent elements (e.g. comma missing)

>

You can use spaces as well as commas if you want. So the following command is acceptable:

PRINT 1 , 2

You will have noticed that PRINT commands lay out the data in a tabular form, choosing an

appropriate number of decimal places for numbers. By default, a single number is displayed with
four significant digits. Also, sets of data with compatible shape are laid out in parallel: that is,
side-by-side. If you do not want this default display, there is a range of options for modifying it.
For example, the command

PRINT [SERIAL=yes] 1,2

displays the two numbers in serial form rather than in parallel: that is, the number 1 by itself, and
then the number 2:

> PRINT [SERIAL=yes] 1,2

 1.000

 2.000

>

Most Genstat directives and procedures have options like this to control the way in which they
work. The options must always be given in square brackets following the directive or procedure
name and preceding the parameters, if any. Options have the form name=setting, where here the
name is SERIAL and the setting is yes. If you set several options, you must separate them with
a semi-colon, as in

PRINT [SERIAL=yes; INDENTATION=10] 1,2

This command would indent the output by 10 characters so that, if you arrange to send the
display to a printer, you could rely on having a clear margin on the paper, perhaps for binding.

Most Genstat directives and procedures also have auxiliary parameters which control the way
the command works. For example, the command

PRINT 1,2; DECIMALS=0,1

gives the following display:

> PRINT 1,2; DECIMALS=0,1

 1 2.0

>

4 1 Introduction, syntax and terminology

The DECIMALS parameter specifies how many decimal places to display for each set of data. The
essential difference between an option and an auxiliary parameter is that an option specifies a
modification once and for all for the command: an auxiliary parameter specifies a modification
that may be different for each of the sets of data in turn. The setting of the DECIMALS parameter
above, 0,1, is matched item by item with the setting of the primary parameter, 1,2. This
distinction applies to all Genstat commands.

The setting of an auxiliary parameter is otherwise like that of an option, with the form
name=setting, and with the semi-colon separator between successive parameters. The primary
parameter itself has a name, except when there are no auxiliary parameters. So you could
actually give the command:

PRINT STRUCTURE=1,2; DECIMALS=0,1

However, if you specify the primary parameter first in a command, its name can always be
omitted.

You can abbreviate directive and procedure names to the first four characters. Names of
options and parameters can also be abbreviated to four characters, and sometimes further. The
full abbreviation rules are described in Section 1.7.

You can end your interactive run of Genstat using the STOP directive:

STOP

Genstat keeps a log of an interactive session on the computer. In Genstat for Windows, this

is in a window called the Input Log. On other Genstat implementations, the log will be stored
in a computer file. The name of the file will depend on the type of computer, but is given in the
local documentation. The file contains all the commands and data values that you have typed,
up to and including STOP. This allows you to check what you have done, or to keep a record for
future reference, though on some computers it may be necessary to copy the file to avoid it being
overwritten by the log of the next session. It also allows you to modify the commands using an
editor and then to execute them all again using batch mode.

1.1.2 Batch mode

We now illustrate the use of Genstat in batch. Suppose that we have taken nine samples of
polluted soil and measured the amount of zinc in each of them, and that we wish to calculate
some simple summary statistics of the amounts of zinc in the samples. First of all we need to set
up a file on the computer containing all the commands for Genstat to process. You can do this
using any of the facilities for creating files on your computer, such as a text editor (or, for
example, by opening a new text window in Genstat for Windows). The input file, below, shows
the commands required for the zinc example.

VARIATE [NVALUES=9] IDENTIFIER=Zinc
READ STRUCTURE=Zinc
164.2 160.6 163 166 159.8 163.9 161 161.3 165.8 :
SCALAR IDENTIFIER=Zmed,Zvar
CALCULATE Zmed = MEDIAN(Zinc)
CALCULATE Zvar = VARIANCE(Zinc)
PRINT STRUCTURE=Zmed,Zvar; DECIMALS=1,2
STOP

You then give an instruction to the computer to run Genstat with that file attached as input and
another file allocated to receive the output. The command should also allow you to control
aspects like the style of output. In Genstat for Windows, this can be done using the Submit File

menu. Details of the necessary instruction for other implementations will again be in your local
documentation, but it will probably be something like this:

Genstat input-filename,output-filename

The output that would be generated for the zinc example is shown below.

1.2 Genstat programs 5

Example 1.1.2

 1 VARIATE [NVALUES=9] IDENTIFIER=Zinc
 2 READ STRUCTURE=Zinc

 Identifier Minimum Mean Maximum Values Missing
 Zinc 159.8 162.8 166.0 9 0

 4 SCALAR IDENTIFIER=Zmed,Zvar
 5 CALCULATE Zmed = MEDIAN(Zinc)
 6 CALCULATE Zvar = VARIANCE(Zinc)
 7 PRINT STRUCTURE=Zmed,Zvar; DECIMALS=1,2

 Zmed Zvar
 163.0 5.22

Notice that in batch mode Genstat echoes the input lines, each one prefixed by the number of that
line in the input file, whereas it does not do so when running interactively. (This is Genstat's
default action, but it can be altered by using the SET directive, as described in Section 5.6.1, or
by using the Options menu of Genstat for Windows.)

A sequence of commands to Genstat, like those used in this example, is called a Genstat
program. Each command is known as a Genstat statement, and requests Genstat to perform some
sort of action. The statement may use either a directive (our term for a standard command) or a
procedure (a self-contained set of statements, like a sub-program in the Genstat language; see
Section 5.4). However, the syntax is the same in either case.

The program in Example 1.1.2 first declares a data structure with the identifier (or name)
Zinc to store the amounts of zinc in the samples. Several different types of data structure are
available in Genstat. This one is known as a variate, and can be defined using the VARIATE
directive. Variates are used to store a list of numbers, in this case of length nine. Example 1.1.2
also has two scalar data structures, Zmed and Zvar, each of which stores a single number.

The example shows that values can be assigned to data structures in various ways. The values
for Zinc are input in line 2 using the READ directive (see Section 3.1.2). The values for the
scalars are assigned from the results of two calculations, using the CALCULATE directive (lines
5 and 6). As you will see in Section 4.1.5, CALCULATE is also able to define data structures
automatically, and Zmed and Zvar are declared automatically as scalars so that they can store
the single value generated by each calculation. The PRINT directive in line 7 displays the values
of Zvar and Zmed, similarly to the way in which the numbers 1 and 2 were printed in Section
1.1.1. Finally (but not shown in the example), you can use the STOP directive to indicate the end
of the program, whether you are running interactively or in batch.

1.2 Genstat programs

As you have seen, a program consists of a series of instructions to Genstat, or statements in our
terminology. Before describing the general syntax of statements (1.3 to 1.8), we shall summarize
some of the basic things that they can do.

1.2.1 On-line help

Help is available on-line while you are running Genstat. Many implementations (especially
Genstat for Windows) allow you to access a browseable help file, with hot links to enable you
to locate topics of interest. Genstat for Windows provides context-sensitive help as well. To
access this, you put the cursor into the word of interest, or the first word of the phrase of interest,
and then press the F1 key.

In Genstat for Windows, you can open the help file by clicking in the Contents and Index line
in the Help menu on the menubar. An alternative (which also works in other Genstat

6 1 Introduction, syntax and terminology

implementations) is to type the command

HELP

1.2.2 Declarations

A statement specifying the type and identifier of a data structure is called a declaration.
Declarations can be explicit or implicit. An example of an explicit declaration is the VARIATE
statement in Example 1.1.2. Examples of implicit declarations are shown in the CALCULATE
statements: the particular calculations done here produce a single-valued result, and so implicitly
define scalar structures.

Other kinds of calculation produce other kinds of results, thus implicitly defining other kinds
of structures. Implicit declarations are called default declarations: the rules for these are
described in this Guide at the same point as the directives that make them.

1.2.3 Assigning values

You can define data values in the declaration itself: for example, the Zinc values could be
defined by

VARIATE [VALUES= 164.2, 160.6, 163, 166, 159.8,\
 163.9, 161, 161.3, 165.8] Zinc

(The symbol \ continues the statement onto a second line; see Section 1.4.6.) Alternatively you
can read the values, as was done for Zinc in Example 1.1.2, or you can derive values as the
results of calculations, as for the scalars Zmed and Zvar.

Later you will see that statistical analyses too can derive values to be assigned to data
structures. You will see also that the data can be read from files other than the main input file
(that is, instead of listing the data immediately after the READ statement).

1.2.4 Calculations

Calculations can be done with many kinds of data structure. Genstat contains many flexible tools
for analysing data, ranging from the simplest (such as taking means) to the advanced (like
nonlinear regression). But the essential point is that they do calculations with data held in data
structures and referred to by their identifiers.

1.2.5 Printing

Many of the statistical directives in Genstat produce their own output. For example, the ANOVA
directive will produce an analysis-of-variance table, tables of means, standard errors and so on.
But you may often want to produce output of your own. PRINT is merely one way of doing that.
Genstat can also for example produce tables, point or line plots and histograms.

1.2.6 Statements

The one thing that all these features of Genstat have in common is that you get access to them
by means of the statements that make up a program. (The menus in Genstat for Windows operate
by automatically forming statements of instructions for Genstat; these can be seen in the Input

Log.)
All statements have the same rules of syntax: first you give the name of the directive or

procedure that you wish to use, then perhaps some options, and then usually some parameters.
The names are intended to be natural, or to refer naturally to common statistical techniques.
Appendix 1 lists the directives in Release 13.1, together with the procedures in Release PL21
of the standard library which is the one included with Release 13.1.

Options are enclosed in square brackets, as in the declaration of the variate Zinc in Example
1.1.2. Each option has a name (for example NVALUES), and you can give it an appropriate setting
(for example 9 here): the general form for setting an option is "name=setting". Another example

1.2 Genstat programs 7

is the INDENTATION option in the following statement:

PRINT [INDENTATION=7] STRUCTURE=Zmed,Zvar

This would indent the printed values by seven spaces from the left-hand margin of the page.
Some options have default settings, that are the settings assumed by Genstat if you do not specify
any explicitly. For example, the default for indentation is zero (the values are printed from the
left margin). Conversely, the VARIATE directive has an option called VALUES, which can be used
to define the values in a variate when it is declared; this has no default, and if it is omitted no
values are defined.

Parameters are set in a similar way to the options, coming after the close of the square brackets
(if any). One parameter that is nearly always part of a statement is a list of identifiers or an
expression on which the statement is to operate. Some directives allow no more than this ! for
example CALCULATE; in such cases, there is no name for the parameter. Other directives have
several parameters. For example, in the PRINT statement in Example 1.1.2 two parameters are
set: STRUCTURE and DECIMALS. Sometimes the names of the parameters can be left out. The full
rules that Genstat then uses to determine which parameter is being set are described in Section
1.7.1; but the simplest rule is that if no name is included for the first parameter given in a
statement, Genstat takes this as the setting for the main parameter of the statement. As you will
have seen in the example in Section 1.1.1, the main parameter of the PRINT lists the structures
whose values are to be printed.

If more than one parameter is set, each one must be separated from the next by a semicolon.
The same rule applies if several options are to be set. The lists specified for each of the
parameters are taken by Genstat in parallel, so the statement

PRINT [INDENTATION=7] Zmed,Zvar; DECIMALS=1,2

will print Zmed with one decimal place and Zvar with two, and all this information will be
indented by seven spaces. The parameters after the main parameter are thus used to supply
further information for each item in the main list. Conversely, options supply information that
applies to all the parameters in the list.

In this Guide we generally give names of directives, options and parameters in capitals and
in full. But small letters and abbreviations can be used if you prefer. In particular, it is always
enough to give four characters, but option and parameter names can often be abbreviated beyond
that (1.7.1).

1.2.7 Punctuation

Items in lists are separated by commas: see, for example, the list of identifiers in the PRINT
statement in Example 1.1.2. Option settings are separated from each other by semicolons, as are
parameter settings.

The usual way of ending a statement is with the carriage-return key, usually labelled
<RETURN> or 5 on the keyboard. But you can also end with a colon, and thus get several
statements on one line. The continuation symbol \ allows you to continue the statement onto the
next line.

1.2.8 Comments

You can put comments into your programs to help other people to understand them, or to help
you remember them if you need to reuse them later on. The series of comments can then give a
running description of what the program is doing. You tell Genstat that you are making a
comment by using the double-quote character ("); notice that this is not the same as two single
quotes (''). In Example 1.1.2, we could add the comment

"This program calculates some simple statistics
to summarize the amount of zinc in the samples."

You can type anything you like between the double quotes; Genstat simply ignores it. In

8 1 Introduction, syntax and terminology

longer programs you might want to put comments at several places in the program, to describe
what different sets of statements are doing. In an interactive run Genstat will add the double-
quote character to the prompt to remind you when you are in the middle of a comment, i.e.

">

while in a batch run the line number is prefixed by a minus sign.

1.3 Characters

Sections 1.3 to 1.8 contain a rigorous definition of the Genstat language, starting with the simple
aspects and moving gradually to the more complicated. You may prefer not to read these sections
immediately, but to return to them when you need to know more details of the rules; however,
it will probably be useful to read about the conventions used in this Guide, given in Section 1.9.
There is much cross-referencing among Sections 1.3 to 1.8, and there are also references forward
to the rest of the Guide.

The characters in Genstat statements are classified as in Sections 1.3.1 to 1.3.7.

1.3.1 Letters

A letter is any of the alphabetic characters A, B, up to Z, a, b, up to z, the underline character (_)
and the percent character (%).

1.3.2 Digits

A digit is one of the numerical characters 0, 1, 2, up to 9.

1.3.3 Simple operators

These occur in arithmetic expressions or in the formulae that define statistical models. The
simple operators are:

+ ! * / . = < >

Equals (=), less than (<) and greater than (>) occur only in expressions (1.6.2). Dot (.) occurs
only in formulae (1.6.3).

The meanings of the simple operators, and of the compound operators made up of more than
one character, are given in 1.4.6.

1.3.4 Brackets

There are two kinds of bracket.
Round brackets (or) are used in lists (1.5) and expressions (1.6.2), and to enclose the

arguments of functions (1.6.1).
Square brackets [or] enclose option settings, and are also used for suffixed identifiers

(1.5.3). Left curly bracket { is synonymous with left square bracket [, and right curly bracket
} with right square bracket]; these provide alternatives if square brackets are unavailable on
your keyboard.

1.3.5 Punctuation symbols

Punctuation is used to separate different components of statements.
The space character can be used to improve the layout and readability of your programs.

Statements use free format: that is, there may be any number of spaces between items; items are
defined in 1.4. Spaces can be left out altogether if the items are already separated by another
punctuation symbol, by a bracket, by an operator, or by a special symbol (1.3.6). Most keyboards
have a tab key (<TAB>), which has the effect of inserting spaces before subsequent characters
on the terminal screen. Genstat treats the tab character as a synonym of space everywhere except
within strings (1.5.2) and comments (1.2.8), or if reading in fixed format when it is treated as a

1.4 Items 9

fault (3.1.7).
Comma (,) is used to separate items in lists; lists are described in 1.5.
Equals (=) separates an option name or a parameter name from the list of settings. This

character can thus have two meanings (separator or operator) but it will always be clear which
is intended from the context.

Semicolon (;) is used to separate one list from another.
Colon (:) marks the end of a statement.
Newline is obtained by pressing the carriage-return key (<RETURN>). It is another way of

marking the end of a statement. (Note, however, that the SET directive can be used to request that
newlines be ignored; see 5.6.1).

Single quote (') marks the start and finish of a string (1.5.2). On many computer terminals,
there are two kinds of quote (` and '); these are synonymous.

Double quote (") marks the beginning and end of a comment (1.2.8).

1.3.6 Special symbols

Some characters have more specialized meanings; details of the ways in which they are used are
given later in this chapter.

Ampersand (&) indicates that the directive name or procedure name from the previous
statement is to be repeated, together with any option settings that are not explicitly changed
(1.7.4).

Asterisk (*) is used to denote a missing value (1.4.5); this is another character with two
meanings, missing value or operator, which again are easily distinguished by context.

Backslash (\) indicates that a statement is continued on the next line (1.7).
Dollar ($) is used to define subsets of a data structure. The dollar is followed by a list

enclosed in square brackets, which specifies the contents of the subsets (1.5.3).
Exclamation mark (!) introduces an unnamed data structure (1.4.3). The vertical bar (*),

available on some keyboards, is synonymous with exclamation mark.
Hash (#) is followed by the identifier of a data structure whose values are to be inserted at the

current point of the program (1.5.4). It can also indicate the default setting of an option (1.7.3).
On some keyboards and printers, # is replaced by £.

Tilde (~) is used to introduce a typesetting command within a string (1.4.3).

1.3.7 Non-ASCII characters

Your computer may also allow you to define additional (non-ASCII) characters, such as accented
letters and Chinese, Korean or Thai characters. These can be used in Genstat strings (1.4.2) and
text structures (2.3.2).

1.4 Items

A Genstat statement can contain various pieces of information; we shall call these items. There
are six kinds of item, illustrated in these statements that calculate and print the area of a circle:

CALCULATE Area = 3.142 * Radius**2
PRINT [IPRINT=*] 'The area is',Area

The option setting IPRINT=* stops the name of the data structure being printed.
The words CALCULATE, PRINT and IPRINT are system words, whereas Radius and Area are

identifiers and the quoted characters make up a string. There are two numbers (3.142 and 2)
and three operators (=, * and **). The asterisk inside the square brackets is a missing value. The
statements contain some other characters, which separate the items: these are the square brackets,
the equals sign in the options and the comma between 'The area is' and Area.

10 1 Introduction, syntax and terminology

1.4.1 Numbers

A number represents quantitative information, and in its simplest form consists of digits only.
For example,

0 245609

A number can also have a sign (+ or !) and a decimal point (.).

!2 4.5 +33. !.2

However, a number must not contain any commas. Thus you must write one thousand as 1000
not 1,000.

To avoid lots of zeroes in large or small numbers, you can use an exponent. For example
2E!20 means 2 × 10!20. Another example is 2D!5 which means 0.00002. D and E have the same
meaning, and can also be replaced by d or e: these four are all called exponent codes. In general,
a number can have the form

xEy

which means that the number x is to be multiplied by 10 to the power y. The number x can have
a sign, as can the exponent y. There must not be any spaces between x and the exponent code,
nor between a sign and the exponent. But there can be spaces between the exponent code and
the exponent: for example 2d !5 again means 0.00002.

Numbers can also be used within Genstat to represent dates and times. The time is contained
in the decimal part of the number, and represents the time during the day. So, for example, 12
noon is stored as 0.5, and 6 p.m. as 0.75. The date is contained in the integer part of the number,
and represents the number of days of the date since the basedate. Genstat bases this on the
Gregorian calendar, so day 1 was 1st March 1600, 31st December 1999 is stored as 146037, 1st
April 2000 is stored as 146129, and so on. The difference between two dates and times is thus
a time duration, so dates and times can be analysed and manipulated like any other data. The
directives that define numerical data structures all have a parameter DREPRESENTATION to
define a format to be used to display the number as a date and time whenever the data structure
concerned is printed (2.1.5). Alternatively, the format can be specified at the time that the
structure is printed, using the DREPRESENTATION parameter of the PRINT directive itself (3.2.1).

1.4.2 Strings

A string is a piece of textual information. Some examples are

apple;
five apples;
5 apples.

The spaces and punctuation here are part of the string. Important uses of strings are to form the
values of text data structures (2.3.2) and to annotate output from a program (3.2.1).

More formally, we define a string to be a series of characters conveying textual information.
In most places quoted strings are required: there, the characters are placed between single quotes
('); for example

'apple'

Quoted strings may contain any of the characters available on your computer.
In some places an unquoted string can be used. This must have its first character as a letter and

all its characters as letters or digits.
Upper-case and lower-case letters are distinct within strings; so the strings Apple and apple

are not the same.
If you want to put a single quote itself into a quoted string, you must put it in twice; otherwise

Genstat thinks the string is ending. For example

'don''t do that'

will be interpreted as

1.4 Items 11

don't do that

Similarly, a quoted string cannot contain a double-quote character on its own, because this is
interpreted inside a string as the start of a comment (1.2.8): a comment inside a string is not
interpreted as part of the string but is ignored. So to include a double quote in the string, you
need to put two double quotes.

A continuation symbol (\) on its own in a quoted string continues the string onto the next line.
However, a pair of backslash characters is interpreted as a single appearance of that character.
For example

'C:\\Examples\\Regress.gen'

is interpreted as

C:\Examples\Regress.gen

If a quoted string contains a newline (<RETURN>) that does not follow an unduplicated
continuation symbol, then it becomes a string list (1.5.2), unless you have used the SET directive
to specify that newlines are to be ignored (5.6.1).

Strings can contain typesetting commands to represent Greek and mathematical symbols. The
commands are converted automatically by Genstat to match the style of output (HTML, LaTeX,
plain-text or RTF). They are all introduced by the character tilde (~). So, to use tilde as an
ordinary character, you need to specify the special symbol ~{~} as defined below.

If Genstat finds a mistake in the syntax of a command, it will not issue a failure diagnostic but
will output the remainder of the string (including any commands) as plain text. (So programs
containing tilde characters, written before these commands were introduced in Release 9, should
continue to work as before.) The following commands define Greek characters and various
special and mathematical symbols.

~{~} tilde symbol; also see ~{tilde}
~{alpha} Greek character alpha
~{beta} Greek character beta
~{gamma} Greek character gamma
~{delta} Greek character delta
~{epsilon} Greek character epsilon
~{varepsilon} Greek character epsilon (variant)
~{zeta} Greek character zeta
~{eta} Greek character eta
~{theta} Greek character theta
~{vartheta} Greek character theta (variant)
~{iota} Greek character iota
~{kappa} Greek character kappa
~{lambda} Greek character lambda
~{mu} Greek character mu
~{nu} Greek character nu
~{xi} Greek character xi
~{omicron} Greek character omicron
~{pi} Greek character pi
~{varpi} Greek character pi (variant)
~{rho} Greek character rho
~{varrho} Greek character rho (variant)
~{sigma} Greek character sigma
~{varsigma} Greek character sigma (terminal version)
~{tau} Greek character tau
~{upsilon} Greek character upsilon
~{phi} Greek character phi

12 1 Introduction, syntax and terminology

~{varphi} Greek character phi (variant)
~{chi} Greek character chi
~{psi} Greek character psi
~{omega} Greek character omega
~{bull} or ~{bullet} bullet
~{cdot} decimal point; also see ~{middot}
~{div} or ~{divide} divide symbol
~{gg} ">>" symbol; also see ~{raquo}
~{laquo} "<<" symbol; also see ~{ll}
~{ll} "<<" symbol; also see ~{laquo}
~{middot} alternative way of specifying a decimal point; also see

~{cdot}

~{minus} minus symbol
~{plusminus} "+ or minus" symbol; also see ~{pm}
~{pm} "+ or minus" symbol; also see ~{plusminus}
~{raquo} ">>" symbol; also see ~{gg}
~{sqrt} square-root symbol
~{oplus} + within circle
~{ominus} minus symbol within circle
~{otimes} multiply symbol within circle
~{oslash} slash symbol within circle
~{odot} dot within circle
~{tilde} tilde symbol; also see ~{~}
~{times} multiply symbol
~{break} starts a new line

The character definitions (within the curly brackets) can be abbreviated. Genstat checks through
the possibilities, in the order defined above, until it finds the first match. Greek characters in
capital letters can be obtained by beginning the name of the character with a capital letter, for
example ~{Sigma}; subsequent capital letters are irrelevant.

The style of font can be changed to bold or italic.
~bold or ~b introduces a sequence of bold characters; these must be

placed within curly brackets and any spaces between
~bold and the opening curly bracket are ignored.
e.g. ~bold {Please note:}

~italic or ~i introduces a sequence of italic characters; these must be
placed within curly brackets and any spaces between
~italic and the opening curly bracket are ignored.
e.g. ~italic {Passer domesticus}

You can also produce output in the same style as Genstat uses when it echoes commands in
the output.

~genstat or ~g introduces some output in the style that Genstat uses to
echo commands; it must be placed within curly brackets
and any spaces between ~genstat and the opening curly
bracket are ignored.

You can define subscripts and superscripts (for example to define equations).
~_ introduces a subscript; if the subscript is a single character

it can be placed immediately after _, otherwise it must be
placed within curly brackets; any spaces between ~_ and
the opening curly bracket are ignored.

~^ introduces a superscript; if the superscript is a single
character it can be placed immediately after ^, otherwise

1.4 Items 13

it must be placed within curly brackets; any spaces
between ~^ and the opening curly bracket are ignored.

You can use special characters in subscripts or superscripts, but fonts must be specified outside
the subscript or superscript. For example:

~i {x~_{i,j}} defines xi,j,
x~^ {2n} defines x2n, and
~i{x~_{i,j}}~^2 defines xi,j

2

~b{X}~i{~_{i,j}}~^2 defines Xi,j
2.

For additional flexibility, you can specify output information in either HTML, LaTeX or RTF.
This will be inserted only into output constructed by Genstat in the same style. You can also
supply information to be included only in plain-text output (which may, for example, be your
translation of the HTML, LaTeX or RTF information).

~html or ~h introduces a sequence of information in HTML; the
information must be placed within curly brackets and any
spaces between ~html and the opening curly bracket are
ignored.

~latex or ~l introduces a sequence of information in LaTeX; the
information must be placed within curly brackets and any
spaces between ~latex and the opening curly bracket are
ignored. The information may itself contain curly brackets.
These are assumed to be paired according to the usual
rules of LaTeX, except that any curly brackets preceded by
the LaTeX escape character \ are ignored.

~plain or ~p introduces a sequence of information to be inserted only in
plain-text output; the information must be placed within
curly brackets and any spaces between ~plain and the
opening curly bracket are ignored.

~rtf or ~r introduces a sequence of information in RTF; the output
must be placed within curly brackets and any spaces
between ~rtf and the opening curly bracket are ignored.
The information may itself contain curly brackets. These
are assumed to be paired according to the usual rules of
RTF, except that curly brackets preceded by the RTF
escape character \ are ignored.

1.4.3 Identifiers

An identifier is the name used to refer to a data structure. An unsuffixed identifier is made up of
letters and digits, starting with a letter. For example,

Cost Yield2006 Yield2007

Any characters beyond the first 32 are ignored; so if you used the identifiers
Production_recorded_during_month_1,
Production_recorded_during_month_2

and so on, they would all refer to the same structure, namely
Production_recorded_during_month.

By default, Genstat will treat capital letters as distinct from small letters. However, the SET
directive (5.6.1) can been used to request that Genstat regards them as equivalent. SET can also
request Genstat to use short wordlengths as always happened in releases before Release 4.2; only
eight characters are then stored for identifiers, and the ninth and subsequent characters are
ignored.

Identifiers can have suffixes; for example

Yield[2006]

14 1 Introduction, syntax and terminology

The suffix is enclosed in square brackets, and can be a number, a quoted string or another
identifier. You can put spaces on either side of either of the square brackets.

A suffixed identifier is a value, or a set of values, of a pointer data structure (2.6). Thus
Yield[2006] and Yield[2007] are two structures which are pointed to by the pointer
structure Yield. (So a pointer is simply a structure that contains a list of other structures.) When
you use a suffixed identifier Genstat will automatically define the necessary pointer (2.6). An
identifier can also be qualified to specify a subset of its values (see Section 1.5.3).

The identifier is generally also used to label the data structure in output. However, Section
2.1.3 explains how you can use the EXTRA option of many declarations to associate an "extra"
text of description with a data structure, and the IPRINT option to request that this description
be used instead of the identifier.

If the data structure is supplying input to a command, and is going to be used only once, it may
be convenient to use an unnamed structure instead of defining an explicit data structure to store
the data, and then specifying its identifier. Unnamed structures are available for types scalar,
variate, text, pointer, expression and formula. As you have seen in Section 1.1.1, an unnamed
scalar may simply be a number. The other forms all have a common style: they start with an
exclamation mark, then a type code, and then a list enclosed in round brackets. The type codes
are:
(a) V (or v) for an unnamed variate. For example,

!V(164.2,160.6,163,166,159.8,163.9,161,161.3,165.8)

is an unnamed variate containing the zinc measurements in Example 1.1.2, and the statement

CALCULATE Zmed = MEDIAN(\
 !V(164.2,160.6,163,166,159.8,163.9,161,161.3,165.8))

would calculate their median. If you do not specify any type code, V is assumed by default. So
this example is the same as

!(164.2,160.6,163,166,159.8,163.9,161,161.3,165.8)

(b) S (or s) provides another way of specifying an unnamed scalar; this is likely to be useful
mainly when defining procedures (5.3).
(c) T (or t) for an unnamed text. (Each value of a text is a string: see 2.3.2). For example,

!T(apples,pears)

is an unnamed text containing two strings: apples and pears. For a text containing a single
string, an alternative is to give just the string within quotes. For example:

'apples'

(d) P (or p) for an unnamed pointer (2.6), when the list is of identifiers. For example,

!P(N,M,Q)

is a pointer containing the identifiers N, M and Q.
(e) E (or e) for an unnamed expression.
(f) F (or f) for an unnamed formula.
These last two are explained in 1.6.

1.4.4 System words

A system word is the name of a directive, or an option, or a parameter, or a function (1.6.1). The
first character is a letter; subsequent characters are letters or digits. For example,

PRINT print Log Log10

You can use capital and small letters interchangeably: thus the first two system words here are
equivalent. System words can always be abbreviated to four letters; option and parameter names
can often be abbreviated more than that (see 1.7.1). If more than four characters are supplied,
Genstat checks the first 32 characters, but ignores characters 33 onwards. However, Genstat has

1.4 Items 15

few (if any) system words longer than 32 characters!
As for identifiers, if the SET directive (5.6.1) has been used to request short wordlengths, the

ninth and subsequent characters of system words are ignored.

1.4.5 Missing values

A missing value indicates unknown information, and is represented by a single asterisk (*).
When reading or printing data, missing values are represented by asterisks by default, but other
representations can be used if you prefer (3.1.2 and 3.2.1).

1.4.6 Operators

An operator represents an arithmetic or logical operation, or some relationship between other
kinds of item. Some operators have different meanings according to whether they appear in
expressions or in formulae (1.6). Here is a list of all the operators and their names: more details
are given in 4.1.1, 2:3.3.1 and 2:4.1.1.

Arithmetic operators
addition +

subtraction !

multiplication *

division /

exponentiation **

matrix product *+

Assignment operator
assignment =

Relational operators
equality .EQ. or ==
string equality .EQS.

non-equality .NE. or /= or <>
string non-equality .NES.

less than .LT. or <
less than or equals .LE. or <=
greater than .GT. or >
greater than or equals .GE. or >=
identifier equivalence .IS.

identifier non-equivalence .ISNT.

inclusion .IN.

non-inclusion .NI.

Logical operators
negation .NOT.

conjunction .AND.

disjunction .OR.

exclusive disjunction .EOR.

Formula operators
summation +

dot product .

cross product *

nested product /

16 1 Introduction, syntax and terminology

deletion !

crossed deletion !*

nested deletion !/

linkage of pseudo terms //

Upper-case and lower-case letters can be used interchangeably for relational and logical
operators. However the characters making up any of these operators must be contiguous; thus,
for example, there must be no spaces between the dots and the letters of a relational operator.

1.5 Lists

A list is a set of items that are to be treated in the same way in a statement. The items are usually
separated by commas (but not always: see 1.5.4).

Here are some examples of the three kinds of list:

VARIATE [VALUES=18,28,27,19,21] IDENTIFIER=Temp
TEXT [VALUES='London','Madrid','New York','Ottawa',\
 'Paris'] IDENTIFIER=City
PRINT STRUCTURE=City,Temp

The first set of values constitutes a number list, the second set a string list, and the STRUCTURE
list for PRINT is an identifier list.

Missing values can occur in any of these lists. Their meanings and the ways of indicating them
are described in 1.5.1, 1.5.2 and 1.5.3.

1.5.1 Number lists

Number lists appear in statements when values are put into a numerical data structure. Each item
in a number list must be a number (1.4.1), a missing value, or the identifier of a scalar data
structure; if an identifier, it stands for the value currently stored there. Missing values are
interpreted as unknown observations in all directives that deal with numbers.

When numbers are to be listed in a repetitive or patterned series, you can save space and effort
by compacting the lists as described in 1.5.4. Moreover, a set of numbers that form an arithmetic
progression within a list can be written compactly using an ellipsis: this is three contiguous dots
(...). For example,

1,2...10 means 1,2,3,4,5,6,7,8,9,10

In general, if k, m and n are numbers and d (=m!k) is the difference between m and k, then
k,m...n stands for k, k+d, k+2d, k+3d, up to n. If n is not in the progression defined by k and m,
then the progression ends at the value beyond which n would be passed (and this can sometimes
be k itself). Here are two more examples:

!2, !1.5 ... 0.4 means !2, !1.5, !1, !0.5, 0

!2, !1.5 ... !1.6 means !2

If the last value in the progression is close to n, but not quite equal, this may be due to rounding
error on the computer. For this reason, the last value of the progression will then be set to n
itself; the precise criterion is to check if the last value is within d/100 of n.

When the step length d is plus or minus 1, you can compact the list even further. For example,

10...1 is the same as 10,9...1

In general, the construction (k...n) is the same as k,m...n, where m is k+1 or k!1 depending on
whether n is greater or less than k. If k equals n, the construction gives the single number k. You

1.5 Lists 17

can leave out the brackets so long as there is no number preceding k that is not itself preceded
by an ellipsis. For example,

1...3,5...8 means 1,2,3,5,6,7,8

1,2,3,5...8 means 1,2,3,5,7

1,2,3,(5...8) means 1,2,3,5,6,7,8

1.5.2 String lists

String lists appear in two places. They occur when values are assigned to a structure that is to
store text (as opposed to numbers), and they occur when the setting of an option or parameter
is one or more string "tokens" that can be chosen from a specific list that has been defined for
the directive. The second of these uses is described in 1.7.3.

For the first, each item in the string list must be a string (1.4.2), or a missing value. The latter
is equivalent to the empty string ''. An example of a string list with six items is

purple,'black and white','blue-green',so_dark,'2bright',F16

You can compact repetitive strings similarly to numbers (1.5.4).
Provided you have not used the SET directive (5.6.1) to request that newlines be ignored, the

intermediate quotes and commas in a list of quoted strings can be replaced by newlines. For
example

'Jack & Jill\
 went up the hill
To fetch a pail of water.'

is the same as

'Jack & Jill went up the hill','To fetch a pail of water.'

If the continuation symbol (\) were omitted, you would obtain

Jack & Jill',' went up the hill','To fetch a pail of water.'

while if you had previously specified SET [NEWLINE=ignored] (5.6.1), this would give the
single string:

'Jack & Jill went up the hillTo fetch a pail of water.'

1.5.3 Identifier lists

Identifier lists are needed by many options and parameters of statements; they name the
structures that are to be operated on. Each item in an identifier list must be an identifier, a
qualified identifier (or qualified identifier list), a missing value (representing an unset item) or
an unnamed structure (1.4.3). In addition, Genstat allows you to supply an expression (1.6.2) as
the setting of any option or parameter that requires an identifier list; the calculation specified by
the expression is evaluated to provide a list of results that are then used as the option or
parameter setting. For example, we could put

PRINT LOG(Zinc)

to print the logarithms of the zinc measurements. (It is only sensible to do this though if the
option or parameter is supplying input to the command!)

Qualified identifiers may occur in a list of identifiers to define subsets of the values of a data
structure. The form is "identifier $ qualifier", where the qualifier is a sequence of identifier lists
enclosed in square brackets. For factors, variates, and texts, the qualifier has a single list, each
element of which defines a subset of the vector concerned. For matrices there are two lists
running in parallel, one for each dimension. For a symmetric matrix, there can be either one or
two lists, depending on whether or not its two dimensions are to be subset in the same way. For
a diagonal matrix there is a single list. Tables cannot be qualified. The elements of the qualifier
lists can be scalars, numbers, variates, quoted strings, or texts. The set of units defined by an

18 1 Introduction, syntax and terminology

element in the qualification list is built up, by taking its values one at a time. Positive numbers
(or texts or strings) add units to the set, while negative numbers delete the corresponding units
from the set (if already there). A missing value can be used to include all the units, and one of
these will be included implicitly at the start of the qualification list if the first element of the list
is negative.

For example

V$[3,4]

means take the third and fourth items of data from the variate V. This is the same as

V$[3],V$[4]

which is a list of two scalars. If the structure has textual labels (2.3.2), these can be used in the
qualification. For example

V$['c','d']

In general, a qualified identifier is
identifier $ [sequence of identifier lists]

If there are two lists, their elements are taken in parallel: for example,

M$[1,2; 4,5]

refers to a matrix M, and selects two elements: column 4 of row 1 and column 5 of row 2. So this
is the same as

M$[1;4],M$[2;5]

A qualified identifier list can provide a more compact way of specifying a list of qualified

identifiers. For example,

(A,B)$[1,2]

is the same as

A$[1],A$[2],B$[1],B$[2]

The general form is
(identifier list) $ [sequence of identifier lists]

If any list in the sequence is shorter than the others, it is repeated as often as is necessary; so for
example

M$[1,2; 4,5,6]

is the same as

M$[1;4],M$[2;5],M$[1;6]

For further examples, see Section 4.1.6.
You can often compact a list of identifiers with suffixes by using a suffix list. For example,

A[1,2]

is the same as

A[1],A[2]

Identifier lists and suffix lists can be combined. For example,

(A,B)[1,2]

is the same as

A[1], A[2], B[1], B[2]

The lists are matched in lexicographic order: the items in the second list are matched in turn with
the first item of the first list, then they are matched with the second item of the first list, and so
on.

The empty suffix list [] stands for all suffixes of the identifiers preceding it. For example, if
P[1], P[2] and P[3] are the only current suffixed identifiers involving P, then P[] is the same

1.5 Lists 19

as P[1,2,3]. Further examples are described in 2.6.

1.5.4 Ways of compacting lists

All three types of lists can be compacted by any of the methods described below, in addition to
the methods described individually for each type of list earlier in this section.

The values of a structure can be substituted into a list using the substitution symbol (#). If I
is an identifier, then #I is a list whose items are the values of the structure identified by I. If I
is a pointer, then any item in #I that is itself a pointer is replaced by the values of that pointer
(2.6).

For example, suppose I is a variate holding values 3,4. Then

1,2,#I

is the same as

1,2,3,4

If J is another variate with values 1,2 then the same list could be written as

#J,#I

Notice that this list is quite different from the list of two identifiers

J,I

You can do the same with lists of strings. For example, if Letters is a text containing the
strings 'b','c','d', then

'a',#Letters

is the same as

'a','b','c','d'

If you put a dummy (2.2.2) in a list, it is automatically replaced by the identifier that it is

currently storing. So if the identifier of the dummy is preceded by #, then the values put into the
list are those of the structure that the dummy is storing.

When a list is to contain a set of items repeated several times, you can use a multiplier. A
multiplier is a number without a sign; it can also be #identifier, where the identifier is of a
structure storing one non-negative number. A pre-multiplier repeats each item in the list in turn.
For example,

2(A,B,C)

is the same as

A,A,B,B,C,C

A post-multiplier repeats the whole list:

('a','b')2

is the same as

'a','b','a','b'

These can be combined. Thus,

2(1...3)3

is the same as

1,1,2,2,3,3,1,1,2,2,3,3,1,1,2,2,3,3

If the multiplier has the value 0, the construction contributes no items to the list. A multiplier

with value 1 can be left out to give the form

(list)

(You might want to use such a matched pair of brackets to indicate some grouping of items to
anyone reading the program.)

You can compact a list of qualified identifiers by specifying a qualified identifier list:

20 1 Introduction, syntax and terminology

(A,B)$[1,2]

is the same as

A$[1],A$[2],B$[1],B$[2]

The general form is
(identifier list) $ [sequence of identifier lists]

If any list in the sequence is shorter than the others, it is repeated as often as is necessary; so for
example

M$[1,2; 4,5,6]

is the same as

M$[1;4],M$[2;5],M$[1;6]

1.6 Expressions and formulae

Expressions contain arithmetic and logical operations. They are required in commands that
perform calculations. For example

CALCULATE Boundary = 2*(Width+Height)

An expression can also be given anywhere that a command expects a list of identifiers (1.5.3).
Formulae define the structure of a model in directives for some kinds of statistical analysis.

For example

TREATMENTSTRUCTURE Drug*Rate

Both these constructions may contain functions. Details of functions are given in 4.2 for
expressions and in 2:3.4 and 2:4.5 for formulae.

1.6.1 Functions

Functions have the form
function name (sequence of arguments)

A function name is a system word of one of the standard functions (4.2, 2:3.4 and 2:4.5). For
example:

SQRT(X) SUM(Y + 4*Z)

The function name can be abbreviated to four characters. If you give further characters they must
match the full form up to the 32nd; characters beyond the 32nd are ignored (but few, if any,
functions have names that long). However, if the SET directive has been used to request short
wordlengths, the ninth and subsequent characters of the function name are ignored.

The arguments of a function are either lists or expressions; if there are several arguments they
are separated by semicolons. For example:

CHISQ(2.5; 6)

1.6.2 Expressions

An expression consists of identifier lists, operators (1.4.6) and functions. Identifier lists must not
include any missing identifiers, and the operators

. !* !/ //

cannot be used in expressions.
The simplest form of expression is an identifier list by itself, or a function by itself. You build

up expressions from identifiers and functions by mixtures of three rules. Let E and F be
expressions. Then these are also expressions:

(E)

monadic operator E

1.6 Expressions and formulae 21

E dyadic operator F

The first means that putting brackets round an expression makes another expression. For the
second, a monadic operator is an operator that works on just a single item: an example is minus
in !1. In Genstat there are two monadic operators:

.NOT. which negates a logical expression, and
! which changes the sign of a numerical expression.

All the other operators work on pair of items: that this, they are dyadic. These operators
(including the use of minus to mean subtract) can be used with the third rule. Other examples
of expressions, illustrating the rules, are

5,6
A,B = !(C)
SUM(X) .EQ. 4
A = (B = C + 1) + 1

The precedence rules of the operators are very similar (but possibly not identical) to those in
computer languages and programs like C, Fortran or Excel. The list below shows the precedence
of all the operators in expressions when brackets are not used to make the order of evaluation
explicit:

1) .NOT. Monadic !

2) .IS. .ISNT. .IN. .NI. *+

3) **

4) * /

5) + Dyadic !
6) < > == <= >= /= <> .LT. .GT. .EQ. .LE. .GE. .NE. .NES.

7) .AND. .OR. .EOR.

8) =

Within each class, operations are done from left to right within an expression. For example,

A > B+C/D*E

is the same as

A > (B + ((C/D) * E)

An identifier list in an expression can contain qualified identifiers; these select subsets of

values of the structures (4.1.6). For example

V$[3,4]

means take the third and fourth items of data from the variate V. This is the same as

V$[3],V$[4]

which is a list of two scalars. If the structure has textual labels (2.3.2), these can be used in the
qualification. For example

V$['c','d']

In general, a qualified identifier is
identifier $ [sequence of identifier lists]

If there are two lists, their elements are taken in parallel: for example,

M$[1,2; 4,5]

refers to a matrix M, and selects two elements: column 4 of row 1 and column 5 of row 2. So this
is the same as

M$[1;4],M$[2;5]

You can compact a list of qualified identifiers in an expression by specifying a qualified
identifier list:

(A,B)$[1,2]

22 1 Introduction, syntax and terminology

is the same as

A$[1],A$[2],B$[1],B$[2]

The general form is
(identifier list) $ [sequence of identifier lists]

If any list in the sequence is shorter than the others, it is repeated as often as is necessary; so for
example

M$[1,2; 4,5,6]

is the same as

M$[1;4],M$[2;5],M$[1;6]

1.6.3 Formulae

A formula defines a statistical model; it consists of identifier lists, operators and functions. The
identifier lists must not include any missing identifiers, and only the operators

+ ! * / . !/ !* //

can be used. The simplest form of a formula is an identifier list; also a formula can be a function
by itself.

You build up other formulae by mixtures of two rules: if M and N are formulae, then so are

(M)

M operator N

For example

Sex * Diet
(Group / Variety) * Fertilizer
Drug * POL(Dose; 2)

The operators in a formula have the following precedence:
(1) .

(2) //
(3) /
(4) *
(5) + ! !/ !*

Within each class, operations are done from left to right within a formula.
A formula is expanded into a series of model terms, linked by the summation operator (+). A

model term contains one or more elements, separated from each other by the operator dot (.),
each element being either an identifier or a function whose arguments are single identifiers. For
example, the expanded form of the first formula above is

Sex + Diet + Sex.Diet

The interpretation of the terms is described in 2:3.3.1 and 2:4.1.1.
Identifiers in a list within a formula are treated as if they were separated by the summation

operator and enclosed within brackets. For example

A,B * C

is the same as

(A + B) * C

The following table shows how operators combine terms, using L and M to represent two sums
of terms.

 Construction Expansion
 L.M Sum of all pairwise combinations of terms in L with terms in

M using the dot operator, with the terms ordered as explained

1.7 Statements 23

below. For example: (A+B).(C+D.E) is the same as
A.C+B.C+A.D.E+B.D.E

 L*M L+M+L.M ordered as explained below. For example
(A+B)*C is the same as A+B+C+A.C+B.C

 L/M L + L.M where L is a term formed by combining all terms
in L with the dot operator, ordered as explained below. For
example (A+B)/(C+D.E) is the same as
A+B+A.B.C+A.B.D.E

 L!M L without any terms that appear in M. For example
(A+B)!(A+C) is the same as B

 L!/M L without any terms that consist of a term appearing in M
combined with any other identifiers. For example
(A+B+B.C)!/B is the same as A+B

 L!*M L!M!/M For example (A+B+B.C)!*B is the same as A

After expansions for the dot, slash and star operators, the terms are rearranged in order of
increasing numbers of identifiers. Terms with the same number of identifiers are arranged in
lexicographical order with respect to the order in which the identifiers first occurred in the
formula itself.

A list of identifiers within a formula is treated as though the identifiers were linked by +, and
contained within a pair of round brackets. For example

A * B,C

is equivalent to

A * (B + C)

and so it expands to

A + B + C + A.B + A.C

1.7 Statements

A statement is an instruction to Genstat, and has the general form:
statement-name [option-sequence] parameter-sequence terminator

For example,

READ [CHANNEL=2] STRUCTURE=Zinc,Chromium

If there are no options, the square brackets can be left out; but there must then be at least one
space between the statement name and the first parameter setting: for example

PRINT STRUCTURE=Zinc; DECIMALS=2

Some directives have options but no parameters: for example,

SET [CASE=ignored]

makes upper-case and lower-case letters equivalent in identifiers (5.6.1). Others have neither
options nor parameters. For example:

STOP

The statement name is one of three things: the name of one of the standard Genstat directives,
or the name of a procedure (1.8.1 and 5.3), or the repetition symbol (&) described in 1.7.4.

The name of a directive can always be abbreviated to four characters. If more than four
characters are given, the name is checked up to the 32nd character, but characters 33 onwards
are ignored. (Note, though, that if the SET directive has been used to request short wordlengths,
the ninth and subsequent characters of the function name are ignored.) The case of the letters
(small or capital) is also ignored.

Names of procedures can also be abbreviated to four letters, provided there is no ambiguity

24 1 Introduction, syntax and terminology

with the names of directives or other procedures. Directives and procedures in the official
Genstat library all have names that are distinct within the first four characters, so there should
be no problem unless you (or your site) have defined procedures with ambiguous names. (Note,
however, that some of the standard library procedures had to be renamed for Release 4.2 to avoid
clashes with directive names: for example the original name of the procedure FITNONNEGATIVE
differed from that of the directive FITNONLINEAR only in the seventh and eighth characters. The
original names have been kept as synonyms but, for safety, should not be abbreviated beyond
eight characters.)

Section 5.3 explains how you can write your own procedures, or attach libraries of stored
procedures. Indeed, your site representatives can arrange to have a site library attached to
Genstat automatically, just like the standard library. If the name of the command is ambiguous,
Genstat selects the directive or procedure to use according to the following order of priority:
directives, user-defined procedures, procedures in libraries attached by the user (in order of
channel number), procedures in the site library, and procedures in the official library. Again, if
more than four characters are specified, Genstat checks the name only up to the 32nd character
(or the eighth if short wordlengths have been requested), and the case of the letters is ignored.

The terminator of a statement is colon (:). Thus the line

VARIATE [NVALUES=12] Sales : READ Sales

contains two statements.
Alternatively, you can usually end a statement by pressing the carriage-return key

(<RETURN>). In other words, newline is normally synonymous with colon. You can change this
with the SET directive (5.6.1):

SET [NEWLINE=ignored]

indicates that newlines are to be ignored in the rest of the program.
Even if newlines are not ignored, there are still three situations when a newline will not end

a statement.
(a) When newline occurs within a string, it terminates that string and begins another (1.5.2).
(b) A newline within a comment is ignored (along with the rest of the comment): for example

PRINT STRUCTURE=Zmin,Zmean,Zmax; FIELDWIDTH=8,9,8;"
"DECIMALS=1,2,1

is a single statement.
(c) You can indicate that a statement is to continue onto the next line by putting a continuation
symbol (\) before pressing <RETURN> for example,

PRINT STRUCTURE=Zmin,Zmean,Zmax; FIELDWIDTH=8,9,8;\
DECIMALS=1,2,1

is again a single statement. Any characters between the continuation symbol and the end of the
line are ignored. Genstat does however have the limitation that a statement must not exceed 2048
characters, after deletion of extraneous spaces.

1.7.1 Syntax of options and parameters

The sequences of options and parameters specify the items upon which the statement is to
operate: these items are called the arguments of the statement. A sequence consists of one or
more settings, each separated from the next by a semicolon (;). You can see an example of a
sequence of parameter settings in the PRINT statement above. Each setting, whether of an option
or a parameter, has one of the general forms:

name = list

name = expression
name = formula

The list, expression or formula can be null (length zero). Rules by which the "name=" can be left

1.7 Statements 25

out are defined below; the types of setting are discussed further in 1.7.3.
An option name is a system word, which can be abbreviated to the minimum number of letters

needed to distinguish it from the options that precede it in the prescribed order for the directive
or procedure concerned. Characters up to the 32nd (or the eighth if short wordlengths have been
requested) must match the appropriate part of the full form; subsequent characters are ignored.
For example, here are the options of the TABULATE directive (4.11.1), with the minimum form
of each name printed in bold:

PRINT, CLASSIFICATION, COUNTS, SEQUENTIAL, MARGINS,
IPRINT, WEIGHTS, PERCENTQUANTILES, OWN, OWNFACTORS,
OWNVARIATES, INCHANNEL, INFILETYPE

Notice for example that the minimum for COUNTS is CO, since C on its own would not distinguish
it from CLASSIFICATION which precedes it in this prescribed order.

A parameter name is also a system word, and has the same abbreviation rule as the option
names. For example, the parameters for TABULATE are (with minimum forms again in bold):

DATA, TOTALS, NOBSERVATIONS, MEANS, MINIMA, MAXIMA,
VARIANCES, QUANTILES, SDS, SKEWNESS, KURTOSIS, SEMEANS,
SESKEWNESS, SEKURTOSIS

You usually need type no more than one or two characters for any option or parameter name;
there are no directives or procedures in the standard library that require more than four
characters for their option and parameter names. However, if you are likely to refer to a
statement again in future (as for example if it is part of a procedure), remember that it may be
difficult to understand if it is abbreviated too heavily.

You can omit the name and the equals character altogether by taking account of the prescribed
order of options, or of parameters, within the directive or procedure. The rules for parameters
are the same as those for options, and are as follows:
(a) If the first option setting in a statement is for the first option defined for that directive or
procedure, then "name=" can be omitted.
(b) The "name=" can also be omitted for later option settings if the preceding setting is for the
option immediately before that option in the prescribed order. For example,

TABULATE [PRINT=totals,means; COUNTS=Rep; SEQUENTIAL=Sval]\
 DATA=Spending; MEANS=Meansp

can be abbreviated to

TABULATE [totals,means; COUNTS=Rep; Sval] \
 Spending; MEANS=Meansp

You can omit "PRINT=" here by rule (a) as it is the first option in the order prescribed for
TABULATE. Similarly, "DATA=" can be omitted as DATA is the first parameter. You can omit
"SEQUENTIAL=" by rule (b), because COUNTS which precedes it here is also the option that
precedes SEQUENTIAL in the definition of TABULATE. However, you cannot omit "COUNTS=",
because in the prescribed order there is another option between COUNTS and PRINT. The same
is true for "MEANS=".

An option or parameter setting can be null: that is, it can have a list of length zero, or a null
expression, or a null formula. Thus, by putting a null setting for the CLASSIFICATION option
and the TOTALS and NOBSERVATIONS parameters, all the names can be omitted:

TABULATE [totals,means; ; Repl; Sval] Spending; ; ; Meansp

If a directive has a single parameter, no name is defined. For example, there is no name for

the expression that is the only parameter for the CALCULATE directive (4.1.1).

1.7.2 Roles of options and parameters

Parameters specify parallel series of arguments that are operated on in turn when the statement
is carried out. For example, in

26 1 Introduction, syntax and terminology

TABLE [CLASSIFICATION=Age,Sex] \
 IDENTIFIER=Income,Cars,Spending; DECIMALS=2,0,2

there are two parameters: IDENTIFIER and DECIMALS. The statement declares three tables and
defines their default numbers of decimal places. So, when they are printed later in the program
Income will have two decimal places, Cars will have none, and Spending will have two.

The main information in a directive or procedure is usually given by the first parameter, and
so this is said to define the series of primary arguments. In the example, they are Income, Cars
and Spending. Usually the parameter setting is an identifier list, and so the series is a list of
data structures.

Alternatively, the setting of the first parameter can be an expression, in which case the first
identifier list in the expression is the series of primary arguments. For example, if A, B, M, N, P
and Q are variates, then in

CALCULATE A,B = M,N + P,Q

the primary arguments are A and B.
Another possibility is that the setting may be a formula, in which case the expanded list of

model terms (1.7.3) is the series of primary arguments. For example, in the regression statement

FIT A * B

the primary arguments are the terms A, B and A.B (representing the main effects of A and B and
their interaction, see 2:3.3.1),

Later parameters, or other lists within an expression, specify secondary arguments which run
in parallel with the primary arguments, and provide ancillary information. Examples of
secondary arguments are in the TABLE statement above, and on the right-hand side of the
assignment operator in the CALCULATE statement.

The series of primary arguments should always be the longest; if a series of secondary
arguments is longer, you are given a warning and elements beyond the length of the primary
series are ignored. Any series that is shorter is recycled: that is, the series is traversed again, as
many times as is necessary to match the length of the primary series. Thus the TABLE declaration
above means exactly the same if it is written

TABLE [CLASSIFICATION=Age,Sex] \
 IDENTIFIER=Income,Cars,Spending; DECIMALS=2,0

Options, on the other hand, specify information that applies to all the primary arguments (with
their corresponding secondary arguments). Thus in the TABLE example above, all three tables
are classified by Age and Sex.

Many options have default values, namely values that are assumed if the option is not set
explicitly in a statement. But some options have to be set, for example the OLDSTRUCTURE and
NEWSTRUCTURE options of the COMBINE directive (4.11.4). Some parameters also have defaults:
for example, the METHOD option of LPGRAPH (6.10.1) assumes point plots. In a very few
directives, the primary parameter also has a default; for example, the Y parameter of RKEEP
(2:3.1.4) assumes the list of current response variates.

1.7.3 Types of option and parameter settings

An option or parameter setting may need a formula, or an expression, or a list (1.7.1).
When the setting is an expression, and the parameter or option has a defined name, the name

and its accompanying equals character cannot be left out if the expression begins with
"unsuffixed identifier=". This is because there would then be confusion between the name of the
option or parameter and the unsuffixed identifier. For example, you could not leave out the name
CONDITION in the statement

RESTRICT STRUCTURE=Income; CONDITION=Agecond=Age>30

That is, if you wrote

1.7 Statements 27

RESTRICT Income; Agecond=Age>30

Genstat would try to interpret Agecond as a parameter name, and a message would be printed
alerting you to this syntax error. You could, however, put the expression in brackets:

RESTRICT Income; (Agecond=Age>30)

No such problem arises with directives like CALCULATE (4.1.1), CASE, IF and ELSIF (5.2),
because in these the expression is the only parameter, and thus has no defined name. For
example, you can write

CALCULATE Agecond = Age>30

(And note also that there is no need for the condition expression in RESTRICT to include an
assignment! See 4.4.1.)

Many options and parameters need lists of identifiers. Any restrictions on the types of
identifiers for particular lists are mentioned along with the descriptions of the syntax in later
chapters. For example, the specification of the CLASSIFICATION option of the TABLE directive
(2.5) states

CLASSIFICATION = factors Factors classifying the tables; default *

No structures other than factors can be used here.
The options or parameters that require lists of strings almost always select them from a list of

string tokens, defined by Genstat for that option or parameter. (The one exception amongst the
directives is the VALUES option of TEXT; see 2.3.2.) For example, the PRINT options of
ADISPLAY (2:4.1.3) and ANOVA (2:4.1.2) have possible tokens:

aovtable, information, covariates, effects, residuals,
contrasts, means, cbeffects, cbmeans, stratumvariances, %cv,
missingvalues

These let you choose which components of output are to be printed from an analysis of variance.
The rules for string tokens are exactly the same as those for option and parameter names (1.7.1):
they may be typed in capital or small letters (or mixtures), and each one can be abbreviated to
the minimum number of characters necessary to distinguish it from earlier values in the list. If
more than that number is given, the extra characters must match the full form up to the 32nd
character (or the eighth if short wordlengths have been requested).

The minimum forms of the tokens for the PRINT options, above, are marked in bold. Thus

PRINT=Aovtable,Effects,MissingValues

is the same as

PRINT=aovtable,effects,missingvalues

and both of these can be abbreviated, for example, to

PRINT=a,e,mi

To prevent any printing at all, with the PRINT option of any directive, you specify a missing
string:

PRINT=*

or

PRINT=''

The special symbol # provides a succinct way of specifying the default setting of any option.
This is most useful in options like PRINT above, where you might want to ask for the default
plus some extra output. The default of the PRINT option for ANOVA is aovtable,
information, covariates, means, missing. So, to print the residuals as well, you can
simply put

PRINT=#,residuals

which will have the same effect as

28 1 Introduction, syntax and terminology

PRINT=aovtable,information,covariates,means,missing,\
 residuals

Number lists are needed by the VALUES options of the directives that define numerical data
structures (2.1.1), but not by the options or parameters of any other directive.

1.7.4 Repetition of a statement and its options

You can repeat a directive name by typing the ampersand character (&). At the same time you
can reset as many options as you want; those that you do not mention remain as in the previous
statement. For example, after

READ [PRINT=data; CHANNEL=2] Costs

the statement

& Profits

is equivalent to

READ [PRINT=data; CHANNEL=2] Profits

while the statement

& [CHANNEL=3; REWIND=yes] Profits

is equivalent to

READ [PRINT=data; CHANNEL=3; REWIND=yes] Profits

You need not type a colon or newline before an ampersand, as it automatically terminates the
previous statement.

1.8 Ways of compacting programs

You can store Genstat statements in two ways: in a procedure or in a macro.

1.8.1 Procedures

A procedure is a series of complete Genstat statements. It is like a procedure in Basic or Pascal,
a subroutine in Fortran or a function in C or C++. These statements are self-contained, in that
all the data structures that they use are accessible only within the procedure, apart from those
explicitly defined as options or parameters of the procedure. Rules for writing and defining
procedures are described in 5.3. The rules of syntax for using a procedure are identical to those
for the standard Genstat directives (1.7); indeed, since you can get access to procedures
automatically from libraries, you do not have to know whether a particular statement uses a
directive or a procedure.

1.8.2 Macros

A macro is a Genstat text into which you have placed a section of Genstat program. The text
must have an unsuffixed identifier. You can substitute the contents of the macro into the program
by a contiguous pair of hash characters ##; the substitution takes place immediately after Genstat
reads the statement that contains the hash characters.

A simple kind of macro would be a part of a Genstat statement. For example,

TEXT [VALUES='[PRINT=data,summary; CHANNEL=2]'] Optset

assigns to a text with identifier Optset the string between the single quotes. If you later type

READ ##Optset Patient,Sex,Weight
READ ##Optset Calories,Wtgain

then Optset is treated as a macro and its contents are inserted into each of the two statements;
so the named structures are read using the options for PRINT and CHANNEL defined in the string
that has been put in Optset. Defining Optset in this way saves effort in typing the two READ

1.8 Ways of compacting programs 29

statements; it would also allow you to change the options of both statements simultaneously.
More complicated macros may contain complete statements. For example, suppose that the

computer file Alg.dat contains three lines, each a quoted string (1.4.2):

'CALCULATE Previous = Root'
'& Root = (X/Previous + Previous)/2'
'PRINT STRUCTURE=Root,Previous; DECIMALS=4' :

These three statements can be read into a text for use as a macro. A simple program for
calculating the square root of 48 (without using the standard function SQRT) can then
conveniently be written as follows:

SET [INPRINT=statements,macros]
SCALAR IDENTIFIER=X,Root; VALUE=48
TEXT [NVALUES=3] Estsqrt
OPEN NAME='Alg.dat'; CHANNEL=2
READ [CHANNEL=2] STRUCTURE=Estsqrt
##Estsqrt
##Estsqrt
##Estsqrt
PRINT [IPRINT=*] '3 iterations estimate square root of 48
as',Root

Output from running this program in batch is shown below.

Example 1.8.2

 2 SET [INPRINT=statements,macros]
 3 SCALAR IDENTIFIER=X,Root; VALUE=48
 4 TEXT [NVALUES=3] Estsqrt
 5 OPEN NAME='Alg.dat'; CHANNEL=2
 6 READ [CHANNEL=2] STRUCTURE=Estsqrt

 Identifier Minimum Mean Maximum Values Missing
 Estsqrt 3 0

 7 ##Estsqrt
 1 CALCULATE Previous = Root
 2 & Root = (X/Previous + Previous)/2
 3 PRINT STRUCTURE=Root,Previous; DECIMALS=4

 Root Previous
 24.5000 48.0000

 8 ##Estsqrt
 1 CALCULATE Previous = Root
 2 & Root = (X/Previous + Previous)/2
 3 PRINT STRUCTURE=Root,Previous; DECIMALS=4

 Root Previous
 13.2296 24.5000

 9 ##Estsqrt
 1 CALCULATE Previous = Root
 2 & Root = (X/Previous + Previous)/2
 3 PRINT STRUCTURE=Root,Previous; DECIMALS=4

 Root Previous
 8.4289 13.2296

 10 PRINT [IPRINT=*] '3 iterations calculate the square root of 48 as',Root

 3 iterations calculate the square root of 48 as 8.429

The first statement (in line 2) arranges to print statements and contents of macros. Then X and
Root are defined as scalars, and both are given the value 48. Estsqrt is defined as a text with
three values (or lines), and read from Alg.dat in lines 5 and 6. The first line is numbered 2 here

30 1 Introduction, syntax and terminology

(and in many of the other programs in the Guide) because Genstat for Windows, which was used
to run this example, automatically generated an initial statement (not shown above) to set the
"working directory" to the folder containing the file Alg.dat. You can choose the working
directory using the Select Input File menu.

The macro is substituted into the program three times: because of SET, its contents are printed
each time, with line numbers indented by two characters. The IPRINT option of PRINT in line
10 prevents printing of the identifier Root: all that appears is the number stored in Root. As you
can see from the output, the value is still some way from convergence. Methods of testing for
convergence in iterative algorithms like this are described in 5.2.4.

Substitution using ## takes effect immediately after Genstat has read the relevant input line.
For macros that contain complete statements, like Estsqrt, an alternative is to use the EXECUTE
directive (5.4.3). The substitution will then take place only when the EXECUTE statement is
executed. This makes no difference in ordinary programs, but is very useful inside procedures
or loops, where the statements are defined before they are executed (5.3 and 5.2.1).

1.9 Conventions for examples in later chapters

You have now seen that you can lay out your programs in many ways. You can include spaces
to make them more readable, or you can leave spaces out to make them compact (1.3.5). You can
type statements spread over several lines, or you can have more than one to a line (1.7). You can
write system words in capital letters, or in small letters, or in a mixture, and you can use the full
or the abbreviated forms (1.4.4 and 1.7). You can do the same with strings in options and
parameters (1.7.3). You can write identifiers with capital letters or with small letters, or in a
mixture, and you can control whether or not these are equivalent (1.4.3).

In this Guide, however, we have imposed some conventions. The use of spaces is
standardized. System words are given in full and in capitals; the only exception is that the name,
and corresponding equals character, of the main parameter of a directive will usually be left out
in later chapters. String tokens are given in full and in small letters. Identifiers will begin with
a capital; any other letters are small. There is usually only one statement per line, unless this is
very wasteful of space; continuation lines are indented.

We hope these conventions will help you to recognize the items, both in the descriptions of
syntax and in the examples. However, in your own programs, you should develop your own style
according to what you find most convenient.

2 Data structures

Data structures store the information on which a Genstat program operates. Examples include
data for statistical analyses, coordinates for graphs, text for annotation, and so on. You can also
store almost anything that can be printed in an analysis. This enables you to extend the range of
facilities that Genstat offers, by taking information from one directive and using it as input for
another. To allow you to do this, Genstat has a comprehensive set of different structures.
However, there are many similarities across the directives that are used to define them, and the
more complicated structures are required only for the more advanced uses of Genstat. You can
define the identifier of a structure, together with its type, using a directive known as a
declaration. The directive for declaring each type of structure has the same name as given to that
type of structure, for example SCALAR to declare a scalar (or single-valued numerical structure),
and so on. These are the directives, with details of their corresponding data structures and
references to the sections where they are described below.

SCALAR single number (2.2.1)

VARIATE series of numbers (2.3.1)
TEXT series of character strings i.e. lines of text (2.3.2)
FACTOR series of group allocations, represented by a pre-defined

set of numbers or strings (2.3.3)
MATRIX rectangular matrix (2.4.1)
DIAGONALMATRIX diagonal matrix (2.4.2)
SYMMETRICMATRIX symmetric matrix (2.4.3)
TABLE table ! to store tabular summaries like means, totals etc

(2.5)
DUMMY single identifier (2.2.2)
POINTER series of identifiers e.g. to represent a set of structures

(2.6)
EXPRESSION arithmetic expression (2.2.3)
FORMULA model formula ! to be fitted in a statistical analysis (2.2.4)
LRV latent roots and vectors (2.7.1)
SSPM sums of squares and products with associated information

such as means (2.7.2)
TSM model for Box-Jenkins modelling of time series (2.7.3)
TREE tree, as used to represent classification trees, identification

keys and regression trees (2.8, 2:6.20, 2:6.21, 2:3.9)

You can also define data structures whose contents are customized for particular tasks (2.7.4).
STRUCTURE defines a customized data structure

DECLARE declares one or more customized data structures

In the standard version of Genstat, your program can contain as many data structures of each
type as you like, limited only by the total amount of workspace that they occupy. Student
Versions may have additional constraints, explained in the accompanying on-line help or
documentation.

This chapter also describes several additional commands that are useful for managing your
data structures.

DELETE allows values of data structures to be deleted to save space
within Genstat; attributes can also be deleted so that the
structure can be redefined, for example as another type
(2.10.1)

RENAME renames a data structure, to give it a new identifier

32 2 Data structures

(2.10.2)
DUPLICATE forms new data structures with attributes taken from an

existing structure (2.10.3)
PDUPLICATE duplicates a pointer, with all its components (2.10.4)
LIST lists the data structures currently in store (2.11.1); in

Genstat for Windows an alternative is to use the Data

Display window obtained by pressing F5
DUMP prints attributes and values of data structures (2.11.2)
GETATTRIBUTE accesses attributes of data structures such as their types,

sizes and so on (2.11.3)

2.1 Declarations

Most data structures have a name; the exceptions are called unnamed structures and are
described in 1.4.3. The name is called an identifier, and this is used to refer to the structure
within your program. As explained in (1.4.3), an ordinary identifier starts with a letter (1.3.1)
and then contains digits (1.3.2) or letters (or both). Note, however, that some of the menus in
Genstat for Windows set up private temporary structures with identifiers that begin with the
underscore character _ (which, within Genstat, is treated as a letter). So, you may find it safest
to avoid starting your own identifiers in this way.

Genstat stores only the first 32 characters; subsequent characters are ignored. (This is the
default action, but you can used the SET directive (5.6.1) to request that only eight characters are
stored, as in releases earlier than Release 4.2.) Identifiers can also have suffixes, enclosed in
square brackets; further details are given in 1.4.3 and 2.6.

You can define the identifier of a structure, together with its type, using a directive known as
a declaration. There is a directive available to declare each type of structure. For example the
declaration

SCALAR Length

 uses the SCALAR directive to define a scalar with identifier Length.
You can declare several structures in a single statement: for example

SCALAR Length,Width,Height

declares Length, Width and Height all to be scalars. A declaration need define only the
identifier and the type. However, you can also specify values for the data structures (2.1.1), as
well as various attributes that carry ancillary information about the structures.

As well as the identifier, most data structures can also be given an "extra" text of descriptive
information that is displayed as well as the identifier in output from many Genstat commands
(2.1.3). You can also request that the "extra" text is used in the output instead of the identifier.
So, as far as the output is concerned, there need be no restrictions on the name that you use for
a data structure.

Some attributes must be specified before the structure can be given values, for example the
number of rows and columns of a matrix (2.4.1). Others need be set only if you choose to use
them; for example, the number of decimal places (2.1.2) to be used by default when printing the
values.

Options and parameters that apply generally to several different directives are described in this
section; the others are described with the directive concerned, later in the chapter.

2.1.1 The VALUES option and parameter

Most declarations have an option and a parameter for specifying values for the structures that
are defined. The same name is used for both purposes: it is VALUE if the structures are of a type
that stores a single value, and VALUES if they can each store several. The option defines a
common value (or set of values) for all the structures in the declaration, while the parameter

2.1 Declarations 33

allows the structures each to be given different values.
With the option you must supply a list of values. With the parameter, however, you must give

a list of identifiers of data structures of the appropriate mode; the unnamed structures described
in 1.4.3 are particularly useful for this. Thus, to declare variates X and Xsq each with its own set
of values, you can put:

VARIATE X,Xsq; VALUES=!(1,2,3,4),!(1,4,9,16)

X then contains the values 1 up to 4, and Xsq contains 1, 4, 9 and 16.
If both the option and the parameter are specified, the parameter takes precedence. So

SCALAR [VALUE=12.5] Length,Width,Height; VALUE=*,*,200

gives Length and Width the value 12.5 and Height the value 200. (The asterisk in the
identifier list for the VALUE parameter means an omitted entry: see 1.5.3.)

2.1.2 The DECIMALS parameter

In the declarations of structures that contain numbers, there is a DECIMALS parameter for
defining the number of decimal places that Genstat will use by default whenever the values of
each structure is printed. This applies to output either by PRINT or from an analysis (but it does
not affect the accuracy with which the numbers are stored). For example,

SCALAR Length,Width,Height; VALUE=12.5,6.25,120;\
 DECIMALS=1,2,0

specifies that Length, Width and Height should in future be printed with one, two and zero
decimal places respectively, although you can of course override this within the PRINT directive
itself (3.2.1 and 3.2.2).

Procedure DECIMALS can be used to set the DECIMALS parameter automatically to the
minimum number of decimal places to print the structure exactly. For example

DECIMALS Length,Width,Height

Also, the SET directive has an option SIGNIFICANTFIGURES which allows you to control the
precision to be used when DECIMALS has not been set either in PRINT or when the structures
concerned were declared (5.6.1).

2.1.3 The EXTRA parameter and IPRINT option

You can associate a text with each data structure by means of the parameter EXTRA. This text
may then be used to give a fuller annotation of output. For example:

SCALAR Length,Weight; EXTRA=' in centimetres',' in grams'

The IPRINT option allows you to control when the extra text is used in output. If IPRINT is

not set, the data structure will be identified in whatever way is usual for the section of output
concerned. For example, the PRINT directive generally uses the identifier (although this can be
changed using the IPRINT option of PRINT itself), while the ANOVA directive prints both the
identifier and the extra text for a y-variate. If you set IPRINT=identifier, only the identifier
will be used. Alternatively, if you set IPRINT=extra, only the extra text will be used (so you
can then label the data structure in any way that you want). Finally, if you set
IPRINT=extra,identifier, both the identifier and the extra text will be used.

2.1.4 The MINIMUM and MAXIMUM parameters

These two parameters allow you to define lower and upper limits on the values expected for any
structure that stores numbers. Genstat then prints warnings if any values outside that range are
assigned to the structure.

34 2 Data structures

2.1.5 The DREPRESENTATION parameter

Dates and times can be stored in any numerical Genstat data structure. The time is contained in
the decimal part of the number, and represents the time during the day. So, for example, 12 noon
is stored as 0.5, and 6 a.m. as 0.25. The date is represented in the integer part of the number, and
contains the number of days since the base date of 29th February 1600 (see 1.4.1). The
DREPRESENTATION parameter can be used to define a default format to be defined for use when
the data structure concerned is printed. The setting of the parameter is either a scalar indicating
a predefined format, or a string defining a custom format.

The string for a custom format contains a sequence of keys to represent the required
components of the date and time. The available keys are:

d day number within the month, using the minimum number of

digits (e.g. 3, 12)
dd day number within the month, using two digits (e.g. 03, 12)
dth day number with one digit and suffix (e.g. 3rd, 12th)
m month number, using the minimum number of digits
mm month number, using two digits
mmm abbreviated month name (Jan, Feb, Mar, Apr, May, June,

July, Aug, Sept, Oct, Nov, Dec)
mmmm month name in full
yy year as a two-digit number (omitting the century)
yyyy year as a four-digit number (including the century)
weekday day of the week (Monday, Tuesday, and so on)
wday abbreviated day of the week (Mon, Tue, Wed, Thur, Fri, Sat,

Sun)
time24 time, including seconds, using a 24 hour clock
time12 time, including seconds, using a 12 hour clock (with a.m.

and p.m.)
time100 time, using 24 hour clock and including hundredths of

seconds
hours elapsed time in hours, minutes and seconds
hours100 elapsed time in hours, minutes, seconds and hundredths of

seconds
minutes elapsed time in minutes and seconds
minutes100 elapsed time in minutes, seconds and hundredths of seconds
seconds elapsed time in seconds
seconds100 elapsed time in seconds and hundredths of second

You can also insert one or more separators between the keys, any combination of space (), slash
(/), hyphen (-) and comma (,).

Note: the operation of the 2-digit representation of a year is controlled by a "break point". This
has the initial default of 30, but that can be changed by the YEAR2DIGITBREAK option of SET,
or in the DateFormat tab of the Options menu in Genstat for Windows. With the initial default
of 30, for example, years from 1930 to 2029 will be represented as two digits, but others will be
printed with four digits.

To simplify the specification of the most commonly used formats, a range of standard pre-
defined formats are available. These are specified by supplying a scalar containing one of the
numerical codes in the left-hand column of the table below.

code format example

1 dd/mm/yy 03/08/98

2 dd/mm/yyyy 03/08/1998
3 d/m/yy 3/8/98

2.1 Declarations 35

4 d/m/yyyy 3/8/1998
5 ddmmyy 030898
6 ddmmyyyy 03081998
7 ddmmmyy 03Aug98
8 ddmmmyyyy 03Aug1998
9 dd-mmm-yy 03-Aug-98
10 dd-mmm-yyyy 03-Aug-1998
11 dmmmyy 3Aug98
12 dmmmyyyy 3Aug1998
13 d-mmm-yy 3-Aug-98
14 d-mmm-yyyy 3-Aug-1998
15 d-mmmm-yy 3-August-98
16 d-mmmm-yyyy 3-August-1998
17 yymmdd 980803
18 yyyymmdd 19980803
19 yy/mm/dd 98/08/03
20 yyyy/mm/dd 1998/08/03
21 mmddyy 080398
22 mmddyyyy 08031998
23 mm/dd/yy 08/03/98
24 mm/dd/yyyy 08/03/1998
25 mmm-dd-yy Aug-03-98
26 mmm-dd-yyyy Aug-03-1998
27 yyyy-mm-dd 1998-08-03
28 weekday, dth mmmm yyyy Monday, 3rd August 1998
29 weekday Monday
30 mmm-yy Aug-98
31 yy 98
32 yyyy 1998
33 dd-mmm-yyyy time100 03-Aug-1998 18:55:30.35
34 yyyy-mm-dd time 1998-08-03 18:55:30

(ODBC Standard format)
35 dd-mmm-yyyy time12 03-Aug-1998 6:55:30 pm
36 time24 18:55:30
37 time12 6:55:30 pm
38 hours 48:55:30
39 seconds 68538.35
40 dd/mm/yyyy time24 03/08/1998 18:55:30
41 m-yy 8-98
42 m-yyyy 8-1998
43 mm-yy 08-98
44 mm-yyyy 08-1998
45 d/m 3/8
46 dd/mm 03/08
47 d-mmm 8-Aug
48 dd-mmm 08-Aug
49 mmm Aug

You can also use the custom date formats supported by the client in Genstat for Windows. See

the Date Formats page in the on-line help for details.

36 2 Data structures

2.1.6 The MODIFY option

Normally if you declare a data structure for a second time, you will lose all its existing attributes
and values. If you want to retain them you should set option MODIFY=yes. Thus, to redeclare
the scalar Length, changing only its number of decimals to two, you would need to put

SCALAR [MODIFY=yes] Length; DECIMALS=2

The one attribute that you cannot readily redefine is the type. Before you can redeclare an

identifier to refer to a structure of a different type, you must delete all its attributes. (See Section
2.10, where there is an example redeclaring a variate as a text.)

2.2 Single-valued data structures

2.2.1 Scalars

A scalar data structure stores a single number (1.4.1). The SCALAR directive which declares
scalars has only the general options and parameters already described in 2.1.

SCALAR directive
Declares one or more scalar data structures.

Options
VALUE = scalar Value for all the scalars; default is a missing value
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used to identify the scalars in output

(identifier, extra); if this is not set, they will be
identified in the standard way for each type of output

Parameters
IDENTIFIER = identifiers Identifiers of the scalars
VALUE = scalars Value for each scalar
DECIMALS = scalars Number of decimal places for printing
EXTRA = texts Extra text associated with each identifier
MINIMUM = scalars Minimum value for the contents of each structure
MAXIMUM = scalars Maximum value for the contents of each structure
DREPRESENTATION = scalars or texts

Default format to use when the contents represents a
date and time

SCALAR is the one type of declaration where values are defined by default: if you do not define
a value explicitly for a scalar, Genstat gives it a missing value.

Examples are given in 2.1. Unnamed scalars (which may just be simple numbers) are
described in 1.4.3.

2.2.2 Dummies

A dummy is a data structure that itself stores the identifier of some other structure. You will find
this useful in identifier lists, where in nearly all cases Genstat replaces a dummy by the identifier
that it stores. The only exceptions are the IDENTIFIER parameter of the DUMMY directive itself
(see below), the STRUCTURE parameter of ASSIGN (4.9.1), the parameters of FOR, and in the SET
and UNSET functions in expressions (4.2.6).

Dummies are particularly useful when you want the same series of statements to be used with
several different data structures. By using a dummy structure within the statements, you can

2.2 Single-valued data structures 37

make them apply to whichever structure you require. The dummy structure is like a plug which
can be connected to the structure that you need; the important point is that you can then connect
another structure without changing the statements themselves.

The most obvious situations where this is useful are in loops and procedures, and there the
dummies are declared automatically as explained in 5.2.1 and 5.3.2.

To declare a dummy explicitly, you use the DUMMY directive. This has only the general options
and parameters already described in 2.1.

DUMMY directive
Declares one or more dummy data structures.

Options
VALUE = identifier Value for all the dummies; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
PRINT = string tokens Information to be used by default to identify the

dummies in output (identifier, extra); if this is not
set, they will be identified in the standard way for each
type of output

Parameters
IDENTIFIER = identifiers Identifiers of the dummies
VALUE = identifiers Value for each dummy
EXTRA = texts Extra text associated with each identifier

For example:

DUMMY Xdum,Ydum; VALUE=Day,Growth

2.2.3 Expression data structures

The expression data structure stores a Genstat expression (1.7.2), for example

Hours = Minutes/60

Usually you will find it easiest to type out an expression like this explicitly whenever you need
it. The main use, then, for this rather specialized data structure is to supply an expression as the
argument of a procedure.

Options and parameters of the EXPRESSION directive, which declares expressions, are already
described in 2.1.

EXPRESSION directive
Declares one or more expression data structures.

Options
VALUE = expression Value for all the expressions; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the

expressions in output (identifier, extra); if this is
not set, they will be identified in the standard way for
each type of output

38 2 Data structures

Parameters
IDENTIFIER = identifiers Identifiers of the expressions
VALUE = expression structures Expression data structures providing values for the

expressions
EXTRA = texts Extra texts associated with the identifiers

Here are two examples using the VALUE option:

EXPRESSION [VALUE=Length*Width*Height] Vcalc
EXPRESSION [VALUE=Dose=LOG10(Dose)] Dtrans

These put the expression Length*Width*Height into the identifier Vcalc, and the expression
Dose=LOG10(Dose) into Dtrans. Both expressions could be declared simultaneously, using
the VALUE parameter, by putting

EXPRESSION Vcalc,Dtrans; VALUE=!E(Length*Width*Height), \
 !E(Dose=LOG10(Dose))

Rules for omitting "VALUE=" when the expression contains an assignment are described in 1.7.3.
Unnamed expressions like !E(Length*Width*Height) are described in 1.4.3.

2.2.4 Formula data structures

The formula data structure stores a Genstat formula. As explained in 1.7.3, these can be used to
define the model to be fitted in a statistical analysis. Like the expression data structure (2.2.3),
its main use is to give a formula as the argument of a procedure (5.3). The FORMULA directive
which declares formulae has only the general options and parameters described in 2.1.

FORMULA directive
Declares one or more formula data structures.

Options
VALUE = formula Value for all the formulae; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the

formulae in output (identifier, extra); if this is not
set, they will be identified in the standard way for each
type of output

Parameters
IDENTIFIER = identifiers Identifiers of the formulae
VALUE = formula structures Value for each formula
EXTRA = texts Extra text associated with each identifier

For example:

FORMULA [VALUE=Drug*Logdose] Model
FORMULA BModel,Tmodel; VALUE=!F(Litter/Rat),!F(Vitamin*Protein)

The construction !F(Litter/Rat) is an example of an unnamed formula, as described in 1.4.3.

2.3 Vectors 39

2.3 Vectors

Most Genstat directives operate on structures that store several values. The most important of
these contain a list of values, which you can imagine as being arranged as a vector in a column.
Genstat has three different types of vector: variates (2.3.1), texts (2.3.2) and factors (2.3.3). Also,
the pointer structure (2.6), which stores a list of identifiers, is treated like a vector in some
directives.

The directives that declare vectors all have an option called NVALUES, with which you can
specify a scalar to define the number of values to be stored in the vector or pointer. Alternatively,
you can set NVALUES to another text or variate; this then defines both the length of the new
vectors and provides labels for use in output (3.2.1, 2:3.1.2). Finally, if you set NVALUES to a
factor, the number of levels defines the length and its labels if available, or otherwise its levels,
provide labelling.

If NVALUES is omitted in the declaration of a vector, Genstat takes the value or vector
specified by the preceding UNITS statement if you have given one (2.3.4). In Genstat we call the
elements of a vector its units. If you define values in the declaration and omit the NVALUES
option, Genstat will deduce the appropriate setting from the number of values specified.
However, it is safest to define both, since Genstat can then check that you have specified as
many values as you intended. Thus, for example, if you were to type

VARIATE [NVALUES=5; VALUES=1,2,3.4,5] X

Genstat would be able to tell you that X has been given only four values instead of the five that
were required. Further examples are given in the subsections below.

2.3.1 Variates

The variate is probably the structure that you will use most often in Genstat. You can think of
this as being just a list of numbers (a vector, in mathematical language). Variates occur for
example as the response and explanatory variables in regression (Part 2 Chapter 3), as covariates
and y-variables in analysis of variance (Part 2 Chapter 4), and can be used to form the matrices
of correlations, similarities, or sums of squares and products required for multivariate analyses
(Part 2 Chapter 6). Unnamed variates, for example !(1,2,3,4,5), are described in 1.4.3. To
declare a variate you use the VARIATE directive.

VARIATE directive
Declares one or more variate data structures.

Options
NVALUES = scalar or vector Number of units, or vector of labels; default * takes the

setting from the preceding UNITS statement, if any
VALUES = numbers Values for all the variates; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the variates

in output (identifier, extra); if this is not set, they
will be identified in the standard way for each type of
output

Parameters
IDENTIFIER = identifiers Identifiers of the variates
VALUES = identifiers Values for each variate
DECIMALS = scalars Number of decimal places for output
EXTRA = texts Extra text associated with each identifier

40 2 Data structures

MINIMUM = scalars Minimum value for the contents of each structure
MAXIMUM = scalars Maximum value for the contents of each structure
DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates
and times

For example:

VARIATE Weight; EXTRA='in grams'
VARIATE Volume,Price; VALUES=!(60,75,88),!(5,2,1.75); \
 DECIMALS=0,2

2.3.2 Texts

Each unit of a Genstat text structure is a string (1.4.2) which you can regard as a line of textual
description. Texts can be used to label vectors and pointers (2.3 and 2.6), for captions or pieces
of explanation within output (3.2.1), to store Genstat statements (1.8.2 and 5.4.3), and to store
output (3.2.1). The various operations that you can perform with texts are described in 4.7. You
declare texts with the TEXT directive.

TEXT directive
Declares one or more text data structures.

Options
NVALUES = scalar or vector Number of strings, or vector of labels; default * takes

the setting from the preceding UNITS statement, if any
VALUES = strings Values for all the texts; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the texts in

output (identifier, extra); if this is not set, they
will be identified in the standard way for each type of
output

Parameters
IDENTIFIER = identifiers Identifiers of the texts
VALUES = texts Values for each text
CHARACTERS = scalars Numbers of characters of the lines of each text to be

printed by default
EXTRA = texts Extra text associated with each identifier

For example:

TEXT [NVALUES=5] Name; \
 VALUES=!T(Ferrari,Lotus,'Aston Martin',MG)

Unnamed texts, like that in the VALUES parameter in this example, are described in 1.4.3.

Notice that the third value has to be enclosed in single quotes as it contains a space. The rules
governing when strings need to be quoted and when the quotes can be omitted are described in
1.4.2.

The text can contain any of the characters that you can generate on your computer. The text
has an internal logical attribute, known as coding, to indicate whether it contains characters like
Chinese, Korean or Thai characters, which need to be coded internally in a more complicated
way than the simpler characters defined in Sections 1.3.1 to 1.3.6. (Technically they are stored

2.3 Vectors 41

as multi-byte UTF-8 characters.) Some applications may not be able to display output containing
these characters successfully. You can access the coding attribute using the GETATTRIBUTE
directive (2.11.3).

You may be unable to define all the values of a long text in its declaration, because of the
restriction on the total length of a statement (1.7). One possibility then is to read the values
(3.1.3). Alternatively, you could define several texts each containing a section of the full text and
then use TXCONSTRUCT (4.7.2), EQUATE (4.3.1), APPEND (4.4.4) or STACK (4.4.5) to join them
together. You can form a text as a progression of strings with the TXPROGRESSION procedure
(4.7.9), or you can form the values from within the editor (4.7.10).

2.3.3 Factors

Factors are used to indicate groupings of units. The commonest occurrence is in designed
experiments (Part 2 Chapter 4). For example, suppose you had 12 observations in an experiment,
the first four on one treatment, the next four on a second treatment, and the last four on a third.
Then you could record which treatment went with which observation by declaring a factor with
the values

1,1,1,1,2,2,2,2,3,3,3,3

Thus a factor is a vector that has only a limited set of possible values, one for each group; this
limitation distinguishes factors from variates and texts. In Genstat, the groups are referred to by
numbers known as levels. Unless otherwise specified these are the integers 1 up to the number
of groups, as in our example; however, you can specify any other numbers by the LEVELS option
of the FACTOR directive (see below). You can also give textual labels to the groups, using the
LABELS option of FACTOR: these might, for example, be mnemonics for the biochemical names
of treatments in an experiment. The full syntax of FACTOR is:

FACTOR directive
Declares one or more factor data structures.

Options
NVALUES = scalar or vector Number of units, or vector of labels; default * takes the

setting from the preceding UNITS statement, if any
LEVELS = scalar or vector Number of levels, or series of numbers which will be

used to refer to levels in the program; default *
VALUES = numbers Values for all the factors, given as levels; default *
LABELS = text Labels for levels, for input and output; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
REFERENCELEVEL = scalar Defines the reference level used e.g. to define the

parametrization of regression models
IPRINT = string tokens Information to be used by default to identify the factors

in output (identifier, extra); if this is not set, they
will be identified in the standard way for each type of
output

Parameters
IDENTIFIER = identifiers Identifiers of the factors
VALUES = identifiers Values for each factor, specified as levels or labels
DECIMALS = scalars Number of decimals for printing levels
CHARACTERS = scalars Number of characters for printing labels
EXTRA = texts Extra text associated with each identifier

42 2 Data structures

DREPRESENTATION = scalars or texts
Default format to use when the contents represent dates
and times

Use of the VALUES parameter to assign values has the advantage that you can refer either to
labels or to levels; the VALUES option lets you refer only to levels. So, to summarize, the LEVELS
and LABELS options list the groups that can occur, while the VALUES option or parameter
specifies which groups actually do occur, and in what pattern over the units.

Our simple explanatory example would therefore be:

FACTOR [LEVELS=3; VALUES=4(1...3)] Treatment

Other examples are:

FACTOR [LEVELS=!(2,4,8,16); \
 VALUES=8,4,2,16,4,2,16,8,2] Dose
FACTOR [LABELS=!T(male,female)] Sex; \
 VALUES=!T(4(male,female))
FACTOR [LEVELS=!(0,2.5,5); \
 LABELS=!T(none,standard,double)] Rate; \
 VALUES=!(0,5,2.5,5,0,2.5)

Notice that if we had assigned the values using the VALUES option in the second of these, we
would have needed to use the (numerical) levels:

FACTOR [LABELS=!T(male,female); VALUES=4(1,2)] Sex

Conversely, in the VALUES parameter in the declaration of Rate, we can use either the labels or
the levels; so the following statement gives Rate exactly the same values:

FACTOR [LEVELS=!(0,2.5,5); \
 LABELS=!T(none,standard,double)] Rate; \
 VALUES=!T(none,double,standard,double,none,standard)

When reading or printing the values of factors, you can use either the levels or labels (see the

FREPRESENTATION parameter of the READ and PRINT directives: 3.1 and 3.2). The
PFACLEVELS procedure allows you to print the levels, and labels (if defined), of your factors.
This can be useful, for example, to check that you have defined them correctly, before either
reading or printing a large data set.

Factors can be defined automatically from variates and texts by the GROUPS directive (4.6.1).
You can also use factors for example to specify groups for tabulation (4.11.1), to fit parallel
regression lines (2:3.3 and 2:3.7.3), and to store groupings from cluster analysis (2:6.18 and
2:6.19).

The REFERENCELEVEL option allows you to define which level of the factor is used as
reference level if the factor is used in a regression model. By default, the first level is used, so
the parameters in the model would involve comparisons of the second and subsequent levels of
the factor with the first level. For example, with the factor Rate above, this would allow you to
make direct assessments of the differences between standard and none, and double and none.
Alternatively, you could make standard the reference level by changing the declaration to

FACTOR [LEVELS=!(0,2.5,5); \
 LABELS=!T(none,standard,double)] Rate; \
 VALUES=!T(none,double,standard,double,none,standard); \
 REFERENCELEVEL=2

2.3 Vectors 43

2.3.4 The UNITS directive

UNITS directive
Defines an auxiliary vector of labels and/or the length of any vector whose length is not
defined when a statement needing it is executed.

Option
NVALUES = scalar Default length for vectors

Parameter
variate or text Vector of labels

The UNITS directive can be used to define a default length which will then be used, if necessary,
for any new vectors encountered later in the job. For example, in the statements

UNITS [NVALUES=20]
TEXT Subject
VARIATE [VALUES=0,1,2,4,8] Dlev
FACTOR [LEVELS=Dlev] Drug
VARIATE Age,Response; DECIMALS=0,2

the text Subject, the factor Drug, and the variates Age and Response are all defined to be of
length 20. However, the length of the variate Dlev does not need to be set by default, but is
deduced to be five from the number of values that have been specified by the VALUES option.

The READ directive (3.1) will use UNITS if values are to be read into a previously undeclared
vector, as will the RESTRICT directive (4.4.1) if you use it to restrict a structure that has not yet
been declared. The UNITS setting is also used by the CALCULATE directive with the EXPAND and
URAND functions if their secondary argument is not specified (4.2.8 and 4.2.9).

The parameter of the UNITS directive allows you to specify the units structure, which is a
variate or a text whose values will then be used as labels for output from regression or time-
series directives, provided the vectors in the analysis have the same length as the units structure
and provided also that these vectors do not have labels associated with them already.

The length of the units structure must match the value set by the NVALUES option if both are
set. However, either one can be used to define the other. Thus, either

TEXT [VALUES=Sun,Mon,Tue,Wed,Thur,Fri,Sat] Day
UNITS Day

or

TEXT Day
UNITS [NVALUES=7] Day

would specify the default length for vectors to be seven. In the second example this default
would be applied to Day too but, of course, its (seven) values would need to be read or defined
in some other way before it could be used for labelling. If the type of the units structure has not
been declared, UNITS will define it as a variate.

You can cancel the effect of a UNITS statement by

UNITS [NVALUES=*]

This means that statements that require a units structure will fail, which is the situation at the
start of each job in a program. Similarly, the statement

UNITS *

cancels any reference to a units structure, but retains the default length if that has already been
defined.

44 2 Data structures

2.4 Matrices

A matrix stores a set of numbers as a two-dimensional array indexed by rows and columns. For
example, the array

1 2 3 4
5 6 7 8
9 10 11 12

is called a three-by-four matrix.
You specify the size of the matrix by saying how many rows and columns it is to have; the

total number of values is obtained by multiplying the number of rows by the number of columns.
In the example there are 12 values. If the numbers of rows and columns are equal the matrix is
said to be square.

Any matrix can be stored as an ordinary rectangular matrix. Genstat also has special structures
to store diagonal matrices (2.4.2) and symmetric matrices (2.4.3): these are needed in many
statistical contexts.

You can assign values to matrices when they are declared, just as with vectors. But you must
also set the size of the matrix, and it must correspond exactly to the number of values that you
assign. Genstat stores the values of the matrix in row order: that is, all of the first row, followed
by all of the second row, and so on. So you must assign the values in this order.

You are most likely to use matrices in multivariate analysis (Part 2 Chapter 6), where you may
need them either to input data, or to save the results of an analysis. Genstat also provides many
facilities for matrix calculations: for example, you can add and multiply matrices, form various
patterned or standard matrices, find their inverses, and perform Choleski, eigenvalue and
singular-value decompositions (4.1.3 and 4.10).

2.4.1 Rectangular matrices

The Genstat matrix structure is a rectangular array. It can be declared using the MATRIX
directive.

MATRIX directive
Declares one or more matrix data structures.

Options
ROWS = scalar, vector, pointer or text

Number of rows, or labels for rows; default *
COLUMNS = scalar, vector, pointer or text

Number of columns, or labels for columns; default *
VALUES = numbers Values for all the matrices; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the

matrices in output (identifier, extra); if this is not
set, they will be identified in the standard way for each
type of output

Parameters
IDENTIFIER = identifiers Identifiers of the matrices
VALUES = identifiers Values for each matrix
DECIMALS = scalars Number of decimal places for printing
EXTRA = texts Extra text associated with each identifier
MINIMUM = scalars Minimum value for the contents of each structure

2.4 Matrices 45

MAXIMUM = scalars Maximum value for the contents of each structure
DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates
and times

You use the ROWS and COLUMNS options to specify the size of the matrix. The simplest way of
doing this is to use scalars to define the numbers of rows and columns explicitly. Alternatively,
you can set ROWS (or COLUMNS) to a variate, text or pointer, whose length then defines the
number of rows (or columns) and whose values will then be used as labels, for example when
the matrix is printed. Finally, if you specify a factor, the number of levels defines the number of
rows or columns and the labels if available, or otherwise the levels, are used for labelling. Here
is an example:

Example 2.4.1

 2 TEXT [VALUES=Beer,Lemonade,'Mineral water'] Drink
 3 VARIATE [VALUES=0.5,1.0] Quantity; DECIMALS=1
 4 MATRIX [ROWS=Drink; COLUMNS=Quantity; \
 5 VALUES=1.25,2.40,0.6,1.00,0.90,1.50] Cost
 6 PRINT Cost; DECIMALS=2

 Cost
 Quantity 0.5 1.0
 Drink
 Beer 1.25 2.40
 Lemonade 0.60 1.00
Mineral water 0.90 1.50

Notice that we have set the DECIMALS parameter in the definition of the column labelling vector,
Quantity, to ensure that its values are printed to one decimal place when the table Cost is
printed.

In some contexts Genstat will interpret a variate as being equivalent to a matrix with a single
column; this is described with each directive, such as CALCULATE (4.1.3).

2.4.2 Diagonal matrices

A square matrix that has zero entries except on its leading diagonal is called a diagonal matrix:
for example,

2 0 0
0 1 0
0 0 3

Another example is the identity matrix, which has a diagonal of values equal to 1. To save space,
Genstat has a special structure for diagonal matrices. You will probably use them most often to
store latent roots in multivariate analysis (4.10.2, 2:6.2.1, 2:6.3.1 and 2:6.10.1). You can declare
diagonal matrices using the DIAGONALMATRIX directive.

DIAGONALMATRIX directive
Declares one or more diagonal matrix data structures.

Options
ROWS = scalar, vector, pointer or text

Number of rows, or labels for rows (and columns);
default *

VALUES = numbers Values for all the diagonal matrices; default *
MODIFY = string token Whether to modify (instead of redefining) existing

46 2 Data structures

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the

diagonal matrices in output (identifier, extra); if
this is not set, they will be identified in the standard way
for each type of output

Parameters
IDENTIFIER = identifiers Identifiers of the diagonal matrices
VALUES = identifiers Values for each diagonal matrix
DECIMALS = scalars Number of decimal places for printing
EXTRA = texts Extra text associated with each identifier
MINIMUM = scalars Minimum value for the contents of each structure
MAXIMUM = scalars Maximum value for the contents of each structure
DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates
and times

Because a diagonal matrix is square, Genstat requires you to specify only the number of rows.
The ROWS option can be set to either a scalar or a labels vector or a pointer, as in the MATRIX
directive (2.4.1).

When you give the values of a diagonal matrix, either in a declaration or when its values are
read, you should specify only the diagonal elements. (Genstat does not store the off-diagonal
elements, but assumes them to be zero.) Similarly, when a diagonal matrix is printed it appears
as a column of numbers; Genstat omits the off-diagonal zeros. For example:

Example 2.4.2

 2 DIAGONALMATRIX [ROWS=3; VALUES=2,1,3] D
 3 PRINT D

 D

 1 2.000
 2 1.000
 3 3.000

2.4.3 Symmetric matrices

A symmetric square matrix is symmetric about its leading diagonal: that is, the value in column
i of row j is the same as that in column j of row i. For example:

1 2 3
2 1 4
3 4 1

Symmetric matrices often occur in statistics. Suppose, for example, that we have n random
variables X1 ... Xn. Then the covariance of Xi with Xj is the same as the covariance of Xj with Xi.
The covariance matrix of the random variables is therefore symmetric: the off-diagonal elements
of the matrix are the covariances (and the diagonal elements are the variances).

Because of this symmetry, Genstat stores only the diagonal elements and those below it; this
is called the lower triangle. So you must specify only these values, whether in the declaration
or in a READ statement (3.1). (As always, you give them in row order: so if there are n rows, then
for the first you supply one value, for the second two, and so on.) Likewise, Genstat prints only
the lower triangle in output, for example with PRINT (3.2).

The syntax for the declaration of symmetric matrices is as follows:

2.5 Tables 47

SYMMETRICMATRIX directive
Declares one or more symmetric matrix data structures.

Options
ROWS = scalar, vector, pointer or text

Number of rows, or labels for rows (and columns);
default *

VALUES = numbers Values for all the symmetric matrices; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the

symmetric matrices in output (identifier, extra); if
this is not set, they will be identified in the standard way
for each type of output

Parameters
IDENTIFIER = identifiers Identifiers of the symmetric matrices
VALUES = identifiers Values for each symmetric matrix
DECIMALS = scalars Number of decimal places for printing
EXTRA = texts Extra text associated with each identifier
MINIMUM = scalars Minimum value for the contents of each structure
MAXIMUM = scalars Maximum value for the contents of each structure
DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates
and times

The ROWS option defines both the number of rows and the number of columns. You can use a
vector or pointer to specify row and column labels, as with MATRIX (2.4.1). For example:

Example 2.4.3

 2 VARIATE Weight,Height,Reach
 3 POINTER [VALUES=Weight,Height,Reach] Vars
 4 SYMMETRICMATRIX [ROWS=Vars; VALUES=1.0,0.68,1.0,0.43,0.72,1.0] Correl
 5 PRINT Correl

 Correl

 Weight 1.0000
 Height 0.6800 1.0000
 Reach 0.4300 0.7200 1.0000
 Weight Height Reach

2.5 Tables

Tables are used to store numerical summaries of data that are classified into groups. With
Genstat, the classification into groups is specified by a set of factors (2.3.3). The table contains
an element, called a cell, for each combination of the levels of the factors that classify it.

You can specify the values of a table when you declare it. More often, you may wish to
calculate the values within Genstat. The TABULATE directive (4.11.1) allows you to summarize
observations, for example from surveys. The observed values are supplied in a variate, and the
levels of the factors classifying the table indicate the group to which each observed unit belongs.
The table can contain, in each of its cells, either the total of the observations with the

48 2 Data structures

corresponding levels of the classifying factors, or perhaps the mean, or the minimum value, or
the maximum value, or the variance. You can also form tables that summarize the results of
surveys with multiple-response factors (4.11.8, 4.11.9 and 4.11.10). In an analysis of variance,
you can save tables of means and tables of replications by the AKEEP directive (2:4.6.1). You can
form tables of predictions from regression models using the PREDICT directive (2:3.3.4).
Calculations with tables are described in 4.1.4. The full list of facilities available for tables is
given in 4.11. Tables are declared using the TABLE directive.

TABLE directive
Declares one or more table data structures.

Options
CLASSIFICATION = factors Factors classifying the tables; default *
MARGINS = string token Whether to add margins (yes, no); default no
VALUES = numbers Values for all the tables; default *
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no
IPRINT = string tokens Information to be used by default to identify the tables

in output (identifier, extra,
associatedidentifier); if this is not set, they will
be identified in the standard way for each type of output

Parameters
IDENTIFIER = identifiers Identifiers of the tables
VALUES = identifiers Values for each table
DECIMALS = scalars Number of decimal places for printing
EXTRA = texts Extra text associated with each identifier
UNKNOWN = identifiers Identifier for scalar to hold summary of unclassified data

associated with each table
MINIMUM = scalars Minimum value for the contents of each structure
MAXIMUM = scalars Maximum value for the contents of each structure
DREPRESENTATION = scalars or texts

Default format to use when the contents represent dates
and times

DATAVARIATE = variates Records the identifier of the variate whose summaries
are in the table

SUMMARYTYPE = string tokens Records the type of summary that the table contains
(counts, totals, nobservations, means, minima,
maxima, variances, quantiles, sds, skewness,
kurtosis, semeans, seskewness, sekurtosis);
default * i.e. not recorded

PERCENTQUANTILE = scalars Records the percentage points for which quantiles have
been formed; default * i.e. not recorded

%MARGIN = pointers Records the factors defining the margin over which the
table has been converted to percentages

The example below shows a table called Classnum which stores numbers of children of each
sex in the classes of a school. Here there are two factors defined in lines 2 and 3: Class with
levels 1 to 5 and Sex with levels labelled 'boy' and 'girl'. The CLASSIFICATION option
of the TABLE declaration (line 4) defines them to be the factors classifying the table, and the
VALUES option defines a value for each of the 10 cells (two sexes × five classes) of the table. As

2.5 Tables 49

you can see from the printed form of the table, the cells are arranged with both levels of Sex for
Class 1, then both levels of Sex for Class 2, and so on. If there were three classifying factors,
the table would have cells for all the levels of the third factor at level 1 of the first and second
factors, then cells for all the levels of the third factor at level 1 of the first factor and level 2 of
the second factor, and so on. In other words, the right-most factor in the classification rotates
fastest, followed by the second from the right, and so on. This is illustrated by the second table,
Schoolnm, which has a further factor School before Class and Sex in the list of classifying
factors. Tables can be classified by up to nine factors.

Example 2.5a

 2 FACTOR [LABELS=!T(boy,girl)] Sex
 3 FACTOR [LEVELS=5] Class
 4 TABLE [CLASSIFICATION=Class,Sex; \
 5 VALUES=15,17,29,31,34,30,33,35,28,27] Classnum
 6 PRINT Classnum; DECIMALS=0

 Classnum
 Sex boy girl
 Class
 1 15 17
 2 29 31
 3 34 30
 4 33 35
 5 28 27

 7 FACTOR [LEVELS=2] School
 8 TABLE [CLASSIFICATION=School,Class,Sex; \
 9 VALUES=15,17,29,31,34,30,33,35,28,27, \
 10 18,16,33,31,35,36,34,33,31,32] Schoolnm
 11 PRINT Schoolnm; DECIMALS=0

 Schoolnm
 Sex boy girl
 School Class
 1 1 15 17
 2 29 31
 3 34 30
 4 33 35
 5 28 27
 2 1 18 16
 2 33 31
 3 35 36
 4 34 33
 5 31 32

A table can also have margins. There is then a margin for each classifying factor; this contains
some sort of summary over the levels of that factor. For example, if you have a table in which
the cells contain totals of the observations, you would want the marginal cells to contain totals
across the levels of the factor: see the next section of the example. You can define a table to have
margins when you declare it, using the MARGINS option of the TABLE directive. Or you can add
margins later by the MARGIN directive (4.11.2), as shown in Example 2.5b.

Example 2.5b

 12 MARGIN Classnum,Schoolnm
 13 PRINT Classnum; DECIMALS=0

50 2 Data structures

 Classnum
 Sex boy girl Margin
 Class
 1 15 17 32
 2 29 31 60
 3 34 30 64
 4 33 35 68
 5 28 27 55
 Margin 139 140 279

The margin row of Classnum contains the total numbers of boys and girls in the school (totalled
over classes), and the margin column contains the total numbers (boys plus girls) in each class.
The cell where this column and row coincide contains the total number in the school. With
Schoolnm, there are marginal summaries over each classifying factor individually, over each
pair of factors, and over all three factors. Thus the margin over a single factor is itself a two-
dimensional array, classified by the other two factors, as shown in Example 2.5c.

Example 2.5c

 14 PRINT Schoolnm; DECIMALS=0

 Schoolnm
 Sex boy girl Margin
 School Class
 1 1 15 17 32
 2 29 31 60
 3 34 30 64
 4 33 35 68
 5 28 27 55
 Margin 139 140 279
 2 1 18 16 34
 2 33 31 64
 3 35 36 71
 4 34 33 67
 5 31 32 63
 Margin 151 148 299
 Margin 1 33 33 66
 2 62 62 124
 3 69 66 135
 4 67 68 135
 5 59 59 118
 Margin 290 288 578

Tables also have an associated scalar which collects a summary of all the observations for which
any of the classifying factors has a missing value; these observations cannot be assigned to any
cell of the table itself. This scalar is known as the unknown cell of the table. It can be given an
identifier, so that you can refer to it, using the UNKNOWN parameter of the TABLE directive.

The IPRINT option of TABLE has a special setting, associatedidentifier, that refers to
the "associated identifier" of the table, if available. This is the identifier of the data variate from
which the summaries in the table have been formed.

The attribute of the table that records its data variate is set automatically when a table of
summaries is formed by the TABULATE directive (4.11.1). If you have formed the summaries in
some other way, you can use the DATAVARIATE parameter to record the relevant variate yourself.
The SUMMARYTYPE parameter can set an attribute recording the type of summary that the table
contains, and the PERCENTQUANTILE parameter can set an attribute recording the corresponding
percentage if the table contains quantiles. (These are alse set automatically for tables formed by
TABULATE.) The %MARGIN parameter can be set to a pointer of factors defining the margin of
the table over which it has been converted to percentages; the PERCENT procedure (4.1.3) will
set this attribute automatically. If any of these parameters is not set, the default is to leave the

2.6 Pointers 51

corresponding attribute of the table unchanged. To clear the existing value of one of these
attributes, you can put a missing value into the corresponding parameter setting. For example

TABLE Tab; DATAVARIATE=*; SUMMARYTYPE=*; PERCENTQUANTILE=*;\
 %MARGIN=*

clears all these attributes for the table Tab.

2.6 Pointers

A pointer is a data structure that points to other structures: that is, each of its elements is the
identifier of some other Genstat data structure. You use pointers in Genstat wherever you have
to specify a collection of structures; for example in EQUATE (4.3.1), COMBINE (4.11.4), in some
functions (4.2.3), and for a data matrix specified via the variates forming its columns (2:6.2).
You can use them as a convenient means of specifying a list of structures (1.5.4), and they are
also involved in the use of suffixed identifiers (see below). You can declare pointers using the
POINTER directive.

POINTER directive
Declares one or more pointer data structures.

Options
NVALUES = scalar or text Number of values, or labels for values; default *
VALUES = identifiers Values for all the pointers; default *
SUFFIXES = variate or scalar Defines an integer number for each of the suffixes;

default * indicates that the numbers 1,2,... are to be used
CASE = string token Whether to distinguish upper and lower case in the

labels of the pointers (significant, ignored);
default sign

ABBREVIATE = string token Whether or not to allow the labels to be abbreviated
(yes, no); default no

FIXNVALUES = string token Whether or not to prohibit automatic extension of the
pointers (yes, no); default no

RENAME = string token Whether to reset the default names of elements of the
pointer if they do not have their own identifiers (yes,
no); default no

MODIFY = string token Whether to modify (instead of redefining) existing
structures (yes, no); default no

IPRINT = string tokens Information to be used by default to identify the pointers
in output (identifier, extra); if this is not set, they
will be identified in the standard way for each type of
output

EXTEND = string token Whether to extend (instead of redefining) an existing
pointer (yes, no); default no

Parameters
IDENTIFIER = identifiers Identifiers of the pointers
VALUES = pointers Values for each pointer
EXTRA = texts Extra text associated with each identifier

Thus, for example,

POINTER [VALUES=Yield,Costs,Profit] Info

sets up a pointer Info with values Yield, Costs and Profit. These three are themselves data

52 2 Data structures

structures, which can be assigned values, operated on, and so forth. You can refer to individual
elements of pointers by suffixes, enclosed in square brackets (1.4.3): so Info[3] is Profit,
and Info[1,2] is the list of structures Yield, Costs. Thus if Yield held the values 5.6 and
6.1, then

PRINT Info[1]

would print the values of Yield, as shown below:

Example 2.6

 2 VARIATE [NVALUES=2] Yield,Costs,Profit
 3 READ Yield,Costs,Profit

 Identifier Minimum Mean Maximum Values Missing
 Yield 5.600 5.850 6.100 2 0
 Costs 1200 1365 1530 2 0
 Profit 455.0 537.5 620.0 2 0

 5 POINTER [VALUES=Yield,Costs,Profit] Info
 6 PRINT Info[1]

 Yield
 5.600
 6.100

In fact, when Genstat meets a suffixed identifier, it usually sets up a pointer automatically if
necessary. For example if your program contains a suffixed identifier Data[4], Genstat first
checks whether or not a pointer called Data already exists and, if not, creates it; then if there is
no element for suffix 4 it creates one. If the pointer Data already exists but does not have a
fourth element, then an appearance of Data[4] automatically extends Data. So you can add
elements to pointers without redeclaring them.

If, however, you do not want a pointer to be extended automatically, you should declare it
explicitly and set option FIXNVALUES=yes. For example, if you had specified

POINTER [NVALUES=4; FIXNVALUES=yes] Data

the statement

CALCULATE Data[5] = Data[1] + Data[2]

would be faulted. This can be useful if you know in advance all the suffixes that may occur, and
want to guard against mistyped suffixes.

The suffixes need not run from 1, nor be a complete list, although they must be integers; if you
give a decimal number it will be rounded to the nearest integer (for example, !27.2 becomes
!27). You specify the list of suffixes that you require by the SUFFIXES option; if you omit this,
they are assumed to run from 1 up to the number of values.

You can also label the elements of pointers by supplying a text in the NVALUES option (2.3):
for example

POINTER [NVALUES=!T(workstations,PCs,laptops)] Sales

allows you to refer to Sales['PCs'], Sales['laptops','workstations'], and even to
Sales[1,2,'laptops']. The suffix list within the square brackets is a list of identifiers, so
the strings must be quoted: they are then treated as unnamed texts each with a single value
(1.4.3). By default, the case (small letters or capitals) of the textual suffixes is significant, so
Sales['Laptops'] would not be the same as Sales['laptops]. However, you can set
option CASE=ignored to indicate that Genstat should ignore the case of the letters in a textual
suffix. You can also set the ABBREVIATE option to yes to allow each suffix to be abbreviated
to the minimum number of letters required to distinguish it from the earlier suffixes in the list.
So, if instead you define

2.6 Pointers 53

POINTER [NVALUES=!T(workstations,PCs,laptops); \
 CASE=ignored; ABBREVIATE=yes] Sales

you can refer to Sales['PCs'] as, for example, Sales['pcs'], or Sales['pc'], or
Sales['P'], and so on. By default CASE=significant and ABBREVIATE=no.

The identifiers in a suffix list can be of scalars, variates or texts; this of course includes
numbers and strings as unnamed scalars and texts respectively. If one of these structures contains
several values, it defines a sub-pointer: for example Info[!(3,2)] is a pointer with two
elements, Profit and Costs. You can also give a null list to mean all the elements of the
pointer: for example Info[] is Yield,Costs,Profit. You must be careful not to confuse a
sub-pointer with a list of some of the elements of a pointer: for example Info[!(3,2)] is a
single pointer with two elements, whereas Info[3,2] is a list of the two structures Profit and
Costs.

As mentioned above, a pointer can be extended automatically to include a new suffix, if that
suffix is used with the pointer in your program. However, it is not possible to extend the pointer
automatically to include a new label, as Genstat would not know which suffix to give it and an
automatic choice could lead to errors or confusion. So, the POINTER directive has an option
EXTEND which can be set to yes to do this explicitly. The pointer elements that are defined are
then added to the existing elements of the pointer. So, we could add additional labels to the
pointer Employee, above, by the statements

TEXT [VALUES=netbooks,printers] Newlabs
VARIATE [VALUES=4,5] Newsuffs
POINTER [NVALUES=Newlabs; SUFFIXES=Newsuffs; EXTEND=yes] Sales

adds Sales['netbooks'] as suffix 4, and Sales['printers'] as suffix 5. If you do not
specify a label, the new suffix is still added (but unlabelled). If you do not specify a suffix, the
new label is given a suffix of one plus the largest suffix already in the pointer. When
EXTEND=yes, the EXTRA parameter and the CASE, ABBREVIATE, FIXNVALUES, MODIFY and
IPRINT options are ignored.

Elements of pointers can themselves be pointers, allowing you to construct trees of structures.
For example

VARIATE A,B,C,D,E
POINTER R; VALUES=!P(D,E)
& S; VALUES=!P(B,C)
& Q; VALUES=!P(A,S)
& P; VALUES=!P(Q,R)

defines the tree
 P

 / \
 Q R
 / \ / \
A S D E
 / \
 B C

You can refer to elements within the tree by giving several levels of suffixes: for example
P[2][1] is R[1] which is D; P[2,1][1,2] is (R,Q)[1,2] or D,E,A,S. The special symbol
(1.3.6 and 1.5.4) allows you to list all the structures at the ends of the branches of the tree: #P
replaces P by the identifiers of the structures to which it points (Q and R); then, if any of these
is a pointer, it replaces it by its own values, and so on. Thus #P is the list A,B,C,D,E.

The RENAME option allows you to control what identifier is used in output when a structure
in the pointer already belongs to another pointer, but does not have an identifier of its own. For
example, in

POINTER [NVALUES=2] X
POINTER [VALUES=A,X[1],B] Y

54 2 Data structures

VARIATE [VALUES=1,2,3,4] Y[]
PRINT Y[]

the second element of Y has no identifier of its own but was originally defined as the first
element of the pointer X. Genstat labels the output from a structure like this using the identifier
of the pointer with which it was first associated. So, the output will show the identifiers A, X[1]
and B. However, you can set option RENAME=yes when Y is defined

POINTER [VALUES=A,X[1],B; RENAME=yes] Y

to request that the pointer Y takes precedence over earlier definitions. The identifiers would then
become A, Y[2] and B.

2.7 Compound structures

You can use the pointer structure (2.6) to group together related data structures, so that you can
refer to them as a single structure. Some Genstat directives expect standard combinations of data
structures for their input or output; in these cases you use special pointers called compound
structures. These differ from ordinary pointers in that they have a fixed number of elements
which must be of the correct types, and must form a consistent set (in terms of their sizes and so
on).

You can refer to elements of these structures in exactly the same way as the elements of
pointers: for example if L is an LRV (2.7.1) then L refers to a set of structures L[1], L[2],
L[3]. The suffixes run from 1 upwards, and Genstat does not allow you to change that. Neither
can you change the labels that Genstat gives to the structures; details of these labels come later
in this section. However, like a pointer defined with CASE=ignored, the labels are not case
sensitive; so Genstat will recognize the label in either upper case or lower case, or any mixture.

You can give the individual elements of a compound structure identifiers in their own right,
just as with pointers. Indeed, you can use all the features of pointer syntax: for example, you can
use the null list, or the substitution symbol #, to list all the elements of the structure (2.6).

When you declare a compound structure, you conveniently declare, simultaneously and
automatically, a whole collection of structures. At the same time you ensure that they match the
requirements of whatever form of analysis you want to use.

2.7.1 The LRV structure

The LRV structure is used to store latent roots and vectors resulting from the decomposition of
a matrix (4.10.2), or produced in multivariate analysis (Part 2 Chapter 6). You need not store all
the latent roots; usually Genstat will select the largest ones. The LRV structure points to three
structures (identified by their suffixes):
[1] or ['Vectors'] is a matrix whose columns are the latent vectors (the word "Vector"

is used here in its mathematical sense rather than in the more specific Genstat sense; in fact,
latent vectors are most conveniently stored in matrices rather than in Genstat vectors);
[2] or ['Roots'] is a diagonal matrix whose elements are the latent roots;
[3] or ['Trace'] is a scalar holding the trace of the matrix, which is the sum of all its latent

roots.
As mentioned earlier, the labels can be specified in either lower or upper case, or any mixture.

To declare an LRV you use the LRV directive.

LRV directive
Declares one or more LRV data structures.

Options
ROWS = scalar, vector or pointer Number of rows, or row labels, for the matrix; default *
COLUMNS = scalar, vector or pointer

2.7 Compound structures 55

Number of columns, or column labels, for matrix and
diagonal matrix; default *

Parameters
IDENTIFIER = identifiers Identifiers of the LRVs
VECTORS = matrices Matrix to contain the latent vectors for each LRV
ROOTS = diagonal matrices Diagonal matrix to contain the latent roots for each LRV
TRACE = scalars Trace of the matrix

The length of each latent vector is specified by the ROWS option; this then defines the number
of rows in the 'VECTORS' matrix. The COLUMNS option defines the number of latent roots to be
stored; this is also the number of latent vectors, and so indicates the number of columns in the
'VECTORS' matrix and the number of elements in the 'ROOTS' matrix. If you do not specify the
number of columns Genstat will set it to be the same as the number of rows. The value of
COLUMNS can be less than the value of ROWS; however, it must not exceed than that of ROWS,
otherwise Genstat gives an error diagnostic. Row and column labels can be defined, as in the
declaration of matrices (2.4).

You can specify identifiers for the three individual elements of the LRV by using the
VECTORS, ROOTS and TRACE parameters. If you have declared them already they must be of the
correct type (and you can also have given them values). If you have given these identifiers row
or column settings, then these will be used for the LRV declaration and must match any of the
corresponding options of LRV that you choose to set.

Example 2.7.1 declares an LRV, and then forms its values (see 4.10.2).

Example 2.7.1

 2 POINTER [VALUES=stem,leaf,root,petal,pollen] Vars
 3 SYMMETRICMATRIX [ROWS=Vars] Symm
 4 READ Symm

 Identifier Minimum Mean Maximum Values Missing
 Symm -0.9820 0.1974 1.000 15 0

 10 PRINT Symm

 Symm

 stem 1.0000
 leaf -0.6550 1.0000
 root -0.9450 0.8660 1.0000
 petal -0.7560 0.0000 0.5000 1.0000
 pollen 0.5000 -0.9820 -0.7560 0.1890 1.0000
 stem leaf root petal pollen

 11 LRV [ROWS=Vars;COLUMNS=2] Latent; VECTORS=Lvecs
 12 FLRV Symm; Latent
 13 PRINT Latent['Vectors','Roots']

 Lvecs
 1 2
 Vars
 stem 0.4875 -0.3372
 leaf -0.4875 -0.3372
 root -0.5335 0.0770
 petal -0.2227 0.7383
 pollen 0.4366 0.4707

 1 2
Latent['Roots'] 3.482 1.518

56 2 Data structures

2.7.2 The SSPM structure

The SSPM structure stores a matrix of corrected sums of squares and products, and associated
information, as used for regression (Part 2 Chapter 3) and some multivariate analyses (Part 2
Chapter 6). You can form values for SSPM structures by the FSSPM directive (4.10.3). However,
most multivariate and regression analyses can be done without declaring and forming an SSPM
explicitly.

An SSPM comprises four structures (identified by their suffixes).
[1] or ['Sums'] is a symmetric matrix containing the sums of squares and products. The

number of rows and columns of this matrix will equal the number of parameters defined by the
expanded terms list: that is, the number of variates plus the number of dummy variates generated
by the model formula. (See the TERMS directive: 3:3.2.2.)
[2] or ['Means'] is a variate containing the mean for each variate or dummy variate.
[3] or ['Nunits'] is a scalar holding the total number of units used in constructing the

sums of squares and products matrix. If the SSPM is weighted, this scalar will hold the sum of
the weights.

A within-group SSPM has one additional element:
[4] or ['Wmeans'] is a pointer, pointing to variates holding within-group means. There is

one variate for each row of the 'Sums' matrix plus one extra. They are all of the same length,
namely the number of levels of the GROUPS factor. The extra variate holds counts of the number
of units in each group.

As mentioned earlier, the labels can be specified in either lower or upper case, or any mixture.
The syntax for the declaration of SSPM structures is as follows:

SSPM directive
Declares one or more SSPM data structures.

Options
TERMS = formula Terms for which sums of squares and products are to be

calculated; default *
FACTORIAL = scalar Maximum number of vectors in a term; default 3
FULL = string token Full factor parameterization (yes, no); default no
GROUPS = factor Groups for within-group SSPMs; default *
DF = scalar Number of degrees of freedom for sums of squares;

default *

Parameters
IDENTIFIER = identifiers Identifiers of the SSPMs
SSP = symmetric matrices Symmetric matrix to contain the sums of squares and

products for each SSPM
MEANS = variates Variate to contain the means for each SSPM
NUNITS = scalars Number of units or sum of weights for each SSPM
WMEANS = pointers Pointers to variates of group means for each SSPM

The TERMS option defines the model for whose components the sums of squares and products
are to be calculated. In the simplest case the model is just a list of variates, but you can use more
complex model formulae, involving variates and factors; this is done in conjunction with the
FACTORIAL and FULL options. Details of how formulae are interpreted in regression are given
in 2:3.3.1.

You can form a within-group matrix of sums of squares and products by specifying the
relevant factor with the GROUPS option.

Sometimes you may already have calculated values for the matrix of sums of squares and

2.7 Compound structures 57

products. You can then assign them to the component structures of the SSPM for example by
READ (3.1). You would still, however, need to set the number of degrees of freedom associated
with the matrix, and for that you use the DF option.

The parameter lists let you specify identifiers for the four components of an SSPM. You can
have declared them previously (and you can have given them values), but if so they must be of
the correct type.

Example 2.7.2 shows the declaration and formation (4.10.3) of an SSPM.

Example 2.7.2

 2 READ [SETNVALUES=yes] V[1...5]

 Identifier Minimum Mean Maximum Values Missing
 V[1] 1.000 2.667 4.000 3 0
 V[2] 0.0000 2.000 4.000 3 0
 V[3] 1.000 3.000 7.000 3 0
 V[4] 0.0000 0.6667 1.000 3 0
 V[5] 0.0000 1.333 3.000 3 0

 6 SSPM [TERMS=V[1...5]] Ssp
 7 FSSPM [PRINT=sspm] Ssp

Degrees of freedom

Sums of squares: 2
Sums of products: 1

Sums of squares and products

 V[1] 1 4.6667
 V[2] 2 -4.0000 8.0000
 V[3] 3 -10.0000 12.0000 24.0000
 V[4] 4 -1.3333 0.0000 2.0000 0.6667
 V[5] 5 2.3333 -6.0000 -8.0000 0.3333 4.6667
 1 2 3 4 5

Means

 V[1] 1 2.667
 V[2] 2 2.000
 V[3] 3 3.000
 V[4] 4 0.6667
 V[5] 5 1.333

Number of units used

 3

2.7.3 The TSM structure

The TSM structure stores a time-series model which you can use in Box-Jenkins modelling of
time series (see Part 2 Chapter 7). The information that you give to specify the model is stored
in two variates, called the orders and the parameters; an optional third variate contains lags. A
complete description of how these structures are defined and assigned values is given in Part 2
Chapter 7.

The elements of a TSM are:
[1] or ['Orders'];

58 2 Data structures

[2] or ['Parameters'];
[3] or ['Lags'].

As mentioned earlier, the labels can be specified in either lower or upper case, or any mixture.
To declare a TSM you use the TSM directive.

TSM directive
Declares one or more TSM data structures.

Option
MODELTYPE = string token Type of model (arima, transfer); default arim

Parameters
IDENTIFIER = identifiers Identifiers of the TSMs
ORDERS = variates Orders of the autoregressive, integrated and moving-

average parts of each TSM
PARAMETERS = variates Parameters of each TSM
LAGS = variates Lags, if not default

The TSM directive sets up a compound structure pointing to the variates that will later be used
to define the model. You set the type of model by the MODELTYPE option. You can use the
parameters of TSM to supply previously declared identifiers as the elements of the TSM, just as
with the LRV and SSPM. In this way you can specify a variate of lags, to give the TSM three
elements rather than the default of two.

Here are some examples:

TSM [MODELTYPE=arima] T1
TSM [MODELTYPE=transfer] T2; ORDERS=!(1,0,1)
TSM T3; ORDERS=O; PARAMETERS=P; LAGS=L

2.7.4 Customized compound structures

The STRUCTURE directive allows you to define your own types of compound data structure, and
specify constraints on the structures that they may contain.

STRUCTURE directive
Defines a compound data structure.

Options
NAME = text Single-valued text defining a name for the type of

structure, which must not clash with the name of any
existing type of structure

STRUCTURELIST = string token Whether or not the structure consists of a list (of any
length) of structures of the same type or types (yes, no);
default no

Parameters
LABEL = texts Single-valued texts defining the labels of the elements of

the structure
SUFFIX = scalars Suffix numbers for the elements; default assumes the

numbers 1, 2 ...
TYPE = texts Texts defining the allowed types for each element

2.7 Compound structures 59

COMPATIBLE = texts Defines aspects to check for compatibility with the first
element

The STRUCTURE directive allows you to define customized compound data structures for use,
for example, in procedures. The NAME option supplies a single-valued text of up to 16 characters
to define the name to be used for the new "type" of data structure. This can then be used as a
setting for the TYPE parameter in either the OPTION or PARAMETER directives within a
procedure, to indicate that the option or parameter concerned must be supplied with this type of
structure. The case of the letters in the name is not significant, so they can be in capitals, or in
lower case, or in any mixture.

The parameters of the directive define the contents of the structure. The LABEL parameter lists
the labels to be used with each element of the structure, and the SUFFIX parameter lists the
corresponding suffix numbers (by default these are the numbers 1, 2, etc.). The TYPE parameter
allows you to define the types of structure that are allowed in each element (which may be any
of the standard Genstat data structures, or other customized types), and the COMPATIBLE
parameter allows you to define aspects that must be compatible with the first element of the
structure similarly to the COMPATIBLE parameter of the OPTION and PARAMETER directives
(5.3.2). These are checked when the structure is declared, and when it is used as an option or
parameter setting of a procedure that requests that type.

For example, we could define a 'complex number' type by

STRUCTURE [NAME='complex number'] 'real','imaginary'; \
 TYPE='scalar'

Structures of the new type can be defined using the DECLARE directive.

DECLARE directive
Declares one or more customized data structures.

Options
TYPE = text Single-valued text defining the type of structure to

declare
MODIFY = string token Whether to modify (instead of redefining) existing

structures (yes, no); default no

Parameters
IDENTIFIER = identifiers Identifiers of the structures
VALUES = pointers Values for each structure
EXTRA = texts Extra text associated with each identifier

DECLARE is used to set up compound data structures of a customized type, defined earlier using
the STRUCTURE directive. So we can declare a complex number C (as defined above) by

DECLARE [TYPE='complex number'] C; VALUES=!p(3,2)

The VALUES parameter allows values to be defined for the structure, similarly to the VALUES
parameter of the POINTER directive. So, here, the real part of the number C['real'] is given
the value 3, and the imaginary part C['imaginary'] has the value 2. The EXTRA parameter is
also used as in the POINTER directive, allowing extra text to be associated with the structure for
annotation, and the MODIFY option allows an existing structure to be modified.

The elements of the compound structure can be referred to like those of an ordinary pointer
declared using the POINTER directive (2.6) with options CASE=ignored, ABBREVIATE=yes
and FIXNVALUES=yes. So, the labels can be given in either upper or lower case or in any
mixture, and each can be abbreviated to the minimum number of characters required to

60 2 Data structures

distinguish it from the previous labels. So the imaginary part of the complex number above
could, for example, be referred to as C['imaginary'] or C['IMAGINARY'] or simply
C['i'].

2.8 Tree structures

A tree structure is like a real tree, which starts from a root and then splits into branches, except
that it is usually viewed as growing downwards instead of upwards. The branch-points in the tree
are known as nodes, with the initial node being called the root (as in a real tree). There is also
a node at the end of each branch, known as its terminal node.

In Genstat a tree is similar to a pointer, with an element for each node. These elements are the
identifiers of data structures which can be used to store information about the nodes. Usually the
data structures will be pointers, so that several pieces of information can be stored for each node,
but the precise contents depend on the type of tree.

Each node thus has a number, corresponding to the index of its element in the tree. The root
is always numbered one, and this is the only node that the tree contains when it is declared by
the TREE directive. Further nodes can be added by directives BGROW (4.12.3) or BJOIN
(4.12.5), which form branches from a terminal node or join another tree to a terminal node,
respectively. The converse process of cutting a tree at a defined node and discarding the nodes
and information below it is provided by the BCUT directive (4.12.4). The numbers of the
subsequent nodes can be obtained from the functions that are provided to navigate around a tree
(4.2.11). There are also several utility procedures for trees (4.12) as well as special-purpose
procedures for classification trees (2:6.20), identification keys (2:6.21) and regression trees
(2:3.9).

TREE directive
Declares one or more tree data structures and initializes each one to have a single node known
as its root.

No options

Parameter
IDENTIFIER = identifiers Identifiers of the trees

2.9 Save structures

Genstat has several special-purpose structures for saving the information from an analysis. These
cannot be declared explicitly, but are defined automatically by the directives that perform the
analysis. For example, the ASAVE structure (2:4.6) can be defined by ANOVA and then used by
ADISPLAY or AKEEP.

ANOVA Gain; SAVE=Gsave
ADISPLAY [PRINT=residuals] SAVE=Gsave
AKEEP [SAVE=Gsave] Source.Amount; MEANS=Meangain

In many cases the structure need not be mentioned explicitly. For example, Genstat automatically
stores the ASAVE structure from the last y-variate analysed by ANOVA, and ADISPLAY and
AKEEP will use this by default if no other ASAVE structure is specified. Save structures are also
available from regression and generalized linear models (RSAVE, 2:3.1.1), REML (VSAVE,
2:5.3.1), time series (TSAVE, 2:7.3.3), and to store the environment for high-resolution graphics
(DSAVE) They can all be accessed using the GET (5.6.2), and reset using the SET directive
(5.6.1).

2.10 Deleting, renaming and duplicating data structures 61

2.10 Deleting, renaming and duplicating data structures

The section describes commands to manage your data structures: deleting those that you no
longer need (2.10.1), giving them new names (2.10.2), or creating new structures with the same
attributes ! and perhaps also values ! as those of existing structures (2.10.3 and 210.4).

2.10.1 The DELETE directive

DELETE directive
Deletes the attributes and values of structures.

Options
REDEFINE = string token Whether or not to delete the attributes of the structures

so that the type etc can be redefined (yes, no); default
no

LIST = string token How to interpret the list of structures (inclusive,
exclusive, all); default incl

PROCEDURE = string token Whether the list of identifiers is of procedures instead of
data structures (yes, no); default no

NSUBSTITUTE = scalar Number of times n to substitute a dummy in order to
determine which structure to delete; default * i.e. full
substitution

REMOVE = string token Whether or not to remove the structures from Genstat
completely i.e. to delete their identifiers as well as their
attributes and values (yes, no); default no

Parameter
identifiers Structures whose values (and attributes, if requested) are

to be deleted

Genstat stores the values and attributes of data structures in internal arrays. These arrays expand
automatically according to the amount of data ! until they reach the limitations of your
computer. However, once you have finished with a structure, it may still be sensible to delete its
values. Genstat should then execute more efficiently as it will need to keep track of less
information. You can also delete the attributes of data structures. This can be worthwhile merely
to save further space, but the main advantage is that the structures can then be redefined to be
of different types. Both of these actions can be carried out using the DELETE directive.

Each time that DELETE is used, Genstat will also remove any unnamed structures that are no
longer required, and recover any space that has been used for temporary storage. This sort of
tidying of workspace will happen automatically if Genstat sees in time that space is becoming
short. However, to avoid unnecessary computation, this does not occur after every statement.
Thus, if the space appears to be exhausted, it may be worth using DELETE, even if you have no
named structures to delete.

The REDEFINE option controls whether the attributes of the structures are deleted as well as
their values. If REDEFINE is set to yes, the only information that is still stored is the identifier
and the internal reference number of the structure. Alternatively, you can set option
REMOVE=yes to delete the identifier and reference number as well as the attributes and values,
so that no trace of the structure remains.

With the defaults, REDEFINE=no and REMOVE=no, only the values of the structures are
deleted. For example, suppose we have defined a variate Dose by

VARIATE [VALUES=0,0,2,2,4,4] IDENTIFIER=Dose

62 2 Data structures

This gives Dose the values 0, 0, 2, 2, 4 and 4. If we then put

DELETE Dose

only the values of Dose are deleted; so we could now assign a new set: for example

READ Dose
2 4 0 4 2 0 :

Dose remains a variate but now has the values 2, 4, 0, 4, 2 and 0.
Alternatively, if we set REDEFINE=yes in the above example, we could then redefine Dose

as (for example) a text with seven values.

DELETE [REDEFINE=yes] Dose
TEXT [VALUES=none,double,standard,double,none,\
 standard,none] Dose

Once you have defined the type of a structure in a job (as variate, factor or whatever), you

cannot redeclare it as a structure of any other type unless you have first used DELETE to delete
its values and attributes. The only exceptions to this rule, with their own REDEFINE options, are
the DUPLICATE directive and the GROUPS directive (which allows a variate or text to be
redefined as a factor).

The NSUBSTITUTE option is relevant when the list of structures to delete contains dummies.
The default setting, missing value, requests all dummies to be replaced by the structures to which
they point (so that those are the structures that are deleted). NSUBSTITUTE allows you to delete
dummies instead. If you set NSUBSTITUTE=0, no dummies are substituted. So the deleted
structures are the actual dummies that you have listed. A positive setting n>0 is useful if you
have dummies pointing to other dummies, in a chain. Each dummy in the list is then substituted
n times in order to determine which structure in each chain to delete. For example, suppose we
have

DUMMY A; VALUE=B
& B; VALUE=C
SCALAR c; VALUE=1

Then

DELETE A

would delete the scalar C (as this is the structure to which the dummies A and B finally point),
but

DELETE [NSUBSTITUTE=1] A

would delete B, and

DELETE [NSUBSTITUTE=0] A

would delete A itself.
The LIST option defines how the parameter list is to be interpreted. With the default setting,

LIST=inclusive, attributes or values are deleted only for the structures in the list (as well
those of any unnecessary unnamed structures). If there is no parameter list, then only unnamed
structures are deleted. LIST=exclusive means that the parameter list is the complement of the
set of structures that are deleted: that is, all named or unnamed structures that are not in the list
are deleted. LIST=all causes the attributes or values of all structures to be deleted. Thus, if
LIST=all, any parameter list is ignored; and LIST=exclusive with no parameter is equivalent
to LIST=all.

2.10 Deleting, renaming and duplicating data structures 63

2.10.2 The RENAME directive

RENAME directive
Assigns new identifiers to data structures.

No options

Parameters
OLDIDENTIFIER = identifiers Specifies the data structures to rename
NEWIDENTIFIER =identifiers Specifies a new identifier for each data structure

RENAME allows you to assign a different identifier to a data structure. For example, if you put

RENAME OLDIDENTIFIER=A; NEWIDENTIFIER=B

the data structure previously known as A would be renamed to have the identifier B, and the data
structure previously known as B would lose its identifier and become unnamed. The identifier
A would then no longer belong to anyone (and could if required be reused).

In the simplest situations, like Example 2.10.2 below, the first appearance of the new identifier
will be in the RENAME command. So there will be no consequences from the fact that the
"orphan" data structure that it previously identified becomes unnamed.Here the factors N and S
are renamed to have the new identifiers Nitrogen and Sulphur, which had not been used
before. One beneficial side effect to notice is that the renaming carries over into al lthe data
structures that use N and S. So the table Meanyield is now classified by Nitrogen and
Sulphur (but otherwise unchanged).

Example 2.10.2

 2 " define factors N and S, and an N x S table "
 3 VARIATE [VALUES=0,180,230] Nlev
 4 & [VALUES=0,10,20,40] Slev
 5 FACTOR [LEVELS=Nlev; VALUES=4(0,180,230)] N; DECIMALS=0
 6 & [LEVELS=Slev; VALUES=(0,10,20,40)3] S; DECIMALS=0
 7 TABLE [CLASSIFICATION=N,S; VALUES=0.560,0.770,0.524,0.552,\
 8 0.894,1.289,1.525,1.545, 1.032,1.404,1.454,1.700] MeanYield
 9 PRINT MeanYield

 MeanYield
 S 0 10 20 40
 N
 0 0.560 0.770 0.524 0.552
 180 0.894 1.289 1.525 1.545
 230 1.032 1.404 1.454 1.700

 10 " print to show the original values of N and S "
 11 PRINT N,S

 N S
 0 0
 0 10
 0 20
 0 40
 180 0
 180 10
 180 20
 180 40
 230 0
 230 10
 230 20
 230 40

64 2 Data structures

 12 " rename N to Nitrogen, and S to Sulphur "
 13 RENAME N,S; NEWIDENTIFIER=Nitrogen,Sulphur
 14 " print to show that N has become Nitrogen, and S has become Sulphur "
 15 PRINT Nitrogen,Sulphur

 Nitrogen Sulphur
 0 0
 0 10
 0 20
 0 40
 180 0
 180 10
 180 20
 180 40
 230 0
 230 10
 230 20
 230 40

 16 " notice the renaming carries over to the classification of MeanYield "
 17 PRINT MeanYield

 MeanYield
 Sulphur 0 10 20 40
 Nitrogen
 0 0.560 0.770 0.524 0.552
 180 0.894 1.289 1.525 1.545
 230 1.032 1.404 1.454 1.700

If the identifier has already been used, the orphan data structure will be deleted, unless it is found
to belong to another (named) data structure. So, for example, in the program

SCALAR B; VALUE=1
POINTER [VALUES=B] Q
RENAME OLDIDENTIFIER=A; NEWIDENTIFIER=B

the scalar 1 would survive as the first element of the pointer Q. So it could still be referred to as
Q[1], although of course no longer as B. You would get the same effect be specifying

RENAME OLDIDENTIFIER=A; NEWIDENTIFIER=Q[1]

as RENAME looks only for the (named) identifier of the data structure specified by
NEWIDENTIFIER. So, in this case, A takes over the identifier B of Q[1]. If Q[1] did not have
a separate identifier of its own, A would become unnamed. (So this provides a way of removing
the identifier of a pointer element.)

You can also specify a pointer element for the setting of OLDIDENTIFIER and, again, RENAME
will operate only on its identifier (if it has one). For example, in the program

SCALAR C; VALUE=7
POINTER [NVALUES=2] P
RENAME OLDIDENTIFIER=P[1]; NEWIDENTIFIER=C

the pointer element P[1] gains the identifier C, and so can be referred to as C in future (as well
as P[1]).

So, to summarize, for the data structures specified by both the OLDIDENTIFIER and
NEWIDENTIFIER parameters, RENAME ignores any memberships that they may have of pointers,
or e.g. as classifying factors of a table, or as levels or labels vectors of factors. It operates only
on their own identifiers, reassigning the one (if any) belonging to the NEWIDENTIFIER data
structure to become the identifier of the data structure specified by the OLDIDENTIFIER
parameter.

Note that, if either OLDIDENTIFIER or NEWIDENTIFIER is set to a dummy, RENAME will
operate on the data structure to which it points, not on the dummy itself (i.e. dummies are always
substituted). So, this allows you to rename data structures in your main program from inside a
procedure.

2.10 Deleting, renaming and duplicating data structures 65

A final point is that, if your new name is stored inside a text, you may find the SETNAME
procedure more convenient than RENAME; details are in the Genstat Reference Manual, Part 3
Procedures.

2.10.3 The DUPLICATE directive

DUPLICATE directive
Forms new data structures with attributes taken from an existing structure.

Options
ATTRIBUTES = string tokens Which attributes to duplicate (all, nvalues, values,

nlevels, levels, labels (of factors or pointers),
extra, decimals, characters, rows, columns,
classification, margins, suffixes, minimum,
maximum, restriction, referencelevel); default
all

REDEFINE = string token Whether or not to delete the attributes of the new
structures beforehand so that their types can be
redefined (yes, no); default no

Parameters
OLDSTRUCTURE = identifiers Data structures to provide attributes for the new

structures
NEWSTRUCTURE = identifiers Identifiers of the new structures
VALUES = identifiers Values for each new structure
DECIMALS = scalars Number of decimals for printing numerical structures
CHARACTERS = scalars Number of characters for printing texts or labels of a

factor
EXTRA = texts Extra text associated with each identifier
MINIMUM = scalars Minimum value for numerical structures
MAXIMUM = scalars Maximum value for numerical structures

The DUPLICATE directive allows you to define new data structures with attributes like those of
existing structures. The attributes to be duplicated are defined by the ATTRIBUTES option. The
structures from which the attributes are to be taken are specified by the OLDSTRUCTURES
parameter, while the structures that are to be defined are specified by the NEWSTRUCTURES
parameter. The other parameters allow some of the more important attributes to be reset at the
same time. This is illustrated in Example 2.10.3, where the factor Species2 takes its levels (and
thus its number of levels) from the factor Species1. However, the labels are not transferred,
and other values are defined using the VALUES parameter.

Example 2.10.3

 2 FACTOR [LEVELS=!(0,1); LABELS=!T(absent,present); \
 3 VALUES=0,1,1,0,0,0,1] Species1
 4 DUPLICATE [ATTRIBUTES=levels] Species1; \
 5 NEWSTRUCTURE=Species2; VALUES=!(1,0,1,1,0,1,0)
 6 PRINT Species1,Species2

 Species1 Species2
 absent 1.0000
 present 0.0000
 present 1.0000
 absent 1.0000
 absent 0.0000

66 2 Data structures

 absent 1.0000
 present 0.0000

You can set option REDEFINE=yes, to allow DUPLICATE to change the type of any pre-defined
new structure, if necessary, to have the same type as the corresponding old structure. Otherwise,
DUPLICATE will report a fault if the new structure has previously been defined to have a
different type.

2.10.4 The PDUPLICATE procedure

PDUPLICATE procedure
Duplicates a pointer, with all its components (R.W. Payne).

No options

Parameters
OLDPOINTER = pointers Pointers to duplicate
NEWPOINTER = pointers Duplicated pointers

PDUPLICATE is useful when you want to duplicate the complete tree of data structures to which
a pointer points. So, it duplicates not only the pointer itself, but all the structures to which it
points. Also, if any of these structures is itself a pointer, the structures to which that too points
will be duplicated.

The pointer to be duplicated is specified by the OLDPOINTER parameter, and the duplicated
pointer is saved by the NEWPOINTER parameter.

2.11 Listing or accessing details of data structures

It can sometimes be difficult to remember all the details of your data structures. For example,
in a long interactive session you might forget the identifiers of certain structures, or some of the
attributes that you have given them. The LIST directive (2.11.1) allows you to list the names and
important attributes of your currently available data structures, and the DUMP directive (2.11.2)
allows you to display all their details. DUMP can also display internal information about Genstat
but this is useful mainly for those extending Genstat. On other occasions you may need to store
and not just display the attributes of structures. This can be done using the GETATTRIBUTE
directive (2.11.3).

2.11.1 The LIST directive

LIST directive
Lists details of the data structures currently available within Genstat.

Options
PRINT = string tokens What to print (identifier, attributes); default

iden, attr
CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file
SYSTEM = string token Whether to include "system" structures with prefix _

(yes, no); default no
SCOPE = string token When used within a procedure, this allows the listing of

2.11 Listing or accessing details of data structures 67

structures in the program that called the procedure
(SCOPE=external), or in the main program itself
(SCOPE=global), rather than those within the
procedure (local, external, global); default loca

NSTRUCTURES = scalar Saves the number of structures of the requested types
SAVE = pointer Saves a pointer containing the structures of the

requested types

Parameter
string tokens Types of structure to list (all, ASAVE, diagonal,

dummy, expression, factor, formula, lrv,
matrix, pointer, RSAVE, scalar, sspm,
symmetric, table, text, tree, TSAVE, tsm,
variate, VSAVE); default all

The LIST directive provides a quick way of finding out about the data structures available in
your program. LIST is particularly useful when you are working interactively to remind you
about the data structures that you have set up, and the identifiers that you have used. At line 10
of Example 2.11.1, we list the variates that have been set up and in line 11 we list the factors.

The parameter specifies the types of structure that you want to list. By default, all types are
listed.

 By default LIST prints details of relevant attributes, as well as the identifiers, but this can be
controlled by setting the PRINT option only to identifier.

Example 2.11.1

 2 VARIATE [NVALUES=12] Count,Dose
 3 READ Count,Dose

 Identifier Minimum Mean Maximum Values Missing
 Count 2.000 122.2 615.0 12 0 Skew
 Dose 100.0 325.0 600.0 12 0

 7 CALCULATE Logcount = LOG10(Count+1)
 8 VARIATE [NVALUES=12] Fitted
 9 GROUP Dose; Dgroup
 10 LIST variate

 Structures of type VARIATE

 identifier number of values
 Count 12
 Dose 12
 Logcount 12
 Fitted 12

 11 LIST factor

 Structures of type FACTOR

 identifier number of values number of levels
 Dgroup 12 4

The SYSTEM option of LIST controls whether structures whose identifiers begin with the
underscore character _ are listed; this character is used as a prefix for example for the temporary
private structures set up by the menus of Genstat for Windows, so their inclusion could be
confusing. The SCOPE option can be used within a procedure to list the data structures in the
program that called the procedure (SCOPE=external) or in the outermost part of the program

68 2 Data structures

(SCOPE=global).
The SAVE option can save a pointer containing the structures of the requested types. This is

not formed if there are none.
The NSTRUCTURES option can save a scalar storing the number of structures of these types.

(So you can check whether a SAVE pointer has been formed by checking whether NSTRUCTURES
is greater than zero.)

2.11.2 The DUMP directive

DUMP directive
Prints information about data structures, and internal system information.

Options
PRINT = string tokens What information to print about structures

(attributes, values, identifiers, space);
default attr

CHANNEL = identifier Channel number of file, or identifier of a text to store
output; default current output file

INFORMATION = string tokens What information to print for each structure (brief,
full, extended); default brie

TYPE = string tokens Which types of structure to include in addition to those
in the parameter list (all, ASAVE, diagonalmatrix,
dummy, expression, factor, formula, LRV,
matrix, pointer, RSAVE, scalar, SSPM,
symmetricmatrix, table, text, tree, TSAVE, TSM,
variate, VSAVE); default * i.e. none

SYSTEM = string token Whether to display Genstat system structures (yes, no);
default no

UNNAMED = string token Whether to display unnamed structures (yes, no);
default no

Parameter
identifiers or numbers Identifier or reference number of a structure whose

information is to be printed

The structures for which the information is to be displayed are specified by the parameter of
DUMP. The PRINT option indicates what is to be presented: you can ask for just the identifiers,
or values and identifiers, or attributes (the identifier is itself an attribute), or for all three. For
example, this gives all three for the structures A and B:

DUMP [PRINT=attributes,values] A,B

Example 2.11.2a

 2 VARIATE [VALUES=1...8,*] A
 3 FACTOR [NVALUES=9; LEVELS=!(0,1.2,2.4)] B
 4 DUMP [PRINT=attributes,values] A,B

Dump
====

Identifier Type Length Values Missing Ref.No.

 A Variate 9 Present 1 -635
 1.0000 2.0000 3.0000 4.0000 5.0000

2.11 Listing or accessing details of data structures 69

 6.0000 7.0000 8.0000 *

 B Factor 9 Absent * -632
 No values

There is also a setting, space, which provides information about the current use of workspace
within Genstat.

If the CHANNEL option is set to a scalar, this specifies the output channel to which the
information is sent. Alternatively, if you specify the identifier of a text structure, the lines of
information will be stored in the text instead of being printed; likewise if you specify the
identifier of a structure that has not yet been declared, it will be defined automatically as a text
to store the information. If CHANNEL is not specified, the information is displayed on the current
output channel.

The INFORMATION option selects which attributes are presented. The default setting brief
selects only the most important ones. The setting full causes all the attributes to be presented,
and the setting extended also gives details of the structures associated with listed structures.

Example 2.11.2b

 5 DUMP [INFORMATION=extended; PRINT=attributes,values] B

 IDENT VECNO ATTOR VALOR TYPE NVAL NVALUE MODE MVPTR OWNER

 B -632 * * 2 9 9 3 * *
 LEVELS = -633 NLEV = 3 REFLEV = 1
 No values

 -633 * 19 4 3 3 1 0 *
 0.0000 1.2000 2.4000

Some of the attributes may be set to unnamed structures. You can obtain further information
about any of these by giving its (negative) reference number (as displayed by DUMP when
indicating its association with another structure) in the parameter list. This is likely to be useful
mainly to advanced users.

The TYPE option lets you display, in addition, lists of all structures of a particular type, or of
several types. For example, if you had forgotten the identifier of a factor, you could give the
statement

DUMP [TYPE=factor; PRINT=identifiers]

Example 2.11.2c

 6 FACTOR [NVALUES=9; LEVELS=3; VALUES=3(1...3)] F1
 7 & [LEVELS=2; VALUES=(1,2)4,1] F2
 8 DUMP [TYPE=factor; PRINT=identifiers]

Dump
====

 List of structure names
 F2 F1 B

This lists all the current factors. When PRINT=attributes or values (or both), the setting
TYPE=all provides a list of all named and unnamed structures, except system structures.
"PRINT=identifiers; TYPE=all" lists only named structures.

The SYSTEM option allows all the system structures to be dumped: there are many of these,
so it is not a good idea to set this option frivolously.

70 2 Data structures

2.11.3 The GETATTRIBUTE directive

GETATTRIBUTE directive
Accesses attributes of structures.

Option
ATTRIBUTE = string tokens Which attributes to access (nvalues, nlevels, nrows,

ncolumns, type {type number}, levels, labels {of
a factor or pointer}, nmv, present, identifier,
refnumber {structure number}, extra, decimals,
characters, minimum, maximum, restriction,
mode {integer code 1 - 5 denoting type of values: double
real, real, integer, character and word}, maxline {of a
text or factor}, rows, columns, classification,
margins {of a table}, associatedidentifier {of a
table}, unknown {cell of a table}, suffixes {of a
pointer}, owner, terms {of an SSPM}, groups {of an
SSPM}, weights {of an SSPM}, SSPMauxiliary,
SSPrst, tsmmodel, rstat {of an RSAVE}, stype
{type as a character string}, referencelevel {of a
factor}, drepresentation, unitlabels {of a
vector}, iprint, datavariate {of a table},
summarytype {of a table}, percentquantile {of a
table of quantiles}, %margin {of a table of
percentages}, coding {of a text}); default * i.e. none

Parameters
STRUCTURE = identifiers Structures whose attributes are to be accessed
SAVE = pointers Pointer to store copies of the attributes of each structure;

these are labelled by the ATTRIBUTE strings

The GETATTRIBUTE directive allows you to access attributes of each of the structures that are
listed with its STRUCTURE parameter. It refers to the list of structures by pointers, which are set
up by the SAVE parameter. You must always set the option and both parameters. Thus, in
Example 2.11.3a, P is defined to be a pointer with an element for each of the two attributes
requested by the ATTRIBUTE option. The first is P['nvalues'], alternatively referred to as
P[1], storing the value 4; and the second is P['nmv'], or P[2], storing the value 1.

Example 2.11.3a

 2 VARIATE [VALUES=1,2,*,4] X
 3 GETATTRIBUTE [ATTRIBUTE=nvalues,nmv] X; P
 4 PRINT P[]

 P['nvalues'] P['nmv']
 4 1

If you request an attribute that is not relevant to a structure, it is omitted from the pointer. Thus
for example the nlevels, levels and labels settings are relevant only for factors, and nrows
and ncolumns only for matrices. The references to the relevant attributes that you specify are
always stored in the order shown in the definition of the ATTRIBUTE option above.

For attributes that are single numbers, the information is copied into an unnamed scalar which

2.11 Listing or accessing details of data structures 71

is pointed to by the appropriate element of the pointer; if the attribute has not been set, then the
corresponding scalar will contains a missing value. For the attributes stype, identifier,
iprint, margins, associatedidentifier, summarytype and tsmmodel, the
corresponding element of the pointer is a text structure containing a single line. For the other
attributes, the corresponding element of the pointer stores a reference to the attribute itself. One
example is the labels vector of a factor. However, if the factor has no labels vector the
corresponding entry of the pointer is set to the missing value. Thus, Example 2.11.3b sets up P
as a pointer with two values, the first being Lev and the second missing.

Example 2.11.3b

 5 VARIATE [VALUES=4,8,12] Lev
 6 FACTOR [LEVELS=Lev] F
 7 GETATTRIBUTE [ATTRIBUTE=levels,labels] F; P
 8 DUMP [PRINT=attributes,values] P,Lev

Dump
====

Identifier Type Length Values Missing Ref.No.
 P Pointer 2 Present 1 -614
 -698 *

 Lev Variate 3 Present 0 -698
 4.0000 8.0000 12.0000

The setting type gives a scalar value indicating the type of structure, by the code:

1 scalar 11 expression

2 factor 12 formula
3 text 13 dummy
4 variate 14 pointer
5 matrix 15 LRV
6 diagonal matrix 16 SSPM
7 symmetric matrix 17 TSM
8 table 18 RSAVE
9 ASAVE 22 tree
10 TSAVE

Alternatively, the stype setting supplies the type name in a text structure. As the example
below shows, this works not only for the standard Genstat types, such as variates and factors, but
also for user-defined types (2.7.4).

