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Editorial

This issue of the newsletter sees a change in editors: Sue Welham from Rothamsted and Anna Kane from NAG
are taking over from Peter Lane and Geoff Morgan. We would like to thank Peter and Geofr for all their hard
work over the past few years.

There are several Genstat meetings now being planned. There will be an open residential Genstat Introductory
Course based on Release 3 held in Cambridge during July 4-6th. As usual, the course will include a large
proportion of practical work and is given by Genstat developers. This will be followed by a one-day Workshop
on Time Series Analysis in Genstat on July 7th with Dr Granville Tunnicliffe-Wilson fijom Lancaster University
as the main lecturer. Further details of these courses are available from NAG. Later in the year, during 28-30th
November, a statistical conference for Genstat users will be held in Wagga Wagga (New South Wales, Australia)
around the themes REML/GLMMs, generalized additive models and repeated measures / spatial analysis. A wide
range of invited speakers will be present and contributed papers will ̂ so be included in the program: abstracts
should be submitted by 31st August. A flyer for the conference is included in this issue of die newsletter, and
abstracts should be sent to Ross Cunningham, Department of Statistics, ANU, GPO Box 4, Canberra City ACT
2601, Australia (Fax +61 6 249 8007; AARNet: Ross.Cunningham@anu.edu.au). Details have also been posted
to the Genstat discussion list.

This issue of the newsletter contains the second helping of 'Genstat Talk', a summary of some of the subjects
discussed by those users who have tuned in to the Genstat discussion list. Details of how to subscribe to the
ever-growing list are given once again.

Also present in this issue are some of the papers arising from the Eighth International Genstat Conference held
last July at the University of Kent at Canterbury, which was attended by about 70 participants mainly from the
UK, but with a substantial contingent from the Netherlands and individuals from Denmark, Australia and Africa.
The issue begins in earnest, however, with a detailed article describing the new facilities of the eagerly awaited
Genstat 5 Release 3, which is now available fix>m NAG.

Then follow several articles on Genstat's GLM capabilities. The first discusses the properties of some GLMM
estimators for a simple binomial model based on a simulation study. Several of these estimators are directly
available in Genstat by using the guim procedure. The second article illustrates how the Genstat GLM facilities
can be exploited to estimate the parameters of a finite mixture model, whilst the third describes how the GLM
approach can be adopted to fit growth-curve models.

Next comes an article dealing with a topic not often discussed: the use of Genstat in statistical process control.
Here, a Genstat Taguchi analysis is illustrated together with a brief description of the method and underlying
principles.

The final three articles deal with a variety of subjects. The first introduces a procedure to assess the performance
of models with independent data, whilst the second describes the application of Genstat anova to the analysis
of Yoiiden rectangles. The third article arises fix>m the Australasian Genstat Conference in Roturua, and describes
how to construct a useful interface between Genstat and the Gnu Emacs editor.

From now on, the procedures appearing in this and future Genstat newsletters are available in electronic form
in the NAG bulletin board, which is run under the Gopher server. Connection details are:

Gopher: Name=NAG Gopher Server
Type=l
Port=70

Path=l/

Host=www.nag.co.uk

Mosaic: ht^//www.nag.co.uk:70/
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Genstat Talk

Extracts from the Genstat electronic discussion list, May to November 1993, summarized and edited by
Peter Lane, Rothamsted. To join the discussion, send the message:
SUBSCRIBE Genstat firat-name last-name

to the ad^ess: lzstservgib.rl.ac.uk
The opinions expressed here are not necessarily endorsed by either NAG or Rothamsted, and statements
may not have been checked for accuracy. However, members of the Genstat development team and of
NAG's Statistics Section are contributors to the discussion.

Mixtures of distributions

Query: Does anyone have a Genstat procedure for
estimadng the parameters of a mixture of two
Normal distributions?

Reply: See the article Finite mixture distributions
by Whitaker in Genstat Newsletter 28.

Genstat under DOS 6
Query: Does the MS-DOS version of Genstat run
under MS-DOS version 6? The Installer's note

says it needs versions later than 3.3.
Repfy: Genstat 5 Release 2.2 works fine under
MS-DOS 6 using QEMM386.1 haven't tried using
the new version of BMM386 that comes with

DOS 6, but QEMM386 has always been a better
and more reliable memory manager that EMM386.

Unbalanced ANOVA
Query: I'm trying to analyse a large designed
experiment with nested treatments. This is usually
easy with the block and anova directives, but
one factor is unbalanced. I have tried fit, but it

gives diagnostic RE 16. There are 3889
paramet£a:s, so theJSSPM needs 7564105 values
but is room for only 9172552. Is this
problem just too large?
Reply 1:1 suggest using rehl, but I don't know
how die space requirements compare to fit.
Reply 2: I would be amazed if anyone could
understand or interpret an analysis with 3889
paramet^l My tack with such a problem would
be to break it into smaller parts.
Addendum: There is an error in the diagnostic
reporting of the trial version of Release 3 that
generated the message: the calculations of space
available is wrong.

DBOS 2.70

Query: Is there a version of DBOS (the PC
memory manager supplied with Genstat) that is
more reliable -than Version 2.67? I have

encountered several anomalies running Genstat
under Windows, particularly in conjunction with
the Pathworks local area network software,

Microsoft's own memory managers, and
SMARTDRV. I have tried adding the Shift
Interrupts switch to DBOS, but it still does not
yield a reliable and predictable environment.
Reply: My experience with DBOS is that the
Shift Interrupts switch works only when DBOS is
directly handling extended memory. If QEMM386,
HIMEM or EMM386 are loaded, tiien DBOS calls
for memory from them. DBOS uses interrupt 5,
which often conflicts with other hardware: BUS

mice or VGA cards.

Rejoinder: Since my initial query, I have received
DBOS 2.70 fix)m NAG, and virtually all of the
DBOS reliability problems we were having have
vanished. I would recommend anyone else having
DBOS problems to get this version from NAG.

DialM croisses

Query: In Newsletter 10, Robin Thompson
described how to analyse diallel . crosses with
Genstat 4.03. Has anyonetranslated to Genstat 5?
Reply 1: A procedure has been submitted to the
Library to analyse full and half diallels, though
not by Robin Thompson's method. It does not
deal yet with Giifting or with incomplete tables.
Reply 2: An article is being prepared for this
Newsletter about diallel crosses. I have a

translation of Robin Thompson's method into
Genstat 5, and some code implementing Grifiing's
Method 4, model 1.
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Covariates in REML

Query: I have a covariate in the fixed terms of a
REML model. If I subtract a constant from the

covariate, the means given for the factors are
affected. Is this a sensible thing to happen?
Reply: beml presents means for level 0 of the
covariate. If you want another level, say the mean
of the covariate, or some reference value, you
have to subtract it from the covariate.

Demonstrating Genstat
Query: I want to demonstrate some features of
Genstat using a PC. For speed, I want Genstat to
read pre-prepared commands, echo them and
process them on screen, pausing at strategic
points. ZNPUT does most of this but it isn't easy to
get it to pause in the right places.
Reply 1: One possibility is the GNU emacs
interface for Genstat It gives you multiple
windows, even on a terminal or PC without
Microsoft Windows, so you can step through
commands in one window and see the output in
another. Emacs is freely available by FTP.
Reply 2: The usual way we have done this in the
past is to intersperse the pre-prepared statements
with INPUT statements, trying to ensure that not
too much output is generated from one input to
the next. This can sometimes be achieved by
suppressing default ou^ut and using the
*DISPIAY directives. The statement

SET [PAUSEsn]

can be used to break up long sections. With the
PC implementation you can always scroll through
the ou^ut window which has a 1000-line memory.

Ticks and labels

Query: What is the neatest way of suppressing
tick marks and labels on high-res graphs? I have
a vague recollection that labels can be suppressed
by specifying them as strings of space characters,
but there must be a better way than that
Reply: In Release 2 there is no neat solution. But
in Release 3, additional parameters empos, elpos,
YHPOS and ylbos in the axes directive give
explicit control over tick marks and labels. Setting
EHPOSo*, for example, will suppress tick marks
on the x-axis. Other settings allow marics to be
centred, above or below the axis.

Extracting values from a vector
Query: I have a simple-sounding problem which
is giving me no end of hassles. I have a vector of
parameters (Beta) and I wish to extract its
individual elements into variables (bl andbl, say)
for use in a calculation. How can I do it?

Reply: You can use equate:
SCALAR bl,b2

EQUATE OLDsBeta; NEWsIp(bl,b2)

or calculate:

CALC bl,b2 B Beta$[l,2]

This latter method may mean you don't need to
extract the values at all, but can use the expression
on the right directly in other calculations. But in
Release 2 you need to remember tiiat Bata$ [1]
is treated as a variate with one value rather than a

scalar, which can cause problems in calculations
with variates of a difrerent length.

ANOVA with unequal variances
Query: How can I perform an ANOVA on data
with slightly different variances? Bartlett's test
gives a value between the 90th and 95th percentile
of chi-squared. The best solution so far is a
weighted sum of squares approach, suggested by
Snedecor (1962); is there anything more recent?
Reply 1: In most circumstances where ! have seen
this phenomenon, the data are strictly positive,
thus implying a possible relationship between the
means and variances. If this is true for your
problem, you could consider a models assuming a
constant coefficient of variation (see McCullagh
and Nelder, 1989).
Reply 2: Relying on a frequentist p-value can't
be the right thing to do as this depends on the size
of the data set With large data sets one will find
'significant' but unimportant differences. If
cellwise variances differ by more than about four
to five fold there is cause for concern. A formal

ANOVA should be used only aft^ one has looked
at the data graphically.
Further discussion: This publem stimulated a
general discussion on Genstat's capability for user
computations, exploratory analysis and graphics.
If you are interested, send tiie message
SEND Genstat log9307

to LiSTSERVEiB.RL.AC.UK. This facility allows
previous discussions to be retrieved, in monthly
collections (here, for July 1993).



Genstat Newsletter 30

Zero-inflated Poisson models

Query: We are interested in modelling count data
with excess zero values. Has anyone developed a
procedure for this?
Reply 1:1 have used a general ML fitting process
for this, though not in Genstat. There is a useful
paper which provides good starting estimates:
Kemp and Kemp (1988) Statistician 37,243-255.
Reply 2: I have implemented Lambert's EM
algorithm for these models in Genstat We plan to
submit it to the Newsletter, but can make it

available to anyone interested.
Further discussion: The originator let out that the
model was to be used to model the occurrence of

Leadbeater's Possum, an endangered species;
whereupon the discussion degenerated, with
reference to Possum distributions and the relative

numbers of people/sheep/possums in New
Zealand! But it was established that other names

for this model are ZIP regression, and
Poisson-with-added-zeros.

Pointer labels

Query: I am having trouble getting access to the
labels of a pointer. The getattributb ̂rective
does not provide this information when I set the
AT^ntZBUTB option to labels.
Reply: There is a bug in gbtattribdtb in
Release 2: some of the attributes of pointers
cannot be accessed. This has been fixed in Release

3.1, but in Release 2 you can get the information
using smsp.

Repeated measures ANOVA
Query: How can I do a simple, single test to
establish whether thme is any interaction in a
repeated measure ANOVA? The aktordbr and
ANTTBST procedures seem to be concerned with
main effects rather than interactions.

Reply: We have written a procedure for analysing
repeated measures data in the manner of Chapter
5 of Diggle (1990) Time series: a biostatistical
introduction. It has the facility for doing most of
what Diggle suggests, when each unit is sampled
at all the same times and there are no missing
values. It allows one treatment factor and no

higher blocking strata. We can make it available,
but there is no library-style documentation yet.

Randomization

Query: I am using RANixmiZB to get several
randomizations of a lattice design. What is the
best way to update the seed each time?
Reply 1: I usually just add 1 to the seed each
time and this seems to generate independent
randomizations. I did once write some code to

randomize the seed at each pass of a loop:
VARZATB [VALXJESb10(0...9)] sb
RAEaX>HZZE [SEEDal2345] Sb
FOR [NTZHESbiIOOO]
CALC seed o 8b$[l]*10000+\
sb$[2]*1000+8b$[3]*100+\
8b$[4]*10+8b$[5]

RANDOMIZE [SEEDaseed] 8b
EMDFOR

Reply 2:1 have used:
SCALAR [VALUEa579462] seed
CALC seed = URANDfseed)
& seed B lNT(seed*1000000)+l
FOR •••

CALC seed » URAND(O)
& seed B INT(seed*1000000)+l
RAMDOMIZB ISEEDaseed] ...

EMDFOR

Reply 3: I faced this issue recently, where I
wanted the same design at a number of sites, so I
just nested the design within the sites, as follows:

RANDOM [BLOCKaslte/year/ \
(ro«r*eol) /subplot; SEEDb389] \
3rear, season, cut

where year is a block factor, season is
randomized into a Latin square in the row*ool
stratum, and out is a subplot treatment.

Teaching t-tests
Query: I am preparing a course that will teach
basic stats using Genstat, going as far as some
simple ANOVA. I want to cover the Mest to
introduce p-values. Die problem is that the ttest
procedure operates with the two samples in
different variates and anova operates with all data
in one variate. Has anyone any suggestions?
Reply 1: You could modify the code of ttest to
accept a single variate and a factbr.
Reply 2: We have just run our first Introductory
Stats course at Rothamsted, and based it entirely
on the Menu System - customized for the
occasion. In particular the Test Menu will take
data either fix>m two variates or from one variate

and a factor. It will go out with Release 3.
Reply 3: The ttest procedure has been modified
for Release 3 to do precisely what is required.
Details are available if anyone wants to apply the
changes for Release 2.
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A summary of new facUities in Genstat 5 Release 3

Roger Payne
AFRC lACR Rothamsted Experimental Station
Harpenden, Herts AL5 2JQ, UK

This article is based on the information given by procedure notice. Full details of Release 3 can be found in
the new Genstat 5 Release 3 Reference Manual (Payne et al 1993) published by Oxford University Press.

1. New facilities

Release 3 is a major upgrade with many important extensions.

The regression section now caters for generalized additive models. These allow variates to be fitted whose
contributions cannot be modelled by any specific function but need to be fitted by non-parametric shapes, such
as splines. This is achieved by using a function of the variate in the formulae in fit, add, terms etc, instead
of the variate itself. For example

FIT SSPLINE(X; 4)

will fit a smooth spline with approximately 4 degrees of freedom for the efiiect of x. Ordered categorical data
can also now be analysed, by specifying a list of y-variates in model (one for each category) and setting options
DiSTRiBUTiONBiiniltinoiBlal and YRELATlONBCunalative. Polynomial and other contrasts can be fitted
using the reo and pol functions as in anova. Finally, among more minor changes, predict now requires very
much less workspace to form means and standard errors, and the print option has thus been changed to show
standard errors by default

In analysis of variance, Genstat now automatically combines information on treatment terms that are estimated
in more than one stratum. These can be printed by setting option print of anova or adisplay to cbmaano
or obe££eet8 for combined means and combined efiects respectively. The akeep directive has also been
updated to allow all this information to be saved within Genstat. Sums of squares for covariates are split to show
the contribution of each individual covariate in turn, and rigorous checks are now made for partial aliasing in
orthogonal designs, which will increase the protection against incorrectly specified models.

The multivariate directives will now define their output structures by default, if necessary, to be structures of
the appropriate shape and type, and there is more flexibility in the input structures that are allowed.

The REHL facilities have been extended to allow testing of fixed effects, either by Wald tests (by setting option
TRXNTowaldtests in REML) or ity the more accurate likelihood tests (by-setting option submodel and
PRiNTadevlanee in REML). It is now possible to estimate negative variance components (coNSTRAiNTSBnozte
in VCOMPONENTS) or to impose linear constraints on the components (by the new option relationship in
VCOMPONENTS). Fixed correlations can also be specified between the levels of a random factor, and directive
VKEEP can now save variance-covariance matrices of fixed effects.

New statistical facilities include the estimation of parameters of statistical distributions, and many new probability
and distribution functions for use, e.g., in calculate.

