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Editorial

This Newsletter contains what is probably the last set of articles arising from the Seventh Genstat
Conference at Papendal. In addition, among other contributions is a short summary of the K system
by John Nelder: this is a GLIM-like interface to Genstat, based on procedures, which is available for
purchase from NAG.

At the time of writing, two more Genstat conferences are about to take place. The Eighth Genstat
Conference takes place at Canterbury, England, 19-23 July 1993. In addition, the first North American
Genstat Workshop takes place in Kentville, Nova Scotia, 10-11 June 1993 after the Conference of the
Statistical Society of Canada. This reflects the increasing interest in Genstat in Canada and the USA.

As usual, we invite people who are making presentations at these conferences to write articles for pub
lication in this newsletter. The editorial team is about to change. Sue Welham at Rothamsted will be
taking over from Peter Lane, who has been a co-editor since Issue 19 in 1987.

An electronic "list" has been set up for people to discuss Genstat. It is based at the Rutherford Laboratory
in the UK, and is open to anyone who cares to join, from anywhere in the world. The intention is to
provide a forum in which users of the system can exchange ideas, and to carry occasional news messages
from Rothamsted and NAG. It is not intended as a bug-reporting mechanism: any problems with the
system should still be reported direct to NAG, for example by email to infodesk(Dnag.co.uk.

To join the list, all you need to do is send the message
subscribe genstat namel name2
to the address

listralCib.rl.ac.uk (or listraJ.Cuk.ac.rl.ib for users in the UK) replacing namel and name2 by
your first and last names. Once you have joined, you can send messages to everyone on the list by mailing
to

genstatCib.rl.ac.uk

We hope to publish, in this newsletter, summaries of some of the subjects discussed on the list. Several
have been prepared for this Issue as an experiment. Any views on this idea would be welcomed by the
editors. We have not identified the discussants, because we cannot assume that they want their names
publicized.
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Genstat Talk

Genstat PC inyocation of Genstat

Query; Why does the command line for running Genstat on the PC have such a non-standard form?
Most packages happily accept a command like
GENSTAT infile outfile

while Genstat seems to need
GENSTAT in=inllie,out=outfile

Also, many programs give interface hints in reply to a command like
GENSTAT /?

Reply: The problem lies in the GENSTAT.BAT batch file. This performs a number of functions such
as loading DBOS and setting up the environment for Genstat, and then calls Genstat with the desired
parameters (such as IN=file). Unfortunately, DOS treats the = sign as a separator, so it is difficult to
mimic satisfactorily both the forms with and without keywords. However, you can overcome this if you are
prepared to do the initialization separate from the call to Genstat: for example, you could load DBOS and
set the environment from the AUTOEXEC.BAT file. Then, you can dispense with GENSTAT.BAT and
invoke the Genstat executable program directly: DOS will not then be involved with the interpretation
of the command line. The "/?" idea will be considered for Release 3.

Genstat PC implementation requirements

Query: What are the minimum requirements for running Genstat on a PC, and are there separate versions
for 386 and 486 machines?

Reply: The Installers' Note supplied by NAG with Genstat for PCs says: "Intel 80386 or 80486 based
IBM or compatible PC with at least 2 Mb RAM. For 386 PCs a maths coprocessor (80387 or Weitek)
is strongly recommended but not essential." The minimum installation needs 7 Mb disc space. My
experience is that without a coprocessor on a 386, CPU time increases by a factor of 3 to 5. 486 machines
have a coprocessor built in. There is no separate version for 486 machines, but they run Genstat faster
because of the higher performance chip. As well as the 2 Mb RAM, it is advisable to use disk space as a
'swap area' if you intend to use more than the default data space (S=l in the Genstat command). This
is explained in the Installers' Note.

Addendum: Only 486 machines with DX or DX2 chip have the coprocessor built in. An SX chip still
requires one (usually on 20-33MHz machines).

Installing Genstat with a Smartdrive

Query: When installing Genstat I get a warning not to proceed because the installation will interfere
with the smartdrive. Has anyone else had this problem, or know the way around it?

Reply: The installation instructions say that no virtual discs (e.g. VDISK) or disc caches (e.g. SMART-
DRV) should be used because DBOS uses extended memory as program work area. If you wish to use a
virtual disc, it must be instructed to leave enough extended memory (at least 2 Mb) for DBOS to load
Genstat. They recommend that only the disc caching facilities built into DBOS should be used.

Genstat Versions 4 and 5

Query: Are there any utilities to help in the conversion of Genstat 4 programs to Genstat 5?

Reply: It was surprising that users did not contact NAG much for help in converting from Genstat 4 to
Genstat 5. Perhaps they did not have much trouble, or perhaps they just started from scratch. There
is help in the article 'Conversion from Genstat 4 to Genstat 5' in Newsletter 19. For further advice, it
might be worth trying the discussion list!
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Genstat and WordPerfect

Query: I am trying to get Genstat graphics from a PC using Device 2, into WordPerfect, but WP says
it has an incorrect format. How do you do it?

Reply: The problem is that Device 2 in Genstat Releeise 2.2 on the PC produces simple PostScript,
whereas WordPerfect 5.1 requires encapsulated PostScript. It is easy to get over this: just add the
following two lines to the start of the PostScript file (which is a normal ASCII character file):

'/,!PS-Adobe-2.0
y.XBoimdingBox: 0 0 785 538

Addendum: A simpler solution is to use Device 4 or 5 to produce HPGL graphics. WordPerfect comes
with a file called GRAPHCNV.EXE which can convert HPGL files to WordPerfect graphics format. A
converted file can then be imported directly into WordPerfect, and can even be viewed on the screen
unlike PostScript imports.

Survival data

Query: Has anyone any experience of fitting exponential and Weibull models to survival data and testing
for goodness-of-fit in Genstat?

Reply: There are several examples in GLIM Newsletters and Aitkin et aFs book. Genstat can (as far as
I know) fit any GLIM model.

Addendum: These models are easily fitted and tested in MLP. In Genstat, until the DISTRIBUTION
directive becomes available with Release 3, you can use the FITNGNLINEAR directive to fit distributions.

Generalized linear mixed models

Query: Has anyone handled generalized linear mixed models in Genstat?

Reply: There is a new procedure in Library 2[3] called GLHM, which was also described at the Genstat
Conference at Rotorua. More presentations on this theme will follow at Canterbury.

Printing DOS Genstat graphs on HP lasers

Info: Genstat does not support a PCL device driver for the HP Laserjet 3, but does produce HPGL
output. This will print on an HP laser if it is put into HPGL2 mode. However, on a network it is
not feasible to do this manually, so I have written a small Turbo Pascal program to add the neccessary
commands to the HPGL file to automate the process. (Files were enclosed, and are available from the
discussion lists archive.)

REML

Query: Is there a limit (three perhaps) on the number of factors in a random effects term when using
REML?

Reply: There is a bug in REML in Release 2. The FACTORIAL option is applied to both fixed and random
terms, contrary to what is stated in the documentation. This will be fixed in Release 3; for the time
being you can increase the setting of FACTORIAL beyond the default (3) to get round the problem. (This
bug is described in error report E207 on the noticeboard: type
NOTICE [errors]

to read the noticeboard.)
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A Note on Fitting a Growth-curve Model
M S Ridout

Horticulture Research International

East Mailing
WEST MALLING

Kent

United Kingdom ME 19 6BJ

1. Introduction

Plant growth is usually modelled using sigmoidal curves such as the Gompertz or logistic. Sometimes,
however, interest lies only in the early stages of growth. This is true particularly of vegetable crops, which
are usually harvested whilst their growth rate is still increasing. A model for the growth of vegetable
crops that are receiving adequate supplies of water and nutrients is found to give a good fit to data from
a wide range of crops. The model is defined by a simple differential equation that does not, however,
have an explicit solution for dry weight as a function of time. The purpose of this note is to show that
it is nonetheless easy to fit the model in Genstat, using the FITNONLINEAR directive.

2. The Model

Let w denote the dry weight of the plant and t denote time. The model is defined by the differential
equation

dw _ K^w
dt Ki + w

Thus, the rate of increase in plant dry matter is described by a rectangular hyperbola. In Greenwood ei
al (1977), the model is derived by assuming that the relationship between the net photosynthetic rate of
the crop and its leaf area index is a rectangular hyperbola, and that the leaf area index is proportional
to the dry weight of the crop.

It can be seen from equation (1) that when w is small, the relative growth rate is approximately K2/K1
and growth is close to exponential, whereas for large w the absolute growth rate is approximately K2
and growth is close to linear.

Integrating equation (1) from some suitable timepoint, gives

w + ln(u;) = 1^0 + A'l ln(ti;o) + K2{t - to) (2)

where Wq is the value of w at time <o> but there is no explicit expression for u; as a function of t. The
simpler two-parameter model that arises when Ki is constrained to be equal to 1.0 has been found to
provide a good fit to data from many crops (Greenwood ei al 1977).

3. Fitting the Model

We assume, as in Greenwood et al (1977), that it is appropriate to estimate parauneters by applying the
method of least squares to the (natural) logarithm of plant dry weight. This is appropriate if the variance
of dry weight increases in proportion to the square of its mean, as is often observed with growth data.

Equation (2) can be re-written as
e'-\-KiZ = A (3)

where z = In(iy) and A depends on i, tg the unknown parameters Wq, Ki and K2-

Equation (3) is of the form g{z) = A and a solution for 2: can be found by the iterative Newton-Raphson
method in which the current estimate z^ is replaced by

^•+1 = +
9'{Zi)
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In the present instance, this gives

A simple initial estimate is

^  _ e''{zi-l) + A

{A/K^ ifA<0
(A-1)/(1 + A'i) ifO<A<l.
ln(A) if A > 1

Usually, each iteration of the Newton-Raphson algorithm is followed by a test for convergence to decide
whether further iterations are necessary. For use with the FITNDHLINEAR command, where the model is
specified as a series of CALCULATE commands, it appears to be necessary to fix the number of iterations in
advance. For the present model, numerical investigations show that, for any value of A, and for any value
of A'l in the range [0.1, ICQ], four iterations are sufficient to give an approximate solution to equation (3)
with an absolute error less than 0.0001.

Since Aj is often close to 1, it sensible to begin by fitting the constrained model with Aj = 1. There
are then simple procedures for obtaining initial estimates of Ag and ln(tt;o) which are outlined in the
following section.

4. Example

The following data are measurements of dry matter (t/ha) of seedlings of wild cherry, Prunus avium,
growing in a seed bed. The values are the mean dry weight of 15 seedlings, multiplied by an estimate
of seedling density. Day number is counted from the beginning of the year. Previous applications of the
model have been to vegetable and cereal crops and the experimenter was interested in whether the model
might also describe the early growth of these tree seedlings.

UNITS [7]
READ CSERIAL=yes] DayNo,TotalDH
135 168 188 207 230 251 274 :

0.09 0.76 2.37 5.12 6.22 8.37 11.5 :

The model is specified by three expressions. The first calculates A in terms of the current parameter
values, the second calculates an initial estimate of In(iy) and the third is the equation for the iterative
calculation of ln(w).

EXPRESSION ModelCl...3]; VALUE= \
!E( A = EXP(LogWO) + Kl*LogW0 + K2 ♦ DayNo ), \
!E( Fitted = (A/Kl) ♦ (A<=0) + LOG(ABS(A)) * (A>1) + \

(A-1)/(1+K1) * (A>0 .AND. A<1) ), \
!E( Fitted = (EXP(Fitted) * (Fitted-1)+A) / (EXP(Fitted)+Kl) )

We begin by fitting the constrained model with Aj = 1. An initial estimate of A2 is then got by regressing
w + ln(u;) on {t — <0)- Here Iq is taken as the time at which the first measurement is made.

CALCULATE YVar = TotalDM + (LogDM = LQG(TotalDM))
ft DayNo = DayNo - MIN(DayNo)
ft YVar, D = YVar, DayNo - MEAN(YVar, DayNo)
ft K2init = SUM(YVar ♦ D) / SUM(D ♦ D)

To get an initial estimate, u, of ln(ii;o) the observed response at time /q is equated to its expected value.

CALCULATE u = (v = LogDM $[1]) ♦ (v<=0) + LOG(ABS(v)) * \
(v>0) + 0.5 * (v-1) * (v>0 .AND. v<l)
FOR CNTIMES—4]

CALCULATE u = (EXP(u) * (n-l) + v) / (EXP(u) + 1)
ENDFOR

Initial estimates of A'aand In(iyo) 0117 and -2.49 respectively. The following four lines of code fit the
constrained model with A'j = 1.
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MODEL LogDH; FITTEDVALUES-Fitted
SCALAR Kl; VALUE=1
RCYCLE K2, LogWO; INITIAL=K2init, u
FITNGNLINEAR CPRIHT=m,s,e,f,c; CALCULATI0N=!P(HodelCl,2,4(3)])]

Estimates of K2 and ln(t/Jo) are respectively 0.108 (s.e. = 0.0068) and -2.52 (s.e. = 0.195). The residual
sum of squares is 0.208 (5 d.f.).
The following two lines of code fit the unconstrained model

RCYCLE K1.K2,LogWO; INITIAL=l,K2init,u
FITNQNLINEAR CPRINT=m,s,e.f,c; CALCULATI0H=!P(Model[l,2,4(3)])]

Estimates of Ii\, A'2 and In(ty) are respectively 1.79 (s.e.=0.506), 0.149 (s.e. = 0.0259) and -2.44 (s.e.
= 0.157). The residual sum of squares is 0.100 (4 d.f.). An approximate F-statistic for comparing the
constrained and unconstrained models is therefore

4 ♦ (0.208 - 0.100)/0.100 = 4.32 on 1 and 4 d.f.

which gives a P-value of about 0.11. There is thus little cause to reject the simpler constrained model in
this example.