Example 2.11.3c

 9 STRUCTURE [NAME='complex number'] 'real','imaginary'; TYPE='scalar'
 10 DECLARE [TYPE='complex number'] C; VALUES=!p(3,2)
 11 FACTOR F
 12 TEXT T
 13 VARIATE V
 14 GETATTRIBUTE [ATTRIBUTE=stype] C,F,T,V; SAVE=Typec,Typef,Typet,Typev
 15 PRINT Typec[],Typef[],Typet[],Typev[]

Typec['stype'] Typef['stype'] Typet['stype'] Typev['stype']
complex number factor text variate

3 Input and output

This chapter describes how to read data values into Genstat and how to print them out. It also
looks at some of the more general aspects of input and output, such as the use of files for storing
different kinds of information.

As already mentioned (1.1), Genstat statements may be typed in at the keyboard or stored in
files and executed as a complete program. Similarly, data can be typed in directly, or read from
files that have been prepared in advance, or even from the contents of a Genstat text structure.
The simplest method is provided by the FILEREAD procedure, which provides the basis of the
Read Data from ASCII file menu in Genstat for Windows. The Windows implementation also
allows a wide range of spreadsheet files to be imported, as well as save-files from many other
statistical systems and data bases. The most general facilities are provided by the READ directive,
which caters for a wide variety of styles and formats, and can rescale and sort the data values as
they are read.

READ provides general facilities for reading data from the

keyboard, an input file or a Genstat text structure (see
Sections 3.1.2 to 3.1.12, and 3.7)

FILEREAD provides a convenient way of reading values into a set of
variates, factors and or texts which all have equal lengths;
the data values are provided in a rectangular layout, in a
separate file (3.1.1)

TX2VARIATE reads values into a variate from a text structure (4.5.3)
Genstat can produce output in either plain-text or a "formatted" style written in either RTF,

HTML or LaTeX. The style of an output channel is set when the channel is opened, either by the
OPEN directive (3.3.1) or by the command used to run Genstat (1.1.2). You can also switch a
formatted output channel temporarily into the plain-text style (and back into its formatted style)
using the OUTPUT directive (3.4.3). Alternatively, in Genstat for Windows, this is done using the
View menu.

The plain-text style assumes that every character occupies an identical width on the page. This
was the situation with the line printers that were originally used for computer output. In more
modern environments, such as Microsoft® WindowsTM, this can be achieved by using a "non-
proportional" font such as Courier. In plain text, columns of output are lined up by inserting
space characters. The formatted styles insert tab characters or use tabular modes of output, which
are likely to be more convenient if you want to import the output into a wordprocessor, web page
or scientific publication. Further details are in Section 3.3.1. In the formatted styles, you can also
include "typesetting commands" inside a textual string to generate italic or bold fonts, subscripts
or superscripts, and Greek or mathematical symbols (see 1.4.2).

Genstat's analysis commands produce output in formats appropriate to the current style. You
can generate your own output by "printing" the contents of data structures into output files (or
into text structures) using the PRINT directive. Titles in Genstat's standard formats can be printed
using the CAPTION directive. The PAGE directive starts future output at the top of the next page,
the SKIP directive allows blank lines to be inserted in output files (or lines to be skipped in input
files), and the PLINK procedure allows you to include graphics in an HTML file. The DECIMALS
and MINFIELDWIDTH procedures allow you to set formats automatically.

PRINT prints data in tabular form to an output file or a text (3.2.1,

3.2.2 and 3.7)
CAPTION prints various types of caption and title (3.2.3)
PAGE moves to the top of the next page of an output file (3.2.4)
SKIP skips lines of input or output files (3.3.3)

3 Input and output 73

PLINK prints a link to a graphics file into an HTML file
DECIMALS sets the number of decimals for a structure, using its

round-off (3.2.5)
MINFIELDWIDTH calculates minimum field widths for printing data

structures (3.2.6)
You can open and close external files from within your Genstat program. Each file is

connected to a channel (input, output, backing-store, and so on) through which it is accessed by
the Genstat commands that read input or generate output.

OPEN opens files, connects them to Genstat input or output

channels and specifies aspects such as the line width and
output style (3.3.1)

CLOSE closes files, freeing the channels to which they were
attached (3.3.2)

ENQUIRE provides details about external files attached to Genstat
(3.3.4)

The channel from which input statements are taken can be changed, as can the channel to

which output is sent. It is also possible to send a transcript (or copy) of input and/or output to
output files.

INPUT specifies the channel from which subsequent statements

should be read (3.4.1)
RETURN returns to the previous input channel (3.4.2)
OUTPUT specifies the channel to which future output should be

sent, and allows you to switch between plain-text and
formatted styles for channels opened as RTF, HTML or
LaTeX (3.4.3)

COPY requests a transcript of subsequent input and/or output
(3.4.4)

The values of a data structure, with all its defining information, can be stored in a sub-file of

a "backing-store" file (3.5). It can then be retrieved in a later job, without the need to repeat the
definitions.

STORE stores data structures in a backing-store file (3.5.3)

RETRIEVE retrieves data structures from a backing-store file (3.5.4)
CATALOGUE displays the contents of a backing-store file (3.5.5)
MERGE copies sub-files of backing-store files into a single file

(3.5.6)
The current state of the whole job can also be stored, so that it can be picked up and continued

on a later occasion.
RECORD saves the complete details of a job (3.6.1)

RESUME reads and restarts a recorded job (3.6.2)
Genstat for Windows, has several additional commands for accessing data from spreadsheets,

databases and other systems (3.8). However, these may be unavailable in other implementations.
EXPORT Outputs data structures in foreign file formats, or as plain

or comma-delimited text
IMPORT Reads data in a foreign file format, and loads it into

Genstat or into a Genstat spreadsheet file
SPLOAD loads a Genstat spreadsheet file
SPCOMBINE combines spreadsheet and data files, without reading them

into Genstat

74 3 Input and output

CSPRO reads a data set from a CSPro survey data file and
dictionary, loads it into Genstat or puts it into a
spreadsheet file

DBCOMMAND runs an SQL command on an ODBC database
DBEXPORT Update an ODBC database table using data from Genstat
DBIMPORT Loads data into Genstat from an ODBC database
DBINFORMATION loads information on the tables and columns in an ODBC

database
DDEEXPORT Sends data or commands to a Dynamic Data Exchange

server
DDEIMPORT Gets data from a Dynamic Data Exchange (DDE) server
GRIBIMPORT reads data from a GRIB2 meteorological data file, and

loads it or converts it to a spreadsheet file
%CD Changes the current directory

Details are available in the on-line help.

3.1 Reading data

Although you can define values for data structures when you declare them, using the VALUES
option or parameter (2.1.1), it is usually more convenient to read the values ! especially with
large sets of data. Many data sets consist of vectors (i.e. variates, factors or texts) each with the
same numbers of values. The most common representation has the data presented in parallel
(that is, the values for the first units of all the vectors, then values for their second units, and so
on) in a separate file from the Genstat program. Data files like this are often read most
conveniently using the FILEREAD procedure (3.1.1). The alternative is the READ directive
(Sections 3.1.2 onwards), which can read data into any Genstat data structure using a wide
variety of formats.

3.1.1 The FILEREAD procedure

FILEREAD procedure
Reads data from a file (P.W. Lane).

Options
PRINT = string tokens What output to display (summary, groups, comments,

firstline); default summ, grou, comm, firs
NAME = text External name of the data file; no default in batch mode,

name is prompted for in interactive mode
END = text What string terminates data; default ':' (the end of file

also terminates data for any setting); the setting END=*
is not allowed

MISSING = text What character represents missing values; default '*'
SKIP = scalar or text Number of lines to skip at the start of the file, or string

to indicate the record before the first record of data;
default 0

MAXCATEGORY = number The maximum number of categories for which a
structure is defined to be a factor unless otherwise
specified by FGROUPS; default 10

COMMENTSYMBOLS = text What characters to treat as introducing comments if
found in the first column at the start of the file; default
double-quote character (")

3.1 Reading data 75

IMETHOD = string token How identifiers are to be specified for the data
structures to be read (supply, read, none); default
supp

ISAVE = pointer To store the identifiers, whether read or supplied, and to
provide suffixed identifiers for data with no specified
identifiers

SEPARATOR = text What (single) character separates successive values;
default is the space character

Parameters
IDENTIFIER = identifiers Names for the data structures that are to be read; these

are prompted for if this is unset when running
interactively with IMETHOD=supply; identifiers are
redefined if they have been used previously

FGROUPS = string tokens Whether to form each data structure into a factor
(check, form, leave); default chec, which causes
FILEREAD when running interactively to ask about any
structure whose number of distinct values is less than or
equal to MAXCATEGORY, and when running in batch to
define as factors all structures with MAXCATEGORY or
fewer distinct values
(note: for compatibility with earlier releases, yes and no
can be used as synonyms of form and leave)

REPRESENTATION = string tokens What representation to assume for each data structure
(numbers, characters); default unset !
representation is determined by whether the first value is
a number; if set for one structure, this parameter must be
set for all structures

FILEREAD reads data from a file into variates, factors or texts. It can deal with data values laid
out in the following ways.

1) A character file: that is, a normal readable file, or flat file.
2) Maximum record length of 200 characters.
3) Contents consist of values for one or more data structures ! usually presented as a single

rectangular data matrix.
4) The values for the data structures are recorded in parallel ! that is, the first values of all

the structures, followed by the second values of all, and so on; usually, each record of the
file contains one value of each structure, but multiple values per record and multiple
records for each unit can also be dealt with.

5) Values in a record are separated from each other by the same separator ! usually one or
more spaces.

6) Text values must be enclosed in single quotes if they contain a space, comma, backslash
or double-quote; single-quotes must be used only to enclose textual values, or be
duplicated as part of a value which is also enclosed in single quotes.

7) Comments are allowed at the start of the file only if every record to be treated as a
comment starts with a double quote or other specified symbol. Alternatively, a specified
number of records at the start of the file can be skipped, or any number of records up to
and including a specified string.

8) Identifiers for the columns of the matrix can be read from the first row of data, as long as
they are valid, unsuffixed, Genstat identifiers. An exclamation mark after an identifier
signals that the structure is to be set up as a factor.

76 3 Input and output

The information in each data structure can be either be numerical or textual. FILEREAD can
usually discover which is appropriate for each structure automatically, by examining the data.
Alternatively, you can specify this explicitly, using the REPRESENTATION parameter. If
REPRESENTATION is unset, FILEREAD looks at the first record in the file with no missing values
to see whether the value provided for each structure can be interpreted as a number (if not, it is
taken to be a textual string), and FILEREAD will fail if there is no such record. If the
REPRESENTATION parameter is set for any structure, it must be set for all of them.

The NAME option supplies the name of the file, enclosed in single quotes. If you are running
Genstat in batch mode the name must be supplied but, in interactive mode, FILEREAD will
prompt you for the name if the NAME option is unset.

The IMETHOD option controls how the identifiers are specified for the structures to be read.
With the default, IMETHOD=supply, the identifiers can be listed using the IDENTIFIER
parameter, one for each column of the data matrix. If IDENTIFIER is not set when running
Genstat interactively, FILEREAD will prompt for identifiers; if it is unset when running in batch,
FILEREAD just reports on the contents of the file, unless option ISAVE is set (see below). If
IMETHOD=read, FILEREAD will read the identifiers for the data structures from the first
complete record in the file (and the IDENTIFIER parameter is then ignored). They must be valid
Genstat identifiers, and must not include suffixes. If an exclamation mark is found after (or in)
an identifier, the structure will be set up as a factor unless the FGROUPS parameter is set to
leave for that structure (see below). If IMETHOD=none, FILEREAD just reports on the contents
of the file without assigning identifiers, unless option ISAVE is set.

The ISAVE option can be set to a pointer to store the identifiers read from the file (if
IMETHOD=read) or supplied interactively (if IMETHOD=supply). Alternatively, if ISAVE is set
and no identifiers are specified (that is, if IMETHOD=none when running either interactively or
in batch, or if IMETHOD=supply and the IDENTIFIER parameter is unset when running in
batch), the data will be read into suffixed identifiers of the ISAVE pointer.

Values on the same record of a file must be separated from each other by at least one space
unless the SEPARATOR option is set. This option can nominate any single character to be treated
as data separator. The MISSING and END options specify symbols to represent the missing-value
and to denote the end of the file.

If the number of identifiers is not specified, the number of data structures is taken to be the
number of values on the first record with no missing values. But if identifiers are supplied using
the IDENTIFIER parameter, or are read from the data file, it is possible to read several units of
data from each record or each unit from several records. If there are more values on the first
record of data than there are identifiers, the type of each data structure can be determined only
by its first value: FILEREAD will fail if any first value is missing, unless the REPRESENTATION
parameter is set. If there are fewer values on the first record of data than there are identifiers,
FILEREAD will fail regardless of the absence of missing values unless the REPRESENTATION
parameter is set.

The PRINT option controls the various reports produced by FILEREAD, according to the
following settings.
summary names, types, numbers of values and missing values of the

structures
groups table of the number of values in each category for

structures that have n or fewer distinct values (where n is
the limit specified by the MAXCATEGORY option)

comments any comments found before the start of the data
firstrecord the first record of data that contained no missing values

By default all four reports are produced.
The FGROUPS parameter allows structures to be turned automatically into factors. The default

setting is check: when running Genstat interactively, FILEREAD will then prompt you for a

3.1 Reading data 77

decision about any structure where the number of distinct values is less than or equal to the
setting of the MAXCATEGORY option; in batch, all structures with these few distinct values
become factors automatically. FGROUPS can also be set to form or leave to specify explicitly
whether each structure should or should not be defined automatically as a factor. (The settings
form or leave were introduced in Procedure Library PL21 to replace the settings yes and no,
as other options and parameters that have no as a setting, use no as their default. However, for
compatibility with earlier programs, the settings yes and no are currently still recognized as
synonyms for form and leave.)

The COMMENTSYMBOLS option can be set to a list of single characters, in quotes. If any of
these characters is found at the start of a record, before any data value has been read, that record
will be treated as a comment. By default, the double-quote symbol is the only comment symbol,
but it must appear at the start of every record to be treated as a comment.

The SKIP option allows records at the start of the file to be skipped altogether. It can be set
either to the number of records to be skipped, or to a string, indicating that all records are to be
skipped up to and including the first record containing that string.

3.1.2 Introduction to the READ directive

When you use READ, you can type the data values at the keyboard, read them from the file
containing your Genstat program, or read them from a separate data file. The following simple
example shows how to read the values for a variate called Weights:

VARIATE [NVALUES=10] Weights
READ Weights
24.3 25.6 57.3 43.8 45.3
46.5 47.9 97.0 77.5 64.3 :

There are many options and parameters to allow control over most aspects of data input, so data
can be read in almost any form. We first describe the more straightforward uses of READ, with
most of the options retaining their default settings. Then, in 3.1.3, we give the full details of the
syntax of READ showing how you can use the options and parameters to read data that may be
arranged in many other ways.

Unless specified otherwise, Genstat assumes that the data values will be found immediately
after the READ statement. The values are usually specified in free format: that is, they are
separated by one or more spaces (or tabs) and can be arranged any way you like, on one or more
lines, so long as the correct order is maintained. Genstat reads the data one line at a time, so the
first element of Weights is 24.3, the second element is 25.6, and so on. There is no need to use
the continuation character \ when data for READ is spread over several lines; in fact \ should
occur only when it is part of a string that is being read into a text. To show that the end of the
data has been reached a terminator is needed, which by default is a colon (:). This may be at the
end of the last line of data or on a line of its own. Once the terminator has been read a simple
summary of the data is printed and a quick examination can indicate if READ was successful, or
if there were any problems such as incorrectly typed values.

Example 3.1.2a

 2 VARIATE [NVALUES=10] Weights
 3 READ Weights

 Identifier Minimum Mean Maximum Values Missing
 Weights 24.30 52.95 97.00 10 0

If the minimum value of Weights was less than zero, you might assume there was some kind
of problem with the data!

When you are working interactively, Genstat produces a prompt indicating the name of the

78 3 Input and output

data structure and the unit number of the next value it expects to read:

Example 3.1.2b

> VARIATE [NVALUES=10] Weights
> READ Weights
Weights/1> 24.3 25.6 57.3
Weights/4> 43.8 45.3 46.5
Weights/7> 47.9 97.0 77.5 64.3
* MESSAGE: You have input sufficient data, READ terminated.

 Identifier Minimum Mean Maximum Values Missing
 Weights 24.30 52.95 97.00 10 0
>

READ prompts for the first data value, Weights/1>, and the first three values are typed in. The
next prompt is Weights/4>, requesting values for the fourth and subsequent units of Weights.
Because Weights was declared to have 10 values, Genstat will know to stop reading data once
10 values have been typed in. Once the 10th value (64.3) has been typed and the <RETURN> key
pressed, READ automatically terminates input, without asking for the terminating colon, although
it is quite correct to include it at the end of the last line of data. If you type too many values by
mistake you will get a warning message telling you that the extra data has been ignored.

When running Genstat in batch, unless you set the END option (3.1.3), you must mark the end
of the data with a colon; READ then checks that you have given the correct number of values. If
there are too few values a warning is printed and the data structure is completed by using missing
values, whereas a fault will be produced if there are too many values.

Genstat will also perform range checks when reading data if you have set the MINIMUM or
MAXIMUM parameters when declaring data structures.

Note that, whether you are running Genstat interactively or in batch, READ will immediately
take a fresh line of input, so the data cannot be on the same line as the READ statement; also any
characters after the terminating colon will be ignored.

Any numerical structure can be read in this way: scalars, variates, matrices, symmetric and
diagonal matrices and tables. The values can be entered in any of the forms described in 1.5.1,
that is,

1.20 !.2 3e1 !1.25E!2 27 *

are all valid, with * indicating a missing value.
The values for rectangular and symmetric matrices and multi-way tables must be given in the

order described in 2.4 and 2.5. The rules for free format allow you to arrange them in any way
you like, as long as you maintain the correct order, but you will probably find data files easier
to manage if the layout corresponds to the dimensions of the data structure: for example

SYMMETRIC [NROWS=10] Galaxy
READ Galaxy
0
1.87 0
2.24 0.91 0
4.03 2.05 1.51 0
4.09 1.74 1.59 0.68 0
5.38 3.41 3.15 1.86 1.27 0
7.03 3.85 3.24 2.25 1.89 2.02 0
6.02 4.85 4.11 3.00 2.11 1.71 1.45 0
6.88 5.70 5.12 3.72 3.01 2.97 1.75 1.13 0
4.12 3.77 3.86 3.93 3.27 3.77 3.52 2.79 3.29 0 :

Note, however, that the shortcuts for compacting number lists described in 1.5.1 are not allowed
within READ. All the values must be given; that is, pre- and post- multipliers and progressions
are not recognized. Thus in some cases it will be easier to assign values when declaring your data

3.1 Reading data 79

structures. For example,

VARIATE [VALUES=1...365] Day

is simpler to type than

READ Day

followed by 365 individual values.
Textual values (strings) must be enclosed within single quotes if they contain any characters

that have special meaning to READ (space, tab, comma, colon, asterisk, backslash, single or
double quote). The quotes can be omitted for other strings. For example:

TEXT [NVALUES=5] Country
READ Country
Australia Canada 'Great Britain' U.S.A. 'New Zealand' :

The rules for strings in READ are thus slightly different to those for lists of strings (1.5.2), where
quotes are required for any string that does not start with a letter or contains any character other
than letters or digits. Thus Newcastle-on-Tyne and 500Km are both valid when read in as
data, but not in a TEXT declaration.

Factors can be read using either their numeric levels or the associated textual labels (but you
cannot use both methods for the same factor within a single READ statement). You can also let
READ set up the factor levels or labels according to the values that it finds when reading the data
(Example 3.1.2d).

If you want to read the values of a pointer (that is, a list of identifier names) the rules are
rather stricter than for other types of data, as explained in 3.1.5.

You cannot read formulae or expressions directly. The easiest way to do this is to read the
required value into a text which can then be used in an appropriate declaration using either the
macro-substitution symbols ## (1.6.2) or the EXECUTE directive (5.4.3). You cannot read values
into the compound data structures described in 2.7 (SSPMs, LRVs and TSMs); these should be
formed using the appropriate directives (FSSPM, FLRV, FTSM), or by reading the individual
components of these structures.
 You can read values for more than one structure in a single READ statement. The values can
be taken either serially or in parallel. The default is to take the values in parallel: the first
element of each structure is read, then the second element of each, until all the data are read. For
example:

a1 b1 c1
a1 b1 c1 a2

a2 b2 c2 or b2 c2

a3 b3 c3 a3 b3 c3 a4 b4 c4 :
a4 b4 c4 :

Here A, B and C are in parallel, each with four values. The complete set of values for all three
structures is given, followed by one terminating colon. The term parallel merely indicates the
order in which READ is to read the values: that is, the first element of each structure, then the
second element of each, and so on. It is not necessary for the data to be laid out in neat columns,
although this may make a data file easier to work with.

Different types of structures can be read in parallel and they may have different kinds of
values (numerical or text), as shown in Example 3.1.2c.

Example 3.1.2c

> VARIATE [NVALUES=5] Area
> TEXT [NVALUES=5] Country
> READ Country,Area
Country/1> Australia 2975.0 Bolivia 424.18 Canada
 Area/3> 3851.9 Denmark 16.618 Ethiopia 457.28 :

Notice how the name of the first country is followed by its area, then the name of the second

80 3 Input and output

country and so on. Working interactively, the prompt helps you to keep track of which values
you need to type next. If you want to read data in parallel, all the data structures must be the
same length.

When reading in serial mode, all the values of the first structure are read, then all the values
for the second structure, until all the data structures have been read. For example

x1 x2 x3 :
y1 y2 :
z1 z2 z3 z4 z5 z6 :

Here all the values of X are given first, followed by all the values for Y, and then all the values
for Z. Unlike the parallel layout, each set of values must end with the terminating colon, so that
READ can tell when to move on to the next structure; this means that the structures can be of
different lengths.

In all the examples so far we have defined the type and size of the data structures in advance
of the READ statement. However, READ can make some declarations and definitions by default.
Any identifier that has not been declared previously will be set up as a variate. Vectors (variates,
texts and factors) of previously unspecified size will be set up to the current units length, if set
by UNITS (2.3.4); otherwise READ sets their length to match the number of values read. Also,
factors can be generated automatically from the values found, with LEVELS or LABELS set up
as appropriate. The exact rules are described below (3.1.4) but a simple illustration, in Example
3.1.2d, shows how to use READ to set labels (for factor Location) and levels (for factor Year).

Example 3.1.2d

 2 FACTOR Location,Year
 3 READ [PRINT=data,errors,summary] Location,Year; \
 4 FREPRESENTATION=labels,levels
 5 England 1979 Australia 1979 Netherlands 1981 France 1983
 6 England 1985 Italy 1987 Australia 1988 Scotland 1989
 7 Netherlands 1991 'New Zealand' 1992 Canada 1993 England 1993
 8 Australia 1994 Ireland 1995 Australia 1996 England 1997
 9 Australia 1999 Poland 1999 Australia 2001 England 2001 :

 Identifier Values Missing Levels
 Location 20 0 10
 Year 20 0 16

You can also use option SETNVALUES=yes to ensure that any previous setting of length of a
vector is reset according to the numbers of values in the new data. This option can be used only
when reading variates, texts or factors; more complex structures such as matrices and tables must
be declared in advance.

With small amounts of data it may be convenient to type it in directly, or to include it within
your Genstat program. However, when you analyse larger data sets it may be more convenient
to read the data from a separate file. The use of different files and input channels is explained
in full in 3.3, but to use data files with READ only the simpler features are required. All you need
do is open the data file on another input channel and then tell Genstat to read from that channel.
Suppose, for example, the data are stored in a file called Weights.dat:

24.3 25.6 57.3 43.8 45.3
46.5 47.9 97.0 77.5 64.3 :

You need to decide which input channel to use (here channel 4), and then set CHANNEL
appropriately in OPEN and READ:

OPEN 'Weights.dat'; CHANNEL=4; FILETYPE=input
READ [CHANNEL=4] Weights

The data file is just an ordinary text file, which may have been created within an editor or data-
entry system, or perhaps as output from another program. You can still use the other options of

3.1 Reading data 81

READ, to read multiple data structures in serial or parallel format and so on. You may need to edit
the file, for example to insert a colon after each set of data, or you can use the facilities described
in 3.1.3 for reading data sets that do not meet the default rules.

We now explain the various options and parameters of READ in more detail and introduce
some other ways in which data may be read: in fixed format, or from unformatted (binary) files,
or from Genstat text structures. There are options available to make it easier to read very large
amounts of data and to skip over unwanted sections of data. Also you can specify your own
characters or strings to separate data values, indicate missing values and mark the end of data.

3.1.3 Syntax of the READ directive

READ directive
Reads data from an input file, an unformatted file or a text.

Options
PRINT = string tokens What to print (data, errors, summary); default erro,

summ

CHANNEL = identifier Channel number of file, or text structure from which to
read data; default current file

SERIAL = string token Whether structures are in serial order, i.e. all values of
the first structure, then all of the second, and so on (yes,
no); default no, i.e. values in parallel

SETNVALUES = string token Whether to set number of values of vectors from the
number of values read (yes, no); default no causes the
number of values to be set only for structures whose
lengths are not defined already (e.g. by declaration or by
UNITS)

LAYOUT = string token How values are presented (separated, fixedfield);
default sepa

END = text What string terminates data (* means there is no
terminator); default ':'

SEQUENTIAL = scalar To store the number of units read (negative if terminator
is met); default *

ADD = string token Whether to add values to existing values (yes, no);
default no (available only in serial read)

MISSING = text What character represents missing values; default '*'
SKIP = scalar Number of characters (LAYOUT=fixe) or values

(LAYOUT=sepa) to be skipped between units (* means
skip to next record); default 0 (available only in parallel
read)

BLANK = string token Interpretation of blank fields with LAYOUT=fixe
(missing, zero, error); default miss

JUSTIFIED = string tokens How values are to be assumed justified with
LAYOUT=fixe (left, right); default righ

ERRORS = scalar How many errors to allow in the data before reporting a
fault rather than a warning, a negative setting, -n, causes
reading of data to stop after the nth error; default 0

FORMAT = variate Allows a format to be specified for situations where the
layout varies for different units, option SKIP and
parameters FIELDWIDTH and SKIP are then ignored (in
the variate: 0 switches to fixed format; 0.1, 0.2, 0.3 or

82 3 Input and output

0.4 to free format with space, comma, colon or
semi-colon respectively as separators; * skips to the
beginning of the next line; in fixed format, a positive
integer n indicates an item in a field width of n, !n skips
n characters; in free format, n indicates n items, !n skips
n items); default *

QUIT = scalar Channel number of file to return to after a fatal error;
default * i.e. current input file

UNFORMATTED = string token Whether file is unformatted (yes, no); default no
REWIND = string token Whether to rewind the file before reading (yes, no);

default no
SEPARATOR = text Text containing the (single) character to be used in free

format; default ' '
SETLEVELS = string token Whether to define factor levels or labels (according to

the setting of FREPRESENTATION) automatically from
those that occur in the data (yes, no); default no causes
them to be set only when they are not defined already

TRUNCATE = string tokens Truncation of leading or trailing spaces of strings read in
fixed format (leading, trailing); default * i.e. none

CASE = string token Whether the case of letters (small and capital) should be
regarded as significant or ignored when forming factor
labels automatically (significant, ignored); default
sign

LDIRECTION = string token How to define the ordering of levels or labels when
these are formed automatically (ascending, given);
default asce

Parameters
STRUCTURE = identifiers Structures into which to read the data
FIELDWIDTH = scalars Field width from which to read values of each structure

(LAYOUT=fixe only)
DECIMALS = scalars Number of decimal places for numerical data containing

no decimal points
SKIP = scalars Number of values (LAYOUT=sepa) or characters

(LAYOUT=fixe) to skip before reading a value
FREPRESENTATION = string tokens How factor values are represented (labels, levels,

ordinals); default leve

The PRINT option has three settings, data, errors and summary, which control printed output
from the READ directive. The default is PRINT=errors,summary. This produces a printed
summary of the data that has been read, and asks for warning messages to be printed about any
errors in the data (such as an incorrect number of values); 3.1.13 explains what happens after
errors have occurred. The setting data will print a copy of each line of input as it is read; this
may be useful if data are being read from a file, especially if there are errors. If you set PRINT=*
no output is produced; you should do this only if you are sure there are no errors in the data.

For numerical structures the printed summary includes the message Skew if the values have
a markedly skew distribution; that is, if the difference between mean and minimum is more than
three times, or less than a third of, the difference between maximum and mean. The summaries
can be useful as a quick check that the data have been read successfully, and do not contain any
gross errors such as a mistyped number with the decimal point in the wrong position. A separate
summary is produced for factors which indicates how many levels are defined for each; you can

3.1 Reading data 83

use this to check that READ has defined the factors correctly when the option SETLEVELS=yes
has been set. The summary also indicates the number of missing values read into each structure;
these may affect the results of subsequent analyses.

By default, READ will expect to find the data on the current input channel. Working
interactively this is the terminal, so a prompt is produced indicating that data is required. When
Genstat is being run in batch, the data should start on the line following the READ statement. If
you want to read data from another file it should first be opened on another input channel (3.3.1),
then the CHANNEL option should be set to that channel number. You can also use CHANNEL to
read from a text structure (3.1.9), and by setting UNFORMATTED=yes you can read from an
unformatted binary file. In the last case, CHANNEL will refer to a file opened specifically for
unformatted access; this is discussed separately in 3.7. Note: you should use CHANNEL if you
want to use READ in a program-control structure (5.2) or in a procedure (5.3).

If you specify more than one structure to be read, it is assumed that you want to read the data
in parallel. If you want to read in the structures one at a time (for example when they are of
different lengths) you should set the option SERIAL=yes.

The default terminator for marking the end of data is the colon (:) but you can use the END
option to change this to any string of up to eight characters, for example ENDDATA. If you have
defined the size of data structures in advance you can set END=* to indicate that there is no
terminator; Genstat then just reads the required number of values. You can omit the terminator
from the data if it is stored at the end of a file as the read will be terminated by the end-of-file
marker; end-of-file will always terminate the data, whatever the setting of END.

By default, a missing value should be indicated by an asterisk (*); this means that any data
item that begins with * is treated as missing. For example, any of the three strings

* *** *789

will be treated as missing. You can use the MISSING option to change this to any other single
character; for example, if you set MISSING='-' then any negative numbers will be read as
missing values.

In free format, values are usually separated by spaces or tabs. The SEPARATOR option can be
used to specify another character to use as a separator. For example you can use a comma:

READ [SEPARATOR=','] Weights
24.3, 25.6, 57.3, 43.8, 45.3,
46.5, 47.9, 97.0, 77.5, 64.3 :

You can use spaces and tabs in addition to the specified separator, so long as the separator is
present between each pair of values (except at the end of line, when it may be omitted).

The SEPARATOR, END and MISSING strings are all case-sensitive; for example,
END=enddata is different from END=EndData. The missing-value and separator characters must
be distinct and neither may be part of the END string. This is so that READ can make sense of the
input data.

A file can contain several sets of data: for example, it might contain 50 measurements on
heights of plants, followed by 50 values of weights. You could read the first 50 by one statement,
and the next 50 by another. Genstat maintains a pointer to the current position in each input
channel, and so returns to the correct place for the second READ (note that if the first READ
finished part-way through a line of data the next READ will start at the next line of the data file).
Occasionally you may want to go right back to the beginning of the file; you can do this by
setting the REWIND option to yes. For example, if you are working interactively and make a
mistake in READ so that the data in a file is read incorrectly, it may be easiest to start all over
again with a new READ statement rewinding to the beginning of the file.

Although READ is probably easiest to use when the data are in free format, you may sometimes
need to read data using a fixed format. This is selected by the option setting LAYOUT=fixed,
described in 3.1.7. You can use the options BLANK, JUSTIFIED and TRUNCATE and parameters
FIELDWIDTH and DECIMALS to control reading in fixed format. Alternatively, the FORMAT

84 3 Input and output

option caters for more complex examples of free-format or fixed-format data and also allows you
to switch between the methods whilst reading; this is discussed in greater detail in 3.1.8.

3.1.4 Implicit declaration of structures

READ can define some of the properties of vectors automatically from the values that are read.
More complicated data structures, such as matrices or tables, must be fully defined in advance;
for the remainder of this section it is assumed that you are reading vectors.

If the structures to be read have not previously been declared, they will be set up to be
variates. If you have already used the UNITS directive (2.3.4) to define a default length then this
will apply to any vectors of unknown length in READ. When the structures are being read in
parallel (that is, according to the default setting SERIAL=no), they must all be the same length;
any vectors of unknown size will be set to the same length as the other vectors being read. If
none of the structures has a previously defined length, then READ will act as if SETNVALUES had
been set to yes, so that vectors will have their lengths defined from the number of data values
found. When reading serially (SERIAL=yes), the structures are treated individually, and any
structure of unknown length will be defined from the number of values read in, as if you had set
SETNVALUES=yes. You can of course also set SETNVALUES=yes explicitly, to ensure that
vector lengths are set from the data, even when they had previously been set to a different size.
If you use SETNVALUES when reading structures in parallel with the units vector, slightly
different rules apply (3.1.12).

The following examples illustrate some of these rules. X and Y are assumed to be undeclared
previously, unless otherwise shown:

VARIATE [NVALUES=5] X
READ X,Y

declares Y to be a variate of length 5 (like X);

VARIATE [NVALUES=5] X
READ [SERIAL=yes] X,Y

expects five values for X, and defines Y as a variate with its length defined from the number of
values found in the second set of data;

READ X,Y

defines X and Y as variates of the same length, calculated from the number of values found
(which must be a multiple of 2);

READ [SERIAL=yes] X,Y

defines X and Y from the number of values found, which may be different for each variate.
You can also let READ define the levels and labels of factors automatically. If you just define

an identifier to be a factor, and do not mention either levels or labels, READ can set these from
the values that are read. The FREPRESENTATION parameter (3.1.5) controls how this is done.
If FREPRESENTATION is set to ordinals, the values should all be positive integers, and the
number of levels is set equal to the largest number that is read. With the default setting, levels,
the values can be any real numbers; the levels of the factor are formed from all the distinct values
in the data. Similarly, with FREPRESENTATION=labels, the factor values are supplied as
strings, and Genstat forms factor labels from the different strings that are found. By default READ
distinguishes between capital and small letters when forming factor labels, but you can set option
CASE=ignored to ignore the case of letters. Also, by default the levels or labels are sorted into
ascending order, but you can set option LDIRECTION=given to leave them in the order in which
they are found in the data file. This may be useful for example if you are reading compass
directions or days or months. (With levels or labels, the method is the same as that used by
the GROUPS directive (4.6.1) when neither the NGROUPS option nor the LIMITS parameter are
set: you could obtain the same factors by reading a variate or text and then using GROUPS to form
the factor yourself.)

3.1 Reading data 85

You can use the option SETLEVELS=yes to force the definition of factors in READ so that any
previous labels or levels are overwritten. The lengths of factors can also be set by READ,
according to the rules already defined. For example,

FACTOR [NVALUES=5] Age
READ [SETLEVELS=yes] Age; FREPRESENTATION=ordinals
21 22 21 24 29 :

sets up the factor AGE with 29 levels, that is, as if the FACTOR statement had the option setting
LEVELS=29. In contrast, the setting FREPRESENTATION=levels would form Age as a factor
with the four levels (21,22,24,29).

If you have defined your data structures in advance, READ implicitly includes a check on the
validity of your data: that it has the correct number of values and, when reading factors, that the
correct values are given. Although it may be more convenient to let READ set up your data
structures, you need to be careful as there is then no longer any check on the input values. It is
unwise to suppress the printed summary (3.1.1); this will tell you how many values have been
read, how many levels have been set up for factors, and so on. One point to remember is that, if
READ is defining the levels or labels of factors automatically, any misspelt value will generate
an unwanted level. If there seem to be too many levels, you might want to use TABULATE
afterwards to print the levels with their replications (4.11.1).

3.1.5 Reading non-numerical data: texts, factors and pointers

The rules for the interpretation of strings in READ are different from those when string lists occur
in a statement (1.5.2). Double quotes and backslashes are accepted as ordinary characters, and
the strings cannot be continued over a line.

In free format, quotes are required around any string that contains a space, quote, tab, colon,
asterisk, backslash, double quote, or character specified in the SEPARATOR or MISSING options.
If you have set END, the end string would need to be quoted if you also wanted to read it as a data
value. In a quoted string, any of the aforementioned characters are treated literally, except for
the single quote which must be repeated. A textual missing value can be represented by either
a quoted empty string (''), or the missing value character (*, unless set otherwise by the
MISSING option). An asterisk (or any other character representing the missing value) can still
be read, provided it is put within quotes: '*'.

TEXT Heading
READ Heading
'*** Latent Roots of X''X ***':

The value stored in Heading is *** Latent Roots of X'X ***.
The values of factors are usually represented by their levels. You can change this by setting

the FREPRESENTATION parameter. If you set it to labels, READ will accept as values the labels
of the factor, using the rules for reading text described above. The strings given as data values
must exactly match the labels of the factor if they have been declared. The setting
FREPRESENTATION=ordinals causes READ to expect an integer in the range 1 up to n, the
number of levels declared for the factor. As FREPRESENTATION is a parameter it can be set to
a list of values which are cycled in parallel with the structures to be read. Thus, you are allowed
to read several factors in one READ statement, possibly using a different method for reading each
one. The setting of this parameter is ignored for any structures that are not factors, but remember
that the list will still be cycled in parallel with these other structures.

The values of pointers are identifiers, that is, names of other data structures. When reading a
pointer only simple identifiers are allowed: suffixes cannot be used. For example, Winston is
allowed but Orwell[1984] is not.

The rules for reading text and factor labels are slightly different if you are using fixed format
(LAYOUT=fixed). These is explained at the end of 3.1.7.

86 3 Input and output

3.1.6 Skipping unwanted data (in free format)

You may sometimes have a data file that contains more data than you want to read in to Genstat.
For example, there may be several lines at the beginning of a file to describe the data set. You
can use the SKIP directive (3.3.3) to skip over these lines before using READ to read in the actual
data. Alternatively, you can embed the description in double-quotes (") and make it into a
comment that READ will ignore. You can also use comments to annotate your data or to remove
some values temporarily from the data.

If you want to skip over some of the data systematically, as for example when there are several
columns and only some are required for your analysis, there is an option and a parameter that
you can use, both of which are called SKIP.

The SKIP option indicates how many values to skip between complete units of data. For
example, with a file in channel 2 containing five columns of data, the statement

READ [CHANNEL=2; SKIP=3] X,Y

would read X and Y from the first two columns, and then skip the final three columns: Genstat
reads the first value for X and Y, the next three values are skipped before reading the second
value of X; so READ moves onto the next line of the file, and so on. You can also set SKIP=* to
skip directly to the next line of data; you could use this if there were varying numbers of
additional columns in the file. By default, SKIP is zero, so no values are skipped.

The SKIP parameter is interpreted in parallel with the structures whose values are to be read.
It indicates how many values should be skipped before reading the value for the corresponding
structure. This is easiest to explain in terms of parallel columns (although the rules for free
format do allow other actual layouts of the data).

31 91 11 81 21
32 92 12 82 22
33 93 13 83 23
34 94 14 84 24
35 95 15 85 25:

To read only the first, third and fifth columns, we could type

READ A,C,E; SKIP=0,1,1

The SKIP parameter tells Genstat to skip no values before reading A and one value before
reading C and reading E. Thus Genstat reads the values shown in bold. This statement would
work in exactly the same way if the data had been laid out differently: for example

31 91 11 81 21 32 92 12 82 22 33 93 13 83 23
34 94 14 84 24 35 95 15 85 25:

The SKIP option can be used in conjunction with the parameter when additional values need to
be skipped between units of data. In the example above, to skip over the values shown in bold
and read the intervening columns instead, the statement

READ [SKIP=1] B,D; SKIP=1

could be used with either layout of values. With the parallel layout of data, setting option
SKIP=* would work equally well, but this would not work with the data in the more compressed
layout.

The FORMAT option (3.1.8) also allows you to skip unwanted values or lines of data, but is
most useful when the data file contains more complex arrangements of data. If you set FORMAT,
the SKIP option and parameter will be ignored. In fixed format data is skipped one character at
a time, rather than one value at a time; this is described in the next section.

3.1.7 Reading fixed-format data

In fixed format, data values are arranged in specific fields on each line of the file. Each field
consists of a fixed number of characters. There is no need for separating spaces; the tab character
is not permitted, nor are comments. So, depending on how the fields are defined, the sequence

3.1 Reading data 87

of digits 123456 could be interpreted for example as the single number 123456, or two numbers
123 and 456, or three numbers 123, 4 and 56. Data like this are usually produced by special-
purpose programs or equipment; for example, automatic data recorders.

To read data in fixed format you set the LAYOUT option to fixed, and then specify the format
to be used. If the values for a structure always occupy the same number of character positions,
you can do this with the FIELDWIDTH parameter. For example,

READ [CHANNEL=2; LAYOUT=fixed] Weight,Height; FIELDWIDTH=3,5

takes data from channel 2 in fixed format. The data are in parallel: that is, reading across lines
of the file, values for Weight and Height appear alternately. The FIELDWIDTH parameter is
processed in parallel with the structures to be read, so each item of Weight data takes up three
characters, and each item of Height data takes up five. If the fieldwidth for a structure is not
constant, that is if different layouts are used for different units of the data, then you need to use
the FORMAT option, described in the next section (3.1.8).

Suppose there are 80 characters per line in the file; each pair of Weight and Height values
takes up 8, and so you have 10 pairs per line. The first line looks like:

Weight1Height1Weight2Height2 ... Weight10Height10

Suppose that the first two values for Weight were 1 and 200, and that the first two for Height
were 10 and 1200. Then, using £ to represent a space, the first four items on this line would be:

££1£££10200£1200

Genstat is able to identify the separate values 10 and 200 because it is reading a fixed number
of characters for each structure.

Genstat input files have a nominal width, set by default to 80. This can be altered by an OPEN
statement (3.3.1) to a different value if necessary. When reading in fixed format, each line of
input is taken to be exactly this width; shorter lines are extended with spaces (blanks). It is
important to make sure that you account for this when setting the options for READ, otherwise
you may read some values from these blank fields (the BLANK option, described below, explains
how the blank fields would be interpreted). In the example above, if the values for Height
occupied four characters instead of five there would be 11 pairs of values per line of 77
characters. Using the default settings, the final three characters on the first line would be read
as the 12th value of Weight, and READ would then be out of step as the 12th value of Height
would be read in from the beginning of the next line. The simplest solution is to set the file width
to 77 in the OPEN statement, but you can also use the SKIP option and parameter (see below) or
the FORMAT option (3.1.8) to avoid this sort of problem.

When you are using fixed format, the data terminator must begin within the first field to be
read after the final data value: so you must ensure that you set the field widths and position the
terminator appropriately. If you are using either the SKIP option or parameter, you must take
care not to skip accidentally over the terminator, as READ will continue to take input - and
probably generate many error messages.

Normally Genstat treats a blank field in fixed-format data as a missing value, and the only
indication will be in the count of missing values in the printed summary. You can request
warning messages for blank fields by setting the option BLANK=error. Alternatively, you can
cause blanks to be interpreted as zeroes, by setting BLANK=zero.

Data in fixed format are normally taken to be right-justified: that is, their right-hand ends are
flush with the right-hand end of the field; you can have either blanks or leading zeroes (for
numbers) in the redundant spaces at the left of the field. You can change this default by setting
the JUSTIFIED option. For example the value 123 can appear in a field of width 5 as:

££123 JUSTIFIED=right there may be leading blanks (the default)
123££ JUSTIFIED=left there may be trailing blanks
00123 JUSTIFIED=left,right there must be no blanks

£123£ JUSTIFIED=* there may be leading or trailing blanks

88 3 Input and output

In this way, JUSTIFIED allows you to check the blanks in each field. If a data field contains any
blanks that are not allowed by the current setting, an error will be reported. Note that when
reading numerical data, embedded blanks are never permitted. So a field containing, for example
1£2£3, will always produce an error message.

As an example, we can read the values of five scalars using a fixed format with values left-
justified in their fields by the following:

SCALAR V,W,X,Y,Z
READ [LAYOUT=fixed;JUSTIFIED=left] V,W,X,Y,Z; \
 FIELDWIDTH=4,5,7,4,5
1.235.62£678.9££3.7810.31:

This reads the values 1.23, 5.62, 678.9, 3.78 and 10.31 into V, W, X, Y and Z respectively.
The general principles of the SKIP option and parameter are discussed in the context of a free

format read in the previous section. When reading in fixed format the same ideas apply, but the
SKIP settings now specify numbers of characters to be ignored, instead of numbers of values.
Thus, you can obtain exactly the same effect as in the example above by putting

READ [LAYOUT=fixed] V,W,X,Y,Z; FIELDWIDTH=4,4,5,4,5; \
 SKIP=0,0,1,2,0

Sometimes fixed format data can be further compressed by omitting the decimal point. The
DECIMALS parameter allows you to re-scale data automatically when it is read; details are given
in 3.1.11.

When reading textual data in fixed format, the contents of each field are taken exactly as they
appear in the input file. There is no need to enclose values in quotes; in fact if you do so, the
quotes are treated as part of the data. For example,

TEXT [NVALUES=1] T1,T2,T3,T4
READ [LAYOUT=fixed; SKIP=*] T1,T2,T3,T4; FIELDWIDTH=6,3,4,7
'What's£it£all£about?':

gives text T1 the value 'What's, text T2 the value £it, text T3 the value £all, and text T4 the
value £about?'.

Consequently, the only way to represent a missing string in fixed format is by a blank field,
as '' or * would both be treated literally and stored as data values.

The TRUNCATE option allows you to remove unwanted spaces when reading texts or factors
as labels. Setting TRUNCATE=trailing removes trailing blanks in each line of text. TRUNCATE
also has a setting leading to delete initial blanks. TRUNCATE is particularly useful when reading
labels of factors in fixed format. This is illustrated in Example 3.1.7, where the values of the
factor Country are read as labels in a fixed field of seven characters. By setting
TRUNCATE=trailing the extraneous spaces at the end of Canada and France are removed,
allowing them to be recognized correctly.

Example 3.1.7

 2 TEXT [VALUES=Austria,Belgium,Canada,Denmark,England,\
 3 France,Germany] Cname
 4 FACTOR [LABELS=Cname] Country
 5 READ [LAYOUT=fixed; SKIP=*; TRUNCATE=leading,trailing] Country;\
 6 FIELDWIDTH=7; FREPRESENTATION=labels

 Identifier Values Missing Levels
 Country 7 0 7

 15 PRINT Country; JUSTIFICATION=right

 Country
 England
 Canada
 France
 Belgium

3.1 Reading data 89

 Germany
 Austria
 Denmark

3.1.8 Reading data with variable formats

When you are responsible for producing your own data files you can ensure that they are
arranged so that they can be read using simple combinations of the options and parameters of
READ. Usually the default settings will be sufficient. However, when you obtain data from other
sources this may not be the case. For example, you might find it necessary to read in fixed format
as described in 3.1.7. Sometimes even this may not provide sufficient flexibility, so you can set
the FORMAT option and use a variable format. By this we mean that the layout of the values may
vary from unit to unit of the data, and may also vary within each unit. For example, suppose you
have some meteorological data which was measured daily and that the file also contains some
additional summary values at the end of each week. The first eleven lines are reproduced to
illustrate the structure of the file:

Monday 5.5 -0.4 0.0 1.9 10.0
Tuesday -1.1 -2.1 0.0 0.0 34.0
Wednesday 0.6 -8.3 1.3 5.4 142.0
Thursday 6.8 -5.7 1.1 0.0 158.0
Friday 10.6 0.5 8.1 0.0 141.0
Saturday 10.7 6.4 8.3 0.0 152.0
Sunday 10.0 1.9 1.0 0.1 237.0
Summary week 1> 10.7 -8.3 4 19.8 7.4 10.0 124.8 237.0
Monday 9.9 2.5 0.0 4.4 229.0
Tuesday 11.4 2.1 8.5 0.3 237.0
Wednesday 11.9 6.3 18.7 0.0 520.0

Suppose the file contains data for 28 days. If you try to read a text and five variates of length 28
then the summaries found after the 7th, 14th, 21st and 28th days would cause an error in READ.
You need to read seven lines, skip one, read seven more, and so on. This can be done by setting
the option FORMAT=!((6)7,*,*). This means "read six values, do this seven times, skip to
the next line, skip again, then return to the beginning of the format and repeat, until enough data
has been read". The format is made clear by using (6)7 which corresponds to the physical
layout of the data, but 42 could have been specified instead, meaning read the next 42 values.

You can use FORMAT when reading in either free format or fixed format, and can also switch
between the two during the READ. When you have set FORMAT, Genstat ignores the SKIP option
and the FIELDWIDTH and SKIP parameters, and READ is controlled entirely by the values of the
FORMAT. These values are not in parallel with the list of structures: they apply to data values in
turn, recycling from the beginning when necessary.

You set FORMAT to a variate, which may be declared in advance or can be an unnamed
structure as shown above. Each value of this variate is interpreted as follows (where n is a
positive integer):

+n read n values (in free format) or one value from a field of n characters (in fixed format);
!n skip the next n values (in free format) or n characters (in fixed format)
* skip to the beginning of the next line
0.0 switch to fixed format
0.1 switch to free format using space as a separator
0.2 switch to free format using comma as a separator
0.3 switch to free format using colon as a separator
0.4 switch to free format using semicolon as a separator
0.5 switch to free format using the setting of the SEPARATOR option

Using the FORMAT variate READ will start in either free format or fixed format, according to the
setting of LAYOUT (by default, LAYOUT=separated; that is, free format). You can switch

90 3 Input and output

between these at any time by specifying a value in the range 0-0.5. Remember that if you use free
format, spaces and tabs can also be used in addition to the specified separator, and you must use
a separator that is distinct from the END and MISSING indicators (see 3.1.3).

3.1.9 Reading from a text structure

You can use READ to read data that has been stored in a text structure, by giving the identifier
of the text as the setting of the CHANNEL option. Each string of the text is treated as a line of
input, as if it had been read from a file. The length of each string defines the length of line that
is read; this may vary from line to line, so you will find that reading in fixed format is rather
difficult to specify correctly, and is perhaps better avoided here.

For example:

TEXT [VALUES=\
 '35 ''J. Smith'' 24000',\
 '24 ''G. Brown'' 11500:',\
 '22 33 44 55',\
 '66 55 77 88 :'] Data
TEXT Name
READ [CHANNEL=Data; SETNVALUES=yes] Age,Name,Income
& X

This gives Age, Name and Income each two values, and X eight.
Care is needed if you define the values of the text in the declaration as, in a string list, any

sequences of the single-quote, double-quote or backslash characters will be halved in length
when they are assigned to the text structure (1.4.2). In the example above, the first line that is
stored in Data and then read is actually

35 'J. Smith' 24000

Just as when reading from a file, READ keeps a records of its current position when reading

from a text, so that a subsequent READ from the same text will continue at the next line. This
means that you can read more than one set of data from a text, but you too need to remember the
position particularly when writing general programs or procedures. If you need to start again
from the beginning you can set REWIND=yes, or you can use the CLOSE directive (3.3.2) to close
the text. If the text is redefined, for example by a TEXT, READ or CONCATENATE statement, an
implicit CLOSE is carried out, so that the input buffers are not inconsistent with the new values
of the text.

3.1.10 Reading large data sets

You may sometimes have more data to read than can be stored in the space available within
Genstat. You can then use the SEQUENTIAL option of READ to process the data in smaller
batches. This works by reading in some of the data, partially processing it to form an
intermediate result, and then overwriting the original data with a new batch that is used to update
the intermediate results. This can be repeated until all the data has been read and the final
summary is obtained. There are two directives that include facilities specifically designed to
work with sequential data input: TABULATE which forms tabular summaries (4.11.1), and FSSPM
which forms SSPM data structures for use in linear regression (4.10.3). You can also use other
directives, such as CALCULATE, to process data sequentially, but you will have to program the
sequential aspects yourself.

You should first declare the structures to be of some convenient size, such that you will not
use up all the work space. You then use READ as normal, but with the SEQUENTIAL option set
to the identifier of a scalar, which will be used to keep track of how the input is progressing. For
example, to read in 10 variates of length 272500:

VARIATE [NVALUES=10000] X[1...10]
READ [CHANNEL=2; SEQUENTIAL=N] [1...10]

3.1 Reading data 91

The number of values declared for X[1...10] defines the size of batch to read (10000 in this
example). So, READ will read the first 10000 units of data (100,000 values), and set N to 10000
to indicate that is the number of units read. This should be followed by the statements to process
the first batch of data, then the READ can be repeated. Once again N is set to 10000, indicating
that another 10000 units have been read. This can be continued until READ finds the data
terminator, when it sets the sequential indicator to minus the number of values found in the last
batch. If this is less than the declared size of the data structures they will be filled out with
missing values. In the example given above, after the 28th READ the variates will each contain
2500 values followed by 7500 missing values, and N will be set to !2500, indicating that all the
data has been read and that the final batch contains only 2500 values. Usually you will use the
SEQUENTIAL facility in conjunction with FSSPM or TABULATE which are designed to recognize
the different settings of the scalar N.

The SEQUENTIAL option is best used within a FOR loop (5.2.1). You should set the NTIMES
option to a value large enough to ensure that sufficient batches of data are read. The loop should
contain the READ statement and any other statements required to process the data. For example

VARIATE [NVALUES=10000] X[1...10]
SSPM [TERMS=X[]] S
FOR [NTIMES=9999]
 READ [PRINT=*; CHANNEL=2; SEQUENTIAL=N] X[]
 FSSPM [SEQUENTIAL=N] S
 EXIT N.LE.0
ENDFOR

The EXIT directive is used to jump out of the loop once all the data has been read and processed;
this is safer than trying to program an exact number of iterations for the loop. The exit condition
includes the case when N is equal to zero, as this will arise when the batch size exactly divides
the total number of units. In the above example, if there were 280000 units of data altogether,
the 28th READ would terminate with N set to 10000. This is because READ is unable to look ahead
for the terminator, as there may be other statements in the loop, such as SKIP, which affect how
the file is read. The next READ would immediately find the data terminator, so would exit with
N set to zero. This special case is treated appropriately by FSSPM and TABULATE, but you should
remember to allow for it if you are programming the sequential processing explicitly.

You can use the SEQUENTIAL option to read data from more than one input channel, perhaps
when a large data set is split into two or more files, but you are not allowed to read data from the
current input channel (that is, the channel containing the READ statement). If you want to process
several structures sequentially from the same file, you must read them in parallel. You must also
be careful not to modify the value of the scalar, N, within the loop when using sequential data
input with FSSPM or TABULATE, as that could interfere with the sequential processing.

Another means of handling large amounts of data is provided by the ADD option. This allows
you to add values to those already stored in a structure, thus forming cumulative totals without
having to store all the individual data values. You must set SERIAL=yes with ADD=yes; and it
is allowed only for variates. For example:

VARIATE [NVALUES=6] A
READ [ADD=yes; SERIAL=yes] 3(A)
5 12 9 * * 9 :
8 1 3 * 2 10 :
3 4 0 * 11 * :

This starts by assigning the values 5, 12, 9, *, * and 9 to A. Then A is read again, and its values
become 13, 13, 12, *, 2, 19: with ADD=yes (and only then) missing values are interpreted as
zeroes when being added to non-missing values. Finally A contains the values 16, 17, 12, *, 13,
19.

When you read large quantities of data it may be worth using the ERRORS and QUIT options,
described in 3.1.13, to control error recovery from READ.

92 3 Input and output

3.1.11 Automatic re-scaling of data

You can scale values with the DECIMALS parameter. For example, suppose you put

READ [SETNVALUES=yes] A; DECIMALS=3
2523 2.1 376 0.78 :

The values of A would then be 2.523, 2.1, 0.376, 0.78. DECIMALS specifies a power of 10 by
which any value that does not contain a decimal point is scaled down. Negative powers are not
allowed.

3.1.12 Automatic sorting of data (using the UNITS structure)

If you have used the UNITS directive (2.3.4) to specify a variate or text containing unit labels,
READ will respect the order of these values when reading other structures in parallel with the
units structure; in other words the data is re-ordered to match the order of the unit labels. In
Example 3.1.12 the unit structure Item is read in parallel with variate Stock. This does not alter
the values of Item, but its values are used to indicate which unit of the data is being read, and
thus the order in which to store the values of Stock.

Example 3.1.12

 2 TEXT [VALUES=Beans,Carrots,Peas,Sardines,Tuna] Cans
 3 UNITS Cans
 4 READ [PRINT=data,errors] Cans,Stock
 5 Tuna 2 Peas 3 Beans 4 Carrots 0 Sardines 6 :
 6 PRINT Cans,Stock; DECIMALS=0

 Cans Stock
 Cans
 Beans Beans 4
 Carrots Carrots 0
 Peas Peas 3
 Sardines Sardines 6
 Tuna Tuna 2

If the units structure does not already have values, READ will define the order of the units as the
order in which it finds them in the data. This means that if you are reading several sets of data,
each having a column for the unit number (or label), the first use of READ will define the unit
order and subsequent READ statements will ensure that this order is maintained consistently in
the remaining data.

If a value is specified more than once when defining the units structure, READ will only ever
locate the first occurrence of that unit label. If a unit label is repeated in the data then only the
final set of values corresponding to that unit will be stored; earlier occurrences are overwritten
by subsequent ones. If you try to read a value that is not present in the units structure this is
regarded as a fault. Also, if the units structure contains missing values, it cannot be used to re-
order the data and will instead be overwritten by the new values: a warning message is printed
out to tell you if this occurs. If you use the option SETNVALUES=yes when reading structures
in parallel with the units vector, the other structures will all be set to the current unit length.

3.1.13 Errors while reading

There are various kinds of error that may arise during execution of a READ statement. There are
those that immediately inhibit the read, such as an attempt to read in a structure that is not
sufficiently defined. For example, if you declare a matrix M, without specifying its dimensions,
READ will not know how many values are required. Other examples include trying to read
incompatible structures in parallel (for example variates of different lengths), or specifying a
channel that has not been opened. If you make an error of this kind, READ will generate an

3.1 Reading data 93

appropriate diagnostic just like any other directive.
There are some checks that READ will make after it has read all the data. For example, it

checks whether you have supplied the correct number of values, generating a fault if there are
too many. If there are too few, the structures are completed with missing values and a warning
is printed. If you are reading in parallel, this check is extended to ensure that the number of
values supplied is a multiple of the number of structures. For example, suppose that values for
five structures of length 10 are being read in parallel. If 45 values are found, then the structures
will be completed with missing values; but if only 43 values are read in READ assumes that
something more serious must be wrong with the data and generates a fault.

The rest of this section looks at errors that can arise while reading the data, and assumes that
the READ statement has been specified correctly.

When you are working interactively and typing data at the terminal, READ will halt
immediately it finds an invalid value. You should type the correct value and then continue with
the rest of the data. If you had typed several items of data then all those before the erroneous
value will have been read and stored, but any remaining values will have been discarded, and so
will need to be retyped. For example, suppose you misspell a factor label:

Example 3.1.13a

> FACTOR [LABELS=!T(Avon,Bedford,Cornwall,Devon)] County
> READ County; FREPRESENTATION=labels
County/1> Avon Avon Cornwall
County/4> Bedford devon Cornwall :
******** Warning (Code IO 11). Unit 5 of County is incorrect.
Input: devon Code IO 44: Factor value not found in LABELS

Please input the correct value and subsequent data (the remainder of the last
line will be ignored).
County/5> Devon Cornwall :

 Identifier Values Missing Levels
 County 6 0 4

>

The message indicates which unit is incorrect and also gives an explanation of the error (in this
case devon was invalid because it should have started with a capital letter). The prompt
indicates where READ is restarting its input; note that the value for the sixth unit has to be given
again even though it was correctly specified in the original input.

When you are reading data in batch, it is not possible to recover from errors in this way.
Instead, READ will continue processing the data, substituting missing values for any data that it
cannot read, and printing out a message for every error that is found.

Example 3.1.13b

 2 VARIATE Speed
 3 FACTOR [LEVELS=!(30,40,50,70)] Limit
 4 READ Speed,Limit

******** Warning (Code IO 11). Statement 1 on Line 4

Command: READ Speed,Limit
Errors in data values.

 Unit Identifier Input:
 1 Speed l Code SX 39: Invalid character in number.

 4 Limit 60 Code IO 43: Factor value not found in LEVELS.

 5 Speed 1.0e999

94 3 Input and output

 Code IO 3: Real number too large.

 Identifier Minimum Mean Maximum Values Missing
 Speed 35.00 47.33 55.00 5 2

 Identifier Values Missing Levels
 Limit 5 1 4

******** Fault (Code IO 8). Statement 1 on Line 4.

Command: READ Speed,Limit
Too many errors in data.

A fatal fault has occurred - the rest of this job will be ignored

The first value of Speed was incorrect as a letter I had been typed, rather than the number 1.
Subsequent messages illustrate some of the other errors that may occur when reading data.
Notice that the data summaries indicate the presence of missing values, which were inserted by
READ. Of course, if you get errors when reading data it may be due to incorrectly specified
options or parameters in the READ statement, rather than actual errors in the data file. This is
especially likely if you are reading in fixed format or using the FORMAT option.

If errors occur when running in batch, a fault will be generated when READ terminates, thus
terminating the job. This is to avoid spurious output being produced from analyses based on
incorrect data. You can override this by using the options ERRORS and QUIT.

If you set ERRORS=n, where n is a positive integer, then up to n errors are allowed in the data
before READ generates a fault. You might want to do this if you knew certain items of data were
going to generate errors, but were prepared to accept them as missing values so that you could
analyse the rest of the data. Obviously, you need to be very careful when doing this, as there may
be other unexpected errors in the data. Usually you would have to try reading the data once
without setting ERRORS, so you could check all the messages, and find what value of n is
appropriate. Then the READ statement would have to be repeated, setting ERRORS and REWIND
(3.1.3) in order to read the data. For example, if missing values of a factor had been typed in as
the letter X, you would not want to define X as an extra level of the factor, but if you set
MISSING='X' any numerical data that used * for missing value could not be read either.

As already explained, READ produces a message for every data value that contains an error.
This can be very useful, as you then have the opportunity to correct all the errors at once, before
trying to read the data again. However, the error messages may not be due to errors in the data,
but may be caused by an incorrectly specified READ statement. For example, if you are reading
many structures in parallel and specify texts and variates in the wrong order in the list of
structures to be read, you will get an error message every time Genstat finds a piece of text rather
than a number in the position specified for a variate. This is not likely to be a problem, unless
you are reading large amounts of data, when you might end up with thousands of lines of
needless error messages. A sensible precaution then is to request Genstat to abort the READ if
more than a specified number of errors occur. You can do this by setting ERRORS to a negative
integer, !n. This means that up to n errors are allowed in the data, but READ will abort if any
more occur, switching control to the channel specified by QUIT (that is, starting or continuing
to read Genstat statements from that channel). If you are working in batch a fault will be
generated that inhibits execution of further statements, but interactively you have the opportunity
to examine the data that have been read in so far, which may help identify any problems in the
original READ statement or declarations of your data. For example:

Example 3.1.13c

> OPEN 'Data.dat'; CHANNEL=2; FILETYPE=input
> FACTOR [LABELS=!T(Die,Sand)] Casting
> VARIATE Breakage

3.2 Printing data 95

> READ [CHANNEL=2; ERRORS=-3] Breakage,Casting

******** Warning (Code IO 11). Statement 1 on Line 4
Command: READ [CHANNEL=2;ERRORS=-3] Breakage,Casting
Errors in data values

 Unit Identifier Input:
 1 Casting Die Code SX 39: Invalid character in number
 2 Casting Die Code SX 39: Invalid character in number
 3 Casting Die Code SX 39: Invalid character in number
 4 Casting Sand Code SX 39: Invalid character in number

******** Fault (Code IO 8). Statement 1 on Line 4
Command: READ [CHANNEL=2;ERRORS=-3] Breakage,Casting
Too many errors in data
3 allowed
> PRINT Breakage,Casting

 Breakage Casting
 147.2 *
 119.1 *
 127.8 *
 97.3 *

> READ [CHANNEL=2; ERRORS=-3; REWIND=yes; SETNVALUES=yes]\
> Breakage,Casting; FREPRESENTATION=labels

 Identifier Minimum Mean Maximum Values Missing
 Breakage 61.20 131.1 164.6 1247 0
 Identifier Values Missing Levels
 Casting 1247 0 2

The READ terminated after the fourth error in the data. Control returned to channel 1, the
keyboard (using the default setting of QUIT). Printing out the two structures showed that they
had been set up with four values, the number of units that had been completely read before
quitting. All the errors had occurred in the factor values: in this case the mistake was easily
identified, the FREPRESENTATION parameter had been omitted so that the default levels were
expected rather than the labels which were in the data file. The READ statement was then
repeated, specifying FREPRESENTATION=labels, and using REWIND to start again from the
beginning of the file and SETNVALUES to reset their lengths.

3.2 Printing data

The contents of Genstat data structures can be displayed, with appropriate labelling, using the
PRINT directive. In Genstat for Windows, PRINT is used by the Display Data in Output Window

menu to display the values of data structures in the Output window. This menu is obtained by
highlighting the structures of interest in the Data Display menu (obtained by pressing the F5
key), and then clicking the Display button. PRINT can also send output to other output channels,
or put it into a text structure. PRINT has many options and parameters to allow you to control
the style and format of the output but, in most cases, these can be left with their default settings.

These simple uses of PRINT are described in Section 3.2.1, while the more sophisticated
features are in Section 3.2.2. Section 3.2.3 describes the CAPTION directive which prints titles
in Genstat's standard formats, and Section 3.2.4 covers the PAGE directive which allows you to
advance to a new page before starting the next section of output.

3.2.1 Main features of the PRINT directive

PRINT directive
Prints data in tabular format in an output file, unformatted file or text.

96 3 Input and output

Options
CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file
SERIAL = string token Whether structures are to be printed in serial order, i.e.

all values of the first structure, then all of the second,
and so on (yes, no); default no, i.e. values in parallel

IPRINT = string tokens What identifier and/or text to print for the structure
(identifier, extra, associatedidentifier), for
a table associatedidentifier prints the identifier of
the variate from which the table was formed (e.g. by
TABULATE), IPRINT=* suppresses the identifier
altogether; default iden

RLPRINT = string tokens What row labels to print (labels, integers,
identifiers), RLPRINT=* suppresses row labels
altogether; default labe, iden

CLPRINT = string tokens What column labels to print (labels, integers,
identifiers), CLPRINT=* suppresses column labels
altogether; default labe, iden

RLWIDTH = scalar Field width for row labels; default 13
INDENTATION = scalar Number of spaces to leave before the first character in

the line; default 0
WIDTH = scalar Last allowed position for characters in the line; default

width of current output file
SQUASH = string token Whether to omit blank lines in the layout of values (yes,

no); default no
MISSING = text What to print for missing value; default uses '*' for

numbers and blanks in texts
ORIENTATION = string token How to print vectors or pointers (down, across);

default down, i.e. down the page
ACROSS = scalar or factors Number of factors or list of factors to be printed across

the page when printing tables; default for a table with
two or more classifying factors prints the final factor in
the classifying set and the notional factor indexing a
parallel list of tables across the page, for a one-way table
only the notional factor is printed across the page

DOWN = scalar or factors Number of factors or list of factors to be printed down
the page when printing tables; default is to print all other
factors down the page

WAFER = scalar or factors Number of factors or list of factors to classify the
separate "wafers" (or slices) used to print the tables;
default 0

PUNKNOWN = string token When to print unknown cells of tables (present,
always, zero, missing, never); default pres

UNFORMATTED = string token Whether file is unformatted (yes, no); default no
REWIND = string token Whether to rewind unformatted file before printing

(yes, no); default no
WRAP = string token Whether to wrap output that is too long for one line onto

subsequent lines, rather than putting it into a subsequent
"block" (yes, no); default no

STYLE = string token Style to use for an output file (plaintext,
formatted); default * uses the current style of the

3.2 Printing data 97

channel
PMARGIN = string tokens Which margins to print for tables (full, columns,

rows, wafers); default full
OMITMISSINGROWS = string token Whether to omit rows of tables that contain only missing

values (yes, no); default no
VSPECIAL = scalar or variate Special values to be modified in the output
TSPECIAL = text Strings to be used for the special values; must be set if

VSPECIAL is set

Parameters
STRUCTURE = identifiers Structures to be printed
FIELDWIDTH = scalars Field width in which to print the values of each structure

(a negative value -n prints numbers in E-format in width
n); if omitted, a default is determined (for numbers, this
is usually 12; for text, the width is one more character
than the longest line)

DECIMALS = structures Number of decimal places for numerical data structures,
a scalar if the same number of decimals is to be used for
all values of the structure, or a data structure of the same
type and size to use different numbers of decimals for
each value; if omitted or set to a missing value, a default
is determined which prints the mean absolute value to 4
significant figures

CHARACTERS = scalars Number of characters to print in strings
SKIP = scalars or variates Number of spaces to leave before each value of a

structure (* means a new line before structure)
FREPRESENTATION = string tokens How to represent factor values (labels, levels,

ordinals); default is to use labels if available,
otherwise levels

JUSTIFICATION = string tokens How to position values within the field (right, left,
center, centre); if omitted, right is assumed

MNAME = string tokens Name to print for table margins (margin, total,
nobservd, mean, minimum, maximum, variance,
count, median, quantile); if omitted, "Margin" is
printed

DREPRESENTATION = scalars or texts
Format to use for dates and times (stored in numerical
structures)

HEADING = texts Heading to be used for vectors printed in columns down
the page; default is to use the information requested by
the IPRINT option

TLABELS = texts If this is specified for a table STRUCTURE, the values of
the table are interpreted as references to lines within the
TLABELS text that are to be printed instead of the values
of the table itself

For a quick display of the contents of a list of data structures, you need only give the name of
the directive, PRINT, and then list their identifiers. For example,

PRINT Source,Amount,Gain

The output is fully annotated with the identifiers, and with row and column labels or numbers,
where appropriate. Factors are represented by their labels if available, and otherwise by their

98 3 Input and output

levels. The layout of the values is determined automatically by the size and shape of the
structures to be printed, and by the space needed to print individual values. The output is
arranged in columns; the structures are split if the page is not wide enough, so that one set of
columns is completed before the next is printed. Example 3.2.1a prints the values of two factors,
Source and Amount, and a variate Gain.

Example 3.2.1a

 2 UNITS [NVALUES=12]
 3 FACTOR [LABELS=!T(beef,cereal,pork); \
 4 VALUES=1,3,2,3,1,2,2,1,3,1,2,3] Source
 5 & [LEVELS=!(25,50); LABELS=!T(low,high); \
 6 VALUES=50,25,50,50,25,25,50,25,50,50,25,25] Amount
 7 VARIATE [VALUES=73,49,98,94,90,107,74,76,79,102,95,82] Gain
 8 PRINT Source,Amount,Gain

 Source Amount Gain
 beef high 73.00
 pork low 49.00
 cereal high 98.00
 pork high 94.00
 beef low 90.00
 cereal low 107.00
 cereal high 74.00
 beef low 76.00
 pork high 79.00
 beef high 102.00
 cereal low 95.00
 pork low 82.00

As the three vectors all contain the same number of values, the default is to print their values in
parallel. Alternatively, you can request that structures are printed in series, one below another,
by setting option SERIAL=yes. Of course, if the structures to be printed have different shapes
or sizes, their values can be printed only in series. The setting SERIAL=no is then ignored except
that, to save space, any vectors or pointers are then printed across the page (that is as though you
had set ORIENTATION=across: see Example 3.2.1e). Genstat annotates each set of values by
the identifier of the structure (but this can be controlled by the HEADING parameter or the
IPRINT option, described below) and automatically chooses a suitable format.

You can use the RESTRICT directive (4.4.1) to specify that only a subset of the units of a
vector should be printed. When printing in series the vectors can be restricted to different
subsets; but with parallel printing any restriction is applied to all the vectors (and any pointers)
so, if more than one vector is restricted, they must all have been restricted in the same way.

Genstat can produce output in either plain-text or a "formatted" style written in either RTF,
HTML or LaTeX. The style is set when the channel is opened, either by the OPEN directive
(3.3.1) or by the command used to run Genstat (1.1.2). You can also switch a formatted output
channel temporarily into the plain-text style (and back into its formatted style) using the OUTPUT
directive (3.4.3).

Plain-text output assumes that all characters occupy an equal width, so columns are aligned
using space characters. The other styles use special codes to define the columns. However, you
can set option STYLE=plain to request that output to files with these other styles should use
spaces instead (i.e. PRINT then operates as though they were in plain-text style). This is useful
particularly in procedures (5.3.2), when you may want to print a "sentence" containing
information from several different data structures.

In plain-text output, the default for a numerical structure is to use a field of f characters.
Generally, the value of f is 12, but another value can be defined using the FIELDWIDTH option
of the SET directive (5.6.1). Labels of factors are usually printed in a field of 12 characters but
this is extended if any of the strings in the text requires a wider field. Texts are printed in a field

3.2 Printing data 99

one larger than the width of their longest line. With formatted output, the field width defines the
fraction of the full line width to be used. So, for example if the line width (defined by the WIDTH
option of PRINT) is 80, a field width of 10 indicates that the structure should use 1/8th of the
line.

If the DECIMALS parameter was set when a numerical structure was declared (2.1.2), this will
define the number of decimal places in the output. Otherwise, the number of decimal places is
usually determined by calculating the number that would be required to print its mean absolute
value to at least d significant figures. Generally, d is four, but this can be redefined using the
SIGNIFICANTFIGURES option of the SET directive (5.6.1).

Alternatively, you can define your own formats using the parameters FIELDWIDTH,
DECIMALS, CHARACTERS, SKIP and JUSTIFICATION. The DECIMALS and MINFIELDWIDTH
procedures may then be helpful; see 3.2.5 and 3.2.6 for details..

Example 3.2.1b

 9 PRINT Source,Amount,Gain; FIELDWIDTH=7,7,6; DECIMALS=*,*,0

 Source Amount Gain
 beef high 73
 pork low 49
 cereal high 98
 pork high 94
 beef low 90
 cereal low 107
 cereal high 74
 beef low 76
 pork high 79
 beef high 102
 cereal low 95
 pork low 82

Example 3.2.1b illustrates the use of the parameters FIELDWIDTH and DECIMALS. FIELDWIDTH
indicates the field width to use to print each data structure; a negative value, of !f say, prints
numbers in scientific format (for example 7.3 E1 for the first unit of Gain) in a width of f with
DECIMALS significant places. You can set DECIMALS to a scalar to use the same number of
decimals for all the values of a numerical data structure. Alternatively, if you want to use a
different number of decimals for each value, you can supply a data structure of the same type and
size as the data structure; see Example 3.2.1c. If DECIMALS contains a missing value, a default
is used which prints the mean absolute value to d significant figures, as explained above. The
DECIMALS parameter is ignored for strings, like the labels of the factors Source and Amount.
(So in line 9, we could just have put DECIMALS=0, instead of DECIMALS=*,*,0.)

In the same way, the CHARACTERS parameter is ignored for numbers; for strings, it allows you
to control the number of characters that are printed. So, we could put CHARACTERS=1 in
Example 3.2.1b to print only the first letter of each factor label. By default, Genstat prints all the
characters in each string of a text or factor label, unless the CHARACTERS parameter was set to
a lesser number when the text or factor was declared (2.3.3).

The SKIP parameter allows you to place extra spaces between the values of each structure.
By default, no extra spaces are inserted unless a value fills the field completely, when a single
space will be inserted; there is also a blank line before the first printed line. SKIP can be set to
either a scalar or a variate in which a positive integer n requests that n spaces are left and a
missing value can be used to request a blank line. So, for example, we could put SKIP=0,2,2
to move the columns in Example 3.2.1b two further spaces apart. The zero value for Source
would mean that there were no extra spaces to the left of the block of output. There would also
be no blank line before the output. This can be reinstated by specifying a scalar (or variate)
containing a missing value in the SKIP setting for Source. However, there is the limitation that

100 3 Input and output

these missing values are ignored for the second and subsequent structures when printing in
parallel.

Example 3.2.1c

 10 PRINT Source,Amount,Gain; FIELDWIDTH=7,7,6; DECIMALS=Decimals;\
 11 FREPRESENTATION=labels,levels; \
 12 JUSTIFICATION=left,centre,right & '(measurements in grams)'

Source Amount Gain
beef 50.00 73.00
pork 25.00 49.00
cereal 50.00 98.00
pork 50.00 94.00
beef 25.00 90.00
cereal 25.00 107.0
cereal 50.00 74.00
beef 25.00 76.00
pork 50.00 79.00
beef 50.00 102.0
cereal 25.00 95.00
pork 25.00 82.00

 (measurements in grams)

The values can be left-justified by setting the JUSTIFICATION parameter to left as has been
done for the factor Source in Example 3.2.1c, or centred by setting it to either center or
centre as has been done for the factor Amount. This example also shows how to use the
FREPRESENTATION parameter to control the printing of the factor values. By default Genstat
will print labels if there are any; if there are none, it prints the levels. In the example, labels are
printed for Source, levels are printed for Amount, and FREPRESENTATION is ignored for the
variate Gain. The other available setting, ordinals, would represent the values by the integers
1 upwards; so for example beef, cereal and pork, would be represented by the numbers 1,
2 and 3, respectively. Line 12 shows how you can insert a caption into your output, by printing
a string.

The default setting, IPRINT=identifier, will usually label the output with the identifier
of the structure. However, this default can be modified by setting the IPRINT option when the
data structure is declared; see Section 2.1.3. Putting IPRINT=identifier,extra will also
include any "extra" text that has been associated with the structure by the EXTRA parameter when
it was declared, while putting IPRINT=extra will use only the extra" text. The setting
associatedidentifier can be used when a table has been produced by the TABULATE
(4.11.1) and AKEEP (2:4.6.1) directives, to request that the output be labelled with the identifier
of the variate from which the table was formed.

The HEADING parameter is useful when you want to use something other than the identifier
of a variate, factor or text to label its column. In Example 3.2.1d, the string 'Source of
protein' is used to label the column for Source, and 'Weight gain' to label the column
for Gain. No heading is supplied for Amount, so this is labelled by its identifier. The heading,
if supplied, simply replaces the identifier, and its appearance in the output is controlled by the
identifier setting of IPRINT just like the identifier itself.

Example 3.2.1d

 13 PRINT Source,Amount,Gain; DECIMALS=0; SKIP=0,2,2;\
 14 HEADING='Source of protein',*,'Weight gain'

3.2 Printing data 101

Source of protein Amount Weight gain
 beef high 73
 pork low 49
 cereal high 98
 pork high 94
 beef low 90
 cereal low 107
 cereal high 74
 beef low 76
 pork high 79
 beef high 102
 cereal low 95
 pork low 82

Example 3.2.1e illustrates the ORIENTATION option, which is relevant only when you are
printing vectors or pointers. By setting ORIENTATION=across, the values are printed in
alternate lines, across the page. To ensure that these line up correctly, the fieldwidth is taken as
the maximum of those specified for the printed structures, while the field used to print their
identifiers is given by the RLWIDTH option (by default 13).

Example 3.2.1e

 15 PRINT [ORIENTATION=across; RLWIDTH=8] Source,Amount,Gain;\
 16 FIELDWIDTH=7,7,6; DECIMALS=0

 Source beef pork cereal pork beef cereal cereal beef pork beef
 Amount high low high high low low high low high high
 Gain 73 49 98 94 90 107 74 76 79 102

 Source cereal pork
 Amount low low
 Gain 95 82

Notice that Genstat now has to print the output in more than one block. This will happen
whenever there is too much output to fit across the page, unless option WRAP is set to yes. Then
Genstat simply wraps each line onto subsequent lines. This is likely to be useful mainly if you
are printing the contents of the structures to be read by another program. You might then also
wish to suppress the identifiers by setting option IPRINT=* and remove blank lines by setting
option SQUASH=yes.

The width of each line can be controlled by the WIDTH option; the default is to take the full
available width. The INDENTATION option specifies the number of spaces to leave before each
line; by default there are none.

There are two other options that apply to any type of structure. The CHANNEL option
determines where the output appears. By default, the output is placed in the current output
channel, but CHANNEL can be set to a scalar to send it to another output channel; the
correspondence between channels and files on the computer is described in 3.3. Alternatively,
you can set CHANNEL to the identifier of a text to store the output. The text need not be declared
in advance; any undeclared structure that is specified by CHANNEL will be defined automatically
as a text. Each line of output becomes one value of the text and if the text already has values they
will be replaced. You are most likely to want to do this in order to manipulate the text further.
Remember, however, that if you print the text later on, its strings will be right-justified by
default, so you will need to set JUSTIFICATION=left in the later PRINT statement to achieve
the normal appearance of your output. The maximum (and default) line length of this text is the
length of what is called the output buffer. This is likely to be 200 on most computers. If you
intend to print it to an output file, you should set the WIDTH option as appropriate.

The MISSING option allows you to specify a string to represent missing values, instead of the
default that uses the asterisk symbol for missing numbers, and blanks for missing values in texts.

102 3 Input and output

For example, you could set MISSING='unknown' or MISSING=' '.
The VSPECIAL and TSPECIAL options allow you to substitute textual strings for other values

of numerical structures. The values are specified, in either a scalar or a variate, using the
VSPECIAL option. The TSPECIAL option then specifies a text, with as many values as the
VSPECIAL scalar or variate, to define the strings to be printed instead. For example, in the
following program, values of prob less than 0.001 are set to !1, and then printed as '<0.001'.

CALCULATE prob = prob * (prob.GE.0.001) - (prob.LT.0.001)
PRINT [VSPECIAL=-1; TSPECIAL='<0.001'] prob

PRINT can similarly be used for the straightforward printing of tables and the various types

of matrix, as well as formulae and expressions. The options and parameters that control the
layout of multi-way structures are described in 3.2.2, while 3.7 explains the UNFORMATTED and
REWIND options which are used to send output to unformatted files.

3.2.2 Printing of multi-way structures

PRINT can easily be used to print matrices and tables, by taking the default layout and labelling.
Examples of a two-way table and of a three-way table are shown in 2.5. For tables with more
than one dimension, the usual layout has one factor across the page and the others down the page
(see Example 2.5a); tables with only one dimension are printed down the page. Several tables
can be printed in parallel, provided they all have the same classifying factors. As shown in
Example 3.2.2a, the tables are then printed in alternate columns, as though they formed a larger
table with an extra factor (called the table-factor) representing the list of tables. This extra factor
thus becomes another (in fact, the final) factor to be printed across the page.

Example 3.2.2a

 2 FACTOR [LEVELS=2] Lab
 3 & [LEVELS=3; LABELS=!T(beef,cereal,pork)] Source
 4 & [LEVELS=!(25,50); LABELS=!T(low,high)] Amount
 5 TABLE [CLASSIFICATION=Lab,Source,Amount; \
 6 VALUES=162.4,171.2,173.6,160.8,148.4,157.6, \
 7 154.4,168.8,149.8,159.0,170.4,160.4] Startwt
 8 & [VALUES=243.6,286.8,260.4,286.2,222.6,281.4, \
 9 231.6,313.2,217.2,255.0,249.6,315.6] Finalwt
 10 PRINT Startwt,Finalwt

 Amount low high
 Startwt Finalwt Startwt Finalwt
 Lab Source
 1 beef 162.4 243.6 171.2 286.8
 cereal 173.6 260.4 160.8 286.2
 pork 148.4 222.6 157.6 281.4
 2 beef 154.4 231.6 168.8 313.2
 cereal 149.8 217.2 159.0 255.0
 pork 170.4 249.6 160.4 315.6

This default layout can be changed using the ACROSS, DOWN and WAFER options. You may wish
to do this simply by changing the factors which appear down and across the page. The ACROSS
option can be set to a scalar to specify how many factors should be printed across the page, or
to a list of factors to say which ones they should be. DOWN similarly specifies the factors to be
printed down the page. However, you cannot specify a list of factors for one of these options and
a scalar for any of the others. The table-factor can be represented in these lists by inserting a *
in the required position; if you do not mention the table-factor in either list it remains as the last
factor in the ACROSS list. In Example 3.2.2b the table-factor, Lab, and Amount are printed across
the page (in that order), and Source is printed down the page.

3.2 Printing data 103

Example 3.2.2b

 11 PRINT [ACROSS=*,Lab,Amount; DOWN=Source] Startwt,Finalwt;F=8

 Startwt Finalwt
 Lab 1 2 1 2
 Amount low high low high low high low high
 Source
 beef 162.4 171.2 154.4 168.8 243.6 286.8 231.6 313.2
 cereal 173.6 160.8 149.8 159.0 260.4 286.2 217.2 255.0
 pork 148.4 157.6 170.4 160.4 222.6 281.4 249.6 315.6

The WAFER option allows you to split the output up into subtables or "wafers". This is
particularly useful if the tables have many classifying factors, or if the factors have very long
labels. The setting can again be either a scalar or a list of factors (possibly including the table-
factor). As shown in Example 3.2.2c, each subtable has a heading its position in the full table.
If the table-factor is included in the wafer, the identifier of the appropriate table will be printed
at the beginning of the label for that wafer; this does not mean that the table-factor itself has been
moved, simply that the labelling has been rearranged to make it easier to read.

Example 3.2.2c

 12 PRINT [ACROSS=Amount; DOWN=Lab; WAFER=Source] Startwt,Finalwt

Source beef.

 Amount low high
 Startwt Finalwt Startwt Finalwt
 Lab
 1 162.4 243.6 171.2 286.8
 2 154.4 231.6 168.8 313.2

Source cereal.

 Amount low high
 Startwt Finalwt Startwt Finalwt
 Lab
 1 173.6 260.4 160.8 286.2
 2 149.8 217.2 159.0 255.0

Source pork.

 Amount low high
 Startwt Finalwt Startwt Finalwt
 Lab
 1 148.4 222.6 157.6 281.4
 2 170.4 249.6 160.4 315.6

You need not specify all the options DOWN, ACROSS and WAFER. If you leave any of them out
PRINT will deduce the missing information.

When a table has margins, usually they will all be printed. However, you can control which
are printed, by specifying the following settings of the PMARGIN option:

full print all margins (default),
columns print margins over column factors,
rows print margins over row factors, and
wafers print margins over wafer factors.

The OMITMISSINGROWS option also operates only on tables; if you set it to yes, PRINT will
omit any lines of output where the tables contain only missing values.

104 3 Input and output

You can control the space allowed for labels of the DOWN factors by using the RLWIDTH option.
By default this is set to 13, but you might want something else if the labels are very small. If the
width provided (by you, or implicitly) is inadequate, PRINT automatically resets it to
accommodate the longest row label. The labelling of rows by the down factors is controlled by
the RLPRINT option. The default, RLPRINT=labels,identifiers, prints the identifiers of
the factors and their levels or labels. Similarly, the CLPRINT controls the labelling of columns
by the across factors.

When tables are produced by TABULATE (4.11.1) Genstat sets an internal indicator for use by
PRINT to indicate the appropriate label for any margins. When a single table is printed this name
will be used by default. When printing tables in parallel, if they all have the same setting of the
margin name indicator, the appropriate name is used. If they have different settings, or none at
all (tables from sources other than TABULATE) the margins will be labelled Margin by default.
You can change the label by setting the MNAME parameter. Tables printed in parallel must have
the same label throughout, and Genstat will take the one specified for the first table in the list.
But in serial printing, you can use a different margin name for each table.

The TABULATE (4.11.1) and AKEEP (2:4.6.1) directives also record the identifier of the variate
from which the table was formed, and you can request that this be used to label the output,
instead of the identifier of the table itself, by setting the IPRINT option to
associatedidentifier.

The PUNKNOWN option controls the printing of the "unknown" cell of a table (see 3.5). The
default action is to print this cell, labelled with the table identifier, but only if it contains a value
other than missing value or zero. You can select one of five settings:

present (default) print value if not missing or zero
always print the unknown cell regardless of value
zero print unless the value is zero
missing print unless the value is missing
never do not print the unknown cell whatever its value

Genstat tables can only contain numbers. However, you can use the TLABELS parameter to
print tables of textual strings. You first need to form a Genstat text structure containing all the
strings that may occur. Then form a table with the required classifying factors and, in each cell
of the table, put the number of the line (within the text) of the string that you want to print there.
This is illustrated Example 3.2.2d, where the numbers 4, 2 and 4 in the table MainDirection
refer to the 4th, 2nd and 4th elements of the text Direction.

Example 3.2.2d

 13 FACTOR [LABELS=!t(April,May,June)] Month
 14 TEXT [VALUES=North,South,East,West] Direction
 15 TABLE [CLASSIFICATION=Month; VALUES=12.2,5.8,10.7] MeanSpeed
 16 & [VALUES=4,2,4] MainDirection
 17 PRINT MeanSpeed,MainDirection; TLABELS=*,Direction

 MeanSpeed MainDirection
 Month
 April 12.200 West
 May 5.800 South
 June 10.700 West

Options ACROSS, DOWN, WAFER, RLPRINT and CLPRINT also apply to matrices. By default,
though, if you have several matrices they will be printed one after another on the page.

With symmetric matrices the only options of these that are relevant are RLPRINT and
CLPRINT; a further setting integer is available for these to request that the rows or columns
be labelled by the integers 1 onwards, as well as, or instead of the labels provided with the

3.2 Printing data 105

symmetric matrix: for example setting RLPRINT=integers and CLPRINT=integers,
labels would identify the rows by integers and the columns with integers and labels.

3.2.3 The CAPTION directive

CAPTION directive
Prints captions in standardized formats.

Option
PFIRST = string tokens What to print first (dots, page, outprint); default *

i.e. none

Parameters
TEXT = texts Contents of the captions
STYLE = string tokens Style for each caption (plaintext, stress, minor,

major, meta, note, status); default plai

The CAPTION directive allows captions to be printed in the standard Genstat styles. The contents
of the caption are supplied by the TEXT parameter. The STYLE parameter specifies a string to
indicate the caption style:

plaintext ordinary text,
stress text to be emphasized,
minor a minor caption signifying a sub-section in the output,
major a major caption signifying a section in the output,
meta a meta-caption to group several sections of output,
note a "note" to the user, and
status a "status" message.

The PFIRST option allows you to start the caption on a new page or to precede it by a line of
dots (or a horizontal "rule" if the output is formatted; see the OPEN directive, 3.3.1).
Alternatively, the outprint setting generates the dots or new page according to the setting for
the current output channel (see the OUTPUT directive, 3.4.3).

The major, minor and plain-text captions are illustrated in Example 3.2.3.

Example 3.2.3

 2 TEXT [VALUES=\
 3 'Notice that, in plain text captions, Genstat reformats the',\
 4 'lines of the text to fill each line of output and start',\
 5 'the next line at the end of a word.'] Text
 6 CAPTION [PFIRST=dots] 'Major heading','Minor heading',Text;\
 7 STYLE=major,minor,plaintext

7...

Major heading
=============

Minor heading

Notice that, in plain text captions, Genstat reformats the lines of the text to
fill each line of output and start the next line at the end of a word.

106 3 Input and output

3.2.4 The PAGE directive

PAGE directive
Moves to the top of the next page of an output file.

Option
CHANNEL = scalar Channel number of file; default * i.e. current output file

No parameters

When output is to a file, graphs and output from statistical analyses will automatically start on
a new page, unless you have requested otherwise using the OUTPRINT option of JOB (5.1.1) or
SET (5.6.1). With other directives, such as PRINT or TABULATE, you can request a new page
using the PAGE directive. By default, PAGE works on the current output channel, but you can use
the CHANNEL option if you are sending output to another file.
PAGE has no effect unless output is to a file, and it achieves its effect by printing a line

consisting of just the control code for a form feed (ASCII character 12). The effect of PAGE is
therefore independent of the page size set by the OPEN directive (3.3.1).

3.2.5 The DECIMALS procedure

DECIMALS procedure
Sets the number of decimals for a structure, using its round-off (A. Keen).

Options
SETATTRIBUTE = string token Attributes to be redefined for STRUCTURE (decimals);

default deci
SIGNIFICANTFIGURES = scalar Required number of significant figures; default takes the

system default, which can be modified by SET

Parameters
STRUCTURE = identifiers Numerical structure for which the number of decimals is

to be set
DECIMALS = scalars To save the number of decimals to use for all the values

of each structure
ROUND = scalars To save the round-off provided by using DECIMALS

decimal places
VDECIMALS = structures To save numbers of decimals for every value of each

structure
VROUND = structures To save the round-off for every value of each structure

As explained in 3.2.1, the number of decimals that Genstat uses as a default, when printing a
numerical structure, is calculated as the number required to display the mean of the absolute
values of the numbers in the structure to a standard number of significant figures. Usually the
standard number of significant figures is four, but this "system default" can be changed using the
SIGNIFICANTFIGURES option of the SET directive. The default method allows output to be
generated automatically with reasonable accuracy. However, it may be preferable to use fewer
decimals if the numbers can be represented exactly with three or fewer significant figures. For
example it may be preferable to use two decimal places rather than four for a variate containing
the values 0.1 and 0.21 (i.e. to print 0.10 and 0.21, rather than 0.1000 and 0.2100).

3.2 Printing data 107

The DECIMALS procedure operates similarly to the standard Genstat default, except that the
number of decimal places is decreased if the final decimal position would contain the digit zero
for every value of the structure. It also differs in that it has its own SIGNIFICANTFIGURES
option to specify the required number of significant figures from the system default.

The numerical structure for which the number of decimals is to be determined must be
supplied using the STRUCTURE parameter. The DECIMALS parameter can save the appropriate
number of decimal places (as a scalar), and parameter ROUND can save the maximum round-off
over the values of the structure. By default DECIMALS modifies the declaration of the
STRUCTURE so that this becomes its default number of decimal places for subsequent printing
(see the DECIMALS parameter of SCALAR, VARIATE, TABLE, MATRIX and SYMMETRICMATRIX).
However, you can set option SETTATTRIBUTE=* if you want the default number of decimals
to remain unchanged.
DECIMALS can also calculate a separate number of decimal places for each of the values of

the STRUCTURE. This can be saved (in a structure of the same type as the STRUCTURE) using the
VDECIMALS parameter, and the round-off for each value can similarly be saved using the
VROUNDOFF parameter.

The difference between the DECIMALS and VDECIMALS parameters is illustrated in Example
3.2.5.

Example 3.2.5

 2 VARIATE [VALUES=1,0.1,0.01,0.001] X
 3 DECIMALS X; DECIMALS=dpt; VDECIMALS=vdpt
 4 PRINT X,X; DECIMALS=dpt,vdpt

 X X
 1.000 1
 0.100 0.1
 0.010 0.01
 0.001 0.001

3.2.6 The MINFIELDWIDTH procedure

MINFIELDWIDTH procedure
Calculates minimum field widths for printing data structures (R.W. Payne).

Option
IPRINT = string tokens What identifier and/or text to print for the structure

(identifier, extra); default is to take the IPRINT
setting of each STRUCTURE

Parameters
STRUCTURE = identifiers Data structures to be printed
FIELDWIDTH = scalars Saves the minimum field widths
DECIMALS = scalars Number of decimal places to be used for numerical data

structures; if unset, a default is obtained using the
DECIMALS procedure

SKIP = scalars Number of spaces to leave before each value of the
structure; default 1

FREPRESENTATION = string tokens How to represent factor values (labels, levels,
ordinals); default is to use labels if available,
otherwise levels

108 3 Input and output

MINFIELDWIDTH can be used to calculate the minimum field width that would be required to
print a data structure in an even column down the page using the PRINT directive. The data
structures are specified by the STRUCTURE parameter, and can be any of those supported by
Genstat. The calculated field width is saved, in a scalar, by the FIELDWIDTH parameter.

The IPRINT option indicates how the values of each STRUCTURE are to be labelled. The
identifier setting uses the identifier of the STRUCTURE, while the extra setting used the
information that can be specified by the EXTRA parameter when data structures are defined by
directives like VARIATE, FACTOR and TEXT. You can set IPRINT=* to indicate that the values
are not to be labelled by either of these. Alternatively, if IPRINT is not specified, the default is
taken from the IPRINT attribute of the STRUCTURE (which can be set by the IPRINT option of
VARIATE, FACTOR, TEXT etc). This is the same default that is used by PRINT if its own IPRINT
option is not specified.

With numerical structures, like variates or matrices, the DECIMALS parameter specifies the
number of decimal places that are to be used. If you set DECIMALS to a scalar containing a
missing value, the DECIMALS procedure is used by MINFIELDWIDTH to determine a default
number of decimal places, and this is stored in the scalar so that you can use it later. The
DECIMALS procedure is also used to obtain a default if the DECIMALS parameter is not set.

The SKIP parameter specifies how many spaces are to be left before each element of each
STRUCTURE; default 1.

The FREPRESENTATION parameter controls the printing of the factor values. The default is
to print labels if there are any; if there are none, it is assumed that levels will be printed. The
ordinals setting represents the values by the integers 1 upwards.

Example 3.2.6 uses MINFIELDWIDTH to set default formats for the factors Source and
Amount, and the variate Gain, from Example 3.2.1a.

Example 3.2.6

 18 SCALAR Dec
 19 MINFIELDWIDTH Source,Amount,Gain; FIELDWIDTH=Fs,Fa,Fg; DECIMALS=*,*,Dec
 20 PRINT Fs,Fa,Fg,Dec

 Fs Fa Fg Dec
 7.000 7.000 5.000 0

 21 PRINT Source,Amount,Gain; FIELDWIDTH=Fs,Fa,Fg; DECIMALS=*,*,Dec

 Source Amount Gain
 beef high 73
 pork low 49
 cereal high 98
 pork high 94
 beef low 90
 cereal low 107
 cereal high 74
 beef low 76
 pork high 79
 beef high 102
 cereal low 95
 pork low 82

3.3 Accessing external files

Genstat makes use of various types of file. These are classified according to the information that
they store. Some files are in the standard text format recognized by many other programs such
as editors, which you can use to prepare your Genstat program and data files. Other files (binary
files) are produced by Genstat in formats specific to Genstat. Graphics output files use standard
formats which may use either ordinary text files or unformatted binary files.

3.3 Accessing external files 109

Genstat accesses the files via channels. For each type there is a set of numbered channels that
can be used to reference different files in the relevant directives. For example, there are five
input channels, numbered 1 up to 5. Likewise, there are five output channels. Genstat
distinguishes between the different types of channel, so you can have one file attached to output
channel 3 and a different file simultaneously attached to backing store channel 3. Then, setting
the option CHANNEL=3 in PRINT and STORE statements will send the different kinds of output
to the appropriate files. The table below gives details of the channel numbers that are generally
available in most versions of Genstat. It is possible that a particular version may allow additional
channels to be used for some types of file; if so, details should be in your local documentation.
Graphics channels use a slightly different numbering system, in which the channel corresponds
to the number of the graphics device (set by the DEVICE directive; 6.9.1).

Type of file Channels Purpose

input 1...5 text files containing Genstat
instructions

output 1...5 text files to contain Genstat
output

backingstore 0...5 structured binary files for
storage of data

procedure library 1...3 backing store files
containing procedures to be
accessed automatically
(5.3.3)

graphics device numbers text or binary files for
storing graphical output that
can subsequently be printed
on a plotter or laser printer
(6.9.1)

unformatted 0...5 binary files for rapid storage
and retrieval of data

When you run Genstat it starts taking input from input channel 1 and produces output on output
channel 1. In an interactive run, these will be keyboard and screen, while in a batch run they will
be files on the computer (1.1). Another file that is attached automatically is the start-up file of
instructions that are executed at the outset of each job (5.6.4); this is attached to input channel
5. The start-up file may attach other files, for example to hold a transcript of input or output;
your local documentation will contain details.

The command that you use to run Genstat may allow you to arrange for other files to be
attached when Genstat starts running. Alternatively, within Genstat, you can use the OPEN
directive. OPEN also lets you define additional characteristics of the file, such as the maximum
length of each line or the style for output. When you have finished using a file you can tell
Genstat to CLOSE it (but note that all files are automatically closed by the STOP directive).

The SKIP directive can be used to skip over part of an input file or to print extra blank lines
in an output file (3.3.3). The ENQUIRE directive (3.3.4) can be used to find out about the files
that are currently connected to any of Genstat's channels; this is likely to be useful particularly
within general programs and procedures.

One special type of file is the Genstat text structure, which may be thought of as an "internal"
file. This can be used for input or output by certain directives. Those directives that can create
texts to contain their output (for example TEXT or PRINT) leave them in a "closed" state. There
is no need to open a text explicitly if you want to use it for input (for example in READ), but you
may need to CLOSE it afterwards; see 3.1.9 for further details. The contents of the texts are lost

110 3 Input and output

at the end of the job unless you save them, for example by using backing store (3.5). The use of
texts as internal files is a more advanced facility that is likely to be required only for more
complicated programs and procedures.

3.3.1 The OPEN directive

OPEN directive
Opens files.

No options

Parameters
NAME = texts External names of the files
CHANNEL = scalars Channel number to be used to refer to each file in other

statements (numbers for each type of file are
independent); if this is set to a scalar containing a
missing value, the first available channel of the specified
type is opened and the scalar is set to the channel
number

FILETYPE = string tokens Type of each file (input, output, unformatted,
backingstore, procedurelibrary, graphics);
default inpu

WIDTH = scalars Maximum width of a record in each file; default 80
INDENTATION = scalar Number of spaces to leave at the start of each line;

default 0
PAGE = scalars Number of lines per page (relevant only for output files)
ACCESS = string token Allowed type of access (readonly, writeonly,

both); default both
STYLE = string token Style in which to write to an output file (plaintext,

html, latex, rtf); default plai
HTMLHEAD = texts Text structures containing custom content for the header

of an HTML document

The OPEN directive enables you to connect files to the various available channels within Genstat.
Usually you need specify only the name of the file, the channel number and type of file, and
leave the other parameters to take their default settings. For example, the following statements
attach a file called Weather.dat to the second input channel, and then read data from it, as
explained in 3.1.2.

OPEN 'Weather.dat'; CHANNEL=2; FILETYPE=input
READ [CHANNEL=2] Rain,Temperature,Sunshine

The filename can be anything that is acceptable to your computer system. You should, however,
check for any constraints: for example, graphics software may require bitmap files to have the
extension .bmp. You should check in your local documentation for information regarding any
features that are specific to your computer or version of Genstat. For example, logical or
symbolic names may be automatically translated by Genstat before files are accessed; upper and
lower case characters may be significant, as on Unix systems. The filename may involve
characters that have special meaning within Genstat. For example, the character \ may be
required to specify directories and sub-directories on a PC. As explained in 1.4.2, this character
needs to be duplicated in a string to avoid Genstat interpreting it as the continuation symbol. For
example

3.3 Accessing external files 111

OPEN 'D:\\UK\\Weather.dat'; CHANNEL=2; FILETYPE=input

to open the file 'D:\UK\Weather.dat'. As a more convenient alternative, the Windows
version of Genstat allows you to use / instead. Again, this should all be explained in the local
documentation.

You are free to choose which channels you want to use (within the range available for the
specified type of file), apart from input and output channel 1 which are "reserved" for use by the
files specified on the command line. Also, input channel 5 is used for the start-up file (5.6.4) and,
if you are working interactively, the standard start-up file arranges for output channel 5 to store
a transcript of your output. However, you can use the CLOSE directive (3.3.2) to disconnect these
files if you want to use the channels for some other purpose. The backing-store and unformatted
work files are attached to channel 0, and this channel cannot be used in OPEN or CLOSE.
Graphics files must be opened on the channel corresponding to the device number.

Obviously you cannot open more than one file on a channel, so if you wish to open a file on
a channel that is currently in use you must first close that channel (3.3.2). Sometimes, in general
programs or procedures, you may not know which channels are available. You can then let OPEN
find a free channel: if CHANNEL is set to a scalar containing a missing value, the file is opened
on the next available channel of the appropriate type, and the scalar is set to the number of the
channel. The scalar need not be declared in advance; if CHANNEL is set to an undeclared
structure, this will be defined as a scalar automatically.

SCALAR FreeChan
OPEN 'Weather.dat'; CHANNEL=FreeChan; FILETYPE=input
READ [CHANNEL=FreeChan] Rain,Temperature,Sunshine

Another constraint is that you cannot open the same file on more than one channel at once.
Input files must already exist when they are opened, whereas output files will be created by

Genstat. If an output file with the specified name exists already, Genstat may create an extra
"version" of the file, or report a fault, or cause the file to be overwritten, depending on the usual
conventions on your type of computer. Your local documentation will describe what rules apply
in this situation, and should also explain if there are any system variables you can set to control
this action.

The STYLE parameter controls the style to be used to represent the information in an output
file. The default is to use plain text, which assumes that all characters occupy an equal width.
So, for example, columns are aligned by use of space characters and captions are highlighted by
underlining them by rows of equal signs or minuses. Alternatively, you can also choose a
formatted style: HTML (as used for example by web browsers), RTF (as used by word
processors such as Microsoft Word) or LaTeX (as used for scientific publications). Columns and
tables are then formed using the conventions of the output format: for example, in LaTeX, they
are written in the tabular environment. Note that, even if you have opened a channel in a
formatted style, you can still switch to a plain-text mode, using the OUTPUT directive (3.4.3).
Genstat then arranges to generate the output in an equally-spaced font, such as Courier.

When you open a file for use by backing store (3.5) or unformatted input and output (3.6), you
can both read from it and send output to it, unless you set the ACCESS parameter (see below).
Procedure libraries are a special type of backing-store file, described in 5.3.3.

The WIDTH parameter sets the maximum number of characters per line for input and output
files. It is ignored for other types of file. The default values for WIDTH are designed to be
appropriate for each implementation of Genstat and may differ between input and output; details
will be found in your local documentation. For input and output with screen displays that use
windows WIDTH may be set automatically from the size of the appropriate window.

For input files the default is normally 80, reflecting the size of most screen displays. You can
change this if necessary, to read either fewer characters from each line, or longer lines. If the
WIDTH is set to be too small any extra characters will be lost, which may cause unexpected action
or syntax errors. Remember that if you use READ with LAYOUT=fixed to read fixed-format data,

112 3 Input and output

short lines are extended with spaces up to the WIDTH setting. If you want to read data from a file
with, say, 64 characters per line, setting WIDTH=64 when you open the file may make the format
specification easier (rather than taking the default width of 80 and having to remember to skip
16 characters at the end of each line).
 For output files, the default is the largest number of characters that can usually be displayed
in a single line. This number is typically 80 for terminals but for files it is likely to be either 80,
120 or 132, depending on the type of computer. You can use the WIDTH parameter to restrict the
number of output characters to a smaller number, or to a larger number up to 200.

The PAGE parameter specifies the size of page in output, affecting directives like GRAPH,
QUESTION and HELP. For output to files, the default value of PAGE is designed to be suitable for
printers. For windowed displays Genstat will, if possible, detect the size of the window and set
the page size appropriately. You can also set option OUTPRINT=page in either JOB (5.1.1) or
SET (5.6.1) to ensure that graphs and statistical analyses each start on a new page.

The INDENTATION parameter can be used to leave a specified number of blank characters to
the left of each line of an output file, so that printed output can be bound for example. The
indentation is subtracted from the WIDTH setting, so if you set WIDTH=80 and INDENTATION=10
then only 70 characters will be printed on each line of output.

The ACCESS parameter is used to control the way in which unformatted and backing-store files
can be accessed, on computers that allow this; for details see your local documentation.

The HTMLHEAD parameter allows you to supply additional markup content for the document
header of an HTML file, to be inserted between the <head> and </head> tags. It can be set
either to a text containing all the HTML markup or to the name of a file containing that
information. It is intended primarily for inserting CSS style information, for example:

<style>
h1 { color: black; background-color: red !important; }
h2 { color: white; background-color: green !important; }
</style>

but can also be used to set any other valid header content. Additional CSS content can also be
loaded via a link tag, e.g.

<link rel="styleSheet" type="text/css" href="genstat.css">

By default, the header contains a title and some standard meta data. These tags can be
overwritten by specifying these tags in the inserted header
data. The tags that are treated in this way are:

<title>
<meta name="description"
<meta name="keywords"
<meta name="author"

All other content of the text is inserted verbatim and assumed to be valid HTML. If HTMLHEAD
is not set, Genstat inserts the content of the file Genstat.css which is supplied with the
Genstat installation in the Source directory. This defines a number of classes which are used
at various points in the Genstat output (for example to define styles used for output from
CAPTION; see 3.2.3). The file can be used as a template from which to derive a local variation
redefining basic elements of output.

3.3.2 The CLOSE directive

CLOSE directive
Closes files.

No options

3.3 Accessing external files 113

Parameters
CHANNEL = scalars or texts Numbers of the channels to which the files are attached,

or identifiers of texts used for input (which, after
"closing", can then be re-read)

FILETYPE = string tokens Type of each file (input, output, unformatted,
backingstore, procedurelibrary, graphics);
default inpu

DELETE = string tokens Whether to delete the file on closure (yes, no); default
no

When you have finished with a file you can use CLOSE to release the channel to which it was
attached, so that the channel is available for use with some other file. However, you do not need
to close every file before you stop running Genstat; files are automatically closed at the end of
every Genstat program.

Parameters CHANNEL and FILETYPE are similar to those of the OPEN directive. The DELETE
parameter is useful if you are using files to store data temporarily, perhaps to release workspace
within Genstat. When you have finished with the file you can set DELETE=yes to request that
it be deleted on closure so that disk space is not wasted. For example,

OPEN 'Temp.bin'; CHANNEL=3; FILETYPE=unformatted
PRINT [CHANNEL=3;UNFORMATTED=yes] Surveys[1900,1910...1990]
DELETE Surveys[1900,1910...1990]

" ... and later on when you wish to retrieve the data ... "
READ [CHANNEL=3;UNFORMATTED=yes] Surveys[1900,1910...1990]
CLOSE 3; FILETYPE=unformatted; DELETE=yes

You cannot close a channel to which the terminal is attached, nor the current input or output
channels. Also you cannot use CLOSE to delete files that have been opened with
ACCESS=readonly or that are protected by the computer's file system.

3.3.3 The SKIP directive

SKIP directive
Skips lines in input or output files.

Options
CHANNEL = scalar Channel number of file; default current channel of the

specified type
FILETYPE = string token Type of the file concerned (input, output); default

inpu

STYLE = string token Style to use when skipping output (plaintext,
formatted); default * uses the current style of the
channel

Parameter
identifiers How many lines to skip; for input files, a text means

skip until the contents of the text have been found,
further input is then taken from the following line

This directive can be used for both input and output files. The FILETYPE and CHANNEL options
indicate which file is to be skipped. By default this is the current input channel.

For input files you can skip over unwanted lines, which might be comments describing the
data that is to follow, or might be some statements that you do not want to use in your current

114 3 Input and output

job. You can skip a specified number of lines, n say, by setting the parameter to a scalar
containing the value n. Alternatively, you can skip everything up to and including a particular
string of characters by setting the parameter to a text containing that string. For example,

SKIP [CHANNEL=2] 'Section 2'

will skip the contents of the input file on channel 2 from the current position until the string
Section 2 is found. The next line to be read from channel 2 will then be the one immediately
after the line containing Section 2.

For output files you can use SKIP to print blank lines to separate one section of output from
another. You might want to do this if you had set the PRINT option SQUASH=yes (3.2.1) to
suppress the automatic blank lines within a section of output. For example,

PRINT [CHANNEL=2; IPRINT=*; SQUASH=yes] Heading
SKIP [CHANNEL=2; FILETYPE=output] 2
PRINT [CHANNEL=2; IPRINT=*; SQUASH=yes] Table

places two blank lines between Heading and Table when printing their values to channel 2.
For an output file that has been opened in a style other than plain text (3.3.1), you can use the

STYLE option to control whether the skipping is done in formatted or plain-text styles. If STYLE
is not set, the default is to use the current style (as controlled by the OUTPUT directive; see 3.4.3).

3.3.4 The ENQUIRE directive

ENQUIRE directive
Provides details about files opened by Genstat.

No options

Parameters
CHANNEL = scalars Channel numbers to enquire about; for

FILETYPE=input or output, a scalar containing a
missing value will be set to the number of the current
channel of that type and a negative value can be used to
check the existence of a file that is not yet connected to
a channel

FILETYPE = string tokens Type of each file (input, output, unformatted,
backingstore, procedurelibrary, graphics);
default inpu

OPEN = scalars To indicate whether or not the corresponding channels
are currently open (0=closed, 1=open)

NAME = texts External name of the file, if channel is open
EXIST = scalars To indicate whether files on corresponding channels

currently exist (0=not yet created, 1=exist)
WIDTH = scalars Maximum width of records in each file (only relevant

for input and output files, set to * for other types)
PAGE = scalars Number of lines per page (relevant only for output files)
ACCESS = texts Allowed type of access: set to 'readonly',

'writeonly' or 'both'
LINE = scalars Number of the current line (input files only)
STYLE = texts Underlying style of an output channel: set to

'plaintext', 'html', 'rtf', or 'latex'

3.4 Managing input and output channels 115

OUTSTYLE = texts Current style of an output channel: set to 'plaintext'
or 'formatted'

ENQUIRE allows you to ascertain whether a particular channel is already in use and, if so, what
properties are defined for aspects like the width of each line, the number of lines per page or the
output style. This is likely to be of most use within general programs and procedures.

You specify the channel using the parameters CHANNEL and FILETYPE, in the usual way
(3.3.1); the other parameters allow you to save the required information in data structures of the
appropriate type. This is illustrated in Example 3.3.4.

Example 3.3.4

 2 OPEN 'Weather.dat','Summary.out'; CHANNEL=2; FILETYPE=input,output
 3 ENQUIRE 2,2; FILETYPE=input,output; \
 4 NAME=In2,Out2; WIDTH=InW2,OutW2; ACCESS=InAcc2,OutAcc2
 5 PRINT In2,InW2,InAcc2,Out2,OutW2,OutAcc2; \
 6 FIELDWIDTH=20,7,10; DECIMALS=0; JUSTIFICATION=left

In2 InW2 InAcc2 Out2 OutW2 OutAcc2
D:\UK\Weather.dat 80 readonly D:\UK\Summary.out 80 writeonly

You can also use ENQUIRE to find out from within Genstat whether a file exists. You simply set
the CHANNEL option to a negative number. For example,

ENQUIRE CHANNEL=-1; NAME='Lost.dat'; EXIST=Found

will set the scalar Found to one if the file Lost.dat exists, or to zero otherwise.

3.4 Managing input and output channels

Genstat always starts by processing statements from the keyboard or from the file attached to
input channel 1. However, you can use the INPUT directive to change this within a job, to take
statements from another file. Subsequently, you can use INPUT to switch to yet another channel,
or RETURN to go back to the original file of statements. You can also use the EXECUTE directive
(5.4.3) or macro substitution (1.8.2) to take input from a text structure containing Genstat
statements. Similarly, any output from Genstat will be directed initially to output channel 1.
When you start Genstat this will be connected either to the screen, in an interactive run, or to a
file. You can change the current output channel at any time by using the OUTPUT directive
(3.4.3). Also, if channel is in a formatted style (HTML, RTF or LaTeX; see 3.3.1), OUTPUT can
switch it temporarily to the plain-text style (or back again). Once you have given an OUTPUT
statement all output will appear in the file on this channel, until another OUTPUT statement is
executed.

Many directives, like PRINT, have a CHANNEL option that lets you specify where the output
from the directive is to go. This provides an alternative method of selectively diverting some
output to a secondary file. You can also save complete transcripts of input or output in output
files using the COPY directive (3.4.4).

3.4.1 Taking input statements from other files: the INPUT directive

INPUT directive
Specifies the input file from which to take further statements.

Options
PRINT = string tokens What output to generate from the statements in the file

116 3 Input and output

(statements, macros, procedures,
unchanged); default stat

REWIND = string token Whether to rewind the file (yes, no); default no

Parameter
scalar Channel number of input file

Having opened a file of Genstat statements on another input channel you can switch control to
that channel at any time using an INPUT statement. You specify the channel as a number or as
a scalar containing that number. For example,

OPEN 'Myprocs.gen'; CHANNEL=4; FILETYPE=input
INPUT 4

The file can contain any valid Genstat statements: they will be executed just as if they had been
on the original input channel. In this file you could use an INPUT statement to switch back to
channel 1 after a while. Alternatively, you may have set up several input files and jump from one
to another, again using INPUT. You can use RETURN to go back to the previous channel or STOP
to end this run of Genstat. If the end of the file is reached without finding any of these
statements, control will be passed back to the previous input channel as described below in 3.4.2.
Note that if you use INPUT to go back to an earlier channels you may affect the way in which
RETURN works; details are given in 3.4.2.

The PRINT option can be used to specify whether the statements read from the file should be
echoed to the current output channel. This is used in the same way as INPRINT in JOB (5.1.1)
and SET (5.6.1).

The REWIND option allows you to return to the beginning of the file. You might need to do
this, for example, if you had made an error, so that the statements on the secondary input file
were executed wrongly. After correcting your error you could set REWIND=yes to start again
from the beginning of the file.

3.4.2 The RETURN directive

RETURN directive
Returns to a previous input stream (text vector or input channel).

Options
NTIMES = scalar Number of streams to ascend; default 1
CLOSE = string token Whether to close the channel (or text) after the return

(yes, no); default no
DELETE = string token Whether to delete the text or the file to which the

channel was attached (only relevant if CLOSE=yes) after
the return (yes, no); default no

Parameter
expression Logical expression controlling whether or not to return

to the previous input stream; default 1 (i.e. true)

In its simplest form, you type

RETURN

to make Genstat stop taking statements from the current input channel and to go back to the
channel that was previously active, and contained the INPUT statement that switched to the
secondary file. Input then continues from the line following the original INPUT statement, but

3.4 Managing input and output channels 117

a marker is left in the channel that contains the RETURN statement, so that you can use INPUT
to continue from the next line after RETURN later in your programme.

Sometimes you may want to return only if a particular condition is satisfied, for example if
you have discovered that the data are unsatisfactory for whatever operations occur later in the
file. To do this, you set the parameter to an appropriate logical expression; this must return a
scalar result, which is interpreted as true if it is equal to 1, and false otherwise. For example

RETURN MIN(Height)<0

If you have use INPUT several times, you may wish to return through several channels. The
NTIMES option can be set to a number, or a scalar, to control how many returns take place. For
example, with input starting on channel 1, supposing you had used INPUT 2 to switch to a file
on channel 2, and then INPUT 3 to switch to a further file (on channel 3). If this file then
contained the statement RETURN [NTIMES=2] you would return to channel 1. You can never
return from input channel 1, so if you set NTIMES to a number greater than the number of
currently active input channels, Genstat simply returns to channel 1.

You can set option CLOSE=yes to close the file after you have returned. Also, when
CLOSE=yes, you can set option DELETE=yes to delete the file.

If Genstat meets the end of the file on the current input channel, it will try to return control
to the channel from which it was called. This is called an implicit return. The channel is closed
automatically when this happens, and a warning message is printed.

In order to maintain control over the different input channels, and know where to go after a
RETURN, Genstat keeps an internal stack of input channels. Suppose you specify channel k, by
typing INPUT k. There are three possible actions:

(a) if k is the current input channel, the statement is ignored;
(b) if k is not in the stack, it is added to it;
(c) if k is already in the stack (that is, the current state is: 1 6 ... 6 k 6 k1 6 k2 6 ... 6 kn) then

the intermediate channels k1 ... kn are suspended at their current positions and removed
from the stack.

Input then switches to channel k, taking statements from the beginning of the file if it has never
been used before, or from the point at which it was last suspended. Subsequent INPUT statements
will re-start the other channels from where they were suspended. When a RETURN statement is
used, Genstat steps back NTIMES through the stack, removing any intermediate channels from
the stack. This means that, using the above representation of the input stack, if channel kn

contained the statement INPUT k2 and channel k2 then had a RETURN, this would return to
channel k1.

If you use ## or EXECUTE to execute macros (1.8.2), these are treated in the same way as input
channels and added to the input stack. You can use INPUT to temporarily halt a macro and
switch to a file, and RETURN to get back to the macro.

3.4.3 Sending output to another file: the OUTPUT directive

OUTPUT directive
Defines where output is to be stored or displayed.

Options
PRINT = string tokens Additions to output (dots, page, unchanged);

default dots,page
DIAGNOSTIC = string tokens What diagnostic printing is required (messages,

warnings, faults, extra, unchanged); default
faul,mess,warn

WIDTH = scalar Limit on number of characters per record; default width

118 3 Input and output

of output file
INDENTATION = scalar Number of spaces to leave at the start of each line;

default 0
PAGE = scalar Number of lines per page
STYLE = string token Style for future output to the channel (plaintext,

formatted); default * i.e. unchanged

Parameter
scalar Channel number of output file

An OUTPUT statement changes the current output channel and thus re-defines where the output
will be sent by the subsequent statements in a program, until another OUTPUT statement is given
(excluding any statements that use a CHANNEL option to redirect their output). Thus

OUTPUT 2
PRINT X
PRINT [CHANNEL=3] Y
ANOVA X

sends the values of X, and the analysis of X by the ANOVA statement, to the file on the second
output channel, and the values of Y to the file on the third.

The PRINT option controls two aspects of the output produced for example from statistical
analyses: whether a line of dots is printed at the start, and whether the output begins on a new
page; this can also be controlled by the OUTPRINT option of SET (5.6.1). Similarly, the
DIAGNOSTIC option has exactly the same effect as the DIAGNOSTIC option of SET (5.6.1).

The WIDTH option specifies the maximum width to be used when producing output. The
default value is the width specified when the file was opened (3.3.1), but you can subsequently
decrease it; you cannot use OUTPUT to set the width to a greater value than that specified when
the file was opened. The PAGE option allows you to reset the number of lines per page.

The STYLE option is relevant if the file on the channel has been opened in a style other than
plain text. (The alternatives include HTML, RTF and LaTeX; see the OPEN directive, 3.3.1). It
allows you to switch between the "formatted" style that is used by default for these files, and the
ordinary plain-text representation. If the STYLE option is not specified, the style is left
unchanged.

3.4.4 Saving a transcript of input or output: the COPY directive

COPY directive
Forms a transcript of a job.

Option
PRINT = string tokens What to transcribe (statements, output); default

stat

Parameter
scalar Channel number of output file

The COPY directive can be used to save a copy of either input statements, or output, or both, in
an output file. For example

OPEN 'Gen.rec','Gen.out'; CHANNEL=2,3; FILETYPE=output
COPY [PRINT=statements] 2
COPY [PRINT=output] 3

will keep a record of all the statements in the file Gen.rec and of all the output in the file

3.5 Storing and retrieving data structures 119

Gen.out. You can thus obtain output in more than one style (for example RTF and HTML as
well as plain-text) by opening, and then copying, to files in the required styles (see 3.3.1).

Setting PRINT=* stops any copying to the specified channel. For example

COPY [PRINT=*] 2

stops copying to Gen.rec.

3.5 Storing and retrieving data structures

You will frequently want to save information that you have put into a data structure. This section
explains how to transfer information to various other storage media on the computer, so that you
can access the information easily later on.

There is an important difference between storing and merely printing. When you give the
statement

PRINT [CHANNEL=2] X

you put only the identifier and the values of X into the character file attached to input channel
2. But if you give the statement

STORE [CHANNEL=2] X

you put all the details about X into the binary file attached to backing-store channel 2. So all the
attributes of X are stored there too: for example, what type of structure it is, how long it is, and
so on.

Section 3.5.1 describes the simplest use of storage and retrieval, which may be enough for
most of your needs. Section 3.5.2 describes how backing-store files are arranged, with details
of subfiles, userfiles and workfiles. Sections 3.5.3 to 3.5.6 describe the four directives that are
relevant: STORE, RETRIEVE, CATALOGUE and MERGE.

3.5.1 Simple use of backing store

Here is an example to illustrate the simplest way of storing data, and then retrieving it. First, to
store the scalar A and the variate B:

OPEN 'Example.gbs'; CHANNEL=1; FILETYPE=backingstore
SCALAR A; VALUE=2
VARIATE [VALUES=1...4] B
"Store structures A and B"
STORE [CHANNEL=1] A,B

The information about A and B is stored in the file named Example.gbs which is opened on
backing-store channel 1 (3.3.1). There is actually an invisible intermediate stage here: A and B
are first stored in a subfile by the STORE statement; this subfile is then stored in the userfile
Example.gbs. The default name for the subfile is SUBFILE.

Example 3.5.1a shows how A can be retrieved in a subsequent job.

Example 3.5.1a

 2 OPEN 'Example.gbs'; CHANNEL=1; FILETYPE=backingstore
 3 " Retrieve structure A only "
 4 RETRIEVE [CHANNEL=1] A
 5 PRINT A

 A
 2.000

So far, the file consists of only one subfile, but you can add others if you want. To do this, you
must give a subfile name:

OPEN 'Example.gbs'; CHANNEL=1; FILETYPE=backingstore

120 3 Input and output

TEXT [VALUES='Storing more data','on backing store'] T
"Add new subfile called Newset to file"
STORE [CHANNEL=1; SUBFILE=Newset] T

There are now two subfiles in the file, called SUBFILE and Newset. Example 3.5.1b shows how
to retrieve the text structure T.

Example 3.5.1b

 2 OPEN 'Example.gbs'; CHANNEL=1; FILETYPE=backingstore
 3 " Retrieve T and print it "
 4 RETRIEVE [CHANNEL=1; SUBFILE=Newset] T
 5 PRINT T

 T
Storing more data
on backing store.

You can add as many new subfiles as you want, exactly as shown above, but you must keep the
subfile names distinct within each file.

3.5.2 Subfiles, userfiles and workfiles

Before going any further, you need to know how structures are stored. A subfile is itself merely
a portion of the backing-store file. Each subfile starts with a catalogue, recording which
structures it stores. Then come the attributes (see 2.1) and the values of each structure. There are
two types of subfiles. Ordinary subfiles can hold any type of structures except procedures;
procedure subfiles hold only procedures (and their dependent structures).

Whenever you store a structure in a subfile, Genstat automatically stores also all the associated
structures to which it points. If these associated structures also point to further structures, then
they are stored too, and so on. Some of the structures may be unnamed (1.4.3) and some
structures may be system structures (2.8). For example

TEXT [VALUES=A,B,C] T
FACTOR [LABELS=T; VALUES=1...3] F
STORE F

creates a subfile containing factor F. The complete definition of factor F depends on text T to
supply level names. So T is stored too. The text T depends on a system structure (indicating the
length of each line), which is therefore also stored. Hence to save factor F, Genstat has actually
had to save three structures. However, this is all automatic, so you do not need to worry about
any of the details of the system structures, and so on.

When you store a structure with a suffixed identifier, Genstat may have to set up a series of
pointer structures if they are not already present (1.4.3 and 2.6). For example:

VARIATE [VALUES=1,2] V[1,2]
STORE [PRINT=catalogue] V[1]

The first line sets up a pointer structure V, pointing to V[1] and V[2]. To store variate V[1],
a pointer structure V has to be set up in the subfile, pointing to V[1] only. Thus two structures
are saved on backing store, namely V and V[1]. The original pointer V in the program is left
unchanged. (If the example had stored the whole of V, no such complications would have arisen.)

You can retrieve any pointer structure that you have set up in this way, and use it subsequently
in the same way as any other pointer. But when a smaller pointer has to be set up only so that a
suffixed identifier can be stored, no textual suffixes will be defined. So, if you want to store
textual suffixes, you must define and store the pointer explicitly.

A backing-store file then consists of several subfiles; in fact the file can exist even if it is
empty. However, if a file containing anything that has not been stored by a Genstat backing-store
statement is attached as a backing-store file, it will be rejected.

3.5 Storing and retrieving data structures 121

A file that can be read by another job is called a userfile; it is permanent, in the sense that it
will continue to exist after you have finished the job that created it.

Each job can have one temporary file called the backing-store workfile which also consists
of a set of subfiles. The workfile's catalogue is deleted at the end of each job. The workfile itself
may be overwritten in a later job in the same Genstat program, and on most computers it will be
deleted automatically by STOP. However, if you abandon a run of Genstat before it has ended
(for example by rebooting a PC), the workfile may survive.

A subfile name can be either an unsuffixed identifier or a suffixed identifier (1.5.3) with a
numerical suffix. The identifiers of subfiles are kept in a separate catalogue to the identifiers of
data structures, so you do not need to worry about keeping the identifiers data structures and
subfile distinct. However, if you use a suffixed identifier for a subfile, Sub[1] say, you cannot
also use the identifier Sub.

3.5.3 The STORE directive

STORE directive
To store structures in a subfile of a backing-store file.

Options
PRINT = string token What to print (catalogue); default *
CHANNEL = scalar Channel number of the backing-store file where the

subfile is to be stored; default 0, i.e. the workfile
SUBFILE = identifier Identifier of the subfile; default SUBFILE
LIST = string token How to interpret the list of structures (inclusive,

exclusive, all); default incl
METHOD = string token How to append the subfile to the file (add, overwrite,

replace, update); default add, i.e. clashes in subfile
identifiers cause a fault (note: replace overwrites the
complete file)

PASSWORD = text Password to be stored with the file; default *
PROCEDURE = string token Whether subfile contains procedures only (yes, no);

default no
UNNAMED = string token Whether to list unnamed structures (yes, no); default

no

MERGE = string token Whether or not to merge the structures with the existing
contents of the subfile (yes, no); default no

Parameters
IDENTIFIER = identifiers Identifiers of the structures to be stored
STOREDIDENTIFIER = identifiers Identifier to be used for each structure when it is stored

The structures to be stored are specified by the IDENTIFIER parameter. The CHANNEL option
indicates the backing-store file to use, and the SUBFILE option specifies the subfile that is
created. Both these options can be omitted; by default the file will be the workfile, and the
subfile will be called SUBFILE. The structures that are stored in the subfile are merely copies
of the structures in the job, so the original structures remain available for further use within the
job.

The STOREDIDENTIFIER parameter allows you to give a structure a different name within
the subfile: For example,

VARIATE [VALUES=10.2,15.3,21.4,16.8,22.3] Weight
STORE Weight; STOREDIDENTIFIER=WtWeek2

122 3 Input and output

stores a structure with identifier Weight within Genstat as a structure with identifier WtWeek2
in the backing-store file. If you want to rename only some of the structures, you can either
respecify the existing identifier, or insert * at the appropriate point in the list. For example, you
could store X and Y, renaming only Y as Yy, by

STORE X,Y; STOREDIDENTIFIER=X,Yy

or by

STORE X,Y; STOREDIDENTIFIER=*,Yy

You can give an unnamed structure in the list of either parameter. For example

STORE !(10.2,15.3,21.4,16.8,22.3); STOREDIDENTIFIER=WtWeek2

But of course you will not be able to retrieve any structure that has been stored as an unnamed
structure (except perhaps as a dependent structure of another structure, see 3.5.2).

All the structures in a subfile must have distinct identifiers, and Genstat will report a fault if
you try to give two the same name. You thus need to be careful if you are storing structures
inside a procedure, as the same identifier can be used for one structure within the procedure, and
for another one outside; you cannot store both in the same subfile.

Procedures that have been retrieved automatically from libraries (5.3.3) cannot be stored by
STORE.

You can set option PRINT=catalogue to obtain a catalogues of the subfiles in the backing-
store file, and of the structures in the subfile just created. If you also set option UNNAMED=yes
Genstat will also list any unnamed structures, with details of how they depend on each other.

The LIST option controls how the IDENTIFIER list is interpreted. The default setting
inclusive simply stores the structures that have been listed.

Alternatively, if you set LIST=all Genstat will store all the structures in the current job that
have identifiers and whose types have been defined. If the statement is inside a procedure, then
only the structures defined within the procedure are stored (5.3). If you are storing procedures,
then this setting will store all procedures that you have created explicitly in this job, by
PROCEDURE or RETRIEVE statements.

Finally, you can set LIST=exclusive to store everything that you have not included in the
IDENTIFIER parameter: that is, all the other named structures that are currently accessible, or
all the other procedures that have been created in this job. Note, though, that some of the
structures in the IDENTIFIER list may be stored if they are needed to complete the set of
structures to be stored. If you use this setting, the STOREDIDENTIFIER parameter is ignored. For
example

TEXT [VALUES=a,b] T
FACTOR [LABELS=T] F
TEXT [VALUES='variate text'] Vt
VARIATE V; EXTRA=Vt

creates four named structures, T, F, V and Vt. The statement

STORE [LIST=inclusive] T

stores the text T;

STORE [LIST=all]

stores all the four structures that have identifiers;

STORE [LIST=exclusive] F,T

stores Vt and V; and

STORE [LIST=exclusive] Vt,T

results in all four structures being saved, because V points to Vt, and F points to T.
If a subfile of the specified name already exists on the backing-store file, the storing operation

will usually fail. You can then set option METHOD=overwrite to overwrite the old subfile, that
is, to replace the old subfile with a new subfile; alternatively, you can put METHOD=replace to

3.5 Storing and retrieving data structures 123

form a new backing-store file containing only the new subfile. Setting METHOD=update adds
new structures to an existing subfile. The MERGE option then controls what happens if a data
structure that is being added to the file is already present; by default it overwrites the previous
version but, if you put MERGE=yes, only new structures are added to the file.

To make your files secure, you can specify a password using the PASSWORD option. Once you
have done this, you must include the same password in any future use of STORE or MERGE with
this same userfile; spaces, case, and new lines are significant in the password. You cannot
change the password in a userfile once you have set it, but you can use the MERGE directive to
create a new userfile with no password or with a new password. If you set the password to be a
text whose values have been restricted (4.4.1), the restriction is ignored.

The PROCEDURE option indicates whether the subfile is to store procedures
(PROCEDURE=yes), or ordinary data structures.

3.5.4 The RETRIEVE directive

RETRIEVE directive
Retrieves structures from a subfile.

Options
CHANNEL = scalar Specifies the channel number of the backing-store or

procedure-library file containing the subfile (FILETYPE
settings 'back' or 'proc'); default 0 (i.e. the
workfile) for FILETYPE=back, no default for
FILETYPE=proc, not relevant with other FILETYPE
settings

SUBFILE = identifier Identifier of the subfile; default SUBFILE
LIST = string token How to interpret the list of structures (inclusive,

exclusive, all); default incl
MERGE = string token Whether to merge structures with those already in the

job (yes, no); default no, i.e. a structure whose
identifier is already in the job overwrites the existing
one, unless it has a different type

FILETYPE = string token Indicates the type of file from which the information is
to be retrieved (backingstore,
procedurelibrary, siteprocedurelibrary,

Genstatprocedurelibrary); default back

Parameters
IDENTIFIER = identifiers Identifiers to be used for the structures after they have

been retrieved
STOREDIDENTIFIER = identifiers Identifier under which each structure was stored

You recover information from a subfile of a backing-store file using the RETRIEVE directive.
The CHANNEL option specifies the backing-store file, and the SUBFILE option indicates the
subfile. Both these options can be omitted; by default the file will be the workfile, and the subfile
will be called SUBFILE.

When you retrieve a structure Genstat may also retrieve a chain of associated structures: that
is, all the structures to which it points, and the structures to which they point, and so on. For
example, suppose you store the three structures with identifiers T, V and F, along with an
unnamed structure storing information about T, in a subfile called SUBFILE in backing-store file
File1.gbs:

124 3 Input and output

OPEN 'File1.gbs'; CHANNEL=1; FILETYPE=backingstore
TEXT [VALUES=a,b,c] T
VARIATE V; EXTRA=T
FACTOR [LABELS=T] F
STORE [CHANNEL=1] T,V,F

Then the statement

RETRIEVE [CHANNEL=1] V

will retrieve not only V but also T (which was associated with T by the EXTRA parameter of the
VARIATE statement), and the unnamed structure that is associated with T. The structures V, T and
the unnamed structure, are said to be a complete set from the subfile.

The IDENTIFIER parameter specifies the structures to be retrieved. You can use the
STOREDIDENTIFIER parameter to give a structure a different name from the one within the
subfile. For example

RETRIEVE IDENTIFIER=Weeks; STOREDIDENTIFIER=Time

You are not allowed to give identical identifiers to two retrieved structures, nor are you allowed
to have the same identifier referring to a structure of one type in a subfile, and to a structure of
a different type in your job.

As with STORE, if you want to rename only some of the structures, you can either respecify
the existing identifier, or insert * at the appropriate point in the STOREDIDENTIFIER list.

Genstat knows whether you are retrieving a procedure by the type of SUBFILE that you are
accessing. You are not allowed to rename a procedure as a suffixed identifier or as the name of
a directive.

You can even rename a structure so that it is unnamed in the job. Suppose, for example, that
a structure T already exists within Genstat, and that you want to retrieve the variate V stored in
the file File1.gbs above. Then, as we have seen, the structure T will also be retrieved.
However, you can avoid the existing structure T job being overwritten by making the retrieved
version of T unnamed:

OPEN 'File1.gbs'; CHANNEL=1; FILETYPE=backingstore
RETRIEVE [CHANNEL=1] V,!T(a); STOREDIDENTIFIER=V,T

The value, a, of the unnamed text !T(a) will be replaced by the values stored for T, and this
unnamed text will become the EXTRA text for V. Alternatively you could rename T to be Tnew
by

RETRIEVE [CHANNEL=1] V,TNew; STOREDIDENTIFIER=V,T

When you are retrieving a suffixed identifier, Genstat matches the numerical suffix only, and not
the whole structure that is denoted by the identifier. For example, suppose pointer P stored in a
subfile points to structures with identifiers A, B, C and D, and that P has numerical suffixes 1 to
4 respectively. Also suppose that in your current job, you have never mentioned pointer P either
directly or indirectly. Then the statement

RETRIEVE [CHANNEL=1] P[2]

will retrieve the structure B from backing store but, as it has not been referenced only as P[2]
in the RETRIEVE statement, the identifier B will not be recovered and it will be known only as
P[2] within Genstat.

A structure that you are retrieving from a subfile may sometimes overwrite the values of an
existing structure in your program. If this structure is a pointer or a compound structure, the
existing suffixes will be overwritten by those of the stored structure, so some existing structures
with suffixed identifiers may in effect be lost. For example, suppose that userfile File2.gbs
contains a pointer P, with suffixes 1 and 2 pointing to structures A and B. If we set up a variate
P[3], and then retrieve the pointer P

OPEN 'File2.gbs'; CHANNEL=1; FILETYPE=backingstore
VARIATE [VALUES=1...6] P[5,6,7]

3.5 Storing and retrieving data structures 125

RETRIEVE [CHANNEL=1] P

P will now have suffixes 1 and 2 pointing to A and B, but the variate P[3] will have been lost.
For more details about pointers, see 2.6.

The LIST option is similar to its namesake in the STORE directive (3.5.3), but it now refers
to the named structures in the subfile.

The FILETYPE option specifies whether you wish to retrieve information from backing-store
files that have been attached as normal backing store files or as procedure libraries by the OPEN
directive (3.3.1), or from the Genstat Procedure library or from the site procedure library. The
CHANNEL setting is ignored if the siteprocedurelibrary or Genstatprocedurelibrary
settings are used. The source code of the procedures in the Genstat Procedure library can be
accessed more easily using the LIBEXAMPLE procedure or, in Genstat for Windows, by selecting
Procedure Source from the Help menu on the menu bar.

Normally when you retrieve a complete subset of structures, Genstat overwrites all structures
in the job that have the same identifier (after any renaming). As a result, some other structures
already in the job may become inconsistent, and will be destroyed. You can avoid this by setting
option MERGE=yes. Then Genstat does not overwrite any structures with the same name and
type. A consequence, however, is that some of the retrieved structures may now be inconsistent,
and thus need to be destroyed in the program (although they will of course remain in the subfile).

3.5.5 The CATALOGUE directive

CATALOGUE directive
Displays the contents of a backing-store file.

Options
PRINT = string tokens What to print (subfiles, structures); default

subf, stru

CHANNEL = scalar Channel number of the backing-store file; default 0, i.e.
the workfile

LIST = string token How to interpret the list of subfiles (inclusive,
exclusive, all); default incl

SAVESUBFILE = text To save the subfile identifiers; default *
UNNAMED = string token Whether to list unnamed structures (yes, no); default

no

Parameters
SUBFILE = identifiers Identifiers of subfiles in the file to be catalogued
SAVESTRUCTURE = texts To save the identifiers of the structures in each subfile

You can use CATALOGUE to obtain details of the subfiles contained in a backing-store file, or the
structures within an ordinary subfile, or the procedures within a procedure subfile. The file is
indicated by the CHANNEL option, and the SUBFILE parameter specifies the subfiles (of ordinary
structures or of procedures) that are to be catalogued.

The PRINT option specifies which catalogues are to be printed. The subfiles setting prints
the catalogue of subfiles in the backing-store file attached to the channel specified by the
CHANNEL option, while the structures setting prints the catalogue of structures or procedures
that are in the subfiles specified by the SUBFILE parameter.

If you set option UNNAMED=yes the unnamed structures in each subfile will also be listed,
together with details of how the structures depend on each other.

The LIST option is similar to its namesake in the STORE directive, but it now refers to the
identifiers in the SUBFILE list.

126 3 Input and output

The SAVESTRUCTURE parameter allows you to set up texts, one for each subfile in the
SUBFILE parameter. Each text contains the identifiers of all structures with an unsuffixed
identifier in the subfile. Each identifier is put on a separate line, and the characters ,\ are
appended to all but the last line. You would normally use these texts as a macro; the ,\ makes
them useable as lists of identifiers. If the text is used as a macro, it is subject to the restriction
on the length of statements (1.7). The SAVESUBFILE option allows you to save a similar text
containing the identifiers of all the subfiles in a backing-store file.

Suppose we have a userfile called File3.gbs which already contains three subfiles: two
ordinary subfiles (called Sub[1] and Sub[2]), and a procedure subfile called Sub3 containing
a procedure called %TRANSFORM. Example 3.5.5a adds a fourth subfile called Sub4.

Example 3.5.5a

 2 TEXT [VALUES='vector_1','vector_3'] L
 3 & [VALUES='heading'] T
 4 POINTER [SUFFIXES=!(1,3); NVALUES=L] P
 5 VARIATE P[],V; EXTRA=T
 6 OPEN 'File3.gbs'; CHANNEL=1; FILETYPE=backingstore
 7 STORE [CHANNEL=1; SUBFILE=Sub4] P,V
 8 CATALOGUE [PRINT=structures; CHANNEL=1] Sub4

Catalogue
=========

catalogue of structures in the subfile Sub4

 entry identifier type
 1 P pointer
 2 V variate
 3 P[1] variate
 4 P[3] variate
 5 T text

The subfile contains five named structures with identifiers P, V, P[1], P[2] and T. There are
also two unnamed structures associated with P and T, as can be seen when we set option
UNNAMED=yes in Example 3.5.5b, and obtain a more detailed catalogue. This also gives details
of any dependencies among structures, referenced by their index in the entry column. The
identifier column gives the numerical suffix, and the labels column gives textual suffixes. This
information is particularly helpful with complicated trees of pointers (2.6) or with compound
structures (2.7).

Example 3.5.5b

 9 CATALOGUE [PRINT=Structures; CHANNEL=1; UNNAMED=Yes] \
 10 Sub4; SAVESTRUCTURE=Tsub4

Catalogue
=========

Catalogue of structures in the subfile Sub4

 entry identifier type points to
 1 P pointer 3
 pointer values
 unit entry labels
 1 4 vector_1
 3 5 vector_3
 2 V variate 6
 3 text 7
 4 P[1] variate 6
 5 P[3] variate 6
 6 T text 8

3.5 Storing and retrieving data structures 127

 7 system
 8 system

 11 PRINT Tsub4; JUSTIFICATION=left

Tsub4
P,\
V,\
T

The text Tsub4, saved by the SAVESTRUCTURE parameter of CATALOGUE, gives an identifier list
of all the structures in the subfile that can be accessed directly.

Example 3.5.5c produces a catalogue of the procedure subfile Tsub3 (line 12), and then
produces a catalogue of the subfiles (line 13), at the same time using the SAVESUBFILE option
to place the subfile names into the text Tsubf. Notice that Tsubf excludes the system-type
subfile Sub, which exists because two of the subfiles (Sub[1] and Sub[2]) have suffixed
identifiers, and cannot be used as a subfile in its own right.

Example 3.5.5c

 12 CATALOGUE [PRINT=structures; CHANNEL=1] Sub3

Catalogue
=========

Catalogue of procedures in the procedure subfile Sub3

 entry identifier
 1 %TRANSFORM

 13 CATALOGUE [PRINT=subfiles; CHANNEL=1; SAVESUBFILE=Tsubf]

Catalogue
=========

Catalogue of subfiles in the userfile 1

 entry identifier type
 1 Sub4 ordinary
 2 Sub3 procedure
 3 Sub system
 4 Sub[2] ordinary
 5 Sub[1] ordinary

 14 PRINT Tsubf; JUSTIFICATION=left

Tsubf
Sub4,\
Sub3,\
Sub[2],\
Sub[1]

3.5.6 The MERGE directive

MERGE directive
Copies subfiles from backing-store files into a single file.

Options
PRINT = string token What to print (catalogue); default *
OUTCHANNEL = scalar Channel number of the backing-store file where the

subfiles are to be stored; default 0, i.e. the workfile

128 3 Input and output

METHOD = string token How to append subfiles to the OUT file (add,
overwrite, replace); default add, i.e. clashes in
subfile identifiers cause a fault (note: replace overwrites
the complete file)

PASSWORD = text Password to be checked against that stored with the file;
default *

Parameters
SUBFILE = identifiers Identifiers of the subfiles
INCHANNEL = scalars Channel number of the backing-store file containing

each subfile
NEWSUBFILE = identifiers Identifier to be used for each subfile in the new file

The MERGE directive copies subfiles into another backing-store file. You can either add the
subfiles to an existing backing-store file, or form a new backing-store file.

The OUTCHANNEL option specifies the backing-store channel of the file to which the subfiles
are to be copied; by default this is the workfile (channel 0).

The SUBFILE parameter specifies the list of subfiles that are to be copied, and the INCHANNEL
parameter indicates the channel of the backing-store file where each one is currently stored. If
you do not specify the INCHANNEL parameter, Genstat assumes that the subfiles are coming from
the workfile. You are not allowed to include the OUTCHANNEL among the channels in the
INCHANNEL list. Also, you cannot store two subfiles with the same names, and should use the
NEWSUBFILE parameter to rename any that clash. For example

MERGE [OUTCHANNEL=3] JanData,JulyData,JanData; \
 INCHANNEL=1,1,2; NEWSUBFILE=Jan92dat,Jul92dat,Jan93dat

To rename only some of the subfiles, you can either respecify the existing identifier, or insert
* at the appropriate point in the NEWSUBFILE list.

If you specify a missing identifier * in the SUBFILE list, Genstat will include all the subfiles
from the relevant INCHANNEL. If you want to rename any of these subfiles, you can also mention
it explicitly. For example, this statement will take all the subfiles from channel 1 and rename
subfile Sub as Subf.

MERGE *,Sub; INCHANNEL=1; NEWSUBFILE=*,Subf

You can set option PRINT=catalogue to produce a catalogue of the subfiles in the new
backing-store file (3.5.5).

If a subfile of the specified name already exists on the backing-store file, the storing operation
will usually fail. However, you can set option METHOD=overwrite to overwrite the old subfile,
that is, to replace the old subfile with a new subfile. Alternatively, you can put
METHOD=replace to form a new backing-store file containing only the new subfiles.

Subfiles are merged in a fixed order. Genstat first takes the subfiles from the backing-store file
with the lowest channel number, in the order in which they occur there, then it takes the subfiles
the next lowest channel number, and so on. If OUTCHANNEL=0 (that is, the new file is the
workfile), the original subfiles that are to be retained from that file will be followed by the new
subfiles; otherwise, if OUTCHANNEL is non-zero, the original subfiles are placed after the new
subfiles. If you want to put the subfiles into a particular order, you should merge them into the
workfile in that order, and then merge the workfile into a new userfile.

To keep the new file secure, you can use the PASSWORD option to incorporate a password, as
explained in 3.5.3.

3.6 Storing and retrieving programs and data in unformatted files 129

3.6 Storing and retrieving programs and data in unformatted files

The RECORD directive (3.6.1) allows you to produce a backing-store file containing all the details
required to recreate the current state of a Genstat job. You can then use the RESUME directive
(3.6.2), either later in your program, or during a completely different Genstat run, to recover all
this information and continue your use of Genstat from that point. This can be useful if you need
to abandon an analysis and resume it at some later date, or if you want to save the current state
of a program in case your next operations turn out to be unsuccessful.

3.6.1 The RECORD directive

RECORD directive
Dumps a job so that it can later be restarted by a RESUME statement.

Option
CHANNEL = scalar Channel number of the backing-store file where

information is to be dumped; default 1

No parameters

RECORD sends all the relevant information about the current state of your Genstat job to the
backing-store file specified by the CHANNEL option. You can then use the RESUME directive to
re-establish that situation either in a future Genstat run, or later in the same run.
RECORD stores all the data structures in the file, using the equivalent of the statement

STORE [LIST=all]

and then adds a private section, at the end of the file, to store all the remaining information. The
file can thus be used with the RETRIEVE directive in the ordinary way, to recover individual data
structures without having to recover the whole job. However, if you add extra data structures
(using STORE) to a file from RECORD, or merge it with other backing-store files (using MERGE),
the additional information is lost and the result is an ordinary backing-store file.

The information includes the current graphics settings, any current setting of the UNITS
directive and settings of model-definition directives (MODEL, BLOCKSTRUCTURE,
TREATMENTSTRUCTURE, COVARIATES, VCOMPONENTS, VSTRUCTURE, and so on), but no details
are kept of the files that are open on any of the channels. If you use RECORD with the same file
again, the earlier information is overwritten.

3.6.2 The RESUME directive

RESUME directive
Restarts a recorded job.

Options
CHANNEL = scalar Channel number of the backing-store file where the

information was dumped; default 1
CLOSE = string token Whether to close the file afterwards (yes, no); default

no

No parameters

RESUME recovers the information stored by a previous RECORD statement so that you can

130 3 Input and output

continue your use of Genstat as though nothing had happened in between. Thus, for example,
Genstat deletes all the data structures that were created in the current job prior to RESUME, and
reinstates the data structures that were available in Genstat at the time the RECORD statement
took place. Similarly, the current graphics settings are replaced by those that were in force when
RECORD was used, but any external files that are attached to Genstat remain unaffected.

If the RECORD directive was used within a procedure or a FOR loop, the job is not resumed at
that point. Instead, it restarts at the statement after the procedure call, or after the outermost
ENDFOR statement.

The CHANNEL option specifies the channel to which the file has been connected (this can be
done using the OPEN directive). You can set the CLOSE option to yes to close the file after the
information has been recovered.

Example 3.6.2 illustrates how RECORD and RESUME are used.

Example 3.6.2

 2 OPEN 'DUMP.GBS'; CHANNEL=1; FILETYPE=backingstore
 3 VARIATE [VALUES=1,2] A
 4 RECORD
 5 PRINT A

 A
 1.000
 2.000

 6 CLOSE 1; FILETYPE=backingstore
 7 ENDJOB

********* End of job.

Genstat 64-bit Release 19.1 (PC/Windows 8) 19 October 2016 10:12:48
Copyright 2016, VSN International Ltd.
Registered to: VSNi

 8 OPEN 'DUMP.GBS'; CHANNEL=1; FILETYPE=backingstore
 9 RESUME
 10 CALCULATE A = A+1
 11 PRINT A

 A
 2.000
 3.000

3.7 Storing and reading data with unformatted files

Unformatted files can be used to store values of data structures using PRINT (3.2.1), so that they
can later be input again using READ (3.1.1). This provides a convenient way to free some space
temporarily. It can also save computing time if you have a large data set that may need to be read
several times. Input from character files is slow. So, after vetting a large data set, it will be read
more efficiently on future occasions if you transfer its contents to an unformatted file. As an
alternative you could use backing store, but this stores the attributes of the structures as well as
their values, and so access will take longer. You can also use these facilities to transfer data
between Genstat and other programs.

Unformatted files are selected in READ and PRINT by setting option UNFORMATTED=yes. The
only options that are then relevant are CHANNEL, REWIND and SERIAL.

Genstat automatically creates an unformatted workfile, on channel 0, to which unformatted
output is sent by default (by PRINT), and from which unformatted input is taken by default (by
READ). This file is deleted automatically by the STOP directive.

It is usually quicker to read and write structures in series. Also, the values of the structures
transferred in parallel must all be of the same mode. Neither texts nor factors can be stored in

3.8 Input and output from other systems 131

parallel with values of the other, numerical, structures: scalars, variates, matrices or tables. As
an example, we first open a file, and declare some variates, matrices and factors.

OPEN 'Bdat'; CHANNEL=3; FILETYPE=unformatted
VARIATE X,Y,Z; VALUES=!(11...19),!(21...29),!(31...39)
MATRIX [ROWS=2; COLUMNS=3; VALUES=11,12,13,21,22,23] M
FACTOR [LEVELS=3; VALUES=1,3,2,3,1,2,2,2,1,3] F

The next three statements store data for M and F on the file named BDAT and data for X, Y and Z
(in parallel) on the workfile.

PRINT [CHANNEL=3; SERIAL=yes; UNFORMATTED=yes] M,F
PRINT [UNFORMATTED=yes] X,Y,Z

You can now free the space for numerical data for other purposes, by putting

DELETE X,Y,Z,F,M

By rewinding the files we can read the data back into Genstat.

READ [UNFORMATTED=yes; REWIND=yes] X,Y,Z
READ [CHANNEL=3; SERIAL=yes; UNFORMATTED=yes; REWIND=yes] M,F

You can also re-use the external file BDAT in a later job.
If you change the lengths of structures, you must remember to reset them to their original

values before you use unformatted READ to recover the data values from the file. Only the data
values are stored in unformatted files, and not the attributes (such as lengths) as in backing-store
files.

3.8 Input and output from other systems

Genstat for Windows has several specialized commands for exchanging data with other other
systems, such as databases, spreadsheets and other statistical systems. You can also read and
write files in Genstat's own spreadsheet format. Details are in the on-line help. These procedures
may not be present, however, in some other implementations.

IMPORT reads data in a foreign file format, loads it or converts it to

a Genstat spreadsheet file; supported file types include
Excel 2-5,95,97,2000,XP,2003, Lotus, Quattro, dBase 2-5,
Paradox 3-9, SAS PC 6.03-12, 7-9, SAS Transport, SAS
JMP, Minitab 8-13, Statistica 5 and 6, Systat, MStat,
Instat, Epi-Info, SPSS/Win, Gauss Data/Matrix
(PC/Win/Unix), MatLab, Splus (PC/Unix), Stata 4-8, R
data frames, Weka Attribute files, SigmaPlot 7-9, OSIRIS,
Limdep, comma delimited text files, ArcView/Info
Shapefiles, MapInfo Exchange files, Windows Bitmap,
Windows Sound and NMR Binary files

EXPORT saves data to Excel, Quattro, dBase, SPlus, Gauss, MatLab
or Instat

SPLOAD loads a Genstat spreadsheet file
CSPRO reads a data set from a CSPro survey data file and

dictionary, loads it into Genstat or puts it into a
spreadsheet file

FSPREADSHEET creates a Genstat Spreadsheet file
DBCOMMAND runs an SQL command on an ODBC database
DBIMPORT loads data from an ODBC database
DBEXPORT updates an ODBC database table from Genstat
DDEIMPORT gets data from a Dynamic Data Exchange (DDE) server
DDEEXPORT sends data or commands to a DDE server

4 Calculations and data manipulation

Genstat has many directives for doing calculations or for manipulating data, and a full range of
mathematical and statistical functions (4.2). There is also a directive to link to algorithms in the
Numerical Algorithms Group (NAG) Library (4.13). Other facilities are provided by procedures,
mainly in the Manipulation module of the procedure library.

You may wish to use these facilities as part of a statistical analysis; for example, you may
want to transform your data before fitting a regression or doing an analysis of variance.
However, they can be useful even if you have no intention of doing a statistical analysis but
merely wish to use Genstat as a package for data-handling and arithmetic, or as a mathematical
tool e.g. for systems modelling. This introduction mentions all the relevant directives and
procedures, giving section references for the more important commands, which are described in
this manual. Information about the other commands can be found in the Genstat Reference
Manual.

The CALCULATE directive (4.1) allows you to perform straightforward arithmetic operations
on any numerical data structure. It also enables you to make logical tests on data: for example,
you may want to check whether two variates contain the same values; similar checks can be done
with factors, texts and pointers. You can use CALCULATE for matrix operations: for example,
matrix multiplication, inversion and Choleski decompositions (4.1.3 and 4.2.4). CALCULATE can
do calculations with tables, and these need not have identical sets of classifying factors (4.1.4).
When you use CALCULATE, the results are stored in appropriate data structures (which may be
defined for you automatically: 4.1.5).