In the more general areas. Release 3 should produce clearer fault messages. The key combination control-c
can be pressed to interrupt long analyses or long streams of output, with the opportunity then to continue or to
abandon the statement concerned. The character # can be used in option settings to indicate the default setting:

RDISPLAY [PRINTS#,£ltted]

sets the print option to model, suimnazy,estimates, £itted (where the first three comprise the default).
Range checks can be requested for data structures using the new parameters minihium and maximum of
variate, matrix etc, and the new directive duplicate allows new structures to be defined with attributes
identical to those of existing structures.
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The facilities for high-resolution graphics have been extended to include three-dimensional histograms (new
directive dshzstograh). Tables of data supplied to dhzstograh can now specify bars with non-integral and
negative heights, and the lines around the bars are now drawn after the shading takes place to avoid the blurring
of bar boundaries that could previously occur when plotting interactively. Greater control is allowed over the
form and labelling of axes, and more windows, pens and colours are provided. The fbahb directive now allows
the background colour of the graphical windows to be specified for most interactive colour devices and for
PostScript output, and the pen directive has been extended to cater for user-defined symbols and to allow labels
to be printed ̂ ongside the plotting symbols. A new directive ddispzay allows the current graphical display to
be redrawn on most interactive devices, and the new directive dkeep together with the new parameter save of
AXES, FRAME and PEN allow details of the current graphics environment to be saved.

There have been many improvements to read. More informative prompts are produced when reading
interactively, and it is easier to recover after data errors. If the length of any vector (factor, text or variate) has
not already been defined before attempting to read its values, this will now be set automatically by read; to
the default length specified by an earlier dnzts directive if available, otherwise to the same length as any
vectors of known length that are being read in parallel or, failing that, according to the number of units present
in the data. The new option setlevels allows factors to be defined automatically, and sununaries are now
produced for factors, texts and scalars as well as for variates. Factor labels and other strings need now be placed
within quotes only if they contain separators. Tabs can be used to separate data values except when reading in
fixed format.

The printing of tables has been simplified, print has new options down, across and wafer to replace ndown,
iNTERiiBAVE and PERMUTE. The CLOSE directive has a new parameter delete to allow the deletion of
temporary files, and it can also now close texts. The new enquire directive allows information to be obtained
about the files open on each channel; this will be particularly useful for writers of procedures.

In data manipulation, the new groups directive takes over the formation of factors from sort, which now caters
for multiple indexes, groups is very much more flexible in the definition of levels and labels, and also allows
existing variates and texts to be redefined as factors. The combine directive now allows slices of tables to be
placed into tables of smaller dimensions. Again intended for procedure writers, fclassification allows the
full list of factors in a formula to be obtained (new option classification) and, with new option
METBODapreserva, the ASSIGN directive will assign values only to the dummies that are not already set.

Also for procedure writers, the execute directive allows the contents of a text to be executed (as a list of
Genstat commands) at the time that the procedure is used. A new option restore of the procedure directive
itself allows various aspects of the Genstat environment to be restored automatically, and setting the new option
PARAMETERSapointers will cause all the settings of each parameter to be available at once within the
procedure, in a pointer rather than a dummy. A new option list of the option directive controls whether each
option is to expect a single setting or a list (which would then be put into a pointer). The default LiSTano
should cover most existing situations, but putting LiSTayes will greatly simplify the handling of options that
expect a list of one or more identifiers; it will also need to be set for options tiiat expected a list of strings, and
this is one directive where there may be incompatibilities with Release 2. However, problems that are
encountered when writing a procedure may now be found more quickly; by putting debug [FAULTayes]
Genstat can be requested to break when it hits the next fault.

Again for the advanced user, new directives setoption and setparameter allow the default values of options
and parameters of either directives or procedures to be modified; these will be especially useful in start-up files.

With all these changes, there will inevitably be some incompatibilities with existing Genstat programs, as new
facilities cause a reassessment of the Release 2 syntax, and the opportunity is taken to smooth out contradictions
that have come to light in the Release 2 syntax. However, most programs should continue to run exactly as in
Release 2, and where there is an incompatibility it will produce a fault rather than incorrect results! Details of
the incompatibilities are listed at the end of this section, advice on changes that may need to be made to general
programs and procedures are in Section 2.4, and full details of the new syntax can be obtained using the Genstat
HELP directive.
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1.1 New Directives in Release 3

DDZSPLAY

DISTRIBUTION

DKEBP

DUPLICATE

D3HIST0GRAH

ENQUIRE

EXECUTE

GROUPS

SETOPTION

SETPARAMETER

redraws the current graphical display
estimates the parameters of continuous and discrete distributions
saves information from the last plot on a particular device
forms new data structures with attributes taken from an existing structure
produces 3-dimensional histograms
provides details about files opened by Genstat
executes the statements contained within a text

forms a factor (or grouping variable) from a variate or text, together with the set of
distinct values that occur

sets or modifies defaults of options of Genstat directives or procedures
sets or modifies defaults of parameters of Genstat directives or procedures

1.2 Incompatibilities with Release 2

ADISPLAY

ANOVA

AXES

DEVICE

DCONTOUR, DGRAPH,

FITNONLINEAR

FSIHILARITY

FOR

GET

HLIST

HSUNHARIZE

OPTION

PRINT

READ

RELATE

RFUNCTICRff

SORT

VDISPLAY

option SE renamed pse; parameters residuals and fittedvalues removed
(these are now saved by akeep)
option SE renamed pse
options YiNTEGER and xinteger deleted
setting ENDACTiONBUttchanged removed (in all directives concerned with setting
the graphics environment, options of parameters that are not set remain as before)

DHISTOGRAH and DPIE

the default for the pen parameter will now use pens 1, 2, etc for the successive
graphs
CALCULATION optiou caunot now be set to a pointer, but must be set to a list of
expressions
TEST parameter now has strings as its setdngs
option COMPILE removed
option FAULT now saves the textual form of the code (e.g., 'AN 1')
TEST parameter now has strings as its settings
TEST parameter now has strings as its settings
new parameter list to control whether or not each option expects a list of settings;
the default of no covers most situations, but list will need to be set to yes for

example for print options that allow more than one setting.
options ACROSS, down and wafer replace permute, interleave and ndown
settings both and neither of the justified option are deleted (replaced by
putting JUSTlFlEDaieft, right and JUSTIFIED^*, respectively)
TEST parameter now has strings as its settings __
CALCULATKEi option cannot now be set to a pointer, but must be set to a list of
expressions
options moups, LIMITS, NGROUPS, LEVELS and LABELS removed (the definition
of factors from variates and texts is taken over by the new directive groups)
option CHAWNKTi inserted before pterhs

There have also been minor changes in the ordering of options or parameters within the following directives,
but these will cause no problems provided options and parameters beyond the first two are named: akeep,
ANOVA, AXES, ESTIMATE, FCLASSIFICATION, MODEL, OPEN, PEN, PRINT, PROCEDURE, REML,

RKEEP, SET, VKEEP. These arise mainly from the addition of new options/parameters; full details are
obtainable using Genstat help directive.

The new ancva facilities for combination of information on effects estimated in more than one stratum have

required changes to the design structures. As a result, design structures that have been saved by backing store
from Release 2 cannot be reused in the I^SIGN option of anova in Release 3. However, the design can still
be recovered using the fact that the design structure is a pointer in which element 10 stores the block formula,
and element 11 stores the treatment formula. The only aspect that is not stored is the setting of factorial used
in the original anova, but this should be easy to obtain from the earlier output. For example, assuming that
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FACTORIAL was not set when the design structure R2des was formed, to form a new Release 3 design

structure called RSdes requires

BLOCKSTRUCTURE #R2des[10]
TREATHENTSTRUCTURE #R2des[ll]
ANOVA [DESIGNsRSdes]

Sums of squares in analyses of covariance may differ from those in previous releases. As Preece (1980) has
pointed out, the usual method of adjusting the sums of squares of a treatment term for covariates may involve
adjusting the term also for higher-order terms to which it is marginal. Release 3 contains a new algorithm which
avoids this deficiency.

2. Changes to the Procedure Library

Release 3[1] of the procedure library contains 22 new procedures.

2.1 New procedures in Library version 3[1]

AGALPHA

AGCYCLIC

AGDESIGN

AGFRACTION

AGHIERARCBICAL

BOXPLOT

CHISQUARE

DESIGN

IXIST

DREPHEAS

FACAHEND

FDESICaiFILE

FILEREAD

GRANDOH

PCOPROC

PPAIR

PREWHITEN

PTDESCRIBE

RJOINT

RUNTEST

VORTHPOL

XOCACTGORIES

forms alpha designs by standard generators for up to 100 treatments
generates cyclic designs from standard generators
generates generally balanced designs
generates fractional factorial designs
generates orthogonal hierarchical designs
draws box-and-whisker diagrams or schematic plots
calculates chi-square statistics for one- and two-way tables
helps to select and generate effective experimental designs
gives a high resolution plot of an ordination with minumum spanning tree
plots profiles and differences of profiles for repeated measures data
permutes the levels and labels of a factor
forms a backing-store file of information for agdesign
reads data from a file, assumed to be in a rectangular array
generates pseudo-random numbers from probability distributions
performs a multiple Procrustes analysis
displays results of f-tests for pairwise differences in compact diagrams
filters a time series before spectral analysis
gives summary and second order statistics for a point process
does modified joint regression analysis for variety-by-environment data
performs a test of randonmess of a sequence of observations
calculates orthogonal polynomial time-contrasts for repeated measures
-performs analyses-of categorical <iata from (^ossovot trials

2.2 Obsolete Procedures

However, 18 of the earlier procedures are now obsolete, either because of the changes within Genstat 5 Release
3 itself, or because they have been superseded by other procedures in the Library:

BINOiCEAL

GRBETA

GRCHZ

GRF

GRGAHHA

GRLOGNORHAL

GRNORKRL

cntT

GRNEIBULL

INVNORHTkL

LtXaiOBHaL

calculates probabilities from the binomial distribution
generates pseudo-random numbers from a beta distribution
generates pseudo-random numbers from the chi-squared distribution
generates pseudo-random numbers from the F distribution
generates pseudo-random numbers from the gamma distribution
generates pseudo-random numbers from the log-Normal distribution
generates pseudo-random numbers from the Normal distribution
generates pseudo-random numbers from Student's r-distribution
generates pseudo-random numbers from the Weibull distribution
calculates probabilities from the inverse Normal distribution
calculates probabilities from the lognormal distribution

10
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HftNCOVA. performs a multivariate analysis of covariance
NPCHECK checks the validity of input data for nonparametric procedures
0RDINALL06ISTIC fits McCullagh's ordinal logistic regression model
POZSSON calculates probabilities from the Poisson distribution
STUDENT calculates probabilities from Student's r-distribution
VWALD prints Wald tests for fixed terms in a REML analysis
NHZSKER produces box-and-whisker diagrams

These will remain available, in the obsolete module of Release 3[1] of the Library, but will be deleted after
that.

2.3 Changes in Syntax of Procedures

There are also various changes in the syntax of some of the existing procedures, to retain compatibility with the
syntax of directives in Release 3 and to improve ease of use. It will no longer be necessary to form pointers to
use the non-parametric procedures.

The two-sample procedures kolnoo2, hannwhztnet, szgntbst and also ttbst now have parameters yi and
Y2 which can be used to specify the samples in two separate variates; alternatively you can put all the data in
a single variate (specified by Yl) and then identify the members of the samples by a factor, specified by the new
6ROT7PS option. CONCORD, KRUSKAL and SPEARMAN are also modified to expect a list of variates from the data
parameter, or just one variate and the groups option to be set to a factor to define the samples; the test statistics
and associated details are now saved by options.

Procedures alzas, antorder, anttest, hanova and repheas also now expect lists instead of pointers, and
SUBSET now allows only lists.

The setting hlghquality is renamed hlghresolution in procedures BJESTZHATE, BJFORECAST,
DDENmooRAH, SMOOTHSPECTOUH and VPLOT, and option SE is renamed pse in nlcontrast (as in ancva
and adzsplay).

Extensions include the ability to transform axes in dbarchart, and further links and distributions in glmh

As in previous releases, details of the syntax of all the Library procedures can be obtained from within Genstat
using procedure lzbbelp, as explained on page 239 of the Genstat 5 Release 3 Reference Manual. Writers of
procedures for the Library are reminded that Instructions for Authors were published in Genstat Newsletter 20.
They also can be obtained from the Secretary of the Genstat Procedure Library Editorial Committee (c/o
Statistics Department, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, United Kingdom).

2.4 Conversion changes to existing procedures

When converting procedures to Release 3, the directives that are most likely to require changes are (in order):
OPTZON, sort, fztnonlznear, exzt, adzsplay, anova and the clustering directives fszhzlarzty, hlzst,
BSUHHARZZE and RELATE.

The LZST parameter of optzon must be set to yes for any option of mode t that allows more than one
setting.

The use of the sort directive to define factors from texts is taken over by the new directive groups. The
IMETHOD option of GROUPS gives very much more flexibility in the formation of levels and labels than existed
in SORT. If options labels and levels were not set in the original sort statement, groups requires
lhetbodb* so that no vectors of levels or labels are formed; any existing settings for the factor are then
retained. Otherwise, the default iMETHODsxaedlan will form levels/labels from group medians regardless of
whether any named structures are supplied to store them by the levels and labels parameters of groups.
Other settings of uhethod allow them to be formed from minima, maxima or from the structures supplied by
LEVELS/LABELS. The Other difference is that, following experience with sort, limits by default are taken to
supply lower boundary values; upper values require option BOUNDARZESsuppar. Also, the redefzne option

11
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allows a text or variate to be redefined as a factor.

Some simple examples:

SORT [INDEXbI; GROtTPSsf] -*> ORGUPS [USETHODb*] 1; FACTORaf
SORT [ZMDEXal; GROUPSb£; LBVELSav] -> GROUPS i; FACTORaf; LEVELSbv

(if £ and v are needed later)

SORT [TNPFiX=if GROUPSaf; NGROUPSan] -> GROUPS [LHETHODs*; NGROUPSan] i; \
FACTORa£

SORT [INDEXsi; GROUPSa£; LIMITSsl] -> GROUPS [LESETHODa*; BOUNDARIESaupper]\
1; FACTORaf; LIHZTSal

If several calculations are to be specified for the expression option of fitnonlinear, the relevant expression
structures need no longer be placed into a pointer, but must be given as a list.

The FAULT option of get now supplies the fault code as a string rather than as a number, thus allowing greater
legibility of programs and the ability to add new diagnostics without the need to renumber. So, for example,

GET [FAULTaDlag]
EXIT [REPBATayes] Diag .EQ. 224

would become

GET [FAULToDiag]
EXIT [REPEATByes] Diag .EQS. 'SP 4'

in Release 3, where Diag is now a single-valued text.

Residuals and fitted values are no longer saved by adzsplay, as was the case (illogically) in Release 2, but by
options RESIDUALS and fittedvalues of akeep. The SE option of anova and adzsplay has been renamed
PSE to avoid the confusion arising from the use of SB to save standard errors in predict.

In the clustering directives fsimilarity, hlist, hsuhhrrize and relate the test parameter now expects
(more meaningful) strings rather than the integer codes that are used in Release 2.

2.5 Improvements in Release 3 to Increase the Efficiency of Procedures

The new parameter option of procedure allows a procedure to process the complete list of settings of the
parameters in one call, which can greatly improve efficiency. You might also want to use the new restore
option to save having to get and then set environment or special structures that need to be reset at the end
of the procedure.