5. Reference

Greenwood D J, Cleaver T J, Loquens S M H and Niedorf K B (1977) Relationship between plant weight
and growing period for vegetable crops in the United Kingdom Annals of Botany 41 987-997.
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A Genstat Procedure for Fitting the Diggle-Zeger Model for Hormone
Profiles

Roger P Littlejohn
AgResearch
Invermay Agricultural Centre
Private Bag
MOSGIEL

New Zealand

1. Introduction

1 consult with scientists who measure hormones such as luteinizing hormone (LH) in sheep and deer.
These hormones are released into the blood stream as a series of pulses, with concentrations rising to a
sharp peak followed by a period of steady decay as the hormone is cleared from the system. Approaches
used to analyse hormone profiles include pulse detection algorithms, spectral analysis and statistical
modelling (Diggle and Zeger 1986). 1 generally use an adaptation (Littlejohn ei al 1989) of the statistical
model of Diggle and Zeger (1986,1988) referred to here as DZ, in which instantaneous pulses are triggered
by feedback with increasing probability as the hormone level decays. I have implemented this first-order
Markov chain model as a Genstat procedure, details of which are given below, using data from Experiment
2 of Montgomery ei al (1985) as an example.

2. The Diggle-Zeger Model

Denoting the hormone profile by Y{t),t = 1...T, the DZ model is specified by

Y{t) = pY{t-l) + Z{t), < = 2...r,0<p< 1,

where Z{t) is independent of y(< — 1) such that

i) Z{t) ̂  r(/i, I/) with probability p{t)

ii) Z(t) N{OyCr^) with probability 1 - p{t), and
iii) log(p(f)/(l -p(<))) = /9o + - 1).

Thus, the y(<) consists of two components, the deterministic geometric decay from Y{t — 1) expressed
by the autoregressive parameter p, and a random component which is a mixture of a gamma distributed
random variable, modelling the release of a pulse, and a Normally distributed random variable with zero
mean and variance <t^, modelling sample and assay variability. The mixture probability p(<), given by
the logit regression on the previous level Y{t — 1), is the prior probability that an observation is a peak
given the data up to and including Y{t — 1).

Littlejohn et al (1989) presented a variant on this, referred to as DZ', with the conditions

i)' Z{t) /p(<) = LN{p, t) with probability p{t)

ii)' Z{t) /„(<) = iV(0,y(< — 1)0-^) with probability 1 — p(t), and

iii)' log(p(<)/(l - p(<))) = /?(7 - y(< - 1)),

where LN{.,.) is a lognormal random variable. The use of the lognormal peak amplitude is convenient in
Genstat and r is more stable to estimate than i/, although the gamma distribution is probably preferable in
that, in common with the data, it has a shorter tail. Heteroscedasticity of noise variance was introduced
because of greater variability at high hormone levels than later in the decay sequence, resulting in a
tendency for large negative residuals to be associated with high fitted values. It was in fact necessary for
convergence for some profiles in the dataset used here. The reparameterization of feedback reduces the
correlation between parameters, and has the interpretation that j estimates the median location at which
feedback is triggered. It is then necessary to respecify the likelihood after iii) under the null hypothesis
/? = 0, if this test is required.



Genstat Newsletter 29

The posterior probability of a pulse at time t given the data up to and including y{t) is given by

w{t) = p{t)fpit)/{pit)fp{t) + (1 - p(0)/n(0).

and referred to as the weight function. Substituting the parameter estimates into u;(<) gives a function
that is usually close to either 1 or 0, interpreted as peaks or decay points, respectively.

One feature of hormone data that is not formally incorporated into the model is that some peaks rise
over more than one sample, for example, at times 10-11, 25-26 and 31-32 of LH[3] in Appendix 1. This
may be the case for 5-10% of points in a dataset. The model interprets these as two consecutive peaks,
which is not the case. I will refer to such observations lying within an ascending sequence of values as
"double rise points" and take the approach of Littlejohn ei al (1989), of substituting each double rise
point by the value of the previous nadir to calculate the probability that the next local maximum is a
peak, while dropping the time of the double rise point from the likelihood.

The likelihood may then be written explicitly and maximized numerically. Details of the Genstat proce
dure code I use for this are given in Appendix 2 and enlarged upon in Section 3, and a discussion of the
output is given in Section 4.

3. The Procedure DIGGLEZE6ER

Appendix 2 contains three procedures: INITIALIZE, SWEEP and DIGGLEZEGER. DIGGLEZEGER sets up the
likelihood function and carries out an analysis for each profile, firstly calling INITIALIZE to set the initial
parameter estimates, then using SWEEP to detect and manipulate double rise points; initial values are
reset using INITIALIZE. Then the negative log-likelihood is minimized using FITNONLINEAR. I routinely
obtain further details of the analysis such as printouts and plots of the residuals and weight function,
using a procedure named DIAGNOSTICS; the code is not included here, but output from it is included in
Appendix 3.

Starting with DIGGLEZEGER, the option for monitoring FITNGNLINEAR is set, and the log-likelihood is
defined in expressions dz[l.. .13]. Points to notice here are that in dz[2,9]cutoff values of 70 and -8
are set to keep the calculations well-conditioned, while dzC4,6] preclude the possibility of a negative
argument for the lognormal distribution and the variate double takes the value 1 for double rise points
and 0 otherwise. The MODEL is then SAVEd in Isave to avoid being lost during INITIALIZE.

Each profile in turn is put into HORMONE and its first-order lag into HORMONEl for analysis. Initial values
for the parameters are calculated using moment estimators, assuming that any point for which the ratio
y{t)/y{t - 1) is greater than QUOTLIM (=1.25 by default) is a peak. If no points satisfy this condition,
analysis of that profile is aborted, with NJUMP set to zero. If only one point satisfies the condition, r
is initialized to a very small positive value. The likelihood and weight function are then evaluated at
the initial parameter values to enable the assessment of double rise points. This is done in SWEEP, with
REINIT set to 0 if there are no double rise points. Otherwise, HORMONE and HORMONEl have double rise
points reset as described in Section 2, and the location of all double rise points is put into double. If
there are any double rise points, the initial parameter estimates are recalculated taking this into account.
Natural parameter bounds and arbitrary steplengths are given via RCYCLE for calculating the maximum
likelihood parameter estimates using FITNONLINEAR and the weight function.

At this stage, further diagnostics can be carried out using DIAGNOSTICS, which gives a set of summary
statistics and (optional) data-residual-weight table and graphs. These depend on categorically assess
ing which points are peaks. An ambiguity arises for those points with weights between 0 and 1, so
DIGGLEZEGER has the option WTLIM giving a cutoff weight for peak detection, with default setting 0.90.
Thus a point with weight 0.85 would by default not be treated as a peak for obtaining summary statistics.

10
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4. An Application

Appendix 3 contains the output of DIG6LEZEGER for LH[3]. Note that the initial parameter estimates
for 7 and are very different from the final estimates, obtained after three rise points have been swept
out. Other parameters have also been affected by this process. To obtain asymptotic standard errors the
column denoted "sq. root of 2nd derivs" should be multipled by >/2 (Lane 1991).

The summary statistics for this profile are based on a cutoff weight for peak detection of 0.90. For this
profile all weights were either 0 or 1 to four decimal places. The difference between the "number of peaks"
and the "sum of weights" gives some measure of how clear-cut the peaks are and how well the model fits
the data. Peak amplitude statistics and fitted values are based on the lognormal parameter estimates,
and the residuals are the difference between the fitted and observed values. The standardized residuals
and increment relative to decay from the previous sample value (delta) are also printed out, to assist with
the interpretation of peak detection. The plot of standardized noise residuals against fitted values shows
a tendency for high fitted values to be associated with large negative residuals. The Normal scores plot
for sorted noise residuals suggests that the model characterizes the variation satisfactorily for this profile.

5. Further Comments

I have subsequently generalized the model to incorporate double rise points in a less ad hoc manner than
presented here. This uses a Fortran program that calls NAG optimization subroutines and is interfaced
to Genstat using the OWN directive. Details will be given elsewhere.

6. Acknowledgements

I am grateful for a Trimble Fellowship which facilitated this research and enabled me to attend the 7th
International Genstat Conference.
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Appendix 1. DZ.GEN

UNIT [NVALUES=37]
READ CPRINT=*] TIME,LH[1...10]

1 6.6 6.1 3.1 2.6 8.5 4.8 2.8 3.4 10.1 3.5

2 5.6 5.6 2.4 8.1 6.7 3.5 2.2 2.9 5.1 3.2

3 4.3 4.6 1.9 5.5 5.4 13.0 2.1 6.5 4.1 3.1

4 4.2 4.0 7.9 4.1 4.7 8.4 6.7 5.9 3.5 2.8

5 12.0 3.4 5.7 3.5 4.2 6.3 4.8 4.2 2.8 1.8

6 9.4 12.7 4.8 2.9 4.1 5.0 3.8 2.8 2.5 4.1

7 8.0 6.8 3.6 2.5 8.3 4.3 2.7 2.8 2.0 4.1

8 6.2 6.1 2.9 5.4 7.3 3.4 2.7 2.5 1.8 3.4

9 5.0 5.4 2.1 7.2 6.0 2.7 2.0 7.5 5.5 3.2

10 4.0 5.1 4.8 5.6 5.3 11.8 5.2 6.9 4.6 2.5

11 3.1 5.1 6.4 3.9 4.5 8.4 7.3 5.3 3.8 2.0

12 3.3 25.1 4.7 3.1 3.2 6.8 4.6 3.8 3.0 5.2

13 14.1 11.1 3.9 2.4 7.3 5.3 3.6 2.9 2.5 3.8

14 10.4 7.1 3.1 2.1 6.4 4.6 2.3 2.7 2.1 2.9

15 8.1 7.1 2.6 2.1 5.0 3.7 1.9 15.7 1.8 2.7

16 6.9 5.0 2.1 11.1 4.7 3.5 13.5 5.7 6.2 2.1

17 5.4 9.1 14.1 6.7 4.3 4.2 7.4 4.2 5.0 1.8

18 5.1 10.0 7.4 5.8 4.0 11.3 5.3 3.2 3.8 6.2

19 28.5 8.1 6.7 4.3 3.3 8.7 4.6 2.7 3.2 4.8

20 13.2 7.6 4.1 3.6 9.6 6.8 3.4 2.7 2.6 3.3

21 10.2 6.9 3.9 3.9 9.4 5.3 2.7 19.5 2.3 2.8

22 8.4 6.3 3.5 3.9 7.2 4.6 51.0 7.9 2.0 2.6

23 6.7 5.4 2.6 3.7 6.1 3.8 10.5 5.3 7.3 2.1

24 6.2 15.0 2.6 11.5 4.9 3.1 6.8 4.7 5.4 3.5

25 4.7 10.2 7.3 9.5 4.5 18.5 5.2 4.3 4.1 6.5

26 20.1 9.4 9.1 9.2 4.2 9.2 4.3 3.4 3.3 4.8

27 13.2 7.8 7.7 6.3 8.7 6.6 3.5 29.5 2.7 4.0

28 10.5 7.3 5.8 5.3 7.1 5.5 19.6 8.0 2.4 3.3

29 8.3 4.7 4.4 4.5 5.5 4.6 11.6 6.0 2.4 2.6

30 7.1 4.4 3.6 3.4 4.8 4.3 7.7 4.9 6.7 2.0

31 6.2 11.1 10.3 2.9 15.1 3.2 5.7 5.1 5.5 8.7

32 4.9 11.2 15.8 13.7 10.3 37.4 4.9 4.0 4.0 5.7

33 22.1 7.8 8.3 5.7 7.3 10.4 4.0 19.8 3.2 4.4

34 16.5 5.7 5.9 8.2 5.7 7.8 3.3 9.8 2.8 3.6

35 10.4 6.2 5.2 6.0 5.2 6.9 2.3 7.7 2.5 2.8

36 9.1 4.9 4.4 4.1 4.0 5.2 16.2 6.1 2.0 2.5

37 7.3 3.8 3.3 3.4 3.7 4.7 7.7 4.2 8.7 7.9

DIGGLEZEGER [TPRINT=y; GPRINT=y; QU0TLIM=1.3; WTLIM=0.9S] !P(LHC33)
STOP
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Appendix 2. DZ.PRC

JOB [INPRINT=s; DIAGNOSTIC=f,w] 'DIGGLE-ZEGER OPTIMIZATION'

PROCEDURE 'INITIALIZE'

PARAMETER NAHE='HORMONE','HORMONEl','QUOTLIM','DOUBLE','NJUMP', \
'GAMMA','BETA','MU','TAU','SIGMA','RflO'

"Calculates naive initial parameter estimates"
SCALAR betaO,betal,ny
CALCULATE ny=NVALUES(HORMONE)
VARIATE [VALUES=#ny(l)3 unity
CALCULATE quotient=HORMONE/HORMONEl
CALCULATE vquot=quotient.GE.#QUOTLIM
RESTRICT quotient; (vquct.EQ.O) .AND. (DOUBLE.EQ.O)
CALCULATE RHO=MEAN(quotient)
CALCULATE SIGMA=SqRT(VAR(quotient))^  (DOUBLE.EQ.O)

:-RHO*HORMONEl)

I  in this profile'

)

ip) ♦d-l/NJUMP) )+0.0001» (NJUHP. EQ. 1)

lEl; DOUBLE.EQ.O
il] vquot; unity

:f

il)

{El

lORMONEl','WEIGHT','DOUBLE','REIHIT'
Lnts and replaces them vith nadir values"

-ACE(SHIFT(HORMONE; -1); 0).GT.HORMONE) \
DNE.GT.HORMONEl)

ire detected, initisLlization is complete"

EQUATE !"? (.mz, HORMONE) ; hormoneO
CALCULATE H0RM0NE=H0RM0NE-t3#(HORMONE-hormoneO)
EQUATE !P(mz,t3); t31
CALCULATE t3=t3»t31
EXIT [CONTROL=f] SUM(t3).Eq.O

ENDFOR
PRINT
PRINT [IPRINT=*; SQUASH=y] \

'There axe double rise points in this profile which have been modified
PRINT CIPRINT^#; SQUASH=y] \

'The number of double rise points is ',dsum; DECIHALS=0
CALCULATE H0RM0NE1=SHIFT(H0RM0NE; l)

ENDPROCEDURE

13
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PROCEDURE 'DIGGLEZEGER'

OPTION NAME='MONITOR','TPRINT','GPRINT','QUOTLIM','WTLIH»; \
MODE=t,t,t,v,v; DEFAULT='n','y', ,!(1.25),!(0.9)

PARAMETER 'PROFILES'; MODE=p
"Options control the printing of FITNONLINEAR, the table of fitted values
and weights, and the diagnostic graphs; and set cutoffs for the ratio for
initial detection of peahs eoid the weight value for the final detection of
peaks."