CALCULATE performs arithmetic and logical calculations (4.1)

If you want to use the results only once, do not forget that you can use an expression anywhere
that Genstat expects a list of identifiers (1.5.3). The rules for defining these expressions are
exactly as explained below for CALCULATE. Knowledge of the rules may also provide useful
background information to the Calculate menu of Genstat for Windows (which uses
CALCULATE). This menu allows you to assemble the calculation by selecting data structures from
an Available Data window, and clicking appropriate buttons to select the various operators
(addition, multiplication and so on).

Another very general and powerful directive is EQUATE, which allows values to be copied
from one set of data structures to another; the structures must store values of the same mode (for
example, numbers or text), but need not be of the same type. For example, you may want to
copy the columns of a matrix into a list of variates. The SETRELATE directive allows you to
compare the sets of values in two different structures with values of the same mode (but not
necessarily of the same type), SETCALCULATE performs calculations on sets, and
SETALLOCATIONS allows you to form all the ways in which a set of objects can be allocated to
subsets.

EQUATE copies values between sets of data structures (4.3.1)

SETRELATE compares the sets of values in two data structures (4.3.2)
SETCALCULATE performs Boolean set calculations on the contents of

vectors and pointers (4.3.3)
SETALLOCATIONS runs through all ways of allocating a set of objects to

subsets with specified sizes (4.3.4)

There are several commands for manipulating vectors (variates, factors or texts). A
"restriction" can be associated with a vector, so that subsequent statements operate on only a
subset of its units. Alternatively, you may wish to store the subset, in a data structure on its own.
Units of vectors can be sorted into systematic order or into random order, and you can select
random samples of a set of units. You can form a vector containing the values of a set of vectors

4 Calculations and data manipulation 133

of the same type, appended together, along with a factor which indicates the vector from which
each unit came. Similarly, data matrices can be combined by "stacking" (or appending) their
corresponding vectors. Another type of combination is to "join" (or merge) new vectors into a
data matrix according to the values of one or more "key" vectors. You can also form a set of
variates, each of which contains the values from one of the units of every member of a set of
structures.

RESTRICT defines a "restriction" on the units of a vector (4.4.1)

SUBSET forms vectors containing subsets of the values in other
vectors (4.4.2)

FREGULAR expands vectors onto a regular two-dimensional grid
(procedure)

FRESTRICTEDSET forms vectors with the restricted subset of a list of vectors
(procedure)

SORT sorts units of vectors into alphabetic or numerical order of
an index vector, or forms a factor from a variate or text
(4.4.3)

RANDOMIZE puts the units of a set of vectors into random order, or
randomizes the units of an experimental design (2:4.11.1)

SAMPLE samples from a set of units, possibly stratified by factors
(procedure)

SVSAMPLE constructs stratified random samples (procedure)
APPEND appends values of a list of vectors of the same type (4.4.4)
STACK combines several data sets by "stacking" the corresponding

vectors (4.4.5)
UNSTACK splits vectors into individual vectors according to levels of

a factor (4.4.6)
JOIN joins or merges two sets of vectors together, based on

classifying keys (4.4.7)
VEQUATE equates values across a set of data structures (procedure)
MVFILL replaces missing values in a vector with the previous non-

missing value (procedure)

The APPEND and SUBSET procedures are used by the Append and Subset menus in Genstat for
Windows. The spreadsheet facilities of Genstat for Windows also provide several convenient
menus for data manipulation, accessed by clicking Spread on the menu bar and then selecting
Manipulate. For example, you can stack and unstack columns, transpose the sheet, append new
data onto the ends of the columns, and so on. These facilities will generally be easier to use than
the corresponding Genstat commands. Details can be found in the Spreadsheet Help file (click
Help on the menu bar, and then select Spreadsheet).

There are several commands for calculations and manipulation that form variates.
INTERPOLATE calculates variates of interpolated values (4.5.1)

MONOTONIC fits an increasing monotonic regression (4.5.2)
TX2VARIATE converts a text structure into a variate (4.5.3)
ORTHPOLYNOMIAL calculates orthogonal polynomials (procedure)
SPLINE calculates a set of basis functions for M-, B- or I-splines

(procedure)
LSPLINE calculates design matrices to fit a natural polynomial or

trignometric L-spline as a linear mixed model (procedure)
NCSPLINE calculates natural cubic spline basis functions, for use e.g.

in REML (procedure)
PENSPLINE calculates design matrices to fit a penalized spline as a

134 4 Calculations and data manipulation

linear mixed model (procedure)
PSPLINE calculates design matrices to fit a P-spline as a linear

mixed model (procedure)
RADIALSPLINE calculates design matrices to fit a radial-spline surface as

a linear mixed model (procedure)
TENSORSPLINE calculates design matrices to fit a tensor-spline surface as

a linear mixed model (procedure)
VINTERPOLATE performs linear and inverse linear interpolation between

variates (procedure)
Other commands are designed specifically for factors.

GROUPS forms a factor from a variate or text, together with the set

of distinct values that occur (4.6.1)
FACAMEND permutes the levels and labels of a factor (procedure)
FACDIVIDE represents a factor by factorial combinations of a set of

factors (procedure)
FACGETLABELS obtains the labels for a factor if it has been defined with

labels, or constructs labels from its levels otherwise
(procedure)

FACLEVSTANDARDIZE redefines a list of factors so that they have the same levels
or labels (procedure)

FACMERGE merges levels of factors (procedure)
FACPRODUCT forms a factor with a level for every combination of other

factors (procedure)
FACSORT sorts the levels of a factor according to an index vector

(procedure)
FDISTINCTFACTORS checks sets of factors to remove any that define duplicate

classifications (procedure)
QFACTOR allows the user to decide whether to convert texts or

variates to factors (procedure)

Text handling facilities include the ability to omit complete lines, or to append one text onto
the end of another, using the non-specialist commands EQUATE and APPEND already
mentioned. There are also several specialized commands for constructing, editing or
searching texts.

CONCATENATE concatenates together lines of text vectors (4.7.1)

TXBREAK breaks a text structure into individual words (4.7.6)
TXCONSTRUCT forms a text structure by appending or concatenating

values of scalars, variates, texts, factors or pointers; allows
the case of letters to be changed or values to truncated and
reversed (4.7.2)

TXFIND finds a subtext within a text structure (4.7.4)
TXPAD pads strings of a text structure with extra characters so that

their lengths are equal
TXPOSITION locates strings within the lines of a text structure (4.7.3)
TXREPLACE replaces strings within a text structure (4.7.5)
TXSPLIT splits a text into individual texts, at positions on each line

marked by separator characters (4.7.7)
TXINTEGERCODES converts textual characters to and from their corresponding

integer codes (4.7.8)
TXPROGRESSION forms a text containing a progression of strings (4.7.9)
EDIT line editor for units of text vectors (4.7.10)

4 Calculations and data manipulation 135

FVSTRING forms a string listing the identifiers of a set of data
structure

Formulae can be interpreted, modified to operate on different data structures, or constructed

automatically from pointers.
FCLASSIFICATION forms classification sets for the terms in a formula, or

breaks a formula up into separate formulae one for each
term (4.8.1)

REFORMULATE modifies a formula or an expression to operate on a
different set of data structures (4.8.4)

SET2FORMULA forms a model formula with the structures contained in a
pointer (4.8.3)

You can find out which data structures are used in an expression.

FARGUMENTS forms lists of data structures used as arguments in an

expression (4.8.2)
Values can be assigned to dummies and pointers by the ASSIGN directive.

ASSIGN sets values of dummies and pointers (4.9.1)
There are several commands for calculations on matrices (either as individual structures, or

as elements of a compound structure such as an LRV or an SSPM).
SVD calculates the singular-value decomposition of a matrix

(4.10.1)
FLRV calculates latent roots and vectors ! that is, eigenvalues

and eigenvectors (4.10.2)
FSSPM calculates values for SSPM structures i.e. sums of squares

and products, means, etc. (4.10.3)
QRD calculates the QR decomposition of a matrix (4.10.4)
FCORRELATION forms and tests the correlation matrix for a list of variates

(procedure)
FROWCANONICALMATRIX puts a matrix into row canonical, or reduced row echelon,

form (procedure)
FVCOVARIANCE forms the variance-covariance matrix for a list of variates

(procedure)
LINDEPENDENCE finds the linear relations associated with matrix

singularities (procedure)
MPOWER forms integer powers of a square matrix (procedure)
PARTIALCORRELATIONS calculates a matrix of partial correlations between a set of

variates (procedure)
POSSEMIDEFINITE calculates a positive semi-definite approximation of a non-

positive semi-definite symmetric matrix (procedure)
STANDARDIZE standardizes columns of a matrix, or a set of variates, to

have mean 0 and variance 1 (procedure)
VMATRIX copies values and row/column labels from a matrix to

variates or texts (procedure)
Tables can be formed containing summaries of values in variates: totals, minimum and

maximum values, quantiles, numbers of missing and non-missing values, means and variances.
The table manipulation facilities include the ability to add various types of marginal summaries
to tables, and to combine "slices" of tables (and also of matrices or variates), calculation of tables
of percentages, identification of outliers, and formation of a data matrix (variate and factors)
from a table. You can also tabulate results from stratified surveys and surveys involving
multiple-response factors.

136 4 Calculations and data manipulation

TABULATE forms tables of summaries of the values of a variate

(4.11.1)
MARGIN calculates or deletes margins of tables (4.11.2)
COMBINE combines or omits "slices" of tables, matrices or variates

(4.11.4)
MEDIANTETRAD gives robust identification of multiple outliers in 2-way

tables (procedure)
PERCENT expresses the body of a table as percentages of one of its

margins (4.11.3)
T%CONTROL expresses tables as percentages of control cells (4.11.3)
TABINSERT inserts the contents of a sub-table into a table (4.11.5)
TABMODE forms summary tables of modes (procedure)
TABSORT sorts tables so their margins are in ascending or

descending order, as in a Pareto chart (4.11.6)
TCOMBINE combines several tables into a single table (procedure)
DTABLE plots tables (4.11.7)
VTABLE forms a variate and a set of classifying factors from a table

(procedure)
FMFACTORS forms a pointer of factors representing a multiple-response

(4.11.8)
FFREERESPONSEFACTOR forms multiple-response factors from free-response data

(4.11.9)
MTABULATE forms tables classified by multiple-response factors

(4.11.10)
SVBOOT bootstraps data from random surveys (procedure)
SVCALIBRATE performs generalized calibration of survey data

(procedure)
SVGLM fits generalized linear models to survey data (procedure)
SVHOTDECK performs hot-deck and model-based imputation for survey

data (procedure)
SVMERGE merges strata prior to survey analysis (procedure)
SVREWEIGHT modifies survey weights adjusting to ensure that their

overall sum weights remains unchanged (procedure)
SVSTRATIFIED analyses stratified random surveys by expansion or ratio

raising (procedure)
SVTABULATE tabulates data from random surveys, including multistage

surveys and surveys with unequal probabilities of selection
(procedure)

SVWEIGHT forms survey weights (procedure)

Directives are available for adding and removing branches of trees. There are also procedures
for constructing, displaying and pruning trees, which provide basic utilities for Genstat's tree-
based analysis including classification trees (2:6.20), identification keys (2:6.21) and regression
trees (2:3.9).

BCUT cuts a tree at a defined node, discarding nodes and

information below it (4.12.4)
BJOIN extends a tree by joining another tree to a terminal node

(4.12.5)
BGROW adds new branches to a node of a tree (4.12.3)
BCONSTRUCT constructs a tree (4.12.6)
BASSESS assesses potential splits for regression and classification

4.1 Numerical Calculations 137

trees (4.12.7)
BGRAPH plots a tree (4.12.2)
BPRINT displays a tree (4.12.1)
BPRUNE prunes a tree using minimal cost complexity (4.12.8)
BIDENTIFY identifies specimens using a tree (4.12.9)

There are also various specialist mathematical facilities

NAG calls an algorithm from the NAG Library (4.13)

FHADAMARDMATRIX forms Hadamard matrices (procedure)
FPARETOSET forms the Pareto optimal set of non-dominated groups

(procedure)
FPROJECTIONMATRIX forms a projection matrix for a set of model terms

(procedure)
FRTPRODUCTDESIGNMATRIX forms summation, or relationship, matrices for model

terms (procedure)
GALOIS forms addition and multiplication tables for a Galois finite

field (procedure)
NCONVERT converts integers between base 10 and other bases

(procedure)
PERMUTE forms all possible permutations of the integers 1...n

(procedure)
PRIMEPOWER decomposes a positive integer into its constituent prime

powers (procedure)

4.1 Numerical calculations

The main directive for calculations in Genstat is called CALCULATE, and this is described in the
first part of this section. The calculation to be done is defined by a Genstat expression. The
formal rules for these are given in 1.6.2, but below we give examples that explain in more detail
exactly how they are used. Expressions also occur in RESTRICT (4.4.1), the directives for
program control (5.2), FITNONLINEAR (2:3.8), or anywhere that Genstat is taking input from an
identifier or list of identifiers (1.5.3). So this section is relevant also to many other areas of
Genstat.

Section 4.1.1 contains general information about CALCULATE, describing its options and
illustrating the operators that can occur in expressions. Information about calculations with
particular data structures is given in 4.1.2 (scalars, factors, variates and texts), 4.1.3 (matrices)
and 4.1.4 (tables). The rules for implicit declarations in CALCULATE are given in 4.1.5. Section
4.1.6 describes how to define subsets of vectors or matrices using qualified identifiers. The
functions that can be used in expressions are described in 4.2.

4.1.1 The CALCULATE directive

CALCULATE directive
Calculates numerical values for data structures.

Options
PRINT = string token Printed output required (summary); default * i.e. no

printing
ZDZ = string token Value to be given to zero divided by zero (missing,

zero); default miss
TOLERANCE = scalar If the scalar is non missing, this defines the smallest

138 4 Calculations and data manipulation

non-zero number; otherwise it accesses the default
value, which is defined automatically for the computer
concerned

SEED = scalar Seed to use for any random number generation during
the calculation; default 0

INDEX = scalar If the calculation has a list of structures before the
assignment operator (=), the scalar indicates the position
within the list of the structure currently being evaluated

RESTRICTEDUNITS = variate Defines a "restriction" on the vectors in the expression;
if this is set the calculations on those vectors will take
place only on the units listed in the variate (and any
restrictions of their own will be ignored)

Parameter
expression Expression defining the calculations to be performed

The parameter of CALCULATE is unnamed, and is an expression. An expression (1.6.2) consists
of identifier lists, operators and functions. However, for an expression to be valid in CALCULATE,
it must include the assignment operator (=). For example

CALCULATE 5,6

will fail, with an error message, even though the list 5,6 is an expression.
The simplest form of expression in CALCULATE merely assigns values from one structure to

another of the same type. For example:

VARIATE [VALUES=1...4] V1
CALCULATE V2 = V1

The values of variate V1 are copied into the structure V2; since V2 has not been declared
previously Genstat defines it implicitly, here as a variate. The rules for implicit declarations in
CALCULATE are described in 4.1.5, but you may prefer to declare everything explicitly until you
are confident in the use of CALCULATE.

A complete list of the operators available for expressions is given in 1.4.6. Most of the
operators in this list act element-by-element on the values of data structures of the same type,
the exceptions being the compound operator *+ (matrix multiplication) and the four relational
operators: .IS., .ISNT., .IN. and .NI. The assignment operator (=) has been demonstrated
above; the next example shows the arithmetic operators +, !, *, / and ** operating element-by-
element on variates, X and Y:

Example 4.1.1a

 2 VARIATE [VALUES=10,12,14,16,*,20] X
 3 VARIATE [VALUES=4,3,2,1,0,-1] Y
 4 CALCULATE Vadd = X + Y
 5 & Vsub = X - Y
 6 & Vmult = X * Y
 7 & Vdiv = X / Y
 8 & Vexp = X ** Y
 9 PRINT X,Y,Vadd,Vsub,Vmult,Vdiv,Vexp; FIELDWIDTH=9; DECIMALS=2

 X Y Vadd Vsub Vmult Vdiv Vexp
 10.00 4.00 14.00 6.00 40.00 2.50 10000.00
 12.00 3.00 15.00 9.00 36.00 4.00 1728.00
 14.00 2.00 16.00 12.00 28.00 7.00 196.00
 16.00 1.00 17.00 15.00 16.00 16.00 16.00
 * 0.00 * * * * *
 20.00 -1.00 19.00 21.00 -20.00 -20.00 0.05

4.1 Numerical Calculations 139

A missing value in either or both of the variates produces a missing value in the resulting variate.
You can use the operator minus (!) in two ways: either as a dyadic minus, to subtract one

operand from another, as shown above; or as a monadic minus, to change the sign of a single
operand. Genstat gives the monadic minus high precedence, which means that when it appears
in an expression, it is one of the first operations to be done. Thus you need to be careful when
using monadic minus to change the sign of the result of an expression. In particular, these two
CALCULATE statements will give the same values to both Vb and Vc:

CALCULATE Vb = Va**2
CALCULATE Vc = !Va**2

This is because the operator ! appears as a monadic minus, and so the signs of the values of Va
are changed before being squared; to obtain the negative of the square of Va you need

CALCULATE Vc = !(Va**2)

In logical and relational expressions, Genstat uses the value 0 to represent false, and the value
1 to represent true. In fact any non-zero non-missing value is taken to represent a true value.

For numerical structures, Genstat has the relational operators .EQ., .NE., .LT., .LE., .GT.
and .GE. with their symbolic equivalents. Note that the symbolic equivalent for .EQ. is the
compound operator ==. Genstat requires the two (adjacent) equals signs to distinguish this from
the assignment operator, which would generate rather different results! For text structures, the
appropriate relational operators are .EQS. and .NES. The two texts must have the same number
of units (or lines).

Example 4.1.1b

 2 VARIATE [VALUES=1,2,3,4,5,*,*,1] X
 3 & [VALUES=5,4,3,2,1,1,*,*] Y
 4 TEXT [VALUES=a,b,c,d,e,'','',a] Tx
 5 & [VALUES=a,x,c,d,y,a,'',''] Ty
 6 CALCULATE Veq = X.EQ.Y
 7 & Vne = X.NE.Y
 8 & Vlt = X.LT.Y
 9 & Vle = X.LE.Y
 10 & Vgt = X.GT.Y
 11 & Vge = X.GE.Y
 12 & Veqs = Tx.EQS.Ty
 13 & Vnes = Tx.NES.Ty
 14 PRINT X,Y,Veq,Vne,Vlt,Vle,Vgt,Vge,Tx,Ty,Veqs,Vnes; \
 15 FIELDWIDTH=5; DECIMALS=0

 X Y Veq Vne Vlt Vle Vgt Vge Tx Ty Veqs Vnes
 1 5 0 1 1 1 0 0 a a 1 0
 2 4 0 1 1 1 0 0 b x 0 1
 3 3 1 0 0 1 0 1 c c 1 0
 4 2 0 1 0 0 1 1 d d 1 0
 5 1 0 1 0 0 1 1 e y 0 1
 * 1 0 1 * * * * a 0 1
 * * 1 0 * * * * 1 0
 1 * 0 1 * * * * a 0 1

With most of the relational operators, a missing value in either operand, or in both, gives a
missing result. The exceptions are .EQ. and .NE., .EQS. and .NES. When both operands are
missing, .EQ. gives a true result and .NE. gives a false result. The same is true with .EQS. and
.NES. when they encounter missing values (or null strings) in texts.

The relational operators .IS. and .ISNT. test whether or not a dummy points to a particular
identifier. For example, to store in Sca the result of a test to check whether dummy D points to
Va, you would put

CALCULATE Sca = D.IS.Va

while to test that D does not point to Vb, you would put

140 4 Calculations and data manipulation

CALCULATE Sca = D.ISNT.Vb

The final pair of relational operators, .IN. and .NI., represent inclusion and non-inclusion.

These two operators differ from the other relational operators in that each value in the structure
on the left-hand side is compared in turn with every value in the structure on the right-hand side.

For .IN., the result is true if the value on the left-hand side is included in the set of values
in the right-hand structure; otherwise the result is false. The .NI. operator is the opposite of
.IN.

The length of the result is taken from the length of the left-hand structure, since it is the values
of the left-hand structure that are being tested. For a very simple example, suppose that the
variate X contains the values 1,2,1,1,3,5,1,2,1,4, and that the variate Evens contains 0,2,4,6,8.
The statement

CALCULATE S = X.IN.Evens

will store in S an indication of whether each element of X is odd or even: that is, S will be given
the values 0,1,0,0,0,0,0,1,0,1.

When there is a factor on the left-hand side of .IN. or .NI. and a variate on the right-hand
side, Genstat checks the levels of the factor against the values in the variate. Alternatively, if the
factor has a labels vector, you can specify a text against which Genstat will then compare the
labels. In the next example, the variate Large records which elements of the factor Size have
values that lie in the set {4.8, 6}, and the variate NotAB records which elements of the factor
Type have values that lie outside the set {A, B}:

Example 4.1.1c

 2 FACTOR [LEVELS=!(1.2,2.4,3.6,4.8,6)] Size; \
 3 VALUES=!(1.2,4.8,6,2.4,3.6,2.4,1.2,6)
 4 FACTOR [LABELS=!T(A,B,C,D)] Type; VALUES=!T(2(A,B,C,D))
 5 CALCULATE Large = Size .IN. !(4.8,6)
 6 & NotAB = Type .NI. !T(A,B)
 7 PRINT Size,Large,Type,NotAB; FIELDWIDTH=6; DECIMALS=1,0,0,0

 Size Large Type NotAB
 1.2 0 A 0
 4.8 1 A 0
 6.0 1 B 0
 2.4 0 B 0
 3.6 0 C 1
 2.4 0 C 1
 1.2 0 D 1
 6.0 1 D 1

You can use the logical operators .AND., .NOT., .OR. and .EOR. to combine the results of the
relational operators, and form a single logical result: .NOT. reverses true and false results; .OR.
gives a true result only if one or both operands are true; .AND. gives a true result if both
operands are true; and .EOR. gives a true result if one of the operands is true, but a false result
if both are true or both false. Example 4.1.1d shows the results of the four logical operators.
Notice that a missing value in either operand gives a missing value in the result.

Example 4.1.1d

 2 VARIATE [VALUES=3(0,1,2),1,*] X
 3 & [VALUES=(0,1,2)3,*,*] Y
 4 CALCULATE Vnot = .NOT. Y
 5 & Vor = X .OR. Y
 6 & Vand = X .AND. Y
 7 & Veor = X .EOR. Y
 8 PRINT X,Y,Vnot,Vor,Vand,Veor; FIELDWIDTH=5; DECIMALS=0

 X Y Vnot Vor Vand Veor

4.1 Numerical Calculations 141

 0 0 1 0 0 0
 0 1 0 1 0 1
 0 2 0 1 0 1
 1 0 1 1 0 1
 1 1 0 1 1 0
 1 2 0 1 1 0
 2 0 1 1 0 1
 2 1 0 1 1 0
 2 2 0 1 1 0
 1 * * 1 * *
 * * * * * *

If the expression contains lists, Genstat does several calculations. For example,

CALCULATE A,B,C = X,Y,Z + 1,2,3

is equivalent to the three CALCULATE statements:

CALCULATE A = X + 1
CALCULATE B = Y + 2
CALCULATE C = Z + 3

Genstat takes the items in the lists in parallel, and recycles any lists that are shorter than the list
of primary arguments. In CALCULATE, the primary arguments are the identifiers on the left-hand
side of the assignment operator (=). In the above example, each list had three identifiers, and so
no recycling was done; but in the statement

CALCULATE A,B,C = X,Y + 1,2,3

the second list is of length only two, and so is recycled to give the calculations:

CALCULATE A = X + 1
CALCULATE B = Y + 2
CALCULATE C = X + 3

The INDEX option allows you to define a scalar which will store the number of the calculation
that is taking place. So, we could do the calculations above by putting

CALCULATE [INDEX=Ncalc] A,B,C = X,Y + Ncalc

The scalar Ncalc takes the value 1 while A is calculated (i.e. during the first calculation), then
2 while B is calculated, and finally 3 while C is calculated.

If the longest list is not on the left-hand side of the assignment operator, CALCULATE gives a
fault diagnostic.

We must stress that Genstat operates on lists of data structures in its calculations and not on
lists of expressions; if you want to specify several expressions, you must separate them by
semicolons and not commas. As an example, suppose that you have two variates X and Y, where
X is to be multiplied by 10, and Y is to be divided by 180. Naively, you might write the
statement:

CALCULATE X,Y = X*10,Y/180

This statement is syntactically correct, but it does not do what you want: in fact it corresponds
to the pair of statements

CALCULATE X = X*10/180
CALCULATE Y = X*Y/180

which is quite different from the intention. Genstat interprets the elements of the list on the right-
hand side as 10 and Y, and not as "X*10" and "Y/180". If you really want to combine these two
operations together in a single expression, you need to put

CALCULATE X,Y = X,Y * 10,1 / 1,180

Then the three lists on the right-hand side are taken in parallel: firstly X, 10 and 1, and then Y,
1 and 180. If you want to execute more than one expression in a CALCULATE statement, you
must separate each one from the next by a semicolon: for example

CALCULATE X = X*10; Y = Y/180

142 4 Calculations and data manipulation

CALCULATE has three further options: PRINT, ZDZ and TOLERANCE. If you set the PRINT

option to summary, Genstat will print some summary information every time that values are
assigned to a structure. The information has the same form as in the READ directive (3.1.2):
identifier, minimum value, mean value, maximum value, number of values, number of missing
values, and whether or not the set of values is skew. In Example 4.1.1e two assignments are
made, and summaries are printed for the variates B and C.

Example 4.1.1e

 2 VARIATE [VALUES=1,4,*,7,10] A
 3 CALCULATE [PRINT=summary] C = (B = 2*A) + 1

 Identifier Minimum Mean Maximum Values Missing
 B 2.000 11.00 20.00 5 1
 C 3.000 12.00 21.00 5 1

If you try to use CALCULATE to do something invalid, such as the logarithm or the square root
of a negative number, Genstat generates a warning diagnostic and inserts a missing value in the
offending unit. The one exception is the division of zero by zero, which is regarded as deliberate.
Genstat thus does not print a diagnostic, but uses option ZDZ to determine whether the result
should be a missing value (ZDZ=missing) or zero (ZDZ=zero); the default is missing. In this
example, the variate %dm is formed with zeroes in the positions where Fresh_wt and Dry_wt
both have zeroes.

Example 4.1.1f

 2 VARIATE [VALUES=15.74,88.61,48.70,0,49.37] Fresh_wt
 3 & [VALUES=3.21,11.3,7.83,0,7.23] Dry_wt
 4 CALCULATE [ZDZ=zero] %dm = 100*Dry_wt / Fresh_wt
 5 PRINT Dry_wt,Fresh_wt,%dm; FIELDWIDTH=9; DECIMALS=2

 Dry_wt Fresh_wt %dm
 3.21 15.74 20.39
 11.30 88.61 12.75
 7.83 48.70 16.08
 0.00 0.00 0.00
 7.23 49.37 14.64

Arithmetic operations with real numbers can suffer from rounding errors. Genstat uses real
arithmetic for all its operations in CALCULATE, and so makes allowance for cases where
rounding error may cause problems: in other words, very small numbers are taken to be zero.
Sometimes, however, you may want to do calculations with numbers that are genuinely very
small, and so the TOLERANCE option allows you to change the value that Genstat uses to assess
the rounding-off.

4.1.2 Expressions with scalars and vectors

Example 4.1.2a shows a calculation involving scalars and variates. Several scalars are used to
transform the variate Mpg (miles per gallon) into its metric counterpart Lp100k (litres per 100
kilometres). The scalar values are applied to every unit of the variate. You will see that the zero
value in Mpg causes Genstat to print the warning "Attempt to divide by zero"; a missing
value is placed in the corresponding position in Lp100k. This warning is printed only once per
operation; so subsequent zero values in Mpg do not trigger it again.

4.1 Numerical Calculations 143

Example 4.1.2a

 2 VARIATE [VALUE=0,10,20,30,32...40,0,50] Mpg
 3 VARIATE Lp100km
 4 SCALAR Lpt,Cmin,Ydm,Inyd,Mkm; VALUE=0.568,2.54,1760,36,1000
 5 CALCULATE Lp100km = 8 * Lpt * 100 * Mkm * 100 / \
 6 (Mpg * Ydm * Inyd * Cmin)

******** Warning 1, Code CA 18, statement 1 on Line 6

Command: CALCULATE Lp100km = 8 * Lpt * 100 * Mkm * 100 / (Mpg * Ydm
* Inyd * Cmin)
Attempt to divide by zero.
Attempt to divide by zero occurs at unit 1

 7 PRINT Lp100km,Mpg; FIELDWIDTH=8; DECIMALS=2

 Lp100km Mpg
 * 0.00
 28.24 10.00
 14.12 20.00
 9.41 30.00
 8.82 32.00
 8.30 34.00
 7.84 36.00
 7.43 38.00
 7.06 40.00
 * 0.00
 5.65 50.00

If you use CALCULATE with variates that have been "restricted" using the RESTRICT directive
(4.4.1), Genstat applies the same restriction to all the variates involved in each calculation. Thus
if more than one of these variates is restricted, they must all be restricted in the same way. In
Example 4.1.2b, the variate Fresh_wt is restricted to those of its values that correspond to the
first level of the factor Block. Only these units are involved in the calculation; the other units
are left unchanged. Here the variate %dm had no values, and so the units in block 2 are given
missing values.

Example 4.1.2b

 2 VARIATE [VALUES=15.74,88.61,48.70,49.37,18.96,12.13,23.38,48.16]\
 3 Fresh_wt
 4 & [VALUES=3.21,11.3,7.83,7.23,3.55,2.6,4.0,6.43] Dry_wt
 5 VARIATE [NVALUES=8] %dm
 6 FACTOR [LEVELS=2; VALUES=4(1,2)] Block
 7 RESTRICT Fresh_wt; CONDITION=Block.EQ.1
 8 CALCULATE %dm = Dry_wt*100/Fresh_wt
 9 PRINT %dm

 %dm
 20.39
 12.75
 16.08
 14.64
 *
 *
 *
 *

The RESTRICTEDUNITS option provides an alternative way of specifying a restriction. Its setting
is a variate containing a list of the units numbers on which you want the calculation to be done
(the other units are then ignored). This works in the same way as if you had applied a restriction

144 4 Calculations and data manipulation

on one of these vectors explicitly. However, if RESTRICTEDUNITS is set, restrictions on the
vectors themselves are ignored. By default, when RESTRICTEDUNITS is unset, CALCULATE will
look for restrictions in the vectors, as usual. However, you can set RESTRICTEDUNITS=* to
make the calculation work on all the units, regardless of whether any of the vectors is restricted.

Note, though, that restrictions on a variate within a scalar function (for example MEAN; 4.2.2),
or within the RESTRICTION function (4.2.8), operate independently from the main calculation
outside. Also, restrictions are ignored if the main calculation contains qualified identifiers or the
ELEMENTS function (4.2.8).

When Genstat implicitly declares a structure during a CALCULATE operation, it also by default
sets its attributes to match those of the structures in the calculation: for details, see 4.1.5. We
now do the same calculation, but leave Genstat to declare the structure %dry_m as a variate. In
particular, the length of %dry_m will be the same as that of Fresh_wt, and %dry_m will become
restricted in the same way as Fresh_wt. Thus, the PRINT statement shows only the values of
%dry_m corresponding to block 1; in fact, all the other values of %dry_m are missing. Genstat
would also have carried the restriction across if we had declared %dry_m as a variate but had left
the CALCULATE statement to set its number of values.

Example 4.1.2c

 10 CALCULATE %dry_m = Dry_wt*100/Fresh_wt
 11 PRINT %dry_m

 %dry_m
 20.39
 12.75
 16.08
 14.64

If you put a factor in a calculation, Genstat will use its levels, as shown when variate V takes its
values from the factor F in line 3 of Example 4.1.2d. The function NEWLEVELS (4.2.1) allows
you to specify an alternative levels variate to be used instead in the calculation. Line 4 of
Example 4.1.3d uses the values 3.5 and 6.4, instead of the values 2 and 4 in the levels variate of
the factor F, when forming the values of the variate Vn.

Example 4.1.2d

 2 FACTOR [LEVELS=!(2,4)] F; VALUES=!((2,4)4)
 3 CALCULATE V = F
 4 & Vn = NEWLEVELS(F; !(3.5,6.4))
 5 PRINT V,Vn

 V Vn
 2.000 3.500
 4.000 6.400
 2.000 3.500
 4.000 6.400
 2.000 3.500
 4.000 6.400
 2.000 3.500
 4.000 6.400

If the factor is on the left!hand side of the equals sign, Genstat checks that each of the results
of the calculation is an acceptable level. This allows you to define the values of a factor from a
variate, or from another factor. However you must already have declared the factor, with its
levels and labels vectors; factors cannot be declared implicitly. Example 4.1.2e first sets the
values of the factor Rate from the variate Setting; it then uses the NEWLEVELS function to
form the values of the factor Amount, whose first level corresponds to levels 1 and 2 of the

4.1 Numerical Calculations 145

factor Rate and whose second level corresponds to levels 3 and 4.

Example 4.1.2e

 2 VARIATE [VALUES=1,3,2,1,4,3,1,2] Setting
 3 FACTOR [LEVELS=!(1.25,2.5,3.75,5)] Rate
 4 CALCULATE Rate = Setting*1.25
 5 FACTOR [LABELS=!T(lower,higher)] Amount
 6 CALCULATE Amount = NEWLEVEL(Rate; !(1,1,2,2))
 7 PRINT Setting,Rate,Amount; FIELDWIDTH=8; DECIMALS=2

 Setting Rate Amount
 1.00 1.25 lower
 3.00 3.75 higher
 2.00 2.50 lower
 1.00 1.25 lower
 4.00 5.00 higher
 3.00 3.75 higher
 1.00 1.25 lower
 2.00 2.50 lower

Text structures are allowed only with the relational operators .EQS., .NES., .IN. and .NI.
described in 4.1.1, or in the functions CHARACTERS, GETFIRST, GETLAST, GETPOSITION,
NOBSERVATIONS, NMV, NVALUES and POSITION. The result of any expression is a number, so
you cannot create a text with CALCULATE, even if the structures on which the operations are
being done are texts.

4.1.3 Expressions with matrices

All the arithmetic, relational and logical operators that we have now seen in use with variates
can also be used with rectangular matrices, symmetric matrices and diagonal matrices. The basic
rule when using these with different types of matrix is that their dimensions must conform. This
means that, for each pair of matrices, row dimension must match row dimension, and column
dimension must match column dimension. Consider the matrices Mx, My and Mz, and the
symmetric matrix Smz declared here:

MATRIX [ROWS=3; COLUMNS=4] Mz,My
MATRIX [ROWS=3; COLUMNS=3] Mx
SYMMETRICMATRIX [ROWS=3] Smz

The dimensions of Mz and My conform; but the dimensions of Mx and Mz do not, since Mx and
Mz have different numbers of columns, three and four respectively. Similarly the dimensions of
the symmetric matrix Smz and the matrix Mx conform; but the dimensions of Smz and Mz do not.

For simplicity, our examples mostly involve addition; but remember that you can replace the
operator + with any of the other arithmetic, logical or relational operators. Matrix multiplication
is described towards the end of this subsection.

In Example 4.1.3a, two rectangular matrices, Ma and Mb (each with four rows and three
columns) are added together to form Mc. Note that Genstat operates in turn on each element of
these two matrices, and that the new structure Mc is a matrix also with four rows and three
columns.

Example 4.1.3a

 2 MATRIX [ROWS=4; COLUMNS=3] Ma,Mb; \
 3 VALUES=!(1...12),!(5,4,6,12,10,11,7,9,8,3,1,2)
 4 & Mc
 5 CALCULATE Mc = Ma + Mb
 6 PRINT Mc

146 4 Calculations and data manipulation

 Mc
 1 2 3

 1 6.00 6.00 9.00
 2 16.00 15.00 17.00
 3 14.00 17.00 17.00
 4 13.00 12.00 14.00

When you do calculations with two diagonal matrices, each one must have the same number of
rows. Similarly, with symmetric matrices, the row dimensions must match. When you add,
subtract, multiply, divide or exponentiate a symmetric matrix, only those elements that are stored
by Genstat are operated on. Here the two symmetric matrices Sma and Smb are added together
to form another symmetric matrix Smc; this is done element by element.

Example 4.1.3b

 7 SYMMETRICMATRIX [ROWS=4] Sma,Smb; \
 8 VALUES=!(1...10),!(7,8,4,9,5,2,10,6,3,1)
 9 & Smc
 10 CALCULATE Smc = Sma + Smb
 11 PRINT Smc

 Smc

 1 8.00
 2 10.00 7.00
 3 13.00 10.00 8.00
 4 17.00 14.00 12.00 11.00
 1 2 3 4

If you use a symmetric matrix in a calculation together with a matrix, it will be extended to
include the values above the diagonal, before the calculation is done. Similarly, diagonal
matrices are extended for calculations with matrices or symmetric matrices. Example 4.1.3c adds
the diagonal matrix Da to the symmetric matrix Sma and puts the results in the matrix Md.

Example 4.1.3c

 12 DIAGONALMATRIX [ROWS=4; VALUES=3,2,4,1] Da
 13 MATRIX [ROWS=4; COLUMNS=4] Md
 14 CALCULATE Md = Sma + Da
 15 PRINT Md

 Md
 1 2 3 4

 1 4.000 2.000 4.000 7.000
 2 2.000 5.000 5.000 8.000
 3 4.000 5.000 10.000 9.000
 4 7.000 8.000 9.000 11.000

You can also use variates together with matrices, provided their dimensions conform. Genstat
treats variates as column matrices: that is, with n rows and one column. Example 4.1.3d adds the
variate Va to the four-by-one matrix Me.

Example 4.1.3d

 16 VARIATE [NVALUE=4; VALUES=4,2,1,3] Va
 17 MATRIX [ROWS=4; COLUMNS=1; VALUES=10,4,7,2] Me
 18 CALCULATE Me = Me + Va
 19 PRINT Me

4.1 Numerical Calculations 147

 Me
 1

 1 14.000
 2 6.000
 3 8.000
 4 5.000

You can use a scalar with any of the matrix structures; the scalar is applied to every element of
the matrix, in exactly the same way as when scalars and variates occur together in a calculation
(4.1.2). Here the scalar Sca is added to every element of the symmetric matrix Sma.

Example 4.1.3e

 20 SCALAR Sca; VALUE=3
 21 CALCULATE Sma = Sma + Sca
 22 PRINT Sma

 Sma

 1 4.000
 2 5.000 6.000
 3 7.000 8.000 9.000
 4 10.000 11.000 12.000 13.000
 1 2 3 4

The multiplication operator (*) means element-by-element multiplication for the two matrices,
not matrix multiplication.

Example 4.1.3f

 23 MATRIX [ROWS=4; COLUMNS=3] Mf
 24 CALCULATE Mf = Ma * Mb
 25 PRINT Mf

 Mf
 1 2 3

 1 5.00 8.00 18.00
 2 48.00 50.00 66.00
 3 49.00 72.00 72.00
 4 30.00 11.00 24.00

For matrix multiplication you can use the compound operator *+ or the function PRODUCT
(4.2.4). The column dimension of the first matrix must then match the row dimension of the
second. In Example 4.1.3g, the four-by-four matrix Mh is formed from the matrix product of Ma
with Mg, a matrix with three rows and four columns.

Example 4.1.3g

 26 MATRIX [ROWS=3; COLUMNS=4; VALUES=1,4,7,10,2,5,8,11,3,6,9,12] Mg
 27 MATRIX [ROWS=4; COLUMNS=4] Mh
 28 CALCULATE Mh = Ma *+ Mg
 29 PRINT Mh

 Mh
 1 2 3 4

 1 14.0 32.0 50.0 68.0
 2 32.0 77.0 122.0 167.0
 3 50.0 122.0 194.0 266.0

148 4 Calculations and data manipulation

 4 68.0 167.0 266.0 365.0

To summarize then, *+ is used in Genstat for matrix multiplication while * allows the
corresponding elements of two matrices to be multiplied together.

The rules for implicit declarations when combining matrices are in 4.1.5. The rules for
qualified identifiers of matrices are in 4.1.6. Genstat provides several special matrix functions,
including the INVERSE and GINVERSE functions, which can be included in CALCULATE
statements; for details see 4.2.4. There are also several specialized functions for manipulating
RGB images stored in matrices; see 4.2.13 and 6.5.1.

4.1.4 Expressions with tables

You can use tables in expressions in much the same way as you would any other numerical
structure. Arithmetic, relational and logical operators act element-by-element, as do the general
functions (4.2.1).

Tables in expressions must be either all without margins or all with margins. If you try to mix
tables with and without margins, Genstat will report an error.

Calculations with tables are very straightforward when they have the same factors in their
classifying sets. In Example 4.1.4a two tables are added together:

Example 4.1.4a

 2 FACTOR [LEVELS=2; LABELS=!T(Woburn,Rothamsted)] Soil
 3 & [LEVELS=2; LABELS=!T(low,medium)] Acidity
 4 TABLE [CLASSIFICATION=Soil,Acidity] Ta,Tb; \
 5 VALUES=!(6.91,4.98,4.86,*),!(6.38,4.68,6.49,*)
 6 & Tc
 7 CALCULATE [PRINT=summary] Tc = Ta + Tb

 Identifier Minimum Mean Maximum Values Missing
 Tc 9.660 11.43 13.29 4 1

 8 PRINT Tc

 Tc
 Acidity low medium
 Soil
 Woburn 13.29 9.66
 Rothamsted 11.35 *

When tables have different classifying sets, there are two cases to consider. We illustrate them
with the assignment operator, but the rules apply to any operation. The first case is when the
table on the left-hand side has a factor in its classifying set that is not in the classifying set of the
table on the right-hand side. In this case, the right-hand table is expanded to include that factor,
by duplicating its values across the levels of the factor and any margin. Thus, in Example 4.1.4b,
the values of the table Tb are repeated over the levels of the factor Block, which is the factor
additional in the table Td. In other words the table Tb has been extended to include the factor
Block: perhaps the easiest way of thinking about what happens is that each level of the extra
factor contains a whole copy of the table on the right-hand side.

Example 4.1.4b

 9 FACTOR [LEVELS=2] Block
 10 TABLE [CLASSIFICATION=Soil,Acidity,Block] Td
 11 CALCULATE Td = Tb
 12 PRINT Td

4.1 Numerical Calculations 149

 Td
 Block 1 2
 Soil Acidity
 Woburn low 6.380 6.380
 medium 4.680 4.680
 Rothamsted low 6.490 6.490
 medium * *

The second case is when the table on the right-hand side has a factor in its classifying set that
is not in the classifying set of the table on the left-hand side. Now the values in the margin over
that factor are taken for the left-hand table. If the table has no margins, they must be calculated
first. By default Genstat forms marginal totals, but you can use the special table functions (4.2.5)
to form other types of margin. In Example 4.1.4c, marginal totals are calculated for table Td over
the factor Block, and the results are placed in the previously declared table Tc.

Example 4.1.4c

 13 CALCULATE Tc = Td
 14 PRINT Tc

 Tc
 Acidity low medium
 Soil
 Woburn 12.76 9.36
 Rothamsted 12.98 *

The classifying set of a table has two forms ! one taken from the sequence in which the factors
were listed in the CLASSIFICATION option of the TABLE declaration (2.5), the other determined
by the order in which the identifiers of the factors are stored within Genstat. The second of these
is called the ordered classifying set, and is the one used by CALCULATE for all operations on
tables. CALCULATE permutes the values of tables so that they correspond to the ordered
classifying set.

There are two consequences. The first is that if a fault occurs while an operation on a table is
being done, its values may have been permuted, and so may no longer be in the order
corresponding to the classifying set specified in the CLASSIFICATION option of the TABLE
declaration. However, this occurs only if there has been a fault, since CALCULATE does not
permute the values permanently.

The second consequence concerns implicit declarations. When a table is declared implicitly
there is no obvious order for the factors other than the order in which their identifiers are stored
(which generally reflects the order in which they were defined within the job). Thus Genstat will
define the classifying set to be the same as the ordered classifying. So, if the resulting table Tc
had not already been declared in Example 4.1.4a, its classifying set would in this case have been
Acidity, Soil. So, if you want your table printed with the factors in a particular order, you
must declare the table before its values are assigned in CALCULATE, or else use the DOWN,
ACROSS and WAFER options of PRINT (3.2.2).

4.1.5 Rules for implicit declarations

Undeclared structures on the left-hand side of an assignment (=) in an expression are declared
automatically: this is known as an implicit declaration. The type of structure is chosen to be the
one most appropriate to the results that have been produced. This can be described according to
a few straightforward rules.

The assignment operator (=) can appear anywhere in an expression, and so you need to be
aware of the order of evaluation. For example, in the CALCULATE statement

CALCULATE Vc = Va*Vb

150 4 Calculations and data manipulation

the result of Va*Vb is not placed directly in Vc: CALCULATE forms an intermediate structure
whose values in this case are the results of Va*Vb; then the values of the intermediate structure
are assigned to Vc. On assignment, the type and other relevant attributes of the resultant structure
are also taken from the intermediate structure if these have not been defined previously (either
implicitly or explicitly).

When structures of the same type are combined, the rule is that the intermediate structure will
be of the same type; the same rule applies to tables with identical classifying sets. When
structures of different types are combined, you need to know what form the intermediate
structure takes.

In list below, .OP. refers to any arithmetic, logical or relational operator, except .IS.,
.ISNT., .IN., .NI., .EQS. and .NES. which have their own rules described earlier (4.1.1).
The dimensions of operands must conform in any operation involving matrices and variates. The
second column indicates the type of structure resulting from the operation and the third column
lists the types of structures to which it can be assigned.

Combination Intermediate structure Assignment

Scalar .OP. Scalar Scalar any
Variate .OP. Scalar Variate Variate,Factor
Variate .OP. Variate Variate Variate,Factor
Factor .OP. Scalar Variate Variate,Factor
Factor .OP. Variate Variate Variate,Factor
Factor .OP. Factor Variate Variate,Factor
Diagonal .OP. Scalar Diagonal Diagonal,Symmetric
Diagonal .OP. Variate invalid !
Diagonal .OP. Factor invalid !
Diagonal .OP. Diagonal Diagonal Diagonal,Symmetric,Matrix
Symmetric.OP.Scalar Symmetric Diagonal,Symmetric,Matrix
Symmetric.OP.Variate invalid !
Symmetric.OP.Factor invalid !
Symmetric.OP.Diagonal Symmetric Diagonal,Symmetric,Matrix
Symmetric.OP.Symmetric Symmetric Diagonal,Symmetric,Matrix
Matrix .OP. Scalar Matrix Matrix
Matrix .OP. Variate Matrix Matrix,Variate
Matrix .OP. Factor Matrix Matrix,Variate
Matrix .OP. Diagonal Matrix Diagonal,Symmetric,Matrix
Matrix .OP. Symmetric Matrix Diagonal,Symmetric,Matrix
Matrix .OP. Matrix Matrix Matrix
Table .OP. Scalar Table Table
Table .OP. Variate invalid !
Table .OP. Factor invalid !
Table .OP. Diagonal invalid !
Table .OP. Symmetric invalid !
Table .OP. Matrix invalid !
Table .OP. Table Table Table

In the last rule, Table .OP. Table, the classifying set of the intermediate table is the union of the
two classifying sets. For example, in

FACTOR [LEVELS=2] Fa,Fb,Fc
TABLE [CLASSIFICATION=Fa,Fb] Ta
TABLE [CLASSIFICATION=Fa,Fc] Tb
CALCULATE Tc = Ta+Tb

The resulting table, Tc, will have the classifying set Fa, Fb and Fc. As explained at the end of

4.1 Numerical Calculations 151

4.1.4, the classifying set of a table has two forms. All tables in CALCULATE have their values
permuted according to the ordered classifying set. On assignment, the ordered classifying set is
transferred to the new table, which Genstat declares implicitly. So the classifying set and ordered
classifying set are the same for tables declared implicitly.

The third column, headed "Assignment", lists the types of structure to which the values in the
intermediate structure can be assigned. Genstat allows a fair amount of flexibility in this. All the
intermediate structures contain numbers, and so you cannot declare factors implicitly in
CALCULATE. However, you can assign a variate to a factor, so long as the values of the variate
all occur as valid levels of the factor (4.1.2).

Most functions produce a result with the same type as their first argument, but there are some
exceptions like the scalar and variate functions (see 4.2, and especially 4.2.2 and 4.2.3).

4.1.6 Rules for qualified identifiers

Qualified identifiers were introduced in 1.5.3, together with the rules for expanding them into
lists. The rules for their use are similar to the rules for the arguments of the ELEMENTS function
(4.2.8). the number of qualifiers that a structure can have is determined by its dimensionality.
The dimensionality of scalars is defined to be zero, and so they cannot be qualified. Tables have
varying numbers of dimensions, up to nine, and in the current of Genstat cannot be qualified.
The dimensionalities of the structures that can be qualified are as follows.

1) variate, text, factor, diagonal matrix and symmetric matrix.
2) matrix and symmetric matrix.

Notice that a symmetric matrix can have a dimensionality of either one or two, and so can be
qualified in two ways; these are described below.

The qualifiers can be scalars, numbers, variates, quoted strings, or texts. The set of units
defined by a qualifier is built up, by taking its values one at a time. Positive numbers (or texts
or strings) add units to the set, while negative numbers delete the corresponding units from the
set (if already there). A missing value can be used to include all the units, and one of these will
be included implicitly at the start of the qualification list if the first element of the list is
negative.

When an expression contains several qualified vector structures, you define a different subset
for each vector; but for the calculation to work, the number of values contributed from each
vector must be the same: see lines 6 and 7 of Example 4.1.6a. Genstat then ignores any
restrictions on the vectors; in fact qualified identifiers provide an alternative way of specifying
subsets of vectors. Example 4.1.6a illustrates the use of qualifications with variates, texts and
a factor. In each case the qualified vector is a vector with fewer values, but of the same type as
the original structure: for example, Ta$[!(1,3,5)] is a text with three values instead of six.

Example 4.1.6a

 2 VARIATE [NVALUES=5] Va; VALUES=!(1...5)
 3 TEXT [NVALUES=6] Ta,Tb; VALUES=!T(a,b,c,d,e,f),!T(a,a,c,c,f,f)
 4 FACTOR [NVALUES=8; LEVELS=3] Fa; VALUES=!(1,3,2,3,1,2,3,1)
 5 VARIATE [VALUES=12(0)] Vb
 6 CALCULATE Vb$[!(3,6,10)] = Va$[!(1,2,5)] * \
 7 (Ta$[!(1,3,5)] .EQS. Tb$[!(2,4,6)]) + Fa$[!(5,7,2)]
 8 PRINT Vb; DECIMALS=0

 Vb
 0
 0
 2
 0
 0
 5
 0
 0
 0

152 4 Calculations and data manipulation

 3
 0
 0

When you have a qualified diagonal matrix, the subset of values is itself a diagonal matrix.
Similarly a symmetric matrix, qualified by a single list, is also a symmetric matrix. The qualifier
indicates which rows and columns are to be included; see line 4 of Example 4.1.6b.

Example 4.1.6b

 2 SYMMETRICMATRIX [ROWS=4] Sma; VALUES=!(1...10)
 3 & [ROWS=3] Smb
 4 CALCULATE Smb = Sma$[!(1,4,2)]
 5 PRINT Sma,Smb; FIELDWIDTH=6; DECIMALS=0

 Sma

 1 1
 2 2 3
 3 4 5 6
 4 7 8 9 10
 1 2 3 4

 Smb

 1 1
 2 7 10
 3 2 8 3
 1 2 3

 6 MATRIX [ROWS=4; COLUMNS=5] Ma; VALUES=!(1...20)
 7 & [ROWS=2; COLUMNS=2] Mb
 8 CALCULATE Mb = Sma$[!(1,4);!(2,3)] + Ma$[!(1,4);!(3,4)]
 9 PRINT Ma,Mb; FIELDWIDTH=6; DECIMALS=0

 Ma
 1 2 3 4 5

 1 1 2 3 4 5
 2 6 7 8 9 10
 3 11 12 13 14 15
 4 16 17 18 19 20

 Mb
 1 2

 1 5 8
 2 26 28

Symmetric matrices can also have two qualifiers, in which case Genstat treats the result as a
rectangular matrix. Rectangular matrices must have two qualifiers. In line 8 of Example 4.1.6b,
the values of the rectangular matrix Mb are formed from the addition of the values in rows 1 and
4, and columns 2 and 3, of the symmetric matrix Sma to the values in rows 1 and 4, and columns
3 and 4, of the matrix Ma.

All the examples above show how to form vectors and matrices that have fewer values than
the original: that is, the vectors and matrices take their values from subsets of the source
structures. You can form also larger vectors and matrices, by using repeated values in the
qualifier set. In Example 4.1.6c the matrix Mc, with four rows and three columns is formed from
the two-by-two matrix Mb.

Example 4.1.6c

 2 MATRIX [ROWS=2; COLUMNS=2; VALUES=5,7,6,2] Mb

4.1 Numerical Calculations 153

 3 MATRIX [ROWS=4; COLUMNS=3] Mc
 4 VARIATE [NVALUES=4; VALUES=1,2,2,1] Va
 5 & [NVALUES=3; VALUES=1,1,2] Vb
 6 CALCULATE Mc = Mb$[Va; Vb]
 7 PRINT Mc; FIELDWIDTH=6; DECIMALS=0

 Mc
 1 2 3

 1 5 5 7
 2 6 6 2
 3 6 6 2
 4 5 5 7

Instead of using variates to qualify the structures, you can use any numerical structure, and these
structures can be qualified too. Genstat treats any structure used as a qualifier as a one-
dimensional list of values. You can build very complicated qualifications in this way. The only
limitation is that the set of values of the qualifiers must form a valid address list for the parent
structure. In Example 4.1.6d, the complicated qualification reduces to assigning the value 3 to
the element in row 3 and column 4 of the matrix Ma.

Example 4.1.6d

 2 VARIATE [NVALUES=6] Va; VALUES=!(1,4,3,2,4,3)
 3 MATRIX [ROWS=4; COLUMNS=6] Ma; VALUES=!(1...24)
 4 CALCULATE Ma$[Va$[2]; Ma$[1; 3]] = 3
 5 PRINT Ma; FIELDWIDTH=6; DECIMALS=0

 Ma
 1 2 3 4 5 6

 1 1 2 3 4 5 6
 2 7 8 9 10 11 12
 3 13 14 15 16 17 18
 4 19 20 3 22 23 24

You can use text to qualify structures, since it can label the rows and columns of matrices and
the units of vectors. In Example 4.1.6e the matrix Mb is formed with numbers of rows and
columns equal to the number of values (that is lines) of the texts Tsa and Tsb.

Example 4.1.6e

 2 TEXT [NVALUES=6] Ta; VALUES=!T(a,b,c,d,e,f)
 3 & [NVALUES=4] Tb; VALUES=!T(g,h,i,j)
 4 & [NVALUES=3] Tsa; VALUES=!T(d,a,f)
 5 & Tsb; VALUES=!T(i,h,j)
 6 MATRIX [ROWS=Ta; COLUMNS=Tb] Ma; VALUES=!(1...24)
 7 CALCULATE Mb = Ma$[Tsa; Tsb]
 8 PRINT Ma,Mb; FIELDWIDTH=6; DECIMALS=0

 Ma
 Tb g h i j
 Ta
 a 1 2 3 4
 b 5 6 7 8
 c 9 10 11 12
 d 13 14 15 16
 e 17 18 19 20
 f 21 22 23 24

 Mb
 1 2 3

 1 15 14 16

154 4 Calculations and data manipulation

 2 3 2 4
 3 23 22 24

You can put in a missing identifier (*) to mean the complete set of elements from the dimension
concerned. Example 4.1.6f shows how to transfer the values from columns 1 and 2 of the matrix
Ma into the variates Vc1 and Vc2 respectively. Using qualified identifiers for transferring rows
and columns of matrices to and from variates is more straightforward than using the EQUATE
directive (4.3). The missing identifier (*) in the first qualifier for Ma indicates that Genstat is to
take all the rows.

Example 4.1.6f

 2 MATRIX [ROWS=5; COLUMNS=4] Ma; VALUES=!(1...20)
 3 VARIATE [NVALUES=5] Vc1,Vc2
 4 CALCULATE Vc1,Vc2 = Ma$[*; 1,2]
 5 PRINT Ma; FIELDWIDTH=6; DECIMALS=0

 Ma
 1 2 3 4

 1 1 2 3 4
 2 5 6 7 8
 3 9 10 11 12
 4 13 14 15 16
 5 17 18 19 20

 6 & Vc1,Vc2; FIELDWIDTH=6; DECIMALS=0

 Vc1 Vc2
 1 2
 5 6
 9 10
 13 14
 17 18

Single values from a qualified variate are treated as scalars, but those from the various types of
matrices have the same type as their parent. If you want these one-by-one matrices to be used as
scalars, you can include an embedded assignment in the expression. For example, to multiply the
variate Va by the value in row 2 and column 1 of the matrix Ma, you should put:

SCALAR Sca
CALCULATE Vb = Va * (Sca = Ma$[2;1])

If you tried to use the expression Va*Ma$[2;1], you would get an error message, since Genstat
would object to multiplying the variate Va by the one-by-one matrix Ma$[2;1].

4.2 Functions for use in expressions

This section lists and describes the functions that can be used in expressions. The general form
is illustrated by the statement:

CALCULATE y = LOG10(x)

Here LOG10 is the name of a function, and the identifier enclosed in brackets is its argument.
Throughout this section we use lower case for identifiers that are arguments or results of
functions, such as x and y above, to contrast with the upper case conventionally used in this
Guide for function names, such as LOG10.

The argument of a function can be a list of identifiers, or even an expression. Some functions
may need two arguments, in which case the arguments are separated by a semicolon (;). For
example:

CALCULATE w = SORT(x; y+z)

4.2 Functions for use in expressions 155

(For an explanation of SORT, see below.) Genstat checks that you have given the correct number
of arguments. With some functions, you do not need to set the second and subsequent arguments;
in that case, you should omit the semicolons that would follow the last argument that you do use.

The functions in Genstat are divided into classes as follows: general and mathematical
functions (4.2.1), scalar functions (4.2.2), variate functions (4.2.3), matrix functions (4.2.4), table
functions (4.2.5), dummy functions (4.2.6), character functions (4.2.7), elements of structures
(4.2.8), statistical functions (4.2.9), data and time functions (4.2.10), tree functions (4.2.11),
graphics functions (4.2.12) and image functions 4.2.13). They are described in alphabetical order
within each section. At the beginning of each class we set out the valid types of argument for
each function, and the type of the result. We give synonyms, and abbreviations for the function
names where these have fewer than four letters: for example, the matrix function INVERSE has
the two abbreviations INV and I. You can abbreviate any function to four characters (1.7.1): for
example, LOG10 could be written as LOG1 ! although this particular abbreviation might be a
little misleading! If more characters are given, Genstat checks up to and including the 32nd (but
few if any functions have names that long).

Some operations are provided by directives and procedures instead of by functions. These are
described in later sections of this chapter.

4.2.1 General and mathematical functions

In this subsection, x, y, a, b, l or u represent identifiers, or lists of identifiers, of any structures
containing numerical data: that is, scalars, variates, factors, tables, matrices, diagonal matrices
or symmetric matrices; s represents a scalar, f a factor and v a variate. Where x and y occur
together as arguments they must be of the same type. Apart from NEWLEVELS, which produces
a variate from a factor, the result of any of these functions has the same type as that of the first
argument.

ABS(x) gives the absolute value of x: *x*.

ACOS(x) or ARCCOS(x) gives the inverse cosine of x (!1#x#1), with the result in
radians.

ANGLE(y; x) gives the inverse tangent of y/x, result in radians in range
(!ð,ð].

ASIN(x) or ARCSIN(x) gives the inverse sine of x (!1#x#1), result in radians.
ATAN(x) or ARCTAN(x) gives the arctangent (inverse tangent) of x, result in radians.
BETA(a; b; x) Beta function Â(a,b) or, if x is set, regularized incomplete

Beta function I(a,b,x).
BI0(x) modified Bessel function of the first kind I0(x).
BI1(x) modified Bessel function of the first kind I1(x).
BIN(x;n) modified Bessel function of the first kind In(x; n).
BJ0(x) Bessel function of the first kind J0(x).
BJ1(x) Bessel function of the first kind J1(x).
BJN(x;n) Bessel function of the first kind Jn(x; n).
BK0(x) modified Bessel function of the second kind K0(x).
BK1(x) modified Bessel function of the second kind K1(x).
BKN(x;n) modified Bessel function of the second kind Kn(x; n).
BOUND(x; l; u) sets values of x less than l to l, and values greater than u to

u; missing values can be set in l or u to imply no boundary.
BY0(x) Bessel function of the second kind Y0(x).
BY1(x) Bessel function of the second kind Y1(x).
BYN(x;n) Bessel function of the second kind Yn(x; n).
CEILING(x) ceiling of x: returns for each value xj of x the least integer i

such that i$xj.

156 4 Calculations and data manipulation

CIRCULATE(x; s) treats x as a circular list and shifts its values round the list
according to the value and sign of s. For example, if x
contains 1,2,3,4,5, and s is !2, then the result is 3,4,5,1,2; if
s were 2, the result would be 4,5,1,2,3. If you omit the
second operand, CIRCULATE moves the values by one place
to the right: that is, s=1.

COS(x) gives the cosine of x, for x in radians.
COSH(x) hyperbolic cosine of x, for x in radians.
CUMULATE(x) or CUM(x) forms the cumulative sum of the values of x: for example,

the result from x with values 1,5,4 is 1,6,10. If the operand is
a scalar, the result is the value of the scalar.

DEGREES(x) converts angles x from radians to degrees.
DIFFERENCE(x; s) forms the differences between consecutive elements of x:

that is, the ith element of the result is xi!xi!s. If you omit the
second operand, first differences are formed (s=1). If i!s<1
or i!s>n, where n is the number of values of x, the ith
element is set to missing.

DIGAMMA(x) digamma function of x, Ø(x).
EXP(x) gives the exponential function of x: ex.
FACTORIAL(x) factorial of x (x!): the values in x must be non-negative,

missing values are given for results that are too large to be
stored.

FLOOR(x) floor of x: returns for each value xj of x the largest integer i
such that i#xj.

FRACTION(x) fractional part of x i.e. x-INTEGER(x).
GAMMA(a; x) Gamma function, Ã(a) or, if x is set, lower incomplete

Gamma function ã(a,x).
INTEGER(x) or INT(x) gives the integer part of x: [x].
LNFACTORIAL(x) log of x! for non-negative integer values x.
LNGAMMA(x) log-Gamma function, loge(Ã(x)), for x>0.
LOG(x) gives the natural logarithm of x (x>0).
LOG10(x) gives the logarithm to base 10 of x (x>0).
MODULO(x; y) form modulus of x to base y.
MVINSERT(x; y) replaces values in x by missing value wherever the second

identifier stores a non-zero value (representing the logical
result true).

MVREPLACE(x; y) replaces missing values in x with corresponding values from
y. Elements with missing values in both x and y produce a
warning message.

NCOMBINATIONS(x; y) number of combinations of y objects taken from a set of size
x.

NEWLEVELS(f; x) forms a variate from the factor f; the variate x contains
values to correspond to the levels, and should be of the same
length as the number of levels of the factor. If the second
argument x is omitted, the ordinals (1, 2...) are given. The
result of this function is a variate of the same length as f.
For an example see 4.1.2.

NPERMUTATIONS(x; y) number of permutations of y objects taken from a set of size
x.

RADIANS(x) converts angles x from degrees to radians.
RANK(x) ranks of the values in x.

4.2 Functions for use in expressions 157

REVERSE(x) reverses the values of x: for example, the result from x with
values 1,2,3 is 3,2,1.

ROUND(x) rounds to nearest integer.
SHIFT(x; s) shifts the values of x by s places (to the right or left

according to the sign of s). This is not a circular shift, and so
some positions lose values; these are replaced with missing
values. That is, the ith element of the result is the value that
was in element i!s unless i!s#0.

SIGN(x) sign of x (!1, 0 or 1 for x<0, x==0 or x>0 respectively).
SIN(x) gives the sine of x, for x in radians.
SINH(x) hyperbolic sine of x, for x in radians.
SORT(x; y) sorts the elements of x into the order that would put the

values of y into ascending order; the values of y are left
unchanged. If the second argument is omitted, the values of
x are sorted into ascending order. x can be the same
structure as y. See below for an example.

SQRT(x) gives the square root of x (x$0).
STANDARDIZE(x) standardizes the values of x to have mean zero and variance

one.
TAN(x) tangent of x, for x in radians.
TANH(x) hyperbolic tangent of x, for x in radians.
TRIGAMMA(x) trigamma function of x.

Example 4.2.1 illustrates the functions DIFFERENCE, INTEGER, ROUND, MVREPLACE, SIN and
SORT. In the example of SORT, Genstat sorts the missing values in the variate Vsa to the
beginning of the array; tied units like these are kept in their order of occurrence in the index
vector (Vsa).

Example 4.2.1

 2 VARIATE [VALUES=-0.4,4.1,8.4,*,-1.6,5.7,-2.3] Va
 3 CALCULATE Vb = DIFFERENCE(Va; 2)
 4 PRINT Va,Vb; FIELDWIDTH=6; DECIMALS=1

 Va Vb
 -0.4 *
 4.1 *
 8.4 8.8
 * *
 -1.6 -10.0
 5.7 *
 -2.3 -0.7

 5 CALCULATE Iva = INTEGER(Va)
 6 & Rva = ROUND(Va)
 7 PRINT Va,Iva,Rva; FIELDWIDTH=6; DECIMALS=1

 Va Iva Rva
 -0.4 0.0 0.0
 4.1 4.0 4.0
 8.4 8.0 8.0
 * * *
 -1.6 -1.0 -2.0
 5.7 5.0 6.0
 -2.3 -2.0 -2.0

 8 VARIATE [VALUES=1,2,3,27.3,5,6,7] Vb
 9 CALCULATE Vc = MVREPLACE(Va; Vb)
 10 PRINT Vc; DECIMALS=2

 Vc
 -0.40

158 4 Calculations and data manipulation

 4.10
 8.40
 27.30
 -1.60
 5.70
 -2.30

 11 CALCULATE Ve = SIN(Vc)
 12 PRINT Ve; FIELDWIDTH=8; DECIMALS=3

 Ve
 -0.389
 -0.818
 0.855
 0.827
 -1.000
 -0.551
 -0.746

 13 VARIATE [VALUES=3,1,*,*,1,4,7,4,*] Vsa
 14 & [VALUES=1...9] Vsb
 15 CALCULATE Vsc = SORT(Vsb; Vsa)
 16 PRINT Vsc; FIELDWIDTH=6; DECIMALS=0

 Vsc
 3
 4
 9
 2
 5
 1
 6
 8
 7

4.2.2 Scalar functions

The scalar functions generate a scalar result from other types of structure. Some of these
functions calculate a summary value describing some aspect of the contents of the structure such
as the maximum value, the median value, the mean, the variance or the area under a curve. Other
functions allow you to copy attributes of the structure in the argument: for example, NVALUES
gives the number of values. Finally, the CONSTANTS function, which has a single-valued text (or
a string) as its argument, provides an easy and accurate way of specifying various scalar
constants such as ð and the value used by Genstat to represent missing values.

In this subsection, x again represents any numerical structure (scalar, variate, factor,
rectangular matrix, symmetric matrix, diagonal matrix or table), f is a factor, and m is either a
rectangular matrix, a symmetric matrix or a diagonal matrix; y is a structure of the same type as
x. All the functions produce a scalar result from each structure in the argument list; all except
NMV and NOBSERVATIONS ignore missing values in the structure. Thus, the function MEAN is
equivalent to SUM divided by NOBSERVATIONS, and the function NOBSERVATIONS is equivalent
to NVALUES minus NMV.

Restrictions on a variate within a scalar function do not carry over to the expression outside.

AREA(y; x) numerically integrates the curve running through the points

specified by variates x and y using the trapezoidal method; x
must be monotonically increasing or decreasing.

CONSTANTS(t) or C(t) provides the value of various constants, according to the
contents of the string in the single-valued text t: e (for a
string of 'e'), ð ('pi'), missing value ('*' or
'missingvalue'), the conversion factor by which to
multiply radians to get degrees ('degrees'), the conversion
factor by which to multiply degrees to get radians

4.2 Functions for use in expressions 159

('radians'), the number å defined as the smallest number
such that the calculation 1+å is detectable on the computer as
greater than one ('epsilon'), the number used to represent
infinity e.g when defining axes for graphics ('infinity'
or '+infinity'), and the number used represent minus
infinity ('!infinity'). The string can be specified in
either upper or lower case (or any mixture) and can be
abbreviated just like the string settings of options such as
PRINT.

CORRELATION(x; y) if both x and y are specified, returns a scalar giving the
correlation between the values of x and y; if y is omitted,
CORRELATION is a matrix function which forms a matrix of
correlations from a (symmetric) matrix of sums of squares
and products (4.2.4).

COVARIANCE(x; y) or COV(x; y) calculates the covariance between values of x and y.
KURTOSIS(x) kurtosis of the non-missing values in x
MAXIMUM(x) or MAX(x) finds the maximum of the values of x.
MEAN(x) gives the mean of the values of x.
MEDIAN(x) or MED(x) finds the median of the values of x.
MINIMUM(x) or MIN(x) finds the minimum of the values of x.
NLEVELS(f) gives the number of levels of factor f.
NMV(x) counts the number of missing values in x (taking account of

any restrictions applied by the RESTRICT directive: 4.4.1).
NOBSERVATIONS(x) counts the number of observations (non-missing values) in x

(taking account of any restrictions applied by the RESTRICT
directive: 4.4.1).

NVALUES(x) or NVRESTRICTED(x) gives the number of values of x, including missing
values and taking account of any restrictions applied by the
RESTRICT directive (4.4.1).

NVUNRESTRICTED(x) number of values of x ignoring restrictions (i.e. gives the full
length of x).

PAREA(y; x) area of the polygon with vertices specified by y and x.
RANGE(x) range of values in x, i.e. MAX(x) ! MIN(x).
SD(x) standard deviation of the non-missing values in x.
SEMEAN(x) standard error of the mean of non-missing values in x.
SKEWNESS(x) skewness of the non-missing values in x.
SUM(x) or TOTAL(x) gives the sum of the values in x.
VARIANCE(x) or VAR(x) gives the variance of the values in x (the divisor being the

number of non-missing values in x, minus 1).
For example:

Example 4.2.2

 2 VARIATE [VALUES=8,2,16,4,1,10,*,30] Va
 3 " Med, Mn, Tot, Obs, and Nv are declared implicitly (as scalars). "
 4 CALCULATE Med = MEDIAN(Va)
 5 & Mn = MEAN(Va)
 6 & Tot = SUM(Va)
 7 & Obs = NOBSERVATIONS(Va)
 8 & Nv = NVALUES(Va)
 9 PRINT Med,Mn,Tot,Obs,Nv; FIELDWIDTH=8; DECIMALS=2

 Med Mn Tot Obs Nv
 8.00 10.14 71.00 7.00 8.00

160 4 Calculations and data manipulation

 10 FACTOR [LEVELS=!(1,2,4,8)] Ff
 11 CALCULATE Nl = NLEVELS(Ff)
 12 PRINT Nl; FIELDWIDTH=6; DECIMALS=1

 Nl
 4.0

The following functions are similar to the scalar functions, in that they produce summaries of
the values in any numerical structure. However, they produce several summaries (in a variate)
rather than a single value.

PERCENTILES(x; p) percentiles (defined in variate p) of the values of x.

QUANTILES(x; q) quantiles (defined in variate q) of the values of x.
RMEANS(x;p;q) running means of x using a window around each unit that

includes p preceding and q succeeding observations; p must
be set, default for q is 0.

RNOBSERVATIONS(x;p;q) number of observations contributing to computation of
running mean or total involving p preceding and q
succeeding observations about each unit of x; p must be set,
default for q is 0.

RTOTALS(x;p;q) running totals of x using a window around each unit that
includes p preceding and q succeeding observations; p must
be set, default for q is 0.

RUNS(x) length of run of values up to each unit in x.

Other summaries, including standard errors of skewness and kurtosis, can be produced by the
DESCRIBE procedure (2:2.1.1). Summaries of "circular" data such as wind directions can be
produced by the CDESCRIBE procedure (2:2.1.2).

4.2.3 Variate functions

Variate functions produce summaries across a set of variates or a set of scalars. They each have
a single argument, which is a pointer to the set of variates or scalars to be summarized. The
variates in a set must all be of the same length. If any of them is restricted, that restriction is
applied to all of them; if several are restricted, each restriction must be to the same set of units.
For a set of variates the result of each function is a variate of the same length as the variates in
the set, while for a set of scalars the result is a scalar. For example, if p points to the variates X1,
X2 and X3, each of length n, VMEANS(p) produces a variate of length n, whose ith unit contains
the mean of the values in the unit i of X1, X2 and X3.

All the functions except VNMV and VNOBSERVATIONS ignore missing values. Thus, the
function VMEANS is equivalent to VSUMS divided by VNOBSERVATIONS, and the function
VNOBSERVATIONS is equivalent to VNVALUES minus VNMV.

VCORRELATION(p1; p2) gives the correlation, at every unit, between the values of the

corresponding structures in pointers p1 and p2.
VCOVARIANCE(p1; p2) gives the covariance, at every unit, between the values of the

corresponding structures in pointers p1 and p2.
VKURTOSIS(p) kurtosis of the non-missing values in each unit of the

variates (or scalars) in p.
VMAXIMA(p) finds the maximum of the values in each unit over the

variates (or scalars) in pointer p.
VMEANS(p) gives the mean of the non-missing values in each unit over

the variates (or scalars) in pointer p.
VMEDIANS(p) finds the median of the values in each unit of the variates (or

scalars) in pointer p.

4.2 Functions for use in expressions 161

VMINIMA(p) finds the minimum of the values in each unit of the variates
(or scalars) in pointer p.

VNMV(p) counts the number of missing values in each unit of the
variates (or scalars) in pointer p.

VNOBSERVATIONS(p) counts the number of observations (non-missing values) in
each unit of the variates (or scalars) in pointer p.

VNVALUES(p) gives the total number of values in each unit of the variates
(or scalars) in pointer p: that is the number of variates (or
scalars) in p.

VPERCENTILES(p;s) calculates percentiles for the value supplied in scalar s,
across the set of variates in pointer p.

VPOSITIONS(x; p) Gives the suffix of the first vector in the pointer p containing
the value in each unit of the variate or text x.

VQUANTILES(p;s) calculates quantiles for the probability supplied in scalar s,
across the set of variates in pointer p.

VRANGE(p) range of values within the units of the variates in pointer p.
VSD(x) standard deviation of the non-missing values in each unit of

the variates (or scalars) in p.
VSEMEANS(x) standard error of the mean of non-missing values in each unit

of the variates (or scalars) in p.
VSKEWNESS(x) skewness of the non-missing values in each unit of the

variates (or scalars) in p.
VSUMS(p) or VTOTAL(p) gives the sum of the non-missing values in each unit of the

variates (or scalars) in pointer p.
VVARIANCES(p) gives the variance of the non-missing values in each unit of

the variates (or scalars) in pointer p.

Example 4.2.3

 2 VARIATE [NVALUES=6] X,Y,Z; \
 3 VALUES=!(28,*,18,26,*,17),!(12,27,*,34,*,15),!(17,25,3(*),20)
 4 & Min,Mean,Max,Obs,Nval,Tot
 5 POINTER [VALUES=X,Y,Z] P
 6 CALCULATE Min = VMINIMA(P)
 7 & Mean = VMEANS(P)
 8 & Max = VMAXIMA(P)
 9 & Obs = VNOBSERVATIONS(P)
 10 & Nval = VNVALUES(P)
 11 & Tot = VTOTALS(P)
 12 PRINT X,Y,Z,Min,Mean,Max,Obs,Nval,Tot; FIELDWIDTH=8; DECIMALS=1

 X Y Z Min Mean Max Obs Nval Tot
 28.0 12.0 17.0 12.0 19.0 28.0 3.0 3.0 57.0
 * 27.0 25.0 25.0 26.0 27.0 2.0 3.0 52.0
 18.0 * * 18.0 18.0 18.0 1.0 3.0 18.0
 26.0 34.0 * 26.0 30.0 34.0 2.0 3.0 60.0
 * * * * * * 0.0 3.0 *
 17.0 15.0 20.0 15.0 17.3 20.0 3.0 3.0 52.0

4.2.4 Matrix functions

These functions operate on the various types of matrix available in Genstat. The type of the
resulting structure depends on the function concerned. For some of the functions you can specify
a variate, which is treated as a rectangular matrix with one column. Any restriction on the variate
is then ignored. (Remember that matrices cannot be restricted.) A matrix is a rectangular,
symmetric or diagonal matrix structure; a square matrix is a rectangular matrix with the same
number of rows as of columns.

162 4 Calculations and data manipulation

BASE(i; n) column matrix with n rows, value one in row i and zero

elsewhere.
COLBIND(x;y) joins matrices x and y side by side.
COLCENTRE(x) centres the columns of matrix x by subtracting their means.
COLMEANS(x) mean of the non-missing elements of each row of matrix x.
COLNOBSERVATIONS(x) number of non-missing elements in each column of matrix x.
COLSUMS(x) sum of the non-missing elements of each column of matrix

x.
COL1(n) column matrix of 1's with n rows.
CORRELATION(x) or CORRMAT(x) forms a correlation matrix from a symmetric matrix x

that contains sums of squares and products: the values of the
resulting symmetric matrix c are formed by
cij = xij / %(xii xjj). Note, CORRELATION with two arguments, x
and y, can also be used to produce the (scalar) correlation
between the values in two structures (4.2.2).

CHOLESKI(x) forms the Choleski decomposition of a symmetric matrix x;
this produces a square matrix L such that x = LL' and such
that upper off-diagonal elements are zero. The symmetric
matrix x must be positive semi-definite.

DETERMINANT(x) or DET(x) or D(x) forms the determinant of a symmetric matrix or a
square matrix; the result is a scalar. Genstat uses the
decomposition x = LU, and the determinant is defined to be
Ð{lii uii}.

DIAGONAL(x; b) form a diagonal matrix from a variate x, or takes diagonal of
a square, symmetric or diagonal matrix x; b may be set if x
is a matrix, to request a banded diagonal matrix of order b
(returned as a square matrix with the values off the bands set
to zero).

DPRODUCT(x; y) direct or Kronecker product of matrices x and y: x q y.
DSUM(x; y) direct sum of matrices x and y (x r y); alternatively, if the

second argument is omitted, x can be a pointer and the
function then gives x[1] r x[2] r ... x[n].

EVALUES(x) eigenvalues of x (as a diagonal matrix).
EVECTORS(x) eigenvectors of x (as a rectangular matrix).
GINVERSE(x) Moore-Penrose generalized inverse of square, symmetric or

diagonal matrix x.
IDENTITY(n) identity matrix of order n (returned as a diagonal matrix).
INVERSE(x) or INV(x) or I(x) forms the inverse of a non-singular square, symmetric or

diagonal matrix; the result is a square, symmetric or diagonal
matrix, according to the type of x. For a square matrix,
Genstat uses Crout's method by forming the lower and upper
triangular decomposition of the matrix, x = LU, and inverting
L and U separately. Genstat uses the equivalent
decomposition (Choleski) for symmetric matrices, which
must be positive semi-definite.

KRONECKER(x; y) synonym for DPRODUCT.
LSVECTORS(x) matrix of vectors from the left-hand side of a singular-value

decomposition of x.
LTPRODUCT(x; y) forms the left transposed product of x and y: that is, the

matrix product of the transpose of x with y, which can also
be written T(x)*+y. The structures x and y can be matrices

4.2 Functions for use in expressions 163

or variates. The number of rows of x must equal the number
of rows of y. The result is a rectangular matrix with number
of rows equal to the number of columns of x and number of
columns equal to the number of columns of y, unless both x
and y are diagonal matrices when the result is also a
diagonal matrix.

LTRIANGLE(m; d) returns the lower triangle of square matrix m, as a square
matrix with the upper triangular set to zero; putting d=1
(default) indicates that the diagonal is to be included, while
putting d=0 sets the diagonal to zero.

MAT0(r; c) or MZERO(r; c) zero matrix of size r by c.
MAT1(r; c) matrix of ones of size r by c.
MBASE(r; c; i; j) matrix of size r by c which is zero, except for position(s)

i,j which are set to one.
MCENTRE(m) doubly centres matrix m so that its rows and columns have

mean zero.
MEXP(m) calculates the matrix exponential of m.
MINSERT(x;m;i;j) inserts matrix m into matrix x, putting its top-left element

into row i and column j of x; elements of m that are defined
to lie outside x are ignored (so negative values of i and j are
permitted).

MPOWER(m; n) raises matrix m to the n'th power.
MSQRT(m) calculates the matrix square root of m.
NCOLUMNS(m) gives the number of columns of matrix m.
NROWS(m) gives the number of rows of matrix m.
PRODUCT(x; y) forms the matrix product of x and y; this can also be written

x*+y using the operator *+. The structures x and y can be
matrices or variates. The number of columns of x must equal
the number of rows of y. The result is a rectangular matrix
with number of rows equal to the number of rows of x and
number of columns equal to the number of columns of y,
unless both x and y are diagonal matrices when the result is
also a diagonal matrix.

QPRODUCT(x; y) forms the quadratic product of x and y; it can thus be written
as x*+y*+T(x), but the use of QPRODUCT is more efficient.
x is a rectangular matrix or a variate, and y is a symmetric
matrix or a diagonal matrix or a scalar. The number of
columns of x must be the same as the number of rows of y.
The result is a symmetric matrix with number of rows equal
to the number of rows of x.

QTPRODUCT(x; y) quadratic matrix product of xN and y: i.e.
QPRODUCT(TRANSPOSE(x);y).

ROWBIND(x;y) joins matrices x and y vertically (i.e. stacks y below x).
ROWCENTRE(x) centres the rows of matrix x by subtracting their means.
ROWMEANS(x) mean of the non-missing elements of each row of matrix x.
ROWNOBSERVATIONS(x) number of non-missing elements in each row of matrix x.
ROWSUMS(x) sum of the non-missing elements of each row of matrix x.
ROW1(n) row matrix of 1's with n columns.
RSVECTORS(x) matrix of vectors from the right-hand side of a singular-value

decomposition of x.
RTPRODUCT(x; y) forms the right transposed product of x and y: that is, the

164 4 Calculations and data manipulation

matrix product of x with the transpose of y, which can also
be written x*+T(y). The structures x and y can be matrices
or variates. The number of columns of x must equal the
number of columns of y. The result is a rectangular matrix
with number of rows equal to the number of rows of x and
number of columns equal to the number of rows of y, unless
both x and y are diagonal matrices when the result is also a
diagonal matrix.

SOLUTION(x; y) solves a set of simultaneous linear equations x*+b=y:
x11 b1 + x12 b2 + ... + x1n bn = y1

 ...
xn1 b1 + xn2 b2 + ... + xnn bn = yn

The function thus finds b, as in the alternative expression
CALCULATE b = PRODUCT(INVERSE(x); y)

but the use of SOLUTION is more efficient and numerically
stable than using PRODUCT and INVERSE: x is a square
matrix and y is a rectangular matrix or a variate. The number
of rows of x must be the same as the number of rows of y.
The result is a rectangular matrix with numbers of rows and
columns the same as y.

SUBMAT(x) forms sub-triangles or sub-rectangles of a rectangular or
symmetric matrix x, whose dimensions must be labelled by
pointers. The structure to receive the values must have been
declared already, as a rectangular or symmetric matrix
according to the type of x, and have each of its dimensions
also labelled by a pointer whose values are included in the
pointer of the corresponding dimension of x. The
correspondence between the values of the pointers that label
the resulting matrix and those labelling x determines which
rows and columns of x appear in the result. The same effect
can be obtained by using the function ELEMENTS with a
single list or expression for symmetric matrices, and with
two lists for rectangular matrices. Just as with the ELEMENTS
function, the resulting matrix can be made larger than x, by
specifying repeated identifiers in its pointers.

SVALUES(x) singular values of x (as a diagonal matrix).
TRACE(x) forms the trace of matrix x: that is, the sum of its diagonal

elements. x can be a square matrix, a diagonal matrix or a
symmetric matrix. The result is a scalar.

TRANSPOSE(x) or T(x) forms the transpose of x, where x is a rectangular matrix or a
variate. The result is a rectangular matrix.

UTRIANGLE(m; d) returns the upper triangle of square matrix m as a square
matrix with the lower triangular set to zero; putting d=1
(default) indicates that the diagonal is to be included, while
putting d=0 sets the diagonal to zero.

VEC(x) stacks columns of a matrix x into a single variate (VEC
operator).

VECH(x) stacks columns of the lower triangle of a matrix x (VECH
operator).

4.2 Functions for use in expressions 165

Example 4.2.4

 2 SYMMETRICMATRIX [ROWS=4] Sma; \
 3 VALUES=!(36,40,64,65,90,144,80,110,175,225)
 4 MATRIX [ROWS=4; COLUMNS=4] Chsma
 5 CALCULATE Chsma = CHOLESKI(Sma)
 6 PRINT Chsma; FIELDWIDTH=8; DECIMALS=3

 Chsma
 1 2 3 4

 1 6.000 0.000 0.000 0.000
 2 6.667 4.422 0.000 0.000
 3 10.833 4.020 3.237 0.000
 4 13.333 4.774 3.511 3.479

 7 MATRIX [ROWS=3; COLUMNS=3] Ma; VALUES=!(1,1,2,3,4,5,1,4,2)
 8 & Mainv
 9 CALCULATE Mainv = INVERSE(Ma)
 10 PRINT Ma; FIELDWIDTH=8; DECIMALS=3

 Ma
 1 2 3

 1 1.000 1.000 2.000
 2 3.000 4.000 5.000
 3 1.000 4.000 2.000

 11 & Mainv; FIELDWIDTH=8; DECIMALS=3

 Mainv
 1 2 3

 1 -4.000 2.000 -1.000
 2 -0.333 0.000 0.333
 3 2.667 -1.000 0.333

 12 MATRIX [ROWS=3; COLUMNS=3] Mx; VALUES=!(1,1,2,3,4,5,1,4,2)
 13 & [ROWS=3; COLUMNS=1] My; VALUES=!(4,5,6)
 14 & Bxy
 15 CALCULATE Bxy = SOLUTION(Mx; My)
 16 PRINT Bxy; FIELDWIDTH=8; DECIMALS=3

 Bxy
 1

 1 -12.000
 2 0.667
 3 7.667

 17 VARIATE Va,Vb,Vc,Vd,Ve,Vf,Vg,Vh,Vi,Vj
 18 POINTER Pa,Pb,Pc,Pd; VALUES=!P(Va,Vb,Vc,Vd,Ve,Vf),!P(Vg,Vh,Vi,Vj), \
 19 !P(Vc,Va,Vf,Ve),!P(Vi,Vh,Vg)
 20 MATRIX [ROWS=Pa; COLUMNS=Pb] Ma ; VALUES=!(1...24)
 21 & [ROWS=Pc; COLUMNS=Pd] Mb
 22 CALCULATE Mb = SUBMAT(Ma)
 23 PRINT Ma; FIELDWIDTH=8; DECIMALS=1

 Ma
 Pb Vg Vh Vi Vj
 Pa
 Va 1.0 2.0 3.0 4.0
 Vb 5.0 6.0 7.0 8.0
 Vc 9.0 10.0 11.0 12.0
 Vd 13.0 14.0 15.0 16.0
 Ve 17.0 18.0 19.0 20.0
 Vf 21.0 22.0 23.0 24.0

 24 & Mb; FIELDWIDTH=8; DECIMALS=1

166 4 Calculations and data manipulation

 Mb
 Pd Vi Vh Vg
 Pc
 Vc 11.0 10.0 9.0
 Va 3.0 2.0 1.0
 Vf 23.0 22.0 21.0
 Ve 19.0 18.0 17.0

There are several functions for forming matrices from tables.

TCOLUMN(t) converts one-way table t into a matrix with a single column.
TDIAGONAL(t) converts one-way table t into a diagonal matrix.
TMATRIX(t; f1; f2) converts two-way table t into a matrix, with classifying

factor f1 corresponding to the rows, and classifying factor
f2 corresponding to the columns.

TROW(t) converts one-way table t into a matrix with a single row.

Other matrix operations and decompositions are described in 4.10.

4.2.5 Table functions

The table functions operate on tables to produce new values for extended or summarized tables;
for example,

CALCULATE tr = TMEANS(ta)

takes means of certain of the cells in table ta and puts them in the table tr. If the resulting table,
tr above, has already been declared, it must have the same status for margins as the
corresponding table in the function (ta above). But if tr is left to be declared implicitly, it will
be given margins whether or not they occur in ta. Summaries are produced over the levels of
the factors that occur in ta but not in tr; the type of summary depends on which function is
used. Then, if there are factors that occur in tr but not in ta, these are given duplicate values
as described in 4.1.4. Finally, if tr has margins, these are filled in according to the function
specified. For example, if tr is classified by factors A and B but ta is classified by A, B and C,

CALCULATE tr = TMEANS(ta)

will put, in each cell of tr, means over the levels of factor C, as shown in Example 4.2.5.

TKURTOSIS(x) forms margins containing the kurtosis of the values in table

t.
TMAXIMA(t) forms margins of maxima for table t.
TMEDIANS(t) forms margins of medians for table t.
TMEANS(t) forms margins of means for table t.
TMINIMA(t) forms margins of minima for table t.
TNOBSERVATIONS(t) forms margins counting the numbers of observations (non-

missing values) in table t.
TNMV(t) forms margins counting the numbers of missing values in

table t.
TNVALUES(t) forms margins counting the numbers of values, missing or

non-missing, in table t.
TSD(t) forms margins of standard deviations for table t.
TSEMEANS(t) forms margins of standard errors for the (margins of) means

of table t.
TSKEWNESS(x) forms margins containing the skewness of the values in table

t.
TSUMS(t) or TTOTALS(t) forms margins of totals for table t.

4.2 Functions for use in expressions 167

TVARIANCES(t) forms margins of between-cell variances for table t.

Example 4.2.5

 2 FACTOR [LEVELS=2] A,B,C
 3 TABLE [CLASSIFICATION=A,B,C] Ta; VALUES=!(1...8)
 4 & [CLASSIFICATION=A,B] Tr
 5 CALCULATE Tr = TMEANS(Ta)
 6 PRINT Ta,Tr; FIELDWIDTH=6; DECIMALS=1

 Ta
 C 1 2
 A B
 1 1 1.0 2.0
 2 3.0 4.0
 2 1 5.0 6.0
 2 7.0 8.0

 Tr
 B 1 2
 A
 1 1.5 3.5
 2 5.5 7.5

The functions for copying tables into matrices are described in 4.2.4. Function TPROJECT, which
"projects" a table into a variate using the values of its classifying factors, is described in 4.2.8.

4.2.6 Dummy functions

The function SET and its converse UNSET allow you to check whether a dummy is set; these are
useful particularly in procedures (5.3) and FOR loops (5.2.1).

SET(x) returns a scalar logical value containing the values 1 or 0
according to whether or not dummy x is set.

UNSET(d) gives a scalar logical value (0 or 1) indicating whether or not
the dummy d is set: that is, whether or not d points to
another structure (i.e. the opposite of the function SET).

4.2.7 Character functions

This subsection describes the functions in Genstat that allow you to obtain information about text
structures. As already mentioned, in 4.2.2, you can ascertain the number of lines in a text using
the NVALUES function, the number of missing lines (null strings) by NMV, and the number of non-
missing lines by NOBSERVATIONS. The functions described here produce variates from a text,
giving details of the contents of each of its lines.

The CHARACTER function indicates the length of each line of the text, while GETFIRST and
GETLAST find the position of the first or last non-space character in each line respectively.
GETPOSITION lets you find the position, in each line of the text in its first argument, of the

corresponding line from the text in its second argument. This implies that the lines from the
second text are shorter than or equal to the lines of the first text. In addition, there is an optional
third argument (a logical), which allows you to specify whether or not comparisons of
characters/letters are case sensitive. The default is false (that is, 0), which means that
comparisons are case sensitive. If the third argument is set to true (a non-zero value), either as
a scalar or in a variate with the same number of values as there are lines in the first argument,
then lower and upper case letters are treated as the same; that is, comparisons are case
insensitive.

168 4 Calculations and data manipulation

CHARACTERS(t;x) returns a variate giving the length of each line of text t: if x
is omitted or set to 0 the length is the "raw" length (with no
checking for any typesetting commands); if x = 1 it is the
formatted length (taking account of typesetting commands,
see 1.4.2 for their syntax); finally, if x = !1 it is the number
of storage units ("bytes") required to store the text (standard
characters like letters and digits require only one, more
complicated characters like Chinese or Thai characters may
require as many as four).

GETFIRST(t) gives a variate containing the position of the first non-space
character in each string of text t.

GETLAST(t) gives a variate containing the position of the last non-space
character in each string of the text t.

GETPOSITION(t1; t2; x) for each unit, if the string in t2 occurs as a substring of the
string in t1, this returns the position at which the substring
starts; otherwise it returns the value zero. t2 may contain a
single string to be checked against every string of t1. x can
be either a scalar or a variate, and supplies a logical value to
indicate whether to ignore the case of any letters; if x is
omitted the logical is assumed to be false (case not ignored).

4.2.8 Elements of structures

The ELEMENTS function has a similar role to qualified identifiers (4.1.6). Two functions,
EXPAND and RESTRICTION, are available to derive sets of values from the results of a
RESTRICT statement (4.4.1). POSITION allows you to determine the position at which the values
of one vector occur within another. NEXPAND provides a quick way of replicating the values of
a structure, UNIQUE forms the unique values from within a structure, and WHERE (synonym
WHICH) locates those that are logically true i.e. non-zero. VPROJECT is a specialized function that
"projects" the values from a table into a variate with length equal to the length of the classifying
factors of the table. The value in each unit of the variate is the table value corresponding to the
values of the classifying factors on that unit. So, for example, this provides a way of forming a
variate of fitted values from a table of means.

ELEMENTS(x; e1; e2) specifies a set of elements of x; e1 and e2 are expressions.

As with qualified identifiers, you cannot specify elements of
scalars or tables. You cannot use a text in any of the
arguments of ELEMENTS. However the ability to specify
expressions in the second and third arguments, instead of
merely structures, is one way in which the use of ELEMENTS
is more powerful that the use of qualified identifiers.

EXPAND(x; s) forms a variate of zeroes and ones from the values of x,
which Genstat takes to be a list of unit numbers; usually x
will have been formed as the save structure from a
RESTRICT statement. The second argument, s, is a scalar
defining the length of the result; if s is omitted and EXPAND
cannot determine the length of the result from its context
within the expression, the resulting variate will take its
length from the units structure (2.3.4).

NEXPAND(n; v) expands structure v to repeat each value the number of times
specified by the corresponding element of n.

POSITION(x; y) finds the position, within the vector y, of each value of x.
REPLACE(x;y;z) searches x for all occurrences of each value in y, and

4.2 Functions for use in expressions 169

replaces them with the corresponding value from z.
RESTRICTION(x) forms a variate with ones in the positions of the set of units

to which x is currently restricted; the other units of the result
are left unchanged (or left as missing values if no values
have been set previously). If this variate is declared
implicitly here, it will be restricted in the same way and have
the same number of values as x. If you use the
RESTRICTION function on its own in the CONDITION
parameter of the RESTRICT directive (4.4.1), the restriction
on x is passed to all the vectors listed with first parameter of
RESTRICT.

UNIQUE(x) the unique values in x.
TPROJECT(t) converts table t into a variate, using the values of its

classifying factors to determine which value of the table to
put into each unit of the variate.

WHERE(x) or WHICH(x) produces a variate listing the units of x that are logically
true, i.e. non-zero; if all the units are false, it produces a

variate of length one, containing a missing value. If x is
restricted or qualified (4.1.6), WHERE looks only in the
defined subset of units for true values. However, the
unit numbers in the result give their positions in the full
vector x, not the subset.

The rules of dimensionality of the structures to which ELEMENTS is applied, and the specification
of the expressions e1 and e2, which identify the elements in each dimension, are similar to those
for qualified identifiers (4.1.6). If x is a variate, a factor or a diagonal matrix, you should not
specify the third argument e2; the type of the result is the same as that of x. You can also omit
the third argument if x is a symmetric matrix, in which case the result is also a symmetric matrix;
or you can specify both expressions, in which case the result is a rectangular matrix. For
rectangular matrices, both e1 and e2 must be specified, and the result is a rectangular matrix.
Genstat evaluates each expression and treats the result as a one-dimensional list of values. In line
5 of Example 4.2.8a, the values of the symmetric matrix Smb are taken from the rows and
columns of the symmetric matrix Sma indicated by variate Va.

Example 4.2.8a

 2 SYMMETRICMATRIX [ROWS=5] Sma; VALUES=!(15...1)
 3 & [ROWS=3] Smb
 4 VARIATE Va; VALUES=!(5,4,2)
 5 CALCULATE Smb = ELEMENTS(Sma; Va)
 6 PRINT Sma,Smb; FIELDWIDTH=5; DECIMALS=0

 Sma

 1 15
 2 14 13
 3 12 11 10
 4 9 8 7 6
 5 5 4 3 2 1
 1 2 3 4 5

 Smb

 1 1
 2 2 6
 3 4 8 13
 1 2 3

170 4 Calculations and data manipulation

 7 VARIATE Vb,Vc; VALUES=!(5,3,1),!(1,4,3)
 8 MATRIX [ROWS=3; COLUMNS=3; VALUES=1...9] Ma
 9 CALCULATE ELEMENTS(Sma; Vb; Vc) = Ma
 10 PRINT Sma; FIELDWIDTH=4; DECIMALS=0

 Sma

 1 7
 2 14 13
 3 9 11 6
 4 8 8 5 6
 5 1 4 3 2 1
 1 2 3 4 5

ELEMENTS is the only function that you are allowed to put on the left-hand side of an assignment.
This is illustrated in line 9 of Example 4.2.8a, where the values of the matrix Ma are assigned to
the elements of the symmetric matrix Sma indicated by the variates Va and Vb. Since Sma is
symmetric, any values above the main diagonal indicated by Va and Vb are automatically
transposed to their corresponding position below the diagonal.

Example 4.2.8b illustrates the use of the functions EXPAND, NEXPAND, RESTRICTION,
POSITION and UNIQUE.

Example 4.2.8b

 2 VARIATE [VALUES=35,24,27,26,42,57] Age
 3 RESTRICT Age; CONDITION=Age>30; SAVESET=Va
 4 CALCULATE Vb = EXPAND(Va; 8)
 5 PRINT [ORIENTATION=across] Va,Vb; FIELDWIDTH=6; DECIMALS=0

 Va 1 5 6

 Vb 1 0 0 0 1 1 0 0

 6 VARIATE [VALUES=6(-1)] Rest
 7 CALCULATE Rest = RESTRICTION(Age)
 8 " Cancel the restriction on Age. "
 9 RESTRICT Age
 10 PRINT Age,Rest; FIELDWIDTH=6; DECIMALS=0

 Age Rest
 35 1
 24 0
 27 0
 26 0
 42 1
 57 1

 11 VARIATE [VALUES=17,24,48,5] Vals
 12 & [VALUES=1,3,2,4] Reps
 13 CALCULATE Expanded = NEXPAND(Reps; Vals)
 14 & Unique = UNIQUE(Expanded)
 15 PRINT [ORIENTATION=across] Expanded; FIELD=3; DECIMALS=0

 Expanded 17 24 24 24 48 48 5 5 5 5

 16 PRINT Vals,Reps,Unique; DECIMALS=0

 Vals Reps Unique
 17 1 5
 24 3 17
 48 2 24
 5 4 48

4.2 Functions for use in expressions 171

4.2.9 Statistical functions

The statistical functions cover various activities relevant to statistical analyses.
There are functions to transform percentage data: PROBIT, LOGIT, CLOGLOG (complementary

log-log) and ANGULAR. The inverse transformations are also available: PROBIT, ILOGIT,
ICLOGLOG and IANGULAR.

Cumulative lower and upper probabilities, and equivalent deviates are available for various
probability distributions: Normal, F, chi-square, t, binomial, Poisson, hypergeometric, beta,
gamma, lognormal, bivariate Normal and inverse Normal. In addition, point probabilities are
provided for the discrete distributions (binomial, Poisson and hypergeometric). These functions
all have a standard form: first a prefix (for example CL for cumulative lower probabilities) and
then the name of the distribution. There are also various natural synonyms, such as NORMAL for
CLNORMAL.

Log-likelihoods can be calculated for samples from either binomial, gamma, Normal or
Poisson distributions using functions LLBINOMIAL, LLGAMMA, LLNORMAL and LLPOISSON
respectively. (Note, these omit constant terms that depend on the data but not on the parameters.)

There are several functions, prefixed GR, for generating pseudo-random numbers or selecting
random samples. The seed used for the generation is controlled by the SEED option of
CALCULATE, and the underlying algorithm is a modified version of that presented by Wichman
& Hill (1982). If the SEED option has its default value of zero on the first time that random
numbers are used in a job, the seed is initialized automatically (using the current time on the
system clock). A zero value subsequently in the job causes Genstat to use a default seed that
continues the existing sequence of random numbers. To allow results to be reproduced, the
current default seed can be saved by the GET directive (5.6.1), and reset by the SET directive
(5.6.2). The same principles apply to URAND, which provides an alternative to GRUNIFORM for
generating pseudo-random numbers from a uniform distribution on [0,1], but here the seed is set
by the first argument of the function.

Unless otherwise stated in the descriptions below, the arguments of the functions can be any
compatible numerical data structures. Any constraints on their possible values are given with
each description. Except for the log-likelihood functions and the function URAND, the result is
a structure of the same type, dimension and number of values as the structure in the first
argument.

The log-likelihood functions produce a scalar result. Their first arguments must be variates.
The second and third arguments can be scalars or variates; if they are variates, they must be of
the same length as the variate in the first argument. The meaning of the second and third
arguments is given with each description, as well as the form of the expression used to calculate
the log-likelihood.

ANGULAR(%p) or ANG(%p) provides the angular transformation: %p is a percentage with

0<%p<100. The function forms
x = (180/ð) × arcsine(%(%p/100))
and so the result x is in degrees 0<x<90.

CED synonym of EDCHISQUARE.
CHISQ synonym of CLCHISQUARE.
CLBETA(x; a; b) cumulative lower probability for a beta distribution with

parameters a and b.
CLBINOMIAL(x; n; p) probability of x or fewer successes out of n binomial trials

with probability of success p.
CLBVARIATENORMAL(x; y; r) cumulative lower probability for a bivariate Normal

distribution with means 0, variances 1 and correlation r.
CLCHISQUARE(x; df; c) cumulative lower probability for a non-central chi-square

distribution with noncentrality parameter c; if the third
parameter c is omitted, it is assumed to be zero, giving the

172 4 Calculations and data manipulation

ordinary (central) chi-square distribution.
CLF(x; df1; df2; c) cumulative lower probability for a non-central F distribution

with degrees of freedom df1 and df2, and noncentrality
parameter c; if the fourth parameter c is omitted, it is
assumed to be zero, giving the ordinary (central) F
distribution.

CLGAMMA(x; k; t) cumulative lower probability for a gamma distribution with
shape parameter k (kappa) and scale parameter t (theta).

CLHYPERGEOMETRIC(j; l; m; n) probability of x or fewer positive samples out of a
total sample of size m from a population of size n of which l
are positive(hypergeometric distribution).

CLINVNORMAL(x; m; v) cumulative lower probability for an inverse Normal (or
inverse Gaussian) distribution with mean m and variance v.

CLLOGNORMAL(x) cumulative lower probability for a lognormal distribution
corresponding to a Normal distribution with mean 0 and
variance 1.

CLNORMAL(x; m; v) cumulative lower probability for a Normal distribution with
mean m (default 0) and variance v (default 1).

CLOGLOG(p) takes the complementary log-log transformation of the
percentages p (0<p<100%).

CLPOISSON(j; m) probability of value of x or less for a Poisson distribution
with mean m.

CLSMMODULUS(x; df; n) cumulative lower probability for a Studentized maximum
modulus distribution with degrees of freedom df and
number of means n.

CLSRANGE(x; df; n) cumulative lower probability for a Studentized range
distribution with degrees of freedom df and number of
means n.

CLT(x; df; c) cumulative lower probability for a non-central Student's t
distribution with degrees of freedom df and noncentrality
parameter c; if the third parameter c is omitted, it is assumed
to be zero, giving the ordinary (central) t distribution.

CLUNIFORM(x; a; b) cumulative lower probability for a uniform distribution on
[a,b].

CUBETA(x; a; b) cumulative upper probability for a beta distribution with
parameters a and b.

CUBINOMIAL(j; n; p) probability of more than x successes out of n binomial trials
with probability of success p.

CUBVARIATENORMAL(x; y; r) cumulative upper probability for a bivariate Normal
distribution with means 0, variances 1 and correlation r.

CUCHISQUARE(x; df; c) cumulative upper probability for a non-central chi-square
distribution with noncentrality parameter c; if the third
parameter c is omitted, it is assumed to be zero, giving the
ordinary (central) chi-square distribution.

CUF(x; df1; df2; c) cumulative upper probability for a non-central F distribution
with degrees of freedom df1 and df2, and noncentrality
parameter c; if the fourth parameter c is omitted, it is
assumed to be zero, giving the ordinary (central) F
distribution.

CUGAMMA(x; k; t) cumulative upper probability for a gamma distribution with
shape parameter k (kappa) and scale parameter t (theta).

4.2 Functions for use in expressions 173

CUHYPERGEOMETRIC(j; l; m; n) probability of more than x positive samples out of a
total sample of size m from a population of size n of which l
are positive(hypergeometric distribution).

CUINVNORMAL(x; m; v) cumulative upper probability for an inverse Normal (or
inverse Gaussian) distribution with mean m and variance v.

CULOGNORMAL(x) cumulative upper probability for a lognormal distribution
corresponding to a Normal distribution with mean 0 and
variance 1.

CUNORMAL(x; m; v) cumulative upper probability for a Normal distribution with
mean m (default 0) and variance v (default 1).

CUPOISSON(j; m) probability of a value greater than x for a Poisson
distribution with mean m.

CUSMMODULUS(x; df; n) cumulative upper probability for a Studentized maximum
modulus distribution with degrees of freedom df and
number of means n.

CUSRANGE(x; df; n) cumulative upper probability for a Studentized range
distribution with degrees of freedom df and number of
means n.

CUT(x; df; c) cumulative upper probability for a non-central Student's t
distribution with degrees of freedom df and noncentrality
parameter c; if the third parameter c is omitted, it is assumed
to be zero, giving the ordinary (central) t distribution.

CUUNIFORM(x; a; b) cumulative upper probability for a uniform distribution on
[a,b].

EDBETA(p; a; b) equivalent deviate corresponding to cumulative lower
probability p for a beta distribution with parameters a and b.

EDBINOMIAL(p; n; bp) equivalent deviate corresponding to cumulative lower
probability p for a binomial distribution with n trials and
probability of success bp (returns the smallest integer x such
that the probability of up to x successes is greater than or
equal to p).

EDCHISQUARE(p; df; c) equivalent deviate corresponding to cumulative lower
probability p for a non-central chi-square distribution with
noncentrality parameter c; if the third parameter c is
omitted, it is assumed to be zero, giving the ordinary
(central) chi-square distribution.

EDF(p; df1; df2; c) equivalent deviate corresponding to cumulative lower
probability p for a non-central F distribution with degrees of
freedom df1 and df2, and noncentrality parameter c; if the
fourth parameter c is omitted, it is assumed to be zero,
giving the ordinary (central) F distribution.

EDGAMMA(p; k; t) equivalent deviate corresponding to cumulative lower
probability p for a gamma distribution with shape parameter
k (kappa) and scale parameter t (theta).

EDHYPERGEOMETRIC(p; l; m; n) equivalent deviate corresponding to cumulative lower
probability p for a hypergeometric distribution with samples
of size m from a population of size n of which l are positive
(returns the smallest integer x such that the probability of up
to x successes is greater than or equal to p).

EDINVNORMAL(p; m; v) equivalent deviate corresponding to cumulative lower
probability p for an inverse Normal (or inverse Gaussian)

174 4 Calculations and data manipulation

distribution with mean m and variance v.
EDLOGNORMAL(p) equivalent deviate corresponding to cumulative lower

probability p for a lognormal distribution corresponding to a
Normal distribution with mean 0 and variance 1.

EDNORMAL(p; m; v) equivalent deviate corresponding to cumulative lower
probability p for a Normal distribution with mean m (default
0) and variance v (default 1).

EDPOISSON(p; m) equivalent deviate corresponding to cumulative lower
probability p for a Poisson distribution with mean m (returns
the smallest integer x such that the probability of up to x
successes is greater than or equal to p).

EDSMMODULUS(p; df; n) equivalent deviate corresponding to cumulative lower
probability p for a Studentized maximum modulus
distribution with degrees of freedom df and number of
means n.

EDSRANGE(p; df; n) equivalent deviate corresponding to cumulative lower
probability p for a Studentized range distribution with
degrees of freedom df and number of means n.

EDT(p; df; c) equivalent deviate corresponding to cumulative lower
probability p for a non-central Student's t distribution with
degrees of freedom df and noncentrality parameter c; if the
third parameter c is omitted, it is assumed to be zero, giving
the ordinary (central) t distribution.

EDUNIFORM(p; a; b) equivalent deviate corresponding to cumulative lower
probability p for a uniform distribution on [a,b].

FED synonym of EDF.
FPROBABILITY synonym of CLF.
FRATIO synonym of CLF.
GRBETA(n; a; b) generates n pseudo-random numbers from a Beta distribution

with parameters a and b.
GRBINOMIAL(n; t; p) generates n pseudo-random numbers from a Binomial

distribution with t trials and probability p.
GRCHISQUARE(n; df; c) generates n pseudo-random numbers from a chi-square

distribution with degrees of freedom df and non-centrality
parameter c (default c=0).

GRF(n; df1; df2; c) generates n pseudo-random numbers from an F distribution
with df1 and df2 degrees of freedom, and non-centrality
parameter c (by default c1=0).

GRGAMMA(n; k; t) generates n pseudo-random numbers from a Gamma
distribution with shape parameter k (kappa) and scale
parameter t (theta).

GRHYPERGEOMETRIC(n; l; m; p) generates n pseudo-random numbers from a
Hypergeometric distribution representing the number of
positive values or successes in samples of size m from a
population of size p of which l are positive.

GRLOGNORMAL(n; m; v) generates n pseudo-random numbers from a lognormal
distribution such that log(x) has a Normal distribution with
mean m and variance v.

GRNORMAL(n; m; v) generates n pseudo-random numbers from a Normal
distribution with mean m (default 0) and variance v (default
1).

4.2 Functions for use in expressions 175

GRPOISSON(n; m) generates n pseudo-random numbers from a Poisson
distribution with mean m.

GRSAMPLE(n; v; p) forms a variate of size n by sampling with replacement from
variate v with probabilities (or relative weights) p; if p is
omitted, the probabilities are assumed to be equal; if v is
omitted, sampling is from a variate containing the integers
1...n.

GRSELECT(n; v; r) forms a variate of size n by sampling from a population; if r
is omitted, the population contains just one of each element
of the variate v; alternatively r can supply a variate defining
the replication of the elements of v within the population
(i.e. the population is then defined as NEXPAND(r; v), see
4.2.8); if v is omitted, sampling is from a variate containing
the integers 1...n.

GRT(n; df; c) generates n pseudo-random numbers from a Student's t
distribution with degrees of freedom df and non-centrality
parameter c (default c=0).

GRUNIFORM(n; a; b) generates n pseudo-random numbers from a uniform
distribution on [a,b].

IANGULAR(x) gives the inverse of the angular transformation (result in
percentages).

ICLOGLOG(x) gives the inverse of the complementary log-log
transformation (result in percentages).

ILOGIT(x) gives the inverse of the logit transformation (result in
percentages).

IPROBIT(x) gives the inverse of the probit transformation (result in
percentages).

LLBINOMIAL(x; n; p) or LLB(x; n; p) provides the log-likelihood function for the
binomial distribution with sample size n and mean
proportion p (n and p are scalars or variates):
Ó { x Log(n p / x) + (n!x) Log(n (1!p) / (n!x)) }

LLGAMMA(x; k; t) or LLG(x; k; t) provides the log-likelihood function for the gamma
distribution with shape parameter k and scale parameter t (k
and t are scalars or variates):
Ó { k Log(x / t) ! (x / t) ! Log(Ã (k)) }

LLNORMAL(x; m; v) or LLN(x; m; v) provides the log-likelihood function for the
Normal distribution with mean m and variance v (m and v are
scalars or variates):
!½ Ó{ Log(v) + (x!m)(x!m)/v }

LLPOISSON(x; m) or LLP(x; m) provides the log-likelihood function for the Poisson
distribution with sample size m (m is a scalar or a variate):
Ó{ x Log(m/x) + x ! m }

LOGIT(p) takes the logit transformation log(p/(100!p)) of the
percentages p (0<p<100%).

NED synonym of EDNORMAL.
NORMAL synonym of CLNORMAL.
PRBETA(x; a; b) probability density function for a beta distribution with

parameters a and b.
PRBINOMIAL(x; n; p) probability of x successes out of n binomial trials with

probability of success p.
PRCHISQUARE(x; df; c) probability density function for a non-central chi-square

176 4 Calculations and data manipulation

distribution with noncentrality parameter c; if the third
parameter c is omitted, it is assumed to be zero, giving the
ordinary (central) chi-square distribution.

PRF(x; df1; df2; c) probability density function for a non-central F distribution
with degrees of freedom df1 and df2, and noncentrality
parameter c; if the fourth parameter c is omitted, it is
assumed to be zero, giving the ordinary (central) F
distribution.

PRGAMMA(x; k; t) probability density function for a gamma distribution with
shape parameter k (kappa) and scale parameter t (theta).

PRHYPERGEOMETRIC(j; l; m; n) probability of x successes out of a sample of m from a
population of size n of which l are positive(hypergeometric
distribution).

PRINVNORMAL(x; m; v) probability density function for an inverse Normal (or
inverse Gaussian) distribution with mean m and variance v.

PRLOGNORMAL(x) probability density function for a lognormal distribution
corresponding to a normal distribution with mean 0 and
variance 1.

PRNORMAL(x; m; v) probability density function for a Normal distribution with
mean m (default 0) and variance v (default 1).

PROBIT(p) takes the probit transformation of the percentages p
(0<p<100%).

PRPOISSON(j; m) probability of obtaining the value x for a Poisson
distribution with mean m.

PRSMMODULUS(x; df; n) probability density function for a Studentized maximum
modulus distribution with degrees of freedom df and
number of means n.

PRSRANGE(x; df; n) probability density function for a Studentized range
distribution with degrees of freedom df and number of
means n.

PRT(x; df; c) probability density function for a non-central Student's t
distribution with degrees of freedom df and noncentrality
parameter c; if the third parameter c is omitted, it is assumed
to be zero, giving the ordinary (central) t distribution.

PRUNIFORM(p; a; b) probability density function for a uniform distribution on
[a,b].

URAND(s1; s2) provides a uniform pseudo-random number generator, giving
values in the range [0,1]. s1 is a scalar which specifies the
seed for the random numbers. s2 is also a scalar; if you set
this, the result is a variate of length equal to the value of the
scalar. If you omit s2, the type of the result of URAND is
determined from the context of the expression: that is from
the type of the structure that is to receive the values that are
generated; if the receiving structure has not been declared
already, it will be declared implicitly as a variate with the
length of the units structure (2.3.4)

RQOBJECTIVE(y; d; p; t) returns the objective function from fitting a quantile linear
regression with a response variate y, a design matrix d, a
probability value specified by the scalar p, and using a
tolerance defined by the scalar t. If the fourth argument is
omitted, a default tolerance of 10!12 is used. For more details

4.2 Functions for use in expressions 177

of quantile regression, see the FRQUANTILES directive. The
objective is calculated as
SUM(r * (p - (r.LT.0)))

where r is the variate of residuals from the fit.
SSPLINE(y; x; df; p) fits a smoothing-spline of y on x, with df degrees of

freedom or (if df is missing) smoothing parameter p.
Example 4.2.9 illustrates the functions LLNORMAL, NED, PRPOISSON and CLPOISSON.

Example 4.2.9

 2 Normal log-likelihood for X with mean 0.6 and variance 1.9 "
 3 VARIATE [VALUES=4.0,-3.5,-1.3,-2.8,1.9,2.5,0.3,-0.8,1.2,0.9] X
 4 CALCULATE Loglik = LLNORMAL(X; 0.6; 1.9)
 5 PRINT Loglik

 Loglik
 -16.72

 6 " Transform Pr to Normal equivalent deviates "
 7 VARIATE Pr; VALUES=!(0.1,0.45,*,0.2,0.83,-0.3,0.95)
 8 " There is an invalid value in unit 6; this is
 -9 given a missing value and a warning is printed. "
 10 CALCULATE Tran = NED(Pr)

**** G5W0001 **** Warning (Code CA 58). Statement 1 on Line 10
Command: CALCULATE Tran = NED(Pr)
Error in argument for distribution function.
Invalid P-value for ED function.

 11 PRINT Tran,Pr; FIELDWIDTH=8,10; DECIMALS=2,3

 Tran Pr
 -1.28 0.100
 -0.13 0.450
 * *
 -0.84 0.200
 0.95 0.830
 * -0.300
 1.64 0.950

 12 " Calculate probabilities and cumulative probabilities
 -13 for a Poisson distribution with mean 2.5 "
 14 VARIATE [V=1...10] N
 15 CALCULATE Prob = PRPOISSON(N; 2.5)
 16 & Cumprob = CLPOISSON(N; 2.5)
 17 PRINT N,Prob,Cumprob; DECIMALS=0,3,3

 N Prob Cumprob
 1 0.205 0.287
 2 0.257 0.544
 3 0.214 0.758
 4 0.134 0.891
 5 0.067 0.958
 6 0.028 0.986
 7 0.010 0.996
 8 0.003 0.999
 9 0.001 1.000
 10 0.000 1.000

Some additional probability calculations are provided by procedures: GRMULTINORMAL generates
multivariate Normal pseudo-random numbers, GRMNOMIAL generates multinomial pseudo-
random numbers, and EDDUNNETT calculates equivalent deviates for Dunnett's simultaneous
confidence interval around a control.

178 4 Calculations and data manipulation

4.2.10 Date-time functions

These functions manipulate dates and times (stored in any numerical data structure).

DAY(x) the day of month corresponding to date-time value x.

MONTH(x) the month corresponding to date-time value x.
YEAR(x) the year corresponding to date-time value x.
WEEKDAY(x) the day of the week (where Monday is weekday 1)

corresponding to data-time value x.
TIME(h; m; s) constructs the time value (days and fractions of days)

corresponding to h hours, m minutes and s seconds.
HOURS(x) the number of hours during the day corresponding to x (i.e.

the number of hours recorded on a 24 hour clock at date-time
value x).

MFRACTION(x;p;m) returns the period within a month that date-time value x
belongs to; p is the length of the period (e.g. 5 for pentade,
10 for decade), and m is the starting month (default 1).

MINUTES(x) the number of minutes during the hour corresponding to x
(i.e. the number of minutes recorded on a clock at date-time
value x).

SECONDS(x) the number of seconds (including fraction of seconds) during
the minute corresponding to date-time value x.

NDAYINYEAR(x;m) the number of the day in year corresponding to date-time
value x, and starting the year at the beginning of month m
(default 1).

NWEEKINYEAR(x;s) number of the week through the year for date-time value x.
The default setting for s is 'iso'; this uses the definition of
ISO Standard IS-8601 (1988) in which any week (starting on
Monday) that lies in more than one year is assigned a week
number for the year in which most of its days occur. The
alternative setting, 'simple', takes the first week of the
year as the one containing 1st January.

LEAPYEAR(x) returns 1 if the year corresponding to date-time value x is a
leap year, 0 otherwise.

DATE(d; m; y) constructs the date value corresponding to day d, month m
and year y.

CPUTIME(x) returns a scalar containing the currently used cpu time
(argument x is ignored).

NOW(x) returns a scalar containing the current date and time
(argument x is ignored).

4.2.11 Tree functions

These functions allow you to navigate around a tree, or to obtain information about trees and
their nodes. In the specifications below, t represents a tree, x represents any numerical structure,
and m and n are scalars. Examples are given in Section 4.12.

BBELOW(t; n; m) provides a variate containing numbers of all the nodes below

node n of tree t; if m=1 this gives only the terminal nodes
below n, otherwise it includes internal nodes as well.

BBRANCHES(t; n) provides a variate containing the numbers of the branches
taken on the path to node n in tree t (the result is of the same
length as the results of the BPATH function, and includes
missing value as the final element, corresponding to n itself).

4.2 Functions for use in expressions 179

BDEPTH(t; x) calculates the depths of nodes x in tree t.
BMAXNODE(t) provides the maximum node number in tree t.
BNBRANCHES(t; x) provides the number of branches below nodes x in tree t (0

for any that are terminal nodes).
BNEXT(t; x; y) finds the numbers of the nodes on branches y from nodes x

in tree t (returning a missing value for any terminal node).
BNNODES(t) provides the number of nodes in tree t.
BPATH(t; n) provides a variate containing the numbers of the nodes on

the branch to node n in tree t (includes n itself as the final
element).

BPREVIOUS(t; x) finds the numbers of the nodes immediately above nodes x
in tree t (or a missing value if a node is the root of the tree).

BSCAN(t; x) finds the numbers of the nodes immediately after nodes x in
tree t in an standard branch-by-branch order that visits each
node once (or a missing value for the node that is the last
one in the tree).

BTERMINAL(t; x) finds the next terminal nodes after nodes x in tree t (or a
missing value after the last terminal node).

4.2.12 Graphics functions

These functions allow you to map between an RGB colour and its red, blue and green
components; see 6.9.9 for more information. In the definitions, x, y and z represent any structure
containing numerical data. The result is a structure of the same type as x.

BLUE(x) calculates the blue components of the RGB colour values

in x.
GRAY(x) or GREY(x) calculates RGB colour values for the values on the gray

(grey) scale in x.
GREEN(x) calculates the green components of the RGB colour values

in x.
RED(x) calculates the red components of the RGB colour values in

x.
RGB(x) calculates RGB colour values from the red, green and blue

components in x, y and z, respectively; these components
must all be between 0 and 255.

RGB(t) provides the RGB colour values of the standard Genstat
colours in text t. The text can contain the string 'match'
in its second and subsequent units, to repeat the colour in
the previous unit. It can also contain strings made up of
three pairs of hexadecimal digits (00-FF) prefixed by #, 0x
or 0X: i.e. '#rgb', '0xrgb' or '0Xrgb' where rgb are
pairs of hexadecimal digits 00-FF that define the red,
green and blue intensities of the colour respectively.

4.2.13 Image functions

These functions operate on images, represented as matrices of RGB values. See PEN (6.9.7) and
DBITMAP (6.5.1) for more details. They are based on algorithms in the ImgSource library
supplied by Smaller Animals Software, Inc. For more information, see
http://www.smalleranimals.com/.

IMBRIGHTNESS(r;l;h;m) modifies the brightness of the RGB image in matrix r,

setting pixels in each channel with brightness less than l

180 4 Calculations and data manipulation

(default 0) to 0 and those brighter than h (default 255) to
255; m defines the mode of adjustment (default 0 stretches
brightness and 1 distributes brightness evenly across the
range).

IMCONTRAST(r;c;b) modifies contrast and brightness of the RGB image in matrix
r; c (!1#c#1; default 0 i.e. no adjustment) defines the
adjustment to the contrast, and b (!1#b#1; default 0 i.e. no
adjustment) defines the adjustment to the brightmess.

IMGAMMA(r;g) applies gamma correction g (g$0; default 1.5) to the
brightness of the RGB image in matrix r; g<1 decreases
brightness, and g>1 increases brightness.

IMGRAYSCALE(r) or IMGREYSCALE(r) convert the RGB image in matrix r to grey scale.
IMCREPLACE(r;c;d;t) replaces colour c in the RGB image in matrix r with colour

d, using tolerance t (default 0).

IMSIZE(r;w;h;m) changes the size of the RGB image in matrix r to have width

w and height h; m selects the algorithm to use to assign
colours in the new image: 0 = box filter, 1 = triangle filter, 2
= Hamming filter, 3 = Gaussian filter, 4 = bell filter, 5 = B-
spline filter, 6 = cubic 1 filter, 7 = cubic 2 filter, 8 =
Lanczos3 filter, 9 = Mitchell filter, 10 = sinc filter, 11 =
Hermite filter, 12 = Hanning filter, 13 = Catrom filter, 14 =
fast area-average, 15 = area-average, 16 = bi-linear
interpolation, 17 (default) = bi-cubic interpolation, 18 =
nearest neighbour.

IMROTATE(r;a;b) rotates the RGB image in matrix r; a is the angle in radians
(default ð/2); b is the background colour to put into the
(blank) corners.

IMHFLIP(r) performs a horizontal flip on the RGB image in matrix r.
IMVFLIP(r) performs a vertical flip on the RGB image in a matrix r.
IMPUSH(r;x1;y1;x2;y2) applies a point-to-point warp on the RGB image in matrix r,

"pushing" point (x1, y1) to (x2, y2).
IMXSHEAR(r;x;b) shears the RGB image in matrix r by moving the top of the

image |x| pixels to the right (x>0) or left (x<0); the blank
parts of the new image are given (background) colour b.

IMYSHEAR(r;y;b) shears the RGB image in matrix r by moving the right-hand
side of the image |y| pixels up or down; the blank parts of the
new image are given (background) colour b.

IMMEDIANFILTER(r) performs a median filter on the RGB image in a matrix r.

IMSATURATE(r;s) adjusts the saturation level of the RGB image in matrix r
according to the value of scalar s (default 1.1): when s>1
the saturation is increased, when 0<s<1 saturation is
decreased, and when s<0 photo-negative is generated.

IMSHARPEN(r;s) sharpens the RGB image in matrix r by the amount specified

in scalar s (0<s<100; default 2).
IMUNSHARPEN(r;t;a;s) applies an unsharp mask to the RGB image in matrix r: this

first applies a Gaussian blur with standard deviation s; it
then finds the difference between pixels in the blurred image
and in the original and, if this is greater than t in each
channel, it adds the amount specified by scalar a multiplied
by the difference from the original value.

4.2 Functions for use in expressions 181

IMBLUR(r;b) blurs the RGB image in matrix r by the amount specified in
scalar b (0<b<100; default 2).

IMDESPECKLE(r) despeckles the RGB image in matrix r.
IMGBLUR(r;s) applies a Gaussian blur with standard deviation s to the

RGB image in matrix r.

IMCEQUALIZE(r;l;u) performs an independent histogram equalization of the

colours in the RGB image in matrix r; scalar l specifies the
lower threshold and scalar h specifies the upper threshold.

IMBEQUALIZE(r;l;u) performs a histogram equalization of the brightness of the
RGB image in matrix r; scalar l specifies the lower
threshold and scalar h specifies the upper threshold.

IMBSTRETCH(r;l;u;m) performs a histogram stretch of the brightness in the RGB
image in matrix r; scalar l (default 0) specifies the
percentage of pixels to set to 0 (i.e. black), scalar h (default
0) specifies the percentage of pixels to set to white, and
scalar m (0#m#255; default 128) specifies the colour value in
each channel to be set to the middle intensity.

IMSSTRETCH(r;l;h;m) performs a histogram stretch of the saturation in the RGB
image in matrix r; scalar l (default 0) specifies the
percentage of pixels to set to 0 (i.e. black), scalar h (default
0) specifies the percentage of pixels to set to white, and
scalar m (0#m#255; default 128) specifies the colour value in
each channel to be set to the middle intensity.

IMCSTRETCH(r;l;h;m) performs a histogram stretch of the individual colours in the
RGB image in matrix r; scalar l (default 0) specifies the
percentage of pixels to set to 0 (i.e. black), scalar h (default
0) specifies the percentage of pixels to set to white, and
scalar m (0#m#255; default 128) specifies the colour value in
each channel to be set to the middle intensity.

IMLINE(r;x1;y1;x2;y2;c) draws a line from point (x1, y1) to (x2, y2) in colour c on

the RGB image in matrix r.
IMELLIPSE(r;cx;cy;hr;vr;c;cf;p) draws an ellipse with centre (cx, cy), horizontal

radius hx (default 40), vertical radius vr (default 40), colour
cl, fill colour cf (default 0) and opacity p (0#p#1, where 0
is transparent and the default of 1 is solid) on the RGB
image in matrix r.

IMTEXT(r;st;c;fh;y1;x1;y2;x2;ft) draws the text in string st with height fh, font
ft and colour c within the bounding rectangle with top left
corner at (x1, y1) and bottom right corner at (x2, y2) on the
RGB image in matrix r.

IMSTEXT(r;st;c;fh;y1;x1;y2;x2;ft;tr;sm) draws the text in string st with height
fh, font ft, colour c, transparency tr and smoothness sm
(sm=1 for none, or 2 or 4) within the bounding rectangle
with top left corner at (x1, y1) and bottom right corner at
(x2, y2) on the RGB image in matrix r.

IMRECTANGLE(r;x1;y1;x2;y2;c) colours the rectangle with bottom left corner (x1, y1)
and top right corner (x2, y2) in the RGB image in matrix r
to be colour c.

IMEMBOSS(r;b;t;a;e;d) embosses the RGB image in matrix r; matrix b specifies a

"bump map" defining the peaks and valleys in the output

182 4 Calculations and data manipulation

image (typically this is a grey scale version of r); matrix t
defines the texture to apply to the input matrix; scalar a
gives the angle of the light source in radians; scalar e is the
elevation of the light source in radians; scalar d defines the
depth of the effect.

IMOVERLAY(rt;rb;m;mp;p;x;y) overlays the RGB image in matrix rt over the RGB
image in matrix rb; m controls how images are blended (0 =
fast blend, 1 = slower, more accurate blend, 2 = pixels
combined with logical AND, 3 = pixels combined with logical
OR, 4 = pixels combined with logical XOR, 5 = output pixel is
maximum of top and bottom as in Photoshop "Lighten", 6 =
output pixel is minimum of top and bottom as in Photoshop
"Darken", 7 = output pixel is sum of top and bottom, 8 =
output pixel is difference of top and bottom, 9 = if top > mp,
output top, 10 = if top < mp, output top, 11 = absolute value
of the difference of top and bottom, 12 = take top × bottom /
maximum component, 13 = take top × bottom ×
ModeParameter / maxComponent, 14 = screen, 15 = define
bottom to be bottom + top ! mp, 16 = define bottom to
bottom ! top ! mp, 17 = pixels combined with logical
NAND, 18 = pixels combined with logical NOR, 19 = pixels
combined with logical NXOR/XNOR, 20 = color dodge, 21 =
color burn, 22 = soft dodge, 23 = soft burn, 24 = Photoshop
"overlay", 25 = soft light, 26 = hard light, 27 = XFader
reflect, 28 = XFader glow, 29 = XFader freeze, 30 = XFader
heat); p defines the opacity of the blended image; and (x, y)
specifies the position of bottom left-hand corner of the top
image on the bottom image.

IM3CONVOLUTION(r;f;i;cr;cg;cb;d) applies the convolution filter in the 3×3 matrix f

to the RGB image in matrix r; scalar i (default 1) defines
the intensity parameter; scalars cr, cg and cb contain 0 or 1
(default) according to whether the red, green and blue
channels, respectively, are to be modified. If the "feedback"
defined by scalar d is 0 (default), the new value at each point
is i multiplied by the sum of the values at the point and
nearby points multiplied by the convolution matrix.
Alternatively, if d=i (default), the new value at each point is
calculated by taking (1!i) multiplied by the current value at
the point, and then subtracting i multiplied by the sum of the
values at the point and nearby points multiplied by the
values in the convolution matrix.

IMMCONVOLUTION(r;f;i;cr;cg;cb;m) applies the convolution filter in matrix f to the
RGB image in matrix r ; scalar i (default 1) defines the
intensity parameter; scalars cr, cg and cb contain 0 or 1
(default) according to whether the red, green and blue
channels, respectively, are to be modified. If the mode
defined by scalar m is 0 (default), the new value at each point
is i multiplied by the sum of the values at the point and
nearby points multiplied by the convolution matrix.
Alternatively, if m=1 (default), the new value at each point is
the current value at the point minus i multiplied by the sum

4.3 Operations on sets of structures 183

of the values at the point and nearby points multiplied by the
values in the convolution matrix.

4.3 Operations on sets of values: copying, comparison and Boolean
calculations

The EQUATE directive (4.3.1) provides general facilities for copying values from one set of data
structures to another. For example, you may wish to copy the values from a one-way table into
a variate, or from a matrix into a set of variates (one variate for each row, or for each column),
or the other way round, from variates into a matrix. EQUATE can be used to append values from
several data structures into a single one (see Example 4.3.1a); the only constraint is that the
structures in the respective sets must all contain the same kind of values. Note, however, that the
APPEND and STACK procedures, described in Sections 4.4.4 and 4.4.5, provide more convenient
methods of appending values of vectors. They use EQUATE internally but, for example,
automatically define the output structures to be the correct length and also allow you to form a
group factor to indicate where each value came from. In Genstat for Windows, you can also
append vectors using the spreadsheet facilities. There are also specialized functions for copying
tables into matrices, described in Section 4.2.8.

The SETRELATE directive checks to see whether the distinct set of values in two structures are
identical, or whether one is a subset of the other (4.3.2). The structures must again have values
of the same kind (numbers, strings or identifiers), but need not be of the same type. Boolean set
calculations can be performed on the contents of vectors or pointers using the SETCALCULATE
directive (4.3.3), which is used by the menu for Calculations on Sets in Genstat for Windows.
You can construct all the ways in which a set of objects can be partitioned into subsets of a
specified size using the SETALLOCATIONS directive (4.3.4), and you can find where particular
values occur in a data structure using the GETLOCATIONS directive (4.3.5).

4.3.1 Copying between sets of structures: the EQUATE directive

EQUATE directive
Transfers data between structures of different sizes or types (but the same modes i.e.
numerical or text) or where transfer is not from single structure to single structure.

Options
OLDFORMAT = variate Format for values of OLDSTRUCTURES; within the

variate, a positive value n means take n values, !n
means skip n values and a missing value means skip to
the next structure; default * i.e. take all the values in
turn

NEWFORMAT = variate Format for values of NEWSTRUCTURES; within the
variate, a positive value n means fill the next n positions,
!n means skip n positions and a missing value means
skip to the next structure; default * i.e. fill all the
positions in turn

FREPRESENTATION = string token How to interpret factor values (labels, levels,
ordinals); default leve

Parameters
OLDSTRUCTURES = identifiers Structures whose values are to be transferred; if values

of several structures are to be transferred to one item in
the NEWSTRUCTURES list, they must be placed in a

184 4 Calculations and data manipulation

pointer
NEWSTRUCTURES = identifiers Structures to take each set of transferred values; if

several structures are to receive values from one item in
the OLDSTRUCTURES list, they must be placed in a
pointer

The general idea with EQUATE is that the values in the structures in the OLDSTRUCTURES list are
copied into the structures in the NEWSTRUCTURES list. Each item in OLDSTRUCTURES list
specifies a single data structure, or a single set of data structures, containing the values to be
transferred. A single structure can be a factor, or a text, or any one of the structures that contain
numbers (scalar, variate, rectangular matrix, diagonal matrix, symmetric matrix or table). If you
want to give a set of structures you must put them into a pointer. As already mentioned, all the
structures in the set must contain the same kind of values: that is, they must all be texts, or all
factors, or must all contain numbers (but they need not all be the same kinds of numerical
structure ! they could, for example, be a mixture of variates and matrices).

The corresponding entry in the NEWSTRUCTURE list indicates where the transferred data are
to be placed. It is either a single structure or a pointer to a set of structures; the structures must
be of a type suitable to store the values to be transferred.

In Example 4.3.1a, information about the employees of a firm has been typed in series in two
separate sections, and the statement in lines 20 and 21 copies them into one; for each employee
there are three pieces of information ! name, grade and hours.

Example 4.3.1a

 2 OPEN 'Employee.dat'; CHANNEL=2
 3 " Read values for the first 6 employees,
 -4 in series, into Name1, Grade1 and Hours1."
 5 TEXT [NVALUES=6] Name1
 6 FACTOR [NVALUES=6; LEVELS=3] Grade1
 7 VARIATE [NVALUES=6] Hours1
 8 READ [PRINT=data,errors; CHANNEL=2; SERIAL=yes] Name1,Grade1,Hours1

 1 Clarke Innes Adams Jones Day Grey :
 2 2 1 2 1 1 3 :
 3 45 51 40 46 44 40 :
 9 " Read values for the final 4 employees,
 -10 in series, into Name2, Grade2 and Hours2."
 11 TEXT [NVALUES=4] Name2
 12 FACTOR [NVALUES=4; LEVELS=3] Grade2
 13 VARIATE [NVALUES=4] Hours2
 14 READ [PRINT=data,errors; CHANNEL=2; SERIAL=yes] Name2,Grade2,Hours2

 4 Edwards Baker Hill Foster :
 5 2 2 3 1 :
 6 47 42 40 41 :
 15 " Use EQUATE to put information about all the employees
 -16 into single vectors Name, Grade and Hours."
 17 TEXT [NVALUES=10] Name
 18 FACTOR [NVALUES=10; LEVELS=3] Grade
 19 VARIATE [NVALUES=10] Hours
 20 EQUATE !P(Name1,Name2),!P(Grade1,Grade2),!P(Hours1,Hours2); \
 21 NEWSTRUCTURES=Name,Grade,Hours
 22 PRINT Name,Grade,Hours

 Name Grade Hours
 Clarke 2 45.00
 Innes 1 51.00
 Adams 2 40.00
 Jones 1 46.00
 Day 1 44.00
 Grey 3 40.00
Edwards 2 47.00
 Baker 2 42.00

4.3 Operations on sets of structures 185

 Hill 3 40.00
 Foster 1 41.00

Except with a format (see below) Genstat ignores where each structure within a set from the
OLDSTRUCTURES list ends and another one begins: that is, it treats the set as being a
concatenated list of values. Similarly, it treats the structures in each NEWSTRUCTURES set as an
unstructured list of positions that are to receive values. The old values are repeated as often as
is necessary to traverse all the new positions. Example 4.3.1b forms a matrix M with repeated and
alternating rows taken from variates R1 and R2.

Example 4.3.1b

 2 VARIATE [VALUES=1...6] R1
 3 & [VALUES=101...106] R2
 4 " Form a matrix M whose rows are R1, R2, R1 and R2."
 5 MATRIX [ROWS=4; COLUMNS=6] M
 6 EQUATE !P(R1,R2); NEWSTRUCTURES=M
 7 PRINT M; FIELDWIDTH=6; DECIMALS=0

 M
 1 2 3 4 5 6

 1 1 2 3 4 5 6
 2 101 102 103 104 105 106
 3 1 2 3 4 5 6
 4 101 102 103 104 105 106

You can use the OLDFORMAT and NEWFORMAT options to control how the old values and new
positions are traversed. The setting for each of these is a variate whose values are interpreted as
follows:
(a) a positive integer n means take the next n values (OLDFORMAT) or fill the next n positions

(NEWFORMAT);
(b) a negative integer !n means skip the next n values or positions;
(c) a missing value * means skip to the end of the structure.

As usual, Genstat recycles when it runs out of values. That is, if the contents of one of the
variates is exhausted before all the NEWSTRUCTURES positions have either been filled or skipped,
then that variate is repeated.

For example:

Example 4.3.1c

 8 "Form variates C[1...6] containing the values in the columns of M."
 9 VARIATE [NVALUES=4] C[1...6]
 10 EQUATE [OLDFORMAT=!((1,-5)4,-1)] M; NEWSTRUCTURES=C
 11 PRINT C[1...6]; FIELDWIDTH=6; DECIMALS=0

 C[1] C[2] C[3] C[4] C[5] C[6]
 1 2 3 4 5 6
 101 102 103 104 105 106
 1 2 3 4 5 6
 101 102 103 104 105 106

This gives the variates C[1...6] the values in the columns of M. It does it by taking one column
at a time from M, skipping the values in the other columns. (Remember that the values of M are
held row-by-row.) In detail, what happens is this. For C[1], the format !((1,!5)4,!1) in line
10 takes the value in row 1 column 1, then skips the elements in the remaining five columns of
row 1 before taking the value from column 1 of row 2. For C[1] this continues for each row of

186 4 Calculations and data manipulation

M, until the final element of the format, !1, skips column 1 of row 1, so that C[2] is given the
values in column 2, and so on.

Notice that, as pointer C is automatically available to refer to C[1...6] (see 2.6), there is no
need to put, for example, !P(C[1...6]).

The final part of the example shows how to form a matrix from a set of variates that contain
the values for the columns.

Example 4.3.1d

 12 "Reform values of M so that its columns are C[1...6] in reverse order."
 13 EQUATE [OLDFORMAT=!((1,-3)6,-1)] !P(C[6...1]); NEWSTRUCTURES=M
 14 PRINT M; FIELDWIDTH=6; DECIMALS=0

 M
 1 2 3 4 5 6

 1 6 5 4 3 2 1
 2 106 105 104 103 102 101
 3 6 5 4 3 2 1
 4 106 105 104 103 102 101

If you are transferring values between factors, Genstat will check that each value to be
transferred is valid for the factor in the NEWSTRUCTURES list. By default, Genstat will try to
match the values using the levels of the factors, but you can set option FREPRESENTATION to
labels to match by their labels, or to ordinals to match them merely according to the ordinal
position in the levels vector of each factor. Example 4.3.1e illustrates the various possibilities.

Example 4.3.1e

 2 FACTOR [LEVELS=!(2,4); LABELS=!T(standard,double); VALUES=2,4,4,2]\
 3 Dose1
 4 FACTOR [NVALUES=8; LEVELS=3; LABELS=!T(none,standard,double)] Dose2
 5 " Form Dose2 from Dose1, repeated twice, matching by labels."
 6 EQUATE [FREPRESENTATION=labels] Dose1; NEW=Dose2
 7 PRINT [SERIAL=yes; ORIENTATION=across; RLWIDTH=6] \
 8 Dose1,Dose2; FIELD=9

 Dose1 standard double double standard

 Dose2 standard double double standard standard double double

 Dose2 standard

 9 " Form Dose3 from Dose1, matching by levels (the default)
-10 and then Dose4, matching by ordinal positions of the levels."
 11 FACTOR [NVALUES=4; LEVELS=!(0,1,2,3,4); \
 12 LABELS=!T(none,d1,d2,d3,d4)] Dose3
 13 FACTOR [NVALUES=4; LEVELS=!(20,40,60)] Dose4
 14 EQUATE Dose1; NEW=Dose3
 15 EQUATE [FREPRESENTATION=ordinals] Dose1; NEW=Dose4
 16 PRINT Dose1,Dose3,Dose4

 Dose1 Dose3 Dose4
 standard d2 20.00
 double d4 40.00
 double d4 40.00
 standard d2 20.00

The values of factors that have labels can be copied into texts. In addition, values of texts can
be copied into factors, provided all the strings are valid labels for the factor concerned. Factor
values can also be copied into variates; the FREPRESENTATION option controls whether Genstat
uses the levels or the ordinal values.

4.3 Operations on sets of structures 187

4.3.2 Comparing sets: the SETRELATE directive

SETRELATE directive
Compares the distinct values contained in two data structures.

Options
FREPRESENTATION = string token How to represent factors in a comparison between two

factors (levels, labels, ordinals); default leve
LFACTORIAL = scalar Limit on number of factors or variates in the terms

formed from a LEFT formula; default * i.e. none
RFACTORIAL = scalar Limit on number of factors or variates in the terms

formed from a RIGHT formula; default * i.e. none
TOLERANCE = scalar Tolerance to use when comparing numerical values;

default 10!6

SUBSTITUTE = string token Whether to substitute dummies within LEFT or RIGHT
pointers and formulae (yes, no); default no

Parameters
LEFT = identifiers First structures in each comparison
RIGHT = identifiers Second structures in each comparison
CONTAINS = scalars Returns 1 or 0 according to whether or not LEFT

contains RIGHT
EQUALS = scalars Returns 1 or 0 according to whether or LEFT and RIGHT

contain exactly the same distinct set of items
INCLUDEDIN = scalars Returns 1 or 0 according to whether or not LEFT is

included in RIGHT

SETRELATE can compare the distinct values of any numerical structure (scalar, variate, table,
matrix, diagonal matrix or symmetric matrix) with another numerical structure or with a factor.
It can compare a factor either with another factor, or with a variate or a text. It can compare a
text with another text, or two pointers. Finally, it can compare two formulae.

The LEFT and RIGHT parameters specify the structures to compare. The other parameters
provide the results of the comparison as scalars containing the values 0 or 1. CONTAINS is set
to 1 if the LEFT structure contains every (distinct) value in the RIGHT structure. EQUALS returns
1 if the sets of distinct values in the LEFT and RIGHT structures are identical. INCLUDEDIN
equals 1 if the RIGHT structure contains every (distinct) values in the LEFT structure.

When comparing two factors, the FREPRESENTATION option specifies whether to use levels,
labels or ordinal values. (The ordinal values are formed representing the levels, in numerical
order, by the numbers 1, 2 and so on.) By default levels are used.

When comparing pointers and formulae, the SUBSTITUTE option controls whether any
dummies that they contain are substituted by the data stuctures to which they point, before the
comparison is made. Note, if any of those data structures is a dummy, it too is replaced, and so
on until we reach a data structure that is not a dummy. However, if the original dummy (or any
of the dummies to which it points) is unset, the original dummy is retained.

The LFACTORIAL and RFACTORIAL options can be used to set a limit on number of factors
or variates in the terms formed from a LEFT or RIGHT formula, respectively; by default there are
no limits.

Example 4.3.2 compares the examination results of three students. SETRELATE used to find
out that Jim and Kim have both passed exams that were not passed (or perhaps not taken) by the
other. However, Tim's exam successes are a subset of Kim's.

188 4 Calculations and data manipulation

Example 4.3.2

 2 " Examinations passed by three students "
 3 TEXT Jim,Kim,Tim; VALUES=\
 4 !t(Art,English,French,Geography,History,\
 5 'Information technology',Maths,Music,Science,Spanish),\
 6 !t('Business studies',English,French,Geography,History,\
 7 Maths,Music,'Resistant materials',Science,Spanish),\
 8 !t('Business studies',English,French,Geography,History,\
 9 'Resistant materials')
 10
 11 " Compare Jim with Kim: neither set of exams is a subset of the other"
 12 SETRELATE Jim; Kim; CONTAINS=Kim_subset_of_Jim;\
 13 EQUALS=Jim_same_as_Kim; INCLUDEDIN=Jim_subset_of_Kim
 14 PRINT [ORIENTATION=across; RLWIDTH=20]\
 15 Kim_subset_of_Jim,Jim_same_as_Kim,Jim_subset_of_Kim;\
 16 DECIMALS=0

 Kim_subset_of_Jim 0
 Jim_same_as_Kim 0
 Jim_subset_of_Kim 0

 17
 18 " but Tim's exams are a subset of Kim's."
 19 SETRELATE Kim; Tim; CONTAINS=Tim_subset_of_Kim;\
 20 EQUALS=Kim_same_as_Tim; INCLUDEDIN=Kim_subset_of_Tim
 21 PRINT [ORIENTATION=across; RLWIDTH=20]\
 22 Tim_subset_of_Kim,Kim_same_as_Tim,Kim_subset_of_Tim;\
 23 DECIMALS=0

 Tim_subset_of_Kim 1
 Kim_same_as_Tim 0
 Kim_subset_of_Tim 0

SETRELATE also has a TOLERANCE option, which can be used to change the tolerance used
internally to compare numbers. The default value 10!6 should be suitable, however, unless you
are working with very small numbers.

4.3.3 Boolean arithmetic: the SETCALCULATE directive

SETCALCULATE directive
Performs Boolean set calculations on the contents of vectors or pointers.

Options
NULL = scalar Returns either 1 or 0 according to whether or not the

result is a null (i.e. empty) set
FREPRESENTATION = string token How to represent factors in a calculation that contains

only factors (levels, labels); default leve
TOLERANCE = scalar Tolerance to use when comparing numerical values;

default 10!6

SUBSTITUTE = string token Whether to substitute dummies within pointers in the
expression (yes, no); default no

NOMESSAGE = string tokens Which warning messages to suppress (novalues);
default * i.e. none

Parameter
expression Expression defining the calculation to be performed

4.3 Operations on sets of structures 189

The SETCALCULATE directive allows you to perform calculations with the sets of distinct values
contained in a vector or pointer. The calculation must have a single assignment, setting a pointer,
variate, text or factor to the result of a set calculation involving other compatible structures.
Calculations on pointers must involve only pointers, those on variates and those on texts can
involve factors, while those on factors can involve either variates or texts but not both.

For example, you can form a variate All that contains all the distinct values that occur in
either of a pair of variates x and y using the .OR. operator

SETCALCULATE All = x .OR. y

or all the (distinct) values that occur in both of them using the .AND. operator

SETCALCULATE Both = x .AND. y

The available operators are as follows:

.OR. represents the Boolean "or" operation: for example
x.OR.y produces a vector that contains any item that is in
either x or y

.AND. represents the Boolean "and" operation: for example
x.AND.y produces a vector that contains any item that is
in both x and y

.EOR. represents "either or": for example x.EOR.y produces a
vector that contains any item that is in either x or y but not
both of them

- represent "not", for example x-y produces a vectors that
contains the items that are in x but not in y

+ synonym of .OR.
, synonym of .OR.
* synonym of .AND.

The NULL option can save a scalar whose value is 1 if the calculation generates an null set (i.e.
one that has no members); otherwise the scalar is set to 0. The FREPRESENTATION option
determines whether the values of factors are compared using their levels or their labels; by
default the levels are used. The TOLERANCE option defines the tolerance to be used when
comparing numbers. The default value 10!6 should be suitable, however, unless the variates
contain very small values. If the calculation is operating on pointers, the SUBSTITUTE option
controls whether or not to replace any dummies that they contain by the structures to which they
point. Finally, the NOMESSAGES option allows you to suppress the warning message that
SETCALCULATE produces if one of the data structures in the calculation has no values. Finally,
the NOMESSAGES option allows you to suppress the warning message that SETCALCULATE
produces if one of the data structures in the calculation has no values.

Example 4.3.3 uses SETCALCULATE to make a further investigation of the examination results
in Example 4.3.2.

Example 4.3.3

 25 " All exams passed by any of the students "
 26 SETCALCULATE All_exams = Jim .OR. Kim .OR. Tim
 27 PRINT All_exams; JUSTIFICATION=left

All_exams
Art
English
French
Geography
History
Information technology
Maths
Music
Science

190 4 Calculations and data manipulation

Spanish
Business studies
Resistant materials

 28
 29 " Exams passed by both Jim and Kim "
 30 SETCALCULATE Jim_and_Kim = Jim .AND. Tim
 31 PRINT Jim_and_Kim; JUSTIFICATION=left

Jim_and_Kim
English
French
Geography
History

 32
 33 " Exams passed by Kim but not Tim "
 34 SETCALCULATE Kim_not_Tim = Kim - Tim
 35 PRINT Kim_not_Tim; JUSTIFICATION=left

Kim_not_Tim
Maths
Music
Science
Spanish

 36
 37 " Exams passed by only one student "
 38 SETCALCULATE One_student = (Jim - (Kim .OR. Tim))\
 39 .OR. (Kim - (Jim .OR. Tim))\
 40 .OR. (Tim - (Jim .OR. Kim))
 41 PRINT One_student; JUSTIFICATION=left

One_student
Art
Information technology

4.3.4 All subsets of a set of objects: the SETALLOCATIONS directive

SETALLOCATIONS directive
Runs through all ways of allocating a set of objects to subsets.

Options
NREQUIRED = scalar Number of allocations that are required; default 1
UNIQUE = string token Whether only unique allocations are to be formed,

allowing the reordering of the subsets (yes, no); default
no

NFOUND = scalar Number of allocations that has been found
NPOSSIBLE = scalar Saves the total of allocations that can be formed
GROUPS = factor or pointer Saves the allocations, in a single factor if NREQUIRED =

1, otherwise in a pointer to NFOUND factors
UNITS = variate Supplies numbers for the objects; if unset, the positive

integers 1, 2 ... are used
START = factor Previous allocation; if unset the allocations start as a

partitioning of the objects in the ordering in the UNITS
variate

Parameters
SETSIZE = scalars Number of objects in each subset

4.3 Operations on sets of structures 191

ELEMENTS = variates or pointers Saves the objects allocated to each subset, in a single
variate if NREQUIRED = 1, otherwise in a pointer to
NFOUND variates

The SETALLOCATIONS directive allows you to form all the ways in which a set of objects can
be allocated to subsets. For example, suppose we have 4 objects numbered 1 ... 4 to allocate to
two subsets of size 2. Then, as Example 4.3.4 shows, there are 6 possible ways of forming the
allocations: {1, 2 : 3, 4}, {1, 3 : 2, 4}, {1, 4 : 2, 3}, {2, 3 : 1, 4}, {2, 4 : 1, 3} and {3, 4 : 1, 2}.
(The first subsets are in the variates Sub1[1...6] and the second subsets are in the variates
Sub1[1...6].) If, however, the ordering of the subsets is unimportant, there are only three. For
example {1, 2 : 3, 4} is then the same as {3, 4 : 1, 2}.

Example 4.3.4

 2 SCALAR nreqd
 3 SETALLOCATIONS [NFOUND=Nfound; NREQUIRED=nreqd; GROUPS=Alloc] 2,2;\
 4 ELEMENTS=Sub1,Sub2
 5 PRINT Nfound

 Nfound
 6.000

 6 & Alloc[]

 Alloc[1] Alloc[2] Alloc[3] Alloc[4] Alloc[5] Alloc[6]
 1 1 1 2 2 2
 1 2 2 1 1 2
 2 1 2 1 2 1
 2 2 1 2 1 1

 7 & Sub1[1...6]; DECIMALS=0 & Sub2[1...6]; DECIMALS=0

 Sub1[1] Sub1[2] Sub1[3] Sub1[4] Sub1[5] Sub1[6]
 1 1 1 2 2 3
 2 3 4 3 4 4

 Sub2[1] Sub2[2] Sub2[3] Sub2[4] Sub2[5] Sub2[6]
 3 2 2 1 1 1
 4 4 3 4 3 2

The sizes of the subsets are specified by the SETSIZE parameter, and the UNIQUE option can be
set to yes to indicate that their ordering is unimportant (so only unique allocations are then
formed). The NREQUIRED option indicates how many allocations you want to form (default 1).
If you set NREQUIRED to a scalar containing a missing value, like the scalar nreqd in line 2
above, SETALLOCATIONS will save as many allocations as it can find.

You can use the NPOSSIBLE option to find out how many allocations are possible. The
NFOUND option is useful if you request more allocations than are possible ! it indicates how
many allocations SETALLOCATIONS has actually been able to find.

The GROUPS option saves the allocations in factors (each with a level for each subset). If
NREQUIRED = 1, it saves a single factor. Alternatively, if NREQUIRED is greater than one, it saves
a pointer containing NFOUND factors.

As an alternative, the ELEMENTS parameter allows you to save the allocations in variates. For
example

SETALLOCATIONS 2,2; ELEMENTS=Sub1, Sub2

saves the first subset in variate Sub1 and the second in variate Sub2. Just one allocation has been
formed here as the NREQUIRED option has default 1. If several allocations are formed, ELEMENTS

192 4 Calculations and data manipulation

saves them in pointers to variates. For example

SETALLOCATIONS [NREQUIRED=3] 2,2; ELEMENTS=Sub1, Sub2

saves three allocations: (Sub1[1] : Sub2[1]), (Sub1[2] : Sub2[2]), and (Sub1[3] :
Sub2[3]). By default, the variates will contain the positive integers 1, 2 upwards, but you can
supply a variate containing others using the UNITS option.