Also useful is the new method option of assign. Genstat if blocks of the form

IF UNSET (RESIDUALS)
ASSIGN Resids; RESIDUALS

ENDIF

can be replaced by

ASSIGN [METHODBpresezve] Resids; RESIDUALS
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Comparisons of some GLMM estimators for a simple binomial model

D Waddington', S J Welham^, A R Gilmour^ and R Thompson^

' AFRC Roslin Institute (Edinburgh), Roslin, Midlothian, EH25 9PS, UK
^ AFRC lACR, Rothamsted Experimental Station, Harpenden, Herts, AL5 2JQ, UK
^ NSW Agriculture, Agricultural Research Institute, Orange, NSV/, Australia

Summary

Several methods have been proposed recently for obtaining estimates of parameters of Generalized Linear Mixed
Models (GLMMs). Within these methods, estimation of fixed effects are either calculated conditional on random
terms in the linear predictor (Schall 1991, Engel and Keen 1993), or by excluding the random terms from the
linear predictor, as in the marginal models of Gilmour et al (1985) and Breslow and Clayton (1993). The
performance of these models in estimating parameters for a one-way random effects model for binomial data
has been examined by simulation. Biases in the estimates of variance components are investigated further for
two of the methods.

1. Introduction

Two of the four models may be fitted routinely in Genstat using the procedure Guoi (Welham 1993). Model
specification and output of results are similar to the vcomp, rehl and vdisp commands. The fitting algorithm
for the GLMM models is analogous to that for generalized linear models. For data y with mean p, the mean
is related to the linear predictor by the link function g

5(p) =11 = Xp + Zm

where p represents the fixed effects and u is a vector of random effects var(«)=G, a function of the unknown
variance components o?,of,.... A working dependent variate

z  = Xp+Z«+D(p)(y-p); i)(p) = (dg^
d\i

= diag { g'(p,), ̂ '(Mj)... }

is created by linearising the link function applied to the data about their mean values. The working vaiiate has
three components: fixed effects, random effects and an 'error term* which depends on the distribution of y, and
on the link function through Dip). The first and third terms are those of a working variate for a standard
generalized linear model. The second and third terms give

var(z) = ZGZ^ + DVD

where V is the variance of y, conditional on the random effects u, and DVD is a diagonal matrix. Thus the
working variate is described by a linear mixed model with fixed effects p, random effects u and weights
W = (DVDy\ Given an estimate of p, the standard mixed model equations can be used to estimate P and u:

Z^WX Z^WZ+Q-^

The Genstat REML algorithm will solve these equations and produce estimates of the variance components in
G. It has been found that restricting the REML algorithm to two iterations to provide an approximate solution,
rather than allowing it to converge, does not affect the speed of convergence of the GIAIM algorithm and saves
computing time. Given new estimates of P and u, further estimates of p are formed and used to update the
worldng variate and weights (as in generalized linear models), and the estimation is repeated until convergence.
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The method of Schall uses an estimate of the conditional mean of y given that is

p = g-'(x^*za).

This method has been proposed by several authors previously, for example Gianola and Foulley (1983). It
corresponds to the 'subject specific model* of Zeger et al (1988), and is the default for the Genstat glhh
procedure. The model may also be derived as an approximation to the likelihood, assuming the random effects
u to be normally distributed (Breslow and Clayton 1993).

The algorithm for the marginal model of Breslow and Clayton is identical except for the estimation of the mean
as p = This model may be considered as an approximation to that of Schall when the are small, and
is the 'population-averaged* model of Zeger et al (1988). It is fitted by the glum procedure using the option
FHETHODsfixed.

A modification to the Schall model has been proposed by Engel and Keen (1993). They point out that the
weights W are functions of the random effects u, and suggest that the variance of z is more correctly obtained
by integrating out the u terms to obtain EJVT'). The weights EJVT^) then take different forms for combinations
of error distributions, links and random models. Estimation is then by quasi-likelihood, which is equivalent to
the iterative procedure outline above, but with a modified weight.

The method of Gilmour et al (1985), initially proposed for binomial data only, also takes a quasi-likelihood
approach. They obtain the mean and an approximation to the variance of the observations y by taking
expectations over u of the first two derivatives of the log-likelihood of y conditional on u. The mean is therefore
the marginal mean, and the variance of the working variate z has the same contribution from the random terms
u as all the other models. The difference from the marginal model of Breslow and Clayton lies in the
expectation of the conditional binomial variances V, which are used to form the iterative weights W
corresponding to the error term in z. The random effects on the scale of z induce a covariance between the
binary elements of an observation y^, leading to a reduction in the conditional variance of y^. This will be
elaborated in Sections 3 and 5.

2. Simulation details

Data were simulated from a one-way random effects model in which 512 individuals with binary observations
(e.g. affected/not affected) were grouped into families of size iV = 2, 4, 8 or 16. Using the logit link function,
if the probability of an individual being affected is 6 (0 = 0.05, 0.1, 0.2, 0.35 or 0.5) then the equivalent
threshold on the logistic scale is Tl = log(0/(l-0)). This threshold is then modified by adding the random effect
of family k, Ut~N(0, o^) to-give Ti« = log(0/(l-0)) + for the ̂th individual in the k&i family. This addition of
extra noise changes the average probability of an individual being affected to approximately
exp(T|u)/(l + exp(Ti;[,)). Five different variances were used, corresponding to a wide range of intrar-class
correlations p:

= 0 0.4 1 4 16

p  = 0 0.11 0.23 0.44 0.83

where
P =

and 7^/3 is the variance of the logistic distribution corresponding to the link function.

There were 100 runs of each of the one hundred parameter combinations. Only the briefest details of the results
can be given here, but the overall conclusions are sufficiently clear. For the method of Schall, the Genstat
GLMM procedure was abbreviated to fit only the one-way random effects model, for family sizes of 4, 8 and
16. Problems of run time and storage space forced a different approach for families of size 2. Sufficient
statistics for fitting the model are the numbers of families with either 0, 1 or 2 members affected, and the EM
approach given in Schall*s paper was programmed to use such data. This approach was also used for all
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simulations fitted by the method of Engel and Keen.

For the method of Bresiow and Clayton, the estimate of 9 is simply the observed proportion affected from the
512 individuals. For this model, the estimate of &■ is obtained from a one-way ANOVA on the binary data from
the approximation

£(Between family mean square) = + A/ ^8 &

= (^ + w

where is the within family variance component. For the method of Bresiow and Clayton the estimated within
family variance of a binary observation is ^ = 9(1-9), giving

^ _ Between family mean square - 9(1-6)
w§'(i-9)^

Similarly for the method of Gilmour et aU the estimate of the mean is the same, and that of the variance is

N-\

because the estimate of is JCo,/2 = 9(l -9) - 6^(l -9)V (see Section 4.3 for details). All negative estimates
of 6^ were reset to 10"'.

3. Results

3.1. Means

Tables la-c are for illustration of the following descriptions.

The mean values of 9 for the two marginal models for family size = 16 are given in Table la. All are within
5% of the approximation

9 - logit" n

(1+0.350^

given by Williams (1988), irrespective of family size. The four tables generated by the marginal models for
different family sizes 2, 4, 8 or 16 differ from each other by less than 0.001. The dramatic attenuation of
estimates generated from low values of 0 towards 0.5 (zero on the logit scale) caused by large variance
components can be seen. It is worth restating that these are the means of the observed proportions affected.
This is the effect of adding considerable symmetric noise on the scale of the working variate, which is then
transformed asymmetrically by the function logif' onto the observed binomial scale. These means are
appropriate for predicting population responses.

The estimates of 6 from the method of Engel and Keen were very similar to the marginal estimates of
Gilmour/Breslow for smaller family sizes. For = 16 and a > 4 they were slightly less attenuated (Table lb).
Similarly for the Schall estimates, the larger the family size the closer 9 was to 0. For Af = 2 they were similar
to the Engel estimates with N - 16, and mean values for W = 16 are given in Table Ic. There is still some
attenuation as increases. Zeger et at (1988) suggest that 9 might be interpreted as the probability for a
'typical' family.
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Table 1. Means of Q from 100 simulations, for some combinations of methods and parameters

Table la. Gilmour/Breslow

Af= 16

.05 .1 .2 .5

0.4 .06 .12 .22 .5

1.0 .07 .13 .24 .49

4.0 .13 .20 .30 .5

16.0 .25 .31 .38 .49

Table lb. Engel
Ar= 16

.05 .1 .2 .5

0.4 .06 .11 .21 .5

1.0 .07 .12 .22 .49

4.0 .11 .17 .26 .5

16.0 .21 .27 .35 .49

Table Ic. Schall

N= 16

.05 .1 .2 .5

0.4 .06 .11 .21 .5

1.0 .06 .12 .21 .49

4.0 .08 .13 .23 .51

16.0 .13 .19 .28 .49

The mean of the estimated variances of 1\, var(f|), for the 100 simulations for each parameter combination was
compared with the observed variance of the estimates of r\. No pattern in their ratios across the parameters was
discemable, so their distributions over the 100 parameter combinations are given in Table 2. They were not
calculated for Gilmour's method. On average, the estimates of the variance of fj are quite acceptable.
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Table 2. Distribution, across 100 parameter combinations, of the ratio of the mean of var Ti to the observed

variance of for 100 simulations for each parameter combination, where T| = log(0/(l-0)).

Min Lower

Quartile

Mean Upper
Quartile

Max

Breslow .72 .93 1.01 1.07 1.54

Engel .56 .94 1.03 1.11 1.65

Schall .58 .90 1.00 1.09 1.54

3.2 Variances

For a family size of two almost all methods underestimate the variances for all underlying proportions 0
(Table 3). The exceptions are the method of Gilmour for low values of both and 0, and that of Bieslow for
0 = 0.05 and = 0.4. Although mean estimates of variance increase with for these parameter combinations,
all methods severely underestimate the highest value of = 16.

Table 3. Ratios of the mean estimate of over 100 simulations to the true values for all four methods and
for some parameter combinations. Family size N = 2.

Gilmour Breslow Engel Schall

0 = 0.05

0.4 2.4 1.2 0.2 0.7

1 1.5 0.7 0.2 0.5

4 0.7 0.3 0.1 0.3

16 0.2 0.1 0.1 0.1

B = 0.5

0.4 0.9 0.4 0.3 0.5

1 0.7 0.4 0.2 0.4

4 0.4 0.2 0.1 0.3

16 0.2 0.1 0.1 0.1

When the family size is large (A^ = 16) the estimates of Breslow and Gilmour converge (Table 4). There are
similar, though less extreme, patterns for underestimation of for 0 = 0.05 as were seen for families of size
2. The estimates from Engel's method are generally improved. When the underlying proportion 0 increases to
0.5 all methods give similar average estimates for (f = 0.4, and those from EngeFs method are similar to the
two marginal models for all four underlying variances. All three perform poorly in estimating large variances.
The performance of Schall's method is notably improved for large as family size increases, although the
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underestimation is still considerable. The method of Gilmour is the only one which gives similar estimates for
both family sizes when ^ 4, and also for smaller values of when 0 = 0.5.
There were no negative estimates of when the true value was 4 or 16, for any of the methods. But for
combinations of small and 6 there were considerable numbers of negative estimates of o^, particularly for the
method of Schall, for all family sizes (Table 5). In contrast, larger family sizes resulted in fewer negative
estimates for the other three methods. The constraining of negative estimates to the value 10"' may be
responsible for the overestimation of in Gilmour's method.

Table 4. Ratios of the mean estimate of & over 100 simulations to the true value for all methods and for
some parameter combinations. Family size = 16.

Gilmour Breslow Engel Schall

0 = 0.05

0.4 1.1 1.0 0.5 0.6

1 1.0 0.9 0.5 0.7

&
4 0.6 0.6 0.4 0.6

16 0.2 0.2 0.2 0.5

0 = 0.5

0.4 1.0 0.9 0.9 1.0

1 0.7 0.6 0.7 0.9

4 0.4 0.4 0.5 0.8

16 0.2 0.2 0.2 0.5

Table 5. Numbers of negative estimates of from 100 simulations for all four methods and for some
parameter combinations.

Gilmour Breslow Engel SchaU

N = 2 0 = 0.05 0.4 37 37 42 37

1.0 15 15 15 15

0 = 0.5 0.4 7 7 8 10

1.0 0 0 0 0

N = 16 0 = 0.05 0.4 19 19 18 54

1.0 1 1 1 11

0 = 0.5 0.4 0 0 0 0

1.0 0 0 0 0
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4. Additional Observations

4.1 Relationships of individual simulation estimates

All methods used the same random samples generated for each particular combination of parameters. The
estimates for individual simulated data sets may therefore be compared. Scatter plots for parameter values N
= 16, 0 = 0.2 and = 4 and 16 are shown as examples. Figure 1 compares the estimates of Engel and Breslow.
The estimates for both thresholds r\ and variances for Engel's method are approximately linear functions of
the Breslow estimates. Slopes for both parameters are close to 1, confirming that the smoothing of the iterative
weights in the method of Engel and Keen, by integrating out the random term, has produced model estimates
similar to the marginal ones for these parameter combinations. Figure 2 compares the estimates of Schall and
Breslow. The linearity between estimates is still apparent, but the slopes change more markedly with different
combinations of parameters. These linear relationships hold for almost all of the 100 combinations of parameters
used in the simulations.

Figure 1. Scatter plots of Engel estimates versus Breslow estimates for = 16, 0 = 0.2,
= 4 (*) and 16 (o). Top graph: Estimates of T|. Bottom graph: Estimates of o^.
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Figure 2. Scatter plots of Schall estimates versus Breslow estimates for ̂  = 16, 0 = 0.2,
= 4 (*) and 16 (o). Top graph: Estimates of T|. Bottom graph: Estimates of o^.
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4.2 Schall estimates of variance

The expected probability of observing r affected individuals from a family of size N may be readily calculated,
using NAG Fortran routines for numerical integration, as

\  r N eXp(-MV20^) .= i1ob(«=r) = J ^ P 9"-'
\  /

where r = O..JV and ̂  = 1-p. The probability p in the integral is conditional, i.e. p = exp(T]+tt)/(l+exp(Ti+M)).
To examine the asymptotic behaviour with numbers of families of the Schall estimates, the probabilities were
multiplied by lO® and rounded. These frequency distributions for R, of 10® families of either size 2 or 16, were
then used as input to the Schall estimation routine. The estimated variances are similar to those obtained from
simulation, particularly for higher values of and 0. Table 6 illustrates this for a family size of 16.
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Table 6. Mean estimates of for Schall's method from simulations (c^) and asymptotic estimates for 10^
families with the expected frequency distribution of affected numbers (a),

for two values of 0 and family size N = 16.

0= 0.05 0= 0.5

A

a 6^

0.4 0.32 0.24 0.36 0.41

1.0 0.73 0.67 0.86 0.85

4.0 2.43 2.41 3.00 3.11

16.0 6.88 7.18 7.92 7.89

For family size N = 2 there is considerable downward bias in the simulated estimates of for all values of 0
(Table 3) and the percentage bias increases with o^. The asymptotic behaviour is similar. When N= 16 the
pattern is more complex (Figure 3). For 0 near 0.5 and small values of (0.2) the (negative) bias is less than
10%, and as increases the bias increased only slowly. As 0 becomes smaller the bias starts to increase more
rapidly, and when both 0 and are small more rapidly still.

Figure 3. Percentage bias (negative) of Schall variance estimates for a range of values of 0 (= p) and
(= sigma^) for JV = 16 in steps of 5% (level 1,2,3... = 5,10,15... % bias). Values calculated from the

expected frequency distribution of numbers affected per family of lO' families.

% bias of variance estimates

E
2.0-

0,15 0.20 0^5 0.30 0.35 0.40 0.46 0.50 0.55 0.60

p or logit ^(threshold)
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4.3 Gilmour estimates of variance

The following argument applies to families of any size. Consider two individuals /, and /j in a family. The
probability that they are both affected is where p is the marginal estimate of 0. Similarly for the other
combinations of one or both unaffected. The random effect for family on the logistic scale induces a covariance
between members of a family which modifies these probabilities by an amount A, say. So we have:

I,

Ii

^f^+A p^-A

pp-L 92+A

The limits on A are 0, for = 0, and p^, for -> «>, when the probability of the two individuals being
affected becomes p.