TEXT CVALUES=s,e,c] fitpri,fitnprin
IF MONITOR .EQS. 'y'
DELETE [REDEFINE=y] fitnprin
TEXT [NVALUES=4] fitnprin
EQUATE !P(fitpri, !T('inon')) ; fitnprin

ENDIF

SCALAR ny,reinit,llike
SCALAR gamma,beta,mu,tau,sigina,rho
VARIATE unitct

CALCULATE ny=NVALUES(unitct)
VARIATE CVALUES=l...#ny] time
"Specifies the likelihood for DZ'"
"Feedback probability"
EXPRESSION dz[l]; !E(phi=-beta>^(gamma-hormonel))
&  dzC2]; !E(feedback=l/(l+EXP(VMAX(!P(phi,!(#ny(-70)))))))
"Increment relative to decay from previous point"
ft dz[3]; !E(delta=hormone-rho*hormonel)
ft dzC4]; !E(deltap= (delta.LE.O) delta*(delta.GT.O))
"Peak density"
ft dz[5]; !E(argp=(LOG(deltap)-mu)/tau)
ft dz[6]; !E(fp=(delta.GT.0)*EXP(-(argp»airgp/2))/(deltap*tau))
ft dzC?]; !E(pfp=feedback*fp*(l-<ioubl^)
"Noise density"
ft dzCS]; !E(stdres=delta/(sigma*hormonel))
ft dz[9]; !E(8u:gn=VMAX( !P(stdres,! (#ny(-8)))))
ft dzCloj; !E(fn=EXP(-argn*argn/2)/(sigma»hormonel))
ft dzCll]; !E(pfn=(l-feedback)*fn*(l-double)+double)
"Log likelihood"
ft dz[12]; !E(lpfppfn=LOG(pfp+pfn))
ft dzClS]; !E(llike=-SUM(lpfppfn))
MODEL [FUNCTION^llike; SAVE=lsave]
SET COUTPRINT=*]
FOR hormone=PROFILESn
PAGE

PRINT 'Optimization for profile ',!P(hormone)
CALCULATE hormonei=hormone

CALCULATE hormonel=SHIFT(hormone; 1)
VARIATE [VALUES=#ny(0)] double
"Initialize parameters assuming no double rise points"
INITIALIZE hormone; hormone1; QUOTLIM; double; njump; gamma; beta; \

mu; tau; sigma; rho
"Abort profile if no sample value is > QUOTLIM x previous value"
EXIT CCONTROL=f; REPEAT=y] njump.EQ.O
PRINT [SQUASH^yj 'Initial parameter estimates:'
PRINT CSQUASH=y] gamma,beta,mu,tau,sigma,rho; FIELD^IO; DECIMALS=4
SET CRSAVE=:lsave]
RCYCLE gamma,beta,mu,tau,sigma,rho; gamma,beta,mu,tau,sigma,rho; \

gamma,beta,mu,tau,sigma,rho
FITNONLINEAR [PRINT=*; CALCULATION=dz; NGRID=2]
CALCULATE weight=pfp/(pfp->-pfn)
"Sweep out double points, if they exist"
SWEEP hormone; hormonel; weight; double; reinit
IF reinit.EQ.l
"Reinitialize psorameters with double rise points swept out."
INITIALIZE hormone; hormonel; QUOTLIM; double; njump; gamma; beta; \

mu; tau; sigma; rho
SET CRSAVE=lsave]

ENDIF
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RCYCLE gamma,beta,mu,tau,Sigma,rho; *,0,*,0,0,0; \
*»*.♦.*I*.1; .09,.04,.02,.015,.006,.0023

FITNONLINEAR [PRINT=#fitnprin; CALCULATION=dz]
CALCULATE weight=plp/(pip+pfn)
"Carry out diagnostic procedures - code not given, but printout included:
DIAGNOSTICS hormonei; hormone; hormonel; weight; stdres; delta; \

mu; tau; rho; double; TPRINT; GPRINT; WTLIM "
DELETE

ENDFGR
ENDPRGCEDURE
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Appendix 3. DZ.LIS

Optimization for profile

Initial paorameter estimates:
gamma beta mu

0.0908 0.3115 1.7332

LH[3]

tau

0.5041

Sigma

0.1365

rho

0.7995

There are double rise points in this profile vhich have been modified
The number of double rise points is 3

***** Results of optimization *****

*** Minimum function value: ***

42.5364

*** Estimates of parameters ***

sq. root of
estimate 2nd derivs

geunma 2.471 0.420

beta 2.34 1.62

mu 2.091 0.247

tau 0.391 0.175

Sigma 0.1061 0.0200

rho 0.7837 0.0283

*** Scaled 2nd derivatives ***

estimate ref sceG.ed 2nd derivatives

gamma 1 1.000

beta 2 0.363 1.000

mu 3 0.000 0.000 1.000

tau 4 0.000 0.000 0.000 1

sigma 5 0.000 0.000 0.000 0

rho 6 0.000 0.000 -0.036 0

1 2  3

Mean hormone level for profile is
N

.013

4

umber of peaks is
Sum. of weights is
Expected peak amplitude is
Standard deviation of peak amplitude is
Mean interval between peaks is
Standeurd deviation of interval between peaks is
Coefficient of vairiation (*/.) is

1.000

0.003 1.

5

5.35

5

5.0

8.74

3.55

7.00

1.41

20.2

000

6

time LH[3] double fitted residual stdres delta weight
1 3.1 * # * * *

2 2.4 0 2.4 -0.03 -0.0899 -0.03 0.0000

3 1.9 0 1.9 0.02 0.0748 0.02 0.0000

4 7.9 0 10.2 -2.33 31.8144 6.41 1.0000

5 5.7 0 6.2 -0.49 -0.5866 -0.49 0.0000

6 4.8 0 4.5 0.33 0.5504 0.33 0.0000

7 3.6 0 3.8 -0.16 -0.3181 -0.16 0.0000

8 2.9 0 2.8 0.08 0.2058 0.08 0.0000

9 2.1 0 2.3 -0.17 -0.5619 -0.17 0.0000

10 2.1 1 1.6 0.45 2.0391 0.45 0.0000

11 6.4 0 10.4 -3.99 21.3458 4.75 1.0000

12 4.7 0 5.0 -0.32 -0.4654 -0.32 0.0000

13 3.9 0 3.7 0.22 0.4342 0.22 0.0000

14 3.1 0 3.1 0.04 0.1050 0.04 0.0000

15 2.6 0 2.4 0.17 0.5184 0.17 0.0000

16 2.1 0 2.0 0.06 0.2259 0.06 0.0000

17 14.1 0 10.4 3.71 55.9182 12.45 1.0000
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18 7.4 0 11.1 -3.65 -2.4412 -3.65 0.0000

19 6.7 0 5.8 0.90 1.1472 0.90 0.0000

20 4.1 0 5.3 -1.15 -1.6198 -1.15 0.0000

21 3.9 0 3.2 0.69 1.5792 0.69 0.0000

22 3.5 0 3.1 0.44 1.0721 0.44 0.0000

23 2.6 0 2.7 -0.14 -0.3854 -0.14 0.0000

24 2.6 0 2.0 0.56 2.0391 0.56 0.0000

25 2.6 1 2.0 0.56 2.0391 0.56 0.0000

26 9.1 0 10.8 -1.68 25.6112 7.06 1.0000

27 7.7 0 7.1 0.57 0.5886 0.57 0.0000

28 5.8 0 6.0 -0.23 -0.2875 -0.23 0.0000

29 4.4 0 4.5 -0.15 -0.2368 -0.15 0.0000

30 3.6 0 3.4 0.15 0.3248 0.15 0.0000

31 3.6 1 2.8 0.78 2.0391 0.78 0.0000

32 15.8 0 11.6 4.24 33.9924 12.98 1.0000

33 8.3 0 12.4 -4.08 -2.4366 -4.08 0.0000

34 5.9 0 6.5 -0.60 -0.6873 -0.60 0.0000

35 5.2 0 4.6 0.58 0.9205 0.58 0.0000

36 4.4 0 4.1 0.32 0.5886 0.32 0.0000

37 3.3 0 3.4 -0.15 -0.3181 -0.15 0.0000
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Nonlinear Contrasts in ANOVA

R Butler and P Brain

Department of Agricultural Sciences
University of Bristol
A PRC Institute of Arable Crops Research
Long Ashton Research Station
BRISTOL

United Kingdom BS18 9AF

1. Introduction

In many designed experiments, at least one of the factors involved has quantitative levels, and the aim
of the experiment is often to see if there is a trend between the means for this factor, and whether this
trend is influenced by other factors in the experiment. For example, an experiment was carried out to
discover how the relationship between fresh weight and herbicide dose was altered by the volume of liquid
in which the dose was applied. Six doses of a herbicide (10, 20, 40, 100, 160, 340 g/ha) were applied to a
weed in two different volumes of liquid (Small, Large). Ten replicates were used, laid out in a randomized
block design. The treatment means are shown in Fig 1. An analysis of variance of this data shows a
strong interaction between dose and volume, but does not provide information about the changes in the
dose-weed weight relationship. The graph shows clearly that weed weight decreases with increasing dose,
so including this trend in the ANOVA would provide information as to how it was affected by volume.

5.5

5

o>4.5

o

S  4

o 3.5
i_

U.

3

2.5

2

1
s,

S A+C/2 -

10 40 100 160

Dose, g/ha
rig 1 Example Treatment Means

340
M

IJNfDose)

fig 2 The Logistic Curve of log(Dose)

Genstat provides the POL function for use in the TREATMENTSTRUCTURE directive, which allows for the
assessment of polynomial trends (contrasts) of many degrees; however, the fitting of these contrasts often
has limited usefulness because they are usually not biologically meaningful. More usually, the trends of
interest are nonlinear in character, but there is currently no direct way of assessing nonlinear contrasts
within ANOVA. Quadratic trends could be fitted to the data in the example, but a more meaningful
analysis would use the logistic curve of log(dose) to describe the relationship. This curve has parameters
which have a direct biological interpretation (Fig 2). Fitting this curve instead of polynomials would give
a more easily interpreted description of the effect of volume in this experiment.

A method has been developed to include the standard nonlinear curves of FITCURVE within the structure
of ANOVA to allow such an assessment to be made.
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2. Definitions

The measured variate (fresh weight in the example above) is denoted by y. The treatment structure
consists of two factors: X, a quantitative factor with levels x, and another F, which has qualitative
levels. In the example, X would be the Dose, with actual doses (or the log of the doses) in a variate x,
and F would be Volume.

The POL command fits polynomial functions which can be written in the form:

y = a + X]

where a and are the parameters to be estimated. For the example, quadratic polynomial contrasts can
be expressed in the following way:

weed weight = a + b^dose + b^dose"^

The parameters a and b^ may vary with differing levels of F (Volume).
The general form for a nonlinear function is

y = a + X^6p/p(x;0p)

where a, 6p, and 6^ are to be estimated, and which cannot be rewritten to make 9p linear with respect
to X. 9 may be a list of nonlinear parameters. The logistic function described above has two nonlinear
parameters B, and M, with the two linear parameters A and C.

r>

Fresh Weight = >1 + 2 ̂  g—B(ln(do3e)—M)

As for linear contrasts, the estimated parameters (a,6p and 9^) may vary with the levels of F.
There are often more than two treatment factors used in an experiment, but this article will be confined
to cases with exactly two factors, only one of which is to be used with nonlinear contrasts.

3. Parallelism

With linear contrasts, three basic models can be fitted: single line, parallel lines and separate lines.