By default, the first allocation is a partitioning of the objects in the same ordering as in the
UNITS variate (or numerical order if UNITS is not set). However, if you want to run through the
allocations in order, you can save the current allocation using the GROUPS option, and then use
this as the setting of the START option to get the next one. For example, the following program
runs through all the allocations of seven objects into subsets of size 2, 3 and 2.

SETALLOCATIONS [NPOSSIBLE=Nposs; GROUPS=Alloc] 2,3,2
CALCULATE Ntimes = Nposs - 1
FOR [INDEX=i; NTIMES=Ntimes]
 DUPLICATE Alloc; NEWSTRUCTURE=Start
 SETALLOCATIONS [NREQUIRED=1; GROUPS=Alloc; START=Start]\
 2,3,2
 " use allocation Alloc "
ENDFOR

4.3.5 Locations of a value in a data structure: the GETALLOCATIONS directive

GETLOCATIONS directive
Finds locations of an identifier within a pointer, or a string within a factor or text, or a number
within any numerical data structure.

Options
CASE = string token Whether to treat the case of letters (small or capital) as

significant when searching for a string (significant,
ignored); default sign

TOLERANCE = scalar Tolerance for comparing numbers
SUBSTITUTE = string token Whether to substitute dummies within pointers in DATA

or FIND (yes, no); default no

Parameters
DATA = identifiers Variates, scalars, matrices, tables, factors, texts or

pointers to be searched
FIND = scalars, texts or pointers Numbers, strings or identifiers to be located in DATA
NLOCATIONS = scalars Saves the number of times that FIND occurs in DATA
LOCATIONS = variates or pointers Saves the locations where FIND occurs as one of the

values in DATA, in a variate if DATA is a one-dimensional
data structure like a variate or text, or in a pointer
containing a variate for each dimension if DATA is a
multi-dimensional data structure like a matrix or table

CLASSIFICATION = pointers Saves the classifying factors for a DATA table, in the
same order as the corresponding variates in the
LOCATIONS and LEVELS pointers

LEVELS = pointers Saves the levels of the classifying factors where FIND
occurs as one of the values of a DATA table, the
information is saved in a pointer containing a variate for
each factor

4.4 Operations on vectors 193

The GETLOCATIONS directive finds where a particular item occurs as one of the values stored
by a Genstat data structure. So, for example, it can locate the lines within a text structure that are
equal to a particular string, or it can locate the rows and columns of a matrix that hold a
particular number, or it can locate the numbers of the suffixes where a pointer contains a
particular identifier.

The item to find is specified by the FIND parameter, as a scalar (for a number), or a single-
valued text (for a string of characters), or a single-valued pointer (for the identifier of a data
structure). The data structure to search is supplied by the DATA parameter.

If the FIND pointer contains a dummy, GETLOCATIONS usually looks to see that dummy is
contained in the DATA pointer. Alternatively, if you set option SUBSTITUTE=yes and the FIND
pointer contains a dummy, it is replaced by the data structure to which it points. Then if that data
structure is a dummy, it too is replaced, amd so on until we reach a data structure that is not a
dummy. However, if the original dummy (or any of the dummies to which it points) is unset, the
original dummy is retained. The same substitution is done on any dummies in the DATA pointer.
So, when SUBSTITUTE=yes, GETLOCATIONS matches the structures to which the dummies
(eventually) point, rather than the dummies themselves.

The number of times that FIND occurs in DATA can be saved, in a scalar, by the NLOCATIONS
parameter. The locations where FIND occurs can be saved by the LOCATIONS parameter. These
are saved in a variate if DATA is a one-dimensional structure i.e. a scalar, variate, text, factor or
pointer. If DATA is a rectangular, diagonal or symmetric matrix, they are saved in a pointer
containing two variates. The first saves the row locations, and the second saves the column
locations. If DATA is a table, LOCATIONS saves a pointer with a variate for each factor classifying
the table. Each variate stores the locations within the dimension classified by a particular factor.
So, for example, with a two-way DATA table the first variate stores the row numbers, and the
second variate stores the column numbers. The CLASSIFICATION parameter can save the factors
in the same order as the LOCATIONS variates, in case you are unsure of which factor corresponds
to each dimension. The LEVELS parameter provides an alternative to LOCATIONS for tables,
storing the factor levels corresponding to the positions in each dimension, rather than the
numbers of e.g. the rows or columns. If a DATA table has margins and the number to FIND occurs
in one of them, a missing value will be stored for the corresponding location or level.

Example 4.3.5 uses GETLOCATIONS to find where the number 2 occurs within the variate X.

Example 4.3.5

 2 VARIATE [VALUES=1,3,2,5,7,2,1,4,5,2,8,5,6,1,4,8,2] X
 3 GETLOCATIONS X; FIND=2; LOCATIONS=Loc
 4 PRINT Loc

 Loc
 3
 6
 10
 17

4.4 Operations on vectors

The directives and procedures described below can be used with any of the vector structures that
Genstat supports: variates, factors or texts. More specific facilities are described in 4.5 (variates),
4.6 (factors) and 4.7 (texts).

The RESTRICT directive (4.4.1) allows you to indicate that future statements should operate
only on a subset of the units of the specified vectors. (The precise way in which RESTRICT
affects the operation of other directives is described in the chapters that are devoted to these
directives.) This is a convenient way of saving space when you wish to examine successive
subsets, as there is no need to create a copy of the subset; the vectors themselves are unchanged

194 4 Calculations and data manipulation

and merely have some restriction associated with them. The restriction can be changed or
cancelled at any time by specifying RESTRICT again. This would, for example enable you to
analyse a data variate, taking one subset at a time while building up full variates of residuals and
fitted values that contain the information from all the subset analyses.

Alternatively, if you wish to look at a single subset, the SUBSET procedure (4.4.2) allows you
to create a set of vectors which contain only a subset of the original vectors.

The SORT directive allows you to reorder the units of vectors according to the values of one
or more index vectors (4.4.3). You can use the RANDOMIZE directive, described in 2:4.11.1, to
put units into random order.

The APPEND procedure allows you to append values from a set of vectors (4.4.4) into another
vector of the same type. The STACK procedure (4.4.5) performs a similar operation but appends
complete data sets together rather than individual vectors, while the converse operation of
splitting the vectors back into their original components is provided by the UNSTACK procedure
(4.4.6). Finally, section 4.4.7 describes another way of combining data sets, by adding new
columns instead of new units, which can be done using the JOIN procedure.

4.4.1 Applying a restriction to the units of a vector: the RESTRICT directive

RESTRICT directive
Defines a restricted set of units of vectors for subsequent statements.

No options

Parameters
VECTOR = vectors Vectors to be restricted
CONDITION = expression Logical expression defining the restriction for each

vector; a zero (false) value indicates that the unit
concerned is not in the set

SAVESET = variates List of the units in each restricted set
NULL = scalars Indicator for each restricted set, set to 1 or 0 according

to whether or not it contains no units

The RESTRICT directive defines a restriction on the units of a vector, so that future operations
will involve only a subset of the units. The directives that take account of RESTRICT are listed
at the end of this subsection.

The VECTOR parameter specifies the vector or vectors that are to be restricted. These can be
variates, factors or texts, but all the vectors listed must be of the same length.

The CONDITION parameter specifies a logical expression which indicates which units of the
vectors are in the defined subset. For example,

VARIATE [VALUES=1,2,3,2,3,4,3,4,5] V
RESTRICT V; CONDITION=V.EQ.2

restricts the vector V to those units with the value 2. Genstat evaluates the expression to generate
internally a variate of zeroes and ones, of the same length as the vectors being restricted. A zero
value indicates that the corresponding unit is to be excluded. The logical expression can involve
any vector of the same length as the vector to be restricted. For example, to restrict variate V and
text T to the units with levels 1 or 2 or 4 of factor F, you could use the statement

RESTRICT V,T; CONDITION=(F.LE.2).OR.(F.EQ.4)

When using a text to define a restriction, remember that you cannot use logical operators like
.EQ. and .NE. Instead you should use operators .IN., .NI., .EQS. and .NES. (4.1.2):

TEXT [VALUES=London,Madrid,Nairobi,Ottawa,Paris,\

4.4 Operations on vectors 195

 Quito,Rome] City
& [VALUES=London,Madrid,Paris,Rome] Europe
RESTRICT City; CONDITION=City.IN.Europe

restricts the text City to lines 1, 2, 5 and 7 only.
Of course, the expression may just contain a single variate of the of the same length as the

vectors to be restricted. Again a zero indicates that the corresponding unit in the vector to be
restricted is excluded, while any non-zero entry causes inclusion. Thus the restriction above on
the text City could also be specified by

RESTRICT T; CONDITION=!(1,1,0,0,1,0,1)

The same effect can be achieved by using the EXPAND function (4.2.8):

RESTRICT City; CONDITION=EXPAND(!(1,2,5,7))

Another function that may be useful is RESTRICTION; this allows you to generate a variate of
ones and zeros indicating the units to which a vector is currently restricted (4.2.8). It thus
provides a very convenient way of transferring a restriction from one vector to another. For
example,

RESTRICT Timezone,Distance; CONDITION=RESTRICTION(City)

restricts the vectors Timezone and Distance to the same units as those to which City is
currently restricted.

Finally, if you omit the CONDITION parameter, this removes any restrictions on the vectors
are removed. For example

RESTRICT City,Timezone,Distance

removes any restrictions that have been set on City, Timezone and Distance.
Note that if the vectors used in the CONDITION expression are themselves restricted these

restrictions will remain in force during the current calculation of the condition. A danger here,
therefore, is that you may accidentally end up restricting out all the elements of a vector by using
RESTRICT repeatedly. The safest way to avoid this is to remove the restrictions on any vectors
to be used in the CONDITION expression before you use them to restrict vectors in some different
way.

The SAVESET parameter can be used to save the numbers of the units that are in the restricted
set. These are saved in a variate with one value for each unit retained by the restriction. Thus,
if the example above with variate V were to become

VARIATE [VALUES=1,2,3,2,3,4,3,4,5] V
RESTRICT V; CONDITION=V.EQ.2; SAVESET=S

S would be created as a variate of length 2, with values 2 and 4.
The NULL parameter can specify a list of scalars, one for each vector in the VECTOR list, that

will be set to one if its restricted set contains no units; otherwise it is set to zero. Also, when
NULL set, RESTRICT suppresses the warnings that it normally gives if a restricted set is null.

Not all directives take account of RESTRICT. For those that do, usually only one vector in the
list of parameters has to be restricted for the directive to treat them all as being restricted in the
same way. A fault is reported if any vectors in such a list are restricted in different ways.

A general guideline is that RESTRICT is obeyed by all directives that operate on vectors
except in those statements where explicit identification of elements is possible: for example
EQUATE (4.3.1) and READ (3.1.2), and when qualified identifiers or ELEMENT functions are used
in CALCULATE (4.1.6 and 4.2.8). However, this guideline is not always followed. There is a
section on RESTRICT in the Reference Manual for each command where this is relevant; see Part
2 (for directives) or Part 3 (for procedures).

196 4 Calculations and data manipulation

4.4.2 Forming a subset of the units in a vector: the SUBSET procedure

SUBSET procedure
Forms vectors containing subsets of the values in other vectors (R.W. Payne).

Options
CONDITION = expression Logical expression to define which units are to be

included; no default ! this option must be set
SETLEVELS = string token Whether to reform the levels (and labels) of factors to

exclude those that do not occur in the subset (yes, no);
default no

NULL = scalar Indicator set to 1 or 0 according to whether or not the
subset contains no units

Parameters
OLDVECTOR = vectors Vector from which the subset is to be formed
NEWVECTOR = vectors Vector to store the subsets if none is specified, the

OLDVECTOR is redefined to store the subset

Procedure SUBSET forms vectors containing subsets of the values in other vectors. The subset
is defined by a logical condition which must be specified by the CONDITION option; units with
non-zero and non-missing values (true) for the condition are included in the subset, others are
omitted. Subsets can be formed for factors, texts and variates. Relevant attributes will also be
transferred across to the new structures but, if the subset excludes some of the levels of a factor,
a new reduced set of levels (and labels) can be requested by setting option SETLEVELS=yes.

The NULL option can specify a scalar that will be set to one if the subset contains no units;
otherwise it is set to zero. Also, when NULL set, SUBSET suppresses the fault that it normally
gives if the subset is empty.

The original vectors are specified by the OLDVECTOR parameter and identifiers for the vectors
to contain the subsets are specified by the NEWVECTOR parameter. If NEWVECTOR is not set, the
OLDVECTOR are redefined to store the subsets instead of their original values.

Below we show an example.

Example 4.4.2

 2 VARIATE [VALUES=101...126] X
 3 TEXT [VALUES=a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z] T
 4 FACTOR [LEVELS=26; VALUES=1...26] F
 5 SUBSET [CONDITION=X<111] OLDVECTOR=X,T,F; NEWVECTOR=Xs,Ts,Fs
 6 PRINT Xs,Ts,Fs; FIELD=12

 Xs Ts Fs
 101.0 a 1
 102.0 b 2
 103.0 c 3
 104.0 d 4
 105.0 e 5
 106.0 f 6
 107.0 g 7
 108.0 h 8
 109.0 i 9
 110.0 j 10

4.4 Operations on vectors 197

4.4.3 Sorting vectors into numerical or alphabetical order: the SORT directive

SORT directive
Sorts units of vectors according to an index vector.

Options
INDEX = vectors Variates, texts or factors whose values are to define the

ordering; default is to use the first vector in the
OLDVECTOR list

DIRECTION = string token Order in which to sort (ascending, descending);
default asce

DECIMALS = scalar Number of decimal places to which to round before
sorting numbers; default * i.e. no rounding

Parameters
OLDVECTOR = vectors or pointers Factors, pointers, texts or variates whose values are to

be sorted
NEWVECTOR = vectors or pointers Structure to receive each set of sorted values; if any are

omitted, the values are placed in the corresponding
OLDVECTOR

The SORT directive allows you to reorder the units of a list of vectors or pointers according to
one or more "index" vectors. These can be specified explicitly using the INDEX option. If you
omit the INDEX option, Genstat uses the first vector in the OLDVECTOR list. The DECIMALS
option allows you to define the number of decimal places that are taken into account for an index
variate: for example DECIMALS=0 would round each value to the nearest integer. If you do not
set this, there is no rounding. The DIRECTION option controls whether the ordering is into
ascending or descending order; by default DIRECTION=ascending. If there are ties in the index
vector(s), SORT keeps the units concerned in their original order.

The vectors or pointers whose values are to be sorted are listed by the OLDVECTOR parameter.
The units of each structure are permuted in exactly the same way, into an ordering determined
from the index vectors.

In Example 4.4.3a, the units of the variates Age and Income, the text Name, and the factor Sex
are sorted to put the names into alphabetical order.

Example 4.4.3a

 2 VARIATE [VALUES=18,50,24,49,61,29,32,42,36,40] Age
 3 & [VALUES=3000,17500,5000,20000,7000,4500, \
 4 12000,18000,15500,17500] Income
 5 TEXT [VALUES=Clarke,Innes,Adams,Jones,Day, \
 6 Grey,Edwards,Baker,Hill,Foster] Name
 7 FACTOR [LABELS=!T(male,female); VALUES=2,1,1,1,2,2,1,1,2,1] Sex
 8 PRINT Age,Income,Name,Sex; FIELD=12

 Age Income Name Sex
 18.00 3000 Clarke female
 50.00 17500 Innes male
 24.00 5000 Adams male
 49.00 20000 Jones male
 61.00 7000 Day female
 29.00 4500 Grey female
 32.00 12000 Edwards male
 42.00 18000 Baker male
 36.00 15500 Hill female
 40.00 17500 Foster male

198 4 Calculations and data manipulation

 9 SORT [INDEX=Name] Age,Income,Name,Sex
 10 PRINT Age,Income,Name,Sex; FIELD=12

 Age Income Name Sex
 24.00 5000 Adams male
 42.00 18000 Baker male
 18.00 3000 Clarke female
 61.00 7000 Day female
 32.00 12000 Edwards male
 40.00 17500 Foster male
 29.00 4500 Grey female
 36.00 15500 Hill female
 50.00 17500 Innes male
 49.00 20000 Jones male

Here the index vector Name is also one of the vectors being sorted; indeed if you list it first, then
you can omit the INDEX option:

SORT Name,Age,Income,Sex

However it need not be among the vectors sorted. Moreover, you can specify new vectors to
contain the sorted values, and thus keep the unsorted values in the original vectors. For example

SORT [INDEX=Name] Age,Income,Name,Sex; NEWVECTOR=A,*,N,S

would place the sorted values of Age, Name and Sex into A, N and S; as there is a null entry (*)
corresponding to Income in the NEWVECTOR list, the sorted incomes would replace the original
values of Income. Any undeclared vector in the NEWVECTOR list is declared implicitly to match
the corresponding OLDVECTOR.

We now sort the units into order of descending age.

Example 4.4.3b

 11 SORT [DIRECTION=descending] Age,Income,Name,Sex
 12 PRINT Age,Income,Name,Sex; FIELD=12

 Age Income Name Sex
 61.00 7000 Day female
 50.00 17500 Innes male
 49.00 20000 Jones male
 42.00 18000 Baker male
 40.00 17500 Foster male
 36.00 15500 Hill female
 32.00 12000 Edwards male
 29.00 4500 Grey female
 24.00 5000 Adams male
 18.00 3000 Clarke female

Here there is a variate as index vector. The DIRECTION option can also apply to textual index
vectors, when ascending order is interpreted as alphabetical order. The default for DIRECTION
is to sort into ascending order.

Finally, to illustrate the use of more than one index vector, we sort into increasing order of
incomes, taking alphabetic ordering of the names where two people earn the same amount.

Example 4.4.3c

 13 SORT [INDEX=Income,Name] Age,Income,Name,Sex
 14 PRINT Age,Income,Name,Sex; FIELD=12

 Age Income Name Sex
 18.00 3000 Clarke female
 29.00 4500 Grey female
 24.00 5000 Adams male
 61.00 7000 Day female

4.4 Operations on vectors 199

 32.00 12000 Edwards male
 36.00 15500 Hill female
 40.00 17500 Foster male
 50.00 17500 Innes male
 42.00 18000 Baker male
 49.00 20000 Jones male

4.4.4 Appending values of vectors: the APPEND procedure

APPEND procedure
Appends a list of vectors of the same type (R.W. Payne).

Options
NEWVECTOR = vector Vector to store the appended values; by default uses the

first vector of the OLDVECTOR list
FREPRESENTATION = string token How to match the values of old factors (levels,

labels, ordinals, renumbered); default leve
GROUPS = factor Factor to represent the vector to which each unit

originally belonged

Parameter
OLDVECTOR = vectors Vectors whose values are to be appended together

Procedure APPEND provides a convenient way of putting the values from several vectors (texts,
variates or factors), into a single vector of the same type. The new vector will contain all the
values of the first vector, then all those from the second vector, and so on. The vectors can thus
contain different numbers of values but they must all be of the same type: all variates, all factors
or all texts. The vectors whose values are to be appended together are specified by the
OLDVECTOR parameter, and the NEWVECTOR option supplies the vector to store the appended
values. If NEWVECTOR is omitted, the values are placed into the first OLDVECTOR.

For factors, the FREPRESENTATION option indicates how the levels are to be matched
amongst the old vectors. If this is set to labels and the levels of the old factors are compatible
(that is if each label corresponds to the same level in all the old factors), then the level
definitions are also transferred to the new factor, as shown in line 14 of Example 4.4.4.; if not,
the levels are defined to be the default values 1, 2... and a warning is printed. Similarly, with the
default setting FREPRESENTATION=levels, the labels are retained if they are compatible, but
no warning is printed if they are not. For FREPRESENTATION=ordinals, the levels of all the
factors are taken as the ordinal values 1, 2... (and no labels are defined). Finally, the renumbered
setting assumes that the old factors all have independent sets of levels, and renumbers these from
one upwards for the first factor, from number of levels of the first factor plus one upwards for
the second factor, and so on; the new factor will thus have a different level for every level of the
original factors.

The GROUPS option allows a factor to be formed indicating the OLDVECTOR to which each unit
of the appended vector originally belonged. The levels are labelled by the identifier of the
corresponding OLDVECTOR, as shown in lines 8 and 9 of Example 4.4.4. This factor could then
be used in the CONDITION option of the SUBSET procedure (4.4.2) subsequently to recover the
original vectors.

Example 4.4.4

 2 VARIATE [VALUES=1...3] V1
 3 & [VALUES=11,12] V2
 4 & [VALUES=31] V3

200 4 Calculations and data manipulation

 5 TEXT [VALUES=a,b,c] T1
 6 & [VALUES=k,l] T2
 7 & [VALUES=z] T3
 8 APPEND [NEWVECTOR=Newvar; GROUPS=Vname] V1,V2,V3
 9 APPEND [NEWVECTOR=Newtext; GROUPS=Tname] T1,T2,T3
 10 PRINT Newvar,Vname,Newtext,Tname; FIELD=12

 Newvar Vname Newtext Tname
 1.00 V1 a T1
 2.00 V1 b T1
 3.00 V1 c T1
 11.00 V2 k T2
 12.00 V2 l T2
 31.00 V3 z T3

 11 FACTOR [LEVELS=3; LABELS=!t(a,b,c); VALUES=3,2,1] F1
 12 FACTOR [LEVELS=!(11,12); LABELS=!t(d,e); VALUES=12,11] F2
 13 FACTOR [LEVELS=!(21...23); LABELS=!t(f,g,h); VALUES=21] F3
 14 APPEND [NEWVECTOR=Newfac; FREPRESENTATION=labels] F1,F2,F3
 15 PRINT 2(Newfac); FREPRESENTATION=labels,levels; FIELD=12

 Newfac Newfac
 c 3.000
 b 2.000
 a 1.000
 e 12.000
 d 11.000
 f 21.000

4.4.5 Combining data sets: the STACK procedure

STACK procedure
Combines several data sets by "stacking" the corresponding vectors (R.W. Payne).

Option
DATASET = factor Factor to indicate the data set to which each unit

originally belonged

Parameters
STACKEDVECTOR = variates, factors or texts

New vectors combining the corresponding members of
the data sets specified by parameter V1, or parameters
V1-V100

V1 = pointers, variates, factors, texts or scalars
Pointers defining (all) the components to be stacked into
each STACKEDVECTOR, or contents of the first data set

V2 - V100 = variates, factors, texts or scalars
Data sets 2 - 100

FREPRESENTATION = string token How to match the values of factors (levels, labels,
ordinals, renumbered); default leve

STACK allows you to combine vectors (variates, factors or texts) from several data sets into a
single data set. Each vector in the new data set is formed by "stacking" the corresponding vectors
from the original data sets. So, the new vector first has all the units from the first data set, then
those from the second data set, and so on. Note though, that any restrictions on the vectors
(applied by RESTRICT: 4.4.1) are ignored.

The identifiers of the new vectors are specified by the first parameter, STACKEDVECTOR. The
original vectors of up to 100 data sets can be specified one data set at a time using the subsequent

4.4 Operations on vectors 201

parameters: V1, V2, ... V100. Alternatively, V1 can specify a list of pointers, each one containing
all the vectors that are to be stacked together to form the equivalent STACKEDVECTOR (thus
allowing vectors from more than 100 data sets to be specified). So, these two statements would
be equivalent

STACK [DATASET=Month] Rainfall,Temperature;\
 V1=MarchRain,MarchTemp; V2=AprilRain,AprilTemp

and

STACK [DATASET=Month] Rainfall,Temperature;\
 V1=!p(MarchRain,AprilRain),!p(MarchTemp,AprilTemp)

The vectors in each data set must generally all be of the same length. The exception is that you
can specify a scalar instead of a variate of identical values (the number of values is then deduced
from the lengths of the corresponding vectors of the other data sets). Likewise you can specify
a single-valued text instead of a text with duplicates of that value, and either a scalar or a single-
valued text instead of a factor with the same level or label duplicated throughout.

The FREPRESENTATION option indicates how the levels are to be matched amongst factors.
If this is set to labels and the levels of the original factors are compatible (that is if each label
corresponds to the same level in all the original factors), then the level definitions are transferred
to the new factor; if not, the levels are defined to be the default values 1, 2... and a warning is
printed by the APPEND procedure which is called by STACK. Similarly, with the default setting
levels, the labels are retained if they are compatible, but no warning is printed if they are not.
For the ordinals setting, the levels of all the factors are taken as the ordinal values 1, 2... (and
no labels are defined). Finally, the renumbered setting assumes that the original factors all have
independent sets of levels, and renumbers these from one upwards for the first factor, from
number of levels of the first factor plus one upwards for the second factor, and so on; the new
factor will thus have a different level for every level of the original factors.

The DATASET option allows a factor to be formed indicating the number if the data set to
which each unit of the stacked vectors originally belonged. This factor can be used in the
DATASET parameter of the UNSTACK procedure subsequently to recover the original vectors (see
Example 4.4.6).

The use of STACK is illustrated in Example 4.4.5, which combines some weather observations
from March and April, using the DATASET option to form a factor Month to identify when the
observations were made. Notice, that we need to provide the labels for Month explicitly by the
FACTOR statement in line 21, and that we have used the AFUNITS procedure to form a factor to
identify the day of the month as none was supplied in the original data.

Example 4.4.5

 2 VARIATE [NVALUES=31] MarchRain,MarchTemp
 3 READ MarchRain,MarchTemp

 Identifier Minimum Mean Maximum Values Missing
 MarchRain 0.2000 2.377 4.800 31 0
 MarchTemp 3.000 8.252 12.00 31 0

 11 VARIATE [NVALUES=30] AprilRain,AprilTemp
 12 READ AprilRain,AprilTemp

 Identifier Minimum Mean Maximum Values Missing
 AprilRain 0.1000 2.243 4.600 30 0
 AprilTemp 3.600 7.850 12.50 30 0

 19 STACK [DATASET=Month] Rainfall,Temperature;\
 20 V1=MarchRain,MarchTemp; V2=AprilRain,AprilTemp
 21 FACTOR [MODIFY=yes; LABELS=!t(March,April)] Month
 22 AFUNITS [BLOCKSTRUCTURE=Month] Day
 23 PRINT Month,Day,Rainfall,Temperature; DECIMALS=2(0),2(1)

202 4 Calculations and data manipulation

 Month Day Rainfall Temperature
 March 1 2.7 11.7
 March 2 2.9 7.6
 March 3 1.7 8.0
 March 4 4.2 9.4
 March 5 4.1 3.7
 March 6 0.2 11.4
 March 7 2.5 6.3
 March 8 3.0 11.9
 March 9 0.3 4.5
 March 10 0.6 10.4
 March 11 3.0 11.3
 March 12 0.3 7.3
 March 13 4.2 12.0
 March 14 2.5 10.0
 March 15 3.9 9.0
 March 16 1.2 4.6
 March 17 1.4 5.7
 March 18 3.7 11.8
 March 19 2.9 11.9
 March 20 2.7 10.4
 March 21 0.9 3.0
 March 22 4.7 10.4
 March 23 3.5 6.0
 March 24 3.4 9.2
 March 25 3.3 5.6
 March 26 4.8 7.5
 March 27 1.9 11.7
 March 28 0.9 10.3
 March 29 1.1 3.4
 March 30 0.2 5.7
 March 31 1.0 4.1
 April 1 0.1 6.0
 April 2 3.2 11.0
 April 3 0.6 4.4
 April 4 1.2 11.2
 April 5 1.7 9.1
 April 6 1.4 3.6
 April 7 3.1 8.2
 April 8 3.0 9.7
 April 9 0.9 7.3
 April 10 1.8 3.6
 April 11 3.7 12.5
 April 12 3.9 7.9
 April 13 1.4 9.3
 April 14 4.6 12.2
 April 15 0.8 4.6
 April 16 1.9 5.8
 April 17 3.1 8.8
 April 18 3.6 11.5
 April 19 2.8 8.4
 April 20 2.8 11.7
 April 21 0.3 6.1
 April 22 4.5 4.5
 April 23 4.2 6.2
 April 24 1.6 12.5
 April 25 2.7 5.8
 April 26 2.7 5.5
 April 27 2.7 9.6
 April 28 1.8 5.8
 April 29 0.4 9.1
 April 30 0.8 3.6

4.4 Operations on vectors 203

4.4.6 The UNSTACK procedure

UNSTACK procedure
Splits vectors into individual vectors according to levels of a factor (R.W. Payne).

Options
DATASET = factor Factor identifying the unstacked data sets
IDSTACKED = factors Factors identifying how the units of the unstacked data

sets should be matched
IDUNSTACKED = factors Factors defined to identify these units in the unstacked

vectors
MVINCLUDE = strings Which missing values to include (datasets,

idstacked); default * i.e. none

Parameters
STACKEDVECTOR = variates, factors or texts

Vectors to be unstacked
DATASETINDEX = scalars or texts Level or label of the DATASET factor indicating the

group whose units are to be stored in the
UNSTACKEDVECTOR; default takes the levels of
DATASET one at a time (and then recycling this list to
match the other parameters)

UNSTACKEDVECTOR = variates, factors or texts
Unstacked vectors

UNSTACK allows you to split up (or unstack) vectors into individual vectors. The contents of the
individual vectors are determined by a factor, specified by the DATASET option. In the simplest
case, each original (stacked) vector is split into several new (unstacked) vectors, one for each
level of DATASET. The process assumes that the sets are "replicate" sets of data. For example
DATASET might correspond to days on which identical sampling schemes were followed. In the
most straightforward case, each set contains the same number of observations all stored in an
identical order. However, if the observations are in different orders or if some are absent in some
of the sets, you can use the IDSTACKED option to specify one or more factors to identify the
matching observations within the sets. The IDUNSTACKED option then allows you to save new
factors to indicate where the observations are stored in the new (unstacked) vectors. The
unstacked vectors are all of the same length, and missing values are inserted for absent
observations.

The MVINCLUDE option controls the inclusion of missing values in the unstacked vectors, with
the following settings:

idstacked includes units with missing values for levels of the
IDSTACKED factors that do not occur in the data set
(otherwise these are omitted), and

datasets stacked vectors that correspond to data set indexes that do
not occur in the data are defined and filled with missing
values (otherwise these are left undeclared, and a warning
is given).

By default none of these are included.
There are three parameters. STACKEDVECTOR lists the vectors (variates, factors or texts) that

are to be split up. DATASETINDEX specifies a level of the DATASET factor for each member of
the STACKEDVECTOR list, and UNSTACKEDVECTOR specifies a new vector to store the units of
the STACKEDVECTOR corresponding to that DATASETINDEX. So, for example

204 4 Calculations and data manipulation

UNSTACK [DATASET=Days] 5(Weight,Height);\
 DATASETINDEX=1,2,3,4,5;\
 UNSTACKEDVECTOR=W1,W2,W3,W4,W5,H1,H2,H3,H4,H5

would put the weight measurements made on days 1-5 into W1, W2, W3, W4 and W5, respectively,
and the height measurements into H1, H2, H3, H4 and H5. (The construct 5(Weight,Height)
is equivalent to typing Weight five times and then Day five times, and the DATASETINDEX list
1,2,3,4,5 is repeated twice so that it matches the lengths of the other parameter lists.) This
method of specification means that you are free to list the vectors and levels in whatever order
is most convenient. For example

UNSTACK [DATASET=Days] (Weight,Height)5;\
 DATASETINDEX=2(1,2,3,4,5);\
 UNSTACKEDVECTOR=W1,H1,W2,H2,W3,H3,W4,H4,W5,H5

lists them in group order rather one stacked vector at a time. If DATASETINDEX is not specified,
the levels of DATASET are taken in order one at a time (and recycled if necessary).

Example 4.4.6 follows Example 4.4.5, and splits the stacked vectors back into their individual
components. Notice that the factor Day is used to identify the matching observations. This is not
vital in this example, as the units are in an identical order within each month, but it would be
necessary if the units had been ordered differently in each month.

Example 4.4.6

 24 UNSTACK [DATASET=Month; IDSTACKED=Day; IDUNSTACK=DayOfMonth]\
 25 2(Rainfall,Temperature); DATASETINDEX='March','April';\
 26 UNSTACKEDVECTOR=RainMarch,RainApril,TempMarch,TempApril
 27 PRINT DayOfMonth,RainMarch,RainApril,TempMarch,TempApril;\
 28 DECIMALS=0,4(1)

 DayOfMonth RainMarch RainApril TempMarch TempApril
 1 2.7 0.1 11.7 6.0
 2 2.9 3.2 7.6 11.0
 3 1.7 0.6 8.0 4.4
 4 4.2 1.2 9.4 11.2
 5 4.1 1.7 3.7 9.1
 6 0.2 1.4 11.4 3.6
 7 2.5 3.1 6.3 8.2
 8 3.0 3.0 11.9 9.7
 9 0.3 0.9 4.5 7.3
 10 0.6 1.8 10.4 3.6
 11 3.0 3.7 11.3 12.5
 12 0.3 3.9 7.3 7.9
 13 4.2 1.4 12.0 9.3
 14 2.5 4.6 10.0 12.2
 15 3.9 0.8 9.0 4.6
 16 1.2 1.9 4.6 5.8
 17 1.4 3.1 5.7 8.8
 18 3.7 3.6 11.8 11.5
 19 2.9 2.8 11.9 8.4
 20 2.7 2.8 10.4 11.7
 21 0.9 0.3 3.0 6.1
 22 4.7 4.5 10.4 4.5
 23 3.5 4.2 6.0 6.2
 24 3.4 1.6 9.2 12.5
 25 3.3 2.7 5.6 5.8
 26 4.8 2.7 7.5 5.5
 27 1.9 2.7 11.7 9.6
 28 0.9 1.8 10.3 5.8
 29 1.1 0.4 3.4 9.1
 30 0.2 0.8 5.7 3.6
 31 1.0 * 4.1 *

As with the STACK procedure, any restrictions on the vectors (applied by the RESTRICT
directive) are ignored.

4.4 Operations on vectors 205

4.4.7 Merging data sets: the JOIN procedure

JOIN procedure
Joins or merges two sets of vectors together, based on the values of sets of classifying keys
(C.F. Johnston & D.B. Baird).

Options
NINDEX = scalar Number of index vectors in structures (up to 10); default

1
METHOD = string token Type of join (inner, left, right, full); default

full

REPEATS = string token How to handle repeats of matches (combinations,
single); default sing outputs one row per match

INCLUDE = string token How to handle restrictions on the input vectors (all,
nonrestricted); default all uses all the data rows

SORT = string token Whether NEWVECTORS should be sorted on the index
vectors (ascending, descending, unsorted); default
unsorted keeps the same ordering as the input sets

Parameters
LEFTVECTORS = pointer Pointer to a list of vectors in left set (keys and variables)
RIGHTVECTORS = pointer Pointer to a list of vectors in right set (keys and

variables)
NEWVECTORS = pointer Pointer to a list of output vectors (keys and variables)

JOIN produces a new data set by merging two data sets according to the index (or key) vectors
supplied in each data set. JOIN supports SQL style joins, as well as merges, as implemented in
Genstat for Windows, SAS and SPSS.

The NINDEX option specifies the number of index vectors (up to ten). The original data sets
are supplied by the LEFTVECTORS and RIGHTVECTORS parameters. Each of these is a pointer
containing the NINDEX keys for the data set, followed by any number of extra vectors. The new
data set is saved by the NEWVECTORS parameter, which is a pointer to NINDEX keys followed by
the non-index vectors from the two input sets. So, NEWVECTORS first contains the combined keys
from the left and right sets, then the non-index vectors from the left set, and then the non-index
vectors from the right set. NEWVECTORS need not be declared in advance, but will be declared
automatically if required. The vectors may be variates, factors or texts. Warnings are given if the
types of index vectors in each set do not match, although a factor can be matched with a text.
Attempting to match a text with a factor or variate will result in a fault.

The METHOD option controls the type of join and determines which rows from each input set
will be output. METHOD=inner outputs only those rows where the keys from both sets match.
METHOD=left outputs all rows from the LEFTVECTORS set and only those rows from
RIGHTVECTORS where the keys from both sets match. METHOD=right outputs all rows from the
RIGHTVECTORS set and only those rows from LEFTVECTORS where the keys from both sets
match. METHOD=full outputs all rows from both sets. Where keys do not match, missing values
are inserted into the non-index vectors from the set without that key value.

The REPEATS option determines what happens when both input sets have repeats of the same
matching key values. REPEATS=single outputs one row for each match, so that if there are m
repeats in LEFTVECTORS and n repeats in RIGHTVECTORS, MAX(m,n) rows will be output. This
is the same behaviour as the merge statements of SAS and SPSS and the Merge Spreadsheets
menu of Genstat for Windows. REPEATS=combinations outputs all combinations of the
repeats, giving m × n rows. This is equivalent to an SQL join and may produce very large output

206 4 Calculations and data manipulation

sets.
Setting option INCLUDE=nonrestricted, means that any restrictions on the vectors in each

input set will be taken as defining subsets of the rows. (Otherwise restrictions are ignored.) The
SORT option allows you to sort the new vectors using the key vectors into either ascending or
descending order. By default the vectors are unsorted.

The various methods are illustrated in Example 4.4.7.

Example 4.4.7

 2 VARIATE [NVALUES=7] K11,K12,V11
 3 TEXT [NVALUES=7] T13
 4 READ K11,K12,V11,V12,T13

 Identifier Minimum Mean Maximum Values Missing
 K11 1.000 1.714 3.000 7 0
 K12 1.000 1.571 3.000 7 0
 V11 1.000 4.000 7.000 7 0
 V12 1.900 4.971 7.300 7 0
 T13 7 0

 12 VARIATE [NVALUES=5] K21,K22,V21
 13 READ K21,K22,V21

 Identifier Minimum Mean Maximum Values Missing
 K21 1.000 2.200 5.000 5 0
 K22 1.000 1.600 3.000 5 0
 V21 1.000 3.000 5.000 5 0

 19 PRINT K11,K12,V11,V12,T13; FIELDWIDTH=12; DECIMALS=3(0),1,0

 K11 K12 V11 V12 T13
 1 1 1 6.2 Red
 1 1 2 5.7 Green
 1 1 3 4.5 Blue
 1 2 4 7.3 Red
 2 1 5 4.1 Yellow
 3 2 6 5.1 Blue
 3 3 7 1.9 Black

 20 & K21,K22,V21; DECIMALS=0

 K21 K22 V21
 1 1 1
 1 1 2
 2 1 3
 2 3 4
 5 2 5

 21 JOIN [NINDEX=2; METHOD=inner; REPEATS=single] \
 22 LEFT=!p(K11,K12,V11,V12,T13); RIGHT=!p(K21,K22,V21); \
 23 NEW=!p(K1,K2,V1,V2,T3,V4)
 24 PRINT K1,K2,V1,V2,T3,V4; FIELDWIDTH=8; DECIMALS=0,0,0,1,0,0

 K1 K2 V1 V2 T3 V4
 1 1 1 6.2 Red 1
 1 1 2 5.7 Green 2
 1 1 3 4.5 Blue 2
 2 1 5 4.1 Yellow 3

 25 JOIN [NINDEX=2; METHOD=left; REPEATS=single] \
 26 LEFT=!p(K11,K12,V11,V12,T13); RIGHT=!p(K21,K22,V21); \
 27 NEW=!p(K1,K2,V1,V2,T3,V4)
 28 PRINT K1,K2,V1,V2,T3,V4; FIELDWIDTH=8; DECIMALS=0,0,0,1,0,0

 K1 K2 V1 V2 T3 V4
 1 1 1 6.2 Red 1
 1 1 2 5.7 Green 2
 1 1 3 4.5 Blue 2
 1 2 4 7.3 Red *
 2 1 5 4.1 Yellow 3

4.5 Operations on variates 207

 3 2 6 5.1 Blue *
 3 3 7 1.9 Black *

 29 JOIN [NINDEX=2; METHOD=right; REPEATS=single] \
 30 LEFT=!p(K11,K12,V11,V12,T13); RIGHT=!p(K21,K22,V21); \
 31 NEW=!p(K1,K2,V1,V2,T3,V4)
 32 PRINT K1,K2,V1,V2,T3,V4; FIELDWIDTH=8; DECIMALS=0,0,0,1,0,0

 K1 K2 V1 V2 T3 V4
 1 1 1 6.2 Red 1
 1 1 2 5.7 Green 2
 1 1 3 4.5 Blue 2
 2 1 5 4.1 Yellow 3
 2 3 * * 4
 5 2 * * 5

 33 JOIN [NINDEX=2; METHOD=full; REPEATS=single; SORT=descending] \
 34 LEFT=!p(K11,K12,V11,V12,T13); RIGHT=!p(K21,K22,V21); \
 35 NEW=!p(K1,K2,V1,V2,T3,V4)
 36 PRINT K1,K2,V1,V2,T3,V4; FIELDWIDTH=8; DECIMALS=0,0,0,1,0,0

 K1 K2 V1 V2 T3 V4
 5 2 * * 5
 3 3 7 1.9 Black *
 3 2 6 5.1 Blue *
 2 3 * * 4
 2 1 5 4.1 Yellow 3
 1 2 4 7.3 Red *
 1 1 3 4.5 Blue 2
 1 1 2 5.7 Green 2
 1 1 1 6.2 Red 1

 37 JOIN [NINDEX=2; METHOD=full; REPEATS=combinations; SORT=ascending]\
 38 LEFT=!p(K11,K12,V11,V12,T13); RIGHT=!p(K21,K22,V21); \
 39 NEW=!p(K1,K2,V1,V2,T3,V4)
 40 PRINT K1,K2,V1,V2,T3,V4; FIELDWIDTH=8; DECIMALS=0,0,0,1,0,0

 K1 K2 V1 V2 T3 V4
 1 1 1 6.2 Red 1
 1 1 1 6.2 Red 2
 1 1 2 5.7 Green 1
 1 1 2 5.7 Green 2
 1 1 3 4.5 Blue 1
 1 1 3 4.5 Blue 2
 1 2 4 7.3 Red *
 2 1 5 4.1 Yellow 3
 2 3 * * 4
 3 2 6 5.1 Blue *
 3 3 7 1.9 Black *
 5 2 * * 5

4.5 Operations on variates

Most of the facilities described earlier in this chapter can be used with variates: CALCULATE to
perform calculations on their values (4.1.2), RESTRICT to operate only on a subset of their units
(4.4.1), SORT to reorder their units (4.4.3), and EQUATE to transfer values between variates and
other numerical structures (4.3.1). This section describes directives that only produce variates.
The INTERPOLATE directive (4.5.1) allows you to interpolate values at intermediate points of
an observed sequence, and MONOTONIC (4.5.2) performs monotonic regressions. The
TX2VARIATE forms a variate from a text, assuming that each of its lines contains a single
number or a date (4.5.3).

Procedures for operating on variates include the following: DAYLENGTH to calculate
daylengths at a given period of the year HEATUNITS to calculate accumulated heat units of a
temperature dependent process; ORTHPOLYNOMIAL to calculate orthogonal polynomials from
the values in a variate; SPLINE to form basis functions for M-, B- or I- splines; STANDARDIZE
to standardize variates to have mean zero and variance one; VINTERPOLATE to perform linear

208 4 Calculations and data manipulation

& inverse linear interpolation between variates; and VTABLE to form a variate and set of
classifying factors from a table.

4.5.1 Interpolation

INTERPOLATE directive
Interpolates values at intermediate points.

Options
CURVE = string token Type of curve to be fitted to calculate the interpolated

value (linear, cubic); default line
METHOD = string token Type of interpolation required (interval, value,

missing): for METHOD=valu, values are interpolated
for each point in the NEWINTERVAL variate and stored in
the NEWVALUE variate; for METHOD=inte, points are
estimated in the NEWINTERVAL variate for the
observations in the NEWVALUE variate; while for
METHOD=miss, the NEWVALUE and NEWINTERVAL lists
are irrelevant, INTERPOLATE now interpolates for
missing values in the OLDVALUE and OLDINTERVAL
variates (except those missing in both variates); default
inte

Parameters
OLDVALUES = variates Observations from which interpolation is to be done
NEWVALUES = variates Results of each interpolation
OLDINTERVALS = variates Points at which each set of OLDVALUES was observed
NEWINTERVALS = variates Points for each set of NEWVALUES

If you have a set of pairs of observations (x, y), you can use interpolation to estimate either a
value y for a value x that need not be in the set, or a value x for a value y that likewise need not
be in the set. The simplest way to interpolate is by joining successive pairs of observations by
straight lines and reading off the appropriate values in between: then the two cases are called
linear interpolation (obtaining y from x) and inverse linear interpolation (obtaining x from y).
Genstat can alternatively join the points by cubic functions instead of straight lines. Genstat uses
the term values to describe the set of y-values and intervals for the set of x-values, no matter
whether you are doing direct or inverse interpolation.

Genstat does the interpolation for each parallel set of variates in the parameter lists. Each
variate in the OLDINTERVALS list specifies the x-values of a set of observed points; the
corresponding variate in the OLDVALUES list specifies the corresponding y-values. The variates
in the NEWINTERVALS and NEWVALUES lists are for the x-values and y-values of the interpolated
points.

If you set METHOD=value, Genstat does ordinary interpolation, and you use the
NEWINTERVALS variate to specify the x-values for which you require interpolated y-values.
Genstat calculates the y-values and stores them in the corresponding NEWVALUES variate; this
variate will be declared implicitly if you have not declared it already.

For the interpolation to take place, the x-values must be in either monotonically increasing or
decreasing order; thus, if necessary, Genstat takes a copy of the x-values and y-values and sorts
these (in parallel) to put the x-values into ascending order.

In Example 4.5.1a, wheat plants have been sampled on five occasions and their growth stage
(Zadoks) assessed. The program interpolates values, which it stores in variate Nzad, to estimate

4.5 Operations on variates 209

the growth stage that the plant has reached after 50, 100 and 150 days.

Example 4.5.1a

 2 VARIATE [NVALUES=6] Zadoks,Days; \
 3 VALUES=!(0,15,23,35,65,95),!(0,50,84,119,147,182)
 4 & [NVALUES=3] Nzadoks,Ndays; VALUES=!(25,50,75),!(50,100,150)
 5 INTERPOLATE [METHOD=value] Zadoks; NEWVALUES=Nzad; \
 6 OLDINTERVALS=Days; NEWINTERVALS=Ndays
 7 PRINT Ndays,Nzad; FIELDWIDTH=8; DECIMALS=2

 Ndays Nzad
 50.00 15.00
 100.00 28.49
 150.00 67.57

Similarly, if you set METHOD=interval, Genstat does inverse interpolation. You must then
specify the y-values in the NEWVALUES variate. Genstat calculates the x-values and stores them
in the corresponding NEWINTERVALS variate, which will be declared implicitly if necessary.
Again the x-values must be in monotonically increasing or decreasing order, and Genstat will
produce a sorted copy if necessary. Inverse interpolation is the default.

Example 4.5.1b uses the same data as above, but does inverse linear interpolation to estimate
how long after planting we have to wait for the plant to reach growth stages 25, 50 and 75
Zadoks.

Example 4.5.1b

 8 INTERPOLATE [METHOD=interval] Zadoks; NEWVALUES=Nzadoks; \
 9 OLDINTERVALS=Days; NEWINTERVALS=Nd
 10 PRINT Nzadoks,Nd; FIELDWIDTH=8; DECIMALS=2

 Nzadoks Nd
 25.00 89.83
 50.00 133.00
 75.00 158.67

If you set METHOD=missing, Genstat ignores the NEWVALUES and NEWINTERVALS parameters;
it estimates values for x or y when the other is missing, placing the results in the previously
missing position of the OLDVALUES or the OLDINTERVALS variates. Ordinary interpolation is
used when the missing value is in y, and inverse interpolation when it is in x. If both the x-value
and the y-value are missing for a particular unit, no values can be interpolated for it, and it
remains missing. To do linear interpolation requires that both the x-value and the y-value should
be non-missing for the point on each side of the unit with the missing value. For cubic
interpolation, there must be two non-missing points on each side of the unit. In Example 4.5.1c
the missing value in Yval at unit 2 is replaced with the interpolated value 2.85, while the one
at unit 4 remains missing because the x-value is missing there too. The missing value at unit 9
of Xint is replaced by 5.96, while the one at unit 4 again stays missing. Notice also that Genstat
ignores the NEWINTERVALS setting Xnewint.

Example 4.5.1c

 2 VARIATE [NVALUES=9] Yval,Xint; \
 3 VALUES=!(2.5,*,3.2,*,4.3,4.8,7.2,7.3,8.7),!(1,2,3,*,4,5,*,6,7)
 4 PRINT Xint,Yval; FIELDWIDTH=8; DECIMALS=2

 Xint Yval
 1.00 2.50
 2.00 *

210 4 Calculations and data manipulation

 3.00 3.20
 * *
 4.00 4.30
 5.00 4.80
 * 7.20
 6.00 7.30
 7.00 8.70

 5 INTERPOLATE [METHOD=missing] OLDVALUE=Yval; OLDINTERVAL=Xint ;\
 6 NEWINTERVAL=Xnewint
 7 PRINT Xint,Yval; FIELDWIDTH=8; DECIMALS=2

 Xint Yval
 1.00 2.50
 2.00 2.85
 3.00 3.20
 * *
 4.00 4.30
 5.00 4.80
 5.96 7.20
 6.00 7.30
 7.00 8.70

The CURVE option has two settings, linear and cubic. By default, CURVE=linear, and
successive pairs of observations are connected by straight-line segments for linear, or inverse-
linear, interpolation. For cubic interpolation you set CURVE=cubic; there must then be at least
four values in each of the OLDVALUES and OLDINTERVALS variates.

4.5.2 Monotonic regression

MONOTONIC directive
Fits an increasing monotonic regression of y on x.

No options

Parameters
Y = variates Y-values of the data points
X = variates X-values of the data points; default is to assume that the

x-values are monotonically increasing
RESIDUALS = variates Variate to save the residuals from each fit
FITTEDVALUES = variates Variate to save the fitted values from each fit

Monotonic regression plays a key role in non-metric multidimensional scaling, which is available
in Genstat via the MDS directive (2:6.12). However, it can be useful in its own right, so the
method has been made accessible by the MONOTONIC directive. A monotonic regression through
a set of points is simply the line that best fits the points subject to the constraint that it never
decreases: of course the line need not be straight, in fact it rarely will be. If you need a
monotonically decreasing line, you can simply subtract all the y-values from their maximum,
find the monotonically increasing regression, and then back-transform the data and fitted line,
and change the sign of the residuals.

The MONOTONIC directive has no options. It has four parameters: Y to specify the y-values, X
for the x-values, RESIDUALS to save the residuals, and FITTEDVALUES to save the fitted values.
The x-values need not be supplied, in which case the directive assumes that the y-values are in
increasing order of the x-values. In common with the other regression directives, the variates to
save the residuals and fitted values need not be declared in advance.

In Example 4.5.2, MONOTONIC is first used with the data in their original order. The fitted
values are saved and plotted as a line, with the data. You can see what happens with the

4.5 Operations on variates 211

coincident x-values of 4; notice also the horizontal fitted lines that occur when the y-values
decrease. Once the data are sorted into increasing order of X, at line 7, there is no need to specify
the X parameter when the MONOTONIC directive is used at line 8; as shown by the PRINT
statement at line 9, the fitted values remain the same.

Example 4.5.2

 2 VARIATE [VALUES=2,6,4,4, 9,1,12,15,13,18] X
 3 & [VALUES=1,5,3,6,10,0,11,14,16,18] Y
 4 MONOTONIC Y=Y; X=X; FITTED=Fvals
 5 LPGRAPH [TITLE='Monotonic regression'; NROWS=25; NCOLUMNS=61] \
 6 Fvals,Y; X; METHOD=line,point

 Monotonic regression
 -+---------+---------+---------+---------+---------+---------+-
 20.0 I I
 I I
 I *I
 I ..' I
 I .' I
 I * .'' I
 15.0 I ' I
 I ' * I
 I ' I
 I . I
 I ' I
 I '* I
 10.0 I *'''' I
 I .' I
 I .' I
 I .' I
 I .' I
 I *.......' I
 5.0 I . * I
 I . I
 I * I
 I ..' I
 I .'' I
 I .* I
 0.0 I *' I
 -+---------+---------+---------+---------+---------+---------+-
 0.0 3.0 6.0 9.0 12.0 15.0 18.0

 7 SORT X,Y
 8 MONOTONIC Y; RESIDUALS=Res; FITTED=Fvals
 9 PRINT X,Y,Fvals,Res

 X Y Fvals Res
 1.000 0.000 0.000 0.0000
 2.000 1.000 1.000 0.0000
 4.000 3.000 3.000 0.0000
 4.000 6.000 5.500 0.5000
 6.000 5.000 5.500 -0.5000
 9.000 10.000 10.000 0.0000
 12.000 11.000 11.000 0.0000
 13.000 16.000 15.000 1.0000
 15.000 14.000 15.000 -1.0000
 18.000 18.000 18.000 0.0000

212 4 Calculations and data manipulation

4.5.3 Converting a text into a variate

TX2VARIATE directive
Converts text structures to variates.

Options
PRINT = string token Controls printed output (conversions) ; default * (i.e.

none)
NONNUMERIC = string token How to treat non-numeric values (bestmatch,

missing) default miss
YEAR = scalar Year to use when calculating the day within year for the

date formats that specify only months and days; default
is to assume that this is any year that is not a leap year

REDEFINE = string token Whether to allow a structure in the VARIATE list that
has already been declared (e.g. as a text) to be redefined
(yes, no); default no

Parameters
TEXT = texts Text structures to convert
VARIATE = variates Variate for each text, containing the numbers in each of

its lines
DREPRESENTATION = scalars Format to use for dates and times (stored in numerical

structures)
MISSING = texts Strings used to represent missing values in each text;

default '*'
STATUS = variates Code to indicate whether the number in each unit was

read successfully (1), or with conversions (2), or
unsuccessfully (0)

The TX2VARIATE directive forms variates from text structures. The texts are specified by the
TEXT parameter, and are assumed to contain a single number in each of their strings. The variates
are specified by the VARIATE parameter.

The DREPRESENTATION parameter specifies the format that has been used for texts that
contain dates. For details, see 2.1.5. With the formats that specify only months and days,
TX2VARIATE gives the number of the day within the year. However, it needs to know whether
or not the year is a leap year. You can use the YEAR option to supply the year. If this is not set,
TX2VARIATE assumes that it is not a leap year.

 The MISSING parameter specifies a text for each text and variate, containing the string or
strings that should be treated as missing values in the conversion; by default this is the string
containing a single asterisk. Blank and null lines are always treated as missing.

By default, any non-numeric strings generate a missing value in the variate. However, you can
set option NONNUMERIC=bestmatch to ignore commas, and to allow for the common typing
errors that the letters i or l may have been typed instead of i, or that the letters o or O may have
been typed instead of 0. You can set option PRINT=conversions to print a list of the values
that have been converted. Also, the STATUS parameter can save a variate with a code for each
number to show whether it was read successfully with no conversions (1), or only with
conversions (2), or whether it could not be read successfully (0).

If you set option REDEFINE=yes, any data structure specified by the VARIATE parameter that
is not a variate will be redefined (to be a variate). Also, VARIATE then takes the setting of the
TEXT parameter as its default, i.e. it will redefine that text to be a variate.

This is illustrated in Example 4.5.3. Lines 2-6 show the various conversions, and lines 7-10

4.6 Operations on factors 213

show how to use the DREPRESENTATION parameter to read dates.

Example 4.5.3

 2 TEXT [VALUES=' 0.01',' -1','2.2','3.3E1',il,'-IO',O,'1,001',\
 3 ' ','*','notnumber!','3.3D2','1.23E-4','-1.23E'] Textvals
 4 TX2VARIATE [PRINT=conversions; NONNUMERIC=bestmatch] Textvals;\
 5 VARIATE=Realvals; Status=Status

Conversions

 String Number
 il 11.0
 -IO -10.0
 O 0.0
 1,001 1001.0
 notnumber! *
 -1.23E -1.2

 6 PRINT Textvals,Realvals,Status; DECIMALS=*,6,0

 Textvals Realvals Status
 0.01 0.010000 1
 -1 -1.000000 1
 2.2 2.200000 1
 3.3E1 33.000000 1
 il 11.000000 2
 -IO -10.000000 2
 O 0.000000 2
 1,001 1001.000000 2
 * 1
 * * 1
notnumber! * 0
 3.3D2 330.000000 1
 1.23E-4 0.000123 1
 -1.23E -1.230000 2

 7 TEXT [VALUES='1/12/01','27/1/02','1/1/03','28/7/04','16/11/08',\
 8 '4/7/14','11/5/15','21/10/16','12/3/17','3/4/17'] Tdate
 9 TX2VARIATE Tdate; VARIATE=Vdate; DREPRESENTATION=3
 10 PRINT Tdate,Vdate,Vdate; DREPRESENTATION=0,0,3

 Tdate Vdate Vdate
 1/12/01 146738 1/12/01
 27/1/02 146795 27/1/02
 1/1/03 147134 1/1/03
 28/7/04 147708 28/7/04
16/11/08 149280 16/11/08
 4/7/14 151336 4/7/14
 11/5/15 151647 11/5/15
21/10/16 152176 21/10/16
 12/3/17 152318 12/3/17
 3/4/17 152340 3/4/17

4.6 Operations on factors

You use factors in Genstat to indicate groupings of the units of vectors. You would need to do
this, for example, in the analysis of designed experiments (Part 2 Chapter 4), or when forming
tabular summaries of group totals, means, maxima, minima, and so on (4.11.1).

This section describes the GROUPS directive, which enables you to construct a factor from a
variate or a text. The groups can cover every distinct value of the variate or text, or ranges of
values; you can specify these ranges yourself, or have them defined automatically. Genstat can
define the levels and labels vectors from either the minimum, the maximum or the median of the
units allocated to each group.

Other facilities, for forming factors in experimental designs, are described elsewhere (2:4.9

214 4 Calculations and data manipulation

and 2:4.13). The GENERATE directive (2:4.13.1) allows you to define factor values in a
systematic order. You can also use it to form values of treatment factors, using the design-key
method, or to define values for the pseudo-factors required to specify partially balanced
experimental designs. Other facilities for generating factors in experimental designs are provided
by the procedures in the Design module of the procedure library (2:4.9). The RANDOMIZE
directive (2:4.11.1) can put the units of factors and variates into random order; this
randomization can take account of the block structure of a designed experiment, if required.

The use of factors within expressions, and in CALCULATE in particular, is described in 4.1.1
and 4.1.2. This allows you to form a variate from a factor, either taking its declared levels or by
taking an alternative set of levels using the NEWLEVELS function (4.2.1). CALCULATE also allows
you to assign values of a variate to a factor, provided you have already declared the factor with
levels including all the values taken by the variate. But a more satisfactory method is to use the
GROUPS directive, already mentioned.

Procedure for manipulating factors include:
FACAMEND permutes the levels and labels of a factor

FACCOMBINATIONS forms a factor to indicate observations with identical
values of a set of variates, texts or factors

FACDIVIDE represents a factor by factorial combinations of a set of
factors

FACEXCLUDEUNUSED redefines the levels and labels of a factor to exclude those
that are unused

FACLEVSTANDARDIZE redefines a list of factors so that they have the same levels
or labels

FACPRODUCT forms a factor with a level for every combination of other
factors

FACSORT sorts the levels of a factor according to an index vector
FACUNIQUE redefines a factor so that its levels and labels are unique
QFACTOR allows the user to decide whether to convert texts or

variates to factors

4.6.1 Forming factors from variates and texts: the GROUPS directive

GROUPS directive
Forms a factor (or grouping variable) from a variate or text, together with the set of distinct
values that occur.

Options
PRINT = string token Printed output required (summary); default * i.e. no

printing
NGROUPS = scalar Number of groups to form when LIMITS is not

specified; if NGROUPS is also unspecified, each distinct
value (allowing for rounding) defines a group; default *

LMETHOD = string token Defines how to form the levels variate if the setting of
the VECTOR parameter is a variate, or the labels if it is a
text; if LMETHOD=* no levels/labels are formed, and
existing levels (for a variate VECTOR) or labels (for a
text VECTOR) of an already declared FACTOR will be
retained if still appropriate (given, minimum, median,
maximum, limit); default medi

DECIMALS = scalar Number of decimal places to which to round the

4.6 Operations on factors 215

VECTOR before forming the groups; default * i.e. no
rounding

BOUNDARIES = string token Whether to interpret the LIMITS as upper or lower
boundaries (upper, lower); default lowe

REDEFINE = string token Whether to allow a structure in the FACTOR list that has
already been declared (e.g. as a variate or text) to be
redefined (yes, no); default no

CASE = string token Whether the case of letters (small and capital) in text
should be regarded as significant or ignored
(significant, ignored); default sign

LDIRECTION = string token How to define the levels (for a variate VECTOR) or labels
(for a text VECTOR) when LMETHOD = minimum,
median or maximum (ascending, given); default
asce

OMITUNBOUNDED = string token Whether to omit the (unbounded) group that occurs
below the lowest limit when BOUNDARIES=lower, or
above the final limit when BOUNDARIES=upper (yes,
no); default no

Parameters
VECTOR = variates or texts Vectors whose values are to define the groups
FACTOR = factors Structures to be defined as factors to save details of the

groups; default * will, if REDEFINE=yes, cause the
corresponding VECTOR itself to be defined as a factor

LIMITS = variates or texts Limits to define the groups
LEVELS = variates Variate to define the levels of each FACTOR if

LMETHOD=give, or to save them otherwise
LABELS = texts Text to define the labels of each FACTOR if

LMETHOD=give, or to save them otherwise

The GROUPS directive is designed to form factors from variates or texts. The variates and texts
are specified by the VECTOR parameter, and the factors by the FACTOR parameter. With the
simplest use of GROUPS you need specify no more than that, and each factor is defined to have
a level for every distinct value of its corresponding variate or text. You need not have declared
the factor already; it will be declared automatically if necessary.

Alternatively, you can divide the values of the variate or text into groups to be represented by
the factor. You can use the LIMITS parameter to specify the range of values for each group. The
limits vector is a text or a variate, depending whether the factor is being defined from a variate
or a text; its values specify boundaries for the ranges. The BOUNDARIES option controls whether
these are regarded as upper or lower boundaries; by default BOUNDARIES=lower. In Example
4.6.1 below, to divide the ages into the ranges 0-19, 20-29, 30-39, 40-49, 50-59 and over 60, the
limits vector contains the five boundaries 20, 30, 40, 50 and 60. You can also ask GROUPS itself
to set limits that will partition the units into groups of nearly equal size. You should then specify
the NGROUPS option and leave the LIMITS parameter unset. (If you give both LIMITS and
NGROUPS, then NGROUPS is ignored.)

If you are defining a factor from a variate VECTOR, the LMETHOD option controls how the
levels vector is formed, with the following settings:

median forms the levels from the median of the units in each group
(default);

minimum forms them from the minimum value in each group;
maximum form them from the maximum value;

216 4 Calculations and data manipulation

limit uses the values in the LIMITS variate;
given uses the values supplied (in a variate) by the LEVELS

parameter.
With any of the settings median, minumum, maximum or limit, you can use the LEVELS
parameter to specify a variate to store the levels that are produced; this can be done even if no
factor is being formed, that is if no identifier is supplied for the factor by the FACTOR list.
Finally, if you set LMETHOD=*, no levels are formed and any existing levels of the factor will be
retained if they are still appropriate; otherwise the levels will be the integers 1 upwards. With
any of these settings, you can use the LABELS parameter to specify labels for the factor.

Similar rules apply if you have a text VECTOR except that LMETHOD then governs how the
labels are defined for the factor, and LEVELS can be used to specify its levels. The CASE option
controls whether the case of the letters in the text strings is important. So, for example, if you
set CASE=ignored the strings 'April' and 'april' will be put into the same group. With the
default, CASE=significant, they would form different groups.

When the levels are formed from a LIMITS variate, there will be one group with no
corresponding limit. If BOUNDARIES=upper, the extra group is above the final limit. The level
assigned to that group is then the value that is the same distance above the final limit as the
distance between the final limit and the last but one limit. If BOUNDARIES=lower, the extra
group is below the first limit, and its level is given the value that is the same distance below the
first limit as the distance between the first and second limits. The situation is similar with a
LIMITS text, but the label for the extra group is always the single-character string '-'. If you
would prefer to have an exact correspondence between the level and the limits, you can set
option OMITUNBOUNDED=yes to omit the "unbounded" extra group. Any units beyond the final
upper limit, or below the initial lower limit, are then given missing values.

The LDIRECTION option controls the ordering of the levels (for a variate VECTOR) or the
labels (for a text VECTOR) when LMETHOD is set to median, minimum or maximum. By default,
they are sorted into ascending order, but you can set LDIRECTION=given to take them in the
order in which they occur in the VECTOR. This may be useful, for example, if a text vector
contains the names of days or of months in calendar order.

You can set the DECIMALS option to request that the values of a variate VECTOR be rounded
to a particular number of decimal places before the groups are formed: for example DECIMALS=0
would round each value to the nearest integer.

You can redefine a VECTOR structure as a factor by setting option REDEFINE=yes and
omitting to specify any corresponding identifier in the FACTOR list. This can be very useful on
occasions when you are unable to define in advance which levels will occur in a set of data. In
line 14 of Example 4.6.1, the text National (which contains details of the nationality of a list
of people) is redefined as a factor so that we can produce a table with the mean ages of the
people with each of the nationalities represented in the data.

Example 4.6.1

 2 VARIATE Age
 3 TEXT National
 4 READ National,Age

 Identifier Minimum Mean Maximum Values Missing
 National 16 0
 Age 5.000 32.94 63.00 16 0

 11 GROUPS Age; FACTOR=Ageclass; LIMITS=!(20,30,40,50,60); \
 12 LABELS=!t('under 20','20-9','30-9','40-9','50-9','over 60')
 13 PRINT Age,Ageclass,National

 Age Ageclass National
 32.00 30-9 British
 29.00 20-9 British

4.7 Operations on text 217

 7.00 under 20 British
 5.00 under 20 British
 51.00 50-9 French
 49.00 40-9 French
 22.00 20-9 British
 24.00 20-9 British
 35.00 30-9 British
 41.00 40-9 British
 25.00 20-9 French
 24.00 20-9 French
 33.00 30-9 Italian
 29.00 20-9 Italian
 63.00 over 60 British
 58.00 50-9 British

 14 GROUPS [REDEFINE=yes] National
 15 TABULATE [CLASSIFICATION=National] Age; MEAN=MeanAge
 16 PRINT MeanAge

 MeanAge
 National
 British 31.60
 French 37.25
 Italian 31.00

GROUPS takes account of any restrictions (4.4.1) on variates or texts in the VECTOR list, and will
give missing values to the excluded units. If more than one vector is restricted, then each such
restriction must be the same.

4.7 Operations on text

A text structure (2.3.2) is a vector each line of which contains a string of characters. So you
might use it to label the units of other vectors, or to contain a complete piece of description.

The first part of this section describes the CONCATENATE directive (4.7.1) which allows you
to concatenate several texts together side by side so that each line of the new text is formed by
joining together a series of lines, one from each of the original texts. You can omit characters
at the beginning and end of the component lines; so this also gives you a way of truncating the
lines of a text. You can also change letters from upper to lower case, and vice versa.

Another form of concatenation (often known as appending) places whole texts one after
another. You can do this with the APPEND and STACK procedures (4.4.4 and 4.4.5) or with the
EQUATE directive (4.3.1) which also allows you to omit some of the lines.

The TXCONSTRUCT directive (4.7.2) is a more powerful (but more complicated) alternative
to CONCATENATE, which allows you to concatenate textual representations of the values of
variates, factors, scalars and pointers as well as lines of texts. You can again change case, and
omit characters at the beginning and end of the component lines. You can also reverse the
contents of the lines. Finally, you can choose to append the values from the texts, variates,
factors, scalars or pointers, rather than concatenating them. It thus provides a very general set
of facilities for text manipulation.

The TXPOSITION directive (4.7.3) allows you to search to see where a string of characters
occurs within each of the lines of a text. Alternatively, you can use the TXFIND directive (4.7.4)
to look for a subtext within a text, ignoring the line breaks (i.e. regarding them as space
characters).

The TXREPLACE directive (4.7.5) replaces strings or subtexts within a text. To analyse a text
in more detail, you can use the TXBREAK directive (4.7.6) to break it up into individual words.
Alternatively, the TXSPLIT procedure (4.7.7) splits a text into individual texts, at positions on
each line marked by separator character(s). The TXPROGRESSION procedure allows you to form
a text from a progression of character strings (4.7.9).

The remaining parts of the section describe the EDIT directive (4.7.10). This is a sub-system

218 4 Calculations and data manipulation

within Genstat; it has its own command syntax, allowing you to delete and insert series of
characters, or to substitute one series for another, or to delete and insert complete lines, and so
on.

Some general directives, described elsewhere, are also useful for manipulating text. The SORT
directive allows you to sort the units of a text into alphabetical order or to form a factor from a
text (4.4.3). You can test for equality and inequality of the lines of texts in the expressions that
occur in CALCULATE (4.1), in RESTRICT (4.4.1) and in the directives for program control (5.2).
CALCULATE also allows you to determine the number of characters in each line, and to find the
positions of strings within lines (4.2.7). SETCALCULATE (4.3.3) can do Boolean arithmetic on
the contents of text structures, and SETRELATE can compare their distinct sets of values. READ
can take its input from a text (3.1.9), and you can direct output from the PRINT directive (3.2)
into a text. PRINT thus allows you to place numerical values into a text. An alternative, for
variates, is to use TXCONSTRUCT, which will also determine an appropriate number of decimal
places.

4.7.1 Text concatenation: the CONCATENATE directive

CONCATENATE directive
Concatenates and truncates lines (units) of text structures; allows the case of letters to be
changed.

Options
NEWTEXT = text Text to hold the concatenated/truncated lines; default is

the first OLDTEXT vector
CASE = string token Case to use for letters (given, lower, upper,

changed); default give leaves the case of each letter as
given in the original string

Parameters
OLDTEXT = texts Texts to be concatenated
WIDTH = scalars or variates Number of characters to take from the lines of each text,

a negative value takes all the (unskipped) characters
other than trailing spaces; if * or omitted, all the
(unskipped) characters are taken

SKIP = scalars or variates Number of characters to skip at the left-hand side of the
lines of each text, a negative value skips all initial
spaces; if * or omitted, no characters are skipped

The CONCATENATE directive joins lines of several texts together, side by side, to form a new
text. You can specify the identifier of this text by the NEWTEXT option, in which case it need not
already have been declared as a text. If you do not specify NEWTEXT, Genstat places the new
textual values into the first text in the OLDTEXT parameter list (replacing its existing values). The
texts to be concatenated are specified by OLDTEXT. They should all contain the same number of
lines, unless you want to insert an identical series of characters into every line of the new text.
A series of characters that is to be duplicated within every line can be specified either as a string,
or in a single-valued text. In line 8 of Example 4.7.1a, the string ', ' inserts a comma and a
space into every line of the NEWTEXT Fullname.

4.7 Operations on text 219

Example 4.7.1a

 2 TEXT [VALUES='1. Adams','2. Baker','3. Clarke','4. Day', \
 3 '5. Edwards','6. Field','7. Good','8. Hall',\
 4 '9. Irving','10. Jones'] Name
 5 TEXT [VALUES='B.J.','J.S.','K.R.','A.T.','R.S.', \
 6 'T.W.','S.I.','D.M.','H.M.','C.C.'] Initials
 7 " Form text Fullname containing the number, name and initials."
 8 CONCATENATE [NEWTEXT=Fullname] OLDTEXT=Name,', ',Initials
 9 PRINT Fullname; JUSTIFICATION=left

Fullname
1. Adams, B.J.
2. Baker, J.S.
3. Clarke, K.R.
4. Day, A.T.
5. Edwards, R.S.
6. Field, T.W.
7. Good, S.I.
8. Hall, D.M.
9. Irving, H.M.
10. Jones, C.C.

 10 " Now reform Fullname to contain just the first initial and the name."
 11 CONCATENATE [NEWTEXT=Fullname] OLDTEXT=Initials,Name; \
 12 WIDTH=2,*; SKIP=*,!(9(2),3)
 13 PRINT Fullname; JUSTIFICATION=left

Fullname
B. Adams
J. Baker
K. Clarke
A. Day
R. Edwards
T. Field
S. Good
D. Hall
H. Irving
C. Jones

If you specify a variate in the SKIP list, it must contain a value for each line of the text in the
OLDTEXT list; the value indicates the number of characters to be omitted at the beginning of that
line. Alternatively, you can give a scalar if the same number of characters is to be omitted at the
start of every line. In line 12 of the example, the null entry for Initials (indicated by *)
specifies that no characters are to be omitted.

Similarly the WIDTH parameter specifies how many characters are to be taken, after omitting
any initial characters as specified by SKIP. In line 12, WIDTH has a scalar setting of 2 for
Initials, so that only the first initial followed by a dot is taken for each name. The WIDTH and
SKIP parameters provide easy ways of removing spaces at the beginning or the end of strings.
A negative value from the SKIP parameter deletes all the spaces at the start of a string, while a
negative value from the WIDTH parameter deletes all the spaces at the end of a string. Example
4.7.1b illustrates the various possibilities: initial spaces are removed in forming the new texts
Trspace and Tnspace (lines 7 and 8), and trailing spaces are removed from Tlspace and
Tnspace (lines 6 and 8).

Example 4.7.1b

 2 TEXT [VALUES='1234567',' abc','abc ','1234567'] Ts
 3 & [VALUES=4('l-')] Tl
 4 & [VALUES=4('-r')] Tr
 5 CONCATENATE [NEWTEXT=Tlrspace] Tl,Ts,Tr
 6 CONCATENATE [NEWTEXT=Tlspace] Tl,Ts,Tr; WIDTH=2,-1,2
 7 CONCATENATE [NEWTEXT=Trspace] Tl,Ts,Tr; SKIP=0,-1,0

220 4 Calculations and data manipulation

 8 CONCATENATE [NEWTEXT=Tnspace] Tl,Ts,Tr; WIDTH=2,-1,2; SKIP=0,-1,0
 9 PRINT Tlrspace,Tlspace,Trspace,Tnspace

 Tlrspace Tlspace Trspace Tnspace
l-1234567-r l-1234567-r l-1234567-r l-1234567-r
l- abc-r l- abc-r l-abc-r l-abc-r
l-abc -r l-abc-r l-abc -r l-abc-r
l-1234567-r l-1234567-r l-1234567-r l-1234567-r

The CASE option enables you to change the case of letters. By default, CASE=given to leave the
case of each letter as given in the existing text. To change all letters to upper case (or capitals)
you can put CASE=upper, or CASE=lower to change all letters to lower case. Alternatively,
CASE=changed puts lower-case letters into upper case, and upper-case letters into lower case!
CONCATENATE takes account of restrictions (4.4.1) on any of the vectors that occur in the

statement. If more than one vector is restricted, then each such restriction must be the same. The
values of the units that are excluded by the restriction are left unchanged.

4.7.2 Appending or concatenating values of scalars, variates, texts, factors or pointers:
the TXCONSTRUCT directive

TXCONSTRUCT directive
Forms a text structure by appending or concatenating values of scalars, variates, texts, factors,
pointers or formulae; allows the case of letters to be changed or values to be truncated and
reversed.

Options
TEXT = text Stores the text that is formed
CASE = string token Case to use for letters (given, lower, upper,

changed, sentence, title); default give leaves the
case of each letter as given in the original texts

METHOD = string token Whether to append or concatenate the values of the
structures (append, concatenate) default conc

SEPARATOR = string Characters to separate all except last two strings in each
line when concatenating; default '' (i.e. none)

LASTSEPARATOR = string Characters to separate last two strings in each line when
concatenating; default uses the characters defined by
SEPARATOR

PREFIX = string Characters to put at the start of each line when
concatenating; default '' (i.e. none)

END = string Characters to put at the end of each line when
concatenating; default '' (i.e. none)

SIGNIFICANTFIGURES = scalar Specifies the number of significant figures to include for
numerical data; default 4

Parameters
STRUCTURE = scalars, variates, factors, texts, pointers or formulae

Structures whose values are to be appended or
concatenated

WIDTH = scalars or variates Number of characters to take from the strings formed
from the units of each STRUCTURE, a negative value
takes all the (unskipped) characters other than trailing
spaces; if omitted or set to a missing value, all the

4.7 Operations on text 221

(unskipped) characters are taken
DECIMALS = scalars or variates Number of decimal places to use for numerical

structures; if omitted or set to a missing value, a default
is used which aims to print the value to the precision
defined by the SIGNIFICANTFIGURES option

SKIP = scalars or variates Number of characters to skip at the left-hand side of the
strings formed from the units of each STRUCTURE, a
negative value skips all initial spaces; if omitted or set to
a missing value, no characters are skipped

FREPRESENTATION = string tokens How to represent factor values (labels, levels,
ordinals); default is to use labels if available,
otherwise levels

DREPRESENTATION = scalars or texts
Format to use for dates and times (stored in numerical
structures)

REVERSE = string tokens Whether to reverse the strings of characters formed from
the units of each structure (yes, no); default no

MISSING = texts String to use to represent missing values of numerical
structures; default '*'

The TXCONSTRUCT directive forms a text from the values of scalars, variates, texts, factors or
pointers. The new text is saved using the TEXT option, and the structures from which it is to be
formed are listed using the STRUCTURE parameter.

By default the values of the structures are concatenated alongside each other (as with the
CONCATENATE directive); alternatively you can set option METHOD=append to append them
below each other. When you are concatenating, the structures in the STRUCTURE list must
generally contain the same number of values (and this then defines the number of lines in the
new text). The exception is that the STRUCTURE list can include scalars or texts containing a
single string if you want to put the same numbers or strings into every line of the new text.

Numerical values (from scalars, variates or factors) are converted into strings of characters
before they are used. As in the PRINT directive, you can use the DREPRESENTATION parameter
to indicate whether these are to be treated as dates. Alternatively, if they are to remain as
numbers, the DECIMALS parameter specifies the number of decimal places to use. DECIMALS can
be set to a scalar if all the values of the structure are to be printed with the same number of
decimals, or to a variate if you want to represent different units of a variate or factor structure
with different numbers of decimals. The SIGNIFICANTFIGURES option specifies the number
of significant figures to aim for if DECIMALS is not set, or if it contains missing values (default
4). A numerical value will then be converted as though it had been printed with the number of
decimals required to give SIGNIFICANTFIGURES significant figures, and any trailing zero
decimal values had then been removed. Missing numerical values are represented by the asterisk
character (*) by default, in the usual way, but you can specify another string of characters using
the MISSING parameter.

 A formula is converted to a text before being concatenated. The maximum width of the text
is defined as 200. So this will have one line, unless the result is more than 200 characters wide.

The SKIP parameter allows you to skip characters at the start of the strings provided by each
structure. You can supply a scalar to skip the same number of characters in every string, or a
variate if you want to make different skips in every string. Similarly the WIDTH parameter
specifies how many characters are to be taken, after omitting any initial characters as specified
by SKIP. The strings formed from scalars, variates, factors and pointers do not contain any initial
or trailing spaces. You can set a negative skip to ignore all the initial spaces in a string taken
from a text structure, and set a negative width to ignore all its trailing spaces. The REVERSE

222 4 Calculations and data manipulation

parameter allows you to reverse the strings from any of the structures.
The CASE option enables you to change the case of letters in the strings. The available settings

are:
given to leave the case of each letter exactly as given in the

string;
upper to change all letters to upper case (or capitals);
lower to change all letters to lower case;
changed to put lower-case letters into upper case, and upper-case

letters into lower case;
sentence to put the first character in the text (if a letter) into upper

case, then to use upper case only at the start of each new
sentence;

title to begin each new word with a capital letter, but otherwise
to use lower case.

When METHOD=concatenate you can use the SEPARATOR, LASTSEPARATOR, PREFIX and
END options to insert characters automatically between the adjacent pairs of strings in each line.
LASTSEPARATOR supplies a string of characters to insert between the last pair of strings,
SEPARATOR supplies characters to insert between all the other pairs of strings, PREFIX supplies
characters to put at the start of each line, and END supplies characters to put at the end of each
line. The defaults for SEPARATOR, PREFIX and END are the empty string '', while
LASTSEPARATOR uses the characters defined by SEPARATOR as its default. So by default no
characters are inserted.
TXCONSTRUCT takes account of restrictions on any of the vectors that occur in the statement.

If more than one vector is restricted, then each such restriction must be the same. The values of
the units in the new text that are excluded by the restriction are left unchanged.

Example 4.7.2a shows how TXCONSTRUCT extends CONCATENATE, by concatenating the ages
to the names formed as in Example 4.7.1a. The SEPARATOR option can be left with its default
value of a null text, as there will be a space at the start of each surname once the numbers ('1.',
'2.' and so on) are removed by the SKIP parameter. The LASTSEPARATOR option inserts
the string ', age ' before the values from the variate Age. Notice that TXCONSTRUCT
automatically determines that the Age values need no decimals.

Example 4.7.2a

 15 VARIATE [VALUES=35,42,19,26,33,52,23,28,44,17] Age
 16 TXCONSTRUCT [TEXT=Fullname; LASTSEPARATOR=', age '; END='.']\
 17 Initials,Name,Age; WIDTH=2,*,*; SKIP=*,!(9(2),3),*
 18 PRINT Fullname; JUSTIFICATION=left

Fullname
B. Adams, age 35.
J. Baker, age 42.
K. Clarke, age 19.
A. Day, age 26.
R. Edwards, age 33.
T. Field, age 52.
S. Good, age 23.
D. Hall, age 28.
H. Irving, age 44.
C. Jones, age 17.

The SEPARATOR and LASTSEPARATOR options make it easy to construct a phrase from a text,
as shown in Example 4.7.2b. Notice the use of the # symbol in lines 3 and 5 to insert the strings
in Fruit as a list. In line 2, these are all separated by the string ' or ', whereas in line 5 the last
pair of strings is separated by ' and ' and the earlier pairs are separated by ', '.

4.7 Operations on text 223

Example 4.7.2b

 2 TEXT [VALUES=apples,bananas,oranges,pears] Fruit
 3 TXCONSTRUCT [TEXT=List; SEPARATOR=' or '] #Fruit
 4 PRINT List

 List
apples or bananas or orange or spears

 5 TXCONSTRUCT [TEXT=List; SEPARATOR=', '; LASTSEPARATOR=' and '] #Fruit
 6 PRINT List

 List
apples, bananas, oranges and pears

4.7.3 Finding strings within the lines of a text structure: the TXPOSITION directive

TXPOSITION directive
Locates strings within the lines of a text structure.

Options
CASE = string token Whether to treat the case of letters as significant when

searching for lines of the SUBTEXT within the TEXT
(significant, ignored); default sign

REVERSE = string tokens Whether to reverse the search to work from the end of
the lines of the TEXT (yes, no); default no

MULTISPACES = string token Whether to treat differences between multiple spaces
and single spaces as significant, or to treat them all like
a single space (significant, ignored); default sign

DISTINCT = string tokens Whether to require the SUBTEXT to have one or more
separators to its left or right within the TEXT (left,
right); default *

SEPARATOR = text Characters to use as separators; default ' ,;:.'

Parameters
TEXT = texts Texts whose strings are to be searched
SUBTEXT = texts Specifies a string or strings to find in each TEXT
POSITION = variates Position of the SUBTEXT strings within the TEXT
WIDTH = scalars or variates Right-most character(s) to search in the lines of each

TEXT; default * searches up to the end of each line
SKIP = scalars or variates Number of characters to skip at the left-hand side of the

lines of each TEXT; default 0

The TXPOSITION directive allows you to search for strings of characters within the lines of a
Genstat text structure. The text to search is specified by the TEXT parameter, and the SUBTEXT
parameter specifies the strings that are to be found. You can set SUBTEXT to a single string (or
to a text with just one line), if you want to search for the same string of characters within every
line of the TEXT. You can set SUBTEXT to a text with as many lines as TEXT, if you want to
search for different characters in each line of the TEXT. Finally, you can set TEXT to a single
string, and SUBTEXT to a text with several lines, if you want to search the same string to see
which of several strings might occur there. The POSITION parameter can save a variate storing
the position of the first character of the SUBTEXT string(s) in each of the TEXT lines, or zero if
the string has not been found.

224 4 Calculations and data manipulation

TXPOSITION respects restrictions on any of the TEXT or SUBTEXT texts, and will search only
the lines that are not excluded by the restriction. The values of the POSITION variate in the
restricted units are left unchanged.

The SKIP parameter allows you to skip characters at the start of the lines of TEXT. You can
supply a scalar to skip the same number of characters in every line, or a variate if you want to
make different skips in each line. (So, once you have found a SUBTEXT string, you can set SKIP
to its position and check whether it occurs again.) Similarly the WIDTH parameter specifies the
right-most character(s) of the TEXT lines to search.
TXPOSITION usually takes account of the case of letters (small or capital) when looking for

the SUBTEXT strings within the TEXT. So for example 'GenStat' would not match with
'Genstat'. However, you can set option CASE=ignored to ignore differences in case. It will
usually also treat multiple spaces as significant, but you can set option MULTISPACE=ignored
to treat them all like a single space.

Option DISTINCT is useful if you are looking for distinct words or phrases. The left setting
requires each SUBTEXT string to begin either at the start of the relevant line of TEXT, or to be
preceded in that line by a separator (such as a space or comma). Similarly, the right setting
requires the SUBTEXT to end within the line of TEXT with a separator (or to be at the end of the
line). The separators are specified by the SEPARATOR option.

Example 4.7.3 first uses TXPOSITION to find the lines of the text Intro6 that contain the
string 'Genstat'. These are indicated by the non-zero units of the variate Where. Then it sets
the SKIP option of TXPOSITION to skip these first occurrences of 'Genstat', so that it can find
the lines where 'Genstat' occurs a second time. These are indicated by non-zero units of the
variate Next.

Example 4.7.3

 2 TEXT Intro6; VALUES=!t(\
 3 'Genstat has very comprehensive facilities for Analysis of Variance.',\
 4 'Almost all of these can be accessed using custom menus. In this',\
 5 'chapter, we start with the simplest design, a one-way completely',\
 6 'randomized experiment, before introducing factorial experiments,',\
 7 'which have more than one treatment or fixed effect. We use an',\
 8 'experiment with a randomized block design to show how to deal with',\
 9 'blocks, which involve more than one stratum or source of error in',\
 10 'the analysis, and extend this idea by analysing a split-plot design.',\
 11 'Many other types of design can also be analysed by Genstat, and',\
 12 'details are available in Chapter 4 of Part 2 of the Guide to',\
 13 'Genstat. We also introduce some of Genstat''s extensive facilities',\
 14 'for creating designed experiments, available from the Design option',\
 15 'of the Stats menu.')
 16 TXPOSITION Intro6; SUBTEXT='Genstat'; POSITION=Where
 17 TXPOSITION Intro6; SUBTEXT='Genstat'; POSITION=Next; SKIP=Where
 18 PRINT Where,Next; DECIMALS=0

 Where Next
 1 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 0 0
 52 0
 0 0
 1 36
 0 0
 0 0

4.7 Operations on text 225

4.7.4 Finding a subtext within a text: the TXFIND directive

TXFIND directive
Finds a subtext within a text structure.

Options
CASE = string token Whether to treat the case of letters (small or capital) as

significant when searching for the SUBTEXT within the
TEXT (significant, ignored); default sign

REVERSE = string token Whether to reverse the search to work from the end of
the TEXT (yes, no); default no

MULTISPACES = string token Whether to treat differences between multiple spaces
and single spaces as significant, or to treat them all like
a single space (significant, ignored); default sign

DISTINCT = string tokens Whether to require the SUBTEXT to have one or more
separators to its left or right within the TEXT (left,
right); default *

SEPARATOR = string Characters to use as separators; default ' ,;:.'
SAMELINE = string token Whether to ignore matches in the TEXT where the

SUBTEXT is not all on the same line (yes, no); default
no

Parameters
TEXT = texts Texts to be searched
SUBTEXT = texts Text to look for in each TEXT
COLUMN = scalars Position of the column within TEXT where the first

character of SUBTEXT has been found
LINE = scalars Number of the line within TEXT where the first character

of SUBTEXT has been found
ICOLUMN = scalars Column within TEXT at which to start the search
ILINE = scalars Line within TEXT at which to start the search
ENDCOLUMN = scalars Position of the column within TEXT where the last

character of SUBTEXT has been found
ENDLINE = scalars Number of the line within TEXT where the last character

of SUBTEXT has been found

The TXFIND directive looks for a Genstat text structure within another text structure. The text
to search is specified by the TEXT parameter, and the SUBTEXT parameter specifies the text to
be found. By default, the search treats the OLDTEXT and OLDSUBTEXT as if they were paragraphs
of characters: that is, it takes no account of the line breaks within the two text structures,
regarding each one as equivalent to a space. However, you can set option SAMELINE=yes to
ensure that matches will be recognised only if they are all on a single line. Any restrictions on
the texts are ignored.

The COLUMN parameter saves the column within the TEXT where the first character of the
SUBTEXT is found, and the LINE parameter saves its line within the TEXT. These are both set to
zero if SUBTEXT is not found. Similarly the ENDCOLUMN and ENDLINE parameters save the
position of the last character of the SUBTEXT. You can use the ICOLUMN and ILINE parameters
to specify a starting column and line for the search. So you can search for the next occurrence
of SUBTEXT by setting ILINE to the saved value of LINE, and ICOLUMN to the saved value of
COLUMN plus one.
TXFIND usually takes account of the case of letters (small or capital) when looking for the

226 4 Calculations and data manipulation

SUBTEXT within the TEXT. So for example 'Genstat' would not match with 'Genstat'.
However, you can set option CASE=ignored to ignore differences in case. It will usually also
treat multiple spaces as significant, but you can set option MULTISPACE=ignored to treat them
all like a single space.

Option DISTINCT is useful if you are looking for distinct words or phrases. The left setting
requires the SUBTEXT to begin either at the start of the TEXT, or to be preceded in the TEXT by
a separator (such as a space or comma). Similarly, the right setting requires the SUBTEXT to
end within the TEXT with a separator (or to be at the end of the TEXT). The separators are
specified by the SEPARATOR option.

Example 4.7.4 searches the text Intro6 from Example 4.7.3 to find all instances of the word
'the'. The option setting DISTINCT=left,right ensures that 'the' is a distinct word (so
it does not find 'the' within the word 'these' in line 2). The FOR and ENDFOR directives,
which look over the commands to find the second and subsequent instances of 'the', are described
in 5.2.1. The EXIT directive, which exits the loop if 'the' is not found, is described in 5.2.4.

Example 4.7.4

 19 TXFIND [DISTINCT=left,right] Intro6; SUBTEXT='the';\
 20 COLUMN=column; LINE=line
 21 PRINT [SQUASH=yes] line,column & Intro6$[line] & '!'; FIELD=column
 line column
 3.000 24.00
chapter, we start with the simplest design, a one-way completely
 !
 22 FOR [NTIMES=999]
 23 TXFIND [DISTINCT=left,right] Intro6; SUBTEXT='the';\
 24 COLUMN=column; LINE=line; ICOLUMN=column+1; ILINE=line
 25 EXIT line .EQ. 0
 26 PRINT [SQUASH=yes] line,column & Intro6$[line] & '!'; FIELD=column
 27 ENDFOR
 line column
 8.000 1.000
the analysis, and extend this idea by analysing a split-plot design.
!
 line column
 10.00 49.00
details are available in Chapter 4 of Part 2 of the Guide to
 !
 line column
 12.00 51.00
for creating designed experiments, available from the Design option
 !
 line column
 13.00 4.000
of the Stats menu.
 !

4.7.5 Replacing a subtext within a text: the TXREPLACE directive

TXREPLACE directive
Replaces a subtext within a text structure.

Options
NTIMES = scalar Number of times to search for the OLDSUBTEXT and

replace it; default 1
CASE = string token Whether to treat the case of letters (small or capital) as

significant when searching for the OLDSUBTEXT within
the OLDTEXT (significant, ignored); default sign

MULTISPACES = string token Whether to treat differences between multiple spaces

4.7 Operations on text 227

and single spaces as significant when locating the
OLDSUBTEXT within the OLDTEXT, or to treat them all
like a single space (significant, ignored); default
sign

DISTINCT = string tokens Whether to require the OLDSUBTEXT to have one or
more separators to its left or right within the OLDTEXT
(left, right); default *

SEPARATOR = string Characters to use as separators; default ' ,;:.'
SAMELINE = string token Whether to ignore matches in the OLDTEXT where the

OLDSUBTEXT is not all on the same line (yes, no);
default no

Parameters
OLDTEXT = texts Texts to be edited
NEWTEXT = texts Texts with OLDSUBTEXT replaced by NEWSUBTEXT; if

no NEWTEXT is supplied, the new values replace those in
the corresponding OLDTEXT

OLDSUBTEXT = texts Text to look for in each OLDTEXT
NEWSUBTEXT = texts Text to replace OLDSUBTEXT
COLUMN = scalars Position of the column within OLDTEXT where the first

character of NEWSUBTEXT has been placed
LINE = scalars Number of the line within OLDTEXT where the first

character of NEWSUBTEXT has been placed
ICOLUMN = scalars Column within OLDTEXT at which to start the search
ILINE = scalars Line within OLDTEXT at which to start the search
ENDCOLUMN = scalars Position of the column within OLDTEXT where the last

character of NEWSUBTEXT has been placed
ENDLINE = scalars Number of the line within OLDTEXT where the last

character of NEWSUBTEXT has been placed
NREPLACED = scalars Number of subtexts replaced

The TXREPLACE directive replaces a subtext within a Genstat text structure. The text containing
the subtext is specified by the OLDTEXT parameter. The OLDSUBTEXT parameter specifies the
subtext to be replaced, and the NEWSUBTEXT parameter specifies the subtext to replace it. By
default, as in TXFIND (4.7.4), the search treats the OLDTEXT and OLDSUBTEXT as if they were
paragraphs of characters: that is, it takes no account of the line breaks within the two text
structures, regarding each one as equivalent to a space. However, you can set option
SAMELINE=yes to treat line breaks differently from spaces. Matches are then recognised only
if they are all on a single line. Any restrictions on the texts are ignored.

By default a single occurrence of the subtext is replaced, but you can use the NTIMES option
to replace several. It you set NTIMES to a negative value, all occurrences are replaced. The
NREPLACED parameter can save the number of replacements that were actually made (which may
be less than NTIMES if fewer were found in the OLDTEXT). The new text (after the replacements)
can be saved using the NEWTEXT parameter; if this is not set, the values of the OLDTEXT are
replaced by the new text.
TXREPLACE usually takes account of the case of letters (small or capital) when looking for the

OLDSUBTEXT within the OLDTEXT. So for example 'Genstat' would not match with
'Genstat'. However, you can set option CASE=ignored to ignore differences in case. It will
usually also treat multiple spaces as significant, but you can set option MULTISPACE=ignored
to treat them all like a single space.

Option DISTINCT is useful if you are looking for distinct words or phrases. The left setting

228 4 Calculations and data manipulation

requires the OLDSUBTEXT to begin either at the start of the OLDTEXT, or to be preceded in the
OLDTEXT by a separator (such as a space or comma). Similarly, the right setting requires the
OLDSUBTEXT to end within the OLDTEXT with a separator (or to be at the end of the OLDTEXT).
The separators are specified by the SEPARATOR option.

The ICOLUMN and ILINE parameters can specify a starting column and line for the search. So
you can leave an initial section of the OLDTEXT unchanged.

You can use the COLUMN parameter to save the column within the OLDTEXT where the first
character of the NEWSUBTEXT has been inserted, and the LINE parameter to save its line within
the OLDTEXT. These are both set to zero if the OLDSUBTEXT was not found. If NTIMES is greater
than one, they save the location of the final replacement. Similarly the ENDCOLUMN and ENDLINE
parameters can save the position of the last character of the NEWSUBTEXT within the OLDTEXT.
TXREPLACE is illustrated in Example 4.7.5. Notice that, as option SAMELINE is left with its

default setting of no, the string 'baked beans' is replaced by 'salad', even though it is split
over two lines.

Example 4.7.5

 2 TEXT Lunch; VALUES=!t(\
 3 'For lunch we will have fish fried in batter, with chips and baked',\
 4 'beans, followed by apple pie with ice cream.')
 5 TXREPLACE Lunch; NEWTEXT=Healthierlunch;\
 6 OLDSUBTEXT=' fried in batter'; NEWSUBTEXT=''
 7 & Healthierlunch; NEWTEXT=Healthierlunch;\
 8 OLDSUBTEXT='chips'; NEWSUBTEXT='new potatoes'
 9 & Healthierlunch; NEWTEXT=Healthierlunch;\
 10 OLDSUBTEXT='baked beans'; NEWSUBTEXT='salad'
 11 & Healthierlunch; NEWTEXT=Healthierlunch;\
 12 OLDSUBTEXT=' with ice cream'; NEWSUBTEXT=''
 13 PRINT Lunch; JUSTIFICATION=left

Lunch
For lunch we will have fish fried in batter, with chips and baked
beans, followed by apple pie with ice cream.

 14 & Healthierlunch; JUSTIFICATION=left

Healthierlunch
For lunch we will have fish, with new potatoes and salad, followed by apple pie.

4.7.6 Extracting the individual words from a text: the TXBREAK directive

TXBREAK directive
Breaks up a text structure into individual words.

Option
SEPARATOR = text Defines the characters separating the words in the

original text; default ' ,;:.'

Parameters
TEXT = texts Text to break into words
WORDS = texts Saves the words contained in each text (in the order in

which they occur)
COLUMNS = variates Saves the number of the column in the TEXT where each

word began
LINES = variates Saves the number of the line where each word was

found

4.7 Operations on text 229

PLACESINLINES = variates Saves the place of each word (first, second &c) within
the line where it was found

The TXBREAK directive forms a text containing all the words (including duplicates) found in a
text. The original text to break up is supplied by the TEXT parameter, and the WORDS parameter
saves a text storing the words that it contains. The words are stored in the order in which they
occur in the original text (but, for example, you could use the SORT directive to sort them into
alphabetic order). The LINES parameter can save a variate recording the line in the original text
where each one was found. The COLUMNS parameter can save a variate recording the column
where each word began, and the PLACESINLINES parameter can save a variate giving the place
of each word (first, second &c) within the line where it was found.

By default, the words are assumed to be separated from one another by spaces or by any of
the standard punctuation characters (comma, semi-colon, colon, full stop). However, you can use
the SEPARATOR option to specify some other characters. For example, you could put
SEPARATOR=' ,;:.?' to allow question marks as well. These characters are all removed from
the words when they are stored.
TXBREAK takes account of any restrictions on the original text, and omits the words in the

restricted lines.
Example 4.7.6 uses TXBREAK to form the text Words containing all the words in the text

Intro6 from Examples 4.7.3 and 4.7.4. It then uses the GROUPS directive (4.6.1) to convert
Words to a factor, and the TABULATE directive (4.11.1) to count how many times each word
occurs.

Example 4.7.6

 28 TXBREAK Intro6; WORDS=Words
 29 GROUP [CASE=ignored; REDEFINE=yes] Words
 30 TABULATE [PRINT=count; classification=Words]

 Count
 Words
 2 1
 4 1
 a 3
 accessed 1
 all 1
 Almost 1
 also 2
 an 1
 analysed 1
 analysing 1
 Analysis 2
 and 2
 are 1
 available 2
 be 2
 before 1
 block 1
 blocks 1
 by 2
 can 2
 chapter 2
 completely 1
comprehensive 1
 creating 1
 custom 1
 deal 1
 design 5
 designed 1
 details 1
 effect 1
 error 1
 experiment 2

230 4 Calculations and data manipulation

 experiments 2
 extend 1
 extensive 1
 facilities 2
 factorial 1
 fixed 1
 for 2
 from 1
 Genstat 3
 Genstat's 1
 Guide 1
 has 1
 have 1
 how 1
 idea 1
 In 3
 introduce 1
 introducing 1
 involve 1
 Many 1
 menu 1
 menus 1
 more 2
 of 8
 one 2
 one-way 1
 option 1
 or 2
 other 1
 Part 1
 randomized 2
 show 1
 simplest 1
 some 1
 source 1
 split-plot 1
 start 1
 Stats 1
 stratum 1
 than 2
 the 5
 these 1
 this 2
 to 3
 treatment 1
 types 1
 use 1
 using 1
 Variance 1
 very 1
 we 3
 which 2
 with 3

4.7.7 Splitting a text vertically into individual texts: the TXSPLIT procedure

TXSPLIT procedure
Splits a text into individual texts, at positions on each line marked by separator character(s)
(R.W. Payne).

Options
SEPARATOR = text Defines the character(s) that indicate where to split each

line; default ','
INCLUDE = string tokens Whether to retain the separator at the end of a split text,

or any spaces at its start and end (separators,
spaces) ; default * i.e. include neither

4.7 Operations on text 231

Parameters
TEXT = texts Text to split
SPLITTEXTS = texts Saves the texts into which TEXT is split

TXSPLIT splits a text into individual texts. The positions at which to split each line are marked
by the character, or characters, specified by the SEPARATOR option; by default, the separator
character is a comma.

By default, TXSPLIT removes the separators between the split texts, as well as any spaces at
the start and end of each spit text (i.e. any spaces around the separators, or at the start or end of
the original text). The INCLUDE option allows you to request that the separator be left at the end
of a split text, and that these spaces should be retained.

The TEXT parameter supplies the text that is to be split. The texts into which it is split are
saved, in a pointer, by the SPLITTEXTS parameter. Any restrictions on the original text are
ignored.

Example 4.7.7 continues Example 4.7.1a. Each line of the the text Fullname contains the
name, followed by a comma and a space, and then the age. Line 20 splits Fullname into a text
containing the name, and another containing the age, using the default separator (comma and
space).

Example 4.7.7

 18 " Split Fullname into a text containing the name and another
 -19 containing the age (using the default separator ', ')."
 20 TXSPLIT Fullname; SPLITTEXTS=Split
 21 PRINT Split[]; JUSTIFICATION=left

Split[1] Split[2]
B. Adams age 35.
J. Baker age 42.
K. Clarke age 19.
A. Day age 26.
R. Edwards age 33.
T. Field age 52.
S. Good age 23.
D. Hall age 28.
H. Irving age 44.
C. Jones age 17.

4.7.8 Integer codes for textual characters: the TXINTEGERCODES directive

TXINTEGERCODES directive
Converts textual characters to and from their corresponding integer codes.

Options
CONVERTTO = string token Whether to convert from text characters to integer codes

or integer codes to text characters (codes, text) ;
default code

REPRESENT = string token How to treat code values 128-255 (extendedascii,
utf8); default exte if CODES defines no characters that
can be represented only in UTF-8, otherwise utf8

Parameters
TEXT = texts Text structures (each with a single line only)
CODES = variates or scalars Integer codes corresponding to the characters in each

232 4 Calculations and data manipulation

text

Textual characters all have corresponding integer code values (see http://unicode.org/charts/).
For example, the characters in the basic ASCII character set have codes running from 0 to 127.
The letters a-z have codes 97-122, the capital letters have codes 65-90, and the digits 0-9 have
codes 48-57. These characters can all be represented by a single "byte" of computer storage,
consisting of eight "bits" each able to store either one or zero. Genstat stores other characters,
such as those in the Chinese, Korean or Thai languages, in the UTF-8 format which uses up to
four bytes per character.

By default, TXINTEGERCODES takes as input a text supplied by the TEXT parameter, which
must contain only one line. The codes corresponding to the characters in the line are saved in a
variate, supplied by the CODES parameter. Alternatively, if you set option CONVERTTO = text,
the codes are taken as input, and TEXT saves the corresponding line of characters. Missing or
zero codes are ignored, and invalid codes (for example, negative numbers) are faulted.

Codes 128-255 can be represented either by characters in the extended ASCII character set,
or by 2-byte UTF-8 characters. These represent the same actual characters, but you may find one
representation more convenient than the other, depending on how you want to use any output
involving the text in future. If you have a preference, you can control this by setting the
REPRESENT option. Otherwise, TXINTEGERCODES uses extended ASCII characters, unless the
variate contains codes that can be represented only in UTF-8.

Example 4.7.8 shows the integer codes for some European landmarks. The UTF-8 format is
used for the text Finished in line 9, as the output in lines 2 and 3 contains UTF-8 characters
for the Greek and Russian names.

Example 4.7.8

 2 TEXT [VALUES='Ï Ðáñèåíþíáò'] Parthenon
 3 & [VALUES='Êðàñíûé êâàäðàò'] RedSquare
 4 & [VALUES='Château de Versailles'] Versailles
 5 TXINTEGERCODES Parthenon,RedSquare,Versailles; CODES=Pcodes,Rcodes,Vcodes
 6 PRINT Pcodes,Rcodes,Vcodes; DECIMALS=0

 Pcodes Rcodes Vcodes
 927 1050 67
 32 1088 104
 928 1072 226
 945 1089 116
 961 1085 101
 952 1099 97
 949 1081 117
 957 32 32
 974 1082 100
 957 1074 101
 945 1072 32
 962 1076 86
 1088 101
 1072 114
 1090 115
 97
 105
 108
 108
 101
 115

 7 VARIATE [VALUES=84,111,117,116,32,101,115,116,32,\
 8 116,101,114,109,105,110,233] Fcodes
 9 TXINTEGERCODES [CONVERTTO=text; REPRESENT=utf8] Finished; CODES=Fcodes
 10 PRINT Finished

4.7 Operations on text 233

 Finished
Tout est terminé

4.7.9 Progressions of character strings: the TXPROGRESSION procedure

TXPROGRESSION procedure
Forms a text containing a progression of strings (R.W. Payne).

Options
INCLUDECHARACTERS = string tokens

Defines the set of characters to include in the
progression (lower, upper, digits, _, %, space);
default lowe

DIRECTION = string token Direction of the progression (ascending,
descending); default asce

FIRSTLETTERS = string token Controls which letters come first (alllower,
allupper, lower, upper); default uppe

OWNCHARACTERSET = text Can supply an alternative set of characters

Parameters
FIRST = texts Single-valued text specifying the first string in each

progression
SECOND = texts Single-valued text specifying the second string in each

progression
LAST = texts Single-valued text defining the end of each progression
PROGRESSION = texts Saves the progression

TXPROGRESSION forms a text from a progression of strings. This is saved by the PROGRESSION
parameter. It could be used, for example, for labels of factors (2.2.3), or for defining rows and
columns of matrices (2.4.1).

The INCLUDECHARACTERS option specifies the characters to include in the progression, with
settings:

lower for lower-case letters (a-z);
upper for upper-case letters (A-Z);
digits for the numerical characters 0-9;
_ for the underscore character;
% for the percent character;
space for the space character.

If they are all specified, the characters will appear in the order: space, percent, digits 0-9,
underscore, and then letters. The default is to include only lower-case letters. The alternative,
if you do not like any of these possibilities, is to specify your own set of characters, using the
OWNCHARACTERS option.

The FIRSTLETTERS option controls the ordering of lower- and upper-case letters, if both are
included, with settings:

alllower all lower-case letters first;
allupper all upper-case letters first;
lower letters interspersed, in pairs, with the lower-case letter first

(i.e. a, A, b, B etc.);
upper letters interspersed, in pairs, with the upper-case letter first

(i.e. A, a, B, b etc.).

234 4 Calculations and data manipulation

The default is upper.
The DIRECTION option specifies whether the progression is in ascending order (e.g. a-z) or

descending order (e.g. z-a). Ascending order is the default.
The first string in the progression is specified by the FIRST parameter. The SECOND parameter

can supply the second string in the progression, thus defining the increment between the strings.
If this is not specified, the default is to increment the right-hand character in the string by one
for an ascending progression, and minus one for a descending progression. The LAST parameter
defines the end of the progression. (The progression stops when the next string would go beyond
LAST.) FIRST, SECOND and LAST must all contain the same number of characters.

Example 4.7.9 forms a progression in which three letters are each incremented by one, starting
at abc, so that they shift through the alphabet one letter at a time.

Example 4.7.9

 2 TXPROGRESSION 'abc'; SECOND='bcd'; LAST='xyz'; PROGRESSION=Shiftedletters
 3 PRINT Shiftedletters

Shiftedletters
 abc
 bcd
 cde
 def
 efg
 fgh
 ghi
 hij
 ijk
 jkl
 klm
 lmn
 mno
 nop
 opq
 pqr
 qrs
 rst
 stu
 tuv
 uvw
 vwx
 wxy
 xyz

4.7.10 Editing text: the EDIT directive

The EDIT directive provides a line editor for modifying text structures.

EDIT directive
Edits text vectors.

Options
CHANNEL = scalar or text Text structure containing editor commands or a scalar

giving the number of a channel from which they are to
be read; default is the current input channel

END = text Character(s) to indicate the end of the commands read
from an input channel; default is the character colon (:)

WIDTH = scalar Limit on the line width of the text; default *
SAVE = text Text to save the editor commands for future use; default

*

4.7 Operations on text 235

Parameters
OLDTEXT = texts Texts to be edited
NEWTEXT = texts Text to store each edited text; if any of these is omitted,

the corresponding OLDTEXT is used

The EDIT directive edits each text in the OLDTEXT list, storing the results in the corresponding
structure in the NEWTEXT list. It both edits and stores each text before moving on to the next. If
you have not already declared any of the texts in the NEWTEXT list, it will be declared implicitly.
If you give a missing identifier (*) in the NEWTEXT list, the edited version simply replaces the
values of the original: thus the old text will be overwritten by the new text. You can also omit
a text from the OLDTEXT list; you might do this if you wanted to form the values of the new text
entirely from within the editor. If any of the old texts are restricted, they must all be restricted
to exactly the same set of units. Then only those units will be involved in the edit. When a
restriction is in force, you cannot add or delete any units (or lines).

The CHANNEL option tells Genstat where to find the editing commands. A scalar specifies the
number of an input channel from which the commands are to be read. Alternatively, you can
specify a text structure containing the commands. In either case the commands should be
terminated by the string specified by the END option. The end string can be more that one
character; the default is the single character colon (:). Genstat gives a warning if you have
forgotten to specify the end string in a text of commands. The default for the CHANNEL option
is to take input from the current input channel.

The WIDTH option specifies the maximum line length for vectors of commands and of text, the
default being 80 and the maximum being 255.

The SAVE option allows you to specify a text structure to store the edit commands, so that you
can save them for future EDIT statements.

You can give commands to the editor in upper or lower case. You can put as many commands
as you like on a line, subject only to the width restriction set by the WIDTH option. Commands
must be separated by at least one space. You cannot put spaces into the middle of a command,
unless they are part of a character string (or part of a sequence of commands).

The character that separates the parts of a command is written here as /, but you can use any
character for this other than a space or a digit.

Genstat puts the lines from the old text into an internal buffer, where they are modified
according to the commands that you specify. While you are editing, Genstat moves a notional
marker around the buffer. The marker can be moved backwards or forwards along a line or
between lines. So you can move around the text and modify the lines in any order. Some
commands move the marker automatically, as explained in the definitions below. If the marker
is before the first line of text it is at the [start] position; if it is after the last line of text it is
at the [end] position. The line that currently contains the marker is called the current line.
Genstat does not write anything to the new text until the edit has been completed (so if you use
the Q command, the new text is left unaltered).

Some commands allow you to specify a number: for example Dn deletes the next n lines.
Genstat gives a warning message if this number is zero or is not an integer.

The command definitions are as follows.
A Insert the next line of text from the buffer, immediately after the marker within the current

line.
B Break the current line at the marker position. Text before the marker is written as a new

line to the internal buffer and text after the marker becomes the new current line with the
marker at character position 1.

C Cancel edits performed on the current line by restoring it to the form in which it was most
recently read from the buffer. Note that if you have previously edited the line and then
moved to some other line, it is the previously edited form that will be given, not the form

236 4 Calculations and data manipulation

as originally in the old text; also, if you have given any A or B commands during your
modification of the current line, their effects are not negated, so for example any lines that
have been inserted into the current line by A will be lost.

D Delete the current line, and make the next line the current line with the marker at character
position 1.

Dn Delete the next n lines (including the current line), making the next line after that the
current line with the marker at position 1.

D+n Synonymous with Dn.
D+ is a synonym for D or D+1.
D+* Delete from the current line to end of text. The current line is then [end].
D* Synonymous with D+*.
D! Delete the current line, making the previous line the current line with the marker at

character position 1.
D!n Delete the current and previous n lines, making the line before that the current line with

the marker at character position 1.
D! is a synonym for D!1.
D!* Delete the current line and all previous lines, the current line is then [start].
D/s/ Delete from the current line to the line with the next occurrence of the character string s.

The marker is placed immediately before the character string s in the located line. If s
occurs after the marker on the current line, the marker is moved up to s and no lines are
deleted.

D!/s/ The same as D/s/, except that it moves backwards through the text, deleting all lines
from and including the current one until the first occurrence of a line containing the
character string s. The marker is placed immediately before the located character string
s. If s occurs before the marker on the current line, the marker placed before s and no
lines are deleted.

F/i/ Inserts the contents of the text structure with identifier i immediately before the current
line. The marker is not moved.

G+/s/t/ substitutes string t for all occurrences of string s found after the marker on the
current and subsequent lines, and moves the marker to the end of the text.

G/s/t/ is a synonym for G+/s/t/.
G!/s/t/ substitutes string t for all occurrences of string s found before the marker on the

current and previous lines, and moves the marker to the start of the text.
I/s/ Inserts the string s as a new line immediately before the current line. The marker is not

moved.
L Moves the marker to the start of the next line, which can be [end].
Ln Moves the marker to the start of the nth line after the current line. So L1 gives the next

line.
L+n Is synonymous with Ln.
L+ Is synonymous with L or L+1.
L+* Moves the marker to [end].
L* is a synonym for L+*.
L!n Moves the marker to the start of the nth line before the current line, which can be

[start]. L!1 gives the line immediately before the current line.
L! Is synonymous with L!1.
L!* Moves the marker to [start].
L+/s/ Moves the marker to the position immediately before the next occurrence of the

character string s after the current marker position; this occurrence need not be on the
current line. If the string s is not found, the marker will be located at [end].

L!/s/ Moves the marker to the position immediately before the first occurrence of the string
s before the current marker position; this occurrence need not be on the current line. If the

4.7 Operations on text 237

string s is not found, the marker will be located at [start].
P moves the marker one character to the right along the current line.
P+n Moves the marker n characters to the right of the current position within the current line.

You cannot move the marker beyond the maximum line length (which will vary between
computers, but is normally the same as the width of your local line!printer).

P+ is a synonym for P or P+1.
P+* Moves the marker to the position immediately after the last non-blank character in the

current line. This can be to the left of the current marker position.
P!n Moves the marker n characters to the left of the current position within the current line.

The marker cannot be moved to the left of character position 1.
P! is a synonym for P!1.
P!* Moves the marker to the position immediately before the first non-blank character after

character position 1. This can be to the right of the current marker position.
Pn Moves the marker to the character position n within the current line, counting from the

left and starting at 1. The maximum value of n varies between computers but is normally
the same as the width of your local line-printer.

Q Abandons the current edit, leaving the original text unaltered.
R+/s/t/ substitutes character string t for the next occurrence of character string s after the

marker on the current or subsequent lines, and moves the marker to the position
immediately after t.

R/s/t/ is a synonym for R+/s/t/.
R!/s/t/ substitutes string t for the nearest occurrence of string s before the marker on the

current or previous lines; the marker moves to be immediately before string t.
S/s/t/ Substitutes the string t for the next occurrence of string s after the marker within the

current line. The marker is moved to the character position immediately after the last
character in t. If s is null (when the command is S//t/) then t is inserted immediately
after the marker. If t is null (when the command is S/s//), then s is deleted from the
line.

V Turns on the verification mode. Then, if you are working interactively, the current line
will be displayed each time that Genstat prompts you for commands. By default the
marker is indicated by the character > but you can change this by the command Vc or V+c.

Vc Turns on the verification mode (see V), and changes the marker character to c.
V+c Is synonymous with Vc.
V! Turns verification mode off (see V).
(cseq)n Repeats the command sequence, cseq, n times. The command sequence cseq can

be any valid combination of editing commands, each separated by at least one space. The
complete sequence, including brackets and repeat count, must all be on a single line. You
can nest sequences up to a depth of 10.

(cseq)* Repeats the command sequence cseq until [end] or [start] is encountered. In all
other respects (cseq)* behaves exactly as (cseq)n; so it would be equivalent to putting
n equal to some very large number.

Example 4.7.10

> " An interactive run of the editor."
> TEXT Name
> OPEN 'Names.dat'; CHANNEL=2
> READ [CHANNEL=2] Name

 Identifier Minimum Mean Maximum Values Missing

 Name 10 0

> " Edit Name: within the editor the prompt will be 'EDIT> '."
> EDIT Name

238 4 Calculations and data manipulation

>B.J. Adams
EDIT> S//Mr. /
Mr. >B.J. Adams
EDIT> L
>J.S. Baker
EDIT> (S//Dr. / L)4
>T.W. Field
EDIT> S//Ms. /
Ms. >T.W. Field
EDIT> L
>S.I. Good
EDIT> S//Mr. /
Mr. >S.I. Good
EDIT> L S//Miss. /
Miss. >D.M. Hall
EDIT> (L S//Dr. /)2
Dr. >C.C. Jones
EDIT> :
> PRINT Name; JUSTIFICATION=left

Name
Mr. B.J. Adams
Dr. J.S. Baker
Dr. K.R. Clarke
Dr. A.T. Day
Dr. R.S. Edwards
Ms. T.W. Field
Mr. S.I. Good
Miss. D.M. Hall
Dr. H.M. Irving
Dr. C.C. Jones

4.8 Operations on formulae and expressions

If you are writing procedures, for example for statistical analyses, the model to be fitted will
often be specified by a Genstat formula structure (2.2.4). Unless the algorithm within the
procedure merely involves straightforward use of one of Genstat's statistical directives, you may
wish to know more about the formula: how many model terms does it contain, which factors do
they involve, and so on. The FCLASSIFICATION directive (4.8.1) is designed to provide the
answers to these questions.

Genstat expression structures (2.2.3) are also used frequently in procedures, to specify
calculations, and again you may want to find out what data structures are being used. The
FARGUMENTS directive (4.8.2) allows you to obtain lists of the data structures that are involved
in the calculation, and those that will store the results.

Another useful directive is SET2FORMULA (4.8.3), which provides a convenient way of
constructing standard formulae involving a specified set of factors and variates. Alternatively,
the REFORMULATE directive can take a "template" formula or expression, and modify it to refer
to a particular collection of data structures (4.8.4).

4.8.1 The FCLASSIFICATION directive

FCLASSIFICATION directive
Forms a classification set for each term in a formula, breaks a formula up into separate
formulae (one for each term), and applies a limit to the number of factors and variates in the
terms of a formula.

Options
FACTORIAL = scalar Limit on the number of factors and variates in each

term; default * i.e. no limit

4.8 Operations on formulae and expressions 239

NTERMS = scalar Outputs the number of terms in the formula
CLASSIFICATION = pointer Saves a list of all the factors and variates in the TERMS

formula
OUTFORMULA = formula structure Identifier of a formula to store a new formula, omitting

terms with too many factors and variates
INCLUDEFUNCTIONS = string token Whether or not to include functions in the formulae

saved by the OUTFORMULA option or the OUTTERMS
parameter (yes, no); default no

REORDER = string token When to reorder the terms in the model (always,
standard, never); default stan

DROPTERMS = string token Whether to include only terms that can be dropped
individually from the formula (yes, no); default no

CHECKFUNCTIONS = scalar Indicator, set to one if the TERMS formula contains any
functions, and zero if it contains none

FUNCTIONDEFINITIONS = pointer Saves details of the functions defined for each factor and
variate in the TERMS formula

Parameters
TERMS = formula Formula from which the classification sets, individual

model terms and so on are to be formed
CLASSIFICATION = pointers Identifiers for pointers to store the factors and variates

composing each model term of the TERMS formula
OUTTERMS = formula structures Identifiers for formulae to store each individual term of

the TERMS formula
MAINTERMS = formula structures Identifiers for formulae to store the main term for each

individual term of the TERMS formula

The FCLASSIFICATION directive enables you to manipulate a formula data structure; the
formula is specified using the TERMS parameter.

As explained in 1.6.3, when Genstat uses a formula in a statistical analysis, it is expanded into
a series of model terms, linked by the operator +. FCLASSIFICATION allows you to save this
expanded form, in another formula, using the OUTFORMULA option.

You can use the FACTORIAL option to apply a limit to the number of factors and variates in
the resulting terms, similarly to the FACTORIAL option in the ANOVA, REML and regression
directives (2:4.1.2, 2:5.3.1 and 2:3.3.1). The number of terms in the formula can be saved (in a
scalar) using the NTERMS option, and a list of the factors and variates that occur in the formula
can be saved (in a pointer) using the CLASSIFICATION option.

The other parameters allow you to save information about the individual model terms in the
formula. The identifiers in the lists that they specify are taken in parallel with the model terms
in the expanded form of the formula. For each model term, the corresponding identifier in the
list for the CLASSIFICATION parameter is defined as a pointer storing the factors that occur in
the term. The identifier in the OUTTERMS list is defined as a formula containing just that model
term. The MAINTERMS parameter is useful if the formula contains pseudo-factors. Its identifiers
save formula structures containing the "main term" for each of the model terms. If the term is a
pseudo-term, this will be the model term to which the pseudo-term is linked. Otherwise, it will
be the term itself. For example, in the model

Variety//(A+B)

in Example 2:4.7.3c, there are two pseudo-terms, A and B, with Variety as their main term.
By default any functions such as POL or REG are omitted from the formulae saved by

OUTFORMULA or OUTTERMS, but these will be included if you set option
INCLUDEFUNCTIONS=yes. The CHECKFUNCTIONS option allows you to save a scalar containing

240 4 Calculations and data manipulation

one if the TERMS formula contains any functions, and zero if it does not.
The FUNCTIONDEFINITIONS option allows you to obtain details of the functions. This saves

a pointer which contains a pointer for each factor and variate in the formula (in the same order
as in the CLASSIFICATION pointer). If the factor or variate has no function, its pointer contains
just a text with a single missing value (''). Otherwise the first element of the pointer is a text
containing the name of the function (either 'POL', 'POLND', 'REG', 'REGND', 'COMP',
'SSPLINE' or 'LOESS'). It then contains elements to store the second and subsequent
arguments of the function (if any).

Model terms involving several factors are regarded by Genstat as representing all the joint
effects of these factors that are not removed by earlier terms in the formula. So, in the formula

A + B + A.B

A.B is the interaction of factors A and B, as both main effects occur earlier in the formula.
Alternatively, in the formula

A.B + A + B

A.B still represents all the joint effects of factors A and B, and the later terms A and B are
redundant as they are now "contained" in A.B. Thus FCLASSIFICATION usually deletes any
term in the model that is contained in an earlier term. However, if you set option
REORDER=always, the model is reordered after applying any operator (including plus). The
reordering arranges the terms so that they contain increasing numbers of identifiers. Terms with
the same number of identifiers are then put into lexicographical order with respect to the order
in which the identifiers first occurred in the formula itself. Each term will therefore come before
any term that would contain it. So the model would again be

A + B + A.B

The default setting, REORDER=standard, applies the standard Genstat rules, which reorder the
terms only after a dot, slash or star operator. The final setting REORDER=never specifies that
no reordering should take place. (Before Release 19.2, the ORTHOGONAL option had settings no
and yes, corresponding to standard and always. Options and parameters with settings yes
and no should not have any other settings. So these were renamed in Release 19.2, when the
setting never was added. However, no and yes are retained as synonyms, so that earlier
programs will still run.)

The rules about terms that contain other terms are also relevant when you are dropping terms
from a model, for example in a regression analysis. You cannot drop a term, for example using
the DROP directive, until all the terms that contain it have been dropped. To simplify the process,
if you set option DROPTERMS=yes, the formulae saved by OUTFORMULA or OUTTERMS will
contain only terms that are not contained in any other terms (i.e. only the terms that can be
dropped).

The use of FCLASSIFICATION is illustrated in Example 4.8.1. At line 3, formula ABC2 is
formed, to contain the expanded form of the formula A*B*C subject to the limit of
FACTORIAL=2. Lines 5 and 7 obtain information about the individual terms in the formula. In
line 5, the NTERMS option is used to ascertain how many terms there are. The resulting scalar,
NT, can then be used in line 7 to specify the necessary lists of identifiers: Class[1...NT] for
the CLASSIFICATION parameter, and Term[1...NT] for the OUTTERMS parameter.

Example 4.8.1

 2 FACTOR [NVALUES=32; LEVELS=2] A,B,C
 3 FCLASSIFICATION [FACTORIAL=2; OUTFORMULA=ABC2] A*B*C
 4 PRINT ABC2

 ABC2
A + B + C + A.B + A.C + B.C
 5 FCLASSIFICATION [FACTORIAL=2; NTERMS=NT] A*B*C
 6 PRINT NT

4.8 Operations on formulae and expressions 241

 NT
 6.000

 7 FCLASSIFICATION [FACTORIAL=2] A*B*C; CLASSIFICATION=Class[1...NT]; \
 8 OUTTERMS=Term[1...NT]
 9 FOR Ci=Class[]; Oi=Term[]
 10 PRINT [SERIAL=yes] Ci,Oi
 11 ENDFOR

 Class[1]
 A

 Term[1]
A

 Class[2]
 B

 Term[2]
B

 Class[3]
 C

 Term[3]
C

 Class[4]
 A
 B

 Term[4]
A.B

 Class[5]
 A
 C

 Term[5]
A.C

 Class[6]
 B
 C

 Term[6]
B.C

4.8.2 The FARGUMENTS directive

FARGUMENTS directive
Forms lists of arguments involved in an expression.

Options
EXPRESSION = expression structure

Expression whose arguments are required

242 4 Calculations and data manipulation

NRESULTS = scalar Number of results generated by the expression
NCALCULATIONS = scalar Number of calculations in the expression

Parameters
ICALCULATION = scalars The calculation from which to save the result and

arguments
RESULT = dummies Stores the result structure for calculation

ICALCULATION

ARGUMENTS = pointers Stores the arguments in calculation ICALCULATION

If you are writing a procedure that takes an expression as one of its inputs, you may want to
know what results it is generating and what data structures it is using to calculate them. The
FARGUMENTS allows you to find this out.

The expression to study is specified by the EXPRESSION option. The NRESULTS option can
save the number of results, and the NCALCULATIONS option can save the number of calculations.
The parameters of FARGUMENTS allow you to save information about each of the calculations
in the expression: the ICALCULATION parameter specifies the number of the calculation, the
RESULT parameter can specify a dummy to be set to the structure that is given the result, and the
ARGUMENTS parameter can specify a pointer to save the arguments.

The use of FARGUMENTS is illustrated in Example 4.8.2. The first part of the example
examines, Sum, a fairly simple expression. The dummy SumRes is set to the data structure S, that
result of the sum. Notice that we need to put SumRes into an unnamed pointer to print its
contents (line 4). The pointer SumArgs contains the four data structures A, B, C and D, whose
values are summed. The second part of the example examines, Transformationm, an
expression that contains two calculations (each with a result). First we use the NRESULTS option
to find the number of results (which will be the same as the number of calculations); see line 8.
Then we obtain the result and arguments for each calculation. Notice that the arguments can be
unnamed data structures, like the scalar constant 1. This does not have an identifier, so it
generates a blank line when the pointer TArgs[i] is printed by line 13. However, you can see in
the output from line 14, which prints the contents of the arguments.

Example 4.8.2

 2 EXPRESSION Sum; VALUE=!e(S=A+B+C+D)
 3 FARGUMENTS [EXPRESSION=Sum] 1; RESULT=SumRes; ARGUMENTS=SumArgs
 4 PRINT !p(SumRes)

 S

 5 PRINT SumArgs

 SumArgs
 A
 B
 C
 D

 6 SCALAR L1,L2,P1,P2
 7 EXPRESSION Transformation; VALUE=!e(L1,L2=LOG(P1,P2/(1-P1,P2)))
 8 FARGUMENTS [EXPRESSION=Transformation; NRESULTS=Nt]
 9 FARGUMENTS [EXPRESSION=Transformation] 1...Nt; RESULT=TRes[1...Nt];\
 10 ARGUMENTS=TArgs[1...Nt]
 11 FOR [NTIMES=Nt; INDEX=i]
 12 PRINT !p(TRes[i])
 13 PRINT TArgs[i]
 14 PRINT TArgs[i][]
 15 ENDFOR

4.8 Operations on formulae and expressions 243

 L1

 TArgs[1]
 P1

 P1

 P1 P1
 * 1.000 *

 L2

 TArgs[2]
 P2

 P2

 P2 P2
 * 1.000 *

4.8.3 The SET2FORMULA directive

SET2FORMULA directive
Forms a model formula using a set of structures supplied in a pointer.

Option
METHOD = string token Relationship of the structures within the formula

(combined, crossed, nested); default comb

Parameters
POINTER = pointers Sets of structures to be used to form the formulae
FORMULA = formula structures Formulae constructed from the sets

SET2FORMULA forms a model formula using the contents (factors and/or variates) of a pointer.
The pointer is specified by the POINTER parameter, and the formula is saved by the FORMULA
parameter.

The METHOD option defines how the formula is constructed. With the combined setting, the
formula has a single model term combining all the structures: for example

SET2FORMULA !p(A,B,C); FORMULA=Fcomb

sets up Fcomb as the formula

A.B.C

The crossed setting links the contents of the pointer using the operator *, so it would form the
formula

A*B*C

The nested setting uses the operator /, so it would form

A/B/C

244 4 Calculations and data manipulation

4.8.4 The REFORMULATE directive

REFORMULATE directive
Modifies a formula or an expression to operate on a different set of data structures.

Options
OLDFORMULA = formula or expression structure

Original formula or expression
NEWFORMULA = formula or expression structure

New formula or expression, modified to operate on the
new structures

Parameters
OLDSTRUCTURE = identifiers Data structures in the OLDFORMULA to be replaced in the

NEWFORMULA

NEWSTRUCTURE = identifiers Identifier of the new data structure to replace each
OLDSTRUCTURE

The REFORMULATE directive is useful if you have a "template" formula or expression which you
would like to customize to operate on a particular collection of data structures. The template
formula or expression is specified by the OLDFORMULA option, and the customized formula or
expression is specified by the NEWFORMULA option. If NEWFORMULA is not specified, the
customized formula or expression replaces the old one in OLDFORMULA. The data structures to
be replaced in OLDFORMULA are listed by the OLDSTRUCTURE parameter, and the corresponding
data structures for NEWFORMULA are provided by the NEWSTRUCTURE parameter.

The statements below show how you could convert formula

F1 + F2 * F3

(stored in Old) into formula

Blocks + A * B

(stored in New).

FORMULA [VALUE=F1 + F2 * F3] Old
REFORMULATE [OLDFORMULA=Old; NEWFORMULA=New]\
 OLDSTRUCTURE=F1,F2,F3; NEWSTRUCTURE=Blocks,A,B

4.9 Operations on dummies and pointers

You use dummies (2.2.2) when you want the same series of statements to operate on different
data structures on different occasions. By referring to a dummy instead of any specific structure,
you can make the statements apply to whichever structure you want. The commonest use of
dummies is in loops (5.2.1) and in procedures (5.3).

In this section we describe an alternative way of specifying a value for a dummy, by using the
ASSIGN directive (4.9.1). ASSIGN also enables you to change the values of elements of pointers,
which are used mainly to specify collections of data structures for directives such as EQUATE
(4.3.1), or as a convenient way of specifying lists of structures (1.5.4 and 2.6). A further use of
ASSIGN is to control the labelling of structures that exist as subscripted identifiers of two or
more pointers but which do not possess identifiers in their own right (see Example 4.9.1c).

You can make tests on the values of dummies and pointers using the .IS. and .ISNT.
operators (4.1.1).

4.9 Operations on dummies and pointers 245

4.9.1 Assigning values to dummies and individual elements of pointers: the ASSIGN

directive

ASSIGN directive
Sets elements of pointers and dummies.

Options
NSUBSTITUTE = scalar Number of times n to substitute a dummy in order to

determine which structure to assign (if n is negative, the
assigned structure is the !nth from the bottom of the
chain of dummies, like the NTIMES option of EXIT);
default 0 i.e. no substitution

METHOD = string token Whether to replace or preserve the existing value in each
dummy or pointer element (replace, preserve);
default repl (note, pointer elements are never unset so
METHOD=preserve with a pointer simply causes the
assignment to be ignored)

RENAME = string token Whether to reset the default name for the structure if it
has only a suffixed identifier (yes, no); default no

SCOPE = string token This allows dummies or pointer elements within a
procedure to be set to point to structures in the program
that called the procedure (SCOPE=external) or in the
main program itself (SCOPE=global) rather than to
structures within the procedure (local, external,
global); default loca

NSTRUCTURESUBSTITUTE = scalar Number of times n to substitute a dummy setting of the
STRUCTURE parameter in order to determine which
structure to assign to the setting of the POINTER
parameter (if n is negative, the assigned structure is the
!nth from the bottom of the chain of dummies, like the
NTIMES option of EXIT); default 0 i.e. no substitution

Parameters
STRUCTURE = identifiers Values for the dummies or pointer elements
POINTER = dummies or pointers Structure that is to point to each of those in the

STRUCTURE list
ELEMENT = scalars or texts Unit or unit label indicating which pointer element is to

be set; if omitted, the first element is assumed

ASSIGN allows you to set individual elements of pointers, or to assign a value to a dummy. The
parameter POINTER lists the pointers or dummies whose values you want to set; the values that
you want to give them are listed by the STRUCTURE parameter. You pick out the individual
elements of pointers by the ELEMENT parameter; a scalar identifies the element by its suffix
number, while a text identifies it by its label. This example sets the dummy Yvar to point to the
variate Height, and elements 1 and 2 of the pointer Xvars to Protein and Vitamins,
respectively.

VARIATE Height,Protein,Vitamins
POINTER [NVALUES=2] Xvars
DUMMY Yvar
ASSIGN Height,Protein,Vitamins;POINTER=Yvar,2(Xvars); \
 ELEMENT=1,1,2

246 4 Calculations and data manipulation

Element 1 is assumed unless you specify otherwise; so to set just Yvar we need only put

ASSIGN Height; POINTER=Yvar

Options METHOD, NSUBSTITUTE and NSTRUCTURESUBSTITUTE are likely to be most useful

when setting dummies within a procedure. By setting METHOD=preserve, any dummies that are
already set will have their existing settings preserved. Hence this provides a very convenient and
effective way of making default assignments while leaving any explicit assignments unchanged.
Suppose, for example, that a procedure has dummy arguments FITTEDVALUES, RESIDUALS and
RSS available to save various aspects of the analysis, and that we wish to use these as working
variables while calculating this information within the procedure. By specifying

ASSIGN [METHOD=preserve] LocalF,LocalR,LocalRSS; \
 FITTEDVALUES,RESIDUALS,RSS

any of the dummies that is not set when the procedure is called will be assigned to the
corresponding local structure, either LocalF, LocalR or LocalRSS. Note, however, that
elements of pointers cannot be unset; they will always point to some identifier, even if it is
unnamed. Thus, ASSIGN has no effect on elements of pointers when METHOD=preserve.

The NSUBSTITUTE option is useful when you have dummies pointing to other dummies, in
a chain. This may happen when one procedure calls another, passing one of its own arguments
as the argument to the procedure that it calls. The NSUBSTITUTE option allows the dummies in
the POINTER list to be substituted a set number of times in order to determine which dummy in
a chain is to be assigned a value.

When the procedure ARGDEF is called from procedure ADDONE at line 16 of Example 4.9.1a,
the dummy ARG which is the first parameter of procedure ARGDEF, points to the dummy RESULT
which is the second parameter of procedure ADDONE. (See 5.3 for more details about
procedures.) By setting option NSUBSTITUTE=1 in line 6 of the example, the dummy ARG is
substituted once before it is assigned, so that the value is assigned to the dummy RESULT. Notice
that this option affects only the dummies in the POINTER list, and not any that appear elsewhere;
thus the dummy DEFAULT will be substituted to the variate Xplus1 to which DEFAULT is set at
line 16.

Example 4.9.1a

 2 PROCEDURE 'ARGDEF'
 3 "Assigns a default to an unset dummy argument."
 4 PARAMETER NAME='ARG','DEFAULT'; MODE=p; TYPE='dummy',*
 5 IF UNSET(ARG)
 6 ASSIGN [NSUBSTITUTE=1] DEFAULT; ARG
 7 ENDIF
 8 ENDPROCEDURE
 9
 10 PROCEDURE 'ADDONE'
 11 "Adds one to the values of variate X and prints results
-12 (which can also be saved using the RESULTS parameter)."
 13 PARAMETER 'X','RESULT'; MODE=p; SET='yes','no'; DECLARED='yes','no';\
 14 TYPE='variate'; COMPATIBLE=!t(nvalues,type); PRESENT='yes','no'
 15 VARIATE Xplus1
 16 ARGDEF RESULT; DEFAULT=Xplus1
 17 CALCULATE RESULT=X+1
 18 PRINT RESULT
 19 ENDPROCEDURE
 20
 21 VARIATE [VALUES=1,3,5,7] Y
 22 ADDONE Y

4.9 Operations on dummies and pointers 247

 Xplus1
 2.000
 4.000
 6.000
 8.000

Sometimes it may be easier to specify which dummy to assign by counting up from the bottom
of the chain of dummies, instead of down from the top. You should then set NSUBSTITUTE to
a negative integer. In Example 4.9.1b, dummy A points to dummy B, which in turn points to
dummy C, and dummy C then points to dummy D, which points to the scalar X (line 3). Thus, at
line 4

ASSIGN [NSUBSTITUTE=-1] Y; A

will assign Y to the dummy one from the bottom of the chain, that is C, and so

PRINT C,D

at line 5, prints the values of Y and X.

Example 4.9.1b

 2 SCALAR X,Y; VALUE=1,2
 3 DUMMY A,B,C,D; VALUE=B,C,D,X
 4 ASSIGN [NSUBSTITUTE=-1] Y; A
 5 PRINT C,D

 Y X
 2.000 1.000

Similarly, the NSTRUCTURESUBSTITUTE option is useful when you have a dummy as the setting
of the STRUCTURE parameter. By default, it is the dummy itself that is assigned to the
corresponding dummy or pointer in the POINTER list. However, you can set
NSTRUCTURESUBSTITUTE, in the same way as NSUBSTITUTE, to substitute the dummy before
making the assignment.

The RENAME option enables you to control what identifier is used for data structures in the rare
occasions when your program contains structures that can be referred to by more than one
suffixed identifier and which do not have identifiers in their own right. This is illustrated in
Example 4.9.1c.

At line 3 of Example 4.9.1c, pointer P is defined to have two elements: suffix 1 refers to the
scalar X and suffix 2 to the scalar Y. Line 4 introduces the identifier P[3], so Genstat expands
P to have a third suffix; but this structure can be referred to only as P[3] ! as is shown when
the three structures are printed in line 5. Line 6 defines a new pointer, Q, and sets its values to
be the same as those of P; P[3] can now be referred to as Q[3] but, when Genstat prints this
structure, it uses the original identifier P[3] (see line 8). Line 9 shows another way of defining
the values of Q, using ASSIGN. At the same time, we can change the identifier that Genstat will
then use, by setting option RENAME=yes. This is confirmed when Q[3] is printed in line 10.

Example 4.9.1c

 2 SCALAR X,Y; VALUE=1,2
 3 POINTER [VALUES=X,Y] P
 4 SCALAR P[3]; VALUE=3
 5 PRINT P[]

 X Y P[3]
 1.000 2.000 3.000

 6 POINTER [VALUES=P[1,2,3]] Q
 7 CALCULATE Q[1,2,3] = Q[1,2,3]*10

248 4 Calculations and data manipulation

 8 PRINT Q[]

 X Y P[3]
 10.00 20.00 30.00

 9 ASSIGN [RENAME=yes] P[3]; POINTER=Q; ELEMENT=3
 10 PRINT Q[]

 X Y Q[3]
 10.00 20.00 30.00

Finally, the SCOPE option enables you to assign a dummy within a procedure to a structure in
the program that called the procedure. The dummy will thus operate as though it was a dummy
option or parameter, except that the decision about the structure that it references in the outer
program has been made within the procedure instead of outside it. This facility allows you to
define new data structures in the outer program; however, care needs to be taken to ensure that
there is no conflict with any existing structures.

4.10 Operations on matrices and compound structures

The CALCULATE directive (4.1.1 and 4.1.3) allows you to do arithmetic operations on matrices
element by element: addition, subtraction, multiplication, division and exponentiation, as well
as logical operations of testing for equality and inequality, and so on; you can also do matrix
multiplication. There are several functions for standard operations on matrices such as taking
inverses, for forming various standard types of matrix or for constructing matrices from tables
(4.2.4). You can combine and omit rows or columns of a rectangular matrix using the COMBINE
directive (4.11.4). EQUATE allows you to transfer values to matrices from another structure, and
vice versa (4.3.1), or you can select sub-matrices with CALCULATE, using qualified identifiers
(4.1.6). Procedures that operate on matrices include: LINDEPENDENCE to find the linear relations
associated with matrix singularities; FHADAMARDMATRIX to form Hadamard matrices;
FPROJECTIONMATRIX to form a projection matrix for a set of model terms;
PARTIALCORRELATIONS to form a matrix of partial correlation coefficients from a set of
variates; FCORRELATION forms and tests the correlation matrix for a list of variates;
FVCOVARIANCE to form a variance-covariance matrix from a set of variates; and ROBSSPM to
form robust estimates of sums-of-squares-and-products matrices. Ordinary correlations can be
formed using the CORRELATE directive (which also forms autocorrelations of variates and lagged
cross-correlations between variates).

You cannot do calculations directly with a complete compound structures like an LRV or an
SSPM, but you can do calculations with the individual elements. For example, to take the
diagonal matrix of latent roots from an LRV structure, L, and divide it by the trace, you could
put

CALCULATE L['Roots'] = L['Roots'] / L['Trace']

This section describes the SVD, FLRV and QRD directives, which allow you to form singular

value, eigenvalue and QR decompositions; it also describes the FSSPM directive, which
calculates sums of squares and products and all the associated information stored in an SSPM
structure. These operations form the basis of many common statistical methods. Another
directive that operates on compound structures is the FTSM directive, which forms preliminary
values of a time-series model in a TSM structure.

4.10 Operations on matrices and compound structures 249

4.10.1 The singular value decomposition: the SVD directive

SVD directive
Calculates singular value decompositions of matrices.

Option
PRINT = string tokens Printed output required (left, singular, right);

default * i.e. no printing

Parameters
INMATRIX = matrices Matrices to be decomposed
LEFT = matrices Left-hand matrix of each decomposition
SINGULAR = diagonal matrices Singular values (middle) matrix
RIGHT = matrices Right-hand matrix of each decomposition

Suppose that we have a rectangular matrix A with m rows and n columns, and that p is the
minimum of m and n. The singular value decomposition can be defined as

m An = mUp p Sp pVnN
The diagonal matrix S contains the p singular values of A, ordered such that

s1 $ s2 $... $ sp $ 0
The matrices U and V contain the left and right singular vectors of A, and are orthonormal:

UNU = VNV = Ip

The smaller of U and V will be orthogonal. So, if A has more rows than columns, m>n, p=n and
VVN=Ip.

The least-squares approximation of rank r to A can be formed as
Ar = Ur Sr VrN

where Ur and Vr are the first r columns of U and V, and Sr contains the first r singular values of
A (Eckart & Young 1936).

The INMATRIX parameter specifies the matrices to be decomposed. The algorithm uses
Householder transformations to reduce A to bi-diagonal form, followed by a QR algorithm to
find the singular values of the bi-diagonal matrix (Golub & Reinsch 1971). The other parameters
allow you to save the component parts of the decomposition: LEFT, SINGULAR and RIGHT for
U, S and V respectively.

The PRINT option allows you to print any of the components of the decomposition; by default,
nothing is printed. If any of the matrices is to be printed, all p columns are shown, even if you
are storing only the first r columns. See Example 4.10.1a.

Example 4.10.1a

 2 MATRIX [ROWS=6; COLUMNS=4; VALUES=\
 3 15,5,9,16,3,20,7,12,22,17,10,11,13,8,1,23,2,4,6,14,18,21,24,19] A
 4 SVD [PRINT=LEFT,SINGULAR,RIGHT] A

Singular value decomposition
============================

Singular values

 1 2 3 4
 65.30 17.75 14.29 10.82

250 4 Calculations and data manipulation

Left singular vectors

 1 2 3 4
 1 0.35066 -0.33717 -0.30338 0.26324
 2 0.32642 0.30654 0.69925 -0.39495
 3 0.45861 0.18847 -0.51086 -0.52922
 4 0.37075 -0.71706 0.15091 -0.29662
 5 0.20711 -0.27069 0.36641 0.39876
 6 0.61629 0.41157 -0.03151 0.49765

Right singular vectors

 1 2 3 4
 1 0.50011 -0.13783 -0.80932 -0.27549
 2 0.50254 0.53368 0.40553 -0.54607
 3 0.40479 0.48070 -0.09456 0.77210
 4 0.57749 -0.68199 0.41426 0.17258

Genstat will decide how many columns and singular values r to store, and will store that number
for any of the components that you specify. If none of the matrices in the LEFT, SINGULAR and
RIGHT lists has been declared in advance, the full number of singular values (r=p) is stored;
otherwise Genstat sets r to the maximum number of columns contained in any of the matrices.
If r<p, the first r singular values will be saved, along with the corresponding columns of singular
vectors.

Example 4.10.1b

 5 DIAGONALMATRIX [ROWS=2] Sa
 6 SVD A; LEFT=Ua; SINGULAR=Sa; RIGHT=Va
 7 CALCULATE A2 = Ua *+ Sa *+ TRANSPOSE(Va)
 8 PRINT [RLWIDTH=6] A; FIELDWIDTH=9; DECIMALS=3

 A
 1 2 3 4

 1 15.000 5.000 9.000 16.000
 2 3.000 20.000 7.000 12.000
 3 22.000 17.000 10.000 11.000
 4 13.000 8.000 1.000 23.000
 5 2.000 4.000 6.000 14.000
 6 18.000 21.000 24.000 19.000

 9 & A2; FIELDWIDTH=9; DECIMALS=3

 A2
 1 2 3 4

 1 12.276 8.313 6.392 17.304
 2 9.910 13.615 11.243 8.598
 3 14.515 16.834 13.730 15.012
 4 13.861 5.373 3.681 22.660
 5 7.426 4.232 3.165 11.087
 6 19.119 24.122 19.801 18.258

In Example 4.10.1b, the diagonal matrix Sa saves the first two singular values, while the first
two left singular vectors are stored in the matrix Ua. A2 is a least-squares approximation to A,
based on r=2 singular values (known as an Eckart-Young approximation, of rank 2).

One practical application of the singular value decomposition is to form generalized inverses
of matrices. If you use the singular value decomposition you obtain the Moore-Penrose
generalized inverse, sometimes called the pseudo-inverse, and this is the method used by the
GINVERSE function.

4.10 Operations on matrices and compound structures 251

Example 4.10.1c verifies that the necessary properties of the Moore-Penrose inverse are
satisfied. You need to set the ZDZ option of CALCULATE to zero when calculating Svplus, the
generalized inverse of the diagonal matrix of singular values, in case any of the singular values
is zero. The default for ZDZ would set the corresponding elements of Svplus to be missing
(4.1.1).

Example 4.10.1c

 10 SVD A; LEFT=Uda; SINGULAR=Sda; RIGHT=Vda
 11 CALCULATE [ZDZ=zero] Svplus = Sda / Sda / Sda
 12 & Aplus = Vda *+ Svplus *+ TRANSPOSE(Uda)
 13 & Aa,Aap = A,Aplus *+ Aplus,A *+ A,Aplus
 14 & CheckAa,CheckAp = MAX(ABS(A,Aplus-Aa,Aap))
 15 " If Aplus is the generalized inverse of A, then
 -16 Aa and Aap should be identical to A and Aplus."
 17 PRINT CheckAa,CheckAp; DECIMALS=3

 CheckAa CheckAp
 0.000 0.000

 18 CALCULATE Asa,Aspa = A,Aplus *+ Aplus,A
 19 PRINT Asa; FIELDWIDTH=9; DECIMALS=3

 Asa
 1 2 3 4 5 6

 1 0.398 -0.305 0.113 0.248 0.158 0.218
 2 -0.305 0.845 0.059 0.124 0.083 0.109
 3 0.113 0.059 0.787 0.115 -0.354 0.113
 4 0.248 0.124 0.115 0.762 0.208 -0.219
 5 0.158 0.083 -0.354 0.208 0.409 0.203
 6 0.218 0.109 0.113 -0.219 0.203 0.798

 20 & Aspa; FIELDWIDTH=9; DECIMALS=3

 Aspa
 1 2 3 4

 1 1.000 0.000 0.000 0.000
 2 0.000 1.000 0.000 0.000
 3 0.000 0.000 1.000 0.000
 4 0.000 0.000 0.000 1.000

Singular values and vectors can also be obtained from the SVALUES, LSVECTORS and
RSVECTORS functions (which use the same source code within Genstat as SVD).

4.10.2 Eigenvalue decompositions: the FLRV directive

FLRV directive
Forms the values of LRV structures.

Options
PRINT = string tokens Printed output required (roots, vectors); default *

i.e. no printing
NROOTS = scalar Number of roots or vectors to print; default * i.e. print

them all
SMALLEST = string token Whether to print the smallest roots instead of the largest

(yes, no); default no
TOLERANCE = scalar Tolerance for detecting zero roots

252 4 Calculations and data manipulation

Parameters
INMATRIX = matrices or symmetric matrices

Matrices whose latent roots and vectors are to be
calculated

LRV = LRVs LRV to store the latent roots and vectors from each
INMATRIX

WMATRIX = symmetric matrices (Generalized) within-group sums of squares and
products matrix used in forming the two-matrix
decomposition; if any of these is omitted, it is taken to
be the identity matrix, giving the usual spectral
decomposition

ILRV = LRVs LRV to store the imaginary parts of the latent roots and
vectors arising from the decomposition of a non-
symmetric matrix

When the WMATRIX parameter is unset, FLRV solves the eigenvalue problem
AX = XL.

In the usual situation A is an n-by-n symmetric matrix, and XLXN provides its eigenvalue (or
spectral) decomposition. L is a diagonal matrix containing the n latent roots, or eigenvalues, of
A ordered such that

l1 $ l2 $... $ ln

X is a (square) n-by-n matrix whose columns contain the corresponding latent vectors, or
eigenvectors. The matrix X is orthogonal: i.e.

XNX = XXN = In

The method used for the eigenvalue decomposition first reduces the matrix to tri-diagonal
form using Householder transformations (Martin, Reinsch & Wilkinson 1968); this is followed
by a QL algorithm for finding the eigenvalues and eigenvectors (Bowdler, Martin, Reinsch &
Wilkinson 1968). The decomposition is the basis for several multivariate methods, and is used
by several of the procedures in the Genstat Library.

The INMATRIX parameter lists the matrices A for which latent roots and vectors are to be
calculated. The matrices of latent roots and vectors (L and X) can be saved as the first two
elements of the corresponding LRV structure specified by the LRV parameter. The third element
of the LRV (labelled 'Trace') stores the sum of the latent roots, which in this case is also the
trace of the original matrix A. Latent roots are often expressed as percentages of the trace. You
must declare the LRV structure in advance if you want to save less than the full number of roots;
otherwise, it is defined automatically to have n rows.

The three options of FLRV control the printing of the results. You use the PRINT option to
specify whether you want the roots or vectors to be printed. If you request the roots to be printed,
the trace will be printed as well. By default nothing is printed. The NROOTS option governs how
many of the roots and vectors are printed, while the SMALLEST option determines whether the
largest or smallest roots, and corresponding vectors, are printed.

Example 4.10.2a forms the LRV structure, Ulrv, from a matrix of sums of squares and
products (4.10.3), and prints the two smallest roots in order of descending magnitude. The trace
is printed together with the latent roots, and the latent roots are printed as percentages of the
trace.

Example 4.10.2a

 2 VARIATE [NVALUE=13] U[1...7]
 3 OPEN 'Harvf.dat'; CHANNEL=2
 4 READ [CHANNEL=2] U[]

4.10 Operations on matrices and compound structures 253

 Identifier Minimum Mean Maximum Values Missing
 U[1] 7.910 10.62 12.71 13 0
 U[2] 7.710 10.25 12.15 13 0
 U[3] 8.320 10.46 13.16 13 0
 U[4] 9.190 10.86 13.06 13 0
 U[5] 7.720 10.46 13.08 13 0
 U[6] 8.690 10.53 12.82 13 0
 U[7] 8.810 10.31 11.99 13 0

 5 SSPM [TERMS=U[]] Us; SSP=Ussp
 6 FSSPM Us
 7 FLRV [PRINT=roots,vectors; NROOTS=2; SMALLEST=yes] Ussp; LRV=Ulrv

Spectral decomposition
======================

Latent roots

 6 7
 6.881 1.122

Percentage variation

 6 7
 4.25 0.69

Trace

 161.7

Latent vectors

 6 7
 U[1] 0.4770 0.4040
 U[2] -0.4345 0.1617
 U[3] -0.0525 -0.1007
 U[4] 0.1123 -0.4762
 U[5] 0.1425 0.0629
 U[6] 0.4178 0.5527
 U[7] -0.6111 0.5141

You can save a subset of the latent roots and vectors by supplying an LRV structure with fewer
columns than rows. However this saves only the largest roots and the corresponding vectors. You
cannot save the smallest roots directly, as the SMALLEST option applies only to printing. If you
want to save the smallest roots, then you must save the complete set of roots and vectors, and
extract the last columns of the matrix, for example using qualified identifiers (4.1.6). These rules
are the same as those applied in the directives for multivariate analysis (Part 2 Chapter 6).

You can also set INMATRIX to a square, unsymmetric, matrix A. The problem to solve is the
unsymmetric eigenvalue problem

AX = XL.
L is again a diagonal matrix of n latent roots (eigenvalues), and X is a square matrix of order n
containing the right latent vectors (or eigenvectors) of A. However, the solution may produce
some complex latent roots, occurring as complex conjugate pairs, in which case the
corresponding latent vectors are also complex conjugate pairs. The LRV parameter now saves
only the real parts of the latent roots and vectors, and the imaginary parts are saved by the ILRV
parameter. ILRV need not be set, but a warning message is then printed if any complex roots are
produced.

If all the latent roots are real, they are sorted into descending order, such that l1 $ l2 $... ln, as
in the symmetric case, but if some roots are complex they are ordered such that *l1* $ *l2* $...
$ *ln*. To detect whether a latent root is real, Genstat checks whether imaginary part is close to

254 4 Calculations and data manipulation

zero; to allow for numerical imprecision the value is tested against *l1* multiplied by the valued
supplied by the TOLERANCE option, by default 10!6. The values saved by the LRV and ILRV
parameters, however, are those generated by the algorithm, so procedures using FLRV may also
need to test explicitly for zero roots.

The latent vectors xi are normalized so that xiNxi =1, but this is not sufficient to determine them
uniquely since they can still be scaled by any (complex) scalar z such that *z*=1. The convention
adopted in Genstat is to apply an additional scaling such that the largest element of each xi is real
and positive. The latent vectors are guaranteed to be orthogonal only when the matrix A is
symmetric.

The algorithm used by FLRV is determined solely by whether the INMATRIX parameter is set
to a symmetric matrix structure or to a (square) matrix structure. Symmetric matrices are best
stored in a symmetric matrix structure in order to save space, and to use the more efficient
symmetric decomposition algorithm. If INMATRIX is set to a matrix A of order n which happens
to be symmetric the results should be identical, up to the sign of the latent vectors, apart from
small numerical discrepancies of the order of machine precision and dependent on n and the
condition number of A. The algorithm used to solve the unsymmetric eigenvalue problem is
based on NAG Library subroutine F02EBF. The documentation of this routine should be
consulted for a full discussion of the method and accuracy of the results (NAG 1994).

When INMATRIX is set to a square matrix, the WMATRIX parameter is ignored. Similarly, the
TOLERANCE option and ILRV parameter are ignored if INMATRIX is set to a symmetric matrix.
Percentage variations are printed only if all roots are real.

Example 4.10.2b illustrates the use of FLRV to find the latent roots and vectors of a square
matrix A.