Now, A «

previously.

r jci V / \2
,  o® = \pp) and we can evaluate the probability of /i = 0, /2 = 1 as 71,2/2, given

dx\jd'P

Then we have K =pp - and = (pp - %yP.y(pP[Y>

Table 7. Mean estimates of for Gilmour's method from simulations (^) for N - 16, and estimates from
the covariance between 2 members of a family for two values of 0.

0 =0.05 0 =0.5

6^ 6" C c

0.4 0.42 0.42 0.34 0.38

1.0 1.12 1.00 0.69 0.69

4.0 2.69 2.55 1.58 1.64

16.0 3.26 3.41 2.54 2.60

These estimates agree well with those from the simulations with N = 16, for example (Table 7). They show the
same overestimation for small values of both 0 and o^, and varying levels of underestimation as 0 and
increase. Also, there is no bias in estimating the variance as 0. This is illustrated in Figure 4, which also
shows that as increases the range of 0 values within which 6^ is within ± 5% of becomes increasingly
small. For most combinations of 0 and the bias in 6^ is negative, but for very small values of 0 the method
will overestimate quite large variances.
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Figure 4. Percentage bias of Gilmour variance estimates for a range of values of 0(= p) and
(= sigma^) in steps of 10% (level 1,2... = -40,-30,-20,-10,-5,5,15,30,50 % bias).

Values are calculated from the A approximation given in the text

% bias of variance estimates

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

p or logit '(threshold)

5. Conclusions

• ■ For most-parameter combinations the methods give linearly related estimates.
• The estimates of the mean values from the method of Keen and Engel are similar to marginal estimates,

particularly for small family sizes and small values of o^. The marginal estimates correspond to the observed
means.

• The average estimated variances of the threshold values are correct However, this design has only one fixed
effect parameter in the model. This means that there is essentially only one variance and one covariance to
estimate. Models with several fixed effects may give poorer estimates of the variances of threshold values.

• The conditional mean models underestimate for all parameter combinations. The bias of estimates of
g^=0.4 is fairly small for all methods when family size is large and 0 close to 0.5, but increases for larger
values of G^. When 0 is small Gilmour/Breslow, unusually, overestimate cP, more severely for small family
sizes. This may be a result of constraining 6^ to be positive.
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Maxunum likelihood in a finite mixture model by exploiting the GLM
facilities of Genstat

Ritsert C Jansen

Centre for Plant Breeding and Reproduction Research (CPRO-DLO)
PO Box 16, 6700 AA Wageningen
The Netherlands

1. Introduction

In this paper a general and flexible Genstat procedure for estimating the parameters of mixture models is
described. The use of the procedure will be illustrated by means of a genetic example. In this example a
quantitative trait is considered, which is controlled by a single, diallelic gene. It is assumed that the frequencies
of the three possible (but unobserved) genotypes AA, Aa and aa conform to Hardy-Weinberg equilibrium; the
genotype follows a multinomial distribution and the frequencies of the genotypes AA, Aa and aa will then be

2pq and respectively, where p and ̂  = 1-p are the frequencies of the two alleles A and a in the population.
Furthermore, it is assumed that the quantitative trait is normally distributed MMaa *^) genotype AA,
N(\ip^ for genotype Aa, and N(\i^,<f) for genotype aa. Finally, it is assumed that Maa< Maa that the effects
of the alleles are additive (no dominance), so that PAa^C^AA't'lO^^' probability density function for the
quantitative trait y is

f(}') = pV(y;HAA»<^) * 2p5/(y;-^^^i!!l,o=) -h 5V(y;p„,o=)
where/(•; p,G^) is the probability density function of the Normal distribution with mean p and variance

2. Algorithm

Suppose that an individual's trait has been observed and that its value is equal to y. Its genotype cannot be
observed, but it is either AA, Aa or aa. Thus the complete data would be either (y,AA), (y,Aa) or (y,aa). An
individual with a small value of y is likely to have genotype aa. This might be expressed by assigning prior
weights of, for instance, 0.1 to (y,AA), 0.3 to (y,Aa) and 0.6 to (y,aa). Similarly, an individual with an
intermediate value of y is most likely to have genotype Aa and an individual with a large value of y is most
likely to have genotype AA. Again prior weights might be specified for these cases.

The basic idea of the iterative EM algorithm described by Jansen (1993) is to replace the single incomplete
observation y by its three complete observations (y,AA), (yAa) and (y,aa), weighting fiie three complete
observations by specified or updated (conditional) probabilities. Each iteration consists of two steps:

Step 1 (E-step) specify or update weights P( aa I y), P( aA I y) and P( AA I y)
Step 2 (M-step) (a) update the estimate of p by fitting a GIM for multinomial data to the weights;

(b) update estimates of p^A* Mu ^ fitting a weighted GLM for normal data.

The conditional probability P(AA | y) that an individual with observed trait y has genotype AA equals

P(AAIy) = .
f{y)

Similarly,

n/A 1 \ o /(y^(PAA+^»MV2,o2)P(Aaly) = 2pq ; P(aaly) = q^ -J1
/(y) fiy)

Conditional probabilities are calculated by using the current parameter estimates. The algorithm is conveniently
started by setting parameters equal to (well-chosen) initial values.
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The log-linear formulations for the genotype frequencies are log(p^) = 21og(p), \og(2pq) = log(2)+log(p)+log(^)
and log(^) = 21og(^). The parameterization for the GLMs for the multinomial part of the model and for the
normal part of the model are shown in Table 1. A Genstat procedure, NOSKftunx, is given in the appendix.
Also, a Genstat program for estimating the parameters of our genetic example is given.

Table 1. Coefficients of regression parameters.

Genotype Multinomial Normal

log(p) log(?) offset ^AA Maa

AA 2 0 0 1 0

Aa 1 1 log(2) ¥i Vi

aa 0 2 0 0 1

3. Discussion

In the algorithm used above, the mixture problem is converted into a complete data problem with additional
weighting. A justification of the algorithm is given by Jansen (1993). As a result, the mixture problem could be
split into two solvable non-mixture problems. These non-mixture problems can readily be solved by exploiting
the options oppsbt and weights of the GLM facilities in Genstat This makes it possible to transfer all GLM
facilities to the corresponding finite mixture equivalent. The distribution of the component counts may be either
multinomial or Poisson. The mixing distribution can be for example univariate Normal, exponential, binomial
or Poisson. In this paper a simple Genstat procedure for mixtures of Normal distributions is given. However,
a general Genstat procedure, wWch requires specification of a GLM for the mixing proportions and specification
of a GLM for the mixing distributions is a straightforward extension of nobmalsiix. Jansen (1993) presents a
practical example were a generalized linear finite mixture model of ten Weibull distributions is adopted. The
computational work was done in Genstat.

References

Jansen R C (1993) Maximum likelihood in a generalized linear finite mixture model by using the EM
algorithm. Biometrics 49 227-231.

Appendix: Genstat Program and Procedures

JOB "Genstat program"

'Example of procedure NOBUAUIIX in the genetic example above; using simulated data*

"simulate data"

VARIATE [NVALUESalOO] TRAIT
VARIATB [VALUESb2 ,0,-2 ] GENEEFFECT
CAIiCULATE TRAIT «> NED(URAND(2987;100))
SCALAR P; 0.3
CALCULATE Qal-P
CALCULATE PAA » P*P

CALCULATE PAa 2*P*Q
CALCULATE URAND » URAND(9183;100)
CALCULATE GENE b 1 + (URAND.GE.PAA) + (URAND.GE. (PAA+PAa))
CALCULATE TRAIT b TRAIT * ELEM(GENBEFFECT;GENE)

"triplicate data and construct explanatory variables"
FACTOR [LABELSBlT(AA,Aa,aa); VALUESb(1,2,3)100] QTL
FACTOR [LEVELSbIOO; VALUESb3(I...100)] OBSERVATION
VARIATE [VALUESb3(*TRAIT)] Y
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CALCniATB XN0BMAL[1] = (QTL.EQ.l) + (QTL.BQ.2)/2
CALCUIATE XNOiai2VL[2] a (QTL.EQ.3) ••• (QTL.EQ.2)/2
CALCDIATE XMDLTZNOHIAL[1] = 2*(QTL.EQ.l) (QTL.EQ.2)
CALCULATE XBfDLTZNOMI2kL[2] ° 2*(QTL.EQ.3) + (QTL.EQ.2)
CALCULATE OFFSETHDLTZNOHIAL a L0a(2 )* (QTL.EQ.2)

"initial values for parameters of the nonnal distribution: and a'"
VARIATE [VALUBSaO.5,-0.5, 2] STARTNORHAL
" initial values for P and Q"
VARIATB [VALUESaO.4,0.6] STARTHULTZNOHZAL
CALCULATE STARTHULTZNOHZAL a L00(STAR!ran7LTZN0HZAL)
NORHALHZX DATAaY; OBSERVATZONaOBSERVATZON;XNORHALaXNOBHAL; \

XHULTZNOMZALaXHULTZNOHZAL; OFFSETHULTZNOHZALaOFFSETHULTZNOMZAL; \
STARTNORHALaSTARTNORHAL; STAROHULTZNGHZALaSTAR^mULTZNOHZAL

STOP

PROCEDURE 'NORHAUIZX'

PARAMETER 'DATA' , 'OBSERVATZON' , 'XNORHAL', 'XHULTZNOHZAL', 'STARTNORMAL', \
'STARTHULTZNOMZAL' , 'OFFSEmULTZHOMZAL'

UNZT DATA

CALCULATE N,MN,NH a NVAL(DATA,XNORMAL,XHULTZNOMZAL)

VARZATE NORHALFZT,HULTFZT
MATRZX [NN;N] NORMALX
UATRZX [MH;N] MULTX
VARZATE [NN] NORHALESTZ
VARZATE [NH] HULTESTZ
VARZATE [VALa(10000)5] SAVELOGL
SCALAR VARZ

" calculate conditional probabilities from initial parameter values "
EQUACT XNORHAL; NORHALX
EQUATE XMULTZNCZMZlkL; HULTX
EQUAra STARTNORMAL; 1P(N0RMALBSTZ,VARZ)
EQUATE STARTMULTZN(»SZAL; MULTBSTZ
CALCULATE NORHALFZT a LTPROD (NORMALX; NORMALESTZ)
CALCULATE MULTFZT a EXP( LTPROD (MULTX; MULTESTZ) )
CALCULATE B a (DATA - NORHALFZT)/SQRT(VARZ)
CALCULATE F a EXP(E**2/-2)/SQRT(2*ARCC0S(-1)*VARZ)
TABULATE [CLaOBSERVATZON; WEZGHTaMULTFZT] F; TOTaFMZX
CALCULATE PCONDZTZONAL a HULTFZT*F / ELEM( 1 («FHZX) ;OBSERVATZON)

" iterations of the EM algorithm "
FOR Zb1...100

" normal part of the model "
MODEL [WEZOHTSaPCONDZTZONAL] DATA
TERMS XNORMAL[]
FZT [PRa*; CONSaOMZT] XNORMAL[]
RKEEP ESTZaNORMALESTZ; FZTaNORMALFZT
-CALCULATE VARZ a 43UM(PCONDZTZONAL* (DATA-NORMALFZT) **2)/SUM(PCONDZTZONAL)
" multinomial part of the model "
MODEL [DZSTbMULTZNCBIZAL; LZNRaLOO; OFFSBTaOFFSEmULTZNCBlZAL] PCONDZTZONAL
TERMS XMULTZNOHZAL[]
FZT [PRa*; CONSaOMZT] XMULTZN(»1ZAL[]
RKEEP ESTZaMULTESTZ; FZTaMULTFZT
■ calculate log-likelihood and vvdate conditimial prd>abilities "
CALCULATE E a (DATA - NORMALFZT)/SQRT(VARZ)
CALCULATE F a EXP(E**2/-2)/SQRT(2*ARCC0S(-1)*VARZ)
TABULATE [CLaOBSERVATZON; NBZCraTaMULTFZT] F; TOTaPUZX
CALCULATE LOGL a SUM(LOO( 1 («FMZX) ) )
PRZNT [ZPRa*;SQaY] Z,LOOL; FZELDa3,10; DECZaO,4
CALCULACT PCONDZTZONAL a MULTFZT*F / ELEM ( 1 («FMZX) ; OBSERVATZON)
CALCULATE SAVELOOL a SHZFT( SAVELOGL ;1)
EQUATE [NEHald,*)] LOOL; SAVELOGL
EXZT ABS(SAVEL0GL$[1] - SAVELOGL$ [5] ) .LT. 0.01
ENDFOR

PRZNT [ZPRa*;SQaY;SEaY;ORaAC]\
ITCESTZMATES OF REGRESSZON PARAMETERS OF NORMAL PART OF MODEL:') ,NORMALESTZ

PRZNT [ZPRa*;SQaY;SEaY] \
ITCESTZMATE OF VARIANCE PARAMETER OF NORMAL PART OF MOmL:')#VARZ

PRZNT [ZPRa* ; SQaY; SEaY; ORaAC] \
ITCESTZMATES OF REGRESSZON PARAMETERS OF MULTZNOMZAL PART OF MODEL:')«MULroSTZ

ENDPROC
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The GLM-approach for fitting a growth-curve model

A Keen

Agricultural Mathematics Group
PO Box 100, 6700 AC Wageningen
The Netherlands

1. Introduction

In Genstat Newsletter 29, Ridout (1993) explains a way to fit a growth-curve model to a set of data. His solution
is easy enough and induces no problems for a particular dataset. However, the solution is restricted to the Normal
distribution for the log transformed response variable. An alternative approach is to consider the model as a
generalized linear model (GLM) with a parameter in the link function. A specific feature of the growth-curve
model is, that the parameter of the link function is linear, so that in fact all parameters of the model are linear.
The class of GLMs is well-known and satisfactory general solutions have been developed to fit its members.
Also, GLMs belong to the more general class of generalized linear mixed models (GLMM), useful for situations
with more units, possibly allocated to different treatments and affected by covariates. This note explains the
GLM-approach, illustrating it with the example of Ridout. Special attention is given to a comparison of the
gamma distribution with the lognormal distribution.

2. The GLM-approach using IRLS

The observations of a response variable y with mean p, are supposed to be the result of the following process:

y = p + e

Var(y) = <|)V(p) (2.1)

r\ = g(p) = Xp

The variance of y is a function of p except for the Normal distribution; 6 is called the dispersion parameter.
Function g is called the link function, linking the linear model Xp to the mean p of y. X is the design matrix and
P the vector of parameters, consisting of elements Pj. A GLM can be fitted by a succession of weighted
regressions on a new dependent variate. Both the dependent variate and the weights may involve estimates of
p and, therefore, estimates of the parameters of the regression model. Asterisks will be used to indicate that
current values of the parameters are involved. This solution is commonly denoted as iteratively reweighted least
squares (IRLS). For a detailed exposition of GLMs, see McCullagh and Nelder (1989). People familiar with
GLMs and IRLS may skip the rest of this section. I will present a short review of how IRLS results from
maYimnin likelihood (ML) for a few members of the exponential family, emphasizing the consequences of
non-normality of the distribution and consequences of the (nonlinear) link function. The two extensions from
the linear regression model with normally distributed response variable are considered first, before combining
them.

Non-^omial distribution, identity link

Let the linear model be specified at the scale of y:

p = Xp

and let the log-likelihood be /, with element h for observation i. Because of mutual independence of the
observations /=£,• /,. The partial derivative of with respect to parameter py in case of Poisson, gamma (with
V(p>=^), inverse Normal (with V(p)=p3) and binomial (fistributions, can be written as

28



Genstat Newsletter 30

dl, dl, 9u, y.-u,

where is the derivative of n, with respect to i.e. is the element in row i and column j of the design
matrix X in (2.1).

y.-p.
By integrating _! L

Vi\i)

it can easily be verified that this is ML not only for the normal distribution (where V(p)=l), but also for the
binomial, Poisson (when 4>=l)i ganuna and inverse normal distributions. Equating the sum over i in (2.2) to 0
results in the normal equations of the regression with response variate y and weights

w'=— (2.3)
V(p-)

Regressors remain the columns of design matrix X. Iteration is necessary, because in each step p* and so the
weights w* are updated. This solution shows the intuitive justification for GLMs: it is just least squares, with
heterogeneity of variance corrected for by using the inverse of the variance as weights.