Model Form

1) Single line y = a +
Example
FWt= a + b^dose + 62^056^

2) Parallel lines y = FWt= a,- + bidose + b2dose^

3) Separate slopes y = o,• + ̂̂ p^®^ FWt= a,- + 6^.dose + 62.dose^

(i refers to a level of F). Model 1 is part of the main effect of X; model 2 reflects a significant main
effect of F. Model 3 is part of the interaction effect between F and X, and has separate a and bp (linear)
parameters for each level of F. For nonlinear models, there is a fourth model which is also part of the
interaction, and for nonlinear contrasts model 3 can be referred to as 'Common Nonlinear', as 0 is the
same for all levels of F.

Model

1) Single Line

2) Parallel lines

3) Separate slopes
(common nonlinear)

4) Separate curves

Form

y = a + E^/(®;^p)

y = a.- + E^/(®".^p)

y = a, + EV/(®;^p)

Example
FWt= A + C/(l + exp(-B(ln(dose) - M)))

FWt= Ai + (7/(1 + exp(-B(ln(dose) - M)))

FWt= Ai + Cf/(1 + exp(-B(ln(dose) - M)))

» = "i + E ) Fwt= Ai + Ci/(1 + exp(-Bi(ln((io«) - M,)))
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These different models are illustrated in Fig 3a and Fig 3b.

L  Single Line L  Paral lel Lines L  Single Curve L  Para!lei Curves

OoK, gifts

L  Separate Lines

Dose, gifts iog(Oosc)

L  Common Nonlinear

og(Dos*)

Separate Curves

Dost, gifts

rig 3a Fitted Quadratic Contrasts

loo(Ooss) log(Doss)

rig 3b Fitted Nonlinear Contrasts

The sums of squares in the ANOVA table can be partitioned using these models, which allows an assess
ment of the importance of each as a component of the treatment effects. With polynomial contrasts, the
sums of squares for the main effect of X (Doses) is partitioned into the SS for the single line, with the
remaining SS as deviations. The Interaction SS is partitioned into SS for separate lines (adjusted for a
single line), again with the remainder as deviations. Similarly, with nonlinear contrasts, the main effect
is partitioned for a single curve and deviations, and the interaction for the common nonlinear curves
(adjusted for a single curve), the extra SS for completely separate curves and deviations. The following
outline ANOVA tables would be produced for the two cases:

Polvnomial Contrasts

General Form

F

X

Single Line
Deviations

F.X

Separate Lines
F.Deviations

Nonlinear Contrasts

General Form

F

X

Single Curve
Deviations

F.X

Common Nonlinear

Separate Nonlinear
F.Deviations

Sum of Squares
SF

SX

SFX

Example
Volume

Dose

Quadratic
Deviations

Volume.Dose

Volume.Quadratic
Volume.Deviations

Sum of Squares Example
SF Volume

SX Dose

SSsingle Single Logistic
devX Deviations

SFX Volume.Dose

SScommon Common Nonlinear Logistic
SSseparate Separate Logistics
devFX Volume.Deviations

4. Algebraic Derivation of Contrast Sums of Squares & DF

Analysis of Variance can be used to give the sums of squares for treatments (SF, SX, SFX). The sum of
these is the total treatment SS (treatSS), which is the total SS for the (weighted) F.X treatment means
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table. If the treatments are orthogonal to any blocks, then for i = 1.. .t (levels of F), j = 1.. .s (levels
of X), and k = 1... r (replicates),

SF = 5^rs(y,- - y ̂ f
i

SX = ̂r((y,i,-y
J

SFX = ̂  riHij - Vi - y . + y )2.

Weighted regressions of the four nonlinear models on the treatment means gives four Residual SS:

Residual SS

Single Curve devl
Parallel Curves devP

Common Nonlinear dev2

Separate Nonlinear dev3

The form of these deviances can easily be written down using standard least-squares formulae. They each
have the following form:

deviance = r^(y,-j- — modelf.
ij

In each case, the constants (or a) can be replaced by its least squares estimate.

Model:

1. d = y -bf / = mean {f{xj]$))

2- a," = Vi.. -

3- a,- = y,-.. - bj

4- a,- = Vi.. - bJi_ fi^ = mean (f{xj;

The deviances can be rewritten as follows:

a) devl

b) devP

c) dev2

devl = r^iy^j - a- bf{xj\e)f

= '•^((y.-j. - Vi.. - Kf{xj;0) - f )f + rs^(y,. - y...)2
ij i

=  - vl. - - f.)? + SF (1)

devP = r ̂(y.j. - Oi - i/(®i i 0))^
ij

= >• DtSy. - Si . !«)-/))'

= devl - SF (2)

dev2 = r ̂(y,j. - a,- - bj{x^; 9)f
*3

= ''5Z((y.j. - Hi.. - bi{f{xj,e) - f )f
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d) dev3

dev3 = - «i -

ij

It can be seen from the above derivations that all the deviances involve deviations away from y,j- — y, .
In the case of a split-plot structure with F as the mainplot treatment,

Vijk = + Pi + + lij + f.-fc + Vijk Vij. - Vi.. = + tij + (%.

Thus, all the deviations involve only the sub-plot error, implying that in general, deviances from regres
sions on the means can be used to calculate SS for contrasts, providing that each treatment effect is
estimated entirely within one stratum. This result holds for other designs.

The difference between deviances for two models gives the regression SS for the more complex model,
adjusted for the simpler model. The regression SS for any model is the treatment SS minus the residual
deviance. Equation (2) shows that it is not necessary to fit the parallel-curves model. The five required
SS for the contrasts and deviations can therefore be derived using just SF, SX, SX, devl, dev2, dev3 as
follows:

a) SSsingle = TreatSS — devl
= SF -H SX + SFX - devl

b) devX = SX — SSsingle
= devl - SF - SFX

c) SScommon = devP — dev2
= devl — SF — dev2

d) SSseparate = dev2 — dev3

e) devFX = SFX - SSseparate

(from 1)

(from 2)

- SScommon
= SFX - (dev2 - dev3) - (devl - SF - dev2)
= SF + SFX + dev3 — devl

The diagram below (Fig 4) illustrates these calculations. In each case, the whole circle represents the
total treatment SS.

The degrees of freedom can be derived in a similar manner.

iresslon

Mioyti

Fig 4 Sutitloaiag Sou of Sqoaxoa
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5. Calculation Using Genstat

The above calculations for the derivation of the SS for contrasts can easily be carried out using the
CALCULATE directive within Genstat, once the three models have been fitted using FITCURVE.

BLOCK block/plot/subplot "Define block ft treatment structures"
TREAT factor+varP

"Save means, reps ft treatment SS from ANDVA"
ANOVA [PRINT=»] data
AKEEP varF.factor; MEAN=mean; REP=rep
ft factor*varF; SS=sl,s2,s3

VARIATE [VALUES=#meanil Mean "Put means ft reps into variates"
ft CVALUES=#rep] Rep

CALC nf ,nv=NLEVELS(factor,varF)"Create new factor ft a vairiate for vaxF"
FACTOR [LEVELS=nf; VALUES=(1...nf)#nv] fac
VARIATE [VALUES=#nf (#vsu:iate)] variate

MODEL [WEIGHTS^Rep] Mean "Fit the three models ft save devieoices ft dfs"
TERMS variate*fac

FITCURVE variate "—single curve"
RKEEP DEVIANCE=devl: DF=dfl
ADD CPRINT=*3 fac+variate.fac "-Common Nonlinear"
RKEEP DEVIANCE=dev2; DF=df2
ADD [PRINT=*; N0NLINEAR=sepau:ate3 "-Separate Nonlineeu:"
RKEEP DEVIANCE=dev3; DF=df3

CALCULATE can then be used to obtain the necessary SS and DF for the contrasts.
When the relevant numbers have been obtained, a new ANOVA table can be constructed. ADISPLAY is
used save the ANOVA table in a text, and EDIT to add the extra lines.

6. A Procedure for Nonlinear Contrasts in ANOVA

The above method has been incorporated into the procedure NLCONTRASTS in the Genstat Procedure
Library 2[3], which checks that the given design is a valid one for the fitting of nonlinear contrasts. The
procedure has five options (PRINT, CURVE, FPROB, SE, WEIGHT), which are the sg^me as the relevant options
in ANOVA and FITCURVE. There are four input parameters: Y, XFACTOR (the factor to be used for contrasts),
XLEVELS (values to be used for the levels of XFACTOR), and GROUPFACTOR, the factor whose interaction
with XFACTOR is to be tested. Three more parameters (CONTRASTS, SECONTRASTS, DFCONTRASTS) save the
contrast information in labelled pointers. The BLOCKSTRUCTURE and TREATMENTSTRUCTURE directives are
used before the procedure is called as for a standard ANOVA, and the AKEEP directive can be used to save
all the normal components of ANOVA, except those relating to contrasts. The TREATMENTSTRUCTURE can
have terms with other factors, provided the main effects and interaction of XFACTOR and GROUPfACTOR
are included.

As well as the analysis-of-variance table, and other standard output from ANOVA, the procedure also
produces information about the contrasts fitted. Parameter estimates for each curve are given, along
with standard errors for these based on the Residual MS for the stratum in which that contrast was

fitted. Deviations between the fitted curve and the treatment means are available, each with standard
errors. All nonstandard information can be saved as parameters for the procedure.

7. Example

The Genstat program below shows an analysis of the example data-set using
NLCONTRASTS.

1  UNITS [120]
2  READ [CHANNEL=2] Fwt

Identifier Minimum Mean Maximum Values Missing
Fwt 0.500 3.646 7.630 120 0

3  VARIATE CVALUES=10, 20, 40, 100, 160, 340] dose; DECIMALS=0
4 FACTOR CLABELS=!t(Small, Large); VALUES=60(1,2)] Vol
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5  FACTOR [LEVELS=dose: VALUES=10(#dose)2] Doses
6  FACTOR [LEVELS=10; VALUES=(1... 10)12] block
7  FACTOR CLEVELS=12; VALUES=10(1...12)] pot
8  CALCULATE ldose=LOG(dose)

10 BLOCK block/pot
11 TREAT Vol*Doses

12 NLCONTRASTS CCURVE=logistic; PRINT=aov,con; FPROB=y] \
13 Y=Fwt; XFACTOR=Doses; XLEVELS=ldose; GROUP=Vol

***** Analysis of veuriance *****

Variate: Fwt

Source of variation d.f. s.s. m.s. v.r. F pr.

block stratum 9 4.580 0.509 0.43

block.pot stratum
Vol 1 4.665 4.665 3.97 0.049

Doses 5 163.164 32.633 27.78 <.001

Curve 3 159.314 53.105 45.21 <.001

Deviations 2 3.849 1.925 1.64 0.199

Vol.Doses 5 15.257 3.051 2.60 0.030

Common NonLin 1 8.023 8.023 6.83 0.010

Separate Curves 2 4.597 2.298 1.96 0.147

Deviations 2 2.636 1.318 1.12 0.330

Residual 99 116.287 1.175

Total 119 303.952

*♦♦** Nonlinear Contrasts »**♦*

*** Doses contrasts ***

Parameter
B
H
C
A

Deviations
Doses

se

Estimate
-0.9272

3.491
4.961
1.686

10
0.0153
0.7822

s.e.

0.7761
0.8472
3.390
1.083

20
-0.0726
0.9018

40
0.1462
0.9295

100
-0.2957
0.9242

160
0.2718
0.9614

340
-0.0651
0.7944

♦** Vol.Doses contrasts ♦**

Common Nonlinear
Parameter Estimate s.e.

B -1.013 0.4880
M 3.373 0.5204
C  Vol Small 3.682
A  Vol Small 2.484
C  Vol Large 5.845
A  Vol Leurge 1.292

Separate Curves
Parameter Estimate s.e.

B  Vol Small -1.269 1.291
M  Vol Small 4.611 0.7709
C  Vol Small 3.250 2.243
A  Vol Small 1.875 1.664
B  Vol Leurge -1.703 1.009
H  Vol Large 3.293 0.4123
C  Vol Large 4.551 1.662
A  Vol Large 1.961 0.3990
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Deviations

Vol

Small

Large

Doses

se

se

10

0.0949

0.4303

-0.0669

0.1576

20

-0.1593

0.8376

0.2023

0.4548

40

0.0446

0.6070

-0.3107

0.6228

100

0.1208

0.7486

0.5398

0.7779

160

-0.1429

0.7063

-0.3768

0.8816

340

0.0419

0.1866

0.0123

0.5893

The ANOVA table shows that the significant interaction between Vol and Doses is due primarily to Doses
aflfecting the slope parameter (C), whereas the nonlinear parameters (B,M) do not vary significantly with
volume, since the 'Separate Curves' contrast was not significant. C represents the difference between the
weed weight for zero dose, and A the lower asymptote. The parameter estimates show that this difference
was significantly greater with a large volume, indicating a greater reduction in weed weight with herbicide
sprayed as a large volume. This is illustrated in Fig 3b, 'Common Nonlinear'.

27



Genstat Newsletter 29

Summaries of Unbalanced Factorial Data with Genstat

E D Schoen

Centre for Applied Statistics
TPD-TNO

PO Box 6032

2600 JA DELFT

The Netherlands

1. Introduction

When factorial data are unbalanced, or when they are to be evaluated jointly with one or more explanatory
variates, we should use the regression directives of Genstat to consider various statistical models. As a
second step, we may wish to make adequate summaries of the results. Whenever factors come into view,
a typical summary consists of tables in which the effects of one or more of the factors are averaged,
possibly with extra dimensions classified by selected values of the variates in the model. To construct
such summaries, the PREDICT directive should be used. It offers a wide range of possible methods for the
averaging process. It is essential to choose the right options to guide the process, especially when the
data are unbalanced. In particular, when not all combinations of factor levels are present in the data, or
when there are aliased parameters, we should think carefully about the setting of the directive's options.