Example 4.10.2b

 8 MATRIX [ROWS=4;COLUMNS=4] A
 9 READ [PRINT=data,errors] A

 10 0.35 0.45 -0.14 -0.17
 11 0.09 0.07 -0.54 0.35
 12 -0.44 -0.33 -0.03 0.17
 13 0.25 -0.32 -0.13 0.11 :
 14 FLRV [PRINT=roots,vectors] A

Unsymmetric matrix decomposition
================================

Latent roots (real)

 1 2 3 4
 0.7995 -0.0994 -0.0994 -0.1007

Latent roots (imaginary)

 1 2 3 4
 0.0000 0.4008 -0.4008 0.0000

Trace

 0.5000

Latent vectors (real)

 1 2 3 4
 1 0.6551 -0.1933 -0.1933 0.1253
 2 0.5236 0.2519 0.2519 0.3320
 3 -0.5362 0.0972 0.0972 0.5938

4.10 Operations on matrices and compound structures 255

 4 0.0956 0.6760 0.6760 0.7221

Latent vectors (imaginary)

 1 2 3 4
 1 0.0000 0.2546 -0.2546 0.0000
 2 0.0000 -0.5224 0.5224 0.0000
 3 0.0000 -0.3084 0.3084 0.0000
 4 0.0000 0.0000 0.0000 0.0000

When the WMATRIX parameter is set, FLRV solves the two-matrix decomposition
AX = WXL

A and W are symmetric matrices with the same number of rows, n, and W must be positive semi-
definite. L is again a diagonal matrix of size n, and X is a (square) n-by-n matrix. The latent
roots, contained in matrix L, are the successive maxima of

l = (xNAx) / (xNWx)
where x is the corresponding column of the matrix X, normalized so that XNWX=I.

The method used to solve the two-matrix problem involves two spectral decompositions, each
computed as for the one-matrix problem above. The two-matrix decomposition is particularly
relevant for canonical variates analysis (see directive CVA).

The WMATRIX parameter supplies the matrix W, and A is specified by the INMATRIX parameter
as before. The LRV parameter can again be used to save the latent roots and vectors, and the
trace. However, the trace is now the trace of W!1A.

As an example we take W to be the diagonal of the matrix A. In this case, the solution is
equivalent to the spectral decomposition of the correlation matrix derived from A, although the
normalization of the latent vectors will be different. Example 4.10.2c shows the equivalence of
the two analyses.

Example 4.10.2c

 15 CALCULATE Usspcor = CORRMAT(Ussp)
 16 PRINT Usspcor; FIELDWIDTH=7; DECIMALS=3

 Usspcor

 1 1.000
 2 0.215 1.000
 3 0.179 0.113 1.000
 4 0.294 0.439 -0.002 1.000
 5 -0.137 0.100 -0.049 0.345 1.000
 6 -0.754 -0.013 -0.014 0.065 0.062 1.000
 7 0.177 -0.112 0.021 0.419 0.258 -0.359 1.000
 1 2 3 4 5 6 7

 17 DIAGONALMATRIX Dusp
 18 SYMMETRICMATRIX Sdusp
 19 CALCULATE Sdusp = (Dusp = Ussp)
 20 LRV [ROWS=7; COLUMNS=7] Uclrv,Usclrv
 21 FLRV [PRINT=roots,vectors; NROOTS=4] Usspcor; LRV=Uclrv

Spectral decomposition
======================

Latent roots

 1 2 3 4
 2.114 1.593 1.244 0.936

256 4 Calculations and data manipulation

Percentage variation

 1 2 3 4
 30.20 22.76 17.78 13.37

Trace

 7.000

Latent vectors

 1 2 3 4
 1 0.5558 -0.3518 0.1574 -0.1238
 2 0.2649 0.2787 0.6400 -0.2819
 3 0.1227 -0.1055 0.4073 0.8902
 4 0.4249 0.5042 0.1067 -0.0873
 5 0.1510 0.5429 -0.2671 0.1397
 6 -0.4809 0.4648 0.1942 0.1236
 7 0.4138 0.1497 -0.5284 0.2651

 22 & Ussp; LRV=Uclrv; WMATRIX=Sdusp

Two-matrix latent decomposition
===============================

Latent roots

 1 2 3 4
 2.114 1.593 1.244 0.936

Percentage variation

 1 2 3 4
 30.20 22.76 17.78 13.37

Trace

 7.000

Latent vectors

 1 2 3 4
 U[1] 0.09616 -0.06086 0.02723 0.02142
 U[2] 0.06482 0.06821 0.15664 0.06899
 U[3] 0.02494 -0.02144 0.08279 -0.18093
 U[4] 0.09889 0.11735 0.02484 0.02033
 U[5] 0.02429 0.08736 -0.04298 -0.02248
 U[6] -0.10395 0.10046 0.04198 -0.02672
 U[7] 0.13848 0.05011 -0.17682 -0.08871

A similar use of the two-matrix problem is when W is obtained from previous samples of the
same set of variables as those in A.

For a symmetric matrix A, you can use FLRV to form an inverse of A in much the same way
as the singular value decomposition. If A is singular, this forms the Moore-Penrose inverse
(pseudo inverse). Example 4.10.2d follows the lines of the SVD example for the generalized
inverse of a matrix (4.10.1).

Example 4.10.2d

 23 SYMMETRICMATRIX [ROWS=3; VALUES=10,13,17,17,22,29] Smx
 24 LRV [ROWS=3; COLUMNS=3] Lsmx; VECTORS=Vsmx; ROOTS=Rts

4.10 Operations on matrices and compound structures 257

 25 FLRV [PRINT=roots,vectors] Smx; LRV=Lsmx

Spectral decomposition
======================

Latent roots

 1 2 3
 55.80 0.20 0.00

Percentage variation

 1 2 3
 99.65 0.35 0.00

Trace

 56.00

Latent vectors

 1 2 3
 1 0.4233 0.0512 -0.9045
 2 0.5500 0.7788 0.3015
 3 0.7199 -0.6251 0.3015

 26 " The value 1.E-6 is to check for roots which,
 -27 but for numerical round-off, would be zero.
 -28 This might need to be changed in another example. "
 29 CALCULATE [ZDZ=zero] Irts = (Rts > 1.E-6) / Rts
 30 CALCULATE Ismx = Vsmx *+ Irts *+ TRANSPOSE(Vsmx)
 31 PRINT Ismx; FIELDWIDTH=8; DECIMALS=2

 Ismx
 1 2 3

 1 0.02 0.21 -0.16
 2 0.21 3.08 -2.46
 3 -0.16 -2.46 1.99

The relationship between the singular value decomposition of a rectangular matrix A and the
spectral decompositions of ANA and AAN is as follows. If A = USVN is the singular value
decomposition for A, then ANA = VSUNUSVN = VS2VN and AAN = USVNVSUN = US2UN, since UNU
= VNV = I. The rank of matrix A is q and q # min(m,n), which is p in our earlier notation (4.10.1);
q corresponds to the number of non-zero singular values, and the diagonal matrix S consists of
the q non-zero singular values followed by (p!q) zero values. This shows that the squares of the
q singular values of A are equivalent to the non-zero latent roots of the two symmetric matrices,
ANA and AAN, derived from A. It also shows that the matrices U and V contain the first p latent
vectors of AAN and ANA, respectively. For further details, see Rao (1973, Chapter 1) or Digby &
Kempton (1987, Appendix A.8).

Eigenvalues and vectors can also be obtained from the EVALUES and EVECTORS functions
(which use the same source code within Genstat as LRV).

258 4 Calculations and data manipulation

4.10.3 Forming sums of squares and products: the FSSPM directive

FSSPM directive
Forms the values of SSPM structures.

Options
PRINT = string tokens Printed output required (correlations, wmeans,

SSPM); default * i.e. no printing
WEIGHTS = variate or symmetric matrix

Variate of weights for weighted SSP, or symmetric
matrix of weights (one row and column for each unit of
data); default * i.e. all units with weight one

SEQUENTIAL = scalar Used for sequential formation of SSPMs; a positive
value indicates that formation is not yet complete (see
READ directive); default * i.e. not sequential

Parameter
SSPMs Structures to be formed

FSSPM forms the values for the component parts of SSPM structures, based on the information
supplied when the SSPM structures were declared (2.7.2). You can use an SSPM as input to the
regression directive TERMS (2:3.2.3), or the multivariate directives PCP (2:6.2.1) and CVA
(2:6.3.1). The method used to form the SSPM is based on the updating formula for the means and
corresponding corrected sums of squares and cross products (Herraman 1968).
FSSPM has one parameter which lists the SSPM structures whose values are to be formed.

Genstat takes account of restrictions on any of the variates or factors forming the terms of the
SSPM, or on the weights variate or grouping factor if you have specified them. If any of these
vectors has a missing value, the corresponding unit is excluded from all the means and all the
sums of squares and products. You can also exclude units by setting their weights to zero.

In Example 4.10.3a, units 1, 5 and 7 are omitted. Notice that the wmean setting of the PRINT
option is ignored, as the GROUPS option of the SSPM directive has not been set.

Example 4.10.3a

 2 VARIATE [NVALUE=10] Va[1...6]
 3 OPEN 'Harvfb.dat'; CHANNEL=2
 4 READ [CHANNEL=2] Va[]

 Identifier Minimum Mean Maximum Values Missing
 Va[1] 15.70 36.86 47.10 10 0
 Va[2] 32.30 37.91 55.60 10 0 Skew
 Va[3] 29.40 37.47 53.00 10 0
 Va[4] 26.20 33.66 44.00 10 0
 Va[5] 13.20 38.06 51.90 10 0
 Va[6] 12.70 36.74 54.60 10 0

 5 VARIATE Weight; VALUES=!(0,1,1,1,0,1,0,1,1,1)
 6 SSPM [TERMS=Va[]] Ssva
 7 FSSPM [PRINT=wmean,correlation,sspm; WEIGHT=Weight] Ssva

Degrees of freedom

Sums of squares: 6
Sums of products: 5
Correlations: 5

4.10 Operations on matrices and compound structures 259

Sums of squares and products

 Va[1] 1 482.54
 Va[2] 2 91.37 88.11
 Va[3] 3 248.40 141.25 559.24
 Va[4] 4 -82.84 -105.96 -75.79 270.99
 Va[5] 5 -305.37 -52.51 -142.92 248.19
 Va[6] 6 122.76 -30.11 248.49 43.17
 1 2 3 4

 Va[5] 5 983.05
 Va[6] 6 -593.52 799.23
 5 6

Means

 Va[1] 1 33.54
 Va[2] 2 35.39
 Va[3] 3 38.34
 Va[4] 4 34.67
 Va[5] 5 34.17
 Va[6] 6 34.27

Sum of weights

 7.000

Correlation matrix

 Va[1] 1 1.000
 Va[2] 2 0.443 1.000
 Va[3] 3 0.478 0.636 1.000
 Va[4] 4 -0.229 -0.686 -0.195 1.000
 Va[5] 5 -0.443 -0.178 -0.193 0.481 1.000
 Va[6] 6 0.198 -0.113 0.372 0.093 -0.670 1.000
 1 2 3 4 5 6

When you have very many units, you may not be able to store them all at the same time within
Genstat. You can then use the SEQUENTIAL option of READ (3.1.10) to read the data in
conveniently sized blocks, and the SEQUENTIAL option of FSSPM to control the accumulation
of the sums of squares and products. The SSPM is updated for each block of data in turn until
the end of data is found.

Example 4.10.3b

 8 OPEN 'Harv.dat'; CHANNEL=3
 9 SCALAR Sseq; 0
 10 VARIATE [NVALUE=10] V[1...5]
 11 SSPM [TERMS=V[]] Vssp
 12 FOR [NTIMES=999]
 13 READ [CHANNEL=3; SEQUENTIAL=Sseq] V[]
 14 FSSPM [SEQUENTIAL=Sseq; PRINT=SSPM] Vssp
 15 EXIT Sseq <= 0
 16 ENDFOR

 Identifier Minimum Mean Maximum Values Missing
 V[1] 8.520 10.13 11.75 10 0
 V[2] 8.910 9.829 10.80 10 0
 V[3] 8.690 10.95 13.08 10 0
 V[4] 7.710 10.01 11.65 10 0
 V[5] 9.290 10.50 12.34 10 0

260 4 Calculations and data manipulation

 Identifier Minimum Mean Maximum Values Missing
 V[1] 8.320 10.29 12.71 10 0
 V[2] 7.720 11.00 13.16 10 0
 V[3] 8.930 10.79 12.66 10 0
 V[4] 7.910 11.02 13.06 10 0
 V[5] 8.810 10.90 13.07 10 0

 Identifier Minimum Mean Maximum Values Missing
 V[1] 10.67 10.67 10.67 10 9
 V[2] 12.15 12.15 12.15 10 9
 V[3] 10.67 10.67 10.67 10 9
 V[4] 13.06 13.06 13.06 10 9
 V[5] 12.89 12.89 12.89 10 9

Degrees of freedom

Sums of squares: 20
Sums of products: 19

Sums of squares and products

 V[1] 1 27.75
 V[2] 2 4.72 39.99
 V[3] 3 -4.55 -3.45 34.06
 V[4] 4 4.01 16.81 7.59 55.32
 V[5] 5 6.76 24.19 10.79 16.81 34.71
 1 2 3 4 5

Means

 V[1] 1 10.23
 V[2] 2 10.50
 V[3] 3 10.86
 V[4] 4 10.64
 V[5] 5 10.80

Number of units used

 21

Notice that the PRINT option has no effect until the last set of values is processed, when READ
sets the scalar indicator to a negative value (3.1.10).

4.10.4 The QR decomposition

QRD directive
Calculates QR decompositions of matrices.

Option
PRINT = string tokens Printed output required (orthogonalmatrix,

uppertriangularmatrix); default * i.e. no printing

Parameters
INMATRIX = matrices or symmetric matrices

Matrices to be decomposed
ORTHOGONALMATRIX = matrices Orthogonal matrix of each decomposition

4.11 Operations on tables 261

UPPERTRIANGULARMATRIX = matrices
Upper-triangular matrix of each decomposition

QRD uses subroutines F08AEF and F08AFF from the NAG Library to calculate the QR
decomposition of a matrix. This is a decomposition of an m by n matrix A into an
orthogonal matrix Q (i.e. QNQ = I), and an n by m matrix R, so that A = Q R.

If m $ n, the top n rows of R are triangular and the lower m!n rows contain zeros. If m < n,
R is trapezoidal, i.e. it has the form (R1 | R2) where R1 is an upper triangular matrix and R2 is a
rectangular matrix.

The matrix A to be composed is specified by the INMATRIX parameter, and the matrices Q and
R can be saved using the ORTHOGONALMATRIX, and UPPERTRIANGULARMATRIX parameters,
respectively.

The PRINT option allows you to print either of the components of the
decomposition; by default, nothing is printed.

4.11 Operations on tables

A table is a structure that stores numerical summaries of data that are classified into groups. The
TABULATE directive forms tables from a variate (accompanied by factors to define the groups).
The tables may contain counts, means, standard errors of means, medians and other quantiles,
totals, minima, maxima, variances, standard deviations, skewness or kurtosis coefficients of the
observations in each group (4.11.1). You can also use tables to save means, effects and numbers
of replications from an analysis of variance (2:4.6.1), or predictions from regression and
generalized linear models (2:3.3.4 and 2:3.5.3), or results from stratified surveys (see procedures
SVSTRATIFIED and SVTABULATE), or modes (see procedure TABMODE).

As well as these standard types of table, Genstat can form tables involving multiple responses.
These occur in surveys as the result of open-ended questions like "Which cities have you
visited?". The raw input for a multiple response is often a set of variates or texts (depending on
whether the responses were numbers or strings). These can be processed by the FMFACTORS
procedure (4.11.8) to form a pointer containing a factor for each possible response code.
Summary tables, with one or more dimension corresponding to multiple responses, can then be
generated by the MTABULATE procedure (4.11.10). An alternative form of input, free text, finds
the responses as keywords within pieces of ordinary text supplied by the respondents. These can
be processed, again to form a pointer of factors, using the FFREERESPONSEFACTOR procedure
(4.11.9).

You can do numerical calculations on the values in tables, using the CALCULATE directive
(4.1.1, 4.1.4 and 4.2.5). You can copy tables into matrices (4.1.3). You can re-form a table to
omit or combine levels of any of the classifying factors (4.11.4). You can include margins, or
omit them, or recalculate them (4.11.2). You can express the body of a table as percentages of
one of its margins (4.11.3). You can also sort the contents of a table to put its margins into
ascending or descending order, as required for a Pareto chart (4.11.6).

4.11.1 Tabulation: the TABULATE directive

TABULATE directive
Forms summary tables of variate values.

Options
PRINT = string tokens Printed output required (counts, totals,

nobservations, means, minima, maxima,
variances, quantiles, sds, skewness, kurtosis,

262 4 Calculations and data manipulation

semeans, seskewness, sekurtosis); default * i.e.
no printing

CLASSIFICATION = factors Factors classifying the tables; default * i.e. these are
taken from the tables in the parameter lists

COUNTS = table Saves a table counting the number of units with each
factor combination; default *

SEQUENTIAL = scalar Used for sequential formation of tables; a positive value
indicates that formation is not yet complete (see READ);
default *

MARGINS = string token Whether the tables should be given margins if not
already declared (yes, no); default no

IPRINT = string token Whether to print the identifier of the table or the
identifier of the (associated) variate that was used to
form it (identifier, extra,
associatedidentifier); default iden

WEIGHTS = variate Weights to be used in the tabulations; default * indicates
that all units have weight 1

PERCENTQUANTILES = scalar or variate
Percentage points for which quantiles are required;
default 50 (i.e. median)

OWN = scalar or variate Specifies option settings for the OWNTAB subroutine and
indicates that this is to supply the data values instead of
the variates in the DATA list; default *

OWNFACTORS = factors Factors whose values are to be read by OWNTAB (must
include the factors of the classification set); default *

OWNVARIATES = variates Variates whose values are to be read by OWNTAB (must
include the DATA variates); default *

INCHANNEL = scalar Channel number of the file from which the OWNTAB
subroutine is to read the data (previously opened by an
OPEN statement)

INFILETYPE = string token Type of the OWN data file (input, unformatted);
default inpu

Parameters
DATA = variates Data values to be tabulated
TOTALS = tables Tables to contain totals
NOBSERVATIONS = tables Tables containing the numbers of non-missing values in

each cell
MEANS = tables Tables of means
MINIMA = tables Tables of minimum values in each cell
MAXIMA = tables Tables of maximum values in each cell
VARIANCES = tables Tables of cell variances
QUANTILES = tables or pointers Table to contain quantiles at a single

PERCENTQUANTILE or pointer of tables for several
PERCENTQUANTILEs (not available for sequential or
OWN tabulation)

SDS = tables Tables of standard deviations
SKEWNESS = tables Tables of skewness coefficients
KURTOSIS = tables Tables of kurtosis coefficients
SEMEANS = tables Tables of standard errors of means
SESKEWNESS = tables Tables of standard errors of skewness coefficients

4.11 Operations on tables 263

SEKURTOSIS = tables Tables of standard errors of kurtosis coefficients

TABULATE allows you to produce the various types of tabular summary listed in the settings of
its PRINT option. The variates whose values are to be summarized are listed with the DATA
parameter. If you want to save the summaries in tables, for manipulating or for printing later on,
you should list identifiers of the tables in the appropriate parameter list: for example, you would
save the totals in a table T by including T in the list for the TOTALS parameter. The other
parameters similarly give the other kinds of summary: numbers of non-missing values, means,
minima, maxima, variances, quantiles, standard deviations, skewness, kurtosis, (within-cell)
standard errors of means, skewness and kurtosis. If you specify less tables in the lists than the
number of DATA variates, Genstat produces accumulated summaries. For example, with

TABULATE Sales2001,Costs2001,Sales2002,Costs2002;\
 TOTALS=Totalsales,Totalcosts

the TOTALS list is recycled. So Totalsales will correspond to Sales2001 and Sales2002,
and accumulate the totals from both variates. Similarly Totalcost will contain the totals from
the variates Costs2001 and Costs2002. To avoid confusion, however, you are not allowed to
specify table lists with differing lengths.

The simplest quantile, and the one produced by default, is the median (50% quantile), but the
PERCENTQUANTILE option allows you to request any percentage point (between 0 and 100, of
course). Moreover, by specifying a variate as the setting for PERCENTQUANTILE, you can obtain
several quantiles at the same time. However, if you then want to save the results the setting of
the QUANTILE parameter must be a pointer with length equal to the required number of quantiles,
instead of a single table.

If you merely want to print the summaries, you do not usually need to list any tables; you need
only specify the PRINT option. The only exception to this is with sequential tabulation, described
at the end of this subsection.

The CLASSIFICATION option defines the classifying factors for the tables. This need not be
set if at least one of the tables has already been declared (but then all the declared tables must
have the same classifying factors). The MARGINS option determines whether or not the tables
will have margins, if none have already been declared (and those that have been declared must
be either all with margins or all without margins).

Example 4.11.1a concerns goods of two different types dispatched to four different towns. In
the print of the data you will notice that the book-keeping has been rather slack. There is one
consignment (in line 7) where the type has not been recorded. With such observations, Genstat
cannot find out what the group should be because one of the factor values is missing; so they are
ascribed to the unknown cell associated with the table (2.5). In the declaration in line 10, the
scalar that stores this value has been named so that it can be referred to in later calculations.
After the tabulation (line 11), table Totdisp stores the total number of items of each type
dispatched to each town, and the scalar Udisp summarizes the observations with unknown type
or destination.

Example 4.11.1a

 2 VARIATE [NVALUES=15] Quantity,Charge
 3 FACTOR [NVALUES=15; LABELS=!T(A,B)] Type
 4 & [LABELS=!T(London,Manchester,Birmingham,Bristol)] Town
 5 READ [PRINT=data,errors] Town,Quantity,Type; FREPRESENTATION=labels
 6 London 10 A Manchester 5 B Birmingham 10 B Bristol 25 A
 7 Manchester 10 * Birmingham 100 B London 200 B Manchester 25 A
 8 Bristol 50 A Birmingham 25 A Bristol 25 B London 25 A
 9 London 50 B Manchester 25 B London 50 A :
 10 TABLE [CLASSIFICATION=Town,Type] Totdisp; UNKNOWN=Udisp
 11 TABULATE Quantity; TOTALS=Totdisp
 12 PRINT Totdisp; DECIMALS=0

264 4 Calculations and data manipulation

 Totdisp
 Type A B
 Town
 London 85 250
 Manchester 25 30
 Birmingham 25 110
 Bristol 75 25

Unknown cell
 Totdisp 10

Example 4.11.1b illustrates what happens when a value of the data variate is missing. Variate
Charge stores the charge to be made for the transport of each consignment, and you will see that
three of the values are missing (because these invoices have not yet been prepared). In the tables
listed with the parameters, missing data values are ignored. For example, the table Invoices
is declared automatically by the NOBSERVATIONS parameter to hold the number of invoices sent
to each destination; it excludes the observations where Charge has a missing value. Similarly
Payment contains the total charge to be paid on behalf of each destination, ignoring the missing
values. You can however obtain a count of the numbers of units that would have contributed to
each group if no values had been missing: you use the COUNTS option if you want to save the
table, or put PRINT=counts if you want to print it. So table Nconsign contains the total
number of consignments made to each destination (regardless of whether the corresponding
charge is missing or not). The data variates are irrelevant for counts, and so you need not list any
if counts are all that you require.

If there are no observations in one of the groups, the corresponding cell will be zero in a table
of numbers of observations or counts; in a table of totals, means, minima, maxima, variances,
standard deviations, skewness, kurtosis or standard errors of means the cell will contain a
missing value.

Example 4.11.1b

 13 READ [PRINT=data,errors] Charge
 14 10 20 15 15 * 60 80 30 25 15 25 15 40 * * :
 15 TABULATE [CLASSIFICATION=Town; COUNTS=Nconsign] DATA=Charge; \
 16 TOTALS=Payment; NOBSERVATIONS=Invoices
 17 PRINT Nconsign,Invoices,Payment; DECIMALS=0,0,2

 Nconsign Invoices Payment
 Town
 London 5 4 145.00
 Manchester 4 2 50.00
 Birmingham 3 3 90.00
 Bristol 3 3 65.00

Weighted tables can be obtained by setting the WEIGHT option to a variate of weights. You can,
in general, think of weights as a set of multipliers which are applied to the data before any
operations are performed. Thus, for most aspects of weighted tabulation you can replace x by wx
and 1 by w (that is, n by Ów) in the standard formulae; see the table below. This is not what
happens in the case of variances, standard deviations (which are square roots of the variances)
and quantiles, but it is true for the other functions (including counts).

4.11 Operations on tables 265

Unweighted Weighted

Count n Ó w

Total Ó x Ó wx

Nobservations n Ó w (x not missing)

Mean Ó x/n Ó wx / Ó w

Minimum Min(x) Min(wx)

Maximum Max(x) Max(wx)

Variance Ó(x ! (Óx/n))2 / n!1 Ów(x ! (Ówx/Ów))2 / Ó w!1

Skewness Ó(x ! (Óx/n))3

/ (Ó(x ! (Óx/n))2)3/2
Ó w (x ! (Ówx/Ów))3

/ (Ó w (x ! (Ówx/Ów))2)3/2

Kurtosis Ó(x ! (Óx/n))4

/ (Ó(x ! (Óx/n))2)2 ! 3
Ó w (x ! (Ówx/Ów))4

/ Ó w (x ! (Ówx/Ów))2)2 ! 3

s.e. skewness %({ 6n × (n!1) }
/ { (n!2) × (n+1) × (n+3) })

%({ 6Ów × (Ów ! 1) }
/ { (Ów ! 2) × (Ów + 1) ×
 (Ów + 3) })
(x not missing)

s.e. kurtosis %({ 24 × n × (n!1)2 }
/ { (n!2) × (n!3) × (n+5) ×
 (n+3) })

%({ 24 × Ów × (Ów ! 1)2 }
/ { (Ów ! 2) × (Ów ! 3) ×
 (Ów + 5) × (Ów + 3) })
(x not missing)

A quick look at the formula used for the weighted variance (or the standard deviation) or
skewness or kurtosis shows that it breaks down for Ów<1; in fact it is valid only when the
weights are integer values greater than or equal to zero. Similarly, with quantiles the weights are
assumed to specify replicated observations; so these must also be non-negative integers. If an
invalid weight is found during the calculation of a variance, skewness, kurtosis or quantile a fault
will be reported. Temporary tables will be deleted, but named tables may contain partial results.
However, non-integer weights are allowed in other contexts. The standard deviation is the square
root of the variance, and the standard error of the mean is the standard deviation divided by the
square root of the number of observations.

If you have many observations to summarize, there may be insufficient space within Genstat
for you to read them all and then form the tables. To cater for such situations, Genstat allows you
to process the data in sections, using the SEQUENTIAL option of TABULATE in conjunction with
the SEQUENTIAL option of READ (3.1.8). After READ, the absolute value of the option indicates
the number of units that have been read in this particular section; the value is positive during
interim sections and negative or zero once the terminator at the end of the data is reached.
TABULATE will not print any tables until the final section has been processed. If you want to see
the intermediate tables, you can include a PRINT statement after the TABULATE statement. To
allow Genstat to keep contact with the working tables in which the results are accumulating, you
must save at least one out of the various types of table for every DATA variate. Genstat can then
link the working tables to this named table during the course of the sequential tabulation, so that
the information is not lost between the successive uses of TABULATE.

This is illustrated in Example 4.11.1c, which also shows how to use the IPRINT option to
print the identifier of the variate from which the table was formed, instead of the identifier of the
table. Also notice that this time the table formed has a margin (2.5). As there is only one type of

266 4 Calculations and data manipulation

table being printed, Genstat has labelled the margin appropriately (as "Mean"). If several types
of table were printed, Genstat would label the margins as "Margin". For tables of quantiles, the
margin label is either "Median" (for the 50% quantile) or, say, "25%" for the 25% quantile.
These labels are associated with the tables for later use, for example by PRINT.

The printed table summarizes the amount of excess baggage per person for the passengers on
a particular flight. There are 77 passengers. The factors and variates are declared to have length
20, so the data are read in three sections of size 20 and a final section of size 17. The setting of
the SEQUENTIAL option is the scalar S: it has the value 20 for the first three times that the loop
is executed, and !17 on the final time. Notice that the variate Baggage is given missing values
in units 18 to 20 in the final section: the value !17 in S tells Genstat that these units are not to
be included in the tabulation. The loop construct FOR-ENDFOR is described in 5.2.1, and the
EXIT directive in 5.2.4.

Example 4.11.1c

 2 UNITS [NVALUES=20]
 3 FACTOR [LABELS=!T(UK,EEC,other)] National
 4 FACTOR [LABELS=!T(male,female)] Sex
 5 VARIATE Baggage
 6 VARIATE Excess; EXTRA=' baggage per person in Kilograms'; DECIMALS=3
 7 OPEN 'Flight.dat'; CHANNEL=2
 8 SCALAR S
 9 FOR [NTIMES=999]
 10 READ [CHANNEL=2; SEQUENTIAL=S] Baggage,Sex,National; \
 11 FREPRESENTATION=labels
 12 CALCULATE Excess=(Baggage>20)*(Baggage-20)
 13 TABULATE [PRINT=mean; CLASSIFICATION=Sex,National; SEQUENTIAL=S; \
 14 MARGINS=yes; IPRINT=associatedidentifier] \
 15 Excess; NOBSERVATIONS=Ntemp; MEANS=Mtemp
 16 EXIT S <= 0
 17 ENDFOR

 Identifier Minimum Mean Maximum Values Missing
 Baggage 15.00 20.50 28.00 20 0

 Identifier Values Missing Levels
 Sex 20 0 2
 National 20 0 3

 Identifier Minimum Mean Maximum Values Missing
 Baggage 17.00 22.45 35.00 20 0

 Identifier Values Missing Levels
 Sex 20 0 2
 National 20 0 3

 Identifier Minimum Mean Maximum Values Missing
 Baggage 15.00 20.65 30.00 20 0

 Identifier Values Missing Levels
 Sex 20 0 2
 National 20 0 3

 Identifier Minimum Mean Maximum Values Missing
 Baggage 15.00 20.35 28.00 20 3

 Identifier Values Missing Levels
 Sex 20 3 2
 National 20 3 3

4.11 Operations on tables 267

 Excess

 National UK EEC other Mean
 Sex
 male 1.292 2.364 3.857 2.265
 female 1.200 1.400 1.250 1.250
 Mean 1.256 2.063 2.909 1.896

The final five options of TABULATE (OWN, OWNFACTORS, OWNVARIATES, INCHANNEL and
INFILETYPE) are appropriate when you have linked your own Fortran subroutine, G5XZIT, to
Genstat so that you can handle complicated arrangements of data, as may occur for example in
hierarchical surveys. This facility is not available in every implementation of Genstat.

G5XZIT is a Fortran subprogram, for you to modify as required, which is called from within
TABULATE for each unit to be tabulated. It contains switches to tell TABULATE when a data error
occurs or when all the data have been read. To use it you have to link your own version of
Genstat, so that your version of G5XZIT will be used instead of the standard version supplied
as part of Genstat.

The subprogram can be as simple or as complicated as you like (or need), provided it obeys
a few simple rules. A very simple version, reading two variates and two factors, is supplied with
Genstat (see below). This should provide sufficient information for you to write your own
version, and link it into your own private version of Genstat.

The OWN option should be set to a variate allowing you to communicate between your Genstat
code and your G5XZIT subprogram. The OWNFACTORS option provides the list of factors to be
read by G5XZIT. It must include the classifying factors needed in the current TABULATE
instruction, but it may contain others as well. The OWNVARIATES option should provide a similar
list of variates. The INCHANNEL option should be set to the Genstat channel number of the data
file, as specified in a previous OPEN statement or in the Genstat command line. The
INFILETYPE option specifies whether the data file is character (input) or binary (unformatted).

The documentation of G5XZIT is included with the Fortran and so is not repeated here. The
following example shows how TABULATE can be used with the standard version of G5XZIT,
which is set up simply to read two variates and two factors from a sequential character file. The
two variates are read with Fortran format F4.2, which means that their values must be in a field
of four characters and will be scaled by 100; the two factors are read with format I4, so the factor
values must be integer levels in a field of four characters. Here is a short data file with values
in this format.

1100 200 1 2
1200 100 1 2
1300 100 2 3
1400 200 2 3
1500 200 1 1
1600 300 2 1

Example 4.11.1d shows how TABULATE can read these values from a file called Own.dat and
form a tabular summary of the first variate.

Example 4.11.1d

 2 " Declare factors F1 and F2 "
 3 FACTOR [LEVELS=2] F1
 4 & [LEVELS=3] F2
 5 " Open data file containing values for V1, V2, F1 and F2 "
 6 OPEN 'Own.dat'; CHANNEL=3
 7 " Print table of means of variate V1, classified by F1 and F2 "
 8 TABULATE [PRINT=means; CLASSIFICATION=F1,F2; OWN=0; \
 9 OWNFACTORS=F1,F2; OWNVARIATES=V1,V2; INCHANNEL=3] V1

268 4 Calculations and data manipulation

 Mean
 F2 1 2 3
 F1
 1 15.00 11.50 *
 2 16.00 * 13.50

TABULATE allows only one classification set to be used at a time. If the data set is complicated
enough to require G5XZIT, then several tabulations with different classifying sets are likely to
be needed. Rather than have a separate branch in G5XZIT for each tabulation, you can put all
the factors and all the variates that you will need into the settings of the OWNFACTORS and
OWNVARIATES options, and leave TABULATE to extract the ones it needs each time. If you have
several TABULATE statements as suggested, you will have to close the data file and re-open it
between them.

4.11.2 Forming margins of tables: the MARGIN directive

MARGIN directive
Forms and calculates marginal values for tables.

Option
CLASSIFICATION = factors Factors classifying the margins to be formed; default *

requests all margins to be formed

Parameters
OLDTABLE = tables Tables from which the margins are to be taken or

calculated
NEWTABLE = tables New tables formed with margins
METHOD = string tokens Way in which the margins are to be formed for each

table (totals, means, minima, maxima,
variances, medians, deletion, or a null string
to indicate that the marginal values are all to be set to
the missing value); default tota

You can use MARGIN to extend a table to contain marginal values, or to change the marginal
values of a table that already has margins, or to delete the margins from a table. The tables whose
margins are to be changed are specified by the OLDTABLE parameter. If you specify only this
parameter, the new values replace those of the original tables. For example, in 2.5, the statement

MARGIN Classnum,Schoolnm

formed margins of totals over all the classifying factors for the tables, Classnum and
Schoolnm; the new values, including the margins, replaced the original values of Classnum and
Schoolnm.

However, if you want to retain the original values, you can specify new tables to contain the
amended values, using the NEWTABLE list. These tables will be declared automatically, if you
have not declared them already.

Example 4.11.2a creates the new tables, Classt and Schoolt, with margins of totals, using
the values in the tables Classnum and Schoolnm.

Example 4.11.2a

 2 FACTOR [LABELS=!T(boy,girl)] Sex
 3 FACTOR [LEVELS=5] Class
 4 FACTOR [LEVELS=2] School

4.11 Operations on tables 269

 5 TABLE [CLASSIFICATION=Class,Sex; \
 6 VALUES=15,17,29,31,34,30,33,35,28,27] Classnum
 7 TABLE [CLASSIFICATION=School,Class,Sex; VALUES=15,17,29,31,34, \
 8 30,33,35,28,27,18,16,33,31,35,36,34,33,31,32] Schoolnm
 9 MARGIN Classnum,Schoolnm; NEWTABLE=Classt,Schoolt
 10 PRINT Classt,Schoolt; DECIMALS=0

 Classt
 Sex boy girl Margin
 Class
 1 15 17 32
 2 29 31 60
 3 34 30 64
 4 33 35 68
 5 28 27 55
 Margin 139 140 279

 Schoolt
 Sex boy girl Margin
 School Class
 1 1 15 17 32
 2 29 31 60
 3 34 30 64
 4 33 35 68
 5 28 27 55
 Margin 139 140 279
 2 1 18 16 34
 2 33 31 64
 3 35 36 71
 4 34 33 67
 5 31 32 63
 Margin 151 148 299
 Margin 1 33 33 66
 2 62 62 124
 3 69 66 135
 4 67 68 135
 5 59 59 118
 Margin 290 288 578

You can form other types of margin by setting the METHOD parameter. The next example forms
the tables Classno and Schoolno with margins of means and maxima respectively.

Example 4.11.2b

 11 MARGIN Classnum,Schoolnm; NEWTABLE=Classno,Schoolno; \
 12 METHOD=means,maxima : PRINT Classno,Schoolno; DECIMALS=0

 Classno
 Sex boy girl Margin
 Class
 1 15 17 16
 2 29 31 30
 3 34 30 32
 4 33 35 34
 5 28 27 28
 Margin 28 28 28

 Schoolno
 Sex boy girl Margin
 School Class
 1 1 15 17 17
 2 29 31 31
 3 34 30 34
 4 33 35 35
 5 28 27 28
 Margin 34 35 35
 2 1 18 16 18

270 4 Calculations and data manipulation

 2 33 31 33
 3 35 36 36
 4 34 33 34
 5 31 32 32
 Margin 35 36 36
 Margin 1 18 17 18
 2 33 31 33
 3 35 36 36
 4 34 35 35
 5 31 32 32
 Margin 35 36 36

All the examples so far have been of adding margins. But you can delete them too: if you set
METHOD=deletion, all the margins of the tables are deleted but the body of the table is retained.

The CLASSIFICATION option specifies the list of factors for which you want to form
marginal values. Example 4.11.2c forms a margin of totals for the factor Class in the table
Classnum.

Example 4.11.2c

 13 MARGIN [CLASSIFICATION=Sex] Classnum
 14 PRINT Classnum; DECIMALS=0

 Classnum
 Sex boy girl Margin
 Class
 1 15 17 32
 2 29 31 60
 3 34 30 64
 4 33 35 68
 5 28 27 55
 Margin 0 0 0

Genstat puts missing values in the margins that are excluded if the METHOD parameter is set to
maxima or minima; for other settings of METHOD, Genstat puts in zeroes.

The classifying sets for each table can be different, but all the factors listed by the
CLASSIFICATION option must be in the classifying sets of each OLDTABLE. So, for example,

MARGIN [CLASSIFICATION=Sex,School] Classnum, Schoolnm

would fail because the factor School is not in the classifying set of Classnum.

4.11.3 Forming tables of percentages: the PERCENT and T%CONTROL procedures

PERCENT procedure
Expresses the body of a table as percentages of one of its margins (R.W. Payne).

Options
CLASSIFICATION = factors Factors classifying the margin over which the

percentages are to be calculated
METHOD = string token Method to use to calculate the margin if not already

present (totals, means, minima, maxima,
variances, medians); default tota

HUNDRED = string token Whether to put 100% values into the margin instead of
the original values (no, yes); default no

Parameters
OLDTABLE = tables Tables containing the original values

4.11 Operations on tables 271

NEWTABLE = tables Tables to store the percentage values; if any of these is
unset, the new values replace those in the original table

The PERCENT procedure allows you to express the body of a table as percentages of the values
in one of its margins. The table is specified using the OLDTABLE parameter. A table to store the
new values can be specified using the NEWTABLE parameter, otherwise these replace the values
of the original table. The margin is indicated by listing the factors that define it using the
CLASSIFICATION option; the default is the final margin (the grand total, or grand mean &c).
If the original table has no margins, option METHOD defines how these are to be calculated (totals,
means, minima, maxima, variances, medians); the default is to form margins of totals. The values
originally in the margin will be left unchanged. If you would prefer these to be replaced by
values of 100%, you should set option HUNDRED=yes.

In Example 4.11.3a the contents of the table Totdisp, formed in Example 4.11.1a, are
expressed as percentages of the overall margin ! which, as option HUNDRED is not set, is left with
its original value 625. The unknown cell is not included in the calculations, and option setting
PUNKNOWN=never in PRINT suppresses it from being printed.

Example 4.11.3a

 18 PERCENT Totdisp; NEWTABLE=Totdisp%
 19 PRINT [PUNKNOWN=never] Totdisp%; DECIMALS=2

 Totdisp%
 Type A B Total
 Town
 London 13.60 40.00 53.60
 Manchester 4.00 4.80 8.80
 Birmingham 4.00 17.60 21.60
 Bristol 12.00 4.00 16.00
 Total 33.60 66.40 625.00

T%CONTROL procedure
Expresses tables as percentages of control cells (R.W. Payne).

Option
PRINT = string token Controls printed output (percentages); default perc

Parameters
OLDTABLE = tables Tables containing the original values
NEWTABLE = tables Tables to store the percentage values
FACTOR = factors or pointers Factor, or pointer of factors, with control levels
CONTROL = scalars, vaiates, texts or pointers

Identifies the control level or levels of each FACTOR (if
more than one is specified for a factor, their mean is
used); default uses the reference level

T%CONTROL allows you to express the body of a table as percentages of the values of "control"
levels of one or more of its classifying factors. These controls might be standard or check
varieties in a variety trial, or placebo treatments in a medical trial, or zero levels of fertilizers in
an agricultural field experiment, etc.

You supply the table using the OLDTABLE parameter. You can save a new table containing the
percentages using the NEWTABLE parameter. The factors containing the control levels are
specified by the FACTOR parameter; if there are several you must put them into a pointer. The
CONTROL parameter identifies the control levels of each factor. Usually the factor will have a

272 4 Calculations and data manipulation

single control, specified either by giving its level (in a scalar) or its label (in a string or single-
valued text). Alternatively, you can define several controls, by specifying a variate (of levels)
or a multi-valued text (of labels); T%CONTROL then takes means over the control levels. Again,
if there are several factors, you must put the corresponding CONTROL settings into a pointer. If
CONTROL is unset or missing for any factor, T%CONTROL uses its reference level.

Not all the factors in the table need to have control levels. Suppose, for example, we have a
2-way table with factors A and B where the first level of A (a1) is the control. Then the cell (ai,
bj) will be given as a percentage of the cell (a1, bj).

By default T%CONTROL prints the table of percentages, but you can set option PRINT=* to
suppress this.

Example 4.11.3b the contents of the table Totdisp, formed in Example 4.11.1a, are as
percentages of amounts dispatched to London.

Example 4.11.3b

 20 T%CONTROL Totdisp; FACTOR=Town; CONTROL='London'

 Type A B
 Town
 London 100.00 100.00
 Manchester 29.41 12.00
 Birmingham 29.41 44.00
 Bristol 88.24 10.00

expressed as percentages of Town London.

4.11.4 Combining or omitting slices of tables and matrices: the COMBINE directive

COMBINE directive
Combines or omits "slices" of a multi-way data structure (table, matrix or variate).

Options
OLDSTRUCTURE = identifier Structure whose values are to be combined; no default

i.e. this option must be set
NEWSTRUCTURE = identifier Structure to contain the combined values; no default i.e.

this option must be set

Parameters
OLDDIMENSION = factors or scalars

Dimension number or factor indicating a dimension of
the OLDSTRUCTURE

NEWDIMENSION = factors or scalars
Dimension number or factor indicating the
corresponding dimension of the NEWSTRUCTURE; this
can be omitted if the dimensions are in numerical order,
while zero settings (each in conjunction with a single
OLDPOSITION) allows a slice of an old table to be
mapped into a new table with fewer dimensions

OLDPOSITIONS = pointers, texts, variates or scalars
These define positions in each OLDDIMENSION: pointers
are appropriate for matrices whose rows or columns are
indexed by a pointer; texts are for matrices indexed by a

4.11 Operations on tables 273

text, variates with a textual labels vector, or tables
whose OLDDIMENSION factor has labels; and variates
either refer to levels of table factors or numerical labels
of matrices or variates, if these are present, otherwise
they give the (ordinal) number of the position. If
omitted, the positions are assumed to be in (ordinal)
numerical order. Margins of tables are indicated by
missing values

NEWPOSITIONS = pointers, texts, variates or scalars
These define positions in each NEWDIMENSION,
specified similarly to OLDPOSITIONS; these indicate
where the values from the corresponding
OLDDIMENSION positions are to be entered (or added to
any already entered there)

WEIGHTS = variates Define weights by which the values from each
OLDDIMENSION coordinate are to be multiplied before
they are entered in the NEWDIMENSION

Sometimes you may wish to reclassify a table to have factors different from those that you used
in its declaration. COMBINE allows you to omit or to combine levels of the classifying factors.
Furthermore, if you want to take just one level of a factor, you can copy the values into a table
with one less dimensions.

You specify the original table using the OLDSTRUCTURE option, and a table to contain the
reclassified values using the NEWSTRUCTURE option; if you have not already declared the new
table, it will be declared implicitly. You must specify both of these options.

You can modify several of the classifying factors at a time. You list the factors of the original
table with the OLDDIMENSION parameter, and the equivalent factors of the new table with
NEWDIMENSION. An alternative way of doing this is to give a dimension number, specifying the
position of the factor in the classifying set of the table (2.5); for the NEWDIMENSION list, this
requires that you have already declared the new table. You can even omit the list of dimensions
if they would be in ascending numerical order.

In Example 4.11.4a, the table Sales contains the number of items of some product sold by
a retailer with shops in nine towns, in the years 1979 to 1984. Lines 21 to 24 form a table
Csales in which the sales are classified by the country where the sale was made, instead of the
town; so there is one OLDDIMENSION, the factor Town, and a corresponding NEWDIMENSION,
Country.

Example 4.11.4a

 2 TEXT [VALUES= Aberdeen,Birmingham,Cardiff,Dundee,Edinburgh, \
 3 Liverpool,Manchester,Sheffield,Swansea] Townname
 4 VARIATE [VALUES=1979,1980,1981,1982,1983,1984] Yearnum
 5 FACTOR [LABELS=Townname] Town
 6 FACTOR [LEVELS=Yearnum] Year; DECIMALS=0
 7 TABLE [CLASSIFICATION=Town,Year] Sales
 8 READ Sales

 Identifier Minimum Mean Maximum Values Missing
 Sales 343.0 676.3 1158 54 0

 18 PRINT Sales; FIELDWIDTH=8; DECIMALS=0

274 4 Calculations and data manipulation

 Sales

 Year 1979 1980 1981 1982 1983 1984
 Town
 Aberdeen 608 635 672 692 685 723
 Birmingham 618 601 784 720 863 921
 Cardiff 757 743 785 816 783 737
 Dundee 343 391 358 366 418 470
 Edinburgh 714 751 710 763 788 830
 Liverpool 816 859 820 938 1007 1158
 Manchester 662 632 758 721 893 837
 Sheffield 531 569 615 624 607 593
 Swansea 416 461 478 462 497 520

 19 FACTOR [LABELS=!T(England,Wales,Scotland)] Country
 20 " Form a table Csales, classified by country instead of town."
 21 COMBINE [OLDSTRUCTURE=Sales; NEWSTRUCTURE=Csales] \
 22 OLDDIMENSION=Town; NEWDIMENSION=Country; \
 23 OLDPOSITIONS=!(2,6,7,8,1,4,5,3,9); \
 24 NEWPOSITIONS=!T(4(England),3(Scotland),2(Wales))
 25 PRINT Csales; FIELDWIDTH=8; DECIMALS=0

 Csales

 Year 1979 1980 1981 1982 1983 1984
 Country
 England 2627 2661 2977 3003 3370 3509
 Wales 1173 1204 1263 1278 1280 1257
 Scotland 1665 1777 1740 1821 1891 2023

Each of the levels of Country is a combination of several levels of Town. You use the
OLDPOSITIONS and NEWPOSITIONS parameters to specify how this combining is to be done.
These parameters specify a pair of vectors for each pair of old and new dimensions, listing
positions within the old dimension and the corresponding positions to which they are mapped
in the new dimension. The positions can be defined in terms of either the levels or the labels of
the factor that classifies the dimension. In the example, the vector for the old dimension Town
is an unnamed variate !(2,6,7,8,1,4,5,3,9) whose values refer to the levels (1 to 9); the
vector for Country is an unnamed text !T(4(England),3(Scotland),2(Wales)) whose
values are labels of Country. The correspondence between the two sets of values is:

Town level Town label Country label Country level
2 Birmingham England 1
6 Liverpool England 1
7 Manchester England 1
8 Sheffield England 1
1 Aberdeen Scotland 2
4 Dundee Scotland 2
5 Edinburgh Scotland 2
3 Cardiff Wales 3
9 Swansea Wales 3

Thus, as you can see, the values in the original table for the English towns (Birmingham,
Liverpool, Manchester and Sheffield) are allocated to Country England in the new table, the
Scottish towns (Aberdeen, Dundee and Edinburgh) are allocated to Scotland, and Cardiff and
Swansea are allocated to Wales.

If you omit the vector for one of the dimensions, it is assumed to contain each value once only,
taken in the order in which they occur in the levels vector of the factor. Thus the OLDPOSITIONS
variate could be omitted in

COMBINE[OLDSTRUCTURE=Sales; NEWSTRUCTURE=Csales] \

4.11 Operations on tables 275

 OLDDIMENSION=Town; NEWDIMENSION=Country; \
 OLDPOSITIONS=!(1...9); NEWPOSITIONS= \
 !T(Scotland,England,Wales,2(Scotland),3(England),Wales)

You indicate a margin of the table by a missing value in a variate, or by a null string in a text.

Values in the original table can be allocated to more than one place. Also, as we have
mentioned already, you can modify more than one dimension at a time. In Example 4.11.4b, the
Years dimension is modified as well as the Town dimension: years 1979 and 1980 are omitted,
while the other years are allocated to two summary lines as well as to themselves in the new
dimension Ysummary. Thus the new table Salesum has lines giving sales for the individual
years, interspersed with bi-annual totals. Note that the interspersing of the summary lines is
ensured by the order in which the FACTOR declaration specifies the labels of the factor Yearsum.

Example 4.11.4b

 26 " Form a table classified by country and year,
 -27 including biannual totals."
 28 FACTOR [LABELS=!T('1981','1982','1981-2','1983','1984','1983-4')]\
 29 Yearsum
 30 TABLE [CLASSIFICATION=Yearsum,Country] Salesum
 31 COMBINE [OLDSTRUCTURE=Sales; NEWSTRUCTURE=Salesum] \
 32 OLDDIMENSION=Town,Year; NEWDIMENSION=Country,Yearsum; \
 33 OLDPOSITIONS=!(2,6,7,8,1,4,5,3,9),!V((1981...1984)2); \
 34 NEWPOSITIONS=!T(4(England),3(Scotland),2(Wales)), \
 35 !T('1981','1982','1983','1984',2('1981-2','1983-4'))
 36 PRINT Salesum; FIELDWIDTH=8; DECIMALS=0

 Salesum

 Country England Wales Scotland
 Yearsum
 1981 2977 1263 1740
 1982 3003 1278 1821
 1981-2 5980 2541 3561
 1983 3370 1280 1891
 1984 3509 1257 2023
 1983-4 6879 2537 3914

The final use of the sales data shows how to extract a single slice of a table into a table with
fewer dimensions. In Example 4.11.4c, the OLDPOSITIONS parameter specifies a single level
England of the OLDDIMENSION Country, the NEWDIMENSION is set to 0. The new table is thus
classified by only the factor Yearsum, and contains information about sales in England.

Example 4.11.4c

 37 COMBINE [OLDSTRUCTURE=Csales; NEWSTRUCTURE=Esales] \
 38 OLDDIMENSION=Country; NEWDIMENSION=0; OLDPOSITIONS='England'
 39 PRINT Esales

 Esales
 Year
 1979 2627
 1980 2661
 1981 2977
 1982 3003
 1983 3370
 1984 3509

In parallel with the vectors of positions, you can also specify a variate of weights by which the
values are multiplied before being entered into the new table. Thus, for example, forming
summary lines of means instead of totals would require an extra parameter list

276 4 Calculations and data manipulation

WEIGHTS=*,!(1,1,1,1,0.5,0.5,0.5,0.5)

Although the main way in which you will use COMBINE is likely to be for tables, you can also
use it on rectangular matrices and even variates. For these, the dimensions can only be numbers:
number 1 refers to the rows of a matrix, and 2 to the columns; number 1 refers to the rows (or
units) of a variate. The position vectors refer to the labels vectors of matrices (2.4.1), which can
be variates, texts or pointers; or they refer to the unit labels of a variate (2.3.1), which can be
held in either a variate or a text. If a dimension has no labels vector, you use a variate to specify
its positions; then each value of the variate gives the number of a row, column or unit. You can
do the same also if the labels vector is something other than a variate: that is, a text or a pointer.

4.11.5 Inserting a table into another table: the TABINSERT procedure

TABINSERT procedure
Inserts the contents of a sub-table into a table (R.W. Payne).

Options
OLDTABLE = tables Table containing the original values
SUBTABLE = tables Sub-table to insert into the original table
NEWTABLE = tables Tables to store the new values; if this is not set, these

replace those in the original table

Parameters
OLDFACTOR = factors Factors classifying the dimensions of the old table that

are smaller in the sub-table
SUBFACTOR = factors Specifies the factors classifying the corresponding

dimensions of the sub-table
FREPRESENTATION = string token How to match the values of each OLDFACTOR and

SUBFACTOR (levels, labels); default leve

TABINSERT allows you to replace values in a table by those in a sub-table. It can also be used
to insert values into the margins of a table. The original table and the sub-table are specified by
the OLDTABLE and SUBTABLE options, respectively. You can use the OLDTABLE option to a
specify a table to store the modified table values. If this is not set, they replace those in the
original table.

The sub-table will usually have the same number of classifying factors as the original table.
Some may be in common (and these can be ignored). Pairs of factors that differ are specified by
the OLDFACTOR and SUBFACTOR parameters. The FREPRESENTATION indicates whether the
factors are to be matched by their levels (default) or their labels. The idea is that the levels (or
labels) of the SUBFACTOR are a subset of those of the OLDFACTOR, indicating where the values
of the sub-table are to be inserted. If you omit some factors of the original table from both the
sub-table and the OLDFACTOR list, the values of the sub-table are inserted into their margins in
the modified table.

If both tables have margins, those in the sub-table will be transferred as well as those in the
body of the table. If you want to omit the marginal values, you should remove the margins from
the sub-table, using the MARGIN directive with parameter METHOD=deletion; see 4.11.2. You
can also use MARGIN to recalculate the margins in the new table, if they are no longer valid after
the values in the sub-table have been inserted.

Example 4.11.5 considers a similar situation to that in Example 4.11.1, except that here we
want to include some additional summaries which will be calculated independently in Scotland.
The first 12 lines form totals for the English data, as in Example 4.11.1a.

4.11 Operations on tables 277

Notice, though, that the factor Town now has two additional levels for the Scottish towns
Edinburgh and Glasgow. The information for these towns is provided, already summarized, in
lines 13-16. The table Scotsdisp is classified by the factor Type (like the table UKdisp formed
in lines 11 and 12) and the factor Scotstown with levels Edinburgh and Glasgow that are a
subset of the levels of the factor Town.
TABINSERT can then be used, in lines 18-19, to insert the Scottish information into the UK

table. The OLDTABLE is UKdisp, and the SUBTABLE is Scotsdisp. NEWTABLE is not specified,
so the Scottish summaries are inserted into UKdisp itself. The OLDFACTOR is Town, and the
SUBFACTOR is Scotstown.

Example 4.11.5

 2 " tabulate the English information "
 3 VARIATE [NVALUES=15] Quantity,Charge
 4 FACTOR [NVALUES=15; LABELS=!T(A,B)] Type
 5 & [LABELS=!T(London,Manchester,Birmingham,Bristol,Edinburgh,Glasgow)] Town
 6 READ [PRINT=data,errors] Town,Quantity,Type; FREPRESENTATION=labels

 7 London 10 A Manchester 5 B Birmingham 10 B Bristol 25 A
 8 Manchester 10 * Birmingham 100 B London 200 B Manchester 25 A
 9 Bristol 50 A Birmingham 25 A Bristol 25 B London 25 A
 10 London 50 B Manchester 25 B London 50 A :
 11 TABLE [CLASSIFICATION=Town,Type] UKdisp
 12 TABULATE [PRINT=totals] Quantity; TOTALS=UKdisp

 UKdisp
 Type A B
 Town
 London 85.00 250.00
 Manchester 25.00 30.00
 Birmingham 25.00 110.00
 Bristol 75.00 25.00
 Edinburgh * *
 Glasgow * *

Unknown cell
 UKdisp 10.00

 13 " information already summarized from Scotland "
 14 FACTOR [LABELS=!T(Edinburgh,Glasgow)] Scotstown
 15 TABLE [CLASSIFICATION=Scotstown,Type; VALUES=20,40,30,120] Scotsdisp
 16 PRINT Scotsdisp

 Scotsdisp
 Type A B
 Scotstown
 Edinburgh 20.00 40.00
 Glasgow 30.00 120.00

 17 " insert the Scottish information into the UK table "
 18 TABINSERT [OLDTABLE=UKdisp; SUBTABLE=Scotsdisp] Town; SUBFACTOR=Scotstown;\
 19 FREPRESENTATION=labels
 20 PRINT UKdisp

 UKdisp
 Type A B
 Town
 London 85.00 250.00
 Manchester 25.00 30.00
 Birmingham 25.00 110.00
 Bristol 75.00 25.00
 Edinburgh 20.00 40.00
 Glasgow 30.00 120.00

278 4 Calculations and data manipulation

Unknown cell
 UKdisp 10.00

4.11.6 Forming a Pareto chart: the TABSORT procedure

TABSORT procedure
Sorts tables so their margins are in ascending or descending order (R.W. Payne).

Options
PRINT = string tokens Controls output (tables, histograms); default * i.e.

none
DIRECTION = string token Direction of sorting (ascending, descending);

default asce
METHOD = string token Method to use to construct a marginal table for the

sorting of a factor when there is no one-way table
classified by the factor in the TABLE list, and the first
table in the TABLE list classified by the factor has no
margins (totals, means, minima, maxima,
variances, medians); default tota

FACTORS = pointer Specifies or saves a list of classifying factors of the
tables in the TABLE list

NEWFACTORS = pointer Specifies or saves a list of classifying factors of the new
tables, corresponding to those in the FACTORS pointer

EXCLUDE = pointer Factors to exclude from sorting
NBEST = string tokens Number of (best) levels to include from each sorted

factor; default * i.e. all of them

Parameters
TABLE = tables Tables to be sorted
NEWTABLE= tables Allows the new sorted tables to be saved
TITLE = texts Title to be used when displaying each table
FIELDWIDTH = scalars Field width for printing each table
DECIMALS = scalars Decimal places for each table

The TABSORT procedure sorts tables so that their margins are in a specified order. With a multi-
way table, for example, this may help in interpreting an interaction from an analysis of variance.
With a one-way table, it allows the cells to be displayed in ascending order, as in a Pareto chart.

Example 4.11.6a continues the example concerning goods of two different types dispatched
to four different towns, started in Section 4.11.1 and continued in Section 4.11.3. The table
Invoices (formed in Example 4.11.1b) is sorted into ascending order and printed.

Example 4.11.6a

 21 TABSORT [PRINT=tables; DIRECTION=descending] Invoices; DECIMALS=0

 sorted['Town']
 London 4
 Birmingham 3
 Bristol 3
 Manchester 2

4.11 Operations on tables 279

The original tables are supplied by the TABLE parameter, and the NEWTABLE parameter can be
used to save the sorted tables.

If you want to specify your own ordering, the FACTORS and NEWFACTORS options can be set
to pre-defined pointers of factors indicating the ways in which each dimension of the tables is
to be sorted: FACTORS contains factors from the classifying sets of the original tables, and
NEWFACTORS contains the corresponding factors for the new tables (with the levels in the new
order).

Alternatively, as in Example 4.11.6a, you can let TABSORT define the ordering. For each factor
classifying the original tables, the ordering is obtained using a one-way table for that factor. This
may be available amongst the list of original tables (specified by the TABLE parameter). If not,
TABSORT finds the first table in the list with the factor in its classifying set. If the table has
margins, then TABSORT will extract the appropriate one-way margin. Otherwise, it first
constructs the margins using the MARGIN directive; the METHOD option then defines how the
margin is formed (using means, medians and so on). Having obtained a suitable one-way table,
TABSORT forms a new factor whose levels are in the order that will arrange the entries of the
table in either ascending or descending order according to the setting of the DIRECTION option
(default ascending). The FACTORS and NEWFACTORS options can be used to save pointers
containing the factors and reordered factors for future use. Note also, that even if you do not
want to use the factors in future, you can use the pointers to specify identifiers for the new
factors to be used when the tables are printed. The EXCLUDE option can be set to a pointer
containing factors that are not to be re-ordered automatically, but should be left unchanged.

The NBEST option specifies the number of levels to include from each sorted factor. So,
setting NBEST=5 would take only the first five levels in the sorted order. This may be useful if
you have a large table, and want to show only the best part of the table (as defined by the sorting
of the margins). This default is to include all of the levels.

The PRINT option controls the output produced by TABSORT. The setting tables prints the
tables (see Example 4.11.6a). The setting histograms, causes any one-way tables to be plotted
by the DHISTOGRAM directive, and any two-way tables to be plotted by D3HISTOGRAM.

The TITLE parameter allows you to supply a title to be used in the display of each table. The
FIELDWIDTH parameter specifies field widths, and the DECIMALS parameter specified numbers
of decimal places

Example 4.11.6b sorts the two-way table Totdisp% from Example 4.11.3 to put the margins
into ascending order. The new classifying factors (in the pointer Newclassification) are
SortedTowns and SortedTypes, and the new table is SortedTotals.

Example 4.11.6b

 22 POINTER [VALUES=Town,Type] Classification
 23 POINTER [VALUES=SortedTowns,SortedTypes] Newclassification
 24 TABSORT [DIRECTION=descending; FACTORS=Classification;\
 25 NEWFACTORS=Newclassification] Totdisp%; NEWTABLE=Sorted%Totals
 26 PRINT Sorted%Totals

 Sorted%Totals

 SortedTypes B A Margin
 SortedTowns
 London 40.00 13.60 53.60
 Birmingham 17.60 4.00 21.60
 Bristol 4.00 12.00 16.00
 Manchester 4.80 4.00 8.80

 Margin 66.40 33.60 625.00

280 4 Calculations and data manipulation

4.11.7 Plots of tables: the DTABLE procedure

DTABLE procedure
Plots tables (R.W. Payne).

Options
GRAPHICS = string token Type of graph (highresolution, lineprinter);

default high
METHOD = string token What to plot (points, linesandpoints, onlylines,

data, barchart, splines); default poin
XFREPRESENTATION = string token How to label the x-axis (levels, labels); default

labels uses the XFACTOR labels, if available
DFSPLINE = scalar Number of degrees of freedom to use when

METHOD=splines

YTRANSFORM = string tokens Transformed scale for additional axis marks and labels
to be plotted on the right-hand side of the y-axis
(identity, log, log10, logit, probit, cloglog,
square, exp, exp10, ilogit, iprobit, icloglog,
root); default iden i.e. none

PENYTRANSFORM = scalar Pen to use to plot the transformed axis marks and labels;
default * selects a pen, and defines its properties,
automatically

Parameters
TABLE = tables Tables to plot
DATA = variates Data values to plot with each table when METHOD=data
XFACTOR = factors Factor providing the x-values for the plot of each table
GROUPS = factors or pointers Factor or factors identifying the different lines from a

multi-way table
TRELLISGROUPS = factors or pointers

Factor or factors specifying the different plots of a trellis
plot of a multi-way table

PAGEGROUPS = factors or pointers Factor or factors specifying plots to be displayed on
different pages

BAR = scalars, tables or pointers Scalar defining the length of error bar to be plotted to
indicate the overall (or average) variability of the values
in each table, or table defining the variability of each
individual table value, or pointer containing either two
scalars or two tables defining the upper and lower
positions of the error bar(s)

NEWXLEVELS = variates Values to be used for XFACTOR instead of its existing
levels

TITLE = texts Title for the graph; default uses the identifier of the
TABLE

YTITLE = texts Title for the y-axis; default ' '
XTITLE = texts Title for the x-axis; default is to use the identifier of the

XFACTOR

BARDESCRIPTION = texts Descriptions for the bars
PENS = variates Defines the pen to use to plot the points and/or line for

each group defined by the GROUPS factors

4.11 Operations on tables 281

DTABLE plots the tables specified by the TABLE parameter (each table displayed in a separate set
of plots). The GRAPHICS option controls whether a high-resolution or a line-printer graph is
plotted; by default GRAPHICS=high.

The METHOD option controls how each table is plotted in high-resolution graphics, with
settings:

points to plot points at the table values;
linesandpoints to plot points and join them by lines;
onlylines to draw lines between the table values;
data to draw lines between the table values, and then also plot

the data values supplied (in a variate) by the DATA
parameter;

barchart to plot the table values as a barchart;
splines to plot the points together with a smooth spline to show

the trend over each group of points; the DFSPLINE
specifies the degrees of freedom for the splines; if this is
not set, 2 d.f. are used when there are up to 10 points, 3 if
there are 11 to 20, and 4 for 21 or more.

By default METHOD=points (and this is the only display available in line-printer graphics).
The XFACTOR parameter defines the factor against whose levels the values of the table are

plotted. With a multi-way table, there will be a plot of the table values against the XFACTOR
levels for every combination of levels of the other factors classifying the table. The GROUPS
parameter specifies factors whose levels are to be included in a single window of the graph. So,
for example, if you specify

DTABLE [METHOD=line] Table; XFACTOR=A; GROUPS=B

DTABLE will plot the values of Table in a single window with factor A on the x-axis, and a line
for each level of the factor B. You can set GROUPS to a pointer to specify several factors to define
groups. For example

POINTER [VALUES=B,C] Groupfactors
DTABLE [METHOD=line] Table; XFACTOR=A; GROUPS=Groupfactors

to plot a line for every combination of the levels of factors B and C.
Similarly, the TRELLISGROUPS option can specify one or more factors to define a trellis plot.
For example,

DTABLE [METHOD=line] Table; XFACTOR=A; GROUPS=B;\
 TRELLISGROUPS=C

will produce a plot for each level of C, in a trellis arrangement; each plot will again have factor
A on the x-axis, and a line for each level of the factor B. Likewise, the PAGEGROUPS parameter
can specify factors whose combinations of levels are to be plotted on different pages. So

DTABLE [METHOD=line] Table; XFACTOR=A; GROUPS=B; PAGEGROUPS=C

will again produce a plot for each level of C , but now on separate pages.
If XFACTOR is unset, DTABLE will select the XFACTOR according to the following criteria (in

decreasing order of importance): that the factor has no labels, that it has levels that are not the
default integers 1 upwards, or that it has more levels than the other factors. If GROUPS is unset,
it will be set to all the factors except the XFACTOR. (So, if you want to use either
TRELLISGROUPS or PAGEGROUPS, you must also specify XFACTOR and GROUPS.)

The BAR parameter can be set to a scalar to specify an overall (or average) error bar, such as
a standard error for differences between any pair of table values. Alternatively, it can be set to
a table to specify a different error value, such as an effective standard error, for every table
value; DTABLE then plots a bar of the defined size above and below each table value. Finally, it
can be set to a pointer containing either two scalars or two tables, specifying the upper and lower
positions of the error bar(s). Note, however, that the table setting may be unsuitable for plots

282 4 Calculations and data manipulation

Figure 4.11.7

other than barcharts when there are GROUPS, as the error bars may overlap each other.
The NEWXLEVELS parameter enables different levels to be supplied for XFACTOR if the

existing levels are unsuitable. If XFACTOR has labels, these are used to label the x-axis unless you
set option XFREPRESENTATION=levels.

The TITLE, YTITLE and XTITLE parameters can supply titles for the graph, the y-axis and
the x-axis, respectively. The symbols, colours and line styles that are used in a high-resolution
plot are usually set up by DTABLE automatically. If you want to control these yourself, you
should use the PEN directive (6.9.8) to define a pen with your preferred symbol, colour and line
style, for each of the groups defined by combinations of the GROUPS factors. The pen numbers
should then be supplied to DTABLE, in a variate with a value for each group, using the PENS
parameter.

The YTRANSFORM option allows you to include additional axis markings, transformed onto
another scale, on the right-hand side of the y-axis. Suppose, for example, the table contains
means from an analysis of a variate of percentages that had been transformed to logits. You
might then set YTRANSFORM=ilogit (the inverse-logit transformation) to include markings in
percentages alongside the logits. The settings are the same as those of the TRANSFORM parameter
of AXIS, which is used to add the markings (6.9.7). You can control the colours of the
transformed marks and labels, by defining a pen with the required properties, and specifying it
with the PENYTRANSFORM option. Otherwise, the default is to plot them in blue.

Example 4.11.7 plots the table
Sorted%totals from Example 4.11.6
with the sorted town factor on the x-axis,
and a line for each type of item. Notice that
we need to specify new levels Newx for the
SortedTowns to ensure that the towns
appear in the sorted order. (The levels of
SortedTowns factor are a permutations of
the original levels of the Town factor,
namely 1, 3, 4 and 2. So, if we use these,
the towns will appear in the original order.)
The graph is shown in Figure 4.11.7.

Example 4.11.7

 27 VARIATE [VALUES=1...4] Newx
 28 DTABLE Sorted%Totals; XFACTOR=SortedTowns; NEWXLEVELS=Newx;\
 29 GROUPS=SortedTypes

4.11 Operations on tables 283

4.11.8 Interpreting multiple responses: the FMFACTORS procedure

FMFACTORS procedure
Forms a pointer of factors representing a multiple-response (R.W. Payne).

Options
MRESPONSE = pointer Pointer with a factor for each code, indicating the units

where it occurs in the CODE texts or variates
RESPONSECODES = text or variate Saves the set of distinct multiple-response codes
CODENULL = text or variate Code(s) used to represent a null value in the CODE texts

or variates; default * or ''
EXCLUDENULL = string token Whether to exclude the factor recording the respondents

that made no reply (yes, no); default no
SUFFIXNULL = scalar Suffix to use to represent a null value in MRESPONSE;

default 0
LABELNULL = text Label to use to represent a null value in MRESPONSE;

default 'none'
LDIRECTION = string token How to order the labels from textual codes

(ascending, given); default asce

Parameter
CODE = texts, variates or factors Codes from the respondents

Multiple responses occur in surveys as the result of open-ended questions like "Which cities
have you visited this year?" or "What languages do you speak?". The easiest way to input these
into Genstat is in a set of text vectors. Each text has a unit for every respondent, and the set
contains as many texts as the maximum number of the replies from any respondent.
Alternatively, if the responses are numerical, they would be input into a set of variates. The
MTABULATE procedure can form tables with multiple responses. However, these raw codes must
first be converted by FMFACTORS into a set of factors.

The texts or variates containing the raw data are listed using the CODE parameter. You can also
supply the raw data in factors. If CODE specifies a mixture of texts and factors, FMFACTORS uses
the labels of the factors (and they must all have labels). Alternatively, if CODE specifies a mixture
of variates and factors, FMFACTORS uses the factor levels. Finally, if CODE specifies only factors,
FMFACTORS will use their labels if they all have labels; otherwise their levels. FMFACTORS will
give a fault if you specify a mixture of texts and variates.

The multiple-response factors are saved, in a pointer, using the MRESPONSE option. The
pointer contains a factor for every recorded code, with levels 0 and 1, and corresponding labels
'absent' and 'present'. If the codes are textual, the various strings are used as labels of the
pointer; while if they are numerical, the numbers are used as the pointer suffixes.

By default, the texts or variates are assumed to contain a missing values for any null response:
for example these would occur in the third and fourth text, if there were four CODE texts and the
respondent concerned had made only two replies. However, you can use the CODENULL option
to supply alternative codings (for example '-' for textual responses).

The EXCLUDENULL option controls whether or not the pointer contains a factor to make an
explicit record of the respondents that made no replies at all (default no). This will be needed
if the later tables are to contain a line for "no response". The SUFFIXLNULL option specifies the
suffix to be used for this factor in the pointer while, for textual codes, the LABELNULL option
specifies its label in the pointer.

Example 4.11.8 shows the use of FMFACTORS to analyse a passenger survey. The participants
provide the nationalities, ages, and sexes. They then have five fields in which to record the cities

284 4 Calculations and data manipulation

that they have visited recently, and the languages that they speak. A multiple-response pointer
is formed in lines 53 and 54 to represent the city responses, and another in lines 55 and 56 to
represent the languages. We have set option EXCLUDENULL=yes when forming the languages,
under the assumption that everyone will be able to speak at least one language! Notice that the
nationalities (of which there is only one per participant) can be converted into a factor by using
GROUPS in the usual way. The first three factors in the multiple-response pointer for languages
are printed at the end of the example, together with the original codes, to illustrate how the
pointers are formed.

Example 4.11.8

 2 " Analysis of a passenger survey."
 3 FACTOR [LABELS=!t(male,female)] Sex
 4 TEXT Nationality,Citycode[1...5],Languagecode[1...5]
 5 READ [PRINT=errors] Nationality,Age,Sex,Citycode[1...5],\
 6 Languagecode[1...5]; FREPRESENTATION=labels
 52 GROUPS [REDEFINE=yes] Nationality
 53 FMFACTORS [MRESPONSE=Rcity; RESPONSECODES=Cities; CODENULL='-']\
 54 Citycode[]
 55 FMFACTORS [MRESPONSE=Rlanguage; RESPONSECODES=Languages;\
 56 CODENULL='-'; EXCLUDENULL=yes] Languagecode[]
 57 PRINT [RLWIDTH=20; ORIENTATION=across]\
 58 Rlanguage[1,2,3],Languagecode[]; JUSTIFICATION=left

Rlanguage['Dutch'] absent absent absent absent absent
Rlanguage['English'] present present present present present
Rlanguage['French'] present present present present present
Languagecode[1] English English English English English
Languagecode[2] French French French French French
Languagecode[3] German German - - -
Languagecode[4] - - - - -
Languagecode[5] - - - - -

Rlanguage['Dutch'] absent absent absent absent absent
Rlanguage['English'] present present present present present
Rlanguage['French'] absent absent absent absent present
Languagecode[1] English English English English English
Languagecode[2] - Japanese - - Spanish
Languagecode[3] - - - - French
Languagecode[4] - - - - -
Languagecode[5] - - - - -

Rlanguage['Dutch'] absent absent absent present present
Rlanguage['English'] present present present present present
Rlanguage['French'] present present present present present
Languagecode[1] English English English Dutch Dutch
Languagecode[2] Spanish French French English English
Languagecode[3] French - - French French
Languagecode[4] - - - - Italian
Languagecode[5] - - - - Spanish

Rlanguage['Dutch'] present present present present absent
Rlanguage['English'] present present present present present
Rlanguage['French'] absent absent absent present present
Languagecode[1] Dutch Dutch Dutch Dutch French
Languagecode[2] English English English English English
Languagecode[3] German - - German -
Languagecode[4] - - - French -
Languagecode[5] - - - - -

Rlanguage['Dutch'] absent absent absent absent absent
Rlanguage['English'] present absent present present present
Rlanguage['French'] present present present present present
Languagecode[1] French French French French French
Languagecode[2] English - English English English
Languagecode[3] - - - - German
Languagecode[4] - - - - -
Languagecode[5] - - - - -

4.11 Operations on tables 285

Rlanguage['Dutch'] absent absent absent absent absent
Rlanguage['English'] present absent absent present absent
Rlanguage['French'] present present present absent absent
Languagecode[1] French French French German German
Languagecode[2] English German German English -
Languagecode[3] - - - - -
Languagecode[4] - - - - -
Languagecode[5] - - - - -

Rlanguage['Dutch'] absent absent absent absent absent
Rlanguage['English'] present present present present absent
Rlanguage['French'] present absent present absent absent
Languagecode[1] German German German German German
Languagecode[2] English English English English -
Languagecode[3] French - French - -
Languagecode[4] - - - - -
Languagecode[5] - - - - -

Rlanguage['Dutch'] absent absent absent absent absent
Rlanguage['English'] present present absent absent present
Rlanguage['French'] present present present present present
Languagecode[1] French French French German German
Languagecode[2] German German German French French
Languagecode[3] Italian English - - English
Languagecode[4] English - - - -
Languagecode[5] - - - - -

4.11.9 Finding multiple responses in free text: the FFREERESPONSEFACTOR procedure

FFREERESPONSEFACTOR procedure
Forms multiple-response factors from free-response data (R.W. Payne).

Options
MRESPONSE = pointer Pointer with a factor for each RESPONSECODE,

indicating which of the DATA texts contain that response
RESPONSECODES = text Specifies the codes to look for in the DATA texts
LABELCODES = text Strings to label the factors within the MRESPONSE

pointer; default RESPONSECODES
DUPLICATECODES = factor Defines groupings of duplicate or alternative codes

within the RESPONSECODES text
EXCLUDENULL = string token Whether to exclude the factor recording which DATA

contain none of the RESPONSECODES (yes, no); default
no

SUFFIXNULL = scalars Suffix to use to represent the null factor in MRESPONSE;
default 0

LABELNULL = text Label to use to represent a the null factor in
MRESPONSE; default 'none'

DATAFORMAT = string token Whether the data for the respondents is given line-by-
line within the DATA text(s) or whether there is a
separate text for each respondent (linebyline,
textbytext); default line

CASE = string token Whether to treat the case of letters (small or capital) as
significant when searching for the codes
(significant, ignored); default igno

MULTISPACES = string token Whether to treat differences between multiple spaces
and single spaces as significant, or to treat them all like
a single space (significant, ignored); default igno

DISTINCT = string tokens Whether to require each RESPONSECODE to have one or

286 4 Calculations and data manipulation

more separators to its left or right within each DATA text
(left, right); default left, righ

SEPARATOR = text Characters to use as separators; default ' ,;:.'

Parameter
DATA = texts Information from the respondents

FFREERESPONSEFACTOR supports another way of specifying multiple responses, namely as
keywords within free text supplied by each respondent.

The texts from the respondents are specified using the DATA parameter. If option
DATAFORMAT=linebyline (the default), there is a single text with a line for each respondent.
You can also give a second text, again with a line for each respondent, if you cannot fit all the
information for any of the respondents into a single line. Likewise you can specify a third text
if you need more than two lines, and so on. Alternatively, if option DATAFORMAT=textbytext,
the information from each respondent is contained in a separate text.

The input thus consists of free-form text(s) in which the responses of interest are to be found.
For example, in a survey of garden plants, the text might contain the lines

'I grow carrots, cabbages and lettuces. I also have an apple
tree.'

Any restrictions on the DATA texts are ignored.
The codes to find within the texts are supplied, in a text, by the RESPONSECODES option. If

you want to supply alternative codes (for example, synonyms or singular and plural codes), you
should put all the alternatives into the RESPONSECODES text, and set the DUPLICATECODES
option to a factor to indicate how the codes are grouped together. For example, Codes below
contains singular and plural codes for various plants, and Alternatives indicates how these
belong together

TEXT [VALUES=carrot,cabbage,lettuce,potato,tomato,\
 carrots,cabbages,lettuces,potatoes,tomatoes,\
 apple,rose,magnolia,sycamore,'silver birch',\
 apples,roses,magnolias,sycamores,'silver birches'] Codes
FACTOR [LEVELS=10; VALUES=(1...5)2,(6...10)2] Alternatives

The pointer of multiple-response factors is saved using the MRESPONSE option. By default,

the pointer is labelled by the names of the codes (or by the first of each set of codes if there are
alternatives). However, you can use the LABELCODES option to supply other labels if these are
unsuitable (e.g. too long).

The EXCLUDENULL option controls whether or not the pointer contains a factor to make an
explicit record of the people that gave none of the codes (default 'no'). This will be needed if
the later tables are to contain a line for "no response". The SUFFIXNULL option specifies the
suffix to be used for this factor in the pointer while, the LABELNULL option specifies its label.
FFREERESPONSEFACTOR usually ignores the case of letters (small or capital) when looking

for the codes. So for example 'Apple' would be the same as 'apple'. However, you can set
option CASE=significant to recognize these differences in case. FFREERESPONSEFACTOR
usually also treats multiple spaces as the same as a single space, but you can set option
MULTISPACE=significant to treat these differences as important.

By default, FFREERESPONSEFACTOR requires each code to begin either at the start of the
DATA text or to be preceded in the text by a separator (such as a space or comma). Similarly, it
requires each code to end within the text with a separator (or to be at the end of the text). This
is requested by the DISTINCT option, with its default DISTINCT=left,right. However, for
example, you can set DISTINCT=left if the codes must be separated from other text only to the
left (i.e. at the start), or DISTINCT=* if they need not be separated at all. The separators are
specified by the SEPARATOR option.

4.11 Operations on tables 287

The two ways of using FFREERESPONSEFACTOR are illustrated in Example 4.11.9.

Example 4.11.9

 2 TEXT [VALUE='In my garden I grow carrots, cabbages and lettuces.',\
 3 'Vegetables: potatoes, carrots.',\
 4 'I just have some concrete where I park the car.']\
 5 Data
 6 TEXT [VALUES=carrot,cabbage,lettuce,potato,tomato,\
 7 carrots,cabbages,lettuces,potatoes,tomatoes,\
 8 apple,rose,magnolia,sycamore,'silver birch',\
 9 apples,roses,magnolias,sycamores,'silver birches'] Codes
 10 FACTOR [LEVELS=10; VALUES=(1...5)2,(6...10)2] Alternatives
 11 FFREERESPONSEFACTOR [MRESPONSE=Vegetables; RESPONSECODES=Codes;\
 12 DUPLICATECODES=Alternatives] Data
 13 PRINT Vegetables[]

Vegetables['none'] Vegetables['carrot'] Vegetables['cabbage']
 responded present present
 responded present absent
 no response absent absent

 Vegetables['lettuce'] Vegetables['potato'] Vegetables['tomato']
 present absent absent
 absent present absent
 absent absent absent

 Vegetables['apple'] Vegetables['rose'] Vegetables['magnolia']
 absent absent absent
 absent absent absent
 absent absent absent

 Vegetables['sycamore'] Vegetables['silver birch']
 absent absent
 absent absent
 absent absent

 14 TEXT [VALUE='In my garden I grow carrots, cabbages and lettuces.',\
 15 'I also have an apple tree, a rose bush and a magnolia tree.']\
 16 Garden[1]
 17 & [VALUE='Vegetables: potatoes, carrots.',\
 18 'Trees: sycamore, silver birch.'] Garden[2]
 19 & [VALUE='I just have some concrete where I park the car.']\
 20 Garden[3]
 21 FFREERESPONSEFACTOR [MRESPONSE=Plant; RESPONSECODES=Codes;\
 22 DUPLICATECODES=Alternatives; DATAFORMAT=textbytext] Garden[]
 23 PRINT Plant[]; FIELD=18

 Plant['none'] Plant['carrot'] Plant['cabbage'] Plant['lettuce']
 responded present present present
 responded present absent absent
 no response absent absent absent

 Plant['potato'] Plant['tomato'] Plant['apple'] Plant['rose']
 absent absent present present
 present absent absent absent
 absent absent absent absent

 Plant['magnolia'] Plant['sycamore'] Plant['silver birch']
 present absent absent
 absent present present
 absent absent absent

288 4 Calculations and data manipulation

4.11.10 Tabulation with multiple responses: the MTABULATE procedure

MTABULATE procedure
Forms tables classified by multiple-response factors (R.W. Payne).

Options
PRINT = string token Controls printed output (counts, totals,

nobservations, means, minima, maxima,
variances, quantiles, sds, skewness, kurtosis,
semeans, seskewness, sekurtosis); default * i.e.
none

CLASSIFICATION = factors Non multiple-response factors classifying the tables
MRESPONSE = pointers Pointers to factors defining the multiple-responses for

the tables
MRFACTOR = identifiers Identifier of factors to index the sets of multiple

responses in the tables
COUNTS = table Saves a table counting the number of units with each

factor combination; default *
MARGINS = string token Whether the tables should be given margins (yes, no);

default no
WEIGHTS = variate Weights to be used in the tabulations; default * indicates

that all units have weight 1
PERCENTQUANTILES = scalar or variate

Percentages for which quantiles are required; default 50
i.e. median

Parameters
DATA = variates Data values to be tabulated
TOTALS = tables Tables to contain totals
NOBSERVATIONS = tables Tables containing the numbers of non-missing values in

each cell
MEANS = tables Tables of means
MINIMA = tables Tables of minimum values in each cell
MAXIMA = tables Tables of maximum values in each cell
VARIANCES = tables Tables of cell variances
QUANTILES = tables or pointers Table to contain quantiles at a single

PERCENTQUANTILE, or pointer of pointers to tables for
several PERCENTQUANTILES

SDS = tables Tables of standard deviations
SKEWNESS = tables Tables of skewness coefficients
KURTOSIS = tables Tables of kurtosis coefficients
SEMEANS = tables Tables of standard errors of means
SESKEWNESS = tables Tables of skewness coefficients
SEKURTOSIS = tables Tables of kurtosis coefficients

Once the multiple responses in a survey have been processed by FMFACTORS, to form each set
into a pointer containing a factor for each possible response code, the results can be tabulated
using the MTABULATE procedure.

The multiple responses for the tables are specified by the MRESPONSE option, while any
ordinary factors are specified by the CLASSIFICATION option. The MARGINS option indicates
whether or not the tables are to contain margins. For the multiple responses, these represent

4.11 Operations on tables 289

summaries not over the responses but over the respondents (who may each have given several
responses). MTABULATE needs to generate an ordinary factor to classify the dimension of the
tables corresponding to each set of multiple responses. You can supply identifiers for these
factors (thus allowing them to be accessed outside the procedure), using the MRFACTOR option.

The other options and parameters are similar to those of the TABULATE directive. The COUNTS
option can save a table containing the frequencies of the various responses. The DATA parameter
provides information about the respondents who made the multiple responses. (So, for example,
you could set DATA to the incomes of the respondents and then tabulate the average incomes of
the people who have visited each of the cities.) The other parameters allow you to save the
various types of numerical summary: totals, numbers of non-missing values, means, minima,
maxima, variances, quantiles, standard deviations, skewness and kurtosis coefficients and
(within-cell) standard errors of means, skewness and kurtosis.

The PERCENTQUANTILES option specifies which quantiles you want. By default just the
median (the 50% quantile) is produced. However, you can set PERCENTQUANTILES to a scalar
to request another percentage point, or to a variate to request several. The QUANTILE parameter
will then return a pointer with length equal to the required number of quantiles, instead of a
single table.

The PRINT option allows you to print the tables (as well as, or instead of, saving them). By
default nothing is printed.

Example 4.11.10 continues the analysis of the survey in Example 4.11.8. Notice that a default
identifier _['Rcity'] factor is used to classify the multiple-response dimension of the first
table; this will exist only within the procedure. For the second table the identifier Language is
specified (line 61), and this will be a factor in the main program.

Example 4.11.10

 59 MTABULATE [PRINT=Counts; CLASSIFICATION=Nationality; MRESPONSE=Rcity]

 Counts

 Nationality British Dutch French German Swiss
 _['Rcity']
 none 0 0 0 1 0
 Amsterdam 1 0 1 1 0
 Athens 1 0 0 0 0
 Barcelona 5 0 0 0 0
 Berlin 1 0 2 0 0
 Brussels 1 2 0 2 1
 Capetown 2 0 0 0 0
 Copenhagen 2 0 2 0 0
 Dublin 2 0 0 0 0
 Edinburgh 0 0 2 0 1
 Florence 0 2 0 0 3
 Frankfurt 0 1 0 1 0
 Geneva 1 0 0 0 0
 Helsinki 1 0 0 0 0
 Lisbon 2 0 0 0 0
 London 0 3 4 4 1
 Luxembourg 0 1 0 1 1
 Madrid 2 2 0 1 0
 Oxford 0 0 2 0 0
 Paris 5 1 0 2 1
 Pisa 0 0 0 0 1
 Rome 0 2 0 0 3
 Seville 0 0 0 0 1
 Venice 0 0 0 0 2

 60 MTABULATE [PRINT=Mean; CLASSIFICATION=Sex,Nationality;\
 61 MRESPONSE=Rlanguage; MRFACTOR=Language] Age

290 4 Calculations and data manipulation

 Means

 Nationality British Dutch French German Swiss
 Language Sex
 Dutch male * 33.75 * * *
 female * 40.50 * * *
 English male 34.14 33.75 32.50 41.67 41.00
 female 34.00 40.50 32.25 30.50 29.00
 French male 33.40 28.33 39.25 45.00 38.00
 female 33.75 * 34.40 24.00 35.00
 German male 39.00 26.00 35.00 41.67 38.00
 female * 33.00 43.00 49.75 35.00
 Italian male * 34.00 * * 45.00
 female * * * * *
 Japanese male * * * * *
 female 31.00 * * * *
 Spanish male 51.00 34.00 * * *
 female 50.00 * * * *

4.12 Operations on trees

Tree structures are used to represent hierarchical structures like classification trees, identification
keys and regression trees. These types of tree can be constructed by special-purpose procedures
BCLASSIFICATION (2:6.20.1), BKEY (2:6.21.1) and BREGRESSION (2:3.9.1), respectively. Most
people will use only these special-purpose procedures, and their associated procedures (for
example BRCONSTRUCT, BRDISPLAY and BRPREDICT for regression trees). They will not need
to operate on trees directly, nor to be aware of how they are formed, stored or manipulated.

The procedures, however, are based on a suite of directives, functions and procedures
described in this section. These provide the tool kit not only for the officially-supported tree
facilities but also for user enhancements and extensions. Initially, we describe the utility
procedures BPRINT and BGRAPH for displaying trees (used by BCDISPLAY, BRDISPLAY and so
on). We then cover the various utility commands for constructing and modifying trees.

The tree structure is like a real tree, which starts from a root and then splits into branches,
except that it is usually viewed as growing downwards instead of upwards. The branch-points
in the tree are known as nodes, with the initial node being called the root (as in a real tree). There
is also a node at the end of each branch, known as its terminal node. In Genstat a tree is similar
to a pointer, with an element for each node. These elements are the identifiers of data structures
which can be used to store information about the nodes. Usually the data structures will be
pointers, so that several pieces of information can be stored for each node, but the precise
contents depend on the type of tree.

Each node thus has a number, corresponding to the index of its element in the tree structure.
The root is always numbered one, and this is the only node that the tree contains when it is
declared by TREE (2.8). Further nodes can be added by the directives BGROW (4.12.3) and BJOIN
(4.12.5), which form branches from a terminal node or join another tree to a terminal node,
respectively. The converse process of cutting a tree at a defined node and discarding the nodes
and information below it is provided by the BCUT directive (4.12.4), which can also duplicate
a tree.

The numbering of the nodes depends mainly on the order in which they have been added to
the tree (although BCUT does allow you to renumber them into a "standard" order). The idea is
that you obtain the numbers of the nodes below the root (node number one) by using the various
tree functions described in Section 4.2.11. These are illustrated in Example 4.12.5.

4.12 Operations on trees 291

4.12.1 Printing a tree: the BPRINT procedure

BPRINT procedure
Displays a tree (R.W. Payne).

Option
PRINT = string tokens Controls printed output (indented, bracketed,

labelleddiagram, numbereddiagram); default
inde

Parameter
TREE = trees Trees to be displayed

BPRINT can print a tree in various formats. The tree is specified by the TREE parameter, and the
PRINT option indicates what output is required, with settings:

bracketed display as used to represent an identification key in
"bracketed" form (printed node by node);

indented display as used to represent an identification key in
"indented" form (printed branch by branch);

labelleddiagram diagrammatic display including the node labels;
numbereddiagram diagrammatic display with the nodes labelled by their

numbers.
The use of BPRINT is illustrated in the Examples 4.12.3, 4.12.4 and 4.12.5.

4.12.2 Plotting a tree: the BGRAPH procedure

BGRAPH procedure
Plots a tree (R.W. Payne).

Option
SIZE = scalar Provides a multiplier by which to scale the node labels

Parameters
TREE = trees Trees to be plotted
XTERMINAL = scalars or variates X-spacing (scalar) or x-values (variate) for the terminal

nodes of each tree; default 2

The tree to be plotted is specified by the TREE parameter. BGRAPH arranges the nodes with the
root at the top and the terminal nodes at the bottom of the plot. The terminal nodes are arranged
automatically across the screen, but the x-coordinates can be specified explicitly using the
XTERMINAL parameter. The SIZE option allows the size of the node labels to be adjusted by a
scaling factor (default 1).

4.12.3 Extending a tree: the BGROW directive

BGROW directive
Adds new branches to a node of a tree.

No options

292 4 Calculations and data manipulation

Parameters
TREE = trees Trees to be extended
NODE = scalars Node at which to extend each tree
NBRANCHES = scalars Number of branches to add to each node; default 2
POSITION = scalars Position at which to add the branches to each node;

default * i.e. after all the current braches from the node
NEWNODES = variates Returns the number(s) allocated to the new nodes

BGROW provides the basic tree utility of adding new branches at a node, which is used for
example by the BCONSTRUCT procedure (4.12.6). The tree to be extended is specified by the
TREE parameter, and the NODE parameter indicates the node at which the new branches are to
be added. The NBRANCHES parameter specifies the number of branches to add. The POSITION
specifies where to add them if the node is a non-terminal node; by default they are added after
all the branches currently from the node. The NEWNODES parameter saves a variate containing
the numbers of the new nodes (i.e. the terminal nodes at the ends of the new branches).

The use of BGROW is shown in Example 4.12.3. Notice that the tree element at each node is set
up as a pointer with one element labelled as 'label'. This is then used by BPRINT to label the
tree in labelled-diagram format.

Example 4.12.3

 2 " Declare the original tree."
 3 TREE T
 4 " Define texts to use as labels for the nodes."
 5 TEXT Lab[1...26]; VALUES=\
 6 'a','b','c','d','e','f','g','h','i','j','k','l','m',\
 7 'n','o','p','q','r','s','t','u','v','w','x','y','z'
 8 " Define information at root to be a pointer
 -9 with a single element called 'label'."
 10 POINTER [NVALUES=!t(label)] T[1]
 11 " Set that element to the first value of Lab, i.e. 'a'."
 12 TEXT T[1]['label']; VALUE=Lab[1]
 13 " Display the tree - first with labels of nodes, then with numbers."
 14 BPRINT [PRINT=labelleddiagram,numbereddiagram] T

Tree with labels

a

Tree diagram

1

 15 " Extend the tree by forming 3 branches from node 1 (root)."
 16 BGROW T; NODE=1; NBRANCH=3; NEWNODES=Gnew
 17 " Define the information for the new nodes."
 18 POINTER [NVALUES=!t(label)] T[#Gnew]
 19 TEXT T[#Gnew]['label']; VALUE=Lab[#Gnew]
 20 " Display the extended tree."
 21 BPRINT [PRINT=labelleddiagram,numbereddiagram] T

Tree with labels

a b
-> c
-> d

 Tree diagram

1 2
-> 3
-> 4

4.12 Operations on trees 293

 22 " Find the node number of the first terminal node "
 23 CALCULATE N1 = BTERMINAL(T; 0)
 24 " and then the second terminal node."
 25 CALCULATE N2 = BTERMINAL(T; N1)
 26 PRINT N1,N2; DECIMALS=0

 N1 N2
 2 3

 27 " Extend the tree by adding 2 branches at the second
 -28 and then the first terminal node."
 29 BGROW T; NODE=N2; NBRANCH=2; NEWNODES=Gnew2
 30 " Define the information for the new nodes."
 31 POINTER [NVALUES=!t(label)] T[#Gnew2]
 32 TEXT T[#Gnew2]['label']; VALUE=Lab[#Gnew2]
 33 BGROW T; NODE=N1; NBRANCH=2; NEWNODES=Gnew1
 34 POINTER [NVALUES=!t(label)] T[#Gnew1]
 35 TEXT T[#Gnew1]['label']; VALUE=Lab[#Gnew1]
 36 " Display the extended tree."
 37 BPRINT [PRINT=labelleddiagram,numbereddiagram] T

Tree with labels

a b g
 -> h
-> c e
 -> f
-> d

 Tree diagram

1 2 7
 -> 8
-> 3 5
 -> 6
-> 4

4.12.4 Removing branches from a tree: the BCUT directive

BCUT directive
Cuts a tree at a defined node, discarding the nodes and information below it.

Option
RENUMBER = string token Whether or not to renumber the nodes of the tree (yes,

no); default no

Parameters
TREE = trees Trees to be cut
NODE = scalars Node at which to cut each tree
NEWTREE = trees New trees with the information cut; if unspecified, the

new tree replaces the original tree
CUTTREE = trees Tree formed from the branches cut from the original tree
OLDNODES = variates Mapping from old nodes to node numbers in a

renumbered new tree (as positive numbers) or to nodes
in the CUTTREE (as negative numbers)

NEWNODES = variates Mapping from new node numbers in a renumbered tree
to the original nodes

CUTNODES = variates Mapping from node numbers in the CUTTREE tree to the
original nodes

294 4 Calculations and data manipulation

BCUT provides the basic tree utility of removing an unwanted branch, which is used for example
by the BPRUNE procedure. The tree to be cut is specified by the TREE parameter, and the NODE
parameter indicates the node at which the cut is to be made. The NEWTREE parameter can supply
the identifier for the new tree (after removing all the nodes below NODE); if this is not specified,
the new tree replaces the original tree. The subtree below NODE can also be saved (as a tree in
its own right, with NODE as the root) using the CUTTREE parameter.

The OLDNODES parameter can save a variate containing a mapping from the old nodes to the
new nodes. If the node is a member of the new tree the variate contains the number of that node
in the NEWTREE, while if it is one of the nodes that are deleted the variate contains !1 multiplied
by its number in the CUTTREE. As far as OLDNODES is concerned NODE is regarded as a member
of the NEWTREE.

The NEWNODES parameter can save a variate containing the converse mapping from the
NEWTREE to the original tree. There is an element for each new node, containing the number of
the equivalent node in the original tree. Similarly, the CUTNODES parameter can save a mapping
from the CUTTREE to the original tree.

Example 4.12.4 continues Example 4.12.3. BCUT removes one of the sub-branches of tree T.
Notice that the root of the cut-tree T2 initially contains the same information as at the node N2
where the tree was cut. This is then replaced in lines 48-50. Also notice the use of the RENUMBER
option in line 54 to renumber the nodes of the new tree T3.

Example 4.12.4

 38 " Remove the branches below N2, saving these as tree T2;
 -39 also save and print the node mapping variates."
 40 BCUT T; NODE=N2; CUTTREE=T2; OLDNODES=Oldn;\
 41 NEWNODES=Newn; CUTNODES=Cutn
 42 PRINT [ORIENT=across] Oldn,Newn,Cutn; FIELD=3; DECIMALS=0

 Oldn 1 2 5 6 -2 -3 3 4

 Newn 1 2 7 8 3 4

 Cutn 3 5 6

 43 " Display the modified tree, and the cut-tree."
 44 BPRINT [PRINT=labelleddiagram,numbereddiagram] T,T2

Tree with labels

a b g
 -> h
-> c
-> d

Tree diagram

1 2 7
 -> 8
-> 3
-> 4

Tree with labels

c e
-> f

Tree diagram

1 2
-> 3

4.12 Operations on trees 295

 45 " Redefine the root of the cut tree so that it no
 -46 longer shares the same information pointer as the
 -47 node where the cut was made in the original tree."
 48 POINTER [NVALUES=!t(label)] T2root
 49 TEXT T2root['label']; VALUE='t2root'
 50 ASSIGN T2root; T2; 1
 51 BPRINT [PRINT=labelleddiagram] T2

Tree with labels

t2root e
-> f

 52 " Use BCUT to form T3 as a duplicate of T
 -53 but with renumbered nodes."
 54 BCUT [RENUMBER=yes] T; NEWTREE=T3
 55 BPRINT [PRINT=labelleddiagram,numbereddiagram] T3

Tree with labels

a b g
 -> h
-> c
-> d

Tree diagram

1 2 3
 -> 4
-> 5
-> 6

4.12.5 Joining a tree onto another: the BJOIN directive

BJOIN directive
Extends a tree by joining another tree to a terminal node.

No options

Parameters
TREE = trees Trees to be extended
NODE = scalars Node at which to join the tree
JOINTREE = trees Trees to be joined onto the tree
NEWNODES = variates New node numbers allocated to each node in JOINTREE

in the new tree

BJOIN provides the basic tree utility of joining a tree to the terminal node of a tree. The tree to
be extended is specified by the TREE parameter, and the NODE parameter indicates the node at
which the tree is to be joined. The JOINTREE parameter specifies the tree to be joined onto the
tree, and the NEWNODES parameter saves a variate containing the numbers of the nodes of the
JOINTREE in the new tree.

Example 4.12.5 first joins the tree T2, cut from tree T in Example 4.12.4, onto tree T3 at node
number 4. It also illustrates some of the tree functions.

Example 4.12.5

 56 " Join tree T2 onto node 4 of T3; save and print the
 -57 numbers of the joined nodes in the revised tree."
 58 BJOIN T3; NODE=4; JOINTREE=T2; NEWNODES=Jnew
 59 BPRINT [PRINT=labelleddiagram,numbereddiagram] T3

296 4 Calculations and data manipulation

Tree with labels

a b g
 -> h e
 -> f
-> c
-> d

Tree diagram

1 2 3
 -> 4 7
 -> 8
-> 5
-> 6

 60 PRINT Jnew; DECIMALS=0

 Jnew
 4
 7
 8

 61 " Tree functions: all nodes below node 2,"
 62 CALCULATE Below = BBELOW(T3; 0; 0)
 63 PRINT Below; DECIMALS=0

 Below
 1
 2
 5
 6
 3
 4
 7
 8

 64 " all terminal nodes below node 2,"
 65 CALCULATE Below0 = BBELOW(T3; 0; 0)
 66 PRINT Below0; DECIMALS=0

 Below0
 1
 2
 5
 6
 3
 4
 7
 8

 67 " first three terminal nodes,"
 68 CALCULATE N1 = BTERMINAL(T3; 0)
 69 & N2 = BTERMINAL(T3; N1)
 70 & N3 = BTERMINAL(T3; N2)
 71 PRINT N1,N2,N3; DECIMALS=0

 N1 N2 N3
 3 7 8

 72 " nodes and branches on path to N3,"
 73 CALCULATE Pn3 = BPATH(T3; N3)
 74 & Ln3 = BBRANCHES(T3; N3)
 75 PRINT Pn3,Ln3; DECIMALS=0

 Pn3 Ln3
 1 1
 2 2
 4 2
 8 0

 76 " depth and number of branches at node 2,"

4.12 Operations on trees 297

 77 CALCULATE Nn2 = BNBRANCHES(T3; 2)
 78 & Dn2 = BDEPTH(T3; 2)
 79 PRINT Nn2,Dn2; DECIMALS=0

 Nn2 Dn2
 2 2

 80 " next nodes on branches 1-3 from node 1,
 -81 and branch 1 from node 2."
 82 PRINT BNEXT(T3; 1; 1); DECIMALS=0

 BNEXT(((T3; 1); 1))
 2

 83 PRINT BNEXT(T3; 1; 2); DECIMALS=0

 BNEXT(((T3; 1); 2))
 5

 84 PRINT BNEXT(T3; 1; 3); DECIMALS=0

 BNEXT(((T3; 1); 3))
 6

 85 PRINT BNEXT(T3; 2; 1); DECIMALS=0

 BNEXT(((T3; 2); 1))
 3

 86 " Scan the tree, taking the nodes in standard order."
 87 SCALAR Scan[0]; value=0
 88 CALCULATE Scan[1] = BSCAN(T3; Scan[0])
 89 & Scan[2] = BSCAN(T3; Scan[1])
 90 & Scan[3] = BSCAN(T3; Scan[2])
 91 & Scan[4] = BSCAN(T3; Scan[3])
 92 & Scan[5] = BSCAN(T3; Scan[4])
 93 & Scan[6] = BSCAN(T3; Scan[5])
 94 & Scan[7] = BSCAN(T3; Scan[6])
 95 & Scan[8] = BSCAN(T3; Scan[7])
 96 & Scan[9] = BSCAN(T3; Scan[8])
 97 PRINT Scan[1...9]; FIELD=8; DECIMALS=0

 Scan[1] Scan[2] Scan[3] Scan[4] Scan[5] Scan[6] Scan[7] Scan[8] Scan[9]
 1 2 3 4 7 8 5 6 *

4.12.6 Constructing a tree: the BCONSTRUCT procedure

BCONSTRUCT procedure
Constructs a tree (R.W. Payne).

Option
PRINT = string token Whether to print monitoring information

(monitoring); default * i.e. none

Parameters
TREE = trees Saves the trees that have been constructed
DATA = identifiers Data available for constructing the trees

BCONSTRUCT is a utility procedure that is used by the tree procedures like BCLASSIFICATION,
BKEY and BREGRESSION to construct trees. The DATA parameter of BCONSTRUCT supplies a
pointer containing the information required to construct the tree. The TREE parameter saves the
tree that has been constructed, and the PRINT option can be set to monitoring to produce
monitoring information during construction.

298 4 Calculations and data manipulation

BCONSTRUCT calls a procedure BSELECT to determine the test to be performed at each node
of the tree. Customized versions of this procedure are available for each type of tree, and are
accessed automatically along with the top-level procedure for the type of tree concerned.
BCONSTRUCT is thus completely general ! and can be used for other types of tree simply by
providing an appropriate version of BSELECT. Within BSELECT you can use any of the Genstat
commands, such as CALCULATE or TABULATE, to decide which test to use. Also, an efficient
implementation of the standard selection criteria for regression and classification trees is
provided by directive BASSESS (4.12.7).
BSELECT has no options. Its parameters are as follows.

DATA = pointer Data for constructing the tree (as provided by the DATA
parameter of BCONSTRUCT)

TESTS = pointer Tests already made between the root and the current node
BRANCHES = variate Branches taken at each previous node
LABEL = text Returns a label to put onto the node
NEWTEST = scalar or expression New test to be done at the node (expression), or

identification made at the node (scalar) if no new test
selected

NBRANCH = scalar Returns the number of branches to insert below the node
ADDITIONAL = pointer Other information to store at the node
LADDITIONAL = text Labels for the other information

After BSELECT has selected a test, the tree is extended by the BGROW directive, function
BTERMINAL is used to find the next terminal node, and functions BPATH and BBRANCHES are
used to ascertain the nodes and branches between that node and the root.

4.12.7 Assessing potential splits: the BASSESS directive

BASSESS directive
Assesses potential splits for regression and classification trees.

Options
Y = variate or factor Response variate for a regression tree, or factor

specifying the groupings for a classification tree
SELECTED = dummy Returns the identifier of X variate or factor used in the

best split
TESTSPLIT = expression structure Logical expression representing the best split
MAXSPLITPOINT = scalar or variate

When SELECTED is a variate or a factor with ordered
levels this returns a scalar containing the boundary
between the two splits, when the SELECTED is a factor
with unordered levels it returns a variate containing the
levels allocated to the first split

MAXCRITERION = scalar Maximum value obtained for the selection criterion
NOSELECTION = scalar Returns the value 1 if no split has been selected,

otherwise 0
FMETHOD = string token Selection method to use when Y is a factor (Gini, MPI);

default Gini
ANTIENDCUTFACTOR = string token Anti-end-cut factor to use when Y is a factor

(classnumber, reciprocalentropy); default * i.e.
none

WEIGHTS = variate Weights; default * i.e. all weights 1
TOLERANCE = scalar Tolerance multiplier used e.g. to check for equality of x-

4.12 Operations on trees 299

values; default * i.e. set automatically for the
implementation concerned

Parameters
X = variates or factors Variables available to make the split
ORDERED = string tokens Whether factor levels are ordered (yes, no); default no
SPLITPOINT = scalars or variates Saves details of the best split found for each X variable;

when X is a variate or a factor with ordered levels this
returns a scalar containing the boundary between the
two splits, when the X is a factor with unordered levels it
returns a variate containing the levels allocated to the
first split

CRITERIONVALUE = scalars Saves the value of the selection criterion for the best
split found for each X variable

BASSESS selects splits for use when constructing classification or regression trees. The Y option
specifies the factor defining the groupings for a classification tree, or the response variate for a
regression tree. The x-variables that are available to make the split are supplied by the X
parameter. They can be variates, or factors with either ordered or unordered levels as indicated
by the ORDERED parameter. For example, a factor called Dose with levels for example 1, 1.5, 2
and 2.5 would usually be treated as having ordered levels, whereas levels labelled 'Morphine',
'Amidone', 'Phenadoxone' and 'Pethidine' of a factor called Drug would be regarded
as unordered.

In a regression tree, the accuracy of each node is the squared distance of the values of the
response variate from their mean for the observations at the node, divided by the total number
of observations. The potential splits are assessed by their effect on the accuracy, that is the
difference between the initial accuracy and the sum of the accuracies of the two successor nodes
resulting from the split.

For a classification tree, the FMETHOD option allows one of two selection criteria to be
requested. The default setting, Gini, uses the change in Gini information:

G = (1 ! 3k ák
2) ! (3k â1k) × (1 ! 3k â1k

2) ! (3k â2k) × (1 ! 3k â2k
2)

where ák is the proportion of individuals in the original set that are in group k, and âik is the
proportion of individuals in successor set i (i = 1 or 2) that are in group k. The aim here is to split
the individuals into sets to maximize differences between the within-set group probabilities. An
equivalent formula (Taylor & Silverman 1993, Section 4) is

G = (p1 × p2) × { 3k â1k
2 + 3k â2k

2 ! 3k (â1k × â2k) }
where pi = 3k âik. The alternative MPI (mean posterior improvement) criterion concentrates
more on making the group probabilities differ between the successor sets:

MPI = (p1 × p2) × { 1 ! 3k ((â1k × â2k) / (â1k + â2k)) }
Taylor & Silverman (1993) note that the term (p1 × p2) aims to generate successor sets of

similar size, and refer to it as the anti-end-cut factor because it aims to avoid sets being produced
with only a small number of individuals. The ANTIENDCUTFACTOR option allows you to request
use of an adaptive anti-end-cut factor as devised by Taylor & Silverman (1993, Section 5). This
has the form

min { p1 × p2, plow × (1 ! plow) }
where plow is the reciprocal of the number of groups in the initial set for the classnumber
setting of the ANTIENDCUTFACTOR option, and

min { 0.5, 1 / (3k ák
2) }

for the reciprocalentropy setting. The idea is to encourage splits that lead to terminal modes
! and to take accounts of the fact that these are more likely to be generated as the number of
groups becomes small.

300 4 Calculations and data manipulation

The SPLITPOINT parameter can be used to save details of the best split found for each X
variable. When X is a variate or a factor with ordered levels, this returns a scalar containing the
boundary between the two splits. Alternatively, when X is a factor with unordered levels, it
returns a variate containing the levels allocated to the first split. The CRITERIONVALUE
parameter saves the value of the selection criterion for the best split found for each X variable.

The SELECTED option can be set to a dummy to store the identifier of the X variate or factor
used in the best split, and the MAXSPLITPOINT option can save details of the best split, similarly
to the SPLITPOINT parameter. The MAXCRITERION option saves the maximum value obtained
for the selection criterion, and the NOSELECTION saves a scalar containing the value 0 if a split
could be selected or 1 if no further splitting was possible. You can save a logical expression
representing the best split using the TESTSPLIT option. So, for example, you can put

BASSESS [Y=Yvar; TESTSPLIT=Test; ...]
RESTRICT Yvar; #Test == 1
PRINT Yvar

to print the y-values of the individuals in the first successor set. BASSESS takes account of
restrictions on Y or on any of the X variates or factors. So you also could now use BASSESS to
find the best split on that set.

The WEIGHTS option can supply a variate of weights for the observations. This could be used
to supply prior probabilities, or to emphasize units that are perceived as being especially
important.

Finally, the TOLERANCE option can be used to modify the tolerance multiplier used internally
for example to check for equality of x-values. By default this is set automatically to a value
appropriate for the Genstat implementation concerned.

4.12.8 Pruning a tree: the BPRUNE procedure

BPRUNE procedure
Prunes a tree using minimal cost complexity (R.W. Payne).

Option
PRINT = string tokens Controls printed output (graph, table, monitoring);

default tabl

Parameters
TREE = trees Trees to be pruned
ACCURACY = pointers Accuracy values for the nodes of each tree; default is to

use those stored with the tree
NEWTREES = pointers Saves the trees generated during the pruning of each tree
RTPRUNED = variates Accuracy of the pruned trees of each tree
NTERMINAL = variates Number of terminal nodes in the pruned trees of each

tree

The construction of a classification tree or a regression tree generally results in over fitting, that
is it continues to extend the branches of the tree beyond the point that can be justified
statistically. The solution is to prune the tree to remove the uninformative sub-branches.

The tree to be pruned is specified by the TREE parameter. BPRUNE assumes that there is an
accuracy figure R(t) available for each node t of the tree. By default this is assumed to be stored
with the tree itself, but you can specify other values using the ACCURACY parameter. This should
be set to a pointer whose suffixes are the same as the numbers of the nodes in the tree, and whose
elements are scalars storing the relevant accuracy values.

For a classification tree the accuracy measures the impurity of the subset of individuals at that

4.12 Operations on trees 301

node (how far it is from being homogeneous i.e. with individuals from a single group). For a
regression tree it is the average squared distance of the values of the response variate from their
mean for the subset of observations at that node. The accuracy R(T) of the whole tree T is the
sum of the accuracies of its terminal nodes.
BPRUNE uses the principle of minimal cost complexity (Breiman et al. 1984, Chapter 3) to

produce a sequence of pruned trees. At each stage it prunes at the node which is the weakest link.
Define R(Tt) to be the accuracy of the subtree with root at node t, and nterm(t) to be its number
of terminal nodes. The weakest link is then the node for which

(R(t) ! R(Tt)) / (nterm(t) ! 1)
is a minimum. The pruned trees can be saved, in a pointer, using the NEWTREES parameter. Their
accuracies can be saved (in a variate) using the RTPRUNED parameter, and their numbers of
terminal nodes can be saved (also in a variate) using the NTERMINAL parameter.

Printed output is controlled by the PRINT option, with settings:
graph plots RTPRUNED against NTERMINAL;
table prints a table with RTPRUNED and NTERMINAL;
monitoring provides monitoring information during the pruning.

The plot of RTPRUNED against NTERMINAL demonstrates the trade-off between accuracy and
complexity (number of terminal nodes). It should show an initial rapid decrease, followed by a
long flat region, and then often a gradual increase. The aim is to select a tree that is accurate but
not over-complex. One possibility is to take the tree at the point where the graph levels off.
However, RTPRUNED contains only an estimate of the accuracy of the trees. So Breiman et al.
(1984) recommend taking a tree a little above that (in fact at one standard error of RTPRUNED
above the minimum point in the graph: see Chapters 3 and 11). In practice though a small
amount of over-fitting should not be a problem, so the exact choice of pruned tree should not be
crucial.

The use of BPRUNE is illustrated in 2:3.9.3 and 2:6:18.3.

4.12.9 Identification using a tree: the BIDENTIFY directive

BIDENTIFY directive
Identifies specimens using a tree.

Options
TREE = tree Specifies the tree
TESTELEMENT = scalar Specifies which element of the pointer of information

stored at each node of the tree contains the test to be
done there to determine which subsequent branch to take

TERMINALNODES = scalar, variate or pointer
Scalar or variate saving the number or numbers of the
terminal nodes reached by a single specimen, or pointer
of scalars or variates saving the numbers of the terminal
nodes reached by several specimens

Parameters
X = factors or variates Variables involved in the tests performed in the tree
VALUES = scalars, variates or texts Values of the variables for the specimens to be

identified

BIDENTIFY identifies specimens using a classification tree, or a regression tree, or an
identification key as constructed by procedures BCLASSIFICATION (2:6.21.1), BREGRESSION
(2:3.9.1) or BKEY (2:6.22.1), respectively. Its main use is as a utility for the customized

302 4 Calculations and data manipulation

procedures BCIDENTIFY (2:6.21.4), BRPREDICT (2:3.9.4) and BKIDENTIFY (2:6.22.3).
The characteristics of the specimens are specified using the X and VALUES parameters. Each

X setting should be one of the factors or variates in the tree, and the corresponding VALUES
setting should be a scalar, variate or text defining its values for the specimens. If X is a variate,
VALUES may be a scalar if all the specimens have the same x-value (or if there is only one
specimen); it will be a variate if there are several specimens with different x-values. VALUES can
be also be a scalar or variate if X is a factor. Alternatively, VALUES may be a text (with one or
several values) if the factor X has labels. Any restrictions on X or VALUES are ignored.

The tree is supplied by the TREE option. The TESTELEMENT option indicates which element
of the pointer of information, stored at each node of the tree, contains the test to be done there.
For trees constructed by procedures BCLASSIFICATION, BREGRESSION or BKEY the test
element is the second element of the pointers. In trees constructed by BKEY the test is a factor
whose (ordinal) level number defines the branch to take from the node. Alternatively, the tests
in trees constructed by BCLASSIFICATION and BREGRESSION are simple logical expressions
like

X < 1

or

X .IN. !t(red,blue)

where a "true" result selects the first branch, and a "false" result selects the second. BIDENTIFY
allows for expressions containing a single relational operator from the following list:

equality .EQ. or ==

string equality .EQS.

non-equality .NE. or /= or <>
string non-equality .NES.

less than .LT. or <
less than or equals .LE. or <=
greater than .GT. or >
greater than or equals .GE. or >=
inclusion .IN.

non-inclusion .NI.

If the factor or variate in the test is not in the list supplied by the X parameter, all the branches
from the node must be followed, and the specimen will reach several terminal nodes. All the
branches must also be taken if the specimen has a missing value for the X variable in the test.

The TERMINALNODES option saves the numbers of the terminal nodes that the specimens reach
in the tree. If there is a single specimen, TERMINALNODES will be a scalar or a variate. If there
are several specimens, it will be a pointer of scalars or variates.

4.13 Numerical algorithms: the NAG directive

NAG directive
Calls an algorithm from the NAG Library.

Options
PRINT = string token Controls printed output (algorithms, monitoring);

default * i.e. none
NAME = string token Name of the algorithm to call; default * i.e. none
ZDZ = string token Value to be given to zero divided by zero in Genstat

expressions defined in the ARGUMENTS (missing,
zero); default miss

4.13 Numerical algorithms 303

TOLERANCE = scalar If the scalar is non missing, this defines the smallest
non-zero number for use in Genstat expressions defined
in the ARGUMENTS; otherwise it accesses the default
value, which is defined automatically for the computer
concerned

SEED = scalar Seed to use for any random number generation in
Genstat expressions defined in the ARGUMENTS; default
0

INDEX = scalar If a Genstat expression defined in the ARGUMENTS has a
list of structures before the assignment operator (=), the
scalar indicates the position within the list of the
structure currently being evaluated

Parameters
ARGUMENTS = pointer Arguments for the call
RESULT = scalar Stores the result for algorithms that take the form of a

function rather than a subroutine

NAG provides access to some specific algorithms in the Numerical Algorithms Group's subroutine
libraries. You can set option PRINT=algorithms to list those that are currently available. The
other setting monitoring gives additional monitoring from algorithms like D02KDF that can
give additional monitoring information from a MONIT subroutine. (NAG includes a custom version
of MONIT for each routine, that provides all the relevant information.)

The name of the algorithm is specified using the NAME option. It is best to give the name in
full, as the NAG names may not be distinct in their first four characters and so the standard
abbreviation rules (e.g. that four characters are sufficient) cannot be guaranteed in all future
releases. The arguments for the call are supplied, in a pointer, using the ARGUMENTS parameter.
These must be in the order required by the algorithm, and input arguments must be of the correct
type (number or string) and shape (vector, matrix and so on); for details see the relevant NAG
documentation. Output arguments are defined automatically from the results. The RESULT
parameter saves the result if the NAG algorithm is a function rather than a subroutine.

Example 4.13a uses NAG routine G12BAF to fit a Cox proportional hazards model. The
arguments of G12BAF (from the NAG documentation; see e.g. www.nag.co.uk) are as follows.

1: OFFSET ! character*1, Input If OFFSET = 'Y', an offset must be included in OMEGA. If
OFFSET = 'N', no offset is included in the model.
Constraint: OFFSET = 'Y' or 'N'.

2: N ! integer, Input The number of data points, n. Constraint: N $ 2.
3: M ! integer, Input The number of covariates in array Z. Constraint: M $ 1.
4: NS ! integer, Input The number of strata. If NS > 0 then the stratum for each

observation must be supplied in ISI. Constraint: NS $ 0.
(Note: strata here means groups as in stratified surveys,
not error strata as in ANOVA; 2:4.2).

5: Z(LDZ,M) ! real array, Input The ith row must contain the covariates that are associated
with the ith failure time given in T.

6: LDZ ! integer, Input The size of the first dimension of the array Z. Constraint:
LDZ $ N.

7: ISZ(M) ! integer array, Input Indicates which subset of covariates is to be included in
the model. If ISZ(j) $ 1, the jth covariate is included in
the model. If ISZ(j) = 0, the jth covariate is excluded
from the model and not referenced. Constraints: ISZ(j) $
0 and at least one and at most n0 ! 1 elements of ISZ must

304 4 Calculations and data manipulation

be non-zero, where n0 is the number of observations
excluding any with zero value of ISI.

8: IP ! integer, Input The number of covariates included in the model as
indicated by ISZ. Constraint: IP = number of non-zero
values of ISZ.

9: T(N) ! real array, Input The vector of n failure censoring times.
10: IC(N) ! integer array, Input The status of the individual at time t given in T. If IC(i)

= 0, the ith individual has failed at time T(i). If IC(i) = 1,
the ith individual has been censored at time T(i).
Constraint: IC(i) = 0 or 1 for i = 1, 2 ... N.

11: OMEGA(*) ! real array, Input Supplies the offset variate when OFFSET = 'Y'. Note: the
dimension of the array OMEGA must be at least N if OFFSET
= 'Y', and 1 otherwise.

12: ISI(*) ! integer array, Input Supplies the stratum indicators when NS > 0; you can also
set the value to 0 to exclude data points from the analysis.
Note: the dimension of ISI must be at least N if NS > 0
and 1 otherwise. Constraints: values must lie between 0
and NS, and at least IP values must be greater than 0.

13: DEV ! real, Output Saves the deviance, that is !2 × (maximized log marginal
likelihood).

14: B(IP) ! real array Input/Output
On entry: initial estimates of the covariate coefficient
parameters i.e. B(j) must contain the initial estimate of the
coefficient of the covariate in Z corresponding to the jth
non-zero value of ISZ. On exit: B(j) contains the estimate
of the coefficient of the covariate stored in the ith column
of Z where i is the jth non-zero value in the array ISZ.

15: SE(IP) ! real array, Output Saves the asymptotic standard errors of the estimates
contained in B.

16: SC(IP) ! real array, Output Saves the value of the score function for the estimates
contained in B.

17: COV(IP*(IP+1)/2) ! real array, Output
Saves the variance-covariance matrix of the parameter
estimates in B.

18: RES(N) ! real array, Output Saves the residuals.
19: ND ! integer, Output Saves the number of distinct failure times.
20: TP(NDMAX) ! real array, Output

Saves the distinct failure times.
21: SUR(NDMAX,*) ! real array, Output

If NS = 0, SUR(i,1) saves the estimated survival function
for the ith distinct failure time. If NS > 0, SUR(i,k)
contains the estimated survival function for the ith distinct
failure time in the kth stratum. Note: the second dimension
of the array SUR must be at least 1 if NS = 0, and at least
NS if NS > 0.

22: NDMAX ! integer, Input The size of first dimension of the array SUR. Constraint:
NDMAX $ the number of distinct failure times (as returned
in ND).

23: TOL ! real, Input Indicates the accuracy required for the estimation.
Convergence is assumed when the decrease in deviance is
less than TOL × (1.0 + current deviance). This corresponds

4.13 Numerical algorithms 305

approximately to an absolute precision if the deviance is
small and a relative precision if the deviance is large.
Constraint: TOL $ 10 × machine precision.

24: MAXIT ! integer, Input The maximum number of iterations to be used for
computing the estimates. If MAXIT is set to 0, then the
standard errors, score functions, variance-covariance
matrix and the survival function are computed for the
input values of the coefficients in B but these are not
updated. Constraint: MAXIT $ 0.

25: IPRINT ! integer, Input Indicates if the printing of information on the iterations is
required. If IPRINT = 0, there is no printing, if IPRINT >
0 then the deviance and the current estimates are printed
every IPRINT iterations.

26: WK(IP*(IP+9)=2+N) ! real array
Workspace

27: IWK(2*N) ! integer array Workspace
28: IFAIL ! integer Input/Output On entry: IFAIL must be set to 0, 1 or !1 to indicate what

to do if a fault occurs (see below). On exit: IFAIL = 0 if
no faults have occurred;
IFAIL = 1 if OFFSET � 'Y' or 'N', or M < 1, or N < 2, or
NS < 0, or LDZ < N, or TOL < 10 × machine precision, or
MAXIT < 0;
IFAIL = 2 if ISZ(i) < 0 for some i, or the value of IP is
incompatible with ISZ, or IC(i) � 1 or 0, or ISI(i) < 0 or
ISI(i) > NS, or number of values of ISZ(i) > 0 is greater
than or equal to n0, the number of observations excluding
any with ISI(i) = 0, or all observations are censored (i.e.
IC(i) = 1 for all i), or NDMAX is too small;
IFAIL = 3 if the matrix of second partial derivatives is
singular (try different starting values or include fewer
covariates);
IFAIL = 4 if overflow has been detected (try using
different starting values);
IFAIL = 5 if convergence has not been achieved in MAXIT
iterations;
IFAIL = 6 if in the current iteration 10 step halvings have
been performed without decreasing the deviance from the
previous iteration (convergence is then assumed).

The failure indicator IFAIL occurs in many of the NAG routines (see Chapter P01 of the NAG
documentation, e.g. at www.nag.co.uk, for details). The input setting 0 requests a hard fail,
which halts execution if a fault occurs; 1 requests a silent soft fail, which allows execution to
continue and does not generate an error message; and !1 requests a noisy soft fail, which allows
execution to continue but does generate an error message.

The example fits a Cox proportional hazards model to some data on remission times of child
patients with acute leukaemia (see Gehan 1965). There are two treatment groups: one treated
with 6-mercaptopurine and the other acting as a control. Lines 2-21 define Genstat structures for
each arguments of G12BAF. The character argument OFFSET is represented by a text with a
single string of one character. Single integer and real values, like N or DEV, are both represented
by scalars. Integer and real arrays, like IC or B, are represented by variates. However, the array
COV which is essentially a symmetric matrix, is actually a symmetric matrix in Genstat. Data
structures need to be defined for the workspace arguments, but NAG can set up their values

306 4 Calculations and data manipulation

automatically with the required lengths. It can also define the output structures automatically.
Lines 22-24 define a pointer Args containing the 28 Genstat structures in the order defined for
the 28 arguments of G12BAF. Line 25 calls G12BAF, and lines 26 and 27 print some of the output
arguments.

Example 4.13a

 2 VARIATE [VALUES=1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23,\
 3 6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35] Time
 4 & [VALUES=24(0),1,0,1,0,1,1,0,0,1,1,1,0,0,1,1,1,1,1] Censor
 5 FACTOR [LABELS=!t(control,'6-mercaptopurine'); VALUES=21(1,2)] Treat
 6 TEXT [VALUE='N'] OFFSET
 7 VARIATE T,IC; VALUE=Time,Censor
 8 CALCULATE N = NVALUES(T)
 9 SCALAR M,NS; VALUE=1,0
10 MATRIX [ROWS=N; COLUMNS=M] Z
11 CALCULATE Z$[*;1] = Treat .EQ. 2
12 CALCULATE LDZ = NVALUES(Z)
13 VARIATE [VALUES=1] ISZ
14 CALCULATE IP = SUM(ISZ)
15 VARIATE [VALUES=1] OMEGA,ISI
16 VARIATE [NVALUES=IP] SE,SC
17 VARIATE [VALUES=0] B
18 SYMMETRIC [ROWS=IP] COV
19 VARIATE [NVALUES=N] RES
20 SCALAR TOL,MAXIT,IPRINT; VALUE=1.E-6,50,0
21 VARIATE WK,IWK
22 POINTER [VALUES=OFFSET,N,M,NS,Z,LDZ,ISZ,IP,T,\
23 IC,OMEGA,ISI,DEV,B,SE,SC,COV,RES,ND,\
24 TP,SUR,NDMAX,TOL,MAXIT,IPRINT,WK,IWK,IFAIL] Args
25 NAG [NAME=G12BAF] Args
26 PRINT DEV,ND,IFAIL

 DEV ND IFAIL
 172.8 17.00 0

27 PRINT B,SE

 B SE
 -1.509 0.4096

Next, in Example 4.13b, we use NAG routine D01AMF to integrate the function
1 / ((x+1) × %x)

from zero to infinity (the answer should be ð). The arguments of D01AMF are as follows.

1: F ! real function An external function F(x) that returns the value of the
integrand f at a given point x.

2: BOUND ! real Input The finite limit of the integration range (if present); BOUND
is not used if the interval is doubly infinite.

3: INF ! integer Input indicates the kind of integration range: if INF = 1, the
range is [BOUND, 4); if INF = !1, the range is (!4,
BOUND]; if INF = 2, the range is (!4, 4). Constraint: INF
= !1, 1 or 2.

4: EPSABS ! real Input The absolute accuracy required; if EPSABS is negative, the
absolute value is used.

5: EPSREL ! real Input The relative accuracy required; if EPSREL is negative, the
absolute value is used.

6: RESULT ! real Output The approximation to the integral.
7: ABSERR ! real Output An estimate of the modulus of the absolute error, which

should be an upper bound for the absolute difference
between the integral and RESULT.

4.13 Numerical algorithms 307

8: W(LW) ! real array Output Details of the computation (end-points of the sub-intervals
used by D01AMF along with the integral contributions and
error estimates over these sub-intervals).

9: LW ! integer Input The size of the array W. The value of LW (together with that
of LIW below) imposes a bound on the number of
subintervals into which the interval of integration may be
divided by the routine. The number of subintervals cannot
exceed LW / 4. The more difficult the integrand, the larger
LW should be. Suggested value: a value in the range 800 to
2000 is adequate for most problems. Constraint: LW $ 4.

10: IW(LIW) ! integer array Output
IW(1) contains the actual number of sub-intervals used.
The rest of the array is used as workspace.

11: LIW ! integer Input The size of the array IW. The number of sub-intervals into
which the interval of integration may be divided cannot
exceed LIW. Suggested value: LIW = LW / 4. Constraint:
LIW $ 1.

12: IFAIL ! integer Input/Output On entry: IFAIL must be set to 0, 1 or !1 to indicate what
to do if a fault occurs (see below). On exit: IFAIL = 0 if
no faults have occurred;
IFAIL = 1 if the maximum number of subdivisions
allowed with the given workspace has been reached,
without the requested accuracy requirements being
achieved;
IFAIL = 2 if round-off error prevents the requested
tolerance from being achieved ! the error may be
underestimated (consider requesting less accuracy);
IFAIL = 3 if extremely bad local integrand behaviour
causes a very strong subdivision around one (or more)
points of the interval;
IFAIL = 4 if the requested tolerance cannot be achieved,
because the extrapolation does not increase the accuracy
satisfactorily ! the returned result is the best which can be
obtained;
IFAIL = 5 suggests that the integral is probably divergent,
or slowly convergent (it must be noted that divergence can
also occur with any other non-zero value of IFAIL);
IFAIL = 6 if on entry, LW < 4, or LIW < 1, or INF � !1, 1
or 2.

The first argument for D01AMF is an external Fortran function to calculate the function f(x)
to be integrated, at a supplied value of x. An argument like this is specified for the NAG directive
by supplying a pointer whose first element is a Genstat expression, or a pointer to several
Genstat expressions, to do the necessary calculations. If the argument is an external function, the
next element of the pointer should be the Genstat data structure that receives the result of the
calculation in the expression(s); if it is a subroutine, this element is omitted. The remaining
elements should be the Genstat data structures that correspond to the arguments of the external
function or subroutine, in the order in which they occur in the definition of the function or
subroutine in the NAG documentation. So, in line 2, we define the expression Func to do the
calculation. Then, in line 3, the pointer F is defined with Func as its first element, the result Y
of the expression in Func as its next element, and the argument X of the expression as its
remaining element.

308 4 Calculations and data manipulation

The expression or expressions are evaluated within the NAG directive by making a call to the
CALCULATE directive. The ZDZ, TOLERANCE, SEED and INDEX options of the NAG directive can
be used to set the corresponding options of CALCULATE for the call.

Lines 4 and 5 define Genstat data structures for the other input arguments of D01AMF, and
lines 6 and 7 put them into the pointer Args. Line 8 calls D01AMF, and lines 8-9 print some of
the results. Notice that the output arguments have been defined by default, and that the integer
output argument IFAIL has been defined with a decimals attribute (as set by the DECIMALS
parameter of the SCALAR directive; 2.2.1) of zero, so that it prints by default as an exact integer.

Example 4.13b

 2 EXPRESSION [VALUE=(Y = 1 / ((X+1)*SQRT(X)))] Func
 3 POINTER [VALUES=Func,Y,X] F
 4 SCALAR BOUND,INF,EPSABS,EPSREL,LW; VALUE=0,1,0,0.0001,800
 5 SCALAR LIW; VALUE=LW/4
 6 POINTER [VALUES=F,BOUND,INF,EPSABS,EPSREL,RESULT,ABSERR,\
 7 W,LW,IW,LIW,IFAIL] Args
 8 NAG [NAME=D01AMF] Args
 9 PRINT RESULT; DECIMALS=6

 RESULT
 3.141593

 10 PRINT ABSERR,IFAIL

 ABSERR IFAIL
 0.00002651 0

5 Programming in Genstat

The commands that you input to Genstat are known as a Genstat program. This consists of a
sequence of one or more jobs. The first job starts automatically at the start of the program. Later,
if you want, you can begin a subsequent job using the JOB and ENDJOB directives. The effect is
equivalent to restarting Genstat (data structures are deleted, the graphics environment is reset,
and so on) except that any files that have been attached to Genstat retain their current status. So,
for example, Genstat will continue to add output to the end of an output file, and will continue
reading from the current point of an input file.

JOB starts a Genstat job, ending the previous one if necessary

(5.1.1)
ENDJOB ends a job (5.1.2)

The whole program is terminated by a STOP directive:
STOP ends a Genstat program (5.1.3)

Statements within a program can be repeated using a FOR loop. The loop is introduced by a

FOR statement. This is followed by the series of statements that is to repeated (that is, the
contents of the loop), and the end of the loop is marked by an ENDFOR statement. Parameters of
the FOR directive allow lists of data structures to be specified so that the statements in the loop
operate on different structures each time that it is executed.

FOR indicates the start of a loop (5.2.1)

ENDFOR marks the end of a loop (5.2.1)
Genstat has two ways of choosing between sets of statements. The block-if structure consists

of one or more alternative sets of statements. The first set is introduced by an IF statement.
There may then be further sets introduced by ELSIF statements. Then there may be a final set
introduced by an ELSE statement, and the whole structure is terminated by an ENDIF structure.
The IF statement, and each ELSIF statement, contains a single-valued logical expression.
Genstat evaluates each one in turn and executes the statements following the first TRUE logical
found; if none of them is true, Genstat executes the statements following the ELSE statement (if
any).

IF introduces a block-if structure (5.2.2)

ELSIF introduces an alternative set of statements in a block-if
structure (5.2.2)

ELSE introduces a default set of statements for a block-if
structure (5.2.2)

ENDIF marks the end of a block-if structure (5.2.2)

The multiple-selection structure consists of several sets of statements. The first is introduced by
a CASE statement. Subsequent sets are introduced by OR statements. There can then be a final,
default, set introduced by an ELSE statement, and the end of the structure is indicated by an
ENDCASE statement. The parameter of the CASE statement is an expression which must produce
a single number. Genstat rounds this to the nearest integer, n say, and then executes the nth set
of statements. If there is no nth set, the statements following the ELSE statement are executed
(if any).

CASE introduces a multiple-selection structure (5.2.3)

OR introduces an alternative set of statements for a multiple-
selection structure (5.2.3)

ELSE introduces a default set of statements for a multiple-
selection structure (5.2.3)

ENDCASE marks the end of a multiple-selection structure (5.2.3)

310 5 Programming in Genstat

Any control structure (job, block-if structure, loop, multiple-selection structure or procedure !
see below) can be abandoned using an EXIT statement.

EXIT exits from a control structure (5.2.4)

Sequences of statements can be formed into Genstat procedures. This not only makes them

simpler for you to use; it also means that you can make them easily available to other users. The
use of a procedure looks just like one of the Genstat directives, with its own options and
parameters, which transfer information to and from the procedure. Otherwise the procedure is
completely self-contained. There is a standard, officially-supported procedure library, which is
automatically available whenever you run Genstat. Details are available on-line from the
procedures in the help module of the library. You can also write your own procedures (5.3.2),
and form your own libraries with their own on-line help (5.3.4).

LIBHELP provides help information for Library procedures (5.3.1)

LIBEXAMPLE accesses examples and source code of Library procedures
(5.3.1)

LIBVERSION provides the name of the current Genstat Procedure
Library (5.3.1)

NOTICE provides information about Genstat, including instructions
for authors of Library procedures

The start of a procedure is indicated by a PROCEDURE statement. Then OPTION and PARAMETER
statements can be given to define the arguments of the procedure. These are followed by the
statements to be executed when the procedure is called, terminated by an ENDPROCEDURE
statement.

PROCEDURE introduces a procedure, and defines its name (5.3.2)
OPTION defines the options of a procedure (5.3.2)
PARAMETER defines the parameters of a procedure (5.3.2)
CALLS lists the procedures called by a procedure (5.3.2)
ENDPROCEDURE indicates the end of a procedure (5.3.2)

Commands are available to enable procedure writers to provide their own error handing, to
define and access private data structures, to execute macros and to increment counters. You can
also discover whether and how a particular command has been implemented.

FAULT checks whether to issue a diagnostic, i.e. a fault, warning

or message (5.4.1)
DISPLAY repeats the last Genstat diagnostic (5.4.1)
WORKSPACE accesses "private" data structures for use in procedures

(5.4.2)
EXECUTE executes the statements contained within a text (5.4.3)
COUNTER increments a multi-digit counter using non base-10

arithmetic (5.4.4)
COMMANDINFORMATION provides information about whether (and how) a command

has been implemented (5.4.5)
SPSYNTAX puts details about the syntax of commands into a

spreadsheet
SYNTAX obtains details about the syntax of a command (5.4.6)

Genstat has commands to help you debug your programs. The execution of any control

structure (job, block-if structure, loop, multiple-selection structure or procedure) can be
interrupted explicitly (so that you can enter other commands such as PRINT) using a BREAK
statement, or implicitly by using DEBUG; once DEBUG has been entered, Genstat will produce
breaks automatically at regular intervals, until it meets an ENDDEBUG statement.

5.1 Genstat programs 311

BREAK suspends the execution of a control structure (5.5.1)

ENDBREAK continues execution of a control structure, following a
break (5.5.1)

DEBUG can cause a break to take place after the current statement
(and at specified intervals thereafter), or immediately after
the next fault (5.5.2)

ENDDEBUG cancels DEBUG (5.5.2)
You can modify aspects of the "environment" of the current Genstat job, such as whether or

not Genstat starts output from a statistical analysis at the top of a new page, or whether it should
pause during interactive output. You can also copy details of these environmental settings into
Genstat data structures so that, for example, you can react appropriately within a procedure.
User-defined defaults can be specified for the options and parameters of any directive or
procedure.

SET sets details of the "environment" of a Genstat job (5.6.1)

GET accesses information about the Genstat environment
(5.6.2)

SETOPTION sets or modifies defaults of options of Genstat directives
or procedures (5.6.3)

SETPARAMETER sets or modifies defaults of parameters of Genstat
directives or procedures (5.6.3)

In many implementations of Genstat, you can suspend the execution of Genstat and return to

the operating system of the computer to execute commands, for example to list or edit files on
the computer. Likewise, it may be possible to halt the execution of Genstat to execute some other
computer program. Some implementations also allow you to incorporate your own programs into
Genstat. The OWN directive calls a subroutine called OWN, within the Fortran code of Genstat,
which may be modified to call the program. The new code must then be recompiled and linked
into a new version of Genstat.

SUSPEND suspends the execution of Genstat to carry out operating-

system commands (5.7.1)
PASS runs another computer program, taking data from Genstat

and transferring results back (5.7.2)
OWN executes the user's own code linked into Genstat

5.1 Genstat programs

A Genstat program is a sequence of statements involving either standard Genstat directives or
procedures (1.1). You may often wish to examine several different sets of data within the same
program: for example, you may want to be able to collect several analyses in one batch run
(1.1.2), or to be able to end one analysis and start a different one, with different data, when you
are running Genstat interactively (1.1.1).

The JOB and ENDJOB directives can be used to partition a Genstat program into separate jobs.
A job is a self-contained subsection of a program. All data structures and procedures are lost at
the end of each job. Any setting defined by a UNITS statement (2.3.4) is deleted, as are the
special structures set up by analyses like regression and analysis of variance (2.9). The graphics
environment is also reset to the initial default. Thus, in many ways, it is as though Genstat was
starting again for each new job.

However, any files that have been attached to Genstat retain their current status from job to
job. So, for example, Genstat will continue to add output to the end of an output file, or will
continue reading from the current point of an input file.

The JOB directive also has options that allow you to modify some aspects of the Genstat

312 5 Programming in Genstat

environment: for example what prompt will be used for input and whether input lines are
reprinted in an output file. The default settings of the options will leave these aspects unchanged
so, if any aspect is modified, it will remain in that form (unless modified again) in any
subsequent job. The initial settings, which apply at the outset of a program, are described in
5.1.1; however, remember that it is possible to arrange for Genstat to run commands from a start-
up file (5.6.4) before it executes the first statement of a program, so the initial environment can
differ from machine to machine.

5.1.1 The JOB directive

JOB directive
Starts a Genstat job.

Options
INPRINT = string tokens Printing of input as in PRINT option of INPUT

(statements, macros, procedures,
unchanged); default unch

OUTPRINT = string tokens Additions to output as in PRINT option of OUTPUT
(dots, page, unchanged); default unch

DIAGNOSTIC = string tokens Defines the least serious class of Genstat diagnostic
which should still be generated (messages,
warnings, faults, extra, unchanged); default
unch

ERRORS = scalar Limit on number of error diagnostics that may occur
before the job is abandoned; default * i.e. no change

PROMPT = text Characters to be printed for the input prompt
WORDLENGTH = string token Length of word (8 or 32 characters) to check in

identifiers, directives, options, parameters and
procedures (long, short); default * i.e. no change

Parameter
text Name to identify the job

The JOB directive is used to start a new job. It has a parameter which can be set to a text to
identify the job (for example in the message at the end of the job), and options to control some
aspects of the Genstat "environment". However, Genstat will automatically start a job at the
beginning of a program, or after an ENDJOB statement, so you do not need to give a JOB
statement unless you wish to define an identifying text or to modify the environment.

The INPRINT option specifies which pieces of input from the current input channel will be
recorded in the current output file. (The current input channel may be a file or, in an interactive
run, it may also be the keyboard.) The settings correspond to three types of input:

statements statements that are typed explicitly on the keyboard or
which occur explicitly in an input file,

macros statements or parts of statements that have been supplied
in macros, using the ## notation (1.8.2), and

procedures statements occurring within procedures.

The initial default is to record only statements for input from a file, or to record nothing if
input is from the keyboard. The recording of input can be modified also by the INPRINT option
of the SET directive (5.6.1), or by the PRINT option of INPUT (3.4.1).

The OUTPRINT option controls the way in which the output from many Genstat directives will

5.1 Genstat programs 313

start: page ensures that output to a file will start at the head of a page, and dots produces a line
of dots beginning with the line number of the statement that has generated the analysis. The
initial default is to give a new page and a line of dots if output is to a file, but neither if output
is to the screen. This can be modified also by the OUTPRINT option of the SET directive (5.6.1),
or by the PRINT option of OUTPUT (3.4.3).

The DIAGNOSTICS option controls the reporting of errors and possible mistakes. In order of
increasing seriousness there three classes of diagnostic: messages, warnings and faults. Messages
are comments that are made to draw your attention to things that might need closer investigation,
like large residuals in an analysis of variance or a regression. Warnings are definite errors, but
ones that are not sufficiently serious to prevent Genstat from continuing; an example would be
an attempt to print a data structure with no values. Faults are the most serious type of error. A
fault in a batch run will cause Genstat to stop executing the current job. However, Genstat will
continue to read and interpret the statements so that it can find the start of the next job (if any);
at the same time it will report any further errors that it finds, up to the number specified by the
ERRORS option. The setting of DIAGNOSTICS indicates the level of stringency to be adopted.
Thus, if DIAGNOSTICS=warnings, Genstat will report faults and warnings (but not messages),
while DIAGNOSTICS=messages ensures that all three classes are reported. The setting extra
is similar to messages but will also generate a dump of system information (2.11.2) after any
fault. You can prevent the output of any diagnostics by putting DIAGNOSTICS=*. The initial
default is to set DIAGNOSTICS=messages. This can be modified also by the DIAGNOSTIC
option of the SET directive (5.6.1).

The WORDLENGTH parameter controls the number of characters that are stored and checked in
identifiers and names of directives, procedures, options, parameters and functions. In releases
prior to 4.2 this was always eight, but from 4.2 onwards you can choose between eight
(WORDLENGTH=short) and 32 (WORDLENGTH=long). The initial default is long. This can be
modified also by the WORDLENGTH option of the SET directive (5.6.1)

5.1.2 The ENDJOB directive

ENDJOB directive
Ends a Genstat job.

No options or parameters

The ENDJOB directive terminates a job, printing a message summarizing how much workspace
has been used. For example:

Example 5.1.2

 2 JOB 'Example of ENDJOB message'
 3 PRINT 'This job just prints this message.'

 This job just prints this message.

 4 ENDJOB

******** End of Example of ENDJOB message.

You do not need to give an ENDJOB statement before a JOB statement, as JOB will automatically
end any existing job before it starts another. Thus you can begin a new job by specifying either
JOB or ENDJOB (or both).

314 5 Programming in Genstat

5.1.3 The STOP directive

STOP directive
Ends a Genstat program.

No options or parameters

The STOP directive indicates the end of a Genstat program, thus telling the computer that you
have finished using Genstat. It also ends the existing job, so there is no need to give an ENDJOB
statement beforehand. Any input that follows a STOP statement is ignored.

5.2 Program control

Usually the statements in a Genstat job are executed in sequence, until either ENDJOB or STOP
is reached. But, as with most programming languages, you may sometimes want to control the
order in which the statements are executed.

If you have several sets of data that are all to be analysed in the same way, you may want to
repeat the necessary series of statements for each set. You can do this by preceding the series
with a FOR statement, and ending it with an ENDFOR statement. The FOR directive also allows
you to specify dummy structures (2.2.2) which point in turn to the data structures of the
successive sets.

To be able to write general programs, you may need to be able to choose between alternative
sets of statements, according to the exact form of a particular set of data. There are two ways in
which you can do this. The directives IF, ELSIF, ELSE and ENDIF allow you to define block-if
structures (5.2.2). Alternatively, the directives CASE, OR, ELSE and ENDCASE allow you to
choose between sets of statements according to an integer value (5.2.3).

The EXIT directive (5.2.4) allows you to abandon any of these control structures while the
program is being executed. The exit can be dependent on a condition, for example on an invalid
data value or even on a Genstat diagnostic. The Genstat language is designed in accordance with
the principles of structured programming: there is no way of "labelling" a statement and no
equivalent of the Fortran "GO TO" construct.

5.2.1 FOR loops

FOR directive
Introduces a loop; subsequent statements define the contents of the loop, which is terminated
by the directive ENDFOR.

Options
NTIMES = scalar Number of times to execute the loop; default is to

execute as many times as the length of the first
parameter list or once if the first list is null

INDEX = scalar Records the number of the current time that the loop is
being executed

START = scalar Defines an integer initial value for the loop index;
default 1

END = scalar Defines an integer final value for the loop index
STEP = scalar Defines an integer amount by which to increase the

index each time the loop is executed; default 1
VALUES = variate Defines a set of values to be taken successively by the

5.2 Program control 315

loop index (overides START, END and STEP if these are
specified too)

Parameters
Any number of parameter settings of the form identifier
= list of data structures; the identifier is set up as a
dummy which is then used within the loop to refer, in
turn, to the structures in the list

ENDFOR directive
Indicates the end of the contents of a loop.

No options or parameters

The FOR loop is a series of statements, or a block, that is repeated several times. The FOR
directive introduces the loop and indicates how many times it is to be executed. In its simplest
form FOR has no parameters, and the number of times is indicated by the NTIMES option. Thus
the iterative calculation of a square root in the example in 1.8.2 can be specified in a FOR loop
like this:

FOR [NTIMES=3; INDEX=Iteration]
 CALCULATE Previous = Root
 & Root = (X/Previous + Previous)/2
 PRINT Iteration,Root,Previous; DECIMALS=0,4,4
ENDFOR

The sequence of CALCULATE and PRINT statements is repeated three times (exactly as in 1.8.2).
The INDEX option allows you to record the loop index in a scalar. By default this is the

number of the time that the loop is currently being executed. So, in the statement below, the
index Count will take the values 1, 2 and 3.

FOR [NTIMES=3; INDEX=Count]

The options START, END and STEP allow you to define a loop index that does not start at one,

and does not increase by one each time the loop is executed. They should all be set to integers;
any non-integer value is rounded to the nearest integer. (Integer calculations are exact, so this
avoids inaccuracies due to numerical round-off when loops are executed many times.) START
specifies the INDEX value on the first time that the loop is executed (default 1). STEP defines
how it changes between one time that the loop is executed and the next (default 1). So, for
example, on the second time INDEX will be START + STEP. END provides an alternative way of
specifying how many times to execute the loop ! it stops when the next index will go beyond
END. For example, the statement below

FOR [INDEX=Count; START=3; END=8; STEP=2]

defines a loop that will be executed three times, with the index variable Count taking the values
3, 5 and 7; the next value would be 9, which goes beyond 8. The default STEP is one. STEP can
also be negative. So, this statement

FOR [INDEX=Count; START=3; END=-4; STEP=-2]

defines a loop that will be executed four times, with the index variable Count taking the values
3, 1, !1 and !3; the next value would be !5, which goes beyond !4. If you specify NTIMES as
well as END, they must both define the same number of times to execute the loop.

The VALUES option allows you to specify an arbitrary sequence of values for the loop index,
and these need not be integers. The setting is a variate. So, for example, here

VARIATE [VALUES=0, 0.5, 1, 1.5, 2, 1.5, 1, O.5, 0] Cvals
FOR [INDEX=Count; VALUES=Cvals]

316 5 Programming in Genstat

Count will first increase from 0 to 2 in steps of 0.5, and then decrease back down to 0. The
number of values in the VALUES variate must be the same as the value supplied by NTIMES if
both options are specified. VALUES overrides START, END and STEP if these are specified too.

The INDEX is defined automatically as a scalar if it has not already been declared. If VALUES
is set, its default number of decimals is set to be the same as the number defined for the VALUES
variate (see the DECIMALS parameter of the VARIATE and SCALAR directives), or to take the
default number if no decimals have been defined for VALUES. Otherwise the default number of
decimals is set to zero.

The parameters of FOR allow you to write a loop whose contents apply to different data
structures each time it is executed. Unlike other directives, the parameter names of FOR are not
fixed for you by Genstat: you can put any valid identifier before each equals sign. Each of these
then refers to a Genstat dummy structure, as described in 2.2.2; so you must not have declared
them already as any other type of structure. The first time that the loop is executed, they each
point to the first data structure in their respective lists, next time it is the second structure, and
so on. The list of the first parameter must be the longest; other lists are recycled as necessary.

 If you specify parameters you do not need to specify NTIMES but, if you specify both the
value of NTIMES must be the same as the length of the first parameter list.

You can specify as many parameters as you need. For example

FOR Ind=Age,Name,Salary; Dir='descending','ascending'
 SORT [INDEX=Ind; DIRECTION=#Dir] Name,Age,Salary
 PRINT Name,Age,Salary
ENDFOR

is equivalent to the sequence of statements

SORT [INDEX=Age; DIRECTION='descending'] Name,Age,Salary
PRINT Name,Age,Salary
SORT [INDEX=Name; DIRECTION='ascending'] Name,Age,Salary
PRINT Name,Age,Salary
SORT [INDEX=Salary; DIRECTION='descending'] Name,Age,Salary
PRINT Name,Age,Salary

printing the units of the text Name, and variates Age and Salary, first in order of descending
ages, then in alphabetic order of names, and finally in order of descending salaries.

You can put other control structures inside the loop. So, for example, you can have loops
within loops.

When you are using loops interactively, you may find it helpful to use the PAUSE option of
SET to request Genstat to pause after every so many lines of output (5.6.1). Another useful
directive is BREAK, which specifies an explicit break in the execution of the loop (5.5.1).

5.2.2 Block-if structures

The component parts of a block-if structure are delimited by IF, ELSIF, ELSE and ENDIF
statements.

IF directive
Introduces a block-if control structure.

No options

Parameter
expression Logical expression, indicating whether or not to execute

the first set of statements.

5.2 Program control 317

ELSIF directive
Introduces a set of alternative statements in a block-if control structure.

No options

Parameter
expression Logical expression to indicate whether or not the set of

statements is to be executed.

ELSE directive
Introduces the default set of statements in block-if or in multiple-selection control structures.

No options or parameters

ENDIF directive
Indicates the end of a block-if control structure.

No options or parameters

A block-if structure consists of one or more alternative sets of statements. The first of these is
introduced by an IF statement. There may then be further sets introduced by ELSIF statements.
Then you can have a final set introduced by an ELSE statement, and the whole structure is
terminated by an ENDIF statement. Thus the general form is:
first

IF expression
 statements

then either none, one, or several blocks of statements of the form

ELSIF expression
 statements

then, if required, a block of the form

ELSE

 statements

and finally the statement

ENDIF

Each expression must evaluate to a single number, which is treated as a logical value: a zero or
missing value is treated as false and non-zero as true (4.1.1). Genstat executes the block of
statements following the first true expression. If none of the expressions is true, the block of
statements following ELSE (if present) is executed.

You can thus use these directives to built constructs of increasing complexity. The simplest
form would be to have just an IF statement, then some statements to execute, and then an
ENDIF. For example:

IF MINIMUM(Sales) < 0
 PRINT 'Incorrect value recorded for Sales.'
ENDIF

If the variate Sales contains a negative value, the PRINT statement will be executed. Otherwise
Genstat goes straight to the statement after ENDIF.

To specify two alternative sets of statements, you can include an ELSE block. For example

IF Age < 21
 CALCULATE Pay = Hours*3.25

318 5 Programming in Genstat

ELSE
 CALCULATE Pay = Hours*4.5
ENDIF

calculates Pay using two different rates: 3.25 for Age less than 21, and 4.5 otherwise.
Finally, to have several alternative sets, you can include further sets introduced by ELSIF

statements. Suppose that we want to assign values to X according to the rules:

X=1 if Y=1
X=2 if Y � 1 and Z=1
X=3 if Y � 1 and Z=2
X=4 if Y � 1 and Z � 1 or 2

This can be written in Genstat as follows:

IF Y == 1
 CALCULATE X = 1
ELSIF Z == 1
 CALCULATE X = 2
ELSIF Z == 2
 CALCULATE X = 3
ELSE
 CALCULATE X = 4
ENDIF

If Y is equal to 1, the first CALCULATE statement is executed to set X to 1. If Y is not equal to 1,
Genstat does the tests in the ELSIF statements, in turn, until it finds a true condition; if none of
the conditions is true, the CALCULATE statement after ELSE is executed to set X to 4. Thus, for
Y=99 and Z=1, Genstat will find that the condition in the IF statement is false. It will then test
the condition in the first ELSIF statement; this produces a true result, so X is set to 2. Genstat
then continues with whatever statement follows the ENDIF statement. Block-if structures can be
nested to any depth, to give conditional constructs of even greater flexibility.

5.2.3 The multiple-selection control structure

The directives CASE, OR, ELSE and ENDCASE allow you to specify alternative blocks of
statements, to be selected according to the value of an expression yielding a single integer value.

CASE directive
Introduces a "multiple-selection" control structure.

No options

Parameter
expression Expression which is evaluated to an integer, indicating

which set of statements to execute

OR directive
Introduces a set of alternative statements in a "multiple-selection" control structure.

No options or parameters

5.2 Program control 319

ELSE directive
Introduces the default set of statements in block-if or in multiple-selection control structures.

No options or parameters

ENDCASE directive
Indicates the end of a "multiple-selection" control structure.