Normal distribution, non-dinear link

In case of other than identity link, the derivative of the log likelihood elements /, with respect to py now become

a/, ^ dj, aji, an, ̂
Wj "

Equating the sum over i of (2.4) to 0 can not be solved by regression on y with regressors Xp because Xy is not
the derivative of p, with respect to P^. A solution now is to introduce the variate

C ='n+(y-p)g'(p)

which is the linear approximation of g(y) in p. Equation (2.4) becomes

-SZHi-t, (2.5)

where g'(.) is the derivative of Tl with respect to p.

Now equating the sum over i of (2.5) to 0 is equivalent to solving the normal equations of the regression of

=n-+(y-M')«'(M-) (2-6)

on Xj, using weights

w* = ̂  L_p
TFV)F

because Xy is the derivative of Ti, with respect to P;.

So IRLS with this new response variate handles the nonlinearity due to the link function. This solution is
commonly used for GLMs. The new response variate is often called 'working variate' or 'adjusted dependent
variate'. Both names, however, are not very specific and may be used for variates in other situations, having
another meaning. A more specific indication is: 'link-adjusted dependent variate', a term I will use in the sequel.
Observe, that the link-adjusted dependent variate consists of an estimated mean at the link scale plus a deviation.
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Combining distribution and link function

If the distribution is non-normal and a nonlinear link function applies, the solution is just a combination of the
separate solutions for non-normal distributions and for nonlinear link functions. The solution then is to use the
link-adjusted dependent variate of (2.6) in combination with weights;

1
w =

3. The gamma and the lognormal distribution

The gamma distribution belongs to the GLM system if V(|i)=p2. The link-adjusted dependent variate is

q =il-+(y-M-)«V) (3.1)

and the weights w* are

1
(3.2)

The lognormal distribution satisfies the same mean-variance relationship V(p)=p2 but only belongs to the
GLM-system if looked at it as the normal distribution for ln(y). Let

£{ln(y)) = ̂ and Var{ln(y)} = x®.

Then

^  or ^ = ln(p)-T^/2.

For fixed x, the ML solution follows firom IRLS on the link-adjusted dependent variate:

where h(4) = ti = g(n) and h\^') is the partial derivative of h with respect to evaluated in ̂ *. The weights
are

w' =

f  \

1

Note that h'(^ = g'(p))i, so the link-adjusted dependent variate and the weights in terms of p* are

C; = Tl' +{ln(y)-ln(p-)-Kr2/2}p-g '(pT) (3.3)

w- = 1 (3.4)
V«'(M-)P

The term x^l2 appears because, although the derivation starts from the lognormal distribution, the mean of y is
modeled. This in contrast to Ridout (1993) who models the mean of ln(y) directly, which implies modelling the
median of the lognormal distribution rather than the mean p. Of course this can be justified just as well. This
situation is referred to as 'Normal at log scale'. If is omitted it is clear that IRLS yields the maximum
likelihood solution for the parameters of p. The same applies if X^ is known. An estimate of x^ can be obtained
from the residual mean square error in each step of the IRLS algorithm with response variate defined in (3.3)
and weights w* defined in (3.4). This is a degrees of freedom corrected estimate and therefore not a maximum
likelihood estimate. Then the estimates of the parameters of p will not be ML also, but conditional
ML-estimates, conditional on the estimate of i?-.
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Comparison of the gamma and the lognormal distribution

Comparison of (3.2) with (3.4) shows that weights are the same function of p* for both distributions. The only
difference between IRLS for the gamma distribution and IRLS for the lognormal distribution is the link-adjusted
dependent variate. Note that

ln(y) - In(p-) + J_ .1
2

•2_

f  ̂2

y-p"
(3.5)

The expectation of the last term at the right-hand side of (3.5) equals 0 if p*=p. So when is small and
are approximately equal and the two distributions lead to approximately the same solution.

4. GLM-solutions for the growth curve model with fixed K,

The growth curve model (Ridout 1993) in the notation of (2.1) is

p + ̂:,ln(p) = po + ̂,ln(po) + ̂2(r - ro) (4.1)

with Po the value of p at time r=fo- Note that the right-4iand side of the model is linear in t. The intercept is a
function of parameters and Pq. In the GLM-representation

i\ = g(p;A:,) = p + A:,ln(p). (4.2)

So this is a GLM with a link function containing an unknown parameter. Model (4.1) may be written as

r\iK,)=MKi) + K^(t-to)

where 'no(ii^i) is the value of ti (dependent on Ki) at time t = The partial derivatives in the link-adjusted
dependent variates for the gamma and lognormal distribution are

g'(p) = 1+£l and h'C^) = g'(p)p = p+^,

The IRLS-solution now is straightforward for given value The adjusted dependent variate for the gamma
distribution equals

C = tT + (y-p*) ,.£l = H- + ££(u-+*:,•)
M

and for the lognormal distribution:

C = Tl- + ln(y)-ln(p')+_ (M'+ii:,*).

The weights in both cases are w* = (p*+Jft )~^- Each weighted LS-step results in a updated value for Ti. From
the values for T| the corresponding values for p have to be calculated from equation (4.2). A solution is the
Gauss-Newton scheme, based on linearization of the right-hand side of (4.2):

T| = 'n*+(p-p') 1+.
k: (4.3a)

which results in the approximation for p:
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Tl-Tl" ■ ■ ^
= n

1+ Vm')
(4.3b)

The calculated value of |i is then taken as the new |i*, from which the new T|* is calculated. This process may
be repeated until convergence, with a suitable convergence criterion based on the difference between p and p*
or between Tl and Tj'. However, iteration may not be necessary at all, or may even be disadvantageous, as each
step of the IRLS-iteration is a one-step linear approximation, with which a one-step linear approximation for
p may agree best. The results indicate that for fixed any number of steps for calculating p from T| results in
the same convergence behaviour. So one step seems to be sufficient. When discussing the estimation of /sT,, this
point will be discussed further.

The estimates of (with standard errors) for the example of Ridout when = 1 are:

Estimate of (with standard errors)

Gamma 0.109 (0.00651)

Lognormal 0.110 (0.00702)

Normal at log scale 0.108 (0.00681)

The IRLS requires not more than four iterations until convergence.

5. Estimation of Ki

AT, can be estimated, using Gauss-Newton optimization, as described by Pregibon (1980). The solution is
obtained by a linear approximation of x\ with respect to K^'.

Ti « q- .

Because Ki is a linear parameter of r\, this approximation is perfect for given value of p. The approximate model
for T| becomes

r\ = * K^it-t^) '

This means that an extra regressor (XjfJ = -ln(p*)) has to be added to the model for ̂ *, while itself remains
unchanged. After each step the updated parameter /iT, is derived as follows:

with the estimate of the regression coefficient for Each step of the IRLS now results in a updated value
for Ki, again called and a updated value for q. From the values for Tj the corresponding values for p are
deriv^ as explained above, solving equation (4.2), using equation (4.3b). Repeating this updating now seems
to obstruct proper convergence. Fitting the model for Ridout's example with starting value 1 for results in
31 iterations when p is updated according to equation (4.2) and 8 iterations when p is updated according to the
one-step linear approximation in equation (4.3b). Furthermore, with the one-step updating, convergence is
practictdly independent of the initial value for while the iterated updating requires a good initial value for
AT, for convergence. This difference in convergence behaviour must be due to the estimation of AT,, as for fixed
AT, it seemed to be no point. An explanation is as follows The regression updates the part Ar,ln(p) of q only and
not directly p+Ar,ln(p). So the new r\ obtained is not a good approximation of the true tj in the new value of AT,
that was obtain^ in the same regression. A better approximation of this r\ is obtained by the first-order
approximation of p using (4.3b) and calculating from this p the corresponding new T| using (4.2).

The estimate of the standard error of It, is obtained from the linear approximation, as the standard error of A,^ ̂
in the final weighted regression. The resulting estimates (with standard errors) for the example are:
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Estimates (with standard errors)

K, K2

Gamma 1.77 (0.527) 0.149(0.0271)

Lognormal 1.81 (0.512) 0.151 (0.0262)

Normal at log scale 1.79 (0.506) 0.149(0.0259)

6. Testing JiTj = ii:;

A score test for the adequacy of the value for /fT, can be obtained from the linearization according to equation
(3.1). With fixed the test is a r-test with 4 degrees of freedom, derived directly by carrying out one extra
regression with extra covariate ln(fi*) added to the model after fitting the model with known The score
test is the r-test for testing value 0 for the regression coefficient of ln(^*). An alternative is the likelihood ratio
test, comparing the deviances of the restricted model with known value with the full model without
restricting K^. Assuming chisquare distributions for the deviances the test is a F-test, with 1 degree of freedom
for the numerator and 4 degrees of fieedom for the denominator. This test can also be expressed as a r-test in
case of two-sided alternative, due to the relationship between the F and t distribution. Ridout applied the
likelihood ratio test. The results of testing /ST, = 1 for Ridout's example are:

Score test Likelihood ratio test

t P t P

Gaiiuna 2.04 0.111 1.93 0.126

Lognormal 2.36 0.079 2.15 0.098

Normal at log scale 2.28 0.085 2.08 0.106

7. Final remarks

Ridout's results were exactly the same as reported above for the Normal distribution, modelling the mean at the
log scale, as should be. Note that Ridout's approach can be extended to other distributions using weights as in
equation (2.3) within FiTaoNLXNEikR and response vaiiate y, using the arguments in Section 2 about non-normal
distributions. His model must then be formulated in terms of p and not ln(]Li).

Note that an alternative IRLS solution for the Normal distribution is4)btained using Gauss-Newton's method for
estimating the parameters of a nonlinear function when applying least squares. Write

E(Py-P;)

(  \

dp =  + E A,
«V)

E AyX;

which is an approximately linear model in Py-pE) = A}. In the regression with response variate y the regressors
now are Xj = Xy/g*(n'), while p* is the offset. So not the response variate now is link-adjusted, but the regressors
are. Obviously, iteration is necessary to update Xj and p*. This approach, however, is in a GLM less adequate
than the standard approach with the link-adjust^ dependent variate. In the standard approach all nonlinearity
is summarized in two places, namely in the link-adjusted dependent variate and in the weights variate.
Everything else remains linear. This approach therefore is as close as possible to the linear model. For
understanding what is happening and keeping track on the numerical process, only those two variates have to
be considered. Also, extensions to more general situations may benefit from the similarity with the linear model.

Usually Tio ^ parameter of much interest, at least not more than q at other time points. Possibly Po
or p at o^er time points are of more interest. Estimates of p, including Po, are derived within the IRLS
procedure. Standard errors for these estimates can be obtained from the approximate linear relationship between
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)i and T| in equation (4.3b), while standard errors for T)* are obtained in the usual way for weighted linear
regression. If Po is a parameter of interest, then also an estimate and related standard error can be obtained
directly with the IRLS procedure. To see this, write the relationship between po and rio equivalent to equation
(4.3a):

Tlo ® "Ho + (l^-Mo) 1 +_L

then use the constant T|o as o^set in the regression, so that the constant in the regression then estimates (po-
p^)(l + /iTi/pJ). After each step pj is updated. At convergence the standard error of the constant estimate is the
standard error of the estimate of po.

The derivation and example show that the results for the gamma and lognormal distribution agree well. It also
hardly matters whether the model is specified for the mean at the original scale or at the log scale. The estimates
are approximately the same, whereas standard errors seem to be slightly higher for the gamma distribution. Of
course the agreement of the distributions must be close, because otherwise the basis of maximum likelihood as
a proper statistical method for practical problems would be very weak as in practice the assumed distribution
almost always is just a rough description of the true distribution. Choice of the variance function is much more
important than choice of the distribution. This is illustrated by the results for the example obtained from
assuming other variance functions V(p).

Estimates (with standard errors) Tests (r-values)

V(P) Distribution ^2 Score LR

1 Normal 1 0.119 (0.0074) 0.288 (0.872) 0.105 (0.0199) -0.42 -0.53

p Quasi-Poisson 1 0.121 (0.0073) 1.128 (0.609) 0.124 (0.0198) 0.31 0.35

Gamma 1 0.109 (0.0065) 1.772 (0.527) 0.149 (0.0271) 2.04 1.93

p' Inverse normal 1 0.099 (0.0067) 2.638 (0.746) 0.197 (0.0454) 3.21 3.49

This table shows the importance of the variance function for the conclusions about and K2. The choice of
variance function may be based on past experience, or on knowledge about the error generating process. If it
is required to obtain the choice based on the data, a possible criterion is extended quasi-likelihood (Nelder and
Pregibon 1987). Applying the method for the example with and K2 free parameters, the result is that the
gamma distribution fits best, followed by the lognormal, (quasi-)Poisson, Normal and inverse Normal.

A Genstat program to derive the estimates and tests for the distributions discussed for Ridout's example is given
in the appendix.
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Appendix

JOB 'Fitting a growth-curve with GLN'

M c|S3Bt3t3SSBBBSB888aBaOCIBaBaBBBBSS88aBaCiaCiaBasa80BSSBaaBaBBBOOOO''

" First the model is fitted with Klal
" One step with extra covariate -ln(MuO) gives score test for Kl.
" Extra steps estimate Kl.
"bbbbbbbbbbssbbbbbbbbbbbbbsbsbbbbbbbbbbbbbbbbbsbbbbbbbbbbbbbb"

YARI y ; ! (0.09, 0.76, 2.37, 5.12, 6.22, 8.37, 11.5)
V3^ t ; 1(135, 168, 188, 207, 230, 251, 274)
VARI [NVAL = y] XKI, VHu, Vy
SCAL Kl, to ; 1, 135

SCAL DifKl, SEKl
SCAL i ; 0 ; DECI ° 0
SCAL tKl, CritMu, Crit, Tau2, CondKl, Deviance, Phi, RSS

FOR Distrib s 'Normal', 'Poisson', 'Gamma', 'Lognonaal', \
'Normallog', 'Inverse'

PAGE

PRINT Distrib
CALC NuO B y
&  EtaO B HuO -I- Kl * LOG (HuO)
&  Time B t - to

&  i, Kl, tKl, CritHu, Crit, Tau2, CondKl b o, 1, 1, 1, 1, 0, 1

IF Distrib .IN. 'Normal'

EKPR EZetaRes ; IE (ZetaRes = y - NuO)
6  EVs ; IE (VHu, vy B 1)
&  EDeviance ; IE (Deviance b rss)

ELSIF Distrib .IN. 'Poisson'
EXPR EZetaRes ; IB (ZetaRes b (y - nuO))
&  EV ; IE (VMu, vy B Etu, y)
&  EDeviance \

;  IE (Deviance b 2 * SDH (y * LOG (y / HuO) - (y - HuO)))

ELSIF Distrib .IN. 'Gamma'

EKPR EZetaRes ; IE (ZetaRes b (y - UuO))
&  BVs / IE (VHU, vy B (Mu, y) 2)
&  EDeviance \

;  IE (Deviance b 2 * SUM ((y / HuO) - LOG (y / HuO) - 1))

ELSIF Distrib .IN. 'Lognormal'
BXPR EZeteUfles \

;  IE (ZetaRes «= HuO * (LOG(y) - LOG (HuO) + Tau2 / 2))
&  EVs ; IE (VHu, vy B (Mu, y) ** 2)
&  EDeviance ; IE (Deviance = RSS)

. ELSIF Distrib .IN. 'Normallog'
EXPR EZetaRes ; IE (ZetaRes b HuO * (LOG (y) - LOG (HuO)))
&  BVs ; IE (VHu, vy B (Hu, y) ** 2)
&  EDeviance ; IE (Deviance b rsS)

ELSIF Distrib .IN. 'Inverse'
EXPR EZetaRes ; IE (ZetaRes = y - HuO)
&  EVs ; IE (VHu, vy B (Hu, y) ** 3)
&  EDeviance ; IE (Deviance b \