In the Genstat 5 Reference Manual, a rather compact illustration of each of the above options is given,
necessarily without much discussion. The purpose of this presentation is to give some illustrations to
facilitate the choice of the averaging process. I restrict my attention to linear models with Normal errors
and constant variance.

2. Example 1: Additive Two-Way Model with Full Information on Parameters

The data given in Table 1 are classified by two factors called A and B. Each cell contains no more than
one observation; for one reason or another, observations in the cells marked with an asterisk were not
obtained. The column gives the number of observations for each level of A; the row lyg shows the
proportion of observations for the various levels of B.

The data fit perfectly in an additive structure. If the missing observations also fit in that structure, their
values can be estimated. For example, the difference between the second and first level of B seems to
be 2. This can be used to infer that the value of the upper left cell should be one. Table 1 can thus be
completed. The full version is given as Table 2.

B 1 2 3 4 5 "'A
A

1 * 3 * * * 1

2 2 4 6 6 13 5

3 10 12 14 * 21 4

3 2 1 2

Table 1. Data for example 1

B I 2 3 4 5

A

1 1 3 5 5 12 1

2 2 4 6 6 13 5

3 10 12 14 14 21 4

lyg 2 3 2 1 2

Table 2. Completed version of Table 1
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The additive structure for the two-way table may be expressed with the well-known model

The model contains nine parameters: the general constant fx, one parameter for each level of A, a,- and
one for each level of B, /3j.

For reading the data, fitting the additive model and printing the estimates of the parameters, the following
lines of program suffice.

VARIATE [VALUES=3.2.4,6,6,13,10,12,14,21] Example
FACTOR [LEVELS=3; VALUES=1,5(2),4(3)] A
FACTOR CLEVELS=5; VALUES=2,1,2...5,1,2,3,5] B
MODEL Example
FIT [PRINT=estimates] A + B

This is the resulting output.

***** Regression Analysis *****

*** Estimates of regression coefficients ***

estimate s.e.

Constant 1.00000 0.00000
A 2 1.00000 0.00000

A 3 9.00000 0.00000

B 2 2.00000 0.00000

B 3 4.00000 0.00000
B 4 4.00000 0.00000

B 5 11.0000 0.0000

Genstat uses so-called corner-point constraints. For the data just shown this means that the first pa
rameter of both of the main effects is set to zero. This implies that the fitted value of the upper left cell
is given by the 'constant' in the output. (Of course, the table was artificially made completely additive.
The standard errors of the estimates are therefore zero.)

When the model building with Genstat is done, we have to think of adequate summaries of the results. For
a two-way layout, a typical summary would consist of tables classified by one or both of the classifying
factors, possibly with extra dimensions classified by various values of the variates in the model. To
construct such summaries, the PREDICT directive should be used. There are two parameters, namely
CLASSIFY and LEVELS. With the latter parameter you specify for what levels of the factor you wish to
obtain a summary, and for what values of the variates. By default, variates are evaluated at their mean
value, and factors are evaluated at all their levels.

The CLASSIFY parameter lists the factors and variates that are to classify the summary table. The
variates not listed with this parameter are evaluated at their mean value in the data-set. The factors not
listed in the CLASSIFY parameter are averaged according to the setting of options. As we shall see below,
it is quite important to choose the right option settings for averaging.

We may wish to base our summaries on the full reconstruction of the table. This is particularly interesting
if it is perfectly possible to make observations at the combinations of factor levels now left empty and if
you are quite sure of additivity there. This is how to get a full-table-based summary for factor B.

PREDICT [PRINT=predictions; COMBINATIONS=all; ADJUSTHENT=marginal] B

The statement produces the predictions given in the first column of Table 3.

presentCOMBINATIONS all

ADJUSTMENT marginal equal marginal equal
level

1 5.100 4.333 5.556 6.000

2 7.100 6.333 7.100 6.333

3 9.100 8.333 9.556 10.000

4 9.100 8.333 6.000 6.000

5 16.100 15.333 16.556 17.000

Table 3. Summary tables for factor B made under various option settings of the PREDICT directive

29



Genstat Newsletter 29

The setting all of the COMBINATIONS option ensures that the summaries to be produced are based on
Table 2 rather than on Table 1. It is the default setting of the option. The other one, present, produces
summaries based on Table 1.

The ADJUSTMENT option controls the type of averaging. The setting meurginal clearly does not yield
simple averages over each of the columns. Instead, the program uses marginal weighting. The weights
are just the total number of observations for each level of A. The value 5.1 in the table, therefore, is the
sum of 1 times 1, 5 times 2 and 4 times 10, divided by the sum of the weights, 10 (see Table 2).

To see what happens it is illuminating to write down the formula used to calculate each entry in the one
way summary for factor B:

Apparently, the difference between two elements of the summary table for B estimates the difference in
the corresponding 0 parameters, and that is what we are frequently interested in.

Questions can be raised regarding the weighting. If the factor A represents a population trait, it is, in
my opinion, perfectly sensible to use weights. If we know what the population proportion is, the obvious
choice for the weights would be just these proportions. Genstat enables you to give weights explicitly
with the WEIGHTS option.

Often enough you do not know what the population proportions are. In that case you may wish to use
the obtained proportion as the weights. This is sensible if you could assume that the experimental units
represent a random sample from the population of units. So for a complete data-set, the proportions 1
to 5 to 10 may have been obtained by random sampling. The use of these proportions for the weighting
then gives a realistic picture of what happens if you give a randomly chosen experimental unit treatment
B.-

If the proportions are not related to a population, weighting is arbitrary. For example, we do not suspect
that the proportion 1 to 5 to 4 in the data set of Table 1 represent a population proportion. Giving equal
weights to the levels is then as good a choice as any. We can achieve this by setting the ADJUSTMENT
option to equal. It gives a simple average over the rows or columns (see Table 3). The weights in the
above formula all become 1/3.

You can easily see that comparison between cells in the one-way summary table still estimate the difference
in ̂  parameters. My own preference is to give equal weights unless there are population proportions to
account for.

Both summaries on factor B discussed thus far are baised on a reconstruction of the full data-set. If the
empty cells in the table are due to 'impossible' factor-combinations, a reconstruction-based summary does
not give realistic information on values which the response variate may take. With the setting present
of the COMBINATIONS option, we ensure that only those combinations of factor levels are used that occur
in the data. For the data at hand it results in quite spectacular changes (see Table 3). Particularly the
value taken at the fourth level of B (only one value of the other factor used) is noteworthy.

For the setting marginal of the ADJUSTMENT option the summary for the various levels for B is calculated
as follows e a '

6i = /i + |"2 + 9^3 + /?!
^2= A + + fo^2 + ^"3 + 02
63 = /i + |d2 + |q;3 + ̂ 3

ft + <>2 + ^4
65 = /i + |"2 + |"3 + 4

It is evident that such summaries do not give you a clear idea about the difference between the /?s in the
model. So you do not get a clear picture about what happens if you change the level of factor B.

What you do win for the structural-empty-cell case is a realistic summary. More often than not, the
weights given by ADJUSTMENT = marginal are arbitrary. So you may wish to use the equal setting.
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3. Example 2: Additive Two-Way Model with Aliased Parameters

The data for the second example are given in Table 4. This data-set is even sparser than the one we
studied before. Again, the table contains individual observations. In the upper left part of the table,
additivity seems to hold. We cannot, however, reconstruct the whole table without assuming a value for
the third parameter of factor A or of the fourth and fifth parameter of factor B. Indeed, these parameters
are aliased.

B 1 2 3 4 5

A

1 4 6 6 * *

2 12 14 * * ♦

3 * * + 3 9

Table 4. Data for example 2

If we fit an additive model to the data using the regression directives of Genstat, the program decides
that the aliased parameters are the last ones for the factor fitted last. They are set to zero. When it
comes to predictions, the use of the COMBINATIONS option requires special attention. The default setting
of this option, namely, adl, will produce an error message. It is easy to see why. The default setting
requires that the summary be based on a reconstruction of the whole table. Now any reconstruction
of the lower left and upper right corners of the whole table must use the arbitrary value of the aliased
parameter. The program is only prepared to do this if you give your explicit agreement. You do this by
giving the ALIASING option of PREDICT the setting ignore. Genstat then uses the parameter values it
already had in mind for the reconstruction of the whole table (the default setting of the option ALIASING
is fault; this setting produces an error message when there are aliased parameters).

B 1 2 3 4 5

A

1 4 6 6 3 9

2 12 14 14 11 17

3 4 6 6 3 9

Table 5. Reconstruction of Table 5 with estimate of 03 set to 0

The table resulting from PREDICT [ALIASING=ignore] A,B is shown as Table 5. The only thing we have
won by using the setting ignore is a reasonable reconstruction of the third cell of the second row. The
upper right part of the table is also reconstructed, but the reconstruction is very arbitrary indeed!

Of course, it is not very tidy to analyse the data of Table 4 as an incomplete two-way factorial. I just
wished to illustrate the handling of factorial data with aliased parameters.

One further potential application of the ignore setting may be mentioned. Let factor A have two levels,
let factor B be quantitative with four levels, 16, 32, 48, and 64, say, and let a variate called 'linear' have
the same values as factor B. Now the variate is equivalent to the linear part of the factor. If the factor is
fitted first, you cannot add the variate to a regression model. So you should do it the other way round
by stating for example:

FIT A*linear + B

If we want to predict the values of the response variable at the third level of B, say, we canot use

PREDICT A,B,linear; LEVELS=*,48,48

This would result in an error message because of the aliasing of B and linear. However, if we use the
option ALIASING^ignore, the correct predictions will be formed.
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4. Conclusions

In this paper, various ways of making summaries of factorial data with the PREDICT directive are discussed.
We have seen that the directive offers quite a few possibilities for averaging. There seems to be no uniform
best way of averaging; it all depends on the nature of the data at hand. A few personal recommendations
are:

(1) If there are missing factor-combinations, we should judge whether they are structural or accidental.
For accidental missing observations, we should base our summaries on a full table of predictions,
including predictions for missing observations. For structural missing observations, we could base
our summaries on just those combinations occurring in the data. We then probably need additional
summaries which show what the effect of changes in factor levels are.

(2) If the data involve factors relating to population traits, we should weight the full table of predictions
according to the population proportions. This is only sensible if we have at least some impression
about these proportions. In all other ceises we recommend equal weighting.
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Analysis of Overlapping Experiments with the REML Directives
G Horgan
Scottish Agricultural Statistics Service
The University of Edinburgh
King's Buildings
EDINBURGH

United Kingdom EH9 3JZ

1. Introduction

Data from designed experiments are analysed by analysis of variance. The Genstat directives for this
technique (BLOCKS, TREATMENTS, CGVARIATE and ANOVA) allow the data to be partitioned into several strata
and a sophisticated analysis of variance to be constructed. Treatment means are currently estimated in
the lowest stratum only — there are plans to change this. Only "balanced" designs can be analysed using
these directives. Using pseudo-factors, it is possible to analyse designs that do not have full balance.

Residual Maximum Likelihood (Patterson and Thompson 1971, Robinson 1987) is a powerful technique
when used for analysing data from unbalanced experiments. However, the technique must be used with
care. The specification of the model is important, and there are aspects of this which do not arise
in analysing experiments with ANGVA. This article will use data from three experiments, which when
considered as a single experiment is unbalanced, to illustrate the use of REML, and to draw attention to
some of the issues arising.

The essence of REML is that it maximizes the likelihood of all contrasts between the experimental ob
servations which have expectation zero. It operates iteratively, and produces estimates of the variance
components (sources of variability in the experiment — see Box ei al 1978, p 571). The variance compo
nents are then used to produce weights for estimating treatment means, and so information from all strata
is combined. REML has been available as a SASS (Scottish Agricultural Statistics Service) program since
1985, and the code has been incorporated in Genstat 5 since Release 2.1. The directive VCGMPGHENTS
specifies the model to be used, and the directive REML performs the analysis on specified variates.

2. Description of the Experiments

The three experiments were each concerned with examining the feed intake of pigs on different diets.
Other variables, such as growth rate, were also recorded, but here we concentrate on the feed intake
variable, recorded as g/day, averaged over the recording period for each pig. In the first experiment
the pigs, in addition to their normal diets, were given three levels of a feed supplement (which we shall
refer to as A). The three levels will be referred to as 0, 1, 2. The 0 level consisted of giving none of the
supplement, and 1 and 2 were different amounts. Twelve pigs were used, arranged in four latin squares;
the experiment was conducted over three periods. Two pigs followed each of the six treatment sequences.

Pig
1&2 3&4 5&6 7&8 9&;10 11&12

1 AO Al A2 AO A2 Al

Period 2 Al A2 AO Al AO A2

3 A2 AO Al A2 Al AO

The other two experiments were conducted in exactly the same way, using two other feed supplements,
B and C.
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3. Analysis

Considered as separate experiments, an analysis by ANOVA is straightforward, with BLOCKS pig*period
and TREATMENT feed. A danger for the unwary, however, is that if the nine treatments are analysed as a
single experiment, then inappropriate means are produced, and it is important that the warning Genstat
produces is not ignored.