No options or parameters

A multiple-selection control structure consists of several alternative blocks of statements. The
first of these is introduced by a CASE statement. This has a single parameter, which is an
expression that must yield a single number. Subsequent blocks are each introduced by an OR
statement. There can then be a final block, introduced by an ELSE statement, as in the block-if
structure (5.2.2). The whole structure is terminated by an ENDCASE statement. Thus the general
form is: first

CASE expression
 statements

then either none, one, or several blocks of statements of the form

OR

 statements

then, if required, a block of the form

ELSE

 statements

and finally the statement

ENDCASE

Genstat rounds the expression in the CASE expression to the nearest integer, k say, and then
executes the kth block of statements. If there is no kth block present (as for example if k is
negative) the block of statements following the ELSE statement is executed, if there is such a
block; otherwise an error diagnostic is given. The next example prints the salient details about
each day in the song The twelve days of Christmas. The scalar Day indicates which day it is.

CASE Day
 PRINT 'a partridge in a pear tree'
OR
 PRINT 'two turtle doves and a partridge in a pear tree'
OR
 PRINT 'three French hens, two turtle doves \
 and a partridge in a pear tree'
OR
 PRINT 'four calling birds, three French hens ...'
OR
 PRINT 'five gold rings ...'
OR
 PRINT 'six geese a-laying ...'
OR
 PRINT 'seven swans a-swimming ...'
OR
 PRINT 'eight maids a-milking ...'
OR
 PRINT 'nine drummers drumming ...'
OR
 PRINT 'ten pipers piping ...'

320 5 Programming in Genstat

OR
 PRINT 'eleven ladies dancing ...'
OR
 PRINT 'twelve lords a-leaping ...'
ELSE
 PRINT 'sorry, no delivery today'
ENDCASE

CASE statements can be nested to any depth.

5.2.4 Exit from control structures

Sometimes you may want simply to abandon part of a program: you may be unable to do any
further calculations or analyses. For example, if you are examining several subsets of the units,
you would wish to abandon the analysis of any subset that turned out to contain no observations.
Another example would be if you wanted to abandon the execution of a procedure whenever an
error diagnostic has appeared. The EXIT directive allows you to exit from any control structure.

EXIT directive
Exits from a control structure.

Options
NTIMES = scalar Number of control structures, n, to exit (if n exceeds the

number of control structures of the specified type that
are currently active, the exit is to the end of the outer
one; while for n negative, the exit is to the end of the
!n'th structure in order of execution); default 1

CONTROLSTRUCTURE = string token Type of control structure to exit (job, for, if, case,
procedure); default for

REPEAT = string token Whether to go to the next set of parameters on exit from
a FOR loop or procedure (yes, no); default no

EXPLANATION = text Text to be printed if the exit takes place; default *

Parameter
expression Logical expression controlling whether or not an exit

takes place

In its simplest form EXIT has no parameter setting, and the exit is unconditional: Genstat will
always exit from the control structure or structures concerned. You are most likely to use this
as part of an ELSE block of a block-if or multiple-selection structure. For example

IF N.GT.0
 CALCULATE Percent = R * 100 / N
ELSE
 PRINT [IPRINT=*] 'Incorrect value ',N,' for N.'
 EXIT [CONTROLSTRUCTURE=procedure]
ENDIF

prints an appropriate warning message for a zero or negative value of N, and then exits from a
procedure.

If the warning message is simply a text or string, the EXPLANATION option can be used to
print it on exit. For example

EXIT [CONTROLSTRUCTURE=procedure;\
 EXPLANATION='Incorrect value for N.'] \
 N.LE.0
CALCULATE Percent = R * 100 / N

has the same effect except that the actual value of N is no longer printed.

5.2 Program control 321

The CONTROLSTRUCTURE option specifies the type of control structure from which to exit.
The default setting is for, causing an exit from a FOR loop (5.2.1). For the other settings: if
causes an exit from a block-if structure (5.2.2), case exits from a multiple-selection structure
(5.2.3), procedure exits from a procedure (5.3), and job causes the entire job to be abandoned.
Sometimes, to exit from one type of control structure, others must be left too. To exit from the
procedure in the above example, requires Genstat to exit also from the block-if structure.
Generally, Genstat does these nested exits automatically, as required. However, inside a
procedure, you can exit only from FOR loops and block-if or multiple-selection structures that
are within the procedure. You cannot put, for example,

EXIT [CONTROLSTRUCTURE=if]

within a part of the procedure where there is no block-if in operation, and then expect Genstat
to exit both from the procedure and from a block-if structure in the outer program from which
the procedure was called. Genstat regards a procedure as a self-contained piece of program.

The NTIMES option indicates how many control structures of the specified type to exit from.
If you ask Genstat to exit from more structures than are currently in operation in your program,
it will exit from as many as it can and then print a warning. If NTIMES is set to zero or to missing
value no exit takes place. If NTIMES is set to a negative value, say !n, the exit is to the end of
the nth structure of the specified type, counting them in the order in which their execution began.
Consider this example:

FOR I=A[1...3]
 FOR J=B[1...3]
 FOR K=C[1...3]
 FOR L=D[1...3]
 "contents of the inner loop, including:"
 EXIT [NTIMES=Nexit]
 "amongst other statements"
 ENDFOR "end of the loop over D[]"
 ENDFOR "end of the loop over C[]"
 ENDFOR "end of the loop over B[]"
ENDFOR "end of the loop over A[]"

If the scalar Nexit has the value 2, the exit is to the end of the loop over C[]; so the two exits
are from the loop over D[] and the loop over C[]. But if Nexit has the value !2 the exit is to
the end of the loop over B[], as this is the second loop to have been started.

A further possibility when EXIT is used within a FOR loop is that you can choose either to go
right out of the loop and continue by executing the statement immediately after the ENDFOR
statement, or to go to ENDFOR and then repeat the loop with the next set of parameter values. To
repeat the loop, you need to set option from one one pass through a loop REPEAT=yes. For
example, suppose that variates Height and Weight contain information about children of
various ages, ranging from five to 11. The RESTRICT statement causes the subsequent DGRAPH
statement to plot only those units of Height and Weight where the variate Age equals Ageval
(4.4.1). The EXIT statement ensures that the graph is not plotted if there are no units of a
particular age; the program then continues with Ageval taking the next value in the list.

FOR Ageval=5,6,7,8,9,10,11
 RESTRICT Height,Weight; CONDITION=Age.EQ.Ageval
 EXIT [REPEAT=yes] NVALUES(Height).EQ.0
 DGRAPH Y=Height; X=Weight
ENDFOR

The REPEAT option can also be used within a procedures to ask Genstat to call the procedure
with the next set of parameter settings.

The example of the heights and weights of children also illustrates the use of the parameter
of EXIT, to make the effect conditional. The parameter is an expression which must evaluate to
a single number which Genstat interprets as a logical value. If the value is zero, the condition is
false and no exit takes place; for other values the condition is true and the exit takes effect as

322 5 Programming in Genstat

specified. This is particularly useful for controlling the convergence of iterative processes: for
example

CALCULATE Clim = X/10000
FOR [NTIMES=999]
 CALCULATE Previous = Root
 & Root = (X/Previous + Previous)/2
 PRINT Root,Previous; DECIMALS=4
 EXIT ABS(Previous-Root) < Clim
ENDFOR

will calculate the square root of X to four significant figures.

5.3 Procedures

Once you start to write programs for complicated tasks, you may wish to keep them to use again
in future. The most convenient way of doing this is to form them into procedures. You may also
wish to use procedures written by other people.

The use of a Genstat procedure looks exactly the same as the use of one of the standard
Genstat directives. You simply give the name of the procedure, and then specify options and
parameters as required.

When Genstat meets a statement with a name that it does not recognize as one of the standard
Genstat directives, it first looks to see whether you have a procedure of that name already stored
in your program. Then it looks in any procedure library that you may have attached explicitly
to your program, taking these in order of their channel numbers (5.3.3). The people that manage
your computer can define a special site library and arrange for this to be attached to Genstat
automatically when it is run. If they have done so, this library will be examined next. Finally
Genstat looks in the official Genstat procedure library (5.3.1), which is also attached
automatically to your program. After locating the required procedure, Genstat reads it in, if
necessary, and then executes it. So you do not have to do any more than you would to use a
Genstat directive.

The official library thus allows new facilities to be offered to all users. Or your computer
manager can make procedures available that cover the special needs of the users at your site, and
these will over-ride any procedures of the same name in the official library. Or you can form
your own libraries of the procedures that you find particularly useful, and these will always be
taken in preference to procedures in the site or the official library. Note however that a procedure
cannot have the same name as any of the Genstat directives (5.3.2).

Information is transferred to and from a procedure only by means of its options and
parameters. Otherwise the procedure is completely self-contained. Anyone who uses it does not
need to know how the program inside operates, what data structures it contains, nor what
directives it uses. The data structures inside the procedure are local to the procedure and cannot
be accessed from outside.

The first part of this section describes the Genstat Procedure Library. Later we describe how
to write your own procedures, and how to form and access procedure libraries of your own.

5.3.1 The Genstat Procedure Library

The Genstat Procedure Library contains procedures contributed not only by the writers of
Genstat but also by knowledgeable Genstat users from many application areas ! and countries.
It is controlled by an Editorial Board, who check that the procedures are useful and reliable, and
maintain standards for the documentation. Guidelines for Authors were published in Genstat
Newsletter 20, or can be obtained from within Genstat by setting the PRINT option of procedure
NOTICE to instructions: i.e.

NOTICE [PRINT=instructions]

The other PRINT settings include: errors for information about how to report errors, release

5.3 Procedures 323

for information about most recent Genstat release, and news for general Genstat news.
Information about the syntax and ways to use the Library procedures is included in Genstat's

on-line help system, in the same format as the information about the Genstat directives. You can
also access the relevant topics directly using the LIBHELP procedure. For example

LIBHELP 'SUBSET'

opens the page about procedure SUBSET. The Help menu in Genstat for Windows has options
that allow you to access and run an example for each procedure, or copy its source code into a
text window. Alternatively, you can access this information directly by using the LIBEXAMPLE
procedure. For example,

LIBEXAMPLE 'SUBSET'; EXAMPLE=Exsub; SOURCE=Ssub

copies the example for SUBSET into a text called Exsub and the source code into a text called
Ssub.

5.3.2 Forming a procedure

To write your own procedures, you start by giving a PROCEDURE statement.

PROCEDURE directive
Introduces a Genstat procedure.

Options
PARAMETER = string token Whether to process the structures in each parameter list

of the procedure sequentially using a dummy to store
each one in turn, or whether to put them all into a
pointer so that the procedure is called only once
(dummy, pointer); default dumm

RESTORE = string tokens Which aspects of the Genstat environment to store at the
start of the procedure and restore at the end (inprint,
outprint, outstyle, diagnostic, errors, pause,
prompt, newline, case, run, units,
blockstructure, treatmentstructure,
covariate, asave, dsave, msave, rsave, tsave,
vsave, vcomponents, seeds, captions, cmethod,
actionafterfault, unsetdummy, all); default *

SAVE = text Text to save the contents of the procedure (omitting
comments and some spaces)

WORDLENGTH = string token Length of word (32 or 8 characters) to check in
identifiers, directives, options, parameters and
procedures within the procedure (long, short); default
* i.e. no change

Parameter
text Name of the procedure

The PROCEDURE directive starts the definition of a procedure. It has a single parameter which
defines the name of the procedure. This can be up to 32 characters, and follows the same rules
as for the identifiers of data structures: the first character must be a letter, the second to the 32nd
can be either letters or digits, and characters beyond the 32nd are ignored. However the name
cannot be suffixed, and Genstat will warn you if the first four characters are the same as those
of a Genstat directive. If so, you will be unable to abbreviate the name fully (down to as few as
four characters), but you will need to give enough characters to distinguish it from the directive.

324 5 Programming in Genstat

If there is ambiguity in the name of a command, Genstat selects the directive or procedure to use
according to the following order of priority: directives, user-defined procedures, procedures in
libraries attached by the user (in order of channel number), procedures in the site library, and
procedures in the official library.

The PARAMETER option indicates whether the settings in any list specified for the parameters
of the procedure are to be taken one at a time, or whether they need to be processed together. The
difference between these alternatives can be illustrated by considering some of the Genstat
directives. For example, with

ANOVA Height,Weight; RESIDUALS=Hres,Wres

Genstat will first do an analysis with the values in the Height variate and store the resulting
residuals in the variate Hres; it then analyses Weight and stores the residuals in Wres. This
action corresponds to the default setting PARAMETER=dummy; inside the procedure, each
parameter will then be a dummy data structure which will point to each item of the list in turn,
in the same way as the parameters of a FOR loop (5.2.1). Conversely, in the statement

PRINT Height,Hres

the values of Height and Hres are printed together down the page, and this is possible only if
PRINT is able to access both variates simultaneously. In a procedure, this would require the
setting PARAMETER=pointer; each parameter is then a pointer, storing the whole list.

You may change some aspects of the Genstat environment within a procedure (5.6.1). This
may be the intended purpose of the procedure; but if it is an unwanted side effect, you should
reset them afterwards. The RESTORE option allows you to list aspects that would like Genstat
to reset automatically when it finishes executing the procedure. Alternatively, you can save and
restore most of these aspects explicitly using the directives SET (5.6.1) and GET (5.6.2);
however, this is usually less efficient. The exception is the output style, which can be discovered
using the ENQUIRE directive (3.3.4) and changed using the OUTPUT directive (3.4.3) as shown
in Section 5.4.

The SAVE option allows you to store the contents of the procedure, up to and including
ENDPROCEDURE, in a text so that you can edit and redefine it or, for example, print it to a file or
save it on backing store. The saved version is a modified form of the original input. Each line
of the text contains a single statement; thus, where a statement spans several lines of input, these
are concatenated into a single line in the text (deleting the continuation characters). Any line that
contains several statements is split. Comments are removed, and any occurrence of several
contiguous spaces is replaced by a single space. Also, a colon is placed at the end of each line.

Finally, the WORDLENGTH option allows you to set the wordlength to be used for identifiers,
directives, options, parameters and procedures within the procedure. If WORDLENGTH=long, up
to 32 characters of each of these names are stored and checked; while if WORDLENGTH=short,
no more than eight characters are used. The default is to keep the existing setting of the
wordlength (as in the program defining the procedure).

After the PROCEDURE statement, you must define what options and parameters the procedure
is to have; this is done by the directives OPTION and PARAMETER respectively. Only one of each
of these should be given, and they must appear immediately after the PROCEDURE statement, but
it does not matter which of the two you give first. They have very similar syntaxes, except that
OPTION has an extra parameter which allows you to indicate whether a list of values or of
identifiers is allowed. If you do not wish to define options or parameters for a procedure you can
simply omit these directives; alternatively you can use OPTION or PARAMETER but with none of
their parameters set, which has precisely the same effect. The OPTION and PARAMETER
directives are also used together with the DEFINE directive when extending the Genstat
language.

5.3 Procedures 325

OPTION directive
Defines the options of a Genstat procedure with information to allow them to be checked
when the procedure is executed.

No options

Parameters
NAME = texts Names of the options
MODE = string tokens Mode of each option (e, f, p, t, v, as for

unnamed structures); default p
NVALUES = scalars or variates Specifies allowed numbers of values
VALUES = variates or texts Defines the allowed values for a structure of type variate

or text
DEFAULT = identifiers Default values for each option
SET = string tokens Indicates whether or not each option must be set (yes,

no); default no
DECLARED = string tokens Indicates whether or not the setting of each option must

have been declared (yes, no); default no
TYPE = texts Text for each option, whose values indicate the types

allowed (ASAVE, datamatrix {i.e. pointer to variates
of equal lengths as required in multivariate analysis},
diagonalmatrix, dummy, expression, factor,
formula, LRV, matrix, pointer, RSAVE, scalar,
SSPM, symmetricmatrix, table, text, tree,
TSAVE, TSM, variate, VSAVE); default * meaning no
limitation

COMPATIBLE = texts Defines aspects to check for compatibility with the first
parameter of the directive or procedure (nvalues,
nlevels, nrows, ncolumns, type, levels,

labels {of factors or pointers}, mode, rows,
columns, classification, margins,

associatedidentifier, suffixes {of pointers},
restriction)

PRESENT = string tokens Indicates whether or not each structure must have values
(yes, no); default no

LIST = string tokens Whether to allow a list of identifiers (MODE=p) or of
values (MODE=v or t) instead of just one (yes, no);
default no

INPUT = string token Whether the option only supplies input information to
the procedure (yes, no); default no

PARAMETER directive
Defines the parameters of a Genstat procedure with information to allow them to be checked
when the procedure is executed.

No options

Parameters
NAME = texts Names of the parameters
MODE = string tokens Mode of each parameter (e, f, p, t, v, as for

326 5 Programming in Genstat

unnamed structures); default p
NVALUES = scalars or variates Specifies allowed numbers of values
VALUES = variates or texts Defines the allowed values for a structure of type variate

or text
DEFAULT = identifiers Default values for each parameter
SET = string tokens Indicates whether or not each parameter must be set

(yes, no); default no
DECLARED = string tokens Indicates whether or not the setting of each parameter

must have been declared (yes, no); default no
TYPE = texts Text for each option, whose values indicate the types

allowed (ASAVE, datamatrix {i.e. pointer to variates
of equal lengths as required in multivariate analysis},
diagonalmatrix, dummy, expression, factor,
formula, LRV, matrix, pointer, RSAVE, scalar,
SSPM, symmetricmatrix, table, text, tree,
TSAVE, TSM, variate, VSAVE); default * meaning no
limitation

COMPATIBLE = texts Defines aspects to check for compatibility with the first
parameter of the directive or procedure (nvalues,
nlevels, nrows, ncolumns, type, levels,

labels {of factors or pointers}, mode, rows,
columns, classification, margins,

associatedidentifier, suffixes {of pointers},
restriction)

PRESENT = string tokens Indicates whether or not each structure must have values
(yes, no); default no

INPUT = string token Whether the parameter only supplies input information
to the procedure (yes, no); default no

The NAMES parameter of OPTION and PARAMETER defines the names of the options and
parameters of the procedure. Each name also defines the identifier of a data structure that will
be used, within the procedure itself, to refer to the information transmitted by the relevant option
or parameter. When you use the procedure, you have the choice of typing each name in capital
letters, or in small letters, or in any mixture of the two; this corresponds to the rules for the
names of options and parameters of directives. Within the procedure, however, you need to be
more precise, but the exact form of the identifiers will depend upon whether the Genstat
environment was set to use short or long "wordlengths" when the procedure was defined. (This
is controlled by the WORDLENGTH option of the JOB, SET and PROCEDURE directives.) With long
wordlengths, the identifier should be exactly the same as the option name up to the 32nd
character; any characters beyond the 32nd are ignored. Alternatively, if short wordlengths have
been selected, Genstat forms each identifier by truncating the corresponding option name to no
more than eight characters and then converting it into capital letters.

The MODE parameter tells Genstat whether the setting of each option or parameter of the
procedure is to be a number (v), or an identifier of a data structure (p), or a string (t), or an
expression (e), or a formula (f). These codes are exactly the same as those that indicate the
mode of the values to appear within the brackets containing an unnamed structure (1.4.3).

The type of the structure used to represent an option of the procedure depends on the MODE
and LIST parameters of the OPTION directive.

For anything other than mode p, the structure will be a dummy. This will point to an
expression for mode e, a formula for mode f, and a text for mode t. With mode v, it will point
to a scalar if the corresponding setting of the LIST parameter is no, and a variate if LIST=yes.

5.3 Procedures 327

For mode p and LIST=no, the structure is a dummy, which will point to whichever structure
is supplied for the option when the procedure is called; alternatively, when LIST=yes, it is a
pointer which will store the list of structures that are supplied. For example, suppose that
procedure ALLPOSS which contains the option definitions

OPTION \
 NAMES='EXP','FORM','VLN','VLY','TLN','TLY','PLN','PLY'; \
 MODE = e, f, v, v, t, t, p, p; \
 LIST = no, no, no, no, yes, yes, no, yes

is called with these options settings:

ALLPOSS [EXP=LOG10(X+1); FORM=Variety*Nitrogen; \
 VLN=2; VLY=1,3,5,7; TLN=oneval; TLY=one,two,three; \
 PLN=A; PLY=B,C,D]

Inside the procedure it will be as though the identifiers had been defined as follows:

DUMMY [VALUE=!E(LOG10(X+1))] EXP
& [VALUE=!F(Variety*Nitrogen)] FORM
& [VALUE=2] VLN
& [VALUE=!(1,3,5,7)] VLY
& [VALUE='oneval'] TLN
& [VALUE=!T(one,two,three)] TLY
& [VALUE=A] PLN
POINTER [VALUE=B,C,D] PLY

For parameters, the structures are either all dummies or all pointers, according to the setting of
the PARAMETER option of the PROCEDURE directive. If they are pointers, they store all the
settings, and the procedure is called only once; if they are dummies, the procedure is called once
for every item in the lists. In Example 5.3.2 below, the PARAMETER option is not set, and so it
retains the default of dummy. Thus, in line 25, the procedure is called three times; firstly with the
dummy PERCENT set to 25 and the dummy RESULT set to Ang25, then with PERCENT set to 50
and RESULT set to Ang50, and finally with PERCENT set to 75 and RESULT set to Ang75.
However, if the PROCEDURE statement had been

PROCEDURE [PARAMETER=pointer] '%TRANSFORM'

PERCENT for example would have been the pointer !P(25,50,75). (Notice that we have called
the procedure %TRANSFORM rather than TRANSFORM in order to avoid ambiguity with the
directive TRANSFERFUNCTION.)

The other parameters of OPTION and PARAMETER allow the settings that are supplied, when
the procedure is called, to be checked automatically.

The NVALUES parameter indicates how many values the structures that are supplied for an
option or parameter of mode p may contain. For example,

OPTION NAME='X','Y'; NVALUES=3,!(3,4); TYPE='variate'

indicates that the variates supplied for X must be of length 3, while those supplied for Y can be
of length 3 or 4.

The VALUES parameter can be used with modes t and v to specify an allowed set of values
against which those supplied for the option or parameter will be checked. In line 5 of Example
5.3.2, the OPTION statement lists the values that are allowed for METHOD, namely Logit,
Comploglog and Angular. The allowed values for mode t define a list of string tokens for the
option or parameter, that can be used in exactly the same way as the string tokens defined for
options or parameters of the ordinary Genstat directives (1.7.3). They can be up to 32 characters
in length; characters 33 onwards are ignored. Each value must start with a letter, and may then
contain letters or digits. When %TRANSFORM is used, Genstat will check the specified string
against those in the VALUES list, using the same abbreviation rules as for string tokens in options
and parameters of the ordinary Genstat directives. Thus, for example, to request an angular
transformation we need merely put METHOD=A as the first letter A is sufficient to distinguish
Angular from Logit and Comploglog. Within %TRANSFORM, Genstat sets METHOD to the full

328 5 Programming in Genstat

string as defined in the VALUES list, i.e. Angular, and this greatly simplifies its subsequent use
(see lines 12, 14 and 16). However, if short wordlengths have been requested, the name is
truncated to eight characters and put into capital letters, so Comploglog would become
COMPLOGL.

As an example of mode v, this specification would ensure that the numbers supplied for an
option NV were all odd integers between one and nine

OPTION NAME='NV'; MODE=v; VALUES=!(1,3,5,7,9)

The DEFAULT parameter specifies default values to be used if the option or parameter is not
set. In Example 5.3.2, METHOD will be set by default to 'Logit'.

The SET parameter indicates whether or not an option or parameter must be set. In the
PARAMETER statement in line 8 of Example 5.3.2, we have put SET=yes and so Genstat will
check that the parameters of the procedure, PERCENT and RESULT, are both set whenever the
procedure is used. The default is SET=no.

The DECLARED parameter specifies whether or not the structures to which options or
parameters of mode p are set must already have been declared. For the PERCENT parameter of
%TRANSFORM they must have been declared, but for the RESULTS parameter they need not have
been. (Any undeclared RESULTS structures will be declared automatically by the CALCULATE
statements within the procedure.)

The TYPE parameter can be used to specify a text to indicate the allowed types of the
structures to which an option or parameter of mode p is set. The parameters of %TRANSFORM can
be either scalars, variates, tables, or any type of matrix (rectangular, symmetric or diagonal). In
Example 5.3.2 the COMPATIBLE parameter is then used to specify that the type and number of
values of each RESULTS structure must be compatible with those of the equivalent PERCENT
structure; this parameter is also available in the OPTION directive, but with both options and
parameters, the compatibility checks are against the first parameter of the procedure.

Finally, the PRESENT parameter allows you to indicate that the structure to which an option
or parameter is set must have values. The PERCENT parameter must have values, but the
RESULTS parameter need not (its values will be calculated within the procedure).

After the OPTION and PARAMETER statements, you then list the statements that are to be
executed when the procedure is called: these statements are the sub-program that makes up the
procedure. Any data structures defined within the procedure are local to the procedure and
cannot be accessed from outside. So you can use any identifiers for the structures, without
having to worry about whether they may also be used outside by someone who may later use the
procedure. You end these statements making up the procedure by an ENDPROCEDURE statement.

ENDPROCEDURE directive
Indicates the end of the contents of a Genstat procedure.

No options or parameters

Once you have defined a procedure, its subsequent use is very easy. This example shows a
procedure to do various transformations of percentages.

Example 5.3.2

 2 PROCEDURE '%TRANSFORM'
 3 " Define the arguments of the procedure."
 4 OPTION NAME='METHOD'; MODE=t; \
 5 VALUES=!t(Logit,Comploglog,Angular); \
 6 DEFAULT='Logit'
 7 PARAMETER NAME='PERCENT','RESULT'; \
 8 MODE=p; SET=yes; DECLARED=yes,no; \
 9 TYPE=!t(scalar,variate,matrix,symmetric,diagonal,table);\

5.3 Procedures 329

 10 COMPATIBLE=*,!t(type,nvalues); \
 11 PRESENT=yes,no
 12 IF METHOD .EQS. 'Logit'
 13 CALCULATE RESULT = LOG(PERCENT / (100-PERCENT))
 14 ELSIF METHOD .EQS. 'Comploglog'
 15 CALCULATE RESULT = LOG(-LOG((100-PERCENT)/100))
 16 ELSIF METHOD .EQS. 'Angular'
 17 CALCULATE RESULT = ANGULAR(PERCENT)
 18 ENDIF
 19 ENDPROCEDURE
 20
 21 VARIATE [VALUES=10,20...90] Every10%
 22 " default setting 'logit' for METHOD "
 23 %TRANSFORM Every10%; RESULT=Logit10%
 24 PRINT Every10%,Logit10%; DECIMALS=0,3

 Every10% Logit10%
 10 -2.197
 20 -1.386
 30 -0.847
 40 -0.405
 50 0.000
 60 0.405
 70 0.847
 80 1.386
 90 2.197

 25 %TRANSFORM [METHOD=A] 25,50,75; RESULT=Ang25,Ang50,Ang75
 26 PRINT Ang25,Ang50,Ang75

 Ang25 Ang50 Ang75
 30.00 45.00 60.00

When you define a procedure, Genstat usually checks that any procedures that it calls are
available in the program or in an attached procedure library. However, this can create problems
if you have procedures that call each other. For example, Genstat is happy to execute programs
where a procedure, A say, calls other procedures that themselves call procedure A, but it can then
be difficult to work out an order in which to define the procedures successfully.

The original solution was to set up a library of dummy procedures (with option and parameter
definitions but no executable statements) to attach to Genstat while the real procedures were
defined. In Release 10, however, a better solution is provided by the CALLS directive. If you
specify a CALLS statement in a procedure, listing the procedure that it calls, Genstat will regard
these as a set of "trusted" sub-procedures, and assume that they will become available before the
procedure is executed. (If not, you will get a fault diagnostic then!) You can thus define the
procedures in any convenient order.

CALLS directive
Lists library procedures called by a procedure.

No options

Parameter
identifiers Names of the called procedures

The CALLS statement must come immediately after the option and parameter definitions (using
the OPTION and PARAMETER directives), and before any executable statements. It has a single
parameter, that lists the names of the procedures that are called.

330 5 Programming in Genstat

5.3.3 Forming and using your own procedure libraries

A procedure library is a particular kind of backing-store file that is used to store procedures. It
can be used like any other backing store file: you can store procedures in the file, then retrieve
them later for further use, using the methods described in 3.5. However you will usually find a
library more convenient to use when it is attached to one of the input channels reserved just for
procedure libraries. You can then only read procedures from the file and you cannot add new
procedures; but the procedures are retrieved from the library automatically, as described at the
start of this section.

Several libraries can be attached to a Genstat job. The standard Genstat procedure library is
attached automatically, and you may have local site libraries that are also attached automatically.
In Genstat for Windows, you can arrange this to happen by putting the libraries into the system
add-in folder, and then using the Procedure Libraries menu (opened by selecting the Attach sub-
option of the Procedure Libraries option of the Tools menu on the menu bar); see the on-line
help for details. There is also a user add-in folder that can to separate an individual user's
libraries from those that are distributed across a site.

You can also attach libraries explicitly, using the OPEN directive (3.3.1). For example:

OPEN 'Graphlib.glb'; CHANNEL=2; FILETYPE=procedurelibrary

Maintaining a procedure library is more efficient if the procedures are stored in separate

subfiles, and accessing is more efficient if you give the subfiles the same names as the
procedures. To store procedures you use the STORE directive (3.5.3), for example:

STORE [CHANNEL=1; SUBFILE=Jacknife; PROCEDURE=yes] Jacknife

Some procedures may contain references to auxiliary procedures for performing particular parts
of an analysis; in this case the searching of the library is more efficient if the additional
procedures are contained in the same subfile as the main procedure: for example

STORE [CHANNEL=1; SUBFILE=Plot; PROCEDURE=yes] \
 Plot,Scalex,Scaley

While you are developing a procedure library you will need to use it like any other backing-store
file, retrieving any procedures that are required by using RETRIEVE. To edit a procedure library
you can use either of the directives STORE (3.5.3) or MERGE (3.5.6). You can display the contents
of a library and subfiles using CATALOGUE (3.5.5).

Help information for user procedure libraries can be supplied in Genstat for Windows by
putting a Windows (.chm) help file alongside the procedure library (.glb) file in the add-in
folder. The Windows Help menu is then extended to contain a sub-option with the name of the
procedure library, in its User Libraries option. Clicking on that sub-option opens the file at its
contents page. The names of the procedures can be added to the context-sensitive help by
including a topic in the help file for each procedure, and naming these by the procedure names
(in full). Users can then access the help for a procedure by placing the curser in the name of the
procedure in Genstat for Windows' Output window, and pressing the F1 key (in the same way
as for the standard Genstat commands, functions and terminology).

5.4 Useful commands for procedure writers

You should use the CAPTION directive (3.2.3) to put titles into the output from your procedure.
These will then be compatible with the titles in output from the ordinary Genstat commands,
such as ANOVA or FIT. Also, they will be customized automatically to suit the current output
style. For example, in the plain-text style they will be underlined by lines of equals or minus
characters, whereas in formatted styles they will be printed in larger, coloured or bold fonts.
Output can be constructed using the PRINT directive (3.2.1). You should use the HEADING
parameter of PRINT to put headings above columns of numbers (from variates of factors) or
strings (from texts), rather than 2 separate PRINT statements: for example

5.4 Useful commands for procedure writers 331

PRINT Y,Fitted,Residual; FIELD=18,14,10;\
 HEADING='Response variate','Fitted value','Residual'

instead of

PRINT [IPRINT=*; SQUASH=yes] \
 HEADING='Response variate','Fitted value','Residual';\
 FIELD=18,14,10;
& Y,Fitted,Residual; FIELD=18,14,10

By putting all the output into a single PRINT allows Genstat to line all the information up in a
single table if the output is in a formatted style. If you do need to construct output using several
separate PRINT statements, you may need to switch the output temporarily to plain text, by the
statement

OUTPUT [STYLE=plaintext]

The original style can be restored automatically when the procedure ends, by including
outstyle amongst the settings of the RESTORE option in the PROCEDURE statement.
Alternatively, you can discover the current style by putting

SCALAR Chan
ENQUIRE Chan; FILETYPE=output; OUTSTYLE=Style

Chan is automatically set to the number of the current output channel, and Style is formed into
a text containing either 'formatted' or 'plaintext'. The original style can then be restored
automatically by

OUTPUT [STYLE=#Style] Chan

In the plain-text output style columns of output are lined up using space characters, while in

the formatted styles they are defined using special codes. If, however, you want to use PRINT
to output a "sentence" of information, you may want the columns separated by spaces even when
the style is not plain text. You should then set option STYLE=plaintext. For example

PRINT [STYLE=plain] 'There are',Df,'degrees of freedom.';\
 FIELD=9,2,20; DECIMALS=0

The GET directive (5.6.2) allows you to obtain details about the current state of the Genstat

environment or the settings of special structures like the model formula most recently specified
by the TREATMENTSTRUCTURE directive, and the SET directive (5.6.1) allows you to modify any
of these. In particular, you can use the CAPTIONS option of SET to suppress unwanted captions
from any of the commands that the procedure uses. However, unless the changes are part of the
intended purpose of the procedure, they should be reset at the end of the procedure. This can be
done by using GET to store the information, and then SET to reset it; alternatively you can use
the RESTORE option of the PROCEDURE directive (5.3.2).

There are several functions that you may find useful when writing procedures. You might use
these either in CALCULATE (4.1.1), or in the program-control directives (5.2). Some of the
functions enable you to access information about the structures that have been supplied in the
options or parameters of the procedure. For example: the function NVALUES allows you to find
out the length of a structure, NROWS enables you to find out the number of rows of a matrix, and
so on (4.2.2). Alternatively you can use the GETATTRIBUTE directive (2.11.3). You might want
to use this information to check that the supplied structures are suitable for the operations that
the procedure is to carry out; or you might use it in the definition of the local structures required
within the procedure.

You can use the SET function (4.2.6), or its converse UNSET, to check whether the user has
set a particular option or parameter. If this option or parameter is necessary for some particular
section of the procedure to be executed you might want to use a block-if structure (5.2.2), or you
might use the EXIT directive to leave the procedure altogether. The ASSIGN directive (4.9.1)
provides a convenient way of setting the dummies to some default structure within the procedure
(or even to structures outside the procedure). For example, the following statements assign

332 5 Programming in Genstat

PERCENT (if unset) to one of two different variates, according to whether this is a batch or an
interactive run; then RESULT is assigned, if necessary, to Res.

IF UNSET(PERCENT)
 GET [ENVIRONMENT=Env]
 IF Env['run'].eqs.'batch'
 ASSIGN !(1,2.5,5,7.5,(10,15...90),92.5,95,97.5,99);\
 POINTER=PERCENT
 ELSE
 ASSIGN !(1,5,10,25,50,75,90,95,99); POINTER=PERCENT
EXIT [CONTROLSTRUCTURE=procedure]
ENDIF
ASSIGN [METHOD=preserve] RESULT; Res

The setting METHOD=preserve in ASSIGN will preserve any existing setting of RESULT but
assign it to Res if it is unset.

Chapter 4 describes many other useful commands. In addition to general numerical
calculations (4.1 and 4.2), it also covers manipulation of data structures (4.4) (4.4, 4.5 and 4.6),
Boolean arithmetic and set operations (4.3), text manipulation (4.7), model formulae (4.8),
matrix calculations (4.10) and calculations and manipulation of tables (4.11).

You can use other procedures from within a procedure; in fact you can even call the procedure
itself, so you can write recursive programs. However, these auxiliary procedures must either be
declared within your procedure using the CALLS directive (5,3,2), or they must be available
within your program when the procedure is defined: i.e. they must either have been defined
earlier within your program or be available within one of the libraries attached to your job. You
cannot define a procedure within another procedure or within any other control structure. The
Utility module of the procedure library contains several procedures useful to procedure
writers, including CHECKARGUMENT which can be used to check various aspects of option and
parameter settings.

You are allowed to redefine an existing procedure if you wish to change any of the statements
that it contains. To do this you specify the PROCEDURE statement, as usual, followed by the
statements making up the new version of the procedure, and then an ENDPROCEDURE statement.
However, you are not allowed to change the option or parameter definitions, and if there are any
changes in the OPTION or PARAMETER statements, Genstat will give an error diagnostic.

If you are running short of workspace, remember that you can use the DELETE directive
(2.10.1) to delete any procedures that are no longer required, or which can be accessed again
from a library if they should be needed. For example

DELETE [PROCEDURE=yes] %TRANSFORM

to delete procedure %TRANSFORM or

DELETE [PROCEDURE=yes; LIST=all]

to delete all the procedures that are currently in store.

5.4.1 Diagnostics

The FAULT directive is the recommended way of generating diagnostics (i.e. faults, warnings or
messages) from a procedure.

FAULT directive
Checks whether to issue a diagnostic, i.e. a fault, warning or message.

Options
DIAGNOSTIC = string token Severity of the diagnostic (fault, warning, message);

default faul
FAULT = text Diagnostic code; default 'UF 1' for fault, 'UF 2' for

5.4 Useful commands for procedure writers 333

warning
EXPLANATION = text Explanatory information
NCALLS = scalar Number of calls from the main procedure (whose name

should be used in fault or warning messages); default 0

Parameter
expression Logical expression to test whether or not to give the

diagnostic

The diagnostics are printed in the standard Genstat format. So, for example, faults and warnings
are recognized by Genstat for Windows, and added to the Event Log. Also, the diagnostic will
be suppressed (like those from Genstat directives) if any user of the procedure has requested that
by using the DIAGNOSTICS option of the SET directive (5.6.1).

There is a single parameter, which supplies a logical expression to decide whether or not to
give the diagnostic; if this is omitted, the diagnostic is always given. The FAULT option defines
the code to identify a fault or warning; this has a default of 'UF 1' for a fault and 'UF 2' for
a warning. (Messages always begin with the standard prefix "Message: ".) The EXPLANATION
option allows you to supply some explanatory information.

For example, in a regression procedure, you might put

FAULT [DIAGNOSTIC=fault; FAULT='VA 6';\
 EXPLANATION='Y-variate must contain at least 2 values']\
 NOBSERVATIONS(Y) < 2

Then, if the y-variate has less than two non-missing values, Genstat will give a "VA 6" fault, and
execution of the procedure will stop.

The NCALLS option is useful if you want to give diagnostics from a subsidiary procedure,
called by the main procedure. If this was called directly by the main procedure, you can set
NCALLS=1 to ensure that a fault or warning is identified as having come from the main, rather
than from the subsidiary, procedure.

You may want to perform some of your own error checking within the procedure, instead of
allowing the directives or procedures that it calls to give diagnostics. The DIAGNOSTIC option
of the SET directive (5.6.1) allows you to suppress various classes of diagnostic. You can use
the GET directive (5.6.2) to access the current value of Genstat's internal fault indicator so that
you can ascertain which diagnostic (if any) occurred most recently (and you can also use the
FAULT option of SET to clear the last diagnostic to avoid any confusion about when the
diagnostic occurred). If you decide that you do want to print the diagnostic, you can use the
DISPLAY directive. In fact you can use the FAULT option of DISPLAY to print any Genstat
diagnostic; if FAULT is not set, DISPLAY prints the most recent diagnostic.

DISPLAY directive
Prints, or reprints, diagnostic messages.

Options
PRINT = string token What information to print (diagnostic); default diag
CHANNEL = identifier Channel number of file, or identifier of a text to store

output; default current output file
FAULT = text Specifies the fault message to print (for example,

FAULT='VA 4' prints the message "Values not set");
default is to print the last diagnostic message

334 5 Programming in Genstat

No parameters

5.4.2 Private data structures: the WORKSPACE directive

If you are writing a suite of procedures to provide an integrated set of facilities, you might want
to pass private information between them, unseen by the user. (For example, the regression
directives FIT, ADD, DROP etc automatically pass information about the current status of the
model that is being fitted.) This can be done using the WORKSPACE directive.

WORKSPACE directive
Accesses private data structures for use in procedures.

No options

Parameters
NAME = texts Texts, each containing a single line, to give the names

used to identify the private data structures
DUMMY = identifiers Dummy structure to be used to refer to each private data

structure

The WORKSPACE directive is intended particularly for writers of procedures. It allows data to be
accessed within a number of procedures, and in the main program if needed. You merely need
to decide how to label your workspace "areas". Genstat reserves a data structure for each one,
and WORKSPACE allows you to link this to a dummy (of your choice) within any procedure or in
the outer program itself. For example

WORKSPACE 'AUNBALANCED work'; Wspace
TEXT [VALUES=Yvar,Factopt] Wlabels
POINTER [NVALUES=Wlabels] Wspace
VARIATE Wspace['Yvar']
SCALAR Wspace['Factopt']

names the area 'AUNBALANCED work' and sets the dummy Wspace to the associated data
structure. The data structure is then defined to be a pointer with two values, the variate
Wspace['Yvar'] and the scalar Wspace['Factopt']. A similar WORKSPACE statement can
then be used later on (in another procedure) to access the same information. For example

WORKSPACE 'AUNBALANCED work'; Abwork

links the dummy Abwork to the pointer, allowing us to refer to Abwork['Yvar'] and
Abwork['Factopt']. This will be used particularly within the procedure library, to link suites
of associated procedures so, for safety, you should avoid prefixing the name of any workspace
of your own by G5PL.

5.4.3 Execution of macros

There are two ways in which you can insert the contents of a text as a macro into the statements
within a procedure. With the ## operator, the contents are inserted at the time that the procedure
is defined. For example

TEXT [VALUES=' CALCULATE V = VARIANCE(X)',\
 ' IF V>0',\
 ' CALCULATE X = (X - MEAN(X))/V',\
 ' ELSE',\
 ' CALCULATE X = CONSTANT(''missing'')',\
 ' ENDIF'] Calcs
PROCEDURE 'STANDARD'
PARAMETER NAME='X'
##Calcs

5.4 Useful commands for procedure writers 335

ENDPROCEDURE

will define the procedure STANDARD as

PROCEDURE 'STANDARD'
PARAMETER NAME='X'
 CALCULATE V = VARIANCE(X)
 IF V>0
 CALCULATE X = (X - MEAN(X))/V
 ELSE
 CALCULATE X = CONSTANT('missing')
 ENDIF
ENDPROCEDURE

(Notice that the quotes around missing need to be given twice to tell Genstat that these are a
part of the string and are not intended to mark the end of the string; see 1.4.2.)

Alternatively, you may want to take the contents of the text and execute them only at the same
time as the procedure is executed. This facility is provided by the EXECUTE directive.

EXECUTE directive
Executes the statements contained within a text.

No options

Parameter
texts Statements to be executed

Example 5.4.3 shows a rather simple use of EXECUTE, to execute different statements on each
pass through a loop.

Example 5.4.3

 2 TEXT [VALUES='SCALAR X; VALUE=12'] T1
 3 & [VALUES='DELETE [REDEFINE=yes] X','TEXT [VALUE=Twelve] X'] T2
 4 FOR T=T1,T2
 5 EXECUTE T
 6 PRINT X
 7 ENDFOR

 X
 12.00

 X
 Twelve

5.4.4 Incrementing a multi-digit counter

The COUNTER directive is useful if you want to increment a counter made up of several digits
that recycle to limits that may be different from ten. For example, times in seconds, minutes and
hours, or measurements in inches, feet and yards.

COUNTER directive
Increments a multi-digit counter using non base-10 arithmetic.

Options
NREQUIRED = scalar Specifies the number of values required for the counter;

default 2
NFOUND = scalar Saves the number of counter values that could be formed

336 5 Programming in Genstat

DIRECTION = string token Specifies the direction of the sequence of increments to
the counter (ascending, descending); default asce

Parameters
START = scalars Provides the starting values for the digits in the counter
END = scalars Can provide values to define the end of the sequence of

counter values
STEP = scalars Specifies the amount by which to increment each digit

of the counter
BASE = scalars Specifies the base of the numbers used for each digit
DIGITSEQUENCE = variates Saves the sequence of values generated for each digit

The parameters provide details of the digits in the counter, all in scalars. The BASE parameter
specifies the base of the numbers used for each digit (e.g. 60 for seconds and minutes, and 24
for hours). The START parameter supplies the starting values of the digits, ranging from zero to
BASE minus one. The STEP parameter specifies the size of the increment for each digit. The
digits are updated from the right-hand side and, when one goes beyond its limit, the next one is
incremented by an extra value of one for an ascending sequence, or minus one for a descending
sequence. The DIGITSEQUENCE saves the sequence of values formed for each digit of the
counter, in variates.

The END parameter can specify values to define the end of the sequence. If a value is specified
for every digit, the sequence ends when the next set of digits would go beyond those supplied
by END: above END for an ascending sequence, or below for a descending sequence. (See the
DIRECTION option.) Otherwise, the sequence ends when all the digits would go beyond their
limits: BASE minus one for an ascending sequence, or zero for a descending sequence.

The NREQUIRED option specifies the number of values that are required for the counter. The
default is 2, i.e. START and one other. The NFOUND option can save the number of values that
have been formed. The DIRECTION option controls whether the sequence of counter values
should be regarded as ascending or descending, when checking for the end of the sequence. The
default is ascending.

Example 5.4.4 counts in inches from 1 foot 11 inches to 2 yards. (There are 12 inches in a
foot, and 3 feet in a yard.)

Example 5.4.4

 2 " Count in inches from 1 foot 11 inches to 2 yards "
 3 COUNTER [NREQUIRED=99] 1,0,11; END=2,0,0; STEP=0,0,1;\
 4 BASE=1760,3,12; DIGITSEQUENCE=yard,foot,inch
 5 PRINT yard,foot,inch; DECIMALS=0

 yard foot inch
 1 0 11
 1 1 0
 1 1 1
 1 1 2
 1 1 3
 1 1 4
 1 1 5
 1 1 6
 1 1 7
 1 1 8
 1 1 9
 1 1 10
 1 1 11
 1 2 0
 1 2 1
 1 2 2

5.4 Useful commands for procedure writers 337

 1 2 3
 1 2 4
 1 2 5
 1 2 6
 1 2 7
 1 2 8
 1 2 9
 1 2 10
 1 2 11
 2 0 0

5.4.5 Information about commands

The COMMANDINFORMATION directive enables you to discover whether a command is present
in your version of Genstat and, if so, whether it is a directive or a procedure.

COMMANDINFORMATION directive
Provides information about whether (and how) a command has been implemented.

No options

Parameters
NAME = texts Single-line texts supplying the names of the commands
IMPLEMENTATION = texts Single-line texts set to 'directive', 'procedure' or

a null string ('') according to the type of command
CHANNEL = scalars Saves the channel for a procedure from a procedure

library
PRESENTNOW = scalars Logical set to one if the command is now present, or

zero otherwise

The name of the command must be supplied in a single-value text, using the NAME parameter.
The IMPLEMENTATION parameter can save another single-valued text, which is set to
'directive' or 'procedure' according to the type of command. If the command is not
present, it is set to a null string ('') .

The PRESENTNOW parameter provides another, possibly simpler, way of discovering whether
the directive or procedure is currently present within Genstat. This saves a scalar containing the
value one if the command is present, or zero otherwise.

For procedures accessed from a procedure library, the CHANNEL option can save a scalar with
the number of the channel to which the library is attached. This contains a missing value if the
command is not present as a procedure. It contains zero if the procedure was created in this job
(using the PROCEDURE directive). The channel number for the official procedure library is 12,
and the channel for the local procedure library is 11.

Example 5.4.5 continues Example 5.3.2, to show the information obtained about the procedure
%TRANSFORM defined there, as well as that for a directive (CAPTION), a library procedure
(DOTPLOT), and a non-existent command (NOTONE).

Example 5.4.5

 28 COMMANDINFORMATION '%TRANSFORM','CAPTION','DOTPLOT','NOTONE';\
 29 IMPLEMENTATION=tranimp,capimp,dotimp,notimp;\
 30 CHANNEL=tranchan,capchan,dotchan,notchan;\
 31 PRESENT=trancheck,capcheck,dotcheck,notcheck
 32 PRINT tranimp,tranchan,trancheck

338 5 Programming in Genstat

 tranimp tranchan trancheck
procedure 0 1.000

 33 & capimp,capchan,capcheck

 capimp capchan capcheck
directive * 1.000

 34 & dotimp,dotchan,dotcheck

 dotimp dotchan dotcheck
procedure 12.00 1.000

 35 & notimp,notchan,notcheck

notimp notchan notcheck
 * 0

5.4.6 Information about syntax

The SYNTAX directive enables you to obtain details of the syntax of a command (i.e. a directive
or a procedure) and the source code of a procedure.

SYNTAX directive
Obtains details of the syntax of a command and the source code of a procedure.

No options

Parameters
COMMAND = texts Single-line texts specifying the commands
NOPTIONS = scalars Number of options for each command
NPARAMETERS = scalars Number of parameters for each command
NAME = texts Names of the options, and then the parameters, of each

command
MODE = texts Modes of the options and parameters
NVALUES = pointers Number of values allowed for the options and

parameters
VALUES = pointers Allowed values for the options and parameters
DEFAULT = pointers Default values for the options and parameters
SET = texts Whether the options and parameters must be set
DECLARED = texts Whether the options and parameters must have been

declared
TYPE = pointers Allowed types for the options and parameters
COMPATIBLE = pointers Aspects of the options and parameters that must be

compatible with the first parameter
PRESENT = texts Whether the options and parameters must have values
LIST = texts Whether the options have more than one setting (not

relevant for the parameters
INPUT = texts Whether the options and parameters only supply input

information
DEFINITION = texts Saves statements to define the syntax
SOURCE = texts Saves the source code of a procedure

The name of the command must be supplied in a single-value text, using the COMMAND parameter.
The NOPTIONS parameter gives its number of options, and the NPARAMETERS parameter gives
the number of parameters.

5.4 Useful commands for procedure writers 339

The other parameters give details of the options and parameters. These correspond to the
parameters of the OPTION and PARAMETER directives.

The NAMES parameter saves a text containing the names of the options (if any), followed by
the names of any parameters.

The MODE parameter saves a text giving the modes of the options and parameters: whether
their settings should be a number (v), or an identifier of a data structure (p), or a string (t), or
an expression (e), or a formula (f). These codes are exactly the same as those that indicate the
mode of the values to appear within the brackets containing an unnamed structure.

The NVALUES saves a pointer defining how many values the structures that are supplied for
options and parameters of mode p may contain. The element of the pointer is a scalar there is
only one possibility, and a variate if there are several.

The VALUES saves a pointer containing the allowed set of values that may have been defined
for options and parameters with modes t and v. The element of the pointer will be a text for an
option or parameter of mode t, and either a scalar or a variate for an option or parameter of
mode v.

The DEFAULT parameter saves a pointer containing the default settings that may have been
defined for the options and parameters with modes t and v.

The SET parameter saves a text containing 'yes' or 'no' according to whether or not the
options and parameters must be set.

The DECLARED parameter saves a text containing 'yes' or 'no' according to whether or not
the options and parameters of mode p must be set to a data structure that has already been
declared.

The TYPE parameter saves a pointer containing a text to indicate the allowed types of the
structures to which each option and parameter of mode p can be set.

The COMPATIBLE parameter saves a pointer containing a texts to specify aspects of the
options and parameters that must be compatible with the first parameter.

The PRESENT parameter saves a text containing 'yes' or 'no' according to whether or not
the options and parameters must be set to a data structure that has values.

The INPUT parameter saves a text containing 'yes' or 'no' according to whether or not the
options and parameters are be used only to provide input to the command.

The DEFINITION parameter can save statements, in a text, to define the syntax. These start
with a DEFINE statement for a directive or a PROCEDURE statement for a procedure, then an
OPTION statement to define any options, and a PARAMETER statement to define any parameters.

The SOURCE parameter can save the source code of a procedure. This can be useful if you have
a library containing the procedure, but no longer have the original source file. Note, though, that
the source that you save will not be identical to the original source. When procedures are defined
within Genstat, their source code is processed to remove comments and extraneous spaces in
order to save storage space (as shown when the source of the procedure %TRANSFORM is printed
at the end of Example 5.4.6 below). It also inserts colons to end the statements explicitly.

Example 5.4.6 continues Example 5.3.2 ,to show how to obtain details of the syntax, definition
and source code of the procedure %TRANSFORM defined at the start of the example. The FOR loop
in lines 45-61 assigns default texts to the pointer elements that have not needed to be defined by
the SYNTAX directive to make the subsequent printing clearer.

Example 5.4.6

 37 SYNTAX '%TRANSFORM'; NOPTIONS=nopt; NPARAMETERS=npar; NAME=names;\
 38 MODE=modes; NVALUES=nvals; VALUES=values; DEFAULT=default;\
 39 SET=set; DECLARED=declared; TYPE=types; COMPATIBLE=compat;\
 40 PRESENT=present; LIST=list; INPUT=input;\
 41 DEFINITION=define; SOURCE=source
 42 PRINT nopt,npar; DECIMALS=0

340 5 Programming in Genstat

 nopt npar
 1 2

 43 & names,modes,set,declared,list,input,present;\
 44 FIELD=*,6,4,9,5,6,8; JUST=left,6(right)

names modes set declared list input present
METHOD t no no no no no
PERCENT p yes yes no yes
RESULT p yes no no no

 45 FOR [INDEX=i; NTIMES=nopt+npar]
 46 IF NMV(NVALUES(nvals[i]))
 47 ASSIGN 'No nvals'; POINT=nvals; ELEMENT=i
 48 ENDIF
 49 IF NMV(NVALUES(values[i]))
 50 ASSIGN 'No values'; POINT=values; ELEMENT=i
 51 ENDIF
 52 IF NMV(NVALUES(default[i]))
 53 ASSIGN 'No default'; POINT=default; ELEMENT=i
 54 ENDIF
 55 IF NMV(NVALUES(types[i]))
 56 ASSIGN 'No types'; POINT=types; ELEMENT=i
 57 ENDIF
 58 IF NMV(NVALUES(compat[i]))
 59 ASSIGN 'No compat'; POINT=compat; ELEMENT=i
 60 ENDIF
 61 ENDFOR
 62 PRINT [SQUASH=yes; ORIENT=across] nvals[]
 nvals['METHOD'] No nvals
nvals['PERCENT'] No nvals
 nvals['RESULT'] No nvals
 63 & values[]
values['METHOD'] LOGIT COMPLOGLOG ANGULAR
values['PERCENT'] No values
values['RESULT'] No values
 64 & default[]
 default['METHOD'] LOGIT
default['PERCENT'] No default
 default['RESULT'] No default
 65 & types[]
types['METHOD'] No types
types['PERCENT'] scalar variate matrix symmetricmatrix
types['PERCENT'] diagonalmatrix table
types['RESULT'] scalar variate matrix symmetricmatrix
types['RESULT'] diagonalmatrix table
 66 & compat[]
compat['METHOD'] No compat
compat['PERCENT'] No compat
compat['RESULT'] type nvalues
 67 PRINT define; JUST=left & source; JUST=left

define
PROCEDURE [RESTORE=; WORDLENGTH=long] '%TRANSFORM'
OPTIONS \
 NAME='METHOD';\
 MODE='t';\
 VALUES=!t(LOGIT,COMPLOGLOG,ANGULAR);\
 DEFAULT=!t(LOGIT);\
 SET='no';\
 DECLARED='no';\
 PRESENT='no';\
 LIST='no';\
 INPUT='no'
PARAMETERS \
 NAME='PERCENT','RESULT';\
 MODE='p','p';\
 SET='yes','yes';\
 DECLARED='yes','no';\
 TYPE=!t(scalar,variate,matrix,symmetricmatrix,diagonalmatrix,table),!t(\
 scalar,variate,matrix,symmetricmatrix,diagonalmatrix,table);\
 COMPATIBLE=*,!t(type,nvalues);\
 PRESENT='yes','no';\

5.5 Debugging Genstat programs 341

 INPUT='no','no'

source
 IF METHOD .EQS. 'Logit':
 CALCULATE RESULT = LOG(PERCENT / (100-PERCENT)):
 ELSIF METHOD .EQS. 'Comploglog':
 CALCULATE RESULT = LOG(-LOG((100-PERCENT)/100)):
 ELSIF METHOD .EQS. 'Angular':
 CALCULATE RESULT = ANGULAR(PERCENT):
 ENDIF:
ENDPROCEDURE:

5.5 Debugging Genstat programs

If you are writing a general program in the Genstat language (as in any other high-level
language) you may often find that your program is syntactically correct and can be executed by
Genstat, but nevertheless produces the wrong answers: somewhere in the logic of your program
you have made a mistake. To allow such errors to be identified and corrected, Genstat has two
directives, BREAK and DEBUG, that allow you to interrupt the execution of your program. You
can then execute other statements, for example to examine the contents of data structures or
modify their values, or even to exit from a control structure. This is particularly useful inside a
procedure: the data structures used by the procedure are local and cannot normally be accessed
from outside; during a break you remain within the procedure and so all the local data structures
can be accessed. The BREAK directive allows you to insert breakpoints explicitly; so you must
plan its use in advance when you are writing the code. Alternatively you can use DEBUG to insert
breakpoints implicitly. This allows you for example to debug an existing procedure without
having to edit and redefine it.

5.5.1 Breaking into the execution of a program

BREAK directive
Suspends execution of the statements in the current channel or control structure and takes
subsequent statements from the channel specified.

Option
CHANNEL = scalar Channel number; default 1

Parameter
expression Logical expression controlling whether or not the break

takes place

The BREAK directive allows you to halt the execution of the current set of statements temporarily
so that you can execute some other statements. If the parameter is not set, the break will always
take place. Alternatively, you can specify a logical expression and then the break will take place
only if this produces a true (i.e. non-zero and non-missing) result.

The CHANNEL option determines where the statements to be executed during the break are to
be found. Usually (and by default) they are in channel 1. The statements are read and executed,
one at a time, until an ENDBREAK statement is reached, at which point control returns to the
statements originally being executed.

342 5 Programming in Genstat

ENDBREAK directive
Returns to the original channel or control structure and continues execution.

No options or parameters

BREAK provides a convenient way of interrupting a loop or a procedure so that you can read one
set of output before the next is produced, as shown in Example 5.5.1.

Example 5.5.1

 2 VARIATE [NVALUES=13] X,Y,LogY
 3 READ X,Y

 Identifier Minimum Mean Maximum Values Missing
 X 6.000 30.00 60.00 13 0
 Y 72.50 95.42 115.9 13 0

 17 CALCULATE LogY = LOG(Y)
 18 FOR Dum=Y,LogY
 19 MODEL Dum
 20 TERMS X
 21 FIT [PRINT=summary] X
 22 BREAK
 23 RDISPLAY [PRINT=estimates]
 24 BREAK
 25 ENDFOR

25...

Regression analysis
===================

Summary of analysis

Source d.f. s.s. m.s. v.r.
Regression 1 1831.9 1831.90 22.80
Residual 11 883.9 80.35
Total 12 2715.8 226.31

Percentage variance accounted for 64.5
Standard error of observations is estimated to be 8.96.

* MESSAGE: the following units have large standardized residuals.
 Unit Response Residual
 10 115.90 2.04

* MESSAGE: the following units have high leverage.
 Unit Response Leverage
 1 78.50 0.34

***** break at statement 5 in for loop
" RDISPLAY [PRINT=estimates]"
 26 ENDBREAK

26...

Regression analysis
===================

Estimates of parameters

Parameter estimate s.e. t(11)
Constant 117.57 5.26 22.34
X -0.738 0.155 -4.77

5.5 Debugging Genstat programs 343

***** break at statement 7 in for loop
"ENDFOR"
 27 ENDBREAK

27...

Regression analysis
===================

Summary of analysis

Source d.f. s.s. m.s. v.r.
Regression 1 0.21732 0.217322 24.07
Residual 11 0.09931 0.009028
Total 12 0.31663 0.026386

Percentage variance accounted for 65.8
Standard error of observations is estimated to be 0.0950.

* MESSAGE: the following units have high leverage.
 Unit Response Leverage
 1 4.3631 0.34

***** break at statement 5 in for loop
" RDISPLAY [PRINT=estimates]"
 28 ENDBREAK

28...

Regression analysis
===================

Estimates of parameters

Parameter estimate s.e. t(11)
Constant 4.7876 0.0558 85.83
X -0.00804 0.00164 -4.91

***** break at statement 7 in for loop
"ENDFOR"
 29 ENDBREAK

5.5.2 Putting automatic breaks into a program

DEBUG directive
Puts an implicit BREAK statement after the current statement and after every NSTATEMENTS
subsequent statements, until an ENDDEBUG is reached.

Options
CHANNEL = scalar Channel number; default 1
NSTATEMENTS = scalar Number of statements between breaks; default 1
FAULT = string token Whether to invoke DEBUG only at the next fault (yes,

no); default no

No parameters

ENDDEBUG directive
Cancels a DEBUG statement.

No options or parameters

344 5 Programming in Genstat

The straightforward use of DEBUG causes an immediate break, and then further breaks at regular
intervals until you issue an ENDDEBUG statement. Alternatively, by setting option FAULT=yes,
you can arrange for Genstat to continue until the next fault diagnostic, and then break.

The interval before each further break is specified by the NSTATEMENTS option; by default,
breaks take place after every statement.

During the breaks, Genstat takes statements from the channel specified by the CHANNEL
option; by default they are taken from channel 1.

Each individual break is terminated by an ENDBREAK, exactly like a break invoked explicitly
by the BREAK directive (5.5.1).

For example:

Example 5.5.2

 2 PROCEDURE 'POLAR'
 3 PARAMETER 'X','Y','R','THETA'
 4 " Takes (x,y) and returns (r,theta) "
 5 CALCULATE R = SQRT(X*X + Y*Y)
 6 CALCULATE THETA = ARCCOS(X/R)
 7 CALCULATE THETA = THETA + 2*(3.14159 - THETA)*(Y < 0)
 8 ENDPROCEDURE
 9 SCALAR Xpos,Ypos; VALUE=3,4
 10 DEBUG
 11 POLAR Xpos; Y=Ypos; R=Radius; THETA=Angle
***** break at statement 1 in procedure POLAR
" CALCULATE R = SQRT(X*X + Y*Y)"
 12 ENDBREAK
***** break at statement 2 in procedure POLAR
" CALCULATE THETA = ARCCOS(X/R)"
 13 PRINT R

 Radius
 5.000

 14 ENDBREAK
***** break at statement 3 in procedure POLAR
" CALCULATE THETA = THETA + 2*(3.14159 - THETA)*(Y < 0)"
 15 PRINT THETA

 Angle
 0.9273

 16 ENDBREAK
***** break at statement 4 in procedure POLAR
"ENDPROCEDURE"
 17 CALCULATE Deg = THETA*180/3.14159
 18 PRINT Deg

 Deg
 53.13

 19 ENDDEBUG
 20 PRINT Xpos,Ypos,Radius,Angle

 Xpos Ypos Radius Angle
 3.000 4.000 5.000 0.9273

5.6 The environment of a Genstat program

The output from the examples in this manual so far was produced in the standard environment.
For example, the Genstat statements were not echoed with line numbers when a program was
run interactively, but they were when it was run in batch; new lines in the programs were taken
as terminators of statements unless a continuation symbol was given; upper-case and lower-case
letters were treated as distinct in identifiers. You can change these and other details of the

5.6 The environment of a Genstat program 345

environment of a job by the SET directive (5.6.1). It is also possible to find out the current
environment, using the GET directive (5.6.2). This is of most use inside procedures that are
designed to work in a general way.

The definitions of Genstat directives and procedures in this book, and those in the Genstat
Reference Manual, include details of the default settings of options and parameters. However,
you can redefine these defaults at any time with the SETOPTION and SETPARAMETER directives
(5.6.3).

It could be confusing to work with different Genstat environments on different occasions. The
ideal way to modify the environment is in a start-up file, which is automatically executed
whenever you start using Genstat (5.6.4).

5.6.1 The SET directive

SET directive
Sets details of the "environment" of a Genstat job.

Options
INPRINT = string tokens Printing of input as in PRINT option of INPUT

(statements, macros, procedures,
unchanged); default unch

OUTPRINT = string tokens Additions to output as in PRINT option of OUTPUT
(dots, page, unchanged); default unch

DIAGNOSTIC = string tokens Defines the least serious class of Genstat diagnostic
which should still be generated (messages,
warnings, faults, extra, unchanged); default
unch

ERRORS = scalar Number of errors that a job may contain before it is
abandoned (0 implies no limit); default is to leave
unchanged

FAULT = text Sets the Genstat fault indicator (for example, FAULT=*
clears the last fault); default is to leave the indicator
unchanged

PAUSE = scalar Number of lines to output before pausing (interactive
use only; 0 implies no pausing); default is no change

PROMPT = text Characters to be printed for the input prompt; default is
to leave unchanged

NEWLINE = string token How to treat a new line (significant,ignored);
default is no change

CASE = string token Whether lower- and upper-case (small and capital)
letters are to be regarded as identical in identifiers
(significant, ignored); default is no change

FIELDWIDTH = scalar Fieldwidth to be used as a default minimum by PRINT
and other output commands

SIGNIFICANTFIGURES = scalar Minimum number of significant figures to be supplied in
the default formats determined by PRINT and other
output commands

SEEDS = pointer or scalar Defines the current default seeds to be used for random
numbers in various parts of Genstat

RUN = string token Whether or not the run is interactive (interactive,
batch); by default the current setting is left unchanged

UNITS = identifier To (re)set the current units structure; default is to leave

346 5 Programming in Genstat

unchanged
BLOCKSTRUCTURE = identifier To (re)set the internal record of the most recent

BLOCKSTRUCTURE statement; default is to leave
unchanged

TREATMENTSTRUCTURE = identifier
To (re)set the internal record of the most recent
TREATMENTSTRUCTURE statement; default is to leave
unchanged

COVARIATE = identifier To (re)set the internal record of the most recent
COVARIATE statement; default is to leave unchanged

ASAVE = identifier To (re)set the current ANOVA save structure; default is to
leave unchanged

DSAVE = identifier To (re)set the current save structure for the
high-resolution graphics environment; default is to leave
unchanged

MSAVE = identifier To (re)set the current save structure for multivariate
analysis; default is to leave unchanged

RSAVE = identifier To (re)set the current regression save structure; default
is to leave unchanged

TSAVE = identifier To (re)set the current time-series save structure; default
is to leave unchanged

VSAVE = identifier To (re)set the current REML save structure; default is to
leave unchanged

VCOMPONENTS = identifier To (re)set the current REML model definitions, as
specified by VCOMPONENTS and VSTRUCTURE; default is
to leave unchanged

WORDLENGTH = string token Length of word (8 or 32 characters) to check in
identifiers, directives, options, parameters and
procedures (long, short); default * i.e. no change

CAPTIONS = string tokens Controls which captions are displayed (minor, major,
meta, unchanged); default unch

TYPESET = string tokens Controls when typesetting commands within textual
strings are used (output, graphics); if unset, the
existing setting is left unchanged

CMETHOD = string token Controls whether number settings for colour options and
parameters are interpreted as RGB values or as numbers
of standard colours (rgb, standard); if unset, the
existing setting is left unchanged

DATASPACE = scalar or variate Updates the current data space allocations; if unset, the
existing allocations are left unchanged

WORKINGDIRECTORY = text Sets the working directory; default is to leave this
unchanged

ALGORITHMS = string token Controls the use of enhanced computing algorithms
(standard, mkl); if unset, the existing setting is left
unchanged

ACTIONAFTERFAULT = string token Controls what happens after a fault (continue, stop);
if unset, the existing setting is left unchanged

UNSETDUMMY = string token Controls what happens if you specify an unset dummy
as the setting of an option or parameter that expects
another type of data structure (fault, ignore, warn);
if unset, the existing setting is left unchanged

5.6 The environment of a Genstat program 347

LANGUAGE = text Text with either one or two values to specify a preferred
language for output and (optionally) a second choice in
case the preferred language is unavailable

YEAR2DIGITBREAK = scalar Controls how 2 digits can be used to specify years

No parameters

The default of SET is to do nothing: that is, each option by default leaves the corresponding
attribute of the environment unchanged. Of course you have to start somewhere, so an initial
environment is defined at the start of any Genstat program; the corresponding initial settings of
the options of SET, known as the initial defaults, are described below.

The INPRINT option controls what parts of a Genstat job supplied in the current input channel
are recorded in the current output file; the input channel can be either an input file or the
keyboard. Three parts are distinguished: explicit statements; statements, or parts of statements,
that you have supplied in macros using either the ## notation (1.8.2) or the EXECUTE directive
(5.4.3); and statements that you have supplied in procedures. The initial default is to record
nothing if the output is to the screen, otherwise to record the statements. This aspect of the
environment can be modified also by the PRINT option of the INPUT directive (3.4.1) and by the
INPRINT option of JOB (5.1.1).

The OUTPRINT option controls how the output from many Genstat directives starts: the output
can be preceded by a move to the top of a new page, or by a line of dots beginning with the line
number of the statement producing the analysis, or by both. If output is directly to the screen, no
new pages are given. The initial default is to give neither if output is to the screen, otherwise to
give a new page and a line of dots. Alternatively, this aspect can be modified by the PRINT
option of the OUTPUT directive (3.4.3) or by the OUTPRINT option of JOB. The lines of dots are
produced by the directives for regression analysis, analysis of designed experiments, REML
analysis, multivariate analysis, and time series; also from the FLRV, FSSPM and SVD directives
(4.10). If you give an analysis statement within a FOR loop (5.2.1), the line number preceding the
line of dots is that of the ENDFOR statement rather than of the analysis statement. New pages are
produced with any of the above, and with the GRAPH, HISTOGRAM and CONTOUR directives.

The DIAGNOSTIC option lets you control the level of diagnostic reporting. You might want
to do this within a procedure, to prevent faults being reported to a user who does not need to
know in detail what is going on inside the procedure. By initial default, all diagnostics !
messages, warnings and faults ! are printed. You can switch off messages by setting
DIAGNOSTIC=warning, or switch off both messages and warnings by setting
DIAGNOSTIC=fault. If you set DIAGNOSTIC=*, then no diagnostics will appear. The extra
setting gives you extra information, in the form of a dump of the current state of the job; but this
is likely to be useful only for developers of Genstat. Printing of diagnostics can also be
controlled by the DIAGNOSTIC option of JOB (5.1.1).

The ERRORS option controls what Genstat does when many faults happen within a single job
while in batch mode. By initial default, up to five errors per job are reported, and successive
faults will not generate diagnostic messages. This ensures, for example, that input intended to
be read by a READ statement (3.1.2) will not generate many lines of diagnostics if execution halts
because of a fault before the READ statement. Note, however, that this option does not affect the
detailed error messages printed by the READ directive itself: these are controlled separately by
the corresponding ERRORS option of READ. In interactive mode, the count of errors is restarted
after each successful statement is issued, though the option is unlikely to be useful in this mode.

The FAULT option is provided primarily to allow procedure writers to modify the internal
record that is kept of the most recent fault indicator. Setting FAULT=* clears the record; you can
then use the GET directive (5.6.2) to ascertain whether a fault has occurred since the record was
cleared. You can also set the fault indicator to a particular diagnostic, for example

348 5 Programming in Genstat

SET [FAULT='VA4']

A subsequent DISPLAY statement (5.4.1) will then report the chosen fault in the standard way.
The fault indicator is automatically cleared at the start of each job.

The PAUSE option lets you specify how many lines of output are produced at a time when you
are running Genstat interactively; you might, for example, want to read the output on a terminal
screen before more output replaces it. Obviously this is not relevant in batch, and may not be
needed in the implementations of Genstat that provide a scrollable output window. The initial
default is to send all output to the current output channel as soon as it is available. Some
computers can store the output, irrespective of whether Genstat itself has a scrollable window,
and let you scroll forward and back to read it at leisure: others just provide keys to freeze the
output while you are reading a section, and then to continue to the next segment of output. If you
set PAUSE=n, then after every n lines of output Genstat gives a prompt:

Press RETURN to continue

After you have read the displayed section of output, you can press the <RETURN> key to get the
next n lines. The counting of lines is restarted each time you give a statement from the keyboard:
it is not restarted between separate statements in a macro, procedure or auxiliary input channel.
If you have specified that Genstat should echo input lines, these are included among the n. Once
all the output has been displayed, Genstat prompts for further statements.

The PROMPT option specifies the characters used to prompt for interactive input. The initial
default is the greater-than character followed by a space "> ". The prompt can also be modified
by the PROMPT option of JOB (5.1.1). Other prompts are used by READ, EDIT, HELP and
QUESTION, and these cannot be altered.

The NEWLINE option allows you to cancel the initial default whereby a new line (<RETURN>)
is a terminator both for strings within a string list (1.5.2) and for a statement (1.7). Thus, for
example, if you specify

SET [NEWLINE=ignored]

you need no longer use a backslash (\) to continue a statement onto a new line, since <RETURN>
is no longer interpreted as the end of a statement. But you will then have to terminate each
statement explicitly with a colon.

The CASE option specifies whether upper-case and lower-case letters are to be treated as the
same in identifiers (1.4.3). The initial default is that upper and lower case are not the same; thus,
an identifier X is distinct from an identifier x. If CASE is set to ignored, then in later statements,
both x and X are treated as the same identifier, X. Thus the structure with identifier x cannot be
referenced, unless CASE is later reset to significant.

The FIELDWIDTH option allows you to control the minimum fieldwidth that is used as a
default by PRINT (3.2) and other output commands. The initial default is 12.

In PRINT the default number of decimal places for a numerical structure is determined by
calculating the number that would be required to print its mean absolute value to at least d
significant figures. The initial default for d is four, but you can redefine this using the
SIGNIFICANTFIGURES option.

The SEEDS option specifies the default seeds to be used to generate random numbers in
various areas of Genstat. You can set SEED to a scalar to define a single seed to be used for all
the areas. Alternatively, you can supply a pointer to define a different seed for each area. The
elements of the pointer should be labelled to indicate the area concerned: for example
'calculate', and 'randomize' for random-number functions and the RANDOMIZE directive
respectively. The easiest way to see the possibilities is to save the current seeds using the SEEDS
option of the GET directive; this saves a pointer with elements labelled automatically. You will
notice, though, that the GET pointer represents each seed as a variate (with several values) rather
than a scalar. This is because, once any randomization has done in an area, there is too much
seed information to store in a single number. Variates are equally valid for the elements of the

5.6 The environment of a Genstat program 349

SET pointer. So you can save the current seeds using GET, and then restore them by using the
same pointer in SET.

The WORDLENGTH parameter controls the number of characters that are stored and checked in
identifiers and names of directives, procedures, options, parameters and functions. In releases
prior to 4.2 this was always eight, but from 4.2 onwards you can choose between eight
(WORDLENGTH=short) and 32 (WORDLENGTH=long). This can also be controlled by the JOB
directive (5.1.1) and, within a procedure, by the PROCEDURE directive (5.3.2). The default is to
leave the setting unchanged.

The RUN option controls whether Genstat interprets the program as being in batch or in
interactive mode (1.1.1 and 1.1.2); this assumed mode is independent of whether the program
really is being run in batch or interactively. Initially, a program is taken to be in interactive mode
only if the first input channel and the first output channel are both connected to a terminal. The
setting of the assumed mode has two effects ! on recovery from faults, and on how HELP (1.2.1)
and EDIT (4.7.10) operate.

The UNITS option provides another way of setting the units structure in addition to the UNITS
directive described in 2.3.4. The setting can be the identifier of a variate or text structure; this
will become the default labelling structure of other variates, texts or factors with the same length,
in those directives that use such labels. The setting can also be a scalar to specify the default
number of units. For further details, see 2.3.4. The setting of the UNITS option is lost at the end
of each job within a program.

The BLOCKSTRUCTURE, TREATMENTSTRUCTURE, COVARIATE, ASAVE, DSAVE, MSAVE,
RSAVE, TSAVE, VSAVE and VCOMPONENTS options specify special save structures (2.9) for
graphical and analysis directives. You can set the options only to an identifier that you have
previously established by the SPECIAL option of the GET directive (5.6.2) or by the SAVE
options in the various analysis directives themselves. For example, if two sets of regression
analyses are in progress in one job, the SET directive can be used to switch between them:

MODEL [SAVE=S1] Y1
FIT X1
MODEL [SAVE=S2] Y2
FIT X1
SET [RSAVE=S1]
FIT X1,X2

This program fits the regression of Y1 on X1, using save structure S1, then the regression of Y2
on X1 with save structure S2. Finally, it fits the regression of Y1 on X1 and X2, because the
current regression save structure is changed to S1 before the last FIT statement. The settings of
all these options are lost at the end of a job.

The CAPTIONS option controls which captions are displayed by directives and procedures.
This can be used inside a procedure to suppress irrelevant captions that would be produced by
the procedures or directives that it calls. The setting can be restored by the RESTORE option of
the PROCEDURE statement, or by saving the current setting using GET, and then restoring it by
using another SET. The initial default is to display all types of caption.

The TYPESET option controls whether typesetting commands within textual strings (see 1.4.2)
are recognized used in output and in labels and titles on graphs. The initial default is to use them
in both.

The CMETHOD option is useful if you have programs from Release 10 or earlier that use the old
way of specifying graphics colours. Prior to Release 11, you had to use one of Genstat's 256
standard colours, and redefine its RGB definition, if necessary, using the COLOUR directive. In
Release 11, the representation of colours was changed to allow you to use standard colour
names; see 6.9.9 for details. So virtually all options and parameters of the directives and library
procedures that define colours were modified to take strings or texts as their settings. Further
flexibility was given by interpreting numeric settings directly as RGB values. However, if you
have a program from Release 10 or earlier that relies on the old standard colours, you can put

350 5 Programming in Genstat

SET [CMETHOD=standard]

to interpret numeric settings of colour options and parameters later in your program as standard
colour numbers instead of RGB values.

The DATASPACE option allows you to increase the current data space allocations. You can set
this to a variate of length three to specify a different size for each of the three types of data: real
numbers (for numeric data), integers (for factors and system information) and characters (for
texts). Alternatively, you can set it to a scalar to specify the same size for all three types. The
sizes are measured in blocks of 32768 values. If any of the data spaces is already larger than the
specified size, its size is left unchanged. This option can be useful if you know that your next
analysis is likely to require lot of space ! it is more efficient to reserve all the space at once,
rather than leaving it to Genstat to expand each allocation every time that it becomes full.

The WORKINGDIRECTORY option allows you to set the working directory (the default directory
where Genstat will open or save files).

The ALGORITHMS option allows you to request the use of enhanced computing algorithms.
The initial default, at the start of any Genstat run is to use only the standard algorithms.
However, if you set ALGORITHMS=mkl, it will use algorithms from the Intel® Math Kernel
Library for operations such as eigenvalue decompositions and matrix inversion. These should
provide much faster performance with large problems.

The ACTIONAFTERFAULT option allows you to control what happens if a fault occurs inside
a procedure or during a batch run. The initial default, at the start of any Genstat run, is that
execution of the procedure or the batch script stops. However, you can set ACTIONAFTERFAULT
to continue to request that it continues instead. The FAULT option of GET (5.6.2) can be used
to access the most recent fault code, so that you can make your own decision about what to do
next if a fault occurs.

A dummy (2.2.2) is a data structure that stores the identifier of a data structure. This can be
useful with options and parameters that expect another type of data structure. If you supply a
dummy, it will be replaced by the identifier that it stores. The UNSETDUMMY option controls what
happens if the dummy is unset. The initial default is to give a warning, and replace the dummy
by the default for the option or parameter if one has been defined, or otherwise to treat the option
or parameter as though it had not been set. If you set UNSETDUMMY to ignore, no warning is
given. Finally, if you set it to fault, unset dummies are treated as faults.

Some Genstat commands can now provide output in languages other than English. The
LANGUAGE option allows you to supply a text with either one or two values to specify your
preferred language in its first value, and (optionally) your second choice in its second value.
Output will then be generated in your preferred language if that is available. Otherwise it may
be in your second-choice language or, if neither are available, the command will generate the
ordinary English output.

The YAR2DIGITBREAK option controls how two digits can be used to specify years: whether
these represent years in the 1900's or the 2000's. YAR2DIGITBREAK specifies the cut-off date:
dates less than this value represent years beginning 20, and two digit dates greater than or equal
to this value will represent years beginning 19. For example, if it is set to 30, years in the range
00 - 29 will represent the years 2000 - 2029 and years in the range 30 - 99 represent the years
1930 - 1999. Alternatively, the value 0 ensures that all 2 digit dates belong to the 1900's, while
the value 100 means that they all belong to the 2000's.

5.6.2 The GET directive

The GET directive allows you to access the current settings of the environment. This can be
particularly useful in procedures, when details of the environment may need to change and be
reset later to their original state. Sometimes it may be sufficient just to use the PRESERVE option
of the PROCEDURE directive (5.3.2) for this purpose, but this causes them to be reset only at the
end of a procedure.

5.6 The environment of a Genstat program 351

GET directive
Accesses details of the "environment" of a Genstat job.

Options
ENVIRONMENT = pointer Pointer given unit labels 'inprint', 'outprint',

'diagnostic', 'errors', 'pause', 'prompt',
'newline', 'case', 'run', 'wordlength',
'captions', 'typeset', 'cmethod',
'dataspace', 'algorithms',
'actionafterfault', 'unsetdummy', 'language'
and 'year2digitbreak' to save the current settings
of those options of SET; default *

SPECIAL = pointer Pointer given unit labels 'units',
'blockstructure', 'treatmentstructure',
'covariate', 'asave', 'dsave', 'msave',
'rsave', 'tsave', 'vsave' and 'vcomponents',
used to save the current settings of those options of SET;
default *

LAST = text To save the last input statement; default *
FAULT = text To save the last fault code; default *
FIELDWIDTH = scalar Saves the fieldwidth currently defined as the default

minimum for PRINT and other output commands
SIGNIFICANTFIGURES = scalar Saves the minimum number of significant figures

currently to be supplied in the default formats
determined by PRINT and other output commands

SEEDS = pointer Saves a pointer to variates defining the seeds currently
used as defaults by random-number functions, the
RANDOMIZE directive, and internally by various other
directives

EPS = scalar To obtain the value of the smallest x (on this computer)
such that 1+x > 1 ; default *

NJOB = scalar Number of the current job within the program; default *
VERSION = pointer Information about the version of Genstat that is being

used; default *
PID = scalar Gets an integer value unique in the current job to use,

for example, in names of temporary files
WORKINGDIRECTORY = text Saves the name of the current working directory

No parameters

The ENVIRONMENT and SPECIAL options of GET are used to access and save the current settings
of the options of the SET directive (5.6.1). The options of SET are divided into two groups.
Those that apply to the general environment can be saved using the ENVIRONMENT option: these
are INPRINT, OUTPRINT, DIAGNOSTIC, ERRORS, PAUSE, PROMPT, NEWLINE, CASE, RUN,
WORDLENGTH, CAPTIONS, TYPESET, CMETHOD, DATASPACE, ALGORITHMS,
ACTIONAFTERFAULT, UNSETDUMMY, LANGUAGE and YEAR2DIGITBREAK. Those that apply only
to the save structures associated with particular directives are saved by using the SPECIAL
option: these are UNITS, BLOCKSTRUCTURE, TREATMENTSTRUCTURE, COVARIATE, ASAVE,
DSAVE, MSAVE, RSAVE, TSAVE, VSAVE, VCOMPONENTS.

When you use the ENVIRONMENT option, Genstat sets up a pointer (2.6) with units identified

352 5 Programming in Genstat

by the labels of the corresponding options of SET: these labels are 'inprint', 'outprint',
and so on. These labels can be specified in either lower or upper case, or any mixture. Each unit
of this pointer contains one or more strings, or a scalar, to represent the current setting. Thus, the
statement

GET [ENVIRONMENT=Env]

would set up a pointer called Env with elements Env['inprint'], Env['outprint'], and
so on. Each element can also be referred to by its position in the pointer; for example,
Env['inprint'] is the same as Env[1]. Example 5.6.2 shows what Env would contain in a
batch run where the options of SET had not been changed from their default values.

Example 5.6.2

 2 GET [ENVIRONMENT=Env]
 3 PRINT [RLWIDTH=24; ORIENT=across; SQUASH=yes] Env[]; FIELD=16
 Env['inprint'] statements
 Env['outprint'] dots page
 Env['diagnostic'] messages warnings faults
 Env['errors'] 5
 Env['pause'] 0
 Env['prompt'] >
 Env['newline'] significant
 Env['case'] significant
 Env['run'] batch
 Env['wordlength'] long
 Env['captions'] minor major meta
 Env['typeset'] output graphics
 Env['cmethod'] rgb
 Env['dataspace'] 1 1 1
 Env['algorithms'] standard
 Env['actionafterfault'] stop
 Env['unsetdummy'] warn
 Env['language']
 Env['year2digitbreak'] 30

Thus you do not have to know how the environment has been set in order to change it and then
restore it; you can use GET to find out about it, and SET to change it back. For example, suppose
that you wanted to stop temporarily the echoing of statements to the output file in a batch
program. In the following program the first SET statement cancels the echoing, if indeed any
echoing is in progress, and the second restores echoing to what it was before the first SET.

GET [ENVIRONMENT=Env]
SET [INPRINT=*]

(more statements)

SET [INPRINT=#Env['inprint']]

The SPECIAL option similarly sets up a pointer to save its information. The labels of the

pointer are 'units', 'blockstructure', and so on. These can again be specified in either
lower or upper case, or any mixture. The first element of the pointer is the units structure, or,
failing that, the number of units if you have defined it for the current job. Printing the contents
of the other elements is not usually informative, as the information is stored in coded form. The
last ten elements of the pointer allow you to access the special save structures defined by
graphical and analysis directives. They are most useful for recovering information about an
analysis when you have not already specified an explicit save structure. (Otherwise you would
have to do the analysis all over again.) For example, in the statements at the end of 5.6.1, if you
had not set the SAVE option in the first MODEL statement, you could instead put

MODEL Y1
FIT X1
GET [SPECIAL=S1]

5.6 The environment of a Genstat program 353

MODEL [SAVE=S2] Y2
FIT X1
SET [RSAVE=S1['rsave']]
FIT X1, X2

The SPECIAL option of GET also allows you to access the save structures associated with the
analysis-of-variance directives BLOCKSTRUCTURE (2:4.2.1), COVARIATE (2:4.3.1) and
TREATMENTSTRUCTURE (2:4.1.1). This facility is used by the ASTATUS procedure (2:4.9.1),
which may provide a more convenient way of accessing these structures.

The LAST option is used to save the latest statement that you have input. You can then give
the statement again later in the job without having to retype it, though some implementations of
Genstat provide a simpler recall facility using the cursor keys. The option has the same effect
as setting up a macro (1.8.2) containing a single statement, and is accessed in the same way. For
example, the statements

PRINT [SERIAL=yes; IPRINT=*; SQUASH=yes] !t('New Data'),Y
GET [LAST=Prdat]

(statements)

READ Y

(data)

##Prdat

would print the data, Y, under the title New Data and save the PRINT statement in a text called
Prdat. After the next data set is read, the heading New Data and the new data set are printed
in the same format as the previous data set. (The options of PRINT are described in 3.2.1.)

The FAULT option is used to save the last fault code as a single string in a text structure. (A
complete list of fault code definitions is available from the HELP environment facility.) This
option is particularly useful in procedures, in combination with the DIAGNOSTIC and FAULT
options of SET, to control the printing of diagnostics.

The FIELDWIDTH option saves the fieldwidth currently defined as the default minimum for
PRINT and other output commands, and the SIGNIFICANTFIGURES option saves the minimum
number of significant figures currently to be supplied in the default formats determined by
PRINT and other output commands (3.2).

The SEEDS option saves a pointer containing variates, each containing four values, which
define the seeds currently used as defaults by random-number functions, the RANDOMIZE
directive, and internally by various other directives. The pointer elements are labelled to identify
the use of the seeds concerned: for example 'calculate', and 'randomize' for random-
number functions and the RANDOMIZE directive respectively.

The EPS option is used to obtain the smallest number, å, such that 1.0+å is recognized by your
computer to be greater than 1.0; this is an indication of the precision of the computer, which can
affect the behaviour of some of the algorithms used by Genstat. EPS can be used, for example,
when testing for convergence of iterative algorithms.

The NJOB option provides the current job number within the Genstat program. It is used in the
start-up file (5.6.4) to distinguish between statements to be executed just at the start of the
program, and those to be executed at the start of each job.

The VERSION option allows you to find out which version of Genstat is being used. This is
particularly useful within a general program or procedure. The first element of the pointer is
given the label 'release', and is a scalar storing the release number, for example 15.10. The
main information is in the integer part and the first decimal place; the second decimal may be
used to distinguish between sub-releases with minor changes or corrections. The second element,
labelled 'implementation' identifies the machine for which Genstat has been implemented,
for example 'PC' or 'SUN'. The third is labelled 'system', and indicates the operating system,
for example 'UNIX' or 'Windows. Finally, there is an element labelled 'version' that may

354 5 Programming in Genstat

contain further information relevant to particular implementations.
The PID option saves a scalar containing an integer value that is unique within the current job.

You might want to use this, for example, to define a unique name for a temporary file.
The WORKINGDIRECTORY option saves a text containing the name of the current working

directory.

5.6.3 Changing the defaults of options and parameters

SETOPTION directive
Sets or modifies defaults of options of Genstat directives or procedures.

Option
DIRECTIVE = string token Directive (or procedure) to be modified

Parameters
NAME = string tokens Option names
DEFAULT = identifiers New default values

SETPARAMETER directive
Sets or modifies defaults of parameters of Genstat directives or procedures.

Option
DIRECTIVE = string token Directive (or procedure) to be modified

Parameters
NAME = string tokens Parameter names
DEFAULT = identifiers New default values

These directives change the defaults settings for the specified directive or procedure for the
remainder of the current job. If you use one of these directives in your start-up file (5.6.4) you
can make the changed default apply in all your use of Genstat.

To achieve any effect, the option and both parameters of either of these directives must be set.
The DIRECTIVE option specifies the name of the directive or procedure that is affected, and the
NAME parameter indicates the option or parameter whose default is to be changed. The settings
are strings, so need not be quoted because all directive and procedure names are valid as
unquoted strings. The DEFAULT parameter is then set to a data structure to provide the new
default that you want to be assumed. For example, the following statement modifies the PRINT
option of the FIT directive which carries out regression analysis.

SETOPTION [DIRECTIVE=FIT] PRINT; DEFAULT='deviance'

The usual default of the PRINT option in FIT is to print a statement of the model, a summary of
the analysis, and the parameter estimates: this corresponds to the setting
PRINT=model,summary,estimates. This SETOPTION statement therefore redefines the
default so that any subsequent FIT statement in the job will report only the residual deviance
unless you explicitly set the PRINT option.

The defined mode of the PRINT option of FIT is "strings". However, the DEFAULT parameter
of SETOPTION expects a data structure (to allow for all the other modes that might occur), and
so it must be set to a text structure containing the string (or strings) that you want to be the
default. Similarly, if the defined mode of the option or parameter is "numbers", "expression" or
"formula", you must supply a variate, an expression structure or a formula structure containing
the new default. If the defined mode is "identifier", the setting of DEFAULT is simply an

5.7 Communicating with other programs 355

identifier, which must be of the required type if this is specified in the definition of the directive
or procedure.

To reset the PRINT option of FIT back to its usual default, you would need to give the
statement

SETOPTION [DIRECTIVE=FIT] PRINT;\
 DEFAULT=!t(model,summary,estimates)

The SETOPTION and SETPARAMETER directives can also be used to change defaults of any
procedure: this may be a procedure in the standard Procedure Library, the Site Library, or a
personal library that you have already opened in the current program, or it may be a procedure
that you have defined explicitly in the job.

For example, we shall modify the default action of the DESCRIBE procedure in the standard
Library. This procedure prints a summary of values in a variate, and by default does not store
the summary. It has a parameter called SUMMARIES which you can set if you want the summaries
to be stored. The statement

SETPARAMETER [DIRECTIVE=DESCRIBE] SUMMARIES; DEFAULT=Sum

would change the default action of this procedure, so that after using it without setting the
SUMMARIES parameter the summaries would be available in variate Sum.

5.6.4 Start-up files

A start-up file contains Genstat statements that are to be executed at the beginning of every job.
Thus in an interactive run they are executed before Genstat prompts you for commands, and in
batch before Genstat executes the statements that you have prepared. The standard start-up file,
distributed with Genstat, performs two tasks: it prints a banner describing the version of Genstat
that is being used, and it opens a file to keep a record of interactive sessions. You can set up your
own start-up file and arrange for it to be executed instead, to define your preferred Genstat
environment automatically at the start of each job.

The standard start-up file contains job-control structures to allow separate sets of statements
to be executed in batch and interactive modes, and at the start of the first job and subsequent jobs
in the program. In fact, little is done in batch mode because neither of the tasks listed above is
relevant: the banner is designed to help interactive users, and there is no need to keep a record
of statements. When running interactively, the record file is opened at the start of the first job;
once open, there is no need to open it at the start of subsequent jobs. Similarly, the banner is
printed just at the start of the first job.

You can take a copy of the standard file and edit it ! perhaps just to remove the banner, or
perhaps to insert a SET statement (5.6.1) to change the environment. If you prefer an alternative
default for an option or parameter of a directive that you use frequently, you might want to insert
a SETOPTION or SETPARAMETER statement (5.6.3); if so, you must put it into the first section
of the file, which is executed in both modes and at the start of all jobs. You might also include
an OPEN statement (3.3.1) to provide automatic access to a personal procedure library or
backing-store file; or you could define macros to carry out operations you require frequently.

Having created your own start-up file, you can arrange for it to be used in place of the standard
one by following the instructions given in the local documentation.

5.7 Communicating with other programs

Genstat is designed as a general statistical package, and so contains facilities for most of the
statistical methods that you may need; but there are many other possible requirements. Some of
these will use information that you can produce with Genstat; others will generate information
that you can analyse with Genstat. Therefore you may need to connect Genstat to other
programs.

The simplest method of communication between programs is via files. One program might

356 5 Programming in Genstat

extract data and store it in a file ! either in character form (3.2) or in binary (3.7); this program
might be written in the data-base language. A second program, written in the Genstat language,
might then read that file, process the data, and perhaps form another file; and so on.

If you are content to work step-by-step, first running one program then another, you can
simply use the facilities described in Chapter 3 for storing and accessing information in files.
However, you may prefer to run programs concurrently. The SUSPEND directive, described in
5.7.1, allows you temporarily to halt Genstat and to perform other tasks on the computer before
continuing to run Genstat. You can arrange to communicate information between Genstat and
other programs that are run while Genstat is halted, simply by reading and writing files.

The PASS directive, described in 5.7.2, works like SUSPEND, but is designed to deal
automatically with the transfer of information between Genstat and separate programs. You can
set up the programs using Fortran, incorporating a Fortran subprogram that is distributed with
Genstat to deal with communication, or use some other computing language able to read the data
file used to transfer the information.

5.7.1 Suspending Genstat to give commands to the operating system

SUSPEND directive
Suspends execution of Genstat to carry out commands in the operating system; this directive
may not be available on some computers.

Options
SYSTEM = text Commands for the operating system; default: prompt for

commands (interactive mode only)
CONTINUE = string token Whether to continue execution of Genstat without

waiting for commands to complete (yes, no); default no

No parameters

If you run the command

SUSPEND

(with no options) in Genstat for Windows, a command window will open, in which you can enter
commands in the usual way. You can return to Genstat by closing the window (e.g. by typing
EXIT).

You can use the SYSTEM option to specify the commands to run in the operating system. By
default, Genstat then pauses while the commands run, and continues after they finish. This
provides a convenient way to run an external program. For example, it is used by the _CDCALL
procedure, included with CDNBLOCKDESIGN, to run the CycDesigN engine. CDNBLOCKDESIGN
(and other CDN procedures that use _CDCALL) use the OPEN directive to open a file to contain
the data for the engine, and the PRINT directive (with the CHANNEL option set to the filename)
to form its contents. _CDCALL uses TXCONSTRUCT to construct the command for SUSPEND. The
CycDesigN engine writes its output to another file, which can be read afterwards by
CDNBLOCKDESIGN (or the other CDN procedures).

You can set option CONTINUE=yes if the operating-system commands do not need to run
before your subsequent Genstat commands. For example, you might simply want to post a
message to say that your Genstat run is executing.

5.7 Communicating with other programs 357

5.7.2 Executing external programs

On some computers, you can arrange that one program, such as Genstat, calls for another to be
executed, passing information directly between the two. You can then cause Genstat to execute
your own subprograms without having to modify Genstat in any way. This is done by the PASS
directive.

To find out if the PASS directive has been implemented in your version, you can either look
in the local documentation or type

PASS

in any Genstat program. You will either get a message saying that the PASS directive has not
been implemented, or you will get a Genstat diagnostic telling you that Genstat has failed to
initiate a sub-process: this means that PASS has been implemented. If PASS has not been
implemented, you may be able to use the SUSPEND directive (5.7.1). First, you should open a file
(3.3.1) and PRINT the values of the structures that you want to send to your own program; you
can use a character file, or, for faster communication, an unformatted file (3.7). Next CLOSE the
file (3.3.2), and give a SUSPEND statement to return to the operating system. You can then run
your own program, accessing data from the file, and perhaps putting values back into it or
another file. Finally return to Genstat, and use READ to access the results of your program. An
example of this method is shown in 5.7.1.

To use the PASS directive when it is available, you must first get access to the GNPASS
program which is distributed with Genstat. You then form an executable program consisting of
GNPASS, slightly modified as detailed below, and your own subprograms. GNPASS is written
in Fortran 77; however, on many computers, it is possible to use equivalent programs in other
computing languages. The GNPASS program deals with communication with Genstat, and
passes information to and from your subprograms.

PASS directive
Performs tasks specified in subprograms supplied by the user, but not linked into Genstat; this
directive may not be available on some computers.

Option
NAME = text Filename of external executable program; default

'GNPASS'

Parameters
DATA = pointers Structures whose values are to be passed to the external

program, and returned
ERROR = scalars Reports any errors in the external program

You can use the DATA pointer to pass the values of any data structures except texts. All the
structures needed by your subprograms must be combined in a pointer structure, unless only one
structure is needed and it is not a pointer. The structures must have values before you include
them in a PASS statement; if you want to use some of the structures to store results from your
subprograms, you must initialize them to some arbitrary values, such as zero or missing. If you
specify several pointers in a PASS statement, your subprograms will be invoked several times,
to deal in turn with each set of structures stored by the pointers. However, the values of the
structures in all the pointers are copied before any tasks are performed by your subprograms.
Thus, if you want to operate with PASS on the results of a previous operation by PASS, you must
give two PASS statements with one pointer each rather than one statement with two pointers. The
ERROR parameter allows you to pass a scalar value back into Genstat to indicate whether any
errors have occurred.

358 5 Programming in Genstat

As an example, consider using PASS to carry out a simple transformation of a variate, as
would be done by the statement

CALCULATE W = M*(V+S)**2

where V and W are variates, and M and S are scalars. You would need a Fortran subprogram to
calculate the values of W from supplied values of M, V and S. The distributed version of the
GNPASS program is accompanied with just such a subprogram, called SQUARE, for the
purpose of illustrating how to use PASS. So all you need to do is to compile and link the program
and subprogram into an executable program, called GNPASS for convenience. Then you can run
Genstat and give the following statements:

SCALAR S,M; VALUE=2,10
VARIATE [VALUES=1...10] V
& [VALUES=10(*)] W
PASS !p(V,S,M,W)

The PASS statement will cause the GNPASS program to run, and assign the calculated values
to the variate W.

Numbers can be used in place of scalars, as usual in Genstat statements:

PASS !p(V,2,10,W)

To transform the values in both V, as above, and another variate X, with values 10...50 say, you
could give the statements:

VARIATE [VALUES=41(*)] Y
PASS !p(V,2,10,W),!p(X,2,10,Y)

The NAME option is used to specify the filename of the executable program formed from the
GNPASS program and your subprograms. By default, the name GNPASS is assumed.

The distributed form of the GNPASS program, if available on your computer, consists of
Fortran statements that receive information from Genstat as supplied by a PASS statement, call
the SQUARE subprogram, and then send back the information as modified by SQUARE. To
make it do the task that you require, you need to edit the program to call your subprograms
instead of SQUARE. The documentation for GNPASS is provided as comments within the
GNPASS program, so the details are not included here as well. After preparing the Fortran, you
need to form it into an executable program. This will require a Fortran compiler, and to be
certain of communicating successfully with Genstat, the compiler should be the same as that
used in preparing Genstat ! details will be given in the information that accompanies your copy
of Genstat. It may also be possible to use other source languages, provided the input and output
formats of their compilers are compatible with that used by Genstat.

6 Graphical display

Genstat can produce graphical output in two distinctively different styles. These are line-printer
graphics and high-resolution graphics. As the name suggests, line-printer graphics are designed
for printing on ordinary printers, and are also suitable for display on terminals and PC screens.
Thus no special equipment is required; also the plots form an integral part of the Genstat output,
and can thus be interspersed with other results during the analysis of the data. High-resolution
graphics provide a more attractive alternative. Lines and points are plotted with far greater
precision, and a wider range of plotting symbols can be used to enhance the output. Also most
devices allow the use of colour. A wide range of plots can be produced: graphs and histograms
in two or three dimensions, contour plots, shade diagrams, three-dimensional surfaces and pie
charts. High-resolution graphics can be produced interactively on graphics terminals,
workstations or PC screens. Some of these support graphical input, which can be used for
example to allow interactive identification of outliers. Plots can be also saved in files using
standard formats that are suitable for plotters or laser printers or for importing into word-
processed documents.

Genstat for Windows has a selection tool that allows you to select a high-resolution graph and
customize its appearance. You can also modify many aspects of the graph, such as colours, line
styles, plotting symbols, fonts and axes, interactively after it has been plotted. However, even
here you may find it useful to know the commands, in case you want to study the input log or
to develop new types of display.

The directives for high-resolution graphics have two main purposes. There are those that
define the "graphics environment" for subsequent plots, and those that do the plotting. The
default environment, set up at the start of a program, will often be satisfactory. However, you
can modify the environment to customize the plots using the following commands:

DEVICE switches between graphics devices (6.9.1)

FRAME defines the positions and appearance of the plotting
windows within the graphics frame (6.9.3)

FFRAME forms multiple windows in a plot-matrix for high-
resolution graphics

XAXIS defines the x-axis in a graphical window (6.9.4)
YAXIS defines the y-axis in a graphical window (6.9.5)
ZAXIS defines the z-axis in a graphical window (6.9.6)
AXIS defines an oblique axis for high-resolution graphics (6.9.7)
PEN defines properties of graphics "pens" (6.9.8)
GETRGB provides a standard sequence of colours, defined by the

initial defaults of the Genstat pens (6.9.9)
DCOLOURS forms a band of graduated colours for graphics (6.9.9)
DFONT defines the default graphics font (6.9.12)
DHELP provides information about the graphics environment (6.9)
DKEEP copies details of the graphics environment into Genstat

data structures (6.9.10)
DLOAD loads the graphics environment settings from an external

file (6.9.11)
DSAVE saves the current graphics environment settings to an

external file (6.9.11)

The directives for plotting high-resolution graphs are:
DGRAPH produces scatter plots and line graphs (6.2.1)

D3GRAPH plots a 3-dimensional graph (6.2.2)

360 6 Graphical display

DHISTOGRAM plots histograms (6.3.1)
BARCHART plots bar charts (6.3.2)
DCONTOUR plots contour maps (6.4.1)
DSHADE plots a shade diagram of three-dimensional data (6.4.2)
DSURFACE draws a perspective plot of a two-way array of numbers

(6.4.3)
D3HISTOGRAM plots three-dimensional histograms (6.4.4)
DBITMAP plots a bit map of RGB colours (6.5)
DPIE plots pie charts (6.6.1)
DCLEAR clears a graphics screen (6.8.1)
DSTART starts a sequence of related plots (6.8.2)
DFINISH ends a sequence of related plots (6.8.2)
DDISPLAY redraws the current graphical display (6.9.2)

You can add arrows, annotation and reference lines to graphs:

DARROW adds arrows to an existing plot (6.7.3)

DTEXT adds text to a graph (6.7.1)
DFRTEXT adds text to the graphics frame
DREFERENCELINE adds reference lines to a graph (6.7.2)

Some implementations support interactive graphics devices that allow information to be read

from the screen:
DREAD reads locations of points from an interactive graphics

device
Other facilities are provided by procedures in the graphics module of the Library:

BANK calculates the optimum aspect ratio for a graph

BOXPLOT draws box-and-whisker diagrams (2:2.2.2)
DARROW adds arrows to an existing plot (1:6.7.3)
DERRORBAR adds error bars to a graph (1:6.7.4)
DKEY adds a key to a graph (1:6.7.5)
DTEXT adds text to a graph (1:6.7.1)
DFRTEXT adds text to the graphics frame
DREFERENCELINE adds reference lines to a graph (1:6.7.2)
DCOMPOSITIONAL plots 3-part compositional data within a barycentric

triangle
DMASS plots discrete data like mass spectra, discrete probability

functions
DOTPLOT displays a dot-plot (2:2.2.6)
DPARALLEL displays multivariate data using parallel coordinates

(2:2.7.2)
DPROBABILITY plots probability distributions, and estimates their

parameters (2:2.2.7)
DRESIDUALS produces model-checking plots of residuals
DMSCATTER displays a scatter-plot matrix (6.8.4)
DSPIDERWEB displays spider-web and star plots
DTIMEPLOT produces horizontal bars displaying a continuous time

record
DXDENSITY produces one-dimensional density (or violin) plots
DXYDENSITY produces density plots for large data sets (6.4.5)
DXYGRAPH draws two-dimensional graphs with marginal distribution

plots alongside the y- and x-axes

6.1 Introduction to high-resolution graphics 361

Figure 6.1a

DYPOLAR produces polar plots
RUGPLOT draws "rugplots" to display the distribution of one or more

samples (2:2.2.3)
STEM plots a stem-and-leaf chart (2:2.2.4)
TRELLIS produces trellis plots for each level of one or more factors

(6.8.3)

With line-printer graphics, the standard character set, made up of letters, digits and
punctuation characters, is used to produce a graphical representation of the data. This will be of
low resolution, typically 24 rows by 80 columns for screen display, 132 by 48 or 80 by 60 for
a printer; but this is often adequate for a quick assessment of the data, or for checking the
assumptions of an analysis. Histograms, graphs and contour plots can be produced in this basic
style. The relevant directives are:

LPGRAPH produces scatter plots and line graphs (6.10.1)

LPHISTOGRAM plots histograms (6.10.2)
LPCONTOUR plots contour maps of two-way arrays of numbers (6.10.3)

6.1 Introduction to high-resolution graphics

The DGRAPH directive is used in this section to introduce the structure of the high-resolution
graphics in Genstat. A full description of DGRAPH is given in Section 6.2.1.

Before producing any high-resolution
plots, you must first select an appropriate
output device. This can either be screen-
based, for interactive use, or it may send
the output to a file in one of a number of
standard formats suitable for plotters,
printers or word-processed documents.
Different versions of Genstat may support
different types of device; inevitably there
are minor differences in the details of their
operation, and these are discussed further
in the description of the DEVICE directive
(6.9.1). The default graphics device is
chosen to be the most appropriate for each
version and, if this is suitable, no explicit
action is required before you start plotting.
For Genstat for Windows, this is the
Genstat Graphics Viewer.

In the simplest use of DGRAPH, you just
need to specify the x- and y-coordinates of
the points to be plotted and, if required, a
title for the plot. For example, the
statement:

DGRAPH [TITLE='Scatter
Plot'] Y1,Y2; X1,X2

generates the graph shown in Figure 6.1a. There are separate parameter lists for the y- and x-
coordinates, which are processed in parallel so that the graph contains plots of Y1 versus X1 and
Y2 versus X2. The TITLE option provides a title for the graph, which is drawn at the top of the
plot. It can be up to 80 characters in length, and must consist of one line of text only.

However, there are many more aspects of the output that can be controlled when producing
a graph, and it is not feasible to allow all of these to be specified by the options or parameters

362 6 Graphical display

Figure 6.1b

of DGRAPH. The syntax would have become very complicated, and you would have had to
specify all the relevant settings every time that DGRAPH was used. Instead additional directives
are used to set up and modify a graphical environment which contains most of the information
required when plotting. Each time DGRAPH is used, it accesses the relevant information from this
environment in order to determine how to construct the graph. Thus, to make a simple
modification to a graph, for example to change the colour of the plotted symbols, you need make
only that specific change; any other information that you have supplied previously will remain
in force. This section illustrates some of the settings that can be used to control or modify the
appearance of graphical output. The complete description of the various elements of the
environment and the directives that can be used to define them is in Section 6.9.

All the elements of graphical output, such as symbols, lines, axes, titles, labels, annotation and
filled polygons are drawn by pens, which have associated definitions covering various attributes,
like colours, symbol types and fonts. The pen also indicates the plotting method, that is, what
kind of plot is to be drawn. For example, the following statements can be used to plot the data
and the fitted line from a regression of Logpress on Boiltemp (see 2:3.1 for full details):

PEN 1,2; METHOD=line,point; SYMBOL=0,1; COLOUR='black'
DGRAPH [TITLE='Simple Linear Regression'] Fitted,Logpress;\
 Boiltemp; PEN=1,2

This means that pen 1 will be used to plot
a line through the points specified by
Fitted and Boiltemp, and pen 2 will be
used to plot the points specified by
Logpress and Boiltemp . The
corresponding output is shown in Figure
6.1b.

Pens are available with numbers 1 up to
256, each with its own attribute settings,
thus allowing a wide variety of styles
within each plot. You can control which
pens are used to plot the data, using the
PEN parameter of DGRAPH as shown above.
The PEN directive (6.9.8) can be used to
define the various attributes of each pen,
such as the colour, symbol type and line
style (whether lines should be full, dotted
or dashed). You can also specify labels to
be plotted at each point, and control the
size of symbols and text and the thickness
of lines. When plotting a line you can
switch off the symbols if you do not want
to mark individual points, by setting
SYMBOLS=0.

The XAXIS, YAXIS and ZAXIS directives (6.9.4, 6.9.5 and 6.9.6) allow you to specify the pens
to be used for the axes and their titles, and the FRAME directive (6.9.3) enables you to specify the
pen for the overall title. Unless you specify otherwise, Genstat uses pens with negative numbers
for these features. Negatively numbered pens cannot be used for any other purposes, so this
avoids any unintended side effects when pens are modified to change the main parts of the graph.

If the PEN parameter of DGRAPH is not specified, pen 1 is used for the first pair of Y and X
structures, pen 2 for the second pair, and so on. So the pens need not have been specified
explicitly in the DGRAPH statement above. The same convention applies to the pens used for
different structures in histograms, pie charts and contour plots. The default settings for each pen

6.1 Introduction to high-resolution graphics 363

Figure 6.1c

are designed so that they will differ in appearance, for example by using different colours or line
styles, depending on the output device. Thus, if you specify several data structures to appear in
the same plot, the different sets of points or lines will be clearly distinguished by their different
pens; see Figure 6.1a. The pens can be re-defined between DGRAPH statements in order to have
a different effect each time.

You can also control the position and size of the graph. All graphical output is drawn in
individual graphics windows. A window is a rectangular area of the screen. The position of the
window is defined in terms of its lower and upper bounds in the vertical (y) and horizontal (x)
directions using a data-independent coordinate system that ranges from 0.0 to 1.0 in each
direction. You can use the default window positions defined by Genstat or you can use the
FRAME directive (6.9.3) to define your own. The WINDOW option of DGRAPH indicates which
window is to be used for the plot and KEYWINDOW specifies the location of the key.

The FRAME statement in lines 25 and 26 of Example 6.1 defines window 4 to have dimensions
that will ensure that the y- and x-axes are suitably in proportion to show the shape of the series
(see for example Cleveland & McGill 1987). The setting KEYWINDOW=0 in DGRAPH in line 33
stops the key being displayed. The resulting graph is shown in Figure 6.1c.

Example 6.1

 2 " Wulfer's sunspot numbers, from Yule (1927)."
 3 READ Sunspots

 Identifier Minimum Mean Maximum Values Missing
 Sunspots 0.0000 44.76 154.4 176 0

 20 VARIATE Year; VALUES=!(1749...1924); DECIMALS=0
 21 " Set the window size so that the y- and x-axis length are in the
 -22 ratio 0.065:1, by calculating the upper y-bound to be
 -23 0.065 * x-axis length + y-margin (see 6.9.3)."
 24 CALCULATE Yup = 0.065*0.9 + 0.1
 25 FRAME 4; YLOWER=0.0; YUPPER=Yup; XLOWER=0.0; XUPPER=1.0;\
 26 YMLOWER=0.1; YMUPPER=0.0; XMLOWER=0.1; XMUPPER=0.0
 27 VARIATE Year; VALUES=!(1749...1924); DECIMALS=0
 28 " Set the window size so that the y- and x-axis length are in
 -29 the ratio 0.065:1, by calculating the upper y-bound to be
 -30 0.065 * x-axis length + y-margin (see 6.9.3)."
 31 CALCULATE Yup = 0.065*0.9 + 0.1
 32 FRAME 4; YLOWER=0.0; YUPPER=Yup; XLOWER=0.0; XUPPER=1.0;\
 33 YMLOWER=0.1; YMUPPER=0.0; XMLOWER=0.1; XMUPPER=0.0
 34 XAXIS 4; LOWER=1749; UPPER=1924; MARKS=!(1750,1800,1850,1900)
 35 YAXIS 4; LOWER=0; UPPER=175; MARKS=150
 36 PEN 1; METHOD=line; SYMBOL=0
 37 DGRAPH [WINDOW=4; KEYWINDOW=0] Sunspots; Year

Altogether, there are 256 windows, numbered from 1 up to 256. Windows are independent of
one another and on most devices they are allowed to overlap or contain others. So it is possible
to build up complex displays by a sequence of plotting commands. Details are given in Section
6.8.

364 6 Graphical display

For all the directives that produce graphics, the default window is window 1 and the default
key window is window 2. The windows all have initial default sizes, as explained in 6.9.3. The
default for window 2 is not very large. If you include too many variates in the plot, the key
window may become full and a warning message will be printed. Also, very long identifier
names or descriptions will be truncated if the width is insufficient. In either case you may want
to use FRAME to increase the window size.

Each window has an associated definition for the axes that may be drawn in that window. The
default definition will often be sufficient, but you can use the XAXIS, YAXIS and ZAXIS
directives (6.9.4, 6.9.5 and 6.9.6) to control various aspects of the axes within each window, for
example to add axis titles or to specify the spacing of tick marks or the position of labels. See
lines 34 and 35 of Example 6.1, which define the lower and upper boundaries of the x- and y-
axes, and the positions of the tick marks. These directives also allow you to specify which pens
should be used for drawing the axes and adding annotation.

There are also ways in which you can control the output device. There are two options in
DGRAPH (and in the other plotting directives) that can be used for this: SCREEN and ENDACTION.
By default, when plotting a graph, Genstat will first clear the screen (or, equivalently, start a new
page), but you can set option SCREEN=keep to preserve the current display. DGRAPH and
D3GRAPH have an additional setting, SCREEN=resize, that will adjust the bounds of the axes,
if necessary, to include the new information. Otherwise, the bounds are defined by the initial
plot. DGRAPH can thus be used not only as a means of producing a self-contained picture, but also
as a basic drawing tool to build up a complicated picture in several stages. Further details are
given in Section 6.8

The ENDACTION option of DGRAPH is useful when producing graphs on an interactive
graphical device; it specifies whether Genstat should pause at the completion of a graph, waiting
for the user to press a key before continuing, or should immediately continue to the next
statement. Where the screen has to switch between text and graphics modes, you would normally
want to pause so that you could look at the graph; whereas using a windowed display, as on PCs
running Windows, this is unnecessary unless several graphs are being drawn in succession, for
example by a procedure. The default for ENDACTION, in the initial environment, uses the setting
most suited to the current device. However, this can be modified by the DEVICE directive (6.9.1).
ENDACTION is ignored when output is to a file.

6.2 High-resolution graphs in two and three dimensions

6.2.1 The DGRAPH directive

DGRAPH directive
Draws graphs on a plotter or graphics monitor.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the graphs; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep,
resize); default clea

KEYDESCRIPTION = text Overall description for the key; default *
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

HOTMENU = matrices Defines sets of "hot" components for the user to select

6.2 High-resolution graphs in two and three dimensions 365

as shown or hidden by a menu in the Graphics Viewer
HOTCHOICE = string token Whether one or several "hot" components can be

displayed at a time (one, several); default seve

Parameters
Y = identifiers Vertical coordinates
X = identifiers Horizontal coordinates
PEN = scalars, variates or factors Pen number for each graph (use of a variate or factor

allows different pens to be defined for different sets of
units); default * uses pens 1, 2, and so on for the
successive graphs

DESCRIPTION = texts Annotation for key
YLOWER = identifiers Lower values for vertical bars
YUPPER = identifiers Upper values for vertical bars
XLOWER = identifiers Lower values for horizontal bars
XUPPER = identifiers Upper values for horizontal bars
YBARPEN = scalars, variates or factors

Pens to use to draw the vertical bars; default !11
XBARPEN = scalars, variates or factors

Pens to use to draw the horizontal bars; !11
LAYER = scalars "Layer" of the plot
UNITNUMBERS = identifiers Specifies unit numbers to be used when points are

selected in the graphics viewer; default * uses the actual
unit numbers of the values in the X and Y structures

DISPLAY = string tokens Whether to display each component initially in the graph
(show, hide); default show

HOTCOMPONENT = scalars Allows components of the graph (specified by pairs of Y
and X settings) to be defined as "hot" components that
can be shown or hidden through their association with
"hot" points or using a menu in the Graphics Viewer

HOTDEFINITION = matrices Define how to use points defined by the Y and X
parameters as "hot" points in the Graphics Viewer to
allow the user to decide whether other components of
the graph are shown or hidden

The DGRAPH directive draws high-resolution graphs, containing points, lines or shaded polygons.
The graph is produced on the current graphics device; this can be selected using the DEVICE
directive as explained in 6.9.1. The WINDOW option defines the window, within the plotting area,
in which the graph is drawn; by default this is window 1.

The Y and X parameters specify the coordinates of the points to be plotted; they must be
numerical structures (scalars, variates, matrices or tables) of equal length. If any of the variates
is restricted (4.4.1), only the subset of values specified by the restriction will be included in the
graph. The restrictions are applied to the Y and X variates in pairs, and do not carry over to all
the variates in a list. For example, suppose the variate Y1 is restricted but the variate Y2 is not.
The statement

DGRAPH Y1,Y2; X

will plot the subset of values of Y1 against X, but all the values of Y2 against X. Conversely, if
X were restricted the subset would be plotted for both Y1 and Y2. Any associated structures, like
variates specified by the PEN parameter or factors used to provide labels for the points, must be
of the same length as Y and X.

Each pair of Y and X structures has an associated pen, specified by the PEN parameter. By

366 6 Graphical display

default, pen 1 is used for the first pair, pen 2 for the second, and so on. The type of graph that
is produced is determined by the METHOD setting of that pen. This can be point, to produce a
point plot or scatterplot; line to join the points with straight lines; monotonic, open or
closed to plot various types of curve through the points; spline to plot a smoothing spline
fitted to the points; or fill to produce shaded polygons. In the initial graphics environment, all
the pens are defined to produce point plots. This can be modified using the METHOD option of
the PEN directive (6.9.8). Other attributes of the pen can be used to control the colour, symbols
and labels as described in 6.9.8.

With METHOD=fill, the points defined by the Y and X variates are joined by straight lines to
form one or more polygons which are then filled using the brush style specified for the pen. The
JOIN parameter of PEN determines the order in which the points are joined; with the default,
ascending, the data are sorted into ascending order of x-values, while with JOIN=given they
are left in their original order. There should be at least three points when using this method.

A warning message is printed if the data contain missing values. The effect of these depends
on the type of graph being produced, as follows. If the method is point there will be no
indication on the graph itself that any points were missing (but obviously none of the points with
missing values for either the y- or x-coordinate can be included in the plot). If a line or curve is
plotted through the points there will be a break wherever a missing value is found; that is, line
segments will be omitted between points that are separated by missing values. When using
METHOD=fill missing values will, in effect, define subsets of points, each of which will be
shaded separately. Note, however, that the position of the missing values within the data will
differ according to whether or not the data values have been sorted; this is controlled by the
JOIN parameter of PEN, as described above. If the data are sorted, units with missing x-values
are moved to the beginning.

The PEN parameter can also be set to a variate or factor, to allow different pens to be used for
different subsets of the units. With a factor, the units with each level are plotted separately, using
the pen defined by the ordinal number of the level concerned. If PEN is set to a variate, its values
similarly define the pen for each unit. For example, if you fit separate regression lines to some
grouped data, you can easily plot the fitted lines in just two statements, one to set up the pens
and one to plot the data:

PEN 1...Ngroups; METHOD=line; SYMBOL=0
DGRAPH Fitted; X; PEN=Groups

By default, Genstat calculates bounds on the axes that are wide enough to include all the data;

the range of the data is extended by five percent at each end, and the axes are drawn on the left-
hand side and bottom edge of the graph. This can all be changed by the XAXIS and YAXIS
directives (6.9.4 and 6.9.5), using the LOWER and UPPER parameters to set the bounds, and
YORIGIN and XORIGIN to control the position of the axes. Other parameters allow you to control
the axis labelling and style. If the axis bounds are too narrow, some points may be excluded from
the graph, so that clipping occurs. If the plotting method is point, Genstat ignores points that
are out of bounds. For other settings of METHOD, lines are drawn from points that are within
bounds towards points that are out of bounds, terminating at the appropriate edge. Clipping may
also occur if the method is monotonic, open or closed and you have left Genstat to set default
axis bounds, because these methods fit curves that may extend beyond the boundaries. If this
occurs, you should use the XAXIS and YAXIS directives to provide increased axis bounds. When
you use several DGRAPH statements with SCREEN=keep to build up a complex graph, the axes
are drawn only the first time, and the same axes bounds are then used for the subsequent graphs.
You should then define axis limits that enclose all the subsequent data. Alternatively, if you set
SCREEN=resize, the axes and their bounds will be adjusted, if necessary, to enclose the
additional information. Axes are drawn only if SCREEN=clear, or the specified window has not
been used since the screen was last cleared, or the window has been redefined by a FRAME
statement.

6.2 High-resolution graphs in two and three dimensions 367

DGRAPH allows error bars to be included in the plot. You might want to use these, for
example, to show confidence limits on points that have been fitted by a regression (Part 2
Chapter 3). Error bars are requested by setting the YLOWER and YUPPER parameters to variates
defining the lower and upper values for the error bar to be drawn at each point. For example, if
you know the standard error for each point, you could calculate and plot the bounds as follows:

CALCULATE Barlow = Y - 1.96 * Err
& Barhigh = Y + 1.96 * Err
DGRAPH Y; X; YLOWER=Barlow; YUPPER=Barhigh

(this would give a 95% confidence interval assuming that the y-values come from a Normal
distribution). The error bar is drawn from the lower point to the upper point at the associated x-
position; the bar will be drawn even if the corresponding y-value (or y-variate) is missing. If the
lower value is missing, or the YLOWER parameter is not set, only the upper section of the bar is
drawn; likewise if the upper value is missing only the lower section is drawn. Similarly,
parameters XLOWER and XUPPER allow you to plot horizontal bars at each point.

The YBARPEN and XBARPEN parameters define the pens to be used for the vertical and
horizontal bars, respectively, with the default to use pen !11. Similarly to the PEN parameter,
they can be set to either scalars, factors or variates. For each group of units defined by the setting
of PEN, DGRAPH will use the first pen that it finds for that group in the setting supplied by
YBARPEN and XBARPEN. (So YBARPEN and XBARPEN cannot define more detailed groupings of
the points than those defined by PEN.) For example:

VARIATE [VALUES=1,1,2,2,3,3] Pvar
& [VALUES=4,4,5,5,6,6] Ybvar
& [VALUES=7,7,8,8,9,10] Xbvar
DGRAPH Y; X; PEN=Pvar; YLOWER=Ylow; YUPPER=Yupp;\
 XLOWER=Xlow; XUPPER=Xupp;\
 YBARPEN=Ybpen; XBARPEN=Xbpen

The first two points here will be plotted in pen 1 with vertical bar in pen 4 and horizontal bar in
pen 7. The third and fourth points will be plotted in pen 2 with vertical bar in pen 5 and
horizontal bar in pen 8. The fifth and sixth points will be plotted in pen 3 with vertical bar in pen
6 and horizontal bar in pen 9. Notice, that the horizontal bar for the sixth point will be plotted
in pen 9 not pen 10, as it is in the same PEN group as the (earlier) fifth point which has pen 9 for
the horizontal bar. However, if PEN is not set to a factor or variate, the YBARPEN and XBARPEN
settings define the groups.

The KEYWINDOW option specifies the window in which the key appears; by default this is
window 2. Alternatively, you can set KEYWINDOW=0 to suppress the key. The key contains a line
of information for each pair of Y and X structures, written with the associated pen. This will
indicate the symbol used, the line style (for a plotting method of line or curve) or a shaded
block to illustrate the brush style (when METHOD=fill), the name of the structure (if any)
defined by the LABELS parameter of PEN, and a description indicating the identifiers of the data
plotted (for example Residuals v Fitted). Alternatively, you can supply your own key,
using the DESCRIPTION parameter, and you can specify a title for the key using the
KEYDESCRIPTION option. If you draw several graphs using SCREEN=keep or SCREEN=resize
and the same key window, each new set of information is appended to the existing key, until the
window is full.

If you have set the PEN parameter to a variate or factor in order to plot independent subsets
of the data, the key will contain information for each subset. If the LABELS parameter of PEN has
been used to specify labels for the points, each line of the key will contain the label
corresponding to the first value of the subset, rather than the identifier of the labels structure
itself. In lines 22 and 23 of Example 6.2.1 the factor Animal is used to label the points according
to the type of animal. Alternatively, in lines 24 and 25 the animals are distinguished with
different plotting symbols, by using the factor to specify different pens for the different types of
animal. The resulting plots are in Figure 6.2.1.

368 6 Graphical display

Figure 6.2.1

Example 6.2.1

 2 " Use of factors for labels and pens."
 3 FACTOR [LABELS=!T(zebra,giraffe)] Animal
 4 READ Animal,Height,Weight; FREPRESENTATION=labels

 Identifier Minimum Mean Maximum Values Missing
 Height 0.3080 4.384 9.228 14 0
 Weight 18.74 111.9 181.6 14 0

 Identifier Values Missing Levels
 Animal 14 0 2

 19 XAXIS 5,6; LOWER=0; UPPER=240
 20 YAXIS 5,6; LOWER=0; UPPER=10.5
 21 FRAME 7,8; YLOWER=0.3; YUPPER=0.5; XLOWER=0.075,0.59
 22 PEN 1; LABELS=Animal; SIZE=0.8
 23 DGRAPH [WINDOW=5; KEYWINDOW=7] Height; Weight
 24 PEN 1,2; SYMBOLS=2,7; LABELS=*
 25 DGRAPH [WINDOW=6; KEYWINDOW=8; SCREEN=keep] Height; Weight; PEN=Animal

The TITLE option can be used to provide a title for the graph; this is plotted using pen !5. You
can also put titles on the axes by using the TITLE parameter of the XAXIS and YAXIS directives.

The SCREEN option controls whether the graphical display is cleared before the graph is
plotted, and the ENDACTION option controls whether Genstat pauses at the end of the plot, as
described at the start of this section.

By default the sets of points defined by each pair of Y and X parameter settings are assumed
to form separate, successive "layers" on the plot. So, if an area of the plot contains information
(lines, symbols or labels) from several pairs of Y and X settings, the information from the later
settings will overlay the information from earlier settings. You can control the orders of the
layers by using the LAYER parameter to assign an explicit layer number to each pair of Y and X
settings. The pairs of Y and X settings are then plotted in ascending order of layer numbers.

6.2 High-resolution graphs in two and three dimensions 369

These layer numbers also work across DGRAPH statements when you add to a plot by setting
option SCREEN=keep or SCREEN=resize. So, for example, you can specify lower layer
numbers to plot the new information "below" the layers formed by the earlier DGRAPH
statement(s).

Usually all these components of the graph are shown when the graph is plotted. In Genstat for
Windows, the Graphics Editor (which can be opened from the Edit menu on the menu bar of the
Graphics Viewer) allows you to show or hide components, and the DISPLAY parameter of
DGRAPH allows you to define whether a component should be shown or hidden in the initial
graph displayed by the Graphics Viewer.

Alternatively, the Graphics Viewer itself can allow components to be shown or hidden, either
by using their association with some "hot" points that have been defined on the graph, or by
using a menu on its menu bar. These "hot" components are identified by defining a unique
integer number for each one, using the HOTCOMPONENT parameter; if the component is not to be
treated as "hot", HOTCOMPONENT should be left unset or given a missing value. Several pairs of
Y and X parameter settings can be given the same number, so you can build up a "hot" component
from more than one type of graphical item (e.g. from plotted points and shaded areas). "Hot"
points are plotted within the graph using the Y, X and other parameters (e.g. PEN) in the usual
way, as described above. The extra information, to define them as "hot", is supplied by setting
the HOTDEFINITION parameter to a matrix with a row for each "hot" point, and a column for
each type of "hot" component. The elements of the matrix specify the "hot" components to be
associated with each "hot" point, using the numbers defined by the HOTCOMPONENT parameter.
The menus in the Graphics Viewer can be made more informative, by defining textual labels for
the rows and columns of the matrix (see the MATRIX directive); these are then used as annotation
in the menus. Alternatively, if you set the HOTMENU option to a similar matrix, the Graphics
Viewer will include a menu on its menu bar to allow users to choose whether "hot" components
are shown or hidden. By default, users will be allowed to display several "hot" components at
a time. However, you can set option HOTCHOICE=one to indicate that only one can be shown
at a time. (The DISPLAY parameter should then be used to indicate which one, if any, should be
shown on the initial graph.)

The Graphics Viewer also has a tool that allows you to select points, and copy their unit
numbers onto the clipboard. Usually these numbers are simply the locations of the plotted values
in the X and Y structures. However, you can use the UNITNUMBERS parameter to supply other
numbers. (This may be useful if, for example, you are plotting sorted values.)

If you have a large number of points, it may be more effective to use a density plot. This
displays the density of the points, in small regions of the x-y plane, as a surface plot. The
procedure DXYDENSITY, that can be used, is described in Section 6.4.5.

6.2.2 The D3GRAPH directive

D3GRAPH directive
Plots a 3-dimensional graph.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the plots; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
ELEVATION = scalar The elevation of the viewpoint relative to the surface;

default 25 (degrees)
AZIMUTH = scalar Rotation about the horizontal plane; the default of 225

degrees ensures that a point at the minimum x- and y-
value is nearest to the viewpoint

370 6 Graphical display

DISTANCE = scalar Distance of the viewpoint from the centre of the grid on
the base plane; default * ensures that the data points fill
the viewing area

SCREEN = string token Whether to clear the screen before plotting or to
continue plotting on the old screen (clear, keep,
resize); default clea

KEYDESCRIPTION = text Overall description for the key; default *
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

Parameters
X = identifiers X-coordinates
Y = identifiers Y-coordinates
Z = identifiers Z-coordinates
PEN = scalars, variates or factors Pen number for each graph (use of a variate or factor

allows different pens to be defined for different sets of
units); default * uses pens 1, 2, and so on for the
successive graphs

DESCRIPTION = texts Annotation for key
UNITNUMBERS = identifiers Specifies unit numbers to be used when points are

selected in the graphics viewer; default * uses the actual
unit numbers of the values in the X and Y structures

The D3GRAPH directive produces high-resolution graphs, containing points, lines or filled shapes
in three dimensions. The graph is produced on the current graphics device which can be selected
using the DEVICE directive. The WINDOW option defines the window, within the plotting area,
in which the graph is drawn; by default this is window 1.

The position of the viewpoint is specified in polar coordinates, using the options ELEVATION,
DISTANCE and AZIMUTH. These define the angle of elevation, in degrees, above the base plane
of the surface, distance from the centre of this plane, and angular position relative to the vertical
z-axis, respectively.

The default settings of ELEVATION, DISTANCE and AZIMUTH have been chosen to produce
a reasonable display of most situations; but if, for example, some parts of the plot are obscured
they can be modified to obtain a better view. Altering the value of AZIMUTH will, in effect, rotate
the plot in the horizontal plane about a vertical axis drawn through the centre of the plot; the
default value of 225 degrees ensures that a point with the minimum x- and y-value would be at
the corner nearest the viewpoint.

The X, Y and Z parameters specify the coordinates of the points to be plotted; they must be
numerical structures (scalars, variates, factors, matrices or tables) of equal length. If any of the
variates or factors is restricted, only the subset of values specified by the restriction will be
included in the graph. The restrictions are applied to the X, Y and Z variates or factors in parallel
sets, and do not carry over to other variates or factors in the list. Any associated structures, like
variates specified by the PEN parameter or factors used to provide labels for the points, must be
of the same length as X, Y and Z.

Each set of X, Y and Z structures has an associated pen, specified by the PEN parameter. By
default, pen 1 is used for the first set, pen 2 for the second, and so on. The type of graph that is
produced is determined by the METHOD setting of that pen. This can be point, to produce a point
plot or scatterplot; line to join the points with straight lines; or fill to produce shaded objects.
In the initial graphics environment, all the pens are defined to produce point plots. This can be
modified using the METHOD option of the PEN directive (6.9.8). Other attributes of the pen can

6.2 High-resolution graphs in two and three dimensions 371

be used to control the colour, symbols and labels.
With METHOD=fill, the points defined by the X, Y and Z variates are joined by straight lines

to form one or more polygons or polyhedrons which are then filled using the brush style
specified for the pen. The JOIN parameter of PEN is ignored for this directive. The points are
plotted in the order in which they occur in the data.

A warning message is printed if the data contain missing values. The effect of these depends
on the type of graph being produced, as follows. If the method is point there will be no
indication on the graph itself that any points were missing (but obviously none of the points with
missing values for either the x-, y- or z-coordinate can be included in the plot). If a line is plotted
through the points there will be a break wherever a missing value is found; that is, line segments
will be omitted between points that are separated by missing values. When using METHOD=fill
missing values will, in effect, define subsets of points, each of which will be shaded separately.

The PEN parameter can also be set to a variate or factor, to allow different pens to be used for
different subsets of the units. With a factor, the units with each level are plotted separately, using
the pen defined by the level concerned. If PEN is set to a variate, its values similarly define the
pen for each unit. For example, if you fit separate regression lines to some grouped data, you can
easily plot the fitted lines in just two statements, one to set up the pens and one to plot the data:

PEN 1...Ngroups; METHOD=line; SYMBOL=0
D3GRAPH Fitted; X1; X2; PEN=Groups

By default, Genstat calculates bounds on the axes that are wide enough to include all the data;

the range of the data is extended by five percent at each end, and the axes are drawn on the left-
hand side and bottom edge of the graph. This can all be changed by the XAXIS, YAXIS and
ZAXIS directives (6.9.4, 6.9.5 and 6.9.6) using the LOWER and UPPER parameters to set the
bounds, and XORIGIN, YORIGIN and ZORIGIN to control the positions of the axes. Other
parameters allow you to control the axis labelling and style. If the axis bounds are too narrow,
some points may be excluded from the graph, so that clipping occurs. If the plotting method is
point, Genstat ignores points that are out of bounds. For other settings of METHOD, lines are
drawn from points that are within bounds towards points that are out of bounds, terminating at
the appropriate edge. Clipping may also occur if the method is monotonic, open or closed
and you have left Genstat to set default axis bounds, because these methods fit curves that may
extend beyond the boundaries. If this occurs you should use the relevant axis directive to provide
increased axis bounds. When you use several D3GRAPH statements with SCREEN=keep to build
up a complex graph, the axes are drawn only the first time, and the same axes bounds are then
used for the subsequent graphs. You should then define axis limits that enclose all the
subsequent data. Alternatively, if you set SCREEN=resize, the axes and their bounds will be
adjusted, if necessary, to enclose the additional information. Axes are drawn only if
SCREEN=clear, or the specified window has not been used since the screen was last cleared,
or the window has been redefined by a FRAME statement.

The KEYWINDOW option specifies the window in which the key appears; by default this is
window 2. Alternatively, you can set KEYWINDOW=0 to suppress the key. The key contains a line
of information for each pair of Y and X structures, written with the associated pen. This will
indicate the symbol used, the line style (for a plotting method of line or curve) or a shaded
block to illustrate the brush style (when METHOD=fill), the name of the structure (if any)
defined by the LABELS parameter of PEN, and a description indicating the identifiers of the data
plotted (for example Residuals v Fitted). Alternatively, you can supply your own key,
using the DESCRIPTION parameter, and you can specify a title for the key using the
KEYDESCRIPTION option. If you draw several graphs using SCREEN=keep or SCREEN=resize
and the same key window, each new set of information is appended to the existing key, until the
window is full.

If you have set the PEN parameter to a variate or factor in order to plot independent subsets
of the data, the key will contain information for each subset. If the LABELS parameter of PEN has

372 6 Graphical display

Figure 6.2.2

been used to specify labels for the points, each line of the key will contain the label
corresponding to the first value of the subset, rather than the identifier of the labels structure
itself.

The Graphics Viewer has a tool that allows you to select points, and copy their unit numbers
onto the clipboard. Usually these numbers are simply the locations of the plotted values in the
X and Y structures. However, you can use the UNITNUMBERS parameter to supply other numbers.
(This may be useful if, for example, you are plotting sorted values.)

The TITLE option can be used to provide a title
for the graph. You can also put titles on the axes by
using the TITLE parameters of the XAXIS, YAXIS
and ZAXIS directives (6.9.4, 6.9.5 and 6.9.6). The
SCREEN option controls whether the graphical
display is cleared before the graph is plotted and the
ENDACTION option controls whether Genstat pauses
at the end of the plot.

Example 6.2.2 shows the use of D3GRAPH to plot
three of the variables in Fisher's Iris data. The
resulting graph is in Figure 6.2.2. The plot uses the
sphere symbol, which is one of the symbols
provided specially for three-dimensional plots (see
6.9.8). The axes are labelled. There is therefore no
need for a key.

Example 6.2.2

 2 VARIATE [NVALUES=150] Plength,Pwidth,Slength,Swidth
 3 READ Slength,Swidth,Plength,Pwidth

 Identifier Minimum Mean Maximum Values Missing
 Slength 4.300 5.843 7.900 150 0
 Swidth 2.000 3.057 4.400 150 0
 Plength 1.000 3.758 6.900 150 0
 Pwidth 0.1000 1.199 2.500 150 0

 154 FACTOR [NVALUES=150; LABELS=!t(Setosa,Versicolor,Virginica); \
 155 VALUES=50(1,2,3)] Species
 156 PEN 1; SYMBOL='sphere'; COLOUR='red'; SIZE=2
 157 XAXIS 1; Title='Sepal Width (mm)'
 158 YAXIS 1; Title='Sepal Length (mm)'
 159 ZAXIS 1; Title='Petal Length (mm)'
 160 D3GRAPH [TITLE='Fisher''s Iris Data'; AZIMUTH=230; ELEVATION=50; KEY=0]\
 161 Swidth; Slength; Plength

6.3 Histograms and bar charts

Histograms are used to represent the distribution of a set of data values. In the standard
histogram, the range of the data is partitioned into consecutive intervals. The histogram has a bar
for each interval, and the height of the bar represents the number of data values that the interval
contains. Essentially, the histogram provides a graphical representation of a one-way table of
counts; see Example 6.3.1a. The DHISTOGRAM directive (6.3.1) provides high-resolution plots
of histograms with a single classifying factor. If you have two classifying factors, you can use

6.3 Histograms and bar charts 373

the D3HISTOGRAM directive (6.4.4), which provides a plot in three dimensions: one for the
lengths of the bars, and two for the classifying factors.

The bar chart differs from the histogram in that the factor classifying the table can represent
any type of grouping, not simply a partitioning of a range of numerical values: for example a bar
chart might present sales of a products in different areas, or sales of different types of product.
Also, the table need not contain counts, but may contain any numerical values, for example
profits (and losses), or yields of a crop. Bar charts with either one or two classifying factors can
be plotted using the BARCHART directive (6.3.2).

6.3.1 The DHISTOGRAM directive

DHISTOGRAM directive
Draws histograms or bar charts on a plotter or graphics monitor.

TITLE = text General title; default *
WINDOW = scalar Window number for the histograms; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
LIMITS = variate Variate of group limits for classifying DATA variates into

groups; default *
LOWER = scalar For a DATA variate, this specifies the lower limit of the

first bar; default * takes the minimum value of the variate
UPPER = scalar For a DATA variate, this specifies the upper limit of the last

bar; default * takes the maximum value of the variate
NGROUPS = scalar When LIMITS and BINWIDTH are not specified, this

defines the number of groups into which a DATA variate is
to be classified; default is then 10, or the integer value
nearest to the square root of the number of values in the
variate if that is smaller

BINWIDTH = scalar When LIMITS is unset the range of a DATA variate is split
into equal intervals known as "bins" to form the groups,
this option can set the bin widths (alternative is to set the
number of groups using NGROUPS)

FIXEDBARWIDTH = string token Whether to plot the histogram with bars of equal width
(no, yes); default no

BARCOVERING = scalar What proportion of the space allocated along the x-axis
each bar should occupy; default * gives proportion 1 for a
DATA variate, and 0.8 for a factor or table (thus giving a
gap between each bar)

BARSCALE = scalar Width of bar for which one unit of bar length represents
one unit of data; default * uses the width of the narrowest
bar

LABELS = text Group labels; default *
APPEND = string token Whether or not the bars of the histograms are appended

together (yes, no); default no
ORIENTATION = string token Direction of the plot (horizontal, vertical); default

vert

OUTLINE = string token Where to draw outlines (bars, perimeter); default bars
PENOUTLINE = scalar Pen to use for the outlines; default !8
SCREEN = string token Whether to clear the screen before plotting or to continue

plotting on the old screen (clear, keep); default clea
KEYDESCRIPTION = text Overall description for the key; default *

374 6 Graphical display

Figure 6.3.1a

ENDACTION = string token Action to be taken after completing the plot (continue,
pause); default * uses the setting from the last DEVICE
statement

Parameters
DATA = identifiers Data for the histograms; these can be either a factor

indicating the group to which each unit belongs, a
variate whose values are to be grouped, or a one-way
table giving the height of each bar

NOBSERVATIONS = tables One-way table to save numbers in the groups
GROUPS = factors Factor to save groups defined from a variate
PEN = scalars or variates Pen number(s) for each histogram; default * uses pens 2,

3, and so on for the successive structures specified by
DATA

DESCRIPTION = texts Annotation for key

DHISTOGRAM plots high-resolution histograms or
bar charts, depending on the input supplied by the
DATA parameter. This can be either a list of variates,
a list of factors or a list of one-way tables.

For a DATA variate, a histogram is produced. This
summarizes the distribution of the variate by
counting the number of values within a set of
intervals defined by the LIMITS, NGROUPS or
BINWIDTH options. The histogram contains a "bar"
for each interval, with area proportional to the
number of values found there.

Example 6.3.1a produces a histogram from a
variate called Data, whose values are listed (in
numerical order) in lines 4 and 5. The resulting
graph is in Figure 6.3.1a.

Example 6.3.1a

 2 VARIATE Data
 3 READ [PRINT=data,errors] Data
 4 0 1 1 1 1 2 2 2 2 3 3 4 4 4 4 4
 5 5 5 6 6 6 7 8 9 9 :
 6 DHISTOGRAM Data

You can define the boundaries between each interval using the LIMITS option. Alternatively,
instead of setting LIMITS, you can specify the width of each interval using the BINWIDTH
option. Or, instead of setting LIMITS or BINWIDTH, you can specify the number of groups using
the NGROUPS option. Finally, if none of these options is set, Genstat defines the number of
groups to be 10, or the integer value nearest to the square root of the number of values in the first
DATA variate if that is smaller. The range of the histogram is specified by the LOWER and UPPER

6.3 Histograms and bar charts 375

Figure 6.3.1b

options. LOWER defines the lower limit of the first interval; by default this is set by making the
width of the first bar equal to the width of the second bar, or it is the minimum value of the
variates if that would otherwise be below the first bar. UPPER defines the upper limit of the last
interval; by default this is set by making the width of the final bar equal to the width of the last-
but-one bar, or it is the maximum value of the variates if that would otherwise be above the final
bar. The bars are perpendicular to the x-axis, and this is labelled with the positions of the interval
boundaries.

Bar charts are given if DATA is set to
factors or tables. These differ from
histograms in that there is no longer the
concept of dividing the x-axis into a set of
contiguous intervals. Instead we have a set
of bars located at equal intervals along the
x-axis. Figure 6.3.1b shows an example,
generated by Example 6.3.1b below.

If DATA is set to a list of factors, the bars
are labelled by the labels, if available, or
otherwise the levels of the first factor. If
DATA is set to a list of tables, the labelling
is given by the levels/labels of the factor
classifying the first table. A DATA table
defines the heights of each bars directly
(from the value in the corresponding cell of
the table). With a factor, Genstat first
constructs a table giving the replications of
the factor levels. So the height of each bar
is equal to the number of units of the factor
with the corresponding level of the factor.

Example 6.3.1b

 2 FACTOR [LABELS=!t(January,February,March,April,May,June)] Month
 3 TABLE [CLASSIFICATION=Month; VALUES=1.2,3.4,5.6,-4.2,3.0,-1] Results
 4 DHISTOGRAM [TITLE='Profit and loss'; WINDOW=1; KEYWINDOW=0] Results

The bars in a bar chart always have equal widths. With a histogram, the default is for the bar
widths to be equal to the widths of the underlying intervals. However, you can request equal bar
widths by setting option FIXEDBARWIDTH=yes. The BARCOVERING option indicates what
proportion of the space allocated along the x-axis each bar should occupy. For a histogram the
default is 1, while for bar charts it is 0.8 (thus giving a gap between each bar).

The BARSCALE option controls how the lengths of the bars correspond to units of data. The
length of each bar is calculated as (data-value × BARSCALE)/bar-width. By default, BARSCALE
is set to the width of the narrowest bar. So for that bar, the length will correspond directly to the
data units.

The WINDOW option defines the window where the histogram is plotted, and the KEYWINDOW
option similarly specifies where the key should appear. You can set either of these to zero if you
want to suppress the corresponding output. Titles can be added to the histogram and key using
the TITLE and KEYDESCRIPTION options respectively.

376 6 Graphical display

Figure 6.3.1c

The APPEND option
controls the form of
display used when the
D A T A p a r a m e t e r
specifies a list of
structures. These parallel
histograms can be
produced in one of two
styles. By default
(APPEND=no) , t he
histogram contains a set
of bars for each
structure, drawn in
parallel groups. This is
used in line 15 of
Example 6.3.1c to
generate the histogram
on the left-hand side of Figure 6.3.1c. Alternatively, if you set APPEND=yes, the bars for the
structures are concatenated into a single bars for each group, as in line 16 of Example 6.3.1c and
the right-hand side of Figure 6.3.1c. The bottom portion of each bar then corresponds to the first
structure, and the top to the last structure.

Example 6.3.1c

 2 READ X,Y

 Identifier Minimum Mean Maximum Values Missing
 X 2.801 14.25 29.01 30 0
 Y 4.069 19.33 39.01 30 0

 11 FRAME 7,8; YUPPER=0.45; XLOWER=0.2,0.7
 12 PEN 1,2; BRUSH=2,9
 13 XAXIS 5,6; MARKS=!(0,8...40)
 14 YAXIS 5,6; MARKS=!(0,2...14),!(0,2.5...20)
 15 DHISTOGRAM [WINDOW=5; KEYWINDOW=7; APPEND=no] X,Y
 16 DHISTOGRAM [WINDOW=6; KEYWINDOW=8; SCREEN=keep; APPEND=yes] X,Y

The ORIENTATION option controls whether the bars of the histogram are plotted vertically (the
default) or horizontally. When ORIENTATION=horizontal, the horizontal axis is taken to be
the y-axis, so the same XAXIS and YAXIS settings can be used however the histogram is oriented.

The bars for each structure are all shaded according to the pen or pens that have been specified
for that structure, using the PEN parameter. You can set PEN to a scalar to define a single pen to
be used for all the bars, or to a variate to define a different pen for each bar. If PEN is not set,
Genstat uses the pens in turn, pen 2 for the first structure, pen 3 for the second structure, and so
on, so that a different shading is used for each structure. The relevant aspects of the pens should
be set in advance, if required, using the BRUSH and COLOUR parameters of the PEN directive
(6.9.8). Generally, however, the default attributes of the pens will be satisfactory.

The OUTLINE option controls whether lines are drawn around the bars or around the perimeter
of the histogram. These are drawn using the pen specified by the PENOUTLINE option (default
!8). You can suppress all the outlines by setting OUTLINE=*.

The axes of the histogram are formed automatically from the data. By default, the upper bound
of the y-axis is set to be five percent greater than the height of the longest bar. If any of the bars
has a negative height the lower bound is adjusted in a similar way, otherwise it is set to zero. As
already mentioned, when the histogram is formed from a variate, the x-axis markings are set to

6.3 Histograms and bar charts 377

indicate the limits of each bar or set of bars; when the data are provided in a factor the factor
labels or levels are used to label the histogram bars, and when the bar heights are provided
directly in a table the classifying factor of the table is used. You can control the form of the axes
by using the XAXIS and YAXIS directives (6.9.4 and 6.9.5) to set the required attributes before
the DHISTOGRAM directive is used.

The WINDOW parameter of XAXIS and YAXIS should be set to the window in which the
histogram is to be plotted (controlled by the WINDOW option of DHISTOGRAM). The TITLE,
LOWER, UPPER, MARKS and LABELS parameters control annotation. The UPPER parameter of
YAXIS is particularly useful when you are plotting a series of histograms; by setting UPPER to
a value larger than any of the bars in any of the histograms, you can ensure that they are all
plotted on the same scale.

The histogram key consists of the title, if set by KEYDESCRIPTION, followed by a legend for
each structure plotted. This consists of a small rectangle that is drawn in the same colour and
brush style as that used in the histogram, followed by the identifier name or the piece of text
specified by the DESCRIPTION parameter.

The SCREEN option controls whether the graphical display is cleared before the histogram is
plotted and the ENDACTION option controls whether Genstat pauses at the end of the plot.

6.3.2 The BARCHART directive

BARCHART directive
Plots bar charts in high-resolution graphics.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the histograms; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
BARWIDTH = scalar, variate or table

Width(s) of the bars; default * sets equal widths to fill
the x-axis

BARCOVERING = scalar What proportion of the space allocated along the x-axis
each bar should occupy; default * gives proportion 1 for
a DATA variate, and 0.8 for a factor or table (thus giving
a gap between each bar)

LABELS = text Labels for the bars or groups of bars; default *
APPEND = string token Whether or not the bars of the histograms are appended

together (yes, no); default no
ORIENTATION = string token Direction of the plot (horizontal, vertical); default

vert

YSCALING = string token What scale to use to label the y-axis (absolute,
proportion, percentage); default abso

OUTLINE = string token Where to draw outlines (bars, perimeter); default
bars

PENOUTLINE = scalar Pen to use for the outlines; default !9
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);
default clea

KEYDESCRIPTION = text Overall description for the key; default *
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

378 6 Graphical display

Figure 6.3.2

Parameters
DATA = tables or variates Heights of the bars in each bar chart
ERRORBARS = scalars, tables or variates

Error bars to be plotted above the bars of each bar chart
LOWERERRORBARS = scalars, tables or variates

Heights of error bars plotted below the bars of each bar
chart; if any of these is omitted, the corresponding
setting of ERRORBARS is used as the default so that the
error bars will have equal heights above and below the
bars of the bar chart

GROUPS = factors Which factor of a 2-way table to use as the groups
factor; default uses the second classifying factor

PEN = scalars, tables or variates Pen number(s) for each bar chart; default * uses pens 2,
3, and so on for the successive structures specified by
DATA

PENERRORBARS = scalars, tables or variates
Pen number(s) for the error bars; default !11

DESCRIPTION = texts Annotation for key

BARCHART plots high-resolution bar charts.
You can plot a single bar chart by setting
the DATA parameter to a one-way table or a
variate defining the heights of the bars. To
plot several bar charts on the same graph,
you can set DATA to a list of one-way tables
or variates. These must all contain the same
number of values, and any tables must be
classified by the same factor. Alternatively,
you can set DATA to a two-way table. The
GROUPS parameter then specifies which of
the two classifying factors is to be treated
as the "groups" factor (by default this is the
second factor). BARCHART now plots a bar
chart for every level of the GROUPS factors,
with bars defined by the other classifying
factor; see Example 6.3.2 and Figure 6.3.2.

Labels can be supplied for the bars,
using the LABELS option. If this is not set,
the labels will be the labels or levels of the
factor classifying the DATA tables, or the
integers 1 upwards for a DATA variate.

By default, if there are several bar charts, they are plotted with their bars alongside each other.
So BARCHART first plots the first bar of every bar chart, then the second bar, and so on.
Alternatively, you can set option APPEND=yes to stack the bars into a single bar. The bottom
portion of each bar then corresponds to the first bar chart, and the top to the last bar chart.

You can include error bars in a single bar chart or when several bar charts are plotted
alongside each other, by specifying their heights with the ERRORBARS and LOWERERRORBARS
parameters. The error bars take the form of a horizontal line joined by a vertical line of the
specified height, above and below each bar. The ERRORBARS parameter specifies the heights of
the error bars above the bars of the bar chart, and the LOWERERRORBARS parameter specifies the

6.3 Histograms and bar charts 379

heights of the error bars below the bars. If LOWERERRORBARS is not specified, the error bars are
assumed to have the same heights below and above the bars. You can set ERRORBARS and
LOWERERRORBARS to a scalar if the heights are the same for every bar of a bar chart, or to a table
or variate if different bars have error bars with different heights.

The ORIENTATION option controls whether the bars of the histogram are plotted vertically
(the default) or horizontally. When ORIENTATION=horizontal, the horizontal axis is taken
to be the y-axis, so the same XAXIS and YAXIS settings can be used however the histogram is
oriented.

By default, Genstat uses pen 2 for the first bar chart, pen 3 for the second bar chart, and so on,
so that a different colour or shading is used for each one. Alternatively, you can define your own
colours or shading, using the PEN parameter. If you set PEN to a scalar, a single pen is used for
all the bars. Alternatively, you can specify a variate or a table to define a different pen for each
bar. The relevant aspects of the pens should be set in advance, if required, using the BRUSH and
COLOUR parameters of the PEN directive (6.9.8). Generally, however, the default attributes of the
pens will be satisfactory. Similarly, the PENERRORBARS parameter specifies the pen or pens to
use for the error bars (default !11).

The bars in a bar chart usually have equal widths, defined to fill the available space along the
x-axis. However, you can set your own widths by setting option BARWIDTH to either a scalar or
a variate or table with as many values as the number of bars. The BARCOVERING option indicates
what proportion of the space allocated along the x-axis each bar should occupy; the default is
0.8 (giving a gap between each bar).

The OUTLINE option controls whether lines are drawn around the bars or around the perimeter
of the bar chart. These are drawn using the pen specified by the PENOUTLINE option (default
!9). You can suppress all the outlines by setting OUTLINE=*.

The WINDOW option defines the window where the histogram is plotted, and the KEYWINDOW
option similarly specifies where the key should appear. You can set either of these to zero if you
want to suppress the corresponding output. Titles can be added to the histogram and key using
the TITLE and KEYDESCRIPTION options respectively.

The SCREEN option controls whether the graphical display is cleared before the histogram is
plotted and the ENDACTION option controls whether Genstat pauses at the end of the plot.

The axes of the plot are formed automatically from the data. By default, the upper bound of
the y-axis is set to be five percent greater than the height of the longest bar. If any of the bars has
a negative height the lower bound is adjusted in a similar way, otherwise it is set to zero. You
can control the form of the axes by using the XAXIS and YAXIS directives to set the required
attributes (such as titles) before the BARCHART directive is used. The YSCALING option controls
the scale used to label the y-axis, with settings absolute, proportion or percentage; the
default is absolute.

The key consists of the title, if set by KEYDESCRIPTION, followed information about each bar
chart. You can specify a description for each bar chart using the DESCRIPTION parameter. If the
DATA parameter was set to a list of one-way tables or variates, the default description takes the
identifier of the table or variate. If DATA was set to a two-way table, the default descriptions are
formed from the labels or levels of the GROUPS factor.