2 * SUM (y ** (-1) + y * HuO ** (-2) - 2 * HuO ** (-1)))
ENDIF

FOR [NTIHES b 50]
CALC i B i -I- 1
&  # EZetaRes

&  # EVs
&  # EDeviance
&  Zeta B BtaO * ZetaRes * (1 Kl / HuO)
&  W B 1 / (VHU * ((1 + Kl / HuO) ** 2))
&  XKl B - log (HuO)

HOl^ [NEIG B w] Zeta ; FITT b Eta ; RESI = yRes
IF Crit > .000001
IF CondKl bb 1 : FIT [PRINT b *] Time
ELSE : FIT [PRINT b *] xKl + Time
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ENDZF

ELSE

IF CondKl BO 1

FIT Time

FIT xKl + Time

CALC StanRes = ABS (yRes) ** (2/3)
GRAPH StanRes ; Hu

CALC CondKl o 2

ELSE

FIT xKl Time

CALC StanRes o ABS (yRes) ** (2/3)
GRAPH StanRes ; Ku

EXIT

ENDIF

ENDIF

RKEEP ESTI 8 Pars ; SE 8 SEPars ; DEVI 8 rss ; DF b df
CALC Phi 8 RSS / DF
CALC Tau2 8 Phi

IF CondKl 8s 2

CALC Di£Kl, SEKl b (Pars, SEPars) $ [2]
&  K1 B K1 -I- Dl£Kl
&  tKl 8 Di£Kl / SEKl

ENDIF

FOR [NTIHES 8 IJ
CALC Hu 8 MuO * (1 (Eta - EtaO) / (HuO -l- Kl))
6  Hu 8 Mu * (Hu > .00001) * .00001 * (Hu <b .00001)
&  HuO 8 Mu

&  EtaO B MuO -f Kl * LOG (HuO)
6  CritHu 8 hean (ABS (Eta - EtaO))

ENDFOR

IF CondKl bb 1

CALC Crit B ABS (CritHu)
ELSE

CALC Crit B ABS (tKl) + ABS (CritHu)
ENDIF

IF i bb 1

PRINT 'Konitoring in£ormation'
PRINT [SQUA B y] 'Cycle', 'Kl', 'tKl', 'CritHu', 'RSS', 'Deviance'
PRINT [SQUA B y ; IPRINT = *] i, Kl, tKl, CritHu, RSS, Deviance

ELSE

PRINT [SQUA B y ; ZPRINT b *] i, Kl, tKl, CritHu, RSS, Deviance
ENDIF

ENDFOR

CALC EQL 8 - .5 * SDH (LOG (2 * 3.1416 * Phi * vy) ♦ Deviance / Phi)
PRINT EQL

ENDFOR

STOP

36



Genstat Newsletter 30

Genstat analysis of Taguchi experiments

Robert E Kempson
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Abstract

Since the Second World War, Japanese industry has become the world leader in many fields of production,
especially electronics. One person who has contributed much to this success is Taguchi, who used his experience
as an engineer to adapt designed experiments in order to improve process capability and produce a more constant
product. This paper reviews relevant techniques in statistical process control and shows how Genstat is used to
provide a Taguchi analysis of the raw data and the signal-to-noise ratio appropriate to the required objectives.
The particular facilities available in Genstat are shown to be an advantage in subsequent runs of the program
where more suitable analyses may be selected in order that an appropriate error term may be formed.

1. Introduction

Designed experiments originated in agricultural research, but in recent years it has become apparent that the
methods can be used to great advantage in industry. In Japan there have been dramatic developments in quality
improvement in the last thirty years and to a large extent designed experiments have played an important part.

Agricultural experiments in general have few problems with replication since it is often possible to use a little
more land or make the plots slightly smaller, use more animals or more plants. Plants are often quite cheap and
plentiful, but large animals can be expensive to maintain and so must be used sparingly, and the same applies
to patients in many medical experiments. In industry it is often the case that there is a large number of treatments
but a small number of experimental units. This means that the experimenter must rely heavily upon his armoury
of tools for small experiments, such as fractional replication and Plackett-Burman designs.

2. Orthogonal arrays

Fractional replication owed its origins to Finney around the end of the Second World War and shortly afterwards
Plackett and Burman devised other designs useful for small experiments with large numbers of factors. Taguchi
incorporated these designs and others into a set of orthogonal arrays which have been extensively tabulated.

Traditionally experimenters have investigated factors one-at-n-fime when trying to identify sources of variation,
however this is well-known to be an inefficient technique, as evidenced by the following table.

Run

Levels of factors A,B,CJ) used

ABCD ABCD

1 1111 1111

2 2 111 1122

3 12 11 12 12

4 112 1 122 1

5 1112 2 12 1

6 2 112

7 22 11

8 2222
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The second column of the table indicates a change in levels of factors A,B»C,D one at a time whereas the second
method uses an orthogonal array. The first method has only five runs but each comparison of level 2 against
level 1 of a factor is a comparison of only two observations, whereas in the third colunm the design provides
each comparison as the difierence in means of four observations, so the latter method is more efficient.

3. Signal-to-Noise Ratios

Taguchi's other important contribution is through the use of the Signal-to-Noise ratio SN. He divides the factors
of interest in the experiment into two groups:
(a) control factors,
(b) noise factors.

The control factors are those that can be adjusted by the experimenter and may be used deliberately to vary the
mean in order to reach a target value. The noise factors are likely to cause variation in the experiment but may
not be controllable in practice, for example, factors that may be controlled in the laboratory but not in the
factory. The objective is to choose levels of the control factors such that the product is less susceptible to
variability over the noise factors.

The control factors are usually tested through an orthogonal array called the inner array, while the noise factors
may be replications or they could be examined over another orthogonal array called the outer array. The purpose
of the outer array is to evaluate a Signal-to-Noise ratio SN, which is a quantity analogous to the inverse of the
coefficient of variation (CV). A high value of SN is desirable as a measure of good experimental control, which
corresponds to a low CV. The value of SN depends upon the objective of the study, which is not always the
same. Sometimes it is desirable that the quantity measured is close to its target value, such as when components
must fit together, but in other cases it is required for the variable to be as large as possible, as in lifetimes of
electronic components, but small values may also be important, such as the level of wear.

Suitable values for SN are as follows:

rp_ 1
Nominal is best (NIB): SN = 10 log

s
\

Smallest is best (SIB): SN - -10 log

Largest is best (IJB): SN - -10 log

n

-EA
n
\  ̂ J

Logvariance (LS2): SN - log(j^)

Some authors argue that the logvariance should always be used in preference to the other forms of the SN.

4. Example

ASI describes an example on the manufacture of tiles in the 19S0s first reported by Taguchi (1987). A
manufacturer of tiles purchased a tunnel kiln and produced tiles by baking them in the kiln as they rested on a
truck which passed slowly along a track through the kiln. Although the tiles at the centre of the stack attained
the specification standards the tiles on the outside were very variable and over half of them fell outside the
specification limits. The target value for the tile measurements was ISO mm. The standard engineering approach
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is to try to identify the source of the variation and remove it, but the Taguchi approach is to choose factor levels
so that they are not susceptible to noise. The procedure is to maximise the SN values through a suitable choice
of factor levels then adjust the nominal value by altering the factors which affect the mean but not the SN.

Code Factor LI L2

A Limestone content 5% 1%

B Limestone texture Coarse Fine

C Agalmatolite content 43% 53%

D Agalmatolite type Old New

E Charging quantity 1300 kg 1200 kg

F Proportion of reuse 0 4%

G Feldspar content 0 5%

These factors can all be controlled because they are affected by the composition of the material used in the
production of the tiles. The variability of the response was clearly affected by the positions of the tiles within
the kiln, but it was too expensive to control the variability between positions so position had to be treated as a
noise factor. The positions within the stack were as follows:

Block 1 Middle

Block 2 Bottom

Block 3 Side

Block 4 Top

Block 5 Top comer

The design and sizes of the tiles in mm were as given in the following table.

Factor Block

Run A B C D E F G 1 2 3 4 5

1 1 1 1 1 1 1 1 151.9 151.4 150.4 150.2 149.6

2 1 1 1 2 2 2 2 151.5 150.8 150.0 149.4 149.1

3 1 2 2 1 1 2 2 153.1 151.8 151.8 151.4 150.6

4 1 2 2 2 2 1 1 152.2 151.3 151.1 150.6 150.0

5 2 1 2 1 2 1 2 151.5 150.8 150.6 150.2 149.7

6 2 1 2 2 1 2 1 156.5 152.1 150.3 148.5 144.6

7 2 2 1 1 2 2 1 154.5 153.3 151.8 150.4 149.6

8 2 2 1 2 1 1 2 153.0 152.0 151.3 150.0 149.5
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Analysis of the data as a randomised blocks design gives the standard analysis:

Source DF S.S. M.S. F

Blocks 4 72.506 18.126 (11.40)

A 1 0.100 0.100 0.06

B 1 10.201 10.201 6.42

C 1 0.025 0.025 0.02

D 1 2.916 2.916 1.83

E 1 0.064 0.064 0.04

F 1 0.361 0.361 0.23

F 1 0.121 0.121 0.08

Residual 28 44.522 1.590

Total 39 130.816

It is apparent that factor B accounts for substantially more of the variation than could be expected by chance,
so clearly the analysis suggests that the manufacturer is best able to control the size of tiles by adjusting the
texture of the limestone content.

Now the variance ratio for Blocks is over 11, so it is clear that there is substantial variation in tile size within
the stack. The standard engineering approach is to identify sources of variation and control them, which means
that fans would be installed within the kiln to circulate the heat evenly. This was an expensive option and
especially annoying as the kiln was new when the problem was noticed.

Taguchi's solution is to make the tiles ftom a clay which is less susceptible to change over the stack. The NIB
criterion is appropriate here since tiles should be neither undersize nor oversize to fit well.

Run y s SN

1 150.70 0.933 44.17

2 150.16 0.991 43.61

3 151.74 0.904 44.49

4 151.04 0.820 45.30

5 150.56 0.673 46.99

6 150.40 4.398 30.68

7 151.92 2.017 37.54

8 151.16 1.433 40.46

Run 6 gives a very low SN, and runs 7 and 8 are also poor. The 5N-values may be calculated for each level of
the factors.

Factor level 1 level 2 SNdiff Preference

A 44.39 38.92 -5.47 A1

B 41.36 41.95 0.59 B2

C 41.44 41.87 0.43 C2

D 43.30 40.01 -3.29 D1

E 39.95 43.36 3.41 E2

F 44.23 39.08 -5.15 F1

G 39.42 43.89 4.47 G2
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Some of the preferences were strong in the cases where large differences in the SN were found. As well as the
SN-\aluGSt the practical and cost considerations were taken into account in the decision over the final
composition of the clay, which -was a choice between Al, B1 or B2, Cl, D2, E2, Fl, G2. When the improved
tiles were manufactured the results were very close to target.

5. Genstat analysis

A Genstat program was written to perform the analysis described above, and several interesting points emerged
from the construction of the program. It was necessary to allow the user the choice of the different SN measures,
depending on the objective of the study. It was necessary to allow for a variable number of factors in order to
make the program general, and the statement

V2tRZATE [VALUESsl. . .#n£] vchl

permits the construction of a variate choice for n£ factors. The default setting of vchl is l, 2,3,4.. .n£ which
represents the complete factor set. This is a sensible choice for the first run of the program but can be overridden
by the user on the next run when he has decided which variates to keep as sources of variation. Since industrial
experiments are often small, the user may have to declare the error term as the sum of several effects, and this
option needs to be available.

The following code permits the input of the n£ sets of factor levels prior to analysis.

SCAIAR l[l...#n£]
READ [CRaNMELs2] l[l...»n£]
UNIT [NVALUES=#Xld]
VARZATB [NVALUBSatnt] £1 [1.. .Ullf]
READ [CHANNELs2] £l[l...#n£]
FOR ld°l[l...«n£] ; £ldB£l[l...«n£] ; £ds£[l...#n£]
FACTOR [LEVELald ] £d ; VALUES°1 (»xm(«£ld))
ENDFOR

READ [CHANNELs2] y
TREATUENT £[«VChl]
ANOVA y

This section of code exemplifies the use of the # operator as a prefix in order that variables may take algebraic
values in arrays and lists. It was necessary to insert algebraic values to make the program general.

The parameters £ [ivchl] and £ [#vch2] in the treatments statement allow the user to make a selection from
the hill factor set to perform a subset analysis on the second run. This facility is a useful labour-saving device.

The scalar nsd was used to adjust the number of significant working digits to allow correspondence in the
analysis of published calculations. (There are many examples in the literature where intermediate calculations
.are prematurely rounded so subsequent analysis is only approximate.)

6. Discussion

The appended program was found to be a convenient tool for the examination of analyses of Taguchi designs.
In particular it was most helpful to run the program a second time using subsets from the fiill variable sets, and
Genstat's subsetting facilities are particularly convenient However one of the most contentious aspects of small
experiments is the somewhat arbitrary decision as to which effects should be treated as error terms. Daniel
(1959) proposed a normal probability plot of residuals against order statistics provides a useful rule to decide
which effects should be absorbed. A Daniel plot would have been a useful addition to the program but it would
still be up to the user to decide which effects to absorb. The program performs an analysis of variance of the
SN-values, which is not usual but the anova statement provides tables of means, which are required. It is normal
practice to supply graphs of the SN for each variable, but these are easily obtained from the output.

Further reading is available in the hefty tomes of Taguchi (1987) and a encyclopedia of orthogonal arrays is
available in Taguchi and Konoshi (1987). More recent and easily readable accounts of the techniques are to be
found in Logothetis and Wynn (1989) and Bendell et al (1989).
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Appendix: Program listing

H

Taguchi analysis program:

Input scalars : nuidaers o£ treatments, noise factors, control factors, signal/noise
type (1: nominal, 2: smallest, 3: largest - is best, 4: logvar), number of significant
working decixuals, indicator of variable subsetting for mean and for SN (zero for all
factors)

Input choice of factors for mean (if indicator non-zero).
Input choice of factors for SN (if indicator non-zero).

Ixiput number of levels of each factor;
Input factor levels;
Input data by treatments
M

SCALAR nt,nn,nf,snt,nsd,chl,ch2

OPEN 'tag.dat' ; CHANNEL*! ; FILETYPEsinput
READ [CHANNEL*! ; END**] nt,nn,nf,snt,nsd,chl,ch!
CALCULATE ndont *nn

■ Variable selection for Anova table for (a) mean, (b) SN "
IF chl .NE. 0

VARIATE [NVALUES»*Chl] VChl
READ [CHANNEL*!] VChl

ELSE

VARIATB [VALUESbI. . .»nf] VChl
ENDIF

IF Ch! .NE. 0

VARIATE [NVALXJES*#ch!] vch!
READ [CHANNEL*!] vch!