1

2

3

4

5

6

7

8  READ CCHANNEL=2] pig,period,feed,feedint

Identifier Minimum Meem Maximum Values Hissing
feedint 22 1093 2714 108 0

9 TABULATE [PRINT=means,nobs: CLASS=feed] feedint

UNITS [108]
FACTOR [LEVELS=6] TREAT
FACTOR [LEVELS=3] period
FACTOR [LEVELS=9; LABELS=!t(A0,Al,A2,B0,Bl,B2,C0,Cl,C2)] feed
FACTOR CLEVELS=36] pig
OPEN 'pigint.dat'; CHANNEL=2:

Nobservd Mean

feed

AO 12 1371

A1 12 1616

A2 12 1454

BO 12 1169

B1 12 1097

B2 12 524

CO 12 1149

C1 12 1013

C2 12 445

10 BLOCK pig^tperiod
11 TREAT feed

12 ANOVA feedint

******** Warning (Code
Command: ANOVA feedint

17). Statement 1 on Line 12

Partieil confounding
feed is partially confounded with pig

12.

***** Analysis of variance *****

Variate: feedint

Source of variation

pig stratum
feed

Residual

d.

period stratum

pig.period stratum
feed

Residual

Toteil

f.

8

27

8

62

107

s.s

8166567.

2153215.

m.s

1020821.

79749.

6711727.

3435570.

3.E+07

838966

55412

v.r.

12.80

1.44

2  7300968. 3650484. 65.88

15.14

* MESSAGE: the folloving units have large residuals.

pig 25 -295. s.e. 141.

pig 3 period 3 450. s.e. 178.
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pig 4
pig 21

period 3
period 3

541.

-526.

s.e. 178.

s.e. 178.

)(t4t4c4c# Tables of means *****

Veuriate: feedint

Grsuid mean 1093.

feed AO

984.

CO

1373.

A1

1228.

C1

1237.

A2

1067.

02

669.

BO

1332.

HI

1260.

B2

687.

*** Standard errors of differences of means ***

Table

rep.

s.e.d.

feed

12

96.1

What has happened is that since information for estimating the means is taken only from the lowest
stratum in which the corresponding term in the ANOVA occurs, the within-pig information only is used
to produce the difference between each treatment mean and the overall mean. This has the effect of
forcing the means for the A, B and C sets of treatments (i.e. the mean of AO, Al, A2, the mean of BO,
Bl, B2 etc) to be the same. If we compare with the analysis produced if the pig stratum is omitted, the
difference is clear.

13 BLOCK period
14 TREAT feed

15 ANOVA feedint

15.

***** Analysis of vaoriance ♦*♦**

Veoriate: feedint

Source of variation d.f.

period stratum '

period.*Units>i< stratum
feed
Residual

8

s.s.

7300968.

 l.E+07
97 5588786.

m.s.

3650484.

1859787,
57616.

v.r.

63.36

32.28

Total 107 3.E+07

* MESSAGE: the folloving units have large residuals.

period 2
period 3
period 3

♦units* 25
♦units* 4
♦units* 21

-623.
781.

-643.

s.e. 227.
s.e. 227.
s.e. 227.

***** Tables of means *****

Variate: feedint

Grand mean 1093.

feed AO
1371.

CO

Al
1616.

C1

A2
1454.

C2

BO
1169.

Bl
1097.

B2
524.
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1149. 1013. 445.

*♦* Standard errors of differences of means ***

Table feed
rep. 12
s.e.d. 98.0

Dropping the pig effect has only slightly affected the residual mean square, implying that the pig effect
is small.

Since AO, BO and CO do not involve giving any of the feed supplement, they are in fact the same treatment,
and this facilitates comparisons of the other treatments. We shall refer to it as ABCO. We really only
have seven treatments, and would like to use this in our analysis. However, viewed in this way the design
is not balanced, and an analysis using ANOVA is not easily achieved. The REML technique may be used
here. The analysis will produce estimates of the different sources of variation in the experiment (pigs,
periods, within-pig variation) and the treatment means will be estimated with information being drawn
from all strata.

An important issue in specifying the analysis required in REML is whether factors should be considered as
fixed or random. This issue is hidden when the experiment is analysed by the ANOVA directive. Block and
treatment factors will very often be random and fixed, respectively, if the analysis is performed in REML.
The basic idea is that a fixed effect is one you are interested in studying, and for which the essential
summary is the table of (estimated) means for each level of the factor. The experiment was performed
in order to answer questions about the fixed effects. In the present situation, the feed treatments are a
fixed effect.

The random effects correspond to other sources of variation in the experimental material. Usually the
levels of a random effect will have been chosen at random from an appropriate population, and the levels
of the fixed effects will have been assigned to them. An essential aspect of random effects is that we
regard the expected difference between two levels of the effect as zero. In the present case, pigs are a
random effect. They have been selected at random from a population of pigs, and assigned at random to
the treatment schedules. Often it is obvious whether a factor should be fixed or random, but sometimes
it is not so clear. Should period be fixed or random? If the different periods play the role of replicates,
then we could consider them as a random effect. In this case the pigs were still growing, and the expected
feed intake was not the same in each period, and so periods were considered as a fixed effect. For an
unconfounded design, it would make no difference to the estimated treatment effects which effects are
regarded as fixed and which random. For partially confounded designs it can make a very important
difference.

The following output shows three variations on analysing the feed intake data. In the first, the pig effect
is ignored, so that the means are the same as would be obtained by TABULATE. In the second, pig is
treated as a random effect, and in the third as a fixed effect.

16 "
-17 Set up 7 level FACTOR for feed treatments
-18 "

19 FACTOR [LEVELS=7; LABELS=!T(ABC0,A1,A2,B1,B2,C1,C2)] feedl
20 CALCULATE feedl=NEWLEVELS(feed; !(1,2,3,1,4,5,1,6,7))
21 "

-22 Analysis with no pig effect
-23 "

24 VCOMPONENTS [FIXED=feedl,period]
25 REML CPRINT=c,s,m] feedint

25.

Estimated Components of Variance ***

s.e.

♦units* 60122. 8545.
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*** Approximate stratum Vcurieuices ♦♦♦

Effective d.f
♦units* 60122.3 99.00

* Matrix of coefficients of components for each stratum *

♦units* 1.000

♦♦♦ Table of mean effects for feedl ♦♦♦

feedl ABCO A1 A2 B1 B2

1229 1616 1454 1097 524

C1 C2

1013 445

Standard error of differences: Average 94.85
Maximum 100.1
Minimum 81.73

Average variance of differences: 9066.

♦♦♦ Table of mean effects for period ♦♦♦

period 1 2 3
734 1056 1371

Stand8u:d error of differences: 57.79

26 "
-27 Analysis with random pig effect
-28 "

29 VCOMPONENTS [FIXED^feedl,period] RANDOM=:pig
30 REML CPRINT=c,s,m] feedint

30.

♦♦♦ Estimated Components of Vaxiance ♦♦♦

S« 6«

pig 4190. 6512.
♦units* 55872. 9819.
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*** Approximate stratum vauriances *♦*

pig
♦units*

68286.1
55871.6

Effective d.f.
34.24
64.76

♦ Matrix of coefficients of components for each stratum ♦

pig
♦units*

2.949
0.000

1.000
1.000

♦♦♦ Table of mean effects for feedl ♦♦♦

feedl A6C0 A1 A2

1229 1606 1444

B1

1101

B2

529

Standaord error of differences:

Average vauriauice of differences:

Average
Maiximum
Minimum

93.73
99.82
80.16

8860.

♦♦♦ Table of meam effects for period ♦♦♦

period 1
734

2
1056

3
1371

Stamdaurd error of differences: 55.71

31 "
-32 Analysis with fixed pig effect
-33 "

34 VCOMPONENTS [FIXED=feedl,period.pig]
35 REML [PRINT=c,s.m] feedint

35.

♦♦♦ Estimated Components of Vairiance ♦♦♦

♦units*
s.e.

53681. 9490.

♦♦♦ Approximate stratum vauriances ♦♦♦

Effective d.f
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*uiiits* 53680.8 64.00

* Matrix of coefficients of components for each stratum *

♦units* 1.000

♦** Table of mean effects for feedl ♦♦♦

f eedl ABCO A1 A2 B1 B2

1229 1474 1312 1157 585

C1 C2

1094 525

Staindard error of differences: Average 117.0
Maximum 133.8
Minimum 94.59

Average variance of differences: 14059.

*** Table of mean effects for period ♦♦*

period 1 2 3
734 1056 1371

Standard error of differences :  54.61

Table of mean effects for pig ♦♦♦

pig 1 2 3 4 5
1182 1108 1170 1436 998

pig 6 7 8 9 10
1488 1125 1328 982 1038

pig 11 12 13 14 15
1314 1178 1125 992 946

pig 26 27 28 29 30
972 848 813 1195 1048

pig 21 22 23 24 25
877 969 1241 892 678

pig 16 17 18 19 20
802 893 1049 981 1009

pig 31 32 33 34 35
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1108 923 1108 925 1183

pig 36
1017

Standard error ol differences: Average 199.6
Meiximum 204.3

Minimum 189.2

Average variance of differences: 39877.

The analysis considering pig as a random effect has made only a small modification to the treatment
means, when compared with the analysis which ignored pig effects. However, the analysis where the pig
effect was considered as fixed is strikingly different. The means have all moved nearer to that of the ABCO
treatment, which has not been affected (because it was observed on all the pigs). To help comparison,
the estimates of the means are reproduced in the table below.

Estimated mean feed intake

Treatment No pig Pig effect Pig effect
effect random fixed

ABCO 1229 1229 1229

A1 1616 1606 1474

A2 1454 1444 1312

B1 1097 1101 1157

B2 524 528 585

01 1013 1019 1094

03 445 450 525

SED 95 94 117

When we omit the pig effect (analysis 1), we assume that the component of variance for pigs is zero and
thus give equal weight to the information on treatment effects between pigs and within pigs. The other
extreme is to use only the information on treatment effects within pigs, effectively assuming that the
component of variance for pigs is infinite. We achieve this by making pig a fixed effect (analysis 3). Both
of these analyses ignore the possibility of estimating the pig component of variance, and then using it to
determine the weights used to estimate the treatment means. For this to be appropriate, the pigs would
require to have been drawn randomly from a population and assigned to their treatment sequences. In
this case expected differences between pigs are zero. This assumption is not made in analysis 3. As the
assumption was considered appropriate in this experiment, analysis 2 was preferred.

4. Conclusion

This example has illustrated the use of the REML directive to combine the analysis of a series of experiments
which when viewed as a whole are not balanced. In unbalanced designs it is intrinsically more difficult
to extract information. REML is a powerful technique for handling these situations, but it must be used
with care. The issue of fixed versus random effects is one that needs careful thought.
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A Method of Optimal Categorization of Discrete Variables
Pawel Krajewski
Polish Academy of Sciences
Institute of Plant Genetics

Strzeszyhska 34
POZNAN

Poland 60-479

1. Introduction

Log-linear model fitting is widely used for the analysis of multidimensional contingency tables. If a model
is found to be unsatisfactory, the question arises whether the same model can describe the structure of
some subtables of the original table. In particular, one can look for a partition of the table into an
exclusive and exhaustive set of subtables that would explain the poor fit of the model.

In this paper, a method of optimal partition of the contingency table based on a decomposition of the
likelihood-ratio statistic is described. The decomposition, discussed by Gabriel (1966) and Gilula (1985)
for two-dimensional tables, has a very clear interpretation in terms of within-group and between-group
variability. The interpretation depends, however, on the nature of the variables generating the contingency
table. Here, we are particularly interested in the case when partition of the table is defined by groups of
categories of one of the variables. Further, we explore the interpretation of the optimal partition when
the "partitioning" variable is a random variable. Some consequences of this interpretation are used to
construct a method of graphical visualization of the contingency table data. Finally, remarks concerning
the generalization of the method for multidimensional tables are given.

2. The Optimality Criterion

Consider a two-dimensional contingency table T = } generated by discrete variables and A2 with
I and J categories, respectively. Denote the likelihood-ratio statistic for testing the log-linear model M
of independence (or homogeneity) by G^(M[T]). It can be shown that for any partition of the set of
categories of one of the variables, Ai or mutually exclusive and exhaustive groups, G^{M[T])
decomposes into two parts, which describe the within- and between-group variability, respectively (Gilula
1985). Specifically, if categories of A^ are subdivided into R groups, G^ can be written as

R

GHMIT\) = Y,G\M[T^) + G^M[T\\M[T, r,J) (1)
r=l

where denotes the subtable of T corresponding to the rth group of categories of A^. The first term in
(1), denoted by G^(M), is the statistic for testing the simultaneous fit of M on T,., r = 1,..., i2; it can
be interpreted as a "within-group" component of G^{M[r\). For r = 1,..., we have

G\M[n) = Y, E Vii '08
1=1 i = l +

where
I I j

^rj = . ^r+ = X) ^nd ^ Vij
»=1 *=1 i=l

with = 1, if the ith category is in the rth group, and 0 otherwise. The second part of (1), a conditional
statistic denoted by Gg{M), can be written as

G%(M) = 2YYz^,ioB'f^
r=li = l ^r+y+j

and is equal to the statistic for testing the fit of M on the /2 x J table Tq constructed from T by summing
the observed counts over categories from the same groups.