Example 6.3.2

 2 FACTOR [LEVELS=!(1999,2000)] Year
 3 FACTOR [LABELS=!t(April,June,September,December)] Month
 4 TABLE [CLASSIFICATION=Year,Month; VALUES=45000,10000,-24000,11000,\
 5 21000,34000,-10000,47000] Results
 6 BARCHART [TITLE='Profit and loss'] Results

380 6 Graphical display

6.4 Plotting three-dimensional surfaces in high-resolution

The data for a three-dimensional surface consists of a grid of z-values or heights. The grid can
be a rectangular matrix, a two-way table, or a pointer to a set of variates; the y-dimension is
represented by the rows of the structure and the x-dimension by the columns. In each case there
must be at least three rows and three columns of data (after allowing for any restrictions on a set
of variates). Missing values are not permitted; that is, only complete grids can be displayed. If
the grid is supplied as a table with margins, these will be ignored when plotting the surface.

Genstat provides four methods for plotting surfaces. A contour plot (DCONTOUR; 6.4.1) can
be used to form a two-dimensional representation of the surface, in which contour lines are
drawn to link points of equal height. The DSHADE directive (6.4.2) can produce a shade diagram.
This is another two-dimension representation, in which each z-value is represented by a shaded
rectangle indicating the value at that location, using either colour or shading density. This type
of display is often used in a cluster analysis to display a similarity matrix, but it is also useful for
the graphical display of spatial data. Alternatively, a three-dimensional representation of the
surface, or perspective view, can be drawn using the DSURFACE directive (6.4.3), to display more
fully the three-dimensional nature of the data. The grid can be viewed from any angle, allowing
the investigation of features such as maxima, minima, valleys and plateaux. When the grid
contains discrete data, a three-dimensional (or bivariate) histogram may be appropriate. This is
produced using the D3HISTOGRAM directive (6.4.4), which forms the display by drawing cuboid
blocks of the appropriate height at each (x,y) position.

6.4.1 The DCONTOUR directive

DCONTOUR directive
Draws contour plots on a plotter or graphics monitor.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the plots; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
YORIENTATION = string token Y-axis orientation of the plot (reverse, normal);

default reve
ANNOTATION = string token How to annotate the contours (levels, ordinals);

default ordi if there is a key, and leve if there is no
key

SCREEN = string token Whether to clear the screen before plotting or to
continue plotting on the old screen (clear, keep);
default clea

KEYDESCRIPTION = text Overall description for the key
ENDACTION = string token Action to be taken after completing the plot

(continue, pause); default * uses the setting from
the last DEVICE statement

Parameters
GRID = identifier Pointer (of variates representing the columns of a data

matrix), matrix or two-way table specifying values on a
regular grid

PENCONTOUR = scalar Pen number to be used for the contours; default 1
PENFILL = scalar or variate Pen number(s) defining how to fill the areas between

contours, or 0 to leave the areas in the background

6.4 Plotting three-dimensional surfaces in high-resolution 381

Figure 6.4.1a

colour; default 3
PENHIGHLIGHT = scalar Pen number to use for highlighted contours; default 0

i.e. no highlighting
HIGHLIGHTFREQUENCY = scalar Frequency at which contours are to be highlighted;

default 10
NCONTOURS = scalar Number of contours; default 10
CONTOURS = variate Positions of contours
INTERVAL = scalar Interval between contours
DESCRIPTION = text Annotation for key

The orientation of the y-
axis of the contour plot is
c o n t r o l l e d b y t h e
YORIENTATION option.
By default this is reversed,
so that the element (1,1) of
the grid is plotted at the
top left-hand corner of the
plot. The grid is thus in the
same order as it would be
if it were printed. This is
convenient in Example
6.4.1a and Figure 6.4.1a,
which shows a contour
plot of ammonium nitrate
concentrations in soil
cores. The y-values
represent depth in the soil,
and so it is appropriate
that they increase down the page.

Example 6.4.1a

 2 " Core samples were taken from a wetland rice experiment to examine
 -3 the leaching of ammonium nitrate. Three cores were taken at
 -4 intervals of 5cm, and the concentration of ammonium nitrate was
 -5 measured at depths of 4, 8, ... 20 cm. "
 6 VARIATE [NVALUES=5] Core[1...5]
 7 READ Core[]

 Identifier Minimum Mean Maximum Values Missing
 Core[1] 5.000 8.200 11.00 5 0
 Core[2] 6.000 67.60 195.0 5 0
 Core[3] 129.0 940.6 2315 5 0
 Core[4] 10.00 36.00 77.00 5 0
 Core[5] 7.000 9.400 15.00 5 0

 13 CALCULATE Core[] = LOG10(Core[])
 14 FRAME 2; YLOWER=0.0; YUPPER=0.9; XLOWER=0.75; XUPPER=1.0
 15 DCONTOUR Core

Normally the data will lie on a regular grid but you can also specify an irregular grid as shown
in line 10 of Example 6.4.1c; the ROWS and COLUMNS options of the MATRIX directive are set to
variates containing the appropriate x- and y- values when the matrix Function is declared.

The WINDOW option defines the window where the contours are plotted, and the KEYWINDOW
option similarly specifies where the key should appear. The grid axes are scaled so that the y-

382 6 Graphical display

Figure 6.4.1b

and x-dimensions (rows and columns respectively) will match the dimensions of the specified
window: if you wish to preserve the "shape" of the grid you should use the FRAME directive
(6.9.3) to define a window whose y- and x-dimensions are in the same proportions as the grid
dimensions, as shown in Example 6.4.1c. Titles can be added to these windows using the TITLE
and KEYDESCRIPTION options. The SCREEN option controls whether the graphical display is
cleared before the histogram is plotted and the ENDACTION option controls whether Genstat
pauses at the end of the plot, as described in Section 6.1.

The heights of the contour lines are determined using the NCONTOURS, CONTOURS or
INTERVAL parameters. The first possibility is to define the contours explicitly using the
CONTOURS parameter. Alternatively, if CONTOURS is unset, INTERVAL can set the required
interval between each contour. Or, if both CONTOURS and INTERVAL are unset, NCONTOURS
defines the required number of lines. Genstat then partitions the range of data values accordingly
to give NCONTOURS evenly-spaced contours (or fewer contours if there are insufficient distinct
grid values).

The ANNOTATION option controls how the contours are labelled. The default is to label them
by integers (ordinals) if there is a key, and by the actual heights (levels) if there is no key.
Contour lines that are very short will not be labelled but their height can be determined from
adjacent contours. Each line of the key occupies a space of height 0.02 (in normalized device
coordinates; see 6.9.3), and the key window by default has room for a heading and nine contour
levels. If necessary, the size of the window can be redefined using the FRAME directive.

The way in which the contour lines are drawn for each grid is determined by the pen that has
been defined by the PENCONTOUR parameter of DCONTOUR; the default is to use pen 1. The
relevant aspects of the pen should be set in advance, if required, using the METHOD, COLOUR,
LINESTYLE and THICKNESS parameters of the PEN directive (6.9.8).

If the PENCONTOUR parameter is not used, the plotting method will be line, so that individual
contours are made up of straight line segments. If curves are required, METHOD should be set to
monotonic to use the method of Butland (1980), or open (or closed) to use the method of
McConalogue (1970). Both these methods produce curves that are fitted to independent sets of
interpolated points and can thus produce contour lines that cross, particularly if the supplied grid
of data is coarse or in a region where the contour height is changing rapidly. If METHOD is set to
other values, straight lines will be used to draw the contours.

The PENHIGHLIGHT

parameter can specify a
pen to use to highlight
particular contours. The
f r e q u e n c y o f t h e
highlighting is then
de te rmined by the
HIGHLIGHTFREQUENCY

parameter; by default
every tenth contour is
highlighted. This is
illustrated in Example
6.4.1b and Figure 6.4.1b,
where pen 2 is used to
highlight every third
contour.

6.4 Plotting three-dimensional surfaces in high-resolution 383

Figure 6.4.1c

Example 6.4.1b

 16 XAXIS 1; TITLE='Distance from central core'; UPPER=10; LOWER=-10
 17 YAXIS 1; TITLE='Soil depth in cm'; UPPER=4; LOWER=20
 18 PEN 2; LINESTYLE=1; THICKNESS=3
 19 DCONTOUR Core; PENCONTOUR=1; PENFILL=0; PENHIGHLIGHT=2; \
 20 HIGHLIGHTFREQUENCY=3; INTERVAL=0.25

The PENFILL parameter defines how to shade the areas between the contours. If PENFILL is set
to zero, as in Example 6.4.1b, there is no shading i.e. the areas between the contours are left in
the background colour. If PENFILL is set to a scalar, the shades are defined in increasing
intensities of the colour of the specified pen. Alternatively, if PENFILL is set to a variate of
length two, the pens are taken to define the shades at the minimum and maximum heights, and
the other shades are interpolated between them. Finally, if PENFILL is set to a variate with more
than two values, the shading uses the pens in the order in which they are given in the variate
(recycling if insufficient pens are defined for the total number of contours). By default,
PENFILL=3.

By default, on a colour device, the pens will be defined to use different colours, while on a
monochrome device they will use different line styles. In line 18 of Example 6.4.1b, the PEN
directive (6.9.8) specifies that pen 2 is to use a solid line style (like pen 1), and the THICKNESS
is increased to produce the required highlighting.
By default, the axis bounds are determined from the grid. Normally the lower bound for each
axis will be 1.0 and the upper bound will be the number of rows of the grid for the y-axis, and
the number of columns for the x-axis. If a matrix is used to specify the grid, its row and column
labels can be set to variates whose values will then be used to determine the axis bounds. The
XAXIS and YAXIS directives (6.9.4 and 6.9.5) can be used to control how the axes are drawn (see
Example 6.4.1b) or, by setting STYLE=none, to suppress them altogether.

In Example 6.4.1c, a
matrix of function values
is calculated over a regular
range of y- and x-values,
to produce the contour
plot on the left-hand side
of Figure 6.3.1c. The
f u n c t i o n i s t h e n
recalculated on an
irregular grid with the y-
and x-values closest where
the function is changing
most rapidly, and the plot
on the right-hand side is
produced.

384 6 Graphical display

Example 6.4.1c

 2 VARIATE Rows,Columns; VALUES=!(0.0,0.2...2.0),!(0.0,0.2...1.0)
 3 CALCULATE Nrows,Ncolumns = NVALUES(Rows,Columns)
 4 MATRIX [ROWS=Rows; COLUMNS=Columns] X,Y,Function;\
 5 VALUES=!((#Columns)#Nrows),!(#Ncolumns(#Rows)),*
 6 CALCULATE Function = COS(1/(X+0.1)**2) + SIN(Y**2)
 7 FRAME 1; YLOWER=0.25; YUPPER=1; XLOWER=0; XUPPER=0.5
 8 DCONTOUR [TITLE='Regular Grid'] Function
 9 VARIATE Irregular; VALUES=!(0.0,0.1...0.4,0.6,0.8,1.0)
 10 CALCULATE Nirregular = NVALUES(Irregular)
 11 MATRIX [ROWS=Rows; COLUMNS=Irregular] X,Y,Function;\
 12 VALUES=!((#Irregular)#Nrows),!(#Nirregular(#Rows)),*
 13 CALCULATE Function = COS(1/(X+0.1)**2) + SIN(Y**2)
 14 FRAME 3,4; YLOWER=0.25,0.0; YUPPER=1.0,0.25; XLOWER=0.5,0.675;\
 15 XUPPER=1
 16 DCONTOUR [TITLE='Irregular Grid'; WINDOW=3; KEYWINDOW=4; SCREEN=keep]\
 17 Function

6.4.2 The DSHADE directive

DSHADE directive
Plots a shade diagram of 3-dimensional data.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the graph; default 1
KEYWINDOW = scalar Window number for the key (0 for no key); default 2
YORIENTATION = string token Y-axis orientation of the plot (reverse, normal);

default reve
GRIDMETHOD = string token How to draw a grid around the elements of the matrix

(present, complete); default pres
PENGRID = scalar Pen to use for the grid; default !7
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);
default clea

KEYDESCRIPTION = text Overall description for the key
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

Parameters
GRID = symmetric matrix, matrix, table or pointer to variates

Data to be plotted
PEN = scalar or variate How to draw each shade
LIMITS = variate Boundary values for changes in shade
NGROUPS = scalar Number of groups to form from the data values (i.e.

number of different shades)
INTERVAL = scalar Interval between changes in shade
DESCRIPTION = text Annotation for key

6.4 Plotting three-dimensional surfaces in high-resolution 385

DSHADE produces a shaded representation of a rectangular or symmetric matrix using high-
resolution graphics. Each element of the data matrix is represented by a shaded rectangle
indicating the value at that location, using either colour or shading density. This type of display
is often used in a cluster analysis to display a similarity matrix, but it is also useful for the
graphical display of spatial data.

The data are specified by the GRID parameter, in either a matrix, a symmetric matrix (e.g. of
similarities), a 2-way table or a pointer to a set of variates.

The range of data values corresponding to each shade are determined using the NGROUPS, the
LIMITS or the INTERVAL parameter. The first possibility is to set LIMITS to a variate defining
the boundaries on the data values where the shades change. Alternatively, if LIMITS is unset,
NGROUPS can be used to define the required number of shades; Genstat then partitions the range
of data values into that number of equal intervals (and shades each interval in a different way).
Or, if both NGROUPS and LIMITS are unset, INTERVAL can set the interval between each change
in shade. Finally, if none of these parameters is set, Genstat uses a different shade for each
distinct data value. Missing values are ignored, thus leaving blank areas in the plot.

By default, the shades are drawn using pens 1, 2 onwards, with pen 1 being used for the lowest
data values. Alternatively, you can specify the pen or pens explicitly, using the PEN parameter.
If PEN is set to a scalar, the shades are defined in increasing intensities of the colour of the
specified pen. Alternatively, if PEN is set to a variate of length two, the pens are taken to define
the shades of the minimum and maximum data values, and the other shades are interpolated
between them. Finally, you can set PEN to a variate with more than two values, and the shades
use the pens in the order in which they are given in the variate (recycling if insufficient pens are
defined for the total number of shades).

The shades are controlled by the current COLOUR and BRUSH settings of the pens. If the default
settings do not produce a suitable display, these attributes should be set by a PEN statement
before using DSHADE.

The GRIDMETHOD option specifies whether an outline should be drawn around each element
of the matrix. The default setting, present, produces an outline for all values that are present;
i.e. it ignores missing values. This is suitable where data have been sampled over an irregularly
shaped area. Alternatively, with the complete setting, an outline is drawn around every
element. Setting GRIDMETHOD=* stops the grid being drawn, which may be preferable if there
are a large number of elements in the input data. The PENGRID option specifies which pen to use
to draw the grid. The default is to use pen !7.

The YORIENTATION option controls the orientation of the y-axis. By default this is reversed,
so that the data are in the same order as they would take if the data matrix were printed.

The TITLE, WINDOW, SCREEN and ENDACTION options are used to specify a title, the plotting
window, whether the screen should be cleared first, and whether there should be a pause once
the plotting is finished; as in other graphics directives. Similarly, the KEYWINDOW and
KEYDESCRIPTION options and the DESCRIPTION parameters allow a key to be defined, if
feasible for these plots with the current graphics device.

386 6 Graphical display

Figure 6.4.2

Example 6.4.2 uses DSHADE to display a
similarity matrix for 16 types of Italian cars.
(For details of how this matrix was formed
see 2:6.1.2.) The resulting graph is in Figure
6.4.2.

Example 6.4.2

 2 SYMMETRIC [ROWS=!t(Estate,'Arna1.5','Alfa2.5',Mondialqc,\
 3 Testarossa,Croma,Panda,Regatta,Regattad,Uno,\
 4 X19,Contach,Delta,Thema,Y10,Spider)] Carsim
 5 READ Carsim

 Identifier Minimum Mean Maximum Values Missing
 Carsim 0.1030 0.7249 1.000 136 0

 29 FRAME 1; BOX=omit
 30 PEN 9,10; COLOUR='white','blue'
 31 DSHADE Carsim; INTERVAL=0.1; PEN=!(9,10)

6.4.3 The DSURFACE directive

DSURFACE directive
Produces perspective views of a two-way arrays of numbers.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the plots; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
ELEVATION = scalar The elevation of the viewpoint relative to the surface;

default 25 (degrees)
AZIMUTH = scalar Rotation about the horizontal plane; the default of 225

degrees ensures that, with a square matrix M, the element

6.4 Plotting three-dimensional surfaces in high-resolution 387

Figure 6.4.3a

M$[1;1] is nearest to the viewpoint
DISTANCE = scalar Distance of the viewpoint from the centre of the grid on

the base plane; default * gives a distance of 100 times
the maximum of the x-range and the y-range

ZSCALE = scalar defines the scaling of the z-axis relative to the horizontal
(x-y) axes; default 1

SCREEN = string token Whether to clear the screen before plotting or to
continue plotting on the old screen (clear, keep);
default clea

KEYDESCRIPTION = text Overall description for the key; default *
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

Parameters
GRID = identifier Pointer (of variates representing the columns of a data

matrix), matrix or two-way table specifying values on a
rectangular grid

PEN = scalar Pen number to be used for the plot; default 1
PENFILL = scalar or variate Pen number(s) defining how to fill the areas between

contours (0 or * leaves the areas in the background
colour); default 3

PENMESH = scalar Pen number to use to draw the mesh (omitted if set to 0
or *); default 1

PENSIDE = scalar Pen number to use to shade the sides of the surface
(omitted if set to 0 or *); default *

NCONTOURS = scalar Number of contours; default 10
CONTOURS = variate Positions of contours
INTERVAL = scalar Interval between contours
DESCRIPTION = text Annotation for key

The DSURFACE directive produces a
perspective (or conical) projection of a
surface, showing the view from a particular
viewpoint. The position of this viewpoint is
specified in polar coordinates, using the
options ELEVATION, DISTANCE and
AZIMUTH. These define the angle of
elevation, in degrees, above the base plane
of the surface, distance from the centre of
this plane, and angular position relative to
the vertical z-axis, respectively. This is
illustrated in Figure 6.4.3a. The default
settings of ELEVATION, DISTANCE and
AZIMUTH have been chosen to produce a
reasonable display of most surfaces; but if, for example, some parts of the surface are obscured
by high points they can be modified to obtain a better view. Altering the value of AZIMUTH will,
in effect, rotate the surface in the horizontal plane about a vertical axis drawn through the centre
of the grid; the default value of 225 degrees ensures that the element in the first row and column
of the grid is at the corner nearest the viewpoint. Small values of DISTANCE produce a
perspective view; larger values, like the default of 100 times the maximum of the x-range and

388 6 Graphical display

the y-range, effectively put the viewpoint at infinity to produce an "orthographic parallel
projection".

The ZSCALE option specifies a scaling factor for the z-axis (or vertical axis) of the plotted
surface. Generally values between 0.5 and 2.0 are most successful; large values result in a flatter
surface, while smaller values produce a steep surface, accentuating changes in the data.

The TITLE, WINDOW, SCREEN and ENDACTION options are used to specify a title, the plotting
window, whether the screen should be cleared first, and whether there should be a pause once
the plotting is finished; as in other graphics directives. Similarly, the KEYWINDOW and
KEYDESCRIPTION options and the DESCRIPTION parameters allow a key to be defined, if
feasible for these plots with the current graphics device.

The PEN parameter specifies the pen to be used to plot the surface (by default, pen 1). The PEN
directive can be used to modify the colour and the thickness of the pen, but the other attributes
of the pen are ignored.

The NCONTOURS, CONTOURS and INTERVAL parameters control the contours drawn on the
surface, if these are available on the current graphics device. The first possibility is to define the
contours explicitly using the CONTOURS parameter. Alternatively, if CONTOURS is unset,
INTERVAL can set the required interval between each contour. Or, if both CONTOURS and
INTERVAL are unset, NCONTOURS defines the required number of lines. Genstat then partitions
the range of data values accordingly to give NCONTOURS evenly-spaced contours (or fewer
contours if there are insufficient distinct grid values).

The PENFILL parameter defines how to shade the areas between the contours. If this is set to
a scalar, the shades are defined in increasing intensities of the colour of the specified pen.
Alternatively, if PENFILL is set to a variate of length two, the pens are taken to define the shades
at the minimum and maximum heights, and the other shades are interpolated between them.
Finally, you can set PENFILL to a variate with more than two values, and the shading uses the
pens in the order in which they are given in the variate (recycling if insufficient pens are defined
for the total number of contours). The default is to use pen 3. However, if you set PENFILL to
0 or to a missing value, there will be no shading (that is, the areas between the contours will be
in the background colour).

The PENMESH parameter specifies a pen to be used to draw a mesh on the surface. This
consists of lines marking the points of the surface that lie above a rectangular grid on the xy
plane. By default pen 1 is used, but if you set PENMESH to 0 or to a missing value the mesh is
omitted.

The PENSIDE parameter defines the pen to use to shade the sides of the surface. There is no
shading if this is set to 0 or a missing value, which is the default. The CFILL setting of the pen
(see the PEN directive) specifies which colour is used.

Simple axes are drawn to indicate the directions in which x and y increase. The TITLE
parameter of the XAXIS and YAXIS directives (6.9.4 and 6.9.5) can be used to add further
annotation, as shown in lines 12 and 13 of Example 6.4.3 which produced the plots in Figures
6.4.3b and 6.4.3c. You can also use the UPPER parameter of ZAXIS (6.9.6) to truncate the grid,
and the LOWER parameter to set the value for the base of the surface (line 16).

Example 6.4.3

 2 VARIATE [VALUES=0.0,0.05...1.0] Values
 3 CALCULATE Nvalues = NVALUES(Values)
 4 MATRIX [ROWS=Nvalues; COLUMNS=Nvalues] X,Y,Grid;\
 5 VALUES=!((#Values)#Nvalues),!(#Nvalues(#Values)),*
 6 CALCULATE Fx = EXP(-0.5*((X-0.3)/0.07)**2) \
 7 + 0.5*EXP(-0.5*((X-0.7)/0.12)**2)
 8 & Fy = EXP(-0.5*((Y-0.3)/0.07)**2) \
 9 + 0.5*EXP(-0.5*((Y-0.7)/0.12)**2)
 10 & [PRINT=summary] Grid = Fx*Fy+0.1

 Identifier Minimum Mean Maximum Values Missing

6.4 Plotting three-dimensional surfaces in high-resolution 389

Figure 6.4.3a Figure 6.4.3a

 Grid 0.1000 0.1960 1.104 441 0 Skew

 11 PEN 11; SIZE=4; COLOUR='black'
 12 XAXIS 3; TITLE='The X axis'; PENTITLE=11
 13 YAXIS 3; TITLE='The Y axis'; PENTITLE=11
 14 ZAXIS 3; PENTITLE=11
 15 DSURFACE [WINDOW=3; KEY=0; TITLE='Default option settings'] Grid
 16 ZAXIS 3; LOWER=0; UPPER=0.6
 17 DSURFACE [WINDOW=3; KEY=0; TITLE='Changes of viewpoint and z-axis';\
 18 AZIMUTH=120] Grid

6.4.4 Three-dimensional histograms: the D3HISTOGRAM directive

D3HISTOGRAM directive
Plots three-dimensional histograms.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the plots; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
ELEVATION = scalar The elevation of the viewpoint relative to the surface;

default 25 (degrees)
AZIMUTH = scalar Rotation about the horizontal plane; the default of 225

degrees ensures that, with a square matrix M, the element
M$[1;1] is nearest to the viewpoint

DISTANCE = scalar Distance of the viewpoint from the centre of the grid on
the base plane; default * gives a distance of 100 times
the maximum of the x-range and the y-range

SCREEN = string token Whether to clear the screen before plotting or to

390 6 Graphical display

Figure 6.4.4

continue plotting on the old screen (clear, keep);
default clea

KEYDESCRIPTION = text Overall description for the key; default *
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

Parameters
GRID = identifier Pointer (of variates representing the columns of a data

matrix), matrix or two-way table specifying values on a
regular grid

PEN = scalar Pen number to be used for the plot; default 3
DESCRIPTION = texts Annotation for key

The preceding subsection described how the DSURFACE directive can be used to produce a
perspective view of a surface. D3HISTOGRAM provides an alternative way of displaying such
data, which may be more appropriate for example if the grid contains counts.

The position of the point from
which the histogram is viewed is
specified in polar coordinates,
using the options ELEVATION,
DISTANCE and AZIMUTH as with
DSURFACE (6.4.3). The TITLE,
WINDOW, SCREEN and ENDACTION
options operate in the usual way, to
specify a title, the plotting window,
whether the screen should be
cleared first, and whether there
should be a pause once the plotting
is finished. Similarly, the
K E Y W I N D O W a n d
KEYDESCRIPTION options and the
DESCRIPTION parameters allow a
key to be defined, if feasible for
these plots with the current
graphics device. The PEN

parameter specifies the pen to be
used to plot the histogram (by
default, pen 3). The PEN directive
(6.9.8) can be used to modify the
colour and the thickness of the pen, but the other attributes of the pen are ignored.

Example 6.4.4 illustrates the use of D3HISTOGRAM by displaying the table Sales formed in
Example 4.11.4; the resulting graph is in Figure 6.4.4. The AZIMUTH and ELEVATION options
are used to obtain a clearer view of the surface, and LOWER option of the ZAXIS directive (6.9.6)
is used to set the minimum z-value to zero. Note that when the grid is not square, as in this
example, the y- and x-axes are scaled appropriately. This is also the case when using DSURFACE.

The axis labelling is derived from the grid, using the classifying factors if it is a table or the
row and column labels if it is a matrix. Alternative labels can be supplied using the LABELS
parameters of the XAXIS and YAXIS directives (6.9.4 and 6.9.5). If axis labels are not available,
either from the grid or from an XAXIS or YAXIS statement, plain axes will be drawn in the style
used by DSURFACE; these can be labelled using the TITLE parameter of XAXIS and YAXIS.

6.4 Plotting three-dimensional surfaces in high-resolution 391

Example 6.4.4

 40 " Plot 3-d histogram."
 41 PEN 11; SIZE=2; COLOUR='black'
 42 XAXIS 3; PENLABELS=11
 43 YAXIS 3; MARKS=!(1...9); LABELS=Townname; PENLABELS=11
 44 ZAXIS 3; LOWER=0; PENLABELS=11
 45 D3HISTOGRAM [WINDOW=3; KEY=0; ELEVATION=40] Sales

6.4.5 Density plots: the DXYDENSITY procedure

DXYDENSITY procedure
Produces density plots for large data sets (D. B. Baird).

Options
PLOT = string tokens How to plot the density (pointplot, shadeplot,

contourplot, histogram, surface); default poin
NGROUPS = scalar Number of sections into which to divide each axis (4-

400); default 50
METHOD = string token Method to use to smooth the density (thinplate,

radialspline, tensorspline, kernel); default *
i.e. none

DF = scalar Degrees of freedom for smoothing methods (2-50);
default 12

BANDWIDTH = scalar Bandwidth for kernel smoothing (0-1); default 0.2
MEANFIT = string tokens What smooth regression fits to the means to plot (yx,

xy); default * i.e. none
NCONTOURS = scalar Number of contours in the contour plot; default 9
SYMBOL = string token Symbol to use in a point plot (circle, square);

default circ
COLOURS = text, variate or scalar Colour to use to draw the symbols, shades, contours or

surface; default !(red, blue, black)
XTRANSFORM = string token Transformed scale for the x-axis (identity, log,

log10, logit, probit, cloglog, square, exp,
exp10, ilogit, iprobit, icloglog, root); default
iden

YTRANSFORM = string token Transformed scale for the y-axis (identity, log,
log10, logit, probit, cloglog, square, exp,
exp10, ilogit, iprobit, icloglog, root); default
iden

ZTRANSFORM = string token Transformed scale for the z-axis (identity,
percentile, root); default iden

WINDOW = scalar Window number for the graphs; default 3
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep,
resize); default clea

Parameters
Y = variate or factor Y-coordinates of the data
X = variate or factor X-coordinates of the data

392 6 Graphical display

TITLE = text Title for graph; default uses the names of the data and
type of plot

Procedure DXYDENSITY produces a density plot of two variables, using high-resolution graphics.
A density plot provides a better visual representation of the 2-dimensional spread of points than
a scatter plot if there are a large number of points or many points overlap each other, and is
quicker to plot. DXYDENSITY calculates the density of points in small regions of the x-y plane,
and displays it as a surface plot.

The x and y axes are divided into equally spaced sections, to give a grid of rectangular cells
covering the x-y plane. The density is calculated as the number of points that falls into each cell.
The number of sections is specified by the NGROUPS option, as a scalar if the same number is
required in each direction, or as a variate with two values to specify different numbers for the
y-axis (first value) and the x-axis (second value). Having a large number of cells preserves more
detail, but increases the time required to create and plot the graph.

The x- or y-axes can be transformed before forming the sections and calculating the density,
by using the XTRANSFORM or YTRANSFORM options. The settings are the same as those of the
TRANSFORM option of the XAXIS and YAXIS directives (see 6.9.4).

The PLOT option controls how the density is plotted, with settings:
pointplot point plot , using the symbol size to indicate the number of

points in each cell;
shadeplot shade plot, using intensity of colour to indicate the

number of points in each cell;
contourplot contour plot, with contours showing the density;
surface surface plot, with density as height;
histogram 3-dimensional histogram of the density.

By default PLOT=pointplot.
The density can be smoothed by using the METHOD option, with settings:

thinplate a 2-dimensional thin plate spline is fitted to the counts
using the THINPLATE procedure;

radialspline a 2-dimensional radial spline is fitted to the counts using
the RADIALSPLINE procedure;

tensorspline a 2-dimensional tensor spline is fitted to the counts using
the TENSORSPLINE procedure;

kernel a 2-dimensional kernel smoother is fitted to the counts.
By default no smoothing is done.

The DF option specifies the number of degrees of freedom for the splines (default 12); smaller
values make the surface smoother, and larger values allow it to be rougher. The BANDWIDTH
option specifies the band width for kernel smoothing; larger values make the surface smoother,
and smaller values allow it to be rougher.

The shape of each point in a point plot is specified by the SYMBOL option, as either a circle
(default) or square. The COLOURS option specifies the colours that are used, in a scalar or a text
or variate with up to three values. For a line plot, the first value specifies the colour for the
points, and the second and third values define the colours for any lines fitted by the MEANFIT
option. For a histogram, the first value of COLOURS defines the colour of the bars. For shade,
contour and surface plot, if COLOURS has two or more values, the first is used for high densities,
the second is used for low densities, and intermediate densities are plotted in the corresponding
intermediate colour; if COLOURS has only one value, the low densities are plotted in white. If
COLOURS has three values, the third is used for the contours of contour and surface plots.

The scaling of densities is controlled by the ZTRANSFORM option with settings:
identity no scaling (default),
root takes the square root of the densities, giving more

6.4 Plotting three-dimensional surfaces in high-resolution 393

Figure 6.4.5

emphasis to low counts,
percentile takes a rank transform and plots these, so that percentiles

are equally spaced.
The MEANFIT option allows you can to add a smoothing spline regression, of y on x or of x

on y, to a point plot. The available settings are
yx for a regression of y on x, and
xy for a regression of x on y.

The DF option again specifies the number of degrees of freedom for the spline (default 12). By
default neither are done.

The Y and X parameters specify the y- and x-coordinates of the data values, in either variates
or factors. Their identifiers are used for the titles of the axes at the lower and left-hand edges of
the graphics frame (i.e. page). You can also use the TITLE parameter to supply an overall title
for the plot.

The WINDOW options specifies the number of the window to use for the plot, and the SCREEN
option controls whether the screen is cleared first, as usual.

Figure 6.4.5 contains some density plots of log-ratio and intensity from GenePix microarray
slides, plotted by the commands in Example 6.4.5. Further analyses can be found in the guide
to the Analysis of Microarray Data, which can be accessed in Genstat for Windows from the
Help menu on the menu bar.

394 6 Graphical display

Example 6.4.5

 2 " density plots of log-ratio and intensity from microarray slides "
 3 SPLOAD [PRINT=*] '%GENDIR%/Data/Microarrays/Data13-6-9.gwb'
 4 RESTRICT logRatio,Intensity; Intensity > 1
 5 " histogram of square-root transformed densities "
 6 DXYDENSITY [PLOT=histogram; ZTRANSFORM=root; NGROUPS=25;\
 7 COLOUR='yellow'; WINDOW=5]\
 8 Y=logRatio; X=Intensity; TITLE=''
 9 " surface plot of kernel-smoothed densities "
 10 DXYDENSITY [PLOT=surface; METHOD=kernel; BANDWIDTH=0.1;\
 11 WINDOW=6; SCREEN=keep; NGROUPS=25;\
 12 COLOUR=!t(yellow,green,black)] Y=logRatio; X=Intensity; TITLE=''
 13 " point plot with regression splines of y on x and x on y "
 14 DXYDENSITY [PLOT=POINT; MEANFIT=xy,yx; COLOUR=!t(black,red,blue);\
 15 WINDOW=7; SCREEN=keep] Y=logRatio; X=Intensity; TITLE=''
 16 " shade plot "
 17 DXYDENSITY [PLOT=SHADE; NGROUPS=60; ZTRANSFORM=percentile;\
 18 COLOUR=!t(red,blue); WINDOW=8; SCREEN=keep]\
 19 Y=logRatio; X=Intensity; TITLE=''

6.5 Displaying pictures

6.5.1 The DBITMAP directive

DBITMAP directive
Plots a bit map of RGB colours.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the graph; default 1
YORIENTATION = string token Y-axis orientation of the plot (reverse, normal);

default reve
GRIDMETHOD = string token How to draw a grid around the elements of the matrix

(present, complete); default * i.e. none
PENGRID = scalar Pen to use for the grid; default !7
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);
default clea

ENDACTION = string token Action to be taken after completing the plot (continue,
pause); default * uses the setting from the last DEVICE
statement

Parameters
BITMAP = symmetric matrix, matrix, table, pointer to variates or variate

Data to be plotted
ROWS = variate Row indexes for a BITMAP variate
COLUMNS = variate Column indexes for a BITMAP variate

6.6 Pie charts 395

Figure 6.5.1

DBITMAP displays a picture, represented as
a 2-dimensional bit map of RGB colours
(see 6.8.9). The data are specified by the
BITMAP parameter. Data values in a regular
two-way grid can be specified by supplying
their RGB colours in either a matrix, a
symmetric matrix, a 2-way table or a
pointer to a set of variates. Alternatively,
you can specify irregular data by setting
BITMAP to a variate of colours, and the
ROWS and COLUMNS parameters to variates
defining their row and column indexes. In
Genstat for Windows you can form the bit
map from an image file (JPG, GIF, TIF or PNG) using the IMPORT procedure, as shown in
Example 6.5.1 and Figure 6.5.1.

Example 6.5.1

 2 IMPORT [PRINT=*; RGBMETHOD=matrix] 'CapeWagtail.jpg'; COLUMNS='RGB'
 3 " resize the window to match the dimensions of the bit map "
 4 CALCULATE Nr = NROWS(RGB)
 5 & Nc = NCOLUMNS(RGB)
 6 IF Nr < Nc
 7 FRAME 3; YUPPER=Nr/Nc
 8 ELSE
 9 FRAME 3; XUPPER=Nc/Nr
 10 ENDIF
 11 DBITMAP [WINDOW=3] RGB

The GRIDMETHOD option allows you to draw an outline around each element of the plot. The
present setting produces an outline for all values that are present; i.e. it ignores missing values.
This is suitable where data have been sampled over an irregularly shaped area. Alternatively,
with the complete setting, an outline is drawn around every element. By default, no grid is
drawn. The PENGRID option specifies which pen to use to draw the grid. The default is to use
pen !7.

The YORIENTATION option controls the orientation of the y-axis. By default this is reversed,
so that the data are in the same order as they would take if the data matrix were printed.

The TITLE, WINDOW, SCREEN and ENDACTION options are used to specify a title, the plotting
window, whether the screen should be cleared first, and whether there should be a pause once
the plotting is finished; as in other graphics directives.

6.6 Pie charts

6.6.1 The DPIE directive

DPIE directive
Draws a pie chart on a plotter or graphics monitor.

Options
TITLE = text General title; default *
WINDOW = scalar Window number for the pie chart; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2
ANNOTATION = string token Whether to annotate the slices by their percentages

396 6 Graphical display

Figure 6.6.1

(percentages); default perc
OUTLINE = string token Where to draw outlines (slices, perimeter); default

slices

PENOUTLINE = scalar Pen to use for the outlines; default !10
SCREEN = string token Whether to clear the screen before plotting or to

continue plotting on the old screen (clear, keep);
default clea

KEYDESCRIPTION = text Overall description for the key
ENDACTION = string token Action to be taken after completing the plot (continue,

pause); default * uses the setting from the last DEVICE
statement

Parameters
SLICE = scalars Amounts in each of the slices (or categories)
PEN = scalars Pen number for each slice; default * uses pens 1, 2, and

so on for the successive slices
DESCRIPTION = texts Description of each slice

A pie chart is formed by taking the
values of the scalars in the SLICE
parameter, in order, and
representing them by segments of
a circle starting at "three o'clock"
and working in an anti-clockwise
direction. The angle subtended by
each segment (and thus the area of
the segment) is proportional to the
value of the corresponding scalar.
The values may be raw data or can
be expressed as percentages (by
ensuring they total to 100).

The brush style and colour used
for each segment can be controlled
using the PEN parameter. By
default, pen 1 is used for the first
segment, pen 2 for the second
segment, and so on. The default
attributes of the pens are device
specific, so that on a colour display
the segments will be solid-filled
using different colours, and on a
monochrome device different
hatching styles will be used. These
can be modified using the PEN
directive, as described in 6.9.8.

Lines 3 and 4 of Example 6.6.1 plot a pie chart with four slices, as shown in the top half of
Figure 6.6.1.

6.7 Adding lines, annotation, error bars and customized keys to a graph 397

Example 6.6.1

 2 FRAME 1,2; YLOWER=0.5,0.0; YUPPER=1.0,0.5; XLOWER=0.0; XUPPER=1.0
 3 DPIE [WINDOW=1; KEYWINDOW=0] 24.7,98.8,74.1,49.4; \
 4 DESCRIPTION='Administration','Sales','Marketing','Overheads'
 5 DPIE [WINDOW=2; KEYWINDOW=0; SCREEN=keep;\
 6 ANNOTATION=percentage] 10,40,30,-20; \
 7 DESCRIPTION='Administration','Sales','Marketing','Overheads'

Individual segments can be displaced outwards from the centre, to obtain an "exploded" pie
chart, as in the bottom half of Figure 6.6.1. The chosen segments are indicated by setting the
corresponding scalars in the SLICE parameter list to negative values (see line 6 of Example
6.6.1).

The WINDOW and KEYWINDOW options specify the windows in which the pie chart and key are
to be displayed. The shape of the pie chart is determined by the dimensions of the window; if it
is not square the resulting pie chart will be elliptical.

Titles can be added using the TITLE and KEYDESCRIPTION options. The key produced for
the pie chart is similar to that produced by the DHISTOGRAM directive. A shaded block is drawn
for each segment, followed by the identifier name or the piece of text specified by the
DESCRIPTION parameter. The key usually also gives the percentage contained by each slice, but
you can suppress this by setting option ANNOTATION=*.

The OUTLINE option controls whether lines are drawn around the slices or around the
perimeter of the pie chart. These are drawn using the pen specified by the PENOUTLINE option
(default !10). You can suppress all the outlines by setting OUTLINE=*.

The SCREEN option controls whether the graphical display is cleared before the histogram is
plotted and the ENDACTION option controls whether Genstat pauses at the end of the plot, as
described at the start of this section.

6.7 Adding lines, annotation, error bars and customized keys to a graph

6.7.1 The DTEXT procedure

DTEXT procedure
Adds text to a graph (S.A. Harding).

Option
WINDOW = scalar Window number of the graph; default 1

Parameters
Y = variates or scalars Vertical coordinates
X = variates or scalars Horizontal coordinates
TEXT = texts Text to plot
PEN = scalars, variates or factors Pens to use; default 1

398 6 Graphical display

Figure 6.7.1

The DTEXT procedure provides a
convenient way of adding textual
annotation or description to a plot. The text
to plot is specified by the TEXT parameter.
This can be either a single string, or a
Genstat text structure containing several
lines of text. The Y and X parameters
specify where to plot the text, with scalars
for a single string or line, or with variates
for several lines. The PEN parameter
specifies the pen or pens to use (default 1),
and the WINDOW option specifies the
window where the plot is taking place
(default 1).

Example 6.7.1 uses DTEXT to insert the
annotation onto the Venn diagram shown in
Figure 6.7.1.

Example 6.7.1

 2 VARIATE [VALUES=0...100] theta
 3 CALCULATE theta = 2 * C('pi') * theta / 100
 4 & X = COS(theta)
 5 & Y1 = SIN(theta)
 6 & Y2 = Y1 + 1
 7 PEN 2; METHOD=closed; SYMBOL=0; JOIN=given
 8 DGRAPH [TITLE='Venn diagram'; WINDOW=3; KEY=0] Y1,Y2; X; PEN=2
 9 PEN 1; SIZE=1.5
 10 DTEXT [WINDOW=3] Y=1.5,0.5,-0.5; X=0,-0.125,0;\
 11 TEXT='A','A and B','B'; PEN=1

DTEXT adds the annotation to a particular plot. Alternatively, if you want to put annotation onto
the full graphics frame, outside any of the plots, you can use the DFRTEXT procedure, which has
very similar parameters.

6.7.2 The DREFERENCELINE procedure

DREFERENCELINE procedure
Adds reference lines to a graph (R.W. Payne).

Options
ORIENTATION = string token Direction of the line (horizontal, vertical); default

hori

WINDOW = scalar Window in which to draw the line; default 1

Parameters
POSITION = scalars Positions of the lines
PEN = scalars Pen to use for each line
LABEL = texts Text to plot alongside each line
YLPOSITION = string tokens Position of the label in the y-direction (above, below,

centre, center); default belo

6.7 Adding lines, annotation, error bars and customized keys to a graph 399

Figure 6.7.2

XLPOSITION = string tokens Position of the label in the x-direction (centre,
center, left, right); default left

PENLABEL = scalars Pen to use for each label

The DREFERENCELINE procedure adds reference lines to a plot. The window containing ther
plot specified by the WINDOW option. The ORIENTATION option controls whether the lines are
horizontal (i.e. parallel to the x-axis) or vertical (i.e. parallel to the y-axis).

The POSITION parameter defines the
position of each line, on the y-axis for a
horizontal line, or the x-axis for a vertical
line. The PEN parameter can specify the
pen to use for the line. If this is not set, pen
255 is used as a default, having first been
defined to draw continuous light grey lines
in 0.75 thickness.

The LABEL parameter allows you to plot
a label alongside the line. Its position is
specified by the YLPOSITION and
XLPOSITION parameters. The pen to use
can be specified by the PENLABEL

parameter. If this is not set, pen 256 is used
as a default, having first been defined to
omit any symbol and use the colour black.

Example 6.7.2 continues the plotting of
Fisher's Iris data from Example 6.2.2. In
Figure 6.7.2, it first plots petal length
against petal width, and the uses DREFERENCELINE to put reference lines through the mean of
each variate.

Example 6.7.2

 162 PEN [RESET=yes] 1...3; CSYMBOL='red','blue','darkgreen';\
 163 CFILL='red','blue','darkgreen'; SYMBOL='circle'
 164 DGRAPH [KEYWINDOW=0] Y=Slength; X=Swidth; PEN=Species
 165 CALCULATE mpl,mpw = MEAN(Slength,Swidth)
 166 PEN 4,5; CLINE='olive'; CSYMBOL='olive'
 167 DREFERENCELINE [ORIENTATION=horizontal] mpl; LABEL='Mean length';\
 168 PEN=4; PENLABEL=5
 169 DREFERENCELINE [ORIENTATION=vertical] mpw; LABEL='Mean width';\
 170 PEN=4; PENLABEL=5; XLPOSITION=right

6.7.3 The DARROW procedure

DARROW procedure
Adds arrows to an existing plot (D. B. Baird).

Options
WINDOW = scalar Window number for the graphs; default 3
COORDINATETYPE = string token Type of coordinate to use for the locations of the arrows

(frame, graph); default grap
YUPPER = scalar Maximum vertical coordinate in the frame; default 1
XUPPER = scalar Maximum horizontal coordinate in the frame; default 1

400 6 Graphical display

Figure 6.7.3

ISTYLE = string token The type of symbol at the start of the arrow (none,
open, closed, circle); default none

ESTYLE = string token The type of symbol at the end of the arrow (none, open,
closed, circle); default open

ISIZE = scalar The size of the symbol at the start of the arrow; default 1
ESIZE = scalar The size of the symbol at the end of the arrow; default 1
IANGLE = scalar The angle in degrees of the starting arrowhead when

ISTYLE is open or closed; default 45
EANGLE = scalar The angle in degrees of the ending arrowhead when

ESTYLE is open or closed; default 45
LAYER = scalar The plot layer for the arrows; default is a new layer

above the previous plot items

Parameters
IY = variates, scalars or factors The starting y-positions of the arrows
IX = variates, scalars or factors The starting x-positions of the arrows
EY = variates, scalars or factors The ending y-position of the arrows
EX = variates, scalars or factors The ending x-position of the arrows
COLOUR = variates, scalars, texts or factors

Colour of the arrows; default 'black'
LINESTYLE = variates, scalars or factors

Linestyle of the line in the arrows; default 1
THICKNESS = variates, scalars or factors

Thickness of the line in the arrows; default 1
TRANSPARENCY = variates, scalars or factors

Transparency of the arrows; default 0

DARROW adds arrows or lines to existing plots. The coordinates defining the start and end points
of the arrows are specified by the IY, IX, EY and EX parameters. The COLOUR, LINESTYLE,
THICKNESS and TRANSPARENCY parameters specify the colour, linestyle, thickness and
transparency (0 = opaque - 255 = completely transparent) of each arrow. These can supply a
single value, if all the arrows are to have the same attribute; otherwise, they should supply a
structure of the same length as the IY vector.

The WINDOW option specifies the number
of the window containing the existing plot.
By default, the points defining the arrows
are specified in terms of the x- and y-axes
in the plot. However, you can set option
COORDINATETYPE=frame to define the
points relative to the frame. The maximum
size of the frame is then defined by the
XUPPER and YUPPER options.

The ISTYLE and ESTYLE options control
the symbols at the start and end of the
arrow, respectively. Similarly, the ISIZE
and ESIZE options define the symbol sizes.
The IANGLE and EANGLE options control
the angle between the two sides at the start
and end of the arrowheads. Setting the
angles to values greater than 180 (e.g. 315)
reverses the direction of the arrowheads.

6.7 Adding lines, annotation, error bars and customized keys to a graph 401

The LAYER option controls which of the existing items in the plot will be overlaid by the
arrows. By default, they overlay all the previous items.

Example 6.7.3 replots the Venn diagram in Figure 6.7.1, but now with arrows from the plotted
text to the relevant zones; see Figure 6.7.3.

Example 6.7.3

 12 DGRAPH [TITLE='Venn diagram'; WINDOW=3; KEY=0] Y1,Y2; X; PEN=2
 13 DTEXT [WINDOW=3] Y=1.6,0.5,-0.4; X=-0.5,-0.75,-0.5;\
 14 TEXT='A','A and B','B'; PEN=1
 15 DARROW IY=1.575,0.5,-0.375; IX=-0.4; EY=1.25,0.5,-0.25; EX=0;\
 16 COLOUR='red'; THICKNESS=1.5

6.7.4 The DERRORBAR procedure

DERRORBAR procedure
Adds error bars to a graph (R.W. Payne).

Options
ORIENTATION = string token Direction of the line (horizontal, vertical); default

vert

BARCAPWIDTH = scalars Width of the cap drawn at the ends of the error bar;
default 1

WINDOW = scalar Window in which to draw the bar; default 1
KEYWINDOW = scalar Window number for the key (zero for no key); default 2

Parameters
BARLENGTH = scalars Lengths of the bars
Y = identifiers Vertical coordinates for the midpoints of the bars
X = identifiers Horizontal coordinates for the midpoints of the bars
PEN = scalars Pen to use for each bar
LABEL = texts Text to plot alongside each bar
YLPOSITION = string tokens Position of each label in the y-direction (above, below,

centre, center); default belo
XLPOSITION = string tokens Position of each label in the x-direction (centre,

center, left, right); default righ
PENLABEL = scalars Pen to use for each label
DESCRIPTION = texts Annotation for the key

The DERRORBAR procedure plots error bars on a graph. The window containing the graph is
specified by the WINDOW option (default 1). The ORIENTATION option controls whether the bars
are horizontal (i.e. parallel to the x-axis) or vertical (i.e. parallel to the y-axis).

The BARLENGTH parameter defines the length of each bar, on the y-axis for a vertical line, or
the x-axis for a horizontal line. The positions of their midpoints are specified by the Y and X
parameters. If these are not set, a vertical bar will be plotted just inside the left-hand side of the
window, and a horizontal bar will be plotted at the bottom of the window. The PEN parameter
can specify the pen to use for each bar. If this is not set, pen 255 is used as a default, having first
been defined to draw continuous black lines. The BARCAPWIDTH option specifies the size of the
"caps" drawn at the ends of the bars.

The LABEL parameter allows you to plot a label alongside each bar. Its position is specified
by the YLPOSITION and XLPOSITION parameters. The pen to use can be specified by the
PENLABEL parameter. If this is not set, pen 256 is used as a default, having first been defined to

402 6 Graphical display

omit any symbol and use the colour black.
The DESCRIPTION parameter can supply annotation to add to the key for each bar. The

window for the key is specified by the KEYWINDOW option (default 2).
Example 6.7.4 adds bars, representing the standard deviations, to the graph of Fisher's Iris data

in Figure 6.7.2. These can be seen in the final plot of these data, in Figure 6.7.5, where a key has
also been added.

Example 6.7.4

 171 CALCULATE Wsd,Lsd = SQRT(VARIANCE(Slength,Swidth))
 172 DERRORBAR Wsd; Y=7; LABEL='s.d.'; YLPOSITION=centre
 173 & [ORIENTATION=horizontal] Lsd; X=4; LABEL='s.d.';\
 174 YLPOSITION=above; XLPOSITION=centre

6.7.5 The DKEY procedure

DKEY procedure
Adds a key to a graph (D.B. Baird & V.M. Cave).

Options
WINDOW = scalar Window in which to draw the key; default 2
NCOLUMNS = scalar Number of columns forming the grid in which the key is

displayed; default * (i.e. set automatically)
NROWS = scalar Number of rows forming the grid in which the key is

displayed; default * (i.e. set automatically)
TITLE = text Title for the key
PENTITLE = scalar Pen used to write the title of the key; default is that set

for the window in which the key is plotted
PENLABELS = variate Pens to use to plot the labels; default is to plot the labels

using the settings of LFONT, LSIZE and LCOLOUR
TPOSITION = string Position of the title (inside, outside, left, centre,

center, right); default cent, outs
ORDER = string Order in which to fill the key's row by column grid

(rows, columns); default rows
LSIZE = scalar Relative size of the labels; default 1
LFONT = scalar or text Font to use for the labels; default 1
LCOLOUR = scalar or text Colour used to write the labels; default 'black'
XLOFFSET = scalar or variate Offset in the x-direction between the items (i.e.

symbols/lines) and labels in the key; default 0
COLSPACING = string Column spacing (equal, unequal); default equa
ROWGAP = scalar Multiplier for gaps between rows; default 1
COLGAP = scalar Multiplier for gaps between columns; default 1
BORDER = string Border around the key (fit, given, none); default fit
CBORDER = string Colour for the border around the key; default 'black'

Parameters
DESCRIPTIONS = texts Labels for the key
PEN = variates Pens to use for the items in the key; default uses the

integers 1, 2 ...
METHOD = texts Method for plotting the items in the key (fill, point,

line, both, none); default is to use the method defined

6.7 Adding lines, annotation, error bars and customized keys to a graph 403

for the corresponding PEN
SYMBOL = variates, scalars, factors or texts

Symbols to be drawn in the key; default is to use those
specified by PEN

COLOUR = variates, scalars, factors or texts
Colours of lines, or of filled areas when
METHOD='fill'; default is to use those specified by
PEN

CSYMBOL = variates, scalars, factors or texts
Colours of symbols; default is to use those specified by
PEN

CFILL = variates, scalars, factors or texts
Colours used to fill hollow symbols; default is to use
those specified by PEN

SIZEMULTIPLIER = variates, scalars or factors
Relative sizes of symbols and filled area; default is to
use those specified by PEN

LINESTYLE = variates, scalars or factors
Numbers or names of the linestyles to use; default is to
use those specified by PEN

THICKNESS = variates, scalars or factors
Thicknesses of the lines; default is to use those specified
by PEN

TRANSPARENCY = variates, scalars or factors
Transparencies of the filled areas when
METHOD='fill'; default is to use those specified by
PEN

The DKEY procedure provides a more flexible way of providing a key for a plot, than the standard
facilities provided by the ordinary plotting commands. The standard keys can be suppressed by
setting the option KEYWINDOW in those commands to zero.

The labels to appear in the key must be supplied as a text structure by the DESCRIPTIONS
parameter. The number of labels defines the number of items n to appear in the key. The
appearance of the labels (size, font and colour) can be controlled either by the PENLABELS
option by or the LSIZE, LFONT and LCOLOUR options. PENLABELS can supply a variate, with
n values, to define the pens to use for the labels.

If PENLABELS is not set, the labels are all written in the same style, using the settings of the
LSIZE, LFONT and LCOLOUR options. The LSIZE option modifies the size of the labels, by
specifying a value by which the default size is to be multiplied; default 1. The LFONT option
specifies the font to use for the labels. This can be set either to a text containing the name of a
font family, or to a scalar containing an integer between 1 and 25. The default is to use the
default graphics font (6.9.12). The LCOLOUR option specifies the colour for the labels (6.9.9).
The default is 'black'.

The METHOD parameter supplies a text defining the types of item to be plotted in the key. The
text can contain a single string if all the items are to be displayed in the same way, or a string for
each item if they are to be displayed differently. The possible strings are

'point' for points,
'line' for lines,
'both' for points and lines,
'fill' for filled rectangles, and
'none' to prevent an item from being plotted.

The default is to use the method defined for the corresponding PEN.

404 6 Graphical display

The appearance of the items (symbol type, colour, size, linestyle, line thickness and
transparency) can be controlled by specifying the pens to be used to plot them by the PEN
parameter. The default is to use pens 1 ... n.

Alternatively, you can set the appearance of the items explicitly, by using the parameters
SYMBOL, COLOUR, CSYMBOL, CFILL, SIZEMULTIPLIER, LINESTYLE, THICKNESS and
TRANSPARENCY. (These override the settings from PEN.) For each of these parameters, you can
supply either a single value or a structure with n values (one for each item).

The SYMBOL parameter defines the symbols for items that are displayed as points, or as both
points and lines (6.9.8).

The COLOUR, CSYMBOL and CFILL parameters specify the colours to be used for the items.
The COLOUR parameter defines the colours of lines and filled areas. The CSYMBOL parameter
defines the colours used for symbols. The CFILL parameter defines the colours used for filling
areas inside hollow symbols (6.9.9). The transparency of a filled area can be set using the
TRANSPARENCY parameter. This can be set either to a scalar or variate containing values between
0 (opaque) and 255 (completely transparent), or to factor with at most 255 levels.

The SIZEMULTIPLIER parameter can modify the size of symbols and filled areas, by
specifying a value by which the default size is to be multiplied. Either a scalar, variate or factor
can be supplied. The LINESTYLE parameter defines what sort of line is drawn, for example, a
solid, dotted or dashed line (6.9.8). The THICKNESS parameter can modify the thickness of lines,
by specifying a value by which the standard thickness is to be multiplied. Either a scalar, variate
or factor may be supplied.

The WINDOW, NCOLUMNS, NROWS, ORDER, XLOFFSET, COLSPACING, ROWGAP, COLGAP,
BORDER and CBORDER options control the layout of the key. The WINDOW option specifies the
window in which the key is drawn; default 2. The number of rows and columns, forming the grid
in which the key is arranged, can be set by the NROWS and NCOLUMNS options, respectively. If
these are not set, an appropriate grid is constructed automatically. The order in which the items
fill the grid is determined by the ORDER option. The default, ORDER=rows, fills the grid row by
row. Alternatively ORDER=columns fills the grid column by column. The COLSPACING option
specifies whether or not the columns of the grid are equally spaced (equal and unequal,
respectively); default equal. The ROWGAP and COLGAP options control the sizes of the gaps
between rows and columns, respectively. The distance between the items and labels can be
adjusted by the XLOFFSET option. Each label in the grid can be individually offset by suppling
a variate with n values. When a single value is supplied, a common offset is applied to all labels
in the grid. The BORDER option controls the border drawn around the key. The default,
BORDER=fit, draws a border fitted to the key. When BORDER=given, the border frames the
window (and the key is drawn so that it occupies the entire window). Finally, if BORDER=none,
no border is drawn. The CBORDER option specifies the colour for the border, when one is drawn
around the key; default 'black'.

The TITLE option can provide a title for the key. The pen for the title can be set by the
PENTITLE option. The default is to use the pen defined for the window in which the key is
plotted. The TPOSITION parameter specifies the position of the title: either inside or outside the
border with left, right or centre justification. The default is to centre the title outside the border
of the key.
DKEY takes account of restrictions on DESCRIPTIONS, PEN, PENLABELS and XLOFFSET.

However, the parameters METHOD, SYMBOL, COLOUR, CSYMBOL, CFILL, SIZEMULTIPLIER,
LINESTYLE, THICKNESS and TRANSPARENCY must not be restricted.

6.8 Multiple high-resolution plots 405

Figure 6.7.5

Example 6.7.5adds a key to the
scatter plot in Figure 6.7.2. The
KEYWINDOW option of DGRAPH was
set to zero, to suppress the
standard key, when the graph was
plotted in Example 6.7.2. The
FRAME command in line 175
defines window 6, alongside the
scatter plot to use for the key.
DKEY (lines 176-178) plots a key in
a single column, with no border
and no lines or symbols. An offset
of !6 is specified, to move the
labels across to use the space that
would have been used for the
symbols and lines. Notice that we
have used the typesetting
command ~i{} to put the labels
into italic font; see 1.4.2.

Example 6.7.5

 175 FRAME 6; YLOWER=0; YUPPER=1; XLOWER=0.72; XUPPER=1
 176 DKEY [WINDOW=6; NCOLUMNS=1; PENLABELS=!(1...3); BORDER=none; XLOFFSET=-6]\
 177 !T('~i{Iris setosa}','~i{Iris versicolour}','~i{Iris virginica}');\
 178 METHOD='none'

6.8 Multiple high-resolution plots

Many Genstat graphics commands have a SCREEN option, which can be set to keep to enable
you to add new information to the current display. The output from each command is drawn in
one or more graphics windows. There are 256 windows (see FRAME, 6.9.3). They are independent
of one another, and most graphics devices allow you to display them simultaneously on the same
graphics screen. On most devices you can also have windows that overlap or contain others. So
you can plot to a sequence of windows (keeping the current display), and build up a multiple
display with different graphs in adjacent windows. Several Genstat procedures use this facility:
for example trellis plots are described in 6.8.3, and scatter-plot matrices in 6.8.4.

406 6 Graphical display

Figure 6.8

Alternatively, you may be able to plot
new information in an existing window,
and build up a complicated picture in
several stages. However, there are
limitations on what a single window can
contain: you can use DGRAPH (6.2.1) any
number of times, but you can use no more
than one other command, which may be
either DHISTOGRAM (6.3.1), DCONTOUR
(6.4.1) or DSHADE (6.4.2). This approach is
used in graphics procedures, like BOXPLOT
(2:2.2.2) or DDENDROGRAM (2:6.17.5), and
is illustrated in Example 6.8 and Figure 6.8
where a graph and a histogram are plotted
in window 3.

Example 6.8

 2 READ Data

 Identifier Minimum Mean Maximum Values Missing
 Data 4.390 10.11 14.55 1000 0

 104 VARIATE [VALUES=2.0,2.1...17.0] X
 105 CALCULATE Mu = MEAN(Data)
 106 & Sigma = SQRT(VARIANCE(Data))
 107 & Y = 1 / (SQRT(2*C('PI'))*Sigma) * EXP(-0.5*((X-Mu)/Sigma)**2)
 108 & Y = Y * NVALUES(Data)
 109 PEN 1; METHOD=monotonic; SYMBOL=0
 110 XAXIS 3; LOWER=2.0; UPPER=17.0
 111 YAXIS 3; LOWER=0.0; UPPER=275
 112 DGRAPH [WINDOW=3; KEYWINDOW=0] Y; X
 113 VARIATE [VALUES=3...16] Limits
 114 DHISTOGRAM [WINDOW=3; KEYWINDOW=0; LIMITS=Limits; SCREEN=keep] Data

6.8.1 Clearing the graphics screen: the DCLEAR directive

DCLEAR directive
Clears a graphics screen.

Options
DEVICE = scalar Device whose screen is to be cleared; default is to clear

the screen of the current graphics device
ENDACTION = string token Action to be taken after clearing the screen (continue,

pause); default * uses the setting from the last DEVICE
statement

No parameters

When generating displays using a sequence of graphics commands, it may be convenient to clear
the screen at the outset. Then the subsequent commands can all have option SCREEN=keep,

6.8 Multiple high-resolution plots 407

which will simplify the programming particularly if they are in a FOR loop (5.2.1). Thus DCLEAR
allows you to clear the screen of a graphics device so that the next plot produced on this device
by any of the high-resolution commands will be drawn onto an empty screen. All information
about the current display, for example axis mappings, is also cleared from memory. The DEVICE
option indicates the device to be cleared; by default this is the current graphics device (as set by
the DEVICE directive). The ENDACTION option controls what happens after clearing the screen.
The default action is the setting specified by the most recent DEVICE statement.

6.8.2 Sequences of high-resolution plots

DSTART directive
Starts a sequence of related high-resolution plots.

Options
TITLE = text Overall title for the plots
PEN = scalar Pen to use for the title; if this is not set, pen !12 is used

DFINISH directive
Ends a sequence of related high-resolution plots.

No options or parameters

The most efficient way of generating a composite display is to define an explicit sequence of
plots. The start of the sequence is indicated by a DSTART command. The TITLE option can
specify an overall title, and PEN can specify the pen to use. If PEN is not set, the title is plotted
using pen !12.

During the sequence the information from each graphics command is accumulated until
Genstat finds a DFINISH command. Genstat then clears the screen and generates the display.
This improves efficiency, as no plotting takes place until the display is complete. It also
simplifies programming as the SCREEN option is irrelevant; any settings of the SCREEN option
in the plotting directives during the sequence are ignored.

6.8.3 Trellis plots: the TRELLIS procedure

TRELLIS procedure
Does a trellis plot (S.J. Welham & S.A. Harding).

Options
GROUPS = factors or variate Factors or variate defining the classification for the plots
GMETHOD = string token Determines the method used to partition the range when

GROUPS is set to a variate (equalspacing,
quantiles, distinct, limits); default equal

NGROUPS = scalar Determines the number of plots to be formed when
GROUPS is set to a variate and GMETHOD is set to
quantiles or equalspacing

LIMITS = variate Limits to use to form groups from a GROUPS variate
when GMETHOD=limits

OVERLAP = scalar Proportion by which a GROUPS variate should overlap
between plots (scalar in range 0 - 0.5); default 0

OMITEMPTY = string token Whether to omit all empty plots from the array (all), or

408 6 Graphical display

omit levels of a GROUPS factor where all plots are empty
(levels), or keep all plots in the array (none); default
level

PENGROUP = factors Defines factor combinations to be plotted in different
colours, note that the number of colours available may
differ between devices

NROWS = scalar Specifies number of rows of plots to appear on one
page; default determined automatically from GROUPS

NCOLUMNS = scalar Specifies number of columns of plots to appear on one
page; default determined automatically from GROUPS

TITLE = text Supplies a title for the plot
FIRSTPICTURE = string token Whether to put the first picture at bottom or top left of

the grid (bottomleft, topleft); default topl
TMETHOD = string token Whether to give plot titles as factor names with labels or

just labels (names, labels); default names
YTITLE = text Supplies an overall y-axis title
XTITLE = text Supplies an overall x-axis title
YMARGIN = scalar Relative size of margins for the y-axis labels on

individual plots; default 0.04
XMARGIN = scalar Relative size of margins for the x-axis labels on

individual plots; default 0.04
TMARGIN = scalar Relative size of margin for titles of individual plots;

default 0.04
PENSIZE = scalar Proportionate adjustment to the pen size for individual

plot titles and axis labels; default 1
USEPENS = string token Whether to use current pen definitions in the procedure

(no, yes); default no
USEAXES = string token Which aspects of the current axis definitions of window

1 to use (none, limits, style, marks, mpositions,
nsubticks, transform); default none

NRMAX = scalar Maximum number of rows on page; default 8 for a
square frame, 7 for a landscape frame and 10 for a
portrait frame

NCMAX = scalar Maximum number of columns on page; default 8 for a
square frame, 10 for a landscape frame and 7 for a
portrait frame

KEYHEIGHT = scalar Space in y-direction to use for key (0 to suppress key);
default * i.e. determined automatically

YPENMETHOD = string token Whether to use the same or different pens for each y-
variate (different, same); default diff

FRAMESHAPE = string token Shape of the plotting frame (landscape, portrait,
square); default squa

Parameters
Y = variates Y-values of the data to be plotted
X = variates or factors X-values of the data to be plotted
METHOD = string tokens Type of plot (point, line, mean, median,

histogram, boxplot, spline, schematicboxplot);
default poin

DESCRIPTION = texts Annotation for key

6.8 Multiple high-resolution plots 409

TRELLIS plots one or more y-variates for each level generated by the GROUPS option, and
arranges these plots in a grid (or trellis) arrangement on the page.

The data to be plotted are specified using the Y parameter. If more than one variate is
specified, these will all be displayed on the same plots. This means that e.g. data points can be
plotted with means. The type and method of plotting (points, lines, mean values, medians,
histograms, boxplots or splines) is specified using the METHOD parameter. The default is
METHOD=point. For methods point, line, mean, median and spline, a graph is produced
of y-variates against x-variates, which are specified using the X parameter. When METHOD is set
to mean or median, a line is drawn to join the mean or median data values at each value of the
x-variate for each level of PENGROUP. In any of these cases, if PENGROUPS is set to one or more
factors, a different pen will be used for each of the levels of the combined factors. By default,
the pen numbers are incremented so that a different set of pens is used for each y-variate.
Alternatively, you can set option YPENMETHOD=same, to use the same set for each one.

When METHOD=histogram, a histogram of the data values is drawn in each plot. In this case,
options NGROUPS and LIMITS can be used to specify the number of groups in the histogram or
the group limits, respectively. If more than one y-variate is specified, parallel histograms will be
drawn for the variates. The PENGROUPS option is ignored when METHOD=histogram.

When METHOD=boxplot, a boxplot of the data values is drawn in each plot. Alternatively,
you can set METHOD=schematicboxplot to obtain a schematic boxplot, which displays
individual outlying points as well as the box (see 2:2.2.2). If you set the PENGROUP option,
parallel box plots (one for each level of PENGROUPS) are drawn within every plot. You can also
obtain parallel box plots by supplying several y-variates, which are then plotted in parallel in
every plot. However, you cannot simultaneously specify several y-variates and set the
PENGROUPS option.

The division of the data into separate plots is determined by the setting of the GROUPS option.
This can be set to one or more factors, indicating that a separate plot should be drawn for each
combinations of the factor levels.

The OMITEMPTY option controls what happens if there are no data for some combinations. The
default setting levels omits complete levels of any factor for which there are no data points,
while the setting all omits all empty plots, i.e. plots where there are no data points.
OMITEMPTY=none displays all plots regardless of whether or not they contain any data points.

If the GROUPS option is set to a variate, the plots will show the values of the data for different
intervals in the range of the GROUPS variate. The GMETHOD, NGROUPS, LIMITS and OVERLAP
options determine how many plots are displayed, and which data points they contain. The default
option of GMETHOD is equalspacing. The distinct setting of GMETHOD converts the variate
into a factor with a level (and thus a plot) for each distinct value of the variate. With
equalspacing, the groups are defined by dividing the range of the GROUPS variate into the
required number of intervals of equal length; while with quantiles, the intervals are defined
so that each has an equal number of points, according to the ordering of the GROUPS variate.
When GMETHOD is set to equalspacing or to quantiles, the number of groups to form can
be specified by the NGROUPS option; if NGROUPS is not set, TRELLIS sets the number to the
square root of the number of data values, or to the number of distinct values if this is smaller.
Finally, when GMETHOD=limits, the LIMITS option specifies boundaries between the intervals;
the first group then contains all data points with values of the GROUPS variate less than the first
limit, the second group has all values greater than or equal to the first limit but less than the
second limit, and so on.

The OVERLAP option allows the intervals of the GROUPS to overlap. The default overlap is 0,
so there is no overlap between plots. If OVERLAP is set to 0.1, then 10% of the points (for
PARTITION=quantiles) or 10% of the range (for PARTITION=equalspacing) will be in
common between neighbouring plots. OVERLAP can be set anywhere in the range 0 (for no
overlap) to 0.5.

410 6 Graphical display

The FRAMESHAPE option specifies the shape of the graphics frame, with settings:
landscape for a frame of size 1.4 × 1.0 i.e. wider in the x- than the y-

direction,
portrait for a frame of size 1.0 × 1.4 i.e. wider in the y- than the x-

direction,
square for a frame of size 1.0 × 1.0.

Some graphics devices do not support the use of device coordinates greater than 1.0, so the
default is FRAMESHAPE=square. (See 6.9.1 and 6.9.3 for more information.)

The default layout on the page can be changed by using NROWS and NCOLUMNS to specify the
number of rows of plots on the page, and the number of columns of plots across the page,
respectively. By default the layout is arranged so that the area of the page used for plotting is
maximized, with a maximum of 8 rows and 8 columns of plots for a square frame, 7 rows and
10 columns for a landscape frame, and 10 rows and 7 columns for a portrait frame. Options
NRMAX and NCMAX can be used to override these default maximum numbers of rows and columns
of plots, so that more can be produced on a page.

An overall title can be put at the head of each page using the TITLE option, and overall titles
for the y- and x- axes can be specified using the YTITLE and XTITLE options respectively. By
default the plots start at the top left of the page, but you can set option
FIRSTPICTURE=bottomleft to start at the bottom left. When GROUPS is set to one or more
factors, the plot titles are constructed by default with the factor name and label/level, but this can
be restricted to just the label/level by setting option TMETHOD=label.

The margins and pen size are set to give a reasonable picture on the Windows PC
implementation, but can be adjusted using options YMARGIN (space for y-axis labels), XMARGIN
(space for x-axis labels), TMARGIN (space for plot titles) and PENSIZE (pen size for axis
markings and plot titles).

By default the pen and axes attributes are determined automatically within the procedure.
Some predefined attributes can be used, as indicated by the USEPENS and USEAXES options.
Setting USEPENS to yes, requests all current pen definitions (for pens 1-29) to be used.

You can specify various aspects of the axes, by defining them for window 1, and indicating
that they are to be used by setting the USEAXES option. The following settings are available:

limits y- and x-axis limits (LOWER and UPPER parameters of
XAXIS and YAXIS);

style axis styles (ACTION parameter of XAXIS and YAXIS,
together with the GRID option and BOX parameter of
FRAME);

marks location and labelling of the tick marks (MARKS, LABELS,
LDIRECTION and LROTATION parameters of XAXIS and
YAXIS);

mpositions positions of the tick marks (MPOSITION parameter of
XAXIS and YAXIS); and

nsubticks number of subticks per interval (NSUBTICKS parameter of
XAXIS and YAXIS); and

transform axis transformations (TRANSFORM parameter of XAXIS and
YAXIS).

TRELLIS includes a key on each graphics page for plots other than boxplots if each window
of the trellis contains more than plot (i.e. if there is more than one Y variate, or there is a
PENGROUPS factor with more than one level). You can use the KEYHEIGHT option to control the
size of the key in the y-direction, and setting this to zero will suppress the key. The
DESCRIPTION parameter can be used to supply annotation for the key, in the same way as in the
DGRAPH directive.

Example 6.8.3 uses TRELLIS to study the relationship between amounts of sulphur in the air

6.8 Multiple high-resolution plots 411

Figure 6.8.3

and weather variables. Sulphur is plotted against wind speed for every combination of factors
Winddirection and Rain.

Example 6.8.3

 2 " Comparison of air pollution and weather variables:
 -3 sulphur levels against wind speed, wind direction, and rain."
 4 FACTOR [LABELS=!t(N,NE,E,SE,S,SW,W,NW)] Direction
 5 & [LABELS=!t(no,yes)] Rain
 6 READ Sulphur,Speed,Direction,Rain; FREPRESENTATION=labels

 Identifier Minimum Mean Maximum Values Missing
 Sulphur 0.0000 10.46 49.00 114 0 Skew
 Speed 0.5000 10.31 22.70 114 1

 Identifier Values Missing Levels
 Direction 114 1 8
 Rain 114 0 2

 36 TRELLIS [GROUPS=Direction,Rain; NROW=4;\
 37 TITLE='Sulphur versus wind speed';\
 38 YTITLE='Sulphur measurements';\
 39 XTITLE='Wind speed (km/h)'] Sulphur; Speed

412 6 Graphical display

6.8.4 Scatter-plot matrices: the DMSCATTER procedure

DMSCATTER procedure
Produces a scatter-plot matrix for one or two sets of variables (J. Ollerton & R.W. Payne).

Options
PLOT = string tokens Additional information to include in the scatter plots

(correlation, histograms, boxplots, densities,
dothistograms); default *

SCALING = string token How to scale the x- and y-axes (common, equal, none);
default none

PEN = scalar or variate or factor Pens to plot the scatter plots; default 1
PENHISTOGRAM = scalar Pens to plot the histograms; if PEN is a factor the default

plots the histogram for each group separately using the
pen used for that group in the scatter plots, otherwise the
default is to use pen 2

PENCORRELATION = scalar Pen to use to write the correlations; default 1
PENTITLE = scalar Pen to use to write the axis titles; default uses the pens

currently defined for the axes in the windows that are
used for the plots

PENAXIS = scalar Pen to use to draw the axes; default uses the currently
defined pens

PENLABELS = scalar Pen to use to write the axis labels; default uses the
currently defined pens

NROWS = scalar Number of rows of graphs to put in a single frame (i.e.
page); default puts them all in one frame

NCOLUMNS = scalar Number of columns of graphs to put in a single frame;
default uses the same value as NROWS

ASPECTRATIO = scalar Ratio of the length of the y-axis to the length of the x-
axis in each graph

FRAMESHAPE = string token Shape of the plotting frame (landscape, portrait,
square); default squa

MARGINSIZE = scalar Specifies the size of the margins at the bottom and left-
hand edge of the frame

Parameters
Y = pointers Each pointer contains a set of variates and/or factors to be

plotted
X = pointers Each pointer contains a set of variates and/or factors to be

plotted as the x-variables in a rectangular scatter-plot
matrix; if unset Y specifies both the x-variables and
y-variables for a symmetric scatter-plot matrix

TITLE = texts Overall title for the plot
YTITLES = texts Labels for the axes for the Y variates and factors, to use

instead of their identifiers
XTITLES = texts Labels for the axes for the X variates and factors, to use

instead of their identifiers
YMARKS = variates, scalars or pointers

Marks to use on the axes for the Y variates and factors, if
any of these contains missing values, the marks and their
labels are suppressed for that variate or factor

6.8 Multiple high-resolution plots 413

XMARKS = variates, scalars or pointers
Marks to use on the axes for the X variates and factors, if
any of these contains missing values, the marks and their
labels are suppressed for that variate or factor

Procedure DMSCATTER produces two types of scatter-plot matrix, using high-resolution graphics.
For a symmetric scatter-plot matrix, the variates and/or factors to be plotted against each other
must be specified, in a pointer, by the Y parameter. The scatter-plot contains a lower-triangular
array of graphs, one for each pair of variables. Alternatively, for a rectangular scatter-plot matrix,
there are two set of the variates and/or factors. The set that defines the y-values for the graphs
are specified (in a pointer as before) by the Y parameter, and those that define the x-values for
the graphs are specified (also in a pointer) by the X parameter. The scatter-plot now contains a
rectangular array of graphs, one for each pair of x- and y-variables. If any of the variates or
factors is restricted, only the units not excluded by the restriction will be plotted.

By default the identifiers of the relevant x- and y-variables are used for the titles of the axes
at the lower and left-hand edges of the graphics frame (i.e. page). Alternatively, you define your
own titles for the y-variables by setting the YTITLES to a text with a value for each Y variate or
factor. Similarly, you can use the XTITLES parameter to supply your own titles for the X variates
or factors. You can also use the TITLE parameter to supply an overall title.

The YMARKS parameter allows you to specify your own marks for the axes corresponding to
the y-variables. (These are then used as the settings of the MARKS parameter of the YAXIS and
XAXIS directives.) You can set YMARKS to single variate or scalar, if you want to use the same
marks for every y-variable. Alternatively, you can set it to a pointer with a variate or factor for
each Y variate or factor, if you want to specify different marks. If any of the variates or scalars
contains missing values, the marks and their labels are suppressed on the corresponding axes.
You can use the XMARKS parameter similarly, to specify axis marks for the x-variables.

The PEN option specifies the pens to be used to plot the graphs. The setting can be a scalar to
plot all the points with the same pen, or a variate or a factor to use different pens. If PEN is set
to a factor, a key is included in the plot to identify the correspondence between the pens and the
groups. The default is to use pen 1.

The PLOT option allows you to specify extra information to be included in the plot, with
settings:

correlation prints the correlation of the pair of variables in each plot,
at the top of the plot;

histograms plots histograms of the variables down the diagonal of a
symmetric scatter-plot matrix, or along the top and down
the right-hand side of a rectangular scatter-plot matrix;

boxplots displays boxplots of the variables down the diagonal of a
symmetric scatter-plot matrix, or along the top and down
the right-hand side of a rectangular scatter-plot matrix;

densities displays one-dimensional density plots (or violin plots) of
the variables down the diagonal of a symmetric scatter-
plot matrix, or along the top and down the right-hand side
of a rectangular scatter-plot matrix; and

dothistograms plots dot histograms of the variables down the diagonal of
a symmetric scatter-plot matrix, or along the top and down
the right-hand side of a rectangular scatter-plot matrix.

Note, only one of the settings histograms, boxplots, densities, dothistograms is
allowed; if more than one is set, the first item the list above is used.

The PENHISTOGRAM option specifies the pens to plot the histograms. If PEN is a set to a factor,
the default for PENHISTOGRAM plots histogram for each group, using the pen used for that group

414 6 Graphical display

in the scatter plots. Otherwise the default is to use pen 2. The PENCORRELATION option specifies
the pen to use to print the correlations; default 1.

The PENTITLE, PENAXIS and PENLABELS options define the pens to use for the titles of the
x- and y-axes, for the axes themselves, and for their labels. If any of these is unset, the default
is to use the pens already defined for that aspect of the axes in the windows used in the plot.

The SCALING option controls the scaling of the x- and y-axes, the settings:
equal uses equal scaling for the x- and y-axes in each graph,
common used exactly the same axes (upper and lower limits as well

as scaling) for the axes in all the graphs,
none defines all the axes independently (the default).

By default the plots are square, but you can request rectangular plots by setting the
ASPECTRATIO option to the required value for the length of the y-axis divided by the length of
the x-axis.

The MARGINSIZE option specifies the size of the margins at the bottom and left-hand edge of
the graphics frame. If this is unset, the margins are defined automatically, using a smaller value
if all the axis marks and labels on an edge have been suppressed.

The FRAMESHAPE option specifies the shape of the graphics frame, with settings:
landscape for a frame of size 1.4 × 1.0 i.e. wider in the x- than the y-

direction,
portrait for a frame of size 1.0 × 1.4 i.e. wider in the y- than the x-

direction,
square for a frame of size 1.0 × 1.0.

Some graphics devices do not support the use of device coordinates greater than 1.0, so the
default is FRAMESHAPE=square. (See 6.9.1 and 6.9.3 for more information.)

By default the graphs are all plotted in a single frame (i.e. page), but you can specify the
NROWS and NCOLUMNS options to split them across several frames. NROWS specifies the number
of rows of plots to put in a single frame. The default is to fit them all into one frame. NCOLUMNS
specifies the number of columns of plots to put in one frame. The default is to use the same value
as NROWS.

6.9 The environment for high-resolution graphics 415

Figure 6.8.4

An example is shown in
Figure 6.8.4, which was
generated by Example
6.8.4.

Example 6.8.4

 2 SPLOAD [PRINT=*] '%GENDIR%/Data/Iris.gsh'
 3 CALCULATE PLength = (Petal_Length-MEAN(Petal_Length))/SQRT(VAR(Petal_Length))
 4 & PWidth=(Petal_Width-MEAN(Petal_Width))/SQRT(VAR(Petal_Width))
 5 & SLength = (Sepal_Length-MEAN(Sepal_Length))/SQRT(VAR(Sepal_Length))
 6 & SWidth = (Sepal_Width-MEAN(Sepal_Width))/SQRT(VAR(Sepal_Width))
 7 POINTER [VALUES=Petal_Length,Petal_Width,Sepal_Length,Sepal_Width]\
 8 Measurements
 9 DMSCATTER [PLOT=histograms; PEN=Species] Measurements

6.9 The environment for high-resolution graphics

The directives described in the earlier sections of this chapter can display data in various ways.
Implicit in all the discussion is the idea of a graphics environment, in which the displays are
generated. This consists of a choice of graphics devices and a large number of parameters which
control the appearance of the output. When you start Genstat an initial environment is created
which contains default settings that are designed to be appropriate for the more common types
of plot. This section describes the directives that allow you to modify the graphical environment
in order to obtain more control over the appearance of your output. The descriptions of the
commands earlier in this chapter indicate how the output will appear by default, and how it is
affected by changes to the environment. The examples were chosen to illustrate the default
display and some of the ways in which it can be modified by directives such as PEN (6.9.8),
XAXIS (6.9.4) and YAXIS (6.9.5).

When you produce a high-resolution plot, the pictures are drawn on a graphical device, in a
graphical window, using a graphical pen. Output can be produced on only one type of device

416 6 Graphical display

at any time; however you can switch between different devices during a Genstat session so that,
for example, you can experiment with various displays on the screen before sending some output
to a file for printing as hard-copy. The device is selected using the DEVICE directive (6.9.1).
Note, though, in Genstat for Windows you can save the display in these formats directly from the
graphics viewer, so the DEVICE statement is needed only if you want to run Genstat as a batch
process.

A graphics window is an area of the screen (or page on a plotter) that is used for plotting
output. Many such windows can be used within a sequence of statements, so that several graphs
may be plotted on a single screen. The position and size of the windows is defined using the
FRAME directive (6.9.3). Associated with each window are the attributes of its axes. These
control how axes are drawn by directives such as DGRAPH, DHISTOGRAM and DCONTOUR. The
XAXIS, YAXIS and ZAXIS directives (6.9.4, 6.9.5 and 6.9.6) can be used to control the various
aspects of the axes associated with any specific window. These replace the AXES directive that
was used, in releases before 4.2, to set attributes of the x- and y-axes. AXES is retained for
compatibility, but it is less powerful than XAXIS and YAXIS. You can also include additional
axes in a plot, and these can have oblique directions. They are defined using the AXIS directive
(6.9.7), and added into a particular graphics window using the FRAME directive (6.9.3).

Each part of the display is drawn using pens, each of which has attributes such as colour, line
style and symbol type. In addition, the pen may be used to control how data is plotted, for
example by requesting a straight line or a curve. The PEN directive (6.9.8) is used to set attributes
of the different pens to be used in each graph.

The directives that define the environment change only the parameters that are mentioned
explicitly; unspecified parameters retain their previous values (which may be the initial defaults).
When you start a new job (5.1), the environment is reset to the initial default values. On the other
hand, when you use RESUME (3.6.2) to re-start an earlier session, the graphics environment will
be loaded from the resume file. However, this does not affect the choice of output device (and
associated file) which is preserved in both situations.

As the effects of these directives are additive, you need to keep aware of the current settings,
and avoid unwanted side-effects which may occur, for example, if you use a pen that has earlier
been modified in a way that is incompatible with its current use. This should not cause problems
under ordinary circumstances. However, if you are using graphics in a general program or
procedure there are various things you can do to make the graphics self-contained, and avoid
side-effects. Each directive that modifies the environment includes a SAVE parameter that
enables you to save the current settings of its particular aspect of the environment (frame, axes
or pen) after making any modifications specified in the current statement. This enables you to
check the current settings and reset particular attributes to their original values after a plot has
been produced. The DKEEP directive can be used to obtain additional general information about
the graphics devices and environment. The GET and SET directives (5.6.1 and 5.6.2) allow the
entire graphics environment to be stored in a pointer and later restored to its original state. For
example, in a graphics procedure you might have the following statements:

GET [SPECIAL=Special]
FRAME 1; YLOWER=0.3; YUPPER=0.6; XLOWER=0.3; XUPPER=0.6
YAXIS 1; LOWER=0; UPPER=100; TITLE='Percentages'
PEN 1...4; METHOD=line; LINESTYLE=1...4; SYMBOL=0;\
 COLOUR=1,2,1,2
DGRAPH Percent[1...4]; X; PEN=1...4
SET [DSAVE=Special['dsave']]
ENDPROCEDURE

This can also be done automatically using the RESTORE option of PROCEDURE (5.3.2).
Alternatively, you can save the current graphics environment settings to an external file using
the DSAVE directive (6.9.11), and reload then later using the DLOAD directive (6.9.11).

Information about the graphics environment can be displayed using the DHELP procedure.

6.9 The environment for high-resolution graphics 417

DHELP procedure
Provides information about Genstat graphics (S.A. Harding).

No options

Parameter
TOPIC = string tokens Lists the required graphics topics (current,

possible); default poss

6.9.1 The DEVICE directive

DEVICE directive
Switches between (high-resolution) graphics devices.

No options

Parameters
NUMBER = scalar Device number
ENDACTION = string token Action to be taken after completing each plot

(continue, pause)
ORIENTATION = string token Orientation of the pictures, if relevant (landscape,

portrait); default * retains the current setting for this
device

PALETTE = string token How to represent colour (monotone, greyscale,
grayscale, colour); default * retains the current
setting for this device

RESOLUTION = scalar Specifies the height of the image for hard-copy output,
in pixels

ACTION = string token How to create graphs for file types such as .emf, .jpg,
.tif or .png (asynchronous, synchronous);
default asyn

High-resolution graphics can be generated principally in two forms by Genstat: either on a screen
that can operate in graphics mode or by sending output to a file. The screen-based operation is
for use in interactive sessions, whereas file output is designed for later use outside Genstat:
either to produce hard-copy on a plotter or laser-printer, or to re-display graphics on the screen,
if appropriate software is available. Usually there is a choice of various kinds of screen type or
file format. Each type of output, whether screen or file, is referred to as a device; thus, the first
step in producing graphical output is selecting a device within Genstat that is appropriate for the
hardware that you have available. Genstat has built-in interfaces to several different graphics
devices. These vary according to the Genstat implementation. However, details of the devices,
their characteristics and their associated numbers can be obtained from the DHELP procedure by
typing the statement

DHELP possible

The output device is selected by the DEVICE statement. For example

DEVICE 4

selects the fourth available device.
If you have selected a file-based device you also need to open a file to receive the output,

using the OPEN directive. This can be done before or after selecting the device, so long as the file

418 6 Graphical display

has been opened before any output is generated. You can close the file when the graphics are
complete; if you want to store separate items of graphical output in individual files you can use
a sequence of OPEN and CLOSE statements (3.3). When opening or closing files for graphical
output the CHANNEL parameter of the OPEN and CLOSE statements should be set to the device
number specified by the DEVICE statement. For example:

OPEN 'Plot.jpg'; CHANNEL=7; FILETYPE=graphics
DEVICE 7
DGRAPH Y; X
CLOSE 7; FILETYPE=graphics

The default device, selected automatically when you start Genstat, is device 1: sometimes you

may be able to specify an alternative device number and associated output file on the command
line used to start Genstat (the local Genstat documentation should explain if this is possible).

You may get strange results if you try to generate graphics on a screen that is not designed for
displaying graphics, or if you specify the wrong device type, as Genstat is not always able to
detect the type of device or screen.

There need be little difference in your use of Genstat graphics on different devices as, by
default, all the plotting symbols, brush styles and character output are software-generated using
built-in graphics definitions that are supplied with Genstat. It may sometimes be advantageous,
however, to use particular features of the device; for example, the use of solid-fill in histograms
and pie charts. This can be generated by software on any device, using brush style 16 (see 6.9.8),
but in many cases this can be performed in a fraction of the time by using the hardware instead.
These device-specific features are usually selected by negative parameter settings (for example,
by setting parameter SYMBOL=-3 in the PEN directive; 6.9.8). Naturally, selection of device-
specific attributes may lead to some differences in appearance of the output on different devices.
Likewise different devices may have different initial default settings, in particular according to
whether or not they support colour. Details of these device-specific properties are provided in
the information provided by the DHELP procedure, as explained above.

The ENDACTION parameter, with settings continue and pause, controls the action taken by
default at the end of each plot. When using a graphics terminal interactively it may be convenient
to pause at the end of a plot to examine the screen. When you are ready to continue, pressing
carriage-return or some equivalent key will switch the terminal back to text mode and the
Genstat prompt will appear. The DHELP statement above should provide the precise details for
each particular device. For some interactive devices, for example PCs or workstations with
separate graphics windows, it may not be necessary to pause. Each device is initialized to either
pause or continue when you start Genstat, according to the particular implementation. If you
are running in batch mode the default will always be to continue.

You can repeat the DEVICE statement and set ENDACTION to pause or continue at any time
that you wish to change the default action. Alternatively, each graphical directive has an
ENDACTION option that controls the device at the end of that directive, without altering the
general default setting. For example, if you wish to build up a complex display using several
DGRAPH statements with option SCREEN=keep, you could set ENDACTION=continue in the
DEVICE statement, and then put ENDACTION=pause in the final DGRAPH statement.

The ORIENTATION parameter can be used to specify landscape or portrait orientation
of graphical output on PostScript and Interacter raster devices; portrait is the default.
PALETTE can be set to monotone, to force all colours to be mapped to colour 1; this is the
default for PostScript. Alternatively, PALETTE=colour produces colour PostScript output. The
additional setting PALETTE=greyscale is as for monotone except that area filling (as in
histograms) are shaded in grey tones, using the red component of the colour to define the grey
intensity.

The RESOLUTION parameter specifies the height of the image for hard-copy output, in pixels.
(This is equivalent to setting the image resolution in the Options menu of the Genstat Graphics

6.9 The environment for high-resolution graphics 419

Viewer.)
The ACTION parameter controls how graphs are created for the file types .emf, .jpg, .tif,

.png, .gmf and .bmp. The setting synchronous creates the graph before executing another
command, whereas the setting asynchronous allows subsequent commands to be executed
whilst the graph is created.

6.9.2 Re-displaying the graphics screen

DDISPLAY directive
Redraws the current graphical display.

Options
DEVICE = scalar Device on which to redraw the display (on some systems

it may only be possible to redisplay the picture on an
interactive graphics device); default uses the current
graphics device

ENDACTION = string token Action to be taken after completing the plot (continue,
pause); default * uses the setting from the last DEVICE
statement

No parameters

This directive is provided to allow additional control of some interactive devices. In some of
these the screen can operate in either text mode or graphics mode. Genstat will automatically
switch the screen into the appropriate mode when starting or finishing a graph. Having returned
to text mode after examining a graph you may later wish to have another look at the graph that
was plotted. DDISPLAY will switch the screen back to graphics mode, thus re-displaying the
graph. The ENDACTION option controls what happens after re-displaying the graph; normally
with this type of device you would want to pause. The default action for DDISPLAY is the setting
specified by the most recent DEVICE statement.

This directive has no effect when output is directed to a graphics file. For devices that do not
operate in this dual-mode fashion, for example a graphics window under X-windows, DDISPLAY
has no effect on the graphical display itself. It will however generate a pause if ENDACTION is
set to request one.

Note that DDISPLAY does not actually re-plot the graphical output; it merely switches the
screen into graphics mode, and assumes that your system has preserved the graphics image.

6.9.3 The FRAME directive

FRAME directive
Defines the positions and appearance of the plotting windows within the frame of a
high-resolution graph.

Options
GRID = string tokens Specifies grid lines (xy, xz, yx, yz, zx, zy)
BOXFRAME = string tokens Whether to include a box enclosing the entire frame

(include, omit)
BACKGROUND = scalars or texts Specifies the colour to be used for the background of the

whole frame (where allowed by the graphics device)

420 6 Graphical display

RESET = string token Whether to reset the window definition to the default
values (no, yes); default no

Parameters
WINDOW = scalars Window numbers
YLOWER = scalars Lower y device coordinate for each window
YUPPER = scalars Upper y device coordinate for each window
XLOWER = scalars Lower x device coordinate for each window
XUPPER = scalars Upper x device coordinate for each window
YMLOWER = scalars Size of bottom margin (for x-axis labels)
YMUPPER = scalars Size of upper margin (for overall title)
XMLOWER = scalars Size of left-hand margin (for y-axis labels)
XMUPPER = scalars Size of right-hand margin
BACKGROUND = scalars or texts Specifies the colour to be used for the background in

each window (where allowed by the graphics device)
BOX = string tokens Whether to include a box enclosing the plotted graphic

(include, omit)
BOXSURFACE = string tokens Box to include in a surface plot (full, bounded, omit)
BOXKEY = string tokens Box to draw around key (full, bounded, omit)
PENTITLE = scalars Pen to use to write the overall title
PENKEY = scalars Pen to use for the key
PENGRID = scalars Pen to use to draw the grid lines
SCALING = string tokens How to scale the axis in each window (xyequal,

xzequal, yzequal, xyzequal)
TPOSITION = string tokens Position of title (right, left, center, centre)
CINTERIOR = scalars or texts Specifies the colour to be used for the interior of each

window (where allowed by the graphics device)
CFRAME = scalars or texts Specifies the colour to be used for the frame of each

window (where allowed by the graphics device)
CTITLE = scalars or texts Specifies the colour to be used for the title bar of each

window (where allowed by the graphics device)
AXES = identifiers or pointers Additional oblique axes to include in each window
SAVE = pointers Saves details of the current settings for the window

concerned

You can define up to 256 different windows in which to plot graphics. Each window is a
rectangular area of the screen which is defined using normalized device coordinates (NDC). For
all devices, you can assume that a range of 0.0 to 1.0 will be available in both y- and x-
directions, thus defining a 1 × 1 square to represent the plotting area. On some devices the
plotting area may extend further in either the y- or x-direction (but not both). Details can be
obtained using the DHELP procedure, as explained at the start of Section 6.9. By keeping within
the [0,1] range you can ensure that the window is always valid, whatever output device is
selected. However, you may wish to use the extended area where possible on a particular device.

The mapping from NDC to physical coordinates on the current output device is performed
internally, so the window definitions are independent of the actual size of device. The NDC
coordinates are also completely independent of the values of the data that are to be plotted. (The
locations of the points within the graph depend on how the axes of the graph are defined; see
6.9.4, 6.9.5 and 6.9.6).

When you use FRAME, any aspects of the windows that you do not specify explicitly retain the
values that they had immediately before the FRAME statement. Alternatively, you can specify
option RESET=yes to reset all these aspects to the default values, defined by Genstat at the start

6.9 The environment for high-resolution graphics 421

of each job.
To define a window, the upper and lower bounds are required in both y- and x-directions; thus

defining both the position and the size of the window. For example

FRAME WINDOW=1; YLOWER=0.25; YUPPER=0.75;\
 XLOWER=0; XUPPER=0.5

defines window 1 to be a square of size 0.5, whose bottom left corner is at the point (0.0,0.25),
and whose top right corner is (0.5,0.75). This does not define the exact size of a graph plotted
in this window, as margins may be required for the annotation and titles (see below).

If you do not specify all four values in the FRAME statement, the existing values are retained.
A check is then made on the validity of the window bounds. The settings of YLOWER and XLOWER
must be strictly less than those of YUPPER and XUPPER respectively; also, none of the bounds
can be outside the permitted range, which is [0.0,1.0] on most graphics devices. You cannot use
* to reset a bound to the default value; if you try to do so, Genstat will produce an error
diagnostic. (Instead you can specify option RESET=yes, as explained above.)

All the windows have a default size defined when you start Genstat. Window 1 is the default
window used for plots by DGRAPH, DCONTOUR, and so on, and is set up to be a square of size
0.75. The default key window is window 2, which is a rectangle of height 0.25 and width 0.75
located immediately below window 1. Windows 3 and 4 are the unit square [0,1]×[0,1] and
windows 5, 6, 7 and 8 are the top-left, top-right, bottom-left, and bottom-right quarters
respectively of the unit square. Windows 9, 10, 11 and 12 also divide the frame into quarters, but
they have the full width (0 to 1) in the x-direction and quarter of the width in the y-direction,
working from the top (i.e. 0.75 to 1 for window 9) to the bottom (i.e. 0 to 0.25 for window 12)
of the frame. The remaining windows, from 13 to 256, also default to the unit square. You can
use FRAME to modify the size or position of any of these windows.

Usually, a margin is provided around each plot so that there is room for the axes to be drawn,
along with labelling and titles as specified by the XAXIS or YAXIS directives (6.9.4 and 6.9.5).
By default, the margin size is designed to allow sufficient room for annotation to be added using
the standard character size, as defined by the SIZEMULTIPLIER or SMLABEL parameters of PEN
(6.9.8). If you use XAXIS or YAXIS to control the plotting of axes explicitly you may wish to
alter the size of the margins, either to increase the space used for the axes or, alternatively, to
maximize the space available for the graph itself. For example, if you alter the size of the
labelling, by explicitly defining the relevant axis pens, more space may be required for the axes;
otherwise the labels may be clipped at the window bounds. The parameters YMLOWER, YMUPPER,
XMLOWER and XMUPPER can be used to set the space (in NDC) for the bottom, top, left-hand and
right-hand margins respectively, and have initial default settings of 0.10, 0.07, 0.12 and 0.05.

On most devices the background colours of the window may be modified by setting the
BACKGROUND, CINTERIOR, CFRAME and CTITLE parameters. The BACKGROUND parameter can
be used to define the colour for the whole background, while the other parameters define specific
aspects (overriding any setting of BACKGROUND): CINTERIOR defines the colour of the interior
of the plot (where the points are plotted), CFRAME defines the colour of the outer frame (outside
the interior), and CTITLE is the colour of the title bar. The parameters can be set either to a text
containing the name of one of Genstat's pre-defined colours (6.9.9), or to a scalar containing a
number defining a colour using the RGB system; see 6.9.9. Similarly, the BACKGROUND option
can define the background colour for the whole frame (which may include areas outside any of
the windows). The special colour setting 'match' can be used to apply the colour from the
preceding parameter to the next one: CFRAME would inherit the colour from CINTERIOR, and
CTITLE would inherit from from CFRAME. For example,

FRAME 1; CINTERIOR='white'; CFRAME='ivory'; CTITLE='match'

will specify colour white for the inside of the plot, and ivory to all the area outside this.
The PENTITLE and PENKEY options allow you to define the pens to be used to write the

overall title and the key in each window; the initial default is to use pen !5 and !6 respectively.

422 6 Graphical display

The TPOSITION parameter can be used to specify the position of the title in each window: either
left-justified, right-justified or centred. The initial default is that it is centred.

The GRID option allows you to request grid lines to be drawn in particular directions and
planes (for all the windows listed by the WINDOW parameter). For example the setting xy requests
lines in the xy plane running from the x-axis (that is, parallel to the y-axis), and the setting yx
requests lines in the xy plane running from the y-axis (that is, parallel to the x-axis); so you can
set both of these to obtain box markings in the xy plane. The PENGRID option specifies the pen
to be used for the grid lines in each window; the initial default is to use pen !4. You must use
the RESET option if you want to restore these pen numbers to the initial defaults. (Genstat does
not allow you to set negative pen numbers explicitly.) The BOX parameter allows you to put a
box around the window in plots other than surface plots; the initial default is to omit this. The
box for a surface plot is controlled by the BOXSURFACE option, and can either be a full box
enclosing the whole graph, or a bounded box enclosing just the surface; the initial default is that
no box is drawn. The BOXKEY parameter can request that either a full or a bounded box be drawn
around each key; the initial default is to omit the box. Finally, the BOXFRAME option controls
whether or not a box is drawn around the entire frame; the initial default is to include the box.

The SCALING parameter enables you to request that scaling of the x-, y- or z-axes should be
equal in each window. For example, the xyequal setting ensures that the x- and y-axes are
scaled identically, the setting xyzequal ensures that all the axes have the same scaling, and so
on.

The AXES parameter allows you to specify the identifier of an oblique axis (defined by the
AXIS directive; see 6.9.7) that should be included in a window. If you want to include several
axes, you can specify a pointer containing the identifiers of the required axes.

The current FRAME settings for a particular window can be saved in a pointer supplied by the
SAVE parameter. The elements of the pointer are labelled to identify the components, as shown
in Example 6.9.3.

Example 6.9.3

 2 FRAME 1; YLOWER=0.0; XUPPER=1.0; SAVE=Win1
 3 PRINT [ORIENTATION=across; RLWIDTH=18] Win1[]

 Win1['grid']
 Win1['boxframe'] include
Win1['fbackground'] *
 Win1['ylower'] 0
 Win1['yupper'] 1.000
 Win1['xlower'] 0
 Win1['xupper'] 1.000
 Win1['ymlower'] 0.1000
 Win1['ymupper'] 0.07000
 Win1['xmlower'] 0.1200
 Win1['xmupper'] 0.05000
 Win1['background'] -1
 Win1['box'] include
 Win1['boxsurface'] full
 Win1['boxkey'] bounded
 Win1['pentitle'] -5
 Win1['penkey'] -6
 Win1['pengrid'] -4
 Win1['scaling']
 Win1['tposition'] centre
 Win1['cinterior'] -1
 Win1['cframe'] -1
 Win1['ctitle'] -1

An alternative to FRAME, for setting up a plot-matrix of windows, is to use the FFRAME
procedure. This uses FRAME internally to define windows in either a rectangular, square,

6.9 The environment for high-resolution graphics 423

lowersymmetric, uppersymmetric or diagonal pattern.

6.9.4 The XAXIS directive

There is a definition for the axes associated with each Genstat graphics window, which specifies
how the axes are to be drawn when graphical output is produced in that window. The default
definition for each set of axes requires some of the features to be determined from the data, as
described below. Others have fixed defaults that are independent of the data. The XAXIS
directive can be used to override the default action and specify particular aspects of the x-axis
explicitly. Similarly, directives YAXIS (6.9.5) and ZAXIS (6.9.6) modify the y- and z-axis
definitions, respectively.

XAXIS directive
Defines the x-axis in each window for high-resolution graphics.

Option
RESET = string token Whether to reset the axis definition to the default values

(no, yes); default no

Parameters
WINDOW = scalars Numbers of the windows
TITLE = texts Title for the axis
TPOSITION = string tokens Position of title (middle, end)
TDIRECTION = string tokens Direction of title (parallel, perpendicular)
LOWER = scalars Lower bound for axis
UPPER = scalars Upper bound for axis
MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along the axis (variate)
MPOSITION = string tokens Positioning of the tick marks on the axis (inside,

outside, across)
LABELS = texts or variates Labels at each major tick mark
LPOSITION = string tokens Position of the axis labels (inside, outside)
LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)
LROTATION = scalars or variates Rotation of the axis labels
YORIGIN = scalars Position on y-axis at which the axis is drawn
ZORIGIN = scalars Position on z-axis at which the axis is drawn
PENTITLE = scalars Pen to use to write the axis title
PENAXIS = scalars Pen to use to draw the axis
PENLABELS = scalars Pen to use to write the axis labels
ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,

omit)
ACTION = string tokens Whether to display or hide the axis (display, hide)
TRANSFORM = string tokens Transformed scale for the axis (identity, log, log10,

logit, probit, cloglog, square, exp, exp10,
ilogit, iprobit, icloglog, root); default iden

LINKED = scalars Linked axis whose definitions should be used for this
axis in a 2-dimensional graph; default * i.e. none

MLOWER% = scalars How large a margin to set between the lowest x-value
and the lower value of the axis, if not set explicitly by
LOWER (expressed as a percentage of the range of the x-
values)

424 6 Graphical display

MUPPER% = scalars How large a margin to set between the largest x-value
and the upper value of the axis, if not set explicitly by
UPPER (expressed as a percentage of the range of the x-
values)

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at
the marks

DREPRESENTATION = scalars, variates or texts
Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks
(decimal, engineering, scientific); default deci

YOMETHOD = string tokens Method to use to set the position of the origin on the y-
axis if not set explicitly by YORIGIN (upper, lower,
center, centre)

ZOMETHOD = string tokens Method to use to set the position of the origin on the z-
axis if not set explicitly by ZORIGIN (upper, lower,
center, centre)

REVERSE = string tokens Whether to reverse the axis direction to run from upper
to lower instead of the default lower to upper (yes, no);
default no

SAVE = pointers Saves details of the current settings for the axis
concerned

All the parameters of XAXIS are relevant when using DGRAPH (6.2.1), but for other directives
only some of the parameters are used.

The WINDOW parameter specifies the window whose axis definition is to be altered. WINDOW
can be set to a list of window numbers, in which case the other parameter lists are cycled in
parallel, in the usual way. By default, only those aspects specified by subsequent parameter lists
are modified; any parameters that are not set will retain their current settings. Alternatively, you
can specify option RESET=yes to reset the values of any parameters that are not set for each
window, back to the default values that are set up by Genstat at the start of a job.

The LOWER and UPPER parameters specify the lower and upper bounds for the axis. By default,
Genstat derives suitable axis bounds from the data, as described for the appropriate directive.
You can obtain an inverted scale by setting parameter REVERSE=yes. The values specified with
these parameters are on the scale of the data values that are plotted, and are independent of the
normalized device coordinates used to define the window size in FRAME (6.9.3). The MLOWER%
parameter controls the size of margin that is provided between the lower value of the axis and
the smallest x-value, if the lower axis value is not set explicitly by LOWER. This is expressed as
a percentage of the range of the x-values, and has the initial default of 5%. Similarly the
MUPPER% parameter controls the size of the upper margin.

The YORIGIN parameter determines the value on the y-axis through which the axis is drawn.
If its value is outside the y-axis bounds, the upper or lower bound is adjusted so that the axis will
extend up to the specified origin. This applies whether you have set the bounds explicitly or have
left Genstat to calculate them from the data. If YORIGIN is not set, the YOMETHOD parameter can
specify how the position should be determined: either at the upper value on the y-axis, or the
lower value, or in the centre. The initial default (if neither of these parameters has been
specified) is to put the axis at the bottom of the y-axis, which will be the lower value unless the
scale is reversed. The ZORIGIN and ZOMETHOD parameters set the position of the origin on the
z-axis in a similar way.

You can specify a title for the axis using the TITLE parameter. This is limited to a single line
of characters. The TPOSITION parameter controls whether the title is placed in the middle or at
the end of the axis, and the TDIRECTION parameter controls whether it is written parallel or

6.9 The environment for high-resolution graphics 425

perpendicular to the axis.
The axis is marked with a scale, determined automatically so that tick marks are evenly spaced

and positioned to give "round" numbers for the scale values. You can set the MARKS parameter
to a scalar to define the increment between tick marks. For example, setting MARKS=1.5 with
bounds 10 and 2 causes tick marks to appear at 2, 3.5, 5, 6.5, 8 and 9.5. The interval must be a
positive number, irrespective of the values of the bounds. Alternatively, you can set MARKS to
a variate (with more than one value) to specify the actual positions of the tick marks on the axis.
Any values that lie outside the axis bounds are ignored. The scale values printed next to the tick
marks use a format that is determined automatically from the values, but if you set MARKS to a
variate it will use the number of decimals specified in the variate declaration. If MARKS is unset
or set to a scalar, you can use the NSUBTICKS parameter to specify a number of "subticks" to be
drawn between each of the (major) tick marks.

When you set MARKS, you can also use the LABELS parameter to specify a set of labels to print
at the (major) axis marks, instead of the numbers. For example,

TEXT [VALUES=Mon,Tues,Wed,Thur,Fri,Sat,Sun] Day
VARIATE [VALUES=1...31] Month
XAXIS 1; MARKS=Month; LABELS=Day

The strings within the text are cycled if necessary, so the number of strings can be less than the
number of tick marks. The DECIMALS parameter can set the number of decimal places to use if
you are printing numbers at the marks. If the numbers represent dates or times, you should
specify their formats using the DREPRESENTATION parameter (see 2.1.5). By default, numbers
are printed in decimal form. If you would prefer scientific format you can set parameter
VREPRESENTATION=scientific; numbers are then printed as a decimal number with absolute
value less than 10, followed by an exponent (e.g. 3.4567 E4 for 34567). Alternatively, you can
set VREPRESENTATION=engineering to use engineering format; the decimal number then has
an absolute value less than 10000, so the exponent is a multiple of 3 (e.g. 34.567 E3 for 34567).
With scientific or engineering formats, the DECIMALS parameter sets the number of significant
figures to use rather than the number of decimal places.

The MPOSITION parameter controls the positioning of the tick marks, which can be drawn on
the inside or the outside of the axis, or can be drawn across the axis. With the outside setting,
the tick marks are drawn towards the outside of the plot; that is below the axis if the axis is in
the lower half of the plot, or above the axis if it is in the top half of the plot. The aim is then to
position the tick marks away from the main part of the plot, so that they interfere with the plotted
points as little as possible. With the inside setting, the marks are drawn on the opposite side
(that is, to the inside of the plot), while the across setting draws them across the axis. Similarly,
the positioning of the scale markings or labels is controlled by the LPOSITION parameter, with
settings inside or outside. The LDIRECTION parameter controls whether the scale markings
or labels are written parallel or perpendicular to the axis. Alternatively, you can use the
LROTATION parameter to specify the direction of the labels more precisely, as a rotation in
degrees from the horizontal (i.e. parallel) direction. If LROTATION is specified, any setting of
LDIRECTION is ignored.

Setting MARKS=* will return to the default positioning of the tick marks. Setting LABELS=*
will switch off any labels previously specified. Setting MPOSITION=* will switch off any tick
marks, and setting LPOSITION=* or LDIRECTION=* will switch off any labels.

The TRANSFORM parameter allows you to transform the scale of the axis. The tick marks are
still defined and labelled according to the original scale, but their physical positions on the graph
are transformed. So, for example, with TRANSFORM=log10, the equal physical distance between
1 and 10 would be the same as the distance between 10 and 100. The settings are the same as the
names of the equivalent Genstat functions, with the addition of exp10 for the antilog
transformation (i.e. 10x), and square for x2.

There are three parameters to control the pens to be used to draw the axis. These are

426 6 Graphical display

PENTITLE, PENAXIS and PENLABEL, specifying the pen for the title, the axis and the labelling,
respectively. The initial default is to use pens !1, !2 and !3 in every window. These pens are
given negative numbers to allow them to be distinguished from the pens used for the contents
of the plot. They are initially set up to use colour black, line style 1, thickness 1 and size 1. You
can thus control which pens are used for drawing the axis in each window, and the attributes of
those pens. For example, if no XAXIS statement has yet been given,

PEN !1; LINESTYLE=4; COLOUR=2

will request that the titles in every window should be written in line style 4 and colour 2; while

PEN 29; LINESTYLE=3; COLOUR=4
XAXIS 1; PENAXIS=29

will change the appearance of just the x-axis in window 1, as pen 29 is not used for the other
windows. You should of course be careful of side-effects when changing the pen numbers. For
example, pen 29 may also have been modified for use in a DGRAPH statement and other attributes
may have been set that are not wanted when drawing the axis. You must use the RESET option
if you want to restore these pen numbers to the initial defaults. (Genstat does not allow you to
set negative pen numbers explicitly.)

The ARROWHEAD parameter controls whether the axis is drawn with an arrowhead at the end.
You may sometimes wish to use the axis definitions merely to control the positioning of the

plot in the x-direction (using the UPPER and LOWER parameters), or you may wish to hide the axis
temporarily in case it is obscuring information in the plot. You can do this by setting parameter
ACTION=hide.

Axis annotation is plotted in the margins specified by the FRAME directive (6.9.3). You may
wish to reduce the size of these margins if you have defined axes that use less space, for example
by keeping within the area of the graph itself, or by omitting titles or labels. Space can thus be
regained and used for plotting data. However, if the margins are too small the axis annotation
may be "clipped" at the boundaries of the margins; if this happens, you can use FRAME to
increase the margin size. The margins are used by DGRAPH (6.2.1), DHISTOGRAM (6.3.1) and
DCONTOUR (6.4.1), but they are ignored by other directives.

The LINKED parameter is useful when you have several related plots in different windows
within the frame. If, for example, you set LINKED=n, the attributes of the current x-axis will all
be taken (at the time of plotting) from the definition of the x-axis for any 2-dimensional graph
in window n. Also, you can edit the attributes of all the linked axes simultaneously in the
graphics viewer in Genstat for Windows.

The current settings of the axis for a particular window can be saved in a pointer supplied by
the SAVE parameter. The SAVE parameter The elements of the pointer are labelled to identify the
components, as shown in Example 6.9.4.

Example 6.9.4

 2 XAXIS 7; TITLE='x-axis'; LOWER=2; UPPER=10; MARKS=1.5; SAVE=Axes7
 3 PRINT [ORIENTATION=across; RLWIDTH=19] Axes7[]

 Axes7['title'] x-axis
 Axes7['tposition'] middle
 Axes7['tdirection'] parallel
 Axes7['lower'] 2.00
 Axes7['upper'] 10.00
 Axes7['marks'] 1.500
 Axes7['mposition'] outside
 Axes7['labels']
 Axes7['lposition'] outside
 Axes7['ldirection'] parallel
 Axes7['lrotation'] *
 Axes7['nsubticks'] 0
 Axes7['yorigin'] *
 Axes7['zorigin'] *

6.9 The environment for high-resolution graphics 427

 Axes7['pentitle'] -1
 Axes7['penaxis'] -2
 Axes7['penlabels'] -3
 Axes7['arrowhead'] omit
 Axes7['action'] display
 Axes7['transform'] identity
 Axes7['linked'] *
 Axes7['mlower%'] 5.000
 Axes7['mupper%'] 5.000
 Axes7['decimals'] *
Axes7['drepresentation'] *
Axes7['vrepresentation'] decimals
 Axes7['yomethod'] *
 Axes7['zomethod'] *
 Axes7['reverse'] no

The settings are those for the axis itself, so you should check that the axis is not linked to one
in another window. (The 'linked' element contains the window number, or a missing value
there is no link.) This facility is of most use within procedures, where you may wish to check or
modify particular axis settings before constructing complicated graphs. Also, the DKEEP
directive (6.9.10) allows you to extract the actual bounds used when plotting; these will be the
bounds determined from the data if none have been defined explicitly by XAXIS.

6.9.5 The YAXIS directive

YAXIS directive
Defines the y-axis in each window for high-resolution graphics.

Option
RESET = string token Whether to reset the axis definition to the default values

(no, yes); default no

Parameters
WINDOW = scalars Numbers of the windows
TITLE = texts Title for the axis
TPOSITION = string tokens Position of title (middle, end)
TDIRECTION = string tokens Direction of title (parallel, perpendicular)
LOWER = scalars Lower bound for axis
UPPER = scalars Upper bound for axis
MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along the axis (variate)
MPOSITION = string tokens Positioning of the tick marks on the axis (inside,

outside, across)
LABELS = texts or variates Labels at each major tick mark
LPOSITION = string tokens Position of the axis labels (inside, outside)
LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)
LROTATION = scalars or variates Rotation of the axis labels
NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a

variate)
XORIGIN = scalars Position on x-axis at which the axis is drawn
ZORIGIN = scalars Position on z-axis at which the axis is drawn
PENTITLE = scalars Pen to use to write the axis title
PENAXIS = scalars Pen to use to draw the axis

428 6 Graphical display

PENLABELS = scalars Pen to use to write the axis labels
ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,

omit)
ACTION = string tokens Whether to display or hide the axis (display, hide)
TRANSFORM = string tokens Transformed scale for the axis (identity, log, log10,

logit, probit, cloglog, square, exp, exp10,
ilogit, iprobit, icloglog, root); default iden

LINKED = scalars Linked axis whose definitions should be used for this
axis in a 2-dimensional graph; default * i.e. none

MLOWER% = scalars How large a margin to set between the lowest y-value
and the lower value of the axis, if not set explicitly by
LOWER (expressed as a percentage of the range of the y-
values)

MUPPER% = scalars How large a margin to set between the largest y-value
and the upper value of the axis, if not set explicitly by
UPPER (expressed as a percentage of the range of the y-
values)

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at
the marks

DREPRESENTATION = scalars, variates or texts
Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks
(decimal, engineering, scientific); default deci

XOMETHOD = string tokens Method to use to set the position of the origin on the x-
axis if not set explicitly by XORIGIN (upper, lower,
center, centre)

ZOMETHOD = string tokens Method to use to set the position of the origin on the z-
axis if not set explicitly by ZORIGIN (upper, lower,
center, centre)

REVERSE = string tokens Whether to reverse the axis direction to run from upper
to lower instead of the default lower to upper (yes, no);
default no

SAVE = pointers Saves details of the current settings for the axis
concerned

The syntax of YAXIS is identical to that of XAXIS (6.9.4), except that YAXIS has XORIGIN and
XOMETHOD parameters which replaces the YORIGIN and YOMETHOD parameters of XAXIS. All
the parameters are relevant when using DGRAPH (6.2.1), but for other directives only some of the
parameters are used.

As in XAXIS, the WINDOW parameter specifies the window whose axis definition is to be
altered. By default, only those aspects specified by subsequent parameter lists are modified, but
you can specify option RESET=yes to reset the values of any parameters that are not set for each
window, back to the default values that are set up by Genstat at the start of a job. The LOWER,
UPPER, MLOWER% and MUPPER% parameters again specify the lower and upper bounds for the
axis, the REVERSE parameter can reverse the axis, and the TITLE, TPOSITION and TDIRECTION
parameter can define a title for the axis.

The XORIGIN parameter determines the value on the x-axis through which the axis is drawn.
If its value is outside the x-axis bounds, the upper or lower bound is adjusted so that the axis will
extend up to the specified origin. This applies whether you have set the bounds explicitly or have
left Genstat to calculate them from the data. If XORIGIN is not set, the XOMETHOD parameter can
specify how the position should be determined: either at the upper value on the x-axis, or the

6.9 The environment for high-resolution graphics 429

lower value, or in the centre. The initial default (if neither of these parameters has been
specified) is to put the axis at the left-hand end of the x-axis, which will be the lower value
unless the scale is reversed. The ZORIGIN and ZOMETHOD parameters set the position of the
origin on the z-axis in a similar way, with the initial default that the axis is at the bottom of the
z-axis.

The MARKS, NSUBTICKS, LABELS, DECIMALS, DREPRESENTATION and VREPRESENTATION
parameters also operate as in XAXIS, to specify the markings on the axis, and their associated
labels. The MPOSITION, LPOSITION, LDIRECTION and LROTATION parameters again control
the positioning of the tick marks and labels. For a y-axis, the outside setting implies that the
tick marks are drawn to the left of the axis if the axis is on the left-half side of the plot, or to the
right of the axis if it is on the right-hand side. As in XAXIS, the TRANSFORM parameter allows
you to transform the physical scale of the axis on the graph.

The ARROWHEAD parameter again controls whether the axis is drawn with an arrowhead at the
end, and parameters PENTITLE, PENAXIS and PENLABEL specify the to be used for the title, the
axis and the labelling, respectively. ACTION allows you to hide the axis, LINKED allows you to
take all the axis settings from a (linked) axis in another window, and SAVE allows you to save
the current settings defined for the axis. Further details are given in the description of XAXIS
(6.9.4).

6.9.6 The ZAXIS directive

ZAXIS directive
Defines the z-axis in each window for high-resolution graphics.

Option
RESET = string token Whether to reset the axis definition to the default values

(no, yes); default no

Parameters
WINDOW = scalars Numbers of the windows
TITLE = texts Title for the axis
TPOSITION = string tokens Position of title (middle, end)
TDIRECTION = string tokens Direction of title (parallel, perpendicular)
LOWER = scalars Lower bound for axis
UPPER = scalars Upper bound for axis
MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along the axis (variate)
MPOSITION = string tokens Positioning of the tick marks on the axis (inside,

outside, across)
LABELS = texts or variates Labels at each major tick mark
LPOSITION = string tokens Position of the axis labels (inside, outside)
LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)
LROTATION = scalars or variates Rotation of the axis labels
NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a

variate)
XORIGIN = scalars Position on x-axis at which the axis is drawn
YORIGIN = scalars Position on y-axis at which the axis is drawn
PENTITLE = scalars Pen to use to write the axis title
PENAXIS = scalars Pen to use to draw the axis
PENLABELS = scalars Pen to use to write the axis labels

430 6 Graphical display

ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,
omit)

ACTION = string tokens Whether to display or hide the axis (display, hide)
MLOWER% = scalars How large a margin to set between the lowest z-value

and the lower value of the axis, if not set explicitly by
LOWER (expressed as a percentage of the range of the z-
values)

MUPPER% = scalars How large a margin to set between the largest z-value
and the upper value of the axis, if not set explicitly by
UPPER (expressed as a percentage of the range of the z-
values)

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at
the marks

DREPRESENTATION = scalars, variates or texts
Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks
(decimal, engineering, scientific); default deci

XOMETHOD = string tokens Method to use to set the position of the origin on the x-
axis if not set explicitly by XORIGIN (upper, lower,
center, centre)

YOMETHOD = string tokens Method to use to set the position of the origin on the y-
axis if not set explicitly by YORIGIN (upper, lower,
center, centre)

REVERSE = string tokens Whether to reverse the axis direction to run from upper
to lower instead of the default lower to upper (yes, no);
default no

SAVE = pointers Saves details of the current settings for the axis
concerned

The syntax of ZAXIS is identical to that of XAXIS (6.9.4), except that ZAXIS has an XORIGIN
parameter instead of the ZORIGIN parameter of XAXIS. All parameters are relevant when using
D3GRAPH (6.2.2), but for other directives only some of the parameters are used.

The XORIGIN parameter determines the value on the x-axis through which the axis is drawn.
If its value is outside the x-axis bounds, the upper or lower bound is adjusted so that the axis will
extend up to the specified origin. This applies whether you have set the bounds explicitly or have
left Genstat to calculate them from the data. If XORIGIN is not set, the XOMETHOD parameter can
specify how the position should be determined: either at the upper value on the x-axis, or the
lower value, or in the centre. The initial default (if neither of these parameters has been
specified) is to put the axis at the left-hand end, which will be the lower value unless the scale
is reversed.

6.9.7 The AXIS directive

AXIS directive
Defines an oblique axis for high-resolution graphics.

Option
RESET = string token Whether to reset the axis definition to the default values

(yes, no); default no

6.9 The environment for high-resolution graphics 431

Parameters
IDENTIFIER = identifiers Name to be used inside Genstat to identify each axis
TITLE = texts Title for each axis
TPOSITION = string tokens Position of title (middle, end)
TDIRECTION = string tokens Direction of title (parallel, perpendicular)
LOWER = scalars Lower bound for each axis
UPPER = scalars Upper bound for each axis
MARKS = scalars or variates Distance between each tick mark (scalar) or positions of

the marks along each axis (variate)
MPOSITION = string tokens Positioning of the tick marks on each axis (inside,

outside, across)
LABELS = texts or variates Labels at each major tick mark
LPOSITION = string tokens Position of the axis labels (inside, outside)
LDIRECTION = string tokens Direction of the axis labels (parallel,

perpendicular)
LROTATION = scalars or variates Rotation of the axis labels
NSUBTICKS = scalars Number of subticks per interval (ignored if MARKS is a

variate)
XZERO = scalars Position of the axis origin in the x-dimension
YZERO = scalars Position of the axis origin in the y-dimension
ZZERO = scalars Position of the axis origin in the z-dimension
XSTEP = scalars Step in the x-direction corresponding to a step of length

one along the axis
YSTEP = scalars Step in the y-direction corresponding to a step of length

one along the axis
ZSTEP = scalars Step in the z-direction corresponding to a step of length

one along the axis
PENTITLE = scalars Pen to use to write the axis title
PENAXIS = scalars Pen to use to draw the axis
PENLABELS = scalars Pen to use to write the axis labels
ARROWHEAD = string tokens Whether the axis should have an arrowhead (include,

omit)
ACTION = string tokens Whether to display or hide the axis (display, hide)
TRANSFORM = string tokens Transformed scale for the axis marks and labels

(identity, log, log10, logit, probit, cloglog,
square, exp, exp10, ilogit, iprobit, icloglog,
root); default iden

DECIMALS = scalars or variates Number of decimal places to use for numbers printed at
the marks

DREPRESENTATION = scalars or variates
Format to use for dates and times printed at the marks

VREPRESENTATION = string tokens Format to use for numbers printed at the marks
(decimal, engineering, scientific); default deci

SAVE = pointers Saves details of the current settings for the axis
concerned

The AXIS directive allows you to define an oblique axis for high-resolution graphics. You use
the IDENTIFIER parameter to supply an identifier to store the axis definition. You can then use
this as a setting of the AXES parameter of the FRAME directive (6.9.3) to display the axis in a
particular graphics window. The position of the axis origin in the x-, y- and z-dimensions of the

432 6 Graphical display

window is specified by the parameters XZERO, YZERO and ZZERO, respectively. The XSTEP,
YSTEP and ZSTEP parameters define the size of the steps in the x-, y- and z-directions that
corresponds to a step of length one along the axis. These six parameters thus define the location
and direction of the axis.

The TRANSFORM parameter allows you to transform the marks and labels on the axis. The
location and direction of the axis are defined according to the original scale, by the XZERO,
YZERO, ZZERO, XSTEP, YSTEP and ZSTEP parameters, as usual. The coordinates along the axis
are then transformed, and labelled according to the transformed scale. So, for example, with
TRANSFORM=log10, the original coordinates 1, 10 and 100 would be labelled 0, 1 and 2. The
settings are the same as the names of the equivalent Genstat functions, with the addition of
exp10 for the antilog transformation (i.e. 10x), and square for x2.

The other parameters operate as in the XAXIS directive (6.9.4).

6.9.8 The PEN directive

PEN directive
Defines the properties of "pens" for high-resolution graphics.

Options
RESET = string token Whether to reset the pen definitions to their default

values (yes, no); default no
BOXUNITS = string token Units to use for text boxes (characters, distance);

the default is to retain the existing setting

Parameters
NUMBER = scalars Numbers associated with the pens
COLOUR = texts or scalars Colour to use with each pen unless otherwise specified

by the CSYMBOL, CLINE, CFILL or CAREA parameters
LINESTYLE = texts or scalars Style for line used by each pen when joining points
METHOD = string tokens Method for determining line (point, line,

monotonic, closed, open, fill, spline, polygon)
SYMBOL = texts, scalars, pointers or matrices

Defines the plotting symbol for each pen, by a text or
scalar for a pre-defined symbol, a pointer for a user-
defined symbol, or a matrix to supply a bitmap

LABELS = texts or factors Define labels that will be printed alongside the plotting
symbols

ROTATION = scalars or variates Rotation required for the plotting symbols and labels (in
degrees)

JOIN = string tokens Order in which points are to be joined by each pen
(ascending, given)

BRUSH = scalars Number of the type of area filling used with each pen
when drawing pie charts or histograms

FONT = texts or scalars Font to be used for any text written by each pen
THICKNESS = scalars Thickness with which any lines are drawn by each pen
SIZEMULTIPLIER = scalars or variates

Multiplier used in the calculation of the size in which to
draw symbols and labels by each pen unless otherwise
specified by SMSYMBOL or SMLABEL

CSYMBOL = texts or scalars Colour to use with each pen when drawing symbols
CLINE = texts or scalars Colour to use with each pen when drawing lines

6.9 The environment for high-resolution graphics 433

CFILL = texts or scalars Colour to use with each pen when filling areas inside
hollow symbols

CAREA = texts or scalars Colour to use with each pen when filling areas inside
polygons and bars of histograms

SMSYMBOL = scalars or variates Multiplier used in the calculation of the size in which to
draw symbols by each pen

SMLABEL = scalars or variates Multiplier used in the calculation of the size in which to
draw labels by each pen

DFSPLINE = scalars Number of degrees of freedom to use when
METHOD=spline

YMISSING = string token How to treat missing y-values when METHOD=spline
(break, interpolate)

XMISSING = string token How to treat missing x-values when METHOD=spline
(break, ignore)

YLPOSITION = string token How to position labels in the y-direction with respect to
the points (above, centre, below, automatic)

XLPOSITION = string token How to position labels in the x-direction with respect to
the points (left, centre, right, automatic)

YLSIZE = scalars or variates Sizes of the y-direction of the text boxes into which to
plot labels

XLSIZE = scalars or variates Sizes of the x-direction of the text boxes
YLOFFSET = scalars or variates Offsets in the y-direction of the text boxes
XLOFFSET = scalars or variates Offsets in the x-direction of the text boxes
BARTHICKNESS = scalars Thickness with which any error bars are drawn by each

pen
BARCAPWIDTH = scalars Width of the cap drawn by each pen at the top and

bottom of any error bars
DESCRIPTION = texts Description for points plotted by the pen, to be used by

the Data Information tool in the Graphics Viewer
TSYMBOL = scalars Defines the transparency of symbols drawn by each pen,

on a scale of 0 (opaque) to 255 (completely transparent)
TLINE = scalars Defines the transparency of lines drawn by each pen
TFILL = scalars Defines the transparency to use when filling areas inside

hollow symbols with each pen
TAREA = scalars Defines the transparency to use when filling areas inside

polygons and bars of histograms with each pen
SAVE = pointers Saves details of the current settings for the pen

concerned

Graphical displays are drawn using graphical pens. Certain pens are used by default, or you can
specify other pens, as described in the preceding sections. The attributes of each pen, such as
colour and symbol-type, determine how they are used to generate output. The initial defaults for
each pen are device-specific, and are described at the end of this subsection. The PEN directive
can be used to change these attributes so that you can modify the resulting display. Different
attributes are relevant for different types of output, for example symbols and labels are used only
within DGRAPH and D3GRAPH (and the graphics procedures that use them to construct their plots).

The NUMBER parameter lists the numbers of the pens, in the range 1 to 256 or !1 to !12, that
you wish to redefine. By default, any aspects of these pens that are not set explicitly retain the
values that they had immediately before the PEN statement. Alternatively, you can specify option
RESET=yes to reset their definitions to the default values defined by Genstat at the start of each
job.

434 6 Graphical display

Pens 1 to 256 are used for the information that is plotted in a graph (points, lines, and so on).
In most of the graphics commands, the default is to use these pens in succession for the different
structures that are plotted, so that the various data sets can easily be distinguished. The
negatively numbered pens are used as the initial defaults for the axes and their associated marks
and labels (see XAXIS; 6.9.4), and for gridlines, the overall title and the key (see FRAME; 6.9.3),
or for default gridlines in shade plots (see DSHADE; 6.4.2), or for default outlines in histograms
(see DHISTOGRAM; 6.3.1), bar charts (see BARCHART; 6.3.2) and pie charts (see DPIE; 6.6.1), or
for error bars (see BARCHART; 6.3.2), or for the overall title (see DSTART; 6.8.2). They cannot
be used for any other purposes.

The COLOUR, CSYMBOL, CLINE, CFILL and CAREA parameters specify the colours to be used
by the pen. The COLOUR parameter can be used to define the colour for anything plotted by the
pen, while the other parameters define specific aspects (overriding any setting of COLOUR):
CSYMBOL defines the colour to be used for drawing symbols, CLINE defines the colour for lines,
CFILL defines the colour for filling areas, and CAREA defines the colour for filling areas inside
polygons and bars of histograms. The parameters can be set any of the following: a text
containing the name of one of Genstat's pre-defined colours; a scalar containing a number
defining a colour using the RGB system; or a hexadecimal digit defined in a string of the form
'#rgb', '0xrgb' or '0Xrgb' where rgb are the pairs of hexadecimal digits 00-FF that give
the red, green and blue intensities of the colour respectively. For example, '#FF0000',
'#00FF00' and '#0000FF' give pure red, green and blue respectively. The leading zeros can
be dropped, so '#FF00' and '#FF' also define green and blue respectively. You can use the
RGB function (4.2.12) to construct these colour numbers from their red, green and blue
components: for example

CALCULATE xgold = RGB(255; 215; 0)
PEN 2; CSYMBOL=xgold

sets xgold to the colour gold (which has red, green and blue values 255, 215 and 0 respectively)
and uses this as the colour for symbols drawn in future by pen 2. The numbers give you access
to the complete spectrum supported by most colour graphics devices. (Note, though, that they
will automatically be mapped onto a grey scale if the device is defined with a grey-scale palette;
see DEVICE). Alternatively, the pre-defined colours define the standard colours used by many
web browsers, and mainly use the same names. The names, and their corresponding red, green
and blue values, are listed in 6.9.9. They can be given in either upper or lower case, or in any
mixture, but they must not be abbreviated.

There are two special strings that can be used for colours. The string 'background' uses the
colour defined in the BACKGROUND option or parameter of FRAME. The string 'match' which
can be used with CFILL to take the colour from CSYMBOL, or with CAREA to take the colour from
CLINE. For example,

PEN 1,2,3; COLOUR='red','blue','green'; CFILL='match'
PEN 4,5,6; CLINE='red','blue','green'; CAREA='match'

plots filled symbols in the same colour as their outlines for pens 1 to 3, and filled areas in the
same colour as their outlines for pens 4 to 5. Note, COLOUR sets all of CSYMBOL, CLINE and
CAREA to the same value, so you only need to set CFILL='match' to set all colours of a pen to
the same value. Also, if you want all your symbols filled, you could specify

PEN 1...256; CFILL='match'

You can also use the number !1 to specify the background colour. A missing value represents
a hollow symbol for CFILL or the background colour for CSYMBOL, CLINE and CAREA.

The TSYMBOL, TLINE, TFILL and TAREA parameters accompany the parameters CSYMBOL,
CLINE, CFILL and CAREA, respectively, and define the transparency of the corresponding
colours. Their values are on a scale of 0 (opaque) to 255 (completely transparent). The pens have
initial defaults of 0.

6.9 The environment for high-resolution graphics 435

Figure 6.9.8a

The SYMBOL parameter defines the symbol that is drawn at each point, for example by
DGRAPH. You can mark different points with different symbols (for example to indicate
groupings in the data) by setting the PEN parameter of DGRAPH to a variate or factor specifying
a pen with the appropriate symbol for each point.

Genstat provides a choice of standard symbols that can be specified either by giving the name
(in a text with a single value), or the number (in a scalar). See Figure 6.9.8a and the list below.

1 'Cross'

2 'Circle'

3 'Plus'

4 'Star'

5 'Square'

6 'Diamond'

7 'Triangle'

8 'Nabla'

9 'Asterisk'

10 'Minus'

11 'Heavyminus'

12 'Heavyplus'

13 'Heavycross'

14 'Smallcircle'

15 'Tinycircle'

16 'Female'

17 'Male'

18 'Rhombus'
19 'Circlecross'
20 'Circleplus'

21 'Squarecross'

22 'Squareplus'

!1 'Sphere'

!2 'Cone'

!3 'Cylinder'
!4 'Cube'

The final four symbols (numbered !1 to !4) are intended mainly for 3-dimensional plots, and
may not be available on some devices. You can set SYMBOL='none' or SYMBOL=0 if you do not
want to plot symbols at the data points, as for example if you only want to draw a line through
the points. You can also use SYMBOL=0 together with the LABELS parameter (described below)
to plot a character at the data points instead of a symbol. For example

PEN 1; SYMBOL='none'; LABEL='A'

or

PEN 1; SYMBOL=0; LABEL='A'

will identify the points plotted by pen 1 with the letter A.
To define a symbol of your own, you can set SYMBOL to a pointer containing a pair of variates

defining the coordinates of a set of points to be joined by straight line segments. The points
should be within a notional square with bounds !1.0 to 1.0 in each direction. The square is
centred on the data point, and scaled to the same size as the standard symbols. Missing values
can be included in the coordinates, to use separate pen strokes to draw the line segments. The
final possibility is to set SYMBOL to a matrix of RGB colour values, representing a bitmap.

User-defined symbols are illustrated in Example 6.9.8a.

436 6 Graphical display

Figure 6.9.8b

Example 6.9.8a

FRAME [GRID=xy] 1...4; YLOWER=0.75; YUPPER=1.0; \
 XLOWER=0.0,0.25,0.5,0.75; XUPPER=0.25,0.5,0.75,1.0; \
 YMLOWER=0.05; YMUPPER=0.01; XMLOWER=0.05; XMUPPER=0.01;\
 PENGRID=29
PEN 29; LINESTYLE=7; COLOUR='black'
XAXIS 1,2,3,4; LOWER=-1.2,0.8; UPPER=1.2,3.2; MARKS=1
YAXIS 1,2,3,4; LOWER=-1.2,0.8; UPPER=1.2,3.2; MARKS=1
VARIATE Diamond[1]; VALUES=!(-1,0,1,0,-1)
& Diamond[2]; VALUES=!(0,-0.5,0,0.5,0)
PEN 1; COLOUR='black'; METHOD=line; SYMBOL=0; JOIN=given; THICKNESS=2
& 2; COLOUR='black'; SYMBOL=Diamond; SMSYMBOL=2
DGRAPH [WINDOW=1; KEYWINDOW=0] Diamond[1]; Diamond[2]; PEN=1
& [WINDOW=2; SCREEN=keep] 1,2,3; 1,3,2; PEN=2
VARIATE Arrow[1]; VALUES=!(0.0,1.0,0.75,*,1.0,0.75)
& Arrow[2]; VALUES=!(0.0,0.0,-0.25,*,0.0,0.25)
PEN 3; COLOUR='black'; SYMBOL=Arrow; SIZE=!(2,2.5,3,2);\
 ROTATION=!(0,45,90,180); SMSYMBOL=3
DGRAPH [WINDOW=3; KEYWINDOW=0; SCREEN=keep] Arrow[1]; Arrow[2]; PEN=1
& [WINDOW=4] !(1.0,2.7,2.0,1.6); !(1.4,1.8,2.2,2.6); PEN=3

The definition of the arrow symbol
in lines 15 and 16 illustrates how
missing values can be included so
that separate pen strokes are used
draw line segments. The plot
produced by this example is shown
in Figure 6.9.8b.

You can mark different points
with different symbols (for example to indicate groupings in the data) by setting the PEN
parameter of DGRAPH (6.2.1) to a variate or factor specifying a pen with the appropriate symbol
for each point.

You can also use the LABELS parameter to label each point with a string or a number. The
LABELS parameter can be set to a single string to plot the same label at every point, or text
structure with same number of values as the Y and X variates that are being plotted.
Alternatively LABELS can be set to a factor; the factor labels are then used, if available,
otherwise the levels. This provides another means of representing grouped data. The positioning
of the labels with respect to the points is controlled by the YLPOSITION and XLPOSITION
parameters. The initial default is to determine the positions automatically according to their type
(e.g. labels for points, or for tick marks on the y-axis, or on the x-axis, and so on).

The graphical symbols are drawn so that they are centred at the specified position. If LABELS
are specified they are aligned alongside the markers, unless you have set SYMBOLS=0 to suppress
the markers, in which case the labels start from the specified (x,y) position. For compatibility
with previous releases of Genstat you can also set SYMBOLS to a factor or text, which has the
same effect as setting LABELS with SYMBOLS=0.

The Genstat Graphics Viewer with Genstat for Windows has a "Data Information" tool that
allows you to display information about each point when you place the cursor over the point. If
you want to replace the default information, you can set the DESCRIPTION parameter to a text
(with one line for each point) containing your own information.

The METHOD parameter specifies the type of object to be plotted: points, lines or filled
polygons. The initial default for every pen, METHOD=point, will result in points being plotted
using the corresponding symbols, labels, colours and fonts. Various types of line can be drawn
through the plotted points; either straight lines (line and polygon) or smooth curves
(monotonic, open, closed and spline). The line and polygon settings differ in that, with

6.9 The environment for high-resolution graphics 437

Figure 6.9.8c

polygon, a line is drawn also to connect the first and last points. The monotonic setting
specifies that a smooth single-valued curve is to be drawn through the data points. The name is
derived from the requirement that the x-values (rather than the fitted curve) must be strictly
monotonic, so that there is only one y-value for each distinct x-value. To ensure this, a copy of
the data is made and sorted before the curve is fitted. This setting is recommended for plotting
curves fitted to data, for example with FITCURVE. You should ensure that the points are close
enough for the plotted line to be a reasonable approximation. When you know the functional
form of the curve, it may be advantageous to calculate extra points. The open and closed
settings specify that a smooth, possibly multi-valued, curve is to be drawn through the data
points, using the method of McConalogue (1970); the resulting curve is rotationally invariant,
although it is not invariant under scaling. The closed setting connects the last point to the first.
McConalogue's method (open or closed) is more suited to the situation where the plotted curve
is intended to represent the shape of an object. Alternatively, the spline setting plots a
smoothing spline fitted through the points. The DFSPLINE parameter specifies how many
degrees of freedom to use in the spline (initial default 4). The YMISSING parameter controls
whether to break the spline at a missing y-value or to interpolate y-value, and the XMISSING
parameter controls whether to break the spline at a missing x-value or to ignore the point; the
initial default for both parameters is to break the spline. The setting METHOD=fill joins the data
points by straight lines to produce one or more polygons. Each polygon is then shaded in the
style specified by BRUSH (see below). The plotting method also determines how contours will
be drawn, as described in 6.4.1. Also, the combination of SYMBOLS=0 and METHOD=point will
produce no plotting at all (and no warning) within DGRAPH.

If the requested plotting method produces a line through the points, the LINESTYLE parameter
will specify what sort of line is drawn (for example a solid, dotted or dashed line). The type of
style can be specified either by giving the name (in a text with a single value), or the number (in
a scalar).

1 'Solid'

2 'Dot' or '.'
3 'Dash' or '-'
4 'Dotdash' or '.-'
5 'Tightdash' or 'T-'
6 'Longdash' or 'L-'
7 'Shortdash' or 'S-'
8 'Closedot' or 'C-'
9 'Finedot' or 'F.'
10 'Doubledotdash' or '..-'

Each text can all be abbreviated to the minimum
number of characters required to distinguish it from
the earlier styles. Figure 6.9.8c illustrates the line
styles available.

The JOIN parameter controls the order in which
points are connected when lines are to be drawn or
the points define a polygon to be shaded. Given requests that the data are to be plotted in the
order in which they are stored, whereas ascending implies that the data are copied and sorted
so that the x-values are in ascending order before plotting. This parameter is ignored when
METHOD=monotonic, as this requires that the data must always be sorted.

The BRUSH parameter is used on some monochrome devices to controls how areas are shaded
when METHOD is set to fill, or when plotting histograms and pie charts. There are 16 available
patterns indicated by the integers 1 to 16, as shown in Figure 6.9.8d. In general, the higher the
number, the denser the hatching, and the longer such areas take to plot. The device-specific brush
styles are generally faster, and produce smaller output files; however results are not guaranteed

438 6 Graphical display

Figure 6.9.8d

to be the same on every type of device. The CFILL parameter defines which colour is used by
the pen to fill the areas.

The THICKNESS parameter allows you to specify an amount by which the standard thickness
of plotted lines is to be multiplied. This allows you to increase the thickness of lines, perhaps to
highlight some feature of a plot, as illustrated in the contour plot in Figure 6.4.1b. You can also
use thickness to emphasize the axes, by redefining the appropriate pen. For some devices, it is
not possible to control the thickness of plotted lines; the THICKNESS parameter is then ignored.

The default size of characters and symbols is determined from the dimensions of the current
window. The SIZEMULTIPLIER parameter can be used to modify the sizes of both of these, by
specifying a value by which this default size is to be multiplied. Alternatively, you can use the
SMSYMBOL parameter to modify just the symbol size, or the SMLABEL parameter to modify just
the size of characters in labels. For example when plotting a graph in a small window you may
wish to increase the size of annotation in order to make it legible. They can each be set to a
scalar, or to a variate to allow the different points to be scaled in different ways.

The ROTATION parameter controls the angle (in degrees) at which to plot text or user-defined
symbols. The initial setting of zero will produce text "conventionally" orientated. You can set
ROTATION to a scalar value that will apply to all points, or to a variate that allows a different
angle to be used at each point. ROTATION is used in line 18 of Example 6.9.8a to plot a user-
defined symbol at different angles.

The FONT parameter defines the font family to be used by each pen to plot textual information,
for example, in titles, axis annotation, plotting symbols and keys. This can be set to a text
containing the name of a font family, or to a scalar containing an integer between 1 and 25. The
initial default for each pen is to use the default graphics font, which can be defined either by
using menus in the Genstat Client or Graphics Viewer, or by using the DFONT directive (6.9.12).
You can find out the names of the fonts, available to specify in a text, by looking at any of the
controls for specifying fonts in the Client or Graphics Viewer. The integers refer to fonts that
should always be available. You can list these using the DHELP procedure (6.9). Font 1 has a
special status, in that it automatically maps to the currently-defined default graphics font. If you
change the default graphics font, this will be used as the default font in any graphs that are then
displayed or redisplayed, including those that have been stored in Genstat graphics meta files
(i.e. files with the gmf suffix). If you specify a font that is unavailable on your computer, the
default font is used instead.

The current settings of each pen can be saved in a pointer supplied by the SAVE parameter.
The elements of the pointer are labelled to identify the components, as shown in Example 6.9.8b.

Example 6.9.8b

 2 PEN 8; LABELS='observation'; SYMBOL=8; JOIN=given; SAVE=Pen8
 3 PRINT [RLWIDTH=19; ORIENTATION=across] Pen8[]; FIELDWIDTH=18

 Pen8['boxunits'] characters
 Pen8['colour'] 16747520
 Pen8['linestyle'] *
 Pen8['method'] point
 Pen8['symbol'] 8

6.9 The environment for high-resolution graphics 439

 Pen8['labels'] observation
 Pen8['rotation'] 0.00
 Pen8['join'] given
 Pen8['brush'] *
 Pen8['font'] 1
 Pen8['thickness'] 1.00
 Pen8['size'] 1.00
 Pen8['csymbol'] 16747520
 Pen8['cline'] 16747520
 Pen8['cfill'] *
 Pen8['carea'] 16747520
 Pen8['smsymbol'] 1.00
 Pen8['smlabel'] 1.00
 Pen8['dfspline'] 4.00
 Pen8['ymissing'] break
 Pen8['xmissing'] break
 Pen8['ylposition'] automatic
 Pen8['xlposition'] automatic
Pen8['barthickness'] 1.00
 Pen8['barcapwidth'] 1.00
 Pen8['tsymbol'] 0.00
 Pen8['tline'] 0.00
 Pen8['tfill'] 0.00
 Pen8['tarea'] 0.00
 Pen8['fontname'] Arial

Note that the saved values for line style and brush style are missing values. This is how the initial
default settings are represented; the actual values used for these attributes when plotting will
depend on the output device, unless they are set explicitly (as with SYMBOL in this example).

6.9.9 Colours

The names of the standard pre-defined Genstat colours are listed below with their corresponding
red, green and blue values for use e.g. in the RGB function (4.2.12).

Red colors
IndianRed RGB(205; 92; 92)
LightCoral RGB(240; 128; 128)
Salmon RGB(250; 128; 114)
DarkSalmon RGB(233; 150; 122)
LightSalmon RGB(255; 160; 122)
Crimson RGB(220; 20; 60)
Red RGB(255; 0; 0)
FireBrick RGB(178; 34; 34)
DarkRed RGB(139; 0; 0)

Pink colors
Pink RGB(255; 192; 203)
LightPink RGB(255; 182; 193)
HotPink RGB(255; 105; 180)
DeepPink RGB(255; 20; 147)
MediumVioletRed RGB(199; 21; 133)
PaleVioletRed RGB(219; 112; 147)

Orange colors
LightSalmon RGB(255; 160; 122)
Coral RGB(255; 127; 80)
Tomato RGB(255; 99; 71)
OrangeRed RGB(255; 69; 0)
DarkOrange RGB(255; 140; 0)
Orange RGB(255; 165; 0)

Yellow colors
Gold RGB(255; 215; 0)
Yellow RGB(255; 255; 0)
LightYellow RGB(255; 255; 224)

440 6 Graphical display

LemonChiffon RGB(255; 250; 205)
LightGoldenrodYellow RGB(250; 250; 210)
PapayaWhip RGB(255; 239; 213)
Moccasin RGB(255; 228; 181)
PeachPuff RGB(255; 218; 185)
PaleGoldenrod RGB(238; 232; 170)
Khaki RGB(240; 230; 140)
DarkKhaki RGB(189; 183; 107)

Purple colors
Lavender RGB(230; 230; 250)
Thistle RGB(216; 191; 216)
Plum RGB(221; 160; 221)
Violet RGB(238; 130; 238)
Orchid RGB(218; 112; 214)
Fuchsia RGB(255; 0; 255)
Magenta RGB(255; 0; 255)
MediumOrchid RGB(186; 85; 211)
MediumPurple RGB(147; 112; 219)
BlueViolet RGB(138; 43; 226)
DarkViolet RGB(148; 0; 211)
DarkOrchid RGB(153; 50; 204)
DarkMagenta RGB(139; 0; 139)
Purple RGB(128; 0; 128)
Indigo RGB(75; 0; 130)
SlateBlue RGB(106; 90; 205)
DarkSlateBlue RGB(72; 61; 139)

Green colors
GreenYellow RGB(173; 255; 47)
Chartreuse RGB(127; 255; 0)
LawnGreen RGB(124; 252; 0)
Lime RGB(0; 255; 0)
LimeGreen RGB(50; 205; 50)
PaleGreen RGB(152; 251; 152)
LightGreen RGB(144; 238; 144)
MediumSpringGreen RGB(0; 250; 154)
SpringGreen RGB(0; 255; 127)
MediumSeaGreen RGB(60; 179; 113)
SeaGreen RGB(46; 139; 87)
ForestGreen RGB(34; 139; 34)
Green RGB(0; 128; 0)
DarkGreen RGB(0; 100; 0)
YellowGreen RGB(154; 205; 50)
OliveDrab RGB(107; 142; 35)
Olive RGB(128; 128; 0)
DarkOliveGreen RGB(85; 107; 47)
MediumAquamarine RGB(102; 205; 170)
DarkSeaGreen RGB(143; 188; 143)
LightSeaGreen RGB(32; 178; 170)
DarkCyan RGB(0; 139; 139)
Teal RGB(0; 128; 128)

Blue colors
Aqua RGB(0; 255; 255)
Cyan RGB(0; 255; 255)
LightCyan RGB(224; 255; 255)
PaleTurquoise RGB(175; 238; 238)
Aquamarine RGB(127; 255; 212)
Turquoise RGB(64; 224; 208)
MediumTurquoise RGB(72; 209; 204)
DarkTurquoise RGB(0; 206; 209)
CadetBlue RGB(95; 158; 160)
SteelBlue RGB(70; 130; 180)

6.9 The environment for high-resolution graphics 441

LightSteelBlue RGB(176; 196; 222)
PowderBlue RGB(176; 224; 230)
LightBlue RGB(173; 216; 230)
SkyBlue RGB(135; 206; 235)
LightSkyBlue RGB(135; 206; 250)
DeepSkyBlue RGB(0; 191; 255)
DodgerBlue RGB(30; 144; 255)
CornflowerBlue RGB(100; 149; 237)
MediumSlateBlue RGB(123; 104; 238)
RoyalBlue RGB(65; 105; 225)
Blue RGB(0; 0; 255)
MediumBlue RGB(0; 0; 205)
DarkBlue RGB(0; 0; 139)
Navy RGB(0; 0; 128)
MidnightBlue RGB(25; 25; 112)

Brown colors
Cornsilk RGB(255; 248; 220)
BlanchedAlmond RGB(255; 235; 205)
Bisque RGB(255; 228; 196)
NavajoWhite RGB(255; 222; 173)
Wheat RGB(245; 222; 179)
BurlyWood RGB(222; 184; 135)
Tan RGB(210; 180; 140)
RosyBrown RGB(188; 143; 143)
SandyBrown RGB(244; 164; 96)
Goldenrod RGB(218; 165; 32)
DarkGoldenrod RGB(184; 134; 11)
Peru RGB(205; 133; 63)
Chocolate RGB(210; 105; 30)
SaddleBrown RGB(139; 69; 19)
Sienna RGB(160; 82; 45)
Brown RGB(165; 42; 42)
Maroon RGB(128; 0; 0)

White colors
White RGB(255; 255; 255)
Snow RGB(255; 250; 250)
Honeydew RGB(240; 255; 240)
MintCream RGB(245; 255; 250)
Azure RGB(240; 255; 255)
AliceBlue RGB(240; 248; 255)
GhostWhite RGB(248; 248; 255)
WhiteSmoke RGB(245; 245; 245)
Seashell RGB(255; 245; 238)
Beige RGB(245; 245; 220)
OldLace RGB(253; 245; 230)
FloralWhite RGB(255; 250; 240)
Ivory RGB(255; 255; 240)
AntiqueWhite RGB(250; 235; 215)
Linen RGB(250; 240; 230)
LavenderBlush RGB(255; 240; 245)
MistyRose RGB(255; 228; 225)

Grey colors
Gainsboro RGB(220; 220; 220)

LightGray or LightGrey RGB(211; 211; 211)
Silver RGB(192; 192; 192)

DarkGray or DarkGrey RGB(169; 169; 169)

Gray or Grey RGB(128; 128; 128)

DimGray or DimGrey RGB(105; 105; 105)

LightSlateGray or LightSlateGrey
RGB(119; 136; 153)

442 6 Graphical display

SlateGray or SlateGrey RGB(112; 128; 144)

DarkSlateGray or DarkSlateGrey
RGB(47; 79; 79)

Black RGB(0; 0; 0)

In addition the string 'Background' can be used to refer to the background colour that has been
defined (e.g. by FRAME) for the particular part of the screen where the pen is being used. Another
useful setting is the string 'Transparent'. This is used as the initial default for the background
colours of the graphics windows.

The initial defaults for the colours of the pens (6.9.8) defines a standard sequence of colours,
that is also used to set default colours in procedures like AGRAPH. This can be accessed using the
GETRGB procedure.

GETRGB procedure
Gets the RGB values and names of the initial default graphics colours of the Genstat pens
(R.W. Payne).

No options

Parameters
COLOUR = scalars or variates Colour numbers
RGB = scalars or variates RGB values
NAME = texts Names of nearest colours

The COLOUR parameter specifies a scalar or variate containing the pen number(s) whose initial
default colours are required. The RGB parameter saves a scalar or variate containing the
corresponding colours, expressed as RGB values (see PEN). The NAME parameter saves a text
containing the name of the nearest colour.

Example 6.9.9a uses GETRGB to display the first 32 colours in the sequence.

Example 6.9.9a

 2 VARIATE [VALUES=1...32] Ncolour
 3 GETRGB Ncolour; RGB=RGB; NAME=Name
 4 PRINT Ncolour,Name,RGB; DECIMALS=0

 Ncolour Name RGB
 1 Black 0
 2 Red 16711680
 3 LimeGreen 3329330
 4 Blue 255
 5 Aqua 65535
 6 Fuchsia 16711935
 7 Yellow 16776960
 8 DarkOrange 16747520
 9 Chartreuse 8388352
 10 SpringGreen 65407
 11 DodgerBlue 2003199
 12 BlueViolet 9055202
 13 DeepPink 16716947
 14 DimGray 6908265
 15 DarkGray 11119017
 16 IndianRed 13458524
 17 YellowGreen 10145074
 18 SeaGreen 3050327
 19 Turquoise 4251856
 20 DarkSlateBlue 4734347
 21 MediumOrchid 12211667
 22 DarkRed 9109504
 23 Green 32768
 24 Navy 128

6.9 The environment for high-resolution graphics 443

 25 Salmon 16416882
 26 PaleGreen 10025880
 27 MediumSlateBlue 8087790
 28 DarkSlateGray 3100495
 29 Thistle 14204888
 30 Gray 8421504
 31 Silver 12632256
 32 Maroon 8388608

Alternatively, you can define your own sequences of colours using the DCOLOURS procedure.

DCOLOURS procedure
Forms a band of graduated colours for graphics (P.W. Goedhart).