ELSE

VARIATE [VALUES*!.. .#nf] VCh!
ENDIF

* Read in factor levels for control factors "
SCALAR l[l...«nf]
READ [CHANNEL*!] l[l...*nf]
UNIT [NVALUES*#nd]
VARIATE [NVALUES*»nt] fl[l...»nf]
BEAD [CHANNEL*!] fl[l...«nf]
FOR ld*l[l...#nf] ; fldBfl[l...*nf] ; fd*f[1...#nf]
FACTOR [LEVEL*ld ] fd ; VALUES* 1 (#nn(#fId) )

ENDFOR

" Analyse mean "
READ [CHANNEL*!] y
TREATMENT f[«vchl]
ANOVA y

" Calculate SN values "

UNIT [NVALUES**nt]
VARIATE [n*«nn] v[l...«nt]
EQUATE OLDSTRUCTURE*y ; NEMrSTRUCTUBE*lP(v[l. . .#nt] )
SCALAR sn[l...«nt]
FOR vdBV[l.. .#nt] ; sndBsn[l.. .#nt]
IF snt**l
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CALCDIATB alBHBAN(vd)
CAZiCUlATE a2°VAR(vd)
CALCULATE snd°10*L0010(al*al/a2-l/im)

ELSIF 8ntBB2

CALCULATE a3BVd*vd

CALCULATE a4BSUH(a3)/xm
CALCULATE 8nd°-10*LOG10(a4)

ELSZF 8nt8B3

CALCULATE a5°l/vd/vd

CALCULATE a6BSUM(a5)/xm
CALCULATE 8Xld°-10*LOOlO (a6)

ELSZF 8XltBa4

CALCULATE a2°VAR(vd)
CALCULATE 8lld°-10*LOG(a2)

ELSE

PRZNT 'Slgxial-to-xxol8e type out o£ raxxge'
EEDZF

ENDFOR

VARZATE [xivalue8B#nt] 8xiy
EQUATE 0LDSTRUCTUREB8X1 ; NEWSTRUCTUREB8Xiy

" Adju8tittant for slgxilflcaxit declaals "
SCALAR p
CALCULATE pBlO**XX8d
CALCULATE sxiysZllT (8ny*p+0.5)/p

" Prixitout 8lgxial-to-xiol8e values "
PRZNT fl[l...»xif],8xiy ; FZELD°(#nf(6),10) ; DBCB(ffxif(0),2)

" Analyse SN values "
FOR ldBl[l...*xi£] ; fldBfl[l...»nf] ; fd°f [1.. .«xx£]
FACTOR [LEVELdd ] fd f VALUESbI («£ld)

ENDFOR

TREATMENT f [«VCh2]
ANOVA SXiy
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A Genstat procedure to assess the performance of models with independent
data

A J Rook

AFRC Institute of Grassland and Environmental Research
North Wyke, OKEHAMPTON, Devon EX20 2SB, UK

and

M S Dhanoa

AFRC Institute of Grassland and Environmental Research
Plas Gogerddan, ABERYSTWYTH, Dyfed SY23 3EB, UK

The mean square error of prediction (MSPE) provides a concise quantitative summary of the predictive ability
of a model. It can also be decomposed in a manner which provides an insight into model inadequacies and thus
aids in the model building process.

With some models, for example the standard linear model, it is possible to calculate the MSPE from a knowledge
of the distribution of the independent variables without the need to calculate the predicted values. However, this
cannot be done with complex mechanistic models or with 'rules of thumb'. In such situations the MSPE must
be calculated directly from a set of actual values independent of those used to estimate the parameters of the
model and the corresponding predicted values. This approach is often used during model building by dividing
the available data in two, using half for estimation and half for validation.

A post-hoc evaluation should always begin with an examination of a scatter graph of actual versus predicted
values. This allows a qualitative assessment of the adequacy of the model by comparing the points so obtained
with the 1 : 1 line of perfect prediction. An example of such a graph is given in Figure 1. The MSPE
supplements this with a quantitative summary which is particularly useful when comparing several models.

MSPE is calculated from the actual and predicted values as

MSPE = — 5^
n i-i

Theil (1966) suggested two readily interpretable decompositions of the MSPE,

MSPE = {P-AY + iSp-sff + 2{\-r)SpSj^

or MSPE = {P-Af + {Sp-rsff + (l-r^)^^^

where F = 153 ; si = L^{P-Pf \ A and are defined similarly; rs^Sp = L^iP-PXA^-A).

The first term in both decompositions may be interpreted as error due to central tendency (bias) and is 0 only
when the mean predicted value equals the mean actual value. In the first decomposition, the second term is 0
only when the predicted variance equals the observed variance, and may be interpreted as error due to unequal
variation, while the third term is zero only when there is a perfect positive correlation between actual and
predicted values and may be interpreted as error due to incomplete covariation. The first term in the second
decomposition is 0 only when the slope of the least squares regression of actual on predicted values is 1 and may
be interpreted as error due to regression whereas the final term in this decomposition is interpreted as error due
to disturbance, that is 'unexplained variance' which cannot be eliminated by linear correction of the predictions.
These decompositions are not sensitive to nonlinear departures from perfect prediction and some caution is
therefore need in their interpretation.

A procedure called hspe has been written which calculates the MSPE and its decompositions and also prints the
component terms in the formulae. It has two parameters, actualb and prbdzctbds which are set to variates
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containing the actual and predicted values respectively. The procedure ignores units with missing values in either
variate. The variates may be restricted but both must be restricted in the same way.

An example output is shown below. The data are those used in Theil's (1966) original example and is also
shown in Figure 1. The mean actual and predicted values are printed together with the mspe and
decompositions. These are also expressed as percentages of MSPE to allow comparison of different models. The
'mean prediction error' is Vmspe and indicates how large on average the prediction error will be. It is also
expressed as a percentage of the actual mean. The components of the formulae are also printed, namely: bias,
slope of actual on predicted values, correlation of actual and predicted values and the standard deviations of
actual, predicted and their differences.

n^ure 1. (after Thell. 1966)

predicted

*** MSPE ANALYSIS ***

Means o£ -actual and predicted values

Actual Predicted

1.400 0.9000

Components o£ MSPE

MSPB Bias

10.10 0.250

Regression

0.1151

Disturbance

9.735

Variance

2.168

Covariance

7.682

Percentage Contribution o£ components o£ HSPE
HSPE Bias Regression Disturbance Variance Covariance
100.0 2.475 1.140 96.39 21.47 76.06

Mean Prediction Error

Absolute % o£ mean Bias A on P Slope corr(R) R_sa

3.178 227.0 -0.5000 1.100 0.7669 0.5882

Standard Deviatiozis

differences actual predicted

3.308 5.125 3.573
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Appendix: Genstat Procedure

PROCEDURE 'HSPE'
n

A. J. Rook

AFRC Institute o£ Grassland and Environmental Research,
North Nyke Ckehampton, Devon EX20 2SB

H. S. Dhanoa

AFRC Institute o£ Grassland and Enviroximental Research,
Plas Gogerddem, Aberystwyth, Dy£ed, SY23 3EB

Version 5.0 3/12/92

Procedure to calculate mean squared prediction error and its components £rom actual
and predicted values o£ a response variate.
Printing will be to de£ault output £ile set up prior to call by user.

Re£erences:

BiU^, J. Toutenberg, H. (1977). Prediction and Improved Estimation in Linear
Models. London, Wiley.

Theil, H. (1966). lulled Economic Forecasting, North Holland Publishing Company.
n

PARAMETER NAHEs \

'ACTUAL', "(I: variate) the actual values o£ the response variate" \
'PREDICTED'; "(I: variate) the predicted values o£ the response variate" \
SBTByes,yes; DECLAREDBye8,yes; TYPEBlT(variate),IT(variate); \
PRESENTsyes , yes ; COMPATIBLE" 1T (type, nvalues)

■

Harmonise missing values £or ACTUAL and PREDICTED. Done in this way to rather than
with restrict so that restricted variates can be input. Adjusted variates are stored
in new variates (lower case) to avoid carrying this setting outside the procedure.
m

SCAL2UI miss

CALCULATE miss = CONSTANTS('*')
& nxva,iirvp " ACTUAL,PREDICTED.EQ.miss
& act,pred " HVINSERT(ACTUAL,PREDICTED;mva,IBVp)

M

Calculate means o£ actual and predicted values
m

CALCULATE mact,mpred " MEAN(act,pred)
H

Calculate di££erence and squared di££erence o£ predicted and actual values.
«

CALCULATE di£ = pred-act
6 di£2 o di£*di£

M

Calculate bias and mspe.
m

CALCULATE bias " MEAN(di£)
& mspe B MBAN(di£2)

m

Calculate root mean square (mean prediction error) and square o£ bias and express rms
as percentage o£ mean actual value.
m

CALCULATE nos " SQRT(mspe)
& bias2 B bias*bias

& %raa b (rms*100)/mact
m

Calculate (uncorrected) standard deviations o£ actual and predicted values, and their
di££erences.
m

CALCULATE sdact,sdpred,sddi£ = SQRT( VAR(act,pred,di£) )
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Calculate correlation, R-squared and regression of actual on predicted values.
m

MODEL act

FIT [PRINTS*] pred
RKEEP ESTIHRTEsCOef; FITTEDsfitted
CALCULATE slopescoef$[2]
&  corr = slope*sdpred/sdact
&  corr_sq ** corr*corr

m

Calculate corrected standard deviations of actual and predicted values.
n

CALCULATE nl = NOBS(dif)
& correct s SQRT((nl-1)/nl)
6 csdact s sdact*correct

& csdpred = sdpred*correct
m

Calculate conponents of mspe due to regression and disturbances.
m

CALCULATE line = (cs^red-corr*csdact)**2
& random = (l-corr_sq)*csdact*csdact

N

Calculate ccmponents of mspe due to unequal variation and incooplete covariation
■

CALCULATE uv s (csdpred-csdact)**2
& inco o 2*(l-corr)*csdpred*csdact

H

Calculate percentage contribution of components of mspe.
N

CALCULATE %bias2,%lizie,%random,%uv,%inco,%mspe a \
bias2, line, random, uv, inco, mspe *100/mspe

■

Print overall heading.
m

PAOE

PRINT [SQUASBsyes] '*** MSPE ANALYSIS ***'
m

Print breakdown of mspe.
m

PRINT ' Means of actual and predicted values'
& [SQUASHsyes] ' Actual Predicted'
& [IPRINTs*; SQUASHsyes] mact,mpred
6 [SQUASHsno] ' Components of MSPE'
& [SQUASHsyes] ' MSPE Bias Regression', \

' Disturbance Variance Covariance'

& [SQUASHsyes] mspe,bias2, line,random,UV, inco
& [SQUASHsno] ' Percentage Contribution of components of HSPE'
& [SQUASHsyes] ' MSPE Bias Regression', \

' Disturbance Variance Covariance'

& [SQUASHsyes] 9aiispe,^ias2,%line,%randffia,%uv,%inco
& [SQUASHsno] ' Mean Prediction Error ',\

'  Steuidard Deviations'

& [SQUASHsyes] ' Absolute % of mean Bias A on P Slope ',\
'corr(R} B._sq differences actual predicted'

& [SQUASHayes] rms,%xms,bias,8lopo#corr,corr_sq,sddif,sdact,sdpred
ENDPROCEDURE

RETURN
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Double and triple Youden rectangles and Genstat ANOVA

D A Preece

Institute of Mathematics and Statistics
Comwallis Building
The University
Canterbury, Kent CT2 7NF, UK

As defined by Bailey (1989), a 'double Youden rectangle' is a kxv row-and-column design (k < v) for two
non-interacting sets of treatments, such that

(i) each of the v treatments from the first set appears exactly once in each row and no more than once in
each column;

(ii) each of the k treatments fit)m the second set appears exactly once in each colunm and either n or n +
1  times in each row, where n is the integral part of v/k;

(iii) each treatment from each set occurs with each treatment from the other set exactly once;

(iv) any two treatments from the first set occur together in the same number of colunms, i.e. the
column-subsets of first-set treatments constitute the blocks of a symmetric balanced incomplete block
design; and

(v) if n occurrences of each second-set treatment are removed from each row, leaving m = v - nk
second-set treatments in each row, then either m = 1 or the subsets of second-set treatments remaining
within the rows constitute the blocks of another symmetric balanced incomplete block design.

A 4 X 7 example is the following, where upper-case letters are used for treatments of the first set, and
lower-case letters for the second:

Cd Ba Gb Ad Bb Fc Dc

Be Cb Da Be Aa Gd Fd

Fb Ac Bd Db Bd Ca Ga

Ba Dd Cc Fa Gc Ab Bb

In any example of this size, any two treatments from the first set occur together in 2 colunms (e.g., C and F
occur together in columns 1 and 6), and any treatment from the second set occurs once or twice in each row.

In a double Youden rectangle, the treatments of the first set are disposed in a 'Youden square' and are, in a
standard statistical sense, 'balanced' with respect to columns, and the treatments of the second set are balanced
with respect to rows. Otherwise the factors of the design are orthogonal to one another. As the two
relationships of balance are independent of one another, the design is 'balanced overall' in a sense that implies
that the design can be analysed straightforwardly by Genstat's ANOVA. Such an analysis is as follows:

1 UNITS [28]
2  FACTOR [LBVELSb4; VALUES^?(1...4)] Row
3  FACTOR [LEVELSb?; VALUESb(1...7)4] Coluan
4  FACTOR [LEVELSo?; LaBELSB!T(A,B,C,D,E,F,a)] T1
5  FACTOR [LEVEI.Ss4; LaBEI.SBlT(a,b,C,d) ] T2
6  READ [PRINT°data; LAYOUToflxed; \
7  FORMATbI({(1,1,-1)7,*)4)] T1,T2;

FREPRESENTATZONalabelS,labels

8  Cd Ba Ob Ad Eb Fc Do

9  Be Cb Da EC Aa Gd Fd
10 Fb Ac Ed Db Bd Ca Ga
11 Ea Dd Cc Fa Gc Ab Bb

12 :

13 BLOCKSTRUCTURE Row * Column
14 TREATHENTSTRUCTDRE Tl T2
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15 ANOVA

15

***** Analysis of variance *****

Source of variation d.f.

Row stratum

T2 3

Column stratum

T1 6

Row.Column stratTim

T1 6

T2 3

Residual 9

Total 27

***** Information summary *****

Model term e.f. non-orthogonal terms

Row stratum

T2 0.020

Column stratum

T1 0.125

Row.Column stratum

T1 0.875 Column
T2 0.980 Row

The efficiency factors of 0.875 and 0.980 indicate that the bottom stratum holds 0.875 of the information on
treatments from the first set and 0.980 of the information on treatments fî om the second set

A double Youden rectangle can be obtained for any size ^ x v where A: = v - 1 > 3 (see Preece 1994).
However, knowledge of double Youden rectangles of other sizes is sparse, as is indicated by Table 1, which
covers sizes for which Youden squares exist.

Preece (1994b) has shown that, in certain very special cases, a further set of k treatments can be added to a
double Youden rectangle to form what he has called a 'triple Youden rectangle'. This is a row-and-colunm
design for three non-interacting sets of treatments, and has the properties that

(a) if either set of k treatments is omitted, the design becomes a double Youden rectangle;

(b) each of the two sets of k treatments is balanced with respect to the other in the same way that each of
these two sets is balanced with respect to rows;

(c) the design has overall balance for either of the two sets of k treatments.

We here omit formal details of how condition (c) is met in general and of how condition (b) is formulated
precisely. Instead we give the following 4 x 13 triple Youden rectangle, where the 13 treatments of the first
set are denoted (A, 2, 3, ..., 9, T, J, Q, K) in conformity with the denominations of standard English playing
cards, and the 4 treatments of each of the two remaining sets are denoted (s, d, c, h) for (spades, diamonds,
clubs, hearts):

Ass Jch Qhd Kdc 5cs 6hs 7ds 2hc 3dh 4cd 8sc 9sh Tsd
2dd Add 6sh Tcs Qdc Jdc 4sc 9cd 8cd Kss 7hh 3hs 5hh
3cc 8hs Acc 7sd 2sh Kch Qch Jss The 9hc 6dd 5dd 4ds
4hh 5sc 9ds Ahh Khd 3sd Jhd Tdh Qss 8dh 2cs 7cc 6cc
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Table 1: Present knowledge of double Youden rectangles (DYRs) with k<v-\ and k<\3

kxv Whether DYRs References

exist

3x7 No Preece (1966)

4x 13 Yes Preece (1982)

4x7 Yes Clarke (1967), Preece (1991)

5x21 ?

5 X 11 Yes Preece (1994a)

6x31 ?

6 X 16 No

6x 11 Yes Preece (1991, 1994a)

7x43 No

1x22 No

7x 15 Yes Preece (1971), Vowden (1994)

8x57 ?

8x29 No

8 X 15 Yes Preece (1993)

9x73 ?

9x37 ?

9x25 No

9x 19 Yes Vowden (personal communication))
9x 13 No

10x91 ?

10x46 No

10x31 ?