We define the optimal partition of the categories of A^ as this partition into R groups, for which G^(M)
is minimal. Naturally, the optimal partition maximizes the value of the statistic G\{M). It can be
found numerically by searching through all partitions of I categories into R groups, or, for large tables,
by two methods described by Siatkowski and Krajewski (1989): successive relocation of categories and
minimization of the function G^(A/) by the steepest descent algorithm.
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3. Interpretation

The meaning of the optimal partition is obvious if the variable ̂ 4^ is a factor; that is, if the contingency
table comes from the observation of I independent multinomial distributions. In this situation, the
statistics G^{M[T^]) are independent, and the optimal partition of categories of Ai provides the best
grouping with respect to the within-group homogeneity. The meaning of the optimality criterion is
similar to that of minimum within-group sum of squares criterion used for clustering multivariate normal
populations (Gordon 1982, p 39).

In the case when is a random variable, and A2 is a factor, the meaning of the optimal partition is
different. In this situation, the statistics G^{M[Tf.]) are asymptotically independent (Goodman 1968).
The statistic G^{M[T\) describes the "deviance" from the homogeneity of objects corresponding to cat
egories of A2 with respect to the distribution of Ai. Although the categories of A^ are defined a priori,
after the experiment we can ask if we really have to distinguish I categories of in order to detect
the inhomogeneity of objects. Or: how to group the categories of Aj into R new categories in order to
preserve maximum discrimination between objects. It can be seen that the new "categorization" of Aj we
are looking for corresponds to the optimal partition described in Section 1. The amount of information
about the inhomogeneity of objects preserved by the new categorization can be measured by the ratio

0 = G^(M)/G'(M[T])

the value of which lies between 0 and 1.

Note that the optimal categorization of a discrete variable can be seen as a reduction of dimensionality,
leading from I categories of Aj to < 7 categories. The reduction is done by defining a new (observable)
random variable, say Aj, which is a linear function of Aj and has also a multinomial distribution.

4. Graphical Representation

The optimal categorization leads to the possibility of a simple graphical representation of the contingency
table data. If 7 = 3, and we reshape our data from counts to proportions, the points representing the
categories of Aj lie on a two-dimensional simplex (Figure 1). This simplex can be projected onto a plane,
thus giving a picture of the data convenient for visual inspection (Figure 2). If 7 > 3, this can not be
done, but we can use the optimal partition of categories of Aj into three groups to obtain the graph. The
representation we get is optimal in the sense that it preserves maximum discrimination among categories
of Ao.

Figure 1. The two-dimensional simplex spanned on unit vectors
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Figure 2. The two-dimensional simplex projected onto a plane

5. Example

Flowers of 12 rose varieties were classified according to their quality into four groups (Table 1). The
purpose of the analysis of this contingency table is to detect the differences between varieties (variable
A2) with respect to the quality of flowers (variable yl^).

The value of the statistic for the homogeneity model is 148.9 with 33 degrees of freedom and is
significant. Thus the varieties differ with respect to the quality of flowers, afld it is reasonable to ask
which grouping of varieties is the best. Using the method of optimal partition into three groups for the
variable A2 we get the following groups of varieties: A = (l,6,8,12);B = (2,5);C = (3,4,7,9,10,11).

Now let us find the categorization of the variable A^ which preserves maximum information about inhomo-
geneity of varieties. The best partition of 4 categories of Ai into 3 groups is: I = (1); II = (2); III = (3,4),
with G%{M) = 135.9. Using this categorization of "quality" we preserve = (135.9/148.9) x 100 =
91.23% of information about inhomogeneity of varieties. The graphical representation of varieties based
on this categorization is shown in Figure 3. The positions of the varieties are consistent with their group
ing obtained before. It can be seen that groups B and C consist of varieties with the highest and the
lowest proportion of flowers in the first quality category, respectively.

Variety (^2) Quality of flowers (A^)

1 2 3 4

1 39 42 7 15

2 38 1 1 3

3 3 4 9 4

4 2 22 6 6

5 12 1 1 4

6 19 12 5 3

7 19 19 13 8

8 22 13 2 2

9 12 9 10 13

10 9 15 7 10

11 13 24 6 10

12 12 3 4 1

Table 1. Flowers of 12 rose varieties classified according to their quality into four categories
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min II \fflin III

min I II

Figure 3. Graphical representation of varieties in the triangular coordinate system corresponding to
optimal categorization (1), (2), (3,4) of the variable "quality of flowers" (obtained using Genstat procedure
DTRIA)

6. Generalization

In the general case, we consider a multidimensional contingency table T generated by S discrete variables.
If we take any of these variables, say and divide the set of its categories into R subgroups, the
decomposition (1) holds for any hierarchical log-linear model M of the table T. Thus, we can look for
the partition of the categories of optimal with respect to the model M. Such generalization does
not introduce special theoretical problems, although it turns out that the search for optimal partition
and proper interpretation of the results are possible only for a subclass of log-linear models. Some facts
relevant to this problem are summarized below. Full description of the method of optimal partition of
multidimensional contingency tables is given by Krajewski (1989).

For a two-dimensional table, the statistic G^(M) can be calculated from the table Tg defined in Section 2
and can be interpreted directly as a between group statistic. This is not true for the general case. It
can be shown that this property holds only for the so called ^-collapsible models characterized by the
generating class consisting of two elements, one of which does not contain q. The homogeneity model of a
two-dimensional table is both 1- and 2-collapsible; for a three-dimensional table, models characterized by
generating classes {12,23}, {13,23} and {1,23} are 1-collapsible models. Because the G%{M) statistic
for the optimal categorization of a variable should be interpretable in terms of inhomogeneity of factor
levels, the grouping of the categories of the random variable A^ should be used only for ̂ -collapsible
models.

For some models, the value of Gli,{M) is the same for any partition of categories of A,, which makes
the search for optimal partition meaningless. It can be shown that this happens if the model is q-
decomposable, that is, if all elements of its generating class contain q (example; model {12,13} of a
three-dimensional table).

As far as the graphical representation of data is concerned, for the case of a multidimensional table,
we can obtain a graph which represents combinations of the categories in the simplex spanned by the
categories of the random variable. If a graph is made in the triangular coordinate system, corresponding
to the optimal partition of the categories of the random variable, its interpretation depends on the model
for which optimal grouping was found.
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8. Procedure

Note: The Genstat procedure presented below works only for two-dimensional tables. It draws a picture of
factor categories in the triangular coordinate system corresponding to given categorization of the random
variable. The procedure does not look for the optimal categorization (relevant Fortran 77 procedures are
available from the author on request).

PROCEDURE 'DTRIA'

OPTION NAME='TITLE \ 'DIST'; MODE=t,v; DEFAULT=' ',0.02
PARAMETER NAME='OBJ','CAT','DATA','GROUPS','MINIMA','GTOT','GBET'; MODE=p

"The procedure analyses contingency table generated by two veoriables,
one of which is a random variable and the other is of factor type.
It draws the picture of the points representing factor categories
in a triangular coordinate system corresponding to given categorization
of the random variable.

Options:
TITLE : string; the title of the graph (default=4<),
DIST : number; the smallest distance between a point in the graph
and its edge (default=0.02),

Input parameters:
OBJ : scales-; the number of factor categories,
CAT : scalar; the number of categories of random variable,
DATA : variate; data from the OBJzCAT contingency table
(row after row),
GROUPS : variate; gives the new categorization (group numbers).

Output parameters:
MINIMA : vauriate; minimal values for axes obtained,
GTOT : scaleu:; the value of G2 statistic for original categorization,
GBET : scaleu:; the value of G2 statistic for given categorization"

"Prepaure factors classifying the table"
CALCULATE n=OBJ»CAT

FACTOR CNVALUES=n; LEVELS=OBJ] a
a CNVALUES=n; LEVELS=CAT] b
GENERATE a,b

"Fit the model for the original, categorization"
MODEL CDISTRIBUTION=poisson] DATA
FIT CPRINT=*] a+b
RKEEP DATA; DEVIANCE=GTOT

"Convert the data to a table"

TABULATE CCLASS=b,a] DATA; TOTALS=tablica

"Calculate the table corresponding to the new categorization"
CALCULATE fa=0BJ#3

FACTOR CNVALUES=fa; LEVELS=3] bb
ft CLEVELS=OBJ] aa
GENERATE bb
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COMBINE COLDSTRUCTURE=tablica; NEWSTRUCTURE=tab] \
OLDDIHENSIGN^b; NEVDIHENSION=bb; \
OLDPOSITIGNS=!(!,.,CAT); NEWPGSITIGNS=GRGUPS

VARIATE CNVALUES=GBJ] y [1] ,y [2] ,y [3]
EQUATE GLO=tab; NEU=y

"Fit the model for the nev categorization"
VARIATE CNVALUES=fa3 yy
EQUATE GLD=y; NEW=yy
GENERATE bb,aa
MODEL CDISTRIBUTIGN=poisson] yy
FIT CPRINT=*] aa+bb
RKEEP yy; DEVIANCE=GBET

"Convert the data to proportions"
CALCULATE ysum=y[l]+yC2]+yC3]
FOR 1=1 2 3

CALCULATE y[i]=y[i]/ysum
ENDFOR

"Find the part of the full simplex containing data points"
SCALAR h

CALCULATE h=l

FOR i=1.2,3
CALCULATE ss=min(yCi])-DIST
IF ss<0.0

CALCULATE ss=0.0

ENDIF

CALCULATE h=h-ss

CALCULATE MINIMA$[i]=ss
ENDFOR

"Calculate points coordinates in the rectangular system"
FOR 1=1 2

CALCULATE y[i]=(y Ci]-MINIMA$[i] )/h
ENDFOR

CALCULATE y[2]=1.1547*(y[2]+y[1]/2)

"Set the points for vertices of the triangle"
VARIATE CNVALUES=4] xtr; VALUES=!(0,1.155,0.577,0)
VARIATE [NVALUES=4] ytr; VALUES=!(0,0,1,0)

"Generate the numbers of points"
FACTOR CNVALUES=0BJ; LEVELS=OBJ] num
GENERATE num

"Generate the description of the vertices"
TEXT CNVALUES=3] des; VALUES=!t(I,II,III)
VARIATE [NVALUES=3] xdes; VALUES^!(0.572,1.18,-0.05)
VARIATE CNVALUES=3] ydes; VALUES=!(1.05,-0.05,-0.05)

"Generate the description of the axes"
TEXT [NVALUES=4] minval; VALUES=!T('min I','min II','min III',' ')
VARIATE [NVALUES=4] xxmin; VALUES=!(0.54,0.155,0.88,0)
VARIATE [NVALUES=4] yymin; VALUES=!(-0.05,0.5,0.5,0)

"Set the graph parameters"
PEN 1,2,3,4; C0L0UR=1,1,1,1; LINE=1,0,0,0; METHOD=line,point,point,point;\

JOIN=given; SYMB0LS=0,num,des,minval
FRAME 1; 0; 1; 0; 1
AXES 1; YL0WER=-0.10; YUPPER=1.3; XL0WER=-0.10; XUPPER=1.3; STYLE=none

"Draw the picture"
DGRAPH CTITLE=TITLE; WIND0W=1; KEYWIND0W=0] ytr,y[l],ydes,yymin;\

xtr,y[2],xdes,xxmin; PEN=1,2,3,4

ENDPROCEDURE
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9. Appendix

The maiii program

"An example program using the procedure DTRIA"

SCALAR na,nb,dist,gtot,gbet,phi
VARIATE CNVALUES=3] minima
READ na.nb.dist
12 4 0.03:

VARIATE [NVALUES=nb] groups
READ groups
1 2 3 3:

CALCULATE npod=na*nb
VARIATE CNVALUES=npod] x
READ X

39 42 7 15 38 1 1 3 3 4 9 4 2 22 6 6

12 1 1 4 19 12 5 3 19 19 13 8 22 13 2 2

12 9 10 13 9 IS 7 10 13 24 6 10 12 3 4 1:

DTRIA CTITLE=' DIST=dist] OBJ=na; CAT=nb; DATA=x; GRDUPS=groups;\
MINIHA=minima; GTOT=gtot; GBET=gbet

FACTOR CNVALUES=nb; LEVELS=nb] categ
TEXT CNVALUES=3] des; VALUES=!t(I,II,III)
GENERATE categ
PRINT 'Original categories and their grouping :'
PRINT CIPRINT=*] categ,groups
PRINT 'Minimal values for auces :'

PRINT CIPRINT=*] des,minima
PRINT 'G2 statistic values :'

PRINT ClPRINT=*] 'Original categorization
PRINT [IPRINT=*] 'New categorization
CALCULATE phi=(gbet/gtot)4tlOO
PRINT [IPRINT=*] 'Information preserved
DECIHALS=2

',gtot; FIELD=26,7; DECIHALS=3
',gbet; FIELD=26,7; DECIHALS=3

',phi, FIELD=26,7,2; \

STOP

Edited output (text output only, see Figure 3 for graphics output)

Original categories and their grouping

1.000

2.000

3.000

3.000

Minimal values for aLxes

I  0.02556

II 0.00000

III 0.06302

G2 statistic values :

OriginaLL categorization
New categorization
Information preserved

148.947

135.879

91.23 */.
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Handling Hierarchical Data
B M Church

Statistics Department
AFRC Institute of Arable Crops Research
Rothamsted Experimental Station
HARPENDEN

Herts AL5 2JQ

1. Introduction

Data from sample surveys or other observational data are often hierarchical. For example, information
may be available about household characteristics for a sample of households (level 1) with additional
information about each individual in the household (level 2). It may be convenient or compact to store
these data in separate computer-files linked only by common reference numbers. Thus, the first file would
contain one record for each unit at level 1 (that is, only one record for each reference number) while the
second file would contain a variable number of records, from 0 upwards, having the same reference number
as a record at level 1. Usually both files are in reference-number order but this is not assumed. Frequently
one needs to process information from both levels together, and this may be achieved in two ways:

1. Required information from the top level, level 1, may be 'pushed down' to level 2. This means that
information from each record at level 1, is replicated once for each record with the same reference
number, at level 2.