Options
METHOD = string token Type of colour band required (spectral, blackbody,

linear); default line
PLOT = string token What to plot (testgraph); default *

Parameters
START = scalar or text Start value for the colour band; default * gives an

appropriate default for the METHOD concerned
END = scalar, text or variate End value(s) for the colour band; default * gives an

appropriate default for the METHOD concerned
GAMMA = scalar or variate The gamma-correction exponent(s) for the colour band;

default 1
NCOLOURS = scalar or variate Number(s) of colours in the colour band; default 20
RGB = variates Saves the RGB colour values of each colour band
RED = variates Saves the red component of the RGB colour values
GREEN = variates Saves the green component of the RGB colour values
BLUE = variates Saves the blue component of the RGB colour values
TITLE = text General title for each test graph; default forms an

informative title automatically
WINDOW = scalar Window number for each test graph; default 1
SCREEN = string token Whether to clear the screen before plotting each test

graph or to continue plotting on the old screen (clear,
keep); default clea

Procedure DCOLOURS creates a colour band by interpolating between start and end colour values.
You can save the RGB colours of the band, in a variate, using the RGB parameter. Alternatively,
you can save the red, green and blue components of the colours using the RED, GREEN and BLUE
parameters (again in variates).

A test graph displaying the colour band can be requested by setting option PLOT=testgraph.
The WINDOW parameter supplies the window number for the plot (default 1). The TITLE
parameter can supply a title for the test graph; if this is not set, a suitable title is generated
automatically. You can set parameter SCREEN=keep to plot the test graph on an existing screen;
by default the screen is cleared first.

The METHOD option provides a choice of three different types of colour band. The default,
METHOD=linear, forms the colours by interpolating between start and end RGB values. The
start value is specified by the START parameter, as either a scalar defining an RGB colour value,
or a text containing the name of one of the pre-defined Genstat colours (see the PEN directive
for the available names, or search for "Graphics Colours" in the on-line help). You can set the

444 6 Graphical display

Figure 6.9.9

END parameter to a single scalar or text (giving either the RGB value or the name of the colour)
to define the band as a single sequence of colours. Alternatively, you can define a variate or a
text with several values to form the band from several sequences of colours. At each END colour,
DCOLOURS then begins a new sequence running from that colour to the next END colour. The
default values for START and END are 'white' and 'black'.

Setting METHOD=spectral forms an approximate rainbow spectrum for wavelengths between
380 nm and 780 nm. There can now be only a single sequence of colours. The START and END
parameters specify the start and end wavelengths, as scalars, with default values of 380 and 780.

The final setting, METHOD=blackbody, forms colours of hot objects with temperatures
between 500 K and 11000 K. Again, only a single sequence of colours is allowed. The START
and END parameters specify the start and end temperatures, as scalars, with default values of 500
and 11000.

The NCOLOURS parameter specifies the number of colours in each sequence of colours, as a
scalar for the spectral or blackbody methods, or as either a scalar or a variate for the
linear method; the default is 20.

The red, green and blue values in each sequence are assumed by default to vary linearly with
wavelength, temperature or red/green/blue components. Alternatively, you can use the GAMMA
parameter to specify the power for a power transformation (default 1). It must be set to a scalar
for the spectral or blackbody methods, and to either a scalar or a variate for the linear
method. Its values must lie in the interval [0.25, 4].

The number of values specified by each set
of END, GAMMA and NCOLOURS parameters can
be different. However, the number of values in
the setting of the END parameter determines the
number of colour sequences in the band, and
the values in the GAMMA setting and NCOLOURS
setting are recycled as required.

Example 6.9.9b uses DCOLOURS to form a
sequence of colours running from red to white
and then to blue. The colour map (plotted in
window 3 by line 6) is shown in Figure 6.9.9.

Example 6.9.9b

 5 DCOLOURS [METHOD=linear; PLOT=testgraph] START='red'; END=!t(white,blue);\
 6 WINDOW=3; RGB=RGBseq
 7 PRINT RGBseq

 RGBseq
 16711680
 16715021
 16718362
 16721960
 16725301
 16728899
 16732240
 16735581
 16739179
 16742520

6.9 The environment for high-resolution graphics 445

 16746118
 16749459
 16753057
 16756398
 16759739
 16763337
 16766678
 16770276
 16773617
 16777215
 15921919
 15066623
 14211327
 13421823
 12566527
 11711231
 10855935
 10066431
 9211135
 8355839
 7500543
 6711039
 5855743
 5000447
 4145151
 3355647
 2500351
 1645055
 789759
 255

6.9.10 Accessing details of the graphics environment

DKEEP directive
Saves information from the last plot on a particular device.

No options

Parameters
DEVICE = scalars The devices for which information is required, if the

scalar is undefined or contains a missing value, this
returns the current device number

WINDOW = scalars Window about which the information is required;
default * gives information about the last window

XLOWER = scalars Lower bound for the x-axis in last graph in the specified
device and window

XUPPER = scalars Upper bound for the x-axis in last graph in the specified
device and window

YLOWER = scalars Lower bound for the y-axis in last graph in the specified
device and window

YUPPER = scalars Upper bound for the y-axis in last graph in the specified
device and window

ZLOWER = scalars Lower bound for the z-axis in last graph in the specified
device and window

ZUPPER = scalars Upper bound for the z-axis in last graph in the specified
device and window

FILE = scalars Returns the value 1 or 0 to indicate whether a file is
required for this device

DESCRIPTION = texts Description of the device

446 6 Graphical display

DREAD = scalars Returns the value 1 or 0 to indicate whether graphical
input is possible from this device

ENDACTION = texts Returns the current ENDACTION setting ('continue'
or 'pause')

DKEEP provides information that can be used in general programs and procedures to control the
graphical output. For the specified device you can determine whether it generates screen output
or uses a file, whether graphical input is possible, a description of the device (as printed by
DHELP; see the start of Section 6.9), the current ENDACTION setting, and details of the axis
bounds.

The device for which the information is required is specified by the DEVICE parameter. If you
specify a scalar containing a missing value, this will be set to the number of the current graphics
device. You can then test whether an output file is needed and open one accordingly, as shown
in Example 6.9.10a.

Example 6.9.10a

 2 DEVICE 7
 3 READ Y,X,Y2

 Identifier Minimum Mean Maximum Values Missing
 Y 46.46 68.11 89.95 20 0
 X 0.9400 4.867 8.877 20 0
 Y2 38.00 62.37 82.65 20 0

 14 SCALAR Device
 15 DKEEP DEVICE=Device; FILE=File; DESCRIPTION=Name
 16 PRINT Name,Device,File

 Name Device File
JPEG Files (*.jpg, *.jpeg) 7 1

 17 IF File
 18 OPEN 'Graph.jpg'; CHANNEL=Device; FILETYPE=graphics
 19 ENDIF

When writing a procedure you can find out if axes bounds have been set explicitly, using the
SAVE parameter of AXES. This information may then be used when setting up the axes for other
graphs. However, if the bounds were not set, but have been evaluated from the data (or if the
axes have subsequently been redefined) the information in the save structure will not be of any
use. The actual values used when plotting are recorded internally, for each window of each
device, and can be accessed using the XLOWER, XUPPER, YLOWER, YUPPER, ZLOWER and ZUPPER,
parameters of DKEEP.

Example 6.9.10b

 20 DGRAPH [WINDOW=5; KEYWINDOW=7] Y; X
 21 " Now set up window 6 to have the same bounds as window 5,
 -22 so that Y2 is plotted on the same scale as Y."
 23 DKEEP Device; WINDOW=5; YLOWER=Ymin; YUPPER=Ymax; XLOWER=Xmin; \
 24 XUPPER=Xmax
 25 PRINT Ymin,Ymax,Xmin,Xmax

 Ymin Ymax Xmin Xmax
 44.29 92.12 0.5431 9.274

 26 XAXIS 6; LOWER=Xmin; UPPER=Xmax
 27 YAXIS 6; LOWER=Ymin; UPPER=Ymax
 28 DGRAPH [WINDOW=6; KEYWINDOW=8; SCREEN=keep] Y2; X

6.9 The environment for high-resolution graphics 447

 29 CLOSE Device; FILETYPE=graphics; DELETE=yes

6.9.11 Storing and recovering the graphics environment

Once you have defined the graphics environment for a particular type of plot, you may want to
save it for use with that type of plot in the future. The DSTORE allows you to save the current
graphics environment settings in an external file, and the DLOAD directive allows you to read
them back into Genstat.

DSAVE directive
Saves the current graphics environment settings to an external file.

No options

Parameters
FILENAME = text File in which to save the environment settings
DESCRIPTION = text Description for these settings

DLOAD directive
Loads the graphics environment settings from an external file.

No options

Parameter
text File from which to lead the environment settings

6.9.12 The DFONT directive

DFONT directive
Defines the default font for high-resolution graphics.

No options

Parameter
text specifies or saves the default graphics font

DFONT allows you to set the default font that is used to plot textual information by the Genstat
Graphics Viewer, as an alternative to the use of menus in the Genstat Client or Graphics Viewer.

It has a single, unnamed, parameter, which can be set to text structure containing a single
string. If that string is not missing (or null), it specifies the name of the font family to be used
as the default. For example,

DFONT 'Calibri'

The name can be specified in upper or lower case, or in any mixture. You can find out the
available fonts by looking at any of the controls for specifying fonts in the Client or Graphics
Viewer.

If the text contains a missing string, it is redefined to contain the name of the font family
currently used as the default. It is also defined as a text containing the current default, if you
specify either a text with no values or an undeclared data structure, as shown in Example 6.9.12.

448 6 Graphical display

Example 6.9.12

 2 TEXT Currentdefault
 3 DFONT Currentdefault
 4 PRINT Currentdefault

Currentdefault
 Arial

Finally, if you specify DFONT without setting the parameter, it sets the default font back to the
standard Genstat font i.e. Arial.

The change takes effect only when information about the new default is received by the
Graphics Viewer. Afterwards this will be used in any graphs with the default font that are
displayed or redisplayed, including those that have been stored in Genstat graphics meta files
(i.e. files with the gmf suffix).

6.10 Line-printer graphics

Prior to Release 10.1 there were three directives for line-printer output: GRAPH, HISTOGRAM and
CONTOUR. In Release 10.1, these were given a prefix LP for clarity, to become LPGRAPH (6.10.1),
LPHISTOGRAM (6.10.2) and LPCONTOUR (6.10.3). The original names GRAPH, HISTOGRAM and
CONTOUR are currently retained as synonyms, but they may be phased-out or used for high-
resolution plots in future releases.

The directives have options and parameters to modify the annotation, the symbols used, the
size of plot, and so on. Several options apply generally to all three directives and are described
now. Others are more specific and are left until the descriptions of the relevant directives.

Normally, output goes to the current output channel, but you can use the CHANNEL option to
direct it to another (see 3.3). For example, when you are working interactively, you might want
to send a graph to a secondary output file so that you can print it later. Unlike some directives
(for example, PRINT; 3.2) you cannot save the output in a text structure.

The TITLE option lets you set an overall title for the output; graphs and contour plots can also
have individual axis titles, specified by the YTITLE and XTITLE options. You can supply the text
settings of these options directly, in a string, or give them as the identifier of a pre-defined text
structure. For example:

LPGRAPH [XTITLE='Nitrogen Applied (kg/ha)'] Yield; Nitrogen

or

TEXT Experiment
READ [CHANNEL=2; SERIAL=yes; SETNVALUES=yes]\
 Experiment,Data
LPHISTOGRAM [TITLE=Experiment] Data

Genstat prints the y-axis title as a column of characters down the left-hand side of a graph or
contour plot. New lines are ignored, so that strings within a text are concatenated. Genstat
truncates the title if necessary: the maximum possible number of characters is the number of
rows of the frame plus 4. The x-axis title is printed below the graph; the maximum number of
characters is the number of columns of the frame plus four: long strings are truncated whereas
short strings are centred.

6.10 Line-printer graphics 449

6.10.1 The LPGRAPH directive

LPGRAPH directive
Produces point and line graphs using character (i.e. line-printer) graphics.

Options
CHANNEL = scalar Channel number of output file; default is current output

file
TITLE = text General title; default *
YTITLE = text Title for y-axis; default *
XTITLE = text Title for x-axis; default *
YLOWER = scalar Lower bound for y-axis; default *
YUPPER = scalar Upper bound for y-axis; default *
XLOWER = scalar Lower bound for x-axis; default *
XUPPER = scalar Upper bound for x-axis; default *
MULTIPLE = variate Numbers of plots per frame; default * i.e. all plots are

on a single frame
JOIN = string token Order in which to join points (ascending, given);

default asce
EQUAL = string tokens Whether/how to make bounds equal (no, scale,

lower, upper); default no
NROWS = scalar Number of rows in the frame; default * i.e. determined

automatically
NCOLUMNS = scalar Number of columns in the frame; default * i.e.

determined automatically
YINTEGER = string token Whether y-labels integral (yes, no); default no
XINTEGER = string token Whether x-labels integral (yes, no); default no

Parameters
Y = identifiers Y-coordinates
X = identifiers X-coordinates
METHOD = string tokens Type of each graph (point, line, curve, text);

if unspecified, poin is assumed
SYMBOLS = factors or texts For factor SYMBOLS, the labels (if defined), or else the

levels, define plotting symbols for each unit, whereas a
text defines textual information to be placed within the
frame for METHOD=text or the symbol to be used for
each plot for other METHOD settings; if unspecified, * is
used for points, with integers 1-9 to indicate coincident
points, ' and . are used for lines and curves

DESCRIPTION = texts Annotation for key

The simplest form of the LPGRAPH directive produces a point plot (or scatterplot as it is
sometimes called). It can also be used to plot lines and curves, and text can be added for extra
annotation. The data are supplied as y- and x-coordinates in separate parameter lists.

In Example 6.10.1a, the identifiers Y and X are variates of equal length; Genstat uses their
values in pairs to give the coordinates of the points to be plotted.

450 6 Graphical display

Example 6.10.1a

 2 VARIATE [VALUES=-16,-7,9,16,7,-8,-12,-5,0,10,4,-4,-3,3,16] X
 3 & [VALUES=0,-14,-12.5,0,14,0,12,0,-10,-9,5,6,-6,-1.5,16] Y
 4 LPGRAPH Y; X

 -+---------+---------+---------+---------+---------+---------+---
 I I
 15.0 I * * I
 I * I
 I I
 I I
 I * * I
 I I
 0.0 I * * * * I
 I * I
 I * I
 I I
 I * * I
 I * I
 -15.0 I * I
 -+---------+---------+---------+---------+---------+---------+---
 -18.0 -12.0 -6.0 0.0 6.0 12.0 18.0

 Y v. X using symbol *

By default, if you specify several identifiers, Genstat plots them all in the same frame a pair at
a time; for example

LPGRAPH Y[1...3]; X[1,2]

superimposes plots of Y[1] against X[1], Y[2] against X[2], and Y[3] against X[1]. The
usual rules governing the parallel expansion of lists apply here: the length of the Y parameter list
determines the number of plots within the frame, and the X parameter list is recycled if it is
shorter. To generate several frames from one LPGRAPH statement you can use the MULTIPLE
option, described below.

The identifiers supplied by the Y and X parameters need not be variates, but can be any
numerical structures: scalars, variates, factors, tables or matrices. The only constraints are that
the pairs of structures must have the same numbers of values, and that tables must not have
margins.

There are four types of graph available, controlled by the METHOD parameter: point (the
default), line, curve and text.

A line plot is one in which each point is joined to the next by a straight line. Alternatively,
using the curve method, cubic splines are used to produce a smoothed curve through the data
points. This does not represent any model fitted in the statistical sense, but as long as the data
points are not too widely spaced (especially where the gradient changes quickly) the plotted
curve should be a good representation of the underlying function.

By default, Genstat sorts the data so that the x-values are in ascending order before any line
or curve is drawn through the points. However, if you set option JOIN=given, the points are
joined in the order in which they occur in the data; if there are then any missing values there will
be breaks in the line at each missing unit.

Plots produced with METHOD set to either line or curve do not include markings for the data
points themselves; you should plot these separately if they are required, as shown in Example
6.10.1b. Here W is plotted against V twice, first with the curve method and then with the point
method. It is best to plot the line first, so that the symbols for individual points will overwrite
those used for the line or curve.

6.10 Line-printer graphics 451

Example 6.10.1b

 4 VARIATE [VALUES=-0.1,0.1...0.9] V
 5 & [VALUES=5.5,9.9,8.7,2.3,1.3,5.5] W
 6 LPGRAPH [TITLE='Point and curve plot'; NROWS=16; NCOLUMNS=61] W,W; V;\
 7 METHOD=curve,point; SYMBOLS=*,'X'; DESCRIPTION='Fitted curve ...',*

 Point and curve plot

 -+---------+---------+---------+---------+---------+---------+-
 I .X .. I
 I ' ''. I
 I .' X I
 8.0 I ' ' I
 I ' ' I
 I .' ' I
 I . ' I
 I X ' .X I
 I ' . I
 4.0 I . ' I
 I . .' I
 I ' . I
 I X.. .' I
 I '......X' I
 I I
 0.0 I I
 -+---------+---------+---------+---------+---------+---------+-
 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

 Fitted curve ...
 W v. V using symbol X

The fourth plotting method is text. You can use this to place an item of text within a graph
as extra annotation. For example:

SCALAR Xt,Yt; VALUE=20,10
TEXT [VALUES='Y=aX+b'] T
LPGRAPH Y,Yt; X,Xt; METHOD=line,text; SYMBOLS=*,T

This plots a line, defined by the variates Y and X, as described above. In addition, the text T is
printed within the frame starting at the coordinates defined by the scalars Yt and Xt. As these
statements show, the SYMBOLS parameter then specifies the text that is to be plotted. The text
is truncated as necessary, if positioned too close to the edge of the graph.

With other methods SYMBOL defines the plotting symbol to be used to mark either points or
lines on the graph. The default symbol for points is the asterisk, and for lines is a combination
of dots and single quotes: you can see these in the earlier examples. If several points coincide,
Genstat replaces the asterisk by a digit between 2 and 9, representing the number of
coincidences, with 9 meaning nine or more. For point plots, the SYMBOLS parameter can be set
to either a text or a factor. If you specify a text with a single string, the string is used to label
every point; otherwise, the text must have one string for each point.

By default, Genstat automatically calculates the extent of the axes from the data to be plotted,
in such a way that all the data are contained within the frame. You can set one or more of the
bounds for the axes by options YLOWER, YUPPER, XLOWER and XUPPER. By setting the upper
bound of an axis to a value that is less than the lower bound, you can reverse the usual
convention for plotting in which the y-values increase upwards and the x-values increase to the
right. Setting the options YINTEGER and XINTEGER constrains the axis markings to be integral,
if possible.

The EQUAL option allows you to place constraints on the bounds for the axes. The default
setting no (meaning no constraint) uses the boundary values as set by the options or calculated
from the data. The settings lower and upper constrain the lower or upper bounds of the two

452 6 Graphical display

axes to be equal: for example, to plot the line y=x along with the data, setting EQUAL=lower will
ensure that it will pass through the bottom left-hand corner of the frame. The scale setting
adjusts the y-bounds and x-bounds so that the physical distance on one axis corresponds as
closely as possible to physical distance on the other: for example, so that one centimetre will
represent the same distance along each axis.

Normally each LPGRAPH statement produces one frame, and Genstat sets the size so that it will
fill one screen or line-printer page, based on the settings of WIDTH and PAGE from OPEN or
OUTPUT (3.3.1 and 3.4.3), or their defaults if these have not been specified. When output is going
to a file the graph will be placed on a new page, unless this has been disabled using OUTPUT, JOB
or SET (3.4.3, 5.1.1 and 5.6.1). The size of the graph is defined in terms of the number of
characters in each row and the number of rows in the frame, a row being one line of output. You
can adjust the size of the frame by using the NROWS and NCOLUMNS options; the minimum
allowed is three rows and three columns, and the maximum number of columns is 17 characters
less than the width of the output channel (to leave room for axis markings and titles). There is
no maximum on the number of rows. By default, the number of columns is 101, subject to the
maximum above, and the number of rows is the number of lines per page, less 8, to allow room
for annotation. By defining the page size in advance you can avoid having to specify the numbers
of rows and columns when you wish to plot many graphs.

The automatic axis scaling aims to find axis markings that are at reasonable values, but
because the markings appear at fixed character positions this may not always be possible. If both
upper and lower axis bounds are set, or EQUAL is set in conjunction with axis bounds, or you
have requested integral axis markings, there may be conflicting constraints on the axis scaling.
If the resultant axis markings then require several decimal places, you may be able to obtain
better values by slight adjustments to the numbers of rows or columns.

The MULTIPLE option lets you generate several frames (separate graphs) from one statement.
If there is room, the graphs can be printed alongside each other, for example to produce a two-
by-two array of plots on a line-printer page. The option should be set to a variate whose elements
define the number of graphs to plot in each frame and the number of values in the variate
determines the number of frames to be output. For example,

LPGRAPH [MULTIPLE=!(2,1,2)] A,B,C,D,E; X[1...3]

will produce three frames; the first containing A against X[1] and B against X[2], the second
containing C against X[3] and the third containing D against X[1] and E against X[2]. The sum
of the values in the MULTIPLE list gives the total number of structures required to form the plots,
which must therefore be equal to the length of the Y parameter list. The X list will be recycled
if necessary, as here.

By default, each graph will fit the page (as if it had been produced by an individual LPGRAPH
statement). However, if you set the NCOLUMNS option to a suitably small value, Genstat may be
able to fit more than one frame across the page. The MULTIPLE option will then produce the
graphs side by side. Remember that 17 columns are automatically added to provide annotation,
and five blank columns are used to separate multiple graphs in parallel. This means that, for
example, setting NCOLUMNS=20 will produce two graphs in parallel on a screen of width 80, and
three graphs when output to a file of width 121 or more.

You can annotate the graph by using the TITLE, XTITLE and YTITLE options described at the
beginning of this section. If none of these are set, a simple key will be produced below the graph,
as in Example 6.10.1a, which lists the identifiers and plotting symbols for each pair of Y and X
structures. You can obtain your own key by setting the DESCRIPTION parameter, which supplies
a line of text for each plot, as in Example 6.10.1b.

6.10 Line-printer graphics 453

6.10.2 The LPHISTOGRAM directive

LPHISTOGRAM directive
Produces histograms using character (i.e. line-printer) graphics.

Options
CHANNEL = scalar Channel number of output file; default is the current

output file
TITLE = text General title; default *
LIMITS = variate Variate of group limits for classifying variates into

groups; default *
NGROUPS = scalar When LIMITS is not specified, this defines the number

of groups into which a data variate is to be classified;
default is the integer value nearest to the square root of
the number of values in the variate

LABELS = text Group labels
SCALE = scalar Number of units represented by each character; default 1

Parameters
DATA = identifiers Data for the histograms; these can be either a factor

indicating the group to which each unit belongs, a
variate whose values are to be grouped, or a one-way
table giving the number of units in each group

NOBSERVATIONS = tables One-way table to save numbers in the groups
GROUPS = factors Factor to save groups defined from a variate
SYMBOLS = texts Characters to be used to represent the bars of each

histogram
DESCRIPTION = texts Annotation for key

LPHISTOGRAM plots histograms or bar charts, depending on the input supplied by the DATA
parameter: either a list of variates, a list of factors or a list of one-way tables. Histograms are
formed from variates to provide quick and simple visual summaries of the data that they contain.
The data values are divided into several groups, which are then displayed as a histogram
consisting of a line of asterisks for each group. The number of asterisks in each line is
proportional to the number of values assigned to that group; this figure is also printed at the
beginning of each line.

Example 6.10.2a

 2 VARIATE Data
 3 READ Data

 Identifier Minimum Mean Maximum Values Missing
 Data 0.0000 3.960 9.000 25 0

 5 LPHISTOGRAM Data

Histogram of Data

 - 2 9 *********
 2 - 4 7 *******
 4 - 6 5 *****
 6 - 8 2 **
 8 - 2 **

454 6 Graphical display

Scale: 1 asterisk represents 1 unit.

You can specify a list of variates, to obtain a parallel histogram. For each group one row of
asterisks is printed for each variate, labelled by the corresponding identifier.

As shown in Example 6.10.2b, the variates are sorted according to the same intervals. There
is no need for them all to have the same numbers of values.

Example 6.10.2b

 6 VARIATE Data2
 7 READ Data2

 Identifier Minimum Mean Maximum Values Missing
 Data2 0.0000 3.225 8.000 40 0

 10 LPHISTOGRAM Data,Data2

Histogram of Data and Data2

 - 1.5 Data 5 *****
 Data2 9 *********

 1.5 - 3.0 Data 6 ******
 Data2 14 **************

 3.0 - 4.5 Data 5 *****
 Data2 7 *******

 4.5 - 6.0 Data 5 *****
 Data2 8 ********

 6.0 - 7.5 Data 1 *
 Data2 1 *

 7.5 - Data 3 ***
 Data2 1 *

Scale: 1 asterisk represents 1 unit.

You can use the NGROUPS option to specify the number of groups in the histogram; Genstat will
then work out appropriate limits, based on the range of the data, to form intervals of equal width.
For example:

LPHISTOGRAM [NGROUPS=5] Data

Alternatively, you can define the groups explicitly, by setting the LIMITS option to a variate

containing the group limits. In Example 6.10.2c, Limits is a variate with seven values,
producing a histogram in which the data is split into eight groups: #1, 1-2, 2-3, 3-5, 5-7, 7-8, 8-
10, >10. The upper limit of each group is included within that group, so the group 3-5, for
example, contains values that are greater than 3 and less than or equal to 5. The values of the
limits variate are sorted into ascending order if necessary, but the variate itself is not changed.

Example 6.10.2c

 11 VARIATE [VALUES=1,2,3,5,7,8,10] Glimits
 12 LPHISTOGRAM [LIMITS=Glimits] Data

6.10 Line-printer graphics 455

Histogram of Data grouped by Glimits

 - 1.00 5 *****
 1.00 - 2.00 4 ****
 2.00 - 3.00 2 **
 3.00 - 5.00 7 *******
 5.00 - 7.00 4 ****
 7.00 - 8.00 1 *
 8.00 - 10.00 2 **
 10.00 - 0

Scale: 1 asterisk represents 1 unit.

You can use the LABELS option to provide your own labelling for the groups of the histogram.
It should be set to a text vector of length equal to the number of groups. If neither NGROUPS nor
LIMITS has been set, the number of groups is determined from the number of values in the
LABELS structure. If LABELS is also unset, the default number of groups is chosen as the integer
value nearest to the square root of the number of values (as in Example 6.10.2a where 25 values
are sorted into five groups), up to a maximum of 10. Alternatively, procedure
AKAIKEHISTOGRAM provides a more sophisticated method of generating histograms, using
Akaike's Information Criterion (AIC) to generate an optimal grouping of the data.

If the DATA parameter is set to a factor or a one-way table, the histogram takes the form of a
bar chart. There is now no longer the concept of dividing the x-axis into a set of contiguous
intervals. Instead we have a set of bars located at various positions along the x-axis.

To form a bar chart from a factor, Genstat counts the number of units that occur with each
level of the factor; thus the number of groups is the number of levels of the factor and the value
for each group is the corresponding total. The labels of the factor (if present) are used to label
the groups, as shown in Example 6.10.2d. Otherwise Genstat uses the factor levels.

Example 6.10.2d

 13 TEXT [VALUES=apple,banana,peach,cherry,pear,orange] Name
 14 FACTOR [LEVELS=6; LABELS=Name; NVALUES=32] Fruit
 15 READ Fruit

 Identifier Values Missing Levels
 Fruit 32 0 6

 17 LPHISTOGRAM Fruit

Histogram of Fruit

 apple 3 ***
banana 2 **
 peach 8 ********
cherry 5 *****
 pear 8 ********
orange 6 ******

Scale: 1 asterisk represents 1 unit.

When Genstat plots the histogram of a one-way table, the number of groups is the number of
levels of the factor classifying the table and the values of the table indicate the number of
observations in each group. The labels or levels of the classifying factor are again used to label
the histogram.

456 6 Graphical display

The LABELS option can also be used when producing a histogram from a factor or table. It
should be set to a text of length equal to the number of levels of the factor or classifying factor.

When producing a parallel histogram the data structures must all be of the same type: variate,
factor or table. Variates and factors may be restricted, in which case only the subset of values
specified by the restriction will be included in the histogram; however, unlike many directives,
restrictions do not carry over to the other structures listed by the DATA parameter. If parallel
histograms are to be formed from several factors, they must all have the same number of levels,
and the labels or levels of the first factor will be used to identify the groups. Likewise, if you are
forming parallel histograms from several tables, they must all have the same number of values,
and the classifying factor of the first table will define the labelling of the histogram.

The SYMBOLS parameter can specify alternative plotting characters to be used instead of the
asterisk. For example:

LPHISTOGRAM Variate; SYMBOLS='+'

You can specify a different string for each structure in a parallel histogram. If you specify strings
of more than one character, Genstat uses the characters in order, recycled as necessary, until each
histogram bar is of the correct length.

Example 6.10.2e

 18 LPHISTOGRAM Data; SYMBOLS='X-O-'

Histogram of Data

 - 2 9 X-O-X-O-X
 2 - 4 7 X-O-X-O
 4 - 6 5 X-O-X
 6 - 8 2 X-
 8 - 2 X-

Scale: 1 character represents 1 unit.

You can use the DESCRIPTION parameter to provide a text for labelling the histogram instead
of the identifiers of the DATA structures.

Normally one asterisk will represent one unit. However, if there are many data values and the
groups become large, Genstat may not be able to fit enough asterisks into one row. It will then
alter the scaling so that one asterisk represents several units. You can set the scaling explicitly
using the SCALE option; the value specified is rounded to the nearest integer, and determines
how many units should be represented by each asterisk.
LPHISTOGRAM has two output parameters that allow you to save information that has been

generated during formation of the histogram. The NOBSERVATIONS parameter allows you to save
a one-way table of counts that contains the number of observations that were assigned to each
group; the missing-value cell of this table will contain a count of the number of units that were
missing and that therefore remain unclassified. When producing a histogram from a variate, you
can use the GROUPS parameter to specify a factor to record the group to which each unit was
allocated.

6.10 Line-printer graphics 457

6.10.3 The LPCONTOUR directive

LPCONTOUR directive
Produces contour maps of two-way arrays of numbers using character (i.e. line-printer)
graphics.

Options
CHANNEL = scalar Channel number of output file; default is current output

file
INTERVAL = scalar Contour interval for scaling; default * i.e. determined

automatically
TITLE = text General title; default *
YTITLE = text Title for y-axis; default *
XTITLE = text Title for x-axis; default *
YLOWER = scalar Lower bound for y-axis; default 0
YUPPER = scalar Upper bound for y-axis; default 1
XLOWER = scalar Lower bound for x-axis; default 0
XUPPER = scalar Upper bound for x-axis; default 1
YINTEGER = string token Whether y-labels integral (yes, no); default no
XINTEGER = string token Whether x-labels integral (yes, no); default no
LOWERCUTOFF = scalar Lower cut-off for array values; default *
UPPERCUTOFF = scalar Upper cut-off for array values; default *

Parameters
GRID = identifiers Pointers (of variates representing the columns of a data

matrix), matrices or two-way tables specifying values on
a regular grid

DESCRIPTION = texts Annotation for key

A contour plot provides a way of displaying three-dimensional data in a two-dimensional plot.
The data values are supplied as a rectangular array of numbers that represent the values of the
variable in the third dimension, often referred to as height or the z-axis. The first two dimensions
(x and y) are the rows and columns indexing the array; the complete three-dimensional data set
is referred to as a surface or grid. Contours are lines that are used to join points of equal height,
and usually some form of interpolation is used to estimate where these points lie. The resulting
contour plot is not necessarily very "realistic" when compared to surface plots (6.4.3), but it has
the advantage that the entire surface can easily be examined, without the danger of some parts
being obscured by high points or regions.

You might use contour plots for example when you have data sampled at points on a regular
grid, such as the concentrations of a trace element or nutrient in the soil. Contours are also very
useful when fitting nonlinear models (2:3.8), when they can be used to study two-dimensional
slices of the likelihood surface, to help find good initial estimates of the parameters.
LPCONTOUR produces output for a line printer by using cubic interpolation between the grid

points to estimate a z-value for each character position in the plot. Each value is reduced to a
single digit in the range 0 ... 9, according to the rules described below. To produce the contour
plot only the even digits are printed: you can then see the contours as the boundaries between
the blank areas and the printed digits.

In Example 6.10.3a, a function of two variables is calculated, and the shape of the function
is displayed with LPCONTOUR. Titles have been given to the x-axis and the y-axis, and there is
an overall title giving the algebraic form of the function.

458 6 Graphical display

Example 6.10.3a

 2 MATRIX [ROWS=5; COLUMNS=7] X,Y; VALUES=!((1...7)5),!(7(1...5))
 3 CALCULATE Zvalues = (X-2.5)*(X-6)*X - 10*(Y-3)*(Y-3)
 4 LPCONTOUR [TITLE='Z(x,y) = x*(x-2.5)*(x-6) - 10*(y-3)**2';\
 5 YTITLE='Y values'; XTITLE='X values'] Zvalues

 Contour plot of Zvalues at intervals of 8.400

 ** Scaled values at grid points **
 -3.8690 -4.2857 -5.2976 -6.1905 -6.2500 -4.7619 -1.0119
 -0.2976 -0.7143 -1.7262 -2.6190 -2.6786 -1.1905 2.5595
 0.8929 0.4762 -0.5357 -1.4286 -1.4881 0.0000 3.7500
 -0.2976 -0.7143 -1.7262 -2.6190 -2.6786 -1.1905 2.5595
 -3.8690 -4.2857 -5.2976 -6.1905 -6.2500 -4.7619 -1.0119

 Z(x,y) = x*(x-2.5)*(x-6) - 10*(y-3)**2

 0.0000 0.1667 0.3333 0.5000 0.6667 0.8333 1.0000
 ' ' ' ' ' ' '
 1.000-66666 4444444444 4444444 666 888-
 666666666666666 44444444444444444444 666 88
 6666666666 66666 88 0
 8888888 6666666666 666666 888 00
 88888888888888 6666666666666666666666 888 00
 88888888888 666666666666 8888 00 2
 0.750- 888888888 8888 000 22-
 0000 8888888888 888888 000 22
 Y 0000000000 88888888888 8888888 000 22
 0000000000000 8888888888888888888888888 000 222
 v 00000000000000 8888888888888888888888 000 22
 a 000000000000000 888888888888888888888 000 22
 l 0.500-0000000000000000 88888888888888888888 0000 22 -
 u 000000000000000 888888888888888888888 000 22
 e 00000000000000 8888888888888888888888 000 22
 s 0000000000000 8888888888888888888888888 000 222
 0000000000 88888888888 8888888 000 22
 0000 8888888888 888888 000 22
 0.250- 888888888 8888 000 22-
 88888888888 666666666666 8888 00 2
 88888888888888 6666666666666666666666 888 00
 8888888 6666666666 666666 888 00
 6666666666 66666 88 0
 666666666666666 44444444444444444444 666 88
 0.000-66666 4444444444 4444444 666 888-
 ' ' ' ' ' ' '

 X values

The GRID parameter can be set to a matrix, a two-way table (with the first factor defining the
rows), or a pointer to a set of variates each containing a column of data. We explain the
conventions in terms of a matrix as input, but similar rules apply to the other structures. When
reading or printing a matrix the origin of the rows and columns (row 1, column 1) appears at the
top left-hand corner. However, in forming the contour plot the rows are reversed in order so that
the first row of the matrix is placed at the bottom of the contour; thus the origin of the contour
is located, according to the usual conventions, at the bottom left-hand corner of the plot. (By
default, the DCONTOUR directive reverses the rows of the grid in the same way, but it also has an
ORIENTATION option that allows you to plot with the normal orientation; see 6.4.1.)
LPCONTOUR scales the grid values by dividing by the contour interval. The scaled grid values

are then converted to single digits by taking the remainder modulo 10 and truncating the
fractional part. In Example 6.10.3a, the first grid value is !32.5, which is divided by the interval
size (8.4) to obtain !3.869; this becomes 6.131 when taken modulo 10, and then 6 after
truncation. To aid interpretation of the plot, the array of scaled values is printed out.

6.10 Line-printer graphics 459

The INTERVAL option allows you to set the interval between contour lines. For example, if
the grid values range from 17 to 72 and the interval is set to 10, contour lines (the boundaries
between blank space and printed digits) will occur at grid values of 20, 30, 40, 50, 60 and 70. By
default, the interval is determined from the range of the data in order to obtain 10 contours.

The UPPERCUTOFF and LOWERCUTOFF options can be used to define a window for the grid
values that will form the contours. All values above or below these are printed as X. Setting
either UPPERCUTOFF or LOWERCUTOFF will change the default contour interval, as the range of
data values is effectively curtailed.

You can use the TITLE, YTITLE and XTITLE options to annotate the contour plot. If you
specify several grids, these will be plotted in separate frames and the text of the TITLE option
will appear at the top of each one. You should thus use TITLE only to give a general description
of what the contours represent. The DESCRIPTION parameter can be used to add specific
descriptions to be printed at the bottom of each individual plot.

The YUPPER and YLOWER options allow you to set upper and lower bounds for the y-axis; thus
generating axis labels that reflect the range of values over which the grid was observed or
evaluated. Setting YINTEGER=yes will ensure the labels are printed as integers, if possible. The
default axis bounds are 0.0 and 1.0. The options XLOWER, XUPPER and XINTEGER similarly
control labelling of the x-axis.

Example 6.10.3b shows how a contour plot can be produced from a set of variates. In line 22,
the values of the variates are inverted, using the REVERSE function, and y-axis labelling set up
so that depth increases as you read down the plot. (The same data are plotted in Figure 6.4.1a
using the DCONTOUR directive, but there the YORIENTATION option is used to reverse the y-axis.)

Example 6.10.3b

 6 " Core samples were taken from a wetland rice experiment to examine
 -7 the leaching of ammonium nitrate. Three cores were taken at
 -8 intervals of 5cm, and the concentration of ammonium nitrate was
 -9 measured at depths of 4, 8, ... 20 cm. "
 10 VARIATE [NVALUES=5] Core[1...5]
 11 READ Core[]

 Identifier Minimum Mean Maximum Values Missing
 Core[1] 5.000 8.200 11.00 5 0
 Core[2] 6.000 67.60 195.0 5 0
 Core[3] 129.0 940.6 2315 5 0
 Core[4] 10.00 36.00 77.00 5 0
 Core[5] 7.000 9.400 15.00 5 0

 17 TEXT [VALUES=' Samples taken 40 days after placement ', \
 18 ' of 2 grams supergranule urea. '] Coredesc
 19 CALCULATE Core[] = LOG10(REVERSE(Core[]))
 20 LPCONTOUR [YTITLE='Soil depth in cm'; \
 21 XTITLE='Distance from central core'; \
 22 YINTEGER=yes; XINTEGER=yes; \
 23 YUPPER=4; YLOWER=20; XUPPER=10; XLOWER=-10] \
 24 Core; DESCRIPTION=Coredesc

 Contour plot of Core at intervals of 0.267

 ** Scaled values at grid points **
 3.1704 2.9193 7.9179 3.7515 3.5799
 3.3880 7.1797 12.6222 6.4687 3.1704
 2.6222 8.5911 11.3557 7.0772 3.1704
 3.7515 5.7926 11.3091 5.5415 3.5799
 3.9068 4.8808 8.2790 3.7515 4.4121

460 6 Graphical display

 -10 -5 0 5 10
 ' ' ' ' '
 4- 2222222222 4 66 66 44 -
 222 44 66 88 888 66 444
 444 6 88 0 8 66 4444
 444 66 88 00 00 88 66 444
 S 4444 66 88 00 00 8 6 444
 o 444 66 88 00 2 00 8 66 4444
 i 8- 444 66 8 0 2222 00 8 66 444 -
 l 444 66 88 00 2222 00 88 66 44
 44 66 88 00 2222 00 88 666 444
 d 2 44 66 88 000 222 00 88 66 444
 e 2 44 6 88 000 000 88 66 44
 p 2 44 66 88 000 00 88 66 44
 t 12-2 44 66 88 000 000 88 66 44 -
 h 2 44 66 88 0000 000 88 666 444
 2 44 666 88 000 00 88 66 444
 i 44 666 88 00 00 88 66 4444
 n 444 666 88 000 00 88 66 444
 4444 66 88 00 00 8 6 4444
 c 16- 4444 6 8 00 000 88 66 4444 -
 m 44444 66 88 00 00 8 6 4444
 44444 6 88 000 88 66 4444
 44444 66 88 0 88 6 444
 444444 66 88 88 66 444 4
 444444 66 888888 66 44 4
 20- 4444444 666 88 66 44 44-
 ' ' ' ' '

 Distance from central core

 Samples taken 40 days after placement
 of 2 grams supergranule urea.

7 Summary of other facilities

In this chapter we summarise the other facilities in Genstat. Many of these are covered in Part
2 of the Guide to the Genstat Command Language. Details of the commands not covered there
can be found in Part 2 of the Genstat Reference Manual (for directives), or Part 3 of the Manual
(for procedures).

7.1 Basic statistics

Genstat provides a wide range of commands for basic statistics and exploratory analysis. Some
are available through specially-designed commands (usually procedures in the Genstat Procedure
Library). Others simply use basic options of more powerful commands (usually directives).

DESCRIBE saves and/or prints summary statistics for variates (2:2.1.1)

TALLY forms a simple tally table of the distinct values in a vector
(2:2.2.5)

CDESCRIBE calculates summary statistics and tests of circular data
(2:2.1.2)

CASSOCIATION calculates measures of association for circular data
CCOMPARE tests whether samples from circular distributions have a

common mean direction or have identical distributions
FCORRELATION forms correlations between variates, and calculates their

probabilities (2:2.8.1)
BLANDALTMAN produces Bland-Altman plots to assess the agreement

between two variates (2:2.8.8)
BOXPLOT draws box-and-whisker diagrams or schematic plots

(2:2.2.2)
DOTPLOT produces a dot-plot (2:2.2.6)
RUGPLOT draws "rugplots" to display the distribution of one or more

samples (2:2.2.3)
STEM produces a simple stem-and-leaf chart (2:2.2.4)
TTEST performs a one- or two-sample t-test (2:2.3.1)
AONEWAY provides one-way analysis of variance (2:2.3.2)
A2WAY performs analysis of variance of a balanced or unbalanced

design with up to two treatment factors (2:2.3.3)
A2DISPLAY provides further output from an A2WAY analysis (2:2.3.3)
A2KEEP saves information from an A2WAY analysis (2:2.3.3)
CHIPERMTEST does a random permutation test for a two-dimensional

contingency table (2:2.9.2)
CHISQUARE calculates chi-square statistics for one- and two-way tables

(2:2.9.1)
CMHTEST performs the Cochran-Mantel-Haenszel test (2:2.9.5)
EDFTEST performs empirical-distribution-function goodness-of-fit

tests (2:2.2.12)
FEXACT2X2 does Fisher's exact test for 2×2 tables (2:2.9.2)
FRIEDMAN performs Friedman's nonparametric analysis of variance

(2:2.6.2)
STEEL performs Steel's many-one rank test (2:2.6.3)
BNTEST calculates one- and two-sample binomial tests (2:2.3.4)
PNTEST calculates one- and two-sample Poisson tests (2:2.3.5)
GSTATISTIC calculates the gamma statistic of agreement for ordinal

462 7 Summary of other facilities

data (2:2.8.6)
HCOMPAREGROUPINGS calculates the Rand index, adjusted Rand index or Jaccard

index to compare groupings defined by two factors
(2:6.19.7)

KAPPA calculates a kappa coefficient of agreement for nominally
scaled data (2:2.8.5)

KCONCORDANCE calculates Kendall's Coefficient of Concordance, synonym
CONCORD (2:2.8.4)

KOLMOG2 performs a Kolmogorov-Smirnoff two-sample test
(2:2.5.2)

KRUSKAL carries out a Kruskal-Wallis one-way analysis of variance
(2:2.6.1)

KTAU calculates Kendall's rank correlation coefficient ô (2:2.8.3)
LCONCORDANCE calculates Lin's concordance correlation coefficient

(2:2.8.7)
MANNWHITNEY performs a Mann-Whitney U test (2:2.5.1)
MCNEMAR performs McNemar's test for the significance of changes

(2:2.9.3)
QCOCHRAN performs Cochran's Q test for differences between related

samples (2:2.9.4)
RUNTEST performs a test of randomness of a sequence of

observations (2:2.4.3)
SIGNTEST performs a one or two sample sign test (2:2.4.2)
SPEARMAN calculates Spearman's rank correlation coefficient (2:2.8.2)
WILCOXON performs a Wilcoxon Matched-Pairs (Signed-Rank) test

(2:2.4.1)
There are also commands for studying distributions of samples of data:

DISTRIBUTION estimates the parameters of continuous and discrete

distributions (2:2.2.10)
DPROBABILITY plots probability distributions, and estimates their

parameters (2:2.2.7)
FDRMIXTURE estimates false discovery rates using mixture distributions
KERNELDENSITY uses kernel density estimation to estimate a sample density

(2:2.2.8)
NORMTEST performs tests of univariate and/or multivariate Normality

(2:2.2.11)
WSTATISTIC calculates the Shapiro-Wilk test for Normality (2:2.2.11)

7.2 Regression analysis

Genstat provides directives for carrying out linear and nonlinear regression, also generalized
linear, generalized additive and generalized nonlinear models. They are designed to allow easy
comparison between models, and comparison between groups of data (specified as factors). The
directives for nonlinear regression can also be used for general optimization. There are three
preliminary directives for defining the form of model to be fitted, of which the MODEL directive
must always be given first:

MODEL defines the response variate(s) and the type of model to be

fitted (2:3.1.1)
TERMS specifies a maximal model, containing all terms to be used

in subsequent regression models (2:3.2.3)
RCYCLE controls iterative fitting of generalized linear models,

7.2 Regression analysis 463

generalized additive models and nonlinear models, and
specifies parameters and bounds for nonlinear models
(2:3.5.4)

Separate directives carry out the fitting of the various types of model:
FIT fits a linear model, a generalized linear model, a

generalized additive model, or a generalized nonlinear
model (2:3.1.2)

FITCURVE fits a standard nonlinear regression model (2:3.7.1)
FITNONLINEAR fits a user-defined nonlinear regression model or optimizes

a scalar function (2:3.8.2)

Further directives are provided to allow sequential modification of the set of explanatory
variables:

ADD adds extra terms to any type of regression model (2:3.2.4)

DROP drops terms from any type of regression model (2:3.2.4)
SWITCH adds terms to, or drops them from, any type of regression

model (2:3.2.4)
TRY displays results of single-term changes to a linear or

generalized linear model (2:3.2.5)
STEP selects terms to include in or exclude from a linear or

generalized linear model (2:3.2.7)

Once you have fitted the model, you can display further results, form and compare predictions,
plot the fitted model, produce diagnostic plots, store the results in data structures for use
elsewhere in Genstat, do permutation (or exact) texts, or calculate power information about the
model:

RDISPLAY displays the fit of any type of regression model (2:3.1.3,

2:3.5.3, 2:3.7.4)
PREDICT forms predictions from a linear or generalized linear model

(2:3.3.4, 2:3.5.3)
RCOMPARISONS calculates comparison contrasts amongst regression means

(2:3.3.5)
RFUNCTION estimates functions of parameters of any type of regression

model (2:3.7.5)
RGRAPH draws a graph to display the fit of any type of regression

model (2:3.1.6)
RCHECK provides diagnostic plots and other information for

checking the fit of any type of regression model (2:3.1.7)
RDESTIMATES plots one- or two-way tables of regression estimates

(2:3.3.8)
RKEEP stores the results from any type of regression model

(2:3.1.4, 2:3.5.3, 2:3.7.4)
RSPREADSHEET puts results from a regression, generalized linear or

nonlinear model into spreadsheets (2:3.1.5)
RKESTIMATES saves estimates and other information about individual

terms in a regression analysis (2:3.2.2)
RWALD calculates Wald and F tests for dropping terms from a

regression (2:3.2.6)
RPERMTEST does random permutation tests for regression models

(2:3.1.9)
RPOWER calculates the power (probability of detection) for

regression models (2:3.1.8)

464 7 Summary of other facilities

There are also many specialized procedures in the regression and glm modules of the Library;
see Part 3 of the Genstat Reference Manual.

BREGRESSION constructs a regression tree (2:3.9.1)

BRDISPLAY displays a regression key (2:3.9.2)
BRVALUES forms values for nodes of a regression tree (2:3.9.3)
BPRUNE prunes a tree using minimal cost complexity (4.12.8,

2:3.9.3)
BRPREDICT makes predictions using a regression tree (2:3.9.4)
BRKEEP saves information from a regression tree (2:3.9.5)
BRFOREST constructs a random regression forest
BRFDISPLAY displays information about a random regression forest
BRFPREDICT makes predictions using a random regression forest
FITINDIVIDUALLY fits regression and generalized linear models one term at

a time (2:3.5.3)
GEE fits models to longitudinal data by generalized estimating

equations (2:3.5.12)
GLM analyses non-standard generalized linear models
GLMM fits a generalized linear mixed model (2:3.5.10)
HGANALYSE analyses data using hierarchical generalized linear models

(2:3.5.11)
HGDISPLAY displays a hierarchical generalized linear model analysis

(2:3.5.11)
HGFIXEDMODEL defines the fixed model for a hierarchical generalized

linear model (2:3.5.11)
HGFTEST calculates likelihood tests for fixed terms in a hierarchical

generalized linear model (2:3.5.11)
HGKEEP saves information from a hierarchical generalized linear

model analysis (2:3.5.11)
HGNONLINEAR defines nonlinear parameters for the fixed model of a

hierarchical generalized linear model (2:3.5.11)
HGPLOT produces model-checking plots for a hierarchical

generalized linear model analysis (2:3.5.11)
HGGRAPH draws a graph to display the fit of hierarchical generalized

linear model analysis (2:3.5.11)
HGPREDICT forms predictions from hierarchical generalized linear

model analysis (2:3.5.11)
HGRANDOMMODEL defines the random model for a hierarchical generalized

linear model (2:3.5.11)
HGDRANDOMMODEL extends a hierarchical generalized linear model to become

a double hierarchical generalized linear model (2:3.5.11)
HGRTEST calculates likelihood tests for random terms in a

hierarchical generalized linear model (2:3.5.11)
HGSTATUS displays the current HGLM model definitions (2:3.5.11)
HGWALD Prints or saves Wald tests for fixed terms in an HGLM

(2:3.5.11)
PROBITANALYSIS fits probit models allowing for natural mortality and

immunity (2:3.5.9)
FIELLER calculates effective doses and relative potencies (2:3.5)
MICHAELISMENTEN fits the Michaelis-Menten equation for substrate

concentration versus time data
MMPREDICT predicts the Michaelis-Menten curve for a particular set of

7.2 Regression analysis 465

parameter values
NLAR1 fits curves with an AR1 or a power-distance correlation

model (2:8.1.6)
RAR1 fits regressions with an AR1 or a power-distance

correlation model (2:8.1.6)
RQLINEAR fits and plots quantile regressions for linear models

(2:3.10.1)
RQNONLINEAR fits and plots quantile regressions for nonlinear models
RQSMOOTH fits and plots quantile regressions for loess or spline

models
RSCREEN performs screening tests for generalized or multivariate

linear models (2:3.2.9)
RSEARCH helps search through models for a regression or

generalized linear model (2:3.2.8)
R0INFLATED fits zero-inflated regression models to count data with

excess zeros (2:3.5.13)
R0KEEP saves information from models fitted by R0INFLATED

(2:3.5.13)
RBRADLEYTERRY fits the Bradley-Terry model for paired-comparison

preference tests
RCATENELSON performs a Cate-Nelson graphical analysis of bivariate

data
RCIRCULAR does circular regression of mean direction for an angular

response
RFINLAYWILKINSON performs Finlay and Wilkinson's joint regression analysis

of genotype-by-environment data
RIDGE does ridge regression and principal component regression

analyses
LRIDGE does logistic ridge regression
RLASSO performs lasso using iteratively reweighted least-squares
RLFUNCTIONAL fits a linear functional relationship model
RMGLM fits a model where different units follow different

generalized linear models
RNEGBINOMIAL fits a negative binomial generalized linear model,

estimating the aggregation parameter
RNONNEGATIVE fits a generalized linear model with nonnegativity

constraints
RPAIR gives t-tests for all pairwise differences of means from

linear or generalized linear models
RPARALLEL carries out analysis of parallelism for nonlinear functions
RQUADRATIC fits a quadratic surface and estimates its stationary point
RRETRIEVE retrieves a regression save structure from an external file
RSTORE stores a regression save structure in an external file
RSCHNUTE fits a general four-parameter growth model to a non-

decreasing response variate
RYPARALLEL fits the same regression model to several response variates,

and collates the output
R2LINES fits two-straight-line (broken-stick) models
IFUNCTION estimates implicit and/or explicit functions of parameters
MINIMIZE finds the minimum of a function calculated by a procedure
MIN1DIMENSION finds the minimum of a function in one dimension

466 7 Summary of other facilities

SIMPLEX searches for the minimum of a function using the Nelder-
Mead simplex algorithm

SVGLM fits generalized linear models to survey data
YTRANSFORM estimates the parameter lambda of a single parameter

transformation
XOCATEGORIES performs analyses of categorical data from cross-over

trials
EXTRABINOMIAL fits models to overdispersed proportions
DILUTION calculates most probable numbers from dilution series data
DSEPARATIONPLOT creates a separation plot for visualising the fit of a model

with a dichotomous (i.e. binary) or polytomous (i.e. multi-
categorical) outcome

WADLEY fits models for Wadley's problem, allowing alternative
links and errors

7.3 Analysis of variance

Genstat has a very general algorithm for analysis of variance of balanced experiments. There are
several directives to define the various aspects of model to be fitted:

BLOCKSTRUCTURE defines the blocking structure of the design, and hence the

strata and error terms (2:4.2.1)
COVARIATE specifies a list of covariates for analysis of covariance

(2:4.3.1)
TREATMENTSTRUCTURE defines the treatment (or systematic) terms (2:4.1.1)

For unstructured designs with a single error term, BLOCKSTRUCTURE need not be specified, and
COVARIATE is needed only for analysis of covariance. Alternatively, the AFCOVARIATES
procedure allows more complicated types of covarate model to be defined:

AFCOVARIATES specifies covariates from a model formula for analysis of

covariance (2:4.3.2)

Once the model has been defined, the y-variates can be analysed using the ANOVA directive:
ANOVA performs analysis of variance (2:4.1.2)

Then, after you have fitted the model, you can display or calculate further results, plot means and
residuals, check assumptions or store the results in data structures for use elsewhere in Genstat:

ADISPLAY displays further output from analyses produced by ANOVA

(2:4.1.3)
AGRAPH plots tables of means from ANOVA (2:4.1.5)
APLOT plots residuals from an ANOVA analysis (2:4.1.4)
AFIELDRESIDUALS display residuals from a field experiment in field layout

(2:4.1.4)
ABLUPS calculates BLUPs for block terms in an ANOVA analysis

(2:4.2.2)
ACHECK checks the assumptions for an ANOVA analysis (2:4.1.6)
AKEEP copies information from an ANOVA analysis into Genstat

data structures (2:4.6.1)
APERMTEST performs random permutation and exact tests for analysis

of variance (2:4.1.7)
APOLYNOMIAL calculates the equation for a polynomial contrast fitted by

ANOVA (2:4.5.1)
ADPOLYNOMIAL plots single-factor polynomial contrasts fitted by ANOVA

7.3 Analysis of variance 467

(2:4.5.2)
ARESULTSUMMARY provides a summary of results from an ANOVA analysis

(2:4.1.3)
ASPREADSHEET saves analysis of variance results in a spreadsheet (2:4.6.3)
ASTATUS provides information about the settings of ANOVA models

and variates (2:4.9.1)
AMCOMPARISON performs pairwise multiple comparison tests for ANOVA

means (2:4.1.9)
AMDUNNETT forms Dunnett's simultaneous confidence interval around

a control (2:4.1.10)
ACONFIDENCE calculates simultaneous confidence intervals (2:4.1.8)
FALIASTERMS forms information about aliased model terms in analysis of

variance
The designs analysed by ANOVA are said to be balanced or, more accurately, to have the

property of first-order balance (see 2:4.7). They include virtually all the standard experimental
designs, and ANOVA itself detects if the necessary conditions are not met.

Unbalanced designs with a single error term can be analysed using procedures AUNBALANCED,
AUDISPLAY and AUKEEP. The model is specified just as for ANOVA but the analysis uses the
Genstat regression facilities. If you have only two treatment factors in an unbalanced design with
a single error term, it may be more convenient to use A2WAY. Unbalanced designs with several
error terms can be analysed by the REML directive (7.5). However, if the additional random terms
contain very little information about the treatments, it may be more convenient (and equally
effective) to treat these as fixed nuisance terms, and use AUNBALANCED. Decisions like this can
be made using the AOVANYHOW procedure.

AUNBALANCED performs analysis of variance for unbalanced designs

(2:4.8.1)
AUDISPLAY produces further output for an unbalanced design (2:4.8.2)
AUGRAPH plots tables of means from an unbalanced design (2:4.8.3)
AUKEEP saves output from analysis of an unbalanced design

(2:4.8.4)
AUPREDICT forms predictions from an unbalanced design (2:4.8.5)
AUSPREADSHEET Saves results from an analysis of an unbalanced design in

a spreadsheet (2:4.8.6)
AUMCOMPARISON performs pairwise multiple comparison tests for means

from unbalanced analysis of variance
A2WAY performs analysis of variance of a balanced or unbalanced

design with up to two treatment factors (2:2.3.3)
A2DISPLAY provides further output following an analysis of variance

by A2WAY (2:2.3.3)
A2KEEP copies information from an A2WAY analysis into Genstat

data structures (2:2.3.3)
A2RESULTSUMMARY provides a summary of results from an analysis by A2WAY

(2:2.3.3)
AN1ADVICE aims to give useful advice if a design that is thought to be

balanced fails to be analysed by ANOVA (2:4.8.8)
AOVANYHOW performs analysis of variance using ANOVA,

AUNBALANCED, A2WAY or REML as appropriate (2:4.8.7)
AOVDISPLAY provides further output from an analysis by AOVANYHOW

Other procedures relevant to analysis of variance, in the aov module of the Library, include:

AMTIER analyses a multitiered design specified by up to three

468 7 Summary of other facilities

model formulae (2:4.2.3)
AMTDISPLAY displays further output for multitiered designs (2:4.2.3)
AMTKEEP saves information from the analysis of a multitiered design

by AMTIER (2:4.2.3)
VSPECTRALCHECK forms the spectral components from the canonical

components of a multitiered design, and constrains any
negative spectral components to zero

AONEWAY provides one-way analysis of variance (2:2.3.2)
ASCREEN performs screening tests for designs with orthogonal block

structure (2:4.7.6)
ABIVARIATE produces graphs and statistics for bivariate analysis of

variance
ABOXCOX estimates the power ë in a Box-Cox transformation, that

maximizes the partial log-likelihood in ANOVA
ACANONICAL determines the orthogonal decomposition of the sample

space for a design, using an analysis of the canonical
relationships between the projectors derived from two or
more model formulae.

ACDISPLAY provides further output from an analysis by ACANONICAL.
ACKEEP saves information from an analysis by ACANONICAL.
AFMEANS forms tables of means classified by ANOVA treatment

factors (2:4.1.5)
AMMI provides exploratory analysis of genotype × environment

interactions
FMEGAENVIRONMENTS forms mega-environments based on winning genotypes

from an AMMI-2 model
AREPMEASURES produces an analysis of variance for repeated

measurements (2:8.1.3)
ARETRIEVE retrieves an ANOVA save structure from an external file
ASTORE stores an ANOVA save structure in an external file
AYPARALLEL does the same analysis of variance for several y-variates,

and collates the output
A2PLOT plots effects from two-level designs with robust s.e.

estimates
A2RDA saves results from an analysis of variance in R data frames
AU2RDA saves results from an unbalanced analysis of variance, by

AUNBALANCED, in R data frames
CENSOR pre-processes censored data before analysis by ANOVA
CINTERACTION clusters rows and columns of a two-way interaction table
DIALLEL analyses full and half diallel tables with parents
FRIEDMAN performs Friedman's nonparametric analysis of variance

(2:2.6.2)
LVARMODEL analyses a field trial using the Linear Variance Neighbour

model
NLCONTRASTS fits non-linear contrasts to quantitative factors in ANOVA
SED2ESE calculates effective standard errors that give good

approximate standard errors of differences
SEDLSI calculates least significant intervals
LSIPLOT plots least significant intervals, saved from SEDLSI
VHOMOGENEITY tests homogeneity of variances
WSTATISTIC calculates the Shapiro-Wilk test for Normality

7.4 Design of experiments 469

Full details can be found in Part 3 of the Genstat Reference Manual.

7.4 Design of experiments

Genstat has a comprehensive set of facilities for design of experiments ranging from procedures
that allow you to select and generate a design from an extensive repertoire of possibilities, to
directives and procedures that enable you to develop new designs and assess their properties.
Collectively, these are known as the Genstat Design System. Many different design types are
covered, each with a procedure that allows you to view and choose from the available
possibilities. Other procedures allow designs and data forms to be displayed. There is also a
general procedure DESIGN that can be used interactively to provide a single point of access to
all the design types.

DESIGN provides a menu-driven interface for selecting and

generating experimental designs (2:4.9.1)
AGALPHA forms alpha designs for up to 100 treatments (2:4.9.7)
AGBIB generates balanced-incomplete-block designs (2:4.9.8)
AGBOXBEHNKEN generates Box-Behnken designs (2:4.9.12)
AGCENTRALCOMPOSITE generates central composite designs (2:4.9.11)
AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects

(2:4.9.3)
AGCYCLIC generates cyclic designs from standard generators (2:4.9.9)
AGDESIGN generates generally balanced designs ! factorial designs

with blocking, fractional factorial designs, Lattice squares
etc. (2:4.9.3)

AGFACTORIAL generates minimum aberration block or fractional factorial
designs (2:4.9.2)

AGFRACTION generates fractional factorial designs
AGHIERARCHICAL generates orthogonal hierarchical designs (2:4.9.1)
AGLATIN generates mutually orthogonal Latin squares (2:4.9.4)
AGLOOP generates loop designs e.g. for time-course microarray

experiments (2:4.9.17)
AGMAINEFFECT generates designs to estimate main effects of two-level

factors (2:4.9.13)
AGNEIGHBOUR generates neighbour-balanced designs (2:4.9.10)
AGNONORTHOGONALDESIGN generates non-orthogonal multi-stratum designs
AGSPACEFILLINGDESIGN generates space filling designs
AGQLATIN generates complete and quasi-complete Latin squares

(2:4.9.3)
AGREFERENCE generates reference-level designs e.g. for microarray

experiments (2:4.9.16)
AGSEMILATIN generates semi-Latin squares (2:4.9.5)
AGSQLATTICE generates square lattice designs (2:4.9.6)
PDESIGN prints treatment combinations tabulated by the block

factors (2:4.10.1)
DDESIGN plots the plan of a design (2:4.10.2)
ADSPREADSHEET puts the data and plan of an experimental design into

Genstat spreadsheets (2:4.10.3)

DESIGN and the AG... procedures (above) that it calls provide the Select Design facilities in
Genstat for Windows, while the alternative Standard Design menu uses AGHIERARCHICAL,
AGLATIN and AGSQLATTICE to generate completely randomized designs, randomized blocks,
Latin and Graeco-Latin squares, split-plots, strip-plots (or criss-cross designs) and lattices.

470 7 Summary of other facilities

There are also procedures that you can use to determine the sample size (i.e. replication)
required for experiments that are to be analysed by analysis of variance, t-test or various non-
parametric tests. You can also calculate the power (or probability of detection) for terms in
analysis of variance or regression analyses.

APOWER calculates the power (probability of detection) for terms in

an analysis of variance (2:4.12.3)
ASAMPLESIZE finds the replication (sample size) to detect a treatment

effect or contrast (2:4.12.2)
RPOWER calculates the power (probability of detection) for

regression models (2:3.1.8)
ADETECTION calculates the minimum size of effect or contrast

detectable in an analysis of variance (2:4.12.4)
SBNTEST calculates the sample size for binomial tests (2:4.12.5)
SCORRELATION calculates the sample size to detect specified correlations

(2:4.12.10)
SLCONCORDANCE calculates the sample size for Lin's concordance

coefficient (2:4.12.11)
SMANNWHITNEY calculates the sample size for the Mann-Whitney test

(2:4.12.9)
SMCNEMAR calculates the sample size for McNemar's test (2:4.12.8)
SPNTEST calculates the sample size for a Poisson test (2:4.12.6)
SPRECISION calculates the sample size to obtain a specified precision
SSIGNTEST calculates the sample size for a sign test (2:4.12.7)
STTEST calculates the sample size for t-tests, including equivalence

tests and tests for non-inferiority (2:4.12.1)
DSTTEST plots power and significance for t-tests, including

equivalence tests
The design-generation procedures form and randomize the designs automatically, calling other

directives and procedures to perform the necessary tasks, and there is no need for you to be
aware of any of the details. However, we give more information in Sections 4.8 - 4.10 and 4.12
of Part 2, in case you want to study the process in more depth or to add new designs. Briefly, the
design system is based on a range of standard generators. Some of these, such as the Galois fields
used to generate Latin squares or the Hadamard matrices needed for main-effect designs, can be
formed when required ! and so there is no limitation on the available designs. Repertoires of
others, such as design keys, are stored in backing-store files which are scanned by the design
generation procedures to form menus listing the available possibilities. Algorithms are available
to form generators for new designs, and these can then be added to the design files to become
an integral part of the system. Other design utilities include procedures for combining simple
designs into more complicated arrangements, for constructing augmented designs, and for
determining how many replicates are needed. There are also directives for constructing response-
surface designs using the BLKL algorithm of Atkinson & Donev (1992) and for constructing
doubly resolvable row-column designs. The relevant commands include the directives

AFMINABERRATION forms minimum aberration factorial or fractional-factorial

designs
AFRESPONSESURFACE uses the BLKL algorithm to construct designs for

estimating response surfaces (2:4.9.14)
AGRCRESOLVABLE forms doubly resolvable row-column designs
GENERATE generates values of factors in systematic order or as

defined by a design key, or forms values of pseudo-factors
(2:4.13.1)

7.5 REML analysis of linear mixed models 471

RANDOMIZE puts units of vectors into random order, or randomizes
units of an experimental design (2:4.11.1)

FKEY forms design keys for multi-stratum experimental designs,
allowing for confounding and aliasing of treatments
(2:4.13.6)

FPSEUDOFACTORS determines patterns of confounding and aliasing from
design keys, and extends the treatment formula to
incorporate the necessary pseudo-factors (2:4.13.7)

SET2FORMULA forms a model formula using structures supplied in a
pointer (4.8.3)

and the procedures
AEFFICIENCY calculates efficiency factors for experimental designs

AFALPHA generates alpha designs (2:4.9.6)
AFAUGMENTED forms an augmented design (2:4.13.5)
AFCARRYOVER forms factors to represent carry-over effects in cross-over

trials
AFCYCLIC generates block and treatment factors for cyclic designs

(2:4.9.8)
AFLABELS forms a variate of unit labels for a design
AFNONLINEAR forms D-optimal designs to estimate the parameters of a

nonlinear or generalized linear model (2:4.9.15)
AFPREP searches for an efficient partially-replicated design
AFRCRESOLVABLE forms doubly resolvable row-column designs, with output
AFUNITS forms a factor to index the units of the final stratum of a

design
AKEY generates values for treatment factors using the design key

method (2:4.13.2)
AMERGE merges extra units into an experimental design (2:4.13.3)
APRODUCT forms a new experimental design from the product of two

designs (2:4.13.4)
ARANDOMIZE randomizes and prints an experimental design (2:4.11.2)
COVDESIGN produces experimental designs efficient under analysis of

covariance
FACDIVIDE represents a factor by factorial combinations of a set of

factors
FACPRODUCT forms a factor with a level for every combination of other

factors
FBASICCONTRASTS forms the basic contrasts of a model term (2:4.13.8)
FDESIGNFILE forms a backing-store file of information for AGDESIGN
FHADAMARDMATRIX forms Hadamard matrices
FPLOTNUMBER forms plot numbers for a row-by-column design
FPROJECTIONMATRIX forms a projection matrix for a set of model terms
XOEFFICIENCY calculates the efficiency for estimating effects in cross-

over designs

7.5 REML analysis of linear mixed models

The REML algorithm estimates the treatment effects and variance components in a linear mixed
model: that is, a linear model with both fixed and random effects. Like regression, REML can
be used to analyse unbalanced data sets; but, unlike regression, it can account for more than one
source of variation in the data, providing an estimate of the variance components associated with

472 7 Summary of other facilities

the random terms in the model. You can also model the covariance structures on the random
terms, such as arise in the analysis of repeated measurements, spatial data and random coefficient
regression.

The model for a REML analysis is defined by the commands:
VCOMPONENTS defines the model for REML (2:5.2.1)

VCYCLE controls advanced aspects of the REML algorithm
(2:5.3.10)

VSTRUCTURE defines a variance structure for random effects in a REML
model (2:5.4.1)

VPEDIGREE generates an inverse relationship matrix for use in
VSTRUCTURE when fitting animal or plant breeding
models by REML (2:5.6.1)

VRESIDUAL defines the residual term for a REML model (2:5.8.2)
VRMETAMODEL forms the random model for a REML meta analysis

(2:5.8.1)
VSTATUS prints the current model settings for REML (2:5.4.2)

The REML directive carries out the analysis, and a range of other directives and procedures are
then available to save results in Genstat data structures, or to produce further information:

REML fits a variance-component model by residual (or restricted)

maximum likelihood (2:5.3.1)
VDISPLAY displays further output from a REML analysis (2:5.3.2)
VKEEP copies information from a REML analysis into Genstat data

structures (2:5.9.1)
VFRESIDUALS obtains residuals, fitted values and their standard errors

from a REML analysis
VCHECK checks standardized residuals from a REML analysis

(2:5.3.7)
VPREDICT forms predictions from a REML model (2:5.5.1)
VAIC calculates the Akaike and Schwarz (Bayesian) information

coefficients (2:5.3.8)
VALLSUBSETS fits all subsets of the fixed terms in a REML analysis
VAYPARALLEL does the same REML analysis for several y-variates, and

collates the output
VBOOTSTRAP performs a parametric bootstrap of the fixed effects in a

REML analysis (2:5.3.6)
VCRITICAL uses a parametric bootstrap to estimate critical values for

a fixed term in a REML analysis (2:5.3.6)
VDEFFECTS plots one- or two-way tables of effects estimated in a REML

analysis (2:5.3.4)
VDFIELDRESIDUALS display residuals from a REML analysis in field layout

(2:5.3.5)
VFIXEDTESTS saves fixed tests from a REML analysis (2:5.9.4)
VFLC performs an F-test of random effects in a linear mixed

model based on linear combinations of the responses, i.e.
an FLC test

VFPEDIGREE checks and prepares pedigree information from several
factors, for use by VPEDIGREE and REML (2:5.6.2)

VFUNCTION calculates functions of variance components from a REML
analysis

VGRAPH plots one- or two-way tables of means from a REML

7.5 REML analysis of linear mixed models 473

analysis (2:5.3.4)
VHERITABILITY calculates generalized heritability for a random term in a

REML analysis
VMCOMPARISON performs pairwise comparisons between REML means
VMETA performs a multi-treatment meta analysis using summary

results from individual experiments
VPLOT plots residuals from a REML analysis (2:5.3.5)
VPOWER uses a parametric bootstrap to estimate the power

(probability of detection) for terms in a REML analysis
VRPERMTEST performs permutation tests for random terms in REML

analysis
VRACCUMULATE forms a summary accumulating the results of a sequence

of REML random models (2:5.3.8)
VRCHECK checks effects of a random term in a REML analysis

(2:5.3.7)
VRFIT fits terms from a REML fixed model in a Genstat regression
VRADD adds terms from a REML fixed model into a Genstat

regression
VRDISPLAY displays output for a REML fixed model fitted in a Genstat

regression
VRDROP drops terms in a REML fixed model from a Genstat

regression
VRKEEP saves output for a REML fixed model fitted in a Genstat

regression
VRSETUP sets up Genstat regression to assess terms from a REML

fixed model
VRSWITCH adds or drops terms from a REML fixed model in a Genstat

regression
VRTRY tries the effect of adding and dropping terms from a REML

fixed model in a Genstat regression
VSAMPLESIZE estimates the replication to detect a fixed term or contrast

in a REML analysis, using parametric bootstrap
VSCREEN performs screening tests for fixed terms in a REML analysis

(2:5.3.6)
VSOM analyses a simple REML variance components model for

outliers using a variance shift outlier model (2:5.3.7)
VSPREADSHEET saves results from a REML analysis in a spreadsheet

(2:5.9.2)
VSURFACE fits a 2-dimensional spline surface using REML, and

estimates its extreme point
VTCOMPARISONS calculates comparison contrasts within a multi-way table

of predicted means from a REML analysis (2:5.5.2)
VUVCOVARIANCE forms the unit-by-unit variance-covariance matrix for

specified variance components in a REML model
Procedures are also being developed to to provide automatic selection of REML random models

for single trials, series of trials and meta analysis.
VABLOCKDESIGN analyses an incomplete-block design by REML, allowing

automatic selection of random and spatial covariance
models

VAROWCOLUMNDESIGN analyses a row-and-column design by REML, with
automatic selection of the best random and spatial

474 7 Summary of other facilities

covariance model
VALINEBYTESTER provides combinabilities and deviances for a line-by-tester

t r i a l a n a l y s e d b y VABLOCKDESIGN o r
VAROWCOLUMNDESIGN

VLINEBYTESTER analyses a line-by-tester trial by REML
VASERIES analyses a series of trials with incomplete-block or

row-and-column designs by REML, automatically selecting
the best random models

VASDISPLAY displays further output from an analysis by VASERIES
VASKEEP copies information from an analysis by VASERIES into

Genstat data structures
VASMEANS saves experiment × treatment means from analysis of a

series of trials by VASERIES
VAMETA performs a REML meta analysis of a series of trials
VFMODEL forms a model-definition structure for a REML analysis
VFSTRUCTURE adds a covariance-structure definition to a REML model-

definition structure
VMODEL specifies the model for a REML analysis using a model-

definition structure defined by VFMODEL
VAOPTIONS defines options for the fitting of models by VARANDOM and

associated procedures
VARANDOM finds the best REML random model from a set of models

defined by VFMODEL
VARECOVER recovers when REML, is unable to fit a model, by

simplifying the random model

7.6 Multivariate and cluster analysis

Many multivariate techniques are implemented as standard Genstat directives. Others are
supplied as procedures which make use of the comprehensive toolkit that Genstat provides, for
example, matrix calculations, singular value decompositions (4.10.1), and eigenvalue
decompositions (4.10.2). References are given in the list, below, for those described in Part 2.
Details of the others can be found in the Genstat Reference Manual.

FSSPM calculates values for SSPM structures ! sums of squares
and products, means, etc (2:6.1.1)

ROBSSPM forms robust estimates of sum-of-squares-and-products
matrices (2:6.1.1)

CORRELATE forms correlations between variates (2:2.8.1)
FVCOVARIANCE forms the variance-covariance matrix for a list of variates
FSIMILARITY forms a similarity matrix or a between-group similarity

matrix from a units-by-variates data matrix (2:6.1.2)
HREDUCE forms a reduced similarity matrix, by groups (2:6.1.3)
MANTEL assesses the association between similarity matrices

(2:6.1.5)
ECANOSIM does a nonparametric analysis of similarities (ANOSIM) to

test for differences between two or more groups of
sampling units (2:6.1.6)

PCP principal components analysis (2:6.2.1)
LRVSCREE prints a scree diagram and/or a difference table of latent

roots (2:6.2.2)
CVA canonical variates analysis (2:6.3.1)

7.5 Multivariate and cluster analysis 475

CVASCORES calculates scores for individual units in canonical variates
analysis (2:6.3.2)

CVAPLOT plots mean and unit scores from a canonical variates
analysis (2:6.3.3)

FACROTATE rotates factor loadings from a PCP, CVA or FCA (2:6.4)
DISCRIMINATE performs discriminant analysis (2:6.5.1)
SDISCRIMINATE selects the best set of variates to discriminate between

groups (2:6.5.2)
QDISCRIMINATE performs quadratic discrimination between groups i.e.

allowing for different variance-covariance matrices
(2:6.5.3)

MANOVA multivariate analysis of variance and covariance (2:6.6.1)
RMULTIVARIATE multivariate linear regression (2:6.6.2)
MVAOD does an analysis of distance of multivariate data (2:6.6.3)
RIDGE produces ridge regression and principal component

regression analyses (2:6.7)
PLS fits a partial least squares regression model (2:6.8)
OPLS performs orthogonal partial least squares regression
CANCORRELATION canonical correlation analysis (2:6.9)
PCO principal coordinates analysis (2:6.10.1)
ADDPOINTS adds points for new objects to a PCO (2:6.10.2)
PCORELATE relates principal coordinates to original data variates

(2:6.10.3)
MDS non-metric multidimensional scaling (2:6.12)
CORANALYSIS does correspondence analysis, or reciprocal averaging

(2:6.13.1)
MCORANALYSIS does multiple correspondence analysis (2:6.13.2)
CABIPLOT plots results from correspondence analysis or multiple

correspondence analysis (2:6.13.3)
RDA performs redundancy analysis (2:6.14)
CCA performs canonical correspondence analysis (2:6.15)
DBIPLOT plots a biplot from an analysis by PCP, CVA or PCO

(2:6.16.1)
CRBIPLOT plots correlation or distance biplots after RDA, or ranking

biplots after CCA (2:6.16.2)
CRTRIPLOT plots ordination biplots or triplots after RDA or CCA

(2:6.16.3)
GGEBIPLOT plots biplots to assess genotype and genotype-by-

environment variation
SKEWSYMMETRY provides an analysis of skew-symmetry for an asymmetric

matrix (2:6.17)
ROTATE Procrustes rotation (2:6.18.1)
GENPROCRUSTES generalized Procrustes analysis (2:6.18.2)
PCOPROCRUSTES performs a multiple Procrustes analysis (2:6.18.3)
HCLUSTER hierarchical cluster analysis from a similarity matrix

(2:6.19.1)
HDISPLAY displays results associated with hierarchical clustering

(2:6.19.2)
HLIST lists a data matrix in abbreviated form (2:6.19.3)
HSUMMARIZE summarizes data variates by clusters (2:6.19.4)
DDENDROGRAM draws dendrograms with control over structure and style

476 7 Summary of other facilities

(2:6.19.5)
DMST gives a high resolution plot of an ordination with minimum

spanning tree (2:6.19.6)
DCLUSTERLABELS labels clusters in a single-page dendrogram plotted by

DDENDROGRAM (2: 6.19.8)
HCOMPAREGROUPINGS compares groupings generated, for example, from cluster

analyses (2:6.19.7)
HBOOTSTRAP performs bootstrap analyses to assess the reliability of

clusters from hierarchical cluster analysis (2:6.19.8)
HFAMALGAMATIONS forms an amalgamations matrix from a minimum spanning

tree
HFCLUSTERS forms a set of clusters from an amalgamations matrix

(2:6.19.8)
HPCLUSTERS prints a set of clusters
CLUSTER non-hierarchical clustering from a data matrix (2:6.20.1)
CLASSIFY obtains a starting classification for non-hierarchical

clustering (2:6.20.2)
BCLASSIFICATION constructs a classification tree (2:6.21.1)
BCDISPLAY displays a classification tree (2:6.21.2)
BCKEEP saves information from a classification tree (2:6.21.5)
BCVALUES forms values for nodes of a classification tree (2:6.21.3)
BPRUNE prunes a tree using minimal cost complexity (4.12.8,

2:3.9.3, 2:6.21.3)
BCIDENTIFY identifies specimens using a classification tree (2:6.21.4)
BCFOREST constructs a random classification forest
BCFDISPLAY displays information about a random classification forest
BCFIDENTIFY identifies specimens using a random classification forest
BKEY constructs an identification key (2:6.22.1)
BKDISPLAY displays an identification key (2:6.22.2)
BKIDENTIFY identifies specimens using a key (2:6.22.3)
BKKEEP saves information from an identification key (2:6.22.4)
IDENTIFY identifies an unknown specimen from a defined set of

objects (2:6.22.5)
IRREDUNDANT forms irredundant test sets for the efficient identification

of a set of objects (2:6.11.6)
AMMI allows exploratory analysis of genotype × environment

interactions
CINTERACTION clusters rows and columns of a two-way interaction table
CONVEXHULL finds the points of a single or a full peel of convex-hulls
DPARALLEL displays multivariate data using parallel coordinates

(2:2.7.2)
MULTMISSING estimates missing values for units in a multivariate data set
NORMTEST performs tests of univariate and/or multivariate Normality

7.7 Time series analysis

Genstat provides several methods for examining and analysing time series. Sample correlation
functions are produced by directive CORRELATE:

CORRELATE forms correlations between variates, autocorrelations of

variates, and lagged cross-correlations between variates
(2:7.1.1)

7.7 Time series analysis 477

The analysis of Box-Jenkins models is specified by several directives:
TSM defines Box-Jenkins models (2:7.3.2, 2:7.5.1)

FTSM forms preliminary estimates of parameters in time-series
models (2:7.7.1)

TRANSFERFUNCTION specifies input series and transfer-function models for
subsequent estimation of a model for an output series
(2:7.4.1, 2:7.5.2)

TFIT estimates parameters in Box-Jenkins models for time
series (2:7.3.3, 2:7.4.2, 2:7.5.3)

Information can be saved in Genstat data structures, or further output can be produced:
TDISPLAY displays further output after an analysis by ESTIMATE

(2:7.3.5)
TKEEP saves results after ESTIMATE (2:7.3.6, 2:7.5.4)
TFORECAST forecasts future values (2:7.3.7, 2:7.4.3, 2:7.5.5)
TSUMMARIZE displays time series model characteristics (2:7.7.3)

You can filter a time series or perform spectral analysis, using the TFILTER and FOURIER
directives, or perform Kalman filtering with the KALMAN procedure.

TFILTER filters time series by time-series models (7.6.1)

FOURIER calculates cosine or Fourier transforms of a real or
complex series (7.2.1)

KALMAN calculates estimates from the Kalman filter
DKALMAN plots results from an analysis by KALMAN

The Genstat procedure library contains procedures which use the directives described in this
chapter, together with graphical presentation of the results, so that standard analyses can be
carried out conveniently.

BJESTIMATE fits an ARIMA model, with forecasts and residual checks

(2:7.3.1)
BJFORECAST plots forecasts of a time series using a previously fitted

ARIMA (2:7.3.8)
BJIDENTIFY displays time series statistics useful for ARIMA model

selection (2:7.1.3)
DFOURIER performs a harmonic analysis of a univariate time series

(2:7.2.7)
MCROSSPECTRUM performs a spectral analysis of a multiple time series

(2:7.2.8)
PERIODTEST gives periodogram-based tests for white noise in time

series
PREWHITEN filters a time series before spectral analysis
REPPERIODOGRAM gives periodogram-based analyses for replicated time

series
SMOOTHSPECTRUM forms smoothed spectrum estimates for univariate time

series (2:7.2.6)
TVARMA fits a vector autoregressive moving average (VARMA)

model
TVFORECAST forecasts future values from a vector autoregressive

moving average (VARMA) model
TVGRAPH plots a vector autoregressive moving average (VARMA)

model

478 7 Summary of other facilities

7.8 Repeated measurements

A repeated-measurements study is one in which subjects (animals, people, plots, etc) are
observed on several occasions. Each subject usually receives some randomly allocated treatment,
either at the outset or repeatedly through the investigation, and is then observed at successive
occasions to see how the treatment effects develop. One way to analyse data sets like this is to
use Genstat's REML facilities to model the correlation structure over time (see 7.5).

Alternatively, Genstat has procedures for customized plotting of the observations (or profiles)
against time, repeated measures analysis of variance, analyses based on ante-dependence
structure or generalized estimating equations, and regression or nonlinear modelling of data
where the residuals follow an AR1 or power-distance correlation model.

DREPMEASURES plots profiles and differences of profiles for repeated

measures data (2:8.1.1)
VORTHPOLYNOMIAL calculates orthogonal polynomial time-contrasts for

repeated measures (2:8.1.2)
AREPMEASURES produces an analysis of variance for repeated

measurements (2:8.1.3)
MANOVA performs multivariate analysis of variance and covariance

(2:6.6.1, 2:8.1.4)
RMULTIVARIATE provides multivariate linear regression with accumulated

testing of terms (2:6.6.2)
ANTORDER assesses order of ante-dependence for repeated measures

data (2:8.1.5)
ANTTEST calculates overall tests based on a specified order of

ante-dependence (2:8.1.5)
ANTMVESTIMATE estimates missing values in repeated measurements using

ante-dependence structure
RAR1 fits regressions with an AR1 or a power-distance

correlation model (2:8.1.6)
NLAR1 fits curves with an AR1 or a power-distance correlation

model (2:8.1.6)
CUMDISTRIBUTION fits frequency distributions to accumulated counts
DTIMEPLOT produces horizontal bars displaying a continuous time

record
GEE fits models to longitudinal data by generalized estimating

equations (2:3.5.10)
VHOMOGENEITY tests homogeneity of variances
AFCARRYOVER forms factors to represent carry-over effects in cross-over

trials
AGCROSSOVERLATIN generates Latin squares balanced for carry-over effects

(2:4.9.3)

7.9 Survival analysis

In survival data the response variate is the survival time of an individual like a medical patient
or an industrial component. The responses are often censored, i.e. some individuals survive
beyond the end of the study, and so their survival times are unknown. Genstat provides various
ways of estimating the survivor function (i.e. the probability that an individual is still surviving
at each time). You can do nonparametric tests to compare different survival distributions.
Finally, you can model the survival times, by assuming that they follow exponential, Weibull or
extremevalue distributions, or by fitting a proportional hazards model.

7.10 Spatial statistics 479

KAPLANMEIER calculates the Kaplan-Meier estimate of the survivor

function (2:8.2.1)
RLIFETABLE calculates the life-table estimate of the survivor function

(2:8.2.3)
RPHFIT fits the proportional hazards model to survival data as a

generalized linear model (2:8.2.5)
RPHCHANGE modifies a proportional hazards model fitted by RPHFIT

(2:8.2.5)
RPHDISPLAY prints output for a proportional hazards model fitted by

RPHFIT (2:8.2.5)
RPHKEEP saves information from a proportional hazards model fitted

by RPHFIT (2:8.2.5)
RPHVECTORS forms vectors for fitting proportional hazards data as a

generalized linear model
RSURVIVAL models survival times of exponential, Weibull or

extreme-value distributions (2:8.2.4)
RSTEST compares groups of right-censored survival data by

nonparametric tests (2:8.2.2)

7.10 Spatial statistics

Spatial data can be analysed by "kriging", a method originating in geostatistics for analysing data
distributed in two dimensions. The kriging model specifies how successive measurements of a
variable in space are correlated with each other, in terms of a "variogram". This is analogous to
the "correlogram" used in the analysis of time series, but for two-dimensional (spatial) data
rather than one-dimensional (temporal) data. There are also commands for "cokriging", which
models the spatial behaviour of several variables at once (2:8.3.4). This is useful if a variable,
that is difficult or expensive to observe, is correlated with other variables that are easier or
cheaper.

FVARIOGRAM forms auto-variograms for individual variates or cross-

variograms for pairs of variates (2:8.3.1)
MVARIOGRAM fits models to an experimental variogram (2:8.3.2)
DVARIOGRAM plots fitted models to an experimental variogram (2:8.3.3)
KRIGE calculates kriged estimates using a model fitted to a

sample variogram (2:8.3.4)
KCROSSVALIDATION computes cross-validation statistics for punctual kriging
FCOVARIOGRAM forms a covariogram structure containing auto-variograms

of individual variates and cross-variograms for pairs from
a list of variates (2:8.3.6)

MCOVARIOGRAM fits models to sets of variograms and cross-variograms
(2:8.3.7)

DCOVARIOGRAM plots 2-dimensional auto- and cross-variograms (2:8.3.8)
COKRIGE calculates kriged estimates using a model fitted to the

sample variograms and cross-variograms of a set of
variates (2:8.3.9)

There are also procedures for plotting, manipulating and analysing spatial point patterns.

DKSTPLOT produces diagnostic plots for space-time clustering

DPOLYGON draws polygons using high-resolution graphics
DPTMAP draws maps for spatial point patterns using high-resolution

graphics

480 7 Summary of other facilities

DPTREAD adds points interactively to a spatial point pattern
DRPOLYGON reads a polygon interactively from the current graphics

device
FHAT calculates an estimate of the F nearest-neighbour

distribution function
FZERO gives the F function expectation under complete spatial

randomness
GHAT calculates an estimate of the G nearest-neighbour

distribution function
GRLABEL randomly labels two or more spatial point patterns
GRTHIN randomly thins a spatial point pattern
GRTORSHIFT performs a random toroidal shift on a spatial point pattern
GRCSR generates completely spatially random points in a polygon
KCSRENVELOPES simulates K function bounds under complete spatial

randomness
KHAT calculates an estimate of the K function
KLABENVELOPES gives bounds for K function differences under random

labelling
KSED calculates s.e. for K function differences under random

labelling
KSTHAT calculates an estimate of the K function in space, time and

space-time
KSTMCTEST performs a Monte-Carlo test for space-time interaction
KSTSE calculates the standard error for the space-time K function
KTORENVELOPES gives bounds for the bivariate K function under

independence
K12HAT calculates an estimate of the bivariate K function
MSEKERNEL2D estimates the mean square error for a kernel smoothing
PTAREAPOLYGON calculates the area of a polygon
PTBOX generates a box bounding or surrounding a spatial point

pattern
PTCLOSEPOLYGON closes open polygons
PTDESCRIBE gives summary and second order statistics for a point

process
PTGRID generates a grid of points in a polygon
PTINTENSITY calculates the overall density for a spatial point pattern
PTKERNEL2D performs kernel smoothing of a spatial point pattern
PTK3D performs kernel smoothing of space-time data
PTREMOVE removes points interactively from a spatial point pattern
PTROTATE rotates a point pattern
PTSINPOLYGON returns points inside or outside a polygon

7.11 Six sigma

Genstat has wide range of facilities to support the six-sigma approach to quality improvement.
It can display many different types of control chart.

SPCCHART plots c or u charts representing numbers of defective items
(2:2.10.5)

SPCUSUM prints CUSUM tables for controlling a process mean
(2:2.10.2)

SPEWMA plots exponentially weighted moving-average control

7.12 Survey analysis 481

charts (2:2.10.3)
SPPCHART plots p or np charts for binomial testing for defective items

(2:2.10.4)
SPSHEWHART plots control charts for mean and standard deviation or

range (2:2.10.1)

It can test for Normality, display Pareto charts and calculate capability statistics.

NORMTEST performs tests of univariate and/or multivariate Normality
SPCAPABILITY calculates capability statistics (2:2.10.6)
TABSORT sorts tables to put margins are in ascending or descending

order for display as a Pareto chart (4.11.6)

And, of course, it also provides full statistical backup for wider-ranging investigations.

7.12 Survey analysis

There are several procedures for analysing the results of stratified surveys. For details see Part
3 of the Genstat Reference Manual.

SVBOOT bootstraps data from random surveys

SVCALIBRATE performs generalized calibration of survey data
SVGLM fits generalized linear models to survey data
SVHOTDECK performs hot-deck and model-based imputation for survey

data
SVREWEIGHT modifies survey weights adjusting to ensure that their

overall sum weights remains unchanged
SVSAMPLE constructs stratified random samples
SVSTRATIFIED analyses stratified random surveys by expansion or ratio

raising
SVTABULATE tabulates data from random surveys, including multistage

surveys and surveys with unequal probabilities of selection
SVWEIGHT forms survey weights
CSPRO reads a data set from a CSPro survey data file and

dictionary, loads it into Genstat or puts it into a
spreadsheet file

7.13 Ecological data

Procedures are available to study ecological issues, such as species diversity and abundance.

ECDIVERSITY calculates measures of diversity with jackknife or
bootstrap estimates (2:2.11.1)

ECABUNDANCEPLOT produces rank/abundance, ABC and k-dominance plots
(2:2.11.2)

ECFIT fits models to species abundance data (2.11.3)
ECNICHE generates relative abundance of species for niche-based

models (2:2.11.4)
ECRAREFACTION calculates individual or sample-based rarefaction

(2:2.11.5)
ECACCUMULATION plots species accumulation curves for samples or

individuals (2:2.11.6)
ECNPESTIMATE calculates nonparametric estimates of species richness

(2:2.11.7)
ECANOSIM does a nonparametric analysis of similarities (ANOSIM) to

482 7 Summary of other facilities

test for differences between two or more groups of
sampling units (2:6.1.6)

LORENZ plots the Lorenz curve and calculates the Gini and
asymmetry coefficients (2:2.11.8)

7.14 Statistical genetics and QTL estimation

Genstat has a suite of procedures for statistical genetics. Several of these use REML to estimate
QTLs from single environment, multi-environment and mult-trait trials.

DQMAP displays a genetic map

DQMKSCORES plots a grid of marker scores for genotypes and indicates
missing data

DQMQTLSCAN plots the results of a genome-wide scan for QTL effects in
multi-environment trials

DQRECOMBINATIONS plots a matrix of recombination frequencies between
markers

DQSQTLSCAN plots the results of a genome-wide scan for QTL effects in
single-environment trials

GPREDICTION produces genomic predictions (breeding values) using
phenotypic and molecular marker information

QBESTGENOTYPES sorts individuals of a segregating population by their
genetic similarity with a defined target genotype, using the
identity by descent (IBD) information at QTL positions for
one or more traits

QCANDIDATES selects QTLs on the basis of a test statistic profile along
the genome

QDESCRIBE prints summary statistics of genotypes
QEIGENANALYSIS uses principal components analysis and the Tracy-Widom

statistic to find the number of significant principal
components to represent a set of variables

QEXPORT exports genotypic data for QTL analysis
QFLAPJACK creates a Flapjack project file from genotypic and

phenotypic data
QGSELECT obtains a representative selection of genotypes by means

of genetic distance sampling or genetic distance
optimization

QIBDPROBABILITIES reads molecular marker data and calculates IBD
probabilities

QIMPORT imports genotypic and phenotypic data for QTL analysis
QKINSHIPMATRIX forms a kinship matrix from molecular markers
QLDDECAY estimates linkage disequilibrium (LD) decay along a

chromosome
QLINKAGEGROUPS forms linkage groups using marker data from experimental

populations
QMAP constructs genetic linkage maps using marker data from

experimental populations
QMASSOCIATION performs multi-environment marker trait association

analysis in a genetically diverse population using bi-allelic
and multi-allelic markers

QMATCH matches different data structures to be used in QTL
estimation

7.15 Microarray data 483

QMBACKSELECT performs a QTL backward selection for loci in multi-
environment trials or multiple populations

QMKDIAGNOSTICS generates descriptive statistics and diagnostic plots of
molecular marker data

QMESTIMATE calculates QTL effects in multi-environment trials or
multiple populations

QMKRECODE recodes marker scores into separate alleles
QMKSELECT obtains a representative selection of markers by means of

genetic distance sampling or genetic distance optimization
QMQTLSCAN performs a genome-wide scan for QTL effects (Simple and

Composite Interval Mapping) in multi-environment trials
or multiple populations

QMTBACKSELECT performs a QTL backward selection for loci in multi-trait
trials

QMTESTIMATE calculates QTL effects in multi-trait trials
QMTQTLSCAN performs a genome-wide scan for QTL effects (Simple and

Composite Interval Mapping) in multi-trait trials
QMVAF calculates percentage variance accounted for by QTL

effects in a multi-environment analysis
QMVESTIMATE replaces missing molecular marker scores using

conditional genotypic probabilities
QMVREPLACE replaces missing marker scores with the mode scores of

the most similar genotypes
QRECOMBINATIONS calculates the expected numbers of recombinations and the

recombination frequencies between markers
QREPORT creates an HTML report from QTL linkage or association

analysis results
QSASSOCIATION performs marker trait association analysis in a genetically

diverse population using bi-allelic and multi-allelic
markers

QSBACKSELECT performs a QTL backward selection for loci in single-
environment trials

QSELECTIONINDEX calculates (molecular) selection indexes by using
phenotypic information and/or molecular scores of
multiple traits

QSESTIMATE calculates QTL effects in single-environment trials
QSIMULATE simulates marker data and QTL effects for single and

multiple environment trials
QSQTLSCAN performs a genome-wide scan for QTL effects (Simple and

Composite Interval Mapping) in single-environment trials
QTHRESHOLD calculates a threshold to identify a significant QTL
VGESELECT selects the best variance-covariance model for a set of

environments

7.15 Microarray data

There is a suite of procedures for the design, analysis and visualization of two-colour and
Affymetrix microarray data. These are used by the Microarray menus in Genstat for Windows.

AGBIB generates balanced incomplete block designs
AGLOOP generates loop designs e.g. for time-course microarray

experiments

484 7 Summary of other facilities

AGREFERENCE generates reference-level designs e.g. for microarray
experiments

MADESIGN assesses the efficiency of a two-colour microarray design
MACALCULATE corrects and transforms two-colour microarray differential

expressions
MNORMALIZE normalizes two-colour microarray data
MAESTIMATE estimates treatment effects from a two-colour microarray

design
AFFYMETRIX estimates expression values for Affymetrix slides.
MABGCORRECT performs background correction of Affymetrix slides
MAROBUSTMEANS does a robust means analysis for Affymetrix slides
MARMA calculates Affymetrix expression values
MAANOVA does analysis of variance for a single-channel microarray

design
MAREGRESSION does regressions for single-channel microarray data
MAVDIFFERENCE applies the average difference algorithm to Affymetrix

data
DMADENSITY plots the empirical CDF or PDF (kernel smoothed) by

groups
MAHISTOGRAM plots histograms of microarray data
MAPLOT produces two-dimensional plots of microarray data
MASHADE produces shade plots to display spatial variation of

microarray data
MAVOLCANO produces volcano plots of microarray data
MAPCLUSTER clusters probes or genes with microarray data
MASCLUSTER clusters microarray slides
MA2CLUSTER performs a two-way clustering of microarray data by

probes (or genes) and slides
FDRBONFERRONI estimates false discovery rates by a Bonferroni-type

procedure
FDRMIXTURE estimates false discovery rates using mixture distributions
MAEBAYES modifies t-values by an empirical Bayes method.
MPOLISH performs a median polish of two-way data
QNORMALIZE performs quantile normalization
THINPLATE calculates the basis functions for thin-plate splines
TUKEYBIWEIGHT estimates means using the Tukey biweight algorithm

7.16 Data mining

Genstat provides many conventional statistical techniques that are useful for data mining,
including regression (2:3.1, 2:3.2, 2:3.3), log-linear models (2:3.5.1), generalized additive
models (2:3.5.7), discriminant analysis (2:6.5) and cluster analysis (2:6.19, 2:6.20). It also
provides various more specialized techniques such as association rules, classification and
regression trees, random forests, k-nearest-neighbours classification, self-organizing maps, neural
networks and radial basis functions.

ASRULES derives association rules from transaction data

BCLASSIFICATION constructs a classification tree (2:6.21.1)
BCDISPLAY displays a classification tree (2:6.21.2)
BCIDENTIFY identifies specimens using a classification tree (2:6.21.4)
BCVALUES forms values for nodes of a classification tree (2:6.21.3)
BCFOREST constructs a random classification forest

7.17 Other statistical methods 485

BCFDISPLAY displays information about a random classification forest
BCFIDENTIFY identifies specimens using a random classification forest
BREGRESSION constructs a regression tree (2:3.9.1)
BRDISPLAY displays a regression tree (2:3.9.2)
BRPREDICT makes predictions using a regression tree (2:3.9.4)
BRVALUES forms values for nodes of a regression tree (2:3.9.3)
KNEARESTNEIGHBOURS classifies items or predicts their responses by examining

their k nearest neighbours
NNFIT fits a multi-layer perceptron neural network
NNDISPLAY displays output from a multi-layer perceptron neural

network fitted by NNFIT
NNPREDICT forms predictions from a multi-layer perceptron neural

network fitted by NNFIT
RBFIT fits a radial basis function model
RBDISPLAY displays output from a radial basis function model fitted

by RBFIT
RBPREDICT forms predictions from a radial basis function model fitted

by RBFIT
SOM declares a self-organizing map
SOMADJUST performs adjustments to the weights of a self-organizing

map
SOMDESCRIBE summarizes values of variables at nodes of a self-

organizing map
SOMESTIMATE estimates the weights for self-organizing maps
SOMIDENTIFY allocates samples to nodes of a self-organizing map
SOMPREDICT makes predictions using a self-organizing map
SVMFIT fits a support vector machine
SVMPREDICT forms the predictions using a support vector machine

7.17 Other statistical methods

Genstat provides procedures for several other statistical methods, including Jackknife, Bootstrap
and Bayesian analyses, that are not described in the Guide. Details can be found in Part 3 of the
Genstat Reference Manual.

References

Chapter 4
Bowdler, H., Martin, R.S., Reinsch, C. & Wilkinson, J.H. (1968). The QR and QL algorithms for

symmetric matrices. Numerische Mathematik 11, 293-306.
Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and Regression Trees.

Wadsworth, Monterey.
Digby, P.G.N. & Kempton, R.A. (1987). Multivariate Analysis of Ecological Communities. Chapman &

Hall, London.
Eckart, C. & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika

1, 211-218.
Gehan, E.A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-censored samples.

Biometrika, 52, 203-223
Golub, G.H. & Reinsch, C. (1971). Singular value decomposition and least squares solutions. Numerische

Mathematik 14, 403-420.
Herraman, C. (1968). Algorithm AS12: Sums of squares and products matrix. Applied Statistics 17, 289-

292.
Martin, R.S., Reinsch, C. & Wilkinson, J.H. (1968). Householders tridiagonalisation of a symmetric matrix.

Numerische Mathematik 11, 181-195.
Rao, C.R. (1973). Linear statistical inference and its applications. Wiley, New York.
Taylor, P.C. & Silverman, B.W. (1993). Block diagrams and splitting criteria for classification trees.

Statistics & Computing, 3, 147-161.
Wichmann, B.A. & Hill, I.D. (1982). An efficient and portable pseudo-random number generator. Applied

Statistics 31, 188-190.

Index

3-tier analysis 468
Abandoning a control structure 320
Abbreviating output 354
Abbreviation 4

of function name 20, 155
of identifier 13
of option name 25
of parameter name 25
of string token 27
of system word 14

Accessing graphical settings 445
Addition 15
Affymetrix 483
Akaike information coefficient 472
Akaike Information Criterion 455
All subsets of a set of objects 190
Alpha design 469, 471
Ambiguity between directive and procedure

names 23
Ampersand 9, 23, 28
Analysis of variance 466

multi-tiered 468
parallel 472

And operator 15
Angle to rotate graphics 438
Angular transformation 171, 175
Annotation

for contour plot 459
for graph 362
of graph 451

ANOVA save structure 349, 352
Ante-dependence 478
Anti-end-cut factor 299
APPEND procedure 199
Appending

into a text 220
texts side by side 221
vectors 199, 200

ArcView/Info 131
Area of polygon 159
Argument

of function 20, 155
of statement 24

Arithmetic operation 15, 20
Arithmetic operators 15, 138, 150
Arithmetic progression 16
Arrowhead on axis 426, 429
ASCII character 106
ASCII character set 232
ASSIGN directive 245
Assigning values 6
Assignment operator 15, 27, 138, 141, 149
Asterisk 9

as missing value 15
as plotting symbol 451
in histogram 456

Asymmetry coefficient 482
Attributes of a data structure

copying 158
Auxiliary parameter 3
Axis 362, 364

bounds 371, 383, 424, 428, 446
hiding 426, 429
label 390
labels 425, 429
linked 426, 429
mark 452
marking 451
oblique 430, 431
position 366
scale 425
scaling 452
title 364, 368, 424, 448
transformed 425, 429, 432

Azimuth 387
Background colour 421
Backing store 119-128

associated structures 120, 123
catalogue 120, 125-128
catalogue of a subfile 120
catalogue of subfiles 128
channels 109
complete set of structures 124
copying subfiles 128
displaying the contents 125-127
file 120
for procedures 330
merging files 127, 128
overwriting 124
password 123, 128
renaming files 128
renaming structures 124
retrieval 123-125
retrieving pointers 120, 124
retrieving suffixed identifiers 120, 124
storage 121-123
storing pointers 120
storing procedures 120, 122, 123
storing suffixed identifiers 120
subfile 119, 120
subfile name 121
userfile 121
workfile 121, 123

Backslash 7, 9, 11, 17, 24, 348
Balanced design 467
Balanced-incomplete-block design 469

488 Index

Bar chart 373, 375, 377
BARCHART directive 377
Barycentric coordinates 360
Basic 28
Basic statistics 461
BASSESS directive 298
Batch mode 1, 4, 349, 352, 355
Bayesian analysis 484, 485
BCONSTRUCT procedure 297
BCUT directive 293
Beta distribution 171-173
Beta function 155
BGRAPH procedure 291
BGROW directive 291
BIDENTIFY directive 301
Binary file 267
Binomial distribution 171, 172, 175
Biplot 475
Bitmap 131, 394
Bivariate normal distribution 171, 172
BJOIN directive 295
Blank character 10, 16
Blank data field 87
Block-if structure 316
Boolean algebra 187, 188
Boolean arithmetic 132, 183, 188
Bounds for axis 366, 446, 451, 459
Box-Behnken design 469
BPRINT procedure 291
BPRUNE procedure 300
Bracket 3, 8

in expression 21
in formula 22
in list 17, 19

Bradley-Terry model 465
BREAK directive 341
Break in plotted line 366
Breaking the execution of a program 341
Broken-stick regression model 465
Brush pattern 366, 396
Brush style 418, 437
CALCULATE directive 137
Calculations 6, 20, 132, 137, 138

order of evaluation 149
with diagonal matrices 146
with factors 144, 145
with matrices 145, 146
with matrices and scalars 147
with matrices and variates 146
with restricted vectors 143
with scalars 142
with symmetric matrices 146
with tables 149
with texts 145
with variates 142

CALLS directive 329
Canonical correlation analysis 475

Canonical correspondence analysis 475
Canonical efficiency factor 468
Canonical relationships between projectors 468
Canonical variates analysis 474
Caption

controlling which are printed 349
for output 105
suppressing 331

CAPTION directive 105
Captions

control of printing 351
Carriage-return key 9, 11, 24, 348
Carry-over effect 469, 471
CART 137
Case 7

changing 220
in identifier 13, 23, 348, 352
in operator 16
in READ 93
in string 10
in system word 14
of factor labels 84

CASE directive 318
CATALOGUE directive 125
Cate-Nelson graphical analysis 465
Central composite design 469
Centring a matrix 162, 163
Changing default setting 354
Changing sign of expression 21
Channel 111

available types 109
discovering details of 114, 115
for graphics 448
free in OPEN 111
in PRINT 101

Character 8
functions 167

Choleski decomposition 162
Classification tree 137, 290, 298
Classifying factors of tables

modifying 273
Classifying set of a table

in calculations 148-150
Clearing graphics screen 368, 382, 406
Clipping 366, 371
CLOSE directive 112
Closing files 117
Cluster analysis 380, 385, 474
Cochran's Q test 462
Cochran-Mantel-Haenszel test 461
Coincident points 451
Colon 9, 24

as terminator for data 77
Colour 362, 385, 396, 421, 434

default for PEN 442
of the background of a graph 421
pre-defined for graph 434

Index 489

pre-defined for graph 439
RGB 395
RGB definition for graph 434
standard for graphics 442

Column headings 100
Column of line-printer graph 452
Columns of matrix

discovering how many 163
COMBINE directive 272
Combining data sets 200
Combining levels of classifying factors of tables

273
Comma 3, 9, 10, 16, 17

in formula 22
Comma delimited file 131
Command

checking for availability 337
syntax 338

COMMANDINFORMATION directive 337
Comment 7, 11

treatment of newline in 24
Communicating with another program 355
Compaction of list 18, 19, 21
Comparing sets 187
Comparing values of structures 183
Complementary log-log transformation 172, 175
Complex latent root 253
Compositional data 360
Compound data structure

reading 79
Compound operator 8
Compound structure

operations on 248
CONCATENATE directive 218
Concatenation 218-220
Concordance correlation coefficient 462
Confidence limit 367
Conical projection 387
Conjunction 15
Constants 158
Continuation symbol 7, 9, 11, 17, 24, 348

in pathnames on a PC 110
in READ 77

Contour 388
CONTOUR directive 448
Contour interval 458
Contour plot 380, 381, 457
Control chart 480
Conventions in manual 7, 30
Convergence testing 353
Coordinate system for graphics 363
Coordinates for graph 365
Coordinates for plotting 449
COPY directive 118
Copying

a slice of a table into a table with fewer
dimensions 273

values between data structures 183-185
Correlation 159, 160, 162
Correlation coefficient 462
COUNTER directive 335
Covariance 159, 160
Cross tabulation 261
Cross-over design 471
Cross-product operator 15, 23
Crossed-deletion operator 16, 23
Cubic spline 450
Cumulative sums 156
Cumulative totals

forming in READ 91
Curly bracket 8
Currency symbol 9
Curve

through points in a graph 437
Curved line graph 366
Curved line plot 450
Cut-off in contour plot 459
Cyclic design 469, 471
D3GRAPH directive 369
D3HISTOGRAM directive 389
DARROW procedure 399
Dashed line 437
Data file 80
Data input 74
Data manipulation 106
Data separator 77
Data structure 31

listing those in Genstat 66
private in procedure 334
renaming 63
renaming in backing store 121
saving the identifiers of structures of specific

types 66
storing attributes and values 119

Dates and times 10
dBase 131
DBITMAP directive 394
DCLEAR directive 406
DCOLOURS procedure 443
DCONTOUR directive 380
DDE 131
DDISPLAY directive 419
DEBUG directive 343
Debugging a program 341, 344
Decimal places 3, 4

default for PRINT 348
setting for a data structure/ 106

Decimal point 10
Decimals attribute

use in PRINT 99
DECIMALS procedure 106
Declaration 6

of data structure 31
Default

490 Index

colours 442
declaration 6
format 348, 353
of option or parameter 354
option setting 26, 27

Default font for graphics 359, 447
Deleting

a procedure 332
files 117

Deletion operator 16, 23
Density plot 360, 361, 391
Depth in contour plot 459
DERRORBAR procedure 401
Design generation 469
Design key 471
Design of experiments 466
Designs analysable by ANOVA 467
Determinant 162
Device 361, 415
DEVICE directive 417
DFINISH directive 407
DFONT directive 447
DGRAPH directive 364
DHELP procedure 417
DHISTOGRAM directive 373
Diagnostic 313

control of printing 353
issuing from a procedure 332
level of reporting 347
printing 333
reporting 352
reprinting 333
setting indicator 347

Diagonal matrix
in expressions 145

Differencing units of vectors 156
Digit 8
Dimension of data 457
Dimensionality of a data structure 151
Directive 2, 5

default settings 354
name 3, 4, 14

Discrete distributions 171
Discriminant analysis 475

stepwise 475
Disjunction 15
DISPLAY directive 333
Distinct values of a variate or text 215
Division 15

by zero 142
DKEEP directive 445
DKEY procedure 402
DMSCATTER procedure 412
Dollar 9, 21
Dot

as plotting symbol 451
operator 22

Dot-product operator 15, 22
Dots

line of in output 347
representing progression 16

Dotted line 437
Double quote 7, 9
DPIE directive 395
DREFERENCELINE procedure 398
DSHADE directive 384
DSTART directive 407
DSURFACE directive 386
DTABLE procedure 280
DTEXT procedure 397
Dummy 19, 316

assigning from within a procedure 248
assigning values to 245, 247, 248
checking whether set 167
functions 167
in procedure 326
operations on 244
substituting 246
testing the value 139

Dunnett's test 177, 467
DXYDENSITY procedure 391
Dyadic minus 139
Dyadic operator 21
Dynamic Data Exchange 131
Echoing of input 5, 312, 352
Echoing of statements 352
Ecological data 481
Editing data 349
Editing Genstat commands 4
Editing text 234, 235

commands 235-237
Eigenvalue decomposition 251-253, 255-257
Eigenvalues 162
Eigenvectors 162
Either-or operator 15
Ellipsis 16
ELSE directive 317, 319
ELSIF directive 317
Empirical Bayes 484
Empty brackets 18
Empty suffix list 18
End

of program 5
End-of-file 83
ENDBREAK directive 342
ENDCASE directive 319
ENDDEBUG directive 343
ENDFOR directive 315
ENDIF directive 317
Ending a Genstat job 313
Ending a Genstat program 314
Ending a Genstat run 314
Ending the definition of a procedure 328
ENDJOB directive 313

Index 491

ENDPROCEDURE directive 328
ENQUIRE directive 114
Environment 312, 324, 331

for graphics 362, 415, 445
Environmental variable 355
Epi-Info 131
Equal bounds in graph 452
Equality operator 15, 302
Equals operator 15
Equals symbol 9, 27
EQUATE directive 183
Equivalence test 470
Equivalent deviate 171
Error bar 367

plotting 401
Error message 3
Errors in data values in READ 92-95
Exact test 466

Fisher's 461
Excel 131
Exclamation mark 9, 14
Exclusive disjunction 15
EXECUTE directive 335
Exit

from a block-if structure 320
from a control structure 320
from a procedure 320
from one pass through a loop 321
from several control structures 321
subject to a condition 321

EXIT directive 320
Explicit declaration 6
Exploded pie-chart 397
Exponent 10

code 10
Exponential function 156
Exponentiation 15
Expression 15, 20, 137, 138

as setting of option or parameter 26
list of arguments in 241
order of evaluation 149
printing 102
reading 79
reformulate for another set of data structures

244
Extra text 14

printing 100
Factor

automatic definition of levels and labels by
READ 80, 84

forming from a text or variate 213
forming from variate or text 214
in expressions 144, 145
merging labels 134
merging levels 134
multiple-response 285
operations on 213

printing 97
printing levels and labels 42
reading 79
replacing levels 156
representation of values in PRINT 88, 100
representation of values in READ 84, 85, 95
standardize levels or labels 134, 214

False discovery rate 462, 484
False value in an expression 139
FARGUMENTS directive 241
Fault 3, 313

breaking execution afterwards 344
control of reporting 347
issuing from a procedure 332
recovery from 349
reporting 352
saving last code 353

FAULT directive 332
FCLASSIFICATION directive 238
FFREERESPONSEFACTOR procedure 285
Field width

minimum 107
Fieldwidth

default for PRINT 348, 353
when reading data 87

File 106, 108, 109, 113-115
available channels 109
backing store 120
closing 112, 113
deleting 113
for communication 355, 357
for output 118
in READ 80, 83
indentation 112
mode of access 112
of input statements 115, 116
opening 110-112
opening on a free channel 111
overwriting 111
page size 112
rewinding in READ 83
sending output to 117, 118
transcript 118
types 109
unformatted 129
width 87, 111

FILEREAD procedure 74
Finding a text within another text 225
Finding strings within the lines of a text 223
First-order balance 467
Fisher's exact test 461
Fitted values

form from table of means 168
Fixed format 83, 86-89
FLC test 472
FLRV directive 251
FMFACTORS procedure 283

492 Index

Font 416
FOR directive 314
FOR loops 315
Foreign file format 131
Form-feed character 106
Format for transferring values between data

structures 185
Format variate in READ 89
Formatted output 1, 72, 98, 99, 111, 115

from a procedure 331
skipping lines in 114
switching to plain text 118

Forming distinct values of a variate or text 215
Formula 15, 20, 22

construction from a set of factors and variates
243

expanding 239, 240
manipulation of 238
number of terms in 239
obtaining the individual terms 239
operations on 238
printing 102
reading 79
reformulate for another set of data structures

244
Formula operator 15
Fortran 21, 28

use in tabulation 267
Fractional factorial design 469
Fractional part 156
Frame definition for graphics 419
FRAME directive 419
Free format 8, 77, 83, 85, 89
Free-response data 285
Function 20

for dummies 167
for matrices 161
for tables 166
for texts 167
in expressions 154
in formula 22
name 14, 20

Gamma distribution 172, 173, 175
Gauss 131
Generalized estimating equations 478
Generalized inverse 162, 250
Generalized linear model 463
Generally balanced design 469
Genotype × environment interaction 468
Genstat environment 324, 331
Genstat for Windows 1
Genstat Procedure Library 322

private data structures 334
Genstat program 5, 311
Genstat spreadsheet file 73, 131
Geostatistics 479
GET directive 351

Gini coefficient 482
Gini information 299
GNPASS program 357
Graph 364

density plot 360, 361
key 402

GRAPH directive 448
Graphical save structure 349, 352
Graphics 359

channel 448
clearing screen 382, 406
default font 359, 447
density plot 391
device 361, 415
device, available 417
device, changing 417
environment 362, 415, 445
files 109
functions 179
pen 362, 415
plotting text 397
plotting trees 291
reloading environment settings 447
saving environment settings 447
window 363, 405, 415

Graphics-mode display 364, 419
Greater-than character 348
Greater-than operator 15, 302
GRIB2 meteorological data file 74
Grid in contour plot 457
Grid plot 381, 390
Gridlines on graphs 422
Grouped data in graph 436
Grouped histogram 454
Grouping in histogram 455
Groupings of units of vectors 213
GROUPS directive 214
Guidelines for procedure authors 322
Hadamard matrix 137, 470
Hard-copy of graph 416
Hash character 9, 19, 27, 28
Height in contour plot 457
Help system 5, 349, 416
Hierarchical generalized linear model 464
High-resolution graphics 359, 361
Histogram 373, 374, 390, 453

grouped 454
parallel 454
solid fill 418
three dimensional 389

HISTOGRAM directive 448
Hot points on graph 369
Hot-deck imputation 136, 481
HTML 1, 72, 73, 98, 111, 118
Hyperbolic cosine 156
Hyperbolic sine 157
Hyperbolic tangent 157

Index 493

Hypergeometric distribution 172, 173, 176
Identification 476

using a tree 301
Identification key 137, 290
Identifier 9, 13, 14, 17

case in 348, 352
changing 63
list 16, 17, 20, 22
locations within a pointer 192
substitution 19

Identifier equivalence 15
IF directive 316
Implicit declaration 6, 14

in CALCULATE 138, 144, 148, 149, 151
in READ 80, 84

Imputation 136, 481
Inclusion operator 15, 140, 302
Indentation 3
Index

in list of calculations 141
Initial default 347
Input

echoing of 347
Input channel 109, 115, 116

in READ 80
return to previous channel 116

INPUT directive 115
Input of data 74, 77, 81, 82
Input stack 117
Input statements

copying to a file 118
Instat 131
Instruction 1
Instructions for procedure authors 310
Integration 158
Interactive mode 2, 349, 352, 355
Interactive reading of data 77
INTERPOLATE directive 208
Interpolation 208-210

in contour plot 457
Interrupting a loop or procedure 342
Interrupting output 348
Invalid calculation 142
Inverse Gaussian distribution 172, 173, 176
Inverse interpolation 208-210
Inverse Normal distribution 172, 173, 176
Inverse of a matrix 162
Irredundant test set 476
Item 9
Iterative algorithm 353
Job 311
JOB directive 312
Job number 353
JOIN procedure 205
Joining data sets 205
Joining lines of texts 218
Joining two sets of vectors 205

Justification of data in fixed format 87
Kendall's rank correlation coefficient 462
Key

for a graph 402
for graph 363, 367, 371, 375, 377, 379, 385,

388, 390, 421, 452
Kriging 479
Kurtosis 159, 160, 166, 265
Labelling

of matrices in qualified identifiers 153
of units of vectors in qualified identifiers 153

Labels
axis 425, 429
for graph 362, 364
for histogram 456
for points in a graph 436, 451
of structure values 18, 21

Large data set
density plot 360, 361, 391

Large data sets
formation of SSPMs 259
in READ 90
tabulation 265

Latent root 252, 253, 255, 257
Latent vector 252, 253, 255
LaTeX 1, 72, 73, 98, 111, 118
Latin square 469
Lattice design 469
Lattice square 469
Layout of program 8
Least significant interval 468
Least-squares approximation of rank r to a matrix

249
Length

of lines of a text 168
of statement 24

Less-than operator 15, 302
Letter 8
Levels of a factor

discovering how many 159
in calculations 144
removing those absent in the data 196
replacing 156

Limdep 131
Limitation

on statement length 24
Lin's concordance correlation coefficient 462
Line graph 366
Line number of statement 347
Line numbers in programs 29
Line on graph 362
Line plot 370, 436, 450
Line-by-tester trial 474
Line-printer graphics 359, 449, 453, 457
Linear functional relationship model 465
Linear mixed models 471
Linestyle 416

494 Index

Linkage disequilibrium 482
List 2, 16, 20

compaction of 18, 19, 21
in formula 22
of expressions in CALCULATE 141
of identifiers 27
string 27

Local documentation 2, 4, 109-112
Locating particular values within a vector 168
Locating units with particular properties 195
Locations

of a string within a text or factor 192
of an identifier within a pointer 192
of numbers 192

Log of commands 4
Log of statements 347, 355
Log-likelihood 171
Logarithmic function 156
Logical expression 139, 194, 317, 321

in RETURN 117
Logical operation 15, 20
Logical operators 15, 140, 150
Logit transformation 175, 176
Lognormal distribution 172-174
Longitudinal data 478
Loop 315

line numbers within 347
Lorenz curve 482
Lotus 131
Lower case

changing to upper case 220
LPCONTOUR directive 448, 457
LPGRAPH directive 448, 449
LPHISTOGRAM directive 448, 453
Macro 28, 115, 117, 334, 335, 353

echoing of contents 347
Manipulating data 132
MapInfo 131
Margin 3

around a graph 421
MARGIN directive 268
Margins of a table

deleting 268, 270
forming 268
in calculations 148, 149
labels for printing 266
modifying 268
sorting 278

Mass spectra 360
Mathematical constants 158
Mathematical functions 155
Mathematical modelling 132
Mathematical symbols 11
MatLab 131
Matrix

centre 163
combining and omitting rows or columns 276

decomposition 248
elements of 18, 21
exponential 163
forming from a row or column of a matrix 154
forming from rows or columns of variates 185
in expressions 145
inverse 162
multiplication 147, 148, 162, 163
operations on 248
power 163
printing 104
product 15
shaded display 384
square root 163
standardize 163
transpose 164

Maximum 159, 160, 166, 263
McNemar's test 462
Mean 159, 160, 166, 263
Mean posterior improvement 299
Median 159, 160, 166, 263
Median polish 484
Mega-environment 468
MERGE directive 127
Merging data sets 205
Merging vectors by a classifying key 205
Message 313

control of reporting 347
issuing from a procedure 332
reporting 352

Michaelis-Menten 464
Microarray experiment 469
Microarrays 483

Affymetrix 484
expression values 484

Microsoft® Windows 1
MINFIELDWIDTH procedure 107
Minimal cost complexity pruning 300
Minimum 159, 161, 166, 263
Minitab 131
Minus operator 15, 16, 21

dyadic 139
monadic 139

Missing identifier 20
in formula 22

Missing value 9, 15-17
counting how many 159, 161, 166
estimation by interpolation 209
ignored in variate functions 160
in CALCULATE 139, 142, 143
in factors when forming tables 263
in graph 366, 371, 380
in list 16, 17
in logical expressions 139, 140
in PRINT 101
inserting into a data structure 156
replacing 133, 156

Index 495

when reading data 83
when reading data in fixed format 87
when reading strings 85, 88

Mixture distribution 462
Mode 136
Model formula

construction from a set of factors and variates
243

expanding 239, 240
manipulation of 238
number of terms in 239
obtaining the individual terms 239
operations on 238

Model structure 20
Model term

in formula 22
Modes

of options and parameters in procedures 326
tables of 136, 261

Modification 4
Modifying the classifying factors of tables 273
Modulus 156
Monadic minus 139
Monadic operator 21
MONOTONIC directive 210
Monotonic regression 210
Moore-Penrose generalized inverse 162
Moore-Penrose inverse 250, 256
MStat 131
MTABULATE procedure 288
Mult-trait trial 482
Multi-digit counter 335
Multi-tiered analysis 468
Multidimensional scaling 210, 475
Multiple comparison test 467

against control 467
Multiple graphs 450, 452
Multiple responses 261, 283, 285, 288
Multiple-response factor 135

forming 283, 286
forming from free text 286
tabulating 288

Multiple-selection control structures 318
Multiplication 15
Multiplier 19
Multivariate analysis 474
Multivariate analysis of variance 475, 478
Multivariate Normal random numbers 177
Multivariate regression 478
NAG directive 302
NAG Library 132, 137, 302
Name

of a procedure 323
of data structure 13

Negation 15, 21
Neighbour-balanced design 469
Nelder-Mead simplex algorithm 466

Nested loops 316
Nested product 15
Nested-deletion operator 16
Nested-product operator 23
Nesting of control structures 316
New page

before analyses 313
for graph 364, 452
in output 106, 107, 118, 347

Newline 9, 11, 24, 348
in comment 24
in string 17
in strings 24

News 310
Node of a tree 290
Non-orthogonal split-plot design 469
Nonparametric analysis of variance 461
Normal distribution 172, 175
Normalized device coordinate 420, 424
Not operator 15
NOTICE procedure 322
Null option or parameter setting 25
Null suffix list 18
Number 9, 10, 14, 16

list 16, 28
of characters in each line of a text 168
of value in a data structure, discovering how

many 159
substitution 19

Number of values
defining in READ 84
redefining in READ 80

Numerical Algorithms Group 132, 303
Oblique axis 431
ODBC 131
Omitting levels of classifying factors of tables

273
On-line help 5
OPEN directive 110
Operating system 356
Operations on trees 290
Operator 9, 15, 20, 22
Option 3, 6, 17, 23

default setting 27
name 4, 14, 25, 26
of a procedure 324
role of 25
syntax 24

OPTION directive 325
OR directive 318
Or operator 15
Order

of factor labels 84
of joining points in graph 366, 437, 450
of options 25
of parameters 25

Ordered classifying set of a table 149, 151

496 Index

Ordinal values for factor levels 84, 100
Orthogonal block structure 468
Orthogonal decomposition of design space 468
OSIRIS 131
Outlines

of bar chart 379
of histogram 376
of pie chart 397

Output 6, 104
buffer 101
channel for graphics 448
channels 109, 115, 117, 118
copying to a file 118
style 1, 4, 72, 73, 98, 111
style, changing and restoring inside a procedure

331
OUTPUT directive 117
Page 106, 107, 118

break in output 347
size for graph 452

PAGE directive 106
Paradox 131
Parallel 3
Parallel arguments 25
Parallel histogram 376, 454, 456
Parallel lists 18, 21
Parameter 2, 3, 7, 17, 23

name 4, 14, 25, 26
of a procedure 324
role of 25
syntax 24

PARAMETER directive 325
Parentheses 8
Pareto chart 136, 276, 278
Pareto optimal set 137
Partial least squares regression 475
Pascal 28
PASS directive 357
Password for backing-store files 123, 128
Patterned list 16
Pause after graph 364, 368, 382
Pause in output 348, 352
PC implementation 2
Pen

definition for graphics 432
for graph 362, 365, 370, 376, 382, 385, 390,

415, 425, 429
PEN directive 432
Percent character 8
PERCENT procedure 270
Percentages 271

table of 270, 271
Permutation test 466
Personal computer 359, 419
Perspective in graphics 387, 390
Perspective view 380
Pie chart 396

exploded 397
solid fill 418

Plain-text output 1, 72, 98, 111, 115
use in a formatted channel 118

Plan of a design 469
Plotter 359
Plotting symbol 451, 456
Plus operator 15
Point plot 366, 370, 436, 449
Point selection from graph 369, 372
Pointer 14, 19

assigning values to 245, 247, 248
duplicating 32
in backing store 120
operations on 244

Poisson distribution 172, 173, 175, 176
Polygon

in graph 362, 366, 371, 436
Position

of particular values within a vector 168
of strings in a text 168
of values 161

Post-multiplier 19
prohibited in READ 78

Power 470
Power operator 15
Pre-multiplier 19

prohibited in READ 78
Precedence of operators 21, 22
Precision of computer 353
Primary arguments 26
Primary parameter 2, 4
Principal components analysis 474
Principal coordinates analysis 475
PRINT directive 95
PRINT option 27
Printing 6

across the page 101
decimal places 99
default format 98
expressions 102
factors 97
field width 99
formulae 102
identifiers 100
in parallel 98
in scientific format 99
in series 98
indentation of lines 101
inserting blank lines 114
justification 100
layout of tables 102
margins of tables 104
matrices 104
missing values 101
number of characters displayed 99
representation of factors 100

Index 497

spaces between values 99
symmetric matrices 104
tables 102-104
text from EXTRA attribute 100
to a text 101
to another output channel 101
width of lines 101
width of row labels 104
wrapping output onto next line 101

Printing data
representation of factors+ 108

Private data structures in procedures 334
Probability distribution 171, 360, 462
Probability plot 360, 462
Procedure 2, 5, 28

called by another procedure 310, 329
changing environment in 350
checking of options and parameters 327
debugging 344
default settings 354
defining 323
defining the options and parameters 326
definition 310, 329
deleting 332
echoing of 347
ending the definition 328
for graphics 406
giving a diagnostic 332
in backing store 122, 123
interrupting the execution 342
name 3, 4, 23, 323
output from 330
redefining 332
site library 322
source code 338
subfile 120
titles in 330
using 322
writing 323, 331

PROCEDURE directive 323
Procedure library 125, 322, 330, 355

attached to Genstat 330
channels 109
forming 330

Program 5, 311
resuming 129, 130
saving to resume later 129

Program control 314
Progression

arithmetic 16
of character strings 233

Projection matrix 137
Prompt 2, 8, 348, 352

when reading interactively 77
Pruning a tree 298, 300
Pseudo terms 16
Pseudo-inverse 250

Punctuation 7, 8
QR decomposition 260
QRD directive 260
QTL

Flapjack project file creation 482
QTL analysis 482
QTL estimation 482
Quadratic product of matrices 163
Qualified identifier 21, 151-154, 195

list 18, 19, 21
Quantile 263

normalization 484
Quantile regression 465
Quattro 131
Quotation marks 7, 9, 14, 17
Quote

as plotting symbol 451
Quoted string 10

when reading in free format 85
R 131
Random numbers 171, 176, 177
Range checks of data values 78
Range of values 159, 161

defining factor values from 215
Rank correlation coefficient 462
Rarefaction 481
Re-displaying graphics 419
READ directive 81
Readability 8
Reading data 74, 77, 81, 82

automatic rescaling 92
blank fields 87
data matrix 75
errors 82, 92-95
factors 84, 85, 88, 95
fieldwidth 87
format variate 89
forming cumulative totals 91
from a file 74, 83
from a text 83, 90
from the keyboard 77
in batch 78
in fixed format 83, 86-88
in free format 77, 78, 83
in parallel 79, 80, 83
in series 79, 80, 83
in variable formats 89
interactively 77
justification of data in fixed format 87
pointers 85
printing the input 82
rescaling numbers 88
separator 83, 89, 90
setting number of values 84
skew distribution of data values 82
skipping values 86, 88
sorting units of vectors 92

498 Index

strings 79, 85
summaries 77, 85
terminator 77, 83, 87
texts 79
units structure 80
without a terminator 83

Real latent root 253
Recalling previous statement 353
RECORD directive 129
Record of commands 4
Record of statements 347, 355
Recovery from fault 349
Rectangular file 74
Recursive procedures 332
Redefining

a procedure 332
Redraw a graph 419
Redundancy analysis 475
Reference line for graph 398
REFORMULATE directive 244
Regression analysis 462
Regression save structure 349, 352
Regression tree 137, 290, 298
Relational operator 15
Relational operators 139, 150

for dummies 139
REML

F-test of random effects 472
investigating the fixed model 473
line-by-tester analysis 474
model-definition structure 474
saving results from the analysis of a series of

trials 474
REML analysis 471
REML save structure 349, 352
Removing spaces from texts 219
RENAME directive 63
Renaming a data structure 63
Repeated measurements 478
Repeating previous statement 353
Repetition

in lists 16, 19
of a block of statements 315
of options 28
of statement 28
symbol 23, 28

Replacing strings within a text structure 134
Replacing values in a numerical data structure

169
Representation of factor values 186
Resolution of graphics 361
Response surface design 470
Restoring the environment 324, 331
RESTRICT directive 194
Restricted vectors

cancelling the restriction 195
defining 194

in calculations 143, 158, 160
in expressions 151, 161
in graphs 365
in PRINT 98, 144
saving details of the units 168, 169, 195

RESUME directive 129
Resuming a stored program 129, 130
RETRIEVE directive 123
RETURN directive 116
Return key 9, 11, 24, 348
Return to previous input channel 116
Reversing the units of a vector 157
Rewinding a text 90
Rewinding files in READ 83, 95
RGB 395

colours 179, 442
Ridge regression 475
Root of a tree 290
Rotation of graphics 438
Round bracket 8
Round off in CALCULATE 142
Rounding errors in CALCULATE 142
Rounding values to integers 157
Row of line-printer graph 452
Rows

of matrix, discovering how many 163
RTF 1, 72, 73, 98, 111, 118
Rules of syntax 1
Sample size 470
SAS 131
Save structure 352

setting 349
Saving

graphical settings 438, 445
Saving a program to resume later 129
Scalar 5

in expressions 142
Scale of graph 452
Scaling

of axes 422
of histogram 456
of surface plot 388

Scatter-plot matrix
rectangular 412
symmetric 412

Scatterplot 366, 449
Schwarz information coefficient 472
Scientific format

in PRINT 99
Scientific notation for numbers 10
Screen 359
Screening test 468
Secondary arguments 26
Seed

for random number generation% 348
Seed for random number generation 171, 176,

353

Index 499

Selecting between alternative sets of statements
317, 318

Semi-colon 3, 4
Semi-Latin square 469
Semicolon 9, 20, 24
Separation plot 466
Separator for data input 83
Sequence of graphs 407
Sequence of options or parameters 24
Sequential formation of an SSPM 259
Sequential input of data 90
Sequential tabulation 265
Serial 3
Set calculations 132, 183, 188
Set comparisons 132, 187
SET directive 345
Set inclusion 140
SET2FORMULA directive 243
SETCALCULATE directive 188
SETOPTION directive 354
SETPARAMETER directive 354
SETRELATE directive 187
Setting

of option 6
Shade diagram 384
Shade plot 484
Shading in graphics 366, 437
Shapiro-Wilk test 468
Sharing data between procedures 334
Sharp sign 9, 19, 27, 28
Shifting units of vectors 156, 157
Short wordlengths 13, 15, 20, 23-25, 27
SigmaPlot 131
Sign 157

of number 10, 19
Significant digit 3
Similarity matrix

shaded display 380, 385
Simple operator 8
Simultaneous equations 164
Single quote 7, 9
Singular value decomposition 162-164, 249, 250,

257
Site Library 355
Six sigma 480
Size

of graph 452
of graphical symbol 362, 438

Skew distribution of data values 82
Skewness 159, 161, 166, 265
SKIP directive 113
Skip lines in files 113
Skipping data values 86, 88
Slash operator 15
Smoothed curve 450
Smoothing spline

through points in a graph 437

Solid line 437
Solid-fill in graphics 418
SORT directive 197
Sorting

into alphabetical order 197
into numerical order 198
of plotted points 366
of points in graph 450
tables 278
units of variates 157
units of vectors 197, 198
units of vectors in READ 92

Source code of a procedure 338
Space 3

character 8, 10, 16
Space filling design 469
Spatial analysis 479
Spatial point patterns 479
Special symbol 9
Species abundance 481
Species accumulation curve 481
Species diversity 481
Species richness 481
Spectral decomposition 252, 257
Spline 133

in curved graph 450
through points in a graph 437

Split-line model 465
Splitting a text into individual texts 230
Splitting vectors according to levels of a factor

203
Splus 131
Spreadsheet 73, 131
SPSS 131
SQL 205
Square bracket 3, 8, 23
Square brackets 18, 21
Square lattice design 469
SQUARE subprogram 358
Sspider-web plot 360
SSPM

forming 258
STACK procedure 200
Stacking data sets 200
Stacking sets of vectors 200
Standard deviation 159, 161, 166
Standard errors of means 159, 161, 166

within-cell 263
Standard graphics colours 442
Standardize values 157
Star

as missing value 15
operator 15
symbol 9

Star plot 360
Start-up file 353-355
Starting a Genstat job 312

500 Index

Stata 131
Statement 5, 6, 23

arguments 24
copying to a file 118
echoing of 347
limitation on length 24
name 23

Statistica 131
Statistical functions 171
Statistical genetics 482
Statistical model 22
Steel's test 461
STOP directive 314
STORE directive 121
Stratified survey 261, 481
String 9, 10, 17

constructing from a text 222
equality 15, 302
inserting into a text 218
list 11, 16, 17
list of 27
locations within a text or factor 192
reading 79, 85
reading in fixed format 88
token 17, 27, 327
treatment of newline in 24

Sub-matrix 164
Sub-process 357
Subfile 119, 120, 122

for procedures 120
name 121

Subset
copying to other structures 196
defining 194
in calculations 143, 170
in expressions 168
of a data set 196, 203
of data structures 151
of values 21
of vectors 151, 196, 203

SUBSET procedure 196
Substituting dummies 246
Substitution symbol 9, 19, 27, 28
Subtraction 15, 21
Suffix 13
Suffix list 18
Suffixed identifier 14

controlling which to use 247
in backing store 120

Sum 159
Summary

from CALCULATE 142
mode 136
of the values in a data structure 158
of the values in a set of structures 160
of variate 355
when reading data 77, 82, 85

when reading factors 82
Summation 15, 22
Sums of squares and products 258
Superimposition of graphs 450
Surface plot 380, 386, 387, 390, 457
Survey

merging strata 136
Surveys 481
SUSPEND directive 356
SVD directive 249
Symbol

for graph 362, 416, 451, 456
Symbol for graphics 435
Symmetric matrix

in expressions 145
printing 104

Synonyms of function names 155
Syntax 1
SYNTAX directive 338
Syntax of a command 338
Systat 131
System word 9, 14, 20, 25
Systems modelling 132
t-test

plot power and significance 470
T%CONTROL procedure 271
Tab 8
TABINSERT procedure 276
Table

adding summary lines 275
combining and omitting slices 272
convert to diagonal matrix 166
convert to matrix 166
convert to row matrix 166
functions 166
identifier of associated variate 100, 104
in calculations 148
in expressions 148
inserting values into a larger table 276
layout when printed 102
of counts 264
of maximum values 263
of means from TABULATE 263
of means, plotting 280
of minimum values 263
of modes 136
of percentages 270, 271
of quantiles 263
of totals 263
of variances 263
operations on 261
printing 102-104
printing unknown cell 104
project into variate 168
sorting 278
unknown cell 50

TABSORT procedure 278

Index 501

Tabular form 3
TABULATE directive 261
Tabulation 261, 288

of multiple-response factors 288
Terminal 359
Terminal node of a tree 290
Terminator

of statement 24
Terminator of statement 28, 348
Terminator of string 348
Terminology 1
Test for equivalence 470
Text 17

as macro 28
breaking up into words 228
changing case 220
concatenation 212, 220, 231
converting to a factor 213
converting to a variate 212
editing 234-237
finding within another text 225
forming from scalars, variates, texts, factors or

pointers 220
functions 167
in expressions 145
in qualified identifier 153
integer codes 231
manipulation of 217
operations on 217
plotted in graph 451
printing to 101
reading 79
reading from 83, 90
reading in fixed format 88
redefining as a factor 216
replacing a subtext 226
searching 223, 225
splitting into individual texts 230
substitution 19
truncation 219
use as a file 109

Text-mode display 364, 419
Textual label 18, 21
Thickness of line 362, 438
Three-dimensional graph 369
Three-dimensional shape 370
Tick mark 364, 425
Time series 476

forecasts from VARMA model 477
VARMA model 477

Time-series save structure 349, 352
Times operator 15
Title

for contour plot 459
for graph 361, 362, 368, 448
for output 105

Tolerance for CALCULATE 142

Total 159, 166, 263
Trace of a matrix 164, 252
Transcript file 118
Transcript of commands 4
Transferring values

between data structures 183-185
between factors 186

Transformations 189
of percentages 171

Transpose of a matrix 164
Tree

constructing 297
construction 297, 298
cutting 293
extending 291
functions 178
growing 291
joining another tree 295
joining one tree to another 295
plotting 291
printing 291
pruning 298, 300
removing branches from 293
utility directives 290

Trellis plot 407
TRELLIS procedure 407
Trigonometric functions 155-157
True value in an expression 139
Truncating lines of a text 219
Truncating values to integers 156
Truncation of graphics title 448
Tukey biweight 484
Two-straight-line model 465
TX2VARIATE directive 212
TXBREAK directive 228
TXCONSTRUCT directive 220
TXFIND directive 225
TXINTEGERCODES directive 231
TXPOSITION directive 223
TXPROGRESSION procedure 233
TXREPLACE directive 226
TXSPLIT procedure 230
Type code 14
Types of file 109
Typesetting 9, 11
Underline character 8
Unformatted file 109, 129, 267

reading data 130
rewinding 131
storing data 130

Unformatted workfile 130
Unit labels for a design 471
Units structure 349, 352

in READ 80, 84, 92
Unknown cell of table 50, 263

printing 104
Unnamed

502 Index

expression 14
name 14
pointer 14
scalar 14
structure 17
text 14
variate 14

Unquoted string 10
Unset item 17
UNSTACK procedure 203
Unstacking data sets 203
Unstacking vectors 203
Unsuffixed identifier 13
Upper case

changing to lower case 220
Userfile 121
Using a procedure 328
UTF-8 232
Variance 159, 161, 167, 263
Variance components 471
Variance-covariance matrix

forming 135, 474
Variate 5

automatic declaration in READ 84
converting to a factor 213
form from table 168
forming from a row or column of a matrix 154,

185
in expressions 142
operations on 207
reading from a text 212
redefining as a factor 216
substitution of values 19

VARMA model 477
forecasts 477
plotting 477

Vector
operations on 193

Vector autoregressive moving average model 477
forecasts 477

Version of Genstat 353, 355
Vertical bar 9
Volcano plot 484
Wafer 103
Warning 313

control of reporting 347
issuing from a procedure 332
reporting 352

Weighted tabulation 264, 265
Weka 131
Width

of an output file 118
Width of a line

in PRINT 101
Window

for graph 363, 365, 381, 405, 415, 420
Windowed display 364

Wordlengths 13, 15, 20, 23-25, 27
Workfile 121
Working directory 30
Workspace 31
WORKSPACE directive 334
Writing a procedure 323, 331
X-axis 423

title 448
X-windows 364, 419
XAXIS directive 423
Y-axis 427

title 448
YAXIS directive 427
Z-axis 429

in contour plot 457
in surface plot 387

ZAXIS directive 429
Zero divided by zero 142
Zero-inflated regression models 465

Index 503

504 Index

	Preface
	Contents
	1 Introduction, syntax and terminology
	1.1 Running Genstat
	1.1.1 Interactive mode
	1.1.2 Batch mode

	1.2 Genstat programs
	1.2.1 On-line help
	1.2.2 Declarations
	1.2.3 Assigning values
	1.2.4 Calculations
	1.2.5 Printing
	1.2.6 Statements
	1.2.7 Punctuation
	1.2.8 Comments

	1.3 Characters
	1.3.1 Letters
	1.3.2 Digits
	1.3.3 Simple operators
	1.3.4 Brackets
	1.3.5 Punctuation symbols
	1.3.6 Special symbols
	1.3.7 Non-ASCII characters

	1.4 Items
	1.4.1 Numbers
	1.4.2 Strings
	1.4.3 Identifiers
	1.4.4 System words
	1.4.5 Missing values
	1.4.6 Operators

	1.5 Lists
	1.5.1 Number lists
	1.5.2 String lists
	1.5.3 Identifier lists
	1.5.4 Ways of compacting lists

	1.6 Expressions and formulae
	1.6.1 Functions
	1.6.2 Expressions
	1.6.3 Formulae

	1.7 Statements
	1.7.1 Syntax of options and parameters
	1.7.2 Roles of options and parameters
	1.7.3 Types of option and parameter settings
	1.7.4 Repetition of a statement and its options

	1.8 Ways of compacting programs
	1.8.1 Procedures
	1.8.2 Macros

	1.9 Conventions for examples in later chapters

	2 Data structures
	2.1 Declarations
	2.1.1 The VALUES option and parameter
	2.1.2 The DECIMALS parameter
	2.1.3 The EXTRA parameter and IPRINT option
	2.1.4 The MINIMUM and MAXIMUM parameters
	2.1.5 The DREPRESENTATION parameter
	2.1.6 The MODIFY option

	2.2 Single-valued data structures
	2.2.1 Scalars
	2.2.2 Dummies
	2.2.3 Expression data structures
	2.2.4 Formula data structures

	2.3 Vectors
	2.3.1 Variates
	2.3.2 Texts
	2.3.3 Factors
	2.3.4 The UNITS directive

	2.4 Matrices
	2.4.1 Rectangular matrices
	2.4.2 Diagonal matrices
	2.4.3 Symmetric matrices

	2.5 Tables
	2.6 Pointers
	2.7 Compound structures
	2.7.1 The LRV structure
	2.7.2 The SSPM structure
	2.7.3 The TSM structure
	2.7.4 Customized compound structures

	2.8 Tree structures
	2.9 Save structures
	2.10 Deleting, renaming and duplicating data structures
	2.10.1 The DELETE directive
	2.10.2 The RENAME directive
	2.10.3 The DUPLICATE directive
	2.10.4 The PDUPLICATE procedure

	2.11 Listing or accessing details of data structures
	2.11.1 The LIST directive
	2.11.2 The DUMP directive
	2.11.3 The GETATTRIBUTE directive

	3 Input and output
	3.1 Reading data
	3.1.1 The FILEREAD procedure
	3.1.2 Introduction to the READ directive
	3.1.3 Syntax of the READ directive
	3.1.4 Implicit declaration of structures
	3.1.5 Reading non-numerical data: texts, factors and pointers
	3.1.6 Skipping unwanted data (in free format)
	3.1.7 Reading fixed-format data
	3.1.8 Reading data with variable formats
	3.1.9 Reading from a text structure
	3.1.10 Reading large data sets
	3.1.11 Automatic re-scaling of data
	3.1.12 Automatic sorting of data (using the UNITS structure)
	3.1.13 Errors while reading

	3.2 Printing data
	3.2.1 Main features of the PRINT directive
	3.2.2 Printing of multi-way structures
	3.2.3 The CAPTION directive
	3.2.4 The PAGE directive
	3.2.5 The DECIMALS procedure
	3.2.6 The MINFIELDWIDTH procedure

	3.3 Accessing external files
	3.3.1 The OPEN directive
	3.3.2 The CLOSE directive
	3.3.3 The SKIP directive
	3.3.4 The ENQUIRE directive

	3.4 Managing input and output channels
	3.4.1 Taking input statements from other files: the INPUT directive
	3.4.2 The RETURN directive
	3.4.3 Sending output to another file: the OUTPUT directive
	3.4.4 Saving a transcript of input or output: the COPY directive

	3.5 Storing and retrieving data structures
	3.5.1 Simple use of backing store
	3.5.2 Subfiles, userfiles and workfiles
	3.5.3 The STORE directive
	3.5.4 The RETRIEVE directive
	3.5.5 The CATALOGUE directive
	3.5.6 The MERGE directive

	3.6 Storing and retrieving programs and data in unformatted files
	3.6.1 The RECORD directive
	3.6.2 The RESUME directive

	3.7 Storing and reading data with unformatted files
	3.8 Input and output from other systems

	4 Calculations and data manipulation
	4.1 Numerical calculations
	4.1.1 The CALCULATE directive
	4.1.2 Expressions with scalars and vectors
	4.1.3 Expressions with matrices
	4.1.4 Expressions with tables
	4.1.5 Rules for implicit declarations
	4.1.6 Rules for qualified identifiers

	4.2 Functions for use in expressions
	4.2.1 General and mathematical functions
	4.2.2 Scalar functions
	4.2.3 Variate functions
	4.2.4 Matrix functions
	4.2.5 Table functions
	4.2.6 Dummy functions
	4.2.7 Character functions
	4.2.8 Elements of structures
	4.2.9 Statistical functions
	4.2.10 Date-time functions
	4.2.11 Tree functions
	4.2.12 Graphics functions
	4.2.13 Image functions

	4.3 Operations on sets of values: copying, comparison and Boolean calculations
	4.3.1 Copying between sets of structures: the EQUATE directive
	4.3.2 Comparing sets: the SETRELATE directive
	4.3.3 Boolean arithmetic: the SETCALCULATE directive
	4.3.4 All subsets of a set of objects: the SETALLOCATIONS directive
	4.3.5 Locations of a value in a data structure: the GETALLOCATIONS directive

	4.4 Operations on vectors
	4.4.1 Applying a restriction to the units of a vector: the RESTRICT directive
	4.4.2 Forming a subset of the units in a vector: the SUBSET procedure
	4.4.3 Sorting vectors into numerical or alphabetical order: the SORT directive
	4.4.4 Appending values of vectors: the APPEND procedure
	4.4.5 Combining data sets: the STACK procedure
	4.4.6 The UNSTACK procedure
	4.4.7 Merging data sets: the JOIN procedure

	4.5 Operations on variates
	4.5.1 Interpolation
	4.5.2 Monotonic regression
	4.5.3 Converting a text into a variate

	4.6 Operations on factors
	4.6.1 Forming factors from variates and texts: the GROUPS directive

	4.7 Operations on text
	4.7.1 Text concatenation: the CONCATENATE directive
	4.7.2 Appending or concatenating values of scalars, variates, texts, factors or pointers: the TXCONSTRUCT directive
	4.7.3 Finding strings within the lines of a text structure: the TXPOSITION directive
	4.7.4 Finding a subtext within a text: the TXFIND directive
	4.7.5 Replacing a subtext within a text: the TXREPLACE directive
	4.7.6 Extracting the individual words from a text: the TXBREAK directive
	4.7.7 Splitting a text vertically into individual texts: the TXSPLIT procedure
	4.7.8 Integer codes for textual characters: the TXINTEGERCODES directive
	4.7.9 Progressions of character strings: the TXPROGRESSION procedure
	4.7.10 Editing text: the EDIT directive

	4.8 Operations on formulae and expressions
	4.8.1 The FCLASSIFICATION directive
	4.8.2 The FARGUMENTS directive
	4.8.3 The SET2FORMULA directive
	4.8.4 The REFORMULATE directive

	4.9 Operations on dummies and pointers
	4.9.1 Assigning values to dummies and individual elements of pointers: the ASSIGN directive

	4.10 Operations on matrices and compound structures
	4.10.1 The singular value decomposition: the SVD directive
	4.10.2 Eigenvalue decompositions: the FLRV directive
	4.10.3 Forming sums of squares and products: the FSSPM directive
	4.10.4 The QR decomposition

	4.11 Operations on tables
	4.11.1 Tabulation: the TABULATE directive
	4.11.2 Forming margins of tables: the MARGIN directive
	4.11.3 Forming tables of percentages: the PERCENT and T%CONTROL procedures
	4.11.4 Combining or omitting slices of tables and matrices: the COMBINE directive
	4.11.5 Inserting a table into another table: the TABINSERT procedure
	4.11.6 Forming a Pareto chart: the TABSORT procedure
	4.11.7 Plots of tables: the DTABLE procedure
	4.11.8 Interpreting multiple responses: the FMFACTORS procedure
	4.11.9 Finding multiple responses in free text: the FFREERESPONSEFACTOR procedure
	4.11.10 Tabulation with multiple responses: the MTABULATE procedure

	4.12 Operations on trees
	4.12.1 Printing a tree: the BPRINT procedure
	4.12.2 Plotting a tree: the BGRAPH procedure
	4.12.3 Extending a tree: the BGROW directive
	4.12.4 Removing branches from a tree: the BCUT directive
	4.12.5 Joining a tree onto another: the BJOIN directive
	4.12.6 Constructing a tree: the BCONSTRUCT procedure
	4.12.7 Assessing potential splits: the BASSESS directive
	4.12.8 Pruning a tree: the BPRUNE procedure
	4.12.9 Identification using a tree: the BIDENTIFY directive

	4.13 Numerical algorithms: the NAG directive

	5 Programming in Genstat
	5.1 Genstat programs
	5.1.1 The JOB directive
	5.1.2 The ENDJOB directive
	5.1.3 The STOP directive

	5.2 Program control
	5.2.1 FOR loops
	5.2.2 Block-if structures
	5.2.3 The multiple-selection control structure
	5.2.4 Exit from control structures

	5.3 Procedures
	5.3.1 The Genstat Procedure Library
	5.3.2 Forming a procedure
	5.3.3 Forming and using your own procedure libraries

	5.4 Useful commands for procedure writers
	5.4.1 Diagnostics
	5.4.2 Private data structures: the WORKSPACE directive
	5.4.3 Execution of macros
	5.4.4 Incrementing a multi-digit counter
	5.4.5 Information about commands
	5.4.6 Information about syntax

	5.5 Debugging Genstat programs
	5.5.1 Breaking into the execution of a program
	5.5.2 Putting automatic breaks into a program

	5.6 The environment of a Genstat program
	5.6.1 The SET directive
	5.6.2 The GET directive
	5.6.3 Changing the defaults of options and parameters
	5.6.4 Start-up files

	5.7 Communicating with other programs
	5.7.1 Suspending Genstat to give commands to the operating system
	5.7.2 Executing external programs

	6 Graphical display
	6.1 Introduction to high-resolution graphics
	6.2 High-resolution graphs in two and three dimensions
	6.2.1 The DGRAPH directive
	6.2.2 The D3GRAPH directive

	6.3 Histograms and bar charts
	6.3.1 The DHISTOGRAM directive
	6.3.2 The BARCHART directive

	6.4 Plotting three-dimensional surfaces in high-resolution
	6.4.1 The DCONTOUR directive
	6.4.2 The DSHADE directive
	6.4.3 The DSURFACE directive
	6.4.4 Three-dimensional histograms: the D3HISTOGRAM directive
	6.4.5 Density plots: the DXYDENSITY procedure

	6.5 Displaying pictures
	6.5.1 The DBITMAP directive

	6.6 Pie charts
	6.6.1 The DPIE directive

	6.7 Adding lines, annotation, error bars and customized keys to a graph
	6.7.1 The DTEXT procedure
	6.7.2 The DREFERENCELINE procedure
	6.7.3 The DARROW procedure
	6.7.4 The DERRORBAR procedure
	6.7.5 The DKEY procedure

	6.8 Multiple high-resolution plots
	6.8.1 Clearing the graphics screen: the DCLEAR directive
	6.8.2 Sequences of high-resolution plots
	6.8.3 Trellis plots: the TRELLIS procedure
	6.8.4 Scatter-plot matrices: the DMSCATTER procedure

	6.9 The environment for high-resolution graphics
	6.9.1 The DEVICE directive
	6.9.2 Re-displaying the graphics screen
	6.9.3 The FRAME directive
	6.9.4 The XAXIS directive
	6.9.5 The YAXIS directive
	6.9.6 The ZAXIS directive
	6.9.7 The AXIS directive
	6.9.8 The PEN directive
	6.9.9 Colours
	6.9.10 Accessing details of the graphics environment
	6.9.11 Storing and recovering the graphics environment
	6.9.12 The DFONT directive

	6.10 Line-printer graphics
	6.10.1 The LPGRAPH directive
	6.10.2 The LPHISTOGRAM directive
	6.10.3 The LPCONTOUR directive

	7 Summary of other facilities
	7.1 Basic statistics
	7.2 Regression analysis
	7.3 Analysis of variance
	7.4 Design of experiments
	7.5 REML analysis of linear mixed models
	7.6 Multivariate and cluster analysis
	7.7 Time series analysis
	7.8 Repeated measurements
	7.9 Survival analysis
	7.10 Spatial statistics
	7.11 Six sigma
	7.12 Survey analysis
	7.13 Ecological data
	7.14 Statistical genetics and QTL estimation
	7.15 Microarray data
	7.16 Data mining
	7.17 Other statistical methods

	References
	Index