10 X 19 ?

10 X 16 No

11 X 111 No

11 x56 ?

11 x23 Yes Preece (1971), Vowden (1994)

12 X 133 ?

12x67 No

12x45 No

12x34 No

12x23 7

This design can be represented by mounting each of the 52 small cards of a pack of patience cards on top of
one of the 52 larger cards from a whist pack; for example, if the suits of the whist and patience cards are used
for the treatments of, respectively, the second and third sets, then the last entry in the first row of the design is
represented by mounting the 10 of diamonds from the patience pack on the 10 of spades from the whist pack.

The following output from Genstat's anova confirms that the design does indeed have the overall balance that
has been claimed. The identifier Value is used for the factor with levels (A, 2, ... , 9, T, J, Q, K), and the
identifiers Suitl and Sult2 for the second and third sets of treatments.

1  UNITS [52]
2  FACTOR [LEVELSb4; VALUESb13'(1.. . .4) ] ROW
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3  FACTOR [LEVELSbIS; VALDES°(1...13)4] Column
4  FACTOR [LEVELS813; \
5  lABBLSoITCA', '2', '3', '4' , '5', '6', '7', '8', '9' , 'T',

'J'»'Q'#'K')] Value
6  FACTOR [LEVELSb4; LABELSB!T(S,d,e,]l) ] Suitl
7  FACTOR [LEVELSb4; IABELSBlT(8,d,e,h)] Suit2
8  READ [PRINTBdata; LAYOUTBflxed; \
9  FORMATbI(((3(1)/-1)13,*)4)] Value,Suitl,Suit2; \
10 FREPRESENTATZONBlabelS,

labels,labels

11 Ass Job Qhd Kdc 5cs 6hs 7ds 2hc 3db 4cd 8sc 9sh Tsd
12 2dd Add 6sh Tcs Qdc Jde 4sc 9cd 8cd Kss 7bh 3hs 5hh
13 3cc 8hs Acc 7sd 2sb Kch Qeh Jss The 9hc 6dd 5dd 4ds
14 4hb 5sc 9ds Abb Kbd 3sd Jbd Tdb Qss 8db 2cs 7ce 6cc
15 :

16 BLOCKSTRUCTURE Row * Column
17 TREATMBNTSTRUCTDRE Value -t- Sultl Sult2
18 ANOVA

* MESSAGE: non-ortbogonallty between treatment terms. The effects (printed or used
to calculate means), tbe efficiency factor and tbe sum of squares for eacb treatment
term are for tbat tem eliminating previous terms in tbe TREATMENT formula and
ignoring subsequent terms.

18.

***** Analysis of variance *****
Source of variation d.f.

Row stratum

Suitl 3

Column stratum

Value 12

Row.Column stratum

Value 12
Suitl 3
Suit2 3
Residual 18

Total 51

***** Information summary *****

Model term e.f. non-ortbogonal terms

Row stratum

Suitl 0.006

.Column stratum

Value 0.187

Row.Coluzan stratum

Value 0.813 Column
Suitl 0.994 Row
Suit2 0.989 Row Suitl

In interpreting this last ou^ut, we must take careful heed of the message, which reminds us of the sequential
fitting of the model terms.

Thus the bottom-stratum efficiency factor of 0.989 for Suit2 takes account of the partial confounding of Suit2
with Suitl in the bottom stratum. Similarly, a bottom-stratum efficiency factor of 0.989 (not 0.994) could have
been obtained for Suitl if Suitl had been fitted after Suit2; the printed bottom-stratum efficiency factor of
0.994 for Suitl is calculated ignoring Suit2. In the Row stratum, the printed output correctly reports an
efficiency factor of 0.006 for suitl ignoring Suit2, but unfortunately does not go on to report that, in the Row
stratum, the Suitl information is aliased with the corresponding Suit2 information.
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Genstat mode for Gnu Emacs

R D Ball

DSIR Applied Mathematics
Private Bag 92169 Auckland
New Zealand

Email: rod@marcam.dsir.govt.nz

Abstract

Genstat mode, an interface to Genstat for Gnu Emacs, is described. The interface allows users to run Genstat
within an Emacs window and provides facilities for loading Genstat source files by file, by selected region or
by line editing. Errors in Genstat source files can be found quickly using the next error function. Also provided
is a facility for editing Genstat factors, variates and texts. Emacs mode for Genstat combines the advantages
of batch mode (where the user has a record of exactly what calculations were done, and where the user can view
an output file using a text editor) and interactive mode (where the user may respond to errors or adjust
calculations on a line by line basis depending on the results of intermediate calculations). The ability of Emacs
to split windows horizontally or vertically allows users to simultaneously view Genstat outi}ut, data files and
source code.

1. Introducdon

Emacs

Gnu Emacs (Stallman 1986) is an editor which features multiple windows, multiple buffers, advanced search and
replace capabilities (e.g., incremental search whereby the search string is searched for as the user types it in and
full regular expression capabilities, i.e. searching and/or replacing pattems), parenthesis matching (Emacs will
let you know if you type in a mismatched parenthesis, and will flash the matching parenthesis; this is useful
for avoiding syntax errors when programming), and the ability to run processes in windows. Emacs can be
custonused for particular users or applications. Simple customisation may consist of choosing between case
sensitive or case insensitive searches or by making one's own definitions for keys. Major customisation is done
using Emacs Lisp.

Emacs Lisp is a programnung language similar to Common Lisp, the modem standard lisp, with a clever
mechanism for obtaining values of arguments of functions from users. It is this Lisp language which makes
.Emacs fiilly custonusable; one can interactively define new editing functions or redefine existing functions. This
can be done at the press of a key and does not require any recompiling or linking.

Keys are denoted by, e.g., M-x for meta-\, c-x for control-x, c-x b for control-x followed by b. The spaces
are for readability only and are not typed. On most temtinals the meta key is the escape key. Any single or
multiple key sequence can be defined to run any command except where a sequence is an initial subsequence
of a sequence ahaady defined. In practice this is not as complicated as it sounds: note that most multiple Icey
commands begin witii h, h-x, c-x, c-x 4, c-h or c-o and end with one further key. The 4 means 'alternate'
(e.g., c-x f is £lnd-£lle, c-x 4 £ is £ind-£ile-other-wixidow), the prefix c-b is for help and the prefix
c-c is used for mode specific commands.

By writing programs in Emacs Lisp users can do almost anything (except leap tall buildings in a single bound).
Special modes have been created for many programs and languages including Ada, C, Fortran, fq), lisp, mail,
news, Pascal, prolog, S, telnet, TeX, LaTeX, and now Genstat.

Emacs functions (either internal functions or Emacs Lisp functions written by users) can be activated in several
ways:

•  automatically when the user types a key sequence which has been bound to the function
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•  by name when the user types H-x <coinmaxid-ziaiiie>, e.g., M-x spell-bu££er
•  by being called by another Emacs function
•  when the user invokes a Lisp expression e.g., h-h followed by (describe-bindings) or

(delete-reglon (point-mln) (point-nax))

Novice users need only consider the first and possibly the second method.

Ciistoiiiisation for Genstat - Advantages of using Emacs

Genstat mode consists of a number of Bmacs Lisp functions, together with modifications of syntax tables. The
modified syntax tables allow Bmacs to match the parentheses used by Genstat. This helps catch syntax errors
as they occur.

The function gezistat runs an inferior Genstat process with input and output in an Bmacs window. An Bmacs
window is simply part of the user's screen delimited by an inverse video mode line, which contains the name
of the file or buffer (one edits buyers which may or may not correspond to files on the system) being edited.
Thus the advantages of multiple windows are available for users with an ordinary character based terminal. Even
when using a window system such as X-windows, experienced Bmacs users prefer running programs such as
Genstat within Bmacs, to running an editor and Genstat in several windows and cutting and pasting between
windows. This is because Bmacs commands are more quickly accessible and more powerful than mouse based
scrolling and menu operations. For example, incremental search is much quicker than scrolling back through a
large output file; M-1 Is is quicker than suspend ['Is']; repeatedly typing c-c c-n in a Genstat source
buffer enables evaluating a source file one line at a time much more quickly than repeatedly cutting and pasting
with a mouse; help does not interfere with output; and so on.

Similarly, when editing Genstat data objects (cf. Lane 1991) it is not necessary to enter and exit an editor, c-c
d X is much quicker to type than edata x, and the edited data remains visible in its buffer after being sent to
back to Genstat. At present, editing one or more Genstat factors, variates or texts in a buffer is supported
(multiple edit buffers are possible). Help is available on Genstat directives and library functions: online help
appears in a pop-up window without cluttering up the Genstat output and forcing calculations to scroll off the
screen. A history of previous commands is maintained (a feature not available in some current Genstat releases
when running Genstat directly), and previous commands can be searched for with c-c r. The next error
function c-c n (gen8tat-eval-bu££er-to-next-error) facilitates corrections of Genstat source files
containing errors. This works by automatically sending one line at a time starting from the cursor position to the
Genstat process until Genstat reports an error c-c n. The cursor is left on the offending line. The user then
need only correct this line and retype c-c n, continuing until all errors have been fixed.

2. Genstat modes for Emacs

When editing in Bmacs, a buffer is usually in samt-major mode and one or more minor modes. There are three
major modes for Genstat: inferior genstat mode, genstat mode and genstat object mode for running Genstat in
a window, editing Genstat source files, and editing Genstat variates, factors or texts respectively. The mode of
the current buffer is indicated by the mode line at the bottom of the window. Genstat mode can be invoked for
a buffer by typing h-x genstat-mode. Normally, however, Genstat mode is invoked automatically when a file
with suffix .gen is edited.

Running Qenstat — Inferior Genstat Mode

I will assume the appropriate installation has been carried out If not see the section on installation below.

Type M-x genstat. You should now be in a buffer running Genstat. You can type in commands to Genstat
as if you were running Genstat directly. You can also do other editing commands such as scrolling, searching,
query-replace etc. Typing <retum> sends the line up to the current cursor position to the Genstat process, if
you are not at the end of the line, or the whole line otherwise. Multiple lines can be typed in by ending them
with c-j. Typing <return> after these lines sends them all. Similarly text can be cut and pasted frrom other
buffers.
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Some useful commands are:

Key

<rotuxn>

H-p

H-n

C-c r

C-c d

Emacs command

comint-send-lnput

comint -previous - isiput

comint -next -input

comint -previous- iz^put -matching

genstat-dump-object-into-scratch

Definition

send input to Genstat
get the previous command (from the command
history) on command line
get next command on command line
reverse search command history
dump an object or objects into a scratch buffer
for editing (see below)

Editing Genstat source - Genstat Mode

Type c-x 4 f test .gen (get the file test .gen in the other window). If there is not already Genstat source
in this file include some with c-x i <£ile> where <£ile> is the name of a file containing Genstat source,
or type some in. You should now be in Genstat mode.

Some useful conunands are:

C-c b gen8tat-eval-bu££er

C-c C-b genstat-eval-bu££er-and-go

C-c r genstat-eval-region

C-c R genstat-eval-region-and-go

C-c 1 genstat-load-£ile

C-c h genstat-display-help-on-coxBttand

C-c k genstat-eval-llne

C-c C-n genstat-next-line-and-eval

New commands for finding errors

C-c C-e genstat-oval-bu££er-to-£irst-error

C-c n gen8tat-eval-bu££er-to-next-error

C-c ? genstat-show-last-error

send the buffer to the Genstat process
send the buffer to the Genstat process and
switch to the Genstat process buffer
send the region to the Genstat process
send the region and switch to the Genstat bufier
load a file, i.e. send a disk file to the Genstat
process

get help on a directive or library procedure (see
below)
send the current line to Genstat

send the current line to Genstat and move down

one line ready to send the next (useful for
stepping through a file one line at a time)

send lines one at a time start from the start of

the buffer until an error occurs leaving the
cursor on the line containing the error
send lines one at a time starting from cursor
position until an error occurs, leaving the cursor
on the line containing the error
display the full text of the last Genstat error
message generated by
gen8tat-eval-bu££er-to-£ir8t-error
andgazuitat-eval-bu££ar-to-iiext-error.

Notes:

(1) use gen8tat-eval-bu££er-to-£irst-orror or gen8tat-eval-bu££er-to-naxt-error if the
buffer may contain errors

(2) the block of text between the cursor position and where the mark was last set

The rationale for these key definitions is as follows. Where possible the last key of a key sequence is the first
letter of the type of object to which the command applies, e.g., b for buffer, k for current line (c-c e would
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be dangerous as the similar sequence c-c c-c sends the c-c signal to the process, and this kills Genstat), 1
for load and r for region. Also where possible definitions are kept compatible with similar modes especially S
(mode for new S (Becker et at 1988) upon which Genstat mode is based) or definitions for other prefixes e.g.,
c-x c-e is for compile, c-c c-e is for the mode specific equivalent of compiling, namely finding the first
error, c-x c-n is for next-error (after compiling) and c-c n is used for the mode specific equivalent namely
finding the next error starting from the cursor position, c-x c-n was reserved for sending one line at a time
as this sequence can be repeated rapidly, and c-n is the key for next line. Note that control keys are often
variants of the corresponding non-control key, e.g., c-c b for evaluating the buffer and c-c c-b for evaluating
the buffer and going to the genstat window.

Editing data - Genstat Object Mode

Type C-c d X in the Genstat process buffer to edit a single factor, variate, or text x. A buffer appears with
a representation of x and, if applicable, nvalues, levels, labels, etc. If x has many values rows of output are
labelled with the ordinal number of the first element, namely

[1] 1 2 3 4 5 6 7 ...
[31] 31 32 ...

Multiple objects of the same length can be edited with, e.g., c-c d x,y, z or c-c d x[]. Emacs prompts you
for the list of Genstat objects to edit after you type c-c d. When multiple objects are being edited the edit buffer
contains values only and rows of output are labelled with their ordinal number. Values can be edited and the
results read back into Genstat with c-c b or c-c c-b.

3. Getting help

Type C-h c, C-b k (descrlbe-kay) to see what a given key or sequence does, C-h m (descrlbe-node) for
information on the current mode, c-h b (describe-bindings) for information on all key bindings.

To get help on Genstat directives and library procedures type, e.g., c-c h kolaogorov. A window pops up
containing fiill help information on the directive or library procedure. Names may be abbreviated; if abbreviating
type a space after the abbreviation and Emacs will complete the command or show alternatives.

4. Summary

Emacs mode for Genstat provides an integrated environment for running Genstat, editing data, editing and
debugging Genstat programs, and getting help. The system is both easy to learn with online help and ideal for
power users, providing the best of both worlds: running in batch and interactive mode. Further customisation can
be readily done by users who can program in Emacs Lisp (e.g., for reading particular data formats), but for most
users no Lisp knowledge is needed.
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Appendix A: Getting Gnu Emacs

Gnu Emacs is available free (subject to Gnu copyright provisions, the main condition is roughly that you cannot
sell or restrict access to Emacs) via ftp from, e.g., tut.cis.ohio-state.edu, cc.utah.edu (VAX-VMS).

Appendix B: Installation

If Gnu Emacs has not been installed on your system see the section Getting Gnu Emacs. If necessary edit the
lines :

(de£var inferior-genstat-program "genstat" ...
(de£var explicit-genatat-args "S^S" ...

in the file gemstat.el, replacing genatat by the command needed to run genstat and S^S by the appropriate
explicit arguments given to Genstat. Install the files comint .el (available from, e.g., tut.cis.ohio-state.edu under
/pub/gnu/emaca/eliap-archive/modea/ in the cmuahell.aliar.* files), genatat.el in the directory
where Emacs looks for Emacs Lisp files. Add the following lines to your .oDaca file or equivalent after
changing "X-Zeliap" to the appropriate path.

(autoload 'genatat "-/eliap/genatat.el" "" t)
(autoload 'genatat-mode "-/eliap/genatat.el" "" t)
(aetq auto-mode-aliat
(cona (cona ■'\\.gen$" 'genatat-mode) auto-mode-aliat))
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