2. Summary information from level 2 may be 'pushed up' to level 1.

In either case, the key is to define a factor with levels corresponding to values of the reference number.

2. Notation

The top level of hierarchy is referred to as level 1 and the lower as level 2; data files corresponding to
these levels are referred to below as il and i2. The data are assumed to be in backing-store files, which
is sensible for large data sets, as only the required variates are accessed. The procedures outlined below
however, are equally applicable to character files.

Variates recorded, or in use at levels 1 and 2 are xlQ and x2Q. Reference numbers refl, ref2 may
be read or constructed from xlD, x2[] respectively; they are referred to below as if read explicitly by
name. Variates xlD, or functions of these variates, are referred to as v2n when pushed down to level
2; similarly summaries of x2D are referred to as vlD when pushed up to level 1.

3. Pushing Down

The following instructions push down selected variates xlC] from level 1 for direct use in analysis (tab
ulation etc) with variates at level 2, or to be stored as v2D on a secondary file or subfile for subsequent
use.

RETRIEVE CCHANNEL=il] refl.xlC]
SORT ClNDEX=roll; GROUP=refl; LEVELS=reflev]
RETRIEVE [CHANHEL=i2] ref2,x2n
FACTOR [NVALUES=ref2; HODIFY=yes] reff
CALCULATE reff = ref2

& v2n = NEWLEVELSCreff; xlQ)

Values of v2[] are set missing (and warning VA3 given) for values of ref2 which do not occur in refl.
These instructions are appropriate only if values from level 1 are not needed for combined analysis when
there are no corresponding data at level 2; this is usually so: see below.
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4. Pushing Up

The first five lines of code remain as above and are followed by:

TABULATE CCLASS=refl] x2C]; NOBS=tc[]; MEANS=tniC]; TOTALS=ttC]

where counts, means and totals may be needed for different subsets of x2 □.
VARIATE vl[] ; tc[] ,tmC] ,ttC]

where there is one vl [] for each tc□, trnD, tt □. Then xl □ and vl □ may be used directly for analysis
(tabulation etc), or written to a secondary fi le for subsequent use.

This procedure produces zeros for counts and missing values for means in the vl[] for reference numbers
which occur only at level 1. Data corresponding to reference numbers occurring only at level* 2 are treated
as invalid and are omitted.

One may sometimes need to push up several variates corresponding to one variate x2 [i]. For example,
if crop type and area are recorded for individual fields at level 2, one may wish to push up total areas on
the farm under each crop type (e.g. for farm-type characterisation). This is achieved by

TABULATE CCLASS=reff,cropf] area; TOTALS=tt
VARIATE CNVALUES=reflev] vlC]
EQUATE OLD=tt; HEW=vl

where cropf is a factor for crop and there is one vlD for each level of cropf.

5. Mismatched Data

For most purposes, even when there is not a good match between levels 1 and 2, the above procedures
suffice if primary data files are retained for analyses requiring data at only one level. However, sometimes
— for example, when levels 1 and 2 comprise similar variables recorded on two occasions rather than a
genuine hierarchy — it may be desirable to retain unmatched data in a secondary file. As an example,
channels il and i2 might both contain reference numbers and descriptive data (region, cropping pattern,
and so on) for soil-sampled fields, with analytical determinations for the soil samples at laboratories A and
B respectively. In a comparison between laboratories, most information would be from matched samples
but some might be recovered from fields for which determinations were made in only one laboratory.
A suitable secondary file may be constructed as follows:

RETRIEVE CCHANNEL=il] rell,xlC]
RETRIEVE CCHAHNEL=i2] ref2,x2D
VARIATE ref; VALUES=!(#ref1,#ref2)
SORT ClNDEX=ref; GROUP=relf; LEVELS=rellev]

FACTOR CHVALUES=refl; LEVELS^reflev] reff
CALCULATE reff = refl
TABULATE [CLASS=reff] xlU; HEANS=tin
VARIATE vl □ ; VALUES=tl □
DELETE CREDEFINE=yes3 reff.tlQ

FACTOR [NVALUES=ref2; LEVELS=reflev] reff
CALCULATE reff = ref2
TABULATE CCLASS=reff] x2D; HEANS=t2a
VARIATE v2n; VALUES=t2C]
DELETE CREDEFIHE=yes] reff,t2a

STORE CCHANNEL=i3] vlD,v2[]

6. More Complex Hierarchical and Other Datasets

These may be tackled by writing your own Fortran subroutine OWNTAB (see Genstat 5 Release 2
Reference Manual Supplement, Section 5.4.4).
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Constructing a System within Genstat
J A Nelder

Department of Mathematics
Imperial College
180 Queen's Gate
LONDON

United Kingdom SW7 2BZ

1. Introduction

This note describes the properties of a system I have built in Genstat; it is called the K system and it
has been constructed to provide an environment for doing intensive interactive work with GLMs. Full
details for running the system are given in a NAG Technical Report, and this should be consulted by
anyone wanting to use the system. This note concentrates on some of the general ideas behind it and
how they were implemented.

My over-riding aim in developing the K system has been to reduce the amount of typing by the user.
The less typing required, the less chance of making mistakes and the more quickly one can work. I have
been an intensive user of GLIM, and it has some features that are valuable for my particular mode of
working. The first, and most important, is that system vectors such as %fv for the fitted values are set
automatically after a fit; thus no RKEEP instructions need follow a FIT. This saves a lot of typing, and
avoids having to make up names for the identifiers required by RKEEP.

The second feature is the reduction in the amount of output. If you are trying many models during an
exploratory phase then the deviance and d.f., plus the change from the previous fit, when relevant, are
usually all that are needed. When a model looks promising, then one needs estimates of parameters, a
listing of residuals, the variance-covariance matrix, etc. With minimal output the screen can hold details
of the fits of several models without any need to scroll back; reduction of typing again.

Both GLIM 3.77 macros and Genstat procedures have parameters; in GLIM these are always of the
form %1, %2..., while in Genstat they are identifiers with capital letters. However, a major difference
between a GLIM 3.77 macro and a Genstat procedure is that in the GLIM macro all the other identifiers
are global, whereas in a Genstat procedure they are all local. Both conventions have advantages and
disadvantages. Having global identifiers means that system vectors like %fv are automatically available
and do not have to be passed as parameters; conversely there is a danger that when several macros appear
in a GLIM program they may accidently use the same identifiers to mean different things. Having local
identifiers means that what goes on in a procedure is completely insulated from the outside world, so
that cross-contamination becomes impossible; however, this also means that all external information has
to be passed in via parameter lists, and parameter lists can take a lot of typing. Fortunately, this last
statement turns out not to be entirely true in Genstat; there is a way of defining and using what are
equivalent to COMMON blocks in Fortran, and with these we can define sets of global identifiers for sets
of procedures.

2. The Hidden-option Trick

Suppose we want the identifiers a, b, and c to become common to a set of procedures. We first define a
pointer p, say, whose values are a, b, and c. This pointer must be defined outside any procedure, so that
it continues to exist on exit from any procedure that requires it. In any procedure that needs p, we define
a hidden option P, coming after any that we may need to provide for the user, and set its default value
to p. Thus suppose that procedure PROC also has an 'open' option 0, known to the user. Its definition
would begin

PROCEDURE 'PRQC

OPTION '0','P'; DEFAULT= *.p

(This definition assumes no default for 0.) Within the procedure the identifier b, for example, may be
referred to as P[2], but it makes writing the procedure much easier if the body of the procedure begins
with a statement of the form

DUMMY a.b.c; VALUE=Pn
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Now a, b, and c can be referred to by their 'real' names.

One of the 'common blocks' in the K system is called glmmdl, and it holds items required to define a
GLM. The definition, which is held in a file called kinit, has the following form:

POINTER glmmdl; VALUES=!pCXerr,*/*lizi,*/.exp,%sca,%pv,*/*os,*/,yv ,Xbd,*/.ter,*/jiu,*/*dpv,*/.dos, \
yvid,bdid,OS id,pwid)

FORMULA '/.ter
POINTER yvid,bdid,osid,p«id
SCALAR %exp, '/.s ca, y«nu
TEXT y,err,'/.lin
VARIATE y,pw, %os, '/.yv, '/.bd, '/.dpw, '/.dos

Many of the names will be familiar to GLIM users. The pointers are used for internal housekeeping, while
yter is used to hold the maximal model as defined in TERMS, something that is not required in GLIM.
The two identifiers y,dpw and y,dos are not GLIM names; they have been invented to hold the default
values of the prior weight and offset variates, respectively 1 and 0. Note also that Xerr and yiin are here
of type text, rather than coded integers as in GLIM. Any procedure wishing to make use of the elements
of glmmdl must include in its option statement the setting

OPTION 'GLMMDL'; DEFAULT=glinindl

and, if the names of the elements are to be used, a DUMMY statement of the type illustrated above.

Other 'common blocks' in the K system are (1) glmrk, which holds the elements relevant to a GLM that
can be saved in RKEEP; (2) mcproc, which holds structures relevant to model-checking, for example the
Cook's statistics, and (3) glmown, which holds the components required to define an OWN model in the
GLIM style.

3. Defaults for Options and Parameters

Typing can be reduced when options and parameters in a procedure call are commonly the same. For
example, in the model-checking procedure called npl_, which produces Normal plots, the full specification
is

npl_C<type>] <variatel>; <variate2>

where type is h or f (for half- or full-Normal plots), variatel is the variate to be plotted, and variate2
is a weight vector whose zeros indicate units to be excluded. I use overwhelmingly the setting h for the
option, the deviance residual (available in '/.res in glmrk) for the first parameter, and the prior weight
(available in Xpw) for the second parameter. With these default settings, and provision of the necessary
common blocks, the call

npl.Ch] y.res; '/.pw

becomes

npl.

and the number of characters typed falls from 15 to 4. The provision of intelligently chosen defaults is, I
believe, a vital part of a good interactive system. Note that the presence of the common blocks is a vital
part of this provision.
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4. Reducing Output

Output is reduced in the K system in two ways. In the first, a parallel procedure is set up to a Genstat
command, the standard output being suppressed, and replaced by the abbreviated form. Thus corre
sponding to FIT we have klit; kf it suppresses the output from FIT and replaces it by the GLIM form,
involving just the deviance and d.f., with changes from the last fit, if appropriate. However, kfit does
more than this, because it also calls RKEEP to save the structures accessible in the pointer glmrk. The two
most important options in FIT — CONSTANT, which defines the treatment of the intercept, and FACTORIAL,
which controls the maximum order of terms to be fitted in a factorial linear predictor — can be passed
through kfit. They have the same default values as in Genstat. If further options are required it is eaisy
to amend the code accordingly. The procedures kadd, kdrop, and kswit replace ADD, DROP, and SWITCH
respectively.

The second way of reducing output is to change the options in a Genstat directive appropriately. A
good example is PRINT, which for my purposes produces too much blank space and has a default setting
of values in parallel, when values printed serially are much more compact. The K procedure kpr deals
with this by printing values serially, suppressing the identifier names, omitting blank lines, and using an
orientation across the page. In this way the command

PRINT CSERIAL=yes; IPRINT=#; SQUASH=yes; ORIENTATION=across] a,b,c

becomes

kpr a,b,c

Similarly I find that when using DELETE I always want the option REDEFINE set to yes, rather than to its
default value of no. The K procedure kdel does this.

5. An Example

The K system has sets of procedures for defining models, for fitting them, for inspecting the output,
and for checking the consistency of the fit, together with a few general procedures like kdel described
above. It is entirely written in Genstat. The file kmake contains commands for constructing a procedure
backing-store file, while ksu sets up the system subsequently (and much more rapidly). The following
example will give an idea of the syntax. It shows the input only and is commented for purposes of
explanation.

"set up artificial data set "

kdel y,x,xx,a,n " redefine variables in case alresuiy in use "
VARIATE CVALUES=1... 50] x
CALCULATE y=10+0.01*x*x+URAND(23;50) & xx=SQRT(x)
FACTOR[LEVELS=2; VALUES=:25(1,2)] a

" use some of the GLH procedures in the K system "

kun 50 " set number of units and initialise "
yvar y " define response vairiable "
kterm a^Cx+xx) " define maocimal model "
kfit x+xx " fit x+xx with minimal printing, saving output via rkeep "
kadd a " add factor a to linear predictor, etc. "
kdrop X " drop term x, etc. "
kswit a,x " switch a ft x, etc. "
CALCULATE w=(y>10)
wei w " set up prior weight omitting units with y<=10 "
kadd " re-fit model with same linear predictor "
err p " change error from (default) Normal to Poisson "
kadd " re-fit model with same linear predictor "
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"use some of the model-checking procedures "

sumc " set up for model-checking procedures "
drp_ " plot dev. res id. v. function of fitted values
npl_ " half-Normal plot of dev. residuals "
npl_Cf] " full Normal plot of dev. residuals "
CALCULATE x2=x*x

avp_ x2 " make added-variable plot for x2 "
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